

Perfil proteômico de leveduras de *Paracoccidioides* após estresse oxidativo

Candidata: Daciene de Arruda Grossklaus Orientadora: Prof^a. Dr^a. Célia Maria de Almeida Soares

> Tese apresentada ao Programa de Pós-Graduação em Patologia Molecular como requisito para obtenção do grau de Doutor em Patologia Molecular

Brasília-DF Dezembro-2012

Ficha catalográfica elaborada pela Biblioteca Central da Universidade de Brasília. Acervo 1004614

Grossklaus, Daciene de Arruda. Perfil proteômico de leveduras de Paracoccidioides após estresse oxidativo / Daciene de Arruda Grossklaus. --. 2012. xii, 109 p. : il. ; 30 cm. Tese (doutorado) - Universidade de Brasília, Faculdade de Medicina, Pós-Graduação em Patologia Molecular,2012. Inclui bibliografia. Orientação: Célia Maria de Almeida Soares 1. Fungos - Doenças. 2. Micologia - Leveduras - Metabolismo. 3. Microbiologia médica - Patologia molecular. I.Soares, Célia Maria de Almeida. II. Título. CDU 616.992 TRABALHO REALIZADO NO LABORATÓRIO DE BIOLOGIA MOLECULAR, DO DEPARTAMENTO DE BIOQUÍMICA E BIOLOGIA MOLECULAR, DO INSTITUTO DE CIÊNCIAS BIOLÓGICAS DA UNIVERSIDADE FEDERAL DE GOIÁS

Apoio Financeiro: CNPq/CAPES/ FAPEG/FUNAPE

BANCA EXAMINADORA

TITULARES:

Profa. Dra. Célia Maria de Almeida Soares Instituto de Ciências Biológicas, Universidade Federal de Goiás

Prof. Dr. Luciano Paulino da SilvaEmbrapa Recursos Genéticos e Biotecnologia, Núcleo Temático deBiotecnologia, Laboratório de Espectrometria de Massa

Prof. Dr. Wagner Fontes Instituto de Ciências Biológicas, Universidade de Brasília

Prof. Dr. Jaime Martins de Santana Faculdade de Medicina, Universidade de Brasília

Prof. Dr. Bergmann Morais Ribeiro Faculdade de Medicina, Universidade de Brasília

SUPLENTE

Prof. Dr. Sinji Borges Ferreira Tauhata Instituto de Ciências Biológicas, Universidade Federal de Goiás

"...Nunca pensaremos todos da mesma maneira, nunca veremos, senão, uma parte da verdade e ainda sob diferentes ângulos..."

Mahatma Gandhi

Este trabalho é dedicado exclusivamente à minha orientadora, Célia Maria de Almeida Soares... a responsável por fornecer habilmente todos os meios para que minhas mãos pudessem desenvolver este trabalho...

Sou eternamente grata...

Grata por ter recebido a vida, um dom de Deus, O qual nos proporciona infinitas bênçãos... como a de ter pais tão amorosos e tão dedicados a instruir-me nos verdadeiros caminhos da vida... benção de ter me concedido o prazer de encontrar um amor verdadeiro.... Juscelino... meu cúmplice e meu companheiro...

Por todos os dias de minha vida serei grata à este bom Deus por presentear-me com amigos que tornam a minha vida mais alegre... que me ajudam a transformar momentos difíceis em momentos mais suaves... por estes e por tantos outros motivos... venho expressar meus sinceros agradecimentos:

Aos meus grandes amigos Patrícia Zambuzzi, Tereza Cristina, Kelly e Ronney quero agradecer especialmente pelos 4 anos de convívio que nos proporcionaram uma verdadeira amizade... jamais poderei esquecer-me de cada sorriso e de cada experiência trocada...

À Sheyla, Leandro, Dayane, Regilda, Luciane e Fabiana... minha surpreendente descoberta... amigos de toda e qualquer hora... e, por falar em hora... muitas horas de almoço e de café... ah...como foram felizes estes momentos com vocês: Nathalie, Mariana, Sara, Sabrina, Rodrigo, Patrícia Lima, Luciana, Elisa, Amanda, Priscila, Hellen, Symone, Karine, Renata, Patrícia Kott, Rogério, Neto, Lucas Oliveira, Edilânia, Simone Weber...

À Mirelle, Laurine, Ana Flávia, Luciene, Laura, Wesley, Luiz Augusto, Luiz Paulo, André, Gabriel, LeLeandro, Hanna, Daniela, Marielle, Lívia, Felipe, Lucas Nojosa, Alessandro e Paulo Henrique e a todos os colegas que integraram ou participaram do LBM durante o período de 2008-2012: Raquel, Marta, Joice, Naiche, Adriano, Nadia, Keyla, Robson, Ademar, João Guilherme, Erika, Camila, Arthur, Raul, Alex, Ana, Pryscila, Ana Lídia, Amanda.... Sou grata também por ter tido a oportunidade de desenvolver este trabalho no Laboratório de biologia molecular-UFG que é coordenado com grande competência e eficiência pela profa. Dra. Célia Maria de Almeida Soares, minha orientadora.

Agradeço também ao jovem prof. Dr. Alexandre Bailão... pelo suporte científico e pela dedicação ao LBM, característica pertinente também aos outros professores: Maristela, Silvia, Juliana e Clayton que sempre estão dispostos para nos ajudar.

Aos professores e aos colegas de disciplinas do programa de Pós-Graduação da Faculdade de Medicina-UnB, os quais contribuíram com minha formação...

Aos funcionários da Secretaria da Pós – Graduação em Patologia Molecular Jaqueline, Alessandro e Daniela pela eficiência e atenção.

Aos meus familiares e amigos que, mesmo distante, estão sempre ao meu lado... À todos, muito obrigada!

	Página
Resumo	XII
Abstract	XIII
1. Introdução	14
1.1. O fungo Paracoccidioides	14
1.1.1. Aspectos morfológicos	15
1.1.2. Habitat	15
1.1.3. Dimorfismo	16
1.2. Paracoccidioidomicose - PCM	17
1.2.1. Aspectos Epidemiológicos	17
1.2.2. Patogenia	17
1.3. Estresse oxidativo	18
1.3.1. Aspectos gerais	18
1.3.2. Espécies reativas de oxigênio – EROs	19
1.3.2.1. Fontes de EROs nos sistemas biológicos	20
1.3.2.2. Peróxido de hidrogênio (H_2O_2)	21
1.3.3. Antioxidantes	22
1.3.3.1. Catalases	23
1.3.3.2. Superóxido dismutases	23
1.3.3.3. Peroxidases e sistema thioredoxina	23
1.3.4. Resposta adaptativa ao estresse oxidativo	24
1.3.4.1. Resposta adaptativa de <i>Paracoccidioides</i> ao estresse oxidativo	25
1.3.5. O emprego de análises proteômicas no estudo do estresse oxidativo	27
2. Justificativas	31
3. Objetivo	32
4. Manuscrito	33
5. Discussão	85
5.1. Indução ao estresse por H ₂ O ₂	85
5.2. Identificação das proteínas responsivas ao estresse por H ₂ O ₂	85
5.2.1. Defesa e virulência	86
5.2.2. Energia e metabolismo	90
5.2.3. Transcrição, síntese protéica e ciclo celular/processamento de DNA	93
5.3. Oxidoredutases	94
6. Conclusões	95
7. Perspectivas	96
8. Referências Bibliográficas	97

SUMÁRIO

ABREVIATURAS E SIGLAS

- 2D-DIGE Eletroforese de fluorescência diferencial em gel bidimensional
- 2DE eletroforese bidimensional
- ACN acetonitrila
- AHP1 proteína da família AhpC/TSA peroxiredoxina
- AhpC -componente C de alquil hidroperóxido redutase
- A. nidulans Aspergillus nidulans
- ATP adenosina trifosfato
- BCIP 5-bromo-4-chloro-3-indolil fosfato
- BSA soro albumina bovina
- Ccp1- gene codificante para citocromo C peroxidase 1
- cDNA DNA complementar
- Cl⁻ radical clorídrico
- Cu⁺ íon cobre reduzido
- Cu^{+2} íon cobre oxidado
- DNA ácido desoxirribonucléico
- DTT di-tiotreitol
- EBP proteína que se liga ao estradiol
- EDTA ácido etileno-diamino-tetra acético
- ENO-enolase
- EROs Espécies reativas de oxigênio
- Fe⁺² íon ferro reduzido
- Fe⁺³ íon ferro oxidado
- GAPDH gliceraldeído 3-fosfato desidrogenase
- GST glutationa S-transferase
- HAD proteína dehalogenase haloacida
- HClO ácido hipocloroso
- HSP proteína de choque térmico
- H_2O- água
- H₂O₂ peróxido de hidrogênio

IgG - imunoglobulina G

kDa - kilodalton

LC-MS/MS - cromatografia líquida acoplada à espectrometria de massa sequencial

M - molar

mA - miliampére

- MALDI-Q-TOF fonte tipo MALDI com dois analisadores híbridos tipo quadrupolo e tempo de vôo (TOF)
- mg miligrama
- mL mililitros
- mm milímetros
- mM milimolar
- MM massa molecular

Mn-SOD - superóxido dismutase dependente de manganês

- MS espectrometria de massa
- MS/MS espectrometria de massa sequencial
- mRNA RNA mensageiro

m/z - razão massa-carga

- NAD nicotinamida adenina dinucleotídeo oxidado
- NADH nicotinamida adenina dinucleotídeo reduzido
- NADP nicotinamida adenina dinucleotídeo fosfato oxidado

NADPH - nicotinamida adenina dinucleotídeo fosfato reduzido

NBT - nitro blue tatrazólio

NO[•] óxido nítrico

- O₂- oxigênio molecular
- O_2^- ânion superóxido

¹O₂- oxigênio singlete

- OH radical hidroxila
- ONOO⁻ radical peroxinitrito
- PAGE eletroforese em gel de poliacrilamida
- Pb18-isolado 18 de Paracoccidioides brasiliensis
- Pb01 isolado 01 de Paracoccidioides brasiliensis

PbCatA - catalase A de Paracoccidioides brasiliensis

PbCatP - catalase peroxissomal de Paracoccidioides brasiliensis

- PbCatC catalase C de Paracoccidioides brasiliensis
- PbHAD32 proteína homóloga a dehalogenase haloacida de Paracoccidioides
- PBS solução de tampão fosfato
- PCM paracoccidioidomicose
- PCR reação em cadeia da polimerase
- pH potencial hidrogeniônico
- pI ponto isoelétrico
- PS2 espécie filogenética 2
- PS3 espécie filogenética 3
- RNA ácido ribonucleico
- RT-qPCR PCR acoplado a transcrição reversa quantitativa

S1 – espécie 1

- SDS dodecil sulfato de sódio
- TPI triose fosfato isomerase

RESUMO

O fungo dimórfico Paracoccidioides é o agente etiológico da paracoccidioidomicose, uma doença adquirida pela inalação de conídios ou fragmentos de micélio que transitam para a fase patogênica, leveduriforme, nos pulmões do hospedeiro. Após a infecção, a sobrevivência do fungo depende da evasão do sistema imune e adaptação ao ambiente hostil do hospedeiro. Macrófagos alveolares são a primeira linha de defesa contra Paracoccidioides e para conter a infecção essas células produzem várias substâncias nocivas como o peróxido de hidrogênio (H₂O₂) que desencadeia o estresse oxidativo. Para investigar os efeitos que H₂O₂ causa no proteoma de Paracoccidiodes, foi utilizada a técnica de eletroforese em gel bidimensional (2-DE) para analisar as proteínas diferencialmente expressas durante a resposta inicial (2 h) e tardia (6 h) ao H₂O₂. A análise 2-DE revelou um total de 179 proteínas/spots diferencialmente expressos (116 spots com expressão aumentada e 63 com expressão diminuída). As proteínas/spots diferencialmente expressas foram submetidas à identificação por meio da espectrometria de massas e submissão da massa monoisotópica dos peptídeos ao banco de dados do NCBI. Todos os spots/proteínas foram identificados com sucesso e agrupados de acordo com a categoria funcional - FunCat2. Resgate, defesa e virulência celular, metabolismo e energia foram as categorias com as maiores freqüências de proteínas/isoformas. Várias enzimas antioxidantes, como catalase, superóxido dismutase, peroxidases e tioredoxinas foram identificadas, bem como outras oxidoredutases que estão provavelmente envolvidas na resposta contra o estresse oxidativo. O perfil metabólico foi caracterizado, verificando-se ativação da via das pentoses fosfato, uma importante fonte geradora de NADPH celular. No intuito de confirmar os dados proteômicos, ensaios confirmatórios de atividade enzimática, citometria de fluxo e análises dos níveis transcricionais e de NADPH foram realizados e se mostraram concordantes com os dados obtidos na análise proteômica. Os resultados sugerem que Paracoccidioides possui um amplo repertório antioxidante, composto por diferentes proteínas que atuam de maneira complementar, que foram capazes de detoxificar as EROs e de minimizar os efeitos causados pelo estresse oxidativo.

ABSTRACT

The dimorphic fungus Paracoccidioides is the etiologic agent of paracoccidioidomycosis, a disease acquired by inhalation of infective airborne conidia or mycelia fragments that transit to the pathogenic yeast phase in the host lungs. Upon infection, fungal survival depends on evasion from the immune system and adaptation to the host environment. Alveolar macrophages are the first defense cells line against Paracoccidioides and aiming to restrict the fungal infection, macrophages produce several harmful substances, such as hydrogen peroxide (H_2O_2) that triggers oxidative stress. To investigate the effect of H_2O_2 on the proteome of *Paracoccidiodes*, we used a large scale 2-DE protein gel electrophoresis approach to analyze differentially expressed proteins that were detected in early (2 h) and in late (6 h) H₂O₂-treatments. The 2-DE analysis revealed a total 179 spots differentially expressed (116 proteins spots with increased expression and 63 with decreased expression). Differentially expressed proteins were subjected to identification by mass spectrometry and by submitting the monoisotopic mass of the peptides to the NCBI non reduntand database. All spots were successfully identified and they were grouped according the functional category - FunCat2. Cell rescue, defense and virulence, metabolism and energy were the categories that showed the most number of occurrences of the proteins/isoforms. Several antioxidant enzymes, such as catalase, superoxide dismutase, peroxidases and thioredoxins were identified, as well as others oxidoreductases putatively involved with defense against oxidative stress. A view of the metabolic cell profile depicted an activation of the pentose phosphate pathway, a great source of cellular reducing power in the form of NADPH. Confirmatory assays of enzymatic activity, flow cytometry, transcript levels and NADPH measurements, produced data in agreement with proteomic analysis. The results indicated that *Paracoccidioides* has several antioxidant systems, including various proteins that complementarly were able to detoxified ROS and minimized the damage triggered by oxidative stress.

1- INTRODUÇÃO

Micoses sistêmicas humanas são causadas por uma pequena variedade de fungos, entre eles, os dimórficos representam os principais agentes etiológicos desse tipo de infecções fúngicas (San-Blas & Nino-Vega, 2004). O fungo *Paracoccidioides* é um exemplo desta classe fúngica, apresentando o termodimorfismo e sendo o agente etiológico da micose humana sistêmica granulomatosa conhecida como paracoccidioidomicose (PCM).

1.1 – O fungo Paracoccidioides

O agente etiológico da PCM foi originalmente descrito por Adolpho Lutz em 1908, no Instituto Biológico de São Paulo (Brasil), quando o isolou em lesões orais e de linfonodo cervical. Observando exames histológicos, Adolpho Lutz identificou que a ausência de esférulas com esporos diferenciava o fungo causador da PCM de outros espécimes característicos de coccidioidomicose, descritos previamente por Posadas na Argentina em 1892 (Posadas, 1892).

Inicialmente, este fungo foi denominado *Zymonema brasiliensis* por Splendore em 1912, porém em 1930, Floriano de Almeida propôs o nome *Paracoccidioides brasiliensis* quando o distinguiu do agente *Coccidioides immitis*. A doença foi reconhecida oficialmente como paracoccidioidomicose pela Organização Mundial de Saúde em 1971 (Lacaz, 1994; Palmeiro *et al.*, 2005).

Paracoccidioides brasiliensis foi considerado a única espécie de seu gênero até se propor a existência de três espécies filogenéticas: S1 (espécie 1 com 38 isolados), PS2 (espécie filogenética 2, com 6 isolados) e PS3 (espécie filogenética 3, com 21 isolados). PS3 é um grupo geograficamente restrito a Colômbia; PS2 é encontrado predominantemente no Brasil, nos Estados de São Paulo e Minas Gerais e também na Venezuela; S1 está distribuída no Brasil, Argentina, Paraguai, Peru e Venezuela (Matute *et al.*, 2006). Análises das relações filogenéticas entre 21 isolados de *Paracoccidioides* possibilitaram a identificação como pertencentes aos três grupos filogenéticos já descritos, com exceção do isolado *Pb*01 que se apresentou divergente dos outros grupos, sugerindo-se a possibilidade de uma nova espécie no gênero *Paracoccidioides* (Carrero *et al.*, 2008). Em 2009, Teixeira e colaboradores avaliaram a concordância genealógica entre 122 isolados de *Paracoccidioides*. Estes autores observaram que a divergência não se aplicava somente ao isolado *Pb*01, mas também a outros 16 isolados

que foram agrupados em um quarto grupo filogenético, o qual foi denominado "*Pb*01-like". Estes autores também sugeriram uma nova especiação filogenética para este grupo e propuseram a nomenclatura de *Paracoccidioides lutzii*, em homenagem a Adolfo Lutz (Teixeira *et al.*, 2009).

1.1.1. Aspectos morfológicos

O fungo termodimórfico *Paracoccidioides* pode se desenvolver como levedura ou sob a forma de micélio. A primeira forma ocorre nos tecidos infectados ou quando o fungo é cultivado *in vitro* a 36 °C; as colônias leveduriformes apresentam os seguintes aspectos macroscópicos: coloração creme, aspecto cerebriforme e não aderente ao meio; evidente crescimento após sete dias de incubação a 37 °C (Carbonell & Rodriguez, 1965; Martinez, 2004). As leveduras de *Paracoccidoides* são esféricas ou ovais, exibem paredes bem definidas, bi-refringentes, que podem apresentar brotamento multipolar característico (forma de roda de leme). O citoplasma contém escasso retículo endoplasmático, gotas de lipídios proeminentes, ribossomos e mitocôndrias, as quais são reduzidas com a idade celular e pela vacuolização citoplasmática (Brummer *et al.*, 1993; Martinez, 2004).

A forma de micélio é observada ao se cultivar o fungo sob temperaturas inferiores a 28 °C ou em condições saprobióticas. Macroscopicamente, as colônias de micélio possuem coloração branca com micélios aéreos, irregulares e curtos; ao microscópio se observam hifas septadas, delgadas e hialinas, com raros clamidósporos terminais ou intercalares (Lacaz, 1994; Lacaz *et al.*, 2002; Shikanai-Yasuda *et al.*, 2006). Sob condições de estresse ou falta de nutrientes, o micélio pode transformar-se em conídios (Restrepo, 1988).

1.1.2. Habitat

Na natureza, *Paracoccidioides* é encontrado na forma de micélio e algumas características relacionadas ao ecossistema favorecem a sua adaptação ao habitat, porém seu nicho ecológico ainda não está completamente esclarecido (Marques *et al.*, 1983; Shikanai-Yasuda *et al.*, 2006). As regiões consideradas endêmicas deste fungo apresentam características ambientais em comum (Mangiaterra *et al.*, 1999). Foi observado que o índice de exposição ao fungo é maior em locais que possuem altitude elevada, chuvas abundantes, vegetação rica e economia baseada principalmente na agricultura e pecuária (Blotta *et al.*, 1999). Adicionalmente foi relatado que condições diferentes de solos alteram a capacidade de

crescimento e a produção de conídios por *Paracoccidioides*, influenciando a sua capacidade de sobrevivência (Theodoro *et al.*, 2005).

Em áreas endêmicas, foi identificada a presença de *Paracoccidioides* em animais selvagens como tatus, porco-espinhos, preguiças entre outros; bem como em animais domésticos, como cães, gatos e ovelhas. Estas observações sugerem que estes animais possam ser o reservatório natural do fungo (Bagagli *et al.*, 2003; Richini-Pereira *et al.*, 2008; Gonzalez *et al.*, 2010; de Farias *et al.*, 2011; Oliveira *et al.*, 2012).

1.1.3. – Dimorfismo

A transição morfológica de *Paracoccidioides* da fase miceliana para a fase de levedura, que se constitui em etapa essencial para o sucesso no estabelecimento da infecção é dependente principalmente da temperatura e do hormônio feminino β -estradiol (Nemecek *et al.*, 2006; Rappleye & Goldman, 2006; San-Blas *et al.*, 2002).

A temperatura é um dos estímulos mais notórios durante o dimorfismo, sendo observada a forma de micélio a 22 °C - 28 °C e de levedura a 35 °C - 37 °C (San-Blas et al., 2002). O hormônio 17-β-estradiol é também um importante fator relacionado ao dimorfismo de Paracoccidioides e confere às mulheres a proteção contra a PCM. Estudos prévios mostraram que este hormônio inibe a transição de micélio para levedura de maneira dose-dependente, in vitro (Restrepo, 1985) e in vivo (Sano et al., 1999). Foi recentemente descoberto que a inibição da transição não é devida somente à presença do hormônio, mas sim, à sua interação com a proteína fúngica denominada EBP (Estradiol Binding Protein). Acredita-se que o hormônio feminino 17- β -estradiol e a EBP do citoplasma fúngico se ligam e, como resultado desta interação, ocorre o bloqueio da transição da fase infectiva para a fase patogênica de Paracoccidioides (Shankar et al., 2011). Adicionalmente, a proteção de PCM também é relacionada ao tipo de resposta imunológica desencadeiada por cada gênero sexual. Ao comparar a resposta imunológica de camundongos machos e fêmeas, infectados com células de Paracoccidioides foi possível verificar uma notável influência sobre o estabelecimento da PCM experimental sendo este fato atribuído, pelo menos em parte, aos hormônios sexuais que interferem na resposta imune desencadeada por estes animais. Foi verificado também que a paracoccidioidina, um antígeno fúngico, ativa mais as células imunes inatas de fêmeas fazendo com que estas sejam mais resistentes à infecção por Paracoccidioides (Pinzan et al., 2010). Desta maneira, os resultados observados confirmam que as mulheres são mais resistentes à

PCM porque elas possuem o hormônio 17- β -estradiol e porque elas possivelmente apresentam uma resposta imunológica mais eficaz contra *Paracoccidioides*, motivo pelo qual o acometimento da PCM é predominante em indivíduos do sexo masculino.

1.2 - Paracoccidioidomicose - PCM

1.2.1. - Aspectos Epidemiológicos

A distribuição geográfica da PCM apresenta-se restrita a países da América Latina com maior prevalência no Brasil, Argentina, Colômbia e Venezuela. A micose foi diagnosticada em países da Europa, nos Estados Unidos da América e Ásia onde os pacientes acometidos provinham de áreas endêmicas (Joseph *et al.*, 1966; Kamei *et al.*, 2003; Buitrago *et al.*, 2011).

Por não ser uma doença de notificação compulsória, os dados sobre a real prevalência e incidência da PCM ainda são pouco precisos. Os cálculos são baseados em relatos e estima-se que aproximadamente 80% de todos os casos diagnosticados ocorram no Brasil, com maior prevalência nas regiões Sul e Sudeste. O país é considerado o maior centro endêmico e acredita-se que aproximadamente 200 mortes por ano são decorrentes da PCM (Coutinho *et al.*, 2002).

O manejo do solo para plantações em áreas rurais é considerado o fator ocupacional predisponente para a aquisição da PCM, assim os trabalhadores rurais do sexo masculino com idades entre 30 e 60 anos são os indivíduos mais acometidos pela doença (Shikanai-Yasuda *et al.*, 2006).

1.2.2. - Patogenia

A inalação de propágulos infectantes da fase miceliana do fungo é considerada a principal via de contágio da doença. Assim, após penetrar em via área superior, estes propágulos chegam aos alvéolos pulmonares, onde, sob o estímulo da temperatura se transformam em leveduras, iniciando o processo infeccioso pela formação do complexo primário pulmonar (Giraldo *et al.*, 1976; McEwen *et al.*, 1987; Franco *et al.*, 1998). O processo infeccioso pode regredir ou progredir para a doença na dependência da resposta do hospedeiro e da virulência do fungo (Franco *et al.*, 1987).

A doença pode ser classificada em PCM subclínica e clínica. Esta classificação foi estabelecida em Medellín (1986) e atualmente é a classificação mais utilizada (Franco *et al.*, 1987). A PCM subclínica é a denominação referente ao período em que a doença se encontra silenciosa, sem sinais ou sintomas aparentes. Apesar disso, o hospedeiro pode desenvolver

uma resposta imunológica específica contra o fungo que levaria à regressão do foco infeccioso com formação de cicatrizes estéreis, ou à regressão do foco infeccioso, porém com foco quiescente (presença de fungos viáveis). Pode ainda ocorrer à progressão do foco infeccioso, levando ao aparecimento de sinais e sintomas da doença (Lacaz *et al.*, 2002; Martinez, 2004).

PCM clínica é caracterizada pelo surgimento de sinais e sintomas e pode ser subdivida nas formas aguda e crônica. A forma aguda ou subaguda, tipo juvenil, acomete principalmente crianças e adolescentes, correspondendo 3 a 5% dos casos da doença. A partir de uma lesão primária, ocorre a rápida progressão por disseminação linfática e hematogênica ao sistema mononuclear fagocitário (baço, fígado, linfonodos e medula óssea) causando disfunções nos órgãos acometidos. Os sintomas iniciais são de infecção respiratória, porém, no curso da doença, pode-se observar a presença de linfadenomegalia, manifestações digestivas, hepatoesplenomegalia, envolvimento ósteo-articular e lesões cutâneas (Shikanai-Yasuda *et al.*, 2006). A forma crônica, ou tipo adulto, responde por mais de 90% dos casos e os pacientes acometidos são adultos com idade entre 30 e 60 anos e, predominantemente, do sexo masculino. Na forma crônica a doença progride lentamente para acometimento pulmonar com sintomas de infecção respiratória inespecífica. As manifestações podem ser subdivididas em unifocal ou multifocal de acordo com o número de órgãos ou sistemas acometidos. Casos disseminados, geralmente, são resultantes da reativação de lesão quiescente por via hematogênica (Lacaz *et al.*, 2002; Shikanai-Yasuda *et al.*, 2006).

1.3 – Estresse oxidativo

1.3.1. – Aspectos gerais

Organismos aeróbios foram evolutivamente adaptados a viver em um ambiente com alta tensão de oxigênio e a utilizar este elemento químico como aceptor de elétrons em uma série de reações oxidativas celulares, por exemplo, durante a respiração e durante os processos de β -oxidação de ácidos graxos (Mates *et al.*, 2008). Em comparação com a fermentação, a fosforilação oxidativa foi vantajosa para os organismos aeróbios, uma vez estes puderam obter mais energia; no entanto, durante a fosforilação oxidativa nem todo o oxigênio consumido é completamente reduzido à água. Quando isto ocorre, observa-se o escape de elétrons da cadeia respiratória que reagem com outras moléculas gerando as espécies reativas de oxigênio (EROs) (Winyard *et al.*, 2005; Grivennikova & Vinogradov, 2006; Halliwell, 2007). O desequilíbrio entre a produção e remoção de EROs, decorrentes do aumento dessas espécies

ou da redução dos antioxidantes endógenos, causa o estresse oxidativo (Halliwell, 2006b; Lushchak, 2010).

1.3.2. - Espécies reativas de oxigênio - EROs

EROs são moléculas intermediárias, ou subprodutos, do processo de redução do oxigênio em diferentes estados de excitação e/ou redução. Estas moléculas podem estar associadas ao hidrogênio, nitrogênio, cloro ou carbono e normalmente apresentam alta toxicidade devido à possibilidade de reagir com outros radicais livres ou macromoléculas na célula (Gutteridge & Halliwell, 1989; Halliwell, 2006b; Stowe & Camara, 2009). Algumas EROs também são consideradas radicais livres por possuir um átomo ou grupo de átomos com elétrons não emparelhados em sua camada de valência, fazendo com que apresentem uma forte propensão para reagir com outras moléculas, por meio da doação ou recebimento de elétron(s); desta forma estes tornam-se mais estáveis eletrônicamente. São exemplos de radicais livres o radical hidroxila (OH^{*}), ânion superóxido (O_2^-) e óxido nítrico (NO^{*}). Radicais livres exibem uma alta reatividade e uma alta instabilidade eletrônica que é evidenciada pela rápida meia vida destes compostos (Droge, 2002; Jones, 2008; Halliwell, 2011).

O H₂O₂ e oxigênio singlete ($^{1}O_{2}$) não são radicais livres, porém são consideradas EROs pois ao reagir com outras moléculas pode produzir radicais livres que são moléculas mais reativas e deletérias ao organismo. Existem diferentes reações químicas envolvendo EROs, porém destaca-se a reação de dismutação do radical ânion superóxido (O_{2}^{-}) que é o radical livre mais comum nos sistemas biológicos, naturalmente gerado pelo metabolismo aeróbico durante a redução parcial do oxigênio. Esta reação pode ser espontânea ou por meio de catálise enzimática utilizando-se a enzima superóxido dismutase:

$$O_2^{-} + O_2^{-} + 2H^+ \rightarrow H_2O_2 + O_2$$

O radical O₂⁻ também pode reagir com uma molécula de H₂O₂ (reação de Haber-Weiss):

$$O_2 \rightarrow H_2O_2 \xrightarrow{Fe^{+3}/Cu^{+2}} O_2 \rightarrow O_2 \rightarrow OH \rightarrow OH$$

Outra forma de geração de radical OH' é por meio da reação de Fenton, que envolve o H_2O_2 , metais e oxigênio:

 $H_2O_2 + Fe^{+2} \rightarrow complexos intermediários \rightarrow Fe^{+3} + OH^{-} + OH^{-}$ (Reação de Fenton).

A reação de Fenton é muito importante fisiologicamente, pois envolve metais de transição como o ferro e cobre que apresentam dois estados redox, ou seja, podem se

apresentar na forma reduzida (Cu^+/Fe^{+2}) ou oxidada (Cu^{+2}/Fe^{+3}) . Os organismos necessitam destes metais em seu estado reduzido para que possam ser utilizados como co-fatores nos variados processos metabólicos e na presença de EROs, estes metais geralmente são deslocados para a reação de Fenton, podendo desta maneira causar a inativação desses processos (Puig *et al.*, 2002; Stowe & Camara, 2009). O maior efeito deletério da reação de Fenton é a produção do radical hidroxila, que teoricamente pode oxidar todos os tipos de biomoléculas, incluindo proteínas, DNA e lipídios (Halliwell, 2007).

1.3.2.1 – Fontes de EROs nos sistemas biológicos

A célula é submetida a uma série de processos metabólicos capazes de produzir EROs. Na mitocôndria, a cadeia respiratória por meio da transferência de elétrons é considerada a principal fonte endógena de EROs. Elétrons são transferidos a partir de moléculas reduzidas para o O_2 através de uma cadeia de complexos enzimáticos, I-IV. A redução parcial do O_2 gera $O_2^{-\bullet}$ ou H₂O₂ principalmente nos complexos I e III. O complexo IV (citocromo C oxidase) assegura a completa redução do O_2 para a água, sem formação de EROs (Forman & Azzi, 1997; Lehninger *et al.*, 2005; Grivennikova & Vinogradov, 2006; Rigoulet *et al.*, 2010). Os peroxissomos e as células do sistema imunológico também são produtores de EROs.

Nos peroxissomos, algumas reações oxidativas na degradação dos aminoácidos e ácidos graxos longos produzem radicais livres e H_2O_2 . A β -oxidação produz o H_2O_2 no primeiro passo oxidativo, onde os elétrons do FADH₂ são diretamente transferidos ao oxigênio. Desta maneira, a produção do H_2O_2 se torna comum nesta organela e para evitar possíveis danos causados pelo H_2O_2 , os peroxissomos possuem altas concentrações de catalase, a enzima responsável por converter imediatamente o H_2O_2 em H_2O e O_2 (Lehninger *et al.*, 2005; Terlecky & Koepke, 2007).

Paradoxalmente, EROs podem ser utilizadas na proteção do hospedeiro contra agentes infecciosos onde, após a fagocitose, os microrganismos invasores são expostos a um coquetel de substâncias tóxicas, compostas principalmente por espécies reativas de nitrogênio e por EROs (Bogdan, 2007; Brown *et al.*, 2009). Fagócitos ativam o complexo enzimático NADPH-oxidase após detectar a presença de corpos estranhos, como bactérias, fungos, vírus ou imunocomplexos. Após ser ativado, o sistema NADPH-oxidase cataliza a redução do O_2 , por meio da transferência de elétrons de NADPH, para então gerar $O_2^{-\bullet}$. Em seguida este radical $O_2^{-\bullet}$ pode reagir com o óxido nítrico (NO) formando o radical peroxinitrito (ONOO⁻) ou pode

sofrer a dismutação, conforme reação exemplificada anteriormente, gerando assim o H_2O_2 (Forman & Torres, 2001; Halliwell, 2006; Brown *et al.*, 2009a). Outra enzima utilizada na proteção do hospedeiro é a mieloperoxidase que converte o H_2O_2 e o radical clorídrico (Cl⁻) a ácido hipocloroso (HClO) (But *et al.*, 2002; Cruz, 2010).

Embora o radical O_2^{-} possa inativar proteínas ferro-sulfurosas de alguns patógenos, este radical é considerado um fraco agente bactericida; desta forma, sua produção torna-se relevante para o sistema imune devido à sua capacidade em gerar produtos secudários com forte atividade antimicrobiana, tais como HClO, ONOO⁻ e o H₂O₂ (Fang, 2004; Barreiros *et al.*, 2006; Vasconcelos *et al.*, 2007).

Como descrito, as principais fontes de EROs são endógenas, porém algumas condições exógenas como radiação, toxinas e poluentes também podem causar estresse oxidativo na célula (Elsayed, 2001; Droge, 2002; Herrero *et al.*, 2008; Brown *et al.*, 2009).

1.3.2.2. – Peróxido de hidrogênio (H₂O₂)

O H_2O_2 é uma das principais EROs formada endogenamente. A concentração intracelular do H_2O_2 é altamente regulada pela célula e sua presença é ubíqua em todos os organismos aeróbios (Giorgio *et al.*, 2007; Halliwell, 2007). Na célula, o H_2O_2 pode desempenhar diferentes funções, por exemplo, atuar como um mensageiro secundário durante o processo de sinalização ou atuar na regulação da proliferação, desenvolvimento e morte celulares pela direta interferência no sistema redox (Belozerskaia & Gessler, 2007; Mates *et al.*, 2008; Vandenbroucke *et al.*, 2008).

O H_2O_2 é um oxidante relativamente estável, não apresentando carga elétrica e, por isso, na ausência de metais de transição, se torna pouco reativo frente às moléculas orgânicas (Godon *et al.*, 1998; Costa *et al.*, 2002; Bienert *et al.*, 2007). Entre as características do H_2O_2 destacam-se a meia vida relativamente longa em relação às outras EROs (Giorgio *et al.*, 2007; Halliwell, 2007). Devido a estas características, o H_2O_2 tem sido amplamente utilizado pela comunidade científica como um indutor do estresse oxidativo.

Acredita-se que devido ao fato de não reagir imediatamente, o H_2O_2 pode migrar pela célula e atingir alvos distantes de onde foi gerado causando danos a diferentes alvos celulares. Os danos causados pelo H_2O_2 podem ocorrer de forma direta por meio da peroxidação lipídica, carbonilação ou oxidação de proteínas e danos no DNA ou de forma indireta por sua

capacidade de gerar o radical OH[•] em presença de metais como ferro (Jamieson, 1998; Temple *et al.*, 2005; Le Moan *et al.*, 2006).

Por muitos anos acreditou-se que o H_2O_2 atravessasse livremente as membranas celulares (Halliwell *et al.*, 2000), no entanto atualmente tem-se observado que esta difusão parece ser dependente de canais protéicos específicos, localizados nas membranas celulares e que estes canais regulariam a permeabilidade do H_2O_2 de maneira rápida e sensível (Branco *et al.*, 2004; Bienert *et al.*, 2007). Pedroso e colaboradores, ao avaliar a resposta de *S. cerevisiae* ao tratamento com H_2O_2 , verificaram que o perfil lipídico da membrana plasmática é alterado em resposta a este tratamento, possivelmente na tentativa de reduzir a permeabilidade, minimizando assim, os conseqüentes danos que este composto poderia causar na célula (Pedroso *et al.*, 2009). Mishina e colaboradores avaliaram a dinâmica do H_2O_2 produzido endógenamente e puderam observar que esta molécula não se difunde livremente através do citoplasma, mas em vez disso se localiza em regiões próximas de onde foi gerado, sugerindo assim que o H_2O_2 poderia agir apenas nas proximidades de sua formação (Mishina *et al.*, 2011).

1.3.3. – Antioxidantes

Para garantir a homeostase celular e proteger a célula contra danos oxidativos, os organismos aeróbicos mantém EROs a um nível basal por meio de um sistema antioxidante eficaz que neutraliza as EROs impedindo, consequentemente, que as biomoléculas sejam danificadas. Um antioxidante pode ser definido como qualquer substância que retarda, impede ou elimina os danos oxidativos para uma molécula-alvo (Scandalios, 2005; Gutteridge & Halliwell, 2010).

Fungos apresentam antioxidantes de natureza enzimática ou não enzimática que são produzidos pelo metabolismo secundário (Chauhan *et al.*, 2006). Glutationa, melanina, β -carotenos, zeaxantina, ascorbato e vitamina E são alguns exemplos de moléculas antioxidantes não enzimáticas. Dentre os antioxidantes de natureza enzimática encontramos aquelas que constituem as defesas primárias, destacando-se as catalases, superóxido dismutases, citocromo C peroxidase, glutationa peroxidase e tioredoxinas (Scandalios, 2005; Gutteridge & Halliwell, 2000; Halliwell, 2011).

As defesas antioxidantes secundárias são compostas por sistemas proteolíticos, como as peptidases e proteinases, que impedem o acúmulo de proteínas danificadas pela oxidação ou

por compostos que atuem no sistema de reparo, como proteínas do choque térmico. Adicionalmente, o transporte de compostos tóxicos para vacúolos, a quelação de metais entre outros mecanismos também favorecem a resistência de fungos ao estresse oxidativo (Sigler *et al.*, 1999; Belozerskaia & Gessler, 2007).

1.3.3.1 – Catalases

As catalases são oxidoredutases homotetraméricas que apresentam um átomo de ferro ou manganês ligado à porfirina, promovendo a decomposição do H_2O_2 em O_2 e H_2O (Kirkman & Gaetani, 2007; Dominguez *et al.*, 2010). As catalases são classificadas de acordo com suas similaridades funcionais e estruturais, podendo ser agrupadas de três modos: catalases manganês, catalases peroxidases e catalases monofuncionais. Catalases manganês ou pseudocatalases são caracterizadas pela presença do manganês ligado à porfirina. Catalases peroxidases ou catalases bifuncionais são caracterizadas pela função que apresentam, ou seja, são denominadas bifuncionais por degradar o H_2O_2 e outras EROs. O terceiro grupo, classificado como catalases monofuncionais ou catalases verdadeiras, são enzimas homotetraméricas que degradam somente o peróxido de hidrogênio (Kawasaki & Aguirre, 2001; Chelikani *et al.*, 2005; Vlasits *et al.*, 2010).

1.3.3.2 – Superóxido dismutases (SODs)

São metaloproteínas abundantes em células aeróbicas que catalisam a dismutação do ânion radicalar O_2^{-} em O_2 e H₂O₂. Estas enzimas apresentam diferentes grupos prostéticos em sua composição e podem conter cobre/zinco, ferro ou manganês em seu sítio ativo. A Cu/Zn-SOD está presente principalmente no citosol das células eucarióticas, enquanto que a Mn-SOD é encontrada principalmente nas mitocôndrias (Culotta, 2000; Landis & Tower, 2005; Leitch *et al.*, 2009).

1.3.3.3 – Peroxidases e sistema tioredoxina

As peroxidases são um grupo de enzimas oxiredutases que utilizam diferentes substratos orgânicos como doadores de elétrons para reduzir o H_2O_2 à H_2O . Exemplos de peroxidases são a citocromo C peroxidase, glutationa peroxidase e ascorbato peroxidase (Bindoli *et al.*, 2008; Battistuzzi *et al.*, 2010). As tioredoxinas são proteínas de baixa massa molecular (~12 kDa) com dois resíduos de cisteína, cujos grupos tiólicos se alternam entre as formas reduzida (SH) e oxidada (S-S) e possuem um papel determinante na manutenção do estado redox de tióis de diversas proteínas. A transferência de elétrons pela oxidação reversível do grupamento SH a

pontes dissulfeto é a principal atividade exercida por esta família enzimática (Trotter & Grant, 2005; Lillig & Holmgren, 2007).

