Rearrangements in Thyroid Hormone Receptor Charge Clusters That Stabilize Bound 3,5',5-Triiodo-L-thyronine and Inhibit Homodimer Formation*

Received for publication, February 11, 2005, and in revised form, May 9, 2005 Published, JBC Papers in Press, May 10, 2005, DOI 10.1074/jbc.M501615200

Marie Togashi[‡], Phuong Nguyen[‡], Robert Fletterick[§], John D. Baxter[‡]1, and Paul Webb[‡]

From the ‡Diabetes Center and the \$Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0540

In this study, we investigated how thyroid hormone (3,5',5-triiodo-L-thyronine, T₃) inhibits binding of thyroid hormone receptor (TR) homodimers, but not TRretinoid X receptor heterodimers, to thyroid hormone response elements. Specifically we asked why a small subset of TR β mutations that arise in resistance to thyroid hormone syndrome inhibit both T₃ binding and formation of TR^β homodimers on thyroid hormone response elements. We reasoned that these mutations may affect structural elements involved in the coupling of T₃ binding to inhibition of TR DNA binding activity. Analysis of TR x-ray structures revealed that each of these resistance to thyroid hormone syndrome mutations affects a cluster of charged amino acids with potential for ionic bond formation between oppositely charged partners. Two clusters (1 and 2) are adjacent to the dimer surface at the junction of helices 10 and 11. Targeted mutagenesis of residues in Cluster 1 (Arg³³⁸, Lys³⁴², Asp³⁵¹, and Asp³⁵⁵) and Cluster 2 (Arg⁴²⁹, Arg³⁸³, and Glu³¹¹) confirmed that the clusters are required for stable T₃ binding and for optimal TR homodimer formation on DNA but also revealed that different arrangements of charged residues are needed for these effects. We propose that the charge clusters are homodimer-specific extensions of the dimer surface and further that T₃ binding promotes specific rearrangements of these surfaces that simultaneously block homodimer formation on DNA and stabilize the bound hormone. Our data yield insight into the way that T₃ regulates TR DNA binding activity and also highlight hitherto unsuspected T₃-dependent conformational changes in the receptor ligand binding domain.

Thyroid hormone receptors $(TR\alpha \text{ and } TR\beta)^1$ are conditional transcription factors that play important roles in development,

metabolism, and homeostasis (1-4). TRs regulate gene transcription in the presence of 3,5,3'triiodo-L-thyronine (T₃) and in the absence of ligand (5). Current efforts to modulate TR activities have focused on development of selective agonists that mimic the beneficial effects of T₃ upon circulating cholesterol and body weight without producing unwanted effects of the hormone on heart rate (6). However, there is also a need for TR antagonists, which could represent improved and faster acting treatments for hyperthyroidism and cardiac arrhythmias (6, 7). Furthermore observations from $TR\alpha/TR\beta$ knock-out mice suggest many clinical manifestations of hypothyroidism are due to actions of unliganded TRs (8, 9). Thus, drugs that specifically reverse actions of unliganded TRs could be useful for treating hypothyroidism and would avoid risk of thyroid hormone excess (7). Improved understanding of unliganded TR structure and ways that unliganded TRs rearrange in response to T₃ will facilitate development of all of these drugs.

Presently the organization of unliganded TR is only partly understood (10, 11). X-ray structures of liganded TR C-terminal ligand binding domains (LBDs) reveal a canonical α-helical structure with T_3 buried in the core of the protein (12–16), but there are no equivalent structures of unliganded TRs. It has proven possible, however, to use a combination of x-ray structural information and targeted mutagenesis to learn about the organization of unliganded TRs. For example, T₃ blocks transactivation and transrepression activities of unliganded TRs by promoting release of corepressors such as N-CoR and SMRT (silencing mediator of retinoid and thyroid receptors) (5) and induces a T3-dependent activation function (AF-2) that binds coactivators such as the p160s (17). Functional analysis of TR mutants reveals that AF-2 is comprised of surface-exposed residues from helices (H) 3, 5, and 12 and that the corepressor binding surface overlaps AF-2 but extends below the position of H12 in the liganded state (18–21). Thus, it is possible to infer that H12 is displaced in the unliganded state and that T₃ binding leads to repositioning of H12 over the lower part of the corepressor binding surface, simultaneously promoting corepressor release and completing the coactivator binding site (5).

 $\rm T_3$ also regulates TR DNA binding activity (1). TRs utilize their DNA binding domain to recognize specific thyroid hormone response elements (TREs) comprised of AGGTCA repeats and bind these elements either as heterodimers with the closely related retinoid X receptor (RXR) or as homodimers and monomers. $\rm T_3$ does not affect RXR-TR interactions with TREs but does promote release of TR homodimers from some TREs (inverted palindromes (F2/IP-6) and direct repeats (DR-4)) but not from TREs at which TRS bind as monomers or paired monomers (palindromes, TREpal) (22). TR homodimers bind N-CoR more strongly than RXR-TR heterodimers (23, 24), and the extent of TR homodimer binding to different TREs in vitro correlates with the extent of repression from these elements in

^{*} This work was supported by National Institutes of Health Grants DK41482 and DK51281 (to J. D. B.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[¶]Deputy director and consultant to Karo Bio AB, a biotechnology company with commercial interests in nuclear receptors.

^{||} To whom correspondence should be addressed: Diabetes Center, University of California School of Medicine, HSW1210, 513 Parnassus Ave., San Francisco, CA 94143-0540. Tel.: 415-476-6789; Fax: 415-564-5813; E-mail: webbp@itsa.ucsf.edu.

¹ The abbreviations used are: TR, thyroid hormone receptor; T₃, 3,5',5-triiodo-L-thyronine; RXR, retinoid X receptor; TRE, thyroid hormone response element; RTH, resistance to thyroid hormone syndrome; H, helix; LBD, ligand binding domain; N-CoR, nuclear receptor corepressor; AF, activation function; DR, direct repeat; IP, inverted palindrome; GRIP1, glucocorticoid receptor-interacting protein 1; ANOVA, analysis of variance; PPAR, peroxisome proliferator-activated receptor; NR, nuclear hormone receptor.

