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In this century there has been a long trend of interest in analogical reasoning as a 

basis for scientific modeling. The idea that ‘analogies’ provide guidelines for the 

construction and development of  theories dates back to Campbell (1920). The thesis that an 

analogy is constitutive of scientific theories had its revival in the 1950’s as part of the 

emerging criticism against the logical-empiricist ‘semantic explication’ of scientific models. 

Critics like Toulmin and Hesse pointed out that this explication didn’t capture one of the 

roles models play in science: that of providing guidelines for the development of theories. In 

the 1960’s, we find many other philosophers arguing the same point: Achinstein, Harré, 

McMullin, Swanson, among others.  

The critiques of the ‘semantic explication’ of  ‘model’ were often voiced in terms of 

a ‘surplus meaning’ or ‘surplus content’ associated with models, which introduces an 

asymmetry in the relationship between model and theory, contrary to the symmetry 

presupposed by the ‘formal’ explication of this relationship (as in Braithwaite’s or Hempel’s 

accounts). It was argued that for a model to play the role of ‘pointer’ for the development of 

the theory, it has to share with the theory more than a common syntactical structure. This is 

the fundamental motivation of the distinction Hesse makes between ‘formal’ and ‘material’ 

analogies (that we also find in other philosophers).  

 

There has recently been a great interest in analogical reasoning in the fields of 

Cognitive Science (CS) and Artificial Intelligence (AI). Various simulations of analogical 

reasoning as a human cognitive process have been proposed as well as applications of 

analogical reasoning to AI, as problem-solving heuristics. Despite this prolific activity, there 

is still much controversy concerning the nature of analogical reasoning, the role played by 

analogical reasoning in cognition, the fundamental processes involved in analogy-making 

and their computational implementation.  

 

This debate, by itself, raises many interesting philosophical questions. In this paper I 

will make explicit some of these issues and use this debate as a framework to re-address 

                                                 
1A first version of this paper has been written during my stay as a Visiting Fellow at the Center for Philosophy 

of Science of the University of  Pittsburgh. It was presented in a lunchtime talk at the Center in January, 1996. 

I am grateful also to the Brazilian Research Council (CNPq) for a postdoctoral grant that made possible this 

research.  
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discussions, among philosophers of science, about the heuristic role of analogy in scientific 

modeling. There are, certainly, difficulties in blending approaches concerned, on the one 

side, with the role analogical reasoning plays in scientific methodology and, on the other 

side, with its role in cognition and in computational systems. Nonetheless, there is a 

common concern with analogy as supporting reliable problem-solving heuristics, and as 

underlying creativity, conceptual dynamics and learning.
2
 

 

This paper has two parts. First, I will present three simulations of analogical 

reasoning proposed in Cognitive Science: Gentner’s Structure Matching Engine (henceforth 

SME), Mitchel’s and Hofstadter’s COPYCAT and the Analogical Constraint Mapping 

Engine (henceforth ACME), a simulation proposed by Holyoak and Thagard. The 

differences in these simulations disclose explicitly many of the controversial points that are 

being discussed in this area. 

 

In the second part I’ll suggest that these issues also arise in the context of 

philosophical accounts of formal and material analogies as a basis for scientific modeling. 

 

--------  x  -------- 

 

In the AI and Cognitive Science literature, the prevailing consensus holds that 

analogical reasoning can be subdivided into (at least) the following fundamental sub-

processes :  

 

a) retrieval (or selection) of an analog (among a number of possibilities available in a 

knowledge-base), given a (partial) representation of the target; 

 

b) mapping between the representations of the retrieved source analog and the target. 

 

c) transfer to the target of surplus structure and semantic content from the source.
3
  

 

In a problem-solving context the initial mapping is the basis for the transfer to the 

target of a hypothetical solution for the problem. In science we typically face ‘empirical 

problems’: we have phenomena, in a certain domain, that we want to understand or to 

explain. This normally presupposes a theoretical language that is set up through the 

exploration, extension, and modification of available symbolic and conceptual resources, in 

general developed for or associated with other domains of phenomena. 

 

The scheme: retrieval, mapping, etc. doesn’t have anything specifically tied to 

analogy. It can just be seen as a general scheme of the processes involved in the exploration 

of previous knowledge: given a certain problem, retrieve adequate available knowledge to 

solve it; manipulate the source in order to adapt it to the (target) problem; apply the resulting 

                                                 
2A recent example of this convergence of  interests is Dartnall (1994).  

3Actually, two more sub-processes are also discussed in the literature: d) evaluation of the mapping and the 

inferences based upon it; e) consolidation of the analogical process through the abstraction of a reasoning 

schema or abstract structure for a future use. For a detailed overview of the AI research concerning each sub-

process, see Hall (1989). See also Kedar-Cabelli (1988); Holyoak et al. (1989).  
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representation to solve the target problem. A theory of analogy has to characterize what is 

specifically ‘analogical’ in these sub-processes by making explicit the particular constraints 

that apply to each of them. 

 

The computational implementations that we will discuss are purportedly 

psychologically realistic, that is, they have been proposed as simulations of analogical 

reasoning as a (human) cognitive process. Their proponents are, therefore, committed to 

ground them in empirical evidence about how people make analogies. I am not interested 

here in the issue of how good these simulations are with respect to psychological evidence, 

but rather in highlighting their presuppositions about the nature of analogy and their 

implications for the analysis and implementation of the processes involved in setting up 

analogies.  

 

 

1. GENTNER: Analogy as structural mapping 

 

Several computational implementations presuppose that analogical reasoning is 

essentially a kind of mapping based on the structure shared by the representations of the 

source and the target domains.  

 

Gentner’s SME is, as it were, a ‘pure’ implementation of this intuition. She claims 

that analogy is a kind of mapping that disregards ‘superficial’ similarities between the 

source and target representations, that is, any commonalities at the level of the attributes of 

objects. Analogical mappings should be based solely on the relational information encoded 

by the representations.  

 

First, it is important to give an idea of the representation format used by Gentner. 

There is a basic presupposition that a ‘domain’ can be represented in terms of its objects, 

their properties, relations between them,  and functions that map one object onto another 

object or constant.  

 

In SME, knowledge is represented by ‘propositional networks’ of nodes and 

predicates. The nodes represent objects (or, if you like, their concepts), and predicates 

applied to these nodes generate propositions (Gentner, 1982, p. 108; Gentner et al., 1983, p. 

102). The properties of objects are represented by one argument predicates, and relations are 

represented by two or more argument predicates. 

 

The order of a relation plays an important role in Gentner’s theory. First-order 

relations are represented by predicates that take two or more objects as arguments. Second 

and higher-order relations are represented by predicates that take propositions, other 

predicates or functions as arguments. An example of a higher-order relation is the causal 

relation.  

 

Gentner’s main contribution was to distinguish analogical from other types of 

mapping that can be made between the source and the target domains. Each mapping is 

based on specific kinds of similarities that are implicated in this sub-process of analogical 
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processing. She places these different kinds of similarity in a ‘similarity space’ having as 

coordinates the attributes (one place predicates) and the relations (two or more place 

predicates) shared by the source and the target. 

 

a) Analogy is defined as a kind of mapping in which relational information is 

transferred from the source to the target, independently of any superficial similarities 

between the source and target objects at the level of their attributes. The similarities between 

objects’ properties (superficial/ ‘perceptual’ qualities) are disregarded and the mapping is 

based on similarity (or identity) of relations: “Entities and functions are placed in 

correspondence with other entities and functions on the basis of the surrounding relational 

structures” (1989, p. 209). The example she develops in many papers is the analogy between 

the hydrogen atom and the solar system.
4
 

 

b) The second kind is a literal similarity mapping, in which (similar or identical) 

attributes as well as relations are mapped. Not surprisingly, the examples given are that of 

mappings in which the source and the target are from the same domain, e.g. “the helium 

atom is like the neon atom” (1982, p. 110).  