1.3.4. – Resposta adaptativa ao estresse oxidativo

Os processos biológicos que estão na base da resposta adaptativa ao estresse oxidativo têm sido amplamente estudados nos mais diferentes sistemas biológicos. A resposta adaptativa ideal é aquela que promove uma proteção mais elevada e flexível durante a adaptação do organismo às variadas condições ambientais. Para que esta resposta seja alcançada, os organismos desenvolveram um sistema antioxidante complexo que apresenta várias possibilidades de resposta ao estresse por meio da redundância ou sobreposição entre as vias de defesa. Estas respostas seriam particularmente importantes durante o processo infeccioso, onde os microorganismos patogênicos precisam utilizar diferentes mecanismos para resistir ao ataque do sistema imunológico. A principal resposta adaptativa ao estresse parece ser a ativação de enzimas antioxidantes, que tem se mostrado ativas em diferentes tipos de estresse (Missall *et al.*, 2004; Seider *et al.*, 2010).

Nos últimos anos tem-se investigado a resposta global a estresses objetivando identificar uma resposta comum a estas variadas condições. Estes estudos têm revelado que, embora haja especificidade na resposta para um determinado tipo de estresse, existe sim uma resposta comum aos diferentes tipos de estresses como ao térmico, osmótico e oxidativo (Gasch *et al.*, 2000; Brown *et al.*, 2009; Yin *et al.*, 2009). Têm-se relatado também, que a submissão prévia de microorganismos, à baixa dose de indutores de estresse, favorece a indução de uma resposta adaptativa protetora, tornando-os mais resistentes a doses mais elevadas desses estressores (Jamieson, 1998; Li *et al.*, 2008b; Kim *et al.*, 2011).

Em *Saccharomyces cerevisiae*, considerado um modelo experimental, foram realizados estudos transcricionais para avaliar a resposta celular a diferentes tipos de estresse, inclusive o oxidativo estimulado pelo H₂O₂. O estudo revelou a indução de vários genes que foram associados à reação redox celular, detoxificação de EROs, metabolismo de carboidratos, metabolismo de ácidos graxos, modificação da parede celular, enovelamento, degradação de proteínas, reparo no DNA, transporte de metabólitos, sinalização intracelular, autofagia, bem como genes relacionados a função vacuolar e mitocondrial; em contrapartida foi observada a repressão de genes envolvidos com metabolismo de RNA, síntese de proteínas, biossíntese de

nucleotídeos, síntese protéica e ao crescimento celular; caracterizando desta maneira, a resposta comum de genes responsivos aos diferentes tipos de estresses (Gasch *et al.*, 2000).

A regulação transcricional e traducional de *Schizosaccharomyces pombe* durante diferentes condições de estresse foi recentemente caracterizada. Análise de correlação entre o perfil transcricional e o perfil traducional revelou-se altamente concordantes, o que indica haver um fino ajuste na regulação gênica e uma coordenação global das respostas aos diferentes tipos de estresse avaliados (térmico, oxidativo e de danos ao DNA). Para o estudo do estresse oxidativo, os autores correlacionaram também o perfil proteômico que se apresentou concordante com o perfil transcricional indicando que as variações globais na expressão protéica foram melhor correlacionada com as alterações na expressão de mRNA do que com as alterações traducionais, sugerindo que, em condição de estresse oxidativo, a resposta transcricional predomine sobre a traducional para controlar a abundância protéica na célula, coordenando desta forma a eficaz resposta ao estresse (Lackner *et al.*, 2012).

1.3.4.1 - Resposta adaptativa de Paracoccidioides ao estresse oxidativo

Durante o ciclo de vida, *Paracoccidioides* pode ser exposto a diferentes condições de estresse como choque térmico, choque osmótico e estresse oxidativo. Condições de estresse podem desencadear mudanças no balanço redox intracelular dos organismos resultando na produção de EROs (Fedoroff, 2006). Como descrito anteriormente, estas moléculas podem causar danos a diferentes componentes celulares e para que *Paracoccidioides* consiga resistir ao ataque destas EROs, se faz necessário que o fungo desenvolva diferentes estratégias para a detoxificação destas espécies. *Paracoccidioides* apresenta uma notável resistência ao tratamento *in vitro* com H₂O₂. Leveduras de *Paracoccidioides* na fase estacionária e na fase exponencial de crescimento foram tratadas com altas concentrações de H₂O₂ (25, 50, 75 e 100 mM) e apresentaram taxas de sobrevida superior a 70% após 1 e 6 horas de tratamento (Dantas *et al.*, 2008). Essa resistência não foi observada em *S. cerevisiae* que mostrou-se muito mais sensível, com sobrevida de apenas 2% destas células ao tratamento com 10 mM de H₂O₂ por 15 minutos de exposição (Collinson & Dawes, 1992). A alta resistência de *Paracoccidioides* antioxidante.

Estudos têm focado na análise de genes e proteínas de *Paracoccidioides* relacionados ao estresse oxidativo. O projeto Genoma Funcional e diferencial de *Paracoccidioides* permitiu a identificação de genes expressos nas formas de levedura e micélio deste fungo (Felipe *et al.*,

2003; Felipe *et al.*, 2005a). A partir dos dados gerados, Campos e colaboradores realizaram análises para identificação de sequências de cDNA que possivelmente seriam envolvidas na resposta fúngica ao estresse oxidativo (Campos *et al.*, 2005). A análise revelou que este fungo apresenta várias enzimas antioxidantes como catalase, superóxido dismutase, peroxiredoxina, citocromo C peroxidase, glutationa e tioredoxina as quais favoreceriam a sua proteção frente às EROs.

No complexo de enzimas antioxidantes de *Paracoccidioides*, destacam-se as catalases. Estas enzimas têm sido bem caracterizadas. Em 2001, Fonseca e colaboradores realizaram análises de imunoproteômica com soros de pacientes acometidos por PCM e observaram que uma das moléculas antigênicas de Paracoccidioides era a proteína catalase, que foi confirmada através de sequenciamento N- terminal e de peptídeos internos (61 kDa) (da Fonseca et al., 2001). Posteriormente, Moreira e colaboradores (2004) isolaram o cDNA codificante para a catalase peroxissomal. Esta proteína apresentou motivos de assinatura para catalases monofuncionais e de endereçamento aos peroxissomos. A expressão do mRNA codificante de catalase peroxisomal mostrou-se aumentada na presença de H₂O₂ e durante a transição morfológica do fungo (Moreira et al., 2004). Em 2008, Dantas e colaboradores correlacionaram o aumento da atividade da catalase total e da citocromo C peroxidase com a resistência de Paracoccidioides ao tratamento com H₂O₂, sugerindo que estas enzimas podem desenvolver uma importante atividade na defesa fúngica contra o estresse oxidativo (Dantas et al., 2008). Neste mesmo ano, Chagas e colaboradores identificaram e descreveram três diferentes tipos de catalases (PbCatA, PbCatP e PbCatC) em Paracoccidioides. De acordo com os estudos PbCatA e PbCatC foram associadas à proteção de Paracoccidioides contra o estresse oxidativo endógeno, enquanto PbCatP foi associada principalmente ao estresse oxidativo exógeno (Chagas et al., 2008). Como a produção de H₂O₂ por macrófagos desempenha um importante papel na morte de fungos patogênicos em tecidos infectados (Shibuya et al., 2006) estes autores adicionalmente, investigaram se as catalases desempenhariam alguma função protetora ao fungo, em condição de estresse oxidativo, causado por macrófagos durante o processo infectivo. Por meio de ensaios de RT-qPCR foi demonstrado que a expressão de transcritos de PbcatP e PbcatA foi aumentada durante a infecção, indicando que a produção destas catalases pode favorecer a sobrevivência de Paracoccidioides nos fagossomos de macrófagos (Chagas et al., 2008).

A resposta transcricional de *Paracoccidioides* ao microambiente de macrófagos peritoneais murinos, por meio da técnica de microarranjo, foi caracterizada por Tavares e colaboradores e revelou que o fungo induz a expressão de genes relacionados ao estresse oxidativo tais como Cu/Zn - superóxido dismutase e HSP 60 (Tavares et al., 2007). Adicionalmente, a resposta ao estresse oxidativo é possivelmente um processo nicho específico em Paracoccidioides. Embora a resposta ao estresse oxidativo seja um aspecto geral do metabolismo de células leveduriformes derivadas de tecidos infectados em modelo animal e durante o tratamento com sangue e plasma humanos (Bailao et al., 2006; Bailao et al., 2007; Costa et al., 2007; Pereira et al., 2009), verifica-se a especificidade da resposta para diferentes condições experimentais, sugerindo regulação nicho-específica no hospedeiro. Dessa maneira, em células leveduriformes derivadas de fígado infectado predomina a expressão de genes codificantes para tioredoxina e para uma proteína de resistência à oxidação (Bailao et al., 2006; Costa et al., 2007; Pereira et al., 2009). Em células leveduriformes incubadas na presença de plasma predomina a expressão do gene codificante para catalase A (Bailao et al., 2007; Pereira et al., 2009). Avaliando estes dados em conjunto é possível observar que Paracoccidioides apresenta um sistema antioxidante eficaz que promove sua habilidade em resistir às injurias provocadas pelo estresse oxidativo.

1.3.5 - O emprego de análises proteômicas no estudo do estresse oxidativo

O termo proteoma foi utilizado pela primeira vez em 1996 para descrever o complemento protéico total do genoma (Wilkins *et al.*, 1996). Atualmente, o termo proteômica tem sido definido como a análise em grande escala de proteínas expressas por uma determinada célula, tecido ou organismo numa condição específica. O objetivo da análise proteômica não é apenas identificar todas as proteínas na célula, mas também criar um mapa tridimensional da célula indicando onde as proteínas estão localizadas e o ambiente no qual a célula é estudada. Assim, o proteoma fornece informações das proteínas presentes em uma célula em um determinado momento, contrariamente ao genoma que funciona como um repositório essencialmente estático da informação genética (Graves & Haystead, 2002).

Sabe-se que a expressão protéica pode ser alterada em resposta a estímulos ambientais variados e que esta resposta pode ser modulada por modificações pós-traducionais. Assim, o perfil protéico de uma célula pode ser determinado por meio da identificação das proteínas responsivas a estímulos ambientais, ou seja, aquelas proteínas que tiveram seus padrões de

expressão elevada ou diminuída. Portanto o proteoma de uma célula reflete o ambiente no qual a célula ou organismo está exposto e assim um mesmo genoma pode potencialmente originar um número infinito de proteomas (Wilkins *et al.*, 1996; Graves & Haystead, 2002). Neste contexto, a análise proteômica tem se revelado uma importante ferramenta utilizada no estudo do estresse oxidativo.

Utilizando a técnica 2D-DIGE (Eletroforese de fluorescência diferencial em gel bidimensional) foi possível analisar o perfil de expressão diferencial de *Kluyveromyces lactis* sob estresse oxidativo. Como esperado, foram observadas a indução de várias enzimas antioxidantes, de chaperonas e de oxidoredutases, bem como de outras proteínas relacionadas à produção de energia, metabolismo de carboidratos e aminoácidos (Garcia-Leiro *et al.*, 2010). Técnicas similares foram utilizadas para avaliar a resposta de *C. albicans* ao tratamento com H_2O_2 . Estas análises também demonstraram o aumento da expressão de enzimas antioxidantes como peroxiredoxina, redutases e também chaperonas (Yin *et al.*, 2009). Em *A. fumigatus* a resposta adaptativa ao estresse oxidativo foi caracterizada pela indução das enzimas tioredoxina peroxidases, citocromo C peroxidase, Cu/Zn superoxide dismutase, catalase, bem como proteínas do choque térmico e enzimas da via das pentoses fosfato (Lessing *et al.*, 2007).

Em *Paracoccidioides* análises proteômicas também têm sido empregadas com sucesso. Parente e colaboradores (2011) empregaram a técnica de eletroforese bidimensional (2-DE) acoplado à identificação por espectrometria de massa MALDI-QTOF MS e MS/MS para investigar o perfil de proteínas citoplasmáticas de *Paracoccidioides* sob restrição do íon ferro. Foram induzidas enzimas da via glicolítica e proteínas de resposta ao choque térmico, enquanto várias enzimas do ciclo do ácido tricarboxílico, ciclo do metilcitrato e glioxalato e proteínas da cadeia transportadora de elétrons mostraram-se reprimidas. Os autores sugerem que o fungo responda à restrição de ferro por meio do remodelamento do metabolismo onde o as vias metabólicas não dependentes de ferro sejam priorizadas pelo fungo durante a limitação do micronutriente. Rezende e colaboradores (2011), utilizando a mesma técnica, avaliaram o perfil proteômico da transição dimórfica de *Paracoccidioides*, aspecto que é relacionado à patogenicidade do fungo. Foram comparados os proteomas da forma miceliana, leveduriforme e da transição micélio-levedura, possibilitando a identificação de 100 proteínas/isoformas sendo que 81 apresentaram-se diferencialmente expressas nas três fases do fungo, enquanto que 19 proteínas/isoformas foram constitutivamente expressas. A expressão de proteínas como superóxido dismutase e peroxiredoxina mitocondrial foi mais abundante na fase miceliana. Nos estágios iniciais da transição (22 h) algumas enzimas envolvidas na glicólise, como enolase e fosfoglicomutase, foram aumentadas. Proteínas de choque térmico e ATP sintase também foram significantemente aumentadas durante o evento de transição. Proteínas preferencialmente expressas na fase leveduriforme foram identificadas e relacionadas com a via glicolítica, ciclo do glioxalato e ao metabolismo de lipídeos. Os dados obtidos por estes autores demonstraram que o fungo promove um remodelamento do seu metabolismo durante a transição morfológica.

Vallejo e colaboradores também utilizaram ferramentas proteômicas (LC-MS/MS) para caracterizar o proteoma extracelular de leveduras de *Paracoccidioides* – isolado *Pb*18. Foram identificadas 120 proteínas, sendo que 75 foram caracterizadas como extracelulares. O estudo sugere que algumas proteínas extracelulares são mediadoras da interação parasita-hospedeiro porque podem auxiliar a disseminação fúngica pela liberação de proteases e lipases ou ainda por neutralizar mecanismos de defesa do hospedeiro como exemplo a secreção de enzimas antioxidantes como a superóxido dismutase, demonstrando desta forma que as proteínas extracelulares são moléculas potencialmente relevantes para a virulência e patogênese fúngica (Vallejo *et al.*, 2012).

Estudo relacionado às proteínas extracelulares de *Paracoccidioides* foi realizado por Weber e colaboradores. O estudo descreve o perfil das proteínas secretadas das fases miceliana e leveduriforme do isolado *Pb*01. Os autores identificaram 42 e 50 proteínas/isoformas preferencialmente secretadas por levedura e micélio, respectivamente. Análises *in silico* mostraram que 65% das proteínas extracelulares foram preditas serem secretadas por vias não convencionais indicando ser esta a principal via de exportação de proteínas neste fungo. Adicionalmente, foi investigada a influência da inibição da secreção protéica em leveduras durante a fagocitose por macrófagos. A adição de Brefeldina A ao meio de cultura diminuiu significativamente a quantidade de proteínas por *Paracoccidioides* pode facilitar aos estágios iniciais da invasão/colonização do fungo no hospedeiro (Weber *et al., - in press*).

A proteômica tem contribuído para um melhor conhecimento de processos biológicos como morfogênese, virulência, resposta ao hospedeiro, bem como para o desenvolvimento de potenciais alvos antifúngicos e abordagens terapêuticas (Pitarch *et al.*, 2003). Desta maneira, a técnica de eletroforese bidimensional (2-DE) acoplada à identificação por espectrometria de massa (MALDI-QTOF MS e MS/MS) foi selecionada como a ferramenta proteômica para investigar o perfil de proteínas de leveduras de *Paracoccidioides* durante o estresse oxidativo após 2 e 6 horas de exposição ao H₂O₂.

2 – JUSTIFICATIVA

Fungos patogênicos são expostos a vários tipos de estresses durante a invasão ao hospedeiro ou mesmo em seus nichos ecológicos, por exemplo, estresse nutricional, térmico, nitrosativo, oxidativo, além daqueles decorrentes da alteração no pH, de variações na tensão de oxigênio e da exposição a agentes tóxicos.

Ao entrar em contato com o hospedeiro, *Paracoccidioides* interage com várias células efetoras do sistema imunológico as quais utilizam diferentes mecanismos para controlar a infecção, como a fagocitose por macrófagos ativados. No interior do fagossoma, as leveduras de *Paracoccidioides* são expostas ao H_2O_2 e a outras substâncias tóxicas que causam diferentes danos às estruturas celulares, podendo assim, promover a morte destas leveduras. Em resposta ao ataque oxidativo, *Paracoccidioides*, a exemplo de outros patógenos, modulam respostas moleculares para resistir aos danos causados pelas EROs por meio da indução de fatores antioxidantes que atuam neutralizando estas espécies ou atuam no reparo aos danos causados por estas EROs.

A principal meta de estudos proteômicos consiste em obter uma visão biológica integrada de todas as proteínas presentes em uma determinada célula. Por ser altamente dinâmico, o proteoma fornece informações das proteínas celulares em um determinado momento e devido a esta possibilidade a técnica se torna uma importante ferramenta para o estudo da resposta celular aos estímulos internos e externos, como ao estresse induzido pelo H_2O_2 .

Diferentes estudos têm apresentado o perfil proteômico responsivo ao estresse oxidativo em procariotos e alguns eucariotos, entretanto para o fungo *Paracoccidioides* nada se tem descrito sobre este assunto. Até o momento, foram publicados relatos descritivos de genes possivelmente envolvidos com o estresse oxidativo ou estudos específicos de enzimas antioxidantes. Embora esses estudos tenham proporcionado uma base para se entender a resposta de *Paracoccidioides* ao estresse oxidativo, os nossos conhecimentos sobre os mecanismos moleculares ainda permanecem obscuros. Assim, acreditamos que a caracterização do perfil diferencial de expressão protéica de *Paracoccidioides* em condições de estresse oxidativo se faz muito importante, já que esta é uma condição possivelmente encontrada pelo fungo durante o processo de infecção ao hospedeiro.

3 – OBJETIVOS

Visando o estudo da complexa interação *Paracoccidioides*-hospedeiro o presente trabalho objetivou caracterizar o perfil de expressão protéica deste fungo após a exposição ao H_2O_2 , um agente indutor do estresse oxidativo.

Para alcançar esse objetivo o presente estudo utilizou as seguintes estratégias:

• Induzir o estresse oxidativo em células leveduriformes de *Paracoccidioides* por meio do tratamento com H_2O_2 ;

• Produzir mapas eletroforéticos bidimensionais de proteínas totais da forma leveduriforme de *Paracoccidioides*;

• Realizar análises computacionais dos mapas bidimensionais de proteínas capturadas em sistema de fotodocumentação e processá-las, detectando o número de *spots* de proteínas, a massa molecular e ponto isoelétrico em cada condição de estresse oxidativo;

• Realizar análises estatísticas para identificar proteínas/isoformas diferencialmente expressas;

• Identificar proteínas diferencialmente expressas por meio da ionização, fragmentação, análise, detecção e produção dos espectros de massas, comparando-os aos bancos de dados de mapas peptídicos para aquelas proteínas candidatas disponibilizadas em bancos de dados;

• Caracterizar e classificar por meio da função teórica as proteínas obtidas;

• Avaliar a resposta inicial e tardia de *Paracoccidioides* ao H₂O₂;

• Realizar análise transcricional de possíveis genes codificantes para enzimas antioxidantes responsivas ao tratamento com H_2O_{2i}

• Realizar experimentos de validação para proteínas identificadas;

• Propor possíveis estratégias moleculares utilizadas pelo fungo *Paracoccidioides* em resposta ao estresse oxidativo estimulado pelo tratamento com H_2O_2 .

4 – MANUSCRITO

Elsevier Editorial System(tm) for Microbes and Infection Manuscript Draft

Manuscript Number:

Title: Response to oxidative stress in Paracoccidioides yeast cells as determined by proteomic analysis

Article Type: Original article

Keywords: Paracoccidioides; oxidative stress; proteomic analysis; antioxidant enzymes; metabolic profile

Corresponding Author: Mrs Celia Maria de Almeida Soares, PhD

Corresponding Author's Institution: Universidade Federal de Goias

First Author: Daciene A Grossklaus, MsC

Order of Authors: Daciene A Grossklaus, MsC; Alexandre M Bailão, PhD; Tereza Cristina V Rezende, PhD; Clayton L Borges, PhD; Milton Adriano P Oliveira, PhD; Juliana A Parente, PhD; Celia Maria de Almeida Soares, PhD

Abstract: An efficient oxidative stress response is important to the fungal pathogen Paracoccidioides to survive within the human host. In this study, oxidative stress was mimicked by exposure of yeast cells to hydrogen peroxide (2 mM H2O2). To investigate the effect of H2O2 on the proteome of Paracoccidiodes, we used a large scale 2-DE protein gel electrophoresis approach to analyze differentially expressed proteins that were detected in early (2 h) and in late (6 h) oxidative stress treatments. All proteins were grouped based on their functional categories that revealed a global activation of antioxidant enzymes, such as catalase, superoxide dismutase, cytochrome C peroxidase and thioredoxin. A view of the metabolic cell profile, as determined by proteomics, depicted a shift in the yeast cells metabolism as suggested by the activation of the pentose phosphate pathway, a great source of cellular reducing power in the form of NADPH. Additionally, in silico analyses depicted 34 oxidoreductases putatively involved with defense against oxidative stress. Confirmatory assays of enzymatic activity, flow cytometry, transcript levels and NADPH measurements, produced data in agreement with proteomic analysis.

Suggested Reviewers: Marcio L Rodirgues PhD Full Profesor, Departamento de Microbiologia, Universidade Federal do Rio de Janeiro marciolrodrig@gmail.com

Algusto Schrank PhD Full Profesor, Centro de Biotecnologia , Universidade Federal do Rio Grande do Sul aschrank@cbiot.ufrgs.br

Hubertus Haas PhD Full Profesor, Division of Molecular Biology, Innsbruck Medical University hubertus.haas@i-med.ac.at

Alan G Smulian MD Full Profesor, Division of Infectious Diseases, University of Cincinnati smuliaag@ucmail.uc.edu

James Kronstad Full Profesor, Michael Smith Laboratories, University of British Columbia kronstad@msl.ubc.ca

Opposed Reviewers:
Cover Letter

To the Associated Editor Microbes and Infection Joshua Nosanchuk

Goiânia, October 18, 2012.

Dear Dr Nosanchuk

It is our pleasure to submit our article entitled "Response to oxidative stress in *Paracoccidioides* yeast cells as determined by proteomic analysis" to the Microbes and Infection editorial board. In this manuscript, we had described, for the first time, the proteome of yeast cells of the dimorphic fungus *Paracoccidioides*, submitted to oxidative stress treatment. This dimorphic fungus presents a broad distribution in Latin America, causing the most frequent systemic mycosis in the region. It is known that an efficient oxidative stress response is important to the fungal pathogen *Paracoccidioides* to survive within the human host. In this way, we employed proteomic approaches to address the question of whether H_2O_2 -treatment of yeast cells of *Paracoccidioides* would result in a proteome with significant differences from that of unstressed cells.

Our data demonstrated proteins differentially expressed, that allowed to describe an adaptive response of *Paracoccidioides* to oxidative stress. The fungus presents a prominent activation of antioxidant enzymes and a rearrangement of the metabolism, observed by activation of several proteins reported to the pentose phosphate pathway, gluconeogenesis and generation of amino acids important to compose the repertoire of molecules to the oxidative stress response. Importantly, proteomic data correlated to transcript level and enzymatic activity of selected proteins. Additionally, the redox potential of cells submitted to oxidative stress was altered in agreement to the generation of NADPH by the pentose phosphate pathway.

We believe that information about the identified proteins provides a useful resource for studying the host-fungus interaction and the strategies the fungus employ to survive in the hostile environment. We believe that this article represents a great contribution for those involved in the area of fungal pathogens.

We hope to hear from you soon

Sincerely,

Célia Maria de Almeida Soares, PhD Laboratório de Biologia Molecular Instituto de Ciências Biológicas Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil. Tel/Fax:55-62-35211110 e-mail: cmasoares@gmail.com Response to oxidative stress in *Paracoccidioides* yeast cells as determined by proteomic analysis

Daciene de Arruda Grossklaus^{a,b}, Alexandre Melo Bailão^a, Tereza Cristina Vieira Rezende^a, Clayton Luiz Borges^a, Milton Adriano Pelli de Oliveira^c, Juliana Alves Parente^a, Célia Maria de Almeida Soares^a*

^a.Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia, Goiás, Brazil.

^b. Programa de Pós Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, 70910-900, Brasília, Distrito Federal, Brazil.

^c. Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, 70910-900, Goiânia, Goiás, Brazil.

* Correspondence author:

Célia Maria de Almeida Soares, Laboratório de Biologia Molecular, ICBII, Campus II, Universidade Federal de Goiás, 74001-970, Goiânia-Goiás, Brazil. Tel./fax: +55 6235211110; e-mail: cmasoares@gmail.com

Abstract

An efficient oxidative stress response is important to the fungal pathogen *Paracoccidioides* to survive within the human host. In this study, oxidative stress was mimicked by exposure of yeast cells to hydrogen peroxide (2mM H₂O₂). To investigate the effect of H_2O_2 on the proteome of *Paracoccidiodes*, we used a large scale 2-DE protein gel electrophoresis approach to analyze differentially expressed proteins that were detected in early (2 h) and in late (6 h) oxidative stress treatments. All proteins were grouped based on their functional categories that revealed a global activation of antioxidant enzymes, such as catalase, superoxide dismutase, cytochrome C peroxidase and thioredoxin. A view of the metabolic cell profile, as determined by proteomics, depicted a shift in the yeast cells metabolism as suggested by the activation of the pentose phosphate pathway, a great source of cellular reducing power in the form of NADPH. Additionally, in silico analyses depicted 34 oxidoreductases putatively involved with defense against oxidative stress. Confirmatory assays of enzymatic activity, flow cytometry, transcript levels and NADPH measurements, produced data in agreement with proteomic analysis.

Keywords: *Paracoccidioides*, oxidative stress, proteomic analysis, antioxidant enzymes, metabolic profile.

1. Introduction

Oxidative stress is a disorder caused by enhanced reactive oxygen species (ROS) due to imbalance between ROS generation and elimination. Normally, ROS are maintained at certain steady-state levels in aerobic organisms and they are continuously produced during the cellular respiration [1, 2]. In the mitochondria, most oxygen molecules are reduced to water, although about 1–5% undergoes incomplete reduction, forming the main part of ROS, such as the hydroxyl radical (OH), superoxide anion (O_2^-), and hydrogen peroxide (H_2O_2). ROS also are generated by some enzymes such as oxidases that are important to the immune system to protect the host organism against infectious agents [3, 4]. The oxidative stress, that pathogens are subjected within the phagosome, is induced presumably due to the toxic cocktail of reactive oxygen, nitrogen and chloride species generated by phagocytes and these reactive species cause damage to DNA, proteins and lipids [3, 5].

Paracoccidioidomycosis is an important human systemic mycosis with a broad distribution in Latin America. The disease, caused by the dimorphic fungus *Paracoccidioides*, a complex of several phylogenetic species [6-8] is acquired by inhalation of infective airborne conidia or mycelia fragments that transit to the pathogenic yeast phase in the host lungs [9]. The infection depends on the fungal escape from the immune system and alveolar macrophages are the first defense cells against *Paracoccidioides*. In order to restrict *Paracoccidioides* infection, macrophages produce several harmful substances, such as H_2O_2 that causes oxidative stress [5, 10, 11]. On the other hand *Paracoccidioides* yeast cells stimulate induction of antioxidant molecules to survive within the phagocyte [12-14].

Some studies had focused on genes and proteins related to the oxidative stress response in Paracoccidioides. Data obtained from a Paracoccidioides assembled expressed sequence tag (EST) database [15], allowed the description of cDNA sequences potentially involved in the fungus response to oxidative stress [16] such as catalase, superoxide dismutase isoenzymes, peroxiredoxin, cytochrome C peroxidase, glutathione and thioredoxin. Additionally, a complete sequence of cDNA encoding small-subunit monofuctional catalase, named peroxisomal catalase was identified and characterized. Western blot analysis evidenced up-regulation of the peroxisomal catalase in response to H_2O_2 -treatment [17]. The increased activities of catalases and cytochrome C peroxidase were correlated with Paracoccidioides resistance to H_2O_2 -treatment, suggesting that these enzymes might play role in the fungal defense against oxidative stress [18]. The expression of the three members of the Paracoccidioides catalase family: PbCatA, PbCatB and PbCatP was evaluated and described. According to the studies PbCatA and PbCatB were associated to Paracoccidioides protection against endogen oxidative stress, while PbCatP was mostly associated to exogenous oxidative stress [19]. Summarizing, molecular and biochemical approaches have been employed to investigate the oxidative stress response in Paracoccidioides and responsive genes and

proteins have been identified, indicating that the fungus uses several antioxidant systems to combat ROS [16-19].

Proteomic approaches in *Paracoccidioides* have been successfully employed by our group in studies focusing on the fungus phase transition [20], as well as the fungal response to iron starvation [21]. Here we employed proteomic strategies to address the question of whether H₂O₂-treatment of yeast cells of *Paracoccidioides* would result in a proteome with significant differences from that of unstressed cells. In this study, we mapped the protein expression profile of *Paracoccidioides* yeast cells exposed to H₂O₂ for early (2 h) and late (6 h) stress, by quantitative differences in two-dimensional gel electrophoresis (2-DE) protein profiles. We utilized confirmatory assays to the proteomic data, such as quantitative real-time reverse transcription (RT-qPCR), flow cytometry measurements and enzymatic assays. The cellular redox state was monitored by determination of NADP⁺/NADPH ratio during the oxidative stress. Proteomic analysis revealed a prominent activation of ROS-detoxifying enzymes such as catalase, superoxide dismutase, cytochrome C peroxidase and thioredoxin, as well as activation of several proteins related to the pentose phosphate pathway that favors a reductive environment by production of NADPH. The results make up an integrated view of *Paracoccidioides* yeast cells during oxidative stress.

2. Materials and methods

2.1. Microorganism and oxidative stress

The oxidative stress response was investigated in yeast cells of *Paracoccidioides*, *Pb*01 (ATCC MYA– 826). The yeast cells were sub-cultured every seven days on solid Fava-Netto medium [0.3% (w/v) protease peptone, 1% (w/v) peptone, 0.5% (w/v) meat extract, 0.5% (w/v) yeast extract, 4% (w/v) glucose, 0.5% (w/v) NaCl, pH 7.2] at 36 °C. A total of 2.5 x 10⁸ yeast cells/ml were exposed to 2 mM H₂O₂ at 36 °C for 2 and 6 h, on a shaker at 150 rpm, as previously described [19]. Controls were obtained and all experiments were performed in triplicate. The percentage of viable cells was determined by trypan blue dye exclusion.

2.2. Preparation of protein extracts

Yeast cells were collected at the described time points and submitted to total protein extraction. The cells were centrifuged at 10,000 x g for 15 min at 4 °C, frozen in liquid nitrogen, and disrupted by maceration [22]. Extraction buffer (20 mM Tris-HCl pH 8.8; 2 mM CaCl₂) containing a mixture of protease inhibitors (serine, cysteine and calpain inhibitors) (GE Healthcare, Uppsala, Sweden) was added to the yeast cells. After addition of glass beads (0.45 mm), the cells were vigorously mixed for 1 h at 4 °C, followed by centrifugation at 10,000 × g for 15 min at the same temperature. The supernatant was collected, and the protein concentrations were determined by using the Bradford reagent (Sigma Aldrich, Co., St. Louis, MO. The samples were stored in aliquots at -80 °C.

2.3. 2-DE gel and image analysis

Protein samples were treated with 2-D Clean-up Kit (GE Healthcare) following the procedure recommended by the manufacturer. The samples were ressuspended in rehydration buffer (7 M urea, 2 M thiourea, 2 % [w/v] CHAPS, 65 mM DTT, 0.5 % [v/v] IPG [immobilized pH gradient] buffer, 0.001 % [w/v] bromophenol blue). The isoelectric focusing of 300 μ g protein was performed in 13 cm immobilized pH gradient (3–11 pH NonLinear) IPG strips on Ettan IPGPhor III Isoelectric Focusing System (GE Healthcare). The isoelectric focusing was performed with a limiting current of 50 μ A/strip under the following steps: 500 V/h, step; 800 V/h, gradient; 11,300 V/h, gradient; 2,900 V/h, step; resulting in a total of 15,950 kV/h. IPG strips were equilibrated twice for 45 min with gentle agitation, in the solution (6 M urea, 0.5 M Tris-HCl, pH 8.8, 30% [v/v] glycerol, 2% [w/v] SDS, 0.001% [w/v] bromophenol blue). DTT (0.5% [w/v]) was added to the first step of equilibration while iodoacetamide (2.5%[w/v]) was added at the second step. The second dimension was performed in a Hoefer SE 600 electrophoresis system at 15 °C at 100 V for 1 h, followed by 200 V for 3 h. 2-DE gels were stained with Coomassie brilliant blue, scanned with Labscan software (GE Healthcare) version 3.0 and stored at 4°C.

The relative determination of the spot volumes was performed with the ImageMaster Platinum 6.0 software(GE Healthcare). To refine automatic spot matching, mismatched spots were manually corrected. Student's *t*-test (Statistics software version 7.0) was used to compare the differences in the mean spot volume. Differentially accumulated proteins/spots with p < 0.05 were considered statistically significant and were selected to mass spectrometry analysis.

2.4. Mass spectrometry analysis

Spots of interest were manually excised from 2-DE gels and the gel pieces were submitted to manual digestion. The gel pieces were dehydrated with pure acetonitrile (ACN) and dried in a speed vacuum. The gel pieces were reduced with a solution containing 10 mM DTT in 25 mM NH₄HCO₃ for 1 h at 56 °C and alkylated with a solution of 55 mM iodoacetamide in 25 mM NH₄HCO₃ for 45 min at room temperature. After, the gel pieces were washed in 25 mM NH₄HCO₃ for 10 min by vigorous mixing, dehydrated in 25 mM NH₄HCO₃/ACN solution (50 % [v/v]) and dried in a speed vacuum. For tryptic digestion, the gel pieces were incubated on ice for 15 min with 10 ng/ μ L trypsin solution (sequencing grade modified trypsin, Promega, Madison, WI, USA) followed by removal of the supernatant. A solution of 25 mM NH₄HCO₃ was added to the gel pieces followed by incubation at 37 °C for 16 h. The supernatant was placed into a clean tube and to the gel pieces it was added a solution containing trifluoroacetic acid (5 % [v/v]) and ACN (50 % [v/v]), for 10 min under vigorous mixing. Finally, gel pieces were sonicated for 3 min. The recovered supernatant was dried in a speed vacuum. ZipTip C18 pipetting tips (Millipore, Bedford, MA, USA) were used, according to manufacturer's instructions, to concentrate and purify small protein spots by reverse phase extraction.

MALDI-MS and MALDI-MS/MS analysis were performed on a MALDI-Synapt MSTM spectrometer (Waters-Micromass, Manchester, UK) operating in positive ion reflector

mode with a laser intensity of 250. The instrument was calibrated to an accuracy level of <10 ppm using a mixture of known standard synthetic peptides with an m/z range of 800 to 4000 Da. The instrument was set to acquire Peptide Mass Fingerprint (PMF) spectra, and peaks of sufficient intensity were automatically fragmented in the argon collision cell. Mass spectra were collected and processed using Mass Lynx (Waters-Micromass, Manchester, UK). The peak lists were created by ProteinLynx Global Server 2.2.5v (Waters). PMF data were searched against the NCBI non redundant database and matched with their corresponding proteins sequences using MASCOT (http://www.matrixscience.com).

The query for database searching was performed with 100 ppm as maximal tolerance, a single trypsin missed cleavage, carbamidomethylation of cysteine residues as fixed modification, and oxidation of methionine as variable modification. Each search was restricted to fungi. For confirmation of protein identification by PMF, the resulting MS/MS ion spectra were processed and converted into *.pkl files, and the peak list was again compared with the NCBI nonredundant database (fungi) with a peptide mass tolerance of ± 100 ppm and a fragment mass tolerance of 0.2-0.6 Da. For both MS and MS/MS, only proteins with statistical significance (p value < 0.05) as determined by the MASCOT algorithm were accepted as a protein sequence match. Analysis by MS/MS confirmed the proteins identified on the basis of the PMFs, validating the identifications. The ORF sequences of identified proteins were analyzed by using the Pedant-Pro Sequence Analysis Suite of Biomax GmbH (http://pedant.gsf.de.) and all identified proteins were categorized according Functional Catalogue (FunCat2).

In order to investigate the nature of the post-translational modifications (PTM) of the isoforms identified in this work, we performed a search in the *Paracoccidioides* structural genome database at the Broad Institute of MIT and Harvard (http://www.broadinstitute.org/annotation/genome/Paracoccidioides_brasiliensis/MultiHome.h tml) to search the presence of more than one gene coding for a specific protein.

2.5. Enzymatic activities

The total catalase activity was measured by the Catalase Assay Kit (Sigma Aldrich, Co., St. Louis, MO), which measures reduction on the absorbance during the conversion of H_2O_2 to oxygen [23]. Catalase activity for each sample was calculated using a standard curve and one unit of activity was defined as the amount of enzyme that catalyzed the consumption of 1 µmol of H_2O_2 per minute. The superoxide dismutase determination kit (Sigma Aldrich) measured superoxide dismutase enzymatic activity. In brief, the kit utilizes the water-soluble tetrazolium salt-WST-1 (2-[4-Iodophenyl]-3-[4-nitrophenyl]-5-[2,4-disulfophenyl]-2H-tetrazolium, monosodium salt), which produces a water-soluble formazan dye upon reduction with O_2^- , and the product can be determined by a colorimetric method at 440 nm. Cytochrome C oxidase activity was measured by a colorimetric assay based on observation of the decrease in absorbance at 550 nm of ferrocytochrome C oxidized by cytochrome C oxidase. To perform this activity assay it were employed the cytochrome C oxidase Assay Kit as described in

manufacturer's instructions (Sigma Aldrich). Glutathione S-transferase activity was determined by the glutathione S-transferase Assay Kit (Sigma Aldrich). This assay is based on the conjugation of L-glutathione to CDNB (1-Chloro-2,4-dinitrobenzene) through the thiol group of the glutathione by the action of glutathione S-transferase. The product of this reaction, GS-DNB Conjugate, absorbs at 340 nm and the rate of increase in the absorption is directly proportional to the enzyme activity in the sample. Enzymatic activities were performed in three independent replicates and statistical comparisons were performed using Student's *t*-test and sample with *p*-values < 0.05 were considered statistically significant.

2.6. Determination of protein expression by flow cytometry

Enolase, triosephosphate isomerase and malate synthase were employed in this assay by using polyclonal antibodies produced to the respective proteins [24-26]. Briefly, a total of 2 x 10⁵ Paracoccidioides yeast cells upon oxidative stress were incubated for 30 min with cold methanol. After, the cells were washed three times with PBS 1x and incubated with PBS 1x containing Triton X-100 (0.25% [v/v]) for 15 min at room temperature. The cells were blocked for 30 min with PBS 1x containing BSA (5% [w/v]) and Tween 20 (0.1% [v/v]) at room temperature. In addition, yeast cells were washed three times with PBS 1x and incubated for 20 min at room temperature with the polyclonal antibodies: mouse anti-triosephosphate isomerase (diluted 1:100), mouse anti-malate synthase (diluted 1:100) and mouse anti-enolase (diluted 1:1000). Control cells were incubated with non-immunized mouse serum. After three washes with PBS 1x, the cells were incubated with anti-rabbit IgG coupled to fluorescein isothiocyanate (FITC; 1:100 dilution) for 20 min at room temperature. The flow cytometry assay was performed using a C6 Accuri flow cytometer (Accuri Cytometers, Ann Arbor, MI, USA) that was routinely operated at the Fast Flow Rate setting and a minimum of 5,000 cells per sample was acquired with the FL1-Hchannel. Data was collected and analyzed using FCS Express 4 Plus Research Edition software (Denovo Software, Los Angeles, CA, USA).

2.7. Interation of <u>Paracoccidioides</u> with macrophage cells

J774 A.1 macrophage cells (Banco de Células do Rio de Janeiro, Rio de Janeiro, Brazil) were employed in the phagocytic assays. *Paracoccidioides* yeast cells were employed to infect macrophages, in a 5:1 ratio. The cells were co-cultivated for 24 h at 37°C in 5% CO₂ to allow fungi adhesion and internalization. Cells were rinsed twice with PBS 1x for removal of any non-internalized yeast cells. The wells were washed with distilled water to promote macrophages lyses. The suspensions were collected in individual tubes and centrifuged at 10,000 x g, 10 min, at 4 °C. The cells were submitted to RNA extraction.

2.8. Quantification of transcripts by RT-qPCR

Total RNA was extracted by using the Trizol Reagent (Invitrogen Carlsbad, CA, USA) according to the manufacturer's instructions. A total of 1 μ g of RNA was used to synthesize the first-strand cDNA by using the High Capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA). The cDNA samples were diluted 1:5 in water, and RT-qPCR was performed

by using the SYBR Green PCR master mix (Applied Biosystems, Foster City, CA) in the Step One Plus PCR System (Applied Biosystems Inc.). The data were normalized with transcript encoding α -tubulin amplified in each set of RT-qPCR experiments. A non-template control was also included to eliminate contamination or non-specific reaction. Samples of each cDNA were pooled and serially diluted 1:5 to generate a relative standard curve. Relative expression levels of the genes of interest were calculated using the standard curve method for relative quantification [27]. Statistical comparisons were performed by using Student's *t*-test and sample with *p*-values < 0.05 were considered statistically significant. The oligonucleotides used in RT-qPCR experiments were listed in Supplementary Table 1.

