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Demografia e autotomia caudal em dois lagartos endêmicos de uma savana Neotropical 

 A ecologia de populações visa estudar como as interações bióticas e abióticas influenciam 

na dinâmica do tamanho populacional dos organismos. Os fatores bióticos, como competição e 

predação, são muitas vezes influenciados também pelas variações do ambiente. Fatores abióticos, 

como a precipitação e a temperatura afetam diferentemente as dinâmicas populacionais dos 

organismos e alguns destes podem ser negligenciados nos estudos, como as perturbações. Um tipo 

de perturbação proeminente em vários ecossistemas do mundo é o fogo. Já é difundido que o fogo 

tem papel importante na manutenção das paisagens e do funcionamento dos ecossistemas, assim 

como modificador de comunidades biológicas. Em animais, o efeito de queimadas podem ser 

divido em: diretos e indiretos. Os efeitos diretos são aqueles decorrentes da passagem imediata do 

fogo, gerando mortalidade. De outro lado, os efeitos indiretos são aqueles decorrentes após a 

passagem do fogo sobre a estrutura da vegetação, gerando um processo de sucessão após a queima. 

Em répteis, os efeitos diretos são quase inexistentes, sendo que os efeitos indiretos possuem uma 

importância preponderante sobre estes organismos. Apesar de muitos estudos do efeito do fogo 

sobre comunidades de animais, pouco se sabe sobre os efeitos indiretos sobre as populações de 

animais, já que as respostas são diversas e muitas vezes imprevisíveis. Além do mais, muitos 

estudos negligenciam os diferentes regimes de queima (queimadas em diferentes épocas do ano 

e/ou sob diferentes frequências) possíveis e presentes na região, e isso possivelmente pode 

acarretar a decisões equivocadas por parte do planejamento de manejo do fogo nos ecossistemas. 

Portanto, estudos com enfoque populacional, com métodos de marcação e recaptura e que 

consideram diferentes regimes de queima podem ser mais objetivos e trazer resultados mais diretos 

e menos enviesados para o manejo e conservação da biodiversidade. 
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 A autotomia caudal em lagartos é um mecanismo de defesa extremo, por gerar a perda de 

uma parte do corpo de um indivíduo para tentar se manter vivo, gerando custos. Os registros da 

frequência deste tipo de defesa foram historicamente usados como índices de intensidade de 

predação, já que se esperaria maior frequência de caudas autotomizadas em uma população. 

Porém, a frequência de caudas autotomizadas em populações naturais pode estar mais relacionada 

à ineficiência dos predadores ao tentarem capturar os indivíduos. Muito tempo se passou desde os 

primeiros estudos sobre o assunto e os efeitos da intensidade e da ineficiência da predação sobre a 

frequência de autotomia caudal em lagartos permanece elusiva. Portanto, estudos que consigam 

combinar dados demográficos com o registro de autotomia caudal em lagartos podem trazer 

resultados interessantes acerca da interação entre presa-predador. Além do mais, dados 

demográficos podem solucionar questões acerca dos custos da autotomia caudal em lagartos, já 

que é possível obter estimativas de sobrevivência, de crescimento e de condição corporal dos 

indivíduos. 

 Tendo isso em mente, o presente estudo teve como objetivos: 1. Estimar parâmetros 

demográficos e caracterizar a história de vida das espécies Micrablepharus atticolus e Tropidurus 

itambere; 2. Avaliar as respostas das populações das mesmas duas espécies sob diferentes regimes 

de queima, pela estrutura etária, pelas taxas de captura (detectabilidade), sobrevivência e 

recrutamento; 3. Investigar fatores que influenciam a probabilidade dos indivíduos das duas 

espécies terem a cauda partida; 4. Investigar os custos da autotomia pela condição corporal, 

sobrevivência, crescimento e taxa de regeneração. Ambas as espécies são endêmicas do Cerrado, 

possuem ampla distribuição, são heliófilas e mais abundantes em hábitats abertos. Micrablepharus 

atticolus costuma se enterrar na serapilheira e na terra, enquanto que Tropidurus itambere, em 
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algumas regiões, empoleira em afloramentos rochosos e em galhos. Machos de T. itambere são 

territorialistas e pequenas áreas de vida. 

 Os resultados deste trabalho mostram que em ambientes tropicais e sazonais, apesar de 

negligenciados, a insolação e temperaturas extremas podem influenciar populações de animais, 

principalmente aqueles ectotérmicos. Estas variáveis climáticas, em conjunto com o efeito da 

precipitação, provavelmente influenciam a reprodução sazonal das duas espécies, por influenciar 

a abundância de presas para os jovens e as condições ótimas para a oviposição e desenvolvimento 

dos ovos. Ambas as espécies possuem curto ciclo de vida, com a maioria dos indivíduos vivendo 

por apenas um ano de vida, afetando desta forma diretamente a variação da estrutura etária ao 

longo do ano. 

 Ambas as espécies são mais abundantes em ambientes mais abertos no Cerrado, por isso 

esperava-se que as espécies fossem beneficiadas por regimes de queima mais severos (maior 

mortalidade de lenhosas, portanto maior abertura do hábitat). Porém, em ambas as espécies, as 

populações nos regimes de queima mais severo apresentaram alta mortalidade e/ou baixo 

recrutamento. Este resultado provavelmente é devido à facilidade de visualização por parte dos 

predadores e pela baixa umidade decorrente da alteração do microclima causada pelo regime de 

queima mais severo. 

 No regime de queima menos severo (supressão do fogo), encontrou-se menor recrutamento 

e menos capturas em ambas as espécies. Em Tropidurus itambere, também verificou-se que 

indivíduos jovens possuem menor sobrevivência quando comparados com outros regimes de 

queima. A supressão do fogo leva ao adensamento da vegetação, o que gera microclima e hábitat 

desfavorável a ambas espécies, já que elas são heliófilas. Tendo em vista isso, era esperado que as 

populações das espécies possuíssem parâmetros desfavoráveis para a permanência das populações. 
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 Os resultados acerca da frequência de autotomia caudal revelaram que a intensidade de 

predação em lagartos do Cerrado pode ser mais importante em comparação com a ineficiência de 

predação. Isto porque as frequências de autotomia caudal de Micrablepharus atticolus foram 

baixas quando comparadas ao acaso no regime de queima de severidade intermediária, onde houve 

menor sobrevivência. Além do mais, nos extremos do gradiente de abertura do habitat coincide a 

alta taxa de mortalidade das populações com a abundância de predadores, como aranhas e aves. 

 Os custos da autotomia caudal nas duas espécies estudadas são insignificantes quanto ao 

crescimento e à condição corporal. Porém, em T. itambere, observou-se que machos 

autotomizados tendem a ter menor sobrevivência com machos intactos, enquanto que o contrário 

acontece para indivíduos jovens e fêmeas. Este resultado é provavelmente efeito do 

comportamento territorialista dos machos, o que os expõe mais a predadores, quando compara-se 

com fêmeas e jovens. Indivíduos fêmeas e jovens foram menos capturados, evidenciando um 

decréscimo no período de atividade dos indivíduos ou uma mudança de comportamento de 

forrageio ou de defesa, os quais os machos não podem contar. Portanto, espécies territorialistas e 

com dimorfismo sexual, como Tropidurus itambere, podem sofrer de maiores custos decorrentes 

da autotomia caudal, podendo gerar consequências para a dinâmica das populações. 

 Este trabalho sugere a necessidade da criação de um programa de manejo de fogo no 

Cerrado, e que queimadas prescritas no começo ou no meio da estação seca (junho a agosto) 

beneficiam as populações de Micrablepharus atticolus e de Tropidurus itambere. Por outro lado, 

a supressão total do fogo ou queimadas frequentes e intensas prescritas no final da estação seca 

prejudicam as espécies. Além do mais, tais regimes podem aumentar a probabilidade de predação, 

ou por deixarem os indivíduos mais expostos, ou por aumentar a abundância de predadores de 

lagartos, em geral.  
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Capítulo 1: Regimes de queima e a demografia do lagarto Micrablepharus atticolus em um 

hotspot de biodiversidade 

 

 Distúrbios causados por queimadas antrópicas estão afetando intensamente a 

biodiversidade de ecossistemas suscetíveis ao fogo em todo o mundo. O Cerrado, um hotspot de 

biodiversidade, sofre taxas de desmatamento mais altas que a Amazônia e concentra a maior parte 

das áreas queimadas na América do Sul. Para auxiliar decisões adequadas para o manejo de fogo 

no Cerrado, é necessário o conhecimento sobre as mudanças nos efeitos de regimes de queima 

sobre populações animais. Baseados em um experimento de longo prazo e de larga escala, nós 

investigamos os efeitos de diferentes regimes de queima sobre a demografia do gimnoftalmídeo 

Micrablepharus atticolus, um lagarto endêmico do Cerrado. Já que M. atticolus é mais abundante 

em habitats abertos, nós predissemos que queimadas frequentes devem favorecer suas populações. 

Durante oito anos, nós conduzimos um estudo de marcação e recaptura usando armadilhas de 

interceptação e queda em quatro parcelas de 10 ha de cerrado sensu stricto, sujeitas a queimadas 

prescritas e uma parcela controle. Usando modelos lineares generalizados mistos de dados de uma 

série temporal e de uma abordagem da teoria da informação para selecionar modelos 

demográficos, nós descrevemos a história de vida de M. atticolus e avaliamos a resposta da 

sobrevivência aparente, da detectabilidade e do recrutamento aos regimes de queima e à variação 

climática. Micrablepharus atticolus tem um ciclo de vida anual, com substituição anual completa 

da população; a reprodução ocorre durante a estação seca, quando a atividade é mais alta e os 

recém-nascidos aparecem na estação chuvosa. A sobrevivência aparente, detectabilidade e 

recrutamento aumentaram em curto prazo depois da passagem do fogo em todas as parcelas 

experimentais. Em longo prazo, porém, tanto a supressão do fogo e regimes de queima mais 
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severos pareceram prejudiciais, provavelmente por afetarem as condições microclimáticas e a 

disponibilidade alimentar. Nossos resultados mostram que estudos de curto prazo podem não 

descrever adequadamente os efeitos do fogo sobre a demografia de populações de lagartos. Um 

programa de manejo adequado do fogo é necessário para a conservação da biodiversidade no 

Cerrado, tanto dentro e fora de áreas protegidas, incluindo uma redução da frequência e da 

intensidade de queimadas em fisionomias abertas e queimadas controladas em mosaicos de 

fragmentos de vegetação para prevenir acumulação excessiva de combustível em fisionomias mais 

densas. 
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Abstract. Disturbance caused by anthropogenic fires are increasingly affecting the biodiversity of fire-prone ecosystems worldwide. The 
Cerrado biodiversity hotspot suffers higher deforestation rates than Amazonia and concentrates most of the burned areas in South America. 
To support adequate fire-management decisions in Cerrado, knowledge on the effects of altered fire regimes upon its animal populations 
is necessary. Based on a long-term, large-scale fire experiment, we investigated the effects of different fire regimes on the demography of 
the gymnophthalmid Micrablepharus atticolus, an endemic lizard of the Cerrado. Because M. atticolus is more abundant in open habitats, we 
predicted that frequent burns should favor its populations. Over eight years, we conducted a mark-recapture study using pitfall trap arrays 
in five 10 ha plots of cerrado sensu stricto, subjected to prescribed burns. Using generalized linear mixed-models of time series data and an 
information theoretic approach to select demographic models, we describe the life history of M. atticolus and assess the response of apparent 
survival, detectability, and recruitment to burn regimes and climate variation. Micrablepharus atticolus has an annual life cycle, with complete 
annual population turnover; breeding takes place during the dry season, when activity is higher, and hatchlings appear in the wet season. Ap-
parent survival, detectability, and recruitment increased in the short-run after the passage of fire in all experimental plots. In the long run, 
however, both fire-suppression and more severe fire regimes were seemingly detrimental, presumably by affecting microclimatic conditions 
and food availability. Short-term studies may not adequately describe the effects of fire on the demography of lizard populations. Adequate 
fire management is warranted for biodiversity conservation in Cerrado, both inside and outside protected areas, including a reduction in the 
frequency and severity of burns in open physiognomies and controlled, patch mosaic fires to prevent excessive fuel accumulation in denser 
physiognomies.

