

UNIVERSIDADE DE BRASÍLIA – UnB INSTITUTO DE GEOCIÊNCIAS – IG

PROVENIÊNCIA E IDADES DE DEPOSIÇÃO DOS SEDIMENTOS AURÍFEROS DA BACIA DE JACOBINA: IMPLICAÇÕES SOBRE A EVOLUÇÃO DA BACIA DURANTE O PALEOARQUEANO E A GÊNESE DA MINERALIZAÇÃO.

DISSERTAÇÃO DE MESTRADO Nº 316

Guilherme dos Santos Teles

Brasília, DF

2013

UNIVERSIDADE DE BRASÍLIA – UnB INSTITUTO DE GEOCIÊNCIAS – IG

PROVENIÊNCIA E IDADES DE DEPOSIÇÃO DOS SEDIMENTOS AURÍFEROS DA BACIA DE JACOBINA: IMPLICAÇÕES SOBRE A EVOLUÇÃO DA BACIA DURANTE O PALEOARQUEANO E A GÊNESE DA MINERALIZAÇÃO.

Guilherme dos Santos Teles

Orientador: Prof. Dr. Farid Chemale Jr. **Co-orientador**: Prof. Dr. Claudinei G. Oliveira

Banca examinadora:

Prof^a. Dra. Simone C. P. Cruz

Prof. Dr. Márcio M. Pimentel

Brasília, DF 2013

Agradecimentos

- Primeiramente à Deus, pela oportunidade de ser geólogo e por todas as coisas boas que tem acontecido na minha vida.
- Aos meus pais, Francisca e Fernando, pelo carinho, paciência, apoio e incentivo incondicional ao longo da minha jornada.
- À Dani, meu amor! Minha inspiração e fonte de energia para que eu terminasse este trabalho.
- Aos meus irmãos e grandes amigos, Danilo e Gustavo.
- À toda minha família, obrigado pela confiança e total apoio. Em especial, agradeço aos meus tios Itânia e Luís, aos meus primos Mayra, Moema, Jorge e Uyrá, pelo acolhimento, convivência e amizade em Brasília.
- Ao Farid, pela confiança, grande incentivo e empenho na realização deste trabalho, e ao Claudinei pelas várias conversas que despertaram meu interesse na Geologia Econômica.
- Aos meus grandes amigos Alécia, Daniel, Igor, Jéssica, Mariana e Victor, pelos anos de convivência e amizade.
- Aos meus colegas de graduação, pela amizade constituída ao longo dos cinco anos de curso. Agradeço principalmente a Débora (minha irmã de ouro), Jéssika, Alana e Vinícius, por sempre acreditarem em mim.
- À Jacobina Mineração e Comércio, em nome dos funcionários da Exploração e Geologia de Mina, pelo apoio na coleta de amostras, análises químicas e pelo aprendizado durante meu período de estágio na empresa. Faço um agradecimento especial ao Pablo, Robério, Sr. Antônio, Rodolfo, Marcos, Sr. Anselmo, Cid, Natália, Felipe, Rigoberto e Zé Eduardo.
- Aos funcionários do Laboratório de Geocronologia da UnB e da microssonda eletrônica pelo apoio na realização das análises.

i

Resumo

A Bacia de Jacobina é caracterizada por conter depósitos de ouro associados a pirita preferencialmente em conglomerados fluviais. Estudos de sedimentologia, estratigrafia, petrologia sedimentar e datação U-Pb e Lu-Hf em zircão foram realizados para definir as principais áreas fonte e idade máxima de deposição de todo o pacote sedimentar da bacia. Química mineral nas piritas foi realizada para caracterizar os seus tipos e sua gênese. As camadas de metaconglomerados e quartzitos compõem-se dominantemente de quartzo, fuchsita e pirita, apresentam características geoquímicas similares a de sedimentos Arqueanos, e refletem a composição de fontes graníticas e tonalíticas típicas do Arqueano. A camada conhecida como "Xisto-Guia" possui composição ácida e padrão de elementos terras raras semelhante aos riodacitos Paleoarqueanos do Greenstone Belt Mundo Novo, e é interpretada por ter contribuição vulcânica. Idades U-Pb concordantes de 496 grãos de zircão da seção completa da Bacia de Jacobina, incluindo os depósitos aluviais e marinho raso, variam entre 3.2 e 3.5 Ga, enquanto o "Xisto-Guia" contém zircões de idade em torno de 3.38 Ga. A assinatura isotópica de Lu-Hf em zircão (ϵ Hf_(t) = -0.1 a -5.6) caracteriza uma fonte de zircões com alguma contaminação crustal, provavelmente formados em ambiente de arco magmático continental. Aspectos minerográficos e de química mineral permitem diferenciar pelo menos dois tipos de pirita, uma de provável origem detrítica e outra hidrotermal (póssedimentar). Os dados apresentados sugerem que esta bacia formou-se durante o Paleoarqueano (~3.3 Ga) em um ambiente rifte, a qual foi deformada no Paleproterozóico (2.0-1.9 Ga), tornando-se assim uma das bacias auríferas e uraníferas com piritas detriticas mais antiga da Terra. Estudos futuros serão importantes para caracterizar aspectos de tectônica da bacia e processos da mineralização aurífera, assim como a atmosfera e os processos de intemperismo, erosão e transporte no Paleoarqueano.

Palavras-chave: Bacia de Jacobina, Proveniência, U-Pb, Lu-Hf, Geoquímica de sedimentos, Mineralização aurífera, Paleoarqueano.

ii

Abstract

The Jacobina Basin is a gold-bearing deposit associated with pyrite mainly in fluvial conglomerates. Sedimentological, stratigraphic, sedimentary petrological studies and U-Pb and Lu-Hf zircon dating were carried out to define the main source areas and maximum age of deposition of the sedimentary basin. Chemical characterization of in pyrite was investigated to characterize the types and their genesis. The layers of metaconglomerates and quartzites are composed dominantly by quartz, fuchsite and pyrite, have similar geochemical characteristics of Archean sediments, and reflect the composition of tonalitic and granitic sources typical of Archean. The layer know as "Schist-Guide" has acid composition and pattern of rare earth elements similar to Paleoarchean rhyodacites of the Mundo Novo Greenstone Belt, and is interpreted to have volcanic contribution. U-Pb concordant ages of 496 zircon grains from the entire section of the Jacobina Basin, including shallow marine and alluvial deposits, vary between 3.2 and 3.5 Ga, while the "Schist-Guide" contains zircon with ages of ca. 3.38 Ga. The isotopic signature of Lu-Hf zircon (ϵ Hf_(t) = -0.1 to -5.6) features a source of zircons with some crustal contamination, probably formed in continental magmatic arc environment. Textural aspects and mineral chemistry allow to differentiate at least two types of pyrite, one of probable detrital origin and other hydrothermal (postsedimentary). The data suggest that this basin formed during the Paleoarchean (~3.3 Ga) in a rift environment, which has been deformed during the Paleproterozoic (2.0 to 1.9 Ga), thus making it one of oldest sedimentary basins in the Earth with auriferous and uraniferous detrital pyrite. Future studies will be important to characterize aspects of basin tectonics and mineralization processes, as well as the atmosphere and processes of weathering, erosion and transport in Paleoarchean.

Keywords: Jacobina Basin, Provenance, U-Pb, Lu-Hf, Sediment geochemistry, Gold mineralization, Paleoarchean.

Lista de Figuras

Figura 2. Esboço das principais unidades geotectônicas do embasamento do Cráton do São Francisco na Bahia, e a localização da Bacia de Jacobina e do *Greenstone Belt* Mundo Novo nesse contexto (modificado de Sampaio *et al.*, 2001 após Sabaté *et al.*, 1990)......24

Figura 7. (A) Grão de quartzo policristalino bem arredondado, indicativo da textura clástica original, luz transmitida, nicóis cruzados; (B) Feição interpenetrante entre fuchsita (Fuch) e pirita pós-sedimentar (Py), luz transmitida, nicóis paralelos; (C) Cristais de turmalina (Tur), zircão (Zr) e rutilo (Rut) na amostra do "Xisto-Guia", luz transmitida, nicóis paralelos; (D) Ripas de fuchsita (Fuch) cristalizadas nos interstícios de grãos de quartzo, associadas com rutilos de origem hidrotermal (Rut) e alguns cristais de zircão (Zr), luz transmitida, nicóis paralelos; (E) Clorita (Chl) de caráter radial preenchendo espaço intersticial entre grãos de

```
quartzo, e associada com finas ripas de fuchsita (Fuch), luz transmitida, nicóis paralelos; e (F)
Grãos de pirita (Py) bordejando grão de quartzo (Qt) policristalino, com pequenas lamelas de
Figura 8. (A) Grão de pirita (Pyd) compacto e arredondado, de provável origem detrítica, luz
refletida, nicóis paralelos; (B) Grão de pirita de provável origem detrítica (Pyd), associado a
piritas pós-sedimentares. Imagem de elétrons secundários (SEM); (C) Pirita pós-sedimentar rica
em pequenas inclusões de outros sulfetos (calcopirita, pirrotita e galena). Imagem a luz refletida
e nicóis paralelos; (D) Piritas pós-sedimetares ricas em inclusões e maciças. A seta aponta grão
com núcleo rico em inclusões que acompanham as faces de crescimento do grão. Imagem de
elétrons secundários; (E) Grãos de pirita (Py) bordejados por uraninita (Ur), e grão de ouro (Au)
englobando parcialmente pequenos grãos de pirita na matriz. Fotomicrografia a luz refletida e
nicóis paralelos; (F) Inclusões de uraninita (Ur) e monazita (Mo) em cristal de pirita pós-
sedimentar. Imagem de elétrons secundários (SEM)......43
Figura 9. (A) Gráfico de correlação entre Al<sub>2</sub>O<sub>3</sub> e K<sub>2</sub>O das rochas metassedimentares do Gr.
Figura 10. Diagrama A-CN-K (Al2O3 - CaO + Na2O - K2O) mostrando a disposição das
amostras das rochas metassedimentares do Gr. Jacobina. O pequeno triângulo à esquerda mostra
trends gerais de alteração: 1. Alteração química da média da crosta continental superior
Neoarqueana (X) de Condie (1993); 2. Metassomatismo calco-sódico; 3. Metassomatismo
potássico, após Frimmel (2005)......48
Figura 11. Diagrama multielementar mostrando a variação das concentrações de elementos traço
das amostras de quartzitos e metaconglomerados do Gr. Jacobina em comparação com a crosta
Figura 12. Elementos terras-raras normalizados ao condrito (Nakamura, 1974). (A) Padrão de
ETR's dos quartzitos do Gr. Jacobina; (B) Padrão de ETR's dos metaconglomerados da Fm.
Serra do Córrego: (C) Comparação entre a variação da concentração de ETR's dos guartzitos do
Gr. Jacobina e do Supergrupo Pongola (após Wronkiewicz & Condie, 1987); (D) Variação de
ETR's dos quartzitos de Jacobina comparada aos quartzitos do Mt. Goldsworthy (após Sugitani
```

Figura 14. Diagrama binário Co/Ni mostrando diferentes campos de piritas formadas em ambientes geológicos distintos. (A) Disposição das piritas de provável origem detrítica; (B) Piritas pós-sedimentares ricas em inclusões; (C) Piritas pós-sedimentares pobre em inclusões.

Os diferentes campos correspondem a: (1) Depósitos de Cu-Au e Fe-óxidos; (2) Sulfetos vulcânicos maciços; (3) Pirita sedimentar (singenética e diagenética); (4) Piritas formadas por segregação magmática; (5) Veios associados a granitoides; (6) Depósitos de Au do tipo lode em Figura 15. Diagramas binários entre elementos traco dos diferentes tipos de piritas. Os losangos azuis correspondem às piritas de provável origem detrítica, os triângulos verdes representam as piritas pós-sedimentares ricas em inclusões, enquanto os quadrados vermelhos indicam as piritas pós-sedimentares pobre em inclusões......56 Figura 16. Imagens de catodoluminescência de alguns dos zircões analisados do Grupo Figura 17. Diagrama normalizado de frequências de idades para todas as amostras analisadas do Gr. Jacobina. As amostras estão dispostas segundo a estratigrafia da bacia, mais velho na base, Figura 18. (A) Valores de EHf_(t) relacionados com as idades U-Pb obtidas nos zircões detríticos do Gr. Jacobina. (B) Diagrama de tempo de residência crustal vs. idade de cristalização U-Pb Figura 19. Diagrama Zr/Sc vs. Th/Sc, que evidencia a tendência para reciclagem sedimentar e concentração de zircões nas rochas metassedimentares do Gr. Jacobina (após McLennan et al., Figura 20. (A) Th/Sc versus La/Sc; (B) Eu/Eu* versus Th/Sc (após Cullers & Podkovyrov, 2002). G: granito; T: tonalito-trondhjemito-granodiorito; F: rochas vulcânicas félsicas; A: andesitos; B: basaltos; K: komateítos. Dados de valores médios de rochas ígneas Arqueanas (Condie, 1993). S: Valores médios de arenitos intracratônicos Arqueanos (Condie, 1993).61 Figura 21. Comparação entre o "Xisto-Guia" e as rochas metavulcânicas félsicas do Greenstone Belt Mundo Novo. (A) Diagrama Co vs. Th de classificação de séries magmáticas proposto por Hastie et al., (2007); (B) Diagrama Nb/Y-Zr/Ti para classificação de rochas vulcânicas (Pearce, 1996); (C) Padrão de elementos terras-raras normalizados ao condrito de Nakamura (1974); (D) Diagrama multielementar normalizado ao manto primitivo de Sun & McDonough (1989). Os dados das metavulcânicas do GBMN são de Mascarenhas et al., (1998).67 Figura 22. (A) Diagrama da média das idades ²⁰⁷Pb/²⁰⁶Pb dos grãos de zircão mais concordantes (n=18) da amostra do xisto. (B) Diagrama concórdia de todos os zircões analisados (n=40) da amostra do "Xisto-Guia"......69

Lista de Tabelas

Tabela 1. Código das amostras, local de coleta, intervalo estratigráfico, litologia amostrada e tipo de análise realizada.
Tabela 2. Configuração dos coletores Faraday e MIC's adotada para as análises de U-Th-Pb34
Tabela 3. Condições de operação do laser e do MC-ICP-MS. 35
Tabela 4. Concentrações de elementos maiores e traço das rochas metassedimentares do Gr.
Jacobina45
Tabela 5. Concentração total de elementos terras-raras e algumas das razões selecionadas para aanálise de proveniência das rochas metassedimentares do Gr. Jacobina.50
Tabela 6. Química mineral dos diferentes tipos de piritas que ocorrem na Fm. Serra do Córrego
(em ppm)
Tabela 7. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra MVT-08,
base da Fm. Serra do Córrego, Bacia de Jacobina83
Tabela 8. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões da amostra JBA-01, do Quartzito
Intermediário da Fm. Serra do Córrego, Gr. Jacobina
Tabela 9. Dados U-Pb <i>in situ</i> , via LA-MC-ICPMS, dos zircões detríticos da amostra JBA-02"Xisto-Guia", da Fm. Serra do Córrego, Bacia de Jacobina
Tabela 10. Dados U-Pb <i>in situ</i> , via LA-MC-ICPMS, dos zircões detríticos da amostra MVT-01(LU <i>Reef</i>), Fm. Serra do Córrego, Gr. Jacobina.
Tabela 11. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra MVT-04(MSPC Reef), Fm. Serra do Córrego, Bacia de Jacobina
Tabela 12. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra MVT-05(Holandês Reef), Fm. Serra do Córrego, Gr. Jacobina.91
Tabela 13. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra SCO-Topo, topo da Fm. Serra do Córrego, Bacia de Jacobina.92
Tabela 14. Dados U-Pb <i>in situ</i> , via LA-MC-ICPMS, dos zircões detríticos da amostra SP-01, Fm. Serra da Paciência, intervalo marinho da Bacia de Jacobina96
Tabela 15. Valores de T _{DM} e Epsilon Hf obtidos, via LA-MC-ICP-MS, nos zircões detríticos do Gr. Jacobina
Tabela 16. Dados de química mineral do ouro. 104
Tabela 17. Dados de Química mineral das piritas detríticas. Os valores de elementos traço estãoem ppm, S e Fe estão em wt%

Tabela 18. Dados de química mineral das piritas epigenéticas sem inclusões. Os valores	de
elementos traço estão em ppm, S e Fe estão em wt%1	07
Tabela 19. Dados de química mineral das piritas ricas em inclusões. Os valores de elemen	tos
traço estão em ppm, S e Fe estão em Wt%1	19

Sumário

Agradeci	<i>nentos</i> i
Resumo	ii
Abstract.	iii
Lista de H	<i>iguras</i> iv
Lista de T	<i>Fabelas</i> vii
1. INT	RODUÇÃO11
1.1.	Apresentação e objetivo11
1.2.	Localização12
2. TRA	BALHOS ANTERIORES
3. MA	FERIAIS E MÉTODOS 15
3.1.	Trabalhos de campo e amostragem15
3.2.	Petrografia e minerografia15
3.3.	Geoquímica de elementos maiores e traço15
3.4.	Geocronologia U-Pb e análises isotópicas Lu-Hf em zircões detríticos16
3.5.	Química mineral
4. MAI	NUSCRITO
Proven	iência e idades de deposição dos sedimentos auríferos da Bacia de Jacobina:
Implica	ações sobre a evolução da bacia durante o Paleoarqueano e a gênese da
minera	lização
Resum	<i>o</i>
4.1.	Introdução19
4.2.	Contexto Geológico
4.2.1	. Principais unidades geotectônicas
4.2.2	C. Greenstone Belt Mundo Novo (GBMN)
4.2.3	B. Grupo Jacobina
4.2.4	Diques e <i>sills</i> máficos-ultramáficos
4.3.	Materiais e Métodos
4.3.1	. Trabalhos de campo e amostragem

	4.3.2.	Petrografia e minerografia	32
	4.3.3.	Geoquímica de elementos maiores e traço	32
	4.3.4.	Geocronologia U-Pb em zircões detríticos	34
	4.3.5.	Análises isotópicas Lu-Hf em zircões detríticos	36
	4.3.5.1.	Cálculos da Correção de Interferência Isobárica	37
	4.3.6.	Química mineral	38
4.	4. Res	ultados	39
	4.4.1.	Petrografia	39
	4.4.2.	Minerografia	40
4.	5. Geo	oquímica	44
	4.5.1.	Elementos maiores	44
	4.5.2.	Elementos traço	47
	4.5.3.	Química mineral da pirita e do ouro	52
	4.5.4.	Dados isotópicos U-Pb e Lu-Hf em zircões detríticos	53
4.	6. Dise	cussões	59
4.0	6. Diso 4.6.1.	cussões Geoquímica e proveniência das rochas metassedimentares	59 59
4.0	 Diso 4.6.1. 4.6.2. Grupo J 	cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina	59 59 s do 62
4.	 Diso 4.6.1. 4.6.2. Grupo J 4.6.3. 	cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência	59 59 s do 62 64
4.	 Diso 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 	cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia"	59 s do 62 64 66
4.	 Dise 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 4.6.5. 	cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia" Contexto geotectônico de sedimentação da Bacia de Jacobina	59 s do 62 64 66 68
5.	 Dise 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 4.6.5. CONCL 	cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia" Contexto geotectônico de sedimentação da Bacia de Jacobina USÕES	59 s do 62 64 66 68 70
4. 5. 6.	 Dise 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 4.6.5. CONCL REFER 	cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia" Contexto geotectônico de sedimentação da Bacia de Jacobina USÕES ÊNCIAS BIBLIOGRÁFICAS.	59 s do 62 64 66 68 70 72
4. 5. 6. <i>Apêr</i>	 Diso 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 4.6.5. CONCL REFERI ndice A - 	cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia" Contexto geotectônico de sedimentação da Bacia de Jacobina USÕES ÊNCIAS BIBLIOGRÁFICAS - Tabelas com dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detri	59 s do 62 64 66 70 72 <i>íticos</i>
4. 5. 6. <i>Apêr</i> <i>anal</i>	 Dise 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 4.6.5. CONCL REFERI ndice A - (isados) 	Cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia" O Significado do "Xisto-Guia" Contexto geotectônico de sedimentação da Bacia de Jacobina USÕES ÊNCIAS BIBLIOGRÁFICAS - Tabelas com dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detri	59 s do 62 64 66 70 72 <i>íticos</i> 83
4. 5. 6. Apêr anal Apêr	 Dise 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 4.6.5. CONCL REFERI ndice A - lisados ndice B - 	Cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizações acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia" Contexto geotectônico de sedimentação da Bacia de Jacobina USÕES ÊNCIAS BIBLIOGRÁFICAS - Tabelas com dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detri	59 s do 62 64 66 70 72 <i>íticos</i> 83 <i>íticos</i>
4. 5. 6. Apêr anal Apêr anal	6. Dise 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 4.6.5. CONCL REFERI ndice A - lisados ndice B -	cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia" Contexto geotectônico de sedimentação da Bacia de Jacobina USÕES ÊNCIAS BIBLIOGRÁFICAS - Tabelas com dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detri - Tabelas com dados Lu-Hf in situ, via LA-MC-ICPMS, dos zircões detri	59 s do 62 64 66 70 72 <i>íticos</i> 83 <i>íticos</i> 102
4. 5. 6. Apêr anal Apêr anal Apêr	6. Dise 4.6.1. 4.6.2. Grupo J 4.6.3. 4.6.4. 4.6.5. CONCL REFERI ndice A - isados ndice B - isados	Cussões Geoquímica e proveniência das rochas metassedimentares Composição química das piritas e seu significado nas mineralizaçõe acobina Evidências geocronológicas da proveniência O Significado do "Xisto-Guia" Contexto geotectônico de sedimentação da Bacia de Jacobina USÕES ÊNCIAS BIBLIOGRÁFICAS - Tabelas com dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detri - Tabelas com dados Lu-Hf in situ, via LA-MC-ICPMS, dos zircões detri	59 s do 62 64 66 70 72 <i>íticos</i> 83 <i>íticos</i> 83 <i>íticos</i> 83

1. INTRODUÇÃO

1.1. Apresentação e objetivo

A gênese das mineralizações auríferas hospedadas em metaconglomerados de bacias pré-cambrianas (Witwatersrand, Elliot Lake, Moeda, Tarkwa, entre outros) é um tema de discussão recorrente na literatura internacional, cujas publicações divergem entre uma origem sedimentar (*paleoplacer*) e hidrotermal. Este tema é de grande relevância metalogenética, pois mais de 40% de todo o ouro já extraído no planeta é proveniente desse tipo de depósito, bem como sobre a evolução da atmosfera terrestre. A presença de pirita e uraninita na assembleia de minerais detríticos é utilizada como argumento para um atmosfera deficiente em oxigênio até 2.2 Ga (evento de oxidação global).

A avaliação da gênese desse tipo de mineralização envolve a análise de diversos parâmetros, entre eles: o contexto tectônico e idades de deposição da bacia, área fonte dos sedimentos, constituição e relação dos minerais detríticos e pós-sedimentares, além da atuação de processos posteriores à sedimentação, como metamorfismo e hidrotermalismo. Dessa forma, diversas ferramentas de análise têm sido empregadas para melhor compreensão desses itens.

Um dos exemplos brasileiros de mineralização aurífera associada a metaconglomerados está na Bacia de Jacobina, Bahia, cujo depósito é atribuído historicamente como "tipo Witwatersrand". A exemplo do depósito africano, existe uma divergência entre a origem do tipo *paleoplacer* e hidrotermal para a mineralização. Entretanto, outros aspectos sobre o depósito brasileiro são pouco conhecidos, ou necessitam de investigação mais aprofundada.

Nesse sentido, o presente trabalho tem como objetivo estabelecer a proveniência, idades e contexto geotectônico de deposição das rochas metassedimentares da Bacia de Jacobina, bem como contribuir para o melhor entendimento da mineralização na bacia. Para tanto, propõem-se a utilização de técnicas diversificadas, entre petrografia e minerografia, análises isotópicas, geoquímica de rocha total e química mineral. Dessa forma, espera-se contribuir na discussão sobre o contexto de sedimentação da bacia, gênese desse tipo de depósito, bem como as condições da atmosfera pretérita.

A dissertação está disposta em formato de manuscrito, o qual será submetido para um periódico internacional.

1.2. Localização

A Bacia de Jacobina forma de um conjunto de serras e vales, com orientação aproximada NNE-SSW, que se estende por mais de 200 km. A bacia situa-se na porção centro-oriental do Estado da Bahia, região conhecida como o Cinturão de Ouro da Bahia (Pearson *et al.*, 2005), inserida no contexto do Cráton do São Francisco.

A área de estudo situa-se a, aproximadamente, 340 km da capital da Bahia, Salvador, cuja principal rota de acesso até o Município de Jacobina se dá pela BR-324 (Figura 1).

Figura 1. Mapa de localização do Cinturão de Ouro do Estado da Bahia, onde está localizada a Bacia de Jacobina, com a principal rota de acesso a partir da capital do Estado, Salvador (modificado de Pearson *et al.*, 2005).

2. TRABALHOS ANTERIORES

A descoberta do ouro na serra de Jacobina data do início do século XVIII. No entanto, os primeiros trabalhos de reconhecimento geológico regional da serra de Jacobina datam do início do século XX, com as seções geológicas da serra descritas por Branner (Mascarenhas *et al.*, 1998). Em pouco tempo, além do ouro, descobriu-se o potencial da região para outras mineralizações, como de esmeraldas, manganês, urânio e barita.

A partir da década de 50 do século XX, foram realizados diversos trabalhos de mapeamento geológico na Serra de Jacobina e nas suas proximidades. Desses trabalhos foram realizadas as primeiras proposições sobre a estratigrafia da bacia, seu enquadramento no contexto geológico da região e a gênese da mineralização aurífera. Dessa forma, surgiram as primeiras comparações com os depósitos auríferos de Witwatersrand devido à associação de Au-Py-U em conglomerados, bem como as discussões sobre a origem do ouro, sedimentar ou hidrotermal. Destaca-se nessa discussão inicial os trabalhos de Bateman (1958), White (1961), Leo *et al.*, (1964), Griffon (1967) *in* Mascarenhas *et al.*, (1998), Cox (1967) e Gross (1968). Parte desses autores sugere uma origem sedimentar para o ouro, enquanto outros, devido ao caráter discordante de algumas ocorrências (veios de quartzo-pirita), bem como a associação do ouro com intrusões máficas e ultramáficas, apontam uma origem hidrotermal, ou ao menos um depósito do tipo *paleoplacer* modificado.

O desenvolvimento da mineração aurífera nos arredores do Município de Jacobina permitiu, ao longo das décadas, a acumulação de um vasto conhecimento sobre as unidades da porção oeste da Bacia de Jacobina. No entanto, graças à complexidade estrutural e condições de metamorfismo mais intensas das unidades a leste, foram propostas diversas divisões estratigráficas para a bacia. Entretanto, algumas dessas proposições incluíam unidades geneticamente distintas, pertencentes ao *Greenstone Belt* Mundo Novo, estabelecido por Mascarenhas & Silva, (1994). As diferentes colunas estratigráficas propostas para a região da serra de Jacobina podem ser revisadas em Leo *et al.*, (1964); Griffon (1967) *in* Mascarenhas *et al.*, (1998); Hendrickson (1984); Ledru *et al.*, (1997); Mascarenhas *et al.*, (1998); Peucat *et al.*, (2002); e Pearson *et al.*, (2005).

A estratigrafia da Bacia de Jacobina adotada neste trabalho é a proposta por Mascarenhas *et al.*, (1998), recentemente revisada por Pearson *et al.*, (2005). Segundo

esses autores a bacia é constituída de unidades principais: Formação Serra do Córrego, Rio do Ouro e Serra da Paciência, as quais são descritas com maiores detalhes no item 4 deste trabalho.

Além do problema estratigráfico, o enquadramento geotectônico da bacia e seu arcabouço geocronológico é passível de discussão. Dois modelos geotectônicos distintos são atribuídos para o contexto de sedimentação da Bacia de Jacobina, os quais possuem implicações diretas sobre a gênese da mineralização em Au-Py-U. No entanto, ambos consideram que a sedimentação da bacia ocorreu durante o Paleoproterozóico.

O primeiro modelo, inicialmente proposto por Horscroft *et al.*, (1989), afirma que a Bacia de Jacobina corresponde a um rifte ensiálico com sedimentação *finning upward*, caracterizada pela deposição inicialmente fluvial, passando a transicional e marinho raso. Posteriormente, Mascarenhas *et al.*, (1992) consideraram que o rifte de Jacobina teria se desenvolvido em uma margem continental ativa, sem vulcanismo expressivo ou implantação de crosta oceânica. Segundo os últimos autores, o embasamento da bacia correspondem à assembleias *TTG* do Bloco Gavião, além das sequências metavulcanosedimentares do *Greenstone Belt* Mundo Novo. Dessa forma, Mascarenhas & Silva (1994) propõe que as concentrações de Au-Py-U em horizontes conglomeráticos da bacia possuem caráter detrítico e são derivadas do *greenstone belt*.

O segundo modelo sugere uma bacia do tipo *foreland*, cuja formação e sedimentação estaria associada aos estágios finais da Orogenia Transamazônica (Ledru *et al.*, 1994, 1997), a qual possui forte impressão no Cratón do São Francisco na Bahia, representada pelo Cinturão Itabuna-Salvador-Curaçá. De acordo com esse modelo, a idade máxima de deposição, obtida em zircão detrítico é de 2086 ± 43 Ma (Mougeout, 1996). A idade mínima, obtida pelo método ⁴⁰Ar/³⁹Ar em micas associadas a zonas de cisalhamento com atividade hidrotermal, é de 1918 ± 13 Ma (Ledru *et al.*, 1997). Nesse contexto, Milesi *et al.*, (2002) definiram um modelo metalogenético conceitual denominado "*hydrothermal shear-reservoir*", o qual concilia mineralização epigenética associada a zonas de cisalhamento e *paleoplacers*. No entanto, anteriormente, Barnicoat *et al.*, (1997) já tinham proposto um caráter hidrotermal para as mineralizações, relacionada à percolação de fluidos hidrotermais em zonas de cisalhamentos paralelas ao acamamento sedimentar, ou em redes de fraturas, permitindo ampla alteração do tipo *stratabound*.

3. MATERIAIS E MÉTODOS

3.1. Trabalhos de campo e amostragem

Diversas etapas de trabalho de campo foram realizadas para reconhecimento, descrição, levantamento de seções estratigráficas, coleta de dados sedimentológicos e paleocorrentes, além da coleta de amostras nas principais unidades da Bacia de Jacobina. Os dados coletados foram comparados e eventualmente complementados com trabalhos anteriores.

Ao todo foram coletadas 19 amostras das rochas metassedimentares do Grupo Jacobina, as quais abrangem todos os intervalos estratigráficos da bacia (Tabela 1, página 33). Informações referentes ao tipo de rocha amostrado, localização, nível estratigráfico da coleta e o tipo de análises realizadas são sumarizadas na Tabela 1.

3.2. Petrografia e minerografia

Estudos petrográficos e minerográficos foram realizados no Laboratório de Microscopia do Instituto de Geociências da UnB. Lâminas e seções foram confeccionadas paras todas as amostras coletadas, as quais são representativas de 6 quartzitos, 12 metaconglomerados e 1 xisto (Tabela 1, página 33). O estudo dessas amostras foi realizado por meio de microscópio ótico equipado com luz refletida e transmitida.

3.3. Geoquímica de elementos maiores e traço

A composição química de rochas sedimentares e metassedimentares representa uma ferramenta adicional na análise de sequências sedimentares, pois podem revelar importantes informações sobre diversos processos, tanto sedimentares quanto póssedimentares.

Dados geoquímicos de rochas sedimentares permitem a reconstituição do contexto geotectônico de sedimentação, composição média das áreas fonte, condições de intemperismo, bem como a evolução da atmosfera, hidrosfera e crosta continental superior ao longo do tempo (Taylor & McLennan, 1985; Wronkiewicz & Condie, 1987; Condie, 1993; McLennan *et al.*, 1993). Dessa forma, esse tipo de abordagem tornou-se

recorrente na análise de sequências sedimentares muito antigas (Wronkiewicz & Condie, 1987; Wronkiewicz & Condie, 1989; Arora *et al.*, 1994; Tolkeridis *et al.*, 1999; Hofmann, 2005; Sugitani *et al.*, 2006).

Análises químicas em rocha total de 16 amostras foram realizadas no Laboratório *ALS Minerals*. A determinação dos elementos maiores ocorreu por fluorescência de raios-X (XRF). Elementos traço e terras-raras foram determinados por espectrômetro de massa com plasma indutivamente acoplado (ICP-MS), enquanto as concentrações de metais base foram estabelecidas por espectrometria de massa por emissão atômica (ICP-AES).

3.4. Geocronologia U-Pb e análises isotópicas Lu-Hf em zircões detríticos

O zircão é o mineral mais utilizado em estudos geocronológicos (Willians, 1988, Košler & Sylvester, 2003; Bühn *et al.*, 2009; Matteini *et al.*, 2010; Chemale *et al.*, 2012), graças a suas características geoquímicas, as quais permitem sua datação por diversos métodos radiométricos. Esse mineral possui uma ampla distribuição em diversos tipos de rochas, bem como possui elevada resistência física e química, as quais permitem sua preservação em relação ao intemperismo, transporte sedimentar e a eventos metamórficos, por exemplo.

A estrutura cristalográfica do zircão aceita conteúdos elevados de diversos elementos traço e terras-raras. Em especial, o U e Hf possuem concentrações elevadas nos zircões, graças à afinidade química com o Zr, que os tornam capazes de substituí-lo na estrutura do cristal (Gerdes & Zeh, 2006). Dessa forma, os métodos geocronológicos mais utilizados em zircão são o U-Pb e Lu-Hf, pois entre outros fatores, esses sistemas permanecem relativamente fechados em diversos eventos geológicos.

Nas últimas décadas, o advento da técnica de datação *in situ* por Microssonda a Laser acoplada a MC-ICP-MS (Espectômetro de Massa Multi-Coletor com Plasma Acoplado Indutivamente), permitiu a obtenção da datação dupla dos isótopos U-Pb e Lu-Hf em um mesmo grão de zircão.

A combinação desses dois métodos tem sido amplamente aplicada em estudos de proveniência sedimentar, principalmente de sequências sedimentares antigas (por exemplo: Gerdes & Zeh, 2006; Koglin *et al.*, 2010a; Matteini *et al.*, 2012; Zeh & Gerdes, 2012). As idades U-Pb informam os principais eventos de formação de zircões

nas áreas fontes, enquanto que as análises isotópicas do Hf são capazes de informar se os zircões se formaram em uma crosta juvenil ou pela fusão de crosta mais antiga que sofreu diversos eventos orogênicos (Gerdes & Zeh, 2006).

As análises U-Pb e Lu-Hf foram realizadas no Laboratório de Geocronologia da UnB pelo LA-MC-ICP-MS, equipado com uma sonda de ablação à laser Nd-YAG 213nm New Wave acoplada com o MC-ICP-MS modelo Neptune da Thermo Finningan. As etapas de configuração do equipamento, condições e quantidade de análises são descritas com maiores detalhes no item 4 desta dissertação.

3.5. Química mineral

A pirita é o sulfeto mais abundante e difundido na crosta terrestre, sendo um mineral comum em diversos tipos de depósitos minerais (Craig *et al.*, 1998). A pirita é o principal sulfeto nos conglomerados que contém Au-(U), os quais representam a maior fonte de ouro produzido mundialmente, sendo a principal delas a Bacia de Witwatersrand, na África do Sul (Frimmel, 2005; Frimmel, 2008; Ulrich *et al.*, 2011).

Diversas origens são atribuídas às piritas, bem como das mineralizações auríferas associadas a conglomerados (England *et al.*, 2002b; Frimmel, 2005). Dessa forma, estudos mineralógicos, de química mineral e de assinatura isotópica foram realizados em diferentes depósitos distribuídos em diversos continentes (por exemplo: England *et al.*, 2002b; Hofmann *et al.*, 2009; Koglin *et al.*, 2010b; Guy *et al.*, 2010; Ulrich *et al.*, 2011). A pirita é conhecida por incorporar diversos elementos traço, assim como "ouro invisível", o que faz desse mineral um importante indicador de fluidos mineralizantes, bem como dos processos de mineralização (Large *et al.*, 2007, 2009; Guy *et al.*, 2010; Ulrich *et al.*, 2010; Ulrich *et al.*, 2011).

Em função da ocorrência comum da pirita nos corpos mineralizados da Fm. Serra do Córrego, foram realizadas diversas análises no Laboratório de Microssonda Eletrônica da Universidade de Brasília, equipado com uma sonda JEOL JXA-8230 com 5 espectrômetros WDS e 1 EDS. Análises quantitativas (WDS) foram obtidas em grãos de ouro e pirita. Análises semi-quantitativas (EDS) complementares foram utilizadas para identificação de fases minerais acessórias e traço, como zircão, rutilo, cromita, uraninita, monazita, ouro e prata. Um resumo das condições analíticas empregadas encontram-se na seção 4 desta dissertação.

4. MANUSCRITO

Proveniência e idades de deposição dos sedimentos auríferos da Bacia de Jacobina: Implicações sobre a evolução da bacia durante o Paleoarqueano e a gênese da mineralização.

Resumo

A Bacia de Jacobina é caracterizada por conter depósitos de ouro associados a pirita preferencialmente em conglomerados fluviais. Estudos de sedimentologia, estratigrafia, petrologia sedimentar e datação U-Pb e Lu-Hf em zircão foram realizados para definir as principais áreas fonte e idade máxima de deposição de todo o pacote sedimentar da bacia. Química mineral nas piritas foi realizada para caracterizar os seus tipos e sua gênese. As camadas de metaconglomerados e quartzitos compõem-se dominantemente de quartzo, fuchsita e pirita, apresentam características geoquímicas similares a de sedimentos Arqueanos, e refletem a composição de fontes graníticas e tonalíticas típicas do Arqueano. A camada conhecida como "Xisto-Guia" possui composição ácida e padrão de elementos terras raras semelhante aos riodacitos Paleoarqueanos do Greenstone Belt Mundo Novo, e é interpretada por ter contribuição vulcânica. Idades U-Pb concordantes de 496 grãos de zircão da seção completa da Bacia de Jacobina, incluindo os depósitos aluviais e marinho raso, variam entre 3.2 e 3.5 Ga, enquanto o "Xisto-Guia" contém zircões de idade em torno de 3.38 Ga. A assinatura isotópica de Lu-Hf em zircão (ϵ Hf_(t) = -0.1 a -5.6) caracteriza uma fonte de zircões com alguma contaminação crustal, provavelmente formados em ambiente de arco magmático continental. Aspectos minerográficos e de química mineral permitem diferenciar pelo menos dois tipos de pirita, uma de provável origem detrítica e outra hidrotermal (póssedimentar). Os dados apresentados sugerem que esta bacia formou-se durante o Paleoarqueano (~3.3 Ga) em um ambiente rifte, a qual foi deformada no Paleproterozóico (2.0-1.9 Ga), tornando-se assim uma das bacias auríferas e uraníferas com piritas detriticas mais antiga da Terra. Estudos futuros serão importantes para caracterizar aspectos de tectônica da bacia e processos da mineralização aurífera, assim como a atmosfera e os processos de intemperismo, erosão e transporte no Paleoarqueano.

Palavras-chave: Bacia de Jacobina, Proveniência, U-Pb, Lu-Hf, Geoquímica de sedimentos, Mineralização aurífera, Paleoarqueano.

4.1. Introdução

A composição da atmosfera terrestre durante o Arqueano e sua evolução desde então tem sido um dos temas mais debatidos nas geociências (Holland, 1984; Lambert & Donnelly, 1991; Rasmussen & Buick, 1999; Frimmel, 2005; Yamaguchi & Ohmoto, 2006; Law & Phillips, 2006; Hoffman *et al.*, 2009). Na maioria dos trabalhos que envolvem essa temática, assume-se um ambiente superficial menos oxidante que o presente. No entanto, a divergência de opiniões sobre o tema mostra sua complexidade, além das grandes implicações sobre a distribuição temporal de importantes depósitos minerais, e a história evolutiva de organismos microbiais (Rasmussen & Buick, 1999).

Os indicadores geológicos que sustentam a existência de uma atmosfera redutora durante o Arqueano incluem a ausência de *red-beds*, existência de *BIF's*, a prevalência de solos empobrecidos em ferro, além da ocorrência de minerais detríticos incomuns (Rasmussen & Buick, 1999). A existência de *placers* de ouro-pirita-uraninita em metaconglomerados representa a principal evidência para uma atmosfera Arqueana redutora (England *et al.*, 2002b; Frimmel, 2005; Guy *et al.*, 2010). Devido à instabilidade desses minerais em condições superficiais oxidantes (Holland, 1984; Krupp *et al.*, 1994), relaciona-se a ausência desses minerais detríticos após 2.2-2.0 Ga a um significativo aumento de O₂ na atmosfera nesse período (Yamaguchi & Ohmoto, 2006).

As ocorrências mais conhecidas da assembleia detrítica Au-Py-U estão nos campos de Elliot Lake e Blind River (~ 2.4-2.2 Ga), no Canadá (Mossman & Harron, 1983; Yamaguchi & Ohmoto, 2006; Koglin *et al.*, 2010b); na Formação Moeda (~2.6 Ga), Brasil (Koglin *et al.*, 2010b); e principalmente na Bacia de Witwatersrand (~2.9-2.7 Ga, Kositcin & Krapez, 2004), África do Sul, a qual foi responsável por cerca de 40% do ouro já produzido no mundo (Frimmel & Minter, 2002; Frimmel, 2005). No entanto, diversos trabalhos colocam em discussão a fonte das piritas nesses depósitos - sedimentar, ígnea, epigenética/hidrotermal - (England *et al.*, 2010), assim como para a uraninita e o ouro. Em relação à pirita, alguns autores defendem a piritização de minerais detríticos não sulfídricos (Fe-óxidos) durante alterações hidrotermais

posteriores à deposição dos sedimentos (Barnicoat et al., 1997; Phillips & Law, 2000; Law & Phillips, 2006).

No Estado da Bahia, Brasil, um depósito de ouro-pirita-uraninita ocorre nos metaconglomerados da Bacia de Jacobina, o qual também se inclui na discussão sobre a composição atmosférica durante o Arqueano (Milesi *et al.*, 2002; Frimmel, 2005; Law & Phillips, 2006). A mineralização de Jacobina é reconhecida desde meados do século XVIII (Mascarenhas *et al.*, 1998), mas somente a partir do século XX foram atribuídas as primeiras comparações com os depósitos de Witwatersrand, pela concentração de ouro em horizontes conglomeráticos (tipo *placers*), e uma associação intrínseca com minerais de urânio e pirita (Leo *et al.*, 1964; Bateman, 1958; White, 1961; Cox, 1967).

Atualmente são atribuídos dois modelos geotectônicos distintos para a sedimentação da Bacia de Jacobina, os quais possuem implicações diretas sobre a gênese da mineralização em Au-Py-U. O primeiro modelo sugere uma bacia *foreland* Paleoproterozóica associada à Orogenia Transamazônica (Ledru *et al.*, 1994, 1997). De acordo com o modelo, a idade máxima de deposição, obtida em zircão detrítico, é de 2086 ± 43 Ma (Mougeout, 1996). A idade mínima, obtida pelo método 40 Ar/ 39 Ar em micas associadas a zonas de cisalhamento com atividade hidrotermal é de 1918 \pm 13 Ma (Ledru *et al.*, 1997). Nesse contexto, Milesi *et al.*, (2002) definiram um modelo metalogenético conceitual denominado "*hydrotermal shear-reservoir*", o qual concilia mineralização epigenética associada a zonas de cisalhamento e *paleoplacers*.

O segundo modelo, proposto por Horscroft *et al.*, (1989), Mascarenhas *et al.*, (1992), sugere que a Bacia de Jacobina foi depositada no Paleoproterozóico, em contexto rifte, sem vulcanismo ou desenvolvimento de crosta oceânica, associado a uma margem continental ativa. Segundo os autores, o rifte foi implantado em uma crosta ensiálica, correspondente a terrenos *TTG* e sequências do tipo *greenstone belt*. Neste caso, as mineralizações de Au-Py-U teriam caráter detrítico, com deposição associada aos horizontes conglomeráticos da bacia, e proveniência relacionada à sequência metavulcano-sedimentar do seu embasamento (Mascarenhas & Silva, 1994).

O estudo de rochas sedimentares, principalmente em bacias antigas, é uma importante ferramenta para compreensão da composição da crosta continental (Taylor & McLennan, 1985; Wronkiewicz & Condie, 1987; Arora *et al.*, 1994; Sugitani *et al.*, 2006); da evolução da atmosfera e hidrosfera (Holland, 1984; Frimmel, 2005),

reconstituição do contexto geotectônico de sedimentação, assim como a reconstrução paleogeográfica de cinturões orogênicos e supercontinentes (Remus *et al.*, 2008).

A determinação das idades de sedimentação em bacias sedimentares Pré-Cambrianas pode ser muito complexa, principalmente pela ausência de conteúdo fóssil (Rasmussen, 2005). Dessa forma, as idades de sequências sedimentares antigas podem ser obtidas através da datação U-Pb em zircões de rochas vulcânicas contemporâneas, além da datação de zircões detríticos pelo mesmo sistema isotópico (Rasmussen, 2005).

Rochas piroclásticas podem ser rapidamente incorporadas aos locais de deposição, na forma de depósitos intercalados, os quais podem ser considerados contemporâneos à sedimentação (Rasmussen, 2005). Na ausência de rochas vulcânicas, as idades de deposição podem ser obtidas pela datação U-Pb em zircões detríticos. Neste caso, o zircão mais novo indicará a idade máxima de deposição, enquanto o cristal mais antigo indicará a idade mínima (Rasmussen, 2005). Esta abordagem é bastante comum em bacias Pré-Cambrianas, no entanto, critérios estratigráficos e sedimentológicos devem ser respeitados na coleta das amostras.

A análise de proveniência em algumas bacias pré-cambrianas pode ser muito complexa, como no caso de conglomerados e arenitos com composição essencialmente quartzosa (Kositcin & Krapez, 2004; Sugitani *et al.*, 2006). No caso da Bacia de Witwatersrand, por exemplo, esse fato é atribuído a modificações autigênicas, e principalmente a um intenso intemperismo químico nas rochas fonte devido a uma atmosfera rica em CO_2 (Wronkiewicz & Condie, 1987; Frimmel, 2005). Dessa maneira, a datação U-Pb *in situ* em zircões detríticos e a composição química de sedimentos clásticos tornaram-se importantes ferramentas para a análise de proveniência (Wronkiewicz & Condie, 1987; Kositcin & Krapez, 2004; Hofmann, 2005; Sugitani *et al.*, 2006).

Pelo exposto acima, denota-se que os modelos geológicos e metalogenéticos apresentados para a Bacia de Jacobina são excludentes. Por um lado, a bacia possui características que a insere na discussão sobre a gênese da mineralização em Au-Py-U, evolução da atmosfera Arqueana, assim como a proveniência sedimentar em função da composição essencialmente quartzosa de suas rochas. Por outro lado, dados mais recentes sugerem que esta bacia tenha sido formada no período pós Evento de Oxidação Global (após a Anomalia de Lomagundi), no qual não seria possível transportar piritas

detríticas. Por esses motivos, os dados existentes sobre a bacia não são ainda suficientes para definir o ambiente da Bacia de Jacobina. Assim, como proposta do presente trabalho objetiva-se realizar estudos que permitam, em parte, desvendar alguns aspectos adicionais sobre o ambiente tectônico da bacia, a saber:

- a) Reconhecer as principais unidades estratigráficas do Grupo Jacobina e seu ambiente deposicional;
- b) Definir as principais áreas fonte e idades de deposição das unidades estratigráficas do Grupo Jacobina;
- c) Discorrer sobre a proveniência crustal/mantélica das áreas fonte das rochas metassedimentares estudadas;
- d) Contribuir para a discussão sobre a paragênese mineral ouro-pirita-urânio, baseado em dados petrográficos e de química mineral.

4.2. Contexto Geológico

4.2.1. Principais unidades geotectônicas

A Bacia de Jacobina localiza-se na porção centro-leste do Estado da Bahia, onde afloram as unidades do embasamento arqueano-paleoproterozóico do Cráton do São Francisco no Estado da Bahia (Figura 2). Esse embasamento do cráton registra uma longa história de acresções crustais que resultaram na colisão entre proto-continentes, entre 2.2 e 1.8 Ga (Barbosa *et al.*, 2003; Teixeira *et al.*, 2001; Ledru *et al.*, 1994). Os principais segmentos crustais (Figura 2) envolvidos nesses processos são os blocos Gavião, Jequié e Serrinha, e Cinturão Itabuna-Salvador-Curaçá (Barbosa & Sabaté, 2004).