2.9. Determination of the intracellular NADPH/NADP⁺ ratio

In order to evaluate the redox state in *Paracoccidioides* yeast cells we employed the NADP⁺/NADPH Assay Kit (Abcam, Cambridge, UK) according to the manufacturer's instructions. Briefly, the *Paracoccidioides* cells were collected and washed with 1 ml of cold PBS 1x. The cells were ressuspended in reaction buffer and the supernatants were used to perform the NADP⁺ and NADPH quantification. The quantifications were performed in 96 wells microplate reader at 450 nm. The concentrations of the pyridine nucleotides were obtained in three independent determinations and statistical comparisons were performed by using Student's *t*-test. Samples that present *p*-values < 0.05 were considered statistically significant.

3. Results

3.1. Proteomic analysis of yeast cells submitted to oxidative stress

In order to verify H_2O_2 effects on yeast cells viability it was performed assays using trypan blue as a vital dye. There were no significant differences in yeast cells viability up to 8 h of treatment with H_2O_2 (data not shown). Hence, we selected two incubation times, 2 and 6 h to perform early and late oxidative stress conditions, respectively.

The changes in protein profiles upon exposure of yeast cells to H_2O_2 were analyzed using 2-DE gel electrophoresis. The analysis employed three independent experiments of control and H_2O_2 -treatment to early and late stress that generated three replicates and a total of 12 gels. Using the gel image software a total of 1,071 spots from early and late conditions were successfully matched between control and H_2O_2 -treatments. As shown in Fig. 1, it is shown the presence of differences between control and H_2O_2 -treatment as demonstrated in the 2-DE gels. Early and late stress conditions were analyzed and statistical analysis revealed differences in protein abundance for 102 and 77 protein/spots respectively, for early and late treatments, summing a total of 179 differentially regulated proteins. The early stress (Fig. 1A) allowed a match of 487 proteins/isoforms that were statistically analyzed. From the 487 proteins/isoforms detected in the 2-DE gels from the early treatment, it were identified 102 differentially expressed, and from those 75 spots with increased expression and 27 with decreased expression. The late stress analysis (Fig. 1B) revealed 584 spots matched in 2-DE gels. Seventy-seven proteins/isoforms presented differences that were statistically significant and from those 41 proteins/isoforms presented increased expression rates and 36 proteins/isoforms with decreased expression rates.

Taking in account the early and late stress conditions, it was possible to identify 92 proteins/isoforms by both PMF and MS/MS; 60 proteins/isoforms were identified by PMF and 27 proteins/isoforms identified by MS/MS analysis. The analysis yielded a total of 179 proteins/isoforms successfully identified that are listed in Supplementary Table 2. The protein identification at the Broad Institute (database accession numbers-PAAG), experimental and theoretical isoelectric points (p*I*) and molecular weight (MW), as well as PMF and MS/MS mascot scores, *p*-value from statistical analysis and protein fold change observed after H_2O_2 -treatment are presented in Supplementary Table 2.

3.2. Proteins induced and repressed by H_2O_2 -treatment

All proteins/isoforms identified in this work, were listed according to the level of expression. Table 1 describes 116 up regulated proteins/isoforms that were related to various functional categories. Several antioxidant proteins, such as peroxisomal catalase isoforms, thioredoxin isoforms, superoxide dismutases, cytochrome C peroxidase and chaperones were significantly induced. Levels for peroxisomal catalase and thioredoxin increased from the first 2 h and continued at the 6 h treatment. Cu/Zn-superoxide dismutase (PAAG_02926.1) and Mn-superoxide dismutase (PAAG_04164.1) presented increased levels at early and late treatments, respectively. Three heat shock proteins (HSP70, HSP 90 and SSC1 protein) with potential chaperone activity were found to be part of the H_2O_2 -stress response machinery.

Members of the electron transport category such as cytochrome b2 were induced. All the enzymes required for the bypass reactions of gluconeogenesis were induced by the oxidative stress. Induced proteins showed the 6-phosphogluconate dehydrogenase that catalyzes the third, irreversible step of oxidative branch of the pentose phosphate pathway. In addition, in the non-oxidative part, transketolase and transladolase were increased in early oxidative stress. In addition, enzymes of the biosynthesis of methionine, cysteine and sulfur were up regulated.

The expression of 63 proteins/isoforms was down regulated, as depicted in Table 2. This subset includes members of the tricarboxylic acid pathway in a total of 9 proteins, members of the heat shock response, as examples.

3.3. An overview of the <u>Paracoccidioides</u> response to oxidative stress

The *Paracoccidioides* response to oxidative stress, as revealed by proteomic analysis, is summarized in Fig. 2, that depicts the induction of the classical antioxidant enzymes such as peroxisomal catalase, superoxide dismutases, peroxidases and thioredoxins, as well as, the inducing of metabolic processes that increase the NAD(P)H in the cytoplasm. In this way, glycogen could be broken down to provide glucose 6-phosphate to the pentose phosphate pathway, to promote NADPH production, an electron source for the glutathione peroxidase system. Glutamate could be converted in α -ketoglutarate that could be oxidized to succinyl-

CoA rendering NADH. The electrons from the mitochondrial NADH can be transferred to cytosolic NAD by the action of the up regulated enzymes pyruvate carboxylase, malate dehydrogenase and phosphoenolpyruvate carboxykinase. Additionally, the fungus regulates some proteins probably to avoid endogenous ROS production. In this sense, the cytochrome C oxidase, branched-chain amino acid aminotransferase and fumarate reductase, are down regulated probably due to the fact these molecules can generate superoxide inside the cells [28]. Also, aconitase induction represents a mechanism to protect the microorganism against oxidative stress once this molecule is related to ROS response [29].

3.4. In silico analysis of oxidoreductases

Oxidoreductases are enzymes that catalyze redox reactions and this biochemical property may be important in response to oxidative stress. From 116 up regulated proteins/isoforms analyzed, it were identified a total of 34 that belong to the family of oxidoreductases, and are therefore possibly involved in the maintenance of the redox homeostasis during oxidative stress (Supplementary Table 3). Among these oxidoreductases, it was observed the presence of proteins with isoforms, such as, α -ketoglutarate dehydrogenase and aldehyde dehydrogenase that presented five and four isoforms, respectively.

3.5. Post-translational modifications analysis

We found 30 redundant proteins (i.e., the same protein identified in several spots and encoded by the same gene), that may reflect PTM or proteolysis. To analyze PTM in redundant protein, we added the variable modifications when identifying the PMF spectra by NCBI database search, as follows: oxidation of histidine/tryptophan; acetylation of lysine; sulfonylation and phosphorylation of serine/tyrosine/tryptophan. From 30 proteins analyzed, 27 exhibited PTM as described in the Supplementary Table 4. The most common PTM identified in *Paracoccidioides* protein isoforms were phosphorylation of serine/tyrosine/tryptophan.

3.6. Confirmatory assays for protein differential expression

Enzymatic activity was employed to confirm proteomic data. To perform enzymatic activity we selected catalases, superoxide dismutases, glutathione S-transferase and cytochrome C oxidase that were affected by the oxidative stress, as determined by 2-DE gel analysis. Enzymatic assays depicted a significant increase in catalases and superoxide dismutases activities at early and late treatments, as shown in Fig. 3A, panels a and b, respectively. The enzymes glutathione S-transferase and cytochrome C oxidase (Fig.3A, panels c and d, respectively) despicted decreased activities during late and early treatments respectively. All the enzymatic activities measurements were in agreement with the 2-DE gel analysis. Additionally, cytometry was used to determine the levels of the proteins triosephosphate isomerase (6 h), malate synthase (2 h) and enolase (6 h) after H_2O_2 -treatment. The flow cytometry was accomplished using antibodies specific to the three proteins above affected by the H_2O_2 -treatment, as demonstrated by the 2-DE gel analysis. The results were presented as the mean fluorescence intensity that was obtained by subtracting the fluorescence

of the treated cells from controls. The data revealed a significant increase in the level of triosephosphate isomerase, while malate synthase and enolase despicted decreased levels, as shown in Fig. 3B and Supplementary Table 5. The flow cytometry measurements were in agreement with the 2-DE gel analysis.

Also, transcriptional profiles were used in the confirmatory experiments. The transcriptional profiles of the peroxisomal catalase (PAAG_01454.1) and Mn-superoxide dismutase (PAAG_02926.1), were quantified by RT-qPCR in yeast cells submitted to early treatment and in yeast cells derived from infected macrophages as shown in Fig. 3C. The transcript level of peroxisomal catalase was highly increased in response to the H_2O_2 -treatment. Of special note, the levels of both transcripts also were significantly up regulated in yeast cells derived from macrophages.

3.8. Measurement of the intracellular NADP⁺/NADPH concentrations

The intracellular concentrations of NADPH, NADP⁺ and NADP⁺/NADPH ratio in *Paracoccidioides* yeast cells were obtained, as described in material and methods. In agreement to the increased expression of enzymes of the pentose phosphate pathway at early H_2O_2 -treatment, the amount of NADPH increased in yeast cells in comparison to the control, as depicted in Fig. 4.

4. Discussion

Pathogenic microorganisms develop a series of specific strategies for adaptation and to survival in the harsh environments of the host, such as scavenging of the H_2O_2 , a toxic compound produced by macrophages that promotes oxidative stress[5, 13, 30]. In this sense, the objective of this study was to evaluate the response of *Paracoccidioides* to H_2O_2 -treatment. We attempted to provide detailed reference maps of the adaptive response to early and late oxidative stress in *Paracoccidioides* yeast cells, by proteomic analysis. We identified 179 oxidative stress-responsive proteins/isoforms that were grouped by functional categorization. *Paracoccidioides* response was mainly performed by up regulated proteins/isoforms that represented a total of 64.8% of all proteins/isoforms identified in our proteomic analysis.

A successful pathogen must be able to overcome the complex array of ROS-mediated host defenses by production of ROS scavenging enzymes such as superoxide dismutases, thioredoxins, cytochrome C peroxidase and catalases. These enzymes are present in most organisms performing the important function of detoxifying ROS [4]. To resist highly oxidative stress, *Paracoccidioides* express not only antioxidant proteins to decompose ROS but also several chaperones to prevent the misfolding or unfolding of proteins under long term stress condition. The up regulation of ROS scavenging enzymes during the treatment of *Paracoccidiodes* with H_2O_2 could be an indication of the involvement of enzymatic ROS scavenging enzymes in protecting the fungus from the general stress generated by host defense mechanisms. This fact is in agreement to the up regulation of the transcripts to the genes encoding peroxisomal catalase and Mn-superoxide dismutase in yeast cells derived from infected macrophages, as here depicted.

Under long term oxidative stress, fungi reduce the glucose and ammonia uptake [31, 32]. In this way, it has been observed that several enzymes of the carbon metabolism characterized in the MIPS terms such as pentose phosphate pathway, gluconeogenesis, amino acid and nitrogen metabolism were responsive to the oxidative stress in *Paracoccidiodes*. The key regulator of stress responses is a dynamic rearrangement of the metabolic flux to the pentose phosphate pathway leading to the generation of the reduced electron carrier NADPH. Neutralization of free radicals largely depends on NADPH and in order to control the cellular redox homeostasis during oxidative stress, the cells usually provides a potential reducing for most antioxidant and redox regulatory enzymes [33-35]. A satisfactory NADPH production is of pivotal importance in the maintenance of the thioredoxin-dependent elements of the antioxidant defense [33, 34]. Additionally, NADH producer enzymes such as members of the α -ketoglutarate dehydrogenase complex also were up regulated in response to oxidative stress. In this sense, *Paracoccidioides* yeast cells during the H₂O₂-treatment, may transfer electrons from the mitochondrial NADH to cytosolic NAD by the action of the enzymes, such as pyruvate carboxylase, malate dehydrogenase and phosphoenolpyruvate carboxykinase. In fact, data corroborate that Paracoccidioides yeast cells possibly redirects the metabolic flux in order to restore the cellular redox potential by generation of the NAD(P)H in response to oxidative stress.

Analysis of the proteomic profiles suggested the up regulation of gluconeogenesis, as revealed by the presence of the three enzymes of the gluconeogenesis bypass, fructose 1,6 biphosphatase, phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Under long-term, chronic oxidative stress, glucose uptake is reduced in fungi [32].

The biosynthesis of some amino acids is supposed to be induced during oxidative stress in *Paracoccidioides*. Sulfate adenyltransferase catalyzes the activation of sulfate ions by ATP to form adenosine-5' phosphosulfate, the first enzymatic step in sulfate utilization following its uptake. The sulfur containing amino acid biosynthetic pathways were represented by adenosylhomocysteinase and cobalamin-independent methionine synthase. The three-carbon amino acid serine is the precursor of the two-carbon glycine through removal of one carbon atom by serine hydroxymethyl transferase. Also glutamate dehydrogenase, which catalyzes the biosynthesis of glutamate, is induced in response to H_2O_2 -treatment. So, *Paracoccidoides* may be synthesizing cysteine, glycine and glutamate in order to provide amino acids building up glutathione that can be used in removing peroxides. The biosynthesis of cysteine was induced in *Aspergillus nidulans* upon long-term menadione exposure [36]. Additionally, increased abundance of glutamate dehydrogenase that allows assimilation of nitrogen and biosynthesis of glutamate when primary nitrogen sources are lacking, is consistent with previous findings that reduced ammonia uptake prevails during oxidative stress [32].

An important class of enzymes to the response to oxidative stress is the oxidoreductases. These enzymes contribute to maintain the cellular redox state by transferring electrons from the oxidant to reductant molecule. In silico analysis revealed 34 oxidoreductases, such as α -ketoglutarate dehydrogenase and aldehyde dehydrogenase. In briefly, α -ketoglutarate dehydrogenase contributes to production of NADH [37] and during H₂O₂-treatment in mammalian cells culture, this protein depicted antioxidant activity [38]. Similarly, the aldehyde dehydrogenases detoxify stress-generated aldehydes and help maintain the intracellular redox balance [39, 40].

To compare different times of H_2O_2 -treatment related to their impact on *Paracoccidioides* response, the accumulation of proteins was monitored at early and late treatment. The increased in expression of antioxidant proteins, such as peroxisomal catalase, thioredoxin and superoxide dismutases, starts at the early and continues at the late condition suggesting that *Paracoccidioides* cellular defense systems are effective at the entire H_2O_2 -treatment. In order to confirm the induction of these enzymes, we determined the catalase and superoxide dismutase activities at both times of H_2O_2 -treatment. The results from enzymatic activities corroborated proteomic data, indicating that the increased activities are important to protect *Paracoccidioides* yeast cells against the oxidative stress caused by H_2O_2 -treatment. The response of *Aspergillus niger* to oxidative stress also revealed to be time dependent. The activity of enzymes involved in H_2O_2 -detoxification were increased during oxidative stress [41].

The oxidative stress induced regulation of NADPH production that increased in the early time of H_2O_2 -treatment, putatively due to a metabolic shift to the pentose phosphate pathway, that depicted enzymes induced at this time. Additionally, the increased NADP⁺/NADPH ratio may be due to NADPH-consuming defense mechanisms such as catalases and superoxide dismutases that were more active during oxidative stress. These ROS-detoxifying enzymes are important in nullifying oxidative stress; the efficacy of these enzymes depends on the reductive environment promoted by NADPH. *Saccharomyces cerevisiae* and *Pseudomonas fluorescens* under oxidative stress also evoked a metabolic adaptation favoring the increase of NADPH synthesis, in agreement with our data [42, 43].

In the present study, we described an adaptive response of *Paracoccidioides* to oxidative stress. This fungus presented a prominent activation of antioxidant enzymes and a rearrangement of the metabolism, observed by activation of pathways to provide NAD(P)H, an reducer substrate used to minimize oxidative effects caused by H_2O_2 -treatment. Additionally, the fungus seems to shift the metabolism to the production of glucose by gluconeogenesis and to the production of amino acids important to compose the repertoire of molecules to the oxidative stress response.

Acknowledgments

This work at Universidade Federal de Goiás was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq (process numbers 558923/2009-7, 563398/2010-5 and 473277/2011-5) and Fundação de Amparo à Pesquisa do Estado de Goiás- FAPEG.

Figures

Figure 1. The protein expression patterns in *Paracoccidioides*, *Pb*01 subjected to oxidative stress. *Paracoccidioides* yeast cells were submitted to oxidative stress caused by H_2O_2 -treatment. Proteins were obtained, fractionated by two dimensional gel electrophoresis and stained by Coomassie brilliant blue. The gels were obtained in triplicate; a representative gel of each triplicate is shown. A) Representative gel obtained after 2 h of oxidative stress (early condition). B) Representative gel obtained after 6 h of oxidative stress (late condition). White and black arrows indicate up-regulated and down-regulated proteins, respectively. Identified protein spots are numbered and listed in supplementary Table 2. The pH gradient is marked above the gel and the molecular mass protein standards (kDa) are indicated on the left of the gel.

Figure 2. Schematic diagram of *Paracoccidioides* responses to oxidative stress. The figure summarizes the data obtained from proteomic analysis and hypothesizes the mechanisms orchestrated by this fungus to survive during the oxidative stress. FBPase-1: fructose 1,6-biphosphatase 1; FBA: fructose 1,6-biphosphate aldolase; TPI: triosephosphate isomerase; GADH 6-: phosphogluconate dehydrogenase; TKL: transketolase; TAL: transaldolase; SOD1: Cu/Zn-superoxide dismutase; SOD2: Mn-superoxide dismutase; CATP: peroxisomal catalase; CCP: cytochrome C peroxidase; TRX: thioredoxin; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; PGK: phosphoglycerate kinase; carboxylase; PEPCK: ENO: enolase; PYC: pyruvate MDH: malate dehydrogenase; phosphoenolpyruvate carboxykinase; ACO: aconitase; GDH: glutamate dehydrogenase; KGDH: α ketoglutarate dehydrogenase; SUCLA: succinyl-CoA ligase; FRD: fumarate dehydrogenase; COX: cytochrome C oxidase. Proteins were colored according to their differences in expression: red indicates up-regulated and green represents down-regulated proteins, as detected in 2DE gel analysis of Paracoccidioides under oxidative stress.

Figure 3. Enzymatic activity, flow cytometry and quantitative real-time reverse transcription analysis confirm proteomic data of *Paracoccidioides* yeast cells during oxidative stress. A) Activity assays of the catalases (a), superoxide dismutases (b), gluthathione S-transferase (c) and cytochrome C oxidase (d) in response to early (2 h) and late (6 h) oxidative stress. B) Flow cytometry detection of triosephosphate isomerase (TPI), malate synthase (MS) and enolase (ENO). *Paracoccidioides* yeast cells were incubated in the absence and presence of 2 mM H₂O₂ for 2 h (MS) or 6 h (TPI and ENO). The cells were fixed and labeled by using specific primary polyclonal antibodies, followed by the secondary antibody FITC anti-mouse IgG. C) Transcriptional response to oxidative stress of yeast cells derived from H₂O₂-treatment for 2 h or derived from infected macrophages. Data were obtained by RT-qPCR and were presented as ratio of treatment to control abundance of transcripts. All data, shown in this figure, were analyzed by Student's *t*-test. Error bars correspond to the standard deviation of measurements performed in triplicate and asterisks indicate differences in expression with statistical significance (p < 0.05).

Figure 4. Intracellular concentrations of NADP⁺, NADPH and NADP⁺/NADPH ratio in *Paracoccidioides* yeast cells under early oxidative stress. Experiments were performed as described in materials and methods. Student's *t*-test was used for statistical comparisons. Error bars represent standard deviation from three replicates while * represents statistical significance (p < 0.05).

					Theo	PMF	MS/MS		Protein
Time ^a	Spot ^b	Protein Identification	Accession number	Exp. MW/pI ^c	Theo. MW/pI ^d	Score/ Matched mass ^e	Score/ Matched peptides ^f	<i>p</i> -value ^g	fold change ^h
Cell res	scue, de	efense and virulence							
2 h	1	Peroxisomal catalase	PAAG_01454.1	57.00/7.87	57.65/6.42	217/25	48/2	0.0010	1.71
2 h	2	Peroxisomal catalase	PAAG_01454.1	58.33/7.46	57.65/6.42	193/28	-	0.000008	2.17
6 h	3	Peroxisomal catalase	PAAG_01454.1	65.77/8.25	57.47/ 6.50	88/29	-	0.0464	1.61
2 h	4	Thioredoxin	PAAG_07772.1	24.16/6.47	23.75/6.21	108/9	56/2	0.0049	2.18
2 h	5	Thioredoxin	PAAG_07772.1	24.50/6.94	23.61/6.21	101/15	119/4	0.0275	1.53
6 h	6	Thioredoxin	PAAG_07772.1	23.88/7.34	23.61/6.21	145/17	-	0.0359	1.47
2 h	7	Cu/Zn-Superoxide dismutase	PAAG_02926.1	24.00/8.18	28.02/9.17	78/14	78/2	0.0276	1.81
6 h	8	Mn-Superoxide dismutase	PAAG_04164.1	16.00/7.45	15.97/5.92	117/8	82/2	0.0412	3.41
6 h	9	Cytochrome C peroxidase	PAAG_03292.1	32.00/7.95	41.74/8.84	123/21	71/3	0.0191	1.58
2 h	10	DNA damage checkpoint protein rad24	PAAG_00773.1	39.16/4.09	32.48/4.74	118/22	-	0.0017	1.94
2 h	11	Heat shock protein 70	PAAG_08003.1	29.16/4.41	70.91/5.08	95/41	135/3	0.0129	1.63
6 h	12	Heat shock protein 90	PAAG_05679.1	76.88/5.46	80.32/4.96	79/46	-	0.0232	2.13
2 h	13	Heat shock protein SSC1	PAAG_01339.1	92.50/5.30	73.82/5.92	-	82/4	0.0031	1.64
6 h	14	Heat shock protein SSC1	PAAG_01339.1	67.00/6.73	73.82/5.92	86/25	122/8	0.0492	2.94
2 h	15	Haloacid Dehalogenase (HAD) - superfamily hydrolase	PAAG_00503.1	28.83/5.71	27.32/5.67	83/16	-	0.0023	2.17
		Alkyl hydroperoxide reductase subunit							
6 h	16	C/ thiol specific antioxidant	PAAG_05061.1	14.77/9.03	20.02/9.75	79/10	-	0.0076	3.35
		(AhpC/TSA family protein)							
6 h	17	Peptidyl-prolyl cis-trans isomerase H	PAAG_01778.1	19.66/10.0	20.02 /8.80	146/16	200/7	0.0179	2.97
6 h	18	Peptidyl-prolyl cis-trans isomerase A2	PAAG_05788.1	19.66/7.76	26.49/8.46	102/12	88/3	0.0062	1.73
6 h	19	T-complex protein 1 subunit delta	PAAG_01727.1	54.77/9.41	54.66/ 9.04	-	68/2	0.0364	1.99
6 h	20	T-complex protein 1 subunit eta	PAAG_07851.1	59.11/7.31	61.64/6.02	74/22	47/2	0.00003	6.34
2 h	21	Betaine aldehyde dehydrogenase	PAAG_05392.1	54.50/6.58	51.70/5.84	75/27	74/2	0.0076	2.92
2 h	22	Aldehyde dehydrogenase	PAAG_05249.1	52.33/6.49	54.55/5.87	182/25	168/6	0.0029	2.75
2 h	23	Aldehyde dehydrogenase	PAAG_05249.1	51.66/6.64	54.55/5.87	85/28	-	0.0018	1.68
2 h	24	Aldehyde dehydrogenase	PAAG_05249.1	51.66/6.75	54.69/5.92	219/30	177/6	0.0092	1.34

Table 1- *Paracoccidioides* yeast cells proteins with increased expression, upon 2 and 6 hours of H_2O_2 treatment and their predicted biological function -FunCat2^{*}

2 h	25	Aldehyde dehydrogenase	PAAG_05249.1	53.50/6.71	54.69/5.92	89/28	100/3	0.0108	1.63
2 h	26	3-demethylubiquinone-9 3- methyltransferase	PAAG_06595.1	21.83/4.96	22.41/4.93	-	79/2	0.0112	1.68
Energy		5							
Electron	transp	port and membrane-associated energy cor	iservation						
2 h	27	Cytochrome b2	PAAG_01603.1	59.16/7.09	57.21/6.00	101/15	-	0.0362	1.45
6 h	28	Vacuolar ATP synthase subunit β	PAAG_06288.1	54.13/6.72	56.21/ 5.59	-	65/3	0.0458	2.15
2 h	29	12-oxophytodienoate reductase	PAAG_03631.1	32.66/6.66	43.24/8.69	-	128/5	0.0151	2.82
6 h	30	12-oxophytodienoate reductase	PAAG_03631.1	41.00/9.67	43.24/ 8.69	159/29	237/6	0.0046	3.02
Pentose-	phospi	hate pathway							
2 h	31	Transaldolase	PAAG_04166.1	36.16/6.77	35.86/6.17	179/24	139/6	0.0003	2.40
2 h	32	6-phosphogluconate dehydrogenase	PAAG_01178.1	54.50/6.33	54.58/5.77	189/37	-	0.0003	2.77
2 h	33	Transketolase	PAAG_04444.1	68.33/7.01	74.95/5.97	126/29	-	0.0026	2.64
2 h	34	Transketolase	PAAG_04444.1	67.83/7.14	74.95/5.97	136/33	-	0.0002	1.58
Glycolys	is and	gluconeogenesis							
2 h	35	Fructose 1.6-bisphosphatase	PAAG_02682.1	40.83/6.50	38.97/5.80	74/15	-	0.0369	1.99
2 h	36	Fructose 1.6-biphosphate aldolase 1	PAAG_01995.1	38.66/7.30	39.72/6.14	183/25	136/4	0.0392	2.16
2 h	37	Phosphoenolpyruvate carboxykinase	PAAG_08203.1	61.16/7.27	63.89/6.10	82/35	-	0.0216	2.71
2 h	38	Phosphoglycerate kinase	PAAG_02869.1	44.83/8.00	45.22/6.48	160/30	65/3	0.0325	1.76
2 h	39	Pyruvate kinase	PAAG_06380.1	60.83/7.47	59.48/6.31	98/38	-	0.0092	1.81
2 h	40	Alcohol dehydrogenase	PAAG_00403.1	38.16/8.93	38.00/7.55	170/29	152/5	0.0097	2.99
2 h	41	Phosphoglucomutase	PAAG_02011.1	58.83/7.62	87.61/7.04	78/15	-	0.0006	2.14
6 h	42	Triosephosphate isomerase	PAAG_02585.1	26.55/5.63	27.15/ 5.39	175/20	215/5	0.0467	1.33
6 h	43	Phosphoglycerate kinase	PAAG_02869.1	41.33/8.08	45.31/6.48	108/32	-	0.0213	1.72
6 h	44	Pyruvate carboxylase	PAAG_00726.1	106.7/7.48	131.91/6.14	253/64	131/6	0.0121	2.78
6 h	45	Pyruvate carboxylase	PAAG_00726.1	107.4/7.33	132.01/6.14	100/61	-	0.0472	2.25
Tricarbo	xylic-a	acid pathway							
2 h	46	α-ketoglutarate dehydrogenase E1	PAAG_02732.1	104.00/7.1	121.63/6.68	137/48	-	0.0134	2.36
2 h	47	α -ketoglutarate dehydrogenase E1	PAAG_02732.1	104.00/7.0	121.63/6.68	144/73	35/2	0.0001	5.35
2 h	48	α -ketoglutarate dehydrogenase E1	PAAG_02732.1	117.83/6.5	121.63/6.90	78/45	49/2	0.0302	1.99
2 h	49	α -ketoglutarate dehydrogenase E1	PAAG_02732.1	117.50/6.7	121.70/6.90	88/48	-	0.0069	1.85
6 h	50	α -ketoglutarate dehvdrogenase E1	PAAG_02732.1	96.44/7.62	121.63/6.68	-	128/8	0.0167	2.52
2 h	51	Pyruvate dehydrogenase E1-B	PAAG 01534.1	35.16/5.40	41.04/8.11	96/16	50/2	0.0004	2.51
2 h	52	Pyruvate dehydrogenase E3	PAAG 03330.1	51.50/7.35	55.43/6.24	105/32	33/1	0.0006	2.24
2 h	53	Pyruvate e dehydrogenase E3	PAAG 03330.1	51.83/7.55	55.43/8.02	202/44	-	0.0076	2.70
		J							=

54	Aconitase	PAAG_05048.1	80.3/7.64	82.47/ 7.03	265/44	317/13	0.0076	4.67
55	Malate dehydrogenase	PAAG_00053.1	34.66/8.73	36.02/8.99	175/24	292/7	0.0251	6.15
56	Malate dehydrogenase	PAAG_00053.1	33.00/8.64	36.02/8.99	251/30	160/4	0.0343	1.82
57	Succinyl-CoA ligase subunit β	PAAG_01463.1	41.11/5.19	48.56/5.61	142/44	159/9	0.0425	1.31
vlate cycl	le							
58	Isocitrate lyase	PAAG_06951.1	56.66/7.70	60.14/6.79	112/36	-	0.0041	2.50
59	Isocitrate lyase	PAAG_06951.1	56.88/8.45	60.17/6.79	354/48	144/9	0.0164	5.52
olism								
fatty aci	d and isoprenoid metabolism							
60	ATP citrate lyase	PAAG_05151.1	53.16/6.26	52.95/5.99	80/24	60/3	0.0120	1.62
61	ATP-citrate synthase subunit 1	PAAG_05150.1	67.00/8.89	72.41/ 8.00	96/53	-	0.0037	1.91
62	Acyl-CoA dehydrogenase	PAAG_00435.1	46.77/10.3 6	48.54/9.13	131/39	115/6	0.0240	1.78
63	2-methylisocitrate lyase	PAAG_04549.1	38.66/5.88	67.25/8.73	-	60/3	0.0083	1.29
pound a	nd carbohydrate metabolism							
64	Glucosamine-fructose-6-phosphate aminotransferase	PAAG_00850.1	73.83/6.95	76.77/ 6.51	-	55/4	0.0404	1.29
65	Glycogen phosphorylase	PAAG_00545.1	92.88/6.72	100.10/ 5.58	157/65	110/6	0.0275	1.48
66	Lactam utilization protein- lamB	PAAG_02162.1	24.66/8.48	28.35/6.50	86/14	-	0.0236	2.16
acid, ni	trogen, sulfur and selenium metabolism							
67	Adenosylhomocysteinase	PAAG_02859.1	47.00/6.78	49.02/5.83	170/33	176/5	0.0100	3.97
68	Adenosylhomocysteinase	PAAG_02859.1	47.00/6.89	49.51/5.93	187/33	99/7	0.0077	3.36
69	Adenosylhomocysteinase	PAAG_02859.1	43.66/7.32	49.51/5.93	104/37	-	0.0130	2.93
70	O-acetylhomoserine (thiol)-lyase	PAAG_08100.1	46.16/7.48	46.99/6.24	142/21	-	0.0247	2.21
71	Sulfate adenylyltransferase	PAAG_05929.1	57.00/7.20	64.11/6.26	131/30	169/6	0.0462	1.57
72	Sulfate adenylyltransferase	PAAG_05929.1	52.16/6.95	64.11/6.26	-	106/4	0.0421	1.86
73	Sulfate adenylyltransferase	PAAG_05929.1	64.33/7.34	64.11/6.26	96/29	-	0.0050	2.62
74	Sulfate adenylyltransferase	PAAG_05929.1	62.88/7.84	64.11/ 6.26	178/40	64/4	0.0442	1.72
75	2-nitropropane dioxygenase	PAAG_01321.1	39.00/6.58	37.74/6.01	102/12	119/4	0.0078	2.62
76	2-nitropropane dioxygenase	PAAG_04233.1	33.66/10.0	35.77/8.96	-	53/1	0.0466	6.80
77	2-nitropropane dioxygenase	PAAG_06693.1	38.66/5.46	38.80/5.40	109/17	-	0.0468	2.06
78	NAD-specific glutamate dehydrogenase	PAAG_01002.1	103.00/7.27	126.56/6.08	76/77	-	0.0001	1.96
79	NAD-specific glutamate dehydrogenase	PAAG_01002.1	108.00/7.26	126.56/6.08	157/31	100/5	0.0005	2.75
80	NAD-specific glutamate dehydrogenase	PAAG_01002.1	40.03/7.34	121.10/6.12	114/72	63/5	0.0286	1.75
81	Glycine dehydrogenase	PAAG_01568.1	53.00/7.54	117.40/6.89	114/39	-	0.0029	1.75
	54 55 56 57 <i>plate cyc</i> 58 59 polism <i>fatty aci</i> 60 61 62 63 <i>pound a</i> 64 65 66 <i>acid, ni</i> 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81	 54 Aconitase 55 Malate dehydrogenase 56 Malate dehydrogenase 57 Succinyl-CoA ligase subunit β blate cycle 58 Isocitrate lyase 59 Isocitrate lyase 59 Isocitrate lyase 50 ATP citrate lyase 60 ATP citrate lyase 61 ATP-citrate synthase subunit 1 62 Acyl-CoA dehydrogenase 63 2-methylisocitrate lyase pound and carbohydrate metabolism 64 Glucosamine-fructose-6-phosphate aminotransferase 65 Glycogen phosphorylase 66 Lactam utilization protein- lamB acid, nitrogen, sulfur and selenium metabolism 67 Adenosylhomocysteinase 68 Adenosylhomocysteinase 69 Adenosylhomocysteinase 70 O-acetylhomoserine (thiol)-lyase 71 Sulfate adenylyltransferase 72 Sulfate adenylyltransferase 73 Sulfate adenylyltransferase 74 Sulfate adenylyltransferase 75 2-nitropropane dioxygenase 76 2-nitropropane dioxygenase 77 2-nitropropane dioxygenase 78 AD-specific glutamate dehydrogenase 80 NAD-specific glutamate dehydrogenase 81 Glycine dehydrogenase 	54AconitasePAAG_05048.155Malate dehydrogenasePAAG_00053.156Malate dehydrogenasePAAG_00053.157Succinyl-CoA ligase subunit βPAAG_01463.1slate cyclePAAG_06951.159Isocitrate lyasePAAG_06951.150socitrate lyasePAAG_06951.160ATP citrate lyasePAAG_05150.161ATP-citrate synthase subunit 1PAAG_05150.162Acyl-CoA dehydrogenasePAAG_00435.1632-methylisocitrate lyasePAAG_04549.1pound and carbohydrate metabolismGlucosamine-fructose-6-phosphate aminotransferasePAAG_00850.165Glycogen phosphorylasePAAG_02162.1acid, nitrogen, sulfur and selenium metabolismPAAG_02859.167AdenosylhomocysteinasePAAG_02859.170O-acetylhomoserine (thiol)-lyasePAAG_02859.171Sulfate adenylyltransferasePAAG_05929.172Sulfate adenylyltransferasePAAG_0592.173Sulfate adenylyltransferasePAAG_0592.174Sulfate adenylyltransferasePAAG_0592.1752-nitropropane dioxygenasePAAG_0693.1762-nitropropane dioxygenasePAAG_01321.1762-nitropropane dioxygenasePAAG_01002.179NAD-specific glutamate dehydrogenasePAAG_01002.179NAD-specific glutamate dehydrogenasePAAG_01002.181Glycine dehydrogenasePAAG_01002.1	54 Aconitase PAAG_05048.1 80.3/7.64 55 Malate dehydrogenase PAAG_00053.1 34.66/8.73 56 Malate dehydrogenase PAAG_00053.1 33.00/8.64 57 Succinyl-CoA ligase subunit β PAAG_01463.1 41.11/5.19 ilate cycle PAAG_06951.1 56.66/7.70 59 Isocitrate lyase PAAG_06951.1 56.88/8.45 olism fatty acid and isoprenoid metabolism 60 ATP-citrate lyase PAAG_05150.1 67.00/8.89 61 ATP-citrate synthase subunit 1 PAAG_05150.1 67.00/8.89 62 Acyl-CoA dehydrogenase PAAG_04549.1 38.66/5.88 pound and carbohydrate metabolism 6 64 Glucosamine-fructose-6-phosphate aminotransferase PAAG_00545.1 92.88/6.72 66 Lactam utilization protein- lamB PAAG_02162.1 24.66/8.48 36.6/5.88 67 Adenosylhomocysteinase PAAG_02859.1 47.00/6.78 68 Adenosylhomocysteinase PAAG_02859.1 47.00/6.78 69 Adenosylhomocysteinase PAAG_02859.1 <td>54 Aconitase PAAG_05048.1 80.37.64 82.47/7.03 55 Malate dehydrogenase PAAG_00053.1 34.66/8.73 36.02/8.99 56 Malate dehydrogenase PAAG_001463.1 41.11/5.19 48.56/5.61 state cycle stocinyl-CoA ligase subunit β PAAG_06951.1 56.66/7.70 60.14/6.79 58 Isocitrate lyase PAAG_05151.1 53.16/6.26 52.95/5.99 60 ATP citrate lyase PAAG_05151.1 53.16/6.26 52.95/5.99 61 ATP-citrate synthase subunit 1 PAAG_05150.1 67.00/8.89 72.41/ 8.00 62 Acyl-CoA dehydrogenase PAAG_04549.1 38.65/5.88 67.25/8.73 pound and carbohydrate metabolism 6 Glucosamine-fructose-6-phosphate aminotransferase PAAG_00545.1 92.88/6.72 100.10/ 5.58 66 Lactam utilization protein-lamB PAAG_02859.1 47.00/6.78 49.02/5.83 67 Adenosylhomocysteinase PAAG_02859.1 47.00/6.78 49.02/5.83 68 Adenosylhomocysteinase PAAG_02859.1 47.00/6.78 49.02</td> <td>54 Aconitase PAAG_05048.1 80.3/7.64 82.47/7.03 265/44 55 Malate dehydrogenase PAAG_00053.1 34.66/8.73 36.02/8.99 251/30 57 Succinyl-CoA ligase subunit β PAAG_01463.1 41.11/5.19 48.56/5.61 142/44 <i>late cycle</i> 58 Isocitrate lyase PAAG_06951.1 56.66/7.70 60.14/6.79 112/36 59 Isocitrate lyase PAAG_06951.1 53.16/6.26 52.95/5.99 80/24 60 ATP citrate lyase PAAG_05150.1 67.07/0.8.89 72.41/.800 96/53 61 ATP-citrate synthase subunit 1 PAAG_05150.1 67.07/0.8 48.54/9.13 131/39 63 2-methylisocitrate lyase PAAG_00454.1 92.88/6.72 100.10/ 5.58 157/65 64 Glucosamine-fructose-6-phosphate aminotransferase PAAG_00545.1 92.88/6.72 100.10/ 5.58 157/65 65 Glycogen phosphorylase PAAG_02289.1 47.00/6.78 49.02/5.83 170/33 66 Adenosylhomocysteinase PAAG_02859.1 47.00/6.78 49.02/5.83 170/33 67 Adenosy</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>54 Aconitase PAAG_05081.1 80.37.64 82.477.703 265/44 317.13 0.0076 55 Malate dehydrogenase PAAG_00053.1 34.667.873 36.027.899 157.24 292.7 0.0251 56 Malate dehydrogenase PAAG_00053.1 34.667.873 36.027.899 157.04 0.0041 0.0343 57 Succinyl-CoA ligase subunit β PAAG_00551.1 56.667.70 60.14/6.79 112.36 - 0.0041 59 Isocitrate lyase PAAG_0551.1 56.878.45 60.17/6.79 354/48 144/9 0.0164 60 ATP citrate lyase PAAG_05151.1 53.16/6.26 52.95/5.99 80/24 60/3 0.0120 61 ATP-citrate synthase subunit 1 PAAG_05151.1 53.16/6.26 52.95/5.99 80/24 60/3 0.0120 62 Acyl-CoA dehydrogenase PAAG_01453.1 46.777/10.3 48.54/9.13 131/39 115/6 0.0240 63 2-methylisocitrate lyase PAAG_00455.1 72.88/67.72 100.10'5.58 157/65<</td>	54 Aconitase PAAG_05048.1 80.37.64 82.47/7.03 55 Malate dehydrogenase PAAG_00053.1 34.66/8.73 36.02/8.99 56 Malate dehydrogenase PAAG_001463.1 41.11/5.19 48.56/5.61 state cycle stocinyl-CoA ligase subunit β PAAG_06951.1 56.66/7.70 60.14/6.79 58 Isocitrate lyase PAAG_05151.1 53.16/6.26 52.95/5.99 60 ATP citrate lyase PAAG_05151.1 53.16/6.26 52.95/5.99 61 ATP-citrate synthase subunit 1 PAAG_05150.1 67.00/8.89 72.41/ 8.00 62 Acyl-CoA dehydrogenase PAAG_04549.1 38.65/5.88 67.25/8.73 pound and carbohydrate metabolism 6 Glucosamine-fructose-6-phosphate aminotransferase PAAG_00545.1 92.88/6.72 100.10/ 5.58 66 Lactam utilization protein-lamB PAAG_02859.1 47.00/6.78 49.02/5.83 67 Adenosylhomocysteinase PAAG_02859.1 47.00/6.78 49.02/5.83 68 Adenosylhomocysteinase PAAG_02859.1 47.00/6.78 49.02	54 Aconitase PAAG_05048.1 80.3/7.64 82.47/7.03 265/44 55 Malate dehydrogenase PAAG_00053.1 34.66/8.73 36.02/8.99 251/30 57 Succinyl-CoA ligase subunit β PAAG_01463.1 41.11/5.19 48.56/5.61 142/44 <i>late cycle</i> 58 Isocitrate lyase PAAG_06951.1 56.66/7.70 60.14/6.79 112/36 59 Isocitrate lyase PAAG_06951.1 53.16/6.26 52.95/5.99 80/24 60 ATP citrate lyase PAAG_05150.1 67.07/0.8.89 72.41/.800 96/53 61 ATP-citrate synthase subunit 1 PAAG_05150.1 67.07/0.8 48.54/9.13 131/39 63 2-methylisocitrate lyase PAAG_00454.1 92.88/6.72 100.10/ 5.58 157/65 64 Glucosamine-fructose-6-phosphate aminotransferase PAAG_00545.1 92.88/6.72 100.10/ 5.58 157/65 65 Glycogen phosphorylase PAAG_02289.1 47.00/6.78 49.02/5.83 170/33 66 Adenosylhomocysteinase PAAG_02859.1 47.00/6.78 49.02/5.83 170/33 67 Adenosy	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	54 Aconitase PAAG_05081.1 80.37.64 82.477.703 265/44 317.13 0.0076 55 Malate dehydrogenase PAAG_00053.1 34.667.873 36.027.899 157.24 292.7 0.0251 56 Malate dehydrogenase PAAG_00053.1 34.667.873 36.027.899 157.04 0.0041 0.0343 57 Succinyl-CoA ligase subunit β PAAG_00551.1 56.667.70 60.14/6.79 112.36 - 0.0041 59 Isocitrate lyase PAAG_0551.1 56.878.45 60.17/6.79 354/48 144/9 0.0164 60 ATP citrate lyase PAAG_05151.1 53.16/6.26 52.95/5.99 80/24 60/3 0.0120 61 ATP-citrate synthase subunit 1 PAAG_05151.1 53.16/6.26 52.95/5.99 80/24 60/3 0.0120 62 Acyl-CoA dehydrogenase PAAG_01453.1 46.777/10.3 48.54/9.13 131/39 115/6 0.0240 63 2-methylisocitrate lyase PAAG_00455.1 72.88/67.72 100.10'5.58 157/65<

