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This work presents the development of an integrated hardware/software sensor system for moving object detection and distance
calculation, based on background subtraction algorithm. The sensor comprises a catadioptric system composed by a camera
and a convex mirror that reflects the environment to the camera from all directions, obtaining a panoramic view. The sensor
is used as an omnidirectional vision system, allowing for localization and navigation tasks of mobile robots. Several image
processing operations such as filtering, segmentation and morphology have been included in the processing architecture. For
achieving distance measurement, an algorithm to determine the center of mass of a detected object was implemented. The overall
architecture has been mapped onto a commercial low-cost FPGA device, using a hardware/software co-design approach, which
comprises a Nios II embedded microprocessor and specific image processing blocks, which have been implemented in hardware.
The background subtraction algorithm was also used to calibrate the system, allowing for accurate results. Synthesis results show
that the system can achieve a throughput of 26.6 processed frames per second and the performance analysis pointed out that the
overall architecture achieves a speedup factor of 13.78 in comparison with a PC-based solution running on the real-time operating
system xPC Target.

1. Introduction

Scientists predict that robots will play an important role
in the future. In this scenario, robots will be able to assist
humans in many tasks as domestic labors, elderly people
care, cleaning, vehicles operation, and surveillance. Animals
have mechanisms to interact with the environment provided
by natural evolution. They are able to sense the surrounding
environment and to move according to a defined objective,
contouring obstacles and performing a dynamic path
planning. In the robotic field, one of the major challenges
is providing robots with sensorial and rational capabilities,
allowing them to assist, and possibly substitute, humans in
some activities requiring special skills.

Autonomous mobile robot navigation considers the
execution of three stages: (a) mapping, (b) localization, and
(c) decision making. The first stage uses information from
sensors for creating a map of the environment. The second

one relates the map with the sensor information, allowing
the robot to self-localization in the environment. The third
stage considers the path-planning problem [1].

Different kinds of sensors can be used for providing
environment information to the mobile robot. Such sensors
are classified in two main groups: (a) interoceptive and
(b) exteroceptive. The interoceptive sensors perform inter-
nal robot parameters measurements without environment
dependence. Encoders, gyroscopes, and accelerometers are
some examples of interoceptive sensors. On the other hand,
exteroceptive sensors perform external measurements, for
instance, ultrasound, radar and infrared positioning systems
as well as cameras, GPS and magnetometers. In humans,
the vision sense is the one which provides more quantity of
information about the environment. Through the sensorial
fusion (provided by our stereo vision system) we are
able to estimate efficiently the localization of surrounding
objects.
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The use of cameras jointly with image processing algo-
rithms for implementing sensors (e.g., distance, movement,
color, and presence sensors) is suitable solution for mobile
robotic applications. Additionally, cameras with embedded
image processing issues are the foundations of computer
vision area. Catadioptric systems are realizations of omni-
directional vision, being mainly based on specially shaped
mirrors (e.g., spherical, hyperbolic, parabolic, etc.) that
reflect the environment to the camera from all directions,
obtaining a panoramic view. Thus, these systems can provide
information from a larger area than other vision sensors
[2].

The task of processing the acquired images depends
on the objective of the process itself. A common problem
in mobile robotics is the localization of moving objects
around the robot. For that, different methodologies can be
used, such as motion detection, trajectory estimation, and
tracking. Since the motion detection approach makes use
of simple and easily implemented algorithms, this technique
is suitable for real-time embedded applications. A common
technique for implementing the motion detection is the
background subtraction, in which an image is acquired
at the beginning of the measurement process, and then
each new image is subtracted pixel by pixel from the
background. This technique is largely used in surveillance
systems, since it acts as an automatic intrusion detection
algorithm. In robotics, the localization of the differences
between the background and the new frame provides the
position estimation of the moving objects around the
robot.

On the other hand, distance sensors are important for
solving mobile robotic localization problems (namely, local
and global localization tasks), and an important issue is the
use of cameras for these tasks, providing (in real time) the
robot with information about the distance to an obstacle.
To accomplish this, the development of a mapping process
among the actual scenario and the captured image is fun-
damental. This aspect introduces the calibration problem,
which comprises the estimation of metrological values such
as accuracy and precision (that are related to systematic
and random errors, resp.), apart from the calculation of
calibrations curves.

Otherwise, taking into account performance points,
autonomous mobile robots must be able to acquire images
from the environment, processing the information and
making a decision in a short period of time. In order
to avoid failures, autonomous mobile robots must per-
form the decision process as quickly as possible. This
real-time constraints require the use of high-performance
computational platforms for implementing image processing
algorithms. In this context, the high computational cost of
the involved algorithms is the main drawback, specifically
when performing operations with high accuracy and high
performance.