O Bloco Jequié constitui-se de rochas estabilizadas na fácies granulito, entre as quais enderbitos e charnoquitos com idades entre 2.7 e 2.6 Ga, além de migmatitos e granulitos (Barbosa & Sabaté, 2004).

O Bloco Serrinha possui gnaisses bandados, anfibolitos e ortognaisses de composição granodiorítica, com idades entre 3.5 e 2.9 Ga (Rios *et al.*, 2008). Neste bloco são conhecidos dois *greenstone belts*, o do Rio Itapicuru e Rio Capim, ambos formados em bacias do tipo *back-arc* entre 2.2 e 2.1 Ga (Silva, 1994; Barbosa & Sabaté, 2004).

O Cinturão Itabuna-Salvador-Curaçá é formado por rochas em grau granulito, entre as quais tonalitos, charnoquitos com enclaves básico-ultrabásicos, e algumas rochas supracrustais (Barbosa & Sabaté, 2004). Parte desses tonalitos e charnoquitos cristalizaram entre 2.7 e 2.6 Ga, e possuem assinatura isotópica de Nd associada a protólitos Arqueanos, enquanto outro grupo desses granulitos félsicos se formaram entre 2.1 e 2.0 Ga (idades U-Pb em zircão), no entanto, possuem assinatura de crosta juvenil Paleoproterozóica (Peucat *et al.*, 2011). Segundo Barbosa & Sabaté (2004), esse cinturão foi formado em ambientes de arcos de ilhas, bacias de *back-arc* e zonas de subducção estabelecidas pela tectônica Paleoproterozóica.

O Bloco Gavião reúne assembleias do tipo *TTG*, em fácies anfibolito, que constituem segmentos de crosta dos mais antigos da América do Sul, entre 3.4 e 3.0 Ga (Nutman & Cordani, 1993; Peucat *et al.*, 2002; Barbosa & Sabaté, 2004; Santos-Pinto *et al.*, 2012), além de granitóides reciclados de 2.7 Ga (Cruz *et al.*, 2012). Neste bloco são conhecidas sequências vulcano-sedimentares (*greenstone belts*) depositadas em bacias intracratônicas instaladas sobre a antiga crosta *TTG*. Rochas vulcânicas continentais dessas sequências datam de 3.3 Ga (Barbosa & Sabaté, 2004), as quais são superpostas por komatiitos, basaltos toleíticos com *pillow*-lavas, rochas piroclásticas e sedimentos químico-exalativos com idade de 3.2 Ga.

A zona de sutura representativa da colisão Paleoproterozóica desses segmentos crustais corresponde ao Lineamento Contendas-Jacobina-Mirante (Sabaté *et al.*, 1990). Ao longo dessa estrutura (Figura 2) observam-se frequentes estruturas de cavalgamento com movimentação de leste para oeste, além de intrusões graníticas peraluminosas, com idades Rb-Sr de 1974 \pm 36 e 1883 \pm 87 Ma (Sabaté *et al.*, 1990).

Nesse contexto, a Bacia de Jacobina encontra-se na borda leste do Bloco Gavião, assim como a associação metavulcano-sedimentar do *Greenstone Belt* Mundo Novo (GBMN) (Figura 2).

4.2.2. Greenstone Belt Mundo Novo (GBMN)

Esse *Greenstone Belt* foi identificado por Mascarenhas & Silva (1994), e interpretado pelos autores como resultado da deposição em uma bacia do tipo *back-arc* extensional durante o Arqueano, o qual serviu posteriormente como embasamento e fonte para a sedimentação da Bacia de Jacobina (Mascarenhas *et al.*, 1998).

O GBMN possui grande diversidade de tipos litológicos (Mascarenhas & Silva, 1994; Mascarenhas *et al.*, 1998; Peucat *et al.*, 2002). Dentre os principais: rochas metamáficas-ultramáficas, metabasaltos com *pillow*-lavas, metadacitos e riodacitos datados em 3305 ± 9 Ma (Peucat *et al.*, 2002), que estão associados a rochas metassedimentares piroclásticos, rochas metassedimentares clásticas e químicas (quartzitos, metaconglomerados, xistos pelíticos ricos em Fe e Mn, *cherts* e BIF's).

Figura 2. Esboço das principais unidades geotectônicas do embasamento do Cráton do São Francisco na Bahia, e a localização da Bacia de Jacobina e do *Greenstone Belt* Mundo Novo nesse contexto (modificado de Sampaio *et al.*, 2001 após Sabaté *et al.*, 1990).

4.2.3. Grupo Jacobina

As unidades da Bacia de Jacobina afloram em um conjunto de serras ao longo de quase 200 km de extensão, por 8-10 km de largura ao longo de um *trend* NNE-SSW. A estratigrafia do Grupo Jacobina passou por diversas classificações ao longo dos anos,

devido à complexidade estrutural da porção leste da Serra de Jacobina, onde ocorre o imbricamento de fatias tectônicas do GBMN (Figuras 3 e 4). No entanto, neste trabalho adota-se a estratigrafia revisada por Pearson *et al.*, (2005), que divide o grupo nas formações Serra do Córrego, Rio do Ouro e Serra da Paciência.

A **Formação Serra do Córrego** aflora na borda oeste do Grupo Jacobina (Figura 3), com espessuras que variam entre 500 e 1000 m (Mascarenhas *et al.*, 1998; Pearson *et al.*, 2005). Esta formação é constituída por dois horizontes de metaconglomerados, hospedeiros das principais mineralizações em Au-Py-U, separados por um espesso pacote de quartzitos (Figura 5), onde ocorre um nível de quartzo-sericita xisto, mais conhecido como "Xisto-Guia" (Figura 6D). Essa camada ocorre como um marco que se estende ao longo de toda a área aflorante da Fm. Serra do Córrego.

Os metaconglomerados possuem geometria tabular, ou ainda lenticular, e atingem extensões quilométricas. Possuem contatos irregulares com os quartzitos e espessuras variáveis, de poucos centímetros a dezenas de metros (Mascarenhas *et al.*, 1998). Apresentam uma grande variedade quanto à seleção, arredondamento dos seixos, empacotamento, maturidade textural, assim como teores de Au, presença de sulfetos (Figura 6B), ou grau de oxidação. Porém, são essencialmente oligomíticos, com seixos de quartzo (Figura 6C), e mais raramente de *chert*, os quais são mais comuns nos níveis conglomeráticos superiores (Mascarenhas *et al.*, 1998).

Os quartzitos possuem coloração branca, esverdeada ou avermelhada, a depender do teor de fuchsita ou grau de oxidação. Apresentam granulação geralmente grossa, são maciços, ou possuem estratificações cruzadas tabulares (Figura 6A).

A deposição dessa unidade é associada a um sistema aluvial, onde leques aluviais evoluíam para canais fluviais entrelaçados, cujas paleocorrentes (Figura 4) indicam transporte principal de leste para oeste (Minter, 1975; Oram, 1975; Molinari, 1982; Karpeta, 2007; Teles, 2011).

Figura 3. Mapa geológico da serra de Jacobina (modificado de Pearson *et al.*, 2005), com a disposição das principais unidades geológicas da região. O retângulo em vermelho indica a região onde foram concentrados os trabalhos de campo para reconhecimento das unidades da bacia, descrição de seções e coleta de amostras.

A **Formação Rio do Ouro** aflora na porção central da Serra de Jacobina (Figura 3), e alcança espessuras de até 2.000 metros. A unidade é constituída principalmente por quartzitos finos a médios, com elevado grau de pureza, de coloração branca, cinza e esverdeada. Níveis descontínuos de metaconglomerados ocorrem na base (Mascarenhas *et al.*, 1998), marcando uma passagem transicional desta formação em relação à Serra do Córrego (Pearson *et al.*, 2005). Intercaladas nos quartzitos ocorrem camadas descontínuas de metapelitos carbonosos ricos em andaluzita (Ledru *et al.*, 1997).

A deposição dessa unidade representa uma transgressão contínua na Bacia de Jacobina, a qual marca a passagem de um regime de sedimentação aluvial para um sistema marinho raso dominado por marés (Minter, 1975).

Marcas de ondas assimétricas (Figura 6F), estratificações cruzadas de pequeno porte e estratificações cruzadas espinha de peixe são comuns e atestam a sedimentação em ambiente marinho raso sobre influência de marés (Minter, 1975; Mascarenhas *et al.*, 1998). O padrão de paleocorrentes (Figura 4) da Fm. Rio do Ouro mostra uma inversão em relação à unidade sotoposta, e indicam transporte de oeste para leste (Minter, 1975).

A **Formação Serra da Paciência** ocorre exposta ao longo da margem leste da Bacia de Jacobina (Figura 3). Consiste de espessos pacotes de quartzitos finos a grossos, quartzitos conglomeráticos, e metaconglomerados subordinados, com contribuição de grãos de quartzo azul (Figura 6E), de possível origem vulcânica/subvulcânica (Pearson *et al.*, 2005). Os seixos dos metaconglomerados são compostos por *metachert* preto, metagrauvaca e quartzo policristalino, que sugerem o *Greenstone Belt* Mundo Novo como área fonte (Pearson *et al.*, 2005).

De forma localizada ocorrem intercalações de quartzitos finos, os quais normalmente apresentam estratificação plano-paralela, estratificações cruzadas espinha de peixe, e marcas de onda de tempestade (*hummocky*). Camadas locais de andalusitaquartzo-grafita xistos são comuns como intercalações nesses quartzitos (Mascarenhas *et al.*, 1998; Pearson *et al.*, 2005). O ambiente de deposição interpretado para a Fm. Serra da Paciência corresponde a uma plataforma rasa dominada por ondas (Mascarenhas *et al.*, 1998).

Figura 4. Perfil sedimentar da Bacia de Jacobina nas proximidades do município homônimo (modificada de Mascarenhas *et al.*, 1998 após Pearson *et al.*, 2005). (1) Unidades estratigráficas;
(2) Coluna litoestratigráfica; (3) Dados de paleocorrentes de Karpeta (2007) e Teles (2011); (4) Descrição sucinta das litologias principais e interpretação paleoambiental. Estão indicadas na coluna litoestratigráfica a localização das amostras RO-01 e SP-01 (utilizada para datação U-Pb em zircão). A espessura do perfil totaliza aproximadamente 4.500 m.

Figura 5. Coluna estratigráfica da Fm. Serra do Córrego (modificada de Molinari, 1982), com indicação das amostras coletadas. As amostras com nomes destacados em vermelho foram utilizadas para datação U-Pb, enquanto as em laranja representam intervalos com presença de pirita. A espessura total do perfil se aproxima de 1000 metros.

4.2.4. Diques e sills máficos-ultramáficos

Extensos vales N-S e vales mais estreitos e curtos de direção E-W na Serra de Jacobina representam, respectivamente, rochas metaultramáficas e metamáficas alteradas (Figura 3).

Alguns autores consideram as metaultramáficas como fatias tectônicas do GBMN (Mascarenhas & Silva, 1994; Mascarenhas *et al.*, 1998; e Topitsch, 1993). No entanto, Pearson *et al.*, (2005) e Ellen Santos (2011) demonstraram seu caráter intrusivo em campo (diques e *sills*). Correspondem a metaperidotitos e metapiroxenitos deformados (xistos de granulação fina), metamorfizados e hidrotermalizados, de coloração verde escura. Essas rochas são compostas por talco, serpentina, clorita, tremolita e carbonatos (Teixeira *et al.*, 2001). Veios de quartzo ricos em sulfetos e ouro estão associados a essas rochas (Pearson *et al.*, 2005), as quais produziram metamorfismo de contato nas rochas metassedimentares encaixantes (Milesi *et al.*, 2002; Pearson *et al.*, 2005).

Os diques metamáficos representam um evento tardi-tectônico, o qual preencheu diversas fraturas *en echelon* (Teixeira *et al.*, 2001). De acordo com esses autores, os principais litotipos são metagrabos e metadioritos, de granulação média, texturas blastofítica e nematoblástica. A mineralogia apresenta actinolita, plagioclásio saussuritizado e relictos de piroxênio e hornblenda (Teixeira *et al.*, 2001). Localmente, esses diques apresentam ocorrências significativas de ouro (Pearson *et al.*, 2005).

Dados geoquímicos sugerem caráter komatiítico para as metaultramáficas e komatiítico diferenciado para as metamáficas. Essas rochas são indicativas de basaltos toleíticos intra-placa, com tendência a toleítos de arco de ilhas, com diferentes graus de contaminação crustal (Ellen Santos, 2011). A idade exata de colocação desses corpos permanece indefinida (Teixeira *et al.*, 2001; Pearson *et al.*, 2005). No entanto, Ellen Santos (2011) obteve idades U-Pb em zircão próximas a 3.4 Ga. Essas idades e os grãos de zircão foram interpretados por essa autora como herdados da sequência sedimentar do Grupo Jacobina.

Figura 6. (A) Estratificações cruzadas tabulares em quartzito da Fm. Serra do Córrego; (B)
Metaconglomerado da Fm. Serra do Córrego com matriz rica em pirita alterada (em amarelo) e fuchsita (verde); (C) Seixos de quartzo de tamanhos variados em metaconglomerado da Fm. Serra do Córrego; (D) Aspecto de campo do "Xisto-Guia"; (E) Quartzito da Fm. Serra da
Paciência que possui grãos de quartzo azul (apontados pelo círculo em vermelho); (F) Quartzito da Fm. Rio do Ouro com marcas de ondas assimétricas.

4.3. Materiais e Métodos

4.3.1. Trabalhos de campo e amostragem

Diversas etapas de trabalho de campo foram realizadas nas proximidades do Município de Jacobina, conforme indicado na Figura 3. Essas etapas foram realizadas tanto em superfície quanto nas galerias das minas subterrâneas em operação na região. Esses trabalhos serviram para reconhecimento, descrição, levantamento de seções estratigráficas, coleta de dados sedimentológicos e paleocorrentes, além da coleta de amostras nas principais unidades da Bacia de Jacobina. Os dados coletados foram comparados e eventualmente complementados com trabalhos anteriores.

Ao todo foram coletadas 19 amostras das rochas metassedimentares do Grupo Jacobina, que abrangem todos os intervalos estratigráficos da bacia (Figuras 4 e 5). Informações referentes ao tipo de rocha amostrado, localização, nível estratigráfico da coleta e o tipo de análises realizadas são sumarizadas na Tabela 1.

4.3.2. Petrografia e minerografia

A petrografia dos constituintes clásticos e outros minerais de ganga, assim como a minerografia dos minerais de minério, foi realizada por meio de microscopia ótica no Laboratório de Microscopia do Instituto de Geociências da UnB. Para tanto, foram confeccionadas lâminas e seções de todas as amostras coletadas, as quais são representativas de 6 quartzitos, 12 metaconglomerados e 1 xisto (Tabela 1).

4.3.3. Geoquímica de elementos maiores e traço

As análises químicas em rocha total de 16 amostras foram realizadas no Laboratório *ALS Minerals*. A determinação dos elementos maiores ocorreu por fluorescência de raios-X (XRF). Elementos traço e terras-raras foram determinados por espectrômetro de massa com plasma indutivamente acoplado (ICP-MS), enquanto metais base foram estabelecidos por espectrometria de massa por emissão atômica (ICP-AES).

Amostra	Local de coleta	Formação (<i>Reef</i>)	Rocha	Petrografia e	Química	Rocha	U-Pb	Lu-Hf
				Minerografia mineral		total		
MVT-08	Mina Morro do Vento	Serra do Córrego, Basal Reef	Quartzito impuro fortemente deformado	Quartzito impuro fortemente deformado X X X		Х	Х	
MRF-04	Mina Morro do Cuscuz	Serra do Córrego, Main Reef	Metaconglomerado rico em pirita e ouro	Х	Х	Х		
MVT-07	Mina Morro do Vento	Serra do Córrego, Hanginwall Reef	Metaconglomerado	Х		Х		
JBA-01	Open pit de João Belo	Serra do Córrego, Quartzito Intermediário	Quartzito	Х	Х	Х	Х	Х
JBA-02	Open pit de João Belo	Serra do Córrego, "Xisto-guia"	Quartzo-Sericita Xisto	Х		Х	Х	Х
JBA-03	Mina de João Belo	Serra do Córrego, SPC Reef	Quartzito fuchsítico, rico em pirita	Х	Х	Х		
JBA-05	Mina de João Belo	Serra do Córrego, SPC Reef	Metaconglomerado rico em pirita	Х	Х	Х		
MVT-01	Mina Morro do Vento	Serra do Córrego, LU Reef	Metaconglomerado	Х		Х	Х	Х
MVT-02	Mina Morro do Vento	Serra do Córrego, Falso LU Reef	Metaconglomerado	Х		Х		
MVT-03	Mina Morro do Vento	Serra do Córrego, MU Reef	Metaconglomerado	Х		Х		
JBA-06	Mina de João Belo	Serra do Córrego, MPC Reef	Metaconglomerado com pirita	Х	Х	Х		
JBA-08	Mina de João Belo	Serra do Córrego, LMPC Reef	Metaconglomerado com pirita	Х	Х			
JBA-04	Mina de João Belo	Serra do Córrego, LVLPC Reef	Metaconglomerado com fuchsita e pirita	Х	Х			
MVT-04	Mina Morro do Vento	Serra do Córrego, MSPC Reef	Metaconglomerado	Х		Х	Х	Х
MVT-05	Mina Morro do Vento	Serra do Córrego, Holandês Reef	Metaconglomerado	Х		Х	Х	Х
MVT-06	Mina Morro do Vento	Serra do Córrego, Maneira Reef	Metaconglomerado	Х		Х		
SCO-Topo	BR-324, entrada de Jacobina	Serra do Córrego, Quartzito Superior	Quartzito	Х		Х	Х	Х
RO-01	BR-324, entrada de Jacobina	Rio do Ouro	Quartzito	Х		Х		
SP-01	BR-324, próximo de Jacobina	Serra da Paciência	Quartzito	Х		Х	Х	Х

Tabela 1. Código das amostras, local de coleta, intervalo estratigráfico, litologia amostrada e tipo de análise realizada.

Nota: As amostras estão apresentadas segundo a estratigrafia da bacia, sendo a primeira correspondente à base e a última ao topo da sequência.

4.3.4. Geocronologia U-Pb em zircões detríticos

As análises de U-Pb das amostras desta dissertação foram executadas no Laboratório de Geocronologia da Universidade de Brasília, com equipamento MC-ICP-MS (Neptune) com microssonda a *laser* acoplada (New Wave UP 213). A seguir, descreve-se o método de análise *in situ* em zircões com o equipamento LA-MC-ICP-MS, seguindo a metodologia de Chemale *et al.*, (2012).

A configuração mista dos coletores Faraday e multiplicadores de íons (MIC's) utilizada para as medidas simultâneas dos isótopos de Th, U, Pb e Hg é apresentada na Tabela 2.

Tabela 2. Configuração dos coletores Faraday e MIC's adotada para as análises de U-Th-Pb.

MIC3	MIC4	L4	MIC6	L3	Axial	H2	H4
²⁰² Hg	$^{204}\text{Hg}^{+}$	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb		²³² Th	²³⁸ U
	²⁰⁴ Pb						

As razões isotópicas e fracionamento inter-elementares foram corrigidos pelo padrão de zircão GJ-1, padrão de referência internacional do GEMOC ARC National Key Center, Austrália (Jackson *et al.*, 2004), o qual é analisado a cada 8 análises de amostra de zircão (ou ponto de análise = *spot*). Dessa forma, o GJ-1 foi utilizado para estimar as correções necessárias com correções externas e de fracionamento instrumental interno. Assim, para manutenção das mesmas condições analíticas, o padrão de zircão GJ-1 é colocado no amostrador do *laser* junto à seção de zircões da amostra. O tamanho do ponto de análise foi normalmente igual a 30µm. Na Tabela 3 encontram-se as condições operacionais para aquisição de dados.

O valor do ²⁰⁴Pb foi corrigido para ²⁰⁴Hg, assumindo-se que a razão de ²⁰²Hg/²⁰⁴Hg é igual 4,355. O método costumeiramente utilizado para correção de Pb comum em zircões, baseia-se na presença do isótopo de ²⁰⁴Pb. No caso do *laser*, o sinal do ²⁰⁴Pb varia intensamente e é afetado fortemente pela presença do ²⁰⁴Hg proveniente dos gases de Ar e He, o que resulta em erros que ultrapassam frequentemente valores acima de 10 %. Uma das maneiras de minimizar tais incertezas é realizar o cálculo pela fração do Pb comum na amostra, de modo a utilizar as equações como fração de ²⁰⁶Pb e ²⁰⁷Pb não radiogênicos (Williams, 1998):
$$\begin{split} f_{206} &= [{}^{206}\text{Pb}/{}^{204}\text{Pb}]_c/[{}^{206}\text{Pb}/{}^{204}\text{Pb}]_s \\ f_{207} &= [{}^{207}\text{Pb}/{}^{204}\text{Pb}]_c/[{}^{207}\text{Pb}/{}^{204}\text{Pb}]_s \end{split}$$

MC-ICPMS	
Instrumento	Neptune (ThermoFinnigan)
Fonte de íon	
Potência	1200 W
Fluxo de gás	Ar Resfriador: 15 L/min
	Ar Auxiliar: 0,73 L/min
	Ar Transporte: ~0,75 L/min
Extração	-2000 V
Modo de Análise	Estático
Detecção	Coletores Faraday e MIC's
Aquisição de Dados	
Tempo de integração	1,049s (40 ciclos)
Nº de integrações	1
Laser Ablation	
Instrumento	UP-213 (Nd:YAG) New Wave
Diâmetro do furo	30 µm
Energia	$4-6 \text{ J/cm}^2$
Freqüência	10 Hz
Total da ablação	50s
Fluxo de He	~0,45 L/min

Tabela 3. Condições de operação do laser e do MC-ICP-MS.

Para a composição do isótopo de Pb comum utiliza-se a evolução da composição isotópica proposta por Stacey & Kramers (1975), que é requerida para atribuir a uma idade estimada inicial. As razões de 207 Pb*/ 206 Pb* e 206 Pb*/ 238 U (onde * refere a fração radiogênica) são corrigidas a partir das equações de f₂₀₆ e f₂₀₇ para ciclos individuais. Em termos gerais, os ciclos com valores de f₂₀₆ acima de 0.0025 (i.e., 0.25% de presença de Pb comum) não foram incluídas no cálculo.

Posterior às correções de branco e Pb comum, as razões e seus erros absolutos (um desvio padrão - DP) de ²⁰⁶Pb*/²³⁸U, ²³²Th/²³⁸U e ²⁰⁶Pb*/²⁰⁷Pb* foram calculadas

segundo programa desenvolvido por Chemale & Kawashita (2006) *in* Chemale *et al.*, (2012). Na medida em que as razões de 206 Pb*/ 238 U produzem na maior parte dos casos um fracionamento linear, utilizou-se o método de intercepto de fracionamento de Pb/U induzido por laser para corrigir a razão, de acordo com a formulação proposta por Youden (1951) e também adotada por Kôesler & Sylvester (2003). A incerteza da razão fracionada corrigida é também calculada para um DP do intercepto (R(0)), a partir da razão isotópica no início do processo de ablação do laser.

Os erros internos derivados são calculados em um modo convencional, tomando as incertezas (1 DP) sobre os respectivos sinais de *background*. As razões de 232 Th/ 238 U e 207 Pb*/ 206 Pb* foram, ao contrário, utilizadas a partir dos valores médios após a retirada dos valores discrepantes. Nos casos em que 232 Th/ 238 U e Pb 207 */Pb 206 * apresentem fracionamento inverso, utilizou-se o mesmo método do fracionamento induzido por laser como aplicado para obtenção de R(0) da razão.

Histogramas e diagramas de idade U-Pb em zircão foram confeccionados com uso do programa Isoplot Ex v. 4 atualizado a partir da versão 3.7 (Ludwig, 2008).

4.3.5. Análises isotópicas Lu-Hf em zircões detríticos

Zircões com idades U-Pb concordantes $(100 \pm 5\%)$ foram selecionados para determinação isotópica de Lu-Hf, cujas análises foram executadas no mesmo local ou na mesma fase onde foram obtidos os dados de U-Pb. A metodologia utilizada foi aquela apresentada por Matteini *et al.*, (2010) e Chemale *et al.*, (2011).

A microssonda a laser, modelo UP 213 (Nd:YAG) New Wave, utilizada para as análises por ablação em minerais pode emitir alta densidade de energia em vários tamanhos de crateras (4 μ m - 110 μ m). O gás hélio (He) é o responsável pelo transporte do material da ablação para o ICP com um fluxo de 0,35-0,45 l/min.

Durante as análises de Hf com laser foi utilizado uma taxa de repetição de 10 Hz. Dependendo do tipo de laser utilizado e parâmetros selecionados constituem-se de uma prática corrente valer-se de uma freqüência de 10 a 20 pulsos por segundo. Com o laser UP213 de Nd:YAG, a taxa definida acima revelou-se satisfatória em termos de eficiência e estabilidade dos sinais. O diâmetro dos furos com laser foi de 49 μ m fornecendo um sinal intenso da ordem de 3 volts para ¹⁷⁸Hf em todas as análises de Hf. De acordo com as quantidades de Hf dos padrões GJ-1, uma potência de 60% do laser

mostrou-se adequada, de modo a fornecer uma densidade de energia de 5-6 J/cm². A sequência de análises empregada intercalou dez grãos da amostra com o padrão GJ-1 em que a razão ¹⁷⁶Hf/¹⁷⁷Hf é conhecida com precisão.

4.3.5.1. Cálculos da Correção de Interferência Isobárica

Os isótopos de Lu, Hf e Yb são medidos simultaneamente durante as análises no MC-ICP-MS. As razões isotópicas medidas destes elementos durante os aproximadamente 50s de análise foram: ¹⁷³Yb/¹⁷¹Yb, ¹⁷⁹Hf/¹⁷⁷Hf, ¹⁷⁵Lu/¹⁷⁷Hf, ¹⁷⁶Hf/¹⁷⁷Hf.

Tendo em vista da necessidade de correção do fracionamento isotópico que ocorre durante as análises, as razões isotópicas de Yb foram normalizadas assumindo para ¹⁷³Yb/¹⁷¹Yb o valor de 1,1301 (Segal *et al.*, 2003), da mesma forma as razões isotópicas de Hf e Lu foram normalizadas assumindo o valor de 0,7325 para a razão ¹⁷⁹Hf/¹⁷⁷Hf (Patchett & Tatsumoto, 1980).

Assim, com base no objetivo de testar as correções do Yb foram preparadas soluções do padrão JMC-475 (200 ppb) dopado com quantidades conhecidas de Yb (Yb/Hf = 0,05 e 0,1) fornecendo o valor de 0,282149 \pm 0,000031 (n=6, 2SD), em concordância com o valor aceito de 0,282159 \pm 0,000038 (Chu *et al.*, 2002).

Durante as análises *in situ* de Hf no zircão, os nuclídeos isóbaros interferentes, ¹⁷⁶Lu e ¹⁷⁶Yb, são medidos juntamente com o ¹⁷⁶Hf. Para se obter a razão ¹⁷⁶Hf/¹⁷⁷Hf do zircão com acuracidade, as interferências devidas a ¹⁷⁶Lu e ¹⁷⁶Yb foram cuidadosamente corrigidas com base nos sinais observados do ¹⁷⁵Lu e do ¹⁷³Yb, ambos com as devidas normalizações. A intensidade do sinal correspondente ao ¹⁷⁶Hf foi calculada através da seguinte equação:

$$^{176}Hf = {}^{176}(Hf + Lu + Yb)_{m} - \left[{}^{175}Lu_{m} \times \left(\frac{176}{175}Lu\right)_{N} \times \left(\frac{M_{176(Lu)}}{M_{175}}\right)^{\beta(Lu)} \right] + {}^{173}Yb_{m} \times \left(\frac{176}{173}Yb}_{N} \times \left(\frac{M_{176(Yb)}}{M_{173}}\right)^{\beta(Yb)} \right]$$

Os fatores $\beta_{(Lu)}$ e o $\beta_{(Yb)}$ são os fatores de fracionamento para Lu e Yb. Estes dois fatores variam durante o tempo da análise no grão de zircão (Iizuka & Hirata, 2005),

isto indica que o fator β não pode ser assumido como uma constante durante as análises, devendo ser calculado para cada medida realizada.

Por fim, os dados são processados em planilhas Excel específicas para Lu-Hf a fim de calcular a idade modelo T_{DM} e o parâmetro ɛHf do ponto analisado. Nestas planilhas são selecionados aproximadamente 45 dados de modo a descartar as primeiras medidas de um total de 50 dados integrados de 1,049 s/ponto. A média das razões ¹⁷⁶Hf/¹⁷⁷Hf do padrão GJ-1 (n=8) obtida durante as análises foi igual a 0.281984 ± 0.000213 (2SD).

4.3.6. Química mineral

Análises de química mineral foram realizadas em 6 amostras do Grupo Jacobina (Tabela 1), no Laboratório de Microssonda Eletrônica da Universidade de Brasília, equipado com uma JEOL JXA-8230 com 5 espectrômetros WDS e 1 EDS. Análises quantitativas (WDS) foram obtidas em grãos de ouro e pirita. Análises semiquantitativas (EDS) complementares foram utilizadas para identificação de fases minerais acessórias e traço, como zircão, rutilo, cromita, uraninita, monazita, ouro e prata.

As condições de operação envolveram uma voltagem de aceleração de 20 kv, com um feixe corrente de 200 μ A. Os elementos (linhas de raio-X, tempo de contagem e limites de detecção) analisados para o ouro e pirita incluem Fe (K α , 20 s, 59 ppm), S (K α , 20 s, 46 ppm), As (L α , 20 s, 140 ppm), Mo (L α , 20 s, 117 ppm), Bi (M α , 20 s, 206 ppm), Pd (L α , 20 s, 82 ppm), Ag (L α , 20 s, 87 ppm), Sb (L α , 20 s, 114 ppm), Te (L α , 20 s, 97 ppm), Hg (M α , 20 s, 283 ppm), Se (K α , 20 s, 253 ppm), Pt (M α , 20 s, 246 ppm), Au (M α , 20 s, 285 ppm), Pb (M α , 20 s, 237 ppm), Cd (L α , 20 s, 86 ppm), U (M α , 20 s, 130 ppm), Co (K α , 20 s, 57 ppm), Ni (K α , 20 s, 67 ppm), Cu (K α , 20 s, 81 ppm), Zn (K α , 20 s, 96 ppm), e Mn (K α , 20 s, 58 ppm). O diâmetro do feixe utilizado nessas análises foi de 2 μ m, e as condições de pressão na câmara estiveram em torno de 10⁻⁶ Pa. Os padrões utilizados incluem ligas metálicas, óxidos e sulfetos.

4.4. Resultados

4.4.1. Petrografia

Foram estudados 6 amostras de quartzitos, 12 de metaconglomerados e uma amostra do nível "Xisto-Guia". Os quartzitos de Jacobina variam da granulação média à conglomerática, com a ocorrência de seixos pequenos (< 4 mm). Em termos composicionais, possuem > 90 % de quartzo, fuchsita, clorita e sericita de forma subordinada, bem como opacos e minerais acessórios como zircão, rutilo e turmalina. A coloração dessas rochas varia entre branco, cinza, verde ou castanho, a depender da pureza, conteúdo de fuchsita e óxidos de ferro nessas rochas.

Os metaconglomerados analizados podem ser individualizados segundo diferentes aspectos: tamanho dos seixos, seleção, empacotamento, presença de sulfetos e grau de dos metaconglomerados são oxidação na matriz. Os seixos constituídos predominantemente por quartzo, com tamanhos que varia de 4 a 64 mm. Seixos de chert marrons e pretos são mais raros e ocorrem principalmente nos níveis conglomeráticos superiores da Fm. Serra do Córrego. A matriz dos metaconglomerados é arenosa, de granulação média a grossa e constituída principalmente por quartzo (> 90%). A coloração dessas rochas depende do conteúdo de fuchsita e do grau de oxidação da matriz, variando entre o verde claro e marrom avermelhado. A textura e composição da matriz dos metaconglomerados e quartzitos é bastante semelhante. No entanto, minerais acessórios e de minério estão presentes em maior proporção nos metaconglomerados.

A matriz dos metaconglomerados e os quartzitos possuem textura granoblástica, com exceção das amostras MVT-08 (clorita-sericita quartzito) e JBA-01 (fuchsita quartzito), as quais apresentam textura granolepdoblástica. Contudo, em algumas amostras é possível identificar relictos da textura clástica original (Figura 7A).

O principal constituinte clástico dessas rochas é o quartzo, o qual apresenta-se comumente como grãos policristalinos, com significativo grau de recristalização e extinção ondulante. Nenhum grão ou relicto de fragmentos líticos e de feldspatos foram encontrados nesse estudo. Dessa forma, segundo os diagramas de classificação de proveniência geotectônica de Dickinson (1985), as amostras estudadas seriam provenientes de interior cratônico.

Após o quartzo, os filossilicatos perfazem os principais tipos de silicatos presentes nessas rochas, são elas: fuchsita, sericita, muscovita e clorita. A fuchsita ocorre normalmente como ripas de granulação fina, disseminadas e orientadas, ou formando agregados intersticiais de coloração verde claro (Figura 7D e 7E). Em algumas das amostras analisadas, este mineral perfaz cerca de 30% dos minerais presentes (JBA-01, JBA-03). A sericita ocorre como pequenos flocos ou agregados, geralmente bordejando grãos de quartzo, nos interstícios. A muscovita ocorre como pequenas massas intersticiais ou como pequenas placas com clivagem bem desenvolvida. A clorita possui coloração verde oliva e hábito geralmente placóide. Entretanto, alguns dos cristais podem ocorrer de forma fibrosa radial (Figura 7E), preenchendo espaços intersticiais.

Entre todas as amostras estudadas, o nível "Xisto-Guia" apresenta composição mineralógica bastante distinta das demais. Sua mineralogia é constituída por muscovita, quartzo e sericita, além de zircão, rutilo e turmalina como principais acessórios (Figura 7C).

4.4.2. Minerografia

A minerografia foi realizada a partir de seções polidas de 1 quartzito e 5 metaconglomerados que possuem pirita (Tabela 1). Os principais minerais opacos que ocorrem nos quartzitos, e em maior proporção na matriz dos metaconglomerados, são a pirita e óxidos de ferro. A ocorrência desses minerais está intimamente relacionada ao grau de oxidação dessas rochas.

A hematita ocorre como pequenos grãos euédricos e anédricos disseminados nas rochas, comumente associada à fuchsita, ou presente em fraturas. Hidróxidos de ferro associados à hematita ocorrem como possíveis pseudomorfos de pirita ou magnetita, ou como precipitados em clivagens de fuchsita e clorita.

A pirita é mais comuns na matriz dos metaconglomerados que nos quartzitos, somente o quartzito da amostra JBA-03 possui piritas. Nessa amostra a pirita ocorre na forma de pequenas vênulas, em planos bem definidos. Nos metaconglomerados a pirita pode compor até cerca de 30% da matriz, ocorrendo de forma dispersa, bordejando grãos de quartzo (Figura 7F) ou ainda em fraturas.

Manuscrito

Figura 7. (A) Grão de quartzo policristalino bem arredondado, indicativo da textura clástica original, luz transmitida, nicóis cruzados; (B) Feição interpenetrante entre fuchsita (Fuch) e pirita póssedimentar (Py), luz transmitida, nicóis paralelos; (C) Cristais de turmalina (Tur), zircão (Zr) e rutilo (Rut) na amostra do "Xisto-Guia", luz transmitida, nicóis paralelos; (D) Ripas de fuchsita (Fuch) cristalizadas nos interstícios de grãos de quartzo, associadas com rutilos de origem hidrotermal (Rut) e alguns cristais de zircão (Zr), luz transmitida, nicóis paralelos; (E) Clorita (Chl) de caráter radial preenchendo espaço intersticial entre grãos de quartzo, e associada com finas ripas de fuchsita (Fuch), luz transmitida, nicóis paralelos; e (F) Grãos de pirita (Py) bordejando grão de quartzo (Qt) policristalino, com pequenas lamelas de fuchsita (Fuch) nas bordas, luz transmitida, nicóis paralelos.

Os grãos de pirita estudados podem ser classificados em dois grupos principais. O primeiro corresponde a um pequeno conjunto de grãos compactos, pouco porosos, com feições de arredondamento, as quais podem ser diagnósticas de uma origem detrítica (Pyd) (Figura 8A e 8B).

O segundo tipo de pirita possui caráter pós-sedimentar (hidrotermal/epigenético), que representa a maioria desse grupo mineral encontrado nas amostras. Este grupo é caracterizado por grãos euédricos a subédricos, com faces cristalinas geralmente bem definidas, ou mesmo grãos anédricos disseminados. Esse conjunto de pirita pode apresentar um núcleo rico em inclusões, principalmente de calcopirita, pirrotita, galena e micas (Figura 8C e 8D). No entanto, grande parte dessa pirita é pobre em inclusões.

Inclusões de uraninita, monazita (Figura 8F), ouro e prata foram identificadas por análises EDS no segundo grupo de pirita, bem como cristais de uraninita recobrindo grãos desse grupo (Figura 8E). Além dessas relações, nota-se um caráter interpenetrante ou de reação entre alguns grãos de pirita pós-sedimentar e a fuchsita (Figura 7B).

O ouro foi identificado em três amostras de metaconglomerados (MRF-04, JBA-05 e JBA-08), na forma de lamelas, hábitos irregulares, ou mesmo como grãos arredondados. Apenas uma ocorrência do metal preenchendo fratura foi identificada neste estudo. O ouro geralmente está associado à pirita pós-sedimentar (Figura 8E) e aos silicatos presentes na matriz dos metaconglomerados.

Outros minerais opacos relativamente comuns são o rutilo e a cromita. O primeiro ocorrem como grãos prismáticos ou arredondados, além de pequenos agregados, de coloração entre o castanho e vermelho. Pequenos cristais euédricos de cromita foram identificados na amostra JBA-01 (fuchsita quartzito) com auxílio de análises EDS.

Manuscrito

Figura 8. (A) Grão de pirita (Pyd) compacto e arredondado, de provável origem detrítica, luz refletida, nicóis paralelos; (B) Grão de pirita de provável origem detrítica (Pyd), associado a piritas póssedimentares. Imagem de elétrons secundários (SEM); (C) Pirita pós-sedimentar rica em pequenas inclusões de outros sulfetos (calcopirita, pirrotita e galena). Imagem a luz refletida e nicóis paralelos; (D) Piritas pós-sedimetares ricas em inclusões e maciças. A seta aponta grão com núcleo rico em inclusões que acompanham as faces de crescimento do grão. Imagem de elétrons secundários; (E) Grãos de pirita (Py) bordejados por uraninita (Ur), e grão de ouro (Au) englobando parcialmente pequenos grãos de pirita na matriz. Fotomicrografia a luz refletida e nicóis paralelos; (F) Inclusões de uraninita (Ur) e monazita (Mo) em cristal de pirita pós-sedimentar. Imagem de elétrons secundários (SEM).

4.5. Geoquímica

4.5.1. Elementos maiores

Os dados obtidos para elementos maiores (Tabela 4) mostram que as rochas metassedimentares do Grupo Jacobina são basicamente constituídas por SiO₂ (média de 92.53%). Apenas duas amostras possuem valores de SiO₂ abaixo dos 80%, são elas a MVT-08 (clorita-sericita quartzito, 72% de SiO₂) e JBA-02 (quartzo-sericita xisto, 76.7% de SiO₂).

Os percentuais de MgO ($\leq 0.48\%$), CaO ($\leq 0.05\%$) e Na₂O ($\leq 0.28\%$) são muito baixos, com exceção para o MgO na amostra MVT-08 (1.92%). A concentração de Fe₂O₃t varia entre 0.57% e 5.67%. Os quartzitos apresentam os menores percentuais desse óxido, com exceção da amostra JBA-03 e MVT-08, ricas em pirita e óxidos, respectivamente. Nos metaconglomerados o percentual de Fe₂O₃ é variável, e está associado ao grau de oxidação da matriz, ou à presença de pirita.

As concentrações de K₂O são baixas, e variam de 0.14% a 1.62%, com exceção das amostras MVT-08 e JBA-02, com 4.57% e 3.95%, respectivamente. Os teores de K₂O apresentam uma correlação positiva com Al₂O₃ (r= 0.98, Figura 9A). Segundo Sugitani *et al.*, (2006), essa característica pode ser atribuída a um metassomatismo potássico, o qual é comumente observado em sedimentos Arqueanos ou em rochas vulcânicas silicificadas.

O conteúdo médio de Al_2O_3 nos quartzitos e metaconglomerados é de 4.65% e 1.57%, respectivamente. Os percentuais mais elevados de Al_2O_3 correspondem às amostras MVT-08 (16.1%) e JBA-02 (Xisto-Guia,14.7%). O TiO₂ apresenta valores muito baixos para todas as amostras, entre 0.02 e 0.8%.

O Al e Ti são considerados elementos que não fracionam um em relação ao outro durante os processos sedimentares (Sugitani *et al.*, 2006). Nota-se para os metaconglomerados e quartzitos uma boa correlação entre esses elementos. No entanto, graças as diferentes proporções Al_2O_3/TiO_2 nas amostras MVT-08 e JBA-02, o coeficiente de correlação entre os elementos nas amostras fica em torno de 0.55 (Figura 9B).

Manuscrito

Amostra	MVT-08	MVT-07	JBA-01	JBA-02	JBA-03	JBA-05	MVT-01	MVT-02	MVT-03	JBA-06	MVT-04	MVT-05	MVT-06	SCO-TOPO	RO-01	SP-01
Litologia	Qto	Qto	Qto	Xis	Qto	Mtc	Qto	Qto	Qto							
$SiO_2(\%)$	72	92	89.6	76.7	92.7	88.7	96.4	98.2	98.1	92.7	96	97.6	96.3	97.3	97.2	99
TiO_2	0.18	0.07	0.26	0.8	0.07	0.08	0.03	0.08	0.04	0.08	0.07	0.09	0.02	0.12	0.14	0.04
Al_2O_3	16.1	3.59	5.87	14.7	0.55	0.73	0.94	1.78	0.95	2.24	0.92	1.34	1.64	2.1	2.42	0.87
$Fe_2O_3(t)$	3.33	3.9	0.74	1.4	4.22	5.67	2.05	1.19	1.21	3.34	2.28	1.22	1.06	0.66	0.57	0.78
MnO	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.03	0.01
MgO	1.92	0.14	0.24	0.48	0.09	0.09	0.1	0.05	0.03	0.11	0.06	0.03	0.08	0.1	0.08	0.11
CaO	0.06	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.01	0.04	0.01	0.01	0.02	0.01	0.05	0.02
Na ₂ O	0.22	0.08	0.17	0.28	0.07	0.06	0.07	0.04	0.03	0.08	0.04	0.03	0.08	0.19	0.08	0.07
K ₂ O	4.57	0.57	1.62	3.95	0.14	0.16	0.25	0.29	0.23	0.4	0.25	0.35	0.39	0.4	0.31	0.22
Cr_2O_3	< 0.01	0.03	0.42	0.01	0.41	0.41	0.09	0.06	0.04	0.1	0.13	0.08	0.02	0.04	0.05	< 0.01
BaO	0.09	0.01	< 0.01	0.02	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.03	0.05	< 0.01	< 0.01	< 0.01	< 0.01
P_2O_5	0.04	0.01	0.03	0.02	0.01	0.02	< 0.01	0.01	< 0.01	0.01	0.01	0.01	0.01	0.01	0.03	0.05
SrO	0.01	0.01	0.01	0.02	0.01	0.01	0.01	< 0.01	< 0.01	0.01	< 0.01	0.01	0.01	0.01	0.01	< 0.01
LOI	2.5	0.62	0.71	1.95	1.65	2.95	0.15	0.05	-0.11	0.66	-0.15	-0.07	0.09	0.16	0.08	0.03
Total	101.04	101.05	99.7	100.4	99.94	98.91	100.1	101.77	100.5	99.79	99.66	100.76	99.73	101.11	101.05	101.2
CIA	76.8	84.5	76.4	77.6	71.4	75.3	73.4	84.0	77.9	81.2	75.4	77.5	77.0	77.8	84.6	73.7
Sc	2	1	2	22	1	2	1	1	1	2	2	1	1	1	1	1
V	18	31	5	50	5	5	18	14	15	7	16	17	18	13	12	13
Cr	70	260	2790	100	2730	2760	630	440	290	730	950	550	240	460	360	130
Co	5.7	2.4	9.4	5.2	5	5	2.1	1.4	1.7	5	3.7	2.2	0.9	1	1.2	2
Ni	8	12	4	11	34	52	8			15			3	2	7	2
Cu	3	5	3	3	18	6	11			6			3	2	4	17
Zn	23	21	15	8	10	18	32			34			5	4	24	18
Rb	82.9	9.2	28.4	64.9	2.8	2.7	5	4.2	3.2	5.5	3.9	4.9	6.4	6.9	5.6	6.4
Sr	46.8	12.2	51.5	171	40	57.7	32.5	67.3	20	49	55.5	102.5	28.7	70.7	34.1	3.3

Tabela 4. Concentrações de elementos maiores e traço das rochas metassedimentares do Gr. Jacobina.

Manuscrito Tabela 4 (continuação). Y 19.5 50.3 3.7 3.8 5.5 3 1.8 3.2 3.4 2.4 2 2 4.4 2.7 6.4 5.5 Zr 163 2630 287 99 53 181 44 112 231 72 660 816 114 124 121 56 Nb 10.2 2.6 7 16.8 4.6 8.6 3.8 1.2 0.6 3.1 2.1 1.5 2.1 2.3 4 3.1 0.51 < 0.01 0.25 Cs 0.71 0.21 1.42 0.18 0.02 0.14 0.11 0.11 0.1 0.13 0.14 0.06 0.06 27.9 25.9 Ba 860 14.9 44.7 175.5 17.6 18.5 19.1 17.4 13.6 14.6 15.1 23.1 11.7 17.2 34.6 13.2 7.7 10.4 31.3 31.2 3.7 La 63.7 51.7 16.5 17.3 16.7 16.3 17.4 15.6 16 60.8 22.1 28 28.8 27.5 19.3 57.8 54.7 6.5 Ce 105 94.9 29.5 30.9 13.5 31.9 27.2 Pr 6.15 2.58 9.11 9.67 2.63 2.69 3.06 2.72 1.21 3.18 2.68 2 4.92 5.36 0.64 2.49 8.4 5.9 2.3 Nd 19.4 8.5 26.4 36 8 8.9 11.3 9.1 4 10.4 8.1 15.3 18.3 0.87 2.24 3.03 0.36 2.86 1.44 3.23 8.84 0.87 2.39 1.69 0.82 1.44 1.55 1.57 Sm 1.13 0.42 0.67 0.33 0.76 1.79 0.13 0.2 0.41 0.35 0.18 0.27 0.31 0.3 0.18 0.33 0.09 Eu Gd 2.11 1.35 2.44 9.32 0.59 0.75 1.42 1.12 0.57 1.02 1.02 0.92 0.56 1.21 1.42 0.38 Tb 0.26 0.18 0.41 1.47 0.09 0.12 0.18 0.15 0.07 0.13 0.12 0.11 0.07 0.16 0.15 0.05 1.11 0.55 0.36 0.9 0.41 Dy 0.92 2.47 8.64 0.51 0.57 1.03 0.6 0.33 0.63 0.57 0.77 0.07 0.09 0.21 Ho 0.19 0.64 1.72 0.12 0.14 0.19 0.12 0.06 0.13 0.11 0.09 0.12 0.18 Er 0.58 0.51 2.23 5.28 0.52 0.49 0.36 0.17 0.36 0.36 0.27 0.22 0.25 0.47 0.29 0.56 0.08 0.41 0.02 0.03 0.07 0.03 Tm 0.08 0.75 0.1 0.1 0.07 0.02 0.01 0.06 0.04 0.03 0.17 Yb 0.47 0.54 3.17 4.7 0.77 0.86 0.49 0.27 0.19 0.38 0.39 0.29 0.25 0.35 0.52 0.09 0.08 0.63 0.67 0.17 0.04 0.02 0.03 0.05 0.08 0.04 Lu 0.16 0.07 0.05 0.06 0.03 Hf 4.5 1.9 18.9 2 2.2 1.2 2.3 66.7 7.4 15.8 1.2 3.2 4 2.6 5.8 1.1 0.7 0.6 0.9 0.9 0.2 1.5 0.9 0.1 Та 0.8 1.6 1.4 2.4 0.2 0.1 0.5 1 Pb 12 5 6 6 4 10 13 7 3 3 4 2 Th 16.85 4.7 2.16 9.99 12.35 37 21.1 14.9 75.5 18.1 25.4 11.85 27.7 16.45 10.8 8.72 U 5.71 1.89 4.29 14.6 7.05 8.13 13.15 3.68 5.56 2.59 7.32 3.83 1.13 1.32 1.78 0.34

Nota: As amostras estão distribuídas de acordo com a estratigrafia da bacia, base à esquerda e topo à direita. As siglas Qto, Mtc e Xis representam quartzitos,

metaconglomerados e xisto, respectivamente. Os espaços em branco representam análises não realizadas.