6 h	82	Glycine dehydrogenase	PAAG_01568.1	95.00/7.90	117.42/ 7.02	-	134/6	0.0315	1.91
2 h	83	Cobalamin-independent methionine synthase	PAAG_07626.1	86.50/7.58	85.40/6.33	113/20	146/5	0.0254	2.35
2 h	84	Chorismate mutase	PAAG_05198.1	29.66/5.92	28.57/5.80	160/32	64/2	0.0028	1.89
6 h	85	Acetamidase	PAAG_04596.1	54.50/6.99	59.28/5.80	122/30	109/4	0.0287	2.72
6 h	86	Serine hydroxymethyltransferase	PAAG_08512.1	48.13/8.48	58.92/8.56	165/28	-	0.0357	1.93
Biosynt	hesis oj	f vitamins. cofactors. and prosthetic group	<i>s</i>						
6 h	87	6.7-dimethyl-8-ribityllumazine synthase	PAAG_00851.1	16.88/7.94	18.59/6.30	102/16	-	0.0036	2.80
Pyrimia	line nuo	cleotide/nucleoside/nucleobase metabolism	n						
2 h	88	Ribose-phosphate pyrophosphokinase	PAAG_02633.1	32.50/7.71	35.40/6.56	124/20	103/3	0.0021	2.49
2 h	89	S-methyl-5-thioadenosine phosphorylase	PAAG_01302.1	33.50/6.82	34.29/6.04	75/15	180/5	0.0387	2.37
2 h	90	Bifunctional purine biosynthesis protein ADE17	PAAG_00731.1	63.83/7.61	64.93/7.18	154/44	112/5	0.0339	1.47
Protein	synthe	esis							
2 h	91	Elongation factor 1- α	PAAG_02024.1	52.33/9.71	50.55/9.24	-	88/2	0.0474	3.24
6 h	92	Elongation factor 1- α	PAAG_02024.1	49.50/10.34	50.55/9.24	142/31	73/4	0.0271	2.11
2 h	93	Elongation factor 2	PAAG_00594.1	34.50/6.99	94.15/6.46	-	174/6	0.0205	2.29
6 h	94	Elongation factor 2	PAAG_00594.1	88.63/8.46	94.15/ 6.36	176/39	230/9	0.0226	4.41
2 h	95	Eukaryotic translation initiation factor 1A	PAAG_06140.1	21.16/4.41	17.32/ 4.90	-	142/4	0.0095	1.66
2 h	96	Eukaryotic translation initiation factor 4E-1	PAAG_09045.1	31.33/7.94	27.06/6.46	86/13	-	0.0037	2.88
2 h	97	Seryl-tRNA synthetase	PAAG_08702.1	58.16/6.59	56.48/5.77	-	46/2	0.00002	2.62
6 h	98	Polyadenylate binding protein	PAAG_00244.1	90.50/7.23	86.91/6.31	198/51	-	0.0098	3.24
2 h	99	60S acidic ribosomal protein P0 lyase	PAAG_00801.1	36.50/5.10	33.69/5.09	136/20	114/3	0.0025	1.58
2 h	100	Arginyl-tRNA synthetase	PAAG_00150.1	69.66/6.84	81.89/7.89	90/57	-	0.0018	1.95
Protein	fate								
2 h	101	Thimet oligopeptidase	PAAG_03719.1	80.83/7.01	95.59/6.15	198/48	174/5	0.0178	1.42
2 h	102	Dipeptidyl peptidase III	PAAG_07467.1	72.00/7.37	86.54/7.99	98/44	-	0.0179	1.94
6 h	103	Dipeptidyl peptidase III	PAAG_07467.1	72.88/6.77	86.54/7.99	156/50	66/4	0.0220	1.48
6 h	104	Dipeptidyl peptidase III	PAAG_07467.1	93.81/7.64	86.54/ 7.99	197/48	57/4	0.0102	2.30
6 h	105	ran-specific GTPase-activating protein	PAAG_02466.1	39.89/4.64	18.34/5.29	-	40/1	0.0006	2.30
2 h	106	Vesicular-fusion protein sec17	PAAG_06233.1	32.50/5.60	32.72/5.35	78/22	-	0.0032	2.03
2 h	107	rab GDP-dissociation inhibitor	PAAG_06344.1	55.16/5.69	52.53/5.44	182/33	-	0.0362	1.52

6 h	108	NIPSNAP family protein	PAAG_05960.1	41.55/10.14	46.12/ 9.05	175/33	90/4	0.0547	3.40
Biogene	esis of (cellular components							
2 h	109	Arp2/3 complex subunit Arc16	PAAG_03624.1	38.33/7.11	36.15/5.87	86/15	133/4	0.0027	3.28
6 h	110	Arp2/3 complex subunit Arc16	PAAG_03624.1	35.55/7.49	36.15/ 5.87	86/17	179/5	0.0099	1.31
2 h	111	1,4- α -glucan branching enzyme	PAAG_08038.1	74.50/6.71	80.33/5.79	74/36	-	0.0081	2.56
2 h	112	1,4-α-glucan branching enzyme	PAAG_08038.1	78.16/6.61	80.33/5.79	106/33	-	0.0405	2.53
2 h	113	Mannitol-1-phosphate dehydrogenase	PAAG_06473.1	42.00/6.86	43.10/5.73	138/22	101/3	0.0028	3.39
Cell cyc	le and	DNA processing							
2 h	114	ssDNA binding protein	PAAG_07296.1	4.92/10.06	16.50/8.58	188/17	141/5	0.0362	5.39
Unclass	ified								
2 h	115	Conserved hypothetical protein	PAAG_00335.1	41.66/6.46	40.91/5.89	-	36/2	0.0045	2.04
2 h	116	Hypothetical protein	PAAG_06752.1	13.33/7.59	11.47/9.69	-	76/2	0.0003	2.97
a Timo in o	widoting	atrass condition							

Time in oxidative stress condition

^a Time in oxidative stress condition ^b Spots numbers refer to figure 1 ^c Experimental molecular weight / isoelectric point ^d Theoretical molecular weight / isoelectric point ^e Number of mass values matched (%) ^f Number of peptides values matched (%) ^g p values were accessed by Student's *t*-test ^h The ratio of protein abundance (percentage / volume) relative to control *Functional classification by FunCat2 (<u>http://pedant.helmholtz-muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_r48325_Par_brasi_Pb01</u>)

						PMF	MS/MS		Protein
Time ^a	Spot ^b	Protein Identification	Accession number	Exp. MW/pI ^c	Theo. MW/pI ^d	Score/ Matched mass ^e	Score/ Matched peptides ^f	<i>p</i> -value ^g 0.0473 0.0069 0.0343 0.0024 0.0014 0.0286 0.0395 0.0347 0.0028 0.0244 0.0028 0.0244 0.0027 0.0372 0.0016 0.0033	fold change ^h
Tricarb	oxylic-a	cid pathway							
6 h	130	Pyruvate dehydrogenase complex component Pdx1	PAAG_00666.1	36.66/5.80	31.68/5.44	80/17	-	0.0473	1.81
2 h	131	Pyruvate dehydrogenase E3	PAAG_03330.1	39.66/10.43	56.06/8.27	-	94/2	0.0069	2.92
6 h	132	Pyruvate dehydrogenase E1-α	PAAG_08295.1	41.44/7.53	45.31/8.62	154/33	89/5	0.0343	1.80
2 h	133	Fumarate hydratase	PAAG_00588.1	49.00/8.48	60.71/9.07	-	55/2	0.0435	1.31
2 h	134	Fumarate reductase	PAAG_04851.1	62.16/8.21	68.04/6.90	167/50	94/4	0.0024	2.00
2 h	135	Isocitrate dehydrogenase subunit 2	PAAG_07729.1	42.16/8.03	41.85/8.75	80/29	-	0.0014	1.40
6 h	136	Isocitrate dehydrogenase subunit 2	PAAG_07729.1	38.44/8.45	37.40/9.51	105/32	97/4	0.0286	1.85
6 h	137	Citrate synthase	PAAG_08075.1	43.11/8.48	52.20/8.75	78/28	-	0.0395	1.61
6 h	138	Malate dehydrogenase	PAAG_00053.1	33.33/9.77	36.03/9.25	199/27	-	0.0347	5.03
Glyoxyl	ate cycle	2							
2 h	139	Malate synthase	PAAG_04542.1	58.50/8.14	61.02/6.94	238/56	113/5	0.0028	3.76
Metabo	olism								
C-comp	ound an	d carbohydrate metabolism							
6 h	140	Sorbitol utilization protein SOU2	PAAG_04181.1	33.11/8.17	31.48/7.05	-	89/2	0.0244	1.85
6 h	141	Aldose 1-epimerase	PAAG_03243.1	36.77/5.64	21.26/11.32	78/22	57/2	0.0391	1.69
Lipid, fa	atty acid	and isoprenoid metabolism							
2 h	146	Enoyl-CoA hydratase	PAAG_06309.1	27.50/8.59	32.11/8.89	94/19	134/7	0.0409	2.78
2 h	147	Enoyl-CoA hydratase	PAAG_06309.1	64.50/4.87	31.57/8.87	121/23	439/11	0.0027	1.56
6 h	148	Carnitine O-acetyltransferase	PAAG_06224.1	62.77/9.19	69.88/8.21	124/27	81/4	0.0372	1.48
Pyrimia	line nucl	eotide/nucleoside/nucleobase metaboli	sm						
2 h	149	Bifunctional purine biosynthesis protein ADE17	PAAG_00731.1	64.50/8.12	64.93/7.18	130/34	-	0.0016	2.53
2 h	150	Bifunctional purine biosynthesis protein ADE17	PAAG_00731.1	64.16/8.30	67.20/6.70	108/31	274/8	0.0033	2.93
2 h	151	Nucleoside diphosphate kinase	PAAG_04291.1	17.16/7.91	16.90/6.84	77/4	-	0.0356	1.34
6 h	152	Uracil phosphoribosyltransferase	PAAG_06643.1	25.33/6.24	24.78/5.96	86/11	-	0.0205	1.43

Table 2 - *Paracoccidioides* yeast cells proteins with decreased expression, upon 2 and 6 hours of H_2O_2 -treatment and their predicted biological function -FunCat2^{*}

Protein	synthe	sis							
2 h	153	60S ribosomal protein L9	PAAG_00347.1	25.33/10.19	21.82/9.54	92/16	-	0.0169	3.64
2 h	154	40S ribosomal protein S3	PAAG_01785.1	34.83/9.46	29.76/8.91	-	142/3	0.0246	2.21
2 h	155	Lysyl-tRNA synthetase	PAAG_08172.1	74.50/7.96	69.80/5.88	193/49	280/11	0.0069	1.93
6 h	156	60S acidic ribosomal protein P0 lyase	PAAG_00801.1	34.88/5.26	33.76/5.02	149/21	105/3	0.0303	2.81
6 h	157	40S ribosomal protein S19	PAAG_05778.1	17.33/10.99	16.22/9.81	87/17	-	0.0391	1.60
Protein	fate								
6 h	158	Leukotriene A-4 hydrolase	PAAG_08994.1	59.25/5.58	69.90/5.31	80/33	-	0.00006	1.50
6 h	159	Metallophosphoesterase domain- containing protein	PAAG_00265.1	34.88/6.73	35.23/5.85	93/31	-	0.0054	2.45
6 h	160	Metallophosphoesterase domain- containing protein	PAAG_00265.1	34.44/6.86	29.75/5.88	72/20	-	0.0471	1.72
6 h	161	Proteasome subunit alpha type	PAAG_03687.1	26.82/4.79	27.33/4.37	118/26	121/5	0.0031	2.86
6 h	162	Proteasome subunit beta type	PAAG_01150.1	31.44/6.39	25.11/8.59	-	49/2	0.0147	4.65
6 h	163	Ubiquitin C-terminal hydrolase	PAAG_02254.1	27.11/5.01	28.00/4.73	90/17	63/3	0.0226	5.74
2 h	164	GTP –binding nuclear protein GSP1/Ran*	PAAG_04651.1	25.83/7.81	24.05/6.90	190/6	-	0.0198	1.35
2 h	165	rab GDP-dissociation inhibitor	PAAG_06344.1	54.16/6.01	52.53/5.44	118/37	48/2	0.0003	5.15
Cellula	r comm	unication/signal transduction mechan	ism						
6 h	166	G-protein complex beta subunit CpcB	PAAG_06996.1	34.77/8.28	35.48/ 6.59	229/20	266/8	0.0001	3.16
Biogen	esis of c	ellular components							
2 h	167	UTP-glucose-1-phosphate urydy ly ltransferase	PAAG_06817.1	56.33/9.39	52.90/9.07	178/27	179/7	0.0413	1.28
6 h	168	Arp2/3 complex subunit Arc16	PAAG_03624.1	36.33/7.49	36.15/ 5.87	-	85/3	0.0167	1.45
6 h	169	Mannitol-1-phosphate 5- dehydrogenase	PAAG_06473.1	38.89/7.21	43.10/5.73	104/19	-	0.0147	1.77
Transc	ription								
2 h	170	RNA-processing protein	PAAG_03277.1	66.33/4.80	68.46/5.04	78/35	-	0.0047	2.09
2 h	171	ATP-dependent RNA helicase eIF4A	PAAG_00689.1	48.16/5.02	45.01/5.14	192/32	436/13	0.0391	1.39
6 h	172	Nucleic acid-binding protein	PAAG_04814.1	35.22/7.30	30.53/9.20	166/19	120/5	0.0175	2.76
Cell cy	cle and	DNA processing							
2 h	173	ssDNA binding protein	PAAG_07296.1	13.16/9.28	14.97/10.06	156/14	63/3	0.0345	1.41
2 h	174	Nuclear segregation protein-Bfr1	PAAG_02186.1	61.33/9.68	56.59/9.01	185/93	246/7	0.0059	2.69

6 h	175	Cell division cycle protein	PAAG_05518.1	101.44/5.23 90.56	5/4.98 212/85	-	0.0299	3.05
Unclass	ified							
2 h	176	Conserved hypothetical protein	PAAG_00340.1	21.16/9.54 19.20	0/8.61 75/13	84/5	0.0277	1.56
2 h	177	Conserved hypothetical protein	PAAG_02068.1	44.66/10.1: 34.80	0/9.64 149/23	266/8	0.00006	4.00
6 h	178	Conserved hypothetical protein	PAAG_02836.1	34.77/5.38 35.25	5/5.29 -	111/4	0.0231	3.10
6 h	179	DUF833 domain-containing protein	PAAG_06515.1	36.33/6.19 35.55	5/5.50 73/10	-	0.0357	1.58
a Time in	ovidatio	up strass condition						

Time in oxidative stress condition

^b Spots numbers refer to figure 1 ^c Experimental molecular weight / isoelectric point ^d Theoretical molecular weight / isoelectric point

^e Number of mass values matched (%)
^f Number of peptides values matched (%)
^g p values were accessed by Student's t-test
^h The ratio of protein abundance (percentage / volume) relative to control
*Functional classification by FunCat2 (<u>http://pedant.helmholtz-</u> muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_r48325_Par_brasi_Pb01)

Supplementary Table 1. Oligonucleotides used in RT-qPCR	
---	--

Gene	Nucleotide sequence (5'-3')	Accession number					
Superovide dismutase (Mn SOD)	F: ACTGCGCAAGTTATGATGGAA	XP 002705450 1					
Superoxide distilucase (Min-SOD)	R: CACGGGAAGGGTCCATTTTC	AI _002793430.1					
Description of a statement	F: AGGTGCAGGAGCTTACGGTG	VD 0007064461					
Peroxisomal catalase	R: CCCAATTTCCTTGCTCGGTG	AP_002/90440.1					
Tubulin alaba	F: ACAGTGCTTGGGAACTATACC	VD 002706620 1					
i uouim aipna	AP_002790039.1						
The gene sequences were	obtained from the Broad Institute of	MIT and Harvard					
http://www.broadinstitute.org/annotation/genome/Paracoccidioides_brasiliensis/MultiHome.html).							

F: Forward primer; R: Reverse primer.

Supplementary Table 2 – *Paracoccidioides* yeast cells proteins induced or repressed by oxidative stress as identified by MALDI-Q-TOF-MS and/or MALDI-Q-TOF-MS/MS

Time ^a	Spot ^b	Protein Identification	Accession number	Exp. MW/pI °	Theo. MW/pI ^d	PMF Score/ Matched mass ^e	MS/MS Score/ Matched peptides ^f	<i>p</i> -value ^g	Protein fold change ^h
2 h	1	Peroxisomal catalase	PAAG_01454.1	57.00/7.87	57.65/6.42	217/25	48/2	0.0010	↑1.71
2 h	2	Peroxisomal catalase	PAAG_01454.1	58.33/7.46	57.65/6.42	193/28	-	0.000008	<u>↑</u> 2.17
6 h	3	Peroxisomal catalase	PAAG_01454.1	65.77/8.25	57.47/6.50	88/29	-	0.0464	1.61
2 h	4	Thioredoxin	PAAG_07772.1	24.16/6.47	23.75/6.21	108/9	56/2	0.0049	<u>↑</u> 2.18
2 h	5	Thioredoxin	PAAG_07772.1	24.50/6.94	23.61/6.21	101/15	119/4	0.0275	1.53
6 h	6	Thioredoxin	PAAG_07772.1	23.88/7.34	23.61/6.21	145/17	-	0.0359	1.47
2 h	7	Cu/Zn-Superoxide dismutase	PAAG_04164.1	24.00/8.18	28.02/9.17	78/14	78/2	0.0276	↑1.81
6 h	8	Mn-Superoxide dismutase	PAAG_02926.1	16.00/7.45	15.97/5.92	117/8	82/2	0.0412	↑3.41
6 h	9	Cytochrome C peroxidase	PAAG_03292.1	32.00/7.95	41.74/8.84	123/21	71/3	0.0191	1.58
2 h	10	DNA damage checkpoint protein rad24	PAAG_00773.1	39.16/4.09	32.48/4.74	118/22	-	0.0017	1.94
2 h	11	Heat shock protein 70	PAAG_08003.1	29.16/4.41	70.91/5.08	95/41	135/3	0.0129	1.63
6 h	12	Heat shock protein 90	PAAG_05679.1	76.88/5.46	80.32/4.96	79/46	-	0.0232	<u>↑</u> 2.13
2 h	13	Heat shock protein SSC1	PAAG_01339.1	92.50/5.30	73.82/5.92	-	82/4	0.0031	1.64
6 h	14	Heat shock protein SSC1	PAAG_01339.1	67.00/6.73	73.82/5.92	86/25	122/8	0.0492	<u>↑</u> 2.94
2 h	15	Haloacid Dehalogenase (HAD) - superfamily hydrolase	PAAG_00503.1	28.83/5.71	27.32/5.67	83/16	-	0.0023	<u>↑</u> 2.17
6 h	16	Alkyl hydroperoxide reductase subunit C/ thiol specific antioxidant (AhpC)/ TSA family protein	PAAG_05061.1	14.77/9.03	20.02/9.75	79/10	-	0.0076	<u>†</u> 3.35
6 h	17	Peptidyl-prolyl cis-trans isomerase H	PAAG_01778.1	19.66/10.02	20.02 /8.80	146/16	200/7	0.0179	<u>↑</u> 2.97
6 h	18	Peptidyl-prolyl cis-trans isomerase A2	PAAG_05788.1	19.66/7.76	26.49/8.46	102/12	88/3	0.0062	<u>↑1.73</u>
6 h	19	T-complex protein 1 subunit delta	PAAG_01727.1	54.77/9.41	54.66/9.04	-	68/2	0.0364	1.99
6 h	20	T-complex protein 1 subunit eta	PAAG_07851.1	59.11/7.31	61.64/6.02	74/22	47/2	0.00003	↑6.34
2 h	21	Betaine aldehyde dehydrogenase	PAAG_05392.1	54.50/6.58	51.70/5.84	75/27	74/2	0.0076	<u>↑2.92</u>
2 h	22	Aldehyde dehydrogenase	PAAG_05249.1	52.33/6.49	54.55/5.87	182/25	168/6	0.0029	↑2.75
2 h	23	Aldehyde dehydrogenase	PAAG_05249.1	51.66/6.64	54.55/5.87	85/28	-	0.0018	↑1 <i>.</i> 68
2 h	24	Aldehyde dehydrogenase	PAAG_05249.1	51.66/6.75	54.69/5.92	219/30	177/6	0.0092	<u>↑</u> 1.34
2 h	25	Aldehyde dehydrogenase	PAAG_05249.1	53.50/6.71	54.69/5.92	89/28	100/3	0.0108	↑1 <i>.</i> 63
2 h	26	3-demethylubiquinone-93- methyltransferase	PAAG_06595.1	21.83/4.96	22.41/4.93	-	79/2	0.0112	<u>↑</u> 1.68
2 h	27	Cytochrome b2	PAAG_01603.1	59.16/7.09	57.21/6.00	101/15	-	0.0362	1.45

6 h	28	Vacuolar ATP synthase subunit β	PAAG_06288.1	54.13/6.72	56.21/ 5.59	-	65/3	0.0458	↑2.15
2 h	29	12-oxophytodienoate reductase	PAAG_03631.1	32.66/6.66	43.24/8.69	-	128/5	0.0151	<u>↑</u> 2.82
6 h	30	12-oxophytodienoate reductase	PAAG_03631.1	41.00/9.67	43.24/8.69	159/29	237/6	0.0046	↑3.02
2 h	31	Transaldolase	PAAG_04166.1	36.16/6.77	35.86/6.17	179/24	139/6	0.0003	<u>↑</u> 2.40
2 h	32	6-phosphogluconate dehydrogenase	PAAG_01178.1	54.50/6.33	54.58/5.77	189/37	-	0.0003	<u>↑</u> 2.77
2 h	33	Transketolase	PAAG_04444.1	68.33/7.01	74.95/5.97	126/29	-	0.0026	12.64
2 h	34	Transketolase	PAAG_04444.1	67.83/7.14	74.95/5.97	136/33	-	0.0002	<u>↑</u> 1.58
2 h	35	Fructose 1.6-bisphosphatase	PAAG_02682.1	40.83/6.50	38.97/5.80	74/15	-	0.0369	1.99
2 h	36	Fructose 1.6-biphosphate aldolase 1	PAAG_01995.1	38.66/7.30	39.72/6.14	183/25	136/4	0.0392	<u>↑</u> 2.16
2 h	37	Phosphoenolpyruvate carboxykinase	PAAG_08203.1	61.16/7.27	63.89/6.10	82/35	-	0.0216	<u>↑</u> 2.71
2 h	38	Phosphoglycerate kinase	PAAG_02869.1	44.83/8.00	45.22/6.48	160/30	65/3	0.0325	<u>↑</u> 1.76
2 h	39	Pyruvate kinase	PAAG_06380.1	60.83/7.47	59.48/6.31	98/38	-	0.0092	↑1.81
2 h	40	Alcohol dehydrogenase	PAAG_00403.1	38.16/8.93	38.00/7.55	170/29	152/5	0.0097	↑2.99
2 h	41	Phosphoglucomutase	PAAG_02011.1	58.83/7.62	87.61/7.04	78/15	-	0.0006	<u>↑</u> 2.14
6 h	42	Triosephosphate isomerase	PAAG_02585.1	26.55/5.63	27.15/ 5.39	175/20	215/5	0.0467	<u>↑1.33</u>
6 h	43	Phosphoglycerate kinase	PAAG_02869.1	41.33/8.08	45.31/6.48	108/32	-	0.0213	<u>↑</u> 1.72
6 h	44	Pyruvate carboxylase	PAAG_00726.1	106.78/7.48	131.91/6.14	253/64	131/6	0.0121	<u>↑</u> 2.78
6 h	45	Pyruvate carboxylase	PAAG_00726.1	107.44/7.33	132.01/6.14	100/61	-	0.0472	<u>↑</u> 2.25
2 h	46	α-ketoglutarate dehydrogenase E1	PAAG_02732.1	104.00/7.12	121.63/6.68	137/48	-	0.0134	↑2 <i>.</i> 36
2 h	47	α-ketoglutarate dehydrogenase E1	PAAG_02732.1	104.00/7.0′	121.63/6.68	144/73	35/2	0.0001	↑5.35
2 h	48	α-ketoglutarate dehydrogenase E1	PAAG_02732.1	117.83/6.54	121.63/6.90	78/45	49/2	0.0302	1.99
2 h	49	α-ketoglutarate dehydrogenase E1	PAAG_02732.1	117.50/6.7	121.70/6.90	88/48	-	0.0069	↑1.85
6 h	50	α-ketoglutarate dehydrogenase E1	PAAG_02732.1	96.44/7.62	121.63/6.68	-	128/8	0.0167	<u>↑</u> 2.52
2 h	51	Pyruvate dehydrogenase E1-β	PAAG_01534.1	35.16/5.40	41.04/8.11	96/16	50/2	0.0004	<u>↑</u> 2.51
2 h	52	Pyruvate dehydrogenase E3	PAAG_03330.1	51.50/7.35	55.43/6.24	105/32	33/1	0.0006	↑2.24
2 h	53	Pyruvate dehydrogenase E3	PAAG_03330.1	51.83/7.55	55.43/8.02	202/44	-	0.0076	<u>↑</u> 2.70
2 h	54	Aconitase	PAAG_05048.1	80.3/7.64	82.47/7.03	265/44	317/13	0.0076	↑4.67
2 h	55	Malate dehydrogenase	PAAG_00053.1	34.66/8.73	36.02/8.99	175/24	292/7	0.0251	↑6.15
6 h	56	Malate dehydrogenase	PAAG_00053.1	33.00/8.64	36.02/8.99	251/30	160/4	0.0343	<u>↑1.82</u>
6 h	57	Succinyl-CoA ligase subunit beta	PAAG_01463.1	41.11/5.19	48.56/5.61	142/44	159/9	0.0425	<u>↑1.31</u>
2 h	58	Isocitrate lyase	PAAG_06951.1	56.66/7.70	60.14/6.79	112/36	-	0.0041	<u>↑</u> 2.50
6 h	58	Isocitrate lyase	PAAG_06951.1	56.88/8.45	60.17/6.79	354/48	144/9	0.0164	↑5.52
2 h	60	ATP citrate lyase	PAAG_05151.1	53.16/6.26	52.95/5.99	80/24	60/3	0.0120	↑1.62
6 h	61	ATP-citrate synthase subunit 1	PAAG_05150.1	67.00/8.89	72.41/8.00	96/53	-	0.0037	1.91
6 h	62	Acyl-CoA dehydrogenase	PAAG_00435.1	46.77/10.36	48.54/9.13	131/39	115/6	0.0240	<u>↑1.78</u>
2 h	63	2-methylisocitrate lyase	PAAG_04549.1	38.66/5.88	67.25/8.73	-	60/3	0.0083	↑1.29
2 h	64	Glucosamine-fructose-6-phosphate aminotransferase	PAAG_00850.1	73.83/6.95	76.77/ 6.51	-	55/4	0.0404	↑1.29

6 h	65	Glycogen phosphorylase	PAAG_00545.1	92.88/6.72	100.10/ 5.58	157/65	110/6	0.0275	1.48
6 h	66	Lactam utilization protein-lamB	PAAG_02162.1	24.66/8.48	28.35/6.50	86/14	-	0.0236	↑2.16
2 h	67	Adenosylhomocysteinase	PAAG_02859.1	47.00/6.78	49.02/5.83	170/33	176/5	0.0100	↑3.97
2 h	68	Adenosylhomocysteinase	PAAG_02859.1	47.00/6.89	49.51/5.93	187/33	99/7	0.0077	<u>↑</u> 3.36
6 h	69	Adenosylhomocysteinase	PAAG_02859.1	43.66/7.32	49.51/5.93	104/37	-	0.0130	↑2 <i>.</i> 93
2 h	70	O-acetylhomoserine (thiol)-lyase	PAAG_08100.1	46.16/7.48	46.99/6.24	142/21	-	0.0247	<u>↑</u> 2.21
2 h	71	Sulfate adenylyltransferase	PAAG_05929.1	57.00/7.20	64.11/6.26	131/30	169/6	0.0462	1.57
2 h	72	Sulfate adenylyltransferase	PAAG_05929.1	52.16/6.95	64.11/6.26	-	106/4	0.0421	<u>↑1.86</u>
2 h	73	Sulfate adenylyltransferase	PAAG_05929.1	64.33/7.34	64.11/6.26	96/29	-	0.0050	<u>↑</u> 2.62
6 h	74	Sulfate adenylyltransferase	PAAG_05929.1	62.88/7.84	64.11/ 6.26	178/40	64/4	0.0442	<u>↑</u> 1.72
2 h	75	2-nitropropane dioxygenase	PAAG_01321.1	39.00/6.58	37.74/6.01	102/12	119/4	0.0078	<u>↑</u> 2.62
6 h	76	2-nitropropane dioxygenase	PAAG_04233.1	33.66/10.05	35.77/8.96	-	53/1	0.0466	<u>↑6.80</u>
6 h	77	2-nitropropane dioxygenase	PAAG_06693.1	38.66/5.46	38.80/5.40	109/17	-	0.0468	<u>↑</u> 2.06
2 h	78	NAD-specific glutamate dehydrogenase	PAAG_01002.1	103.00/7.27	126.56/6.08	76/77	-	0.0001	↑1.96
2 h	79	NAD-specific glutamate dehydrogenase	PAAG_01002.1	108.00/7.20	126.56/6.08	157/31	100/5	0.0005	↑2.75
2 h	80	NAD-specific glutamate dehydrogenase	PAAG_01002.1	40.03/7.34	121.10/6.12	114/72	63/5	0.0286	↑1.75
2 h	81	Glycine dehydrogenase	PAAG_01568.1	53.00/7.54	117.40/6.89	114/39	-	0.0029	<u>↑</u> 1.75
6 h	82	Glycine dehydrogenase	PAAG_01568.1	95.00/7.90	117.42/ 7.02	-	134/6	0.0315	↑1.91
2 h	83	Cobalamin-independent methionine synthase	PAAG_07626.1	86.50/7.58	85.40/6.33	113/20	146/5	0.0254	<u>†</u> 2.35
2 h	84	Chorismate mutase	PAAG_05198.1	29.66/5.92	28.57/5.80	160/32	64/2	0.0028	↑1.89
6 h	85	Acetamidase	PAAG_04596.1	54.50/6.99	59.28/5.80	122/30	109/4	0.0287	<u>↑</u> 2.72
6 h	86	Serine hydroxymethyltransferase	PAAG_08512.1	48.13/8.48	58.92/8.56	165/28	-	0.0357	<u>↑1.93</u>
6 h	87	6.7-dimethyl-8-ribityllumazine synthase	PAAG_00851.1	16.88/7.94	18.59/6.30	102/16	-	0.0036	<u>†</u> 2.80
2 h	88	Ribose-phosphate pyrophosphokinase	PAAG_02633.1	32.50/7.71	35.40/6.56	124/20	103/3	0.0021	<u>↑</u> 2.49
2 h	89	S-methyl-5-thioadenosine phosphorylase	PAAG_01302.1	33.50/6.82	34.29/6.04	75/15	180/5	0.0387	<u>†</u> 2.37
2 h	90	Bifunctional purine biosynthesis protein ADE17	PAAG_00731.1	63.83/7.61	64.93/7.18	154/44	112/5	0.0339	↑1.47
2 h	91	Elongation factor 1-alpha	PAAG_02024.1	52.33/9.71	50.55/9.24	-	88/2	0.0474	↑3.24
6 h	92	Elongation factor 1-alpha	PAAG_02024.1	49.50/10.34	50.55/9.24	142/31	73/4	0.0271	↑2.11
2 h	93	Elongation factor 2	PAAG_00594.1	34.50/6.99	94.15/6.46	-	174/6	0.0205	<u>↑</u> 2.29
6 h	94	Elongation factor 2	PAAG_00594.1	88.63/8.46	94.15/ 6.36	176/39	230/9	0.0226	↑ 4.41
2 h	95	Eukaryotic translation initiation factor 1A	PAAG_06140.1	21.16/4.41	17.32/ 4.90	-	142/4	0.0095	↑1.66

2 h	96	Eukaryotic translation initiation factor 4E-1	PAAG_09045.1	31.33/7.94	27.06/6.46	86/13	-	0.0037	<u>↑</u> 2.88
2 h	97	Seryl-tRNA synthetase	PAAG_08702.1	58.16/6.59	56.48/5.77	-	46/2	0.00002	12.62
6 h	98	Polyadenylate binding protein	PAAG_00244.1	90.50/7.23	86.91/6.31	198/51	-	0.0098	↑3.24
2 h	99	60S acidic ribosomal protein P0 lyase	PAAG_00801.1	36.50/5.10	33.69/5.09	136/20	114/3	0.0025	1.58
2 h	100	Arginyl-tRNA synthetase	PAAG_00150.1	69.66/6.84	81.89/7.89	90/57	-	0.0018	1.95
2 h	101	Thimet oligopeptidase	PAAG_03719.1	80.83/7.01	95.59/6.15	198/48	174/5	0.0178	1.42
2 h	102	Dipeptidyl peptidase III	PAAG_07467.1	72.00/7.37	86.54/7.99	98/44	-	0.0179	1.94
6 h	103	Dipeptidyl peptidase III	PAAG_07467.1	72.88/6.77	86.54/7.99	156/50	66/4	0.0220	1.48
6 h	104	Dipeptidyl peptidase III	PAAG_07467.1	93.81/7.64	86.54/7.99	197/48	57/4	0.0102	<u>↑</u> 2.30
6 h	105	ran-specific GTPase-activating protein	PAAG_02466.1	39.89/4.64	18.34/5.29	-	40/1	0.0006	<u>↑</u> 2.30
2 h	106	Vesicular-fusion protein sec17	PAAG_06233.1	32.50/5.60	32.72/5.35	78/22	-	0.0032	↑2.03
2 h	107	rab GDP-dissociation inhibitor	PAAG_06344.1	55.16/5.69	52.53/5.44	182/33	-	0.0362	1.52
6 h	108	NIPSNAP family protein	PAAG_05960.1	41.55/10.14	46.12/9.05	175/33	90/4	0.0547	13.40
2 h	109	Arp2/3 complex subunit Arc16	PAAG_03624.1	38.33/7.11	36.15/5.87	86/15	133/4	0.0027	↑3.28
6 h	110	Arp2/3 complex subunit Arc16	PAAG_03624.1	35.55/7.49	36.15/ 5.87	86/17	179/5	0.0099	1.31
2 h	111	1,4-alpha-glucan branching enzyme	PAAG_08038.1	74.50/6.71	80.33/5.79	74/36	-	0.0081	<u>↑2.56</u>
2 h	112	1,4-alpha-glucan branching enzyme	PAAG_08038.1	78.16/6.61	80.33/5.79	106/33	-	0.0405	↑2 <i>.</i> 53
2 h	113	Mannitol-1-phosphate dehydrogenase	PAAG_06473.1	42.00/6.86	43.10/5.73	138/22	101/3	0.0028	↑3.39
2 h	114	ssDNA binding protein	PAAG_07296.1	1492/10.06	16.50/8.58	188/17	141/5	0.0362	↑5.39
2 h	115	Conserved hypothetical protein	PAAG_00335.1	41.66/6.46	40.91/5.89	-	36/2	0.0045	12.04
2 h	116	Hypothetical protein	PAAG_06752.1	13.33/7.59	11.47/9.69	-	76/2	0.0003	<u>↑</u> 2.97
2 h	117	Heat shock protein 60	PAAG_08059.1	59.66/5.17	62.48/5.51	271/49	88/3	0.0015	↓2.48
2 h	118	Heat shock protein 88	PAAG_07750.1	153.5/4.76	80.68/4.92	113/43	65/4	0.0007	↓2.52
6 h	119	Heat shock protein 70	PAAG_08003.1	70.91/ 5.0	42.44/5.76	260/33	255/9	0.0184	↓5.00
6 h	120	Heat shock protein 70	PAAG_01262.1	68.85/5.39	41.22/7.41	76/36	-	0.0216	↓2.30
6 h	121	Heat shock protein 70	PAAG_08003.1	70.91/5.08	26.11/4.44	-	48/2	0.0228	↓1.64
6 h	122	Heat shock proteinSSC1	PAAG_01339.1	73.82/5.92	65.13/5.57	118/40	203/5	0.0402	↓1.16
6 h	123	Heat shock protein SSB1	PAAG_07775.1	60.69/ 5.47	44.66/5.29	202/17	276/8	0.0196	↓1.22
6 h	124	Glutathione S-transferase	PAAG_06617.1	30.58/6.24	29.66/7.52	74/14	-	0.0138	↓2.31
2 h	125	Cytochrome-C oxidase chain VI	PAAG_07246.1	17.00/4.76	18.84/5.54	74/8	59/1	0.0237	↓1.77
6 h	126	Transketolase	PAAG_04444.1	68.13/7.38	74.94/ 5.97	162/35	162/7	0.0142	↓2.12
6 h	127	Phosphoenolpyruvate carboxykinase	PAAG_08203.1	56.25/7.65	63.89/6.10	195/41	253/7	0.0416	↓1.78
6 h	128	Glyceraldehyde-3-phosphate dehydrogenase	PAAG_08468.1	41.33/8.90	36.61/8.26	279/27	98/3	0.0329	↓3.13
6 h	129	Enolase	PAAG_00771.1	46.11/8.54	43.85/ 8.93	-	255/5	0.0371	↓2.44
6 h	130	Pyruvate dehydrogenase complex component Pdx1	PAAG_00666.1	36.66/5.80	31.68/5.44	80/17	-	0.0473	↓1.81