Common robotic platforms are based on desktop solu-
tions executing complex algorithms for robot navigation.
However, desktop platforms are not tailored for embedded
applications with portability and low-power consumption
requirements. Field programmable gate arrays (FPGAs) are

a suitable solution for implementing image processing algo-
rithms with a high performance. FPGAs allow the involved
algorithms to be mapped directly in hardware in a parallel
way. In addition, FPGAs allow software RISC processors to
be implemented in order to execute parts of the algorithms
with low performance requirements.

In [3] the authors proposed the development of a
distance sensor based on an 800 × 480 pixels camera con-
nected to an FPGA, a spatial convolution filter (for edge
enhancement), a hardware architecture for estimating the
distance of real objects and a touch-screen display as user
interface (the camera image was addressed to the screen). In
that system the screen was capable to detect the coordinates
of a touched point, being used for calculating the distance (in
pixels) from the robot to a defined object. In this approach
the calibration parameters (errors and calibration curves)
were calculated by comparing the actual distances, in a
particular scenario, and the pixel distance in the screen.

The main contribution of this work is the design of
an integrated hardware/software sensor system for both
moving object detection and distance calculation, based
on background subtraction algorithm. In this approach
the calibration problem has been also treated, validating
a proposed calibration process, which is suitable for this
kind of application. Several image processing operations as
filtering, segmentation, and erosion have been implemented
in the architecture. The object’s position was determined by
computing its center of mass coordinates. The movement
detection technique was also used to automate the omni-
directional vision system (achieved in a catadioptric imple-
mentation). As a result the uncertainties related to point
objects in the touchscreen were eliminated.

The proposed pipeline image processing algorithm was
mapped onto a Cyclone II FPGA device. Also, in this device,
a NiosII soft processor was implemented for computing the
distance and orientation as well as a simple user interface.
Execution time comparisons among the proposed hardware
architecture and a C-code implementation show that the
hardware solution speeds up by 13.78 times a pc-based
solution running in an Intel Pentium IV processor at
2.2 GHz, with 2.0 GB RAM and using a real-time operating
system (the xPC Target OS from MathWorks).

The remainder of this paper is organized as follows.
Section 2 outlines some computational vision techniques.
Section 3 presents the related work. Section 4 describes the
system and the calibration procedure. Section 5 shows the
FPGA hardware and software implementations, and, before
concluding, Section 6 presents synthesis, validation results,
and a performance analysis.

2. Background

The use of cameras is a common solution for mobile robotics
applications. Different works are related to the extraction of
features from images. Monocular systems are able to provide
only 2D information of the environment in front of the
camera. In this case, in order to extract depth information
it may be necessary to analyse vanishing points or to use
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Figure 1: Catadioptric system.
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Figure 2: Image chain of the background subtraction algorithm: (a) background image; (b) new image; (c) image subtraction; (d) overlap
of new image and object’s position.

perspective models with known object shapes. The use of
a pair of cameras (stereo systems) allows the depth to be
estimated through the epipolar geometry. Once the objects
have been identified in each camera, it is possible to compute
the depth of the image using simple geometric techniques.
However, similar to monocular systems, stereo cameras
provide information only in front of the cameras. In order
to obtain information about the surrounding environment it

is necessary to turn the system 360 degrees acquiring images
in all the directions [4].

Omnidirectional vision systems are a suitable alternative
to view the surrounding environment from one single image.
Such a system can be built in two ways: (a) using panoramic
lenses, for instance, fisheye lenses and (b) using catadioptric
systems. Cameras equipped with fisheye lenses acquire
images directly from the environment. On the other hand,
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Figure 3: Main components of the proposed catadioptric system.
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catadioptric systems capture the image of the environment
reflected on a special geometry mirror [5].

Figure 1 shows the principles of operation of a catadiop-
tric system. It is composed of a camera and a convex mirror.
The acquired image characteristics depend on the geometry
of the mirror. Thus, knowing the geometry, reflection
equations can be used in order to determine the environ-
ment geometric characteristics. Commonly, omnidirectional
vision systems make use of hyperbolic, parabolic, spherical,
and conical mirrors [5, 6].

Omnidirectional
image

Real environment

Figure 5: Correspondences among the omnidirectional image and
the real environment.

Figure 6: The catadioptric system mounted over a calibration
board.

In our previous work [3] the object’s coordinates in
the image were determined using a touch screen. Thus,
by touching over the object in the image, the distance
in pixels was calculated. Although this procedure is easily
performed, its precision depends on several factors such as
parallax effect, accuracy, and lighting variations. In order to
minimize the human factor, in this work we make use of
an identification method based on a background subtraction
algorithm which allows the object to be automatically located
and identified.

Figure 2 shows an image chain demonstrating the
response of the background subtraction algorithm. In this
method an image without objects is acquired (background
image), and then each new image (with objects) is subtracted
pixel by pixel from the background. After the subtraction
(Figure 2(c)), the coordinates of the center of mass are
determined using (1) and used as the object location. It
is important to note that the system can determine the
position of only a single object in the image, since all other
moving objects will be considered noise and disregarded.
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Figure 7: Polynomial fitting for distance estimation for sections I, II, III and IV.