Figura 9. (A) Gráfico de correlação entre Al₂O₃ e K₂O das rochas metassedimentares do Gr. Jacobina; (B) Correlação entre Al₂O₃ e TiO₂ das amostras analisadas.

A abundância dos elementos maiores em rochas sedimentares deve refletir a composição de suas rochas fontes. No entanto, a proporção desses elementos, em alguns casos, pode ser modificada por processos pós-deposicionais ou intempéricos na fonte (Spalletti *et al.*, 2008; Taylor & Mclennan, 1985; McLennam *et al.*, 1993).

Uma das formas de se avaliar o grau de alteração intempérica nas rochas sedimentares é o cálculo do índice de alteração química (CIA= $[Al_2O_3/(Al_2O_3 + CaO + Na_2O+K_2O) \times 100]$; Nesbitt & Young, 1982). O CIA é uma medida quantitativa do total de material quimicamente alterado no sedimento siliciclástico ou rocha, e reflete a intensidade do intemperismo químico nas áreas fontes.

O CIA das rochas analisadas do Gr. Jacobina varia de 71.4 a 84.6 e possui média de 77.8. Esses valores sugerem um intenso processo de lixiviação de CaO e Na₂O na área fonte dos sedimentos e/ou por processos pós-sedimentares. Nota-se um enriquecimento de K nas amostras no diagrama Al₂O₃ - (CaO+Na₂O) - K₂O (A-CN-K), o qual pode estar associado com um processo de metassomatismo potássico, ou com uma fonte rica em potássio (Figura 10). Além disso, a disposição das amostras no diagrama apresentam paralelismo considerável com o *trend* de alteração química da média da crosta continental superior Neoarqueana.

4.5.2. Elementos traço

Elementos terras-raras, elementos de alta carga iônica (HFSE), metais de transição, assim como Th e Sc, são os elementos mais utilizados para a caracterização da proveniência de rochas sedimentares e metassedimentares, uma vez que eles são pouco

solúveis e relativamente imóveis durante os processos sedimentares (McLennam *et al.*, 1993; Sugitani *et al.*, 2006; Araújo *et al.*, 2010).

Figura 10. Diagrama A-CN-K (Al2O3 – CaO + Na2O – K2O) mostrando a disposição das amostras das rochas metassedimentares do Gr. Jacobina. O pequeno triângulo à esquerda mostra *trends* gerais de alteração: 1. Alteração química da média da crosta continental superior Neoarqueana (X) de Condie (1993); 2. Metassomatismo calco-sódico; 3. Metassomatismo potássico, após Frimmel (2005).

Os resultados obtidos para esses elementos estão dispostos na Tabela 4. A concentração deles é bastante diversificada em relação à Crosta Continental Superior (CCS) de Rudnick & Gao (2006), com exceção do Th, U, Hf, Zr e Cr, que são bastante enriquecidos nas amostras; além do Rb, Ba, Sr e P, os quais possuem anomalias negativas pronunciadas (Figura 11).

No geral, a variação e concentração dos elementos traço nos metaconglomerados são menores que as dos quartzitos das formações Serra do Córrego e Rio do Ouro, em comparação com a UCC (Figura 11). A amostra que possui maior depleção desses elementos é a SP-01 (quartzito marinho), como um possível reflexo de reciclagem sedimentar nessa unidade. O "Xisto-Guia" (amostra JBA-02) corresponde à amostra cujas concentrações de elementos traço mais se aproximam da CCS (Figura 12).

Figura 11. Diagrama multielementar mostrando a variação das concentrações de elementos traço das amostras de quartzitos e metaconglomerados do Gr. Jacobina em comparação com a crosta continental superior (Rudnick & Gao, 2006).

A concentração de elementos HFSE nas amostras, em geral, é moderada a elevada. O Zr nos metaconglomerados varia entre 44 e 816 ppm (média de 180 ppm), nos quartzitos varia de 56 a 2630 ppm (média de 642 ppm), enquanto no xisto sua concentração é de 287 ppm. Os metaconglomerados possuem teores de Hf menores que os quartzitos (média de 4.1 e 16 ppm, respectivamente), enquanto o xisto apresenta 7.4 ppm. O Th possui valores relativamente altos, média de 23 ppm nos metaconglomerados e 13.9 ppm nos quartzitos, já o xisto possui concentração de 21.1 ppm do elemento.

As concentrações de Zr e Hf nas amostras analisadas apresentam forte correlação (r= 0.99), associada à concentração de zircões nas amostras, principalmente nas amostras JBA-01, JBA-03 e JBA-05, que possuem os teores mais elevados de Zr e Hf, e maior percentual de zircões.

Com exceção do Cr, que apresenta valores elevados em todas as amostras, entre 70 e 2790 ppm (média de 843 ppm), os outros metais de transição apresentam teores baixos. O Sc varia entre 1 e 2 ppm para todas as amostras, com exceção do xisto (22 ppm). Co também apresenta concentrações baixas nas rochas, entre 0.9 e 9.4 ppm. Ni e V apresentam valores médios um pouco mais elevados, 13 e 16 ppm, respectivamente.

Os quartzitos do Gr. Jacobina apresentam concentração de elementos terras-raras maior que os metaconglomerados (Tabela 5). No entanto, os padrões de ETR's normalizados ao condrito mostram uma maior heterogeneidade na concentração desses elementos nos quartzitos em relação aos metaconglomerados (Figura 12A e 12 B).

		Quartzitos		M	Metaconglomerados				
	Média	Variação	п	Média	Variação	п	-		
Al ₂ O ₃ /TiO ₂	29.4	7.86 - 89.44	6	30.64	9.13 - 82	9	18.38		
Cr/Ni	188.83	8.75 - 697.5	6	56.43	21.67 - 80	5	9.1		
Cr/Th	68.28	7.01 - 183.22	6	32.93	17.32 - 51.06	9	4.74		
Cr/Zr	2.27	0.43 - 4.14	6	4.84	3.38 - 5.89	9	0.35		
Co/Th	0.39	0.09 - 0.93	6	0.15	0.06 - 0.30	9	0.25		
Th/Sc	68.3	7.01 - 183.22	6	32.9	17.32 - 51.06	9	4.74		
Zr/Sc	409.25	56 - 1315	6	118.17	44 - 408	9	13.05		
La/Sc	21.98	3.7 - 31.85	6	13.67	7.7 – 31.3	9	2.35		
La/Co	12.55	3.30 - 31.30	6	6.62	3.46 - 11.64	9	9.94		
La/Th	2.41	1.11 - 3.58	6	0.92	0.23 - 2.21	9	2.45		
∑ETR	109.27	15.05 - 220.6	6	55.37	28.83 - 68.77	9	235.5		
La/Yb	47.72	20.09 - 89.43	6	40.23	20.12 - 55.17	9	11.0		
Eu/Eu*	0.70	0.56 - 0.84	6	0.74	0.67 - 0.81	9	0.61		
LaN/SmN	8.75	6.32 - 12.13	6	6.47	4.3 - 9.42	9	3.6		
GdN/YbN	1.84	0.15 - 3.57	6	2.15	0.7 - 3.3	9	1.58		
LaN/YbN	31.8	13.4 - 59.62	6	26.82	13.4 - 40.25	9	7.33		

Tabela 5. Concentração total de elementos terras-raras e algumas das razões selecionadas para a análise de proveniência das rochas metassedimentares do Gr. Jacobina.

Nota: *n* corresponde ao número de dados.

Os diagramas com os padrões de ETR's (Figura 12A e 12B) mostram um moderado a elevado enriquecimento de ETRL em relação aos ETRP (LaN/YbN médio de 31,8 para os quartzitos e 26.82 para os metaconglomerados). Os ETRL apresentam fracionamento alto (LaN/SmN entre 4.3 e 12.13 para os quartzitos e metaconglomerados). Os ETRP possuem padrão relativamente plano (ver GdN/YbN na Tabela 5), com exceção de algumas amostras que apresentam enriquecimento nesses elementos associado à grande concentração de zircão. Anomalias de Eu são pouco pronunciadas (Eu/Eu* médio próximo a 0.70 nos metaconglomerados e quartzitos). A amostra SP-01 (quartzito marinho da Fm. Serra da Paciência) possui a maior depleção em ETR entre as amostras analisadas, mas apresenta padrão subparalelo em relação aos outros quartzitos (Figura 12A).

Figura 12. Elementos terras-raras normalizados ao condrito (Nakamura, 1974). (A) Padrão de ETR's dos quartzitos do Gr. Jacobina; (B) Padrão de ETR's dos metaconglomerados da Fm.
Serra do Córrego; (C) Comparação entre a variação da concentração de ETR's dos quartzitos do Gr. Jacobina e do Supergrupo Pongola (após Wronkiewicz & Condie, 1987); (D) Variação de ETR's dos quartzitos de Jacobina comparada aos quartzitos do Mt. Goldsworthy (após Sugitani *et al.*, 2006). Dados dos arenitos cratônicos Arqueanos são de Condie (1993).

Os padrões de variação de ETR dos quartzitos de Jacobina, foram comparados com os quartzitos do Supergrupo Pongola (Cráton Kaapvaal, África do Sul), e do Mt. Goldsworthy (Cráton de Pilbara, Austrália), assim como o padrão médio de arenitos intracratônicos Arqueanos (Figura 12C e 12D). Os quartzitos de Pongola e Goldsworthy foram sedimentados durante o Paleorqueano, em contexto deposicional semelhante aos quartzitos do Gr. Jacobina (fluvial a marinho raso).

Os padrões mostram que os quartzitos de Jacobina são relativamente mais enriquecidos em ETR que os quartzitos de Pongola e Goldsworthy. No entanto, o padrão de fracionamento dos ETR é semelhante, com exceção para a amostra de Jacobina enriquecida em ETRP (JBA-01). Em relação à média dos arenitos cratônicos Arqueanos observa-se um padrão de fracionamento paralelo, entretanto, os quartzitos de Jacobina são mais enriquecidos em ETR, e possuem anomalias negativas de Eu um pouco mais acentuadas (Figura 12A).

4.5.3. Química mineral da pirita e do ouro

Análises do ouro e dos grãos de pirita foram realizadas em 5 amostras de metaconglomerados e em uma amostra de quartzito (Tabela 1). Estes dados encontramse nas tabelas 16 a 19 (Apêndice C). A concentração média da maioria dos elementos traço, nos diferentes tipos de piritas analisados, possuem valores geralmente abaixo do limite de detecção ou muito próximos a ele (Tabela 6). Exceções ocorrem para o As, Mo, Se, Pb, U, Co e Ni, que podem ocorrer em concentrações médias acima de vinte vezes o limite de detecção. No entanto, ocorre grande variação de concentrações para a maior parte dos elementos analisados, independentemente do tipo textural da pirita (Tabela 6).

Essa variação de concentrações pode ser mais bem observada nos diagramas de covariância entre As, Co e Ni (Figura 13), os quais são os elementos traço mais comumente incorporados nas piritas (Guy *et al.*, 2010), principalmente para as piritas pós-sedimentares pobres e ricas em inclusões (Figura 13B e 13C), que possuem boa correlação entre Co/As e Ni/As. Nota-se que para os três grupos de piritas que as concentrações de Ni mantém-se próximas, enquanto as piritas epigenéticas possuem valores mais elevados para o Co (Tabela 6). No geral, a partir das concentrações desses elementos, os três grupos de piritas apresentam composições semelhantes (Figura 14).

Diagramas covariantes entre Cu/Ni, Au/Ni, Ag/Ni, Ag/Cu e Pb/Ni (Figura 15) mostram que a distinção química entre as três populações de pirita é difícil, e indicam composições muito semelhantes. Entretanto, os diagramas Au/Te, Au/Bi e Bi/Te (Figura 15) claramente distinguem os três tipos texturais de pirita. As piritas de provável origem detrítica e pós-sedimentares ricas em inclusões formam um

agrupamento, enquanto as piritas pós-sedimentares pobres em inclusões constituem um grupo distinto, caracterizado por concentrações mais elevadas em Bi e Te.

Em algumas das análises chamam a atenção algumas concentrações elevadas para certos elementos, como Pt (2270 ppm), Pd (950 ppm), Mo (> 5000 ppm, para a amostra MRF-04), Hg (3460 ppm), Se (4840 ppm), Pb (4440 ppm), Ag (7530 ppm) e Au (> 15%). Os valores elevados de Ag e Au estão associados às piritas ricas em inclusões, e consequentemente, devem corresponder a pequenas inclusões de ouro, os quais possuem associação com prata.

As análises realizadas em grãos de ouro mostram que o metal ocorre praticamente puro, com razões Au/Ag muito elevadas. Pequenas concentrações de Cd, Co, Ni e Cu foram detectadas, ligeiramente acima do limite de detecção. O Bi e Se possuem concentração próximas a 500 ppm e ~1000 ppm, respectivamente, e possuem correlação negativa com o Au. As concentrações de Ag e Hg no ouro estão próximas de 1% e 2%, respectivamente.

4.5.4. Dados isotópicos U-Pb e Lu-Hf em zircões detríticos

Os grãos de zircão analisados neste trabalho possuem apresentam características típicas de zircão ígneo, em diversos cristais é possível reconhecer um zoneamento magmático nos grãos (Figura 16). Os dados isotópicos U-Pb, obtidos por análises *in situ* via LA-MC-ICPMS em zircões detríticos do Gr. Jacobina, são apresentados nas tabelas 7 a 14 do Apêndice A. Os dados correspondem a sete amostras da Fm. Serra do Córrego, e uma amostra de quartzito marinho da Fm. Serra da Paciência (Tabela 1).

As idades mais concordantes obtidas para os zircões dos metaconglomerados, quartzitos, inclusive do "Xisto-Guia", variam entre 3200 e 3500 Ma. No entanto, a maioria dos grãos forma uma população entre 3.3-3.4 Ga (Figura 17). Nenhuma idade mais jovem foi encontrada, o que indica a contribuição de fontes exclusivamente Paleorqueanas para as rochas metassedimentares do Gr. Jacobina.

		Piritas	detríticas		Piritas epigenéticas pobres em inclusões				Piritas epigenéticas ricas em inclusões				
	п	Variação	Média	DP	п	Variação	Média	DP	п	Variação	Média	DP.	
As	35	Ald-5710	347	973	340	Ald-10630	358	1006	40	Ald-1660	217	352	
Mo	25	Ald-6450	940	2018	184	Ald-6470	1114	2132	20	Ald-6300	1058	2111	
Bi	25	Ald-2150	289	500	184	Ald-12330	447	1049	20	Ald-1280	227	412	
Pd	35	Ald-550	123	159	340	Ald-950	69	119	40	Ald-820	60	149	
Ag	35	Ald-460	105	145	340	Ald-570	82	130	40	Ald-7530	379	1356	
Sb	35	Ald-110	13	32	340	Ald-560	12	51	40	Ald-1360	59	249	
Te	25	Ald-650	120	185	184	Ald-590	106	149	20	Ald-590	110	146	
Hg	35	Ald-1580	190	445	340	Ald-1570	178	328	40	Ald-3460	376	857	
Se	35	Ald-2300	952	483	340	Ald-2770	886	628	40	Ald-4840	1010	1056	
Pt	35	Ald-2270	326	503	340	Ald-1540	204	311	40	Ald-570	97	151	
Au	35	Ald-590	54	148	340	Ald-1500	30	141	40	Ald-157030	10099	32423	
Pb	35	Ald-2060	715	674	340	Ald-4440	914	801	40	Ald-2510	937	795	
Cd	35	Ald-470	114	145	340	Ald-640	98	130	40	Ald-510	159	149	
U	25	Ald-820	232	256	184	Ald-920	166	218	20	Ald-770	265	293	
Co	35	220-3900	1331	971	340	140-17110	1693	1624	40	360-4840	1715	1276	
Ni	35	Ald-5120	505	976	340	Ald-5570	506	799	40	Ald-5160	530	909	
Cu	35	Ald-580	85	132	340	Ald-610	79	121	40	Ald-610	114	158	
Zn	35	Ald-620	159	163	340	Ald-730	114	152	40	Ald-530	137	158	
Mn	25	Ald-190	28	56	184	Ald-300	27	53	20	Ald-280	41	71	
Co/Ni	35	0.22-30.67	6.72	7.8	340	0.13-173.5	9.88	18.07	40	0.18-96	12.75	21.15	
Mo/Ni	25	0-129	10.35	32.13	184	0-62	4.45	10.02	20	0-121	17.91	37.74	
Au/Ni	35	0-4.67	0.36	1.19	340	0-11	0.22	1.20	40	0-862.20	60.43	183.36	

Tabela 6. Química mineral dos diferentes tipos de piritas que ocorrem na Fm. Serra do Córrego (em ppm).

Nota: Ald corresponde a valores abaixo do limite de detecção do equipamento; n representa a quantidade de dados, e DP corresponde ao desvio padrão.

Manuscrito

Figura 13. Diagramas covariantes entre As, Co e Ni para: (A) Piritas de provável origem detrítica; (B) Piritas pós-sedimentares pobre em inclusões; e (C) Piritas pós-sedimentares ricas em inclusões.

Figura 14. Diagrama binário Co/Ni mostrando diferentes campos de piritas formadas em ambientes geológicos distintos. (A) Disposição das piritas de provável origem detrítica; (B) Piritas pós-sedimentares ricas em inclusões; (C) Piritas pós-sedimentares pobre em inclusões. Os diferentes campos correspondem a:
(1) Depósitos de Cu-Au e Fe-óxidos; (2) Sulfetos vulcânicos maciços; (3) Pirita sedimentar (singenética e diagenética); (4) Piritas formadas por segregação magmática; (5) Veios associados a granitoides; (6) Depósitos de Au do tipo *lode* em *greenstone belts*. Após Guy *et al.*, (2010).

Figura 15. Diagramas binários entre elementos traço dos diferentes tipos de piritas. Os losangos azuis correspondem às piritas de provável origem detrítica, os triângulos verdes representam as piritas pós-sedimentares ricas em inclusões, enquanto os quadrados vermelhos indicam as piritas pós-sedimentares pobre em inclusões.

Um aspecto interessante é mostrado na Figura 17, onde as amostras basais da Fm. Serra do Córrego possuem média de idades mais novas em relação às amostras intermediárias e do topo da formação. Para a amostra da Fm. Serra da Paciência, intervalo marinho da bacia, ocorre o rejuvenescimento das idades dos zircões detríticos.

Os dados de Lu-Hf foram obtidos em zircões com as idades U-Pb mais concordantes ($100 \pm 5\%$), sendo o local da análise preferencialmente o mesmo onde foram realizadas as análises U-Pb. Dessa forma, foram analisados cinco grãos de zircão para cada amostra datada pelo método U-Pb.

Figura 16. Imagens de catodoluminescência de alguns dos zircões analisados do Grupo Jacobina. Os locais onde foram obtidas as idades U-Pb estão indicados.

As idades U-Pb dos zircões analisados para os isótopos de Lu-Hf, bem como as idades modelo (T_{DM}) e os valores de ϵ Hf_(t) obtidos estão dispostos na Tabela 15 (Apêndice C). Os zircões da amostra MVT-08, base do Gr. Jacobina possuem idades U-Pb entre 3177 ± 199 e 3574 ± 76 Ma, idades modelo entre 3.59 e 3.75 Ga, e ϵ Hf_(t) de - 0.96 a -5.61. A amostra JBA-01 possui idades entre 3314 ± 48 a 3564 ± 65 Ma, T_{DM} entre 3.66 a 3.75 Ga e ϵ Hf_(t) de -1.12 a -4.5. O "Xisto-Guia", amostra JBA-02, possui idades entre 3296 ± 44 e 3475 ± 78 Ma, T_{DM} entre 3.64 a 3.67 Ga, e ϵ Hf_(t) de -1.99 a - 5.21. Um grão com idade U-Pb de 3532 ± 53 Ma na amostra do xisto possui idade modelo de 4.06 Ga e ϵ Hf_(t) de -10.56, o mais negativo entre as amostras. A amostra

MVT-01 possui idades entre 3436 ± 60 e 3578 ± 92 Ma, T_{DM} de 3.61 a 3.78 Ga e $\epsilon Hf_{(t)}$ de -0.32 a -1.93. Os zircões da amostra MVT-04 cristalizaram entre 3383 ± 40 e 3568 ± 36 , possuem idades modelos entre 3.72 e 3.76 Ga, e $\epsilon Hf_{(t)}$ de -0.98 a -3.41. A amostra MVT-05 possui idade entre 3347 ± 59 e 3575 ± 95 , T_{DM} varia entre 3.52 a 3.82, e $\epsilon Hf_{(t)}$ entre -0.10 e -2.88. A amostra SCO-Topo possui idade entre 3272 ± 62 e 3614 ± 77 Ma, T_{DM} entre 3.60 a 3.84 Ga, e $\epsilon Hf_{(t)}$ entre -0.58 a -5.60. A amostra representativa do intervalo marinho raso da bacia (SP-01) possui idades entre 3262 ± 70 a 3543 ± 83 Ma, idades modelo entre 3.59 e 3.79 Ga, e $\epsilon Hf_{(t)}$ de -2.42 a -7.36. A Figura 18A apresenta os valores de $\epsilon Hf_{(t)}$ obtidos nos zircões das amostras analisadas.

Figura 17. Diagrama normalizado de frequências de idades para todas as amostras analisadas do Gr. Jacobina. As amostras estão dispostas segundo a estratigrafia da bacia, mais velho na base, mais novo no topo. n corresponde ao número de análises realizadas por amostras.

Figura 18. (A) Valores de εHf_(t) relacionados com as idades U-Pb obtidas nos zircões detríticos do Gr. Jacobina. (B) Diagrama de tempo de residência crustal vs. idade de cristalização U-Pb dos zircões detríticos do Gr. Jacobina.

4.6. Discussões

4.6.1. Geoquímica e proveniência das rochas metassedimentares

Os elementos HFSE's, assim como Th e ETR's, são abundantes em rochas félsicas, enquanto elementos como o Cr, Sc, Co, Ni e V possuem comportamento oposto (McLennan *et al.*, 2003). Dessa forma, esses elementos dão informações importantes sobre a composição de possíveis áreas fonte, a qual é melhor analisada através de razões entre alguns desses elementos.

As razões Zr/Sc, Th/Sc, La/Sc e La/Co possuem valores geralmente bastante elevados nas amostras do Gr. Jacobina (Tabela 5), que favorecem a predominância de rochas fonte félsicas. As baixas razões Co/Th (Tabela 5) também favorecem essa

interpretação, bem como as elevadas razões La/Yb e anomalias negativas de Eu (Tabela 5). Essas características, somadas a valores elevados de SiO₂/Al₂O₃, K₂O/Na₂O e CIA, levam a crer que os sedimentos do Gr. Jacobina foram derivados de uma crosta continental superior antiga. Segundo McLennan *et al.*, (1993), esse componente de proveniência reflete a dominância de fontes graníticas na crosta superior, assim como uma história de reciclagem e intemperismo químico relativamente severo. A tendência para a reciclagem sedimentar (concentração de zircão) é evidenciada na Figura 19.

Figura 19. Diagrama Zr/Sc vs. Th/Sc, que evidencia a tendência para reciclagem sedimentar e concentração de zircões nas rochas metassedimentares do Gr. Jacobina (após McLennan *et al.*, 1993).

Valores elevados de Cr (> 150 ppm) e Ni (> 100 ppm), e razões (Cr/Ni) entre 1.3 e 1.5 são diagnósticas da presença de rochas ultramáficas nas áreas fonte (Araújo *et al.*, 2010). As amostras do Gr. Jacobina são mais enriquecidas em Cr em comparação ao Ni, o que gera razões para esses elementos bastante elevadas (tabelas 4 e 5), bem acima dos valores característicos de rochas ultramáficas. Diversas possibilidades podem ser colocadas para explicar os valores anômalos de Cr. A primeira delas está associada ao grande percentual de fuchsita em algumas das rochas, a qual possui até 10% de Cr_2O_3 em sua estrutura (Teles, dados não publicados). No entanto, amostras com pouca fuchsita apresentam concentrações relativamente elevadas de Cr, o que nos leva a pensar na existência de cromita detrítica em nível de mineral acessório, conforme descrito por Hendrickson (1984). Ainda assim, o enriquecimento em Cr nas amostras pode estar associado à lixiviação desse elemento das rochas máficas/ultamáficas (Leo *et al.*, 1964; Melo Jr., 1993) por fluidos hidrotermais atuantes na Bacia de Jacobina (Milesi *et al.*, 2002). Esse mecanismo, segundo Leo *et al.*, (1964) explicaria a formação da fuchsita através da reação entre muscovita/sericita com cromita detrítica (fonte primária de Cr) somada ao aporte de Cr por fluidos hidrotermais.

Médias e variações de algumas razões de elementos traço apresentadas na Tabela 5 são muito próximas àquelas apresentadas para rochas ígneas Arqueanas (ver Tabela 3 de Condie & Wronkiewicz, 1990). Segundo essas razões, os sedimentos da Bacia de Jacobina teriam como componentes na fonte: basaltos-tonalitos (em menor proporção), tonalitos-granitos e granitos. A Figura 20 reforça esse aspecto através das relações Th/Sc-La/Sc e Eu/Eu*-Th/Sc, onde estão plotados os campos com as composições médias das rochas ígneas e arenitos intracratônicos Arqueanos (dados de Condie, 1993).

Conforme mostrado na Figura 12, o padrão de ETR's dos sedimentos do Gr. Jacobina se assemelha com quartzitos Arqueanos dos crátons Kaapvaal e Pilbara. Admite-se, para os quartzitos dessas localidades, fontes mistas representadas por assembléias do tipo *TTG*, granitos, e rochas máficas-ultramáficas (Wronkiewicz & Condie, 1987; Sugitani *et al.*, 2006).

Figura 20. (A) Th/Sc versus La/Sc; (B) Eu/Eu* versus Th/Sc (após Cullers & Podkovyrov, 2002). G: granito; T: tonalito-trondhjemito-granodiorito; F: rochas vulcânicas félsicas; A: andesitos; B: basaltos; K: komateítos. Dados de valores médios de rochas ígneas Arqueanas (Condie, 1993). S: Valores médios de arenitos intracratônicos Arqueanos (Condie, 1993).

4.6.2. Composição química das piritas e seu significado nas mineralizações do Grupo Jacobina

Os resultados obtidos nos diferentes tipos de pirita mostram que estas possuem composição semelhante, conforme reportado em estudos anteriores de Barnicoat *et al.*, (1997) e Milesi *et al.*, (2002), cujos autores advogam que esse mineral é de origem hidrotermal e correspondente a uma única fase de geração. No entanto, evidências minerográficas apresentadas por Hendrickson (1984), e neste trabalho, caracterizam uma provável origem detrítica para, pelo menos, uma pequena parte das piritas observadas nas rochas metassedimentares da Fm. Serra do Córrego, principal hospedeira das mineralizações auríferas do Grupo Jacobina.

Em relação a outros depósitos com características semelhantes, como Witwatersrand, Ouro Fino/Moeda, Elliot Lake e Huronian Supergroup, os grãos de pirita de Jacobina, possuem conteúdo de elementos traço semelhante tanto na fase detrítica quanto hidrotermal. Nos outros depósitos mencionados as piritas hidrotermais apresentam depleção desses elementos em relação às detríticas (Koglin *et al.*, 2010b; Guy *et al.*, 2010; Ulrich *et al.*, 2011). Nesses depósitos, este fato está relacionado, por exemplo, à liberação de elementos como Pb, Bi, Ag, Te e Au da pirita sedimentar durante os processos de diagênese e metamorfismo (Large *et al.*, 2007). Esses elementos formam fases discretas, como ouro livre, teluretos de Au e galena (Ulrich *et al.*, 2011) e apresentam íntima associação com as piritas de caráter hidrotermal (Koglin *et al.*, 2010b). No caso de Jacobina, na pirita pós-sedimentar rica em inclusões, observam-se inclusões de ouro associado a Bi e Te (Figura 13), inclusões de prata, e outros sulfetos como galena e calcopirita.

Independente do grupo analisado, as concentrações de Pb nas piritas de Jacobina são comumente elevadas, as quais podem ser explicadas pelo decaimento radioativo em minerais detríticos ricos em U (zircão e uraninita) ou das inclusões de monazita e uraninita. Essa característica foi documentada por Mougeot *et al.*, (1996), o qual determinou um caráter radiogênico para, pelo menos, parte das piritas de Jacobina. Análises isotópicas em inclusões de galena determinaram uma assinatura Paleorqueana (~3.4 Ga) para o Pb, bastante semelhante ao caráter isotópico das piritas presentes em migmatitos do Bloco Gavião (Milesi *et al.*, 2002).

Diversos autores têm usado a razão Co/Ni para distinguir os diferentes tipos de piritas formados em diversos ambientes geológicos (Koglin *et al.*, 2010b; Guy *et al.*, 2010). Razões Co/Ni abaixo de 1 são consideradas características de piritas de origem sedimentar, enquanto razões bem acima de 1, ou bastante variáveis, são típicas de piritas de origem hidrotermal (Koglin *et al.*, 2010b; Zhao *et al.*, 2011). As piritas de Jacobina são caracterizadas por razões Co/Ni variáveis, relacionando-as com ambientes de formação VMS ou sedimentar, e em menor proporção relacionadas a veios associados a granitóides (Figura 15).

Como o Ni é facilmente incorporado na estrutura das piritas, e dificilmente é liberado, mesmo com a recristalização hidrotermal, esse elemento é muito importante na avaliação do ambiente de formação das piritas (Koglin *et al.*, 2010b), principalmente porque o Ni ocorre em altas concentrações nas rochas ultramáficas e em menor proporção em rochas máficas (Koglin *et al.*, 2010b; Zhao *et al.*, 2011). Em contraste, rochas magmáticas diferenciadas, como granitos, são enriquecidas no metal incompatível Mo. Dessa forma, Koglin *et al.*, (2010b) utilizou a razão Mo/Ni para determinação da composição da fonte das piritas. As piritas analisadas neste trabalho apresentam razões Mo/Ni muito variadas, que refletem contribuições de rochas félsicas e ultramáficas, ou fluidos a elas associados na formação dessas piritas.

Milesi *et al.*, (2002) sugerem a atuação de um fluido hidrotermal rico em H₂S nos corpos mineralizados da Bacia de Jacobina, cujas assinaturas isotópicas do S, obtidas em piritas hidrotermais, são comparáveis com a composição de fluidos de origem magmática (δ^{34} S entre -0.5‰ e +1.3‰). Esse dado se assemelha com as características de fluidos Arqueanos, cujos principais agentes transportadores de metais são complexos de enxofre (HS⁻) (Koglin *et al.*, 2010b). Esse tipo de fluido tem sido atribuído à Bacia de Witwatersrand, o qual é interpretado como responsável pela curta mobilização do ouro detrítico (Frimmel *et al.*, 1999). Além disso, as piritas hidrotermais de Witwatersrand possuem valores de (δ^{34} S) entre -0.5‰ e +1.3‰ (England *et al.*, 2002b), que indicam a ausência de fontes externas para os fluidos hidrotermais atuantes na bacia.

O aspecto detrítico de alguns grãos de pirita de Jacobina, composição química, bem como a assinatura isotópica que indica uma fonte Arqueana (Mougeot *et al.*, 1996), sugere que esses grãos estejam associados a ortognaisses do Bloco Gavião ou a ambientes do tipo sedimentar-exalativo existentes no *Greenstone Belt* Mundo Novo (Mascarenhas *et al.*, 1998). Existe uma forte relação entre a pirita hidrotermal e o ouro, o que pode ser indicativo da recristalização ou remobilização de uma fase anterior rica no metal. No entanto, estudos mais detalhados são necessários para determinar aspectos dos processos mineralizantes, influência de fluidos hidrotermais e sua composição, entre outros.

4.6.3. Evidências geocronológicas da proveniência

Os dados isotópicos obtidos (idades U-Pb e Lu-Hf nos zircões detríticos) permitem afirmar que a proveniência dos sedimentos da Bacia de Jacobina está associada a fontes Paleoarqueanas, pois os as idades U-Pb obtidas se agrupam principalmente entre 3.3 e 3.4 Ga (Figura 17). Medidas de paleocorrentes existentes para as três unidades do Gr. Jacobina (Figura 4) evidenciam que os sedimentos foram originados de duas fontes principais. A primeira delas é representada pelas assembleias do tipo *TTG* do Bloco Gavião, cujos zircões de gnaisses migmatíticos foram datados por Mougeot (1996) em ~3.4 Ga. A segunda fonte corresponde às associações metavulcano-sedimentares do *Greenstone Belt* Mundo Novo (Mascarenhas & Silva, 1994), cujas rochas metavulcânicas ácidas foram datadas em 3.3 Ga (Peucat *et al.*, 2002).

Nenhuma idade Paleoproterozóica (~2.1 Ga) foi encontrada entre os zircões datados, ocorrentes na área de exposição do Grupo Jacobina. Mougeot (1996) *in* Milesi *et al.*, (2002) descreve a ocorrência de zircões Paleoproterozóicos (2086 \pm 43 e 2138 \pm 12 Ma) em dois locais distintos da ocorrência do Gr. Jacobina, conforme Mascarenhas *et al.*, (1998) e Pearson *et al.*, (2005).

A primeira ocorrência foi descrita por Milesi *et al.*, (2002) como pertencente à Formação Cruz das Almas, que corresponde a uma associação de quartzitos, xistos e metaconglomerados polimíticos metamorfisados em fácies anfibolito (500-600 °C e 4.5-5.0 kb, Ledru *et al.*, 1997). Zircões detríticos dos metaconglomerados polimíticos fornecem idade de 2138 \pm 12 Ma, enquanto demais zircões fornecem idade de 3437 \pm 58 Ma.

A segunda ocorrência, denominada por Ledru *et al.*, (1997) como Formação Gnáissica Saúde, compõem-se de rochas metassedimentares clásticas (quartzitos gnáissicos, quartzitos, metaconglomerados polimíticos e silimanita xistos), além de formações ferríferas bandadas (BIF's). Os seixos dos metaconglomerados são de BIF, anfibólio gnaisse rico em magnetita e quartzo milonito sulfetado. O zircão detrítico mais jovem obtido nos metaconglomerados dessa unidade forneceu idade de 2086 ± 43 Ma.

Ambas as ocorrências não pertencem ao Grupo Jacobina. Pela descrição apresentada para essas unidades e sua separação física das unidades do Gr. Jacobina, alguns autores (Peucat *et al.*, 2002; Pearson *et al.*, 2005) as descrevem como correspondentes de alto grau metamórfico do GBMN, ou como lascas tectônicas do Cinturão Itabuna-Salvador-Curaçá, de idade Paleoproterozóica.

Tal assertiva também fundamenta-se em:

1) Os zircões datados neste trabalho, por LA-MC-ICPMS das unidades estratigráficas da Bacia de Jacobina apresentam idades entre 3.2 e 3.5 Ga;

2) Magee Jr. (2001) obteve idades U-Pb via LA-ICP-MS entre $3286 \pm 8 \text{ e } 3554 \pm 9$ Ma, em 60 zircões concordantes coletados em quartzitos fuchsíticos da Bacia de Jacobina. O mesmo autor datou zircões de clastos de quartzito fuchsítico em conglomerados da Fm. Tombador, próximo à cidade de Lençóis. As idades desses zircões estão entre 3312 ± 14 e 3689 ± 8 Ma (zircões concordantes), com picos em 3350, 3365, 3415, 3440, 3500 e 3600 Ma.

3) Mougeot (1996) datou zircões de metaconglomerados da Fm. Serra do Córrego pelo método ID-TIMS e obtve idade média de 3400 Ma.

Por meio das análises Lu-Hf em zircão, denota-se que a maior parte dos grãos apresenta ϵ Hf_(t) variando entre -0.10 a -5.60, com idades modelo entre 3.5 a 3.8 Ga. Dessa forma, pode ser interpretado que estes zircões formaram-sem em um ambiente de arco magmático continental, com uma grande proporção de material juvenil com certa contaminação crustal.

Na amostra do "Xisto-Guia" pode-se notar uma certa homogeneidade dos dados de Hf, com exceção de um zircão com idade U-Pb de 3532 ± 53 Ga que apresenta $\epsilon Hf_{(t)} = -10.56$, sugerindo que este zircão realmente provenha de uma crosta mais antiga retrabalhada, com idade modelo próxima de 4 Ga.

A Figura 18B apresenta o tempo de residência crustal vs. as idades U-Pb dos zircões detríticos do Gr. Jacobina. Através desse gráfico, assume-se que 87.5% dos grãos apresentam residência crustal entre 150 e 350 Ma. Estes dados sugerem que os

zircões tenham contribuição juvenil com alguma contaminação crustal, i.e., mistura de componente crustal na componente mantélica dominante do manto depletado.

4.6.4. O Significado do "Xisto-Guia"

A gênese do "Xisto-Guia", marco comum para toda a Fm. Serra do Córrego, representado por uma camada que localmente alcança espessura métrica (Figura 6D), foi atribuída à uma significante diminuição de energia no ambiente de sedimentação da Fm. Serra do Córrego, a qual permitiu a deposição de um nível pelítico (Molinari & Scarpelli, 1988).

No entanto, Mascarenhas & Silva (1994) levantam a hipótese dessa camada ser um correspondente do vulcanismo félsico do *Greenstone Belt* Mundo Novo (GBMN), ou seja, um meta-tufo. A interpretação de Mascarenhas & Silva (1994) é baseada principalmente pela baixa probabilidade de preservação de um nível pelítico em um ambiente deposicional de elevada energia como o da Fm. Serra do Córrego. Deve-se ressaltar que esta camada corresponde a um Quartzo-Sericita Xisto, cuja composição modal é composta basicamente por quartzo, sericita, muscovita e minerais acessórios como zircão, rutilo e turmalina. Esta composição pode ser tanto de origem sedimentar quanto vulcanogênica.

Para testar a possibilidade levantada por Mascarenhas & Silva (1994), foram comparadas as composições químicas do "Xisto-Guia" com as rochas metavulcânicas ácidas do GBMN, bem como as idades U-Pb dos zircões dessas rochas.

No diagrama Th vs. Co utilizado para classificação de séries magmáticas e de rochas vulcânicas, as metavulcânicas félsicas do GBMN e o "Xisto-Guia" plotam no campo da série cálcio-alcalina de alto potássio, que variam entre os termos andesíticos a riolíticos, de provável origem relacionada a uma margem continental ativa (Figura 21A e 21B). No diagrama multielementar normalizado ao manto primitivo (Figura 21D), observa-se que tanto o xisto quanto as metavulcânicas possuem distribuição similar dos elementos. Destacam-se nesse diagrama as anomalias negativas de Nb e Ti, e o padrão das rochas do GBMN compatível com de rochas soshoníticas pós-colisionais (Turner *et al.*, 1996).

Ao serem examinados os padrões de ETR das metavulcânicas e do xisto normalizadas ao condrito, denota-se que eles são semelhantes a de magmas shoshoníticos a cálcio-alcalinos de alto potássio. Entretanto, o grau de fracionamento (ETRL/ETRP) do "Xisto-Guia" é menos acentuado em relação às metavulcânicas do GBMN (Figura 21C), o que pode evidenciar a mistura com componentes de origem sedimentar (siliciclástico). As anomalias negativas de Eu são indicativas do fracionamento de plagioclásio na fonte.

Figura 21. Comparação entre o "Xisto-Guia" e as rochas metavulcânicas félsicas do *Greenstone Belt* Mundo Novo. (A) Diagrama Co vs. Th de classificação de séries magmáticas proposto por Hastie *et al.*, (2007); (B) Diagrama Nb/Y-Zr/Ti para classificação de rochas vulcânicas (Pearce, 1996); (C) Padrão de elementos terras-raras normalizados ao condrito de Nakamura (1974); (D) Diagrama multielementar normalizado ao manto primitivo de Sun & McDonough (1989). Os dados das metavulcânicas do GBMN são de Mascarenhas *et al.*, (1998).

A idade de cristalização dos zircões mais concordantes do "Xisto-Guia", obtida pelo LA-MC-ICPMS, está entre 3286 ± 75 e 3440 ± 41 Ma. Todos os dados U-Pb dos grãos datados (n=40) formam uma discórdia cujo intercepto superior revela a idade de 3385 ± 21 Ma (Figura 22B); enquanto que os zircões mais concordantes (n=18) fornecem uma idade ²⁰⁷Pb/²⁰⁶ Pb média de 3364 ± 21 Ma (Figura 22A).

Peucat *et al.*, (2002), através do método SHRIMP, dataram 17 grãos de um metadacito porfirítico do GBMN, cuja idade U-Pb obtida é de 3305 \pm 9 Ma, considerada a idade de cristalização dessa rocha. No entanto, desses 17 grãos, apenas três apresentam baixos teores de Pb comum (razões ²⁰⁶Pb/²⁰⁴Pb > 2000), o que gera uma idade artificialmente mais baixa.

Dessa forma, a idade recalculada para a metavulcânica do GBMN (n=3) é igual a 3331 ± 27 Ma, a qual é correlacionável com a idade 207 Pb/ 206 Pb média de 3364 ± 21 Ma do "Xisto-Guia"; considerando-se os erros analíticos em ambas as datações.

A idade de 3364 ± 21 Ma do "Xisto-Guia" pode corresponder à idade sindeposicional da seção intermediária da Fm. Serra do Córrego; visto que existem evidências de que essa camada tenha tido contribuição vulcanogênica do magmatismo tardi- a pós-colisional do *Greenstone Belt* Mundo Novo.

4.6.5. Contexto geotectônico de sedimentação da Bacia de Jacobina

Os dados apresentados sugerem que a bacia tenha se formado por processos de subsidência mecânica, com características de rifteamento, conforme já sugerido por Horscroft *et al.*, (1989), Mascarenhas *et al.*, (1992) e Mascarenhas & Silva (1994). Os dados petrográficos por si só não podem ser utilizados para definir o ambiente geotectônico da bacia, conforme classificação de Dickinson (1985), graças à composição extremamente quartzosa das rochas estudadas, as quais não possuem outros constituintes clásticos como feldspatos e fragmentos líticos.

Esse aspecto composicional pode estar associado a um processo de silicificação intenso, o qual pode ser atribuído a processos hidrotermais na área fonte propriamente dita - arcos magmáticos com intenso hidrotermalismo e depósitos de Au do tipo pórfiro, como ocorre em terrenos Arqueanos do Canadá. Aliado a essa idéia, estão as condições severas de intemperismo químico durante o Arqueano, associadas com uma atmosfera

redutora, rica em CO₂, chuvas ácidas e altas temperaturas (Frimmel, 2005; Hessler & Lowe, 2006).

A presente assertiva combina com a presença dominante de zircões formados entre 3.3 e 3.4 Ga, bem como a assinatura isotópica do Hf com ϵ Hf_(t) próximo a zero, entre - 0.10 e -5.60. Dessa maneira, a Bacia de Jacobina pode estar relacionada à geração de uma bacia extensional Paleoarqueana (~3.3Ga), do tipo *back-arc*, com alguma contribuição vulcânica do arco magmático do GBMN nos seus estágios tardi- a póstectônicos. A inversão da bacia é bem caracterizada pelas idades Ar/Ar em micas (entre 1943 e 1912 Ma), que definem uma progressiva propagação de empurrões associados à orogenia Paleoproterozóica (Ledru *et al.*, 1997; Milesi *et al.*, 2002).

Figura 22. (A) Diagrama da média das idades ²⁰⁷Pb/²⁰⁶Pb dos grãos de zircão mais concordantes (n=18) da amostra do xisto. (B) Diagrama concórdia de todos os zircões analisados (n=40) da amostra do "Xisto-Guia".

5. CONCLUSÕES

- A sedimentação do Grupo Jacobina apresenta granodecrescência ascendente, relacionada à passagem gradual de depósitos aluviais e fluviais da Fm. Serra do Córrego (hospedeira da mineralização de Au), para depósitos litorâneos da Fm. Rio do Ouro e marinho raso da Fm Serra da Paciência. O padrão deposicional da bacia é bastante semelhante ao de bacias do tipo rifte. O padrão de paleocorrentes da Fm. Serra do Córrego indica um padrão de drenagens de leste para oeste, interpretada como transversais, bem como drenagem N-S, considerada axial ao eixo do rifte de Jacobina.
- A composição modal dos quartzitos e mataconglomerados é essencialmente quartzosa, com indícios de recristalização e silicificação, as quais impediram a análise de proveniência por técnicas petrográficas convencionais. Esta característica pode estar associada à uma atividade hidrotermal ou severo intemperismo químico na área fonte (valores elevados do *Chemical Index of Alteration*).
- A geoquímica de elementos traço sugere que os sedimentos foram gerados a partir de fontes tonalíticas e graníticas Arqueanas, com alguma contribuição de rochas máfica-ultramáficas, relacionada com valores anômalos de Cr. O padrão de elementos terras-raras das rochas metassedimentares de Jacobina é semelhante a de sedimentos Paleoarqueanos dos Crátons Kaapval e Pilbara.
- Três tipos de pirita foram identificados neste estudo, um deles possui grãos com feições de arredondamento, que sugerem uma origem detrítica; enquanto os outros dois possuem caráter pós-sedimentar, com grãos recristalizados. A composição de elementos traço nesses cristais é bastante semelhante para os três tipos de pirita, os quais se assemelham às piritas formadas em ambiente sedimentar exalativo ou associadas a granitóides.
- A composição química dos grãos de ouro é bastante homogênea, com elevado grau de pureza e razões Au/Ag muito elevadas. Esses valores diferem da composição esperada para ouro associado à percolação de fluidos hidrotermais externos através de zonas de cisalhamento.
- Idades U-Pb concordantes, obtidas em 496 grãos de zircão detrítico do Gr. Jacobina variam entre 3.2 e 3.5 Ga, sendo que a população dominante está entre 3.3-3.4 Ga. Por meio destes dados, conclui-se que a idade máxima de deposição destas rochas metassedimentares corresponde ao Paleoarqueano (~3.3 Ga) e não ao Paleoproterozóico (2086 Ma) como previamente reportado por Milesi *et al.*, (2002) e demais referências.
- A geoquímica da camada "Xisto-Guia" sugere que esta tenha uma origem ou contribuição vulcanogênica. Esta rocha possui composição mineralógica principal à quartzo e sericita, e assinatura química de rochas vulcânicas riodacíticas, correspondentes à série cálcio-alcalina de alto potássio. A média de idades ²⁰⁷Pb/²⁰⁶Pb dos zircões dessa rocha é de 3364 ± 21 Ma. Essas características se assemelham às dos riodacitos Paleoarqueanos (3305 ± 9 Ma, Peucat *et al.*, 2002) do *Greenstone Belt* Mundo Novo, cujo cinturão pode ter fornecido o material vulcanogênico para a Bacia de Jacobina.
- Isótopos de Lu-Hf obtidos nos zircões datados pelo método U-Pb fornecem valores de ɛHf_(t) entre -0.10 e -5.60, e idades modelos entre 3.5 e 3.8 Ga. Estes dados juntamente com as idades U-Pb revelam tempos de residência crustal muito curtos, os quais indicam fonte de arco magmático continental com alguma contaminação crustal.
- Os dados ora apresentados sugerem que a Bacia de Jacobina corresponda a um rifte Paleoarqueano, gerado em ambiente de *back-arc*, com um arco magmático distal ativo. Este modelo torna esta bacia aurífera uma das mais antigas do planeta que contém piritas com feições detríticas. Dessa forma, novos estudos devem ser realizados para a melhor compreensão dos seguintes aspectos:
 - a) Tectônica da bacia;
 - b) Processos de intemperismo, geração e transporte de sedimentos, bem como a composição da atmosfera Paleoarqueana;
 - c) Gênese (fonte) da mineralização aurífera e a influência da tectônica Paleoproterozóica sobre os depósitos de Jacobina.