FIG. 1. Location of RTH mutations in charge clusters that are adjacent to the dimer surface. A, charge Clusters 1 and 2 are adjacent to the TR β dimer surface. The figure shows a space-filling model of the TR β LBD. Residues in the dimerization surface (Leu⁴⁰⁰, Pro⁴¹⁹, Leu⁴²², Met⁴²³, and Met⁴³⁰) are shown in *green*. Residues in Cluster 1 (Arg³³⁸, Lys³⁴², Asp³⁵¹, and Asp³⁵⁵) and Cluster 2 (Glu³¹¹, Arg³⁸³, and Arg⁴²⁹) are shown in *blue* (positively charged) and *red* (negatively charged). *B* and *C*, closer view interactions between the residues that comprise charge Clusters 1 (*B*) and 2 (*C*). Positively charged residues are shown in *blue*, and negatively charged residues are shown in *red*. Asterisk represents residues mutated in RTH. *D*, alignment of Cluster 1 residues in TR and other NRs. *E*, alignment of Cluster 2 residues in TR and other NRs. *K*, human retinoic acid receptor; *hLXR*, human liver X receptor; *hER*, human estrogen receptor; *hPXR*, human pregnane X receptor; *hVDR*, human vitamin D receptor; *hCAR*, human constitutive androstane receptor.

vivo (25, 26). Thus, it is thought that T_3 -dependent inhibition of homodimer formation relieves transcriptional repression by unliganded TRs. Nevertheless the mechanisms involved in coupling of T_3 binding to inhibition of DNA binding are not clear; TRs utilize the same surface at the junction of H10 and H11 in homodimer and heterodimer formation on DNA (27). The structural elements that render homodimers sensitive to T_3 are not known.

In this study, we utilized targeted mutagenesis to explore elements of the TR that are specifically required for homodimer formation on TREs and tested the hypothesis that the same elements are involved in coupling T_3 binding to inhibition of DNA binding. Whereas most TR β mutations that arise in resistance to thyroid hormone syndrome (RTH) reduce the affinity of TR β for T_3 (3, 28, 29), a small subset also inhibits binding of TR β homodimers, but not heterodimers, to TREs (30, 31). Here we report that these RTH mutations affect clusters of charged amino acids in the LBD with potential for electrostatic stabilization of TR conformation but that distinct arrangements of charged residues are needed for stable T_3 binding and DNA binding by unliganded TRs. We propose that the charge clusters rearrange upon T_3 binding to block homodimer formation and create new ionic bonds that stabilize bound hormone.

MATERIALS AND METHODS

TR Mutants—The pCMX vector was used for expression of the fulllength human TR β (17). Mutations within TR-encoding sequences were created using the QuikChange XL site-directed mutagenesis kit (Stratagene). Mutation of target sequences was verified by automated DNA sequence (Elim Biopharmaceuticals, Inc., Hayward, CA).

Transfections-HeLa cells were maintained in Dulbecco's modified Eagle's H-21 4.5 g/liter glucose medium containing 10% fetal bovine serum, 2 mM glutamine, 50 units/ml penicillin, and 50 mg/ml streptomycin. For transfection, cells were collected and resuspended in Dulbecco's phosphate-buffered saline (0.5 ml/4.5 \times 10⁷ cells) containing 0.1% dextrose and typically 4 μ g of reporter, 1 μ g of TR expression vector or empty vector control, and 2 μ g of pCMV- β -galactosidase (17). Cells were electroporated at 240 V and 960 microfarads, transferred to fresh media, and plated into 12-well plates. After incubation for 24 h at 37 °C with T_3 or vehicle, cells were collected, and pellets were lysed by addition of 150 µl of 100 mM Tris-HCl, pH 7.8, containing 0.1% Triton X-100. The reporters contained two copies of each TRE (DR-4, F2, and TREpal) upstream of the herpes simplex virus thymidine kinase promoter TATA box linked to luciferase coding sequence. Luciferase and β -galactosidase activities were measured by using a luciferase assay system (Promega) and Galacto-Light Plus β-galactosidase reporter gene assay system (Applied Biosystems).

Glutathione S-Transferase Pull-down Assays—Full-length human TR β was expressed in a coupled transcription translation system (TNT, Promega). N-CoR (amino acids 1944–2453) and GRIP1 (amino acids 563–1121) were expressed in *Escherichia coli* strain BL21 as a fusion protein with glutathione S-transferase according to the manufacturer's protocol (Amersham Biosciences). Bindings were performed by mixing glutathione-linked Sepharose beads containing 4 μ g of glutathione S-transferase fusion proteins (Coomassie Plus protein assay reagent, Pierce) with 1–2 μ l of ³⁵S-labeled human TR β in 150 μ l of binding buffer (20 mM HEPES, 150 mM KCl, 25 mM MgCl₂, 10% glycerol, 1 mM dithiors) containing 20 μ g/ml bovine serum albumin for 1.5 h. Beads were washed three times with 200 μ l of binding buffer, the bound proteins

	TABLE 1	
i and the second se	Location and conservation of TR charge cluster	
RTH mutants known to inhibit DNA binding a	activity are shown in bold.	

Cluster	Residues	Location	RTH mutants	Conservation	
1	$ Arg^{338}, Lys^{342}, Asp^{351}, Asp^{355} $	Surface, links H7-H8	R338W, R338L, K342I , A337del	Charged residues at similar location in several NRs	
2	Arg ⁴²⁹ , Arg ³⁸³ , Glu ³¹¹	Partially buried, links H11 and H10 to H6	R383H, R429Q	${\rm Arg}^{429}$ conserved in 70% of NRs	
3	Arg ³¹⁶ , Gln ³⁷⁴ , Thr ²³² , His ²²⁹	Buried, links H6 and H9 to H1	R316H	Polar cluster observed in similar location in many NRs	
4	Arg ⁴¹⁰ , His ⁴¹² , Asp ³⁶⁶ , Glu ³⁶⁹	Buried, links H9 and H10-H11 loop	None	Glu ³⁶⁹ well conserved	

were resuspended in SDS-PAGE loading buffer, and proteins were separated using 10% SDS-polyacrylamide gel electrophoresis and visualized by autoradiography.