Otherwise, the center of mass will be determined considering
the distributed mass of all objects:

C
(
x · y) =

∑M−1
i=0

∑N−1
j=0

(
i, j
) · B(i, j)

∑M−1
i=0

∑N−1
j=0 B

(
i, j
) . (1)

The construction of catadioptric systems is a complex
task taking into account that there are a lot of of geometrical
uncertainties that must be precisely determined in order to
assure the necessary accuracy of the system. In this context, it
is essential to apply a calibration process to the catadioptric
system for determining the errors (namely, systematic and
random ones) related to defects in the catadioptric systems
(e.g., mirror defects).

3. Related Works

Several works have been developed using FPGAs for speeding
up image processing tasks, mainly for embedded systems
applications with real-time constraints. In [7], a biological
inspired architecture for motion estimation by optical flow
was implemented. This approach is suitable for implementa-
tion in both FPGA and ASIC devices, achieving a processing
rate of 177 frames per second (128×96 pixels). Also, in [8] an
FPGA implementation of an embedded motion estimation
sensor (that uses an optical flow algorithm achieving 15
frames per second for images with 640 × 480 pixels size) is
proposed.

A vision system for visual feedback applied to control
a mechanical system was proposed in [9]. In this approach
a matched filter by correlation is used, which also deter-
mines the object’s center of mass each 4,51 ms for small
images (256 × 256 pixels). In [10], a system for image
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Figure 8: Polynomial fitting for direction estimation for sections I, II, III, and IV.

filtering and motion estimation using SAD (sum of absolute
differences) is implemented using a systolic architecture
suitable for estimating motion each 5 ms in images with
640× 480 pixels.

The design and implementation of robust real-time
visual servoing control, with an FPGA-based image copro-
cessor for a rotary inverted pendulum, are presented in [11].
In this approach the position of the pendulum is measured
with a machine vision system whose image processing algo-
rithms are pipelined and implemented on a FPGA device for
achieving real-time constraints. Furthermore, it uses an edge
enhancement algorithm to determine the center of mass of
the detected object, reaching a throughput of 580 (128× 101
pixels) processed frames per second.

In [12, 13] an FPGA-based video processing for surveil-
lance systems is described. Reference [13] shows an FPGA
implementation for real-time background subtraction. The
implemented architecture reaches a performance of 32,8

frames per second with 1024 × 1024 images. In [12] a
pipeline architecture for multimodal background generation
algorithm is described, for colour video stream and moving
objects segmentation based on brightness, colour, and
textural information. In the later case, the overall throughput
was about 25 frames per second, with a resolution of 720 ×
576 pixels.

An implementation in a PC of an omnidirectional
sensor for mobile robot navigation was presented in [14].
In this approach, a catadioptric system was calibrated by
placing landmarks in the environment, using a polynomial
interpolation to characterize the system. Additionally, the
same uses an edge enhancement technique to create a polar
map of the surrounding environment.

Reference [15] introduces an implementation of a frame-
work for image processing speedup by using reconfigurable
devices. Some of the most common image preprocessing
algorithms were implemented achieving a high throughput.
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Otherwise, [16] uses dynamic reconfiguration for color
recognition and optical flow computation in FPGA, in which
a throughput of 30 frames per second for 160 × 120 pixels
images is achieved.

An approach that uses lookup tables for avoiding
complex computations was proposed in [17], in which
an architecture for real-time rectification of catadioptric
images was implemented in FPGAs. This work has a good
throughput but requires a large amount of memory block for
storing all the distances, which were calculated off line.

In [18] an FPGA-based architecture (which calculates
pixel by pixel the undistorted image from a polar frame)
is proposed, thus providing a plane image as output. In
that case, a pipeline architecture is used to organize the
processing stages, achieving a throughput of one pixel per
clock cycle. An FPGA for image reconstruction was used in
[19]; however, differently from [17, 18], where the images are
generated by an omnidirectional mirror, the system processes
the images from a camera with a fisheye lens, although, in
this case, the authors do not present a description of the
architecture for the reconstruction process.

An architecture using a mixed FPGA/DSP to obtain large
speedup factor for high-resolution images was presented in
[20], while in [21] an embedded Nios II processor that makes
use of several hardware coprocessors for image filtering and

tasks related to the autoadjustment of the camera focal length
was described.

In [6] a complete procedure for catadioptric systems
calibration using line projections is presented. In this case,
the system achieves a high accuracy for paraboloid mirrors.
An approach that uses calibration patterns to determine the
response of hyperbolic sections on a nonrevolute hyperbolic
mirror was presented in [22]. The simple idea that the
external and internal boundaries of the mirror can be used
as a 3D calibration pattern was proposed in [23], allowing
for a high-speed self-calibration procedure. [24] which
developed a complete generic camera calibration procedure
by overlapping calibration grids simultaneously. It is suitable
for calibrating many kinds of cameras such as fisheye lens,
catadioptric cameras with spherical and hyperbolic mirrors,
and also multicamera setups.