Keywords. Cerrado; Conservation; Detectability; Life history; Mark-recapture; Population dynamics; Recruitment; Survival.

predation rates (Attum and Eason, 2006; Karpestam 
et al., 2012; Eby and Ritchie, 2013), reproductive success 
(Kochert et al., 1999; Little et al., 2013; Rota et al., 2014), 
thermoregulation (Webb et al., 2005; Kortello and Ham, 
2010; Hossack et al., 2013), and even social interactions 
(Banks et al., 2012). Therefore, a thorough understand-
ing about the effects of wildfires upon animal populations 
is crucial for environmentally sound and sustainable fire 
management practices (Secretariat of the Convention on 
Biological Diversity, 2001).

Because most reptiles are ectothermic and small-
bodied (Vitt and Caldwell, 2009), they should be espe-
cially susceptible to wildfires; however, some species 
have striking adaptations to cope with the passage of fire 
(Russell et al., 1999; Costa et al., 2013). Reptile popula-
tions and communities show varied responses to wild-
fires (Griffiths and Christian, 1996; Faria et  al., 2004; 
Fenner and Bull, 2007). Fires may increase the mortality 
of terrestrial turtles (Hailey, 2000; Popgeorgiev, 2008; 
Sanz-Aguilar et  al., 2011) and snakes (Webb and Shine, 
2008; Lyet et al., 2009), but may favor lizard population 

INTRODUCTION

Fire is a major driver of environmental change that 
has shaped the ecology and evolution of most terrestrial 
ecosystems (Booysen and Tainton, 1984; Goldammer, 
1990; Veblen et  al., 2003; Cochrane, 2009). It is a key 
feature of flammable ecosystems, such as boreal forests 
(Goldammer and Furyaev, 1996; Kasischke and Stocks, 
2000) and Mediterranean shrublands (van Van Wilgen 
et al., 1992; Moreno and Oechel, 1994; Chuvieco, 2009), 
and the fire-adapted savannas and grasslands (Andersen 
et al., 2003; Bond and Keeley, 2005; Bond et al., 2005). 
Since early humans mastered fire, anthropogenic prac-
tices have promoted an unprecedented increase in the in-
tensity and frequency of wildfires and, more recently, also 
fire suppression and management (Bowman et al., 2009; 
Conedera et al., 2009; Pausas and Keeley, 2009; Bowman 
et al., 2011; Roebroeks and Villa, 2011). The disturbance 
of natural fire regimes can profoundly affect animal popu-
lations, by influencing resource availability (Radford and 
Andersen, 2012; Moranz et al., 2014; O’kane et al., 2014), 
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growth, recruitment and body condition (Mushinsky, 
1985). Fires are known to promote increased diversity 
of lizard communities in a variety of ecosystems, includ-
ing sandhills (Mushinsky, 1985), forests (Moseley et al., 
2003; Bury, 2004; Greenberg and Waldrop, 2008), pine 
woodlands (Greenberg et  al., 1994; Ford et  al., 1999; 
Perry et al., 2009), pine savannas (Langford et al., 2007), 
prairies (Cavitt, 2000; Wilgers and Horne, 2007), chapar-
ral (Cunningham et al., 2002; Ruthven et al., 2008), Eu‑
calyptus open forests (Singh et al., 2002; Woinarski et al., 
2004), deserts (Pianka, 1996; Letnic et al., 2004; Pianka 
and Goodyear, 2012), Spinifex grasslands (Masters, 1996) 
and tropical savannas (Andersen et al., 2005; Nicholson 
et al., 2006; Valentine and Schwarzkopf, 2009). Still, fires 
can also lead to a reduction of species diversity and abun-
dance in lizard communities (Legge et al., 2008; Cano and 
Leynaud, 2009; Pelegrin and Bucher, 2010). Fire suppres-
sion can limit the flow of individuals within and among 
populations (Brisson et al., 2003; Templeton et al., 2011), 
but may favor the abundance of species that use the leaf 
litter (Mushinsky, 1992).

Given the varied responses of herpetofauna to fire, 
studies of individual species may be necessary to make ad-
equate fire-management decisions (Driscoll and Hender-
son, 2008; Lindenmayer et al., 2008; Driscoll et al., 2010). 
Detailed demographic studies may reveal species needs 
and tolerances on habitat resources, microclimatic factors, 
predation rates, and burn regimes, predicting responses 
to fire and thus avoiding local extinctions (Clarke, 2008; 
Templeton et  al., 2011). Nevertheless, few studies have 
accounted for detectability when assessing the effects of 
fires upon animal populations, especially because of the 
substantial costs involved in obtaining such data (Driscoll 
et al., 2010; Smith et al., 2012). Ignoring changes in detec-
tion probability due to individual, spatial, and temporal 
variation may severely bias demographic estimates (An-
derson, 2001; Bailey et al., 2004; Guimarães et al., 2014).

The Cerrado is the largest Neotropical savanna (Ei-
ten, 1972; Oliveira and Marquis, 2002; Diniz et al., 2010) 
and also a biodiversity hotspot, due to its amazing bio-
diversity and high levels of habitat destruction (Mitter-
meier et al., 1998; Myers et al., 2000). Fire plays a promi-
nent role in the dynamics of Cerrado ecosystems (Mistry, 
1998; Hoffmann and Moreira, 2002; Miranda et al., 2002, 
2009). Natural fires are initiated by lightning during the 
rainy period, but do not reach uncontrollable levels due to 
frequent rainfall (Ramos-Neto and Pivello, 2000). Tradi-
tionally, rural and indigenous populations have used fire 
as a vegetation management tool, but the frequency and 
intensity of fires has increased in recent years due to the 
growth of the agribusiness and urban populations (Klink 
and Machado, 2005; Mistry and Bizerril, 2011; Pivello, 
2011). Therefore, the natural fire regime in Cerrado has 
been modified by human activities, leading to more fre-
quent and severe fires late in the dry season, when the 

environment contains more fuel and less moisture (Mis-
try, 1998; Miranda et al., 2002). Brazil concentrates most 
of the total fires that occur in South America (63% of all 
fire pixels, Di Bella et al., 2006) and the Cerrado presents 
the largest concentration of fires in Brazil (73%, Araújo 
et al., 2012). As fire has occurred naturally for millennia 
in Cerrado (Miranda et al., 2009; Simon et al., 2009), it is 
expected that its fauna is fire-adapted, but very little is 
known about the effects of altered fire regimes upon ani-
mal populations in Cerrado (Redford and Fonseca, 1986; 
Coutinho, 1990).

The effects of fire on the Cerrado herpetofauna are 
still poorly understood, although extremely important for 
the adequate management of natural landscapes (Frizzo 
et  al., 2011). In central Brazil, fires of intermediate fre-
quency and severity promote an increase in the diversity 
of lizard communities (Pantoja, 2007), direct effects of 
fire on lizards seem negligible and, in the short term, 
the abundance of most lizard species increases (Costa 
et al., 2013). Herein, based on a long-term and large-scale 
prescribed fire experiment, we describe the life history 
of the Cerrado endemic lizard, Micrablepharus atticolus 
Rodrigues, 1996, and assess the response of apparent 
survival, detectability, and recruitment to burn regimes 
and climate variation. This species is broadly distribut-
ed in Cerrado, also occupying peripheral isolates within 
Amazonia (Vitt and Caldwell, 1993; Gainsbury and Colli, 
2003; Santos et al., 2014). Micrablepharus atticolus is he-
liophilous, being active during the hottest hours of the 
day, feeds on several groups of arthropods and lays mul-
tiple clutches in the breeding season (Vitt, 1991; Vitt and 
Caldwell, 1993; Vieira et al., 2000). It is restricted to open, 
often sandy habitats, and has the habit of foraging and 
burying itself in the litter, grass and soil (Vitt, 1991; Colli 
et al., 2002; Gainsbury and Colli, 2003; Nogueira, 2006). 
Because M.  atticolus is more abundant in open Cerrado 
physiognomies (Vitt, 1991; Rodrigues, 1996; Vieira et al., 
2000), including habitats with severe burn regimes (Pan-
toja, 2007; Costa et al., 2013), we hypothesize that fires 
positively affect its populations through enhanced appar-
ent survival and recruitment, and that fire suppression 
has the opposite effects.

MATERIALS AND METHODS

Study area

We conducted this study in Reserva Ecológica do 
Roncador (RECOR; 15°56’41”S, 47°53’07”W), Brasília, 
Distrito Federal, Brazil, in the core of the Cerrado biome 
(Eiten, 1972). Climate is markedly seasonal, with a wet sea-
son from October to April, followed by a dry season from 
May to September (Nimer, 1989). From 1972–1990, the 
RECOR was fully protected from fires. In 1989, however, 
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a long-term experiment was initiated to evaluate the ef-
fects of different burn regimes on animals and plants (Mi-
randa, 2010; Pivello et  al., 2010; Miranda et  al., 2011). 
A uniform sampling area was divided into 10  ha plots, 
each submitted to a different regime characterized by a 
combination of the timing (early dry season: in late June, 
middle dry season: in early August, and late dry season: in 
late September) and frequency (biennial and quadrennial) 
of burns. In addition, there were control, unburned plots. 
Because plots were placed in the same physiognomy and 
shared the same history of burns prior to the onset of the 
experiment, we assumed that differences between plots 
through time arose from the effects of prescribed burn re-
gimes. We selected five plots (Fig. 1) in the cerrado sensu 
stricto physiognomy (Ribeiro and Walter, 1998): three 
subjected to prescribed biennial burns (early biennial, 
EB; middle biennial, MB; and late biennial, LB), one sub-
jected to prescribed quadrennial burns (middle quadren-
nial, Q), and one control plot (C). Fire severity increased 
along the sequence C ⟶ Q ⟶ EB ⟶ MB ⟶ LB. The last 
prescribed burns occurred in 2007 in quadrennial plots 
(five burns in each plot) and 2008 in biennial plots (nine 
burns in each plot). In September 2011, an unplanned 
fire partially burned the LB, and completely burned the C 
plot. With the exception of the C plot, all other plots were 

adjacent to each other, separated by a ca. 5 m-wide dirt 
road (Fig. 1). In addition to the costs and difficulties of 
replication typical of large-scale ecologic studies (Carpen-
ter, 1990; Oksanen, 2001), our experiment could not be 
replicated because of legal issues associated with burning 
the vegetation inside protected areas. We recognize that 
this reduces the statistical power of our study, but such 
large-scale manipulative experiments are the only way 
to ensure the availability of adequate treatment levels 
(Driscoll et al., 2010). Therefore, we restrict our statistical 
inferences to the study areas, considering our sampling 
methodology as adequate to represent them.