2 h	131	Pyruvate dehydrogenase E3	PAAG_03330.1	39.66/10.43	56.06/8.27	-	94/2	0.0069	↓2.92
6 h	132	Pyruvate dehydrogenase E1-α	PAAG_08295.1	41.44/7.53	45.31/8.62	154/33	89/5	0.0343	↓1.80
2 h	133	Fumarate hydratase	PAAG_00588.1	49.00/8.48	60.71/9.07	-	55/2	0.0435	↓1.31
2 h	134	Fumarate reductase	PAAG_04851.1	62.16/8.21	68.04/6.90	167/50	94/4	0.0024	↓2.00
2 h	135	Isocitrate dehydrogenase subunit 2	PAAG_07729.1	42.16/8.03	41.85/8.75	80/29	-	0.0014	↓1.40
6 h	136	Isocitrate dehydrogenase subunit 2	PAAG_07729.1	38.44/8.45	37.40/9.51	105/32	97/4	0.0286	↓1.85
6 h	137	Citrate synthase	PAAG_08075.1	43.11/8.48	52.20/8.75	78/28	-	0.0395	↓1.61
6 h	138	Malate dehydrogenase	PAAG_00053.1	33.33/9.77	36.03/9.25	199/27	-	0.0347	↓5.03
2 h	139	Malate synthase	PAAG_04542.1	58.50/8.14	61.02/6.94	238/56	113/5	0.0028	↓3.76
6 h	140	Sorbitol utilization protein SOU2	PAAG_04181.1	33.11/8.17	31.48/7.05	-	89/2	0.0244	↓1.85
6 h	141	Aldose 1-epimerase	PAAG_03243.1	36.77/5.64	21.26/11.32	78/22	57/2	0.0391	↓1.69
2 h	142	Serine hydroxymethyltransferase	PAAG_08512.1	52.50/8.25	58.92/8.56	71/21	57/3	0.0166	↓1.65
2 h	143	Branched-chain-amino-acid aminotransferase	PAAG_04401.1	41.33/9.61	45.53/9.10	109/30	67/6	0.0455	↓1.68
6 h	144	Pyridoxine biosynthesis protein PDX1	PAAG_07321.1	36.66/5.94	34.40/6.04	130/38	49/2	0.0028	↓1.72
6 h	145	Ketol-acid reductoisomerase	PAAG_03404.1	38.22/8.70	44.86/9.12	116/22	-	0.0223	↓1.61
2 h	146	Enoyl-CoA hydratase	PAAG_06309.1	27.50/8.59	32.11/8.89	94/19	134/7	0.0409	↓2.78
2 h	147	Enoyl-CoA hydratase	PAAG_06309.1	64.50/4.87	31.57/8.87	121/23	439/11	0.0027	↓1.56
6 h	148	Carnitine O-acetyltransferase	PAAG_06224.1	62.77/9.19	69.88/8.21	124/27	81/4	0.0372	↓1.48
2 h	149	Bifunctional purine biosynthesis protein ADE17	PAAG_00731.1	64.50/8.12	64.93/7.18	130/34	-	0.0016	↓2.53
2 h	150	Bifunctional purine biosynthesis protein ADE17	PAAG_00731.1	64.16/8.30	67.20/6.70	108/31	274/8	0.0033	↓2.93
2 h	151	Nucleoside diphosphate kinase	PAAG_04291.1	17.16/7.91	16.90/6.84	77/4	-	0.0356	↓1.34
6 h	152	Uracil phosphoribosyltransferase	PAAG_06643.1	25.33/6.24	24.78/5.96	86/11	-	0.0205	↓1.43
2 h	153	60S ribosomal protein L9	PAAG_00347.1	25.33/10.19	21.82/9.54	92/16	-	0.0169	↓3.64
2 h	154	40S ribosomal protein S3	PAAG_01785.1	34.83/9.46	29.76/8.91	-	142/3	0.0246	↓2.21
2 h	155	Lysyl-tRNAsynthetase	PAAG_08172.1	74.50/7.96	69.80/5.88	193/49	280/11	0.0069	↓1.93
6 h	156	60S acidic ribosomal protein P0 lyase	PAAG_00801.1	34.88/5.26	33.76/5.02	149/21	105/3	0.0303	↓2.81
6 h	157	40S ribosomal protein S19	PAAG_05778.1	17.33/10.99	16.22/9.81	87/17	-	0.0391	↓1.60
6 h	158	Leukotriene A-4 hydrolase	PAAG_08994.1	59.25/5.58	69.90/5.31	80/33	-	0.00006	↓1.50
6 h	159	Metallophosphoesterase domain- containing protein	PAAG_00265.1	34.88/6.73	35.23/5.85	93/31	-	0.0054	↓2.45
6 h	160	Metallophosphoesterase domain- containing protein	PAAG_00265.1	34.44/6.86	29.75/5.88	72/20	-	0.0471	↓1.72
6 h	161	Proteasome subunit alpha type	PAAG_03687.1	26.82/4.79	27.33/4.37	118/26	121/5	0.0031	↓2.86
6 h	162	Proteasome subunit beta type	PAAG_01150.1	31.44/6.39	25.11/8.59	-	49/2	0.0147	↓4.65
6 h	163	Ubiquitin C-terminal hydrolase	PAAG_02254.1	27.11/5.01	28.00/4.73	90/17	63/3	0.0226	↓5.74

2 h	164	GTP –binding nuclear protein GSP1/Ran*	PAAG_04651.1	25.83/7.81	24.05/6.90	190/6	-	0.0198	↓1.35	
2 h	165	rab GDP-dissociation inhibitor	PAAG_06344.1	54.16/6.01	52.53/5.44	118/37	48/2	0.0003	↓5.15	
6 h	166	G-protein comlpex beta subunit CpcB	PAAG_06996.1	34.77/8.28	35.48/ 6.59	229/20	266/8	0.0001	↓3.16	
2 h	167	UTP-glucose-1-phosphate urydylyltransferase	PAAG_06817.1	56.33/9.39	52.90/9.07	178/27	179/7	0.0413	↓1.28	
6 h	168	Arp2/3 complex subunit Arc16	PAAG_03624.1	36.33/7.49	36.15/ 5.87	-	85/3	0.0167	↓1.45	
6 h	169	Mannitol-1-phosphate 5- dehydrogenase	PAAG_06473.1	38.89/7.21	43.10/5.73	104/19	-	0.0147	↓1.77	
2 h	170	RNA-processing protein	PAAG_03277.1	66.33/4.80	68.46/5.04	78/35	-	0.0047	↓2.09	
2 h	171	ATP-dependent RNA helicase eIF4A	PAAG_00689.1	48.16/5.02	45.01/5.14	192/32	436/13	0.0391	↓1.39	
6 h	172	Nucleic acid-binding protein	PAAG_04814.1	35.22/7.30	30.53/9.20	166/19	120/5	0.0175	↓2.76	
2 h	173	ssDNA binding protein	PAAG_07296.1	13.16/9.28	14.97/10.06	156/14	63/3	0.0345	↓1.41	
2 h	174	Nuclear segregation protein-Bfr1	PAAG_02186.1	61.33/9.68	56.59/9.01	185/93	246/7	0.0059	↓2.69	
6 h	175	Cell division cycle protein	PAAG_05518.1	101.44/5.23	90.56/4.98	212/85	-	0.0299	↓3.05	
2 h	176	Conserved hypothetical protein	PAAG_00340.1	21.16/9.54	19.20/8.61	75/13	84/5	0.0277	↓1.56	
2 h	177	Conserved hypothetical protein	PAAG_02068.1	44.66/10.15	34.80/9.64	149/23	266/8	0.00006	↓4.00	
6 h	178	Conserved hypothetical protein	PAAG_02836.1	34.77/5.38	35.25/5.29	-	111/4	0.0231	↓3.10	
6 h	179	DUF 833 domain-containing protein	PAAG_06515.1	36.33/6.19	35.55/5.50	73/10	-	0.0357	↓1.58	
^a Time in or	xidative	stress condition								
^o Spots nur	nbers ref	er to Figure 1								
^d Theoretic	Experimental Molecular Weight / Isoelectric point									
^e Number of mass values matched (%)										
^f Number of peptides values matched (%)										
^{g}p values w	vere acce	essed by Student's <i>t</i> -test								
^h The ratio	of prote i	n abundance relative to control († up regulation	\downarrow down regulation)							

Supplementary Table 3 - *Paracoccidioides* yeast cells proteins with increased expression with predicted oxidoreductase activity as identified by in silico analysis.

Time ^a	Spot ^b	Protein Identification	Accession number	Exp. MW/pI ^c	Theo. MW/pI ^d	PMF	MS/MS		Protein fold change ^h
						Score/ Matched mass ^e	Score/ Matched peptides ^f	<i>p</i> -value ^g	
Cell reso	cue, defe	nse and virulence							
2h	1	Peroxisomal catalase	PAAG_01454.1	57.00/7.87	57.65/6.42	217/25	48/2	0.0010	1.71
2h	2	Peroxisomal catalase	PAAG_01454.1	58.33/7.46	57.65/6.42	193/28	-	0.000008	2.17
6h	3	Peroxisomal catalase	PAAG_01454.1	65.77/8.25	57.47/ 6.50	88/29	-	0.0464	1.61
2h	7	Cu/Zn-Superoxide dismutase	PAAG_04164.1	24.00/8.18	28.02/9.17	78/14	78/2	0.0276	1.81
бh	8	Mn-Superoxide dismutase	PAAG_02926.1	16.00/7.45	15.97/5.92	117/8	82/2	0.0412	3.41
6h	9	Cytochrome C peroxidase AhpC/TSA family protein (Alkyl	PAAG_03292.1	32.00/7.95	41.74/8.84	123/21	71/3	0.0191	1.58
6h	16	hydroperoxide reductase subunit C/ thiol specific antioxidante)	PAAG_05061.1	14.77/9.03	20.02/9.75	79/10	-	0.0076	3.35
2 h	21	Betaine aldehyde dehydrogenase	PAAG 05392.1	54.50/6.58	51.70/5.84	75/27	74/2	0.0076	2.92
2 h	22	Aldehyde dehydrogenase	PAAG_05249.1	52.33/6.49	54.55/5.87	182/25	168/6	0.0029	2.75
2 h	23	Aldehyde dehydrogenase	PAAG_05249.1	51.66/6.64	54.55/5.87	85/28	-	0.0018	1.68
2 h	24	Aldehyde dehydrogenase	PAAG 05249.1	51.66/6.75	54.69/5.92	219/30	177/6	0.0092	1.34
2 h	25	Aldehyde dehydrogenase	PAAG_05249.1	53.50/6.71	54.69/5.92	89/28	100/3	0.0108	1.63
Energy									
Electron	transpor	rt and membrane-associated energy conser	vation						
2 h	27	Cytochrome b2	PAAG_01603.1	59.16/7.09	57.21/6.00	101/15	-	0.0362	1.45
2 h	29	12-oxophytodienoate reductase	PAAG_03631.1	32.66/6.66	43.24/8.69	-	128/5	0.0151	2.82
6 h	30	12-oxophytodienoate reductase	PAAG_03631.1	41.00/9.67	43.24/8.69	159/29	237/6	0.0046	3.02
Pentose-	phospha	te pathway							
2 h	32	6-phosphogluconate dehydrogenase	PAAG_01178.1	54.50/6.33	54.58/5.77	189/37	-	0.0003	2.77
Glycolys	is and gl	uconeogenesis							
2 h	40	Alcohol dehydrogenase	PAAG_00403.1	38.16/8.93	38.00/7.55	170/29	152/5	0.0097	2.99
Tricarbo	xylic-aci	id pathway							
2 h	46	α -ketoglutarate dehydrogenase E1	PAAG_02732.1	104.00/7.12	121.63/6.68	137/48	-	0.0134	2.36
2 h	47	α -ketoglutarate dehydrogenase E1	PAAG_02732.1	104.00/7.0′	121.63/6.68	144/73	35/2	0.0001	5.35
2 h	48	α -ketoglutarate dehydrogenase E1	PAAG_02732.1	117.83/6.54	121.63/6.90	78/45	49/2	0.0302	1.99
2 h	49	α -ketoglutarate dehydrogenase E1	PAAG_02732.1	117.50/6.7	121.70/6.90	88/48	-	0.0069	1.85
6 h	50	α -ketoglutarate dehydrogenase E1	PAAG_02732.1	96.44/7.62	121.63/6.68	-	128/8	0.0167	2.52
2 h	51	Pyruvate dehydrogenase E1-β	PAAG_01534.1	35.16/5.40	41.04/8.11	96/16	50/2	0.0004	2.51

2 h	52	Pyruvate dehydrogenase E3	PAAG_03330.1	51.50/7.35	55.43/6.24	105/32	33/1	0.0006	2.24
2 h	53	Pyruvate dehydrogenase E3	PAAG_03330.1	51.83/7.55	55.43/8.02	202/44	-	0.0076	2.70
2 h	55	Malate dehydrogenase	PAAG_00053.1	34.66/8.73	36.02/8.99	175/24	292/7	0.0251	6.15
6 h	56	Malate dehydrogenase	PAAG_00053.1	33.00/8.64	36.02/8.99	251/30	160/4	0.0343	1.82
Metabo	olism								
Lipid, fe	atty acid a	und isoprenoid metabolism							
6 h	62	Acyl-CoA dehydrogenase	PAAG_00435.1	46.77/10.36	48.54/9.13	131/39	115/6	0.0240	1.78
Amino d	acid, nitro	gen, sulfur and selenium metabolism							
2 h	75	2-nitropropane dioxygenase	PAAG_01321.1	39.00/6.58	37.74/6.01	102/12	119/4	0.0078	2.62
6 h	76	2-nitropropane dioxygenase	PAAG_04233.1	33.66/10.05	35.77/8.96	-	53/1	0.0466	6.80
6 h	77	2-nitropropane dioxygenase	PAAG_06693.1	38.66/5.46	38.80/5.40	109/17	-	0.0468	2.06
2 h	81	Glycine dehydrogenase	PAAG_01568.1	53.00/7.54	117.40/6.89	114/39	-	0.0029	1.75
6 h	82	Glycine dehydrogenase	PAAG_01568.1	95.00/7.90	117.42/7.02	-	134/6	0.0315	1.91
Biogen	esis of cel	lular components							
2 h	113	Mannitol-1-phosphate dehydrogenase	PAAG_06473.1	42.00/6.86	43.10/5.73	138/22	101/3	0.0028	3.39
^a T	'ime in oxio	lative stress condition							
^b S	pots numb	ers refers to figure 1							
^c Experimental molecular weight / isoelectric point									
^d T	Theoretical	molecular weight / isoelectric point							
^e N	lumber of 1	mass values matched (%)							
^f Matched particles									

^f Matched peptides ^g p values were accessed by Student's *t*-test ^h The ratio of protein abundance relative to control ^{*} Functional classification – FunCat2 (<u>http://pedant.helmholtz-muenchen.de/pedant3htmlview/pedant3view?Method=analysis&Db=p3_r48325_Par_brasi_Pb01</u>)
Protein Identi ficati on	Accession number	Spot ^a	Ti me ^b	Theo. MW/ pI °	Exp. MW/pI ^d	Sequence coverage	Number of mass values matched	PTM °	Pepti de se que nce ^f	Pepti de position	The o. mass ^g	Measured mass ^h
Pero xisomal catalase	PAAG_01454.1	2	2h	57.65/6.42	58.33/7.46	49	28	-	***			
eutumb e						50	35	ST	YTETPT YTTSNGCPVM DPESSOR	12-34	2637 1082	2717 0745
						20	55	ST	DPSKFPIFIHTOK	148-160	1557.8546	1717.7600
						49	29	Ŷ	YTETPT YTTSNGCPVM DPESSOR	12-34	2637.1082	2717.0745
						50	34	M/STY	YTETPT YTTSNGCPVM DPESSOR	12-34	2716.0672	2717.0745
								STY	DPRGFSTK	119–126	986.4446	987.4519
								STY	ACOEHEOWA GAALSK	408-422	1764.7342	1765.7415
		3	бh	57.47/ 6.50	65.77/8.25	54	29	-	***			
						56	36	Y	GA DVA SST YR	2-11	1105.5406	1106.5479
								Y	GTPYSYR	195-201	1002.2857	1003.2930
								Y	KATYCMFTR	468-476	1256.4087	1257.4160
						59	57	M / STY	MGA DVASST YR	1-11	1492.3445	1493.3518
								STY	YTETPT YTTSNGCPVM DPESSQR	12-34	2700.1489	2701.1562
								STY	DPRGFSTK	119–126	986.3588	987.3661
								STY	NPQTNLK	162–168	893.4039	894.4112
								M / STY	MAADNPDW HTEDLFK	244-258	1884.8007	1885.8080
								STY	FRWNVFDLTK	283-292	1404.7364	1405.7437
								STY	LFS YPDTHR	346-354	1294.5274	1295.5347
								STY	LFS YPDTHRHR	346-356	1667.4533	1668.4606
								STY	MVA SQPQSHL	492-501	1256.4087	1257.4160
Thioredo xin	PAAG_07772.1	4	2h	23.75/6.21	24.16/6.47	61	9	-	* * *			
						78	18	ST	MTLNPQFA GQKLSLSGGTETK	1 - 21	2367.2654	2368.2727
								ST	QQIQPWHPSSTLTHEA GVA VLK	69 – 90	2666.2795	2667.2868
						73	16	Y	NAHYRDNLQVIFR	56 - 68	1724.7604	1725.7677
		5	2h	23.61/6.21	24.50/6.94	80	15	-	* * *			
						80	16	HW	QQIQPWHPSSTLTHEA GVA VLK	66 - 87	2458.2427	2459.2500
								HW	MLA VSDKPDEQGDLNGGNG VTGDI K	141–165	2545.1321	2546.1394
		6	бh	23.61/6.21	23.88/7.34	72	17	-	***			
						72	20	Κ	TLNPQFA GQKLSLSGGTETK	2 - 21	2118.0410	2119.0483
						72	18	HW	QQIQPWHPSSTLTHEA GVA VLK	66 - 87	2442.2254	2443.2327
						74	19	ST	TISSRFTA EQW EK	191-203	1741.7457	1742.7530
						74	19	STY	TISSRFTA EQW EK	191-203	1741.7457	1742.7530
Heat shock	PAAG_08003.1	119	6h	42.44/5.76	70.91/ 5.0	50	33	-	***			
protein 70						53	34	Κ	IVITNDKGR	500-508	1056.6227	1057.6300
						50	36	STY	IQKLVSDFFNGK	344-355	1474.6987	1475.7060
Heat shock	PAAG_01339.1	14	6h	73.82/5.92	67.00/6.73	38	25	-	***			

Supplementary Table 4 - Predicted post translational modifications of identified proteins isoforms of *Paracoccidioides*, upon 2 and 6 hours of H_2O_2 treatment

protein SSC1						47	38	K	TTPSVVAFTK	82-91	1091.6648	1092.6721
						45	35	STY	HINSKMTR	337-344	1065.5574	1066.5647
								STY	TIEPVRK	358-364	921.4637	922.4710
		122	6h	65.13/5.57	73.82/5.92	55	40	-	***			
						64	55	K	RWNSTEGGEEK	36-46	1333.6729	1334.6802
								K	TTPSVVAFTK	82-91	1091.5452	1092.5525
								K	MKETA EA YLGKPVK	170-183	1689.9334	1690.9407
								K	AAIEAANRADSVLNDTEK	573-590	1928.8350	1929.8423
								M / K	VDELQNASLTLFDKMHK	637-653	2046.0109	2047.0182
						55	41	HW	VDELQNASLTLFDKMHK	637–653	2003.9295	2004.9368
						68	64	ST	MLASRFSR	1-8	1126.3898	1127.397
								ST	AAIEAANRADSVLNDTEK	573-590	2046.9939	2048.0012
						66	62	STY	MLASRFSR	1-8	1126.3898	1127.3971
								STY	LPATPFRR	29-36	1036.5026	1037.5099
								STY	VKGQ VIGIDLGTTNSA VA VM EGK	47-69	2446.0205	2447.0278
								STY	STNGDTHLGGEDFDITLVR	262-280	2205.8736	2206.8809
								M/STY	MTRSOLEA LVDPLISR	342-357	2003.9295	2004.9368
								M/STY	MTRSOLEA LVDPLISR	342-357	2083.8147	2084.8220
Aldehyde	PAAG 05249.1	22	2h	54.55/5.87	52.33/6.49	56	25	-	***			
dehydrogenase	-					59	27	К	IGPVVATGNTVVLK	174-187	1408.8269	1409.834
, ,								K	OILOAAAK	247-254	883.5313	884.5386
						56	29	HW	AAFHGPWK	66-73	928 3685	929 3758
						20		HW	AAFHGPWK	66-73	944.4222	945.4295
								HW	IHGK VIDT DS DS FN YT R	134-150	1983.0634	1984.070
								HW	VA GA AISSHMDIDK VA FTGSTL VGR	222-246	2518.3692	2519.376
						59	28	ST	AAFHGPWKHVTPTDR	66 - 80	1798.9208	1799.9281
								ST	SAEOTPLSALYAAK	188-201	1608 5305	1609 5378
								ST	VAGAAISSHMDIDK	222-235	1573.6829	1574.6902
						56	28	Y	YYGGWADKIHGK	126-137	1553 6535	1554 6608
						57	29	STY	VAFTGSTLVGR	236-246	1266.5994	1267.6062
						07	_/	STY	ELGEYALDNYTOIK	471-484	1815.8156	1816.8229
		23	2h	54 55/5 87	51 66/6 64	59	28	-	***			
		25	211	54.55/5.67	51.00/0.04	59	34	MHW	MLLKLADLMEQHVDTLAAIEALDN GK	83-108	2883.3294	2884.3367
								HW	YYGGWADKIHGK	126-137	1409.7536	1410.760
								HW	YYGGWADKIHGK	126-137	1425.7250	1426.7323
								HW	VA GA AISSHMDIDK VA FTGSTL VGR	222-246	2518 3637	2519 371
						57	32	Y	VIDTDTDSFNYTR	138-150	1625.7344	1626.741
						•		Ŷ	IMGYIREGK	348-356	1145 5769	1146 5842
								MY	IMGYIREGK	348-356	1161 6109	1162.6182
		24	2h	54 69/5 92	51 66/6 75	63	30	-	***	210 220	110110107	1102.010.
		21	211	51.69/5.92	21.00/0.75	63	33	к	II VEEGIYDTEI EREK	303-318	2013 0078	2014 015
						63	35	HW	A A FK CPW K	66-73	919 4847	920 4915
						05	55	HW	GPWKHVTPTNR	70-80	1307 6674	1308 674
										87 100	2382 10/7	1300.074
										07-100 126 127	2302.1947	1410 600
										120-137	1409.0034	1410.0907
								HW	I I GGW ADKIHGK	120-13/	1425.6/04	1420.0/7

								HW	VAGAAISSHMDIDKVAFTGSTLVGR	222-246	2518.2942	2519.3015
						63	31	Y	SAEQTPLSALYAAK	188-201	1528.7208	1529.7281
						63	31	STY	SAEQTPLSALYAAK	188-201	1528.7208	1529.7281
12-	PAAG_03631.1	30	6h	43.24/ 8.69	41.00/9.67	69	28	-	***			
oxophytodienoat	e					74	31	HW	RVTDA VHAK	96-104	1011.5463	1012.5536
reductase						71	34	Y	YA DFPPK	147-153	916.4125	917.4198
						73	42	STY	GGFLLTEATPISR	62-74	1520.7227	1521.7300
								STY	YA DFPP K	147-153	916.4125	917.4198
								STY	ALTVEEIK	154-161	981.5294	982.5367
								STY	VGIRLSPYNYFQDTR	234-248	2067.9278	2068.9351
								STY	KDYSLDHFR	307-315	1339.5731	1340.5804
								STY	YDRSTFYGASPPEK	373-386	1696.8404	1697.8477
Transketolase	PAAG_04444.1	33	2h	74.95/5.97	68.33/7.01	41	29	-	***			
						43	31	K	EVKDKPTVIK	238-247	1281.7246	1282.7319
								К	QNLPQLEASSIEKAIR	529-544	1837.8982	1838.9055
						41	32	HW	NPQWINR	55-61	942.4986	943.5059
						44	36	ST	FEFTPEGISKR	650-660	1389.5701	1390.5774
	-	34	2h	74.95/5.97	67.83/7.14	42	33	-	***			
						42	35	K	EVKDKPTVIK	238-247	1197.6536	1198.6609
								K	EVKDKPTVIK	238-247	1281.7052	1282.7125
						42	35	HW	ANSGHPGAPMGLAPTAHVLFNK	26-47	2202.1189	2203.1262
								HW	NPQWINR	55-61	942.4932	943.5005
						43	35	ST	FGASGPYK	637-644	905.3289	906.3362
						43	35	STY	FGASGPYK	637–644	905.3289	906.3362
Pyruvate	PAAG_00726.1	44	6h	131.91/6.14	106.78/7.48	51	64	-	***			
carboxy lase						55	75	K	DSILVDA VK	298-306	1000.5680	1001.5753
								M / K	AVAAA GGVIEATICYS GDM LNPHK	710-733	2502.2139	2503.2212
						54	76	M / ST	ASSTIM HFT K	37-46	1457.4315	1458.4388
								ST	LTPDDVVAR	941-949	1064.4955	1065.5028
								ST	VDLSDSSQVGAPMSGVVVEIR	1119-1139	2224.0926	2225.0999
								ST	KGDPLA VLSAMK	1148-1159	1308.6850	1309.6923
						54	79	STY	LTPDDVVAR	941-949	1064.4955	1065.5028
	_							STY	VDLSDSSQVGAPMSGVVVEIR	1119–1139	2224.0926	2225.0999
		45	6h	132.01/6.14	107.44/7.33	47	61	-	***			
						53	87	ST	VTPT SK V VGDLAQFM VSNK	922-940	2180.0674	2181.0747
						50	71	Y	YYFIEINPR	329-337	1293.6809	1294.6882
						53	92	M / STY	ASSTIM HFT K	37-46	1377.3861	1378.3934
								M / STY	LSMHRQK	80-86	994.3611	995.3684
								STY	YYFIEINPR	329–337	1293.6809	1294.6882
								STY	YYFIEINPR	329-337	1373.5260	1374.5333
								STY	QVT VDDNMAA VDDTSRVK	1101-1118	2042.9988	2044.0061
α -ketoglutarate	PAAG_02732.1	46	2h	121.63/6.68	104.00/7.12	47	48	-	***			
dehydrogenase						51	60	HW	VPCDWIRDR	272-280	1231.5763	1232.5836
E1								HW	DIVIGMPHR	347-355	1052.5635	1053.5708
								HW	QGHNETDQPAFTQPLM YK	554-571	2120.0064	2121.0137
								HW	KW VW GM LNDSFDR	603-615	1684.8273	1685.8346
						50	66	ST	KDPSS VHVSW QA YFR	109-123	1885.8749	1886.8822

						ST	YHLGMNFERPTPSGK	392-406	1812.8395	1813.8468
						ST	IAEQTNQLDK	573-582	1238.6082	1239.6155
				50	58	Y	KDPSS VHVSW QA YFR	109-123	1885.8749	1886.8822
						Y	YHLGMNFERPTPSGK	392-406	1812.8395	1813.8468
				52	71		YHLGMNFERPTPSGK	392-406	1812.8395	1813.8468
-	47	2h	121.63/6.68 104.00/7.07	57	73	-	***			
				60	97	K	RFGLEGCETLVPGMK	320-334	1734.8500	1735.8573
						K	KPNESIFSEFSGTIEPSDEGSGDVK	367-391	2697.4771	2698.4844
						К	KW VW GMLNDSFDR	603-615	1694.7400	1695.7473
						К	SKDYQPSS	616-624	1122.6127	1123.6200
				59	88	HW	QGHNETDQPAFTQPLM YK	554-571	2120.0387	2121.0460
						HW	KW VW GMLNDSFDR	603-615	1684.8590	1685.8663
						HW	IGDVLGNVPENFTVHRNLK	660–678	2137.2747	2138.2820
						HW	SGLVMSLPHGYD GQGPEHSSA R	815-836	2297.1270	2298.1343
				65	123	ST	TST VKASSTTA VFLR	4-18	1647.8635	1648.8708
						ST	TST VKASSTTA VFLR	4-18	1967.7411	1968.7484
						ST	LFSAIATSK	29-37	1016.4528	1017.4601
						ST	VEIPQPYKYSVDEK	281-294	1773.8104	1774.8177
						ST	DYQPSSKEW LTSAWNGFK	618-635	2383.0926	2384.0999
						ST	SIERVILCSGQVYAALHK	939-956	2123.2339	2124.2412
						ST	NTAITRIEQMHPFPWQMLK	966-984	2500.1327	2501.1400
				60	92	Y	ALIDRS VD Y GVK	335-346	1414.7144	1415.7217
						Y	SIERVILCSGQVYAALHK	939-956	2123.2339	2124.2412
				65	128	STY	TST VKASSTTA VFLR	4-18	1647.8635	1648.8708
						STY	TST VKASSTTA VFLR	4-18	1967.7411	1968.7484
						STY	LFSAIATSK	29–37	1016.4528	1017.4601
						STY	YSVDEK	289–294	899.2455	900.2528
						STY	QGHNETDQPAFTQPLM YK	554-571	2184.0562	2185.0635
						STY	DYQPSSKEWLTSAWNGFK	618–635	2383.0926	2384.0999
						STY	ELATEVLPHPPTGVPADTLK	639–658	2324.1765	2325.1838
						STY	KPLIIFFSKSLLR	891–903	1720.9914	1721.9987
						STY	SIERVILCSGQVYAALHK	939–956	2123.2339	2124.2412
-						STY	NTAIT RIEQM HPFPW QM LK	966–984	2500.1327	2501.1400
	49	2h	121.70/6.90 117.50/6.71	43	48	-	***			
				48	61	HW	FGLEGCETLVPGMK	321-334	1552.6820	1553.6893
						HW		347-355	1052.5476	1053.5549
					52	HW	SGLVMSLPHGYDGQGPEHSSAR	815-836	2297.1060	2298.1133
D				44	53	Ŷ	KEPSSVHVSWQTYFR	109-123	1929.9984	1931.0057
PAAG_03330.1	52	2h	55.43/6.24 51.50/7.35	57	32	-	***	222.240	015 4124	01 6 4007
				62	47	K		333-340	915.4134	916.4207
				61	26		SQHIKVIGDUI FOPMLAHK	20 40	2224.0749	2223.0822
				01	30	HW	QICICAS I ALIGHT VLGHSK	20-40	1824.0105	1925 0269
							ULCDOTEODALAUV	259 271	1634.9193	1033.9208
				65	==	M / HW	VIGDUI FOPMLAHK	338-371 140-150	1222 6510	13/1.1823
				00	55	51 ST	ANESS VUSLIK	140-150	1520.0019	1500 8702
						51 ST		200-300	1050 4026	1051 4000
						51	EAAMATYSK	509-51/	1050.4926	1051.4999

Pyruvate dehydrogenase E3

						61	34	Y	EAAMATYSK	502-510	1050.4926 1051.49
		53	2h	55.43/8.02	51.83/7.55	71	44	-	***		
						72	55	K	ESSVDSLTKGIEFLLK	135-150	1848.9625 1849.96
								K	VGVEVDEK	333-340	915.4793 916.486
								M / K	SQHIRVIGDCTFGPMLAHK	353-371	2224.1597 2225.16
								M / K	EAAMATYSKAIHF	502-514	1496.7941 1497.80
						71	47	HW	TCHAHPTLSEAFKEAAMATYSK	489-510	2466.2080 2467.21
						73	52	ST	NVVLNVESA KGGK	294-306	1393.7296 1394.73
								ST	SQHIRVIGDCTFGPMLAHK	353-371	2326.1207 2327.12
								STM	SQHIRVIGDCTFGPMLAHK	353-371	2342.0627 2343.07
						73	52	STY	GKLGGTCLNVGCIPSK	82-97	1739.7267 1740.73
								STY	NVVLNVESA KGGK	294–306	1393.7296 1394.73
								STY	SQHIRVIGDCTFGPMLAHK	353-371	2326.1207 2327.12
								M / STY	SQHIRVIGDCTFGPMLAHK	353-371	2342.0627 2343.07
Malate	PAAG_00053.1	55	2h	36.02/8.99	34.66/8.73	61	24	-	***		
dehydrogenase						61	26	ST	VSEYEQK	313-319	961.4300 962.437
						61	24	Y	VSEYEQK	313-319	961.4300 962.437
Isocitrate	PAAG_07729.1	135	2 h	41.85/8.75	42.16/8.03	46	29	-	***		
dehydrogenase						57	41	M / K	ATIMKMSDGLFLR	221-233	1555.7037 1556.71
subunit 2						50	30	Y	MSPLNTRCYSIAATDR	24-39	1934.7316 1935.73
		136	6h	41.85/8.75	38.44/8.45	60	32	-	***		
						60	32	HW	VVHKATIMK	188-196	1041.5847 1042.59
Isocitrate lyase	PAAG_06951.1	58	2h	60.14/6.79	56.66/7.70	61	36	-	***		
						71	58	K	IEYPSNVQSK	48-57	1205.6425 1206.64
								M / K	NKTASFT YGCLEPTMLT QM VK	69-89	2519.2377 2520.24
								K	LFIERGAA GIHIEDQAPGT K	185-204	2164.1424 2165.14
								M / K	LA YNLSPS FNW KAAMPR	420-436	2023.1444 2024.15
								K	MVSGGISSTSAMGKGVTEDQFK	516-537	2258.0205 2259.02
						64	45	HW	EWWQDSR	20-26	1037.4362 1038.44
								M / HW	VNQLWMAQLFHDRK	127-140	1832.8013 1833.80
								HW	AYGELVQEPEMENGIDVVTHQK	482-503	2501.3401 2502.34
						65	48	ST	AAMPRGEQETYIR	432-444	1600.6635 1601.67
								ST	MVSGGISSTSAMGK	516-529	1631.3761 1632.38
						65	50	M/STY	L VA IRAQADIM GT DLLA VA R	224-243	2192.1829 2193.19
								STY	AAMPRGEQETYIR	432–444	1600.6635 1601.67
								STY	MVSGGISSTSAMGK	516-529	1631.3761 1632.38
		59	6h	60.17/6.79	56.88/8.45	71	52	-	***		
						74	63	K	KCGHMA GK	205-212	971.4950 972.502
								M / K	KCGHMA GK	205-212	987.4550 988.462
						70	70	M / K	AIA YAPFADLIW MESK	382-397	1883.0386 1884.04
						78	79	ST	LA YNLSPSFNW KAAMPR	420-436	2044.9612 2045.96
							70	STM	LA YNLSPSFNW KAAMPR	420-436	2060.9021 2061.90
						/4	72	STY	KITGSDIYFDWDAAR	349-363	1916.8517 1917.85
								STY	YRGGTQCA VNR	3/1-381	1440.4558 1441.46
								STY	LA YNLSPSFNW KAAMPR	420-436	2044.9612 2045.96
								M / STY	LA YNLSPSFNW KAAMPR	420–436	2060.9021 2061.90