 T_3 Binding Assay—TRs were expressed using the TNT T7 quick coupled transcription translation system (Promega). The affinities of T₃ binding were determined using a saturation binding assay. Briefly 15 fmol of each in vitro translated protein were incubated overnight at 4 °C with varying concentrations of [125I]T₃ (PerkinElmer Life Sciences) in 100 µl of E400 buffer (400 mm NaCl, 20 mm KPO₄, pH 8, 0.5 mm EDTA, 1.0 mM MgCl₂, 10% glycerol), 1 mM monothioglycerol, and 50 μ g of calf thymus histones (Calbiochem). The bound [125I]T3 was isolated by gravity flow through a 2-ml Sephadex G-25 (Amersham Biosciences) column and quantified using a γ -counter (COBRA, Packard Instruments). Off rate (k_{off}) was determined by adding a 1000-fold molar excess of unlabeled $T^{}_3$ to a mixture containing TR and 1 nm $[^{125}I]T^{}_3$ incubated previously overnight at 4 °C; aliquots were taken at the indicated time points to determine how rapidly the labeled ligand dissociates from TR. These aliquots were applied to Sephadex G-25 columns, and TR-bound $\rm [^{125}I]T_{\scriptscriptstyle 3}$ was quantified using a γ -counter. As each T₃-TR complex dissociates at a random time, the amount of specific binding follows an exponential dissociation equation: $Y = \text{Span} \cdot e^{-k \cdot x} + \text{Plateau}$ where x is time (min), Y is total binding (cpm), Span is the difference between binding at time 0 and plateau (cpm), and k is the dissociation rate constant (k_{off} , expressed in min⁻¹). Binding curves were fit by nonlinear regression, and dissociation constant (K_d) and k_{off} values were calculated using the one-site saturation binding, one-phase exponential decay, and onephase exponential association models, respectively, contained in the Prism version 3.03 program (GraphPad Software, Inc., San Diego, CA).

Gel Shifts—Binding of TR to DNA was assayed by mixing 20 fmol of TRs produced in a reticulocyte lysate system, TNT T7 (Promega), with 300,000 cpm [γ -³²P]ATP-radiolabeled DR-4 and F2 oligonucleotides and 1 μ g of poly(dI-dC) (Amersham Biosciences) in a 20- μ l reaction (32). In cases in which TR ligand binding activity was severely affected by Cluster 1 mutations, the overall amount of translated TRs in the extracts was also verified independently by Western blot. The binding buffer contained 25 mM HEPES, 50 mM KCl, 1 mM dithiothreitol, 10 μ M ZnSO₄, 0.1% Nonidet P-40, 5% glycerol. After 30 min at room temperature, the mixture was loaded onto a 5% nondenaturing polyacrylamide gel that was previously run for 30 min at 200 V. To visualize the TR-DNA complexes, the gel was run at 4 °C for 120–180 min at 200 V in a running buffer containing 45 mM Tris borate (pH 8.0) and 1 mM EDTA. The gel was then fixed, dried, and exposed for autoradiography.

Statistical Analysis—All data are presented as means \pm S.D. Oneway ANOVA with Tukey's post-test or t test was performed using GraphPad Prism version 3.03 for Windows. Data analyzed referred to at least three independent experiments. A p value of <0.05 was considered statistically significant.

RESULTS

RTH Mutations That Inhibit T_3 and DNA Binding Reside in Charge Clusters—RTH mutations that inhibit homodimer formation on DNA affect positively charged Arg residues (R338W, R429Q, and R316H) (30, 31, 33–35). In addition, we found that another RTH mutation that affects a positively charged Lys residue (K342I) also inhibits homodimer formation on DNA (not shown). Investigation of TR structural models revealed that each of these amino acids lies within separate clusters of closely juxtaposed charged residues (Fig. 1A and Table I). The TR β LBD contains only one similar charge cluster that is not known to be affected by RTH mutations (Cluster 4, see Table I).

Clusters 1 and 2 are comprised of residues that are exposed

FIG. 2. Charge Cluster 1 mutations inhibit T_3 activation. Maximal (*Max.*) activation and repression (*A*) and dose of T_3 (*B*) required for half-maximal activation at a T_3 -regulated reporter gene with an F2/IP-6 TRE. Activities obtained with TR mutants are compared with those obtained with wild type TR β , which is set to 100%. The EC₅₀ T_3 concentration for wild type TR β was 15 nM for the F2 driven reporter. In *A*, no statistical difference was found among mutants and wild type (p > 0.05). In *B*, different *letters over bars* indicate statistical difference (p < 0.05) according to ANOVA and Tukey's test. *WT* or *wt*, wild type.

or partially exposed on the surface of the LBD and are both adjacent to the classical dimer surface at the junction of H10 and H11 (Fig. 1A and Table I). Unlike many residues that are affected by RTH mutations, none of the residues in the clusters directly contacts T_3 or comprises part of a known coregulator binding surface.

The residues in Clusters 1 and 2 have the potential to engage in electrostatic interactions with each other. Cluster 1 includes Arg^{338} and Lys^{342} on H7 and two negatively charged residues on H8, Asp^{351} and Asp^{355} , and is completely surface-exposed. We originally suggested that Arg^{338} and Lys^{342} engage in parallel ionic pairings with Asp^{355} and Asp^{351} , respectively, based on analysis of x-ray crystal structures of the TR α LBD (12). Reinvestigation of TR β -LBD structures (13) suggested another arrangement: Arg^{338} and Lys^{342} both pair with Asp^{351} , and Asp^{355} is not directly engaged in the cluster (Fig. 1*B*). Cluster 2 includes Arg^{429} on H11 and Arg^{383} on H9, both of which are also mutated in RTH but reported not to affect DNA binding (36), and is partially surface-exposed. Here x-ray structures of

TABLE II

Average EC_{50} for T_3 response obtained with TRs bearing Cluster 1 mutants at different TREs

Values are compared to wild type TR set at 100%. Mean values \pm S.D. are the average of at least three experiments. Different letters in the same horizontal row indicate statistical difference (p < 0.05), and different numbers in the same vertical column indicate statistical difference (p < 0.05) according to ANOVA and Tukey's test.

TRE/TR	TR	R338A	K342A	D351A	D355A
F2 (IP-6) DR-4 TREpal	$\frac{100^{\mathrm{a},1}}{100^{\mathrm{a},1}}\\100^{\mathrm{a},\mathrm{b},1}$	$\begin{array}{c} 357 \pm 149.1^{\mathrm{b},1} \\ 112 \pm 14.6^{\mathrm{a},2} \\ 155 \pm 37.0^{\mathrm{b},1,2} \end{array}$	$\begin{array}{l} 73 \pm 9.5^{\mathrm{a},1} \\ 68 \pm 11.8^{\mathrm{a},1,2} \\ 37 \pm 16.7^{\mathrm{a},2} \end{array}$	$\begin{array}{c} 608 \pm 185.5^{\mathrm{c},1} \\ 389 \pm 98.6^{\mathrm{b},2} \\ 308 \pm 56.7^{\mathrm{c},2} \end{array}$	$\begin{array}{c} 56 \pm 11.3^{\mathrm{a},1} \\ 102 \pm 27.7^{\mathrm{a},2} \\ 33 \pm 3.5^{\mathrm{a},1} \end{array}$

FIG. 3. Effects of Cluster 1 mutations on activities of liganded TRs in vitro. A, mutations in Cluster 1 do not affect coregulator binding. Shown are autoradiograms of SDS-polyacrylamide gels used to separate labeled TRs bound to bacterially expressed GRIP1 (amino acids 563–1121) and N-CoR (amino acids 1944–2453) in pull-down assays. The result is representative of three experiments. B, K_d , equilibrium dissociation constant. Mutants are compared with values obtained with wild type TR, which was 161.4×10^{-12} M and set to 100%. Values represent the averages of at least three determinations. C, kinetics of ligand dissociation from wild type and mutant TRs, k_{off} . Values represent the averages of at least three determinations. In B and C, different letters over bars indicate statistical difference (p < 0.05) according to ANOVA and Tukey's test. WT or wt, wild type; GST, glutathione S-transferase.