Some of the cited works use FPGAs for accelerating
omnidirectional vision processing and have mainly focused
on image undistortion/reconstruction/rectification tasks.
However, in mobile robot applications (such as localization,
navigation, and multiagent robotics), it is not always nec-
essarily a complete image reconstruction, but the correct,
appropriated, and fast measurement of distances between the
robot and the different environment objects. In this context,
the main contribution of this work is to provide the robot
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Figure 11: Flowchart of the NiosII coprocessor.

with a suitable and low-cost system for measuring distances
automatically from the robot to the detected objects, using
an appropriated image resolution (800 × 480 pixels) and
achieving real-time characteristics.

4. Development of the Catadioptric System

This section describes the mechanical design of the catadiop-
tric system as well as the calibration procedure description
and its analysis.

4.1. The Proposed Catadioptric System. A catadioptric system
allows the camera to capture reflected images in the mirror,
obtaining a panoramic view. Figure 3 shows the system
developed and its main components: (a) a convex mirror,
(b) the mounting brackets, and (c) a CMOS camera with
a maximum resolution of 2592 × 1944 pixels. In order to
perform numerical comparisons with related works we have
used a resolution of 800 × 480 pixels, which is appropriated
for mobile robotics applications. The distance between the
camera and the vertex of the mirror is approximately 17 cm.

In this case it is desirable that the center of the mirror
is placed in a vertical line from the center of the camera
lens. To achieve this, once mounted the system, an image
was acquired and analyzed in order to determine (in pixels)
the coordinates of the circle projected by the mirror over
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Figure 12: Calibration positions for a particular section in the
scene.

the image plane (Figure 4 shows this idea). Otherwise, in
this approach, the mirror’s projection was assumed to be
circular.

For mobile robot applications, the catadioptric system
provides a panoramic image in which the robot occupies
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the center of the image. Figure 5 shows the omnidirectional
image captured and the respective environment, in which
the robot is positioned with some objects around it, with
arrows indicating the correspondence among objects and the
image.

The omnidirectional vision system provides a panoramic
image, which can be processed in order to extract the
distance in pixels between the center of the mirror and the
identified object. Once the system has been calibrated, the
actual distance can be computed by using a mathematical
model (explained in the following section). Additionally, by
using omnidirectional vision it is possible to estimate the
direction of the surrounding objects, providing to the robot
a polar representation of the environment. We assume that
the robot only detects objects within its viewing area, which
corresponds to a circle with a radius of 2.0 meters. Objects

Table 1: RMSE for each section.

Section Distance RMSE Direction RMSE

I 0.9284 0.244

II 1.038 1.110

III 0.8353 0.273

IV 0.5398 0.388

outside this area are reflected on the mirror border, and then
large distortions are produced. Additional distortions in the
acquired image can be produced by small errors in the optical
geometry of the vision system.

4.2. Calibration Process. The quality of the data obtained
from an omnidirectional vision system depends directly on
several constructive parameters such as the optical geometry,
curvature of the convex mirror, and quality of mirror’s
surface. For one to use the equations of the mirror surface
profile (and afterward modeling the light reflection), the
geometrical parameters of the system must be precisely
characterized. However, in this work we have used a convex
mirror with unknown geometry, and then it is not possible
to use light reflection equations.

The proposed calibration process allows the whole vision
system to be characterized providing a fitting function
relating the distance in pixels with distances in world
coordinates. The calibration procedure was performed by
associating objects placed at measured distances with the
distances estimated in the image in pixels, obtaining a
polynomial fitting associated to a particular section of the
convex mirror.

As in our previous work [3], the image was divided into
four sections, and the same calibration procedure was exe-
cuted to each one. In order to provide a better demonstration
of the correctness of the calibration procedure, in this work
a calibration board and a 14 megapixels camera have been
used. The mounted system is depicted in Figure 6. The board
used has a separation of 2,54 cm between each hole (in both
horizontal and vertical directions). The catadioptric mount
was positioned approximately in the center of the board, and
the images are shown in Figure 6.

In this image, the holes were detected and their pixel
coordinates were determined. The image was divided in
four sections, and for each section the real distance and the
distance in pixels were associated with a polynomial fitting.
In order to allow the robot to identify the position of any
object in the surrounding environment, the system was also
calibrated to estimate the direction of the detected object.
Figures 7 and 8 show the polynomial fitting for estimating
both distances and directions, respectively, for each section
of the mirror.

Table 1 shows the RMSE (root mean-square error) values
of the fittings which characterize the quality of the obtained
models. It can be observed that the polynomial fittings have
a low value of the RMSE, which means that the calibration
data can be well modeled by the polynomials.