 

c) The mapping Gentner calls a ‘mere-appearance match’ is based on object 

attributes (percepts). An example she gives is: “the glass tabletop gleamed like water” 

(1989, p. 206).   

 

d) Abstraction is a kind of mapping in which the source is an abstract structure (a 

mathematical theory, for instance) that is applied to a particular domain. In this case, since 

the source is abstract “no concrete properties of objects are left behind in the mapping” 

(1989, p. 208). The example given is: “Heat flow is a through-variable” (1989, p. 206).  

 

e) Metaphor superposes in one extreme with ‘analogy’ and in the other extreme with 

‘mere appearance’ matches. 

 

The main constraints on analogical mapping are, in Gentner’s theory, consistency, 

target validity, and systematicity.   

 

Structural consistency specifies that each object in the source is assigned to one and 

only one object in the target.
5
 Target validity refers to the property of an analogy that 

minimizes contradictions between relations in the source domain and the corresponding 

ones in the target domain.
6
 Systematicity specifies that the mapping be of whole relational 

                                                 
4Holyoak and Thagard argue that this analogy had no historical importance in the discovery of the Rutherford-

Bohr  ‘model’ of the atom. And apparently that is also the case in another example we find in the literature, the 

analogy between the molecular structure of gases and billiard balls (1995, p. 189; cf. Campbell, 1920).  

5There is much disagreement in the literature regarding the structural constraint. Many theoreticians of analogy 

think that, as stated, it is too strict and would, if applied, eliminate the possibility of many analogies that can 

prove to be of important heuristic value. Owen (1990) and Bartha (1995) substantiate this claim with examples 

in the mathematical field. Holyoak and Thagard’s position is, on this issue, not clearcut (1995, p. 258; cf. p. 5-

6). 

6Cf. Palmer (1989, p. 336-7). 
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hierarchies, “governed by higher-order relations with inferential import, rather than isolated 

predicates” (Gentner, 1989, p. 201).
7
  

 

Now, Gentner defines analogy as a mapping of identical relations in the source and 

the target domains. Objects from the source and the target are mapped based on the 

(common) relations that they possess, and not on their common attributes. Dissimilar 

objects in the source and target domains (that is, objects that don’t share any properties) are 

mapped to each other if they are arguments in identical relations. If you like, they are 

mapped if they play the same ‘roles’ in their respective systems. Analogical mappings have, 

therefore, the following form: 

 

M: [R(bi, bj)] -> [R(ti,tj)]  , 

 

where bi and bj represent the source objects, ti and tj the target objects, and R the 

identity relation (Gentner et al., 1983, p. 104) . 

 

Furthermore, in Gentner’s theory, an analogical mapping should give preference to 

systems of connected relations, that is to higher-order relations. The main constraint on 

analogical mapping is ‘systematicity’ (Gentner, 1989). Formally we have: 

 

M: [R’( R1(bi, bj), R2(bk,bl) )] -> [R’( R1(ti, tj), R2(tk,tl) )]  , 

 (Gentner et al., 1983, p. 104). 

 

The systematicity constraint ‘filters’ just the structural information about the source 

and target domains. In a typical situation, we have more structure represented in the source 

domain than in the target. A mapping of a (partial) common structure between both domains 

is supposed to give plausibility to the ‘carry-over’, that is, to the transfer of this surplus 

structure (higher-order relational predicates) from the source to the target (1989, p. 202). 

 

The basic intuition behind Gentner’s theory of analogical mapping is that ‘attributes’ 

tend to be domain-specific, while ‘structure’ isn’t. So, if we want to transfer knowledge 

across domains, we have to bet on the existence of a common structure, represented by an 

interconnected web of relations. 

 

1.1 Discussion of Gentner’s theory 

 

Gentner’s theory and its implementation present many problems.  

 

a) The problem of sensitivity to a particular representation 

 

SME is a syntactical engine: the mapping between the source and the target is made 

independently of any semantic or pragmatic considerations. The symbols (that represent 

                                                 
7These constraints function as selection mechanisms, where the available knowledge about the target domain  

plays a fundamental role in finding out the adequate mapping.  (We are excluding the extreme case of ‘pure 

carry-over’ where no knowledge about the target is available initially). See Gentner (1989, p. 202). 
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predicates, relations, functions) don’t ‘mean’ anything. They seem meaningful to us, in the 

examples given, because the words used are taken from a natural language! Only their form 

(and not their content) is relevant for the mapping. 

 

The syntactical character of SME can be seen as an advantage, since the constraints 

that apply to the mapping don’t presuppose any general or domain-specific knowledge. 

These constraints can be implemented as general procedures that can be applied to any 

domain, once we’ve come up with the representations.  

 

But, for the same reason, the theory has a fundamental shortcoming: its inherent 

sensitivity to the particular way the source and the target domains are represented (by the 

programmer).
8
 

 

This criticism is sometimes made even more emphatically: in Gentner’s simulation 

the representations of the source and the target are especially ‘tailored’ to bring forth the 

‘right’ mapping. The mapping is, so to speak, built by the programmer into the 

representations themselves.
9
 If we didn’t already know the relevant predicates or the 

insightful mapping in advance, the particular way the source and the target domains are 

represented would seem completely arbitrary. If we change the representation, different 

mappings (or no mapping at all) are possible (given just the syntactic constraints proposed 

by Gentner). 

 

b) The problem of the syntactical identity of predicates 

 

Another problem with Gentner’s implementation is that it wouldn’t map predicates 

that are not syntactically identical, which is too restrictive. If we are interested in making 

analogies between objects and processes in two different domains, we should expect to map 

different descriptions, using different predicates.
10

 

 

This shortcoming of SME can be seen, again, as a special case of the general 

problem that merely syntactical criteria are obviously sensitive to the particular way the 

domains are represented. One solution to this problem would be to ground the mapping not 

in syntax, but in semantics: different predicates might be matched if they represent the same 

or similar concepts. We will see below how this idea is implemented by other simulations of 

analogy-making.  

 

c) The problem of the construction of representations 

 

The two problems described above can be seen as arising from the fact that 

Gentner’s theory of analogy bypasses completely the issue of the construction of 

representations. The representations of the source and the target are given as inputs to the 

matching engine and don’t change during the mapping process. Gentner doesn’t see this as a 

                                                 
8Palmer (1989, p. 337-9) makes also this point. 

9 See Dierbach et al. (1991); Bartha (1994, p. 58,78); Palmer (1989); Hofstadter (1995, p. 182). 

10Different predicates can, actually, have the same meaning (be two different representations of the same 

concept) or the same predicate can be used, in different domains, to represent different concepts.   
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problem since she believes that the issue of how representations are constructed, albeit an 

important one, is not related intrinsically to the problem of defining the nature of analogical 

reasoning. A complete computational architecture for analogy should keep separate the 

modules that deal with these two processes (representing and mapping).  

 

It has been argued, however, that the construction of  representations cannot be 

separated from the mapping in analogical reasoning. The real problem for a theory of 

analogy would be to give an account of the construction of representations and the mapping 

as intertwined processes. In this view, a theory of analogy cannot be based purely on 

syntactical constraints.
11

 This is the main presupposition behind Mitchell’s program of 

‘analogy-making’, COPYCAT. Before presenting it, I would like to refer briefly to another 

simulation of analogical reasoning that uses semantic knowledge to solve some of the 

problems that arise for theories of analogy based on purely syntactical constraints. 