TR α and TR β indicated that both Arg residues pair with Glu³¹¹ on H6 in the LBD core (Fig. 1*C*).

Residues in Clusters 1 and 2 show considerable conservation. They are conserved in TRs throughout vertebrate species (not shown). Residues equivalent to those in charge Cluster 1 are conserved on H7 and H8 in other NRs, including retinoic acid receptors and PPARs (Fig. 1D). Residues in Cluster 2 show even better conservation (Fig. 1E). Together all of these considerations indicate that the charge clusters play an important, and unappreciated, role in TR activities. Furthermore the fact that mutations in the clusters affect T_3 binding and homodimer formation indicates that the clusters must play a role in activities associated with liganded and unliganded TRs.

Cluster 1 Is Required for Optimal T_3 Binding—We first examined effects of mutations in Cluster 1 on activities of liganded TRs. Because residues of this cluster are completely surface-exposed it appeared unlikely that these mutations would exert indirect effects on TR function by disrupting internal folding of the LBD. We introduced 1) Ala substitutions, which swap a residue with a small neutral side chain for a residue with a charged side chain and thereby eliminate the potential for electrostatic interactions, and 2) charge reversal mutations, which should disrupt ionic bonds between oppositely charged residues by juxtaposing residues with like charges.

Fig. 2 shows effects of mutations on activity of transfected TR β in mammalian cells. TR β Cluster 1 mutants did not affect maximal activation of transcription from a TRE-driven reporter (F2) in the presence of saturating T_3 or repression of basal transcription in the absence of T_3 (Fig. 2A). Nevertheless several TR β Cluster 1 mutants displayed altered T₃ concentration dependence (Fig. 2B and Table II) both in HeLa cells (shown here) and in other cells (U2-OS and CV-1, not shown). Mutations in two residues $({\rm Arg}^{338} \, {\rm and} \, {\rm Asp}^{351})$ led to reduced ${\rm T}_3$ sensitivity. The TRBR338W RTH mutant required 17-fold more T_3 than wild type TR β for half-maximal activation (EC₅₀). TRs bearing Ala substitutions at Arg³³⁸ and Asp³⁵¹ (TRβR338A and TR β D351A) exhibited more modest reductions in T₃ sensitivity, and TRs with charge reversal mutations at Arg³³⁸ and $Asp^{351}~(TR\beta R338D$ and $TR\beta D351R)$ displayed more marked reductions in T₃ sensitivity. In contrast, different mutations at Lys³⁴² exhibited divergent effects. A relatively mild Ala substitution mutation (TR β K342A) had either no effect or slightly enhanced T₃ sensitivity (Table II). Nevertheless a more severe charge reversal mutation, TR β K342D, exhibited decreased T₃ sensitivity as did the TR β K342I RTH mutant (not shown). Finally mutations at Asp^{355} did not reduce T_3 sensitivity. $TR\beta D355A$ and $TR\beta D355R$ either exhibited T_3 sensitivity com-

FIG. 4. Mutations in charge Cluster 1 inhibit or enhance homodimerization on DNA. A-C, autoradiograph of gel shift assays of labeled F2 (A-C) and DR-4 (A and B) element oligonucleotides with wild type TR ($TR\beta wt$) and various TR mutants in the presence or absence of both T₃ and RXR. A, comparison of TR β with TR β R338W and a dimer surface mutant (L422R). B, comparison of TR β with Ala substitution mutants as indicated. C, comparison of TR β with charge reversal mutants. WT, wild type; *Retic.*, reticulocyte lysate.

parable to wild type $TR\beta$ or enhanced T_3 sensitivity at some reporters (Fig. 2B and Table II).

None of the Cluster 1 mutations impaired binding to a coactivator (GRIP1, Fig. 3A) or to a corepressor (N-CoR, Fig. 3A) in pull-down assays *in vitro*. This is consistent with the results that show no impairment in the maximal effect of the hormone in transfection assays. By contrast, the same mutations that reduced T_3 sensitivity *in vivo* also reduced the affinity of the TR for T_3 (Fig. 3B) and increased T_3 dissociation rates (Fig. 3C).

Together our results indicate that Arg^{338} , $\operatorname{Asp3^{51}}$, and, to a lesser extent, Lys^{342} are required for optimal T₃ binding and response and that Asp^{355} is not. This is consistent with the apparent organization of Cluster 1 in TR β crystal structures where Arg^{338} , Lys^{342} , and $\operatorname{Asp3^{51}}$ side chains engage in electrostatic interactions with each other, and Asp^{355} does not (Fig. 1*B*).

Mutations in Cluster 1 Can Either Impair or Enhance Homodimer Binding to DNA, and Effects Do Not Correlate with T_3 Binding—Next we examined effects of mutations in Cluster 1 on TR homodimer formation on DNA. The data in Fig. 4A confirmed that the TR β R338W RTH mutant exhibits defective homodimer formation at F2 and DR-4 elements along with normal levels of heterodimer formation (30, 31). By contrast, an artificial mutation (TR β L422R) in the classical dimer interface

FIG. 5. Mutations in Cluster 2 differentially affect T_3 response and DNA binding. A, Glu³¹¹ is required for optimal T_3 response. Shown is a summary of relative EC_{50} values for T_3 response obtained in transfections assays performed in HeLa cells with an F2-driven reporter gene as in Fig. 3. B, Arg⁴²⁹ is required for optimal homodimer formation. Shown are electrophoretic mobility shift assays to determine binding of Cluster 2 mutants to an F2 oligonucleotide as in Fig. 4. In A, different *letters over bars* indicate statistical difference (p < 0.05) according to ANOVA and Tukey's test. WT or wt, wild type.