In order to validate the precision of the measurement
system, a new image (with the same assembly of Figure 6)
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Figure 15: Results of the image processing chain: (a) background, (b) new frame, (c) subtraction, and (d) overlap.

was shot, and five points were picked from each section. By
using the polynomial fittings (used like calibration curves),
their actual positions were estimated. Table 2 shows the
actual and the estimated positions of the points (distance and
direction).

The validation results (shown in Table 2) demonstrate
that both the calibration procedure and the polynomial
fitting can be effectively used to relate distances/directions
in the image (in pixels) with the actual distances/directions
values.

5. FPGA Implementation

The proposed algorithms for image processing were imple-
mented in hardware, using both VHDL and Verilog hardware
description languages. Figure 9 shows the general architec-
ture for motion detection, which is composed of several
hardware components (blocks) connected in a pipeline way.
The first processing step receives from the camera an RGB
800 × 480 pixels image with a resolution of 8 bits per
color channel. At the second step, namely, image processing,

a gray-scale image is obtained and a mean filter is applied
for eliminating noise. At the third step, the background
subtraction is performed. To do this the background image
has been previously stored in an SRAM. At the fourth step, a
thresholding algorithm is applied for segmentation, obtain-
ing a binary image (only one bit per pixel). Additionally, the
obtained image is eroded in order to minimize noise. At the
fifth stage the center of mass is computed, and, finally, at the
sixth stage the object position (distance and orientation) is
computed.

5.1. Image Acquisition and Color Conversion. The system
uses a CMOS camera which provides synchronism and data
signals in an RAW format. A color conversion process is
performed by calculating the RGB data from RAW ones and
storing it in an external SDRAM (see Figures 5 and 6).

5.2. Mean Filter Implementation. After the pixel conversion
from RAW to RGB format, a gray-scale transformation is
applied. Afterward, a neighborhood loader block provides
a 3 × 3 neighborhood to a mean filter, which eliminates
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Figure 16: Objects used for testing the overall system.

high-frequency noises. The neighborhood loader operation
requires an initial latency of 1603 clock cycles (69.62 μs) [25].
A convolution operation was used to implement the mean
filter (see Figures 5 and 6), which is performed in one clock
cycle by multiplying the mask with the neighborhood and
then yielding the sum of the products, after an initial latency.
More details on this implementation and the convolution
architecture can be found in [25, 26].

5.3. The Background Storage and Image Subtraction. The
background image is stored in an external 512 Kbyte
SRAM memory (chip ISSI IS61LV25616AL) of the DE2
development kit. Once the mean filter is performed, the
subtraction between the current frame and background
is computed, providing one output pixel per clock cycle.
Afterward, the absolute value of each pixel is calculated.
Finally, the segmentation operation is performed by a simple
thresholding operation (see Figures 5 and 6).

5.4. The Erosion Operation. The erosion computation is
based on logic operations between the pixel of a binary image
and a structuring element as shown in (2). The erosion block
receives nine pixels from the neighborhood loader ( fi), as
well as the structuring element (Ki) (a square mask was
used like structuring element). Therefore, the ei values are
calculated in the first equation. Afterward, they are used in
the next equation in order to perform a complete erosion
operation. Both steps are performed in one clock cycle. In
this work we have used a neighborhood of nine elements;
therefore, i = 1, . . . , 9:

ei = Ki · f i + Ki · fi + Ki · fi,
Erosion = e1 · e2 · e3 · e4 · e5 · e6 · e7 · e8 · e9.

(2)

Table 2: Validation points.

Section
Actual

distance
(cm)

Estimated
distance

(cm)

Actual
direction

(o)

Estimated
direction

(o)

I 20.5 19.6 7.6 7.2

I 11.3 12.1 69.5 68.4

I 17.0 18.0 66.2 67.4

I 21.7 23.3 71.4 72.7

I 28.4 29.4 65.8 65.0

II 28.4 25.8 10.8 11.5

II 27.4 25.2 22.8 23.6

II 27.0 25.7 50.9 53.6

II 30.6 29.6 50.2 50.9

II 26.2 24.8 30.5 31.8

III 17.9 18.0 8.8 7.9

III 28.4 31.8 10.8 9.8

III 29.7 31.9 20.9 19.4

III 34.5 35.9 37.3 35.7

III 43.3 41.5 51.1 48.9

IV 15.5 16.1 10.3 10.2

IV 23.4 24.4 13.2 13.6

IV 29.6 30.3 32.3 32.8

IV 35.9 36.0 46.5 46.6

IV 43.3 43.7 51.1 51.8

5.5. The Center of Mass Calculation. In this work only the
detection of a single object is performed at a time. In order
to calculate the center of mass, C(x, y), (1) was used, where
B(i, j) is a binary image and i and j are the positions of pixels
on the image. Since the algorithm has to explore the overall
image, the center of mass is calculated at each frame.