 

 

2. Holyoak and Thagard’s simulation 

 

The intuition that analogy is a mapping based on the shared structure between two 

representations is also central to another computational simulation of analogical reasoning, 

ACME, proposed by Holyoak and Thagard. They distinguish three kinds of mapping 

between objects: a) attribute mappings; b) relational mappings; and c) system mappings. 

 

A very simple attribute mapping is that in which two objects are mapped because 

they share the same properties (that is, because they are represented as arguments in the 

same one-place predicates). This kind of  mapping is not, in general, considered as 

insightful as relational mappings. In the latter, objects in different domains are matched 

because they are related ‘in the same way’ (because they play the same roles in their 

respective structures). In the same spirit of Gentner’s ‘systematicity’ constraint, system 

mappings are considered the most insightful kind of mapping because they are based on 

higher-order relations. In system-mappings, the mapping of whole structures takes priority 

over that of  isolated relations.
12

 

                                                 
11It can, however, be argued that Gentner was not actually interested in giving an account of how we construct 

representations when we ‘perceive’ an analogy, given different ‘pressures’, but rather in how we understand an 

analogy that has already been made between two domains. Morrison (1994) argues that the clash between 

Gentner’s and Mitchell’s theories stems from a fundamental misunderstanding concerning the aims of each 

theory. Actually, they address different issues. Gentner’s is a (normative) theory of what should count as an 

analogical mapping (and the implementation she proposes reflect this theory of the nature of an analogy; see 

1989, p. 223). This explains why, in her implementation of analogical mapping, the representations of the 

source and the target are given and remain unchanged during the processing. Hofstadter, instead, is concerned 

with how the representations (of the source and the target) are generated in the first place, and subsequently 

transformed. If Morrison’s interpretation is correct, Gentner’s theory has nothing to contribute to devise a 

constructive strategy for extending our knowledge and concepts to account for new domains of experience.  

12Holyoak and Thagard claim that the ability to represent knowledge explicitly at various levels of abstraction 

is a necessary condition for analogical thinking: “The capacity for explicit propositional thought is an essential 

requirement for the kind of abstraction needed for analogical thinking” (Holyoak et al. 1995, p. 25). They 

argue that, without a language, a cognitive system cannot represent a domain adequately for making the kinds 

of mappings required for analogical reasoning (Holyoak et al. 1995, ch. 3). I’ll not be concerned in this paper 

with this strong symbolic stance in accounting for analogical reasoning. 
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Actually, Holyoak
13

 claims that analogical reasoning involves multiple constraints. 

‘Structure’ is considered as an ‘internal’ constraint on analogical reasoning. What 

distinguishes Holyoak’s implementation from Gentner’s is the role played by two other 

‘external’ constraints: ‘similarity’ and ‘purpose’.  

 

The mapping engine in Holyoak’s implementation, ACME, is able to map different 

kinds of predicates on the basis of the semantic similarity of the concepts they represent. 

This presupposes that the program/cognizer has access to (or is provided with) a network of 

concepts (stored in long-term memory).
14

 

 

The similarity of two concepts is determined by their closeness in the semantic 

network in which they are embedded. Mere syntactical theories of analogy, like Gentner’s, 

cannot deal with cases like this (since judgements of similarity presuppose world- 

knowledge represented, for instance, by a semantic network or some type hierarchy). 

 

Another difference between Holyoak’s implementation and Gentner’s is the role 

played by the goals of the agent in the processes of analogical reasoning. If the analogical 

agent has as her aim to come up with an explanation for given phenomena, then we expect 

that causal relations should play a privileged role in the mapping. If the agent has ‘practical’ 

aims, like problem-solving, planning, decision-making, other kinds of relations will be 

favored, and the cognizer will come up with other mappings. Analogical reasoning in the 

mathematical field, for instance, would attach a greater importance to relations such as 

‘implies’ than to causal relations.
15

  

 

Holyoak’s ACME is just a mapping engine (like Gentner’s SME). However, 

Holyoak addressed also the ‘retrieval’ sub-process of analogical reasoning with a retrieval 

program, ARCS (for Analog Retrieval by Constraint Satisfaction). They provided the 

computer with a huge electronic thesaurus of english words, Wordnet, which organises these 

words (allegedly) in the way their related concepts are organised in human memory. The 

long-term memory of the computer is, therefore, provided with a semantic network of 

concepts. The retrieval (or selection) of a source is made through the similarity of concepts 

and also through structure matching. 

 

Gentner’s implementation of analogical reasoning and Holyoak’s have, however, a 

major common point: the fact that the representations of the source and the target are 

handcoded by the programmer and don’t emerge as a constituent part of analogy-making 

                                                 
13Henceforth I will mention just the first of the two authors of the book Mental Leaps. 

14It can be argued that categorization is based on attribute mappings. However, there is an interplay between 

concepts and similarity (that can strike some people as a ‘chicken-and-egg’ puzzle). A central claim of a 

particular theory of concepts is that they are formed on the basis of similarity judgements. But concepts and the 

way they are represented and stored in memory is a fundamental basis for perceiving similarities between 

objects.  Holyoak et al. (1995, p. 22) state the problem in the following way: “The hard problem for cognitive 

science is to explain why particular similarities are used to form concepts, and how concepts in turn alter 

judgements of similarity”. See also Rips (1989, p. 22 and p. 55, note 1).  

15 See Holyoak et al. (1995, p. 271).  
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itself. The next simulation amounts to a radical departure from a conception of analogy that 

separates the mapping from the construction of representations.
16

 

 

 

3. Mitchell’s COPYCAT 

 

Mitchell and Hofstadter developed a program, called COPYCAT, that they claim, “is 

able to discover insightful analogies” in an idealized “world”, that of letter-strings. This is a 

major difference if we constrast this program with the simulations presented previously, 

which are not limited to a micro-domain and which pretend to simulate analogical reasoning 

in ‘real-world’ situations.  

 

COPYCAT makes use of  knowledge about a particular world in forming analogies 

between a source and a target. This knowledge is incorporated in a conceptual network with 

several biases that constrain the application of concepts in making analogies in the letter-

world.   

 

At first glance this might seem a very limited undertaking, but the authors are 

attempting to simulate something that they take to be common to various high-level 

cognitive processes: the ‘fluidity of concepts’. They claim that ‘high-level perception’ is 

involved in one of the processes where the ‘fluidity of concepts’ is especially important: the 

construction of representations The encoding of raw-data through perception is ‘flexible’ 

because it is sensitive to the context and to ‘top-down’ influences from the conceptual 

schemata of the cognizer (1995, p. 172).  

 

Mitchell claims that, in this respect, there is a resemblance between perception and 

“even the most abstract and sophisticated mental acts” (1995, p. 210), like analogical 

reasoning (1995, p. 179). She certainly has in mind the shortcomings of Gentner’s 

simulation of analogical reasoning, since the latter doesn’t address the intrinsic association 

between analogical mapping and the construction of the source and target representations. 

 

Hofstadter makes this point in the context of a criticism of computational 

implementations of cognitive processes in general. He argues against the “objectivist view 

of perception and of the representations of objects, situations, and categories”, prevalent in 

the AI community. In general, these implementations take for granted the assumption  “... 

that it is possible to model high-level cognitive processes independently of perceptual 

processes” (Hofstadter 1995, p. 176, 181-5, 282).
17

 

 

                                                 
16What I am calling the ‘construction of a representation’ should not be conflated with the retrieval sub-

process of analogical reasoning. I’ll not have much to say in this paper about the retrieval of an analog. I 

should just mention here that Gentner (like Holyoak) proposed also computational mechanisms for the 

retrieval. We saw that in Holyoak’s solution (ARCS), but not in Gentner’s, ‘semantic similarity’ plays a central 

role in the retrieval of an adequate source, given a target (Thagard, 1992, p. 24). In any case, the next 

simulation of analogical reasoning does not address the retrieval sub-process either.  