6. REFERÊNCIAS BIBLIOGRÁFICAS

- Araújo, C.E.G., Pinéo, T.R.G., Caby, R., Costa, F.G., Cavalcante, J.C., Vasconcelos, A.M., Rodrigues, J.B., 2010. Provenance of the Novo Oriente Group, southwestern Ceará Central Domain, Borborema Province (NE-Brazil): A dismembered segment of a magma-poor passive margin or a restricted rift-related basin? Gondwana Research 18, 497-513.
- Arora, M., Khan, R.M.K., Naqvi, S.M., 1994. Composition of the middle and late Archean upper continental crust as sampled from the Kaldurga Conglomerate, Dharwar craton, India. Precambrian Research 70, 93-112.
- Barbosa, J.S.F., Sabaté, P., Marinho, M.M., 2003. O Cráton do São Francisco na Bahia: uma síntese. Revista Brasileira de Geociências 33(1), 3-6.
- Barbosa, J.S.F., Sabaté, P., 2004. Archean and Paleoproterozoic crust of the São Francisco Craton, Bahia, Brazil: geodynamic features. Precambrian Research 133, 1-27.
- Barnicoat, A.C., et al., 1997. Hydrothermal gold mineralization in the Witwatersrand basin. Nature 386, 820-824.
- Barnicoat, A.C., et al., 1997. A hydrothermal model for Witwatersrand-type gold mineralisation on the São Francisco Craton. RDR Report, 184 pp.
- Bateman, J.D., 1958. Uranium-bearing auriferous reefs at Jacobina, Brazil. Economic Geology 54, 417-425.
- Bühn, B., Pimentel, M.M., Matteini, M., Dantas, E. L., 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Anais da Academia Brasileira de Ciências, 81(1), 99-114.
- Chemale, F., Philipp, R.P., Dussin, I.A., Formoso, M.L.L., Kawashita, K., Berttotti, A.L., 2011. Lu-Hf and U-Pb age determination of Capivarita Anorthosite in the Dom Feliciano Belt, Brazil. Precambrian Research 186, 117-126.
- Chemale, F., Kawashita, K., Dussin, I.V., Ávila, J.N., Justino, D., Bertotti, A., 2012. U-Pb zircon *in situ* dating with LA-MC-ICP-MS using a mixed detector configuration. Anais da Academia Brasileira de Ciências 84(2), 5-8.

- Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, M., Milton, J.A., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–1574.
- Condie, K.C., Wronkiewicz, D.J., 1990. The Cr/th ratio in Precambrian pelites from the Kaapvaal Craton as na índex of craton evolution. Earth and Planetary Science Letters 97, 256-267.
- Condie, K.C., 1993. Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chemical Geology 104, 1-37.
- Cox, D.P., 1967. Regional environment of the Jacobina auriferous conglomerate, Brazil. Economic Geology 62, 773-780.
- Cruz, S.C.P., *et al.*, 2012. The Caraguataí syenitic suite, a ca. 2.7 Ga-old alkaline magmatism (petrology, geochemistry and U-Pb zircon ages). Southern Gavião block (São Francisco Craton), Brazil. Journal of South American Earth Sciences 37, 95-112.
- Dickinson W.R., 1985. Interpreting provenance relations from detrital modes of sandstones. In: Zuffa G.G. (Ed.), *Provenance of Arenites*. D. Reidel Publishing Co., Dordercht, 333-361.
- Ellen Santos, D., 2011. Geologia e Geoquímica dos Corpos Máficos e Ultramáficos da Porção Sul da Serra de Jacobina, Cinturão de Ouro, Bahia. Monografia de Graduação, Univ. Federal de Sergipe, 91 pp.
- England, G.L., Rasmussen, B., Krapez, B., Groves, D.I., 2002b. Palaeoenvironmental significance of rounded pyrite in siliciclastic sequences of the Late Archaean Witwatersrand Basin: oxygen-deficient atmosphere or hydrothermal evolution. Sedimentology 49, 1122-1156.
- Frimmel, H.E., Hallbauer, D.K., Gartz, V.H., 1999. Gold mobilizing fluids in the Witwatersrand Basin: composition and possible sources. Mineralogy and Petrology 66, 55-81.
- Frimmel, H.E., Minter, W.E.L., 2002. Recent developments concerning the geological history and genesis of the Witwatersrand deposits, South Africa. In: Goldfarb, R.J., Nielsen, R.L. (Eds.), Integrated Methods for Discovery: Global Exploration in the

Twenty-First Century. Special Publication vol. 9. Society of Economic Geologists, Littleton, pp. 17-45.

- Frimmel, H.E., 2005. Archaean atmospheric evolution: evidence from the Witwatersrand gold fields, South Africa. Earth Science Reviews 70, 1-46.
- Frimmel, H.E., 2008. Earth's continental crustal gold endowment. Earth and Planetary Science Letters 267, 45-55.
- Gerdes, A., Zeh, A., 2006. Combined U-Pb and Hf isotope LA-(MC)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth and Planetary Science Letters 249, 47-61.
- Gross, W.H., 1968. Evidence for a Modified Placer Origin for Auriferous Conglomerates, Canavieiras Mine, Jacobina, Brazil. Economic Geology 63, 271-276.
- Guy, B.M., Beukes, N.J., Gutzmer, J., 2010. Paleoenvironmental controls on the texture and chemical composition of pyrite from non-conglomeratic sedimentary rocks of the Mesoarchean Witwatersrand Supergroup, South Africa. South African Journal of Geology 113, 195-228.
- Hastie, A.R., Kerr, A.C., Pearce, J.A., Mitchell, S.F., 2007. Classification of altered volcanic island arc rocks using immobile trace elements: development of the Th-Co discrimination diagram. Journal of Petrology 48, 2341-2357.
- Hendrickson, J.F.M., 1984. Stratigraphic position, mineralogy, depositional environment and gold distribution of the Main Reef at Morro do Cuzcuz and Morro do Vento near Jacobina, Bahia, Brazil. MSc. thesis, School of Mines and Technology, South Dakota, 156 pp.
- Hessler, A.M, Lowe, D.R., 2006. Weathering and sediment generation in the Archean: An integrated study of the evolution of siliciclastic sedimentary rocks of the 3.2 Ga Moodies Group, Barbeton Greenstone Belt, South Africa. Precambrian Research 151, 185-210.
- Hofmann, A., 2005. The geochemistry of sedimentary rocks from the Fig Tree Group, Barbeton greenstone belt: Implications for tectonic, hydrothermal and surface processes during mid-Archean times. Precambrian Research 143, 23-49.

- Hofmann A., Bekker A., Rouxel O., Rumble D., Master, S., 2009. Multiple sulphur and iron isotope composition of detrital pyrite in Archaean sedimentary rocks: a new tool for provenance analysis. Earth and Planetary Science Letters 286, 436-445.
- Holland, H.D., 1984. Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, 582 pp.
- Horscroft, F.D., Molinari, L., Barbosa, C.C., 1989. The Jacobina gold mine. 13th International Geochemical Exploration Symposium, 57-62.
- Iizuka, T., Hirata, T., 2005. Improvements of precision and accuracy in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chemical Geology 220, 131-137.
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology. Chemical Geology 211, 47-69.
- Košler, J., Sylvester, P.J., 2003. Present trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. Reviews in Mineralogy and Geochemistry 53, 243-275.
- Koglin, N., Zeh, A., Frimmel, H.E., Gerdes, A., 2010a. New constraints on the auriferous Witwatersrand sediment provenance from combined detrital zircon U-Pb and Lu-Hf isotope data for the Eldorado Reef (Central Rand Group, South Africa). Precambrian Research 183, 817–824.
- Koglin, N., Frimmel, H.E., Minter, W.E.L, Brätz, H., 2010b. Trace-element characteristics of different pyrite types in Mesoarchaean to Palaeoproterozoic placer deposits. Mineralium Deposita 45, 259–280.
- Kositcin, N., Krapez, B., 2004. SHRIMP U–Pb detrital zircon geochronology of the Late Archaean Witwatersrand Basin of South Africa: relation between zircon provenance age spectra and basin evolution. Precambrian Research 129, 141–168.
- Krupp, R., Oberthür, T., Hirdes, W., 1994. The Early Precambrian atmosphere and hydrosphere: thermodynamic constraints from mineral deposits. Economic Geology 89, 1581-1598.

- Lambert, I.B., Donnelly, T.H., 1991. Atmospheric oxygen levels in the Precambrian: a review of isotopic and geological evidence. Paleogeography, Paleoclimatology, Paleoecology 97, 83-91.
- Large, R.R., Maslennikov, V.V., Robert, F., Danyushevsky, L.V., Scott, R.J., Chang, Z., 2007. Multi-stage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log deposit, Lena Goldfield, Russia. Economic Geology 102, 1233-1267.
- Large, R.R., et al., 2009, Gold and trace element zonation in pyrite using a laser imaging technique: Implications for the timing of gold in orogenic and Carlin-style sediment-hosted deposits. Economic Geology 104, 635-668.
- Law, J., Phillips, N., 2006. Witwatersrand gold–pyrite–uraninite deposits do not support a reducing Archean atmosphere. In: Kessler, S.E., Ohmoto, H. (Eds.), Evolution of Early Earth's Atmosphere, Hydrosphere and Biosphere-Constraints from Ore Deposits. Geological Society of America, Memoir 198, 121-141.
- Ledru, P., Johan, V., Milési, J.P., Tegyey, M., 1994. Markers of the last stages of the Palaeoproterozoic collision: evidence for a 2 Ga continent involving circum–South Atlantic provinces. Precambrian Research 69, 169-191.
- Ledru, P., Milési, J.P., Johan, V., Sabaté, P., Maluski, H., 1997. Foreland basins and gold-bearing conglomerates: a new model for the Jacobina Basin (São Francisco province, Brasil). Precambriam Research 86, 155-176.
- Leo, G.W., Cox, D.P., Carvalho, J.P.P., 1964. Geologia da parte sul da Serra de Jacobina, Bahia, Brasil. Departamento Nacional de Produção Mineral, Rio de Janeiro, 123 pp.
- Ludwig, K.R., 2008. User's Manual for Isoplot 3.70, A geochronologial Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special. Publication 4, 75 pp.
- Magee Jr., C.W., 2001. Geologic, microstructural, and spectroscopic constraints on the origin and history of carbonado diamond. PhD. Thesis, Australian National University, Canberra, 247 pp.
- Mascarenhas, J.F., Filho, V.M.C., Griffon, J.C., 1992. Contribuição à geologia do Grupo Jacobina na regiao Jacobina–Pindobaçu. 37° Congresso Brasileiro de Geologia, São Paulo. Boletim de Resumos Expandidos 2, 141–142.

- Mascarenhas, J.F., Silva, E.F.A., 1994. *Greenstone Belt* de Mundo Novo: caracterização e implicações metalogenéticas e geotectônicas no Cráton do São Francisco. Companhia Baiana de Pesquisa Mineral, Salvador. Série Arquivos Abertos 5, 32 pp.
- Mascarenhas, J.F., Ledru, P., Souza, S.L., Conceição Filho, V.M., Melo, L.F.A., Lorenzo, C.L., Milesi J.P., 1998. Geologia e recursos minerais do Grupo Jacobina e da parte sul do Greenstone Belt de Mundo Novo. Companhia Baiana de Pesquisa Mineral, Salvador. Série Arquivos Abertos 13, 58 pp.
- Matteini, M., Junges, S.L., Dantas, E.L., Pimentel, M.M., Bühn, B., 2010. In situ zircon U-Pb and Lu-Hf isotope systematic on magmatic rocks: Insights on the crustal evolution of the Neoproterozoic Goiás Magmatic Arc, Brasília belt, Central Brazil. Gondwana Research 17, 1-12.
- Matteini, M., Dantas, E.L., Pimentel, M.M., Alvarenga, C.J.S., Dardenne, M.A., 2012.
 U-Pb and Hf isotope study on detrital zircons from the Paranoa Group, Brasilia Belt
 Brazil: Constraints on depositional age at Mesoproterozoic Neoproterozoic transition and tectono-magmatic events in the Sao Francisco craton. Precambrian Research 206-207, 168-181.
- McLennan, S.M., Hemming, S., McDaniel, D.K., Hanson, G.N., 1993. Geochemical approaches to sedimentation, provenance, and tectonics. In: Johnsson, M.J., Basu, A. (Eds.), Processes Controling the Composition of Clastic Sediments. Geological Society of America, Special Paper 284, 21-40.
- McLennan, S.M., Bock, B., Hemming, S.R., Hurowitz, J.A., Steven, M.L., McDaniel, D.K., 2003. The roles of provenance and sedimentary processes in the geochemistry of sedimentary rocks. In: Lentz, D.R. (Ed.), Geochemistry of Sediments and Sedimentary Rocks/Evolutionary Considerations to Mineral Deposit-Forming Environments. Geological Association of Canada. 184p.
- Melo Jr., G., 1993. Gênese da mineralização aurífera de Jacobina, Bahia: uma hipótese alternativa. Simpósio sobre o Cráton do São Francisco, Salvador. Anais, 26–31.
- Milesi, J.P., Ledru, P., Marcoux, E., Mougeot, R., Johan, V., Lerouge, C., Sabaté, P., Bailly, L., Respaut, J.P., Skipwith, P., 2002. The Jacobina Paleoproterozoic goldbearing conglomerates, Bahia, Brazil: a "hydrothermal shear-reservoir" model. Ore Geology Reviews 19, 95-136.

- Minter, W.E.L., 1975. Sedimentological aspects of the Serra do Córrego formation with particular reference to the main reef unit at Cuscuz and Morro do Vento near Jacobina, Bahia, Brazil. Technical Report, 20 pp.
- Molinari, L., 1982. Mineralizações auríferas em Jacobina, Bahia. Gold Symposium (I Simpósio do ouro), Salvador. Anais, 26-31.
- Molinari, L., Scarpelli, W., 1988. Depósitos de ouro de Jacobina. In: Schobbenhaus, C., Coelho, C.E.S. (Eds.), Os Principais Depósitos Minerais do Brasil, vol. 3, 463– 478.
- Mossman, D.J., Harron, G.A., 1983. Origin and distribution of gold in the Huronian Supergroup, Canada – The case for Witwatersrand-type paleoplacers. Precambrian Research 20, 543-583.
- Mougeot, R., 1996. Etude de la limite Archéen-Protérozoïque et des minéralisations Au
 <u>+</u> U associées. Exemples de la région de Jacobina, Etat de Bahia, Brésil et de Carajás État de Pará, Brésil. Doctoral thesis, Univ. Montpellier II, 301 pp.
- Mougeot, R., Marcoux, E., Respaut, J.P., Milesi, J.P., Ledru, P., Johan, V., 1996. Geochemical and mineralogical characterizations of sulphide associated to the Jacobina gold mineralizations Bahia, Brazil. 39° Congresso Brasileiro de Geologia, Salvador. Anais 7, 318-320.
- Nesbitt, H.W., Young, G.M., 1982. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717.
- Nutman, A.P., Cordani, U.G., 1993. SHRIMP U-Pb zircon geochronology of Archean granitoids from the Contendas-Mirante area of the São Francisco Craton, Bahia, Brazil. Precambrian Research 63, 179-188.
- Oram, W.G., 1975. A Preliminary Sedimentological Study of the Serra do Córrego Formation at Jacobina, Brazil. Anglo American Corporation of South Africa Limited. Geology Department, Gold and Uranium Division. Occasional Report, 32 pp.
- Pachett, P.J., Tatsumoto, M., 1980. Lu-Hf total rock isochron for the eucrite meteorites. Nature 288, 571-574.
- Pearson, W., Macêdo, P.M., Rúbio, A., Lorenzo, C.L., Karpeta, P., 2005. Geology and gold mineralization of the Jacobina Mine and Bahia Gold Belt, Bahia, Brazil and

comparison to Tarkwa and Witwatersrand. In: Rhoden, H.N., Steininger, R.C., Vikre, P.G. (Eds.). Geological Society of Nevada Symposium, 29 pp.

- Peucat, J.J., Mascarenhas, J.F., Barbosa, J.S.F., Souza, S.L., Marinho, M.M., Fanning, C.M., Leite, C.M.M., 2002. 3.3 Ga SHRIMP U–Pb zircon age of a felsic metavolcanic rock from the Mundo Novo greenstone belt in the São Francisco Craton, Bahia (NE Brazil). Journal of South American Earth Sciences 15, 363-373.
- Peucat, J.J., Barbosa, J.S.F., Pinho, I.C. A., Paquette, J.L., Martin, H., Fanning, C.M., Leal, A.B.M., Cruz, S.C.P., 2011. Geochronology of granulites from the south Itabuna-Salvador-Curaçá Block, São Francisco Craton (Brazil): Nd isotopes and U-Pb zircon ages. Journal of South American Earth Sciences 31, 397-413.
- Phillips, G.N., Law, J.D.M., 2000. Witwatersrand gold fields: Geology, genesis and exploration. SEG Reviews 13, 439-500.
- Rasmussen, B., Buick, R., 1999. Redox state of the Archean atmosphere: evidence from detrital heavy minerals in ca. 3250-2750 Ma sandstones from the Pilbara Craton, Australia. Geology 27, 115-118.
- Rasmussen, B., 2005. Radiometric dating of sedimentary rocks: the application of diagenetic xenotime geochronology. Earth-Science Reviews 68, 197-243.
- Remus, M.V.D., Souza, R.S., Cupertino, J.A., De Ros, L.F., Dani, N., Vignol-Lelarge, M.L., 2008. Proveniência sedimentar: métodos e técnicas analíticas aplicadas.
 Revista Brasileira de Geociências 38(2), 166-185.
- Rudnick, R.L., Gao, S., 2003. Composition of the continental crust. In: Holland, H.D., Turekian, K.K. (Eds.), Treatise on Geochemistry. Elsevier-Pergamon, Oxford, 1-64.
- Sabaté, P., Marinho, M.M., Vidal, P., Vachette, M.C., 1990. The 2 Ga peraluminous magmatism of the Jacobina–Contendas Mirante belts (Bahia-Brazil): geologic and isotopic constraints on the sources. Chemical Geology. 83, 325-338.
- Sampaio, A.R., Santos, R.A., Rocha, A.J.D., Guimarães, J.T., 2001. Jacobina, folha SC.24-Y-C, Estado da Bahia. Brasília: CPRM/DIEDIG/DEPAT (Programa de Levantamentos Geológicos Básicos do Brasil).
- Santos-Pinto, M., Peucat, J.J., Martin, H., Barbosa, J.S.F., Fanning, C.M., Cocherie, A., Paquette, J.L., 2012. Crustal evolution between 2.0 and 3.5 GA in the southern

Gavião block (Umburanas-Brumado-Aracatu region), São Francisco Craton, Brazil: A 3.5-3.8 Ga proto-crust in the Gavião block? Journal of South American Earth Sciences 40, 129-142.

- Segal, I., Halicz, L., Platzner, I.T., 2003. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and hafnium in an improved double external normalization procedure. Journal of Analytical Atomic Spectrometry 18, 1217–1223.
- Silva, M.G., 1994. Greenstone Belt do Rio Itapicuru: Uma Bacia do Tipo Back Arc Fóssil. Revista Brasileira de Geociências 22, 157-166.
- Spalletti L.A., Queralt, I., Matheos S.D., Colombo F., Maggi J., 2008. Sedimentary petrology and geochemistry of siliciclastic rocks from the upper Jurassic Tordillo Formation (Neuquén Basin, western Argentina): Implications for provenance and tectonic setting. Journal of South American Earth Sciences 25, 440-463.
- Stacey, J.S., Kramers, J.D., 1975. Approximation of terrestrial lead isotope evolutionby a two-stage model. Earth Planetary Science Letters 26, 207-221.
- Sugitani, K., Yamashita, F., Nagaoka, T., Yamamoto, K., Minami, M., Mimura, K., Suzuki, K., 2006. Geochemistry and sedimentary petrology of Archean clastic sedimentary rocks at Mt. Goldsworthy, Pilbara Craton, Western Australia: Evidence for the early evolution of continental crust and hydrotermal alteration. Precambrian Research 147, 124-147.
- Sun, S.S., McDonough, W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, M.J. (Eds.), Magmatism in the ocean basins. Geological Society of London, Special Publication 42, 313-345.
- Taylor, S.R., McLennan, S.M., 1985. The Continental Crust: It's Composition and Evolution. Blackwell, London, 312 pp.
- Teixeira, J.B.G., Souza, J.A.B., Silva, M.G., Leite, C.M.M., Barbosa, J.Q.F., Coelho, C.E.S., Abram, M.B., Conceição Filho, V.M., Iyer, S.S.S., 2001. Gold mineralization in the Serra de Jacobina region, Bahia Brazil: tectonic framework and metallogenesis. Mineralium Deposita 36, 332-344.

- Teles, G.S., 2011. Estudo de Proveniência e Geoquímica dos Metassedimentos da Formação Serra do Córrego, no Morro do Vento, Jacobina, Bahia. Monografia de Graduação, Univ. Federal de Sergipe, 85 pp.
- Topitsch, W.M., 1993. Geoquimica e petrologia dos ultramafitos e mafitos da Serra de Jacobina/Bahia: komatiitos, basaltos de alto Mg e toleitos numa bacia oceânica intracontinental. Simpósio sobre o Cráton do São Francisco, Salvador. Anais, 109-111.
- Turner, S., Arnaud, N., Liu, J., Rogers, N., Hawkesworth, C., Harris, N., Kelley, S., Van Calsteren, P., Deng, W., 1996. Post-collision, Shoshonitic Volcanism on the Tibetan Plateau: Implications for Convective Thinning of the Lithosphere and the source of Ocean Island Basalts. Journal of Petrology 37, 45-71.
- Ulrich, T., Long, D.G.F., Kamber, B.S., Whitehouse, M.J., 2011. In situ trace element and sulfur isotope analysis of pyrite in a Paleoproterozoic Gold Placer Deposit, Pardo and Clement Townships, Ontario, Canada. Economic Geology 106, 667-686.
- White, M.G., 1961. Origin of Uranium and Gold in the quartzite-conglomerate of the Serra de Jacobina, Brazil. USGS *Prof.* Paper 424-B, 8-9.
- Williams, I., 1998. U-Th-Pb geochronology by ion microprobe. In: McKibben, M.A., Shanks III, W.C., Ridley, W.I. (Eds.), Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology 7, 1-35.
- Wronkiewicz, D.J., Condie, K.C., 1987. Geochemistry of Archean shales from the Witwatersrand Supergroup, South Africa: Source-area weathering and provenance. Geochimica et Cosmochimica Acta 51, 2401-2416.
- Wronkiewicz, D.J., Condie, K.C., 1989. Geochemistry and provenance of sediments from the Pongola Supergroup South Africa: evidence for a 3.0-Ga-old continental craton. Geochimica et Cosmochimica Acta 53, 1537-1549.
- Yamaguchi, K.E, Ohmoto H., 2006. Evidence from sulfur isotope and trace elements in pyrite for they multiple post-depositional processes in uranium ores at the Stanleigh mine, Elliot Lake, Ontario, Canada. In: Kessler, S.E., Ohmoto, H. (Eds.), Evolution of Early Earth's Atmosphere, Hydrosphere and Biosphere-Constraints from Ore Deposits. Geological Society of America, Memoir 198, 143-156.

- Youden, W.J. 1951 Statiscal methods for chemists. Journal of the Royal Stastical. New York, Wiley, 126 pp.
- Zhao, H.X., Frimmel, H.E., Jiang, S.Y., Dai, B.Z., 2011. LA-ICP-MS trace element analysis od pyrite from the Xiaoqinling gold district, China: Implications for ore genesis. Ore Geology Reviews 43, 142-153.
- Zeh, A., Gerdes, A., 2012. U–Pb and Hf isotope record of detrital zircons from goldbearing sediments of the Pietersburg Greenstone Belt (South Africa) - Is there a common provenance with the Witwatersrand Basin? Precambrian Research 204-205, 46-56.

Apêndice A – Tabelas com dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos analisados.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																						
									Isotop	pe ratio	DS					Age	es (Ma)					
003ZI 0.0005 41 27 34 0.81 26.06 2.92 0.6779 2.31 0.79 0.2788 1.79 3336 77 3349 98 3356 60 99 3356 60 007-Z6 0.0005 59 38 28 1.36 2.884 3.35 0.6992 2.28 0.68 0.2991 2.45 3.418 78 3448 15 3466 85 99 3446 85 008-Z7 0.0005 59 48 56 0.86 25.72 2.96 0.6744 2.14 0.72 0.2767 2.05 3323 71 3336 99 3344 69 99 3344 69 99 3344 69 99 3344 69 99 3344 69 99 3345 40 014-Z12N 0.0007 75 98 66 1.49 0.664 1.98 0.86 0.2971 1.17 124 0.49 345 40 014-Z12N 0.0031 136 110 247 0.46 2.31 7.7	Spot number	f(206)%	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	lσ abs	²⁰⁷ Pb/ ²³⁵ U	lσ abs	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ abs	% Conc	Be estim age (1	st ated Ma)
007-Z6 0.0005 39 38 28 1.36 28.84 3.35 0.6992 2.28 0.68 0.2991 2.45 3418 78 3448 115 3466 85 99 3446 85 008-Z7 0.0005 55 26 49 0.53 25.76 2.03 0.6749 1.63 0.80 0.2707 2.05 3323 71 3336 69 3344 69 9334 69 9344 69 9344 69 9344 69 9344 69 9345 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3457 41 90 <td>003-Z1</td> <td>0.0005</td> <td>41</td> <td>27</td> <td>34</td> <td>0.81</td> <td>26.06</td> <td>2.92</td> <td>0.6779</td> <td>2.31</td> <td>0.79</td> <td>0.2788</td> <td>1.79</td> <td>3336</td> <td>77</td> <td>3349</td> <td>98</td> <td>3356</td> <td>60</td> <td>99</td> <td>3356</td> <td>60</td>	003-Z1	0.0005	41	27	34	0.81	26.06	2.92	0.6779	2.31	0.79	0.2788	1.79	3336	77	3349	98	3356	60	99	3356	60
008-27 0.0004 55 26 49 0.53 25.96 2.03 0.6749 1.63 0.02 720 1.22 3325 54 3335 68 3357 41 99 3334 69 9344 69 99 3344 69 99 3344 69 99 3344 69 99 3344 69 99 3344 69 99 3344 69 99 3344 69 98 337 63 014-Z12N 0.0006 91 71 81 0.89 26.81 2.30 0.6546 1.98 0.86 0.2971 1.17 3246 64 3377 78 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3455 40 94 3457 41 99 3347 41 99 3347 41 90 347	007-Z6	0.0005	39	38	28	1.36	28.84	3.35	0.6992	2.28	0.68	0.2991	2.45	3418	78	3448	115	3466	85	99	3466	85
010-29 0.0005 59 48 56 0.86 25.72 2.96 0.6744 2.14 0.72 0.2767 2.05 3323 71 3336 99 3344 69 99 3344 69 99 3344 69 99 3344 69 99 3344 69 99 3344 69 99 3344 69 98 3373 63 98 3373 63 98 3373 63 98 3373 63 99 3344 69 98 3373 63 99 3344 69 98 3373 63 98 3373 63 99 344 69 98 3373 63 99 344 69 98 3373 63 040 137 3123 242 3137 199 64 3177 199 90 3347 168 91 3313 68 91 3313 68 91 3313 68 92 3365 151 3347 171 3366 163 3347 99 3383<	008-Z7	0.0004	55	26	49	0.53	25.96	2.03	0.6749	1.63	0.80	0.2790	1.22	3325	54	3345	68	3357	41	99	3357	41
014-Z12N 0.0007 75 98 66 1.49 26.03 3.04 0.6699 2.39 0.79 0.2819 1.87 3306 79 3348 102 3373 63 98 3373 63 016-Z13 0.0006 91 71 81 0.89 2.681 2.30 0.6546 1.98 0.86 0.2971 1.17 3246 64 3377 78 3455 40 94 3455 40 019-Z18N 0.0021 98 124 1.00 22.65 6.92 0.5952 6.61 0.96 0.2711 2.05 3011 199 3213 68 91 3313 68 91 3313 68 91 3313 68 92 3365 103 3427 176 3347 95 106 3347 95 225 20007 35 19 36 0.54 23.77 3.60 0.6147 2.53 0.70 0.2805 2.55 3089 78 3259 117 3366 86 92 3366 86	010-Z9	0.0005	59	48	56	0.86	25.72	2.96	0.6744	2.14	0.72	0.2767	2.05	3323	71	3336	99	3344	69	99	3344	69
016-Z13 0.0006 91 71 81 0.89 26.81 2.30 0.6546 1.98 0.86 0.2971 1.17 3246 64 3377 78 3455 40 94 3455 40 019-Z18N 0.0031 136 110 247 0.45 20.66 7.74 0.6025 4.52 0.58 0.2487 6.28 3040 137 3123 242 3177 199 96 3177 199 96 3177 199 96 3177 199 96 3177 199 96 3177 199 96 3177 199 96 3177 199 96 3131 68 91 3133 68 91 3133 68 92 3365 163 3427 176 3347 95 106 3347 93 3365 77 98 366 667 2.55 3089 78 3259 117 3366 86 92 3365 77 98 3365 77 98 3365 77 98 366<	014-Z12N	0.0007	75	98	66	1.49	26.03	3.04	0.6699	2.39	0.79	0.2819	1.87	3306	79	3348	102	3373	63	98	3373	63
019-Z18N 0.0031 136 110 247 0.45 20.66 7.74 0.6025 4.52 0.58 0.2487 6.28 3040 137 3123 242 3177 199 96 3177 199 020-Z18B 0.0026 98 123 124 1.00 22.25 6.92 0.5952 6.61 0.96 0.2711 2.05 3011 199 3195 221 3313 68 91 3313 68 024-Z21 0.0039 90 52 110 0.48 28.22 5.13 0.7385 4.29 0.83 0.2772 2.83 3565 153 3427 176 3347 95 106 3447 95 027-Z24 0.0008 55 48 47 1.02 26.48 3.06 0.6772 2.14 0.70 0.2836 2.19 3347 146 3365 77 98 3365 77 034-Z31 0.0004 40 15 31 0.47 26.69 3.60 0.6724 3.72 0.88 0	016-Z13	0.0006	91	71	81	0.89	26.81	2.30	0.6546	1.98	0.86	0.2971	1.17	3246	64	3377	78	3455	40	94	3455	40
020-Z18B 0.0026 98 123 124 1.00 22.25 6.92 0.5952 6.61 0.96 0.2711 2.05 3011 199 3195 221 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 91 3313 68 92 3364 75 025-Z22 0.0007 35 48 47 1.02 2.64.8 3.06 0.6772 2.14 0.70 0.2805 2.28 3315 123 3347 146 3355 77 98 3365 77 034-Z31 0.0005 57 36 0.47 2.69 3.60 0.6904 2.43 0.67 0.2804 2.67 3384 82 376 298	019-Z18N	0.0031	136	110	247	0.45	20.66	7.74	0.6025	4.52	0.58	0.2487	6.28	3040	137	3123	242	3177	199	96	3177	199
024-Z21 0.0039 90 52 110 0.48 28.22 5.13 0.7385 4.29 0.83 0.2772 2.83 3565 153 3427 176 3347 95 106 3347 95 025-Z22 0.0007 35 19 36 0.54 23.77 3.60 0.6147 2.53 0.70 0.2805 2.55 3089 78 3259 117 3366 86 92 3366 86 027-Z24 0.0005 57 36 56 0.64 25.99 4.36 0.6724 3.72 0.85 0.2805 2.28 3315 123 3347 146 3365 90 101 3365 77 98 3365 77 034-Z31 0.0004 40 15 31 0.47 26.49 3.66 0.6724 3.72 0.85 0.2805 2.28 3315 123 3347 146 3365 90 101 3365 90 101 3365 90 101 3366 40 93 366 44 </td <td>020-Z18B</td> <td>0.0026</td> <td>98</td> <td>123</td> <td>124</td> <td>1.00</td> <td>22.25</td> <td>6.92</td> <td>0.5952</td> <td>6.61</td> <td>0.96</td> <td>0.2711</td> <td>2.05</td> <td>3011</td> <td>199</td> <td>3195</td> <td>221</td> <td>3313</td> <td>68</td> <td>91</td> <td>3313</td> <td>68</td>	020-Z18B	0.0026	98	123	124	1.00	22.25	6.92	0.5952	6.61	0.96	0.2711	2.05	3011	199	3195	221	3313	68	91	3313	68
025-Z22 0.0007 35 19 36 0.54 23.77 3.60 0.6147 2.53 0.70 0.2805 2.55 3089 78 3259 117 3366 86 92 3366 86 027-Z24 0.0008 55 48 47 1.02 26.48 3.06 0.6772 2.14 0.70 0.2836 2.19 3334 71 3365 103 3383 74 99 3383 74 99 3383 74 99 3385 77 030-Z29 0.0005 57 36 56 0.64 25.99 4.36 0.6724 3.72 0.85 0.2805 2.28 3315 123 3347 146 3365 77 98 3365 77 034-Z31 0.0004 40 15 31 0.47 26.69 3.60 0.6904 2.43 0.67 0.2804 2.67 3384 82 3372 122 3365 90 101 3365 77 98 3368 64 93 3366 64	024-Z21	0.0039	90	52	110	0.48	28.22	5.13	0.7385	4.29	0.83	0.2772	2.83	3565	153	3427	176	3347	95	106	3347	95
027-Z24 0.0008 55 48 47 1.02 26.48 3.06 0.6772 2.14 0.70 0.2836 2.19 3334 71 3365 103 3383 74 99 3383 74 030-Z29 0.0005 57 36 56 0.64 25.99 4.36 0.6724 3.72 0.85 0.2805 2.28 3315 123 3347 146 3365 77 98 3365 77 034-Z31 0.0004 40 15 31 0.47 26.69 3.60 0.6904 2.43 0.67 0.2804 2.67 3384 82 3372 122 3365 90 101 3365 90 035-Z32 0.0055 51 60 80 0.75 29.92 18.7 0.7686 16.5 0.88 0.2823 8.82 3676 607 3484 653 3376 298 109 3368 64 93 3368 64 93 3368 64 93 3368 64 93 366 42	025-Z22	0.0007	35	19	36	0.54	23.77	3.60	0.6147	2.53	0.70	0.2805	2.55	3089	78	3259	117	3366	86	92	3366	86
030-Z29 0.0005 57 36 56 0.64 25.99 4.36 0.6724 3.72 0.85 0.2805 2.28 3315 123 3347 146 3365 77 98 3365 77 034-Z31 0.0004 40 15 31 0.47 26.69 3.60 0.6904 2.43 0.67 0.2804 2.67 3384 82 3372 122 3365 90 101 3365 90 035-Z32 0.0055 51 60 80 0.75 29.92 18.7 0.7686 16.5 0.88 0.2823 8.82 3676 607 3484 653 3376 298 109 3376 298 037-Z34 0.0005 37 23 26 0.89 27.40 3.54 0.6917 2.39 0.67 0.2874 2.62 3389 81 3398 120 3404 89 100 3404 89 100 3404 89 100 3404 89 100 3425 138 349 144 3	027-Z24	0.0008	55	48	47	1.02	26.48	3.06	0.6772	2.14	0.70	0.2836	2.19	3334	71	3365	103	3383	74	99	3383	74
034-Z31 0.0004 40 15 31 0.47 26.69 3.60 0.6904 2.43 0.67 0.2804 2.67 3384 82 3372 122 3365 90 101 3365 90 035-Z32 0.0055 51 60 80 0.75 29.92 18.7 0.7686 16.5 0.88 0.2823 8.82 3676 607 3484 653 3376 298 109 3376 298 037-Z34 0.0008 174 6 174 0.03 24.16 6.99 0.6240 6.72 0.96 0.2809 1.91 3126 210 3275 229 3368 64 93 3368 64 039-Z39 0.0005 37 23 26 0.89 27.40 3.54 0.6917 2.39 0.67 0.2874 2.62 3389 81 3398 120 3404 89 100 3404 89 100 3424 89 101 3352 53 101 3352 53 104 352 5	030-Z29	0.0005	57	36	56	0.64	25.99	4.36	0.6724	3.72	0.85	0.2805	2.28	3315	123	3347	146	3365	77	98	3365	77
035-Z32 0.0055 51 60 80 0.75 29.92 18.7 0.7686 16.5 0.88 0.2823 8.82 3676 607 3484 653 3376 298 109 3376 298 037-Z34 0.0008 174 6 174 0.03 24.16 6.99 0.6240 6.72 0.96 0.2809 1.91 3126 210 3275 229 3368 64 93 3368 64 039-Z39 0.0005 37 23 26 0.89 27.40 3.54 0.6917 2.39 0.67 0.2874 2.62 3389 81 3398 120 3404 89 100 3404 89 045-Z44 0.0012 83 49 73 0.68 26.61 4.28 0.6997 2.01 0.58 0.2920 2.79 3420 69 3425 118 3428 96 100 3428 96 100 3428 96 100 3428 96 100 3428 96 100 3428	034-Z31	0.0004	40	15	31	0.47	26.69	3.60	0.6904	2.43	0.67	0.2804	2.67	3384	82	3372	122	3365	90	101	3365	90
037-Z34 0.0008 174 6 174 0.03 24.16 6.99 0.6240 6.72 0.96 0.2809 1.91 3126 210 3275 229 3368 64 93 3368 64 039-Z39 0.0005 37 23 26 0.89 27.40 3.54 0.6917 2.39 0.67 0.2874 2.62 3389 81 3398 120 3404 89 100 3404 89 045-Z44 0.0012 83 49 73 0.68 26.61 4.28 0.6943 3.98 0.93 0.2780 1.59 3399 135 3369 144 3352 53 101 3352 53 046-Z45 0.0009 63 42 45 0.95 28.17 3.44 0.6997 2.01 0.58 0.2920 2.79 3420 69 3425 118 3428 96 100 3428 96 048-Z48 0.0003 76 86 52 1.65 25.13 2.47 0.6602 1.78	035-Z32	0.0055	51	60	80	0.75	29.92	18.7	0.7686	16.5	0.88	0.2823	8.82	3676	607	3484	653	3376	298	109	3376	298
039-Z39 0.0005 37 23 26 0.89 27.40 3.54 0.6917 2.39 0.67 0.2874 2.62 3389 81 3398 120 3404 89 100 3404 89 045-Z44 0.0012 83 49 73 0.68 26.61 4.28 0.6943 3.98 0.93 0.2780 1.59 3399 135 3369 144 3352 53 101 3352 53 046-Z45 0.0009 63 42 45 0.95 28.17 3.44 0.6997 2.01 0.58 0.2920 2.79 3420 69 3425 118 3428 96 100 3428 96 048-Z48 0.0003 76 86 52 1.65 25.13 2.47 0.6602 1.78 0.72 0.2762 1.72 3268 58 3314 82 3341 57 98 3341 57 049-Z49N 0.0005 95 50 79 0.64 24.19 3.00 0.6315 2.03	037-Z34	0.0008	174	6	174	0.03	24.16	6.99	0.6240	6.72	0.96	0.2809	1.91	3126	210	3275	229	3368	64	93	3368	64
045-Z440.00128349730.6826.614.280.69433.980.930.27801.5933991353369144335253101335253046-Z450.00096342450.9528.173.440.69972.010.580.29202.793420693425118342896100342896048-Z480.00037686521.6525.132.470.66021.780.720.27621.7232685833148233415798335174049-Z49N0.00059550790.6424.193.000.63152.030.680.27792.2031566432769833517494335174053-Z500.0002139591030.5726.942.750.70191.160.420.27842.49342840338193335483102335483054-Z520.00048335640.5525.502.780.66821.600.580.27692.2732995333289233457699334576056-Z540.00552311170.6524.6317.10.640112.30.720.279111.831903943294564335839795335839795<	039-Z39	0.0005	37	23	26	0.89	27.40	3.54	0.6917	2.39	0.67	0.2874	2.62	3389	81	3398	120	3404	89	100	3404	89
046-Z45 0.0009 63 42 45 0.95 28.17 3.44 0.6997 2.01 0.58 0.2920 2.79 3420 69 3425 118 3428 96 100 3428 96 048-Z48 0.0003 76 86 52 1.65 25.13 2.47 0.6602 1.78 0.72 0.2762 1.72 3268 58 3314 82 3341 57 98 3341 57 049-Z49N 0.0005 95 50 79 0.64 24.19 3.00 0.6315 2.03 0.68 0.2779 2.20 3156 64 3276 98 3351 74 94 3351 74 053-Z50 0.0002 139 59 103 0.57 26.94 2.75 0.7019 1.16 0.42 0.2769 2.27 3299 53 3328 92 3345 76 99 3345 76 99 3345 76 99 3345 76 99 3345 76 99 3358 397	045-Z44	0.0012	83	49	73	0.68	26.61	4.28	0.6943	3.98	0.93	0.2780	1.59	3399	135	3369	144	3352	53	101	3352	53
048-Z48 0.0003 76 86 52 1.65 25.13 2.47 0.6602 1.78 0.72 0.2762 1.72 3268 58 3314 82 3341 57 98 3341 57 049-Z49N 0.0005 95 50 79 0.64 24.19 3.00 0.6315 2.03 0.68 0.2779 2.20 3156 64 3276 98 3351 74 94 3351 74 053-Z50 0.0002 139 59 103 0.57 26.94 2.75 0.7019 1.16 0.42 0.2784 2.49 3428 40 3381 93 3354 83 102 3354 83 054-Z52 0.0004 83 35 64 0.55 25.50 2.78 0.6682 1.60 0.58 0.2769 2.27 3299 53 3328 92 3345 76 99 3345 76 056-Z54 0.0055 23 11 17 0.6401 12.3 0.72 0.2791 11.8	046-Z45	0.0009	63	42	45	0.95	28.17	3.44	0.6997	2.01	0.58	0.2920	2.79	3420	69	3425	118	3428	96	100	3428	96
049-Z49N 0.0005 95 50 79 0.64 24.19 3.00 0.6315 2.03 0.68 0.2779 2.20 3156 64 3276 98 3351 74 94 3351 74 053-Z50 0.0002 139 59 103 0.57 26.94 2.75 0.7019 1.16 0.42 0.2784 2.49 3428 40 3381 93 3354 83 102 3354 83 054-Z52 0.0004 83 35 64 0.55 25.50 2.78 0.6682 1.60 0.58 0.2769 2.27 3299 53 3328 92 3345 76 99 3345 76 056-Z54 0.0055 23 11 17 0.6401 12.3 0.72 0.2791 11.8 3190 394 3294 564 3358 397 95 3358 397 95 3358 397 95 3358 397 95 3358 397 95 3358 397 95 3358 397	048-Z48	0.0003	76	86	52	1.65	25.13	2.47	0.6602	1.78	0.72	0.2762	1.72	3268	58	3314	82	3341	57	98	3341	57
053-Z50 0.0002 139 59 103 0.57 26.94 2.75 0.7019 1.16 0.42 0.2784 2.49 3428 40 3381 93 3354 83 102 3354 83 054-Z52 0.0004 83 35 64 0.55 25.50 2.78 0.6682 1.60 0.58 0.2769 2.27 3299 53 3328 92 3345 76 99 3345 76 056-Z54 0.0055 23 11 17 0.65 24.63 17.1 0.6401 12.3 0.72 0.2791 11.8 3190 394 3294 564 3358 397 95 3358 397	049-Z49N	0.0005	95	50	79	0.64	24.19	3.00	0.6315	2.03	0.68	0.2779	2.20	3156	64	3276	98	3351	74	94	3351	74
054-Z52 0.0004 83 35 64 0.55 25.50 2.78 0.6682 1.60 0.58 0.2769 2.27 3299 53 3328 92 3345 76 99 3345 76 056-Z54 0.0055 23 11 17 0.65 24.63 17.1 0.6401 12.3 0.72 0.2791 11.8 3190 394 3294 564 3358 397 95 3358 397	053-Z50	0.0002	139	59	103	0.57	26.94	2.75	0.7019	1.16	0.42	0.2784	2.49	3428	40	3381	93	3354	83	102	3354	83
056-Z54 0.0055 23 11 17 0.65 24.63 17.1 0.6401 12.3 0.72 0.2791 11.8 3190 394 3294 564 3358 397 95 3358 397	054-Z52	0.0004	83	35	64	0.55	25.50	2.78	0.6682	1.60	0.58	0.2769	2.27	3299	53	3328	92	3345	76	99	3345	76
	056-Z54	0.0055	23	11	17	0.65	24.63	17.1	0.6401	12.3	0.72	0.2791	11.8	3190	394	3294	564	3358	397	95	3358	397

Tabela 7. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra MVT-08, base da Fm. Serra do Córrego, Bacia de Jacobina.

057-Z55	0.0013	31	21	21	1.01	28.70	11.0	0.7022	7.44	0.68	0.2965	8.12	3429	255	3443	379	3452	280	99	3452	280
060-Z59	0.0008	51	30	38	0.80	25.25	3.43	0.6507	2.06	0.60	0.2815	2.75	3231	66	3318	114	3371	93	96	3371	93
064-Z62N	0.0020	65	36	56	0.66	29.14	12.3	0.7271	12.0	0.97	0.2907	2.95	3522	424	3458	428	3421	101	103	3421	101
066-Z63	0.0003	78	20	60	0.34	28.43	2.96	0.7032	2.26	0.76	0.2933	1.92	3433	77	3434	102	3435	66	100	3435	66
067-Z66N	0.0002	124	63	91	0.69	26.19	3.02	0.6897	1.57	0.52	0.2754	2.58	3382	53	3354	101	3337	86	101	3337	86
069-Z67	0.0002	93	41	69	0.60	26.09	2.98	0.6822	2.01	0.67	0.2774	2.20	3353	67	3350	100	3348	74	100	3348	74
070-Z68N	0.0037	34	34	22	1.56	27.33	4.51	0.7060	3.49	0.78	0.2808	2.85	3443	120	3395	153	3367	96	102	3367	96
077-Z73	0.0009	52	34	36	0.94	27.46	3.84	0.6978	2.52	0.66	0.2855	2.89	3412	86	3400	130	3393	98	101	3393	98
080-Z75	0.0007	15	6	12	0.53	29.72	4.04	0.6998	2.61	0.65	0.3080	3.08	3420	89	3478	140	3511	108	97	3511	108
083-Z76	0.0005	73	67	63	1.07	24.33	4.76	0.6298	4.35	0.92	0.2802	1.91	3149	137	3282	156	3364	64	94	3364	64
087-Z79	0.0016	39	26	30	0.88	28.56	3.83	0.6970	2.70	0.71	0.2972	2.72	3409	92	3439	132	3456	94	99	3456	94
090-Z81N	0.0014	34	27	26	1.03	25.65	4.04	0.6599	2.91	0.72	0.2820	2.80	3267	95	3334	135	3374	95	97	3374	95
105-Z89	0.0016	41	40	30	1.33	24.84	4.28	0.6368	3.46	0.81	0.2830	2.52	3176	110	3302	141	3380	85	94	3380	85
107-Z92	0.0016	102	182	103	1.79	26.84	2.17	0.6915	1.48	0.68	0.2816	1.58	3388	50	3378	73	3372	53	100	3372	53
109-Z94	0.0019	34	55	21	2.56	24.55	3.45	0.6202	2.75	0.80	0.2872	2.09	3111	85	3291	114	3402	71	91	3402	71
110-Z96	0.0012	51	30	40	0.76	25.46	2.89	0.6623	1.94	0.67	0.2788	2.15	3276	63	3326	96	3356	72	98	3356	72
113-Z97	0.0007	91	39	87	0.45	27.29	8.20	0.7120	7.99	0.97	0.2781	1.82	3466	277	3394	278	3352	61	103	3352	61
115-Z100	0.0009	54	150	91	1.66	27.37	9.51	0.7088	8.93	0.94	0.2802	3.26	3454	308	3397	323	3364	110	103	3364	110
116-Z102	0.0012	37	20	30	0.65	25.76	3.44	0.6704	2.66	0.77	0.2788	2.19	3307	88	3338	115	3356	73	99	3356	73
117-Z103N	0.0010	63	61	56	1.10	24.90	5.16	0.6250	4.52	0.88	0.2890	2.48	3130	142	3305	170	3412	85	92	3412	85
124-Z110	0.0004	64	39	54	0.73	25.74	2.55	0.6716	1.69	0.67	0.2780	1.90	3312	56	3337	85	3352	64	99	3352	64
125-Z111	0.0004	42	29	32	0.92	28.03	3.28	0.6851	2.45	0.75	0.2968	2.17	3364	83	3420	112	3454	75	97	3454	75
126-Z112N	0.0046	56	33	47	0.72	25.55	3.17	0.6544	2.64	0.83	0.2832	1.76	3245	86	3330	106	3381	60	96	3381	60
128-Z113N	0.0005	82	94	60	1.58	25.76	2.36	0.6591	1.49	0.63	0.2836	1.84	3264	49	3338	79	3383	62	96	3383	62
129-Z113B	0.0015	54	119	55	2.21	23.97	8.19	0.6161	7.87	0.96	0.2822	2.27	3094	244	3267	268	3375	77	92	3375	77
130-Z114	0.0002	108	65	83	0.78	29.54	2.43	0.6750	1.66	0.69	0.3175	1.77	3325	55	3472	84	3558	63	93	3558	63
134-Z117N	0.0002	95	66	87	0.76	26.21	2.64	0.6783	1.74	0.66	0.2803	1.98	3338	58	3354	89	3364	67	99	3364	67
135-Z117B	0.0017	95	68	97	0.71	23.14	3.23	0.6001	2.24	0.69	0.2797	2.34	3030	68	3233	105	3361	79	90	3361	79
136-Z118	0.0007	65	71	59	1.21	28.69	3.95	0.6803	3.19	0.81	0.3059	2.33	3346	107	3443	136	3501	81	96	3501	81
139-Z120N	0.0048	71	335	204	1.65	30.37	12.4	0.7906	12.3	0.99	0.2786	1.86	3755	463	3499	437	3355	62	112	3355	62
140-Z120B	0.0010	100	92	105	0.88	25.03	8.45	0.6505	8.36	0.99	0.2791	1.26	3230	270	3309	280	3358	42	96	3358	42
143-Z122	0.0004	38	23	26	0.90	25.15	4.03	0.6341	2.74	0.68	0.2877	2.95	3166	87	3314	133	3405	100	93	3405	100
147-Z129	0.0002	159	137	102	1.36	26.31	5.28	0.6792	5.02	0.95	0.2811	1.62	3341	168	3358	177	3369	55	99	3369	55

148-Z131	0.0003	92	54	61	0.88	30.00	2.97	0.7051	2.38 0.80	0.3086	1.78	3440	82	3487	104	3514	63	98	3514	63
150-Z133	0.0004	80	57	51	1.13	26.76	2.82	0.6774	1.81 0.64	0.2866	2.17	3334	60	3375	95	3399	74	98	3399	74
157-Z138N	0.0007	81	58	65	0.90	25.99	2.72	0.6717	1.80 0.66	0.2807	2.04	3312	59	3346	91	3367	69	98	3367	69
159-Z139N	0.0005	103	85	79	1.08	27.09	2.56	0.6768	1.64 0.64	0.2904	1.97	3332	55	3387	87	3419	67	97	3419	67

Tabela 8. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões da amostra JBA-01, do Quartzito Intermediário da Fm. Serra do Córrego, Gr. Jacobina.