5.6. Distance and Orientation Estimation. In our previous
work [3] the actual and pixel distances were computed using
several floating-point arithmetic libraries [27]. However,
a large consumption of hardware resources was observed,
specially for embedded applications. In this work we have
chosen an embedded software implementation for these
computations allowing for cost reduction in logic area.

A Nios II soft processor (from Altera) has been used in
order to execute the following tasks: (a) receiving commands
from the user through a PS2 keyboard, (b) calculating the
distance in pixels and orientation values, (c) calculating the
actual distance using a polynomial function obtained from
the calibration data (see Figure 14), and (d) sending to the
host (PC or robot computer) both the estimated distance
and orientation values. The communication with the PC is
done through a RS232 communication standard. The image
processing architecture and a keyboard are connected to
the Nios II using the Avalon Bus from Altera, as shown in
Figure 10.

Figure 11 shows the flowchart algorithm implemented in
the NiosII processor. The processor receives the user input
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Figure 17: Estimation of distance and orientation. (a) object A, (b) object B, and (c) object C. White grids are the real positions and gray
grids are the estimated position.

commands from a keyboard, allowing the selection of the
following options.

(i) Send to the host the distance and orientation values.
In this case the NiosII receives from the hardware
architecture the center of mass coordinates C(x, y)
and computes the euclidean distance in pixels and
the orientation θ using the atan() function. Finally,
the polynomial interpolation is used to estimate the
actual distanceR, sending the polar coordinates (R, θ)
to the host.

(ii) Capture a new background image. This option allows
the user to upgrade the background image in the
SRAM memory.

(iii) Subtract the background from current image. This
option allows the user to manually execute the
subtraction image step.

(iv) Display the subtraction result. This option allows
the user to show the image substation result in the
display.

(v) Display the current image. This option allows the
user to address the current camera image to the
display.

(vi) Display the background image. This option allows
the user to see the stored background image in the
display.

The last five commands make use of the Avalon bus
to send the respective commands to the FSM (finite state
machine) which controls the data flow and the LCD.
The FSM was implemented in hardware for controlling
the overall system operation according to the user inputs.
The same controls several multiplexers for addressing the
incoming pixels to the SRAM/SDRAM memories and the
hardware modules previously described.

In our approach both the Euclidean distance as well as
the arctangent function need to be computed (but only once
time at each frame). In this case, although von Neumann-
based architectures have serious restrictions (such as the
NiosII case) for real-time image processing, specially for
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Table 3: Synthesis results (chip ep2c35f672c6).

Implemented
core

LC 33216
MB

483840
DSP18×18

35
Freq.

250 MHz

Entire 9953 359352 8
10.2

Architecture (30.0%) (74.3%) (22.8%)

Image 2161 57400 0
45.31

Acquisition (6.5%) (11.86%) (0%)

Gray scale 498 384 1
45.31

Conversion (1.5%) (0.08%) (1%)

Neighborhood 681 16256 0
104.12

Load (2.05%) (3.36%) (0%)

Spatial 1853 16256 3
104.12

Convolution (5.0%) (3.36%) (5%)

Background 16 0 0
250

Subtraction (0.05%) (0%) (0%)

Segmentation 15 0 0
250

(0.05%) (0%) (0%)

Erosion 722 0 0
321.3

(2.17%) (0%) (0%)

Center of 2521 0 0
10.2

mass (7.59%) (0%) (0%)

NiosII 3615 285696 4
250.0

(10.9%) (59.0%) (6%)

Table 4: Latency of the motion detection architecture.

Implemented core Latency

Background 2 clk

Subtraction

Segmentation 1 clk

Erostion 1603 clk

Center of mass 384.001 (1 frame)

Entire architecture 385.607

embedded systems, the software implementation of these
tasks attends the real-time constraints in this work.

6. Results

The proposed architectures for processing the images from
the omnidirectional vision system were effectively imple-
mented in a Cyclone II FPGA device using the Quartus II
development tool.

6.1. Synthesis Results. Table 3 presents the synthesis results of
the overall architecture and its main components. The cost in
logic area is presented in terms of logic cells (LCs), memory
bits (MBs), and embedded DSP 18×18 blocks consumption.
The performance of the architectures is presented in MHz.

It can be observed that the entire architecture consumes
30% of logic cells and around 74% of the memory bits.
The image acquisition block requires the largest number of
memory bits due to the fact that the camera provides pixels

Table 5: Distance calibration data using mobile object detection.

Distance (cm) Mean distance (pixels) σ (pixels)

20 56.6 3.3

40 93.4 7.3

60 114.6 1.3

80 126.2 7.3

100 134.6 7.3

120 139.8 1.7

140 143.0 1.0

160 146.2 2.2

180 147.8 1.7

200 149.6 1.3

230 152.2 1.4

Table 6: Direction calibration data using mobile object detection.

Angle (o) Mean angle (o) σ (o)

−20 −24.8 4.8

−10 −14.4 11.6

0 −1.3 1.1

10 9.3 4.4

20 21.1 4.5

Table 7: Validation results (using the moving object detection
technique) distance is given in cm.