17Cf. Bartha (1994, p. 58,78); Dierbach et al. (1991). Concerning the flexibility of conceptual thought, see 

Clark (1993, ch. 4 ). 
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I can give here just a flavor of how COPYCAT works. It’s not my intention to enter 

into the details of the implementation (and even the description of the architecture, I admit, 

will be sketchy). My aim is to make explicit the theory of analogy that is implemented by 

the architecture.  

 

Let’s analyse a typical example of analogy-making in the domain of letter-strings. 

COPYCAT typically solves the following kind of problem: “Suppose the letter-string aabc 

were changed to aabd; how would you change the letter-string ijkk in ‘the same 

way’?”(1995, p. 206). 

 

The fundamental point Mitchell wants to make (henceforth Hofstadter’s central 

contribution to the development of COPYCAT will not be mentioned explicitly) is that this 

problem admits a variety of answers. It depends on the way the strings are ‘perceived’ 

(conceptually encoded or represented), given different ‘pressures’.  

 

One answer to the problem could be the string: ijkl. Here, the rule ‘replace the 

rightmost letter by its alphabetic successor’, that describes the transformation of the first 

string in the source into the second, is applied ‘literally’ (that is, without modification or 

‘slippages’) to the target in order to obtain the string that is missing. This answer is not 

completely satisfactory because it does not take into account one feature of the context, 

namely, the duplication of the letter K in the target string. Once this ‘pressure’ is perceived, 

a better answer would be ijll. Now, the group KK is perceived as a single object (a 

‘sameness group’) and mapped to the letter C in the source string. Based on this mapping, 

the previous rule can be modified by allowing the concept ‘the rightmost letter’ to slip into 

the concept  ‘the rightmost group’. 

 

However, another class of answers can be reached if the duplication of the letter ‘A’ 

in the source string is perceived as highlighted by the duplication of the letter ‘K’ in the 

target string. This contextual ‘pressure’ can direct our attention to the fact that the group aa 

plays a role in the source string similar to the role played by the group kk in the target 

string. These two ‘sameness groups’ can be mapped on the basis of this similarity of roles:  

leftmost <--> rightmost. Given this ‘perception’, another answer could then be jjkk, by 

translating the original rule by the rule ‘replace the leftmost letter by its alphabetic 

successor’. Here the concept ‘righmost letter’ slips into the concept ‘leftmost letter’. 

Another answer might also be given by allowing a slippage of the concept ‘successor’ into 

the concept ‘predecessor’ (given a different perception of the symmetries involved in the 

source): hjkk.  

  

So, different solutions are possible in different contexts and also through the 

perception of similarities between the source and the target at different levels of abstraction. 

These are different ‘pressures’ constraining the solutions. ‘Bottom-up’ pressures arise from 

the ‘context’, that is, particular objects or structures
18

 in a string are highlighted by the 

objects or structures perceived in other strings. If we change one of the strings, this will 

change the probability of building particular objects and making particular mappings.  

                                                 
18A ‘structure’ here is an object built by codelets (see below) through bonding of elemental letters.  
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For instance, if in the given example the target string were just ijk, then in this 

context ijl  would be a perfectly good answer to the problem. The mapping of the letter K 

and the letter A in the source string (based on a slippage ‘rightmost letter’---------> ‘leftmost 

letter’) would not be perceived as compelling! 

     

Besides ‘bottom-up’ pressures, there are ‘top-down’ pressures that presuppose stored 

knowledge that the analogical-cognizer has about this micro-world of letter-strings. These 

‘top-down’ biases include not only the availability of particular concepts,  their degree of 

activation, but also the topology of the semantic network in which they are embedded. We 

will see that these links allow or favor certain slippages in order to adapt the situation 

depicted in the source to a different situation/context in the target. An important ‘top-down’ 

bias is a privilege granted to the instantiation of ‘deeper’, that is, more abstract concepts. 

This bias will favor the perception of similarities at higher levels of abstraction. 

 

For instance, in the same example, it would be considered a ‘bad’ answer to apply 

the rule ‘replace the rightmost letter by the letter D’ to the target string, to generate the string 

ijkd. This answer would be considered too ‘literal’ since it instantiates the concept of an 

object, ‘D’, instead of the relational concept, ‘alphabetic successor’, that is more abstract. 

 

3.1 COPYCAT’s architecture 

 

COPYCAT’s architecture involves three components: the Slipnet, the Workspace 

and the Coderack.
19

 

  

 1. The Slipnet is a ‘platonic’ network of concepts. Its nodes are associated 

with ‘types’ of objects and relations. It comprises the knowledge that the analogy-maker has 

of the letter-world. 

 

 2. The Workspace is the “locus of perceptual activity”, where explorations of 

the strings take place, objects are built and mappings (bridges) between strings are made as 

a consequence of  contextual (bottom-up) and conceptual (top-down) pressures.  

 

 3. The Coderack  stores a population of agents (the codelets) that carry out 

several tasks, including the identification and building of objects in the Workspace, as well 

as the building of bridges. Codelets also come up with the rules that apply to the source and 

the target transformations, respectively.  

 

3.1.1 Slipnet 

 

The Slipnet incorporates the ‘knowledge’ (about the letter-world) available to the 

system. This comprises basically concepts of objects and concepts of relations (as well as 

functions). The Slipnet contains, for instance, nodes corresponding to the concepts of the 26 

                                                 
19The central aspects of  this architecture were already implemented in a former program developed by 

Hofstadter’s group: JUMBO, a program for making anagrams (see Hofstadter, 1995).  
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letters of the alphabet and to the concepts of basic relations, like ‘successor’ and 

‘predecessor’. Concepts of higher-order relations, like ‘opposite’, link several other nodes, 

some of them corresponding to basic relations, as the two I’ve just mentioned. 

 

The Slipnet is ‘platonic’ in two senses: a) there is a fixed and permanent stock of 

concepts (no new concept is created; there is no ‘learning’ in this sense); b) the concepts are 

hierarchically organized and linked, forming a net whose basic topology is the same at the 

beginning of each run of the program.  

 

However, the network is dynamical: the ‘distances’ between concepts change 

dynamically with changes in the ‘perception’ of the objects in the strings.The mechanism is 

the following. There are several types of links, and some of them are labeled. These labels 

are also concepts. When a label-concept is activated, given the perception of some object or 

bridge in the Workspace, all the links labeled by this concept ‘shrink’, increasing the 

probability of slippage of the node-concepts linked. 

 

An example would be the label-concept ‘opposite’ (a second-order concept), that 

links several pairs of nodes, like (left, right) or (successor, predecessor). When the concept 

‘opposite’ is activated, the probability of slippage for all these node-pairs increases.  

 

In COPYCAT, a concept, although centered on a node, ‘spreads’ like a cloud around 

the node. Each concept is, therefore, a ‘fuzzy’ unity. When a link between two concepts 

shrinks, their ‘clouds’ overlap increasing the probability of conceptual slippage. The 

‘closeness’ of  two concepts in the Slipnet is a measure of their similarity.  

 

The form of this semantic network is changing all the time, as concepts associated 

with links increase or decrease their activations in response to contextual pressures (the 

perception and building of objects in the Workspace). These changes are effective only 

during the same run of the program. 