Captures and recaptures

From November 2005 to March 2013, we monitored 
the populations of Micrablepharus atticolus in study plots, 
capturing animals with the aid of pitfall traps. Each trap 
consisted of four 30 L buckets buried in the ground in a 
“Y” shape, interconnected by 6 m-long metal drift fences. 
At the center of each plot, we placed ten traps along a lin-
ear transect. Traps were opened for six consecutive days 
every month and checked daily. Considering the distance 
between transects in adjacent plots (ca. 200 m), the very 

Plot

MB
EB

Q

LB

Figure 1. Map with location of the studied plots: late biennial (LB), middle biennial (MB), early biennial (EB), and quadrennial (Q) burns and the control 
without fire until 2011 (C).
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small size of the study species (see Results), and the dirt 
road separating adjacent plots, we did not expect lizard 
movements between adjacent plots to affect our results. 
Indeed, during the entire period of this study there was 
not a single recapture indicative of movements between 
plots. We recorded the snout–vent length (SVL) with a 
ruler (1  mm precision) and sex of each captured lizard, 
followed by individual marking (toe clipping) and release 
at the capture site. We determined sex by hemipenis ever-
sion in males and visual detection of eggs in females. To 
assess differences in the number of captures or recaptures 
among plots, we used sequential χ2 tests, removing vari-
ables (plots) from analyses based on their χ2 residuals 
until differences among plots were no longer significant 
(Zar, 2010).

Variation in age structure

To identify seasonal or cyclic patterns and trends 
in the age structure of the lizard population in each plot, 
we transformed monthly means of SVL into time series. 
As we captured no lizards in some months/plots, and 
the time-series analyses cannot have missing data, we 
used multiple imputation (Rubin, 1996; Zhang, 2003) 
to replace missing data and estimate statistical param-
eters, with package Amelia  II (Honaker et  al., 2011) in 
R (R  Core  Team, 2014). Amelia  II uses an expectation-
maximization (EM) algorithm (Dempster et  al., 1977) 
in combination with bootstrap sampling to replace miss-
ing values in the original data set. We ran 1,000 multiple 
imputations of missing monthly means of SVL, using 
sample (1–89 monthly samples from November 2005 to 
March 2013) as the time series variable, month (1–12, e.g. 
January to December) as the cross-section variable, and 
included several climatic variables to improve prediction 
(Honaker et al., 2011). We obtained monthly means of cli-
matic variables from the RECOR meteorological station: 
wind speed (wind), precipitation (precip), evaporation 
(evap), relative air humidity (humid), insolation (sun), av-
erage air temperature (tmed), maximum air temperature 
(tmax) and minimum air temperature (tmin).

We built a correlogram to identify cyclic patterns in 
SVL variation and created cyclic sine and cosine wave pat-
terns along the months and among the years to test for 
the existence of a trend. To assess the influence of climat-
ic variables on monthly means of SVL, we used an infor-
mation-theory approach (Burnham and Anderson, 2002; 
2004), based on the Akaike information criterion correct-
ed for finite sample sizes (AICc), to select linear mixed-
effects (LME) models relating monthly means of SVL to 
climatic variables, with packages lme4 (Bates et al., 2014) 
and MuMIn (Bartón, 2014) of R (R Core Team, 2014). We 
undertook an exhaustive screening of all possible models 
to assess predictor importance, determined as the sum 

of the Akaike weights for all models containing a given 
predictor, and retained those where ΔAICc ≤ 2 to assess 
predictor coefficients (Burnham and Anderson, 2002). 
To account for the temporal pseudoreplication resulting 
from plots being sampled several times over the course of 
the study, we used the sine and cosine wave patterns pre-
viously identified and year as random factors in the LME 
models (Crawley, 2013; Galecki and Burzykowski, 2013).

We used LME models to assess differences in SVL 
among plots along the year. In this analysis, we used fire 
regime (plot) and month (1–12) as fixed factors and year 
(2005–2013) as a random factor. We assessed the signifi-
cance of the fixed factors and their interaction by com-
paring the full model with simpler models, sequentially 
dropping terms and using a significance test (χ2) of the re-
duction in scaled deviance (Crawley, 2013). We conducted 
all analyses in R (R Core Team, 2014) and used a signifi-
cance level of 5% in hypothesis testing.

Demographic analyses

We used individual capture histories of Micrablepha‑
rus atticolus from November 2005 to March 2013 to as-
sess the effects of climate variables and fire regimes on 
estimates of demographic parameters. We used Pradel 
models, which estimate the probabilities of survival (Φ), 
capture (p) and recruitment (f). We implemented the 
analyses in two steps, using RMark 2.1 (Laake, 2013) and 
MARK 6.2 (White and Burnham, 1999). In the first step, 
we used model selection and model averaging to iden-
tify climate variables that best explain capture histories. 
We started the analysis with a general model, where Φ, 
p, and f were constrained by all climatic variables. To en-
sure that this general model adequately fitted the data, 
we conducted a goodness-of-fit (GOF) test, by compar-
ing our general model with a saturated model where sur-
vival and recapture probabilities were constrained by the 
interaction of fire regime and capture occasion (Φ(g*t), 
p(g*t)), with U‑CARE 2.3.2 (Choquet et al., 2009). Next, 
we conducted a heuristic stepwise model selection based 
on AICc, retaining those models with ΔAICc ≤ 2 (Burnham 
and Anderson, 2002; 2004). Finally, we assessed param-
eter importance as indicated above.

In the second step, we used model selection and 
model averaging to identify fire-related variables that 
best explain capture histories. Thus, we constrained Φ, 
p, and f by the climate variables identified in the first 
step and by burn frequency (biennial, quadrennial, and 
control), timing (late, middle, early and control), regime 
(LB, MB, EB, Q, and C) and a binomial vector indicating 
the occurrence of fire in each plot (0: no fire, 1: fire). In 
this way, we attempted to model both the long-term (fre-
quency, time, regime) and short-term (occurrence) effects 
of fire, accounting for variation in climate. We conducted 
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model selection and averaging as indicated above, in the 
first step.

RESULTS

From November 2005 to March 2013 we marked 
465 individuals of Micrablepharus atticolus, representing 
729 captures and recaptures in the five monitored plots 
(Fig. 2). On average, each lizard was recaptured on 0.64 
occasions during the study. We made significantly more 
captures and recaptures in the middle biennial and less 
in the control plot (Fig. 2, sequential χ2 tests, P < 0.001).

The temporal variation in the SVL of captured lizards 
revealed a markedly seasonal pattern, with little overlap 
of generations (Fig.  3). An autocorrelation analysis of 
monthly means of SVL based on 1,000 imputed datasets 
indicated that temporal autocorrelation is highest for a 
gap of 12 months (mean acf = 0.51), i.e., there is a clear 
annual cycle of population SVL. Hatchlings appear in the 
population as early as September, at the end of the dry 
season, and individuals attain sexual maturity at 35 mm 
SVL (based on the smallest female bearing eggs) as early 
as February of the following year. Reproduction takes 
place during the dry season: we recorded 16 females bear-
ing eggs, from May to September (May: 1, June: 2, July: 3, 
August: 7, and September: 3). Overall, the low mean re-
capture rate, little overlap of generations, and cyclic varia-
tion in SVL indicate an annual life cycle, with breeding 
taking place in the dry season and juveniles hatching at 
the onset of the rainy season (Fig. 4).

The model selection analysis of LME models relating 
monthly means of SVL to climatic variables retained 12 
models in which ΔAICc ≤ 2. Insolation was by far the best 
predictor of Micrablepharus atticolus SVL (Table  1), with 

larger mean SVLs recorded in months with higher insola-
tion (i.e., during the dry season).

There were no effects of the interaction of fire re-
gime with month (i.e., no significant effect of dropping 
the interaction term on the scaled deviance; χ2

[4] = 4.57, 
P = 0.34) or of fire regime (i.e., no significant effect of drop-
ping the interaction term and fire regime upon the scaled 
deviance; χ2

[4]  =  7.88, P  =  0.10) on SVL (Fig.  5). Month 
was the only significant fixed effect on SVL variation (i.e., 
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Figure 2. Captures and recaptures of Micrablepharus atticolus in cerrado 
sensu stricto control and treatment plots of varying fire severity, in cen-
tral Brazil. Asterisks indicate plots where captures and recaptures dif-
fered from the remainder.
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significant increase in scaled deviance after dropping all 
fixed effects and their interaction; χ2

[1] = 7.22, P = 0.007).
The model selection analysis with the probability of 

survival (Φ), capture (p), and recruitment (f) constrained 
by climate variables retained 10 models with ΔAICc  ≤  2 
(Table  2). A model averaging analysis (not shown) of 
the 10 models indicated that the most important cli-
mate parameters (importance >  0.9) were exactly those 
in the best model [Φ(~sun+humid) p(~precip+tmin+sun) 
f(~tmed+sun+humid+tmin)] and that insolation was the 
only covariate important for the estimation of all three 
demographic parameters. In the model selection with Φ, 
p, and f constrained by the climate variables identified 
in the first step, burn frequency, timing, regime, and oc-
currence, a single model with ΔAICc  ≤  2 was retained: 
Φ(~occurrence+timing+sun+humid) p(~occurrence+regime
+precip+tmin+sun) f(~occurrence+frequency+tmed+sun+hu
mid+tmin) (AICc = 5551.07, deviance = 1869.47). In this 
model, all demographic parameters were influenced by the 
short-term effect of fire, survival was best explained by fire 

timing, capture by fire regime, and recruitment by fire fre-
quency. The estimates of demographic parameters exhib-
ited regular, cyclical patterns throughout the years (Fig. 6).

The probability of survival (Φ) varied seasonally, 
primarily as a function of insolation and air humidity, 
being lowest during the dry season (May to September), 
when insolation is highest and air humidity is lowest 
(Fig. 6, Table 3). Φ also varied significantly with the tim-
ing of burns, being lowest in the plot burned late in the 
dry season and similar in the other plots; in months with 
fire (short-term effect), Φ increased (Fig. 6, Table 3). The 
probability of capture (p) varied inversely with Φ, being 
highest in the dry season, primarily driven by lower pre-
cipitation and minimum air temperatures and higher in-
solation (Fig. 6, Table 3). p also varied with the fire regime 
(interaction between fire timing and frequency), being 
lowest in the more extreme regimes, i.e., the control and 
the late biennial plots, and highest in the middle biennial 
plot; in months with fire, p increased (Fig. 6, Table 3). Fi-
nally, recruitment (f) peaked in the transition between 

Table 1. Coefficients, Akaike information criterion adjusted for small samples (AICc), and relative variable importance of 12 linear mixed-effects models, 
where ΔAICc ≤ 2, relating monthly means of the SVL of Micrablepharus atticolus to climate predictors, in Reserva Ecológica do Roncador – RECOR, Brasília, 
Distrito Federal, Brazil, from November 2005 to March 2013. Wind speed (wind), precipitation (precip), evaporation (evap), relative air humidity (humid), 
insolation (sun), average air temperature (tmed), maximum air temperature (tmax) and minimum air temperature (tmin).

Model Intercept insol humid tmax tmed evap tmin wind precip AICc

1 23.97 2.26 0.15 — ‑0.73 — — — — 482.59
2 27.52 2.30 0.13 ‑0.68 — — — — — 482.65
3 50.23 1.74 — ‑1.03 — — — — — 483.02
4 2.09 2.57 0.20 — — — — — — 483.11
5 11.19 2.16 0.20 — — — ‑0.44 — — 483.19
6 41.69 2.04 — ‑0.71 — ‑0.43 — — — 483.83
7 38.87 1.98 — — ‑0.71 ‑0.52 — — — 484.10
8 22.40 2.25 — — — ‑0.77 — — — 484.21
9 47.26 1.54 — — ‑1.08 — — — — 484.31

10 5.15 2.17 0.22 — — — — — ‑0.30 484.42
11 21.11 2.32 0.17 — ‑0.72 — — 0.78 — 484.46
12 24.54 2.37 0.15 ‑0.66 — — — 0.75 — 484.56

Importance 1.00 0.59 0.43 0.38 0.36 0.31 0.28 0.27

Table 2. Best Pradel models estimating the probabilities of survival (Φ), recapture (p) and recruitment (f) of Micrablepharus atticolus in Brasília, Distrito 
Federal, Brazil, from November 2005 to March 2013, constrained by climate variables. Precip: precipitation; humid: relative air humidity; sun: insolation; 
tmax: maximum air temperature; tmed: average air temperature; tmin: minimum air temperature; AICc: Akaike information criterion corrected for small 
sample size; wAICc: Akaike weight.