								Isotop	be ratio	8						Ages	s (Ma)				
Spot number	f(206) %	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ abs	²⁰⁷ Pb/ ²³⁵ U	lσ abs	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ abs	% Conc	Bes estima age (I	st ated Ma)
003-Z1	0.0002	84.0	47.3	70.5	0.68	27.73	1.77	0.7432	1.18	0.67	0.2707	1.32	3582	42	3410	60	3310	44	108	3310	44
004-Z2	0.0005	46.8	55.4	34.0	1.64	27.25	2.56	0.7047	1.98	0.77	0.2805	1.63	3439	68	3393	87	3366	55	102	3366	55
007-Z5	0.0009	41.3	39.8	35.7	1.12	24.30	2.10	0.6422	1.70	0.81	0.2744	1.23	3198	55	3281	69	3332	41	96	3332	41
009-Z8	0.0022	10.6	11.8	8.2	1.45	24.93	3.72	0.6543	2.96	0.79	0.2764	2.26	3245	96	3306	123	3343	76	97	3343	76
010-Z11	0.0010	13.4	4.7	10.9	0.43	32.03	3.17	0.7287	2.60	0.82	0.3188	1.81	3529	92	3551	112	3564	65	99	3564	65
013-Z12	0.0005	45.5	44.1	38.6	1.15	29.18	3.78	0.6769	3.36	0.89	0.3127	1.73	3332	112	3460	131	3535	61	94	3535	61
014-Z13	0.0004	50.9	30.6	42.4	0.73	27.26	2.08	0.7101	1.42	0.68	0.2785	1.53	3459	49	3393	71	3354	51	103	3354	51
016-Z15	0.0027	7.4	3.3	5.6	0.59	30.38	4.64	0.7187	3.98	0.86	0.3066	2.38	3491	139	3499	162	3504	83	100	3504	83
018-Z17	0.0003	95.5	66.5	76.5	0.88	32.58	2.80	0.7444	2.27	0.81	0.3175	1.64	3587	81	3568	100	3558	58	101	3558	58
019-Z18N	0.0010	69.8	236.7	91.1	2.62	27.50	1.32	0.7070	0.76	0.58	0.2822	1.08	3447	26	3402	45	3375	36	102	3375	36
020-Z18B	0.0005	58.5	70.3	46.6	1.52	26.74	2.07	0.6901	1.56	0.75	0.2811	1.36	3383	53	3374	70	3369	46	100	3369	46
023-Z20	0.0004	51.7	43.6	39.9	1.10	26.54	2.16	0.6976	1.31	0.61	0.2760	1.71	3412	45	3367	73	3340	57	102	3340	57
024-Z21	0.0010	25.2	29.8	16.9	1.77	26.68	3.04	0.6969	2.31	0.76	0.2777	1.98	3409	79	3372	103	3350	66	102	3350	66
025-Z22N	0.0003	60.7	43.2	45.6	0.95	26.69	2.36	0.7045	1.60	0.68	0.2748	1.73	3438	55	3372	79	3334	58	103	3334	58
026-Z22B	0.0005	58.4	42.1	48.2	0.88	25.46	3.02	0.6753	2.65	0.88	0.2735	1.44	3326	88	3326	100	3326	48	100	3326	48
027-Z23N	0.0003	73.1	60.3	52.7	1.15	28.19	1.91	0.7331	1.03	0.54	0.2790	1.61	3545	37	3426	66	3357	54	106	3357	54
030-Z26	0.0008	42.2	27.1	34.1	0.80	30.03	2.98	0.7208	2.52	0.85	0.3022	1.59	3499	88	3488	104	3481	55	101	3481	55
033-Z27	0.0014	39.7	33.3	35.9	0.94	25.50	2.15	0.6633	1.40	0.65	0.2788	1.64	3280	46	3328	72	3356	55	98	3356	55
034-Z28N	0.0006	50.4	57.7	35.4	1.64	27.79	1.87	0.7185	1.47	0.78	0.2806	1.17	3491	51	3412	64	3366	39	104	3366	39
036-Z29	0.0005	64.6	31.6	53.6	0.59	27.89	2.40	0.7308	1.77	0.74	0.2768	1.62	3537	63	3415	82	3345	54	106	3345	54
037-Z30	0.0030	21.6	14.8	18.4	0.81	25.78	2.81	0.6772	1.95	0.69	0.2762	2.03	3334	65	3339	94	3341	68	100	3341	68

039-Z32	0.0004	72.8	66.5	54.5	1.23	28.04	2.12	0.7269	1.48	0.70	0.2798	1.52	3522	52	3421	73	3362	51	105	3362	51
046-Z37	0.0010	17.3	11.6	17.7	0.66	28.23	3.39	0.7020	2.53	0.75	0.2917	2.25	3428	87	3427	116	3427	77	100	3427	77
047-Z38	0.0005	49.1	70.5	47.0	1.51	25.05	2.64	0.6526	2.11	0.80	0.2784	1.58	3238	68	3310	87	3354	53	97	3354	53
048-Z39	0.0016	101.0	154.3	197.5	0.79	27.94	2.70	0.7394	1.02	0.38	0.2741	2.50	3568	36	3417	92	3330	83	107	3330	83
050-Z41	0.0008	29.7	36.4	33.3	1.10	23.58	2.69	0.6120	1.86	0.69	0.2795	1.95	3078	57	3251	87	3360	65	92	3360	65
054-Z43	0.0008	112.5	142.5	193.7	0.74	24.91	2.68	0.6660	2.26	0.84	0.2713	1.45	3291	74	3305	89	3314	48	99	3314	48
055-Z44	0.0006	48.7	47.8	47.5	1.01	26.54	2.00	0.6995	1.40	0.70	0.2753	1.44	3419	48	3367	67	3336	48	102	3336	48
056-Z45	0.0008	25.7	25.9	24.2	1.08	29.17	3.01	0.7116	2.33	0.78	0.2974	1.90	3464	81	3460	104	3457	66	100	3457	66
057-Z46	0.0005	57.1	60.2	60.0	1.01	25.47	2.21	0.6699	1.76	0.79	0.2758	1.35	3306	58	3327	74	3339	45	99	3339	45
058-Z47	0.0009	43.2	90.1	53.6	1.69	25.68	2.39	0.6785	1.43	0.60	0.2745	1.91	3339	48	3335	80	3332	64	100	3332	64
063-Z50	0.0012	20.7	15.0	16.4	0.92	31.51	2.46	0.7379	1.93	0.79	0.3098	1.52	3563	69	3535	87	3520	53	101	3520	53
064-Z51	0.0013	22.0	26.8	19.0	1.42	24.48	3.09	0.6398	2.49	0.81	0.2776	1.83	3188	79	3288	102	3349	61	95	3349	61
065-Z52	0.0005	115.8	93.0	86.1	1.09	33.37	2.31	0.8001	1.54	0.67	0.3026	1.72	3790	58	3592	83	3483	60	109	3483	60
066-Z53	0.0011	18.0	15.8	14.4	1.11	27.09	3.09	0.7039	2.51	0.81	0.2792	1.80	3435	86	3387	105	3358	60	102	3358	60
067-Z54	0.0003	95.4	68.8	84.8	0.82	26.67	2.25	0.7103	1.07	0.48	0.2723	1.97	3460	37	3371	76	3320	65	104	3320	65
070-Z58	0.0004	96.9	47.7	112.0	0.43	24.89	2.58	0.6658	1.91	0.74	0.2711	1.73	3290	63	3304	85	3313	57	99	3313	57
073-Z59	0.0002	97.2	88.0	79.6	1.11	28.30	2.76	0.7223	2.25	0.82	0.2842	1.59	3505	79	3430	94	3386	54	103	3386	54
075-Z61	0.0003	84.9	53.7	73.7	0.73	29.39	2.65	0.7381	1.68	0.63	0.2888	2.06	3564	60	3467	92	3411	70	104	3411	70
076-Z62	0.0012	29.2	60.3	32.1	1.89	26.03	3.53	0.6835	2.25	0.64	0.2762	2.72	3358	75	3348	118	3342	91	100	3342	91
078-Z64	0.0003	67.6	29.5	59.1	0.50	32.75	2.10	0.7567	1.39	0.66	0.3140	1.58	3632	50	3573	75	3541	56	103	3541	56
079-Z65	0.0006	39.0	58.0	37.7	1.55	24.55	2.63	0.6424	1.70	0.65	0.2772	2.01	3199	54	3291	87	3347	67	96	3347	67
080-Z66	0.0007	39.5	47.9	28.0	1.72	31.59	2.60	0.7444	2.08	0.80	0.3079	1.57	3587	75	3538	92	3510	55	102	3510	55
083-Z67	0.0009	33.1	32.9	24.8	1.34	29.03	2.71	0.7252	1.87	0.69	0.2904	1.97	3515	66	3455	94	3420	67	103	3420	67
084-Z68	0.0004	83.7	61.0	82.6	0.74	24.52	3.53	0.6532	2.88	0.82	0.2723	2.03	3241	93	3290	116	3319	68	98	3319	68
085-Z70N	0.0007	100.8	147.5	102.2	1.45	27.08	2.36	0.7061	1.80	0.76	0.2782	1.53	3444	62	3386	80	3353	51	103	3353	51
087-Z71	0.0007	35.4	25.8	34.3	0.76	24.68	3.21	0.6464	2.63	0.82	0.2770	1.85	3214	84	3296	106	3346	62	96	3346	62
088-Z72	0.0006	62.0	77.7	46.2	1.70	26.84	2.37	0.7017	1.89	0.79	0.2775	1.44	3427	65	3378	80	3349	48	102	3349	48
089-Z74	0.0004	63.1	12.4	55.4	0.23	30.84	2.30	0.7520	1.89	0.82	0.2975	1.30	3615	68	3514	81	3457	45	105	3457	45
090-Z75	0.0014	15.3	13.7	12.1	1.14	27.17	3.64	0.6940	2.66	0.73	0.2840	2.48	3398	90	3390	123	3385	84	100	3385	84
095-Z78	0.0006	54.1	27.0	42.9	0.63	28.06	2.32	0.7155	1.46	0.63	0.2845	1.81	3479	51	3421	79	3388	61	103	3388	61
096-Z79	0.0008	38.3	14.9	29.6	0.51	31.04	2.72	0.7343	1.92	0.71	0.3066	1.93	3549	68	3521	96	3504	68	101	3504	68
098-Z84	0.0008	47.4	63.5	38.0	1.68	26.35	3.51	0.6766	2.71	0.77	0.2825	2.23	3331	90	3360	118	3377	75	99	3377	75
099-Z85	0.0010	44.2	55.3	29.5	1.89	28.05	2.00	0.7198	1.23	0.61	0.2826	1.58	3495	43	3421	68	3378	53	103	3378	53

																	4	Apêndi	ces		
100-Z86N	0.0010	34.4	20.5	25.4	0.81	30.52	2.48	0.7269	1.92	0.77	0.3045	1.57	3522	68	3504	87	3493	55	101	3493	55
104-Z87	0.0040	14.2	18.3	12.3	1.50	22.23	3.44	0.5958	2.78	0.81	0.2707	2.02	3013	84	3194	110	3310	67	91	3310	67
105-Z89	0.0014	27.8	24.9	20.8	1.21	24.27	3.18	0.6387	2.34	0.74	0.2757	2.15	3184	75	3280	104	3339	72	95	3339	72
106-Z90	0.0003	68.2	73.9	43.5	1.71	28.53	2.14	0.7342	1.51	0.70	0.2818	1.52	3549	54	3438	74	3373	51	105	3373	51
108-Z92	0.0003	81.1	84.3	54.6	1.56	27.87	1.99	0.7185	1.55	0.78	0.2814	1.25	3490	54	3415	68	3370	42	104	3370	42
113-Z95B	0.0006	57.5	71.4	47.8	1.50	24.42	4.08	0.6459	3.41	0.84	0.2743	2.23	3212	110	3285	134	3331	74	96	3331	74
114-Z95N	0.0005	57.8	41.4	39.1	1.07	26.73	2.37	0.7006	1.88	0.79	0.2768	1.45	3423	64	3374	80	3345	48	102	3345	48
116-Z97	0.0005	63.4	45.9	52.6	0.88	24.85	3.42	0.6566	2.92	0.85	0.2746	1.77	3254	95	3303	113	3332	59	98	3332	59
117-Z98	0.0015	32.5	103.1	35.5	2.92	29.62	2.68	0.6843	1.97	0.73	0.3140	1.82	3361	66	3475	93	3541	64	95	3541	64
118-Z100	0.0014	17.4	9.0	13.0	0.69	30.27	2.77	0.7247	1.98	0.72	0.3031	1.93	3513	70	3496	97	3486	67	101	3486	67
119-Z101	0.0024	97.6	640.9	211.2	3.06	22.55	6.58	0.5914	5.38	0.82	0.2766	3.79	2995	161	3208	211	3344	127	90	3344	12
120-Z102	0.0008	92.3	95.3	91.4	1.05	22.33	2.47	0.6212	1.90	0.77	0.2608	1.58	3115	59	3198	79	3251	52	96	3251	52

Tabela 9. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra JBA-02 "Xisto-Guia", da Fm. Serra do Córrego, Bacia de Jacobina.

								Isoto	ope ratios	5						Age	es (Ma)				
Spot number	f(206) %	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ abs	²⁰⁷ Pb/ ²³⁵ U	lσ abs	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ abs	% Conc	Bes estima age (l	st ated Ma)
027-A1	0.0012	163	119	142	0.84	22.80	1.89	0.6168	1.33	0.70	0.2682	1.34	3097	41	3219	61	3296	44	94	3296	44
028-A2	0.0008	65	61	64	0.96	24.15	3.83	0.6323	3.44	0.90	0.2771	1.69	3159	109	3275	125	3347	57	94	3347	57
029-A3B	0.0042	27	16	21	0.76	28.34	2.24	0.7329	1.65	0.73	0.2805	1.52	3544	58	3431	77	3366	51	105	3366	51
033-A1B	0.0021	46	50	38	1.34	22.74	1.85	0.6033	1.48	0.80	0.2734	1.11	3043	45	3216	60	3326	37	92	3326	37
034-A1C	0.0010	30	47	49	0.96	26.76	2.30	0.6652	1.21	0.53	0.2918	1.96	3287	40	3375	78	3427	67	96	3427	67
035-A1D	0.0007	78	63	94	0.67	31.65	3.49	0.7352	3.16	0.90	0.3122	1.49	3553	112	3539	124	3532	53	101	3532	53
038-A6B	0.0018	55	56	76	0.74	26.50	3.36	0.6685	2.46	0.73	0.2876	2.30	3300	81	3365	113	3405	78	97	3405	78
039-A6C	0.0007	51	57	37	1.54	23.48	2.07	0.6093	1.85	0.89	0.2796	0.93	3067	57	3247	67	3360	31	91	3360	31
040-A6D	0.0008	52	94	81	1.17	23.97	2.61	0.6268	1.99	0.76	0.2774	1.70	3137	62	3267	85	3348	57	94	3348	57
041-A6Db	0.0003	57	24	42	0.57	27.00	2.42	0.6656	2.11	0.87	0.2942	1.19	3289	70	3383	82	3440	41	96	3440	41
042-A6C	0.0011	99	871	293	2.99	23.21	2.70	0.6129	2.59	0.96	0.2747	0.76	3081	80	3236	87	3333	25	92	3333	25
043-A5D	0.0004	70	44	76	0.58	24.02	1.91	0.6259	1.54	0.81	0.2784	1.13	3133	48	3269	62	3354	38	93	3354	38
044-A7	0.0003	61	33	51	0.65	26.22	2.59	0.6570	2.33	0.90	0.2894	1.12	3255	76	3355	87	3415	38	95	3415	38

045-A8	0.0004	75	36	73	0.50	27.25	4.44	0.6750	3.95	0.89	0.2929	2.04	3325	131	3393	151	3433	70	97	3433	70
053-A9B	0.0005	65	104	92	1.15	24.87	2.43	0.6401	1.82	0.75	0.2818	1.61	3189	58	3303	80	3373	54	95	3373	54
060-10E	0.0049	44	42	36	1.18	25.78	2.26	0.6779	1.74	0.77	0.2758	1.44	3336	58	3338	75	3340	48	100	3340	48
067-A18C	0.0008	66	27	123	0.22	23.25	2.84	0.6327	1.67	0.59	0.2666	2.29	3160	53	3238	92	3286	75	96	3286	75
068-A18D	0.0169	53	103	96	1.07	27.54	2.46	0.6904	2.10	0.85	0.2894	1.28	3384	71	3403	84	3414	44	99	3414	44
069-A17D	0.0012	47	42	43	0.98	26.10	3.73	0.6491	3.24	0.87	0.2916	1.85	3225	105	3350	125	3426	63	94	3426	63

Tabela 10. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra MVT-01(LU Reef), Fm. Serra do Córrego, Gr. Jacobina.

								Isoto	ope ratios							Age	s (Ma)				
Spot number	f(206) %	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ abs	²⁰⁷ Pb/ ²³⁵ U	lσ abs	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ abs	% Conc	Be estim age (st ated Ma)
003-Z1	0.0003	69	65	43	1.51	27.07	2.91	0.7051	1.78	1.78	0.2785	2.30	3440	61	3386	99	3354	77	103	3354	77
004-Z2	0.0005	37	30	25	1.22	27.38	4.16	0.7022	2.27	2.27	0.2828	3.49	3429	78	3397	141	3378	11	102	3378	118
005-Z3	0.0003	59	27	40	0.67	29.36	2.42	0.7285	1.46	1.46	0.2924	1.94	3528	51	3466	84	3430	66	103	3430	66
006-Z4N	0.0005	45	32	29	1.14	28.94	2.85	0.7144	2.31	2.31	0.2938	1.66	3475	80	3452	98	3438	57	101	3438	57
007-Z4B	0.0027	43	356	108	3.34	33.71	16.81	0.8305	16.70	16.7	0.2944	1.98	3897	651	3602	606	3441	68	113	3441	68
008-Z5	0.0006	19	7	14	0.50	27.81	3.78	0.7020	2.89	2.89	0.2874	2.43	3428	99	3413	129	3404	83	101	3404	83
009-Z6	0.0005	49	17	34	0.49	30.33	2.70	0.7514	2.12	2.12	0.2928	1.67	3613	77	3498	94	3433	57	105	3433	57
010-Z7	0.0010	25	7	18	0.37	29.37	3.73	0.7223	3.23	3.23	0.2950	1.88	3505	113	3466	129	3444	65	102	3444	65
013-Z8	0.0007	44	30	28	1.08	28.20	3.13	0.6970	2.60	2.60	0.2935	1.74	3409	89	3426	107	3436	60	99	3436	60
014-Z9	0.0009	59	34	38	0.89	30.69	2.44	0.7362	1.72	1.72	0.3024	1.73	3557	61	3509	86	3482	60	102	3482	60
015-Z10	0.0012	30	14	20	0.72	28.63	3.97	0.7055	3.23	3.23	0.2944	2.31	3442	111	3441	137	3441	79	100	3441	79
016-Z11	0.0006	37	15	26	0.59	29.74	3.56	0.7302	2.79	2.79	0.2954	2.22	3534	98	3478	124	3446	77	103	3446	77
017-Z13	0.0014	22	10	14	0.76	27.80	5.21	0.6961	4.52	4.52	0.2897	2.60	3406	154	3412	178	3416	89	100	3416	89
018-Z14	0.0015	29	9	20	0.46	29.16	4.02	0.7221	3.30	3.30	0.2929	2.29	3504	116	3459	139	3433	79	102	3433	79
019-Z15	0.0006	31	13	21	0.60	28.96	3.85	0.7126	2.94	2.94	0.2948	2.48	3468	102	3452	133	3443	85	101	3443	85
020-Z16	0.0011	60	148	56	2.65	24.75	5.77	0.6173	5.23	5.23	0.2909	2.45	3099	162	3299	190	3422	84	91	3422	84
023-Z17N	0.0008	39	19	31	0.61	25.09	3.77	0.6597	3.21	3.21	0.2758	1.98	3266	105	3312	125	3340	66	98	3340	66
024-Z17B	0.0042	20	412	82	5.08	24.56	11.56	0.6634	11.08	11.0	0.2685	3.30	3280	364	3291	381	3297	10	99	3297	109
025-Z18	0.0007	54	28	37	0.77	30.77	3.17	0.7439	2.39	2.39	0.3001	2.07	3585	86	3512	111	3471	72	103	3471	72

026-Z19	0.0012	24	11	18	0.58	25.88	6.13	0.6644	4.86	4.86	0.2825	3.74	3284	160	3342	205	3377	12	97	3377	126
027-Z20N	0.0012	27	17	17	1.01	28.49	5.42	0.7100	4.41	4.41	0.2910	3.14	3459	153	3436	186	3423	10	101	3423	108
028-Z20B	0.0022	21	30	17	1.77	26.02	7.65	0.6486	5.97	5.97	0.2910	4.77	3223	193	3347	256	3423	16	94	3423	163
029-Z21	0.0024	21	16	16	1.03	25.32	6.61	0.6568	5.04	5.04	0.2796	4.27	3255	164	3321	219	3361	14	97	3361	144
030-Z22	0.0014	42	191	60	3.20	32.28	8.01	0.8250	7.26	7.26	0.2838	3.39	3878	281	3559	285	3384	11	115	3384	115
033-Z23N	0.0014	28	14	20	0.71	28.77	4.60	0.7076	3.54	3.54	0.2950	2.93	3449	122	3446	158	3444	10	100	3444	101
035-Z24	0.0010	39	18	28	0.66	29.07	4.04	0.7160	2.74	2.74	0.2945	2.97	3481	95	3456	140	3442	10	101	3442	102
036-Z25	0.0017	19	9	13	0.69	28.23	5.48	0.6983	4.29	4.29	0.2932	3.42	3414	146	3427	188	3435	11	99	3435	117
037-Z26	0.0014	38	18	31	0.59	25.68	4.66	0.6495	3.77	3.77	0.2868	2.75	3226	121	3335	155	3401	93	95	3401	93
038-Z27	0.0014	28	11	19	0.59	30.28	4.25	0.7447	3.51	3.51	0.2949	2.40	3588	126	3496	149	3444	83	104	3444	83
039-Z28	0.0007	53	22	37	0.60	28.67	3.18	0.7291	2.58	2.58	0.2853	1.86	3530	91	3442	109	3392	63	104	3392	63
040-Z29	0.0008	39	11	29	0.38	29.34	3.70	0.7193	2.90	2.90	0.2959	2.29	3493	101	3465	128	3449	79	101	3449	79
043-Z30	0.0008	45	21	30	0.69	30.56	2.83	0.7300	2.23	2.23	0.3036	1.75	3534	79	3505	99	3489	61	101	3489	61
044-Z31	0.0010	70	54	62	0.88	25.03	4.54	0.6358	4.22	4.22	0.2855	1.67	3173	134	3309	150	3393	57	93	3393	57
045-Z32	0.0007	59	30	44	0.69	26.75	3.11	0.7031	2.76	2.76	0.2760	1.44	3432	95	3375	105	3340	48	103	3340	48
046-Z33	0.0008	32	14	22	0.66	33.17	4.64	0.7481	3.86	3.86	0.3216	2.58	3600	139	3586	167	3578	92	101	3578	92
047-Z34N	0.0016	74	78	49	1.60	28.67	5.58	0.7069	5.37	5.37	0.2943	1.51	3447	185	3443	192	3440	52	100	3440	52
048-Z34B	0.0012	38	60	30	2.01	30.92	5.99	0.7558	5.59	5.59	0.2968	2.16	3629	203	3517	211	3453	75	105	3453	75
049-Z35N	0.0009	47	88	37	2.42	27.39	5.54	0.6729	5.33	5.33	0.2953	1.51	3317	177	3398	188	3446	52	96	3446	52
053-Z37	0.0003	79	66	55	1.21	28.90	2.45	0.7271	1.96	1.96	0.2883	1.47	3523	69	3450	84	3409	50	103	3409	50
055-Z38B	0.0014	24	49	31	1.59	25.98	12.66	0.6739	12.23	12.2	0.2797	3.25	3321	406	3346	424	3361	10	99	3361	109
056-Z39	0.0006	35	9	29	0.30	28.03	3.89	0.7294	3.29	3.29	0.2788	2.08	3531	116	3420	133	3356	70	105	3356	70
057-Z40	0.0012	24	18	16	1.14	28.72	5.13	0.7183	4.08	4.08	0.2901	3.11	3490	142	3444	177	3418	10	102	3418	106
058-Z41N	0.0004	62	30	51	0.60	28.79	2.60	0.7111	2.02	2.02	0.2937	1.64	3463	70	3446	90	3437	56	101	3437	56
063-Z43	0.0007	60	26	46	0.57	28.95	2.62	0.7218	1.88	1.88	0.2909	1.82	3503	66	3452	90	3423	62	102	3423	62
064-Z44	0.0127	107	64	101	0.64	23.72	7.31	0.6135	7.09	7.09	0.2805	1.79	3084	219	3257	238	3366	60	92	3366	60
065-Z45	0.0011	23	8	16	0.51	33.77	3.85	0.7806	3.13	3.13	0.3138	2.24	3719	117	3603	139	3540	79	105	3540	79
066-Z46	0.0006	49	38	32	1.18	28.41	3.04	0.7230	2.49	2.49	0.2850	1.75	3507	87	3433	105	3391	59	103	3391	59
068-Z48	0.0008	48	30	34	0.90	29.23	3.06	0.7171	2.44	2.44	0.2956	1.84	3485	85	3461	106	3448	63	101	3448	63
069-Z49	0.0013	27	28	27	1.05	27.62	3.55	0.6823	2.82	2.82	0.2936	2.15	3353	95	3406	121	3437	74	98	3437	74
070-Z50N	0.0013	30	141	47	3.04	28.91	7.64	0.7178	7.00	7.00	0.2921	3.07	3488	244	3451	264	3429	10	102	3429	105
075-Z52	0.0007	40	19	28	0.69	29.10	3.37	0.7107	2.48	2.48	0.2970	2.27	3461	86	3457	116	3455	78	100	3455	78
076-Z53	0.0003	98	19	75	0.26	29.47	2.30	0.7376	1.76	1.76	0.2898	1.48	3562	63	3469	80	3416	51	104	3416	51

077-Z54	0.0010	75	41	46	0.90	32.24	2.59	0.7691	2.02	2.02	0.3040	1.62	3677	74	3558	92	3491	57	105	3491	57
078-Z55N	0.0005	31	13	21	0.63	29.26	4.10	0.7197	3.12	3.12	0.2949	2.66	3495	109	3463	142	3444	92	101	3444	92
080-Z56	0.0003	48	28	36	0.78	27.65	3.95	0.6822	3.18	3.18	0.2940	2.34	3353	107	3407	134	3439	81	97	3439	81

Tabela 11. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra MVT-04 (MSPC Reef), Fm. Serra do Córrego, Bacia de Jacobina.

								Isoto	pe ratios							Age	s (Ma)				
Spot number	f(206) %	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ abs	²⁰⁷ Pb/ ²³⁵ U	lσ abs	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ abs	% Conc	Bes estim age (st ated Ma)
003-Z01	0.0014	24	12	21	0.60	27.24	6.33	0.67122	6.01	0.95	0.29443	2.00	3311	199	3392	215	3441	69	96	3441	69
004-Z02	0.0005	66	48	51	0.94	27.03	2.32	0.67605	2.10	0.91	0.29007	0.97	3329	70	3385	78	3418	33	97	3418	33
005-Z03	0.0004	59	16	47	0.34	30.35	3.05	0.70046	2.93	0.96	0.31429	0.88	3422	100	3498	107	3542	31	97	3542	31
007-Z05	0.0003	58	40	48	0.84	26.56	4.58	0.65342	4.39	0.96	0.29485	1.29	3242	142	3368	154	3443	44	94	3443	44
008-Z06	0.0004	42	21	36	0.59	27.69	3.84	0.69919	3.54	0.92	0.28725	1.48	3418	121	3408	131	3403	51	100	3403	51
009-Z07	0.0008	45	28	36	0.77	27.47	2.92	0.68353	2.74	0.94	0.29150	1.03	3358	92	3400	99	3426	35	98	3426	35
010-Z08	0.0004	32	12	28	0.44	27.20	5.09	0.65599	4.93	0.97	0.30075	1.28	3252	160	3391	173	3474	44	94	3474	44
011-Z09	0.0013	21	13	27	0.47	27.48	3.72	0.64434	3.15	0.85	0.30932	1.98	3206	101	3401	127	3518	70	91	3518	70
015-Z11	0.0011	36	18	32	0.55	28.93	3.15	0.65143	2.84	0.90	0.32215	1.38	3234	92	3451	109	3580	49	90	3580	49
016-Z12	0.0010	41	53	43	1.24	26.79	2.87	0.64345	2.14	0.74	0.30203	1.92	3203	68	3376	97	3481	67	92	3481	67
017-Z13	0.0006	35	134	62	2.17	25.43	3.65	0.62374	3.33	0.91	0.29573	1.47	3125	104	3325	121	3448	51	91	3448	51
018-Z14	0.0006	62	56	50	1.12	24.44	3.50	0.62515	3.29	0.94	0.28366	1.17	3130	103	3287	115	3383	40	93	3383	40
019-Z15	0.0006	50	26	41	0.65	31.45	4.63	0.71378	4.51	0.98	0.31960	1.02	3473	157	3533	163	3568	36	97	3568	36
021-Z17	0.0010	43	77	63	1.23	26.87	2.00	0.63256	1.62	0.81	0.30819	1.18	3160	51	3379	68	3512	41	90	3512	41
022-Z18	0.0010	26	14	23	0.64	25.33	8.07	0.62238	7.89	0.98	0.29526	1.70	3119	246	3321	268	3446	59	91	3446	59
023-Z19	0.0009	29	19	25	0.78	26.06	4.43	0.63935	4.13	0.93	0.29565	1.60	3186	132	3349	148	3448	55	92	3448	55
024-Z20	0.0010	22	15	21	0.72	26.61	3.85	0.67074	3.33	0.86	0.28778	1.94	3309	110	3369	130	3406	66	97	3406	66
027-Z21	0.0008	55	41	48	0.86	28.04	4.08	0.68404	3.94	0.97	0.29740	1.07	3360	132	3421	140	3457	37	97	3457	37
028-Z22	0.0009	52	36	45	0.80	26.42	4.59	0.64686	4.42	0.96	0.29631	1.24	3216	142	3362	154	3451	43	93	3451	43
029-Z23	0.0014	28	12	27	0.46	25.50	5.84	0.63046	5.58	0.95	0.29340	1.74	3151	176	3328	194	3436	60	92	3436	60
030-Z24	0.0019	22	13	20	0.66	26.49	5.78	0.65717	5.39	0.93	0.29244	2.09	3256	176	3365	195	3431	72	95	3431	72
032-Z26	0.0013	36	36	31	1.17	26.59	5.09	0.65648	4.82	0.95	0.29380	1.62	3253	157	3369	171	3438	56	95	3438	56

033-Z27	0.0014	24	17	22	0.78	25.61	5.39	0.63531	4.90	0.91	0.29239	2.23	3171	155	3332	179	3430	77	92	3430	77
034-Z28	0.0009	39	39	38	1.02	23.75	4.87	0.61147	4.50	0.92	0.28173	1.86	3076	138	3258	159	3373	63	91	3373	63
035-Z29	0.0008	44	58	61	0.96	26.01	3.35	0.63481	3.08	0.92	0.29726	1.31	3169	98	3347	112	3456	45	92	3456	45
036-Z30	0.0007	40	28	36	0.79	25.50	2.77	0.62868	2.24	0.81	0.29427	1.63	3144	71	3328	92	3440	56	91	3440	56
039-Z31	0.0006	65	32	58	0.57	29.35	3.79	0.69691	3.46	0.91	0.30551	1.55	3409	118	3466	131	3498	54	97	3498	54
040-Z32	0.0012	41	76	50	1.55	25.35	4.59	0.63442	4.36	0.95	0.28988	1.42	3167	138	3322	152	3417	48	93	3417	48
041-Z33	0.0013	29	26	21	1.21	26.70	4.19	0.67759	3.84	0.92	0.28582	1.69	3335	128	3373	141	3395	57	98	3395	57
042-Z34	0.0010	23	13	17	0.74	25.46	5.56	0.62169	4.98	0.90	0.29710	2.47	3117	155	3326	185	3455	85	90	3455	85
043-Z35	0.0036	55	35	39	0.89	27.50	4.23	0.68423	3.57	0.84	0.29158	2.27	3361	120	3402	144	3426	78	98	3426	78
045-Z37	0.0043	6	4	5	0.71	31.48	9.99	0.71412	7.21	0.72	0.31979	6.91	3474	251	3534	353	3569	247	97	3569	247
046-Z38	0.0046	5	4	4	0.90	28.60	17.43	0.70345	15.92	0.91	0.29490	7.09	3434	547	3440	599	3444	244	100	3444	244
048-Z40	0.0007	24	10	25	0.40	26.50	3.50	0.65945	2.68	0.77	0.29154	2.24	3265	87	3365	118	3426	77	95	3426	77

Tabela 12. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra MVT-05 (Holandês Reef), Fm. Serra do Córrego, Gr. Jacobina.

								Isoto	pe ratios							Age	es (Ma)				
Spot number	f(206) %	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ abs	²⁰⁷ Pb/ ²³⁵ U	lσ abs	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ abs	% Conc	Be estim age (st ated Ma)
003-Z1	0.0003	69	20	55	0.37	28.41	2.20	0.7008	1.61	0.73	0.2941	1.50	3424	55	3434	75	3439	52	100	3439	52
004-Z2	0.0005	68	31	53	0.60	27.70	1.91	0.6920	1.30	0.68	0.2903	1.40	3390	44	3409	65	3419	48	99	3419	48
005-Z3	0.0009	29	10	23	0.42	27.54	3.85	0.6744	2.88	0.75	0.2962	2.55	3323	96	3403	131	3451	88	96	3451	88
006-Z4	0.0022	30	15	23	0.63	27.48	3.94	0.6776	3.26	0.83	0.2942	2.22	3335	109	3401	134	3440	76	97	3440	76
007-Z5N	0.0015	17	7	14	0.49	27.31	6.20	0.6658	4.70	0.76	0.2976	4.03	3290	155	3395	210	3458	140	95	3458	140
009-Z6	0.0010	41	17	34	0.52	25.74	2.51	0.6739	1.79	0.71	0.2771	1.75	3321	60	3337	84	3347	59	99	3347	59
010-Z7	0.0010	25	9	19	0.48	31.69	4.36	0.7073	3.31	0.76	0.3250	2.84	3448	114	3541	154	3594	102	96	3594	102
013-Z8	0.0007	34	20	28	0.73	28.04	3.39	0.6835	2.72	0.80	0.2976	2.02	3358	91	3421	116	3458	70	97	3458	70
014-Z9	0.0012	31	12	28	0.44	26.83	3.14	0.6664	2.52	0.80	0.2920	1.87	3292	83	3377	106	3428	64	96	3428	64
015-Z10	0.0003	71	69	54	1.30	28.01	2.30	0.6875	1.78	0.77	0.2955	1.46	3373	60	3420	79	3447	50	98	3447	50
016-Z11	0.0005	41	16	34	0.48	28.60	3.06	0.6890	2.40	0.79	0.3011	1.89	3379	81	3440	105	3476	66	97	3476	66
017-Z12	0.0022	40	31	32	0.97	26.98	3.59	0.6652	2.69	0.75	0.2942	2.37	3287	88	3383	121	3440	82	96	3440	82
018-Z14	0.0010	30	11	25	0.45	27.94	4.32	0.6855	3.26	0.75	0.2957	2.83	3366	110	3417	148	3448	98	98	3448	98

																		Apên	dices	<u>-</u>	
019-Z15N	0.0012	42	29	34	0.86	28.92	2.90	0.6911	2.33	0.80	0.3035	1.73	3387	79	3451	100	3488	60	97	3488	60
023-Z16	0.0014	39	24	28	0.88	27.55	3.05	0.6786	2.45	0.80	0.2945	1.82	3339	82	3403	104	3441	63	97	3441	63
024-Z17	0.0010	60	13	56	0.24	26.92	7.17	0.6664	7.01	0.98	0.2930	1.50	3292	231	3381	242	3434	51	96	3434	51
025-Z18	0.0016	67	61	51	1.19	25.18	2.09	0.6286	1.61	0.77	0.2905	1.33	3144	51	3315	69	3420	46	92	3420	46
026-Z19	0.0016	24	12	18	0.70	27.46	5.36	0.6670	4.06	0.76	0.2986	3.50	3294	134	3400	182	3463	121	95	3463	121
027-Z20N	0.0020	27	10	20	0.53	31.95	3.51	0.7221	2.30	0.66	0.3210	2.65	3504	81	3549	125	3575	95	98	3575	95
028-Z20B	0.0013	40	52	37	1.41	29.87	13.36	0.6905	13.16	0.99	0.3138	2.29	3385	445	3483	465	3540	81	96	3540	81
029-Z21	0.0014	36	24	26	0.93	27.94	3.76	0.6859	3.20	0.85	0.2955	1.97	3367	108	3417	128	3447	68	98	3447	68
030-Z22	0.0018	42	31	31	1.00	27.12	3.80	0.6658	3.03	0.80	0.2954	2.28	3289	100	3388	129	3447	79	95	3447	79

Tabela 13. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra SCO-Topo, topo da Fm. Serra do Córrego, Bacia de Jacobina.

								Isoto	pe ratio	S						Age	es (Ma)				
Spot number	f(206) %	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁶ Pb/ ²³⁸ U	1σ abs	²⁰⁷ Pb/ ²³⁵ U	1 σ abs	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ abs	% Conc	Be estim age (st ated Ma)	
005-Z2	0.0074	165	93	144	0.65	25.34	1.68	0.6766	0.93	0.55	0.2716	1.40	3331	31	3321	56	3316	46	100	3316	46
007-Z3N	0.0004	74	67	56	1.21	28.27	1.76	0.7044	1.29	0.73	0.2911	1.19	3437	44	3429	60	3423	41	100	3423	41
008-Z4	0.0006	35	25	27	0.93	28.33	1.54	0.6977	1.11	0.72	0.2946	1.06	3412	38	3431	53	3442	37	99	3442	37
009-Z5	0.0008	82	107	85	1.27	24.26	4.16	0.6215	3.34	0.80	0.2831	2.48	3116	104	3279	136	3380	84	92	3380	84
010-Z6	0.0014	21	12	17	0.72	27.57	2.80	0.6840	2.10	0.75	0.2924	1.85	3360	70	3404	95	3430	63	98	3430	63
013-Z7N	0.0011	26	12	20	0.60	25.98	3.82	0.6597	3.16	0.83	0.2857	2.14	3266	103	3346	128	3394	73	96	3394	73
014-Z7B	0.0004	87	51	67	0.77	26.19	3.01	0.6744	2.35	0.78	0.2817	1.89	3323	78	3354	101	3372	64	99	3372	64
015-Z8B	0.0008	74	86	72	1.20	24.57	2.84	0.6113	2.71	0.95	0.2915	0.87	3075	83	3291	94	3426	30	90	3426	30
016-Z8N	0.0011	24	15	16	0.94	29.20	2.93	0.7128	2.34	0.80	0.2972	1.76	3469	81	3461	101	3456	61	100	3456	61
018-Z10	0.0006	42	30	29	1.06	27.64	1.75	0.6806	1.32	0.76	0.2945	1.14	3347	44	3406	59	3442	39	97	3442	39
019-Z11	0.0006	48	39	32	1.24	27.61	2.81	0.7012	2.15	0.77	0.2856	1.81	3425	74	3406	96	3394	61	101	3394	61
020-Z12N	0.0007	56	56	40	1.39	26.70	5.16	0.6691	4.10	0.80	0.2895	3.13	3303	135	3373	174	3415	107	97	3415	107
010-Z6	0.0013	22	11	16	0.72	27.49	2.67	0.6864	1.94	0.73	0.2905	1.82	3369	65	3401	91	3420	62	99	3420	62
024-Z13N	0.0024	9	4	7	0.62	24.68	6.58	0.6484	5.81	0.88	0.2761	3.09	3222	187	3296	217	3341	103	96	3341	103
025-Z13B	0.0015	32	36	19	1.89	26.11	2.85	0.6887	2.15	0.75	0.2750	1.87	3378	73	3351	95	3335	62	101	3335	62
026-Z14	0.0014	15	4	10	0.39	29.84	3.92	0.7060	2.88	0.74	0.3066	2.65	3443	99	3482	136	3504	93	98	3504	93

029-Z17B	0.0007	44	18	32	0.57	27.60	2.00	0.6812	1.59	0.79	0.2939	1.22	3349	53	3405	68	3439	42	97	3439	42
030-Z17N	0.0005	61	35	41	0.87	28.49	2.00	0.7072	1.75	0.88	0.2922	0.95	3448	60	3436	69	3429	33	101	3429	33
033-Z18N	0.0003	110	36	84	0.43	32.97	1.58	0.7676	1.16	0.73	0.3116	1.08	3672	43	3580	57	3529	38	104	3529	38
036-Z19B	0.0006	66	15	58	0.27	27.60	4.41	0.6966	3.79	0.86	0.2875	2.25	3408	129	3405	150	3404	77	100	3404	77
037-Z20	0.0016	23	13	18	0.74	31.67	2.07	0.7376	1.70	0.82	0.3115	1.18	3562	61	3540	73	3528	42	101	3528	42
038-Z21	0.0013	26	16	21	0.78	27.03	2.15	0.6685	1.70	0.79	0.2933	1.31	3300	56	3385	73	3435	45	96	3435	45
039-Z22N	0.0020	32	26	24	1.12	27.99	1.81	0.6969	1.23	0.68	0.2913	1.34	3409	42	3419	62	3425	46	100	3425	46
040-Z22B	0.0013	25	14	19	0.75	28.03	2.67	0.6959	2.02	0.76	0.2922	1.75	3405	69	3420	91	3429	60	99	3429	60
043-Z23	0.0006	65	152	129	1.18	26.97	1.82	0.6895	1.09	0.60	0.2837	1.45	3381	37	3383	61	3384	49	100	3384	49
045-Z25N	0.0005	143	91	125	0.73	30.22	3.13	0.7492	1.07	0.34	0.2926	2.94	3605	39	3494	109	3431	101	105	3431	101
049-Z27N	0.0004	57	27	47	0.58	26.20	1.25	0.6804	0.69	0.55	0.2793	1.05	3346	23	3354	42	3359	35	100	3359	35
054-Z28B	0.0008	40	26	32	0.81	25.49	3.09	0.6323	2.77	0.90	0.2924	1.36	3159	88	3327	103	3430	47	92	3430	47
055-Z29	0.0004	73	49	54	0.91	26.98	1.59	0.7020	1.11	0.70	0.2788	1.13	3428	38	3383	54	3356	38	102	3356	38
056-Z30N	0.0004	68	54	63	0.86	26.24	3.39	0.6632	3.14	0.93	0.2870	1.28	3279	103	3356	114	3401	43	96	3401	43
059-Z33	0.0009	32	20	23	0.87	26.84	3.07	0.6794	2.30	0.75	0.2866	2.04	3342	77	3378	104	3399	69	98	3399	69
060-Z34	0.0017	14	11	11	1.03	23.86	3.98	0.6252	3.33	0.84	0.2768	2.19	3130	104	3263	130	3345	73	94	3345	73
063-Z35	0.0005	41	30	33	0.92	27.18	1.81	0.6851	1.30	0.72	0.2877	1.27	3364	44	3390	61	3405	43	99	3405	43
065-Z37	0.0008	39	26	32	0.82	27.65	2.24	0.6792	1.76	0.79	0.2953	1.38	3341	59	3407	76	3446	48	97	3446	48
068-Z40	0.0006	62	38	52	0.73	30.45	2.75	0.6705	2.04	0.74	0.3294	1.85	3308	68	3502	96	3614	67	92	3614	67
069-Z41N	0.0007	27	15	22	0.69	29.01	2.86	0.7063	2.31	0.81	0.2979	1.69	3444	80	3454	99	3459	58	100	3459	58
073-Z42	0.0007	22	8	16	0.47	28.60	2.73	0.7045	2.27	0.83	0.2945	1.52	3438	78	3440	94	3442	52	100	3442	52
074-Z43B	0.0006	50	28	40	0.71	26.63	1.90	0.6558	1.47	0.78	0.2945	1.20	3251	48	3370	64	3442	41	94	3442	41
075-Z43N	0.0007	45	32	31	1.04	28.68	2.02	0.7084	1.55	0.77	0.2937	1.30	3452	54	3443	70	3438	45	100	3438	45
078-Z45B	0.0006	37	20	29	0.70	26.98	2.64	0.6607	1.90	0.72	0.2963	1.84	3270	62	3383	89	3451	63	95	3451	63
079-Z45N	0.0007	37	16	27	0.61	29.00	1.99	0.7171	1.36	0.68	0.2933	1.45	3485	47	3454	69	3435	50	101	3435	50
080-Z46	0.0006	43	39	28	1.41	28.79	2.78	0.7258	1.98	0.71	0.2878	1.96	3518	70	3447	96	3406	67	103	3406	67
083-Z47	0.0004	35	19	25	0.77	29.17	2.17	0.7184	1.25	0.58	0.2945	1.77	3490	44	3459	75	3442	61	101	3442	61
086-Z50	0.0002	117	70	86	0.82	29.19	1.37	0.7271	0.72	0.53	0.2912	1.16	3523	26	3460	47	3424	40	103	3424	40
087-Z51	0.0007	41	32	28	1.16	29.16	1.57	0.7117	1.23	0.79	0.2972	0.97	3465	43	3459	54	3456	34	100	3456	34
088-Z52N	0.0005	91	70	94	0.75	26.06	2.68	0.6565	1.15	0.43	0.2880	2.43	3254	37	3349	90	3407	83	96	3407	83
090-Z53N	0.0007	66	32	52	0.61	30.06	3.76	0.7395	2.94	0.78	0.2948	2.34	3569	105	3489	131	3443	81	104	3443	81
096-Z55N	0.0015	28	18	22	0.83	28.55	3.46	0.6946	2.79	0.81	0.2981	2.05	3400	95	3438	119	3460	71	98	3460	71
098-Z56N	0.0008	38	19	29	0.67	31.09	2.62	0.7253	1.34	0.51	0.3109	2.26	3516	47	3522	92	3525	80	100	3525	80