 

Concepts have also different ‘depths’. The depth of a concept is a pre-determined 

static feature that stands for its generality and abstractness: the greater the difficulty of 

directly perceiving structures that instantiate a concept, the greater its depth. The concept of 

a particular object has, in general, less depth than relational concepts (there are exceptions, 

though, like the concepts ‘last’ and ‘first’, for positions in the alphabet). The concept 

‘opposite’ has a great depth since it links many other relational concepts favoring slippages 

between them (for instance, the mapping of ‘leftmost letter’ and ‘rightmost letter’ in one of 

the answers to the problem exemplified before).  

 

COPYCAT has, therefore, a bias towards favoring analogies based on deeper 

concepts. This corresponds to an a priori propensity to allow more easily slippages of 

shallower concepts than of deeper ones. This is an implementation of the intuition that if 

there is a common ‘essence’ between two different objects or situations, it can often be 

‘perceived’ only at an abstract level. Conceptual slippage is, therefore, a way to ‘adapt’ the 

encoding of one object or situation to fit a different one that is ‘perceived’ as ‘the same’ 

(type of) object or situation at a higher level of abstraction. To sum up: two factors facilitate 
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slippage, the shallowness of the concepts involved and their proximity (overlap of ‘halos’) 

in the Slipnet (Hofstadter, 1995, p. 219). 

 

3.1.2 Workspace 

 

At the beginning of a run, the letter-strings in the Workspace are only “unconnected 

raw data”. At this stage there is merely an association between each letter-token and its 

conceptual type in the Slipnet; the letters on the edges of the strings are also identified as 

‘leftmost’ and ‘rightmost’ letters.  

 

Then the strings begin to be scanned by the codelets and, as a result, many structures 

are detected and objects are built at various levels. The lower-level groups are based just on 

the instantiation of ‘bond-types’ between adjacent letters. These bond-types are concepts in 

the Slipnet, like ‘sameness’, ‘successor’, ‘leftmost’, etc.  

 

In our example, objects like aa or kk can be readily built by a ‘sameness’ bond. The 

groups that are formed by these bonds can be considered as higher-level objects and new 

bonds can be established between them, and so on. For instance, ijkk can be seen as a 

‘successor group’ formed by the component objects, i, j, and the sameness group kk.  

 

‘Bridges’ (or mappings) can then be made between the objects detected/ constructed 

in different strings, based on identity or similarity relationships (these objects can be parts of 

a string or eventually the whole string).  

 

Different answers correspond to mappings based on two kinds of similarity: 

similarity of objects (intrinsic or ‘literal’ similarity) and similarity of roles played by the 

objects in the strings. Insightfull anwers are those based on the similarity of roles played by 

objects in their respective strings. So, referring once more to our example, the group aa, in 

the source, can be mapped to kk in the target on the basis of the roles they play in their 

respective strings: they are perceived as instantiating the concepts ‘leftmost’ and 

‘rightmost’. These concepts are linked in the Slipnet by an ‘opposite’ link. Once the concept 

‘opposite’ is activated, it favors the mapping of  the letters c and i on the basis of the 

slippage  ‘rightmost letter’ -----> ‘leftmost letter’.  The probability of a slippage ‘successor’ 

--------> ‘predecessor’ also increases, since these concepts are linked by the same relation 

‘opposite’. 

 

To sum up: the objects that are built and the mappings that are made are the result of 

Workspace pressures and conceptual pressures. Mitchell describes this as a “ feedback loop 

between perceptual activity and conceptual activity” (Hofstadter, 1995, p. 223), between 

top-down and bottom-up pressures.  

 

A final remark: objects and bridges can be built or destroyed in the Workspace. Two 

factors determine the ‘strength’ of an object or a bridge: a context-independent one (the 

depth of the concept that is instantiated by the object or structure) and a context-dependent 

one (how this object or bridge is consistent with other objects or bridges built in the 
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Workspace). This consistency constraint corresponds to a drive towards what Mitchell calls 

a ‘viewpoint’, that is, a global fit between objects built in the Workspace. 

 

3.1.3 Coderack: (population of Codelets) 

 

The exploration of the Workspace is made by a population of agents called 

‘codelets’. It’s not necessary, for our purposes, to discuss this in detail here.
20

 The codelets’ 

functions are to ‘notice’ a promising structure in the Workspace and eventually to build or 

destroy an object or a bridge between objects in different strings. Each codelet acts in a 

semi-autonomous way, but the collective action of all the codelets is subject to global biases 

and urgencies. 

 

The urgency of a particular task, and the consequent release and ‘reproduction’ of a 

particular codelet, is defined by the pattern of activation of the concepts in the Slipnet, and 

the objects that are already built in the Workspace (we saw that they are actually inter-

related). If a particular object is built (and the corresponding concept is activated), for 

instance, the search for similar/identical structures becomes more urgent. 

  

The processes of scanning, bonding, bridging, etc. go on in parallel in the 

Workspace. There are bottom-up codelets (‘noticers’) and top-down codelets (‘seekers’), 

among other kinds of codelets. The noticer’s task is ‘unfocused’, but the top-down codelets 

are looking in the Workspace for structures of a particular kind (‘defined’ in the Slipnet).  

 

At the beginning, codelets are sent to do their tasks in a random way. This 

corresponds to an initial ‘open-mindedness’ of the program that is still exploring and trying 

to build promising objects. This initial open-mindedness evolves into a closed-mindedness 

that corresponds to a focus on some promising paths, that is, those hypothetically leading to 

a coherent ‘view’. There is a measure of the relative disorder in the Workspace: 

temperature. It is an (inverse) measure of the degree of perceived order in the Workspace.  

 

3.2 General comments 

 

I understand Mitchell’s COPYCAT as an implementation of the basic intuition that 

two systems are analogous if they can be perceived (encoded or represented) as similar at 

some level of abstraction, where their common ‘essence’ is defined. Analogy-making 

consists in the construction of representations of the source and the target letter-strings and 

in mapping them so that their structures can be perceived as instances of ‘similar’ concepts. 

We saw how this ‘construction’ of similarity is affected by the context and by the 

configuration of the conceptual network. In COPYCAT, analogy-making involves 

abstraction: deep concepts are activated and shalow concepts ‘slip’ to allow mappings 

between the source and the target strings. ‘Slippages’ can be understood as cases of 

‘conceptual’ or ‘meaning’ change at a lower-level, aiming at the construction of descriptions 

                                                 
20This element of  COPYCAT’s architecture is probably the most original, not only from a computational 

point of view (especially the parallelism and non-determinism of the activity that goes on in the Workspace) 

but also as a model for perception. 
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of the source and the target domains that can be interpreted as instantiations of the same 

higher-level conceptual ‘scheme’.  

 

Abstraction and instantiation are the basic processes involved in the way COPYCAT 

makes analogies. Another program of analogy-making, TABLETOP, based on the same 

architecture and principles as COPYCAT, is presented, explicitly, as an implementation of 

these two fundamental procedures (French, 1995, p. 4). 

 

As a summary, we compare in the following section the insights concerning the 

nature of analogy implemented in COPYCAT, with those implemented in SME and in 

ACME.  

 

3.3 COPYCAT versus SME 

 

3.3.1 Differences 

 

Gentner’s SME and COPYCAT implement different  conceptions of the nature of 

analogical reasoning. For Gentner, ‘analogy’ is just a particular kind of mapping between 

two representations. For Mitchell, analogy involves also representation building, that cannot 

be separated from the mapping.  