Real distance
Estimated distance and error

A eA B eB C eC

p1 = 70 70 0% 80 14% 83 19%

p2 = 74 70 5% — — 83 12%

p3 = 115 — — — — 107 7%

p4 = 137 — — 132 4% 132 4%

p5 = 170 — — 170 0% 170 0%

p6 = 200 200 0% 248 24% 235 17%

Table 8: Validation results for orientation in degrees (◦), using
mobile object detection.

Angle (o) A B C

p1 = 20 20 19 20

p2 = −1 9 — 9

p3 = −18 — — −11

p4 = −8 — −4 −3

p5 = −14 — −8 −7

p6 = 11 16 15 16

in an RAW format; therefore, this block needs to store several
rows in order to convert the pixels to an RGB format. The
neighborhood loader is composed of two line buffers, which
are used for providing the 3 × 3 pixels for performing the
neighborhood operations [25]. As described in Section 5,
the spatial convolution block makes use of a neighborhood
loader module leading to more memory bits consumption.
As expected, the NiosII implementation requires a large
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Table 9: Performance comparison.

Author Year Main algorithm Image resolution Frames per second Megapixels per second

[10] 2009
Sum of absolute differences

(SAD)
640× 480 200 61.44

[13] 2012 Background subtraction 1024× 1024 32 33.55

[9] 2006 Correlation 256× 256 221 14.48

[12] 2011 Background subtraction 720× 576 25 10.37

This work 2012 Background subtraction 800 × 480 26 9.98

[11] 2011 Edge enhancement 128× 101 580 7.50

[8] 2008 Optical flow 640× 480 15 4.61

[7] 2008 Optical flow 128× 96 177 2.17

[15] 2007 Optical flow 160× 120 30 0.58

amount of memory bits for storing the program memory and
its hardware architecture.

The background subtraction block is based on a pixel
by pixel operation. The segmentation block operates using a
comparator and a multiplexer. The erosion block is based on
simple logic operations. Therefore, these blocks have a small
hardware resources consumption.

It can be observed that the entire architecture operates
at a maximum frequency of 10.2 MHz. Taking into account
that the system is based on a pipeline architecture and the
images resolution is 800 × 480 pixels, the system achieves a
performance of 26.6 frames per second.

It is important to point out that the selected FPGA chip
is not the largest device from the Cyclone II family; therefore,
one can expect a performance improvement when using
modern FPGA devices with more hardware resources.

Since the proposed system is based on a pipeline
architecture, it is necessary for several clock cycles (latency
time) before computing the first result (center of mass).
According to Table 4 the latency of the proposed architecture
is around 385.607 clock cycles. Note that the center of mass
has the largest latency due to the fact that the entire image
must be analyzed for computing the area.

6.2. The Calibration of the Overall System Using the Moving
Object Detection Technique (Figure 13). The process of using
a polynomial fitting for associating distances in pixels with
actual distances was validated in Section 4. However, in
real environments, mobile robots commonly operate with
large uncertainties associated to the odometry sensors and
nonholonomic restrictions. Therefore, we have again cali-
brated the catadioptric system including the mobile robot,
using a precision lower than shown in Section 4. To do
that, the moving object detection technique implemented
in the FPGA has been used for calibration tasks. In this
case, several objects were introduced in the scene, and the
detection system automatically defined the distance between
the robot and the detected object. The calculated distances
can be compared with the actual ones in the scene, yielding
new polynomial functions.

For this case, the mirror was divided into sections of 40◦

(nine sections cover the whole mirror surface). In the scene,
a grid of radial distances were chosen to vary from 20 cm to

230 cm around all sections in a circle. Figure 11 shows the
calibration positions for a particular section in the scene. A
black object was positioned over the red dots. The calibration
environment is shown in Figure 12, in which the robot,
the catadioptric system, and the object are presented. It is
important to point out that the environment does not suffer
from natural light variations; only artificial illumination was
used, and the white floor allows for a high contrast with the
black object.

Tables 5 and 6 show a statistical analysis of the exper-
imental data. According to Figure 4, each object located in
the scene had its projected position on the image calculated
(in pixels) for 5 different orientations in the chosen section,
in the form of mean distance and its standard deviation,
summing up 55 positions in a section.

As expected in Section 5, the interpolation function has a
monotonically increasing behavior. It is important to notice
that, as an effect of the reflection characteristics of this
system, for greater distances the objects appear smaller than
in common acquisition systems (e.g., nonomnidirectional
ones). That occurs due to the reflection angle for objects
placed far away from the mirror. In this case, it can be
observed that the variance values for each distance do not
follow the monotonic behavior. This is because the error in
distance estimation is not a function of the distance but is
mainly determined by mirror’s surface quality.