099-Z56B	0.0005	98	155	90	1.73	27.12	2.51	0.6414	2.16	0.86	0.3067	1.28	3195	69	3388	85	3505	45	91	3505	45
104-Z58	0.0009	28	19	22	0.88	27.97	2.46	0.6814	1.99	0.81	0.2978	1.44	3350	67	3418	84	3459	50	97	3459	50
105-Z59N	0.0007	42	22	36	0.61	26.94	1.89	0.6675	1.29	0.68	0.2927	1.38	3296	43	3381	64	3432	47	96	3432	47
107-Z60	0.0007	48	38	35	1.09	28.71	4.08	0.7110	1.98	0.49	0.2929	3.57	3462	69	3444	141	3433	122	101	3433	122
108-Z61	0.0013	23	17	19	0.91	27.14	4.10	0.6873	2.88	0.70	0.2864	2.92	3372	97	3389	139	3398	99	99	3398	99
109-Z62	0.0008	37	15	34	0.43	25.75	3.39	0.6779	2.04	0.60	0.2755	2.71	3336	68	3337	113	3338	90	100	3338	90
110-Z63	0.0005	45	30	39	0.78	26.29	1.66	0.6863	1.20	0.72	0.2779	1.15	3368	40	3358	56	3351	39	101	3351	39
115-Z65	0.0009	43	23	35	0.66	27.72	3.79	0.6984	2.53	0.67	0.2879	2.83	3415	86	3409	129	3406	96	100	3406	96
116-Z66N	0.0009	33	14	27	0.52	28.91	3.38	0.6979	2.33	0.69	0.3005	2.44	3412	79	3451	116	3473	85	98	3473	85
118-Z67	0.0008	27	7	22	0.34	30.48	2.16	0.7170	1.54	0.71	0.3084	1.52	3485	54	3503	76	3513	53	99	3513	53
119-Z68	0.0004	67	44	53	0.85	27.29	1.18	0.6938	0.77	0.65	0.2853	0.89	3397	26	3394	40	3392	30	100	3392	30
123-Z70	0.0003	78	18	61	0.30	29.76	1.14	0.7262	0.80	0.70	0.2973	0.81	3519	28	3479	40	3456	28	102	3456	28
124-Z71N	0.0006	31	15	24	0.64	28.26	2.06	0.6909	1.52	0.74	0.2967	1.39	3386	51	3428	71	3453	48	98	3453	48
126-Z72	0.0002	77	14	66	0.22	27.32	1.00	0.6941	0.61	0.61	0.2855	0.79	3398	21	3395	34	3393	27	100	3393	27
127-Z73	0.0003	100	95	83	1.15	28.30	1.78	0.6803	1.08	0.61	0.3017	1.41	3346	36	3430	61	3479	49	96	3479	49
128-Z74	0.0002	62	24	50	0.49	28.18	2.77	0.7110	2.03	0.73	0.2875	1.88	3462	70	3426	95	3404	64	102	3404	64
136-Z77B	0.0007	47	24	39	0.62	23.07	2.47	0.6002	1.36	0.55	0.2788	2.07	3031	41	3230	80	3356	69	90	3356	69
138-Z79	0.0009	29	9	25	0.36	26.30	2.17	0.6498	1.74	0.80	0.2936	1.30	3227	56	3358	73	3437	45	94	3437	45
139-Z80B	0.0003	80	20	51	0.39	25.78	2.16	0.6879	0.98	0.45	0.2718	1.92	3375	33	3338	72	3317	64	102	3317	64
140-Z80N	0.0009	25	14	18	0.79	27.55	2.81	0.6927	2.16	0.77	0.2885	1.80	3393	73	3403	96	3410	61	100	3410	61
143-Z82	0.0013	33	22	23	0.96	30.77	3.05	0.7298	2.27	0.74	0.3058	2.04	3533	80	3512	107	3500	71	101	3500	71
144-Z83	0.0008	40	26	29	0.89	28.86	2.87	0.7202	1.54	0.54	0.2907	2.42	3497	54	3449	99	3421	83	102	3421	83
149-Z86	0.0007	51	41	36	1.13	28.14	1.98	0.7039	1.47	0.74	0.2900	1.33	3435	50	3424	68	3418	45	101	3418	45
150-Z87N	0.0003	75	45	63	0.72	26.56	1.70	0.6886	1.21	0.71	0.2798	1.20	3377	41	3368	57	3362	40	100	3362	40
154-Z88	0.0007	35	16	28	0.58	28.11	2.66	0.6493	1.39	0.52	0.3140	2.27	3226	45	3423	91	3541	80	91	3541	80
155-Z89	0.0003	78	27	62	0.44	28.80	3.30	0.7225	1.94	0.59	0.2891	2.67	3506	68	3447	114	3413	91	103	3413	91
157-Z91	0.0013	22	10	18	0.53	27.85	3.54	0.6846	2.61	0.74	0.2951	2.39	3362	88	3414	121	3445	82	98	3445	82
159-Z92N	0.0008	70	41	60	0.69	27.61	2.21	0.6895	1.80	0.82	0.2904	1.27	3381	61	3405	75	3420	44	99	3420	44
164-Z94B	0.0011	39	27	42	0.64	27.09	4.05	0.6369	3.44	0.85	0.3086	2.13	3177	109	3387	137	3514	75	90	3514	75
165-Z95	0.0003	134	74	95	0.79	32.81	2.40	0.7628	1.17	0.49	0.3120	2.09	3655	43	3575	86	3531	74	103	3531	74
166-Z96	0.0008	37	21	30	0.71	26.89	2.33	0.6641	1.65	0.71	0.2937	1.65	3283	54	3380	79	3437	57	96	3437	57
167-Z97N	0.0009	51	44	38	1.17	25.44	1.78	0.6756	1.33	0.75	0.2731	1.18	3327	44	3325	59	3324	39	100	3324	39
174-Z100	0.0017	19	12	15	0.80	28.30	3.46	0.6942	2.75	0.79	0.2957	2.10	3399	93	3430	119	3448	72	99	3448	72

177-Z102N	0.0006	28	13	23	0.57	27.98	3.44	0.6889	2.49	0.72	0.2947	2.37	3378	84	3419	117	3442	82	98	3442	82
179-Z103N	0.0004	69	48	52	0.94	28.68	2.88	0.7091	2.05	0.71	0.2934	2.02	3455	71	3443	99	3436	69	101	3436	69
180-Z103B	0.0005	85	44	78	0.56	26.49	2.80	0.6628	1.80	0.64	0.2899	2.14	3278	59	3365	94	3417	73	96	3417	73
188-Z105N	0.0005	90	45	72	0.63	24.89	2.84	0.6602	2.10	0.74	0.2735	1.91	3268	69	3304	94	3326	64	98	3326	64
189-Z106	0.0009	45	30	32	0.92	27.57	1.90	0.6779	1.51	0.79	0.2950	1.16	3336	50	3404	65	3444	40	97	3444	40
190-Z107	0.0014	31	14	26	0.54	25.50	2.43	0.6292	1.75	0.72	0.2940	1.68	3146	55	3328	81	3439	58	92	3439	58
191-Z108N	0.0004	93	50	67	0.75	30.17	1.17	0.7085	0.81	0.69	0.3089	0.85	3453	28	3493	41	3516	30	98	3516	30
196-Z109B	0.0004	87	40	77	0.53	25.40	1.34	0.6306	0.90	0.67	0.2921	0.99	3152	28	3324	44	3429	34	92	3429	34
207-Z115N	0.0017	34	22	27	0.80	27.95	2.29	0.6852	1.79	0.78	0.2958	1.42	3364	60	3417	78	3449	49	98	3449	49
208-Z116	0.0006	96	218	43	5.07	30.19	2.13	0.7042	1.70	0.80	0.3110	1.28	3437	58	3493	74	3526	45	97	3526	45
209-Z117	0.0010	43	23	37	0.63	25.92	2.03	0.6397	1.73	0.85	0.2940	1.06	3188	55	3344	68	3439	37	93	3439	37
212-Z119N	0.0016	30	19	24	0.81	26.67	3.05	0.6482	2.51	0.82	0.2985	1.73	3221	81	3372	103	3462	60	93	3462	60
217-Z120	0.0003	42	17	37	0.46	24.92	3.49	0.6224	2.49	0.71	0.2904	2.44	3120	78	3305	115	3420	83	91	3420	83
220-Z122N	0.0004	71	51	55	0.92	25.37	1.62	0.6368	1.22	0.76	0.2889	1.06	3177	39	3323	54	3412	36	93	3412	36
221-Z123N	0.0007	63	61	45	1.35	26.37	2.03	0.6703	1.59	0.78	0.2854	1.27	3307	53	3361	68	3393	43	97	3393	43
225-Z124N	0.0004	64	61	53	1.16	23.46	1.59	0.6008	1.07	0.67	0.2833	1.17	3033	32	3247	51	3381	40	90	3381	40
227-Z125	0.0007	60	45	48	0.93	26.17	2.85	0.6617	2.26	0.79	0.2869	1.74	3274	74	3353	96	3401	59	96	3401	59
228-Z126N	0.0006	75	59	63	0.94	27.09	3.99	0.6716	2.95	0.74	0.2926	2.69	3312	98	3387	135	3431	92	97	3431	92
237-Z131N	0.0004	100	54	96	0.57	23.04	2.72	0.6082	1.36	0.50	0.2748	2.35	3063	42	3229	88	3333	78	92	3333	78
242-Z135	0.0007	38	12	33	0.36	27.73	2.80	0.6773	2.42	0.86	0.2970	1.42	3334	81	3410	96	3455	49	97	3455	49
247-Z138	0.0018	16	11	14	0.85	24.65	3.35	0.6350	2.76	0.82	0.2816	1.90	3169	87	3295	110	3372	64	94	3372	64
248-Z139	0.0004	61	43	54	0.80	25.11	2.07	0.6178	1.04	0.50	0.2948	1.79	3101	32	3313	69	3443	62	90	3443	62
252-Z143B	0.0010	45	31	39	0.80	24.81	2.08	0.6160	1.31	0.63	0.2922	1.61	3094	41	3301	69	3429	55	90	3429	55
256-Z144	0.0009	42	7	32	0.23	30.01	2.44	0.6940	1.81	0.74	0.3137	1.64	3398	61	3487	85	3539	58	96	3539	58
257-Z146	0.0008	70	45	60	0.75	23.63	1.89	0.6054	1.45	0.76	0.2832	1.22	3051	44	3254	62	3381	41	90	3381	41
262-Z150B	0.0010	23	23	21	1.08	30.16	2.29	0.6998	1.15	0.50	0.3127	1.98	3420	39	3492	80	3534	70	97	3534	70
265-Z150N	0.0005	70	43	52	0.82	31.06	2.23	0.7244	1.71	0.77	0.3110	1.44	3513	60	3521	79	3526	51	100	3526	51
266-Z151	0.0008	45	23	35	0.66	26.77	3.08	0.6619	2.36	0.77	0.2934	1.97	3275	77	3375	104	3436	68	95	3436	68
267-Z152N	0.0009	44	25	43	0.60	23.08	2.21	0.6122	1.53	0.69	0.2735	1.60	3079	47	3231	71	3326	53	93	3326	53
269-Z153N	0.0018	27	20	23	0.90	28.91	1.84	0.7133	1.12	0.61	0.2940	1.45	3471	39	3451	63	3439	50	101	3439	50
275-Z157	0.0008	40	21	36	0.60	25.50	3.79	0.6324	3.06	0.81	0.2926	2.24	3159	97	3328	126	3431	77	92	3431	77

								Isoto	pe ratios							Age	es (Ma)				
Spot number	f(206) %	Pb ppm	Th ppm	U ppm	Th/U	²⁰⁷ Pb/ ²³⁵ U	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	1σ (%)	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ (%)	²⁰⁶ Pb/ ²³⁸ U	lσ abs	²⁰⁷ Pb/ ²³⁵ U	lσ abs	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ abs	% Conc	Be estim age (1	st ated Ma)
003-Z1N	0.0004	74	44	61	0.73	25.01	2.05	0.68	1.42	0.69	0.27	1	3354	48	3308	68	3281	49	102	3281	49
004-Z1B	0.0008	51	24	45	0.54	25.15	2.70	0.68	1.62	0.60	0.27	2	3348	54	3314	89	3293	71	102	3293	71
005-Z2	0.0006	52	26	42	0.63	28.37	2.91	0.71	1.78	0.61	0.29	2	3467	62	3432	100	3411	78	102	3411	78
006-Z3	0.0006	73	34	68	0.50	27.65	3.40	0.70	2.49	0.73	0.29	2	3409	85	3407	116	3406	79	100	3406	79
007-Z4	0.0013	32	14	30	0.48	23.66	3.23	0.62	2.77	0.86	0.28	2	3109	86	3254	105	3345	55	93	3345	55
008-Z5	0.0006	56	27	51	0.54	23.93	2.99	0.65	2.63	0.88	0.27	1	3240	85	3266	98	3282	46	99	3282	46
009-Z6N	0.0007	40	24	31	0.77	30.65	3.42	0.71	2.52	0.74	0.31	2	3477	88	3508	120	3526	81	99	3526	81
010-Z6B	0.0006	93	50	72	0.70	31.79	2.72	0.75	1.76	0.65	0.31	2	3622	64	3544	96	3500	72	103	3500	72
013-Z7	0.0004	97	54	80	0.68	25.50	2.43	0.70	1.39	0.57	0.27	2	3404	47	3327	81	3282	66	104	3282	66
014-Z8N	0.0005	67	31	58	0.54	25.26	2.78	0.68	2.15	0.77	0.27	2	3359	72	3318	92	3294	58	102	3294	58
015-Z8B	0.0004	85	58	85	0.68	21.91	2.23	0.61	2.03	0.91	0.26	1	3053	62	3180	71	3260	30	94	3260	30
016-Z9N	0.0005	83	23	72	0.32	27.16	2.62	0.70	1.79	0.68	0.28	2	3415	61	3389	89	3374	65	101	3374	65
017-Z9B	0.0015	29	10	25	0.39	26.16	3.31	0.66	2.49	0.75	0.29	2	3274	82	3353	111	3400	74	96	3400	74
018-Z10B	0.0006	71	39	61	0.64	24.75	2.40	0.67	1.46	0.61	0.27	2	3307	48	3298	79	3294	63	100	3294	63
019-Z10N	0.0004	90	53	75	0.70	25.32	2.74	0.69	1.61	0.59	0.27	2	3383	54	3321	91	3283	73	103	3283	73
020-Z11	0.0011	106	60	98	0.62	24.44	2.77	0.62	2.03	0.73	0.28	2	3124	63	3286	91	3387	64	92	3387	64
023-Z12	0.0009	31	30	26	1.19	28.13	3.38	0.71	2.59	0.77	0.29	2	3472	90	3424	116	3395	74	102	3395	74
024-Z13	0.0009	40	21	44	0.49	21.85	3.56	0.60	3.13	0.88	0.27	2	3020	95	3177	113	3278	55	92	3278	55
025-Z14N	0.0009	87	41	82	0.51	31.00	3.76	0.78	3.24	0.86	0.29	2	3713	120	3519	132	3411	65	109	3411	65
026-Z14B	0.0007	70	29	69	0.42	25.75	2.79	0.64	2.38	0.85	0.29	1	3183	76	3337	93	3431	50	93	3431	50
027-Z15N	0.0006	117	108	123	0.89	23.64	3.62	0.65	3.38	0.93	0.26	1	3228	109	3254	118	3269	42	99	3269	42
028-Z15B	0.0004	74	42	68	0.63	24.86	1.89	0.68	1.18	0.62	0.27	1	3326	39	3303	62	3289	49	101	3289	49
030-Z17	0.0013	79	59	79	0.75	23.03	2.50	0.63	1.83	0.73	0.26	2	3156	58	3228	81	3273	56	96	3273	56
033-Z18	0.0018	23	15	20	0.75	27.45	3.02	0.69	2.23	0.74	0.29	2	3383	75	3400	103	3410	69	99	3410	69
034-Z19	0.0007	72	59	63	0.94	26.82	1.77	0.70	0.96	0.54	0.28	1	3428	33	3377	60	3347	50	102	3347	50
035-Z20	0.0010	71	53	65	0.83	26.13	4.07	0.67	3.31	0.81	0.28	2	3310	109	3351	136	3376	80	98	3376	80

Tabela 14. Dados U-Pb in situ, via LA-MC-ICPMS, dos zircões detríticos da amostra SP-01, Fm. Serra da Paciência, intervalo marinho da Bacia de Jacobina.

036-Z21B	0.0008	46	22	42	0.53	29.68	3.14	0.72	2.34	0.75	0.30	2	3509	82	3476	109	3458	72	101	3458	72
038-Z22	0.0007	57	31	60	0.52	22.74	2.14	0.62	1.51	0.71	0.26	2	3127	47	3216	69	3272	49	96	3272	49
039-Z23N	0.0017	23	16	26	0.62	22.94	3.29	0.60	2.62	0.80	0.28	2	3021	79	3224	106	3353	67	90	3353	67
040-Z23B	0.0013	22	5	22	0.24	26.12	3.06	0.67	2.28	0.75	0.28	2	3318	76	3351	102	3371	69	98	3371	69
043-Z25	0.0006	49	26	40	0.66	24.94	2.33	0.67	1.57	0.67	0.27	2	3311	52	3306	77	3303	57	100	3303	57
044-Z27	0.0005	70	29	54	0.54	31.38	3.18	0.75	2.79	0.88	0.30	2	3607	101	3531	112	3488	53	103	3488	53
045-Z28	0.0003	97	56	76	0.74	25.15	2.57	0.68	1.83	0.71	0.27	2	3351	61	3314	85	3291	59	102	3291	59
046-Z29	0.0006	51	24	38	0.63	29.56	2.50	0.73	2.08	0.83	0.29	1	3527	73	3472	87	3441	48	102	3441	48
047-Z30	0.0012	24	13	19	0.70	25.52	4.23	0.68	3.60	0.85	0.27	2	3358	121	3328	141	3310	74	101	3310	74
048-Z31	0.0006	45	18	37	0.49	25.40	2.25	0.68	1.79	0.80	0.27	1	3350	60	3324	75	3308	45	101	3308	45
049-Z32	0.0008	45	21	37	0.56	24.94	2.50	0.67	1.53	0.61	0.27	2	3306	51	3306	83	3306	65	100	3306	65
050-Z34	0.0020	24	19	20	0.95	23.86	4.21	0.63	3.66	0.87	0.27	2	3166	116	3263	137	3323	69	95	3323	69
053-Z36N	0.0004	67	29	46	0.64	25.33	2.12	0.69	1.55	0.73	0.27	1	3365	52	3321	70	3295	48	102	3295	48
055-Z37	0.0002	145	59	107	0.55	22.82	4.00	0.64	3.50	0.88	0.26	2	3172	111	3219	129	3249	63	98	3249	63
056-Z38	0.0005	47	18	33	0.55	25.21	2.47	0.68	1.73	0.70	0.27	2	3356	58	3317	82	3293	58	102	3293	58
057-Z39	0.0003	90	50	60	0.84	26.27	2.62	0.71	1.90	0.72	0.27	2	3475	66	3357	88	3287	59	106	3287	59
059-Z40N	0.0018	59	49	39	1.27	25.12	5.00	0.64	4.57	0.91	0.29	2	3184	146	3313	166	3392	69	94	3392	69
060-Z41	0.0006	101	70	70	1.00	27.40	3.02	0.73	1.77	0.59	0.27	2	3516	62	3398	103	3329	81	106	3329	81
063-Z42	0.0003	98	39	70	0.57	27.39	2.04	0.71	1.44	0.70	0.28	1	3453	50	3397	69	3365	49	103	3365	49
064-Z43	0.0005	54	21	42	0.51	25.08	2.62	0.68	1.65	0.63	0.27	2	3345	55	3311	87	3291	67	102	3291	67
065-Z44N	0.0005	84	45	65	0.69	25.24	1.87	0.69	0.99	0.53	0.27	2	3380	34	3317	62	3280	52	103	3280	52
066-Z44B	0.0050	64	70	55	1.27	25.15	4.24	0.68	3.32	0.78	0.27	3	3339	111	3314	140	3299	87	101	3299	87
067-Z45	0.0005	63	33	49	0.67	23.60	2.14	0.64	1.46	0.68	0.27	2	3188	47	3252	69	3291	51	97	3291	51
068-Z46	0.0006	111	53	95	0.56	22.91	2.28	0.64	1.61	0.71	0.26	2	3180	51	3223	74	3250	52	98	3250	52
069-Z47N	0.0004	73	35	57	0.62	24.45	2.12	0.67	1.52	0.72	0.27	1	3289	50	3286	70	3285	49	100	3285	49
073-Z48	0.0009	116	88	100	0.88	25.67	3.22	0.67	2.69	0.84	0.28	2	3287	88	3334	107	3362	59	98	3362	59
074-Z49	0.0003	73	43	61	0.70	24.92	2.45	0.67	2.02	0.82	0.27	1	3315	67	3305	81	3300	46	100	3300	46
075-Z50	0.0004	60	33	47	0.71	25.48	2.62	0.69	1.66	0.63	0.27	2	3365	56	3327	87	3304	67	102	3304	67
076-Z51	0.0007	93	36	76	0.48	27.25	2.40	0.70	1.93	0.80	0.28	1	3421	66	3392	81	3375	48	101	3375	48
078-Z52B	0.0010	30	21	22	0.99	27.72	3.05	0.71	2.05	0.67	0.28	2	3445	71	3409	104	3389	76	102	3389	76
079-Z53	0.0039	60	68	67	1.02	25.56	18.71	0.63	18.11	0.97	0.29	5	3162	573	3330	623	3432	161	92	3432	161
083-Z55	0.0004	102	62	73	0.85	26.68	3.14	0.72	2.72	0.87	0.27	2	3504	95	3372	106	3294	52	106	3294	52
084-Z56N	0.0004	84	43	62	0.71	25.57	2.14	0.69	1.24	0.58	0.27	2	3379	42	3330	71	3301	58	102	3301	58

085-Z56B	0.0006	53	22	42	0.54	24.10	2.33	0.65	1.79	0.77	0.27	1	3220	58	3273	76	3305	49	97	3305	49
086-Z57N	0.0003	62	30	49	0.62	25.51	2.48	0.69	1.81	0.73	0.27	2	3387	61	3328	82	3293	56	103	3293	56
087-Z57B	0.0011	37	15	31	0.50	22.60	2.89	0.61	2.37	0.82	0.27	2	3077	73	3210	93	3294	54	93	3294	54
088-Z58	0.0007	76	40	62	0.65	26.22	2.03	0.71	1.44	0.71	0.27	1	3476	50	3355	68	3283	47	106	3283	47
089-Z59N	0.0004	80	42	59	0.71	25.55	2.28	0.69	1.44	0.63	0.27	2	3378	49	3330	76	3301	58	102	3301	58
090-Z59B	0.0008	54	26	44	0.58	22.51	3.34	0.61	2.84	0.85	0.27	2	3056	87	3206	107	3301	58	93	3301	58
093-Z61N	0.0005	79	57	76	0.75	23.21	3.12	0.64	2.00	0.64	0.26	2	3178	63	3236	101	3272	78	97	3272	78
094-Z61B	0.0010	70	64	72	0.89	21.99	3.61	0.59	3.24	0.90	0.27	2	3009	97	3183	115	3295	53	91	3295	53
095-Z62	0.0005	60	35	55	0.64	25.00	2.02	0.68	1.18	0.58	0.27	2	3329	39	3308	67	3296	54	101	3296	54
096-Z63B	0.0473	77	53	60	0.89	28.21	2.90	0.73	2.52	0.87	0.28	1	3525	89	3426	99	3370	49	105	3370	49
097-Z63N	0.0007	92	62	83	0.76	25.31	2.09	0.69	1.67	0.80	0.27	1	3383	57	3320	70	3282	41	103	3282	41
098-Z64	0.0003	114	41	97	0.42	30.34	2.65	0.76	1.91	0.72	0.29	2	3641	70	3498	93	3417	63	107	3417	63
099-Z65	0.0009	72	41	65	0.63	25.99	2.07	0.70	1.47	0.71	0.27	1	3432	50	3346	69	3295	48	104	3295	48
100-Z66	0.0010	77	56	69	0.82	25.00	2.51	0.68	2.12	0.85	0.27	1	3334	71	3308	83	3293	44	101	3293	44
103-Z67N	0.0014	103	78	103	0.76	22.93	4.57	0.64	4.21	0.92	0.26	2	3170	133	3224	147	3258	58	97	3258	58
106-Z69	0.0012	110	98	102	0.97	24.74	6.10	0.63	5.74	0.94	0.29	2	3136	180	3298	201	3398	69	92	3398	69
107-Z70	0.0023	19	15	16	0.94	23.23	3.91	0.63	3.15	0.81	0.27	2	3145	99	3236	127	3294	76	95	3294	76
109-Z72	0.0011	51	28	41	0.69	24.90	2.07	0.67	1.72	0.83	0.27	1	3320	57	3304	68	3295	38	101	3295	38
110-Z73	0.0017	71	48	71	0.68	25.22	1.97	0.69	0.93	0.47	0.27	2	3365	31	3317	65	3288	57	102	3288	57
114-Z75	0.0005	95	51	70	0.74	23.68	1.90	0.65	0.97	0.51	0.27	2	3219	31	3255	62	3278	54	98	3278	54
115-Z76	0.0008	53	26	37	0.71	25.50	2.56	0.69	1.83	0.72	0.27	2	3386	62	3328	85	3293	59	103	3293	59
117-Z78	0.0011	31	24	19	1.28	25.90	2.94	0.67	2.33	0.79	0.28	2	3319	77	3343	98	3357	60	99	3357	60
118-Z79	0.0010	82	44	64	0.68	23.13	2.41	0.63	2.09	0.87	0.26	1	3163	66	3232	78	3276	40	97	3276	40
119-Z80	0.0010	90	45	63	0.72	25.12	2.36	0.65	1.93	0.82	0.28	1	3238	63	3313	78	3359	45	96	3359	45
120-Z81	0.0011	62	47	45	1.04	22.33	7.61	0.59	7.28	0.96	0.27	2	2988	218	3198	243	3333	74	90	3333	74
123-Z82	0.0012	68	35	61	0.59	23.29	2.75	0.64	2.42	0.88	0.27	1	3178	77	3239	89	3278	42	97	3278	42
124-Z83	0.0029	71	52	40	1.29	27.44	3.55	0.71	2.48	0.70	0.28	3	3461	86	3399	121	3363	86	103	3363	86
125-Z84	0.0012	28	9	21	0.42	25.48	2.94	0.68	1.98	0.67	0.27	2	3356	66	3327	98	3309	72	101	3309	72
126-Z85	0.0006	69	33	48	0.69	25.92	2.11	0.70	1.61	0.76	0.27	1	3405	55	3344	71	3307	45	103	3307	45
127-Z86	0.0004	73	35	51	0.69	25.41	2.12	0.69	1.48	0.70	0.27	2	3366	50	3324	70	3299	50	102	3299	50
128-Z87	0.0020	44	21	31	0.66	24.74	2.92	0.66	1.79	0.61	0.27	2	3271	58	3298	96	3315	77	99	3315	77
129-Z88N	0.0019	21	13	15	0.90	25.90	3.51	0.69	2.50	0.71	0.27	2	3390	85	3343	117	3315	81	102	3315	81
133-Z89	0.0004	53	19	36	0.52	25.63	1.81	0.69	1.25	0.69	0.27	1	3391	42	3333	60	3298	43	103	3298	43

134 290 0.003 90 45 60 0.76 234 2.05 0.64 1.05 0.21 2 336.1 35 332.1 6.88 3297 58 102 297 58 137.293N 0.005 64 31 44 0.70 2.330 0.27 2 3361 317 81 96. 3206 41 99 3206 41 137-293N 0.0005 64 31 46 0.02 2.365 86 3225 100 3280 51 100 3280 41 99 330.5 41 140-2948 0.0005 71 31 65 0.67 0.77 0.57 0.27 1 3320 66 330.5 41 800 830.5 41 43245 0.0017 45 24 39 0.61 2.77 0.77 0.27 1 3320 26 330.5 48 80 3325 57 93																						
135.79 0.0026 19 7 14 0.70 24.30 2.0 317 10.2 3263 131 3317 81 95.37 81 137.793N 0.0008 61 29 50 0.58 24.15 3.05 0.66 2.63 0.86 0.27 1 3364 48 3311 68 3311 68 3310 48 102 310 48 137.293N 0.0005 69 3.3 49 0.2 24.70 0.66 1.43 0.70 0.77 1 3364 48 3311 68 3310 48 102 3303 41 90 3303 41 90 3303 41 90 3303 41 4302 3300 13 310 48 3434 60 93 330 41 390 314 49 331 48 49 330 44 49 3431 44 44 44 303	134-Z90	0.0003	90	45	60	0.76	25.34	2.05	0.68	1.05	0.51	0.27	2	3361	35	3321	68	3297	58	102	3297	58
137-298 0.0005 64 31 44 0.70 24.30 2.10 0.66 1.70 0.81 0.27 1 3255 55 3281 69 3296 41 99 3206 41 138-7938 0.0004 68 31 45 0.69 2.58 2.05 0.69 1.43 0.70 0.27 1 3264 48 3311 68 3310 48 102 310 48 143-295 0.0005 67 33 61 0.52 2.460 1.55 0.67 0.79 0.59 0.27 1 3290 26 3293 44 3244 36 0.92 324 36 144-290 0.0017 45 24 39 0.61 2.470 0.66 2.17 0.71 0.227 2 3216 102 2398 15 3352 48 96 3325 77 149 350 114 340 34 39 341 34 49 331 14 310 110 3325 56 <td>135-Z91</td> <td>0.0026</td> <td>19</td> <td>7</td> <td>14</td> <td>0.49</td> <td>23.87</td> <td>4.02</td> <td>0.64</td> <td>3.20</td> <td>0.80</td> <td>0.27</td> <td>2</td> <td>3177</td> <td>102</td> <td>3263</td> <td>131</td> <td>3317</td> <td>81</td> <td>96</td> <td>3317</td> <td>81</td>	135-Z91	0.0026	19	7	14	0.49	23.87	4.02	0.64	3.20	0.80	0.27	2	3177	102	3263	131	3317	81	96	3317	81
138-938 0.0008 61 29 50 0.58 21.5 3.05 0.66 2.72 2 3265 86 3275 100 3280 51 100 3200 51 100 102 3300 81 3410 310 81 3410 310 81 3410 310 81 3410 310 81 3410 310 81 <th< td=""><td>137-Z93N</td><td>0.0005</td><td>64</td><td>31</td><td>44</td><td>0.70</td><td>24.30</td><td>2.10</td><td>0.66</td><td>1.70</td><td>0.81</td><td>0.27</td><td>1</td><td>3255</td><td>55</td><td>3281</td><td>69</td><td>3296</td><td>41</td><td>99</td><td>3296</td><td>41</td></th<>	137-Z93N	0.0005	64	31	44	0.70	24.30	2.10	0.66	1.70	0.81	0.27	1	3255	55	3281	69	3296	41	99	3296	41
139-2948 0.0004 68 31 45 0.69 2.58 2.05 0.69 1.43 0.70 1 3364 48 3331 68 3310 48 102 310 48 140-2948 0.0005 71 31 61 0.52 24.60 1.35 0.67 0.79 0.59 0.27 1 3290 26 3293 44 3294 36 100 3294 36 144.2950 0.0015 46 33 35 0.96 2.797 2.57 0.69 1.89 0.77 0.27 2.327 67 3296 89 3295 57 147.2988 0.0017 45 2.4 3.48 0.65 3.17 0.91 0.28 1 3210 102 3389 58 59 0.83 56 13359 56 13359 56 1343 98 3401 34 99 3401 34 99 3401 34 143 99 3401 34 143 90 3401 34 190 <t< td=""><td>138-Z93B</td><td>0.0008</td><td>61</td><td>29</td><td>50</td><td>0.58</td><td>24.15</td><td>3.05</td><td>0.66</td><td>2.63</td><td>0.86</td><td>0.27</td><td>2</td><td>3265</td><td>86</td><td>3275</td><td>100</td><td>3280</td><td>51</td><td>100</td><td>3280</td><td>51</td></t<>	138-Z93B	0.0008	61	29	50	0.58	24.15	3.05	0.66	2.63	0.86	0.27	2	3265	86	3275	100	3280	51	100	3280	51
140-2948 0.0005 69 35 49 9.7 2.40 0.66 1.63 0.80 0.27 1 3282 53 3296 67 3305 41 49 90 305 41 143-295 0.0005 71 31 61 0.52 2.47 0.69 1.89 0.59 0.27 1 3290 26 3291 44 3443 60 98 3443 60 3294 464 3418 88 3443 60 98 3252 75 98 3252 45 370 14 720 0.0017 35 24 90 3232 13 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 41 91 91 92 91 93 91 93	139-Z94N	0.0004	68	31	45	0.69	25.58	2.05	0.69	1.43	0.70	0.27	1	3364	48	3331	68	3310	48	102	3310	48
143-295 0.0006 71 31 61 0.52 24.60 1.35 0.67 0.79 0.59 0.27 1 3290 26 3293 44 3294 36 100 324 36 144-296 0.0015 46 33 35 0.60 24.70 2.57 0.69 1.89 0.71 0.27 2 3227 67 3269 89 3295 57 98 3443 60 143 148 80 0.0017 45 24 39 0.61 24.74 3.48 0.65 3.17 0.91 0.28 1 3210 102 3298 150 3320 160 3350 56 97 3359 54 149 143 144 350 71 44 90 3350 14 141 3505 71 44 90 348 491 350 71 143 505 71 14 350 51 14 70 141 150 106 120 120 140 103 105 141 <td>140-Z94B</td> <td>0.0005</td> <td>69</td> <td>35</td> <td>49</td> <td>0.72</td> <td>24.70</td> <td>2.04</td> <td>0.66</td> <td>1.63</td> <td>0.80</td> <td>0.27</td> <td>1</td> <td>3282</td> <td>53</td> <td>3296</td> <td>67</td> <td>3305</td> <td>41</td> <td>99</td> <td>3305</td> <td>41</td>	140-Z94B	0.0005	69	35	49	0.72	24.70	2.04	0.66	1.63	0.80	0.27	1	3282	53	3296	67	3305	41	99	3305	41
144-296 0.0015 46 33 35 0.96 27.97 0.67 0.69 1.89 0.74 0.29 2 3374 64 3418 88 3443 60 98 3443 60 145-297 0.0017 45 24 39 0.61 24.71 0.65 2.07 0.77 0.27 2 3227 67 3269 89 3295 57 98 3329 46 333 24 39 0.61 2.474 3.48 0.65 3.17 0.91 0.28 1 3210 102 3298 115 3320 48 49 333 48 49 93 3401 34 49 3401 34 49 3401 34 49 3401 34 44 3405 71 145 2.57 2.57 2.57 2.57 2.57 1.59 0.76 0.27 1 2973 50 3164 71 349 341 3401 34 90 3251 16 134 57 155 156 0	143-Z95	0.0006	71	31	61	0.52	24.60	1.35	0.67	0.79	0.59	0.27	1	3290	26	3293	44	3294	36	100	3294	36
145-297 0.0014 29 15 25 0.61 24.74 3.48 0.65 3.17 0.91 0.28 1 3210 102 3298 115 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 96 3352 48 98 3206 106 3359 56 97 3359 56 97 3359 56 97 356 71 147.298 0.0017 48 3401 34 99 3401 34 49 90 3285 71 145.291 0.0017 40 71 3288 49 90 3285 71 147.291 100 150.201 0.0007 79 46 79 0.38 0.67 1.64 0.99 2.23 3460 68 3440 88 3429 57 101 3429 157 1	144-Z96	0.0015	46	33	35	0.96	27.97	2.57	0.69	1.89	0.74	0.29	2	3374	64	3418	88	3443	60	98	3443	60
147-Z98B 0.0017 45 24 39 0.61 24.74 3.48 0.65 3.17 0.91 0.28 1 3120 102 3298 115 3352 48 96 3352 48 148-Z99 0.0007 39 26 30 0.87 25.30 3.20 0.66 2.74 0.86 0.28 2 3256 89 3320 106 3359 56 97 3359 56 97 3359 56 97 3359 57 134 14 300 811 3410 34 99 3410 34 99 3401 34 99 320 106 3359 56 97 103 327 10 3229 57 101 3429 57 101 3429 57 101 3429 57 101 3429 57 115 155.2104 0.0015 136 174 102 0.26 1 2337 90 3127 106 3251 46 90 3251 46 155 166 <td< td=""><td>145-Z97</td><td>0.0014</td><td>29</td><td>15</td><td>25</td><td>0.61</td><td>24.02</td><td>2.71</td><td>0.65</td><td>2.07</td><td>0.77</td><td>0.27</td><td>2</td><td>3227</td><td>67</td><td>3269</td><td>89</td><td>3295</td><td>57</td><td>98</td><td>3295</td><td>57</td></td<>	145-Z97	0.0014	29	15	25	0.61	24.02	2.71	0.65	2.07	0.77	0.27	2	3227	67	3269	89	3295	57	98	3295	57
148-299 0.0017 39 26 30 0.87 25.30 3.20 0.66 2.74 0.86 0.28 2 3256 89 3320 106 3359 56 97 3359 56 149-Z100 0.0007 80 58 59 0.98 2.18 0.40 0.29 1 3311 73 3300 81 3401 34 99 3401 34 153-Z102 0.0007 53 38 56 0.69 28.29 3.33 0.67 2.64 0.79 0.31 2 3301 87 3429 114 3505 71 94 3525 71 154-Z103 0.0007 79 46 79 0.58 2.67 0.71 1.95 0.76 0.29 2 3460 68 3440 88 3429 57 101 3429 51 46 50 3251 46 525 46 328 116 525 326 161 3139 57 98 3389 57 98 3281 <td>147-Z98B</td> <td>0.0017</td> <td>45</td> <td>24</td> <td>39</td> <td>0.61</td> <td>24.74</td> <td>3.48</td> <td>0.65</td> <td>3.17</td> <td>0.91</td> <td>0.28</td> <td>1</td> <td>3210</td> <td>102</td> <td>3298</td> <td>115</td> <td>3352</td> <td>48</td> <td>96</td> <td>3352</td> <td>48</td>	147-Z98B	0.0017	45	24	39	0.61	24.74	3.48	0.65	3.17	0.91	0.28	1	3210	102	3298	115	3352	48	96	3352	48
149-Z100 0.0007 80 58 59 0.98 27.18 2.40 0.69 2.18 0.91 0.29 1 3371 73 3390 81 3401 34 99 3401 34 150-Z101 0.0017 47 25 66 0.55 2.157 2.25 0.59 1.69 0.75 0.27 1 2973 50 3164 71 3288 49 90 358 56 0.69 2.23 0.67 2.23 340 68 3440 88 3429 57 101 3429 57 155-Z104 0.0015 136 174 171 1.02 2.07.4 3.38 0.67 0.49 2.23 3400 68 3429 1.6 90 3251 46 90 3251 46 90 3251 46 326 1.6 338 57 9.8 389 51 3280 1.64 3389 57 9.8 389 51 3280 1.64 328 1.6 101 3227 161 1	148-Z99	0.0017	39	26	30	0.87	25.30	3.20	0.66	2.74	0.86	0.28	2	3256	89	3320	106	3359	56	97	3359	56
150-2101 0.0011 47 25 46 0.55 2.157 2.25 0.59 1.69 0.75 0.27 1 2973 50 3164 71 3288 49 90 3288 49 153-Z102 0.0007 53 38 56 0.69 28.29 3.33 0.67 2.64 0.75 0.27 1 2973 50 3164 71 328 49 90 3288 49 50 571 94 320 571 101 3429 57 155-Z104 0.0015 136 174 171 1.02 2.074 3.38 0.58 3.07 0.91 0.26 1 2937 90 3127 106 321 46 90 323 16 155-Z104 0.0038 105 94 139 0.68 2.61 1.56 0.64 0.26 2 3225 152 3365 164 3389 57 93 328 104 101 3227 61 101 3227 61 105 <td< td=""><td>149-Z100</td><td>0.0007</td><td>80</td><td>58</td><td>59</td><td>0.98</td><td>27.18</td><td>2.40</td><td>0.69</td><td>2.18</td><td>0.91</td><td>0.29</td><td>1</td><td>3371</td><td>73</td><td>3390</td><td>81</td><td>3401</td><td>34</td><td>99</td><td>3401</td><td>34</td></td<>	149-Z100	0.0007	80	58	59	0.98	27.18	2.40	0.69	2.18	0.91	0.29	1	3371	73	3390	81	3401	34	99	3401	34
153-Z102 0.0007 53 38 56 0.69 28.29 3.33 0.67 2.64 0.79 0.31 2 3401 87 3429 114 3505 71 94 3505 71 154-Z103 0.0007 79 46 79 0.82 2.62 2.57 0.71 1.95 0.76 0.29 2 3460 68 3440 88 3429 57 101 3429 57 155-Z105 0.0009 49 34 50 0.69 24.01 4.84 0.65 3.33 0.69 0.27 4 3246 108 3269 158 3283 116 99 328 116 195 328 116 195 328 116 195 328 116 193 328 167 158 0.69 0.201 128 128 3287 116 109 3287 116 159-Z108 0.0014 127 124 143 0.87 27.45 8.66 0.27 2 3275 109 3289 <td>150-Z101</td> <td>0.0011</td> <td>47</td> <td>25</td> <td>46</td> <td>0.55</td> <td>21.57</td> <td>2.25</td> <td>0.59</td> <td>1.69</td> <td>0.75</td> <td>0.27</td> <td>1</td> <td>2973</td> <td>50</td> <td>3164</td> <td>71</td> <td>3288</td> <td>49</td> <td>90</td> <td>3288</td> <td>49</td>	150-Z101	0.0011	47	25	46	0.55	21.57	2.25	0.59	1.69	0.75	0.27	1	2973	50	3164	71	3288	49	90	3288	49
154-Z103 0.0007 79 46 79 0.58 28.62 2.57 0.71 1.95 0.76 0.29 2 3460 68 3440 88 3429 57 101 3429 57 155-Z104 0.0019 49 34 50 0.69 24.01 4.84 0.65 3.33 0.69 0.27 4 3246 108 3269 158 3283 116 99 3283 165 157-Z106 0.0038 105 94 139 0.68 2.651 4.67 0.68 4.57 0.94 0.28 2 3225 152 3355 164 3389 57 8389 57 101 327 61 101 327 61 101 327 61 101 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 103 328 3219 99 3265 45 166	153-Z102	0.0007	53	38	56	0.69	28.29	3.33	0.67	2.64	0.79	0.31	2	3301	87	3429	114	3505	71	94	3505	71
155-Z104 0.0015 136 174 171 1.02 20.74 3.38 0.58 3.07 0.91 0.26 1 2937 90 3127 106 3251 46 90 3251 46 156-Z105 0.009 49 34 50 0.69 24.01 4.84 0.65 3.33 0.69 0.27 4 3246 108 3269 158 3283 116 99 3283 116 157-Z106 0.004 123 102 6.82 24.29 2.43 0.67 1.56 0.64 0.26 2 3293 51 3280 66 101 3287 16 100 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 105 105 116 <td>154-Z103</td> <td>0.0007</td> <td>79</td> <td>46</td> <td>79</td> <td>0.58</td> <td>28.62</td> <td>2.57</td> <td>0.71</td> <td>1.95</td> <td>0.76</td> <td>0.29</td> <td>2</td> <td>3460</td> <td>68</td> <td>3440</td> <td>88</td> <td>3429</td> <td>57</td> <td>101</td> <td>3429</td> <td>57</td>	154-Z103	0.0007	79	46	79	0.58	28.62	2.57	0.71	1.95	0.76	0.29	2	3460	68	3440	88	3429	57	101	3429	57
156-Z105 0.009 49 34 50 0.69 24.01 4.84 0.65 3.33 0.69 0.27 4 3246 108 3269 158 3283 116 99 3283 116 157-Z106 0.0038 105 94 139 0.68 26.51 4.87 0.68 4.57 0.94 0.28 2 3325 152 3365 164 3389 57 98 3389 57 158-Z107 0.004 123 102 126 0.82 24.29 2.43 0.67 1.56 0.64 0.26 2 3293 51 3280 80 3272 61 109 3287 116 159-Z108 0.0014 127 124 13 0.87 24.52 3.80 0.66 3.34 0.88 0.27 2 3275 109 3281 125 3298 160 99 3285 16 166-Z111 0.0007 72 79 67 1.19 2.766 1.58 0.72 0.71 0.45	155-Z104	0.0015	136	174	171	1.02	20.74	3.38	0.58	3.07	0.91	0.26	1	2937	90	3127	106	3251	46	90	3251	46
157-Z106 0.0038 105 94 139 0.68 26.51 4.87 0.68 4.57 0.94 0.28 2 3325 152 3365 164 3389 57 98 3389 57 158-Z107 0.004 123 102 126 0.82 24.29 2.43 0.67 1.56 0.64 0.26 2 3293 51 3280 80 3272 61 101 3272 61 101 3272 61 101 3272 61 100 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 109 3287 116 100 3287 125 3298 125 3298 60 90 3287 14 104 3352 47 166-211 0.0007 72 79 67 1.18 26.95 2.75 0.70 1.78	156-Z105	0.0009	49	34	50	0.69	24.01	4.84	0.65	3.33	0.69	0.27	4	3246	108	3269	158	3283	116	99	3283	116
158-Z107 0.004 123 102 126 0.82 24.29 2.43 0.67 1.56 0.64 0.26 2 3293 51 3280 80 3272 61 101 3272 61 159-Z108 0.0014 127 124 143 0.87 27.45 8.26 0.75 7.47 0.90 0.27 4 3594 269 3400 281 3287 116 109 3287 116 160-Z109 0.0015 38 21 43 0.50 24.52 3.80 0.66 3.34 0.88 0.27 2 3275 109 3289 125 3298 60 99 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 45 104	157-Z106	0.0038	105	94	139	0.68	26.51	4.87	0.68	4.57	0.94	0.28	2	3325	152	3365	164	3389	57	98	3389	57
159-Z108 0.0014 127 124 143 0.87 27.45 8.26 0.75 7.47 0.90 0.27 4 3594 269 3400 281 3287 116 109 3287 116 160-Z109 0.0015 38 21 43 0.50 24.52 3.80 0.66 3.34 0.88 0.27 2 3275 109 3289 125 3298 60 99 3265 45 96 3265 45 96 3265 45 96 3265 45 96 3265 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 3352 47 104 345 45 106 228 3418 61 3382 93	158-Z107	0.0004	123	102	126	0.82	24.29	2.43	0.67	1.56	0.64	0.26	2	3293	51	3280	80	3272	61	101	3272	61
160-Z109 0.0015 38 21 43 0.50 24.52 3.80 0.66 3.34 0.88 0.27 2 3275 109 3289 125 3298 60 99 3298 60 165-Z110 0.0009 79 67 91 0.75 22.81 3.07 0.63 2.75 0.89 0.26 1 3145 86 3219 99 3265 45 96 3265 45 166-Z111 0.0007 72 79 67 1.19 27.66 1.58 0.72 0.71 0.45 0.28 1 3503 25 3407 54 3352 47 104 352 47 167-Z112 0.005 86 89 77 1.18 26.95 2.75 0.70 1.78 0.65 0.28 2 3418 61 3382 93 3360 71 102 360 71 168-Z113 0.0005 63 30 58 0.52 27.64 2.99 0.70 1.65 0.29 2 <td>159-Z108</td> <td>0.0014</td> <td>127</td> <td>124</td> <td>143</td> <td>0.87</td> <td>27.45</td> <td>8.26</td> <td>0.75</td> <td>7.47</td> <td>0.90</td> <td>0.27</td> <td>4</td> <td>3594</td> <td>269</td> <td>3400</td> <td>281</td> <td>3287</td> <td>116</td> <td>109</td> <td>3287</td> <td>116</td>	159-Z108	0.0014	127	124	143	0.87	27.45	8.26	0.75	7.47	0.90	0.27	4	3594	269	3400	281	3287	116	109	3287	116
165-Z1100.00097967910.7522.813.070.632.750.890.26131458632199932654596326545166-Z1110.00077279671.1927.661.580.720.710.450.281350325340754335247104335247167-Z1120.00558689771.1826.952.750.701.780.650.282341861338293336071102336071168-Z1130.0046462541.1630.872.270.771.860.820.291368669351580341945108341945171-Z1160.00056330580.5227.642.290.701.650.720.292341456340678340254100340254175-Z1180.0007115931100.8526.022.570.721.130.440.262350539334786325475108325475176-Z1190.0105325490.5126.552.420.721.780.740.272348762336781329654106328854177-Z1200.000862	160-Z109	0.0015	38	21	43	0.50	24.52	3.80	0.66	3.34	0.88	0.27	2	3275	109	3289	125	3298	60	99	3298	60
166-Z1110.00077279671.1927.661.580.720.710.450.281350325340754335247104335247167-Z1120.00558689771.1826.952.750.701.780.650.282341861338293336071102336071168-Z1130.0046462541.1630.872.270.771.860.820.291368669351580341945108341945171-Z1160.00056330580.5227.642.290.701.650.720.292341456340678340254100340254175-Z1180.0007115931100.8526.022.570.721.130.440.262350539334786325475108325475176-Z1190.00105325490.5126.552.420.721.780.740.272348762336781329654106328854177-Z1200.00086240590.6826.411.950.721.070.550.272348737336266328854106328854178-Z1210.000383 <t< td=""><td>165-Z110</td><td>0.0009</td><td>79</td><td>67</td><td>91</td><td>0.75</td><td>22.81</td><td>3.07</td><td>0.63</td><td>2.75</td><td>0.89</td><td>0.26</td><td>1</td><td>3145</td><td>86</td><td>3219</td><td>99</td><td>3265</td><td>45</td><td>96</td><td>3265</td><td>45</td></t<>	165-Z110	0.0009	79	67	91	0.75	22.81	3.07	0.63	2.75	0.89	0.26	1	3145	86	3219	99	3265	45	96	3265	45
167-Z1120.00558689771.1826.952.750.701.780.650.282341861338293336071102336071168-Z1130.00046462541.1630.872.270.771.860.820.291368669351580341945108341945171-Z1160.00056330580.5227.642.290.701.650.720.292341456340678340254100340254175-Z1180.0007115931100.8526.022.570.721.130.440.262350539334786325475108325475176-Z1190.00105325490.5126.552.420.721.780.740.272348762336781329654106328854177-Z1200.00086240590.6826.411.950.721.070.550.272348737336266328854106328854178-Z1210.00038349730.6829.592.610.741.880.720.292355867347391342462104342462179-Z122N0.000565	166-Z111	0.0007	72	79	67	1.19	27.66	1.58	0.72	0.71	0.45	0.28	1	3503	25	3407	54	3352	47	104	3352	47
168-Z1130.00046462541.1630.872.270.771.860.820.291368669351580341945108341945171-Z1160.00056330580.5227.642.290.701.650.720.292341456340678340254100340254175-Z1180.0007115931100.8526.022.570.721.130.440.262350539334786325475108325475176-Z1190.00105325490.5126.552.420.721.780.740.272348762336781329654106329654177-Z1200.00086240590.6826.411.950.721.070.550.272348737336266328854106328854178-Z1210.00038349730.6829.592.610.741.880.720.292355867347391342462104342462179-Z122N0.00056572531.3629.012.670.751.900.710.282362269345492335863108335863180-Z122B0.001639 <td>167-Z112</td> <td>0.0055</td> <td>86</td> <td>89</td> <td>77</td> <td>1.18</td> <td>26.95</td> <td>2.75</td> <td>0.70</td> <td>1.78</td> <td>0.65</td> <td>0.28</td> <td>2</td> <td>3418</td> <td>61</td> <td>3382</td> <td>93</td> <td>3360</td> <td>71</td> <td>102</td> <td>3360</td> <td>71</td>	167-Z112	0.0055	86	89	77	1.18	26.95	2.75	0.70	1.78	0.65	0.28	2	3418	61	3382	93	3360	71	102	3360	71
171-Z1160.00056330580.5227.642.290.701.650.720.292341456340678340254100340254175-Z1180.0007115931100.8526.022.570.721.130.440.262350539334786325475108325475176-Z1190.00105325490.5126.552.420.721.780.740.272348762336781329654106329654177-Z1200.00086240590.6826.411.950.721.070.550.272348737336266328854106328854178-Z1210.00038349730.6829.592.610.741.880.720.292355867347391342462104342462179-Z122N0.00056572531.3629.012.670.751.900.710.282362269345492335863108335863180-Z122B0.00163926430.6125.462.330.671.730.740.28232905733267833485298334852181-Z1230.000668	168-Z113	0.0004	64	62	54	1.16	30.87	2.27	0.77	1.86	0.82	0.29	1	3686	69	3515	80	3419	45	108	3419	45
175-Z1180.0007115931100.8526.022.570.721.130.440.262350539334786325475108325475176-Z1190.00105325490.5126.552.420.721.780.740.272348762336781329654106329654177-Z1200.00086240590.6826.411.950.721.070.550.272348737336266328854106328854178-Z1210.00038349730.6829.592.610.741.880.720.292355867347391342462104342462179-Z122N0.00056572531.3629.012.670.751.900.710.282362269345492335863108335863180-Z122B0.00163926430.6125.462.330.671.730.740.28232905733267833485298334852181-Z1230.00066883521.6028.683.180.742.570.810.2823559913443110337563105337563	171-Z116	0.0005	63	30	58	0.52	27.64	2.29	0.70	1.65	0.72	0.29	2	3414	56	3406	78	3402	54	100	3402	54
176-Z119 0.0010 53 25 49 0.51 26.55 2.42 0.72 1.78 0.74 0.27 2 3487 62 3367 81 3296 54 106 3296 54 177-Z120 0.0008 62 40 59 0.68 26.41 1.95 0.72 1.07 0.55 0.27 2 3487 37 3362 66 3288 54 106 3288 54 178-Z121 0.0003 83 49 73 0.68 29.59 2.61 0.74 1.88 0.72 0.29 2 3558 67 3473 91 3424 62 104 3424 62 179-Z122N 0.0005 65 72 53 1.36 29.01 2.67 0.75 1.90 0.71 0.28 2 3622 69 3454 92 3358 63 108 3358 63 180-Z122B 0.0016 39 26 43 0.61 25.46 2.33 0.67 1.73 0.74	175-Z118	0.0007	115	93	110	0.85	26.02	2.57	0.72	1.13	0.44	0.26	2	3505	39	3347	86	3254	75	108	3254	75
177-Z120 0.0008 62 40 59 0.68 26.41 1.95 0.72 1.07 0.55 0.27 2 3487 37 3362 66 3288 54 106 3288 54 178-Z121 0.0003 83 49 73 0.68 29.59 2.61 0.74 1.88 0.72 0.29 2 3558 67 3473 91 3424 62 104 3424 62 179-Z122N 0.0005 65 72 53 1.36 29.01 2.67 0.75 1.90 0.71 0.28 2 3622 69 3454 92 3358 63 108 3358 63 180-Z122B 0.0016 39 26 43 0.61 25.46 2.33 0.67 1.73 0.74 0.28 2 3290 57 3326 78 3348 52 98 3348 52 98 3348 52 98 3348 52 98 3348 52 98 3375 63 105 <t< td=""><td>176-Z119</td><td>0.0010</td><td>53</td><td>25</td><td>49</td><td>0.51</td><td>26.55</td><td>2.42</td><td>0.72</td><td>1.78</td><td>0.74</td><td>0.27</td><td>2</td><td>3487</td><td>62</td><td>3367</td><td>81</td><td>3296</td><td>54</td><td>106</td><td>3296</td><td>54</td></t<>	176-Z119	0.0010	53	25	49	0.51	26.55	2.42	0.72	1.78	0.74	0.27	2	3487	62	3367	81	3296	54	106	3296	54
178-Z121 0.0003 83 49 73 0.68 29.59 2.61 0.74 1.88 0.72 0.29 2 3558 67 3473 91 3424 62 104 3424 62 179-Z122N 0.0005 65 72 53 1.36 29.01 2.67 0.75 1.90 0.71 0.28 2 3622 69 3454 92 3358 63 108 3358 63 180-Z122B 0.0016 39 26 43 0.61 25.46 2.33 0.67 1.73 0.74 0.28 2 3290 57 3326 78 3348 52 98 3348 52 181-Z123 0.0006 68 83 52 1.60 28.68 3.18 0.74 2.57 0.81 0.28 2 3559 91 3443 110 3375 63 105 3375 63	177-Z120	0.0008	62	40	59	0.68	26.41	1.95	0.72	1.07	0.55	0.27	2	3487	37	3362	66	3288	54	106	3288	54
179-Z122N 0.0005 65 72 53 1.36 29.01 2.67 0.75 1.90 0.71 0.28 2 3622 69 3454 92 3358 63 108 3358 63 180-Z122B 0.0016 39 26 43 0.61 25.46 2.33 0.67 1.73 0.74 0.28 2 3290 57 3326 78 3348 52 98 3348 52 181-Z123 0.0006 68 83 52 1.60 28.68 3.18 0.74 2.57 0.81 0.28 2 3559 91 3443 110 3375 63 105 3375 63	178-Z121	0.0003	83	49	73	0.68	29.59	2.61	0.74	1.88	0.72	0.29	2	3558	67	3473	91	3424	62	104	3424	62
180-Z122B 0.0016 39 26 43 0.61 25.46 2.33 0.67 1.73 0.74 0.28 2 3290 57 3326 78 3348 52 98 3348 52 181-Z123 0.0006 68 83 52 1.60 28.68 3.18 0.74 2.57 0.81 0.28 2 3559 91 3443 110 3375 63 105 3375 63	179-Z122N	0.0005	65	72	53	1.36	29.01	2.67	0.75	1.90	0.71	0.28	2	3622	69	3454	92	3358	63	108	3358	63
181-Z123 0.0006 68 83 52 1.60 28.68 3.18 0.74 2.57 0.81 0.28 2 3559 91 3443 110 3375 63 105 3375 63	180-Z122B	0.0016	39	26	43	0.61	25.46	2.33	0.67	1.73	0.74	0.28	2	3290	57	3326	78	3348	52	98	3348	52
	181-Z123	0.0006	68	83	52	1.60	28.68	3.18	0.74	2.57	0.81	0.28	2	3559	91	3443	110	3375	63	105	3375	63