ysemase 54 37 M/K MSAPAHERK 1-9 0173.020 0174.322 K Saturation K Saturation	Adenosylhomoc	PAAG 02859.1	67	2h	49.02/5.83	47.00/6.78	54	33	-	***			
k SAPAHER 2-9 026.179 027.57 027.579 027.579 </td <td>ysteinase</td> <td></td> <td>- •</td> <td></td> <td></td> <td></td> <td>54</td> <td>37</td> <td>M / K</td> <td>MSAPAHKFK</td> <td>1-9</td> <td>1073.5209</td> <td>1074.5282</td>	ysteinase		- •				54	37	M / K	MSAPAHKFK	1-9	1073.5209	1074.5282
K NNFLU VPA VNVNDSVTK 173-180 R66, 922, 187, 249 68 2h 49,515.93 47,006,89 62 31 - *** 63 39 K SAPAHKK 2.9 964,472 955,477 64 2h 49,515.93 47,006,89 62 33 K SAPAHKK 2.9 964,470 955,477 62 3h HW VAVVAGGEDVORCCA, QLHSMGA 212-9 926,4994 927,5067 70 C 74 63 73 K VAVVAGGEDVORCCA, QLHSMGA 212-217,3789 127,3789	•								К	SAPAHKFK	2-9	926.5129	927.5202
54 34 HW HITLA EGR 338.346 035.572 037.882.49 035.54797 68 2h 49.515.93 47.006.89 62 33 - **** 94.4724 925.4997 68 2h 49.515.93 47.006.89 62 33 - **** 218.241 237.1900 297.4997 62 35 HW VAVVAGFCDVGKCC AQ1H5MGA 218.241 237.1900 297.1907 62 34 Y DIGVYULPK 398-406 1082.5477 108.5505 62 34 Y DIGVYULPK 398-406 1082.5477 108.5505 60 61 49.515.03 43.667.32 59 37 - **** 105.5525 69 61 49.515.03 43.667.32 59 41 M/HW DICVYULPK 398.406 1082.5477 108.3591 66 51 ST K DICVYULPK 398.466 80.546.48 80.546.48 80.546.48 80.546.89									K	NNELLVPA VNVNDSVTK	173-189	1866.9425	1867.9498
Suffair Solve <							54	34	HW	HIILLA EGR	338-346	1036.5772	1037.5845
68 2b 49.51/5.93 47.006.89 62 33 - +** 63 39 K SAPAHKIK 2-9 926.494 927.5067 62 35 HW VAVVAGEGDVGKCQA,ALIBMCA 28.241 273.780 227.5067 62 34 ST ATDWIACKVAVVAGEGOVGK 230.241 127.3578 127.4586 62 34 ST ATDWIACKVAVVAGEGOVGK 292.200.0752 200.052.927 100.52477 1083.5550 69 6b 49.51/5.93 43.667.32 59 3 - 167.444 217.121.76 2118.228.04 66 51 ST K LTPKQAEMCHUNKK 427.444 217.22 24.54.084 89.5364 870.544.77 70 6b 49.51/5.93 43.667.32 59 3 - 167.444 217.27 24.450.88 89.5364 870.544.77 245.408.49 252.1162 252.1162 252.1162 252.1162 252.1162 252.1162 252.1162 252.1162 252							55	36	ST	SAPAHKFK	2-9	964.4724	965.4797
63 39 K SAPAHKEK 2.9 926.4994 927.5067 62 35 HW VAVAGEDUGKCQALHSMGA 218.241 273.1900 2214.1973 62 34 ST ATDVMLAGKAK VAVAGEDUGKGR 209.219 210.00679 210.10752 62 34 ST DGOVVLPK 398.406 1082.5477 108.3550 62 34 STY DGOVVLPK 398.406 1044.5452 1045.5552 62 34 STY DGOVVLPK 398.406 1044.5452 1045.5552 64 55 K LGOVVLPK 398.406 1044.5452 1045.5552 7 K LTPRQAFYGLEINOPY K 424.40 107.1716 218.231 1045.2552 7 K LTPRQAFYGLEINOPY K 424.40 107.1716 218.231 104.252 104.252 104.252 104.252 104.252 104.252 104.252 104.252 104.252 104.252 104.252 104.252 104.252 104.252 104.252 <		-	68	2h	49.51/5.93	47.00/6.89	62	33	-	***			
62 35 HW VAVVAGECOVQRCCAQALHSMGA R 218-241 2373.1900 2374.1973 62 35 HW GCAQALHSMGAR 230-241 1273.5789 1274.5862 62 34 Y DIGVYVLPK 398-406 1082.5477 1083.5550 69 6h 49.51/5.93 43.667.32 59 37 *** 398-406 1082.5477 1083.5550 69 6h 49.51/5.93 43.667.32 59 37 *** 398-406 1082.5477 1083.5550 65 55 K LIKUTFK 424.430 89.5344 870.5377 70 70 66 51 ST LACCHMTICTA VILLINGFYK 474.44 2117.167 2182.242 2844.056 71 2h 64.11/6.26 57.007.20 53 30 - Y LICHMTICTA VILLINGFYK 444.540 883.341 1720.8754 ademylyhmasfemse 71 2h 64.11/6.26 57.007.20 53 30 - Y							63	39	K	SAPAHKFK	2-9	926.4994	927.5067
Sulfate PAAQ_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfate PAAQ_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfate PAAQ_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfate PAAQ_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - T 2h 64.11/6.26 67.007.20 53 30 - - Memory by mansferase 71 2h 64.11/6.26 57.007.20 53 30 - Y DIGY YVLPK 398-406 1042.532 1042.532 1042.532 Memory by mansferase 51 ST Lagency WLPK 398-406 1042.532 1045.331.1089 3252.1162 Sulfate PAAQ_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - - 1166 1179.8681 1719.8681							62	35	HW	VA V VA GFGD V GK GCA QA LHSM GA	218-241	2373.1900	2374.1973
62 34 ST ATDVMLAGKAVVVGFGDVGK 299-29 200.0679 200.057 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>нw</td> <td>GCA OA LHSMGA R</td> <td>230-241</td> <td>1273 5789</td> <td>1274 5862</td>									нw	GCA OA LHSMGA R	230-241	1273 5789	1274 5862
Suffate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - *** Suffate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - - 42172 17.235.236 17.235.236 17.127.176 2118.2349 Suffate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - - AETY NUELY NUELY 398-406 108.25.371 108.3550 Suffate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - - AETY NUELY NUELY 398-406 108.25.378 108.3521 suffate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - - AETY NUELY NU							62	34	ST	ATDVMIA GK VA V VA GEGDVGK	209-229	2100.0679	2101 0752
62 34 STY DIGUYULPK 398-406 1082-577 1083.5550 69 6h 49.51/5.93 43.667.32 59 37 - *** 69 6h 49.51/5.93 43.667.32 59 37 - *** 69 6h 49.51/5.93 43.667.32 59 37 - *** 60 6h 49.51/5.93 43.667.32 59 37 - *** 61 51 57 K LTPKQ.EVICLEINCPYKL 424-430 869.564 870.5437 59 41 M/W DCYOSEETTGYHHLYRMIK 152-172 254.30891 254.4084 66 51 57 IAGCIMITIGTAVILIEDHVNAK 407.423 1945.119 1946.123 1945.119 1946.123 1945.119 1946.123 1945.119 1946.123 1946.123 1083.5911 1218.274 1945.109 3252.1162 193.108 1218.274 1945.109 1218.274 1945.101 1218.2745 1945.119 1218.274							62	34	v	DIGVYVI PK	398-406	1082 5477	1083 5550
60 6h 49.5 1/5.93 43.667.32 59 71 - - **** 505.400 1004.5371 1004.5371 69 6h 49.5 1/5.93 43.667.32 59 37 - **** 598.406 1044.5452 1045.5525 K LISKLTPK 424.443 886.564 870.5437 1045.172 513.182.249 59 41 M. M.HW DCYGVSEETTGVHILTYMILK 151.408 124.308 1045.171 1046.1252 66 51 ST LAGCHMTQTA VLIETLK 31.499 2352.1169							62	34	STY	DIGVYVI PK	398-406	1082.5477	1083.5550
50 G 63 57 57 57 57 1043 934-06 1044.5452 1045.5525 K LSKLTPK 424-430 899.536 890.536 800.83.591 130.83.591 130.858.71 130.858.71 130.858.71 130.858.71 130.858.71 130.858.787 1831.895 130.857		-	60	6h	/0 51/5 03	13 66/7 32	50	34	511	***	378-400	1002.3477	1005.5550
Sulfate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Y HIY Y HIY Y HIY Y 89.4506 1082.5838 1083.5911 Sulfate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - - Y HIYRY 445.450 893.4292 894.4305 1082.5838 1083.5810 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 120.5816 <td></td> <td></td> <td>0)</td> <td>on</td> <td>47.51/5.75</td> <td>45.00/7.52</td> <td>65</td> <td>55</td> <td>ĸ</td> <td>DIGVYVI PK</td> <td>398-406</td> <td>1044 5452</td> <td>10/15 5525</td>			0)	on	47.51/5.75	45.00/7.52	65	55	ĸ	DIGVYVI PK	398-406	1044 5452	10/15 5525
K LTPKQAEYLGLEINGPYK 427-44 60/0-30/0 60/0-30/0 59 41 M/HW DCGOSPEETTGVHHLYRMLK 152-172 2543.0891 2544.0964 66 51 ST IAGCLMHTQTAVLETLK 51-69 2351.1082 2525.1162 65 46 Y DIGVYVLPK 398-406 1082.5838 1083.5911 3udenylyltransferase 71 2h 64.11/6.26 57.007.20 53 30 - K TGAEPWK 445-440 893.4292 894.4365 sadenylyltransferase 59 34 K YLETKVQEFYVGGK 146-159 1719.8681 1720.8754 sadenylyltransferase 58 34 HW SHEDKLGWSK 183-192 1219.5756 1220.5879 HW ARQANVLIHPVVGLTKFODIDHFTR 216-240 2785.3887 1720.8430 1720.8430 1720.8430 1720.9430 Y GFTGYDDPYETPK 528-540 1504.6668 1505.671 133.8560 154 92 - *** ***							05	55	K K		424 430	860 5364	870 5437
Sulfare PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - 3denylylmmsferase 71 2h 64.11/6.26 57.007.20 53 30 - Sulfare PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfare PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfare PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfare PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfare PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - Sulfare PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - - 171.988.1120.872.185.1894.5 Sulfare Suffare Suffare Suffare Suffare Suffare Suffa									K	LJKLIFK I TDV OA EVI CI EINCDVV	424-430	009.3304	3118 2240
39 41 b) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2							50	41		LIPKQAEILOLEINOPIK DCVCVSEETTTCVHHIVDMIV	427-444	2117.2170	2118.2249
Hw VLDEQVALLHUDHVNAK 407-423 1946.123 1946.123 66 51 ST IAGCLHMTIQTA VLDETLK 51-69 251.1089 252.1162 65 46 Y DIGYYVLPK 398.406 1082.5838 1083.5911 3udenylyltransferase Y AETYRY 445.450 893.4292 894.4365 sdenylyltransferase 59 34 K YLFTKVQEFYVGGK 146-159 171.98.681 1720.8754 sdenylyltransferase 58 34 HW SHFDKLGWSK 183-192 1219.5736 1220.5809 HW ARQANVLIHPVVGIK 166-83 150.5874 183.8450 194.1091 54 32 Y YLFTKVQEFYVGGK 146-159 153.7807 1838.8600 73 2h 64.11/6.26 64.337.34 55 29 - **** 64 40 K YLFTKVQEFYVGGK 146-159 171.9357 1720.9330 73 2h 64.11/6.26 62.387.84 66 40							39	41			132-172	2345.0891	2344.0964
606 51 51 IFOCLIMITICITATULETIK 51-09 233-1105 23								51	HW	VLDEQ VALLHLDH VNAK	407-423	1945.1179	1946.1252
Sulfate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - adenylyltransferase 59 34 K YLFT KVQEFYVGGK 146-159 1719.8681 1720.8754 K TGASIPEWFSYPEVVK 368-383 1850.8872 12851.8945 58 34 HW SHEPKLGWSK 183-192 1219.5736 1220.5809 HW ARQANVLIHPVVGLTKPGDIDHFTR 216-240 2785.3887 2786.3980 193.018 2194.1091 54 32 Y YLFTKVQEFVVGGK 146-159 1837.8607 1838.8680 Y GFTGVDDPYETPK 528-540 1504.6668 1505.6741 33 STY GSPVLSPINRAPPQII 670-685 1867.8351 1868.8424 73 2h 64.11/6.26 64.337.34 55 29 - *** 64 40 K YLFTKVQEFYVGGK 146-159 1719.9357 1720.9430 K SADLTYDIEK 368-386 2193.1018 2194.1091 Y <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>66</td><td>51</td><td>51</td><td>IA GCLHMTIQIA VLIETLK</td><td>51-69</td><td>2351.1089</td><td>2352.1162</td></t<>							66	51	51	IA GCLHMTIQIA VLIETLK	51-69	2351.1089	2352.1162
Sulfate PAAG_05929.1 71 2h 64.11/6.26 57.007.20 53 30 - adenylyltransferase 71 2h 64.11/6.26 57.007.20 53 30 - adenylyltransferase 59 34 K YLFTKVQEFYVGGK 146-159 1719.8681 1720.8754 K TGASIPEWFS YPEVVK 368-383 1850.8872 1851.8945 1220.5704 123.5704 1220.5704 123.5704 123.5724 1220.5704 123.5724 123.5724 123.5724 123.5724 123.5724							65	46	Y	DIGVYVLPK	398-406	1082.5838	1083.5911
Sultate PAAG_05929.1 /1 2h 64.11/6.26 57.007/.20 53 30 - adenylyltransferase 59 34 K YLFTKVQEFYVGGK 146-159 1719.8681 1720.8754 K TGASIPEWFS YPEVVK 368-383 1850.8872 1851.8945 S8 34 HW SHFDKLGWSK 183-192 1219.5736 1220.5809 HW TGASIPEWFS YPEVVKVLR 368-386 2193.1018 2194.1091 HW TGASIPEWFS YPEVVKVLR 368-386 2193.1018 2194.1091 Y GFTGVDPYETPK 528-540 1504.668 1505.6741 33 STY GSPVLSPINRAFPQII 670-685 1867.8851 1868.842 73 2h 64.11/6.26 64.33/7.34 55 29 - **** 73 2h 64.11/6.26 62.887.84 65 40 K YLFTKVQEFYVGGK 146-159 1719.9357 1720.9430 K NSLAILTVDIEK 541-50 1131.6415 1132.6488		D							Ŷ	AEIYRY	445-450	893.4292	894.4365
adenyiyitransterase 59 34 K YLF1K VQEFYVGGK 146-159 17/19.881 17/20.873 K TGASIPEWFSYPEVVK 368-383 1850.8872 1851.8945 58 34 HW SHFDKLGWSK 183-192 1219.5736 1220.5809 HW ARQANVLIHPVVGLTKPGDIDHFTR 216-240 2785.3887 2786.3960 HW TGASIPEWFSYPEVVKUR 368-386 2193.1018 2194.1091 74 64.11/6.26 64.337.34 55 29 - *** 64 40 K YLFTKVQEFYVGGK 146-159 1719.9357 1720.9430 K SADLTVDIEK 541-550 1131.6415 1132.6488 55 36 HW TGASIPEWFSYPEVVKUR 368-386 2193.1018 2194.1091 56 32 Y YLFTKVQEFYVGGK 146-159 1719.9357 1720.9430 K SADLTVDIEK 541-550 1131.6415 1132.6488 56 32 Y YLFTKVQEFYVGGK 146-159 1719.9357 1720.9430 74 6h 64.11/6.26 62.887.84 66 40 - *** 65 47 K ANKPHGGVLK 2-11 1061.6034 1026.1017 73 51 HW EAIWHDYVALR 160-175 2063.1140 2064.1213 74 6h 64.11/6.26 62.887.84 66 40 - *** 65 47 K ANKPHGGVLK 2-11 1061.6034 1026.6107 K NIAILTVDDVYKPDK 113-127 1744.9230 1745.9303 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8671 123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8677 1287.5604 68 49 Y VEAVNKLNHYDYVALR 160-175 1983.8795 1982.8722 76 59 STY VEAVNKLNHYDYVALR 160-175 1983.8795 1982.8722 77 57 57 57 57 57 57 57 57 57 57 57 57 5	Sulfate	PAAG_05929.1	71	2h	64.11/6.26	57.00/7.20	53	30	-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	adenylyltransferase						59	34	K	YLFTKVQEFYVGGK	146-159	1719.8681	1/20.8/54
58 34 HW SHPDKLGWSK 183-192 1219.5736 1220.809 HW ARQANVLIHPVVGLTKPGDIDHFTR 216-240 2785.38361 2194.091 HW TGASIPEWFSYPEVVKVL 366-360 2193.018 2194.1091 F4 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8680 Y GFTGVDDPYETPK 528-540 1504.6668 1505.6741 33 STY GSPVLSPINARFPQII 670-685 1867.8351 1868.8424 73 2h 64.11/6.26 64.33/7.34 55 29 - **** 64 40 K YLFTKVQEFYVGGK 146-159 1719.9357 172.0430 K SADUTVDIEK 548.6424 55 36 HW TGASIPEWFSYPEVVKVGK 146-159 1719.9357 172.0430 K SADUTVDIEK 541.550 131.6415 1132.6488 2193.1018 2194.1091 55 36 HW TGASIPEWFSVPUKVLR 160-175 2063.1140 2064.1213 74 6h 64.11/.6.26 62.88/7.84 66 40 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>K</td> <td>TGASIPEWFSYPEVVK</td> <td>368-383</td> <td>1850.8872</td> <td>1851.8945</td>									K	TGASIPEWFSYPEVVK	368-383	1850.8872	1851.8945
HW ARQANVLIHPVGLTKPGDIDHFTR 216-240 2785.3887 2786.3860 HW TGASIPEWFSYPEVVKVLR 368-386 2193.1018 2194.1091 TGASIPEWFSYPEVVKVLR 368-386 2193.1018 2194.1091 33 STY GFTGVDDPYETPK 528-540 1504.6668 1505.6741 33 STY GSPVLSPINRAFPQII 670-685 1867.8351 1868.8424 73 2h 64.11/6.26 64.33/7.34 55 29 - *** 64 40 K YLFTKVQEFYVGGK 146-159 1719.9357 1720.9430 K SADLTVDIEK 541-550 1131.6415 1132.6488 55 36 HW TGASIPEWFSYPEVVKVLR 368-386 2193.1018 2194.1091 56 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8680 74 6h 64.11/ 6.26 62.88/7.84 66 40 - *** 73 51 HW KANKLNHYDYVALR 160-175 1061.6034 1062.6107 K NLAILTVDDVYKPDK 113-127 17							58	34	HW	SHFDKLGWSK	183-192	1219.5736	1220.5809
HW TGASIPEWFSYPEVVKVLR 368-386 2193.1018 2194.1091 54 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8800 Y GFTGVDDPYETPK 528-540 1504.6668 1805.6741 73 2h 64.11/6.26 64.33/7.34 55 29 - *** 73 2h 64.11/6.26 64.33/7.34 55 29 - *** 73 2h 64.11/6.26 64.33/7.34 55 29 - *** 64 40 K YLFTKVQEFYVGGK 146-159 1719.9357 1720.9430 K SADLTVDIEK 541-550 1131.6415 1132.6488 55 36 HW TGASIPEWFSYPEVVKVLR 368-386 2193.1018 2194.1091 56 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8680 Y VEAVNKLNHYDY-VALR 160-175 2063.1140 2064.1213 74 6h 64.11/6.26 62.887.84 66 40 - *** 73 51 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>HW</td><td>ARQANVLIHPVVGLTKPGDIDHFTR</td><td>216-240</td><td>2785.3887</td><td>2786.3960</td></t<>									HW	ARQANVLIHPVVGLTKPGDIDHFTR	216-240	2785.3887	2786.3960
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$									HW	TGASIPEWFSYPEVVKVLR	368-386	2193.1018	2194.1091
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							54	32	Y	YLFTKVQEFYVGGK	146-159	1837.8607	1838.8680
33 STY GSPVLSPINRAFPQII 670-685 1867.8351 1868.8424 73 2h 64.11/6.26 64.33/7.34 55 29 - *** 64 40 K YLFTKVQEFVVGK 146-159 1719.9357 1720.9430 K SADLTVDIEK 541-550 1131.6415 1132.6488 55 36 HW TGASIPEWFSYPEVVKVLR 368-386 2193.1018 2194.1091 56 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8680 74 6h 64.11/6.26 62.88/7.84 66 40 - *** 74 6h 64.11/6.26 62.88/7.84 66 40 - *** 74 6h 64.11/6.26 62.88/7.84 66 40 - *** 73 51 HW KANKPHGGVLK 2-11 1061.6034 1062.6107 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6124 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8674									Y	GFTGVDDPYETPK	528-540	1504.6668	1505.6741
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-						33	STY	GSPVLSPINRAFPQII	670–685	1867.8351	1868.8424
64 40 K YLFTKVQEFYVGGK 146-159 1719.9357 1720.9430 K SADLTVDIEK 541-550 1131.6415 1132.6488 55 36 HW TGASIPEWFSYPEVVKVLR 368-386 2193.1018 2194.1091 56 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8680 Y 74 6h 64.11/ 6.26 62.88/7.84 66 40 - *** 74 6h 64.11/ 6.26 62.88/7.84 66 40 - *** 74 6h 64.11/ 6.26 62.88/7.84 66 40 - *** 74 6h 64.11/ 6.26 62.88/7.84 66 40 - *** 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8674 1757.8601 ST AHRELTVR 205-212 1061.5798 1060.5725 ST ST AHRELTVR 205-212 1061.5798 1060.5725 </td <td></td> <td></td> <td>73</td> <td>2h</td> <td>64.11/6.26</td> <td>64.33/7.34</td> <td>55</td> <td>29</td> <td>-</td> <td>***</td> <td></td> <td></td> <td></td>			73	2h	64.11/6.26	64.33/7.34	55	29	-	***			
K SADLTVDIEK 541-550 1131.6415 1132.6488 55 36 HW TGASIPEWFS YPEVVKVLR 368-386 2193.1018 2194.1091 56 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8680 Y VEAVNKLNHYDY-VALR 160-175 2063.1140 2064.1213 74 6h 64.11/ 6.26 62.88/7.84 66 40 - *** 65 47 K ANKPHGGVLK 2 - 11 1061.6034 1062.6107 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8674 1757.8601 84 Y YEAVNKLNHYDYVALR 205-212 1061.5798 1060.5725 ST <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>64</td><td>40</td><td>K</td><td>YLFTKVQEFYVGGK</td><td>146-159</td><td>1719.9357</td><td>1720.9430</td></t<>							64	40	K	YLFTKVQEFYVGGK	146-159	1719.9357	1720.9430
55 36 HW TGASIPEWFS YPEVVKVLR 368-386 2193.1018 2194.1091 56 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8680 Y VEAVNKLNHYDY-VALR 160-175 2063.1140 2064.1213 74 6h 64.11/6.26 62.88/7.84 66 40 - **** 65 47 K ANKPHGGVLK 2 - 11 1061.6034 1062.6107 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8674 1757.8601 ST AHRELTVR 205-212 1061.5798 1060.5725 ST NHGATHFIVGR 282-292 1288.5677 1287.5601 68 49 Y VEAVNKLNHYDYVALR 160-175 1983.8795 1982.8722 76 59 STY VEAVNKLNHYDYVALR 160-175 1983.8795 1982.8722									K	SADLTVDIEK	541-550	1131.6415	1132.6488
56 32 Y YLFTKVQEFYVGGK 146-159 1837.8607 1838.8680 74 6h 64.11/6.26 62.88/7.84 66 40 - *** 74 6h 64.11/6.26 62.88/7.84 66 40 - *** 65 47 K ANKPHGGVLK 2-11 1061.6034 1062.6107 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8674 1757.8601 ST AHRELTVR 205-212 1061.5798 1060.5725 ST NHGATHFIVGR 282-292 1288.5677 1287.5604 68 49 Y VEA VNKLNHYDYVALR 160-175 1983.8795 1982.8722 76 59 STY VEA VNKLNHYDYVALR 160-175 1983.8795 1982.8722							55	36	HW	TGA SIPEWFS YPEV VK VLR	368-386	2193.1018	2194.1091
Y VEA VNKLNHYDY-VALR 160-175 2063.1140 2064.1213 74 6h 64.11/6.26 62.88/7.84 66 40 - *** 65 47 K ANKPHGGVLK 2-11 1061.6034 1062.6107 K NLAILTVDDVYKPDK 113-127 1744.9230 1745.9303 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8674 1757.8601 ST AHRELTVR 205-212 1061.5798 1060.5725 ST NHGATHFIVGR 282-292 1288.5677 1287.5604 68 49 Y VEA VNKLNHYDYVALR 160-175 1983.8795 1982.8722 76 59 STY VEA VNKLNHYDYVALR 160-175 1983.8795 1982.8722							56	32	Y	YLFTKVQEFYVGGK	146-159	1837.8607	1838.8680
74 6h 64.11/6.26 62.88/7.84 66 40 - *** 65 47 K ANKPHGGVLK 2-11 1061.6034 1062.6107 K NLAILTVDDVYKPDK 113-127 1744.9230 1745.9303 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8674 1757.8601 ST AHRELTVR 205-212 1061.5798 1060.5725 ST NHGATHFIVGR 282-292 1288.5677 1287.5604 68 49 Y VEA VNKLNHYDYVALR 160-175 1983.8795 1982.8722 76 59 STY VFA VNKLNHYDYVALR 160-175 1983.8795 1982.8722									Y	VEA VNKLNHYDY-VALR	160-175	2063.1140	2064.1213
65 47 K ANKPHGGVLK 2-11 1061.6034 1062.6107 K NLAILTVDDVYKPDK 113-127 1744.9230 1745.9303 73 51 HW EAIWHAIIR 272-280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146-159 1758.8674 1757.8601 ST AHRELTVR 205-212 1061.5798 1060.5725 ST NHGATHFIVR 282-292 1288.5677 1287.5604 68 49 Y VEAVNKLNHYDYVALR 160-175 1983.8795 1982.8722 76 59 STY VFA VNKLNHYDYVALR 160-175 1983.8795 1982.8722		-	74	6h	64.11/ 6.26	62.88/7.84	66	40	-	***			
K NLAILTVDDVYKPDK 113–127 1744.9230 1745.9303 73 51 HW EAIWHAIIR 272–280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146–159 1758.8674 1757.8601 ST AHRELTVR 205–212 1061.5798 1060.5725 ST NHGATHFIVGR 282–292 1288.5677 1287.5604 68 49 Y VEAVNKLNHYDYVALR 160–175 1983.8795 1982.8722 76 59 STY VFA VNKLNHYDYVALR 160–175 1983.8795 1982.8722							65	47	Κ	ANKPHGGVLK	2 - 11	1061.6034	1062.6107
73 51 HW EAIWHAIIR 272–280 1123.6121 1124.6194 75 57 ST YLFTKVQEFYVGGK 146–159 1758.8674 1757.8601 ST AHRELTVR 205–212 1061.5798 1060.5725 ST NHGATHFIVGR 282–292 1288.5677 1287.5604 68 49 Y VEAVNKLNHYDYVALR 160–175 1983.8795 1982.8722 76 59 STY VFA VNKLNHYDYVALR 160–175 1983.8795 1982.8722									К	NLAILTVDDVYKPDK	113-127	1744.9230	1745.9303
75 57 ST YLFTK-VQEFYVGGK 146–159 1758.8674 1757.8601 ST AHRELTVR 205–212 1061.5798 1060.5725 ST NHGATHFIVGR 282–292 1288.5677 1287.5604 68 49 Y VEA VNKLNHYDYVALR 160–175 1983.8795 1982.8722 76 59 STY VFA VNKLNHYDYVALR 160–175 1983.8795 1982.8722							73	51	HW	EAIWHAIIR	272-280	1123.6121	1124.6194
ST AHRELTVR 205–212 1061.5798 1060.5725 ST NHGATHFIVGR 282–292 1288.5677 1287.5604 68 49 Y VEA VNKLNHYDYVALR 160–175 1983.8795 1982.8722 76 59 STY VEA VNKLNHYDYVALR 160–175 1983.8795 1982.8722							75	57	ST	YLFTKVOEFYVGGK	146-159	1758 8674	1757 8601
ST NHRLEFT 205 212 1001.57.0 ST NHGATHFING 282–292 1288.5677 1287.5604 68 49 Y VEA VNKLNHYDYVALR 160–175 1983.8795 1982.8722 76 59 STY VEA VNKLNHYDYVALR 160–175 1983.8795 1982.8722								51	ST	AHRELTVR	205-212	1061 5798	1060 5725
68 49 Y VEA VNKLNHYDYVALR 160–175 1983.8795 1982.8722 76 59 STY VEA VNKLNHYDYVALR 160–175 1983.8795 1982.8722									ST	NHGATHFIVGR	282-292	1288 5677	1287 5604
76 59 STY VEAVINE 100-175 1983 8795 1982 8722							68	40	v	VFA VNKI NHVDVVA I P	160 - 175	1983 8705	1982 8722
							76	59	STY	VEAVNKLNHYDYVALR	160-175	1983 8795	1982.8722

							STY	YPNGMAA LGLLPLAMR	251-266	1799.7787	1798.7714
							STY	NHGATHFIVGR	282-292	1288.5677	1287.5604
NAD-specific	PAAG_01002.1	79	2h	126.56/6.08 108.00/7.26	36	31	-	***			
glutamate					39	37	HW	LGGIPHDR	746-753	879.4257	880.4330
dehydrogenase					36	32	Y	QYVLGIYR	763-770	1090.5695	1091.5768
	-	80	2h	121.10/6.12 40.03/7.34	64	72	-	***			
					70	95	К	CYFVYK	257-262	920.3350	921.3423
							К	NKDIPEGGAK	649-658	1111.5695	1112.5768
							К	KMOT GGPD GDL GSNEILL GNEK	781-802	2314,1941	2315.2014
							К	RAMIVEFDK	831-839	1149.6016	1150.6089
					66	81	HW	LEFEAIWREHEETGMPR	999-1015	2161.0835	2162.0908
					68	112	ST	EGSGTGTPTTGFORPPLINK	54-73	2297.0840	2298.0913
							STM	YGMTTLSVROYVLGIYR	754-770	2195 1948	2196 2021
							ST	LSIAITK	1022-1028	904 4652	905 4725
					65	84	v	A I YOFIIINA VA R	295-307	1552 7057	1553 7130
					00	01	YM	YGMTTL SVROYVL GIYR	754-770	2195 1948	2196 2021
					68	114	STV	ECSCTCTPTTCEOPPLINK	54-73	2297 0840	2298 0013
					00	114	STY	OPSPOPTHI GIPGGTHR	85_101	1038 0274	1030 03/7
							STY	AIVOFILINA VA R	295-307	1552 7057	1553 7130
							M/STV	VGMTTI SVPOVVI CIVP	754 770	2114 8807	2115 8880
							STV	MOTGGPDGDI GSNEILI GNEK	782_802	2114.8807	2115.8880
							STY	I SIAITY	1022 1028	004 4652	005 4725
Chusins	DAAC 01569 1	01	21	117 40/6 80 52 00/7 54	20	20	511	LSIAITK	1022-1028	904.4032	903.4723
dehudrogenese	PAAG_01508.1	81	20	117.40/0.89 33.00/7.34	20 42	59	- V	I HEDDI HCCI GETDMIK	125 151	1020 0045	1021 0119
denydiogenase					45	51	ĸ	A TENICTA OALLA NIMEA EVA VVILCE	155-151	1930.0043	1951.0118
					39	43	HW	K	423-448	2814.4761	2815.4834
							HW	MSPYLM HPVFNT HHSET EM LR	571-591	2604.1933	2605.2006
					48	59	STM	DGM SYVVSHLCHPQTIA VM R	256-275	2396.1033	2397.1106
							STM	IMSLTSLLQDKLR	457-469	1772.7005	1773.7078
							ST	RFWPSVTR	1039-1046	1127.5067	1128.5140
					43	46	Y	GGGRHLALQYPR	12-23	1403.6932	1404.7005
							YM	DGM SYVVSHLCHPOTIA VM R	256-275	2396.1033	2397.1106
					48	58	STY	GGGRHLALQYPR	12-23	1403.6932	1404.7005
							M/STY	DGM SYVVSHLCHPQTIA VM R	256-275	2396.1033	2397.1106
							M/STY	IMSLTSLLODKLR	457-469	1772.7005	1773.7078
							STY	RFWPSVTR	1039–1046	1127.5067	1128.5140
Serine											
hydroxy methylt	PAAG_08512.1	86	бh	58.92/8.56 48.13/8.48	48	28	-	***			
Tansierase					48	28	нw	IMGI DI PHOGHI SHGVOTPTK	175_195	2274 2820	2275 2803
					40	20			175 106	2274.2820	2275.2895
					40	20	П W СТ		106 202	2402.4209	2403.4282
					49	30	51 6TV		190-202	071.4401 201 1161	072.4334 202.4524
	-	142	2.6	50 0 2/0 56 52 50/0 25	49	30	511	NISA VSK ***	190-202	091.4401	092.4334
		142	2 n	38.92/8.30 32.30/8.23	33 20	25	-		21.1.222	1400 72 60	1410 7422
					39	51	K		211-222	1409./300	1410./433
							K		223-233	1327.8307	1528.8580
							K	SAMKPGGLR	436-444	957.5417	958.5490

								K	SAMKPGGLRIGTPAMTSR	436-453	1871.8783	1872.8856
						35	27	HWM	IMGLDLPHGGHLSHGYQTPTKK	175-196	2434.2180	2435.2253
						39	34	ST	AVTITQK	470-476	919.3466	920.3539
Bifunctional	PAAG_00731.1	90	2h	64.93/7.18	63.83/7.61	69	44	-	***			
purine						70	54	M / K	MAQKSAILSVYDK	32-44	1552.6507	1553.6580
biosynthesis								K	GA DRMSSFGDLIALSDIVDVPTA K	336-359	2519.2412	2520.2485
protein ADE17								К	VFEEGGVPA PFTTEEREK	543-560	2063.0927	2064.1000
						71	49	HW	EA GFP VED VSA ITHA PEM LGGR	73 – 94	2298.1109	2299.1182
								M / HW	EA GFP VED VSA ITHA PEM LGGR	73 – 94	2314.1227	2315.1300
						76	69	M / ST	ADDMTLAQA LKK	2 - 13	1399.5084	1400.5157
								ST	HVSPA GAAIGVPLNEKEK	294-311	1895.9020	1896.9093
								ST	MSSFGDLIA LSDIVD VPTAK	340-359	2398.0340	2399.0413
								M/ST	MSSFGDLIALSDIVDVPTAK	340-359	2414.1237	2415.1310
								ST	KGGNYL VLOMDET YAPPTEETR	386-407	2671.2791	2672.2864
								ST	IITPKFTTELPASAOR	432-447	2012.0487	2013.0560
						70	49	Y	KGGNYLVLOMDETYAPPTEETR	386-407	2671.2791	2672.2864
	-	149	2.h	64 93/7 18	64 50/8 12	65	34	-	***			
		,	2.1	01190,7110	0.100,0112	72	43	M / K	K VYM VDDVA GIDES GLA OA YA R	313-334	2428 2432	2429 2505
								K	FTTELPASA ORDI TVATIA I K	438-458	2287 1573	2288 1646
								ĸ	VIA A PTGSONDMPVFFTA FK	593-612	2210 1577	2211 1650
						70	30	HW	FA GERVEDVSA ITHA PEMI GGR	74-95	2210.1377	2211.1050
						70	57	HW/	LAGIT VED VSATITAT EWEGOK	/49-500	1477 6869	1478 6942
						71	48	M/ST		2-13	1300 5324	14/00 5307
						/1	40	ST ST	A FEHT A DVDEA ISDEER K	2-13	2320 9829	2321 9902
								ST	OSKIPEK	251-257	926 5043	927 5116
						67	39	v	VEEEKMAOK	28-36	1270 5408	1271 5481
						78	78	M/STY	ADDMTI AOA I KK	20 50	1399 5324	1400 5397
						70	70	STV	VEEEKMAOK	2 15	1270 5408	1271 5481
								STY	VTII SDPK	173-180	951 4669	952 4742
								STY	RPEKSNAIDLICSGOVPR	516-533	2100 0860	2200 0942
	-	150	2 h	67 20/6 70	64 16/8 30	53	31	511	***	510-555	2177.0007	2200.0742
		150	2 11	07.20/0.70	04.10/0.50	56	30	HW	HNVRLLASCCTAK	57-69	1330 6036	1338 6863
						50	57		VI CCA POVINI I DSI NA WPI VK	257 278	2420 2382	2428 2300
						60	13	M/V	GGK VI VI OM DET VNPPTEETR	237-278	2429.2382	2426.2509
						00	45	V	TVYGIOI SOR	408-417	1243 7134	1244 7207
						73	56	STV	LIASGETAK	61 60	076 / 1/7	077 4220
Flongation	PAAC 02024 1	02	6h	50 55/0 24	49 50/10 34	56	31	511	***	01-09	970.4147	911.4220
factor 1-alpha	FAA0_02024.1	92	on	50.55/9.24	49.30/10.34	50	12	- M / V		149 160	1572 7579	1574 7651
factor i alpita						00	43		CWSKETAOCK	212 221	1373.7378	1122 5169
						58	34		STTTCHI IVECCCIDSP	212-221	1132.3093	1133.3108
						58	54		SELVAWAI DK	54 - 53	1271 6122	1002.0252
									SFK IAW VLDK VAW VLDK	54 - 05	000 4821	010 4804
										37 - 03	707.4021 2404 1949	2405 1021
						59	22	пw		290-312 170 195	2494.1848	2493.1921
						38 58	32 22	I STV	K VU INFK K VC VNDV	170 105	004.4370 884.4570	003.4043
Elsa d'	DAAC 005041	04	0	04.15/ 5.25	00 (2/0 4/	20	20	511		1/9-103	004.4370	000.4045
Elongation	PAAG_00594.1	94	6h	94.15/ 6.36	88.63/8.46	39 47	39	-		225 222	005 5072	006 5146
Tactor2						4/	4ð	ĸ	ΥΓΑΥΚΙΑΚ	223-232	yyy.30/3	yy0.3140

								K	APLM LYVS KM VPT SDK	376-391	1863.0684	1864.0757
								K	GHVFAEEQRPGTPLFNVK	752-769	2067.0280	2068.0353
						42	43	HW	NMSVIAHVDHGK	21 - 32	1322.6729	1323.6802
						45	55	ST	NMSVIAHVDHGK	21-32	1386.5909	1387.5982
								ST	APLM LYVSKM VPTSDK	376-391	2018.8073	2019.8146
								ST	RGHVFAEEORPGTPLFNVK	751-769	2261.1113	2262.1186
						45	57	STY	NMSVIAHVDHGK	21-32	1386.5909	1387.5982
								STY	API MLYVSKM VPTSDK	376-391	2018 8073	2019 8146
								STY	RGHVFAFEORPGTPLENVK	751-769	2261 1113	2262 1186
Metallophospho-	PAAG 00265 1	150	6h	35 23/5 85	3/ 88/6 73	60	31	511	***	101 10)	2201.1115	2202.1100
esterase domain-	1440_00205.1	157	on	55.25/5.85	54.00/0.75	60	35	- ST	MAATSSSGEVK	1_11	11/6/3/1	1147 4414
containing protein						60	33		BHCIVYMDEGVB	118 120	1526 6710	1527 6702
eontaining protein	-	160	4	20 75/5 00	24.44/6.96	54	32	IVI / I	KHOIVIMDEOVK	116-129	1320.0/19	1327.0792
		160	6h	29.75/5.88	34.44/6.86	54	20	-		107 102	201 2707	802 2770
						62	27	K	MEW AGEK	187-193	891.3706	892.3779
						61	24	ST	AATSSSGEVKTR	2-13	1352.5248	1353.5321
Dipeptidyl	PAAG_07467.1	102	2h	86.54/7.99	72.00/7.37	53	44	-	***			
peptidase III						62	57	HW	LEIKPHFDVLDEK	86-98	1597.7653	1598.7726
								M / HW	AGVMALEFWDPKSSK	621-635	1697.8592	1696.8519
								M / HW	WGQAHMQAR	636-644	1132.5705	1131.5632
						58	54	Y	FFLEYAA QFLGNCGS YK	159-175	2094.0646	2095.0719
								Y	GKTLQLVFGDYSEEMAK	308-324	1994.9807	1995.9880
								Y	EQDLQVFRDYR	494-504	1547.7208	1548.7281
								Y	YLQKLHIYK	691-699	1364.6674	1365.6747
								M / Y	EYEPT LEGM IQS YA ERD V	755-772	2225.0411	2226.0484
	-	103	6h	86.54/7.99	72.88/6.77	55	50	-	***			
						61	70	K	DVGE VDKW ELDGK	278-290	1572.7467	1573.7540
								K	LVFGDYSEEMAK	298-309	1429.6083	1430.6156
						72	85	ST	YA HFISR	102-108	972.3938	973.4011
								M / ST	MHAQYEKSFK	329-338	1363.4954	1364.5027
						59	65	v	 Control of the second se		072 2028	072 4011
							())	1	YA HEISR	102-108	9/2 1910	9/34011
						57	05	M/Y	YA HFISR MHAOYEKSFK	102-108 329-338	1363.4954	975.4011
						76	105	M / Y STY	YA HFISR MHAQYEKSFK SFPAKASR	102-108 329-338 6-13	1363.4954 1022.3849	973.4011 1364.5027 1023 3922
						76	105	M / Y STY STY	YA HFISR MHAQYEKSFK SFPAKA SR OOYLADSPPTVVR	102-108 329-338 6-13 73-85	972.3938 1363.4954 1022.3849 1632.6004	973.4011 1364.5027 1023.3922 1633.6077
						76	105	M / Y STY STY STY	YA HFISR MHAQYEKSFK SFPAKA SR QQYLADSPPT VVR VA HEISP	102-108 329-338 6-13 73-85 102-108	972.3938 1363.4954 1022.3849 1632.6004 972.3938	973.4011 1364.5027 1023.3922 1633.6077 973.4011
						76	105	M / Y STY STY STY STY	YA HFISR MHAQ YEKSFK SFPA KA SR QQ YLADSPPT VVR YA HFISR TI DI VEGDVSEEMAK	102-108 329-338 6-13 73-85 102-108 295-309	972.3938 1363.4954 1022.3849 1632.6004 972.3938	973.4011 1364.5027 1023.3922 1633.6077 973.4011
						76	105	M/Y STY STY STY STY STY	YA HFISR MHAQ YEKSFK SFPAKA SR QQ YLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHA OVEV SEV	102-108 329-338 6-13 73-85 102-108 295-309 220-328	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745
						76	105	M/Y STY STY STY STY STY	YA HFISR MHAQYEKSFK SFPAKA SR QQYLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQYEKSFK	102-108 329-338 6-13 73-85 102-108 295-309 329-338	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705
						76	105	M/Y STY STY STY STY STY M/STY	YA HFISR MHAQYEKSFK SFPAKA SR QQYLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQYEKSFK MHAQYEKSFK EODL QVERDVT	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027
						76	105	M/Y STY STY STY STY STY M/STY STY	YA HFISR MHAQ YEKSFK SFPAKA SR QQ YLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQ YEKSFK MHAQ YEKSFK EQDLQ VFRD YR	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027 1548.6473
						76	105	M / Y STY STY STY STY STY M / STY STY	YA HFISR MHAQ YEKSFK SFPAKA SR QQ YLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQ YEKSFK MHAQ YEKSFK EQDLQ VFRD YR VVLKE YEPT LEGMIQS YA ER	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489 736-755	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400 2594.0855	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027 1548.6473 2595.0928
rab GDP-	PAAG_06344.1	107	2h	52.53/5.44	54.16/6.01	76 64	105	M / Y STY STY STY STY STY STY STY STY	YA HFISR MHAQ YEKSFK SFPAKA SR QQ YLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQ YEKSFK EQDLQ VFRD YR VVLKE YEPTLEGMIQS YA ER ***	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489 736-755	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400 2594.0855	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027 1548.6473 2595.0928
rab GDP- dissociation	PAAG_06344.1	107	2h	52.53/5.44	54.16/6.01	64 64	105 33 37	M / Y STY STY STY STY STY STY STY - K	YA HFISR MHAQ YEKSFK SFPAKA SR QQ YLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQ YEKSFK EQDLQ VFRD YR VVLKE YEPTLEGMIQS YA ER *** KHDI YIAM VSSA HNVCPK	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489 736-755	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400 2594.0855 2111.1121	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027 1548.6473 2595.0928 2112.1194
rab GDP- dissociation inhibitor	PAAG_06344.1	107	2h	52.53/5.44	54.16/6.01	64 64 66	33 105 33 37 34	M / Y STY STY STY STY STY M / STY STY STY - K HW	YA HFISR MHAQ YEKSFK SFPAKA SR QQ YLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQ YEKSFK EQDLQ VFRD YR VVLKE YEPT LEGMIQS YA ER *** KHDI YIAM VSSA HNVCPK DFIGHSMAL YQSDD YITEA GK	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489 736-755 351-368 192-212	912.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400 2594.0855 2111.1121 2376.1707	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027 1548.6473 2595.0928 2112.1194 2377.1780
rab GDP- dissociation inhibitor	PAAG_06344.1	107	2h 2h	52.53/5.44	54.16/6.01	64 64 66 67	33 105 33 37 34 37	M / Y STY STY STY STY STY M / STY STY - K HW	YAHFISR MHAQYEKSFK SFPAKASR QQYLADSPPTVVR YAHFISR TLRLVFGDYSEEMAK MHAQYEKSFK EQDLQVFRDYR VVLKEYEPTLEGMIQSYAER ***	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489 736-755 351-368 192-212	912.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400 2594.0855 2111.1121 2376.1707	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027 1548.6473 2595.0928 2112.1194 2377.1780
rab GDP- dissociation inhibitor	PAAG_06344.1	107	2h 2h	52.53/5.44 52.53/5.44	54.16/6.01	76 76 64 64 66 67 70	33 37 34 37 48	M / Y STY STY STY STY M / STY STY - K HW - K	YAHFISR MHAQYEKSFK SFPAKASR QQYLADSPPTVVR YAHFISR TLRLVFGDYSEEMAK MHAQYEKSFK EQDLQVFRDYR VVLKEYEPTLEGMIQSYAER *** KHDIYIAMVSSAHNVCPK DFIGHSMALYQSDDYITEAGK *** VSGIKATMK	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489 736-755 351-368 192-212 276-284	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400 2594.0855 2111.1121 2376.1707	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027 1548.6473 2595.0928 2112.1194 2377.1780
rab GDP- dissociation inhibitor	PAAG_06344.1	107	2h 2h	52.53/5.44 52.53/5.44	54.16/6.01	76 76 64 64 66 67 70	33 37 34 37 48	M / Y STY STY STY STY STY M / STY STY - K HW - K M / K	YA HFISR MHAQ YEKSFK SFPAKA SR QQ YLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQ YEKSFK EQDLQVFRD YR VVLKE YEPT LEGMIQS YA ER *** KHDI YIAM VSSA HNVCPK DFIGHSMALYQSDD YITEA GK *** VSGIKATMK SEPGEGMTFTT KTK	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489 736-755 351-368 192-212 276-284 287-300	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400 2594.0855 2111.1121 2376.1707 1017.5286 1570.7246	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1348.6705 1364.5027 1548.6473 2595.0928 2112.1194 2377.1780 1018.5359 1571.7319
rab GDP- dissociation inhibitor	PAAG_06344.1	107	2h 2h	52.53/5.44 52.53/5.44	54.16/6.01 55.16/5.69	64 64 64 66 67 70 69	33 37 34 37 48 44	M / Y STY STY STY STY STY STY STY - K HW - K M / K HW	YA HFISR MHAQ YEKSFK SFPAKA SR QQ YLADSPPT VVR YA HFISR TLRLVFGD YSEEMAK MHAQ YEKSFK EQDLQ VFRD YR VVLKE YEPT LEGMIQS YA ER *** KHDI YIAM VSSA HNVCPK DFIGHSMALYQSDD YITEA GK *** VSGIKATMK SEPGEGMT FTT KTK AICILTHPIDK	102-108 329-338 6-13 73-85 102-108 295-309 329-338 329-338 479-489 736-755 351-368 192-212 276-284 287-300 322-332	972.3938 1363.4954 1022.3849 1632.6004 972.3938 1917.8672 1347.6632 1363.4954 1547.6400 2594.0855 2111.1121 2376.1707 1017.5286 1570.7246 1295.6533	973.4011 1364.5027 1023.3922 1633.6077 973.4011 1918.8745 1364.6705 1364.5027 1548.6473 2595.0928 2112.1194 2377.1780 1018.5359 1571.7319 1296.6606

subunit Arc16					48	21	HW	ATWFIPGHSLETFPEECAMVR	58-78	2493.2073	2494.2146
							HW	DAGHEIGLHGYSHENPSDMTQEQQR	79-103	2851.3269	2852.3342
							HW	AKDWMKPLVK	175-184	1230.6741	1231.6814
					48	21	ST	ATWFIPGHSLETFPEECAM VR	58-78	2717.2381	2718.2454
					48	21	STY	ATWFIPGHSLETFPEECAMVR	58-78	2717.2381	2718.2454
	110) 6h	36.15/ 5.87	35.55/7.49	47	17	-	***			
					49	21	STY	TGDTWTK	162-168	967.2213	968.2286
1.4-alpha-glucan PAAG_0803	3.1 102	2 2h	80.33/5.79	78.16/6.61	44	33	-	***			
branching enzyme					47	35	HW	IYEAHVGISSPETR	196-209	1573.8355	1574.8428
							HW	TIA YA ESHDQA LVGDK	470-485	1732.7947	1733.8020
							HW	YGWLRSR	591-597	952.5069	953.5142
					46	35	Y	KDEYGVW EVT VPAK	113-126	1699.7592	1700.7665
ssDNA binding PAAG_07296	5.1 114	4 2h	16.50/8.58	14.92/10.06	83	17	-	***			
protein					83	18	HW	QTSWWR	68-73	894.4004	895.4077
	173	3 2h	14.97/10.06	13.16/9.28	71	14	-	***			
					78	17	Κ	ITSFAPEGPAREHLLSLPK	74-92	2104.1267	2105.1340
					71	16	HW	QTSWWR	68-73	894.4578	895.4651
							HW	EHLLSLPKGTLLYVEGDASMR	85-105	2344.2415	2345.2488

^a Numbers refers to Figure 1 ^b Time in oxidative stress condition

^c Theoretical molecular weight / Isoelectric point

^d Experimental molecular weight / Isoelectric point

^e PTM – Post-translational modifications: K – lysine acetylation; HW – tryptophan oxidation; ST – serine and threonine phosphorylation; Y – tyrosine phosphorylation; STY – Sulfonylation; M - methionine oxidation.