The direction of the detected object is determined by
calculating the arctangent function using the estimated
coordinates of the center of mass (of the detected object).
Notice that the uncertainty in direction estimation is related
to the uncertainty in object detection. To calculate the
direction, the values in pixels have been used; therefore,
both the distance estimation and direction estimation are
independent tasks.

Figure 14 depicts the behavior of the pixel/centimeter
transformation by using a polynomial interpolation for each
one of the regions.

6.3. Validation Results. In order to demonstrate the system
running in an actual scene, Figure 15 shows an example of
the processing chain, in which Figure 15(a) represents the
background image. Figure 15(b) shows an object around
the mobile robot. Figure 15(c) depicts the background
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subtraction and the position of the center of mass. Finally,
Figure 15(d) overlaps the current image and the detected
center of mass.

Several experiments have been performed so as to
evaluate the accuracy of the implemented system. To do
that, three different objects (namely, A, B, and C) which
corresponds to (a) a small cylindrical robot, (b) a pioneer
mobile robot, and (c) the calibration object, respectively,
were placed at different positions in front of the robot.
Figure 16 depicts the objects used for testing the overall
system. The distances and orientation between the center of
the camera and the objects have been previously measured
(the actual values) in the arena. Additionally, both the
estimated distances and orientation were sent to the host (via
RS 232 interface) and compared with the actual values.

Table 7 presents the location results and respective errors
for each object. It can be observed that the proposed
architecture achieves more accurate results when detecting
the object A. It can be explained because the size and shape
of the cylindrical robot produce a small shadow, leading to
a better accurate. As expected, large approximation errors
were achieved for large distances. For instance, results for
localization of objects B and C show the largest errors
(around 24% and 17%, resp.). This fact is explained given
that the spherical mirror produces large distortions to the
light rays reflected from the uppermost surface of the mirror.
This distortion is produced by a compression effect, as the
farther the object is, the smaller is its projection on the mirror
surface.

Table 8 presents the orientation estimation for each
object. Figure 17 uses occupation grids in a polar graph
form for summarizing the achieved results of distance and
direction estimation. The gray grid represents the estimated
position of the object. As expected, the system produces large
errors for large distances (see point 6 for objects B and C).

One can conclude that the omnidirectional system per-
forms better for estimating distances than orientation. Notice
that the calibration data (see Table 8) show large errors
for orientation values. As explained in Section 4 the system
requires a large contrast between background and objects.
Therefore, when the system operates with a low contrast,
some errors in the object borders are introduced. However,
these errors can be overcome by using more efficient
techniques for motion segmentation (e.g., optical flow).

6.4. Performance Analysis. Additionally, the same algorithm
for motion detection was implemented in a PC, running at
2.2 GHz, 2.0 GB RAM using a real-time xPC Target OS from
MathWorks. The average elapsed time for processing a 10×10
pixel image was around 138.1 μs, (value of the average TET
(task execution time)). Thus, an output pixel is processed
in 1.381 μs. Therefore, the proposed hardware architecture,
operating at 10.2 MHz, achieves a speedup factor of 13.78 in
comparison with the real-time software solution.

As cited in Section 3, several works have been developed
to solve the problem of object’s position estimation for
real-time applications. Table 9 shows the comparison among
some works and our approach. Each proposal uses different

algorithms and image resolutions, leading to difficulty in
the comparison task. Therefore, we have used the overall
throughput (megapixels per second) as a comparison metric.

It is important to note that all systems listed in Table 9
have as output the estimated position of an object in the
image. In this case, all listed systems have implemented
FPGA-based hardware architectures to process the image and
determine object’s position.

7. Conclusions

This work has presented a FPGA-based omnidirectional
vision system for mobile robotic applications. It takes
advantage of a pipeline approach for processing the polar
image, using a background subtraction algorithm. The
overall latency of the motion detection architecture is
385.607 clock cycles, and after this latency, the system has a
throughput of 26 frames per second (running at 10.2 MHz).
The proposed architecture is suitable for robot localization,
allowing to compute the distance between the robot and the
surrounding objects.

The architectures were described in VHDL and Verilog
and successfully implemented in a Cyclone II FPGA device.
Synthesis results have demonstrated that the proposed hard-
ware achieves an operational frequency around 10.2 MHz.
In addition, the pipelined architecture allows the image to
process one pixel per clock cycle after an initial delay. This
fact demonstrated acceleration of 13, 78 times in comparison
with the same algorithm in C using a xPC Target OS from
MathWorks implementation running on a common desktop
platform.

This work has also addressed several calibration prob-
lems related to omnidirectional vision systems (based on a
catadioptric implementation) of mobile robotic applications,
especially the application of a technique for detection of mo-
bile objects for mirror calibration tasks. Experimental results
show that the results are consistent with the expected ones.

Concerning our future work we intend to analyze the
power consumption of the proposed architecture. It is an
important issue in order to validate the effectiveness of the
implemented algorithms for real-time image processing in
portable applications.
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