185-Z125	0.0003	61	34	52	0.65	25.49	3.04	0.69	2.46	0.81	0.27	2	3394	84	3327	101	3287	59	103	3287	59
186-Z126	0.0012	51	27	48	0.56	23.16	1.66	0.63	1.20	0.72	0.26	1	3169	38	3234	54	3274	37	97	3274	37
187-Z127	0.0012	61	53	57	0.95	26.43	1.06	0.71	0.47	0.44	0.27	1	3473	16	3363	36	3297	31	105	3297	31
188-Z128	0.0010	58	48	47	1.02	25.55	2.35	0.69	2.00	0.85	0.27	1	3390	68	3329	78	3293	40	103	3293	40
189-Z129	0.0014	22	11	22	0.52	23.71	2.93	0.64	2.23	0.76	0.27	2	3172	71	3257	95	3309	63	96	3309	63
191-Z130N	0.0144	88	46	76	0.61	25.46	1.52	0.68	1.38	0.90	0.27	1	3330	46	3326	51	3324	22	100	3324	22
192-Z132	0.0005	55	26	48	0.55	24.66	2.21	0.67	1.81	0.82	0.27	1	3299	60	3295	73	3293	42	100	3293	42
195-Z133	0.0005	66	44	57	0.77	26.91	1.47	0.73	0.94	0.64	0.27	1	3533	33	3380	50	3291	37	107	3291	37
196-Z134	0.0005	57	39	48	0.81	27.07	1.57	0.73	0.91	0.58	0.27	1	3543	32	3386	53	3294	42	108	3294	42
197-Z135	0.0007	37	17	33	0.53	26.26	2.49	0.71	2.02	0.81	0.27	1	3443	70	3356	84	3305	48	104	3305	48
198-Z136	0.0009	33	26	27	0.96	28.18	2.32	0.72	1.81	0.78	0.29	1	3478	63	3425	80	3395	50	102	3395	50
199-Z137	0.0003	57	31	49	0.64	26.60	2.16	0.72	1.81	0.84	0.27	1	3494	63	3369	73	3295	39	106	3295	39
202-Z140	0.0012	37	31	34	0.91	29.26	1.84	0.73	1.66	0.90	0.29	1	3517	58	3462	64	3430	28	103	3430	28
205-Z141	0.0004	29	11	22	0.51	26.62	3.25	0.72	2.24	0.69	0.27	2	3479	78	3370	110	3305	78	105	3305	78
206-Z142	0.0006	49	21	36	0.59	27.06	2.52	0.73	1.54	0.61	0.27	2	3532	55	3385	85	3300	66	107	3300	66
207-Z143	0.0006	89	52	69	0.76	24.35	3.87	0.67	3.21	0.83	0.26	2	3316	107	3283	127	3262	70	102	3262	70
209-Z145	0.0003	105	48	68	0.70	33.26	3.01	0.78	1.78	0.59	0.31	2	3725	66	3588	108	3513	85	106	3513	85
210-Z146	0.0006	42	29	26	1.12	32.50	3.67	0.76	3.24	0.88	0.31	2	3655	119	3565	131	3516	60	104	3516	60
211-Z147	0.0004	64	45	44	1.01	31.58	2.23	0.78	0.83	0.37	0.29	2	3726	31	3537	79	3432	71	109	3432	71
212-Z148	0.0012	89	40	74	0.55	27.28	2.45	0.71	1.65	0.67	0.28	2	3474	57	3394	83	3347	61	104	3347	61
215-Z149	0.0008	40	35	31	1.13	26.10	2.26	0.69	1.68	0.74	0.27	2	3392	57	3350	76	3325	51	102	3325	51
216-Z150	0.0006	62	43	43	0.99	27.25	2.56	0.72	1.77	0.69	0.28	2	3484	62	3393	87	3339	62	104	3339	62
217-Z151	0.0005	55	29	40	0.71	26.29	2.76	0.71	2.45	0.89	0.27	1	3468	85	3357	93	3292	42	105	3292	42
218-Z152	0.0007	34	10	25	0.41	29.09	2.56	0.74	1.57	0.61	0.29	2	3554	56	3457	88	3400	69	105	3400	69
219-Z153	0.0020	26	11	18	0.61	33.40	3.47	0.77	2.56	0.74	0.31	2	3682	94	3593	125	3543	83	104	3543	83
220-Z154	0.0010	32	12	24	0.50	26.84	2.69	0.72	1.84	0.69	0.27	2	3493	64	3378	91	3310	65	106	3310	65
221-Z155	0.0013	37	31	27	1.18	25.92	2.90	0.68	2.46	0.85	0.28	2	3346	82	3343	97	3342	51	100	3342	51
222-Z156	0.0005	61	37	47	0.79	26.06	2.07	0.71	1.42	0.69	0.27	2	3447	49	3349	69	3290	49	105	3290	49
225-Z157	0.0011	29	15	22	0.67	23.59	2.90	0.63	2.50	0.86	0.27	1	3155	79	3252	94	3312	49	95	3312	49
226-Z158	0.0010	34	17	25	0.68	29.08	3.82	0.74	2.56	0.67	0.28	3	3577	91	3456	132	3387	96	106	3387	96
227-Z159	0.0004	108	55	79	0.71	26.95	3.14	0.72	2.24	0.71	0.27	2	3506	78	3382	106	3309	73	106	3309	73
228-Z160	0.0010	31	16	26	0.64	24.13	2.69	0.65	1.76	0.65	0.27	2	3227	57	3274	88	3302	67	98	3302	67
229-Z161	0.0011	26	15	20	0.75	24.50	2.52	0.66	1.78	0.71	0.27	2	3266	58	3288	83	3302	59	99	3302	59

231-Z164	0.0006	58	29	43	0.68	25.16	2.94	0.68	2.45	0.83	0.27	2	3339	82	3315	97	3300	54	101	3300	54
232-Z165	0.0005	67	34	51	0.67	25.38	2.40	0.68	1.67	0.70	0.27	2	3363	56	3323	80	3299	57	102	3299	57
235-Z166	0.0006	29	25	20	1.23	29.92	3.21	0.73	2.44	0.76	0.30	2	3538	86	3484	112	3453	72	102	3453	72
236-Z167	0.0003	84	42	67	0.63	27.28	2.19	0.74	1.52	0.70	0.27	2	3586	55	3394	74	3282	52	109	3282	52
227-Z159	0.0003	108	58	84	0.69	26.93	3.00	0.72	2.21	0.74	0.27	2	3508	78	3381	101	3307	67	106	3307	67
228-Z160	0.0009	31	17	27	0.63	24.17	2.84	0.65	1.95	0.69	0.27	2	3227	63	3275	93	3305	68	98	3305	68
229-Z161	0.0010	26	16	21	0.73	24.53	2.50	0.66	2.07	0.83	0.27	1	3273	68	3290	82	3300	47	99	3300	47
231-Z164	0.0005	58	31	46	0.67	25.33	2.75	0.69	2.26	0.82	0.27	2	3367	76	3321	91	3293	51	102	3293	51
232-Z165	0.0004	67	36	55	0.66	25.22	2.69	0.69	1.77	0.66	0.27	2	3364	60	3317	89	3288	67	102	3288	67

Apêndice B – Tabelas com dados Lu-Hf in situ, via LA-MC-ICPMS, dos zircões detríticos analisados.

Comple	Smoot	U-Pb	12-	176,10,177,10		176 1 /177 116		Chur	DM	Sample Initial Ratios			- 28E		DM Model	Ages (G	ia)	Crustal
Sample	Spot	(Ma)	±20	HI/ HI	±25E	Lu/ HI	±25E	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	¹⁷⁶ Hf/ ¹⁷⁷ Hf (t)	εHI(0)	επι(ι)	±25E	T _{DM}	T _{DM} Crustal	Mafic	Felsic	(Ma)
MVT-08	020-Z24	3383	74	0.280541	0.000031	0.000610	3.73E-05	0.280594	0.280720	0.280501	-79.35	-3.31	0.28	3.67	3.87	4.08	3.79	287
MVT-08	021-Z18	3177	199	0.280646	0.000036	0.001179	3.58E-05	0.280732	0.280879	0.280574	-75.63	-5.61	0.52	3.58	3.86	4.14	3.74	407
MVT-08	022-Z6	3466	85	0.280560	0.000034	0.000736	6.28E-06	0.280539	0.280656	0.280511	-78.69	-1.01	0.03	3.66	3.79	3.93	3.74	192
MVT-08	023-Z8	3574	76	0.280529	0.000098	0.001294	1.14E-04	0.280466	0.280573	0.280440	-79.78	-0.96	0.11	3.75	3.87	4.00	3.82	178
MVT-08	024-Z21	3347	95	0.280618	0.000061	0.000863	8.75E-05	0.280618	0.280748	0.280562	-76.63	-2.00	0.26	3.59	3.76	3.94	3.69	246
JBA-01	037-Z51	3349	61	0.280585	0.000036	0.001092	8.31E-05	0.280617	0.280747	0.280514	-77.80	-3.66	0.35	3.66	3.87	4.08	3.78	309
JBA-01	038-Z43	3314	48	0.280579	0.000035	0.001010	4.85E-05	0.280640	0.280774	0.280514	-78.02	-4.50	0.28	3.66	3.89	4.13	3.79	344
JBA-01	039-Z15	3504	83	0.280528	0.000042	0.000895	2.61E-05	0.280513	0.280627	0.280468	-79.81	-1.63	0.09	3.71	3.86	4.01	3.80	210
JBA-01	040-Z18	3375	36	0.280563	0.000034	0.001073	3.08E-05	0.280600	0.280726	0.280494	-78.56	-3.78	0.15	3.68	3.90	4.11	3.81	310
JBA-01	041-Z11	3564	65	0.280479	0.000038	0.000543	1.16E-05	0.280473	0.280580	0.280442	-81.54	-1.12	0.04	3.75	3.87	4.00	3.82	181
JBA-02	003-A6B	3405	78	0.280572	0.000035	0.000739	1.30E-05	0.280580	0.280703	0.280524	-78.25	-1.99	0.08	3.64	3.81	3.97	3.74	237
JBA-02	004-A2B	3366	51	0.280536	0.000046	0.000247	1.15E-05	0.280606	0.280733	0.280520	-79.53	-3.05	0.19	3.64	3.84	4.04	3.76	278
JBA-02	005-A2	3347	57	0.280521	0.000034	0.000357	2.01E-05	0.280618	0.280748	0.280498	-80.05	-4.28	0.31	3.67	3.91	4.14	3.81	326
JBA-02	006-A1	3296	44	0.280533	0.000046	0.000418	1.16E-05	0.280652	0.280787	0.280506	-79.65	-5.21	0.22	3.66	3.93	4.19	3.82	368
JBA-02	007-A1D	3532	53	0.280221	0.000190	0.000324	7.60E-06	0.280495	0.280605	0.280199	-90.68	-10.56	0.41	4.06	4.44	4.81	4.28	527
MVT-01	015-Z33	3578	92	0.280457	0.000025	0.000635	1.88E-05	0.280464	0.280570	0.280413	-82.33	-1.81	0.10	3.78	3.93	4.08	3.87	205
MVT-01	016-Z32	3340	48	0.280634	0.000026	0.000317	6.58E-06	0.280623	0.280753	0.280614	-76.05	-0.32	0.01	3.52	3.65	3.78	3.60	182
MVT-01	017-Z35	3446	52	0.280585	0.000059	0.000642	3.11E-05	0.280552	0.280672	0.280542	-77.81	-0.37	0.02	3.62	3.74	3.86	3.69	170
MVT-01	018-Z15	3443	85	0.280555	0.000046	0.000278	1.17E-05	0.280554	0.280674	0.280537	-78.84	-0.61	0.04	3.62	3.75	3.88	3.70	178
MVT-01	019-Z8	3436	60	0.280572	0.000035	0.000423	1.83E-05	0.280559	0.280679	0.280544	-78.26	-0.54	0.03	3.61	3.74	3.87	3.69	177

Tabela 15. Valores de T_{DM} e Epsilon Hf obtidos, via LA-MC-ICP-MS, nos zircões detríticos do Gr. Jacobina.

MVT-04	008-Z19	3448	55	0.280547	0.000030	0.000346	5.17E-06	0.280551	0.280670	0.280523	-79.16	-0.98	0.03	3.64	3.78	3.91	3.72	191
MVT-04	009-Z18	3446	59	0.280515	0.000045	0.000885	6.12E-05	0.280552	0.280672	0.280457	-80.26	-3.41	0.29	3.73	3.93	4.13	3.84	284
MVT-04	010-Z17	3512	41	0.280476	0.000064	0.000659	3.02E-05	0.280508	0.280621	0.280431	-81.66	-2.74	0.16	3.76	3.94	4.11	3.86	249
MVT-04	011-Z15	3568	36	0.280471	0.000046	0.000493	4.80E-05	0.280471	0.280577	0.280437	-81.82	-1.18	0.13	3.75	3.88	4.01	3.83	183
MVT-04	012-Z14	3383	40	0.280563	0.000028	0.000355	2.29E-05	0.280594	0.280720	0.280540	-78.56	-1.93	0.15	3.62	3.79	3.95	3.72	235
MVT-05	027-Z20	3575	95	0.280415	0.000024	0.000432	1.17E-05	0.280466	0.280572	0.280385	-83.82	-2.88	0.15	3.82	3.99	4.17	3.92	244
MVT-05	028-Z14	3448	98	0.280552	0.000026	0.000167	8.01E-07	0.280551	0.280670	0.280540	-78.98	-0.37	0.01	3.62	3.74	3.86	3.69	168
MVT-05	029-Z9	3428	64	0.280579	0.000025	0.000374	4.65E-07	0.280564	0.280686	0.280555	-78.00	-0.35	0.01	3.60	3.72	3.84	3.67	171
MVT-05	030-Z8	3458	70	0.280560	0.000028	0.000278	2.23E-06	0.280544	0.280662	0.280541	-78.68	-0.10	0.00	3.62	3.73	3.84	3.68	157
MVT-05	031-Z6	3347	59	0.280631	0.000034	0.000245	7.70E-06	0.280618	0.280748	0.280615	-76.18	-0.13	0.01	3.52	3.65	3.77	3.59	174
SCO- Topo	042-Z40	3614	67	0.280391	0.000025	0.000381	1.91E-05	0.280440	0.280542	0.280364	-84.67	-2.69	0.18	3.84	4.01	4.18	3.94	231
SCO- Topo	043-Z33	3399	69	0.280600	0.000030	0.000496	5.84E-06	0.280584	0.280708	0.280567	-77.27	-0.58	0.02	3.58	3.71	3.85	3.66	184
SCO- Topo	044-Z13	3335	62	0.280555	0.000034	0.001334	7.27E-05	0.280626	0.280757	0.280469	-78.86	-5.60	0.41	3.72	3.98	4.25	3.87	386
SCO- Topo	045-Z6	3430	63	0.280511	0.000039	0.000516	1.63E-05	0.280563	0.280684	0.280477	-80.42	-3.07	0.15	3.70	3.89	4.09	3.81	271
SCO- Topo	046-Z31	3272	62	0.280585	0.000032	0.000471	1.85E-05	0.280668	0.280806	0.280556	-77.78	-4.02	0.23	3.60	3.83	4.06	3.74	328
SP-01	032-Z155	3342	51	0.280483	0.000104	0.001053	1.27E-04	0.280622	0.280752	0.280415	-81.40	-7.36	1.01	3.79	4.09	4.40	3.96	447
SP-01	033-Z153	3543	83	0.280446	0.000054	0.000387	1.11E-05	0.280487	0.280597	0.280419	-82.72	-2.42	0.13	3.77	3.94	4.11	3.87	231
SP-01	034-Z147	3432	71	0.280524	0.000095	0.001004	1.77E-05	0.280562	0.280682	0.280457	-79.97	-3.72	0.14	3.73	3.94	4.15	3.85	299
SP-01	035-Z143	3262	70	0.280660	0.000142	0.001849	1.02E-04	0.280675	0.280814	0.280544	-75.14	-4.67	0.36	3.63	3.86	4.11	3.76	366
SP-01	036-Z165	3299	57	0.280661	0.000058	0.001477	7.04E-05	0.280650	0.280785	0.280567	-75.11	-2.97	0.19	3.59	3.79	3.99	3.70	293

Apêndice C – Tabelas com os dados de química mineral obtidos em microssonda eletrônica.

			Au analisys (wt%)																			
Number	As	S	Мо	Bi	Pd	Ag	Sb	Te	Hg	Se	Pt	Au	Pb	Cd	U	Fe	Со	Ni	Cu	Zn	Mn	Total
1	0	0.08	-	-	0	0.498	-	-	0.958	0.248	7.07	23.664	-	-	-	0.11	-	-	0	-	-	32.628
2	0	0.101	-	-	0	1.679	-	-	1.245	1.688	0	56.933	-	-	-	0.081	-	-	0.003	-	-	61.73
3	0	2.127	-	-	0	80.485	-	-	0.001	0.341	0	1.653	-	-	-	1.771	-	-	0.022	-	-	86.4
4	0	0.137	-	-	0	0.177	-	-	1.54	1.908	0	57.551	-	-	-	0.099	-	-	0.011	-	-	61.423
5	0	0	0	0.546	0	1.168	0	0.04	2.197	0.681	0	97.274	0	0.058	0	0.012	0	0	0.001	0	0	101.978
6	0	0.039	0	0.555	0	1.304	0	0	2.201	0.756	0	92.859	0	0.004	0	0.04	0.002	0	0.028	0	0	97.788
7	0.023	0.046	0	0.549	0	1.241	0	0	2.198	0.705	0	95.87	0	0.059	0	0.05	0	0	0.05	0	0.013	100.805
8	0	0.049	0	0.554	0	1.117	0	0	2.200	0.742	0	93.723	0	0.004	0	0.035	0.014	0	0.023	0	0	98.460
9	0	0.032	0	0.551	0	1.072	0	0	2.199	0.716	0	95.219	0	0	0.016	0.142	0.02	0.032	0.03	0	0.004	100.033
10	0	0.059	0	0.561	0	1.271	0	0.049	2.203	0.804	0	90.083	0	0	0	0.04	0.031	0.012	0	0.028	0	95.140
11	0	0.057	0	0.549	0	1.170	0	0	2.198	0.704	0	95.956	0	0.014	0	0.044	0	0.028	0.03	0	0	100.750
12	0	0.111	0	0.571	0	0.962	0	0.01	2.207	0.891	0	84.952	0	0.003	0.039	0.1	0.007	0.038	0	0	0	89.891
13	0.006	0.079	0	0.552	0	0.975	0	0	2.200	0.732	0	94.271	0	0.057	0	0.18	0	0.043	0.068	0	0.002	99.165
14	0	0.035	0	0.547	0	1.372	0	0	2.197	0.683	0	97.182	0	0	0	0.028	0	0	0.031	0	0.013	102.088
15	0	0.004	0	0.547	0	1.228	0	0	2.197	0.685	0.029	97.044	0	0.026	0	0.037	0.029	0.019	0.008	0	0	101.854
16	0.011	0.069	0	0.547	0	1.237	0	0.058	2.197	0.685	0	97.08	0	0.026	0.018	0.026	0.011	0.057	0.068	0	0	102.090
17	0	0.101	0	0.555	0	1.259	0	0.034	2.201	0.753	0	93.037	0	0.008	0	0.363	0	0.023	0.03	0	0	98.364
18	0	0.037	0	0.548	0	1.203	0	0.045	2.198	0.697	0	96.375	0	0.022	0	0.033	0	0	0.049	0	0	101.207
19	0	0.032	0	0.552	0	1.161	0	0.009	2.199	0.725	0	94.721	0	0	0	0.106	0.02	0.009	0.026	0	0	99.560
20	0	0.054	0	0.548	0	1.296	0	0.053	2.198	0.694	0	96.517	0	0	0	0.102	0	0	0.009	0	0	101.471
21	0.022	0.066	0	0.551	0	1.232	0	0.015	2.199	0.722	0	94.883	0	0.064	0	0.127	0.001	0	0.033	0	0	99.915
22	0.012	0.114	0	0.550	0	1.160	0	0	2.199	0.713	0	95.409	0	0.025	0	0.062	0	0	0.067	0	0	100.311
23	0	0.087	0	0.556	0	1.249	0	0	2.201	0.758	0	92.745	0	0.04	0	0.262	0.023	0	0.037	0	0.001	97.959

Tabela 16. Dados de química mineral do ouro.

104

24	0	0.083	0	0.1706	0	1.186	0	0	2.463	0.676	0	101.67	0	0.073	0	0.063	0	0.016	0.062	0	0	106.463
Minimum	0	0	0	0.1706	0	0.177	0	0	0.001	0.248	0	1.653	0	0	0	0.012	0	0	0	0	0	32.628
Maximum	0.023	2.127	0	0.5710	0	80.485	0	0.058	2.463	1.908	7.070	101.67	0	0.073	0.039	1.771	0.031	0.057	0.068	0.028	0.013	106.463
Average	0.003	0.150	0	0.533	0	4.446	0	0.016	2.000	0.780	0.296	84.861	0	0.024	0.004	0.163	0.008	0.014	0.029	0.001	0.002	93.228
Std. Dev.	0.007	0.422	0	0.085	0	16.199	0	0.022	0.545	0.341	1.443	25.019	0	0.025	0.010	0.352	0.011	0.018	0.023	0.006	0.004	17.169

Tabela 17. Dados de Química mineral das piritas detríticas. Os valores de elementos traço estão em ppm, S e Fe estão em wt%.

											Detri	al pyri	te anali	sys											
Number	As	S	Mo	Bi	Pd	Ag	Sb	Te	Hg	Se	Pt	Au	Pb	Cd	U	Fe	Co	Ni	Cu	Zn	Mn	Total	Co/Ni	Mo/Ni	Au/Ni
1	340	52.415	-	-	0	290	0	-	870	330	270	0	1550	0	-	45.54	3620	290	30	0	-	98.714	12.48	-	0.00
2	840	52.201	-	-	230	0	0	-	0	840	0	0	1530	340	-	45.906	3900	170	90	180	-	98.919	22.94	-	0.00
3	500	52.872	-	-	20	40	0	-	700	50	110	0	1710	0	-	46.035	3290	330	310	180	-	99.631	9.97	-	0.00
4	570	52.254	-	-	0	310	0	-	0	1890	230	0	650	130	-	46.413	860	700	0	60	-	99.207	1.23	-	0.00
5	440	52.032	-	-	0	0	0	-	1380	820	0	0	1630	350	-	46.003	780	650	580	0	-	98.698	1.20	-	0.00
6	0	52.213	-	-	10	80	0	-	860	2300	200	0	1860	0	-	46.102	500	540	280	100	-	98.988	0.93	-	0.00
7	0	52.2	490	0	0	460	0	300	0	1050	410	110	700	110	500	46.814	1260	430	210	230	0	99.64	2.93	1.14	0.26
8	630	52.004	290	0	0	10	0	0	0	620	340	0	690	80	210	46.625	2040	710	0	80	190	99.218	2.87	0.41	0.00
9	0	52.115	440	0	100	310	0	0	0	820	0	0	0	0	0	46.959	770	0	0	0	0	99.318	-	-	-
10	0	52.401	0	0	0	410	0	170	0	1060	1350	0	0	0	0	46.73	1140	1480	0	240	130	99.729	0.77	0.00	0.00
11	0	53.237	110	600	160	40	0	220	0	910	710	580	0	160	570	46.096	1120	5120	80	0	0	100.371	0.22	0.02	0.11
12	0	52.456	380	0	100	0	0	100	0	1350	0	0	0	420	170	47.064	1170	500	130	0	0	99.952	2.34	0.76	0.00
13	0	52.228	0	0	150	320	90	0	0	1070	550	0	0	20	130	46.846	560	0	40	430	70	99.417	-	-	-
14	0	52.933	50	0	180	0	0	0	0	1750	0	0	0	0	340	47.076	890	0	0	0	180	100.348	-	-	-
15	0	53.203	580	0	0	330	0	20	0	430	1470	0	560	0	630	47.014	750	0	0	10	0	100.695	-	-	-
16	0	53.329	0	0	0	200	70	30	0	1080	0	0	0	470	420	47.063	710	130	0	0	30	100.706	5.46	0.00	0.00
17	170	51.602	-	-	30	0	0	-	0	1470	280	0	1380	0	-	44.429	220	170	0	220	-	96.425	1.29	-	0.00
18	0	52.514	-	-	0	170	0	-	0	1420	310	0	1560	140	-	45.832	1280	370	0	370	-	98.908	3.46	-	0.00

19	0	51.884	320	0	0	0	0	610	0	930	0	0	350	80	0	46.89	870	320	0	300	0	99.152	2.72	1.00	0.00
20	250	52.103	200	0	190	30	70	0	0	490	2270	0	230	200	30	46.169	3890	540	0	0	0	99.111	7.20	0.37	0.00
21	0	51.712	110	0	280	0	0	240	0	640	590	0	190	300	0	46.894	980	0	40	320	0	98.975	-	-	-
22	0	51.521	0	0	330	210	110	60	0	1200	0	250	0	0	820	46.62	500	0	80	0	40	98.501	-	-	-
23	550	52.242	0	210	490	290	0	650	0	1100	30	590	0	0	390	46.387	2320	150	140	0	0	99.32	15.47	0.00	3.93
24	0	52.684	0	610	0	0	0	0	0	680	0	0	510	0	510	47.025	810	0	160	150	0	100.052	-	-	-
25	0	53.296	280	0	170	0	0	0	0	420	130	80	0	180	380	46.892	560	0	0	200	0	100.428	-	-	-
26	80	52.991	590	540	0	0	0	0	0	1190	720	0	0	0	0	46.406	660	2880	0	110	0	100.074	0.23	0.20	0.00
27	0	52.482	130	250	550	0	0	350	0	1130	230	0	690	380	0	46.905	860	130	20	320	0	99.891	6.62	1.00	0.00
28	0	52.106	0	280	0	0	0	90	0	1260	0	0	1040	0	0	46.581	1280	0	90	0	0	99.091	-	-	-
29	5710	53.075	740	690	400	0	0	0	0	290	860	0	1020	0	140	46.538	1950	190	0	620	50	100.879	10.26	3.89	0.00
30	450	52.914	0	70	70	160	20	0	0	1080	30	280	150	270	0	47.01	1840	60	100	0	0	100.382	30.67	0.00	4.67
31	510	53.282	-	-	160	0	0	-	1580	1220	0	0	1290	80	-	46.326	1250	300	360	120	-	100.295	4.17	-	0.00
32	980	52.542	-	-	250	0	0	-	1270	880	100	0	2060	0	-	45.991	680	0	230	420	-	99.22	-	-	-
33	0	49.641	6210	2150	430	30	100	30	0	720	0	0	1350	20	0	46.566	1410	1210	0	260	0	97.599	1.17	5.13	0.00
34	130	53.963	6120	680	20	0	0	0	0	140	0	0	1100	250	0	46.278	990	270	0	320	0	101.243	3.67	22.67	0.00
35	0	54.521	6450	1140	0	0	0	120	0	680	230	0	1220	0	570	46.504	890	50	0	320	0	102.237	17.80	129.00	0.00
Minimum	0	49.641	0	0	0	0	0	0	0	50	0	0	0	0	0	44.429	220	0	0	0	0	96.425	0.22	0.00	0.00
Maximum	5710	54.521	6450	2150	550	460	110	650	1580	2300	2270	590	2060	470	820	47.076	3900	5120	580	620	190	102.237	30.67	129.00	4.67
Average	347	52	940	289	123	105	13	120	190	952	326	54	715	114	232	46	1331	505	85	159	28	100	6.72	10.35	0.36
Std. Dev.	973	1	2018	500	159	145	32	185	445	483	503	148	674	145	256	1	971	976	132	163	56	1	7.80	32.13	1.19
									E	pigeneti	c inclu	sion-fr	ee pyrit	e analy	sis										
--------	------	--------	----	----	-----	-----	----	----	------	----------	---------	---------	----------	---------	-----	--------	------	------	-----	-----	----	---------	-------	-------	-------
Number	As	S	Mo	Bi	Pd	Ag	Sb	Te	Hg	Se	Pt	Au	Pb	Cd	U	Fe	Co	Ni	Cu	Zn	Mn	Total	Co/Ni	Mo/Ni	Au/Ni
1	520	52.407	-	-	0	0	0	-	230	0	50	0	1910	400	-	45.979	3520	1080	0	340	-	99.191	3.26	-	0.00
2	100	52.998	-	-	20	170	0	-	0	1410	0	0	1580	260	-	46.252	2180	0	140	0	-	99.836	-	-	-
3	0	52.515	-	-	0	0	0	-	0	1520	0	0	1730	160	-	46.123	630	230	0	0	-	99.065	2.74	-	0.00
4	410	52.044	-	-	150	380	0	-	220	1360	210	0	1640	470	-	45.83	2480	230	350	0	-	98.664	10.78	-	0.00
5	510	52.896	-	-	0	30	0	-	10	2040	10	0	1430	0	-	46.032	2980	300	30	0	-	99.662	9.93	-	0.00
6	0	52.07	-	-	0	0	0	-	140	1910	0	0	1370	0	-	45.848	3440	0	0	0	-	98.604	-	-	-
7	330	53.038	-	-	0	0	0	-	1010	1870	0	0	1130	0	-	45.898	2520	130	80	300	-	99.673	19.38	-	0.00
8	0	52.304	-	-	80	0	20	-	0	1220	0	0	2660	0	-	45.918	490	140	0	470	-	98.73	3.50	-	0.00
9	920	52.02	-	-	0	230	0	-	1340	0	60	0	1610	290	-	45.637	280	1040	70	0	-	98.493	0.27	-	0.00
10	0	52.375	-	-	0	0	0	-	890	0	0	0	1300	0	-	46.078	550	360	0	90	-	98.772	1.53	-	0.00
11	0	52.114	-	-	150	0	0	-	300	1900	0	0	1240	0	-	46.316	680	260	0	0	-	98.883	2.62	-	0.00
12	0	52.289	-	-	0	0	0	-	540	1540	0	0	1890	320	-	46.064	380	450	180	420	-	98.925	0.84	-	0.00
13	0	52.42	-	-	240	40	0	-	430	2350	0	0	1230	170	-	45.831	710	280	110	410	-	98.848	2.54	-	0.00
14	960	52.506	-	-	0	180	0	-	0	930	0	0	1550	0	-	45.726	3150	390	0	0	-	98.948	8.08	-	0.00
15	160	52.341	-	-	0	0	0	-	860	190	220	0	1120	170	-	46.13	1340	260	0	10	-	98.904	5.15	-	0.00
16	70	52.439	-	-	0	30	0	-	660	1810	430	0	1150	0	-	45.752	2650	170	0	0	-	98.888	15.59	-	0.00
17	0	52.138	-	-	0	150	0	-	0	1810	0	0	1890	0	-	46.372	1150	540	330	0	-	99.097	2.13	-	0.00
18	450	51.984	-	-	10	180	0	-	0	740	210	0	1480	20	-	45.683	4450	490	0	0	-	98.47	9.08	-	0.00
19	40	52.205	-	-	0	0	0	-	600	1210	390	0	1480	0	-	45.729	1480	1610	200	0	-	98.635	0.92	-	0.00
20	620	52.131	-	-	0	0	0	-	670	2320	0	0	1830	170	-	46.027	3850	230	120	30	-	99.142	16.74	-	0.00
21	600	51.99	-	-	150	220	0	-	760	570	0	0	2360	110	-	45.503	3990	670	170	0	-	98.453	5.96	-	0.00
22	0	52.251	-	-	170	170	0	-	480	0	330	0	1260	0	-	45.933	190	10	220	120	-	98.479	19.00	-	0.00
23	0	53.026	-	-	220	0	0	-	830	320	0	0	1500	120	-	46.642	260	40	290	0	-	100.026	6.50	-	0.00
24	1210	51.929	-	-	0	30	0	-	230	0	230	0	1680	0	-	45.799	3120	2020	340	0	-	98.614	1.54	-	0.00
25	0	52.126	-	-	40	0	0	-	140	2150	0	0	1660	360	-	46.014	1590	1380	160	0	-	98.888	1.15	-	0.00
26	1070	51.867	-	-	0	40	0	-	310	510	0	0	1610	470	-	46.174	4170	830	0	70	-	98.949	5.02	-	0.00

Tabela 18. Dados de química mineral das piritas epigenéticas sem inclusões. Os valores de elementos traço estão em ppm, S e Fe estão em wt%.

27	210	51.82	-	-	0	190	0	-	1340	780	0	0	1150	0	-	46.202	2080	280	0	0	-	98.625	7.43	-	0.00
28	30	52.349	-	-	70	10	0	-	0	2050	470	0	1230	0	-	45.957	2180	1360	0	0	-	99.046	1.60	-	0.00
29	0	52.066	-	-	0	40	0	-	210	950	350	0	2010	250	-	45.856	410	600	120	0	-	98.785	0.68	-	0.00
30	1080	51.504	-	-	0	0	0	-	0	0	40	0	1530	330	-	45.631	3470	0	240	0	-	97.804	-	-	-
31	490	51.651	-	-	100	0	0	-	0	920	0	0	1720	200	-	45.657	2890	510	190	0	-	98.01	5.67	-	0.00
32	0	51.935	-	-	0	0	0	-	650	1860	0	0	1710	0	-	45.74	870	5130	180	0	-	98.715	0.17	-	0.00
33	570	52.05	-	-	0	160	0	-	1570	320	0	0	960	0	-	45.908	2680	780	0	0	-	98.662	3.44	-	0.00
34	760	52.315	-	-	0	0	0	-	30	970	0	0	1310	0	-	46.164	3630	490	320	70	-	99.237	7.41	-	0.00
35	820	52.092	-	-	0	0	0	-	760	230	0	0	1060	0	-	46.295	2710	480	0	270	-	99.02	5.65	-	0.00
36	0	51.755	-	-	0	0	0	-	360	1000	0	0	1490	0	-	45.993	720	30	180	0	-	98.126	24.00	-	0.00
37	380	51.842	-	-	230	170	0	-	420	360	0	0	1320	20	-	45.465	2920	240	390	0	-	97.952	12.17	-	0.00
38	420	51.751	-	-	0	110	0	-	0	540	80	0	1490	0	-	46.095	3740	90	90	540	-	98.556	41.56	-	0.00
39	0	51.987	-	-	0	290	0	-	260	1350	0	0	1800	0	-	46.321	470	80	0	0	-	98.733	5.88	-	0.00
40	0	52.173	-	-	0	0	0	-	720	1520	440	0	1790	0	-	45.778	320	260	0	0	-	98.456	1.23	-	0.00
41	340	51.976	-	-	0	0	0	-	0	1040	0	0	1350	180	-	46.051	1940	400	250	0	-	98.577	4.85	-	0.00
42	360	51.831	-	-	0	340	0	-	20	2220	0	0	1190	60	-	45.759	2320	1370	460	0	-	98.424	1.69	-	0.00
43	0	51.982	-	-	90	150	0	-	400	0	330	0	1600	330	-	46.054	800	20	230	0	-	98.431	40.00	-	0.00
44	0	49.896	-	-	0	0	0	-	120	1020	0	0	1870	0	-	44.613	230	400	80	0	-	94.881	0.58	-	0.00
45	550	51.99	-	-	20	250	0	-	310	440	0	0	1180	40	-	45.81	3250	280	0	370	-	98.469	11.61	-	0.00
46	0	51.613	-	-	10	0	0	-	0	1610	0	0	1540	0	-	46.441	510	40	0	490	-	98.474	12.75	-	0.00
47	90	51.61	-	-	0	0	0	-	0	1290	0	0	870	0	-	46.223	480	260	0	0	-	98.132	1.85	-	0.00
48	230	51.779	-	-	0	0	0	-	1090	2210	0	0	2180	420	-	46.124	1030	460	0	0	-	98.665	2.24	-	0.00
49	60	52.465	-	-	60	90	0	-	0	2380	0	0	1470	290	-	46.453	440	0	0	0	-	99.397	-	-	-
50	0	52.169	-	-	0	0	0	-	0	1420	0	0	1230	100	-	45.887	770	120	330	0	-	98.453	6.42	-	0.00
51	0	52.271	-	-	0	350	0	-	40	1560	70	0	1050	170	-	46.172	680	2580	0	0	-	99.093	0.26	-	0.00
52	0	51.748	-	-	0	0	0	-	810	390	0	0	1500	0	-	46.077	380	60	0	360	-	98.175	6.33	-	0.00
53	30	51.94	-	-	90	50	0	-	140	230	70	0	1520	0	-	45.958	900	730	60	0	-	98.28	1.23	-	0.00
54	0	51.985	-	-	90	0	0	-	310	0	0	0	1720	0	-	45.866	880	700	0	110	-	98.232	1.26	-	0.00
55	320	51.691	-	-	0	0	0	-	0	200	0	0	990	0	-	46.17	3140	180	260	120	-	98.382	17.44	-	0.00

_

56	600	48.991	-	-	0	0	0	-	0	1560	0	0	1130	50	-	43.462	630	0	50	240	-	92.879	-	-	-
57	830	51.776	-	-	0	0	0	-	0	1760	380	0	1940	0	-	45.472	4540	790	0	240	-	98.296	5.75	-	0.00
58	4370	51.269	-	-	220	0	0	-	540	1140	0	0	1460	0	-	45.413	1600	1980	200	0	-	97.833	0.81	-	0.00
59	130	51.655	-	-	0	0	0	-	820	810	100	0	1810	400	-	45.764	570	40	0	0	-	97.887	14.25	-	0.00
60	530	52.42	-	-	0	110	0	-	50	1810	0	0	1540	10	-	46.37	3150	80	0	200	-	99.538	39.38	-	0.00
61	0	52.302	-	-	0	0	0	-	430	2030	300	0	1890	0	-	46.47	560	0	160	0	-	99.309	-	-	-
62	170	51.817	-	-	0	0	0	-	920	810	340	0	1770	0	-	46.333	600	0	150	490	-	98.675	-	-	-
63	0	52.078	-	-	20	0	0	-	0	1710	210	0	1370	30	-	46.277	150	0	0	0	-	98.704	-	-	-
64	380	51.981	-	-	270	310	0	-	200	1650	60	0	1280	140	-	45.814	3620	480	0	70	-	98.641	7.54	-	0.00
65	130	51.974	-	-	0	20	0	-	320	1910	430	0	1630	30	-	45.468	2920	910	80	0	-	98.28	3.21	-	0.00
66	0	52.544	-	-	0	230	0	-	170	1520	0	0	1540	290	-	45.793	2000	3140	380	140	-	99.278	0.64	-	0.00
67	20	51.914	-	-	0	0	0	-	90	1150	0	0	1270	30	-	46.442	360	80	30	0	-	98.659	4.50	-	0.00
68	370	51.899	-	-	0	0	0	-	690	1370	230	0	2130	0	-	46.308	990	70	210	0	-	98.813	14.14	-	0.00
69	210	51.894	-	-	160	0	0	-	1140	1740	0	0	1890	0	-	46.227	730	290	220	170	-	98.776	2.52	-	0.00
70	0	51.922	-	-	10	0	0	-	1400	920	0	0	1170	0	-	45.992	670	280	440	320	-	98.435	2.39	-	0.00
71	0	51.78	-	-	0	0	0	-	0	610	0	0	2070	0	-	46.681	940	560	0	10	-	98.88	1.68	-	0.00
72	1040	52.142	-	-	300	0	0	-	440	630	0	0	800	130	-	45.962	3460	1090	260	290	-	98.948	3.17	-	0.00
73	1750	51.482	-	-	190	190	0	-	240	1000	270	0	1900	340	-	45.566	530	110	0	330	-	97.733	4.82	-	0.00
74	0	51.825	-	-	0	10	0	-	170	600	0	0	2110	0	-	45.862	2550	400	0	10	-	98.272	6.38	-	0.00
75	210	52.094	-	-	0	160	0	-	810	2420	0	0	1260	150	-	46.003	2030	0	0	410	-	98.842	-	-	-
76	480	51.822	-	-	0	60	0	-	0	1830	390	0	1490	620	-	46.271	570	0	90	0	-	98.646	-	-	-
77	0	52.185	-	-	0	0	0	-	540	1500	0	0	1900	90	-	45.016	10130	1890	0	0	-	98.806	5.36	-	0.00
78	30	52.149	-	-	0	0	0	-	0	2280	170	0	1760	0	-	45.987	4170	70	0	480	-	99.032	59.57	-	0.00
79	0	52.004	-	-	0	0	0	-	430	370	220	0	1600	210	-	46.489	750	220	70	290	-	98.909	3.41	-	0.00
80	0	51.945	-	-	0	0	0	-	370	1240	0	0	1410	0	-	46.852	620	680	0	40	-	99.233	0.91	-	0.00
81	0	51.532	-	-	0	70	0	-	0	770	0	0	1530	0	-	46.464	730	30	0	210	-	98.33	24.33	-	0.00
82	40	51.904	-	-	20	0	0	-	70	310	0	0	1070	270	-	46.441	520	0	560	410	-	98.672	-	-	-
83	0	52.104	-	-	0	0	0	-	430	720	250	0	1220	90	-	46.329	450	210	0	0	-	98.77	2.14	-	0.00
84	0	51.786	-	-	0	210	0	-	680	1140	210	0	1590	20	-	46.32	430	150	20	0	-	98.551	2.87	-	0.00