abolished both homodimer and heterodimer formation. In parallel, TRs bearing Ala substitution mutants at Arg^{338} and Asp³⁵¹ (both required for optimal T₃ binding) exhibited reduced homodimer but not heterodimer formation at F2 and DR-4 elements (Fig. 4B) just like the TR β R338W RTH mutant. However, TR_βK342A displayed reduced homodimer formation even though it did not inhibit T_3 binding (compare Figs. 2B and 4B). More surprisingly, the charge reversal mutants exhibited enhanced DNA binding (Fig. 4C) even though most of these mutations inhibit T_3 binding (Fig. 2B). The precise effect of the charge reversal mutants varied; TR β R338D showed enhanced DNA binding in the absence of T_3 , whereas TR β D351R and TRβK342D showed enhanced DNA binding in the presence or absence of T_3 . TR β D355R exhibited enhanced DNA binding in the presence of T_3 , reversing the usual effects of T_3 on TR DNA binding activity (Fig. 4C). Again these effects were largely homodimer-specific, although TR_βK342D did exhibit somewhat enhanced heterodimer formation. Together our results confirm that Cluster 1 is required for TR homodimer but not heterodimer formation on DNA. Nevertheless the same data also revealed that different arrangements of charge are needed for optimal DNA and T₃ binding.

Charge Cluster 2 Residues Differentially Affect T₃ Activation and DNA Binding-Mutations in Cluster 2 (Arg³⁸³, Arg⁴²⁹, and Glu³¹¹) also exhibited differential effects on activity of liganded TRs and DNA binding. Fig. 5A shows that TRBE311A exhibited a much larger reduction in T₃ sensitivity than TRs bearing mutations at Arg⁴²⁹ and Arg³⁸³ (TR_βR429A and TR_βR383H) (Fig. 5A). This finding is consistent with previous observations that RTH mutations in these Arg residues only affect T₃ sensitivity weakly (30) and is also consistent with the organization of Cluster 2 in TR β structures (Fig. 1*C*); a mutation in Glu³¹¹ that breaks electrostatic interactions with both Arg residues exhibited a more severe defect than mutations at Arg^{429} and Arg³⁸³, which only break one bond. By contrast, TR β E311A (and TR β R383H) bound to DNA as efficiently as wild type TRs in the absence of T_3 , whereas TR β R429A exhibited decreased homodimer formation on DNA (Fig. 5B). Thus, Cluster 2 requires different charged residues for optimal T3 response and DNA binding just like Cluster 1.

FIG. 6. Reversibility of the putative Arg³³⁸-Asp³⁵¹ salt bridge. A, Arg³³⁸ and Asp³⁵¹ cannot be reversed without severe disruption of T₃ response. Shown is a comparison of activities of wild type TR β and charge reversal mutants as a function of T₃ concentration. Transfections were performed in HeLa cells with an F2-driven reporter. *B*, Arg³³⁸ and Asp³⁵¹ can be reversed in the absence of interfering charge at Lys³⁴² and Asp³⁵⁵. Ala substitution mutations at Lys³⁴² and Asp³⁵⁵ restore activity of the TR β R338D,D351R charge reversal mutant (*D/R*). Data are presented as a comparison of EC₅₀ values for different TR β mutants as in Fig. 3C. In *B*, different *letters over bars* indicate statistical difference (p < 0.05) according to ANOVA and Tukey's test. *wt*, wild type.

An Arg³³⁸-Asp³⁵¹ Pair Stabilizes Bound T_3 —To learn how individual residues within Cluster 1 interact, we examined effects of multiple mutations in the cluster upon TR function. First we reversed the positions of two residues that are most important for optimal T_3 binding, Arg³³⁸ and Asp³⁵¹. Fig. 6A shows that TR β R338D,D351R displayed markedly reduced T_3 sensitivity in transfections like the R338D and D351R single mutants. TR β R338D,D351R also displayed decreased affinity for T_3 and increased dissociation rates of bound T_3 with normal levels of coregulator binding and TR homodimer formation on DNA (not shown).

The phenotype of the TR β R338D,D351R double mutant was surprising; it is often possible to reverse the positions of residues in ionic pairs and regenerate wild type protein function. Nevertheless Fig. 6B shows that introduction of Ala substitutions at Lys³⁴² and Asp³⁵⁵ restored the activity of the TR β R338D,D351R double mutant to near wild type levels but not that of a TR β mutant with like charges at both positions (TR β R338D,K342A,D355A). Thus, Arg³³⁸ and Asp³⁵¹ can be reversed without severe loss of TR β function, suggesting that they can form a reversible ionic bond that stabilizes liganded TR β . This effect can only be observed, however, when other charges are removed from the cluster. Cluster 1 Is Dispensable for Ligand TR Activity—Because Lys³⁴² and Asp³⁵⁵ interfere with TR β activity and T₃ binding when the putative Arg³³⁸-Asp³⁵¹ ionic bond is reversed (Fig. 6), we asked whether Lys³⁴² and Asp³⁵⁵ might also interfere with TR β activity and T₃ binding in the context of wild type TR β . To do this, we examined effects of multiple Ala substitutions in Cluster 1.

Mutations at Lys³⁴² and Asp³⁵⁵ rescued effects of mutations at Arg³³⁸ and Asp³⁵¹. Fig. 7A shows that a TR β double mutant bearing Ala substitutions at residues that are required for optimal T₃ binding (TR β R338A,D351A) displayed reduced T₃ sensitivity and T₃ binding and increased dissociation rates of bound T₃. Furthermore a TR β double mutant bearing Ala substitutions at residues that are not required for optimal T₃ binding (TR β K342A,D355A) did not affect TR β activity. These results confirm that Arg³³⁸ and Asp³⁵¹ are needed for optimal hormone binding, and Lys³⁴² and Asp³⁵⁵ are not. More surprisingly, a double mutant that eliminated both positive charges in Cluster 1 (TR β R338A,K342A) exhibited a phenotype that was similar to wild type TR β . Furthermore a double mutant that removed both negative charges (TR β D351A,D355A) exhibited a phenotype that was intermediate between TR β D351A, reduced affinity for T₃, and TR β D355A, similar to wild type TR β . Thus, Ala substitution mutations at Lys³⁴² and Asp³⁵⁵ rescue effects of similar mutations at Arg³³⁸ and Asp³⁵¹.

The fact that some mutations in Cluster 1 rescue effects of others was underscored by the observation that elimination of all charge within Cluster 1 with a quadruple Ala substitution (TR β 4A) failed to inhibit T₃ binding or liganded TR β function. TR β 4A displayed enhanced T₃ sensitivity in transfections (Fig. 7B), slightly increased affinity for T₃ (Table III), and normal levels of coactivator and corepressor binding (not shown). Nevertheless TR β 4A exhibited strongly reduced homodimer formation on DNA (Fig. 7C). This reduction in homodimer formation, the largest obtained with any Cluster 1 mutation in this study (not shown), was paralleled by impaired repression at a TR-regulated reporter without T₃ (Fig. 7B, *inset*).