Model AICc ΔAICc Deviance wAICc
Φ(~sun+humid) p(~precip+tmin+sun) f(~tmed+sun+humid+tmin) 5590.05 0.00 1225.27 0.18

Φ(~sun+humid) p(~precip+tmin+sun+humid) f(~tmed+sun+humid+tmin) 5591.04 0.99 1224.18 0.11

Φ(~sun+humid) p(~precip+tmin) f(~tmed+sun+humid+tmin) 5591.06 1.01 1228.35 0.11

Φ(~sun+humid) p(~precip+tmin+sun+tmax) f(~tmed+sun+humid+tmin) 5591.07 1.02 1224.21 0.11

Φ(~sun+humid+precip) p(~precip+tmin+sun+tmax) f(~tmed+sun+humid+tmin) 5591.44 1.39 1222.49 0.09

Φ(~sun+humid+precip) p(~precip+tmin+sun) f(~tmed+sun+humid+tmin) 5591.46 1.41 1224.59 0.09

Φ(~sun+humid+tmin) p(~precip+tmin+sun) f(~tmed+sun+humid+tmin) 5591.54 1.49 1224.68 0.09

Φ(~sun+humid) p(~precip+tmin+sun) f(~tmed+sun+humid+tmin+tmax) 5591.58 1.54 1224.72 0.08

Φ(~sun+humid) p(~precip+tmin+sun) f(~tmed+sun+humid+tmin+precip) 5591.87 1.83 1225.01 0.07

Φ(~sun+humid) p(~precip+tmin+sun+tmed) f(~tmed+sun+humid+tmin) 5591.91 1.87 1225.05 0.07
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late dry and early wet season, being primarily correlated 
with air temperature and negatively correlated with inso-
lation (Fig. 6, Table 3). f varied significantly with burn fre-
quency, being lowest in biennial plots and highest in the 
control plot, but differences were very small; f increased 
in months when burns occurred (Fig. 6, Table 3).

DISCUSSION

The demography of the endemic Cerrado lizard, Mi‑
crablepharus atticolus, is influenced by both the marked 
seasonality of the Cerrado climate and the different fire 
regimes. Our results indicate the species has a well-de-
fined reproductive cycle and that populations undergo 
a complete annual turnover. Micrablepharus atticolus is, 
thus, one of the few species of tetrapods known to have 
an annual lifespan (Bourlière, 1959; Karsten et al., 2008). 
Breeding takes place in the dry season, as indicated by 
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Table  3. Demographic analysis of Micrablepharus atticolus in plots 
subjected to controlled burns, in Brasília, Distrito Federal, Brazil, 
from November 2005 to March 2013. Values represent estimates of 
demographic parameters and coefficients of strata and covariates of 
the Pradel model Φ(~occurrence+timing+humid+sun) p(~occurrence+regi
me+precip+sun+tmin) f(~occurrence+frequency+humid+sun+tmed+tmin). 
Coefficients (β) Φ: probability of survival, p: probability of capture, f: 
per capita recruitment. Strata: burn frequency (control, quadrennial 
and biennial), timing (control, early, middle and late dry season), regime 
(control, quadrennial, early biennial, middle biennial and late biennial), 
and fire occurrence (yes, no).

Parameter Estimate (± SD) β (± SE)
Φ
 Intercept (Control) 0.917 ± 0.101 22.517 ± 3.292
 Middle dry season 0.918 ± 0.103 -0.023 ± 0.350
 Early dry season 0.907 ± 0.112 -0.222 ± 0.352
 Late dry season 0.887 ± 0.134 -0.458 ± 0.352
 Fire occurrence 108.068 ± 0.000
  With fire 0.983 ± 0.052
  Without fire 0.908 ± 0.112
 Relative air humidity -0.149 ± 0.028
 Insolation -1.298 ± 0.201
p
 Intercept (Control) 0.022 ± 0.020 -1.618 ± 0.817
 Middle biennial 0.075 ± 0.061 1.368 ± 0.461
 Early biennial 0.047 ± 0.042 0.850 ± 0.475
 Late biennial 0.032 ± 0.029 0.443 ± 0.503
 Middle quadrennial 0.045 ± 0.040 0.767 ± 0.480
 Fire occurrence -1.034 ± 0.405
  With fire 0.090 ± 0.065
  Without fire 0.043 ± 0.044
 Precipitation -0.082 ± 0.031
 Insolation 0.090 ± 0.054
 Minimum air temperature -0.197 ± 0.032
f
 Intercept (Control) 0.157 ± 0.237 -13.797 ± 6.439
 Biennial 0.153 ± 0.235 0.202 ± 0.347
 Quadrennial 0.155 ± 0.226 0.051 ± 0.352
 Fire occurrence 4.094 ± 0.974
  With fire 0.625 ± 0.383
  Without fire 0.146 ± 0.220
 Relative air humidity -0.095 ± 0.035
 Insolation -0.681 ± 0.178
 Mean air temperature 0.810 ± 0.212
 Minimum air temperature 0.224 ± 0.147
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the presence of gravid females and a peak in the prob-
ability of captures, likely resulting from increased ac-
tivity of adults. Juveniles hatch early in the wet season 
(as indicated by the distribution of SVL and by a peak 
in recruitment), grow, attain sexual maturity and repro-
duce in the next dry season, and then die (as indicated 
by a drop in survival), with practically no overlap among 
generations. These characteristics place the species in 
the small-bodied, early-maturing, small-clutched, and 
multiple-brooded category of lizard life histories (Tinkle 
et  al., 1970; Dunham et  al., 1988). Sympatric species 
of Cerrado lizards exhibit a variety of reproductive tac-
tics, with most reproducing primarily during the rainy 

season, including Ameiva ameiva (Linnaeus 1758) (Colli, 
1991), Mabuya frenata (Cope 1862) (Vrcibradic and Ro-
cha, 1998), Polychrus acutirostris Spix 1825 (Garda et al., 
2012), Tropidurus itambere Rodrigues 1987 (Van Sluys, 
1993), and T.  torquatus (Wied-Neuwied 1820) (Wieder-
hecker et al., 2002), whereas others breed in the dry sea-
son, such as Cnemidophorus ocellifer (Spix 1825) (Mesqui-
ta and Colli, 2003) and Gymnodactylus amarali Barbour 
1925 (Colli et al., 2003). This variation likely results from 
the interaction between phylogenetic conservatism and 
fluctuating environmental conditions (e.g., water and 
temperature) and resources (e.g., food availability) (Colli 
et al., 1997).
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of varying fire severity in central Brazil, from 2005–2013. Blue line indicates the monthly variation of insolation (Source: RECOR meteorological station).
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The ecology of gymnophthalmid lizards is very poor-
ly known, but the available data indicates that the small 
clutch size of 1–2 eggs (Duellman, 1978; Avila-Pires, 1995) 
is a phylogenetically conserved trait (Vitt and Caldwell, 
2009). On the other hand, the length of the breeding 
season is quite variable, being continuous in Neusticurus 
ecpleopus (Cope 1876) from the Amazon rainforest (e.g., 
Sherbrooke, 1975) and Vanzosaura multiscutata (Amaral 
1933) from the semi-arid Caatinga (Vitt, 1982), and sea-
sonal in Cercosaura schreibersii Wiegmann 1834 from the 
Pampas and Araucaria forest (Balestrin et al., 2010), and 
Leposoma rugiceps (Cope 1869) and Gymnophthalmus spe‑
ciosus (Hallowell 1861) from Panama city (Telford, 1971). 
Among the climate variables we analyzed, insolation was 
the most important, being the best predictor of temporal 
variation in SVL and the only simultaneous predictor of 
survival, recapture, and recruitment. Micrablepharus at‑
ticolus has a generalist diet, consisting of a variety of ar-
thropods (Vieira et al., 2000; Gainsbury and Colli, 2003) 
and, overall, insect abundance is highest during the rainy 
season in the study area (Pinheiro et al., 2002). Since the 
reproductive activity of M. atticolus peaks during the dry 
season, its reproductive cycle is likely not driven by food 
availability for adults (Colli et al., 1997), but presumably 
by a combination of suitable conditions for adult activity 
and egg development in the drier months, and for juvenile 
growth during the wet season.

Our results indicate that the short-term effects of 
fires are beneficial for populations of Micrablepharus at‑
ticolus: in months with fires, there was an increase in 
survival, captures, and recruitment. Cerrado fires spread 
rapidly and consume primarily the herbaceous layer, with 
soil temperature changes at or below a depth of 5 cm be-
ing negligible (Miranda et  al., 2002, 2009). Cerrado liz-
ards (even arboreal species) rely on shelters to evade the 
passage of fire and direct mortality caused by fire is rare 
or nonexistent (Costa et al., 2013). Most Cerrado herbs 
resprout and flower vigorously a few days or weeks after 
fires (Miranda et al., 2002, 2009), and this burst of pro-
ductivity contributes to increased abundance of insects 
(Prada et al., 1995; Vieira et al., 1996; Uehara-Prado et al., 
2010; Lopes and Vasconcelos, 2011; Lepesqueur et  al., 
2012) and, presumably, to increased food availability for 
lizards. In addition, the increased soil exposure and heat 
flux after Cerrado fires (Castro-Neves and Miranda, 1996) 
may be beneficial to M. atticolus, given its preference for 
open habitats and high body temperatures (Vieira et al., 
2000). Therefore, short-term post-fire changes in Cerra-
do are seemingly beneficial to populations of M. atticolus 
by creating favorable environmental conditions.

In the long run, however, fire regimes of increased 
intensity are detrimental to populations of Micrablepha‑
rus atticolus: survival was lowest in the plot burned late in 
the dry season, the probability of capture was low in the 
late biennial plot, and recruitment was lowest in biennial 

plots. Late dry season fires in Cerrado attain highest in-
tensity, since most of the combustible fuel is dry, relative 
air humidity is at its lowest, and wind speed is at its high-
est (Mistry, 1998; Ramos et al., 2009). High fire frequen-
cies result in lower recruitment and higher mortality of 
woody plants, leading to more open Cerrado physiogno-
mies with decreased abundance and richness of woody 
plants (Hoffmann, 1996; 1999; Moreira, 2000; Hoffmann 
and Moreira, 2002). In addition, high fire frequencies 
favor the growth of grasses and a reduction of the leaf 
litter (Mistry, 1998; Hoffmann and Moreira, 2002), soil 
moisture, nutrient pools and nutrient fluxes (Kauffman 
et al., 1994; Nardoto et al., 2006; Valenti et al., 2008). As 
a consequence, high fire frequencies result in decreased 
abundance of arthropods (Diniz et  al., 2011; Freire and 
Motta, 2011), including those that dwell in the leaf lit-
ter (Vasconcelos et al., 2009). Altogether, these changes 
result in less-favorable microclimate conditions (reduced 
leaf litter and moisture) and diminished food resources 
for M. atticolus.

Fire suppression had mixed effects on the demogra-
phy of Micrablepharus atticolus: survival and recruitment 
were high, but the probability of capture was lowest in the 
control (unburned) plot. The total number of captures 
and recaptures in the control plot was also significantly 
lower than in all other plots. Fire suppression creates 
shadier microenvironments, due to increased abundance 
and richness of woody plants (Hoffmann, 1996; 1999; 
Moreira, 2000; Hoffmann and Moreira, 2002), which are 
seemingly unsuitable to Micrablepharus atticolus popula-
tions. Therefore, either fire suppression or fire regimes 
of increased severity seem detrimental to populations of 
M. atticolus.