 

In COPYCAT the mappings are based on the instantiation of concepts and not on 

syntactical criteria. Since the concepts are linked in a network, and since they have different 

degrees of overlap that change dynamically, mappings of different objects can be made 

based on ‘similarity’ (that is, based on the closeness, in the Slipnet, of the concepts they are 

instantiations of). In SME, only identical predicates can be mapped: there is no place for 

similarity.  

 

COPYCAT is a program that is supposed to apply just to a particular micro-world 

(that of letter-strings) and not to any domain, like Gentner’s SME. This is a consequence of 

the fact that in COPYCAT analogical mappings are based on meaning, that is, based on the 

instantiation of concepts that encode the system’s knowledge of the domain.  

 

3.3.2 Agreements 

 

COPYCAT and SME converge, nonetheless, in implementing the same basic 

judgement concerning what distinguishes a ‘good’ from a ‘bad’ analogy: good analogies 

correspond to the perception of commonalities at an abstract level; bad analogies are based 

on the perception of  common ‘immediate’ features. 

 

However, Gentner and Mitchell implement different criteria for evaluating what is 

‘abstract’. In SME, the order of a relation- that is, a mere syntactical feature- is a ‘measure’ 

of  ‘abstraction’. In Mitchell, abstraction is related to ‘conceptual depth’, a parameter that is 
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based on the available knowledge of the variety of objects, relations and symmetries in a 

particular world.
21

 

 

Neither SME nor COPYCAT address the selection sub-process. In COPYCAT the 

source strings are given. 

  

3.4 COPYCAT versus ACME 

 

3.4.1 Differences 

 

I pointed before that in ACME, as well as in SME, the representations of the source 

and the target are handcoded by the programmer and don’t emerge as a constituent part of 

analogy-making itself. In other terms, the representations are not constructed (or re-

constructed) as a result of different kinds of  ‘pressures’ as in COPYCAT. 

 

3.4.2 Agreements 

 

Mitchell’s and Holyoak’s implementations concur in basing analogical reasoning on 

semantics and not just on syntactics as Gentner does. Semantic similarity plays a central role 

in both COPYCAT and ACME. However, the latter implements a static semantic network. 

What distinguishes COPYCAT is the flexibility of the Slipnet: its topology changes in 

response to context (to ‘bottom-up’ pressures). 

 

There are, therefore, deep differences between ACME’s (and ARCS’) 

implementation of a semantic network and COPYCAT’s. In the SLIPNET, the concepts 

have a core (that corresponds to a node) but they have also a ‘fuzzy’ cloud that allows 

intepenetration as the links shrink.  

 

However, the flexibility or adaptability of Slipnet is a limited one since there is no 

mechanism in COPYCAT for the creation of new concepts or of new links between 

concepts. We can see this as a major limitation of the program, since our intuition is that 

analogy-making in humans often involves these processes.
22

 

 

 

                                                 
21However, we saw that Gentner’s purely syntactical criteria of  ‘abstractness’ does not always agree with 

conceptual depthness. In COPYCAT, an attribute can eventually have more depth than a relation (see 

Hofstadter, 1995, p. 213). It can be argued, however, that these differences are only superficial ones,  since 

COPYCAT’s semantics is a very poor and limited one. A program with a more complex semantics, and based 

on the same architecture, is TABLETOP (see French, 1995). Cf. Indurkhya (1992,  p. 387). 

22Another criticism has been leveled at COPYCAT’s world for being too idealized and idiosyncratic (the 

Slipnet applies to a very narrow and idealized domain). The authors counter-reply that, in fact, this idealization 

favors a better understanding of the fundamental processes involved in analogical reasoning. The idealization 

also avoids misunderstandings concerning what the analogical computer really knows about the domains that 

are being compared and mapped.  For instance, since Gentner’s representations use predicates formulated in 

natural language, the reader may be fooled into presupposing that the computer is capable of knowing what 

these predicates mean. In a micro-world, the knowledge that is, in fact, involved in analogy-making, can be 

made explicit (as in COPYCAT’s SLIPNET).  
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4. Analogical Modeling in the Sciences 

 

Now, does the debate concerning the processes and constraints involved in the 

computational implementation of analogy-making have any bearing on the issue of  

scientific modeling, and vice-versa? 

 

First of all we have to distinguish different meanings of the term ‘model’ as used by 

scientists and philosophers, associated with different roles ‘models’ play in science. What 

follows applies just to a particular kind of modeling methodology, based on an analogy 

between representations of two domains of phenomena or two systems. 

 

Even after making this restriction, however,  we should still distinguish two kinds of  

‘analogical models’, whether they are based on ‘formal’ or on ‘material’ analogies.  

 

I include in the class of models based on formal analogies the following: a) ‘models’ 

as understood by ‘syntactic’ and ‘semantic’ reconstructions of the structure of scientific 

theories
23

; and b) accounts of ‘modeling’ in terms of  ‘nomic isomorphism’ or, more 

generally, ‘structural isomorphism’ (that are presupposed in ‘simulation’ techniques).
24

 

  

Material analogies are supposed to underlie another kind of  modeling heuristics that 

provides explanations and not just simulations. Modeling based on a material analogy aims 

to play a role in the construction of theories by suggesting a theoretical language and 

explanatory hypotheses for new domains of phenomena. 

 

 For instance, ‘mechanics’ was the source of many models for different areas of   

physics in the eighteenth and nineteenth-centuries. An example was the use of bouncing 

balls as a model for explaining the behaviour of gases in terms of molecules speeding inside 

a container. Maxwell’s models for the electromagnetic ether can also be seen as based on 

material analogies. 

 

In the following I want to re-address this distinction between formal and material 

analogies in the context of scientific modeling through the perspective of  the discussions 

presented in the previous sections. There are obvious differences in the roles played by 

analogical reasoning in scientific methodology, on the one side, and in cognition or in AI, 

on the other side. Despite these differences, I think some insights can be obtained by 

adopting a computational point of view, if we aim at having a detailed account of the 

various processes involved in setting up models based on material analogies.  

 

4.1 The construction of similarity 

 

                                                 
23For models in the syntactic conception of the structure of scientific theories, see Braithwaite (1955). For 

models in the semantic conception, see Giere (1988) and Van Fraassen (1987). Despite the differences 

between the so called syntactic and the semantic views, they are both not concerned with heuristics. The 

syntactical and the semantic views address the questions ‘what is a theory?’ and  ‘how does a theory relate to 

the world?’, and neither with the methodological question  ‘how is a theory constructed?’ . 

24On nomic isomorphisms, see Hempel (1965,  p. 436). On structural isomorphisms, see Kroes (1989, p. 148).  
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We saw that a main divergence between computational simulations of analogy-

making is whether the construction of representations for the source and the target might be 

considered an integral part of analogy-making or not. Are representing and mapping 

autonomous or interdependent processes? A related question is whether the mapping should 

be based on mere syntactical considerations or whether it presupposes semantic knowledge.  

 

It seems to me that these issues also arise in distinguishing formal from material 

analogies as underlying different kinds of modeling heuristics in the sciences. 

 

In formal analogies representations of the source and the target are given and we just 

elaborate a mapping between them. We are not concerned with how these representations 

were generated in the first place. 

 

Furthermore, in formal analogies only syntactical considerations are the basis for the 

‘analogical’ mapping. The model and the modeled theories don’t have to be ‘similar’ in any 

non-formal sense of  ‘similarity’.
25

 The interpretations of the terms in each domain play no 

role in the mapping. In formal analogies corresponding terms (associated through the 

mapping) just play the same logical or mathematical role inside the overall structure of both 

theories. The terms or predicates mapped may have completely different interpretations in 

their respective domains. We just rely on some kind of isomorphism between the source and 

the target representations.  