Together our results show that, whereas two individual residues in the cluster (Arg^{338} and Asp^{351}) are required for optimal T_3 response and T_3 binding, Cluster 1 itself is dispensable for the function of liganded TR. Nevertheless Cluster 1 is required for activities associated with unliganded TRs: homodimer formation on DNA and transcriptional repression (see "Discussion").

DISCUSSION

In this study, we examined how TR DNA binding activity is regulated by its LBD and by ligand. To begin to understand this issue, we asked why some RTH mutations (R316H, R338W, K342I, and R429Q) that reduce the affinity of TR β for T₃ also inhibit binding of TR homodimers, but not heterodimers, to TREs (30, 31). We reasoned that these mutations might affect structural elements that are involved in coupling T₃ binding to inhibition of DNA binding activity. We report here that each of these RTH mutations affected amino acids that lie within clusters of charged residues with potential for electrostatic interactions between individual residues in the cluster. Two of these clusters (1 and 2) are adjacent to the TR dimer/heterodimer surface (Table I and Fig. 1). The importance of the clusters is underscored by their conservation both in TRs across evolution (not shown) and in other NRs (Fig. 1, D and E) and by our studies, which revealed that mutations in Clusters 1 and 2 lead, variously, to increases and decreases in T_3 binding and/or DNA binding.

The existence of functionally important clusters of charged residues on the TR LBD surface was surprising because proteins are largely stabilized by hydrophobic effects in

FIG. 7. Cluster 1 is dispensable for liganded TR action. A, mutations at Lys³⁴² and Asp³⁵⁵ rescue effects of muta-tions at Arg³³⁸ and Asp³⁵¹. Shown is a comparison of EC_{50} , K_d , and k_{off} values obtained with TR mutants with single and double Ala substitutions in Cluster 1; data are presented as in Figs. 2 and 3. B. Cluster 1 can be eliminated without loss of function for liganded TR. Shown are hormone activation profiles for human $\mathrm{TR}\beta$ wild type and a quadruple Ala mutant (4xA) at an F2-TRE-regulated reporter. The data represent a single transfection assay in which standard errors are derived from multiple wells, representative of several experiments. The inset shows maximal (Max.) activation and repression obtained with $TR\beta$ and $TR\beta 4A$ (4xA). C, elimination of Cluster 1 inhibits DNA binding. Shown is a gel shift comparing binding of TR β and TR β 4A (4xAla) on an F2-TRE. In A, different letters over bars indicate statistical difference (p <0.05) according to ANOVA and Tukey's test. WT or wt, wild type.

 $\begin{array}{c} \text{TABLE III}\\ Charge \ Cluster \ 1 \ is \ dispensable \ for \ T_3 \ binding\\ \text{Means \pm S.D. are the average of at least three experiments. The same letters in the same column indicate no statistical difference ($p > 0.05$) according to t test. \end{array}$

	K_d	$k_{ m off}$
$\mathrm{TR}eta$ $\mathrm{TR}eta 4\mathrm{A}$	$ imes 10^{-12}$ _M 134.5 \pm 44.6 a 67.1 \pm 23.6 a	$ imes 10^3 \ min^{-1} \ 2.32 \pm 0.72^{ m a} \ 1.92 \pm 0.56^{ m a}$

which hydrophobic residues form the interior of the protein and charged side chains are surface-exposed, freely solvated with water (37). Nevertheless electrostatic interactions between oppositely charged side chains have been shown to provide additional stability to proteins in several contexts, including particular conformers of allosteric proteins, protein-protein interaction surfaces, and proteins in thermophilic organisms (37–40). For TRs, two RTH mutations that disrupt ionic bonds, one in Cluster 3 (TR β R316H) and a single surface-exposed ionic bond between Arg²⁴³ in H3 and Glu³²² at the base of H6 (TR β R243Q), lead to broadening of experimental electron density in the lower part of the LBD in x-ray structures (14, 15). This confirms that electrostatic interactions between oppositely charged TR β residues can stabilize the liganded TR β -LBD.

Our mutational analysis supports the notion that Clusters 1 and 2 are stabilizing elements for liganded TR. Mutations that disrupted the predicted ionic bond arrangements in Clusters 1 and 2 led to reduced T₃ sensitivity, reduced affinity for T₃, and increased T₃ dissociation rates. These phenotypes resemble those of aforementioned TR β RTH mutations that destabilize the TR LBD by breaking electrostatic interactions, R316H and R243Q (14, 15). In addition, three lines of evidence indicate that Arg³³⁸ and Asp³⁵¹ form an ionic bond required for stable $\rm T_3$ binding. 1) Placement of like, repelling charges at $\rm Arg^{338}$ and $\rm Asp^{351}$ severely inhibited $\rm T_3$ binding (Fig. 2). 2) Arg^{338} and Asp^{351} could be reversed without significant disruption of $\rm T_3$ binding, albeit only in the absence of charge at Lys^{342} and Asp^{355} (Fig. 6). 3) TRs with double mutations at Arg^{338} and Asp^{351} exhibited phenotypes similar to single mutants, suggesting that both residues are parts of the same structural element (Figs. 6 and 7).

Nevertheless our results also suggest that the clusters adopt a different organization in unliganded TRs. Distinct arrangements of charge are required for optimal T₃ binding and for DNA binding by unliganded TR homodimers (Figs. 2–5). Thus, the TR β K342A mutation inhibited DNA but not T₃ binding. Furthermore and more strikingly, charge reversal mutations at Arg³³⁸ (R338D), Asp³⁵¹ (D351R), and Lys³⁴² (K342D) all inhibited T₃ binding but not DNA binding, and a charge reversal mutation at Asp³⁵⁵ (D355R) did not affect T₃ binding yet enhanced TR homodimer formation on DNA in the presence of T₃ (Fig. 4).

Other results are hard to reconcile with the simple notion that Clusters 1 and 2 act as static stabilizing elements for liganded and unliganded TRs. Cluster 1 was dispensable for optimal T_3 response and T_3 binding (Fig. 7) even though Arg³³⁸ and Asp³⁵¹ were required for T_3 binding (Figs. 2, 3, and 7). Furthermore two Cluster 1 residues (Lys³⁴² and Asp³⁵⁵) must inhibit T_3 binding to some extent as judged by the fact that TR β K342A and TR β D355A mutants exhibited enhanced sensitivity to T_3 in transfections and increased affinity for T_3 in *vitro* and that Ala substitutions at both positions rescued effects of similar mutations at Arg³³⁸ and Asp³⁵¹ (Fig. 7).