Present-day fire regimes in the Cerrado pose con-
trasting challenges to its biodiversity (Coutinho, 1990; 
Pivello, 2011). In protected areas, where fires are not al-
lowed and where fire-management plans are often lack-
ing, there is a tendency for the woody vegetation to be-
come denser and taller, resulting in shadier and moister 
environments (Durigan and Ratter, 2006; Soares et  al., 
2006). This leads to increased build up of combustible 
fuel and, when fires occur, they tend to be severe and burn 
large tracts of the landscape. In practice, even in protect-
ed areas of Cerrado fires occur every 3–6 years, when the 
probability of burning as a function of time since the last 
fire peaks, highlighting the inefficacy of fire-suppression 
measures (França et al., 2007; Pereira et al., 2014). Con-
versely, outside protected areas, human-induced fires oc-
cur at a high frequency, often annually, leading to a re-
duction in woody vegetation and favoring the herbaceous 
layer, resulting in more open and dry environments. More 
recently, this scenario has worsened due to positive feed-
backs between carbon emissions from burns and climate 
change, which lead to increasingly hotter and drier, fire-
prone landscapes, in an escalating spiral (Arantes et al., 
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2012; Araújo et  al., 2012). Our long-term study indi-
cates that both fire-suppression and uncontrolled high-
frequency burns are detrimental to populations of the 
endemic Cerrado lizard, Micrablepharus atticolus. Given 
their small body size, limited mobility and ectothermy, 
Cerrado amphibians and reptiles could show similar re-
sponses. Adequate fire management, through prescribed 
burns, conducted at adequate temporal and spatial scales 
is therefore warranted, to reduce the severity of burns in 
Cerrado (Pivello, 2011; Pereira et al., 2014). This should 
include a reduction in the frequency or a shift towards 
the early dry season in the timing of burns in more open 
areas, and controlled, small-scale fires in mosaic arrange-
ment to preclude the excessive accumulation of combus-
tible fuel in denser physiognomies.
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Capítulo 2: Correlatos ecológicos da autotomia caudal em Micrablepharus atticolus em uma 

savana Neotropical 

 

 Autotomia caudal e regeneração são talvez as adaptações mais dramáticas entre os lagartos 

para aumentar a sobrevivência. Apesar de muitos estudos sobre o assunto, a significância ecológica 

das taxas de autotomia caudal em populações naturais permanece elusiva, devido às dificuldades 

em controlar vários fatores contraditórios e à falta de dados demográficos acurados. Baseados em 

um estudo de captura e recaptura, nós investigamos os determinantes ecológicos das taxas de 

autotomia caudal em Micrablepharus atticolus, um lagarto de cauda azul do Cerrado. Nós testamos 

se o hábitat (representando a intensidade de predação), a ontogenia e o sexo influenciavam as taxas 

de autotomia, e também se as taxas de autotomia influenciavam a condição corporal dos 

indivíduos. Nós encontramos que as taxas de autotomia caudal em M. atticolus são mais baixas do 

que muitas outras espécies com caudas brilhantes e coloridas, provavelmente por causa dos hábitos 

fossoriais e de seu pequeno tamanho corporal. As taxas de autotomia caudal foram mais baixas 

que esperado ao acaso na parcela com taxas de mortalidade mais baixas, o que sugere um papel 

mais proeminente da intensidade de predação ao invés da eficiência de predação, e as taxas 

aumentaram com a idade, sugerindo efeitos cumulativos de tentativas de predação ao longo da 

ontogenia ou de diferenças específicas da idade na intensidade de predação. Nós também não 

encontramos diferenças intrasexuais ou qualquer efeito da atividade reprodutiva nas taxas de 

autotomia caudal. Nossos resultados indicam que os custos energéticos da autotomia caudal são 

baixos, ou que os animais compensam a perda da cauda com maiores taxas de forrageio. Estas 

características de M. atticolus parecem altamente associadas com seu tamanho corporal pequeno, 
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estilo de vida fossorial e de uma curta duração de vida e sugerem que os custos da regeneração da 

cauda sejam baixos. 
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Abstract

Tail autotomy and regeneration are perhaps the most dramatic adaptations to
enhance survival among lizards. In spite of much work on the subject, the ecologi-
cal significance of tail autotomy rates in natural populations remains elusive, due
to difficulties in controlling several confounding factors and the paucity of accurate
demographic data. On the basis of a capture–recapture study, we investigate the
ecological determinants of tail autotomy rates in Micrablepharus atticolus, a blue-
tailed lizard from the South American Cerrado. We tested whether habitat (as a
proxy of predation intensity), seasonality (as a proxy of intensity of social interac-
tions), ontogeny and sex affected autotomy rates, and also whether autotomy rates
affected body condition. We found that tail autotomy rates in M. atticolus are
lower than in many other species with brightly colored tails, likely resulting from a
small body size and fossorial habits. Autotomy rates were lower than expected by
chance in the plot with lower mortality rates, suggesting a more prominent role of
predation intensity instead of predator efficiency, and increased with age, suggest-
ing cumulative effects of predation attempts along the ontogeny or age-specific dif-
ferences in predation intensity. We also found no intersexual differences or any
effect of breeding activity on autotomy rates. Our results indicate that energetic
costs of tail autotomy are low, or that animals compensate tail loss with increased
foraging rates. These characteristics of M. atticolus seem tightly associated with its
small body size, fossorial lifestyle and very short life span, and suggest that the
costs of tail regeneration should be low.

Introduction

The evolutionary arms race between predators and prey produced
a variety of escape tactics in animals (Dawkins & Krebs, 1979).
Among them, tail autotomy and regeneration are perhaps the
most dramatic adaptations to enhance survival (reviewed in
Arnold, 1984, 1987; Bateman & Fleming, 2009). When attacked
by a predator, many salamanders, most lizards and some snakes
may shed a nonessential, wiggling tail that distracts the predator
and enables the owner to flee. In lizards, this controlled shedding
occurs under a central neural or hormonal control, producing
breakage at an intravertebral fracture plane that subdivides or
ruptures surrounding tissue and releases the tail (Gilbert, Payne
& Vickaryous, 2013). Following autotomy, most species can
produce a new tail supported by a hollow cartilaginous cone and
different in many respects from the original tail (Boozalis,
LaSalle & Davis, 2012; Higham, Russell & Zani, 2013). Tail
autotomy can also occur in social contexts, such as during

conspecific fights (Arnold, 1987; Bateman & Fleming, 2009),
and is apparently plesiomorphic in Squamata, with multiple inde-
pendent losses within the clade (Arnold, 1984).
Besides an immediate survival benefit, tail autotomy may

also have costs to individual fitness (reviewed in Arnold,
1984, 1987; Bateman & Fleming, 2009). For instance, tail loss
can affect activity and behavior (Cooper & Wilson, 2008),
capacity to distract predators (Cooper & Smith, 2009), energy
balance (Lynn, Borkovic & Russell, 2013), foraging ability
(Wrinn & Uetz, 2008), growth rates (Iraeta, Salvador & Diaz,
2012), immunity (Kuo et al., 2013), locomotor performance
(Jagnandan, Russell & Higham, 2014), reproductive success
(Lu et al., 2012), social status (Anderson et al., 2012) and sur-
vivorship (Salvador & Veiga, 2005). These costs may be pro-
portional to the amount of tail shed, but this issue is still
largely unexplored (Cromie & Chapple, 2013).
In natural populations, the frequency of autotomized tails is

often correlated with predation intensity (Cooper, Perez-Mellado &
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Vitt, 2004). Nevertheless, this relationship may be modulated by
predator efficiency, such that the frequency of autotomized tails
is highest when populations are exposed to inefficient predators
and vice-versa (Schoener, 1979; Medel et al., 1988; Bateman &
Fleming, 2011), and also by the ease with which individuals shed
their tails (P�erez-Mellado, Corti & LoCascio, 1997; Cooper et al.,
2004; Pafilis et al., 2009). In addition, the frequency of auto-
tomized tails in natural populations can be affected by intersexual
differences, population density and social interactions (Fox, Rose
& Myers, 1981; Vitt, 1981; Matuschka & Bannert, 1987; Jennings
& Thompson, 1999); by ontogeny, when the probability of
tail autotomy varies with age (Vitt, Congdon & Dickson, 1977;
Kelt, Nabors & Forister, 2002; Fitch, 2003) and by habitat
effects, such that populations inhabiting more exposed habitats
show a higher frequency of autotomized tails (Pianka & Huey,
1978; Tanner & Perry, 2007; Duckett & Stow, 2011). In spite of
much work on the subject, the ecological significance of autotomy
rates in natural populations remains elusive, especially because of
the difficulties in controlling several confounding factors, such as
age, habitat and sex, and the paucity of accurate demographic data
(Schoener, 1979; Bateman & Fleming, 2009; Higham et al.,
2013).
Here, we investigate the ecological determinants of tail

autotomy rates in the gymnophthalmid lizard Micrablepharus
atticolus (Rodrigues, 1996). This lizard is endemic to, and
broadly distributed in, the Brazilian Cerrado, but also occurs in
peripheral isolates in southern Amazonia (Santos et al., 2014).
Individuals of M. atticolus are heliophilous, active during the
hottest hours of the day, feed on several groups of arthropods
and lay multiple clutches in the breeding season (Vitt, 1991;
Vitt & Caldwell, 1993; Vieira et al., 2000). They are often
abundant in open, sandy habitats and have the habit of forag-
ing and burying in the litter, grass and soil (Vitt, 1991; Colli,
Bastos & Ara�ujo, 2002; Gainsbury & Colli, 2003). Unlike
other species that change the tail color during ontogeny (Haw-
lena et al., 2006), M. atticolus has a conspicuous blue tail
whose color does not fade at adulthood. In other species, blue
tails are known to effectively divert the attention of predators
away from vital parts of the body (Bateman, Fleming & Rolek,
2014; Ortega, L�opez & Mart�ın, 2014; Fresnillo, Belliure &
Cuervo, 2015).
We take advantage of a capture–recapture study conducted

in a long-term, large-scale experiment to assess the impacts of
different burn regimes on the Cerrado biota (Sousa et al.,
2015). We test whether habitat (as a proxy of predation inten-
sity), seasonality (as a proxy of intensity of social interactions),
ontogeny and sex affect autotomy rates. We predict that auto-
tomy rates are higher (1) in more open habitats, where expo-
sure to predators should be highest; (2) during the reproductive
season, when social interactions peak; (3) in older individuals,
which have been exposed to predators for longer time; and (4)
in males, which are more prone to conspecific aggressive inter-
actions when approaching females. Further, we test the effects
of tail autotomy on individual fitness, using body condition as
a proxy. We predict that (5) tail loss and the size of the auto-
tomized portion of the tail should result in decreased body
condition, due to the loss of energy stores in the tail and
reduced foraging ability.