 

I won’t have much more to say about formal analogies, from this point of view, 

besides the fact that they have a mere syntactical basis, like the mappings in Gentner’s SME. 

For instance, in the logical-empiricist construal of the notion of ‘model’, the model and the 

theory have in common a syntactical structure (a calculus). Palmer showed, indeed, that 

Gentner’s definition of analogical mapping and some of the constraints she proposes can be 

redescribed in terms of Tarski’s model theory (1989, p. 336). Therefore, we can expect that 

in those cases where formal analogies are supposed to play a heuristic role, the sensitivity to 

the way the source and target domains are represented, which is a problem in Gentner’s 

implementation, might also arise in the methodological context of scientific discovery. 

 

In the case of  material analogies, we usually start with a partial representation of the 

target phenomena, usually involving just observational predicates. The construction of a 

full-fledged representation of the target domain, given the available representation of the 

source domain, is what modeling is all about.
26

 Modeling based on material analogies can 

be understood as a process of representing the model and the modeled systems as ‘similar’, 

that is, as the same type of system at some level of abstraction. This is a necessary condition 

for the extension of the source representation to encompass the target domain, providing an 

adequate conceptual framework and terminology for describing the latter. 

 

                                                 
25Many philosophers would refrain from employing the term ‘similarity’ in the context of mere formal 

analogies.  

26We will see below that often the source domain has to be re-represented to fit the knowledge we have of the 

target domain.  
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A simple example may help making this point. Let’s suppose that we have a theory 

that accounts for what happens when we throw a stone in a quiet pond. This theory might 

involve, for instance, concepts like that of  ‘wave’. ‘Modeling’ sound phenomena on this 

theory would involve a procedure for creating a new and more abstract concept of wave that 

can be instantiated in both domains of phenomena.  

 

A sketchy account of the modeling procedure in this case would include the 

following steps. We have to distinguish what features of both domains of phenomena have 

to be ignored and what are the relevant ones. For instance, superficial features of water 

waves like ‘wetness’ and, say, ‘color’, have to be ignored. Furthermore  we have to know 

how to map the predicates used to represent the relevant features. The problem is that these 

predicates are often not identical and we have to allow certain ‘slippages’ (cf. COPYCAT) 

to make the mapping . The ‘height’ of a water wave above the surface of the pond should be 

mapped to the ‘loudness’ of sound. These different concepts become ‘similar’ by linking 

them to a more abstract concept, say ‘amplitude’, used to characterize an abstract type of 

wave. Other concepts associated with this abstract concept of wave, like ‘wave-length’, and 

‘frequency’, allow us to see as similar other concrete features of the two phenomena, like 

the distance between two successive water crests, the ‘pitch’ of a sound, etc. These similar 

features are mapped allowing other ‘slippages’. If we try to extend this description to 

include light phenomena, the commonalities between these realms of phenomena will have 

to be made at an even higher level of abstraction.  

 

As a result of the creation of new and more abstract concepts, these realms of 

phenomena or systems are ‘seen’ (or represented) as similar in certain ‘essential’ respects. 

The source and the target systems are then described as instances of the same ‘kind’ of 

(abstract) system. 

 

This modeling procedure is very much like analogy-making as understood by 

Mitchell and Hofstadter, and implemented in COPYCAT. This comparison between cases 

of scientific modeling and COPYCAT’s analogy-making highlights, however, the 

limitations of this implementation. The depth of a concept is fixed beforehand by the 

programmers and can’t change. It is certainly an interesting feature of COPYCAT that the 

SLIPNET modifies its shape with the emergence of an analogy, but these changes are still 

very limited. Furthermore, COPYCAT makes analogies in a very restricted domain, despite 

the amazing diversity of structures the letter-strings can display. In real-world analogy-

making, we obviously deal with much more complex domains that are, often, very far away 

in terms of their structures and processes (at least as we can judge based on our immediate 

experience). An inter-domain analogy presupposes often deep abstractions  involving the 

creation of new concepts and sometimes radical modifications in our conceptual schemes.  

 

Furthermore, while COPYCAT at the beginning of a run starts again in the same 

‘state’, in real-world situations a cognitive system is expected to learn with experience and 

to ‘start’ a task with previous representations and conceptual links that were constructed in 

previous ‘runs’.  
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Keeping in mind these qualifications, I will examine whether the constraints that 

apply to the processes that underlie COPYCAT’s analogy-making might also underly 

modeling based on material analogies. 

 

4.2 Bottom-up and top-down constraints in analogical modeling. 

 

We saw that in COPYCAT there is an interplay between ‘bottom-up’ and ‘top-

down’ pressures (or constraints). Different representations of the source and the target 

strings are built in different contexts. Biases incorporated in the way the concepts are linked 

in the SLIPNET play also a central role in the construction of representations and in the 

mapping. These ‘pressures’ can be compared with ‘bottom-up’ and ‘top-down’ constraints 

proposed by philosophers of science to account for modeling based on material analogies. 

 

Aronson et al. (1995) characterize ‘bottom-up’ accounts of material analogies as 

those that consider ‘similarity’ as a primitive notion. Their criticism of these accounts is 

based on an argument that is widely accepted in the philosophical and psychological 

literature: any two objects or situations can always be perceived as ‘similar’ in some respect 

or another.
27

 A theory of analogy should acknowledge that ‘similarity’ is a derivative notion, 

make explicit the basis of judgements of similarity and propose adequacy criteria for these 

judgements. Their contribution is to highlight that similarity judgements presuppose 

knowledge about the world (an ‘ontology’) and to suggest that this knowledge can be 

conveniently represented by type-hierarchies (an AI representation format). This type-

hierarchy provides ‘top-down’ constraints on similarity judgements and on the mapping of 

the source model and the target. They claim that similarity-based and logic-based accounts 

of modeling have in common the fact that they are both “... insensitive to the ontological 

constraints on the selection of models in real science”(1995, p. 49). 

 

Mary Hesse, in her account of material analogies (1966) argues, however, that 

material analogies should be based on ‘pre-theoretical’ judgements of similarity. She 

believes that comparisons between the observational predicates in the representations of the 

source and the target allow us to find out the similarities and the dissimilarities between the 

domains (in her terms, the ‘positive’ and the ‘negative’ analogies, respectively). Modeling 

should be triggered by similarities perceived at an observational level between a target 

domain and some available source.
28

  

 

What Hesse calls the ‘neutral analogy’ has a fundamental importance for the 

constructive role she assigns to scientific modeling. The ‘neutral analogy’ encompasses 

                                                 
27See, for instance, Goodman (1976, p. 77) and Black (1962). 

28Hesse’s ‘horizontal constraint’ is in sharp contrast with Gentner’s characterization of an analogical mapping 

as one that disregards similarities at the level of attributes of objects. However, Hesse’s theory of analogy is 

‘semantic’, and not syntactic as Gentner’s is. Hesse, in a recent paper, re-states her ‘horizontal’ constraint for 

material analogies, explicitly allowing now that the similarities between objects’ properties be “either directly 

perceived” or a consequence of  “conceptual resemblances of ideas or pictures derived from preconceived 

cultural forms”. She interprets this move as that of  “drawing attention ... from superficial similarities to 

complex contextual examples” (1988, p. 324-5). We can retrospectively see the references to metaphors in her 

1966 book as anticipations of this kind of ‘semantic’ approach to analogical reasoning. Cf. Indurkhya (1992, p. 

54-5).  
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those entities, properties or relations in the ‘source’ that we don’t know, in a certain phase 

of the investigation, whether they fall into the ‘positive’ or the ‘negative’ analogies. 