Our hypothesis to explain these observations is outlined in Fig. 8. We propose that Clusters 1 and 2 are hormone-dependent stabilizing elements for the TR LBD. We suggest that, in the unliganded state, the clusters adopt an unspecified organi-

FIG. 8. Model to explain coupling of T₃ binding to inhibition of TR β DNA binding activity. The blue spheres represent positively charged residues in Cluster 1, whereas red spheres represent negatively charged residues. The charged residues are in an unspecified organization required for homodimer formation in the absence of hormone and rearrange to form the ionic bond organization detected in our x-ray structures in the presence of hormone.

FIG. 9. Ligand-dependent rearrangements in RXR H7 (equivalent to TR β H8). A schematic shows apoRXR H7 in orange and holo-RXR in gray with ligand (9-cis-retinoic acid (RA)) in gray and red. H7 changes backbone conformation: Lys³⁵⁶ and Glu³⁵², paired in apoRXR, move from inside to outside on ligand binding.

zation that is distinct from that observed in x-ray structures of liganded TR_β LBDs but required for optimal homodimer formation on DNA. Given the placement of these residues, we favor the notion that the clusters comprise homodimer-specific extensions of the dimer surface that engage in flexible contacts with oppositely charged residues in partner LBDs or possibly influence homodimer formation via distant stabilizing effects on the dimer surface. We further suggest that T₃ binding promotes structural rearrangements in the TR LBD that reposition the charged residues, simultaneously breaking the interactions that are needed for optimal homodimer formation on DNA and creating new ionic bonds that hold the walls of the hormone binding pocket in an appropriate configuration for stable T₃ interactions.

Our model suggests explanations for several apparently paradoxical results. 1) Different charge arrangements are required for T₃ binding and homodimer formation on TREs because the clusters adopt different organizations in the presence and absence of T₃. 2) Cluster 1 could be eliminated without obvious effect on $TR\beta$ even though mutations in Arg^{338} and Asp^{351} inhibit T_3 binding because the Arg^{338} -Asp^{351} ionic bond counteracts the tendency of the Cluster 1 to revert toward the organization in the unliganded state. If Cluster 1 is eliminated, the requirement for the stabilizing element is eliminated. 3) $\rm Lys^{342}$ and $\rm Asp^{355}$ inhibited $\rm T_3$ binding because they stabilize the unliganded $TR\beta$ conformer that binds to DNA as a homodimer but only provide limited stability (Lys³⁴²) or no additional stability (Asp^{355}) to the liganded TR β conformer. Here mutation of Lys³⁴² and Asp³⁵⁵ enhanced T_3 response and T_3 binding by counteracting the tendency of the cluster to revert to its organization in unliganded state.

We recognize that our model cannot yet be verified directly because apoTR dimer structures are not available. Nevertheless analysis of liganded and unliganded RXR crystal structures revealed evidence that is consistent with the basic predictions of our model. First charged residues in the region of RXR that is equivalent to H8 rearrange in response to ligand binding (Fig. 9). RXR $\rm Glu^{352}$ and $\rm Lys^{356}$ form an ionic bond within the interior of the unliganded LBD. Binding of 9-cisretinoic acid twists the helix, exposing the charged side chains on the protein surface where they can pair with PPARs in RXR-PPAR heterodimers (41–45). We suggest that $TR\beta$ charge clusters (on H7, H8, and H11) must undergo similar ligand-dependent rearrangements. This model implies that functionally important conformational rearrangements that accompany T₃ binding are not restricted to H12 and that T₃ induces reorganization of the opposite face of the TR near the dimer surface.

Finally our results also lend support to the notion that TR homodimers are highly active in mediating transcriptional repression in vivo (25, 26). We observed that a TR β mutant that strongly inhibited homodimer formation on TREs (TR β 4A) impaired the ability of unliganded TRs to suppress transcription in the absence of hormone (Fig. 7B). We predict that mutations such as those described here that either specifically inhibit or stabilize particular oligomeric forms of TR will help us to further dissect the relative roles of RXR-TR heterodimers and TR homodimers in vivo.