Materials and methods

Study sites

We conducted this study in Reserva Ecol�ogica do IBGE
(15°56041″S, 47°53007″W), a protected area in Bras�ılia, Distrito
Federal, Brazil, at the core of the Cerrado biome (Oliveira &
Marquis, 2002; Ribeiro, 2011). From 1972 to 1990, the reserve
was fully protected from fires until 1989, when a long-term
experiment was initiated to assess the effects of different burn
regimes upon Cerrado animals and plants (Pivello et al.,
2010). A large area was divided into 10 ha plots, each sub-
jected to a different combination of the timing (early, modal
and late dry season) and frequency (biennial and quadrennial)
of prescribed burns. In addition to the costs and difficulties of
replication typical of large-scale ecologic studies (Carpenter,
1990; Oksanen, 2001), this experiment could not be replicated
because of legal issues associated with burning the vegetation
inside protected areas. We selected five plots (Fig. 1) in the
cerrado sensu stricto physiognomy: three subjected to pre-
scribed biennial burns (early biennial – EB, middle biennial –
MB and late biennial – LB), one subjected to prescribed qua-
drennial burns (middle quadrennial – Q) and one control plot
(C). The last biennial burn occurred in 2008 (i.e. nine burns in
each of the EB, MB and LB plots), while the last quadrennial
burn occurred in 2007 (i.e. five burns in the Q plot). Because
plots were placed in the same physiognomy and shared the
same history of burns prior to the onset of the experiment, we
assumed that differences between plots through time arose
from the effects of prescribed burn regimes.
In Cerrado, frequent burns reduce the recruitment and

increase the mortality of woody plants, leading to open phys-
iognomies with decreased abundance and richness of woody
plants (Hoffmann, 1999; Moreira, 2000). Further, high fire fre-
quencies stimulate the growth of grasses and a reduction of the
leaf litter (Mistry, 1998; Hoffmann & Moreira, 2002), soil
moisture, nutrient pools and nutrient fluxes (Kauffman, Cum-
mings & Ward, 1994; Nardoto et al., 2006; Valenti, Ciancia-
ruso & Batalha, 2008). Conversely, fire suppression leads to
canopy closing, due to increased abundance and richness of
woody plants, and potentially toward the forested ‘cerrad~ao’
physiognomy. Still, fire intensity is highest during the late dry
season in Cerrado, because most of the combustible fuel is
dry, relative air humidity is at its lowest and wind speed is at
its highest (Mistry, 1998; Ramos, dos Santos & Fortes, 2009).
Therefore, fire severity and habitat openness in experimental
plots increased in this order: C ? Q ? EB ? MB ? LB
(Fig. 2). We assumed that lizards inhabiting plots with
increased habitat openness and reduced leaf litter are more
exposed to predators, and as a consequence, should exhibit
higher frequency of tail autotomy (Pianka & Huey, 1978; Tan-
ner & Perry, 2007).

Captures and recaptures

We monitored the populations of M. atticolus in the study
plots from October 2010 to November 2014 (details in Sousa
et al., 2015). In each plot, we placed 10 arrays of pitfall traps
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with drift fences (Fig. 2). Each array consisted of four 30 l
buckets buried into the ground and configuring a Y-shape for-
mat. One bucket was placed at the center and the other three
buckets at the tips, arranged in 120� angles. The buckets at the
tips were connected with the central bucket by 50-cm high
metal drift fences, 6 m away from the central bucket. We
opened the traps during six consecutive days every month, and
checked daily during this period. We recorded the following
data of each captured lizard: snout-vent length (SVL), tail
length and length of regenerated portion of tail (if any), with a
ruler (1-mm precision); body mass, with a spring scale (0.1 g
precision); and sex. If a lizard’s tail was broken but had not
yet regenerated, then we regarded the length of the regenerated
portion of the tail as zero. To determine the sex of each indi-
vidual, we first assessed the presence of eggs in gravid
females, then the presence of hemipenis by eversion; adult
individuals (SVL ≥ 35 mm, Sousa et al., 2015) without hemi-
penis or eggs were regarded as non-gravid females; individuals
with SVL < 35 mm were regarded as juveniles, and if recap-
tured as adults, sexed later. In the analyses involving sex, we
only used those individuals that could be sexed. Next, each
lizard was individually marked by toe-clipping and immedi-
ately released at the site of capture. Toe-clipping is extensively
used for permanently marking lizards and most studies to date

have found no effects on locomotor performance, stress level
or survival, except in species that rely on modified subdigital
lamellae for clinging (Borges-Landaez & Shine, 2003; Jones &
Bell, 2010; Hoehn, Henle & Gruber, 2015). We did not clip
more than two toes per limb for each lizard. During the entire
study period there were no recaptures indicative of movements
among plots.

Statistical analyses

To investigate the relationship between habitat openness and
predation intensity, we used the capture history of each indi-
vidual of M. atticolus to assess the effects of fire regimen on
vital demographic rates, with package BaSTA (Colchero, Jones
& Rebke, 2012). In demographic analysis, the capture history
of each individual is a sequence of presences–absences along
the sampling occasions, represented as a binary variable (1-0).
Here, we assumed that predation intensity and mortality rate
are positively correlated. Mortality in natural populations of
lizards can result from predation, diseases, starvation, anthro-
pogenic disturbances and natural catastrophes. Among them,
predation is often considered the leading agent of mortality
(e.g. Schoener & Spiller, 1996; Campbell et al., 2012; Wolf
et al., 2013). We have no data on the role of diseases, but
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food supply seems to be abundant and fires have negligible
direct effects on lizard populations in the study site (Colli,
Peres & Zatz, 1997; Costa et al., 2013). BaSTA uses Bayesian
analyses coupled with Markov chain Monte Carlo (MCMC)
methods to model age-specific survival from capture-recapture
data in the presence of covariates (Colchero & Clark, 2012).
The following parameters were used in this analysis: Gompertz
mortality function (model = ‘GO’) with a Makeham shape
(shape = ‘Makeham’), 10 MCMC simulations (nsim = 10)
each with 105 iterations (niter = 100 000), sampled at each
100 iterations (thinning = 100) and discarding the first 104 iter-
ations as burnin (burnin = 10 001). Multiple runs were per-
formed in parallel (parallel = T, ncpus = 4), using package
snowfall (Knaus, 2013).
To assess the effects of habitat openness, seasonality, sex

and ontogeny upon the occurrence of tail autotomy, we used a
generalized linear mixed model (GLMM) with a binomial error
distribution and a logit link function (Crawley, 2013), imple-
mented in package lme4 (Bates et al., 2014). We first created

a full model in which the condition of the tail (broken vs.
intact) of each captured individual was the response variable;
SVL, sex, habitat (fire regime) and insolation were fixed
effects; and year and individual (identity) were random effects,
to account for recaptures. Insolation was used as a variable
describing climate seasonality in Cerrado, because a previous
study that investigated the demography of M. atticolus found
that, among several climate variables, insolation was the most
important predictor of temporal variation in SVL and the only
simultaneous predictor of survival, recapture and recruitment
(Sousa et al., 2015). Next, we assessed the adequacy of the
full model by comparison with a null, intercept-only model
(including the random effects) via the Pearson v2 statistic. To
determine predictor importance, we used a manual forward
selection approach by adding variables to the null model and
assessing model improvement with a significance (v2) test of
the reduction in scaled deviance (Crawley, 2013). Further, we
used an information-theoretic approach by ranking all possible
models according to their Akaike information criterion cor-

(a) (b)

(c) (d)

(e) (f)

Figure 2 Micrablepharus atticolus and experimental plots submitted to different fire regimes in Reserva Ecol�ogica do IBGE, Bras�ılia, Distrito

Federal, Brazil. (a) individual of M. atticolus with broken and regenerated tail (©GRC); (b) control plot, depicting array of pitfall traps (©CRV);

(c) quadrennial plot (©DLP); (d) early biennial plot (©DLP); (e) middle biennial plot (©DLP); (f) late biennial plot (©DLP).
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rected for small samples (AICc) and calculating model-aver-
aged coefficients, with package MuMIn (Bart�on, 2014). In this
last approach, predictor importance is defined as the sum of
the Akaike weights (wAICc) for all models containing a given
predictor (Burnham & Anderson, 2002).
To investigate the possible costs of tail autotomy for indi-

vidual fitness, we assessed the effects of tail breakage upon
body condition. We defined body condition as the scaled mass
index (SMI) of Peig & Green (2009), computed as:

cMi ¼ Mi
L0

Li

� �bSMA

where Mi and Li are the body mass and the SVL of individual
i, respectively; L0 is the mean SVL in the study population;
and bSMA is a scaling factor. We computed bSMA from a stan-
dardized major axis (SMA) regression (Warton et al., 2006) of
ln(M+1) on ln(L), using package lmodel2 (Legendre, 2014).
Unlike most conventional methods of estimating body condi-
tion, the SMI can successfully account for the varying relation-
ship between M and L during ontogeny (Peig & Green, 2010)
and is a good predictor of variations in fat and protein reserves
in diverse vertebrate groups (Peig & Green, 2009). Next, we
built a GLMM in which SMI was the response variable, tail
condition (broken vs. intact) was the fixed effect and year and
individual (identity) were random effects. We assessed the ade-
quacy of the model as indicated above. We also tested the sig-
nificance of the relationship between SMI and the length of the
regenerated portion of the tail, and between SMI and the pro-
portion of the regenerated portion of the tail using a standard
least-squares linear model. We conducted statistical analyses
with software R (R Core Team 2014), using a significance level
of 5% when testing hypotheses.

Results

Along 4 years, we marked 190 individuals of M. atticolus, rep-
resenting 253 captures and recaptures in the five monitored
plots. On average, each lizard was captured on 1.24 occasions
and 32.63% of the individuals had autotomized tails. Pooling
all captures, mean SVL was 35.67 � 5.75 (14–48, n = 253)
and mean tail length was 44.80 � 12.31 (8–74, n = 253).
Considering only individuals with intact tails, mean SVL was
34.47 � 6.33 (14–45, n = 156) and mean tail length was
49.30 � 10.92 (16–74, n = 156). Tail length represented
1.42 � 0.17 (1.04–2.11) times the SVL. The age-specific sur-
vival and mortality models estimated by BaSTA indicated that
mortality increased with age; further, it was highest in the LB
and C plots, and lowest in the MB plot (Fig. 3).
The full GLMM relating tail autotomy to SVL, habitat, inso-

lation and sex was highly significant (v2½8� = 28.22, P < 0.001).
The model averaging analysis, model-averaged coefficients and
relative variable importance clearly indicated SVL and habitat
are the best predictors of tail autotomy (Table 1). The proba-
bility of tail autotomy increased significantly with SVL
(v2½1� = 11.45, P < 0.001, Fig. 4) and was significantly lower in
the EB plot (v2½4� = 10.79, P = 0.029, Fig. 5).
The GLMM relating SMI to tail autotomy was not signifi-

cant (v2½1� = 0.12, P = 0.734). There was no relationship
between SMI and either the length (F1,211 = 0.074, P = 0.786)
or the proportion of the regenerated portion of the tail
(F1,211 = 0.335, P = 0.564).