^f Peptide localization in protein sequence

^g Theoretical peptide molecular mass without any PTM

^hObtained experimental mass by spectral analysis

References

[1] Halliwell B, Biochemistry of oxidative stress, Biochem Soc Trans 35 (2007) 1147-1150.

[2] Halliwell B, Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life, Plant Physiol 141 (2006) 312-322.

[3] Halliwell B, Phagocyte-derived reactive species: salvation or suicide?, Trends Biochem Sci 31 (2006) 509-515.

[4] Lushchak VI, Adaptive response to oxidative stress: Bacteria, fungi, plants and animals, Comp Biochem Physiol C Toxicol Pharmacol 153 (2011) 175-190.

[5] Seider K, Heyken A, Luttich A, Miramon P, Hube B, Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape, Curr Opin Microbiol 13 (2010) 392-400.

[6] Matute DR, McEwen JG, Puccia R, Montes BA, San-Blas G, Bagagli E, Rauscher JT, Restrepo A, Morais F, Nino-Vega G, Taylor JW, Cryptic speciation and recombination in the fungus *Paracoccidioides brasiliensis* as revealed by gene genealogies, Mol Biol Evol 23 (2006) 65-73.

[7] Carrero LL, Nino-Vega G, Teixeira MM, Carvalho MJ, Soares CMA, Pereira M, Jesuino RS, McEwen JG, Mendoza L, Taylor JW, Felipe MS, San-Blas G, New *Paracoccidioides brasiliensis* isolate reveals unexpected genomic variability in this human pathogen, Fungal Genet Biol 45 (2008) 605-612.

[8] Teixeira MM, Theodoro RC, de Carvalho MJ, Fernandes L, Paes HC, Hahn RC, Mendoza L, Bagagli E, San-Blas G, Felipe MS, Phylogenetic analysis reveals a high level of speciation in the *Paracoccidioides* genus, Mol Phylogenet Evol 52 (2009) 273-283.

[9] San-Blas G, Nino-Vega G, Iturriaga T, *Paracoccidioides brasiliensis* and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics, Med Mycol 40 (2002) 225-242.

[10] Rodrigues DR, Dias-Melicio LA, Calvi SA, Peracoli MT, Soares AM, *Paracoccidioides brasiliensis* killing by IFN-gamma, TNF-alpha and GM-CSF activated human neutrophils: role for oxygen metabolites, Med Mycol 45 (2007) 27-33.

[11] Pina A, Bernardino S, Calich VL, Alveolar macrophages from susceptible mice are more competent than those of resistant mice to control initial *Paracoccidioides brasiliensis* infection, J Leukoc Biol 83 (2008) 1088-1099.

[12] Tavian EG, Dias-Melicio LA, Acorci MJ, Graciani AP, Peracoli MT, Soares AM, Interleukin-15 increases *Paracoccidioides brasiliensis* killing by human neutrophils, Cytokine 41 (2008) 48-53.

[13] Moreira AP, Dias-Melicio LA, Peracoli MT, Calvi SA, Victoriano de Campos Soares AM, Killing of *Paracoccidioides brasiliensis* yeast cells by IFN-gamma and TNF-alpha activated murine peritoneal macrophages: evidence of H_2O_2 and NO effector mechanisms, Mycopathologia 166 (2008) 17-23.

[14] Tavares AH, Silva SS, Dantas A, Campos EG, Andrade RV, Maranhao AQ, Brigido MM, Passos-Silva DG, Fachin AL, Teixeira SM, Passos GA, Soares CMA, Bocca AL, Carvalho MJ, Silva-Pereira I, Felipe MS, Early transcriptional response of *Paracoccidioides brasiliensis* upon internalization by murine macrophages, Microbes Infect 9 (2007) 583-590.

[15] Felipe MS, Andrade RV, Arraes FB, Nicola AM, Maranhao AQ, Torres FA, Silva-Pereira I, Pocas-Fonseca MJ, Campos EG, Moraes LM, Andrade PA, Tavares AH, Silva SS, Kyaw CM, Souza

DP, Pereira M, Jesuino RS, Andrade EV, Parente JA, Oliveira GS, Barbosa MS, Martins NF, Fachin AL, Cardoso RS, Passos GA, Almeida NF, Walter ME, Soares CMA, Carvalho MJ, Brigido MM, Transcriptional profiles of the human pathogenic fungus *Paracoccidioides brasiliensis* in mycelium and yeast cells, J Biol Chem 280 (2005) 24706-24714.

[16] Campos EG, Jesuino RS, S. DA, M. BM, Felipe MS, Oxidative stress response in *Paracoccidioides brasiliensis*, Genet Mol Res 4 (2005) 409-429.

[17] Moreira SF, Bailao AM, Barbosa MS, Jesuino RS, Felipe MS, Pereira M, Soares CMA, Monofunctional catalase P of *Paracoccidioides brasiliensis*: identification, characterization, molecular cloning and expression analysis, Yeast 21 (2004) 173-182.

[18] Dantas AS, Andrade RV, de Carvalho MJ, Felipe MS, Campos EG, Oxidative stress response in *Paracoccidioides brasiliensis*: assessing catalase and cytochrome C peroxidase, Mycol Res 112 (2008) 747-756.

[19] Chagas RF, Bailao AM, Pereira M, Winters MS, Smullian AG, Deepe GS, Jr., Soares CMA, The catalases of *Paracoccidioides brasiliensis* are differentially regulated: protein activity and transcript analysis, Fungal Genet Biol 45 (2008) 1470-1478.

[20] Rezende TC, Borges CL, Magalhaes AD, de Sousa MV, Ricart CA, Bailao AM, Soares CMA, A quantitative view of the morphological phases of *Paracoccidioides brasiliensis* using proteomics, J Proteomics 75 (2011) 572-587.

[21] Parente AF, Borges CL, Bailao AM, Sousa MV, Ricart CA, winters MS, Soares CMA, Proteomic analysis reveals that iron availability alters the metabolic status of the pathogenic fungus *Paracoccidioides brasiliensis*, PLoS One 6 (2011) e22810.

[22] Fonseca CA, Jesuino RS, Felipe MS, Cunha DA, Brito WA, Soares CMA, Two-dimensional electrophoresis and characterization of antigens from *Paracoccidioides brasiliensis*, Microbes Infect 3 (2001) 535-542.

[23] Aebi H, Catalase in vitro, Methods Enzymol 105 (1984) 121-126.

[24] Nogueira SV, Fonseca FL, Rodrigues ML, Mundodi V, Abi-Chacra EA, Winters MS, Alderete JF, Soares CMA, *Paracoccidioides brasiliensis* enolase is a surface protein that binds plasminogen and mediates interaction of yeast forms with host cells, Infect Immun 78 (2010) 4040-4050.

[25] Pereira LA, Bao SN, Barbosa MS, da Silva JL, Felipe MS, de Santana JM, Mendes-Giannini MJ, Soares CMA, Analysis of the *Paracoccidioides brasiliensis* triosephosphate isomerase suggests the potential for adhesin function, FEMS Yeast Res 7 (2007) 1381-1388.

[26] Zambuzzi-Carvalho PF, Cruz AH, Santos-Silva LK, Goes AM, Soares CMA, Pereira M, The malate synthase of *Paracoccidioides brasiliensis* Pb01 is required in the glyoxylate cycle and in the allantoin degradation pathway, Med Mycol 47 (2009) 734-744.

[27] Bookout AL, Cummins CL, Mangelsdorf DJ, Pesola JM, Kramer MF, High-throughput realtime quantitative reverse transcription PCR, in: F.M. Ausubel, R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith, K. Struhl (Eds.), Current Protocols in Molecular Biology, John Wiley and Sons, Hoboken NJ, 2006, pp. 1581–1628.

[28] Messner KR, Imlay JA, Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase, J Biol Chem 277 (2002) 42563-42571.

[29] Kirchberg J, Buttner D, Thiemer B, Sawers RG, Aconitase B is required for optimal growth of *Xanthomonas campestris* pv. *vesicatoria* in pepper plants, PLoS One 7 (2012) e34941.

[30] Brown AJ, Haynes K, Quinn J, Nitrosative and oxidative stress responses in fungal pathogenicity, Curr Opin Microbiol 12 (2009) 384-391.

[31] Osorio H, Carvalho E, del Valle M, Gunther Sillero MA, Moradas-Ferreira P, Sillero A, H_2O_2 , but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in *Saccharomyces cerevisiae*. An experimental and theoretical approach, Eur J Biochem 270 (2003) 1578-1589.

[32] Li Q, Abrashev R, Harvey LM, McNeil B, Oxidative stress-associated impairment of glucose and ammonia metabolism in the filamentous fungus, *Aspergillus niger* B1-D, Mycol Res 112 (2008) 1049-1055.

[33] Gruning NM, Lehrach H, Ralser M, Regulatory crosstalk of the metabolic network, Trends Biochem Sci 35 (2010) 220-227.

[34] Kruger A, Gruning NM, Wamelink MM, Kerick M, Kirpy A, Parkhomchuk D, Bluemlein K, Schweiger MR, Soldatov A, Lehrach H, Jakobs C, Ralser M, The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response, Antioxid Redox Signal 15 (2011) 311-324.

[35] Ralser M, Wamelink MM, Latkolik S, Jansen EE, Lehrach H, Jakobs C, Metabolic reconfiguration precedes transcriptional regulation in the antioxidant response, Nat Biotechnol 27 (2009) 604-605.

[36] Pusztahelyi T, Klement E, Szajli E, Klem J, Miskei M, Karanyi Z, Emri T, Kovacs S, Orosz G, Kovacs KL, Medzihradszky KF, Prade RA, Pocsi I, Comparison of transcriptional and translational changes caused by long-term menadione exposure in *Aspergillus nidulans*, Fungal Genet Biol 48 (2011) 92-103.

[37] Tretter L, Adam-Vizi V, Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress, Philos Trans R Soc Lond B Biol Sci 360 (2005) 2335-2345.

[38] Andrae U, Singh J, Ziegler-Skylakakis K, Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity, Toxicol Lett 28 (1985) 93-98.

[39] Blokhina O, Virolainen E, Fagerstedt KV, Antioxidants, oxidative damage and oxygen deprivation stress: a review, Ann Bot 91 Spec No (2003) 179-194.

[40] Muzio G, Maggiora M, Paiuzzi E, Oraldi M, Canuto RA, Aldehyde dehydrogenases and cell proliferation, Free Radic Biol Med 52 (2012) 735-746.

[41] Li Q, McNeil B, Harvey LM, Adaptive response to oxidative stress in the filamentous fungus *Aspergillus niger* B1-D, Free Radic Biol Med 44 (2008) 394-402.

[42] Kim IS, Sohn HY, Jin I, Adaptive stress response to menadione-induced oxidative stress in *Saccharomyces cerevisiae* KNU5377, J Microbiol 49 (2011) 816-823.

[43] Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD, Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in *Pseudomonas fluorescens*, J Bacteriol 189 (2007) 6665-6675.

5 – DISCUSSÃO

5.1. - Indução ao estresse por H₂O₂

O emprego do H₂O₂ tem sido amplamente utilizado para induzir o estresse em diferentes microorganismos, entretanto tem-se observado o uso de diferentes concentrações de H₂O₂, levando-se em conta a sensibilidade apresentada por cada espécie. Em 1984, McEwen e colaboradores estudaram a sensibilidade apresentada por leveduras de Paracoccidioides ao H₂O₂ e observaram que a dose letal de 50 % era atingida quando as células leveduriformes eram sumetidas às concentrações de 15-25 mM de H_2O_2 (McEwen *et al.*, 1984). Em 2008, Dantas e colaboradores descreveram que a fase estacionária e exponencial de crescimento de Paracoccidioides apresentava níveis diferenciados de resistência ao H₂O₂, sendo evidenciada a maior resistência para as leveduras na fase estacionária (Dantas et al., 2008). De forma suplementar, Chagas e colaboradores avaliaram a viabilidade das leveduras de Paracoccidioides frente a diferentes concentrações de H₂O₂ e a diferentes tempos de exposição. Os resultados revelaram não haver diferenças significantes na viabilidade celular durante intervalos de até 12 horas e à exposição das células a doses inferiores a 25 mM, dados concordantes com aqueles descritos por McEwen e colaboradores. Durante a caracterização das catalases de Paracoccidioides, os autores utilizaram a concentração de 2 mM H₂O₂ para induzir o estresse oxidativo. Nesta concentração de 2 mM foi possível detectar-se um aumento na atividade total de catalases por até 6 horas (Chagas et al., 2008).

Uma de nossas estratégias, para caracterizarmos o perfil proteômico de *Paracoccidioides* em resposta ao H_2O_2 , foi avaliar a resposta inicial e tardia deste fungo após a exposição ao H_2O_2 . Nos tempos de 2 e 6 horas, na concentração de 2mM H_2O_2 não foram verificadas diferenças significativas na viabilidade fúngica, sendo desta maneira estes tempos selecionados para se avaliar a resposta fúngica, aqui denominadas de inicial e tardia, respectivamente.

5.2. – Identificação das proteínas responsivas ao estresse por H_2O_2

As análises proteômicas foram realizadas por meio de protocolos previamente estabelecidos (Rezende *et al.*, 2011) os quais nos permitiram obter a reprodução dos perfis protéicos dos mapas eletroforéticos bidimensionais. O perfil protéico da resposta inicial de *Paracoccidioides* ao H₂O₂ apresentou uma média de 487 *spots*, detectados nas análises de imagem dos géis bidimensionais, dos quais 102 *spots* apresentaram diferenças estatísticas (75 *spots* apresentaram-se aumentados e

27 diminuídos). Já a resposta tardia (6 horas) foi evidenciada pela detecção de 584 spots sendo que 78 apresentaram-se estatisticamente significantes (41 spots aumentados e 37 diminuídos). A identificação por meio da espectrometria de massas nos possibilitou identificar o total de 179 *spots* que foram posteriormente agrupados de acordo com a classificação funcional. Abaixo estão discutidas as principais classes funcionais envolvidas na resposta fúngica ao estresse causado pelo H_2O_2 .

5.2.1. – Defesa e virulência

Patógenos necessitam resistir aos efeitos citotóxicos exercidos pelas EROs e para isto estes microorganismos desenvolvem diversas estratégias, como a detoxificação por meio de enzimas antioxidantes (Missall *et al.*, 2004). Nosso estudo sobre o perfil proteômico de *Paracoccidioides* revelou que este fungo estimula respostas moleculares para resistir aos danos causados por meio da produção de várias enzimas antioxidantes que atuam na detoxificação do H_2O_2 .

Como esperado, as análises mostraram que *Paracoccidioides* durante o estresse oxidativo induz a expressão da catalase peroxissomal, uma clássica enzima envolvida na resposta ao estresse oxidativo e que atua diretamente na degradação do H_2O_2 . As catalases compõem o arsenal antioxidante de muitos organismos como vertebrados, plantas, fungos e bactérias. Em patógenos estas enzimas são também consideradas fatores de virulência, pois lhes conferem resistência ao estresse oxidativo e deste modo, permitem que estes sobrevivam aos efeitos de EROs dentro do hospedeiro (Johnson *et al.*, 2003; Giles *et al.*, 2006; Hansberg *et al.*, 2012). A deleção dos genes codificantes para as três catalases ativas de *Aspergillus fumigatus* (Cat1p, CatAp e Cat2p) e para a catalase 1 de *Neurospora crassa* (Cat-1) elevou a sensibilidade dos mutantes ao H_2O_2 (Navarro *et al.*, 1996; Paris *et al.*, 2003; Wang *et al.*, 2007) e em *C. albicans* a ruptura da sequência (CCT) do gene codificante para a catalase causou a diminuição na sobrevivência destas leveduras além do aumento na susceptibilidade ao H_2O_2 (Nakagawa *et al.*, 2003). Estes resultados indicam que catalases podem ser importantes para a sobrevivência destes fungos em condições de estresse oxidativo uma vez que participam do processo de detoxificação de H_2O_2 .

Embora o papel de catalases em patógenos seja descrito, como acima citado, resultados em *Cryptococcus neoformans* descrevem que a deleção dos genes Cat1, Cat2, Cat3, e Cat4 não promoveram alterações na virulência em camundongos. Os autores do estudo sugerem que os resultados sejam decorrentes de um amplo sistema de defesa antioxidante de *Cryptococcus*

neoformans (Giles *et al.*, 2006). Desta maneira os resultados observados durante a deleção dos genes codificantes de catalases indicam que estas enzimas desempenham um importante papel na resposta antioxidante, porém outras enzimas, como as peroxidases, possivelmente atuariam de modo a compensar a ausência de catalases.

A enzima Cu/Zn-SOD tem sido descrita como um fator de virulência em fungos e bactérias (Zelko et al., 2002). Em C. albicans foram identificados os genes Sod1, Sod4, Sod5 e Sod6 como codificantes para a enzima Cu/Zn-SOD e por meio de deleções gênicas suas principais caracterícticas funcionais foram avaliadas. A mutação no gene Sod1 promoveu uma linhagem mais sensível ao estresse oxidativo causado pela menadiona, mais susceptível ao ataque por macrófagos e com a virulência atenuada em camundongos. A deleção dos genes Sod4, Sod5 e Sod6 também produziu uma linhagem mais sensível ao estresse oxidativo gerado pelo radical superóxido; porém a deleção do gene Sod5 promoveu também a atenuação da virulência em modelo de infecção em murinos (Hwang et al., 2002; Martchenko et al., 2004). Estudos sobre superóxido dismutase em outros fungos patogênicos apresentaram resultados similares, como em C. neoformans var. grubii e gattii; nestes organismos foi mostrado que um homólogo de SOD1 contribui para virulência do fungo em modelos animais e para a sobrevivência em macrófagos. SOD2 também apresentou-se crucial para virulência em modelos animais. Ao ser criada a linhagem com a dupla deleção para os genes Sod1 e Sod2, verificou-se que esta linhagem mutante era mais sensível ao estresse oxidativo e que não era capaz de estabelecer a doença em modelos experimentais (Cox et al., 2003; Narasipura et al., 2005). Em Paracoccidioides a ativação do gene codificante para Cu/Zn-SOD foi determinada em leveduras internalizadas por macrófagos em cultivo, onde se verificou que os níveis transcricionais foram elevados, possivelmente em resposta estresse oxidativo no interior dos macrófagos (Tavares et al., 2007).

A resposta antioxidante de *Paracoccidioides* também foi evidenciada pela indução das peroxidases: citocromo C peroxidase e AhpC (componente C de alquil hidroperóxido redutase). Citocromo C peroxidase utiliza o H_2O_2 como um aceptor de elétrons para oxidar o citocromo C no espaço intermembranar da mitocôndria. Assim, apresenta uma importante função a de reduzir o H_2O_2 gerado durante o processo de respiração. Em mutantes de *S. cerevisiae* para citocromo C peroxidase foi observado uma maior sensibilidade ao H_2O_2 , porém a virulência não foi atenuada (Kwon *et al.*, 2003; Giles *et al.*, 2005). Adicionalmente o nível de expressão do gene Ccp1 foi monitorado após o tratamento com peroxinitrito e nestas condições o seu nível foi aumentado,

indicando que citocromo C peroxidase pode atuar na detoxificação de peroxinitrito (Minard & McAlister-Henn, 2001). Em Paracoccidioides foi verificado que a citocromo C peroxidase pode auxiliar na resistência ao estresse oxidativo por meio da detoxificação dos elevados níveis de H₂O₂ (Dantas et al., 2008). A AhpC apresenta uma importante função antioxidante. Em S. cerevisiae a proteína AHP1 foi identificada e caracterizada como uma proteína da família AhpC/TSA peroxiredoxina. Análises de superexpressão e deleção do gene Ahp1 revelaram que esta proteína apresenta propriedades antioxidantes a hidroperóxidos. Adicionalmente, foi avaliada a importância dos sistemas tioredoxina e glutationa para a função de AHP1. A enzima apresenta a função antioxidante de maneira dependende ao sistema tioredoxina (Lee et al., 1999). Em Porphyromonas gingivalis, Azospirillum brasilense e Salmonella entérica a proteína AhpC contribui para a proteção contra o estresse oxidativo (Okano et al., 2006; Hebrard et al., 2009; Wasim et al., 2009). Análise proteômica de Staphylococcus aureus revelou que AhpC tem seus níveis de expressão elevados em resposta ao estresse por H₂O₂, indicando que a indução desta enzima pode complementar as estratégias utilizadas no combate à EROs (Wolf et al., 2008). Em Helicobacter pylori, também foi demonstrado que a AhpC é uma importante enzima antioxidante. Durante os ensaios com mutantes nulo para AhpC foi observado que a atividade da catalase era parcialmente inativada. Após investigações, foi identificado que na linhagem mutante havia o acúmulo de hidroperóxidos orgânicos, os substratos da AhpC e que estes substratos inativavam parcialmente a catalase. Estes dados revelaram haver uma via alternativa na detoxificação de hidroperóxidos orgânicos, consequentemente inibindo a inativação da catalase (Wang et al., 2004). Em C. albicans foi também demonstrado que AhpC, bem como as enzimas do sistema tioredoxina são induzidas durante a formação do biofilme indicando que, nestas condições, estas leveduras possam resistir ao estresse oxidativo e aos antifúngicos comumente utilizados por meio da indução de enzimas antioxidantes (Seneviratne et al., 2008). Em Paracoccidioides ainda não há estudos sobre a função de AhpC, porém a sua sequência codificante foi descrita e relacionada ao estresse oxidativo (Felipe et al., 2003; Campos et al., 2005; Felipe et al., 2005b).

O sistema tioredoxina é composto por diversas moléculas que interagem com resíduos de cisteína, sendo um dos principais reguladores no processo de redução de tiois na célula. EROs modulam o estado tiol-redox celular e neste contexto, o sistema tioredoxina torna-se muito importante, uma vez que pode restaurar o balanço entre redução e oxidação celular, favorecendo

assim o funcionamento normal da célula em condições de estresse (Yoshihara *et al.*, 2010). Em *S. cerevisiae* observou-se que a superexpressão do gene codificante para a tioredoxina aumenta a defesa redox (Gomez-Pastor *et al.*, 2010) e que o sistema tioredoxina pode funcionar como uma alternativa na redução da glutationa oxidada *in vivo*, o que aumentaria a resistência desta leveduras ao estresse oxidativo (Tan *et al.*, 2010). Yoshihara e colaboradores verificaram que o sistema tioredoxina não atua simplesmente como um detoxificador de EROs, mas também como um importante regulador da resposta ao estresse oxidativo por meio da interação proteína-proteína. Um exemplo é a interação entre a peroxiredoxina e o sistema tioredoxina que, quando associados, atuam degradando o H_2O_2 (Yoshihara *et al.*, 2010). Três isoformas de tioredoxina foram responsivas ao estresse oxidativo indicando que *Paracoccidioides* também tenha utilizado estas enzimas como parte do arsenal antioxidante conseguindo, possivelmente, neutralizar o H_2O_2 e os efeitos causados por este.

As enzimas antioxidantes supracitadas caracterizaram a principal resposta de *Paracoccidioides* ao estresse oxidativo. Os níveis aumentados destas enzimas sugerem que este fungo respondeu ao tratamento com H_2O_2 ativando várias vias do complexo sistema antioxidante, as quais indicam ter detoxificado o H_2O_2 .

Para resistir ao estresse oxidativo *Paracoccidioides* parece ter induzido não somente o sistema antioxidante primário, composto pelas enzimas antioxidantes, mas também o sistema antioxidante secundário, composto por moléculas que atuam no reparo dos danos causados pelas EROs. As chaperonas são exemplos de moléculas antioxidantes secundárias que possivelmente atuaram no reparo aos danos causados pelo H_2O_2 . As chaperonas são importantes para a célula tanto em condições normais quanto em condições de estresse, quando a oxidação de diversas proteínas pode ser ocasionada. Estas chaperonas atuam corrigindo o enovelamento de proteínas oxidadas e também atuam no transporte de proteínas às organelas específicas como aos lisossomos (Godon *et al.*, 1998; Riezman, 2004).

As proteínas do choque térmico são geralmente consideradas chaperonas devido a sua habilidade em enovelar e restaurar o enovelamento de proteínas, um processo crítico observado em diferentes condições de estresse (Brosnan *et al.*, 2000). Kim e colaboradores avaliaram a resposta adaptativa de *S. cerevisiae* ao estresse oxidativo e puderam observar que as proteínas do choque térmico apresentavam-se induzidas e também reprimidas. Os autores sugerem que a

repressão foi devido a possíveis carbonilações sofridas por estas proteínas, já que são proteínasalvo de danos oxidativos (Kim *et al.*, 2011; Pusztahelyi *et al.*, 2011).

Outro aspecto relacionado à defesa e virulência apresentada por *Paracoccidioides* foi a indução da proteína dehalogenase haloacida (*Haloacid Dehalogenase* -HAD). Esta proteína ainda não foi caracterizada como responsiva ao estresse causado pelo H₂O₂, entretanto sua importância tem sido descrita e relacionada ao processo de invasão fúngica ao hospedeiro. Um estágio crucial durante o processo infeccioso é a adesão de *Paracoccidioides* às células epiteiais pulmonares, e neste contexto as proteínas da família HAD tem se apresentado como importantes adesinas. Por meio do silenciamento de genes (Interferência em RNAs- iRNA) em *Paracoccidioides* verificouse que a *Pb*HAD32 (*HAD-superfamily hydrolase* - PADG_02181) favorece a adesão fúngica às células epiteliais humanas e aumenta a virulência do fungo em modelos de infecção experimental. Os autores sugerem que esta proteína se liga à matriz extracelular e modula a interação inicial do fungo com o hospedeiro (Hernandez *et al.*, 2010) sugerindo que esta também auxilie *Paracoccidioides* a se estabelecer, possivelmente resistindo ao estresse encontrado no hospedeiro.

Embora as aldeído desidrogenases sejam classicamente relacionadas ao metabolismo de ácidos graxos, são também moléculas antioxidantes e responsivas a várias condições de estresse (Brocker *et al.*, 2010; Muzio *et al.*, 2012). Aldeído desidrogenases detoxificam os aldeídos gerados pelo estresse e ajudam a manter o equilíbrio redox intracelular (Blokhina *et al.*, 2003; Muzio *et al.*, 2012). De forma similar, betaíne aldeído desidrogenase foi categorizada em defesa e virulência celular por ser uma oxidoreductase e por apresentar proteção frente à condição de estresse, já que produz glicina betaína e NADPH (Munoz-Clares *et al.*, 2010).

5.2.2. – Energia e metabolismo

Foram observadas mudanças na expressão de proteínas envolvidas com o metabolismo, sugerindo que *Paracoccidioides* tenha provavelmente redirecionado o fluxo metabólico em resposta ao estresse oxidativo. Em uma revisão da literatura, Gruning e colaboradores descreveram que alterações metabólicas são cruciais na resposta ao estresse oxidativo, uma vez que o redirecionado o fluxo metabólico da glicólise para a via das pentoses fosfato funciona como um estabilizador imediato do estado redox celular. Ao ser exposta ao estresse oxidativo, a

célula aumenta a produção de NADPH, um importante redutor celular, por meio da ativação da via das pentoses fosfato (Grüning *et al.*, 2010).

Sugere-se que a via das pentoses fosfato funcione como um regulador-chave da resposta ao estresse oxidativo, sendo ativada por meio do rearranjo dinâmico no fluxo metabólico (Ralser *et al.*, 2007; Grant, 2008). *Paracoccidioides* parece ter ativado a via das pentoses fosfato, pois em seu perfil proteômico foram identificadas as enzimas transcetolase, transaldolase e fosfogluconato desidrogenase com um aumento significante na expressão, indicando que *Paracoccidioides*, a exemplo de outros microorganismos, ativou a via das pentoses fosfato em resposta ao estresse oxidativo causado pelo H_2O_2 . No entanto, para controlar a homeostase celular em condições de estresse oxidativo, a célula necessita fornecer um ambiente redutor para que as enzimas antioxidantes possam ser ativadas e consequentemente consigam manter o estado redox em equilíbrio (Grüning *et al.*, 2010; Kruger *et al.*, 2011) Os níveis de NADPH apresentados por *Paracoccidioides* durante o estresse oxidativo foram aumentados, indicando que o potencial redutor foi aumentado em resposta ao estresse, fato observado também em *S. cerevisiae* e *P. fluorescens* durante o estresse oxidativo (Singh *et al.*, 2007; Kim *et al.*, 2011).

NADH também é muito importante no combate ao estresse oxidativo, pois semelhantemente ao NADPH esta molécula também atua como um agente redutor. Estudos em *P*. *fluorescens*, descrevem a importância de enzimas produtoras de NADH, especialmente a α -cetoglutarato desidrogenase. Esta enzima tem uma importante função no combate ao estresse por atuar na produção de NADH e pela detoxificação de EROs por meio da α -cetoglutarato, uma proteína antioxidante. Quando exposta ao estresse por H₂O₂, *P. fluorescens* altera seu metabolismo aumentando a produção de α -cetoglutarato (Lemire *et al.*, 2010). Adicionalmente a importância da α -cetoglutarato desidrogenase para o combate ao estresse oxidativo foi também descrita em células de mamíferos tratadas com H₂O₂ (Andrae *et al.*, 1985; Desagher *et al.*, 1997). Em *Paracoccidioides* esta enzima também se mostrou ser importante na resposta ao estresse, pois foi identificada como responsiva ao tratamento com o H₂O₂ e sua ativação pode ter detoxificado EROs ou ter favorecido a produção de NADH.

A identificação das enzimas piruvato carboxilase, malato desidrogenase e fosfoenolpiruvato carboxiquinase também apontam para o redirecionamento no fluxo metabólico em *Paracoccidioides*. A resposta protetora ao estresse ocorreria por meio da transferência de elétrons

de NADH mitocondrial para NAD citosólico empregando-se as enzimas piruvato carboxilase, malato desidrogenase e fosfoenolpiruvato carboxiquinase, restaurando assim o potencial redox por meio da produção de NADH (Lehninger *et al.*, 2005; Grüning *et al.*, 2010).

A biossíntese de alguns aminoácidos é relevante para a resposta ao estresse oxidativo. A biossíntese de cisteína tem sido reportada em A. nidulans demonstrando ser uma das estratégias utilizadas por este fungo para resistir ao estresse oxidativo (Pusztahelyi et al., 2011). Em *Paracoccidioides* a sulfato adenilitransferase foi induzida após a exposição ao H_2O_2 . Esta enzima cataliza a produção de adenosina 5'- fosfosulfato por meio dos ions sulfato e de ATP; esta reação possibilita biossíntese cisteína a partir de serina. A serina, por sua vez é a precursora da glicina, que é formada após a remoção de um átomo de carbono por meio da enzima serina hidroximetil transferase, induzida também por Paracoccidioides em resposta ao estresse. A glicina desidrogenase também foi responsiva ao estresse em Paracoccidioides e atua catalisando a conversão redutora de glioxalato à glicina, que por sua vez é um precursor para a síntese de glutationa (Penninckx, 2000; Grüning et al., 2010). A via biossintética de aminoácidos contendo enxofre foi representada pela adenosilhomocisteinase e pela metionina sintase independente de cobalamina, enquanto que a biossíntese do glutamato foi evidenciada pela indução da enzima glutamato desidrogenase. Tomando estes dados em conjunto, podemos sugerir que Paracoccidioides aumentou a expressão de enzimas relacionadas à síntese de cisteína, glicina e glutamato, possivelmente para ofertar quantidades suficientes destes aminoácidos aos diferentes processos celulares, como para a produção de moléculas antioxidantes, por exemplo, a glutationa.

Em fungos, durante o estresse oxidativo, a captação de amônia e glicose são reduzidas (Osorio *et al.*, 2003; Li *et al.*, 2008a). Embora a amônia seja um componente importante para a biossíntese de compostos nitrogenados, a sua presença tem sido envolvida com a indução do estresse oxidativo e nitrosativo, em células mamíferas. Estudos indicam que a amônia aumenta a produção de superóxido e diminui a atividade antioxidante das enzimas glutationa peroxidase, SOD e catalase (Norenberg, 2003; Skowronska & Albrecht, 2012), sugerindo que em *Paracoccidioides* a indução da enzima glutamato desidrogenase esteja possivelmente relacionada à assimilação de nitrogênio e a biossíntese de glutamato. Outras enzimas relacionadas ao metabolismo de nitrogênio foram induzidas em *Paracoccidioides*, como a 2 nitropropanodioxigenase e a O-acetylhomoserine (tiol)-liase. A captação de glicose também parece estar diminuída uma vez que as enzimas frutose 1,6 bifosfatase, fosfoenolpiruvato carboxiquinase e

piruvato carboxilase, pertencentes à gliconeogênese, foram induzidas durante a resposta de *Paracoccidioides* ao estresse. Estes resultados indicam que, semelhantemente às observações de Li e colaboradores (Li *et al.*, 2008a), *Paracoccidioides* também parece ter a captação de glicose reduzida durante o estresse oxidativo.

Adicionalmente, foi identificada a regulação negativa de algumas proteínas que poderiam ser fontes endógenas de EROs. As enzimas mitocondriais citocromo C oxidase e fumarato redutase foram reprimidas possivelmente para evitar a produção de EROs durante a fosforilação oxidativa na cadeia respiratória. A enzima carnitina O-acetiltransferase e as isoformas da enzima enoil CoA hidratase tiveram suas expressões diminuídas provavelmente para evitar a formação de H_2O_2 durante os processos de β -oxidação de ácidos graxos.

O perfil protéico de *Paracoccidioides* caracterizou-se principalmente pelo aumento na expressão de proteínas relacionadas à defesa e virulência, ao ciclo do ácido tricarboxílico e à via das pentoses fosfato.

5.2.3. - Transcrição, síntese protéica e ciclo celular/processamento de DNA

Diferentes estudos sobre a resposta ao estresse oxidativo tem demonstrado haver uma Gash e colaboradores identificaram resposta comum ao estresse. Neste contexto, aproximadamente 600 genes responsivos a estresse com regulação negativa. Estes genes foram agrupados e correlacionados principalmente com os processos envolvidos com o crescimento celular, isto é, relacionados com os vários aspectos do metabolismo de RNA, por exemplo, síntese e processamento de tRNA, iniciação e elongação da tradução e processamento e splicing de RNA, bem como de genes codificantes para proteínas ribossomais (Gasch et al., 2000). Em nossas análises também foi possível identificar a diminuição na expressão de proteínas ribossomais (categorizadas em síntese protéica) e de proteínas relacionadas à transcrição e ao ciclo celular/processamento de DNA; entretanto a concordância não foi aplicável para as proteínas envolvidas no processo de iniciação e elongação da tradução (fator 1A e 4E-1 da iniciação da tradução eucariótica e o fator 1α e 2 da elongação) uma vez que estas apresentaramse induzidas durante a resposta de *Paracoccidioides* ao estresse oxidativo, demonstrando que embora haja elementos comuns na resposta ao estresse, observa-se pecularidades da resposta que possivelmente diferenciem a sensibilidade apresentada por cada espécie a uma mesma condição de estresse.

5.3. – Oxidoredutases

Outra classe de enzimas importantes para a resposta ao estresse oxidativo são as oxidoredutases. Estas enzimas contribuem para a manutenção do estado redox celular mediante a transferência de elétrons a partir de uma molécula oxidante para outra redutora. Essas enzimas compõem o sistema redox, geralmente utilizam NAD(P)H como fonte redutora para proteger macromoléculas e estruturas celulares contra os danos causados pelo estresse oxidativo (Thon *et al.*, 2007; Fomenko & Gladyshev, 2012). Identificamos a indução de 34 oxidoreductases no perfil proteômico *Paracoccidioides*, indicando-nos que estas proteínas favoreceram a adaptação deste fungo ao estresse oxidativo inicial e tardio.

6 - CONCLUSÕES

Este trabalho foi o primeiro a caracterizar o perfil proteômico de *Paracoccidioides* em resposta ao estresse oxidativo causado pelo H_2O_2 . Foram identificadas 179 proteínas diferencialmente expressas, sendo 102 em resposta ao estresse inicial (2 horas) e 77 responsivas ao estresse tardio (6 horas). A análise proteômica nos possibilitou estudar os eventos moleculares associados à resposta adaptativa de *Paracoccidioides* durante o estresse oxidativo. Foi observada a proeminente ativação das enzimas antioxidantes bem como o remodelamento do metabolismo do fungo evidenciado pela indução de vias fornecedoras de NAD(P)H, um substrato redutor utilizado no combate aos efeitos oxidativos promovido pelo H_2O_2 . Adicionalmente, foram observadas alterações no metabolismo por meio da ativação de enzimas da gliconeogênese e da biossíntese de aminoácidos que são normalmente utilizados na composição de moléculas antioxidantes. Em contrapartida, foi observada a repressão de enzimas que poderiam contribuir com a produção endógena de EROs, como aquelas envolvidas na cadeia respiratória e aquelas que participam dos processos de β -oxidação, demonstrando desta forma que *Paracoccidioides* utilizou diferentes estratégias para combater o estresse oxidativo.

Nosso estudo revelou que *Paracoccidioides* possui um amplo repertório antioxidante, composto por diferentes proteínas que atuam de maneira complementar e que foram capazes de detoxificar as EROs e de minimizar os efeitos causados pelo estresse oxidativo.

7 – PERSPECTIVAS

1. Realizar experimentos visando à transformação de *Paracoccidioides* mediada por *Agrobacterium tumefaciens* para análise de silenciamento de genes alvos para o estresse oxidativo, como o silenciamento do gene codificantes para citocromo C peroxidase.

2. Selecionar mutantes sensíveis ao estresse oxidativo e caracterizá-los.

3. Realizar ensaios de virulência utilizando os transformantes.

4. Analisar os níveis transcricionais de *Paracoccidioides* em resposta ao H_2O_2 por meio do seqüenciamento de alta performance.

8 – REFERÊNCIAS BIBLIOFRÁGRIFAS

Andrae, U., Singh, J., and Ziegler-Skylakakis, K. (1985). Pyruvate and related alpha-ketoacids protect mammalian cells in culture against hydrogen peroxide-induced cytotoxicity. Toxicol Lett 28, 93-98.

Bagagli, E., Franco, M., Bosco Sde, M., Hebeler-Barbosa, F., Trinca, L.A., and Montenegro, M.R. (2003). High frequency of *Paracoccidioides brasiliensis* infection in armadillos (Dasypus novemcinctus): an ecological study. Med Mycol *41*, 217-223.

Bailao, A.M., Schrank, A., Borges, C.L., Dutra, V., Molinari-Madlum, E.E.W.I, Felipe, M.S., Mendes-Giannini, M.J.S., Martins, W.S., Pereira, M., and Soares, C.M.A. (2006). Differential gene expression by *Paracoccidioides brasiliensis* in host interaction conditions: representational difference analysis identifies candidate genes associated with fungal pathogenesis. Microbes Infect *8*, 2686-2697.