85	0	51.412	-	-	180	0	0	-	440	810	220	0	1710	170	-	46.599	760	220	120	0	-	98.474	3.45	-	0.00
86	140	51.637	-	-	0	190	0	-	0	380	0	0	1790	30	-	46.372	1200	1160	190	320	-	98.549	1.03	-	0.00
87	360	51.996	-	-	160	0	0	-	0	970	0	0	1690	310	-	46.391	2270	0	0	300	-	98.993	-	-	-
88	0	52.074	-	-	150	0	0	-	1110	460	0	0	950	0	-	46.361	620	0	100	10	-	98.775	-	-	-
89	0	51.826	-	-	0	0	0	-	0	0	220	0	1790	0	-	45.68	700	2410	260	730	-	98.117	0.29	-	0.00
90	0	52.082	-	-	120	0	0	-	0	2170	0	0	1780	380	-	46.255	1100	1280	0	420	-	99.062	0.86	-	0.00
91	130	51.997	-	-	0	0	0	-	0	1790	0	0	1980	0	-	46.078	650	560	340	60	-	98.626	1.16	-	0.00
92	0	51.659	-	-	150	0	0	-	0	140	0	0	1790	0	-	46.251	750	330	330	0	-	98.259	2.27	-	0.00
93	100	52.128	-	-	140	70	0	-	40	460	0	0	1130	350	-	45.985	550	380	440	630	-	98.542	1.45	-	0.00
94	1090	51.642	-	-	0	110	0	-	570	2770	580	0	740	100	-	45.479	3920	500	0	0	-	98.159	7.84	-	0.00
95	230	51.878	-	-	0	0	0	-	0	150	60	0	1350	0	-	46.12	350	2370	30	0	-	98.452	0.15	-	0.00
96	350	51.684	-	-	0	20	0	-	0	1510	200	0	1990	150	-	45.755	3470	20	50	100	-	98.225	173.50	-	0.00
97	330	52.02	-	-	0	0	0	-	140	1150	100	0	1860	0	-	46.079	970	310	0	600	-	98.645	3.13	-	0.00
98	930	51.657	-	-	250	0	0	-	290	1410	60	0	180	0	-	46.046	2180	0	340	0	-	98.429	-	-	-
99	700	51.653	-	-	0	50	0	-	100	600	120	0	1670	100	-	46.115	3690	460	0	0	-	98.517	8.02	-	0.00
100	0	51.89	-	-	0	170	0	-	0	1270	470	0	1670	430	-	46.007	820	0	0	10	-	98.381	-	-	-
101	200	51.482	-	-	130	210	0	-	210	270	520	0	1490	0	-	46.168	720	180	0	300	-	98.073	4.00	-	0.00
102	0	51.821	-	-	0	380	0	-	0	1550	170	0	1590	0	-	46.081	590	60	0	0	-	98.336	9.83	-	0.00
103	0	52.093	600	0	0	20	0	20	0	350	1200	0	0	70	0	46.549	840	930	0	120	0	99.057	0.90	0.65	0.00
104	0	51.477	480	100	0	0	0	0	0	940	520	0	0	0	340	46.809	740	0	110	250	140	98.648	-	-	-
105	0	52.206	10	0	0	0	150	0	0	300	770	220	0	0	130	46.875	1390	770	0	0	30	99.458	1.81	0.01	0.29
106	0	51.953	0	150	0	0	0	0	0	0	0	0	0	0	0	46.813	840	340	0	170	0	98.916	2.47	0.00	0.00
107	0	52.323	0	0	0	0	150	170	0	1600	750	0	0	140	0	46.859	660	450	0	320	0	99.606	1.47	0.00	0.00
108	0	51.782	110	1080	100	550	240	0	0	330	780	10	0	0	0	46.695	1000	230	0	130	0	98.933	4.35	0.48	0.04
109	0	52.501	0	250	0	30	0	220	0	1910	0	0	0	150	240	46.814	660	930	0	140	120	99.78	0.71	0.00	0.00
110	0	51.234	470	0	0	0	0	30	0	450	650	0	0	120	220	46.587	770	0	0	0	130	98.105	-	-	-
111	0	52.322	0	910	0	100	0	0	0	890	410	0	20	270	370	46.74	1020	300	0	0	60	99.497	3.40	0.00	0.00
112	0	52.608	330	0	420	0	40	0	0	690	990	150	80	80	0	46.782	2680	200	180	0	0	99.974	13.40	1.65	0.75
113	0	53.119	290	90	0	0	0	0	0	900	820	0	0	0	90	46.927	1870	0	140	110	0	100.477	-	-	-

114	0	53.058	0	680	0	0	0	90	0	1160	290	0	0	0	370	46.861	1170	710	0	30	0	100.369	1.65	0.00	0.00
115	950	52.559	240	0	0	430	0	0	0	0	260	0	100	0	410	46.509	3880	910	130	0	0	99.799	4.26	0.26	0.00
116	0	53.08	0	0	260	0	0	0	0	2180	130	0	0	400	0	46.76	850	200	0	0	0	100.242	4.25	0.00	0.00
117	410	52.785	0	0	0	60	0	30	0	950	0	0	0	230	160	46.64	2980	570	0	0	90	99.973	5.23	0.00	0.00
118	0	53.044	0	0	0	0	0	320	0	1450	0	0	0	180	0	46.39	1780	40	30	0	180	99.868	44.50	0.00	0.00
119	20	52.862	0	530	340	0	0	460	0	1610	0	0	0	0	400	46.938	1290	240	120	180	0	100.319	5.38	0.00	0.00
120	0	52.186	330	0	30	290	370	30	0	1360	290	0	130	230	380	46.985	850	20	0	370	50	99.666	42.50	16.50	0.00
121	0	51.541	110	0	10	0	0	150	0	0	0	0	40	0	500	46.917	1070	10	0	80	0	98.655	107.00	11.00	0.00
122	820	52.237	0	0	0	0	0	0	0	1520	540	0	0	0	10	46.667	4060	70	0	160	0	99.622	58.00	0.00	0.00
123	0	52.924	1090	430	0	300	0	0	0	0	0	90	660	180	0	46.984	690	150	60	60	0	100.279	4.60	7.27	0.60
124	0	52.176	0	530	0	160	0	0	0	1220	0	0	360	60	330	47.248	530	0	0	110	40	99.758	-	-	-
125	560	52.069	360	30	0	290	0	370	0	690	990	0	0	0	0	46.865	1990	470	0	170	300	99.556	4.23	0.77	0.00
126	0	52.373	0	440	170	200	0	70	0	580	170	0	90	220	320	47.051	1250	0	0	280	40	99.807	-	-	-
127	0	52.091	0	0	0	0	0	240	0	190	330	0	0	0	0	46.958	2200	1450	0	230	0	99.513	1.52	0.00	0.00
128	60	52.733	260	0	0	0	0	190	0	720	250	380	270	50	90	47.033	1060	100	0	0	0	100.109	10.60	2.60	3.80
129	1150	52.377	570	0	0	0	60	0	0	260	0	430	920	190	0	46.415	1310	450	260	460	20	99.4	2.91	1.27	0.96
130	0	52.46	0	120	0	0	0	70	0	950	0	0	0	0	120	46.341	10140	0	140	310	0	99.986	-	-	-
131	0	52.566	0	1370	0	0	0	90	0	620	0	0	10	200	0	46.434	830	0	0	0	0	100.059	-	-	-
132	550	52.295	0	0	0	40	0	0	0	840	0	0	890	0	230	46.898	2670	200	10	440	0	99.78	13.35	0.00	0.00
133	1070	51.716	80	10	10	10	0	350	0	640	0	100	0	160	0	46.743	4080	0	400	110	0	99.161	-	-	-
134	1410	51.888	560	0	0	230	0	390	0	750	480	0	0	150	0	46.917	4170	70	0	150	0	99.641	59.57	8.00	0.00
135	70	52.009	640	0	210	250	0	130	0	170	0	0	0	240	720	47.157	1310	0	170	130	0	99.57	-	-	-
136	0	52.322	60	0	10	0	0	0	0	660	170	0	0	40	0	47	980	240	0	170	0	99.555	4.08	0.25	0.00
137	0	51.964	220	1670	210	0	0	0	0	1250	0	0	610	0	220	46.689	2480	2130	0	100	0	99.542	1.16	0.10	0.00
138	0	51.932	490	0	0	210	0	110	0	750	140	240	0	320	220	47.047	1060	180	0	390	0	99.39	5.89	2.72	1.33
139	410	52.34	310	110	0	210	0	60	0	1710	0	0	0	0	90	46.54	1320	500	0	0	0	99.352	2.64	0.62	0.00
140	0	52.157	0	0	40	0	0	30	0	850	480	0	0	0	0	46.757	690	520	120	60	0	99.193	1.33	0.00	0.00
141	180	52.286	0	0	210	80	0	0	0	330	520	0	0	350	0	47.036	1660	70	0	0	50	99.667	23.71	0.00	0.00
142	320	52.332	0	160	0	180	0	340	0	0	30	0	0	470	80	46.986	1250	1360	0	160	0	99.753	0.92	0.00	0.00

143	340	52.629	200	0	440	0	0	0	0	890	0	0	0	260	40	46.73	2080	530	410	430	40	99.925	3.92	0.38	0.00
144	7160	52.051	0	0	0	0	0	80	0	980	600	0	0	0	0	46.631	1700	130	0	230	0	99.77	13.08	0.00	0.00
145	0	52.094	300	0	0	0	0	0	0	1420	0	120	0	170	210	46.119	800	1430	0	310	60	98.695	0.56	0.21	0.08
146	0	52.855	0	0	160	0	0	520	0	470	0	0	260	330	10	47.165	860	710	50	0	140	100.371	1.21	0.00	0.00
147	0	52.364	370	0	280	290	0	80	0	920	0	0	260	0	0	47.08	970	390	0	450	0	99.845	2.49	0.95	0.00
148	410	52.449	0	0	0	10	260	0	0	0	130	0	0	10	10	47.21	1170	60	80	0	0	99.873	19.50	0.00	0.00
149	0	52.165	120	90	70	0	0	0	0	1410	0	0	0	90	590	46.964	580	0	0	0	0	99.415	-	-	-
150	1000	52.217	180	0	0	0	0	0	0	1470	0	0	0	90	0	46.478	3830	190	110	90	0	99.391	20.16	0.95	0.00
151	0	52.453	0	0	280	0	0	310	0	700	450	0	0	0	10	46.591	1800	80	0	270	0	99.434	22.50	0.00	0.00
152	0	52.149	270	0	30	0	0	0	0	650	120	0	0	0	0	46.596	800	800	0	250	0	99.037	1.00	0.34	0.00
153	660	52.81	840	150	350	0	0	0	0	0	1540	0	190	0	0	46.716	2240	210	20	0	0	100.146	10.67	4.00	0.00
154	190	52.632	0	0	0	370	0	0	0	0	1140	0	0	0	80	46.879	1920	80	0	0	120	99.901	24.00	0.00	0.00
155	0	52.666	560	0	120	340	0	160	0	120	70	0	0	50	170	47.067	760	0	0	0	130	99.981	-	-	-
156	420	52.44	0	0	0	0	0	70	0	1430	780	0	1220	0	0	46.596	3340	110	0	60	0	99.779	30.36	0.00	0.00
157	0	52.488	120	450	340	20	0	0	0	230	0	0	0	0	130	47.094	1040	0	50	0	0	99.82	-	-	-
158	0	52.482	0	110	230	0	0	420	0	730	410	0	330	0	70	46.873	910	0	0	190	0	99.695	-	-	-
159	0	52.783	0	290	190	290	0	0	0	1360	10	0	0	110	240	47.048	990	0	0	140	0	100.193	-	-	-
160	1530	52.479	0	390	0	0	0	0	0	1010	230	0	150	0	420	46.317	1860	1810	0	130	0	99.549	1.03	0.00	0.00
161	1150	52.647	470	0	20	120	0	0	0	1520	0	0	0	0	0	46.733	2570	0	0	0	0	99.965	-	-	-
162	1370	52.916	60	160	50	20	0	40	0	680	740	40	120	0	400	46.554	2300	1030	0	520	0	100.223	2.23	0.06	0.04
163	1400	52.479	0	0	0	0	0	0	0	1100	0	0	0	0	190	46.857	1510	1530	10	400	0	99.95	0.99	0.00	0.00
164	0	52.198	0	330	0	0	120	0	0	1100	0	0	0	370	230	46.954	1000	20	0	0	80	99.477	50.00	0.00	0.00
165	520	52.563	260	0	140	70	0	0	0	0	110	0	0	0	0	46.593	2340	240	120	150	0	99.551	9.75	1.08	0.00
166	660	52.58	60	0	180	0	0	220	0	890	90	0	0	100	500	46.607	1000	1900	0	180	30	99.768	0.53	0.03	0.00
167	930	52.493	440	330	460	570	0	20	0	480	980	0	0	0	250	47.121	1240	1100	190	0	0	100.313	1.13	0.40	0.00
168	0	52.661	0	0	0	60	0	0	0	1490	710	0	0	400	0	46.913	960	440	0	50	0	99.985	2.18	0.00	0.00
169	570	52.647	0	0	130	340	0	90	0	750	0	380	1140	0	160	46.644	850	1360	0	0	0	99.868	0.63	0.00	0.28
170	0	52.55	0	0	370	120	0	280	0	20	0	0	0	0	200	47.067	1000	170	40	200	10	99.858	5.88	0.00	0.00
171	1470	52.483	110	0	0	0	0	0	0	670	90	0	0	20	0	46.635	3700	720	290	140	70	99.846	5.14	0.15	0.00

172	0	52.246	0	80	950	0	0	0	0	0	610	0	0	140	0	46.932	710	0	0	10	0	99.428	-	-	-
173	0	52.206	0	0	0	90	0	370	0	480	0	0	0	20	870	46.857	880	0	150	230	40	99.376	-	-	-
174	0	52.455	170	0	0	0	0	0	0	260	930	0	320	70	0	46.922	920	200	0	0	0	99.664	4.60	0.85	0.00
175	0	52.701	410	550	230	0	0	0	0	470	530	0	350	0	520	47.206	940	180	0	70	0	100.332	5.22	2.28	0.00
176	0	53.214	0	250	240	30	0	590	0	480	0	0	450	70	0	46.988	790	90	0	210	0	100.522	8.78	0.00	0.00
177	0	52.944	270	130	180	500	120	0	0	1360	760	0	270	110	40	47.077	1410	0	170	0	60	100.559	-	-	-
178	0	53.374	0	360	0	120	90	0	0	700	0	0	310	60	300	47.012	1300	950	160	310	40	100.856	1.37	0.00	0.00
179	0	53.285	140	0	0	0	0	70	0	1370	0	0	0	0	170	46.817	1510	1030	0	0	150	100.546	1.47	0.14	0.00
180	0	52.985	-	-	0	0	0	-	410	350	0	0	1410	0	-	46.331	340	490	610	0	-	99.677	0.69	-	0.00
181	10630	52.092	-	-	70	60	0	-	620	0	0	0	1390	180	-	45.745	1230	4150	0	0	-	99.67	0.30	-	0.00
182	0	52.983	-	-	0	260	0	-	0	0	110	0	1410	250	-	45.399	720	5370	10	0	-	99.195	0.13	-	0.00
183	810	52.604	-	-	30	320	0	-	1000	160	0	0	1310	0	-	45.873	1770	300	40	30	-	99.054	5.90	-	0.00
184	0	52.601	-	-	50	0	0	-	220	1420	20	0	1570	0	-	46.305	510	0	140	0	-	99.299	-	-	-
185	0	52.794	-	-	0	320	0	-	460	600	0	0	1580	0	-	45.729	410	0	190	20	-	98.881	-	-	-
186	160	52.994	-	-	0	10	0	-	80	1920	0	0	1720	60	-	45.825	590	0	0	540	-	99.327	-	-	-
187	0	52.876	-	-	0	90	0	-	640	0	0	0	1290	0	-	45.79	1580	160	120	0	-	99.054	9.88	-	0.00
188	820	52.77	-	-	0	150	0	-	1150	480	0	0	930	0	-	45.666	3580	790	230	150	-	99.264	4.53	-	0.00
189	240	52.968	-	-	0	0	0	-	170	1460	0	0	1740	60	-	46.487	740	360	0	380	-	99.97	2.06	-	0.00
190	540	53.268	-	-	50	420	0	-	860	0	290	0	1490	310	-	45.98	1710	120	470	0	-	99.874	14.25	-	0.00
191	700	52.967	-	-	190	280	0	-	360	1200	0	0	970	0	-	45.827	3160	120	340	0	-	99.526	26.33	-	0.00
192	370	52.245	-	-	0	0	0	-	560	400	170	0	940	0	-	46.053	1920	1520	280	0	-	98.914	1.26	-	0.00
193	0	52.945	-	-	0	0	0	-	640	680	50	0	1510	70	-	46.422	760	110	0	0	-	99.749	6.91	-	0.00
194	70	52.505	-	-	90	0	0	-	420	0	430	0	2070	0	-	46.076	680	130	80	230	-	99.001	5.23	-	0.00
195	0	52.026	-	-	160	50	0	-	250	400	0	0	1950	0	-	45.442	5120	140	20	50	-	98.282	36.57	-	0.00
196	130	52.603	-	-	0	0	0	-	350	140	270	0	890	60	-	45.728	740	860	280	40	-	98.707	0.86	-	0.00
197	0	52.331	-	-	0	0	0	-	170	1220	230	0	1670	340	-	46.119	420	240	330	0	-	98.912	1.75	-	0.00
198	550	52.787	-	-	70	90	0	-	280	1480	0	0	1980	0	-	45.831	1770	0	0	0	-	99.24	-	-	-
199	110	52.274	-	-	110	0	0	-	0	690	10	0	1380	60	-	45.737	1430	2080	0	0	-	98.598	0.69	-	0.00
200	0	52.391	-	-	0	0	0	-	90	390	0	0	1490	50	-	46.734	330	0	0	230	-	99.383	-	-	-

201	0	52.343	-	-	0	0	0	-	0	1510	0	0	1460	150	-	46	2180	90	0	0	-	98.882	24.22	-	0.00
202	460	52.239	-	-	110	0	0	-	0	630	0	0	1370	0	-	45.661	2800	0	0	250	-	98.462	-	-	-
203	10	53.068	-	-	20	0	0	-	870	1300	0	0	1750	210	-	46.068	610	90	10	0	-	99.623	6.78	-	0.00
204	0	52.533	-	-	0	290	0	-	1260	520	210	0	1190	0	-	46.067	140	0	0	0	-	98.961	-	-	-
205	20	52.494	-	-	0	0	0	-	0	1310	260	0	1740	0	-	46.028	610	0	0	60	-	98.922	-	-	-
206	0	51.588	-	-	0	0	0	-	750	0	350	0	1270	0	-	45.892	510	0	110	0	-	97.779	-	-	-
207	80	51.868	-	-	0	90	0	-	1150	500	270	0	1640	100	-	45.734	2600	160	80	0	-	98.269	16.25	-	0.00
208	0	52.264	-	-	0	400	0	-	880	860	0	0	1370	0	-	46.049	1130	260	40	0	-	98.807	4.35	-	0.00
209	0	52.865	-	-	0	400	0	-	0	620	380	0	2070	0	-	45.859	820	1280	310	0	-	99.312	0.64	-	0.00
210	0	52.295	-	-	0	120	0	-	1270	1020	0	0	1450	0	-	45.756	1460	1990	70	0	-	98.789	0.73	-	0.00
211	0	52.109	0	0	0	0	0	0	0	1240	0	0	0	80	550	46.255	1760	2040	0	80	0	98.939	0.86	0.00	0.00
212	30	52.056	350	0	20	330	0	0	0	740	0	220	0	0	150	46.108	2840	520	0	70	0	98.691	5.46	0.67	0.42
213	0	52.035	0	0	100	60	0	70	0	1210	290	0	40	330	110	46.915	750	0	0	270	0	99.273	-	-	-
214	130	51.429	80	0	0	0	0	0	0	590	0	0	1030	0	0	46.868	670	0	0	280	30	98.578	-	-	-
215	0	52.213	0	0	0	160	80	10	0	1270	0	0	0	0	120	46.58	1020	210	40	0	40	99.088	4.86	0.00	0.00
216	0	52.69	590	0	0	0	0	0	0	1720	110	0	520	360	0	46.628	1050	10	0	150	0	99.769	105.00	59.00	0.00
217	0	52.043	30	0	0	260	0	380	0	620	770	0	0	180	10	46.839	1060	270	0	30	0	99.243	3.93	0.11	0.00
218	0	51.531	410	0	210	490	0	70	0	220	140	0	360	0	550	46.484	2300	0	0	70	10	98.498	-	-	-
219	0	51.784	0	0	40	0	0	420	0	860	580	0	460	310	0	46.651	1260	120	0	230	0	98.863	10.50	0.00	0.00
220	0	52.02	0	0	30	0	0	0	0	460	110	0	230	0	0	46.801	920	910	130	0	0	99.1	1.01	0.00	0.00
221	0	51.54	0	550	80	190	0	170	0	460	70	0	120	40	370	46.227	1580	1930	0	470	0	98.37	0.82	0.00	0.00
222	0	51.816	0	480	0	0	180	0	0	1000	640	0	0	100	660	46.5	870	0	0	0	30	98.712	-	-	-
223	360	52.339	20	620	0	0	0	300	0	1540	0	0	0	270	810	46.731	2310	140	0	0	0	99.707	16.50	0.14	0.00
224	130	51.978	0	0	0	480	0	80	0	400	940	0	0	190	0	46.992	950	10	0	40	0	99.292	95.00	0.00	0.00
225	710	51.917	0	0	100	470	0	0	0	310	1540	0	640	190	0	46.335	2950	1020	90	10	0	99.055	2.89	0.00	0.00
226	760	51.386	40	0	130	0	0	210	0	260	870	0	0	20	0	46.643	4520	390	0	0	10	98.75	11.59	0.10	0.00
227	630	52.057	0	600	40	0	40	0	0	420	310	0	0	100	270	46.238	3940	90	0	240	0	98.963	43.78	0.00	0.00
228	0	52.659	0	160	0	0	130	280	0	1160	850	190	0	460	200	46.734	1280	80	120	70	0	99.891	16.00	0.00	2.38
229	0	52.496	0	0	160	90	0	170	0	470	0	250	180	190	0	46.849	440	90	200	50	10	99.575	4.89	0.00	2.78

230	0	52.353	0	1180	20	0	0	180	0	1640	10	0	0	0	0	46.704	930	150	290	0	0	99.497	6.20	0.00	0.00
231	0	53.049	0	0	200	70	250	380	0	600	0	190	0	170	70	47.339	1970	380	0	0	0	100.816	5.18	0.00	0.50
232	0	52.474	170	0	350	0	0	50	0	640	0	0	0	200	0	47.388	890	0	210	190	60	100.183	-	-	-
233	20	52.7	180	0	50	30	0	110	0	970	1480	0	0	100	270	46.797	830	0	0	0	40	99.905	-	-	-
234	0	53.105	160	0	0	0	0	190	0	1090	10	0	0	0	0	46.688	1080	300	0	30	0	100.106	3.60	0.53	0.00
235	0	52.783	0	290	240	0	0	420	0	750	740	0	80	0	300	46.801	2260	140	70	56	0	100.169	16.14	0.00	0.00
236	0	53.127	0	840	180	470	0	260	0	400	10	0	1160	0	0	46.844	740	0	110	40	0	100.392	-	-	-
237	300	53.09	220	600	250	0	0	0	0	490	0	0	0	290	130	46.971	1150	310	50	0	0	100.44	3.71	0.71	0.00
238	190	52.721	0	30	0	0	40	50	0	1000	170	0	260	0	0	46.8	2140	0	0	240	0	99.933	-	-	-
239	0	52.798	0	0	0	0	20	40	0	170	0	200	770	0	0	47.13	660	0	0	30	0	100.117	-	-	-
240	0	53.612	220	0	190	0	0	240	0	1090	200	0	0	0	0	46.925	930	320	110	70	50	100.879	2.91	0.69	0.00
241	30	52.669	0	590	0	260	0	400	0	1710	530	0	620	0	0	46.746	990	0	0	0	0	99.928	-	-	-
242	0	53.427	0	0	240	0	0	0	0	2130	130	0	930	80	180	46.841	690	10	0	290	50	100.741	69.00	0.00	0.00
243	0	53.364	390	950	220	0	0	30	0	1410	0	0	230	130	320	46.873	1260	0	0	0	0	100.758	-	-	-
244	760	52.69	0	20	0	0	0	0	0	850	1310	0	380	10	0	46.482	3970	0	0	260	0	99.928	-	-	-
245	0	53.322	0	0	20	230	90	20	0	1000	370	0	340	150	420	46.922	770	0	0	0	0	100.585	-	-	-
246	0	52.782	0	0	110	0	40	130	0	920	0	0	0	640	70	47.115	1230	0	0	310	70	100.249	-	-	-
247	0	52.903	0	380	90	370	60	0	0	1080	0	0	0	10	560	46.797	640	0	0	0	10	100.02	-	-	-
248	130	53.559	500	170	0	0	0	530	0	710	0	0	0	260	230	46.918	1880	690	100	0	0	100.997	2.72	0.72	0.00
249	170	53.114	0	40	0	0	0	0	0	1380	320	50	0	210	0	46.703	3830	260	0	0	0	100.443	14.73	0.00	0.19
250	7190	52.997	0	640	50	0	0	0	0	1070	0	0	0	0	0	45.586	2760	4170	70	0	10	100.179	0.66	0.00	0.00
251	0	52.829	0	780	0	370	0	0	0	960	0	0	0	0	0	47.043	870	0	0	340	130	100.217	-	-	-
252	0	52.882	0	300	190	0	0	230	0	590	80	0	0	70	480	46.913	910	20	0	30	0	100.085	45.50	0.00	0.00
253	2950	52.359	0	0	0	0	0	0	0	1350	0	80	0	0	0	46.192	8470	0	10	260	0	99.863	-	-	-
254	0	52.804	480	0	0	0	0	500	0	830	0	0	460	200	0	46.797	760	20	180	70	0	99.951	38.00	24.00	0.00
255	0	52.646	0	0	0	0	0	320	0	750	330	0	0	0	80	46.571	840	0	150	0	0	99.464	-	-	-
256	0	53.043	0	0	0	0	0	540	0	440	300	0	0	0	920	46.447	3300	370	180	160	0	100.111	8.92	0.00	0.00
257	0	52.888	350	0	0	200	0	0	0	550	0	0	0	0	840	46.937	690	30	190	50	0	100.115	23.00	11.67	0.00
258	370	53.102	0	370	0	60	0	0	0	620	1020	540	0	40	780	46.657	1060	280	0	0	70	100.316	3.79	0.00	1.93

259	0	52.675	0	0	180	30	0	350	0	980	0	260	590	70	440	46.627	1080	90	0	0	130	99.749	12.00	0.00	2.89
260	0	53.031	0	0	250	230	0	190	0	750	0	0	0	0	90	47	1150	150	110	0	0	100.323	7.67	0.00	0.00
261	0	52.788	0	12330	0	0	0	0	0	1250	0	0	40	0	100	46.999	1190	260	0	110	50	100.21	4.58	0.00	0.00
262	0	54.052	0	0	120	0	30	0	0	1380	300	0	0	200	60	47.105	1630	210	10	180	0	101.569	7.76	0.00	0.00
263	0	53.295	0	140	0	50	0	120	0	1370	110	0	450	0	90	46.973	1390	280	50	80	0	100.681	4.96	0.00	0.00
264	950	53.607	20	0	0	0	130	530	0	0	0	0	300	170	0	46.342	4860	2000	0	180	0	100.863	2.43	0.01	0.00
265	2770	52.917	0	0	510	0	0	270	0	1250	0	0	0	0	670	46.347	6030	2620	0	220	0	100.698	2.30	0.00	0.00
266	0	52.767	140	180	0	30	0	0	0	480	40	0	1010	0	0	47.278	780	40	200	0	0	100.335	19.50	3.50	0.00
267	0	52.991	110	0	0	0	10	50	0	10	700	440	0	40	0	47.079	790	40	300	100	0	100.338	19.75	2.75	11.00
268	0	52.861	0	150	100	320	0	0	0	1440	310	0	0	10	790	47.12	690	0	0	90	0	100.371	-	-	-
269	0	52.958	0	290	40	440	0	120	0	260	0	0	0	190	0	46.966	510	200	250	280	0	100.182	2.55	0.00	0.00
270	0	53.987	100	0	0	0	0	190	0	2300	540	510	0	0	0	46.874	720	50	0	370	160	101.355	14.40	2.00	10.20
271	0	53.135	0	370	0	0	0	0	0	0	640	0	0	0	630	46.68	2850	0	20	0	130	100.279	-	-	-
272	0	52.711	0	60	0	0	0	210	0	900	0	0	0	190	70	47.09	910	490	10	0	0	100.085	1.86	0.00	0.00
273	0	53.891	180	0	190	0	0	350	0	2290	380	0	0	0	460	47.144	1120	0	10	210	120	101.566	-	-	-
274	0	52.56	120	0	100	380	0	0	0	80	260	0	30	190	0	46.545	1070	630	100	30	90	99.413	1.70	0.19	0.00
275	0	53.687	0	460	0	310	0	180	0	470	190	0	310	210	70	46.856	1130	230	10	420	0	100.942	4.91	0.00	0.00
276	0	52.77	0	100	0	0	0	160	0	0	0	0	520	270	110	47.298	890	50	110	190	80	100.316	17.80	0.00	0.00
277	0	52.893	120	0	0	0	0	0	0	340	510	0	240	0	50	46.948	1040	0	0	0	0	100.071	-	-	-
278	0	53.179	950	150	0	0	0	0	0	0	300	0	0	240	400	47.252	1230	0	0	210	0	100.779	-	-	-
279	0	53.245	180	260	100	90	0	160	0	1090	0	0	0	0	210	47.078	760	50	0	0	0	100.613	15.20	3.60	0.00
280	0	52.945	0	580	110	0	70	240	0	60	0	0	0	290	0	46.957	940	0	0	220	0	100.153	-	-	-
281	0	51.524	550	0	0	90	0	0	0	260	0	0	0	280	0	46.25	790	60	30	20	0	97.982	13.17	9.17	0.00
282	0	53.297	0	290	0	0	0	0	0	390	1130	0	0	0	0	46.976	1120	380	0	0	140	100.618	2.95	0.00	0.00
283	0	52.978	0	270	180	0	0	180	0	1170	0	0	0	140	430	46.897	740	0	110	240	0	100.221	-	-	-
284	0	54.252	0	0	20	160	0	0	0	0	850	0	0	190	0	46.666	1600	0	180	0	50	101.223	-	-	-
285	0	53.33	-	-	60	0	0	-	900	730	0	0	1640	0	-	46.321	600	30	0	360	-	100.083	20.00	-	0.00
286	90	52.847	-	-	0	110	0	-	370	0	0	0	1270	60	-	46.447	940	230	0	0	-	99.601	4.09	-	0.00
287	0	53.256	-	-	0	60	0	-	440	870	0	0	1500	70	-	45.991	1710	340	250	0	-	99.771	5.03	-	0.00

_

288	260	53.649	-	-	120	0	0	-	0	1970	60	0	1050	50	-	46.687	1320	130	0	0	-	100.832	10.15	-	0.00
289	50	53.017	-	-	110	0	0	-	10	1270	0	0	1650	0	-	46.639	620	190	130	0	-	100.059	3.26	-	0.00
290	260	52.867	-	-	0	0	0	-	660	210	0	0	1880	0	-	45.469	750	170	0	0	-	99.404	4.41	-	0.00
291	250	53.048	-	-	0	0	0	-	710	1000	240	0	1590	310	-	46.284	2760	230	70	40	-	100.088	12.00	-	0.00
292	420	53.204	-	-	350	0	0	-	1100	1080	480	0	1740	230	-	46.002	770	700	110	0	-	99.904	1.10	-	0.00
293	190	53.26	-	-	110	0	0	-	650	260	0	0	1800	380	-	46.316	680	260	0	0	-	100.009	2.62	-	0.00
294	0	52.973	-	-	10	0	0	-	700	1040	120	0	1560	180	-	46.153	580	650	370	0	-	99.647	0.89	-	0.00
295	360	53.294	-	-	100	30	0	-	0	1790	0	0	1590	0	-	46.043	970	140	0	90	-	99.844	6.93	-	0.00
296	1550	52.188	-	-	110	100	0	-	630	1580	0	0	1330	0	-	45.422	2690	400	150	80	-	98.472	6.73	-	0.00
297	0	53.178	-	-	130	260	0	-	940	1500	350	0	1490	270	-	46.109	260	320	10	0	-	99.84	0.81	-	0.00
298	370	52.656	-	-	30	160	0	-	510	1690	0	0	1270	110	-	46.225	610	30	250	0	-	99.384	20.33	-	0.00
299	1410	52.641	-	-	0	0	0	-	770	0	0	0	1900	300	-	45.807	1520	1190	60	0	-	99.163	1.28	-	0.00
300	650	52.695	-	-	290	0	0	-	940	0	0	0	1320	70	-	45.865	1320	1690	0	100	-	99.198	0.78	-	0.00
301	250	53.021	-	-	0	0	0	-	0	1230	170	0	1460	0	-	46.051	780	120	40	150	-	99.492	6.50	-	0.00
302	680	52.677	-	-	190	160	0	-	0	1610	130	0	1570	30	-	45.788	1400	1060	510	390	-	99.238	1.32	-	0.00
303	1100	52.578	-	-	0	0	0	-	80	600	480	0	1150	230	-	45.981	2140	680	0	260	-	99.231	3.15	-	0.00
304	2070	52.493	-	-	70	0	0	-	400	1610	50	0	1660	90	-	45.972	2700	1270	0	450	-	99.502	2.13	-	0.00
305	0	52.976	-	-	0	0	0	-	460	2220	0	0	1680	360	-	46.453	700	160	240	0	-	100.011	4.38	-	0.00
306	850	52.362	-	-	180	0	0	-	800	850	120	0	1100	0	-	46.395	1430	990	0	180	-	99.407	1.44	-	0.00
307	1230	52.532	-	-	0	430	0	-	630	1600	0	0	2260	90	-	45.98	2970	960	0	110	-	99.54	3.09	-	0.00
308	80	52.345	5700	890	0	0	0	110	0	770	180	0	1450	190	0	46.849	880	0	20	60	120	100.239	-	-	-
309	0	52.544	5360	1230	10	0	0	0	0	1160	830	0	1230	40	0	46.676	2710	480	0	110	180	100.554	5.65	11.17	0.00
310	1530	51.725	5920	560	0	0	30	20	0	810	0	0	1410	180	590	46.173	6830	250	50	0	20	99.718	27.32	23.68	0.00
311	0	52.366	5850	350	330	70	0	0	0	1200	170	0	3020	10	0	47.002	890	220	110	0	0	100.59	4.05	26.59	0.00
312	0	52.227	5660	1700	130	220	190	0	0	670	570	0	1050	0	0	46.915	1010	710	30	0	0	100.336	1.42	7.97	0.00
313	2300	50.976	5970	1420	40	0	0	0	0	130	0	300	1000	0	90	46.122	6170	2140	0	60	0	99.06	2.88	2.79	0.14
314	0	52.056	5720	2290	50	0	200	0	0	600	390	0	700	0	0	46.671	210	1170	50	0	0	100.054	0.18	4.89	0.00
315	350	52.043	5270	1310	0	0	0	0	0	930	550	0	1250	100	80	46.713	610	0	40	150	0	99.82	-	-	-
316	10	51.708	5700	1730	160	0	0	250	0	350	880	1500	1350	110	0	46.732	690	180	0	110	0	99.616	3.83	31.67	8.33

317	0	51.6	6190	1440	0	60	0	0	0	1030	470	0	570	120	300	46.556	3050	1710	140	0	280	99.692	1.78	3.62	0.00
318	50	51.636	5580	1390	10	0	0	0	0	330	520	0	400	50	0	46.636	2140	1100	10	130	0	99.443	1.95	5.07	0.00
319	0	51.406	5210	1570	0	0	0	0	0	440	40	360	2820	30	0	46.345	600	0	150	320	0	98.905	-	-	-
320	0	51.446	5620	1750	40	0	0	0	0	1130	0	0	1660	0	170	46.727	1120	310	0	470	0	99.4	3.61	18.13	0.00
321	0	51.007	6280	570	30	0	0	30	0	900	330	0	1140	0	340	46.671	930	460	0	690	0	98.848	2.02	13.65	0.00
322	350	51.472	6050	1280	0	230	0	240	0	730	490	420	1870	190	110	46.577	1580	960	0	310	0	99.53	1.65	6.30	0.44
323	0	51.646	4790	1950	420	210	0	200	0	0	1210	0	1460	0	150	46.592	800	160	0	130	0	99.386	5.00	29.94	0.00
324	290	51.232	5970	1240	200	430	0	130	0	0	250	0	540	10	390	46.403	2530	420	430	0	30	98.921	6.02	14.21	0.00
325	0	51.081	5510	1600	40	60	0	30	0	1820	260	0	1530	260	270	46.065	3500	3200	130	140	0	98.981	1.09	1.72	0.00
326	980	51.157	5780	1530	0	80	0	60	0	1470	30	0	790	0	260	46.445	1170	170	0	110	0	98.845	6.88	34.00	0.00
327	440	50.437	6260	2090	0	0	0	0	0	250	0	0	1230	0	0	46.276	2260	760	340	0	0	98.076	2.97	8.24	0.00
328	0	51.142	5430	1530	130	0	0	60	0	620	1370	0	740	400	0	46.223	3290	1610	0	0	90	98.892	2.04	3.37	0.00
329	90	50.028	5410	1410	0	0	0	240	0	330	0	0	1530	0	140	46.6	1250	170	0	190	0	97.704	7.35	31.82	0.00
330	630	49.962	5510	970	10	410	0	0	0	0	0	0	1700	0	370	46.488	1140	870	0	0	0	97.611	1.31	6.33	0.00
331	270	50.278	5850	30	0	110	0	0	0	90	0	160	1340	0	0	46.613	2770	300	360	210	0	98.04	9.23	19.50	0.53
332	310	49.847	5650	880	0	100	110	0	0	1440	0	1490	2380	250	0	46.13	2260	470	0	0	0	97.511	4.81	12.02	3.17
333	0	49.96	5820	1270	20	0	0	0	0	1450	0	0	1410	50	0	46.168	2960	1980	190	40	0	97.647	1.49	2.94	0.00
334	690	49.23	4940	1810	310	150	40	550	0	0	420	0	1910	90	200	46.516	3680	560	0	0	0	97.281	6.57	8.82	0.00
335	0	49.909	6200	1960	300	0	0	200	0	390	0	710	1330	110	0	46.418	860	100	0	210	0	97.564	8.60	62.00	7.10
336	0	50.031	5430	1780	460	340	10	0	0	610	900	0	1690	90	330	46.484	1260	0	0	0	230	97.828	-	-	-
337	620	41.746	4650	1960	30	130	560	0	0	120	370	0	4180	0	200	45.665	3970	1150	0	170	60	89.228	3.45	4.04	0.00
338	0	35.559	3750	1010	0	140	0	110	0	0	0	0	4440	460	0	31.796	1900	5570	190	340	60	69.152	0.34	0.67	0.00
339	160	54.205	6470	970	0	0	0	0	0	1070	0	0	1440	0	160	46.783	830	320	0	190	100	102.159	2.59	20.22	0.00
340	8030	53.004	5920	1300	690	250	0	0	0	770	0	0	1090	0	480	44.672	17110	1520	0	0	90	101.401	11.26	3.89	0.00
Minimum	0	36	0	0	0	0	0	0	0	0	0	0	0	0	0	32	140	0	0	0	0	69	0.13	0.00	0.00
Maximum	10630	54	6470	12330	950	570	560	590	1570	2770	1540	1500	4440	640	920	47	17110	5570	610	730	300	102	173.50	62.00	11.00
Average	358	52	1114	447	69	82	12	106	178	886	204	30	914	98	166	46	1693	506	79	114	27	99	9.88	4.45	0.22
Std. Dev.	1006	1	2132	1049	119	130	51	149	328	628	311	141	801	130	218	1	1624	799	121	152	53	2	18.07	10.02	1.20

_

	Epigenetic inclusion-rich pyrite analisys																								
Number	As	S	Mo	Bi	Pd	Ag	Sb	Te	Hg	Se	Pt	Au	Pb	Cd	U	Fe	Co	Ni	Cu	Zn	Mn	Total	Co/Ni	Mo/Ni	Au/Ni
1	180	52.372	-	-	70	0	0	-	130	240	0	0	1170	50	-	46.143	360	0	330	90	-	98.777	-	-	-
2	0	52.224	-	-	0	0	0	-	40	1180	150	0	1780	220	-	46.061	1020	270	290	0	-	98.78	3.78	-	0
3	320	52.329	-	-	0	230	0	-	40	700	0	0	1720	50	-	45.766	4840	250	0	0	-	98.91	19.36	-	0
4	1660	52.143	-	-	0	0	0	-	0	60	260	0	990	40	-	46.154	940	1210	340	190	-	98.866	0.78	-	0
5	590	52.368	-	-	100	0	0	-	580	1210	0	0	1400	0	-	45.728	3180	470	0	200	-	98.869	6.77	-	0
6	460	52.01	-	-	0	0	0	-	120	260	0	0	1800	120	-	45.685	3530	540	310	40	-	98.413	6.54	-	0
7	160	52.344	0	0	0	410	0	50	0	940	160	0	0	0	710	46.27	930	5160	0	230	0	99.489	0.18	0.00	0
8	0	51.9	0	760	270	0	20	200	0	0	0	0	0	140	320	46.914	1600	90	0	0	0	99.154	17.78	0.00	0
9	40	52.721	0	0	0	120	0	590	0	940	0	0	0	370	270	46.569	4650	160	70	70	0	100.018	29.06	0.00	0
10	0	49.976	0	0	0	0	0	0	0	1550	0	0	450	490	0	45.717	1120	230	160	180	0	96.111	4.87	0.00	0
11	260	51.348	0	0	10	90	0	150	0	1180	0	0	0	510	270	46.593	1010	330	0	0	70	98.329	3.06	0.00	0
12	0	52.254	0	0	20	0	10	60	0	0	330	0	0	330	530	46.899	1570	680	210	0	0	99.527	2.31	0.00	0
13	0	52.152	350	0	0	380	90	0	0	680	320	0	420	60	260	46.61	2340	840	0	140	0	99.35	2.79	0.42	0
14	0	52.352	250	0	0	0	0	220	0	1540	230	0	0	30	0	46.83	1590	760	0	480	0	99.692	2.09	0.33	0
15	0	48.884	0	0	820	60	0	0	0	250	20	0	0	270	0	44.61	1780	210	120	410	0	93.888	8.48	0.00	0
16	0	51.677	150	150	100	20	50	120	0	840	0	0	870	310	0	46.289	780	110	220	380	50	98.381	7.09	1.36	0
17	750	43.543	200	0	20	0	0	0	0	750	0	450	240	140	0	40.266	2880	30	0	0	0	84.355	96.00	6.67	15.00
18	620	52.528	0	0	0	620	0	0	0	1210	120	0	0	340	0	46.944	1170	2010	0	30	0	100.084	0.58	0.00	0
19	110	52.91	-	-	0	220	0	-	650	460	370	0	1520	110	-	46.126	2090	1190	610	450	-	99.814	1.76	-	0
20	0	53.106	-	-	0	90	0	-	880	1040	0	0	1980	230	-	46.424	490	0	60	0	-	100.007	-	-	-
21	630	52.842	-	-	0	0	0	-	740	0	300	0	1320	160	-	45.721	2640	1680	0	0	-	99.31	1.57	-	0
22	0	53.153	-	-	0	120	0	-	0	1310	0	0	1220	0	-	46.086	590	330	0	70	-	99.603	1.79	-	0
23	1130	52.427	-	-	100	0	0	-	0	1680	70	0	1570	240	-	45.406	4540	1530	590	180	-	98.996	2.97	-	0
24	100	52.466	-	-	0	0	0	-	190	0	0	0	1590	0	-	46.141	530	0	0	270	-	98.875	-	-	-
25	0	45.321	-	-	0	0	0	-	3450	4840	0	157030	1460	190	-	37.746	3010	320	0	330	-	100.13	9.41	-	490.72
26	250	52.689	-	-	0	0	0	-	480	1140	0	0	1380	0	-	45.849	4230	220	0	530	-	99.361	19.23	-	0

Tabela 19. Dados de química mineral das piritas ricas em inclusões. Os valores de elementos traço estão em ppm, S e Fe estão em Wt%.

27	280	41.095	-	-	0	4420	0	-	3460	3490	0	93780	720	70	-	37.315	2370	190	0	0	-	89.288	12.47	-	493.58
28	60	52.458	-	-	50	0	0	-	0	0	0	0	1920	0	-	45.951	420	110	180	0	-	98.683	3.82	-	0
29	80	27.3	-	-	0	7530	0	-	2520	1830	0	86220	180	300	-	18.654	700	100	280	0	-	55.928	7.00	-	862.20
30	0	43.764	-	-	50	40	1360	-	1120	4000	0	64730	1130	330	-	41.333	800	320	140	160	-	92.515	2.50	-	202.28
31	0	53.473	-	-	0	0	840	-	640	0	460	650	1540	300	-	44.096	670	90	70	260	-	98.121	7.44	-	7.22
32	100	49.771	-	-	80	0	0	-	0	110	160	0	1840	0	-	45.559	550	120	0	80	-	95.634	4.58	-	0
33	70	51.767	590	100	0	0	0	160	0	1580	0	0	0	190	0	46.717	750	90	0	200	100	98.867	8.33	6.56	0
34	0	50.543	830	0	0	0	0	20	0	950	0	880	2510	360	490	45.569	930	20	90	0	90	96.829	46.50	41.50	44.00
35	310	52.577	0	0	260	0	0	190	0	830	570	210	360	0	200	46.775	2490	0	90	370	280	99.968	-	-	-
36	0	53.074	0	0	0	0	0	0	0	1490	110	0	130	0	690	46.628	850	0	0	0	20	100.148	-	-	-
37	0	53.645	1130	280	0	420	0	0	0	450	250	0	0	0	0	46.975	810	10	250	80	10	100.989	81.00	113.00	0
38	520	50.799	5310	910	0	0	0	0	0	760	0	0	1750	280	20	46.375	1340	1260	30	70	150	98.414	1.06	4.21	0
39	0	50.662	6050	1050	50	10	0	280	0	640	0	0	140	130	760	46.741	790	50	0	0	0	98.398	15.80	121.00	0
40	0	50.15	6300	1280	380	370	0	160	0	280	0	0	2360	0	770	46.082	1720	230	130	0	40	97.634	7.48	27.39	0
Minimum	0	27.3	0	0	0	0	0	0	0	0	0	0	0	0	0	18 654	360	0	0	0	0	55 028	0.18	0.00	0.00
Movimum	1660	53 645	6300	1280	820	7530	1360	500	3460	1840	570	157030	2510	510	770	16.054	4840	5160	610	530	280	100 080	0.10	121.00	862.20
	217	55.045	10500	1260	620	270	1500	110	2400	4040	570	10000	2310	150	265	40.975	4040	5100	114	127	200	100.969	90.00	121.00	602.20
Average	21/	51	1058	227	60	3/9	39	110	3/6	1010	9/	10099	937	159	265	45	1/15	530	114	13/	41	9/	12.75	17.91	60.43
Std. Dev.	352	5	2111	412	149	1356	249	146	857	1056	151	32423	795	149	293	5	1276	909	158	158	71	7	21.15	37.74	183.36

-