Discussion

Inferences drawn from population-level studies of tail autotomy
are often limited by the lack of information on the predators
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or the type of interaction that happens between predator and
prey: low autotomy rates may mean high predator efficiency,
rather than low susceptibility to predator attacks. To attenuate
some of these limitations, we estimated vital rates of M. attico-
lus populations based on a long-term capture-recapture study.
Rates of tail autotomy in M. atticolus (33%) are similar to
those reported for other gymnophthalmids, but are lower than
many other species that lack a colored and conspicuous tail
(e.g. Zani, 1996; Bateman & Fleming, 2009; Fleming, Valen-
tine & Bateman, 2013). Nevertheless, lizards with conspicu-
ously colored tails often show higher frequencies of tail
autotomy in comparison with our results (e.g. Vitt et al., 1977;

Vitt & Cooper, 1986; Fitch, 2003). Conspicuously, colored
tails are known to divert the attention of predators, with red
and blue being the most effective colors. This strategy can be
particularly important for animals that live in open habitats,
which are probably more susceptible to detection by visually
oriented predators. However, due to its small body size and
fossorial habits, M. atticolus may be less susceptible to preda-
tor attacks, and consequently, show lower autotomy rates
(Fleming et al., 2013).
Mortality rates of M. atticolus were highest at the extremes

of the habitat openness gradient (LB and C plots). Although
direct observations of predation events are scanty (but see
Maffei, Ubaid & Jim, 2010), mortality rates indicate that pre-
dation is highest in more open plots (LB) due to increased
exposure to predators, and in more closed plots (C) due to
higher density of predators. Small lizards are preyed upon by a
variety of arthropods, mammals, birds and other reptiles, espe-
cially snakes (Jaksic et al., 1982; Bauer, 1990; Pike et al.,
2010). Overall, the abundance and species richness of birds
(Tubelis & Cavalcanti, 2001; Macedo, 2002), mammals (Car-
mignotto, Bezerra & Rodrigues, 2014) and reptiles (Nogueira,
Colli & Martins, 2009) is highest in denser Cerrado physiog-
nomies. More specifically, the abundance of cursorial spiders,
which feed on M. atticolus (Maffei et al., 2010), is highest in
the control (C) plot (Freire & Motta, 2011). Contrary to our
expectations, rates of tail autotomy were not significantly
higher in the LB plot and neither in the C plot. However,
autotomy rates were smaller than expected by chance in the
EB plot, where mortality rates were among the lowest. These

Table 1 Model selection, model-averaged coefficients and relative

variable importance of generalized linear mixed-effects models

(GLMMs), relating the incidence of tail autotomy in Micrablepharus

atticolus to insolation, snout-vent length (SVL), sex and fire regime, in

Reserva Ecol�ogica do IBGE, Bras�ılia, Distrito Federal, Brazil, from

October 2010 to November 2014

Model d.f. AICc DAICc wAICc

Regime + SVL 8 259.15 0.00 0.56

Regime + SVL + insolation 9 260.83 1.68 0.24

Regime + SVL + sex 10 262.77 3.62 0.09

Regime + SVL + insolation + sex 11 264.45 5.30 0.04

SVL 4 266.15 7.00 0.02

Regime + sex 9 266.46 7.31 0.01

SVL + insolation 5 267.20 8.05 0.01

Regime + insolation + sex 10 267.65 8.50 0.01

Regime + insolation 8 268.43 9.28 0.01

SVL + sex 6 268.78 9.63 0.00

SVL + insolation + sex 7 270.40 11.25 0.00

Insolation 4 271.28 12.13 0.00

Sex 5 271.34 12.19 0.00

Insolation + sex 6 271.65 12.50 0.00

Regime 7 273.15 14.00 0.00

Intercept-only 3 275.53 16.38 0.00

Model-averaged coefficients Estimate SE z P

(Intercept) 0.000 0.000 – –

Regime (EB) �3.573 2.105 1.689 0.091

Regime (LB) 0.005 0.934 0.005 0.996

Regime (C) �0.999 1.191 0.834 0.404

Regime (Q) �0.887 1.237 0.713 0.476

SVL 3.234 1.767 1.822 0.069

Insolation 0.195 0.556 0.350 0.727

Sex (Juvenile) �0.102 0.596 0.171 0.864

Sex (Male) 0.093 0.397 0.232 0.817

Relative variable importance SVL Regime Insolation Sex

Importance 0.97 0.96 0.31 0.16

Juvenile lizards could not be sexed and formed a third ‘sex’.

d.f., degrees of freedom; AICc, Akaike information criterion adjusted

for small samples; DAICc, difference in AICc between candidate and

best model (minimum AICc); wAICc, Akaike weight; representing nor-

malized likelihood or weight of evidence in favor of candidate model;

EB, early biennial fire regime; LB, late biennial fire regime; C, control

(fire suppression); Q, quadrennial fire regime.
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mixed findings are not conclusive, but suggest that autotomy
rates in M. atticolus reflect predation intensity, instead of
predator efficiency. If autotomy rates indicated predator effi-
ciency, we would expect highest mortality in the EB plot.
M. atticolus has a well-defined reproductive cycle, with

reproductive activity concentrated in the dry season, and its
populations undergo an almost complete annual turnover
(Sousa et al., 2015). Therefore, we predicted high rates of tail
autotomy during the peak of breeding activity, as a result of
conspecific aggressive interactions, and also in males, which
are more prone to fights when approaching females (Bateman
& Fleming, 2009). However, reproductive seasonality
expressed as hours of insolation had low predictive power for
autotomy rates. Further, the lack of intersexual differences in
autotomy rates supports the view that conspecific aggressive
interactions play a minor role, if any, in autotomy rates of
M. atticolus.
We found that rates of tail autotomy correlate with SVL,

and consequently, with age in M. atticolus. This is in line with
the view that older individuals have been exposed to predators
for a longer time; thus, they are more likely to have experi-
enced autotomy events (Bateman & Fleming, 2009). Neverthe-
less, ontogenetic shifts in autotomy rates may as well result
from age-specific differences in predation intensity or readiness
to autotomize the tail (Vitt et al., 1977; Cooper et al., 2004;
Pafilis et al., 2009). In M. atticolus, mortality rates increase
with age and most individuals die after their first reproduction.
Larger, older individuals may become more susceptible to pre-
dation, and thus to tail autotomy, with the increased activity
associated with their single mating season. In fact, mean SVL
of captured individuals, probability of capture and reproductive
activity all peak in the dry season (Sousa et al., 2015). Future
works should address the existence of ontogenetic variation in
the ease of tail autotomy.

There was no association between tail autotomy and body
condition in M. atticolus. We expected that body condition
would be reduced following tail autotomy as a consequence of
the energetic costs of tail regeneration and the loss of fat
stored in the tail (Lynn et al., 2013), or of reduced foraging
and prey capture abilities (Martin & Avery, 1997; Cooper,
2003). There is no information on the fat content of M. attico-
lus tails (or gymnophthalmids, in general) and this is an issue
that warrants further investigation. Nevertheless, our results
suggest that either the energetic costs of autotomy are low, or
that animals compensate tail loss with increased foraging rates,
as documented in other species (Dial & Fitzpatrick, 1981).
Reduced foraging efficiency may result from decreased loco-

motor performance or increased vulnerability to predation fol-
lowing tail autotomy. Gymnophthalmid lizards are
characterized by body elongation and limb reduction (Wiens,
Brandley & Reeder, 2006), which may be extreme in some
forms, such as Bachia, Calyptommatus, Notobachia and Scrip-
tosaura. With body elongation and limb reduction, there is
increased reliance on the vertebral axis as the main driver of
locomotion (Renous, Hofling & Gasc, 1998). In such species,
tail autotomy may not imply a significant locomotor cost,
because the whole body is used for serpentine movement or
burrowing (Arnold, 1984; Fleming et al., 2013), unless a very
large portion of the tail is lost (Lin & Ji, 2005). Nevertheless,
Micrablepharus lizards rely more on quadrupedal locomotion
(Renous, Hofling & Gasc, 1999), as it happens with the close
relative Vanzosaura (H€ofling & Renous, 2004; Renous,
Hofling & Bels, 2008; Recoder et al., 2014). Taking the above
and a fossorial lifestyle, tail autotomy apparently does not
impair locomotion or affect vulnerability to predation in
M. atticolus.
In conclusion, our results indicate that despite possessing

a long, brightly colored blue tail, rates of tail autotomy in
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Figure 5 Extended mosaic plot with residual-based shading depicting the proportion of individuals of the lizard Micrablepharus atticolus with

broken or intact tails, in five experimental plots submitted to different fire regimes at Reserva Ecol�ogica do IBGE, Bras�ılia, Distrito Federal, Brazil.

The dark red cell indicates that in the plot submitted to biennial prescribed fires early in the dry season, the number of lizards with broken tails

was smaller than expected by chance. The width of each cell is proportional to the number of captured lizards.
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M. atticolus are comparatively low. Further, they support the
role of habitat and ontogeny, but not the effects of sex or con-
specific aggression upon autotomy rates in natural populations
of M. atticolus. Finally, our results indicate no significant
effects of tail autotomy on body condition. These characteris-
tics of the species seem tightly associated with certain aspects
of its ecology, most importantly the small body size, fossorial
lifestyle and very short life span, and suggest that the costs of
tail regeneration should be low, what could be addressed in
future studies.
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34 
 

 

Capítulo 3: Regimes de queima e a demografia de Tropidurus itambere (Tropiduridae, 

Squamata) em um hotspot de biodiversidade: viabilidade populacional sob diferentes 

históricos de queima 

 

 Nesta nova era em que a Terra entrou, conhecer como a variação do clima e os distúrbios 

afetam as taxas vitais dos animais e que, consequentemente, levam a mudanças no crescimento 

populacional é essencial para a mitigação dos efeitos antrópicos. O fogo é um distúrbio importante 

presente em ecossistemas inflamáveis de todo o mundo, incluindo campos e savanas. Porém, pouco 

se sabe sobre os efeitos do clima e do fogo sobre populações animais, especialmente no hotspot de 

biodiversidade do Cerrado. Neste estudo de longo prazo de marcação e recaptura, objetivou-se 

investigar os efeitos do clima e de diferentes regimes de queima com diferentes graus de severidade 

sobre a estrutura etária (baseada em médias mensais dos tamanhos corporais dos indivíduos) e a 

demografia do lagarto Tropidurus itambere. Com o auxílio de modelos de projeção integrados, 

foram investigadas as taxas vitais específicas do tamanho que mais contribuem para o crescimento 

populacional. Foi encontrado que a temperatura e a insolação foram os preditores mais importantes 

da estrutura etária e dos parâmetros demográficos, e o período de recrutamento sempre ocorrendo 

nos meses de janeiro, apesar da variação climática. A espécie é menos abundante nos regimes de 

queima mais extremos, seja na supressão do fogo, seja em queimadas frequentes e intensas no final 

da estação seca. Queimadas frequentes e intensas no final da estação seca prejudicam a persistência 

da espécie porque diminuem as taxas de recrutamento e sobrevivência, provavelmente devido à 

redução na disponibilidade de recursos alimentares e micro-hábitats para os ovos e para indivíduos 

adultos. A sobrevivência, crescimento e nascimento de jovens são os parâmetros que mais 

contribuem para o crescimento populacional na espécie, portanto o manejo deve ser voltado para 
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estes indivíduos. Com base em outros estudos e em nossos resultados, sugere-se que queimadas de 

baixa intensidade e extensão durante o final da estação chuvosa devem beneficiar espécies de 

sucessão precoce como T. itambere e espécies de sucessão tardia, como algumas aves e pequenos 

mamíferos, pois criam hábitats adequados para a sobrevivência e recrutamento e ainda evitam 

incêndios de alta intensidade em áreas extensas que ocorrem no final da estação seca. Mudanças 

climáticas que afetem os padrões normais de temperatura e insolação devem ter altos impactos 

sobre populações de animais ectotérmicos, como o lagarto T. itambere. 
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Abstract 

 In this new Age that Earth entered, knowing how climate variation and disturbances affects 

animal vital rates and consequently drives changes in population growth is essential for mitigating 

the anthropic effects. Fire is a major disturbance present in flammable ecosystems worldwide, 

including grasslands and savannas. However, little is known about the effects of climate and fire 

on animal populations, especially in the Cerrado biodiversity hotspot. In this long-term of mark-

recapture study, we aimed to investigate the effects of climate and of different histories of fire on 

the age structure (based on monthly mean body sizes) and the demography of the Cerrado endemic 

lizard Tropidurus itambere. With aid of integrated projection models (IPMs), we also investigated 

the size-specific vital rates that contribute more to population growth and predicted population 

sizes after 50 years. We found that temperature and insolation were the most important predictors 

for the age structure and demographic parameters and timing of recruitment was always in January, 

despite of the climate variation between the years. The species is less abundant in the most extreme 

regimes of fire, with suppression of fire and frequent late-dry intense fires. Frequent late-dry 

intense fires also harm the populations persistence, because those decrease the recruitment and 

survival rates, presumably due to the lack of microhabitat and food resources availability for eggs 

and individuals. Populations of T. itambere are in great decline, with great risks of extinction after 