REFERENCES

- Apriletti, J. W., Ribeiro, R. C. J., Wagner, R. L., Feng, W., Webb, P., Kushner, P. J., West, B. L., Nilsson, S., Scanlan, T. S., Fletterick, R. J., and Baxter, J. D. (1998) Clin. Exp. Pharmacol. Physiol. Suppl. 25, S2-S11
- 2. Ribeiro, R. C. J., Apriletti, J. W., Wagner, R. L., West, B. L., Feng, W., Huber, R., Kushner, P. J., Nilsson, S., Scanlan, T. S., Fletterick, R. J., Schaufele, F., and Baxter, J. D. (1998) Recent Prog. Horm. Res. 53, 351-394
- 3. Yen, P. M. (2001) Physiol. Rev. 81, 1097-1142
- Zhang, J., and Lazar, M. A. (2000) Annu. Rev. Physiol. 62, 439–466
 Glass, C. K., and Rosenfeld, M. G. (2000) Genes Dev. 14, 121–141
- 6. Baxter, J. D., Dillmann, W. H., West, B. L., Huber, R., Furlow, J. D., Fletterick, R. J., Webb, P., Apriletti, J. W., and Scanlan, T. S. (2001) J. Steroid Biochem. Mol. Biol. 76, 31-42
- 7. Webb, P., Nguyen, N. H., Chiellini, G., Yoshihara, H. A., Cunha Lima, S. T., Apriletti, J. W., Ribeiro, R. C., Marimuthu, A., West, B. L., Goede, P., Mellstrom, K., Nilsson, S., Kushner, P. J., Fletterick, R. J., Scanlan, T. S., and Baxter, J. D. (2002) J. Steroid Biochem. Mol. Biol. 83, 59-73
- Gothe, S., Wang, Z., Ng, L., Kindblom, J. M., Barros, A. C., Ohlsson, C., Vennstrom, B., and Forrest, D. (1999) Genes Dev. 13, 1329–1341
- Wondisford, F. E. (2003) J. Investig. Med. 51, 215-220
- 10. Ribeiro, R. C., Apriletti, J. W., Wagner, R. L., Feng, W., Kushner, P. J., Nilsson, S., Scanlan, T. S., West, B. L., Fletterick, R. J., and Baxter, J. D. (1998) J. Steroid Biochem. Mol. Biol. 65, 133–141 11. Weatherman, R. V., Fletterick, R. J., and Scanlan, T. S. (1999) Annu. Rev.
- Biochem. 68, 559–581
- 12. Wagner, R. L., Apriletti, J. W., McGrath, M. E., West, B. L., Baxter, J. D., and Fletterick, R. J. (1995) Nature 378, 690-697
- 13. Wagner, R. L., Huber, B. R., Shiau, A. K., Kelly, A., Cunha Lima, S. T., Scanlan, T. S., Apriletti, J. W., Baxter, J. D., West, B. L., and Fletterick, R. J. (2001) Mol. Endocrinol. 15, 398-410
- 14. Huber, B. R., Desclozeaux, M., West, B. L., Cunha-Lima, S. T., Nguyen, H. T., Baxter, J. D., Ingraham, H. A., and Fletterick, R. J. (2003) Mol. Endocrinol. 17, 107-116
- Huber, B. R., Sandler, B., West, B. L., Cunha Lima, S. T., Nguyen, H. T., Apriletti, J. W., Baxter, J. D., and Fletterick, R. J. (2003) Mol. Endocrinol. 17,643-652
- 16. Borngraeber, S., Budny, M. J., Chiellini, G., Cunha-Lima, S. T., Togashi, M., Webb, P., Baxter, J. D., Scanlan, T. S., and Fletterick, R. J. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 15358-15363
- 17. Feng, W., Ribeiro, R. C. J., Wagner, R. L., Nguyen, H., Apriletti, J. W., Fletterick, R. J., Baxter, J. D., Kushner, P. J., and West, B. L. (1998) Science 280, 1747-1749
- 18. Marimuthu, A., Feng, W., Tagami, T., Nguyen, H., Jameson, J. L., Fletterick, R. J., Baxter, J. D., and West, B. L. (2002) Mol. Endocrinol. 16, 271-286
- 19. Hu, X., and Lazar, M. A. (1999) Nature 402, 93-96 20. Nagy, L., Kao, H. Y., Love, J. D., Li, C., Banayo, E., Gooch, J. T., Krishna, V.,
- Chatterjee, K., Evans, R. M., and Schwabe, J. W. (1999) Genes Dev. 13, 3209 - 3216
- 21. Perissi, V., Staszewski, L. M., McInerney, E. M., Kurokawa, R., Krones, A., Rose, D. W., Lambert, M. H., Milburn, M. V., Glass, C. K., and Rosenfeld, M. G. (1999) Genes Dev. 13, 3198–3208
- 22. Ribeiro, R. C., Kushner, P. J., Apriletti, J. W., West, B. L., and Baxter, J. D. (1992) Mol. Endocrinol. 6, 1142-1152
- 23. Cohen, R. N., Brzostek, S., Kim, B., Chorev, M., Wondisford, F. E., and Hollenberg, A. N. (2001) Mol. Endocrinol. 15, 1049-1061
- 24. Liang, F., Webb, P., Marimuthu, A., Zhang, S., and Gardner, D. G. (2003)

J. Biol. Chem. 278, 15073-15083

- Williams, G. R., Zavacki, A. M., Harney, J. W., and Brent, G. A. (1994) Endocrinology 134, 1888–1896
- 26. Yoh, S. M., and Privalsky, M. L. (2001) J. Biol. Chem. 276, 16857-16867
- 27. Ribeiro, R. C., Feng, W., Wagner, R. L., Costa, C. H., Pereira, A. C., Apriletti, J. W., Fletterick, R. J., and Baxter, J. D. (2001) J. Biol. Chem. 276, 14987 - 14995
- Chatterjee, V. K., and Beck-Peccoz, P. (1994) Bailliere's Clin. Endocrinol. Metab. 8, 267–283
- 29. Kopp, P., Kitajima, K., and Jameson, J. L. (1996) Proc. Soc. Exp. Biol. Med. 211, 49-61
- 30. Collingwood, T. N., Adams, M., Tone, Y., and Chatterjee, V. K. (1994) Mol. Endocrinol. 8, 1262-1277
- Kitajima, K., Nagaya, T., and Jameson, J. L. (1995) *Thyroid* 5, 343–353
 Ribeiro, R. C., Apriletti, J. W., Yen, P. M., Chin, W. W., and Baxter, J. D. (1994) *Endocrinology* 135, 2076–2085
- 33. Ando, S., Nakamura, H., Sasaki, S., Nishiyama, K., Kitahara, A., Nagasawa, S., Mikami, T., Natsume, H., Genma, R., and Yoshimi, T. (1996) J. Endocrinol. 151, 293–300
- 34. Takeda, T., Suzuki, S., Nagasawa, T., Liu, R. T., and DeGroot, L. J. (1999) Biochimie (Paris) 81, 297-308

- Takeda, T., Nagasawa, T., Miyamoto, T., Minemura, K., Hashizume, K., and Degroot, L. J. (2000) *Thyroid* 10, 11–18
- 36. Clifton-Bligh, R. J., de Zegher, F., Wagner, R. L., Collingwood, T. N., Francois, I., Van Helvoirt, M., Fletterick, R. J., and Chatterjee, V. K. (1998) Mol. Endocrinol. 12, 609-621
- 37. Perutz, M. F. (1978) Science 201, 1187-1191
- 38. Perutz, M. F. (1989) Trends Biochem. Sci. 14, 42-44
- Serrano, L., Horovitz, A., Avron, B., Bycroft, M., and Fersht, A. R. (1990) Biochemistry 29, 9343–9352
 Strop, P., and Mayo, S. L. (2000) Biochemistry 39, 1251–1255
- 41. Bourguet, W., Ruff, M., Chambon, P., Gronemeyer, H., and Moras, D. (1995) Nature 375, 377-382
- 42. Renaud, J. P., Rochel, N., Ruff, M., Vivat, V., Chambon, P., Gronemeyer, H., and Moras, D. (1995) Nature 378, 681-689
- 43. Gampe, R. T., Jr., Montana, V. G., Lambert, M. H., Miller, A. B., Bledsoe, R. K., Milburn, M. V., Kliewer, S. A., Willson, T. M., and Xu, H. E. (2000) Mol. Cell **5,** 545–555
- Bourguet, W., Vivat, V., Wurtz, J. M., Chambon, P., Gronemeyer, H., and Moras, D. (2000) Mol. Cell 5, 289–298
- Gampe, R. T., Jr., Montana, V. G., Lambert, M. H., Wisely, G. B., Milburn, M. V., and Xu, H. E. (2000) Genes Dev. 14, 2229–2241