Bailao, A.M., Shrank, A., Borges, C.L., Parente, J.A., Dutra, V., Felipe, M.S., Fiuza, R.B., Pereira, M., and Soares, C.M.A. (2007). The transcriptional profile of *Paracoccidioides brasiliensis* yeast cells is influenced by human plasma. FEMS Immunol Med Microbiol *51*, 43-57.

Barreiros, A.L.B.S., David, J.M., and David, J.P. (2006). Oxidative stress: relations between the formation of reactive species and the organism's defense. Quím Nova 29.

Battistuzzi, G., Bellei, M., Bortolotti, C.A., and Sola, M. (2010). Redox properties of heme peroxidases. Arch Biochem Biophys 500, 21-36.

Belozerskaia, T.A., and Gessler, N.N. (2007). Reactive oxygen species and the strategy of the antioxidant defense in fungi: a review. Prikl Biokhim Mikrobiol *43*, 565-575.

Bienert, G.P., Moller, A.L., Kristiansen, K.A., Schulz, A., Moller, I.M., Schjoerring, J.K., and Jahn, T.P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J Biol Chem 282, 1183-1192.

Bindoli, A., Fukuto, J.M., and Forman, H.J. (2008). Thiol chemistry in peroxidase catalysis and redox signaling. Antioxid Redox Signal 10, 1549-1564.

Blokhina, O., Virolainen, E., and Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot *91 Spec No*, 179-194.

Blotta, M.H., Mamoni, R.L., Oliveira, S.J., Nouer, S.A., Papaiordanou, P.M., Goveia, A., and Camargo, Z.P. (1999). Endemic regions of paracoccidioidomycosis in Brazil: a clinical and epidemiologic study of 584 cases in the southeast region. Am J Trop Med Hyg *61*, 390-394.

Bogdan, C. (2007). Oxidative burst without phagocytes: the role of respiratory proteins. Nat Immunol 8, 1029-1031.

Branco, M.R., Marinho, H.S., Cyrne, L., and Antunes, F. (2004). Decrease of H_2O_2 plasma membrane permeability during adaptation to H_2O_2 in *Saccharomyces cerevisiae*. J Biol Chem 279, 6501-6506.

Brocker, C., Lassen, N., Estey, T., Pappa, A., Cantore, M., Orlova, V.V., Chavakis, T., Kavanagh, K.L., Oppermann, U., and Vasiliou, V. (2010). Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J Biol Chem 285, 18452-18463.

Brosnan, M.P., Donnelly, D., James, T.C., and Bond, U. (2000). The stress response is repressed during fermentation in brewery strains of yeast. J Appl Microbiol 88, 746-755.

Brown, A.J., Haynes, K., and Quinn, J. (2009). Nitrosative and oxidative stress responses in fungal pathogenicity. Curr Opin Microbiol 12, 384-391.

Brummer, E., Castaneda, E., and Restrepo, A. (1993). Paracoccidioidomycosis: an update. Clin Microbiol Rev *6*, 89-117.

Buitrago, M.J., Bernal-Martinez, L., Castelli, M.V., Rodriguez-Tudela, J.L., and Cuenca-Estrella, M. (2011). Histoplasmosis and paracoccidioidomycosis in a non-endemic area: a review of cases and diagnosis. J Travel Med *18*, 26-33.

But, P.G., Murav'ev, R.A., Fomina, V.A., and Rogovin, V.V. (2002). Antimicrobial activity of myeloperoxidase from neutrophil peroxisome. Izv Akad Nauk Ser Biol, 266-270.

Campos, E.G., Jesuino, R.S., Dantas A., S., Brigido M.M., and Felipe, M.S. (2005). Oxidative stress response in *Paracoccidioides brasiliensis*. Genet Mol Res 4, 409-429.

Carbonell, L.M., and Rodriguez, J. (1965). Transformation of Mycelial and Yeast Forms of *Paracoccidioides brasiliensis* in Cultures and in Experimental Inoculations. J Bacteriol *90*, 504-510.

Carrero, L.L., Nino-Vega, G., Teixeira, M.M., Carvalho, M.J., Soares, C.M.A., Pereira, M., Jesuino, R.S., McEwen, J.G., Mendoza, L., Taylor, J.W., Felipe, M.S., and San-Blas, G. (2008). New *Paracoccidioides brasiliensis* isolate reveals unexpected genomic variability in this human pathogen. Fungal Genet Biol 45, 605-612.

Chagas, R.F., Bailao, A.M., Pereira, M., Winters, M.S., Smullian, A.G., Deepe, G.S.Jr., and Soares, C.M.A. (2008). The catalases of *Paracoccidioides brasiliensis* are differentially regulated: protein activity and transcript analysis. Fungal Genet Biol, 1470-1478.

Chauhan, N., Latge, J.P., and Calderone, R. (2006). Signalling and oxidant adaptation in *Candida albicans* and *Aspergillus fumigatus*. Nat Rev Microbiol 4, 435-444.

Chelikani, P., Carpena, X., Perez-Luque, R., Donald, L.J., Duckworth, H.W., Switala, J., Fita, I., and Loewen, P.C. (2005). Characterization of a large subunit catalase truncated by proteolytic cleavage. Biochemistry *44*, 5597-5605.

Collinson, L.P., and Dawes, I.W. (1992). Inducibility of the response of yeast cells to peroxide stress. J Gen Microbiol *138*, 329-335.

Costa, M., Borges, C.L., Bailao, A.M., Meirelles, G.V., Mendonca, Y.A., Dantas, S.F., de Faria, F.P., Felipe, M.S., Molinari-Madlum, E.E., Mendes-Giannini, M.J., Fiuza, R.B., Martins W.S., Pereira, M. and Soares, C.M.A. (2007). Transcriptome profiling of *Paracoccidioides brasiliensis* yeast-phase cells recovered from infected mice brings new insights into fungal response upon host interaction. Microbiology *153*, 4194-4207.

Costa, V.M., Amorim, M.A., Quintanilha, A., and Moradas-Ferreira, P. (2002). Hydrogen peroxideinduced carbonylation of key metabolic enzymes in *Saccharomyces cerevisiae*: the involvement of the oxidative stress response regulators Yap1 and Skn7. Free Radic Biol Med *33*, 1507-1515. Coutinho, Z.F., Silva, D., Lazera, M., Petri, V., Oliveira, R.M., Sabroza, P.C., and Wanke, B. (2002). Paracoccidioidomycosis mortality in Brazil (1980-1995). Cad Saude Publica 18, 1441-1454.

Cox, G.M., Harrison, T.S., McDade, H.C., Taborda, C.P., Heinrich, G., Casadevall, A., and Perfect, J.R. (2003). Superoxide dismutase influences the virulence of *Cryptococcus neoformans* by affecting growth within macrophages. Infect Immun 71, 173-180.

Cruz, W.A.S. (2010). Atividade de mieloperoxidase e produção de oxigênio singlete em neutrófilo e células monocíticas. In Faculdade de Ciências Farmacêuticas (São Paulo, Universidade de São Paulo), pp. 1-60.

Culotta, V.C. (2000). Superoxide dismutase, oxidative stress, and cell metabolism. Curr Top Cell Regul *36*, 117-132.

da Fonseca, C.A., Jesuino, R.S., Felipe, M.S., Cunha, D.A., Brito, W.A., and Soares, C.M.A. (2001). Two-dimensional electrophoresis and characterization of antigens from *Paracoccidioides brasiliensis*. Microbes Infect *3*, 535-542.

Dantas, A., Andrade, R.V., de Carvalho, M.J., Felipe, M.S., and Campos, E.G. (2008). Oxidative stress response in *Paracoccidioides brasiliensis*: assessing catalase and cytochrome c peroxidase. Mycol Res *112*, 747-756.

de Farias, M.R., Condas, L.A., Ribeiro, M.G., Bosco Sde, M., Muro, M.D., Werner, J., Theodoro, R.C., Bagagli, E., Marques, S.A., and Franco, M. (2011). Paracoccidioidomycosis in a dog: case report of generalized lymphadenomegaly. Mycopathologia *172*, 147-152.

Desagher, S., Glowinski, J., and Premont, J. (1997). Pyruvate protects neurons against hydrogen peroxideinduced toxicity. J Neurosci 17, 9060-9067.

Dominguez, L., Sosa-Peinado, A., and Hansberg, W. (2010). Catalase evolved to concentrate H_2O_2 at its active site. Arch Biochem Biophys 500, 82-91.

Droge, W. (2002). Free radicals in the physiological control of cell function. Physiol Rev 82, 47-95.

Elsayed, N.M. (2001). Antioxidant mobilization in response to oxidative stress: a dynamic environmentalnutritional interaction. Nutrition *17*, 828-834.

Fang, F.C. (2004). Antimicrobial reactive oxygen and nitrogen species: concepts and controversies. Nat Rev Microbiol 2, 820-832.

Fedoroff, N. (2006). Redox regulatory mechanisms in cellular stress responses. Ann Bot 98, 289-300.

Felipe, M.S., Andrade, R.V., Arraes, F.B., Nicola, A.M., Maranhao, A.Q., Torres, F.A., Silva-Pereira, I., Pocas-Fonseca, M.J., Campos, E.G., Moraes, L.M., Andrade, P.A., Tavares, A.H., Silva, S.S., Kyaw, C.M., Souza, D.P., Pereira, M., Jesuíno R.S., Andrade, E.V., Parente, J.A., Oliveira, G.S., Barbosa, M.S., Martins, N.F., Fachin, A.L., Cardoso, R.S., Passos, G.A., Almeida, N.F., Walter, M.E., Soares, C.M.A., Carvalho, M.J., and Brigido, M.M. (2005a). Transcriptional profiles of the human pathogenic fungus *Paracoccidioides brasiliensis* in mycelium and yeast cells. J Biol Chem 280, 24706-24714.

Felipe, M.S., Andrade, R.V., Petrofeza, S.S., Maranhao, A.Q., Torres, F.A., Albuquerque, P., Arraes, F.B., Arruda, M., Azevedo, M.O., Baptista, A.J., Bataus, L.A.M., Borges, C.L., Campos, E.G., Cruz, Daher, M.R.B.S., Dantas, A., Ferreira, M.A.S.V., Ghil, G.V., Jesuino, R.S.A., Kyaw, C.M., Leitao, L., Martins, C.R., Moraes, L.M.P., Neves, E.O., Nicola, A.M., Alves, E.S., Parente, J.A., Pereira, M., Pocas-Fonseca, M.J., Resende, R., Ribeiro, B.M., Saldanha, R.R., Santos, S.C., Silva-Pereira, I., Silva, M.A.S., Silveira, E., Simoes, I. C., Soares, R.B.A., Souza, D.P.M., De-Souza, T., Andrade, E.V., Xavier, M.A.S., Veiga, H.P., Venancio, E.J., Carvalho, M.J.A., Oliveira, A.G., Inoue, M.K., Almeida, N.F., Walter, M.E.M.T., Soares, C.M.A., and Brigido, M.M. (2003). Transcriptome characterization of the dimorphic and pathogenic fungus *Paracoccidioides brasiliensis* by EST analysis. Yeast *20*, 263-271.

Felipe, M.S., Torres, F.A., Maranhao, A.Q., Silva-Pereira, I., Pocas-Fonseca, M.J., Campos, E.G., Moraes, L.M., Arraes, F.B., Carvalho, M.J., Andrade, R.V., Nicola, A.M., Teixeira, M.M., Jesuíno, R.S., Pereira, M., Soares, C.M.A., and Brígido, M.M. (2005b). Functional genome of the human pathogenic fungus *Paracoccidioides brasiliensis*. FEMS Immunol Med Microbiol *45*, 369-381.

Fomenko, D.E., and Gladyshev, V.N. (2012). Comparative genomics of thiol oxidoreductases reveals widespread and essential functions of thiol-based redox control of cellular processes. Antioxid Redox Signal *16*, 193-201.

Forman, H.J., and Azzi, A. (1997). On the virtual existence of superoxide anions in mitochondria: thoughts regarding its role in pathophysiology. FASEB J 11, 374-375.

Forman, H.J., and Torres, M. (2001). Redox signaling in macrophages. Mol Aspects Med 22, 189-216.

Franco, L., Najvar, L., Gomez, B.L., Restrepo, S., Graybill, J.R., and Restrepo, A. (1998). Experimental pulmonary fibrosis induced by *Paracoccidioides brasiliensis* conidia: measurement of local host responses. Am J Trop Med Hyg 58, 424-430.

Franco, M., Montenegro, M.R., Mendes, R.P., Marques, S.A., Dillon, N.L., and Mota, N.G. (1987). Paracoccidioidomycosis: a recently proposed classification of its clinical forms. Revista da Sociedade Brasileira de Medicina Tropical *20*, 129-132.

Garcia-Leiro, A., Cerdan, M.E., and Gonzalez-Siso, M.I. (2010). Proteomic analysis of the oxidative stress response in *Kluyveromyces lactis* and effect of glutathione reductase depletion. J Proteome Res 9, 2358-2376.

Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., and Brown, P.O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell *11*, 4241-4257.

Giles, S.S., Perfect, J.R., and Cox, G.M. (2005). Cytochrome c peroxidase contributes to the antioxidant defense of *Cryptococcus neoformans*. Fungal Genet Biol *42*, 20-29.

Giles, S.S., Stajich, J.E., Nichols, C., Gerrald, Q.D., Alspaugh, J.A., Dietrich, F., and Perfect, J.R. (2006). The *Cryptococcus neoformans* catalase gene family and its role in antioxidant defense. Eukaryot Cell 5, 1447-1459.

Giorgio, M., Trinei, M., Migliaccio, E., and Pelicci, P.G. (2007). Hydrogen peroxide: a metabolic byproduct or a common mediator of ageing signals? Nat Rev Mol Cell Biol 8, 722-728. Giraldo, R., Restrepo, A., Gutierrez, F., Robledo, M., Londono, F., Hernandez, H., Sierra, F., and Calle, G. (1976). Pathogenesis of paracoccidioidomycosis: a model based on the study of 46 patients. Mycopathologia 58, 63-70.

Godon, C., Lagniel, G., Lee, J., Buhler, J.M., Kieffer, S., Perrot, M., Boucherie, H., Toledano, M.B., and Labarre, J. (1998). The H₂O₂ stimulon in *Saccharomyces cerevisiae*. J Biol Chem 273, 22480-22489.

Gomez-Pastor, R., Perez-Torrado, R., Cabiscol, E., Ros, J., and Matallana, E. (2010). Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact 9, 9.

Gonzalez, J.F., Montiel, N.A., and Maass, R.L. (2010). First report on the diagnosis and treatment of encephalic and urinary paracoccidioidomycosis in a cat. J Feline Med Surg 12, 659-662.

Grant, C.M. (2008). Metabolic reconfiguration is a regulated response to oxidative stress. J Biol 7, 1.

Graves, P.R., and Haystead, T.A. (2002). Molecular biologist's guide to proteomics. Microbiol Mol Biol Rev *66*, 39-63; table of contents.

Grivennikova, V.G., and Vinogradov, A.D. (2006). Generation of superoxide by the mitochondrial Complex I. Biochim Biophys Acta *1757*, 553-561.

Grüning, N.-M., Lehrach, H., and Ralser, M. (2010). Regulatory crosstalk of the metabolic network. Trends in Biochemical Sciences *35*, 220-227.

Gutteridge, J.M., and Halliwell, B. (1989). Iron toxicity and oxygen radicals. Baillieres Clin Haematol 2, 195-256.

Gutteridge, J.M., and Halliwell, B. (2000). Free radicals and antioxidants in the year 2000. A historical look to the future. Ann N Y Acad Sci 899, 136-147.

Gutteridge, J.M., and Halliwell, B. (2010). Antioxidants: Molecules, medicines, and myths. Biochem Biophys Res Commun 393, 561-564.

Halliwell, B. (2006a). Phagocyte-derived reactive species: salvation or suicide? Trends Biochem Sci 31, 509-515.

Halliwell, B. (2006b). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141, 312-322.

Halliwell, B. (2007). Biochemistry of oxidative stress. Biochem Soc Trans 35, 1147-1150.

Halliwell, B. (2011). Free radicals and antioxidants - quo vadis? Trends Pharmacol Sci 32, 125-130.

Halliwell, B., Clement, M.V., Ramalingam, J., and Long, L.H. (2000). Hydrogen peroxide. Ubiquitous in cell culture and in vivo? IUBMB Life 50, 251-257.

Hansberg, W., Salas-Lizana, R., and Dominguez, L. (2012). Fungal catalases: function, phylogenetic origin and structure. Arch Biochem Biophys 525, 170-180.

Hebrard, M., Viala, J.P., Meresse, S., Barras, F., and Aussel, L. (2009). Redundant hydrogen peroxide scavengers contribute to *Salmonella* virulence and oxidative stress resistance. J Bacteriol *191*, 4605-4614.

Hernandez, O., Almeida, A.J., Gonzalez, A., Garcia, A.M., Tamayo, D., Cano, L.E., Restrepo, A., and McEwen, J.G. (2010). A 32-KDa hydrolase plays an important role in *Paracoccidioides brasiliensis* adherence to host cells and influences pathogenicity. Infect Immun.

Herrero, E., Ros, J., Belli, G., and Cabiscol, E. (2008). Redox control and oxidative stress in yeast cells. Biochim Biophys Acta *1780*, 1217-1235.

Hwang, C.S., Rhie, G.E., Oh, J.H., Huh, W.K., Yim, H.S., and Kang, S.O. (2002). Copper- and zinccontaining superoxide dismutase (Cu/ZnSOD) is required for the protection of *Candida albicans* against oxidative stresses and the expression of its full virulence. Microbiology *148*, 3705-3713.

Jamieson, D.J. (1998). Oxidative stress responses of the yeast *Saccharomyces cerevisiae*. Yeast 14, 1511-1527.

Johnson, H., Whiteford, J.R., Eckert, S.E., and Spanu, P.D. (2003). Production and secretion of *Aspergillus nidulans* catalase B in filamentous fungi driven by the promoter and signal peptide of the *Cladosporium fulvum* hydrophobin gene hcf-1. Curr Genet 44, 155-163.

Jones, D.P. (2008). Radical-free biology of oxidative stress. Am J Physiol Cell Physiol 295, C849-868.

Joseph, E.A., Mare, A., and Irving, W.R.Jr. (1966). Oral South American blastomycosis in the United States of America. Report of a case. Oral Surg Oral Med Oral Pathol *21*, 732-737.

Kamei, K., Sano, A., Kikuchi, K., Makimura, K., Niimi, M., Suzuki, K., Uehara, Y., Okabe, N., Nishimura, K., and Miyaji, M. (2003). The trend of imported mycoses in Japan. J Infect Chemother 9, 16-20.

Kawasaki, L., and Aguirre, J. (2001). Multiple catalase genes are differentially regulated in *Aspergillus nidulans*. J Bacteriol 183, 1434-1440.

Kim, I.S., Sohn, H.Y., and Jin, I. (2011). Adaptive stress response to menadione-induced oxidative stress in *Saccharomyces cerevisiae* KNU5377. J Microbiol *49*, 816-823.

Kirkman, H.N., and Gaetani, G.F. (2007). Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem Sci *32*, 44-50.

Kruger, A., Gruning, N.M., Wamelink, M.M., Kerick, M., Kirpy, A., Parkhomchuk, D., Bluemlein, K., Schweiger, M.R., Soldatov, A., Lehrach, H., Jakobs, C., and Ralser, M. (2011). The pentose phosphate pathway is a metabolic redox sensor and regulates transcription during the antioxidant response. Antioxid Redox Signal *15*, 311-324.

Kwon, M., Chong, S., Han, S., and Kim, K. (2003). Oxidative stresses elevate the expression of cytochrome c peroxidase in *Saccharomyces cerevisiae*. Biochim Biophys Acta *1623*, 1-5.

Lacaz, C.S. (1994). *Paracoccidioides brasiliensis*: morfology; Evolutionary cycle; Maitenance during Paprophytic Life; Biology; Virulence; Taxonom. In Paracoccidioidomycosis, L.C. Franco MF, Restrepo A, Del Negro G, ed. (Boca Raton, USA, CRC Press), pp. PP. 13-25.

Lacaz, C.S., Porto, E., Martins, J.E.C., Heins-Vaccari, E.M., and Takahashi, M.N. (2002). Tratado de Micologia Médica (São Paulo, Savier).

Lackner, D.H., Schmidt, M.W., Wu, S., Wolf, D.A., and Bahler, J. (2012). Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast. Genome Biol *13*, R25.

Landis, G.N., and Tower, J. (2005). Superoxide dismutase evolution and life span regulation. Mech Ageing Dev 126, 365-379.

Le Moan, N., Clement, G., Le Maout, S., Tacnet, F., and Toledano, M.B. (2006). The *Saccharomyces cerevisiae* proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways. J Biol Chem 281, 10420-10430.

Lee, J., Spector, D., Godon, C., Labarre, J., and Toledano, M.B. (1999). A new antioxidant with alkyl hydroperoxide defense properties in yeast. J Biol Chem 274, 4537-4544.

Lehninger, A.L., Nelson, D.L., and Cox, M.M. (2005). Lehninger principles of biochemistry, 4th edn (New York, W.H. Freeman).

Leitch, J.M., Yick, P.J., and Culotta, V.C. (2009). The right to choose: multiple pathways for activating copper,zinc superoxide dismutase. J Biol Chem 284, 24679-24683.

Lemire, J., Milandu, Y., Auger, C., Bignucolo, A., Appanna, V.P., and Appanna, V.D. (2010). Histidine is a source of the antioxidant, alpha-ketoglutarate, in *Pseudomonas fluorescens* challenged by oxidative stress. FEMS Microbiol Lett *309*, 170-177.

Lessing, F., Kniemeyer, O., Wozniok, I., Loeffler, J., Kurzai, O., Haertl, A., and Brakhage, A.A. (2007). The *Aspergillus fumigatus* transcriptional regulator AfYap1 represents the major regulator for defense against reactive oxygen intermediates but is dispensable for pathogenicity in an intranasal mouse infection model. Eukaryot Cell *6*, 2290-2302.

Li, Q., Abrashev, R., Harvey, L.M., and McNeil, B. (2008a). Oxidative stress-associated impairment of glucose and ammonia metabolism in the filamentous fungus, *Aspergillus niger* B1-D. Mycol Res *112*, 1049-1055.

Li, Q., McNeil, B., and Harvey, L.M. (2008b). Adaptive response to oxidative stress in the filamentous fungus *Aspergillus niger* B1-D. Free Radic Biol Med *44*, 394-402.

Lillig, C.H., and Holmgren, A. (2007). Thioredoxin and related molecules - from biology to health and disease. Antioxid Redox Signal 9, 25-47.

Lushchak, V.I. (2010). Adaptive response to oxidative stress: Bacteria, fungi, plants and animals. Comp Biochem Physiol C Toxicol Pharmacol.

Mangiaterra, M.L., Giusiano, G.E., Alonso, J.M., and Gorodner, J.O. (1999). *Paracoccidioides* brasiliensis infection in a subtropical region with important environmental changes. Bull Soc Pathol Exot 92, 173-176.

Marques, S.A., Franco, M.F., Mendes, R.P., Silva, N.C., Baccili, C., Curcelli, E.D., Feracin, A.C., Oliveira, C.S., Tagliarini, J.V., and Dillon, N.L. (1983). Epidemiologic aspects of paracoccidioidomycosis in the endemic area of Botucatu (Sao Paulo - Brazil). Rev Inst Med Trop Sao Paulo 25, 87-92.

Martchenko, M., Alarco, A.M., Harcus, D., and Whiteway, M. (2004). Superoxide dismutases in *Candida albicans*: transcriptional regulation and functional characterization of the hyphal-induced SOD5 gene. Mol Biol Cell *15*, 456-467.

Martinez, R. (2004). Paracoccidioidomicose. In Micologia Médica à luz de autores contemporâneos, J.J.C. Sidrim, and M.F.G. Rocha, eds. (Rio de Janeiro - RJ Brasil), pp. 202-221.

Mates, J.M., Segura, J.A., Alonso, F.J., and Marquez, J. (2008). Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol *82*, 273-299.

Matute, D.R., McEwen, J.G., Puccia, R., Montes, B.A., San-Blas, G., Bagagli, E., Rauscher, J.T., Restrepo, A., Morais, F., Nino-Vega, G., and Taylor, J.W. (2006). Cryptic speciation and recombination in the fungus *Paracoccidioides brasiliensis* as revealed by gene genealogies. Mol Biol Evol 23, 65-73.

McEwen, J.G., Bedoya, V., Patino, M.M., Salazar, M.E., and Restrepo, A. (1987). Experimental murine paracoccidiodomycosis induced by the inhalation of conidia. J Med Vet Mycol 25, 165-175.

McEwen, J.G., Sugar, A.M., Brummer, E., Restrepo, A., and Stevens, D.A. (1984). Toxic effect of products of oxidative metabolism on the yeast form of *Paracoccidioides brasiliensis*. J Med Microbiol *18*, 423-428.

Minard, K.I., and McAlister-Henn, L. (2001). Antioxidant function of cytosolic sources of NADPH in yeast. Free Radic Biol Med *31*, 832-843.

Mishina, N.M., Tyurin-Kuzmin, P.A., Markvicheva, K.N., Vorotnikov, A.V., Tkachuk, V.A., Laketa, V., Schultz, C., Lukyanov, S., and Belousov, V.V. (2011). Does cellular hydrogen peroxide diffuse or act locally? Antioxid Redox Signal *14*, 1-7.

Missall, T.A., Lodge, J.K., and McEwen, J.E. (2004). Mechanisms of resistance to oxidative and nitrosative stress: implications for fungal survival in mammalian hosts. Eukaryot Cell *3*, 835-846.

Moreira, S.F., Bailao, A.M., Barbosa, M.S., Jesuino, R.S., Felipe, M.S., Pereira, M., and Soares, C.M. A. (2004). Monofunctional catalase P of *Paracoccidioides brasiliensis*: identification, characterization, molecular cloning and expression analysis. Yeast *21*, 173-182.

Munoz-Clares, R.A., Diaz-Sanchez, A.G., Gonzalez-Segura, L., and Montiel, C. (2010). Kinetic and structural features of betaine aldehyde dehydrogenases: mechanistic and regulatory implications. Arch Biochem Biophys 493, 71-81.

Muzio, G., Maggiora, M., Paiuzzi, E., Oraldi, M., and Canuto, R.A. (2012). Aldehyde dehydrogenases and cell proliferation. Free Radic Biol Med *52*, 735-746.

Nakagawa, Y., Kanbe, T., and Mizuguchi, I. (2003). Disruption of the human pathogenic yeast *Candida albicans* catalase gene decreases survival in mouse-model infection and elevates susceptibility to higher temperature and to detergents. Microbiol Immunol 47, 395-403.

Narasipura, S.D., Chaturvedi, V., and Chaturvedi, S. (2005). Characterization of *Cryptococcus neoformans* variety *gattii* SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol Microbiol 55, 1782-1800.

Navarro, R.E., Stringer, M.A., Hansberg, W., Timberlake, W.E., and Aguirre, J. (1996). catA, a new *Aspergillus nidulans* gene encoding a developmentally regulated catalase. Curr Genet 29, 352-359.

Nemecek, J.C., Wuthrich, M., and Klein, B.S. (2006). Global control of dimorphism and virulence in fungi. Science (New York, NY 312, 583-588.

Norenberg, M.D. (2003). Oxidative and nitrosative stress in ammonia neurotoxicity. Hepatology *37*, 245-248.

Okano, S., Shibata, Y., Shiroza, T., and Abiko, Y. (2006). Proteomics-based analysis of a counteroxidative stress system in *Porphyromonas gingivalis*. Proteomics *6*, 251-258.

Oliveira, G.G., Navarro, I.T., Freire, R.L., Belitardo, D.R., Silveira, L.H., Camargo, Z.P., Itano, E.N., and Ono, M.A. (2012). Serological survey of Paracoccidioidomycosis in sheep. Mycopathologia *173*, 63-68.

Osorio, H., Carvalho, E., del Valle, M., Gunther Sillero, M.A., Moradas-Ferreira, P., and Sillero, A. (2003). H_2O_2 , but not menadione, provokes a decrease in the ATP and an increase in the inosine levels in *Saccharomyces cerevisiae*. An experimental and theoretical approach. Eur J Biochem 270, 1578-1589.

Palmeiro, M., Cherubini, K., and Yurgel, L.S. (2005). Paracoccidioidomycosis – Literature Review. Scientia Medica 15, 274-278.

Paris, S., Wysong, D., Debeaupuis, J.P., Shibuya, K., Philippe, B., Diamond, R.D., and Latge, J.P. (2003). Catalases of *Aspergillus fumigatus*. Infect Immun 71, 3551-3562.

Pedroso, N., Matias, A.C., Cyrne, L., Antunes, F., Borges, C., Malho, R., de Almeida, R.F., Herrero, E., and Marinho, H.S. (2009). Modulation of plasma membrane lipid profile and microdomains by H_2O_2 in *Saccharomyces cerevisiae*. Free Radic Biol Med *46*, 289-298.

Penninckx, M. (2000). A short review on the role of glutathione in the response of yeasts to nutritional, environmental, and oxidative stresses. Enzyme Microb Technol *26*, 737-742.

Pereira, M., Bailao, A.M., Parente, J.A., Borges, C.L., Salem-Izacc, S.M., and Soares, C.M.A. (2009). Preferential transcription of *Paracoccidioides brasiliensis* genes: host niche and time-dependent expression. Mem Inst Oswaldo Cruz *104*, 486-491.

Pinzan, C.F., Ruas, L.P., Casabona-Fortunato, A.S., Carvalho, F.C., and Roque-Barreira, M.C. (2010). Immunological basis for the gender differences in murine *Paracoccidioides brasiliensis* infection. PloS one *5*, e10757.

Pitarch, A., Sanchez, M., Nombela, C., and Gil, C. (2003). Analysis of the *Candida albicans* proteome. I. Strategies and applications. J Chromatogr B Analyt Technol Biomed Life Sci 787, 101-128.

Posadas, A. (1892). Un Nuevo caso de micosis fungoidea con psorospermias. Ann Cir Med Argent 15, 585-597.

Puig, S., Lee, J., Lau, M., and Thiele, D.J. (2002). Biochemical and genetic analyses of yeast and human high affinity copper transporters suggest a conserved mechanism for copper uptake. J Biol Chem 277, 26021-26030.

Pusztahelyi, T., Klement, É., Szajli, E., Klem, J., Miskei, M., Karányi, Z., Emri, T., Kovács, S., Orosz, G., Kovács, K.L., Medzihradszky, K.F., Prade, R.A., and Pocsi, I. (2011). Comparison of transcriptional and translational changes caused by long-term menadione exposure in *Aspergillus nidulans*. Fungal Genetics and Biology *48*, 92-103.

Ralser, M., Wamelink, M.M., Kowald, A., Gerisch, B., Heeren, G., Struys, E.A., Klipp, E., Jakobs, C., Breitenbach, M., Lehrach, H., and Krobitsch, S. (2007). Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol *6*, 10.

Rappleye, C.A., and Goldman, W.E. (2006). Defining virulence genes in the dimorphic fungi. Annu Rev Microbiol *60*, 281-303.

Restrepo, A. (1985). The ecology of *Paracoccidioides brasiliensis*: a puzzle still unsolved. Sabouraudia 23, 323-334.

Restrepo, A. (1988). Immune responses to *Paracoccidioides brasiliensis* in human and animal hosts. In Current Tropcs in Medical Mycology, M.G. M, ed. (New York, Springer-Verlag), pp. 239-277.

Rezende, T.C., Borges, C.L., Magalhaes, A.D., de Sousa, M.V., Ricart, C.A., Bailao, A.M., and Soares, C.M.A. (2011). A quantitative view of the morphological phases of *Paracoccidioides brasiliensis* using proteomics. J Proteomics 75, 572-587.

Richini-Pereira, V.B., Bosco Sde, M., Griese, J., Theodoro, R.C., Macoris, S.A., da Silva, R.J., Barrozo, L., Tavares, P.M., Zancope-Oliveira, R.M., and Bagagli, E. (2008). Molecular detection of *Paracoccidioides brasiliensis* in road-killed wild animals. Med Mycol *46*, 35-40.

Riezman, H. (2004). Why do cells require heat shock proteins to survive heat stress? Cell Cycle 3, 61-63.

Rigoulet, M., Yoboue, E.D., and Devin, A. (2010). Mitochondrial ROS generation and its regulation Mechanisms involved in H_2O_2 signaling. Antioxid Redox Signal.

San-Blas, G., and Nino-Vega, G. (2004). Morphogenesis in other agents of systemic mycoses. In Pathogenic Fungi: Structural Biology and Taxonomy, C.R. San-Blas G, ed. (Wymondham, Norfolk, Caister Academic Press), pp. 167-220.

San-Blas, G., Nino-Vega, G., and Iturriaga, T. (2002). *Paracoccidioides brasiliensis* and paracoccidioidomycosis: molecular approaches to morphogenesis, diagnosis, epidemiology, taxonomy and genetics. Med Mycol 40, 225-242.

Sano, A., Nishimura, K., and Miyaji, M. (1999). The Research Encouragement Award. Effects of sex hormones on sexual difference of experimental paracoccidioidomycosis. Nippon Ishinkin Gakkai Zasshi 40, 1-8.

Scandalios, J.G. (2005). Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res *38*, 995-1014.

Seider, K., Heyken, A., Luttich, A., Miramon, P., and Hube, B. (2010). Interaction of pathogenic yeasts with phagocytes: survival, persistence and escape. Curr Opin Microbiol 13, 392-400.

Seneviratne, C.J., Wang, Y., Jin, L., Abiko, Y., and Samaranayake, L.P. (2008). *Candida albicans* biofilm formation is associated with increased anti-oxidative capacities. Proteomics *8*, 2936-2947.

Shankar, J., Restrepo, A., Clemons, K.V., and Stevens, D.A. (2011). Hormones and the resistance of women to paracoccidioidomycosis. Clin Microbiol Rev 24, 296-313.

Shibuya, K., Paris, S., Ando, T., Nakayama, H., Hatori, T., and Latge, J.P. (2006). Catalases of *Aspergillus fumigatus* and inflammation in aspergillosis. Nihon Ishinkin Gakkai Zasshi 47, 249-255.

Shikanai-Yasuda, M.A., Telles Filho Fde, Q., Mendes, R.P., Colombo, A.L., and Moretti, M.L. (2006). Guidelines in paracoccidioidomycosis. Rev Soc Bras Med Trop *39*, 297-310.

Sigler, K., Chaloupka, J., Brozmanova, J., Stadler, N., and Hofer, M. (1999). Oxidative stress in microorganisms-I. Microbial vs. higher cells-damage and defenses in relation to cell aging and death. Folia Microbiol (Praha) 44, 587-624.

Singh, R., Mailloux, R.J., Puiseux-Dao, S., and Appanna, V.D. (2007). Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in *Pseudomonas fluorescens*. J Bacteriol *189*, 6665-6675.

Skowronska, M., and Albrecht, J. (2012). Oxidative and nitrosative stress in ammonia neurotoxicity. Neurochemistry international.

Stowe, D.F., and Camara, A.K. (2009). Mitochondrial reactive oxygen species production in excitable cells: modulators of mitochondrial and cell function. Antioxid Redox Signal *11*, 1373-1414.

Tan, S.X., Greetham, D., Raeth, S., Grant, C.M., Dawes, I.W., and Perrone, G.G. (2010). The thioredoxinthioredoxin reductase system can function in vivo as an alternative system to reduce oxidized glutathione in *Saccharomyces cerevisiae*. J Biol Chem 285, 6118-6126.

Tavares, A.H., Silva, S.S., Dantas, A., Campos, E.G., Andrade, R.V., Maranhao, A.Q., Brigido, M.M., Passos-Silva, D.G., Fachin, A.L., Teixeira, S.M., Passos, G.A.S., Soares, C.M.A., Bocca, A., Carvalho, M.J.A., Silva-Pereira, I., and Felipe, M.S. (2007). Early transcriptional response of *Paracoccidioides brasiliensis* upon internalization by murine macrophages. Microbes Infect *9*, 583-590.

Teixeira, M.M., Theodoro, R.C., de Carvalho, M.J., Fernandes, L., Paes, H.C., Hahn, R.C., Mendoza, L., Bagagli, E., San-Blas, G., and Felipe, M.S. (2009). Phylogenetic analysis reveals a high level of speciation in the *Paracoccidioides* genus. Mol Phylogenet Evol *52*, 273-283.

Temple, M.D., Perrone, G.G., and Dawes, I.W. (2005). Complex cellular responses to reactive oxygen species. Trends Cell Biol *15*, 319-326.

Terlecky, S.R., and Koepke, J.I. (2007). Drug delivery to peroxisomes: employing unique trafficking mechanisms to target protein therapeutics. Adv Drug Deliv Rev 59, 739-747.

Theodoro, R.C., Candeias, J.M., Araujo, J.P., Jr., Bosco Sde, M., Macoris, S.A., Padula, L.O., Franco, M., and Bagagli, E. (2005). Molecular detection of *Paracoccidioides brasiliensis* in soil. Med Mycol *43*, 725-729.
Thon, M., Al-Abdallah, Q., Hortschansky, P., and Brakhage, A.A. (2007). The thioredoxin system of the filamentous fungus *Aspergillus nidulans*: impact on development and oxidative stress response. J Biol Chem 282, 27259-27269.

Trotter, E.W., and Grant, C.M. (2005). Overlapping roles of the cytoplasmic and mitochondrial redox regulatory systems in the yeast *Saccharomyces cerevisiae*. Eukaryot Cell *4*, 392-400.

Vallejo, M.C., Nakayasu, E.S., Matsuo, A.L., Sobreira, T.J., Longo, L.V., Ganiko, L., Almeida, I.C., and Puccia, R. (2012). Vesicle and vesicle-free extracellular proteome of *Paracoccidioides brasiliensis*: comparative analysis with other pathogenic fungi. J Proteome Res *11*, 1676-1685.

Vandenbroucke, K., Robbens, S., Vandepoele, K., Inze, D., Van de Peer, Y., and Van Breusegem, F. (2008). Hydrogen peroxide-induced gene expression across kingdoms: a comparative analysis. Mol Biol Evol 25, 507-516.

Vasconcelos, S.M.L., Goulart, M.O.F., Moura, J.B.F., Manfredini, V., Benfato, M.S., and Kubota, L.K. (2007). Reactive oxygen and nitrogen species, antioxidants and markers of oxidative damage in human blood: main analytical methods for their determination. Quím Nova *30*.

Vlasits, J., Jakopitsch, C., Bernroitner, M., Zamocky, M., Furtmuller, P.G., and Obinger, C. (2010). Mechanisms of catalase activity of heme peroxidases. Arch Biochem Biophys *500*, 74-81.

Wang, G., Conover, R.C., Benoit, S., Olczak, A.A., Olson, J.W., Johnson, M.K., and Maier, R.J. (2004). Role of a bacterial organic hydroperoxide detoxification system in preventing catalase inactivation. J Biol Chem 279, 51908-51914.

Wang, N., Yoshida, Y., and Hasunuma, K. (2007). Catalase-1 (CAT-1) and nucleoside diphosphate kinase-1 (NDK-1) play an important role in protecting conidial viability under light stress in *Neurospora crassa*. Mol Genet Genomics 278, 235-242.

Wasim, M., Bible, A.N., Xie, Z., and Alexandre, G. (2009). Alkyl hydroperoxide reductase has a role in oxidative stress resistance and in modulating changes in cell-surface properties in *Azospirillum brasilense* Sp245. Microbiology *155*, 1192-1202.

Weber, S.S., Parente A.F.A., Parente J.A., Borges C.L., Bailao A.M., and Soares C.M.A., Proteomic analysis of released proteins by *Paracoccidioides* yeast cells and mycelia. PlosOne. No Prelo.

Wilkins, M.R., Sanchez, J.C., Gooley, A.A., Appel, R.D., Humphery-Smith, I., Hochstrasser, D.F., and Williams, K.L. (1996). Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13, 19-50.

Winyard, P.G., Moody, C.J., and Jacob, C. (2005). Oxidative activation of antioxidant defence. Trends Biochem Sci *30*, 453-461.

Wolf, C., Hochgrafe, F., Kusch, H., Albrecht, D., Hecker, M., and Engelmann, S. (2008). Proteomic analysis of antioxidant strategies of *Staphylococcus aureus*: diverse responses to different oxidants. Proteomics 8, 3139-3153.

Yin, Z., Stead, D., Walker, J., Selway, L., Smith, D.A., Brown, A.J., and Quinn, J. (2009). A proteomic analysis of the salt, cadmium and peroxide stress responses in *Candida albicans* and the role of the Hog1 stress-activated MAPK in regulating the stress-induced proteome. Proteomics *9*, 4686-4703.

Yoshihara, E., Chen, Z., Matsuo, Y., Masutani, H., and Yodoi, J. (2010). Thiol redox transitions by thioredoxin and thioredoxin-binding protein-2 in cell signaling. Methods Enzymol 474, 67-82.

Zelko, I.N., Mariani, T.J., and Folz, R.J. (2002). Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med *33*, 337-349.