 

The existence of a ‘neutral’ analogy gives a fundamental dynamical and heuristic 

character to Hesse’s conception of a model, that distinguishes it from models based on 

‘formal analogies’. 

 

Theories are, for Hesse, dynamic entities and the ‘neutral analogy’ between a 

(source) model and a (target) theory constitutes its “growing points” (1966, p. 10).
29

 By 

exploring the neutral analogy between the source and the target, models can play a heuristic 

role in the construction of theories, by suggesting a theoretical language and by providing 

explanatory hypotheses for the phenomena in the target domain. 

 

If we adopt Aronson’s analysis, Hesse’s should be considered as a similarity-based 

account of modeling, in which ‘similarity’ plays the role of a ‘bottom-up’ constraint (in 

Hesse’s terms, a ‘horizontal’ constraint).
30

 

 

If ‘similarity’ is considered the only constraint in analogy-making (cf. Holyoak and 

Thagard’s constraints), then we will have problems in distinguishing the relevant properties 

(in each domain) from those that should be ignored in the mapping.
31

 How can we guess the 

right or insightful mapping? This is an especially big problem when the predicates that are 

matched are not identical, which is often the case, as we highlighted in our discussion of 

Gentner’s theory of analogy.
32

  

 

This problem can be illustrated by one example given by Hesse: that of setting up a 

material analogy between sound and light phenomena. In elaborating this analogy, how can 

we guess that the predicate ‘brightness’, in the representation of the target domain, should 

                                                 
29Strictly, we should perhaps speak not of a single theory, but of a ‘research program’ in the sense of Lakatos, 

or of ‘theory-families’ in the sense of  Harré (1987), in which the neutral analogy with the model would 

provide the ‘positive heuristic’.  

30Nagel also distinguishes ‘formal’ from what he calls ‘substantial’ analogies, in which the relationship 

between the target theory and its models is one of analogy or of similarity: “... apprehensions of even vague 

similarities between the old and the new are often starting points for important advances in knowledge” (Nagel, 

1961, p. 107). 

31Hesse proposed also a ‘vertical’ constraint on analogy-making: the knowledge we have of the source 

domain, especially the knowledge of causal relations, provides criteria for determining what are the relevant 

properties to be mapped. Hesse’s second materiality constraint, as I understand it, addresses the problem of the 

filtering of the relevant properties. The emphasis on causal relations has a pragmatic justification (refer to the 

role of the ‘purpose’ constraint in Holyoak and Thagard’s account of analogical reasoning) . The basic aim of 

analogical modeling in science is to provide explanations for the target phenomena. Therefore, the relevant 

‘vertical’ relations that should constrain the selection of properties, the mapping and the analogical inferences 

(transfer) are causal relations. See also McLaughlin (1982, p. 90). 

32Cf. Sellars’ distinction between first order and second order similarity between particulars. In the latter, the 

predicates are not identical but similar. He argues for a notion of ‘similarity’ based on ‘second order’ 

properties shared by particulars, in a criticism to Hesse’s similarity at the level of first-order (that is, 

observational) properties. The problem I see with Sellar’s account is that,  in his examples, second-order 

properties are always of a formal character (1965, p. 178-84). See also Brown (1986, p. 295), Cartwright 

(1993). 
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be mapped to ‘loudness’? Or ‘color’ to ‘pitch’? Furthermore, are these the relevant 

properties to be mapped?  

 

In a top-down account, ‘similarities’ are not the starting point but the upshot of 

analogical modeling. In the approach proposed by Aronson et al., a type-hierarchy ‘filters’ 

the relevant features and provides guidelines for the mapping: two systems are ‘similar’ if 

they can be represented as subtypes of an abstract type of system. As an illustration, they 

propose a reconstruction of the analogy between the solar system and Bohr’s atom as 

involving an abstraction to a common supertype: ‘central force field’. The selection of the 

relevant properties in both domains and the way they should be mapped are a consequence 

of picking up a supertype in the type-hierarchy at an adequate level of abstraction.
33

 The 

similarity between the two systems is, therefore, ‘perceived’ at the level of the common 

supertype. The encoding of the target and the transfer of semantic knowledge from the 

source to the target is mediated by the type-hierarchy, through procedures of abstraction and 

inheritance involving the subtypes (that is, the source and the target systems) and the 

(proposed) supertype. 

 

The way we represent (or re-represent) the source and the target domains depends on 

how we place them in a global ‘ontology’, or in the present state of our knowledge of the 

world.
34

 This constitutes a top-down pressure in analogy-making (guiding the construction 

and the modification of the representations as well as the mapping between them). We can 

expect that this knowledge will eventually change as a consequence of  analogy-making 

itself (old links between concepts are destroyed, new supertypes and links are created, etc.) .  

 

In the first part of this paper, we emphasized that abstraction and instantiation are 

also processes involved in the way COPYCAT and TABLETOP make analogies.
35

 

 

Hesse’s arguments for a ‘horizontal’ constraint cannot be dismissed, though. We can 

make her point using the very same framework proposed by Aronson. In a typical situation, 

the common supertype is unknown or doesn’t even exist in the type-hierarchy: it has to be 

generated. This will involve an interplay between contextual (‘bottom-up’ or perceptual) 

and conceptual (‘top-down’) pressures. The way the source and the target are initially 

                                                 
33They criticise Gentner because in her account of this analogy the features of the source and the target are 

compared  ‘at the same level’, that is, without presupposing an abstraction procedure guided by a type-

hierarchy (see Way, 1991, p. 140-6). 

34See also McLaughlin (1982, p. 94) 

35French claims that abstraction and inheritance both presuppose ‘slippages’. What Mitchell and Hofstadter 

called ‘conceptual slippage’ takes place in the instantiation or inheritance of concepts from the supertype (or 

what he calls an ‘abstract schema’), when another ‘slippage’ of those abstract concepts that don’t apply to the 

target is often necessary. He argues that the latter slippage is often necessary given the level of abstraction 

chosen initially. French makes explicit the problem of how to find out the right level of abstraction, avoiding 

overgeneralization or little generalization. How do we know, for instance, in the analogy between the atom and 

the solar systems, that ‘central force field’ is at the right level of abstraction (and not, say, ‘dynamical system’ 

or ‘planetary system’, as cases of overgeneralization or of little generalization, respectively)? Aronson et al. 

don’t give any clue about this, but French suggests that the supertype should be located at Rosch’s ‘basic level’ 

(French, 1995, p. 4). The level of abstraction determines the conceptual slippages necessary to instantiate the 

abstract schema in the target domain.  
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represented constitutes an important contextual pressure in coming-up with an analogy 

between them. Nonetheless, the source has often to be ‘re-represented’ to be able to become 

a model for the target domain (in COPYCAT this corresponds to the destruction and re-

building of structures and bonds in the Workspace). Given a particular context, some 

features in both domains are highlighted and others down-played (and eventually ignored). 

The source and the target representations ‘interact’ in many ways in model-building.
36

 

 

It can also be argued, against purely ‘top-down’ approaches to analogy-making, that 

if we know beforehand how the source and the target are located in the type-hierarchy, as 

well as the common supertype the source and the target systems are subtypes of, then the 

representation of the source system is entirely redundant. In this case, we wouldn’t have to 

rely on ‘analogical’ reasoning: it would be enough to instantiate directly the knowledge we 

have of the supertype in the target domain (see Dejong, 1989). 

 

We are far from having a general theory of analogical modeling in science. 

Simulations of analogy-making in simple and idealized worlds, like that of COPYCAT, can 

help figure out the basic processes and constraints that should be investigated. I hope these 

general considerations can at least stimulate an approximation of theoretical developments 

in fields that still largely ignore each other.
37
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