50 years, probably because of the suppression of fire, thus creating unsuitable habitats for the 

species. The survival, growth and birth of younglings most contribute to the population growth in 

the species, thus management should be invested in these individuals. We conclude that small low-

intense fires prescribed in the wet season shall benefit early successional species as T. itambere 

and late successional, as birds and small mammals, because they create suitable habitats for 

survival and recruitment and avoid extense and high intense fires in the dry season. Changes in the 
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normal distributions of temperature and insolation must have high impacts on populations of 

ectothermic animals, such as T. itambere. 
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INTRODUCTION 

 Animal population dynamics depend on the species vital rates (e.g. survival, growth and 

fecundity) and on how these rates are regulated by abiotic and biotic factors (Tinkle 1967; Stearns 

1977). Abiotic factors include climate conditions and stochastic perturbations, such as fire and 

droughts (Inger & Greenberg 1966; Letnic et al. 2004; Read et al. 2012). Temperature and rainfall 

are the main factors that influence the population dynamics of the organisms (Adolph & Porter 

1996; Ogutu et al. 2008; Altwegg & Anderson 2009). These factors are important in tropical 

environments, where there is low temperature variation, but considerable variation in rainfall 

(Andrews & Nichols 1990; Andrews 1991; Brown & Shine 2006). On the other hand, the climatic 

conditions and perturbations drive important biotic factors, including predation(Wilson & Cooke 

2004; Madsen et al. 2006), competition (Ballinger 1976; Massot et al. 1992), and food resources 

(Ballinger 1977; Dunham 1978; Prevedello et al. 2013). 

 Annual temperature variation may affect the length of the days of activity (Adolph & Porter 

1996) and the developments of individuals and embryos in ectothermic animals, as reptiles 

(Marquis, Massot & Le Galliard 2008; Le Galliard, Marquis & Massot 2010; Telemeco et al. 2010). 

Therefore, temperature may affect ultimately the growth (Braña & Ji 2000), survival (Rojas-

González et al. 2008) and fecundity of animal populations (Baird & Davies 1986). Additionally, 

variations in rainfall in the tropics affect biomass vegetation and the abundances of many animals 

that are source of food to other animals, leading to effects on higher trophic levels (Lemos-Espinal, 

Smith & Ballinger 2003; White 2013; Ujvari et al. 2015). Rainfall also affects the levels of air 

humidity, which influence on the embryos development and survival and post-hatching fitness of 

lizards (e.g. survival, growth, locomotor performance) (Stamps & Tanaka 1981; Lorenzon et al. 

1999; Warner & Shine 2007). The cloud cover and insolation may also affect survival, activity, 
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recruitment, age structure and growth of reptile populations because they influence on thermal 

opportunities (Hare & Cree 2010; Sousa et al. 2015). 

 Fire is a perturbation present in fire-prone ecosystems, including savannas and grasslands 

and it is getting more frequent worldwide (Bond & Keeley 2005; Bond, Woodward & Midgley 

2005; Bowman et al. 2009). Fire has major importance in ecosystem processes and also contributes 

to global greenhouse gas budgets (Beringer et al. 2015; Edwards, Russell-Smith & Meyer 2015). 

In tropical savannas, natural fires occur by lightning ignitions or by human activities (Ramos-Neto 

& Pivello 2000; Bond & Keeley 2005). Fires initiated by humans tend to happen in the late dry 

season, when air humidity is low, fuel is dry and abundant, and wind intensity is higher (Mistry 

1998). In addition, human activities generate fire regimes more frequent, intense, broader in scale, 

and more difficult to control in comparison to the natural regimes (Miranda, Bustamante & 

Miranda 2002; Miranda et al. 2009; Bowman et al. 2011). Fire frequency and intensity opens the 

canopy cover and increases the grass cover of fire-prone ecosystems, because it increases the tree 

mortality (Bond & Keeley 2005; Bond, Woodward & Midgley 2005; Miranda 2010). Yet, fires 

may affect animal community diversity and composition (Andersen et al. 2005; Watson et al. 

2012a; Pastro, Dickman & Letnic 2014), but little is known about the effects of fire on animal 

populations, which may be more instructive for management and conservation (Driscoll et al. 2010; 

Duff, Bell & York 2013; Smith, Michael Bull & Driscoll 2013). 

 Because fires are natural and relatively frequent perturbations in savannas, the organisms 

may have adopted adaptive strategies to cope with them (Simon et al. 2009; Brennan, Moir & 

Wittkuhn 2011; Avitabile et al. 2015). Accordingly, lizards have behavior adaptations to protect 

themselves in the passage of fire, as burrowing in holes and termite mounds (Russell, Lear & 

Guynn Jr. 1999; Costa et al. 2013). However, because of their different ecologies and physiologies, 
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species respond differently to the secondary effects of fire on the vegetation structure and they may 

specialize in different stages in the succession of vegetation after fire (Masters 1996; Smith, 

Michael Bull & Driscoll 2013). In animals, fire may change the species habitat (Pianka 1996; 

Hailey 2000; Haslem et al. 2011), physiology (Stawski et al. 2015), behavior (Griffiths & Christian 

1996; Faria, Lima & Magnusson 2004), food resources (Andersen et al. 2005; Radford & Andersen 

2012), predation rates (Karpestam, Merilaita & Forsman 2012), thermal opportunities (Lelièvre et 

al. 2013) and social interactions (Breininger et al. 2014). Therefore, the varied effects of post-fire 

changes on reptiles hamper their predictions (Driscoll & Henderson 2008; Lindenmayer et al. 

2008). These changes may influence the vital rates of the animal populations, as survival and 

recruitment, which in turn, may affect the age structure and long-term population growth rates. Fire 

may also affect capture probability, or detectability, of animals and many studies neglect this factor 

because of the high costs in obtaining such data (Driscoll et al. 2010; Driscoll et al. 2012; Smith, 

Bull & Driscoll 2012). Unfortunately, neglecting this factor often biases the conclusions about the 

effects of fire on animal populations (Driscoll et al. 2012; Guimarães, Doherty & Munguía-Steyer 

2014). 

 In the new age that Earth entered, the Anthropocene, management towards conservation of 

biodiversity is critical to reduce the present rates of species extinction (Steffen et al. 2011; 

Zalasiewicz et al. 2011; Lewis & Maslin 2015). Global climate changes and habitat destruction 

drive the species extinction of many vertebrates in the world (Dirzo et al. 2014), with considerable 

impacts on reptiles (Sinervo et al. 2010; Böhm & al 2013). Habitat loss and harvesting are the main 

factors that threat one in five reptiles in the world (Böhm & al 2013). Similarly, the biodiversity 

hotspot of Cerrado is under increasing threat, with high rates of land conversion and endemic 

species (Mittermeier et al. 1998; Myers et al. 2000; Klink & Machado 2005). Moreover, gap 
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analysis revealed that 91% of the endemic lizards from Cerrado are under-represented in the current 

scenario of protected areas (Silva et al. 2014). In addition to these numbers, fires are increasing 

worldwide and we do not know how these perturbations affect most of the animal populations 

(Driscoll et al. 2010; Bowman et al. 2011), and more critically, those from Cerrado (Frizzo et al. 

2011). Demographic studies may help to understand the needs and dangers in variable conditions 

that species face upon to, and which factors may affect the population extinction risks probability 

(Clarke 2008; Templeton, Brazeal & Neuwald 2011). Integrated projection models that use age or 

size-specific estimates may also determine which sizes are more sensitive and contribute more to 

the population growth rates (Easterling, Ellner & Dixon 2000; Stubben, Milligan & Nantel 2012; 

Merow et al. 2014). 

 In this paper, we present results of a long-term monitoring study that aimed to investigate 

the demography of an endemic lizard from a Neotropical savanna Tropidurus itambere Rodrigues, 

1987 in areas with different fire regimes, estimating its vital rates (survival and recruitment) and 

detecting the most important size classes that contribute to population growth, based on integrated 

projection models. Tropidurus itambere is a diurnal, heliophilous, and territorialist ambush forager, 

has a fast-growing strategy, and it is sexually reproductive in the first year of life (Rodrigues 1987; 

Van Sluys 1997; Van Sluys 1998; Rocha et al. 2009). The species seems to present multiple 

clutches in each reproductive season that vary between one and eight eggs, and the recruitment 

happens in the wet season (Van Sluys 1993b; Van Sluys 2000). It feeds upon several arthropods 

and invertebrates (Van Sluys 1993a). Our main hypothesis predict that the species benefits from 

the more frequent and intense fire histories, because the species is present in more open 

physiognomies and in severe fire regimes (Van Sluys 2000; Pantoja 2007b; Carvalho 2013). In 

these fire regimes, we expect that age structure (represented as monthly means of SVL) presents 
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more young individuals, populations are larger, present higher rates of survival, capture, and 

recruitment, leading to higher population growth rates. 

 

MATERIAL AND METHODS 

Study area 

 We conducted this study at Reserva Ecológica do IBGE, RECOR (15°56'41"S, 

47°53'07"W), Brasília, Distrito Federal, Brazil, in the core of the Cerrado biome (Eiten 1972). 

Climate is markedly seasonal, with a wet season from October to April, followed by a dry season 

from May to September (Nimer 1989). From 1972 to 1990, the RECOR was fully protected from 

fires. In 1989, however, a long-term experiment was initiated to evaluate the effects of different 

burn regimes upon animals and plants (Miranda 2010; Pivello et al. 2010; Miranda et al. 2011). A 

uniform sampling area was divided into 10 ha plots, each submitted to a different regime, 

characterized by a combination of the timing (early dry season: in late June, middle dry season: in 

early August, and late dry season: in late September) and frequency (biennial and quadrennial) of 

burns. In addition, there were control, unburned plots. Because plots were placed in the same 

physiognomy and shared the same history of burns prior to the onset of the experiment, we assumed 

that differences between plots through time arose from the effects of prescribed burn regime 

histories. We selected five plots (Figure 1) in the cerrado sensu stricto physiognomy (Ribeiro & 

Walter 1998): three subjected to prescribed biennial burns (early biennial - EB, middle biennial - 

MB, and late biennial - LB), one subjected to prescribed quadrennial burns (middle quadrennial - 

Q), and one control plot (C). Fire severity increased along the sequence C  Q  EB  MB  

LB. The last prescribed burns occurred in 2007 in quadrennial plots (five burns in each plot) and 
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2008 in biennial plots (nine burns in each plot). In September 2011, an unplanned fire partially 

burned the LB, and completely burned the control plot. With the exception of the C plot, all other 

plots were adjacent to each other, separated by a ca. 5m-wide dirt road Figure 1). In addition to the 

costs and difficulties of replication typical of large-scale ecologic studies (Carpenter, 1990; 

Oksanen, 2001), our experiment could not be replicated because of legal issues associated with 

burning the vegetation inside protected areas. We recognize this reduces the statistical power of 

our study, but such large-scale manipulative experiments are the only way to ensure the availability 

of adequate treatment levels (Driscoll et al. 2010). Therefore, we restrict our statistical inferences 

to the study areas, considering our sampling methodology as adequate to represent them. 

 

Population monitoring 

From November 2005 to December 2014, we monitored the populations of Tropidurus itambere 

in study plots, capturing animals with the aid of pitfall traps. Description of traps can be found 

elsewhere (Sousa et al. 2015). We opened the traps every month, during six consecutive days, and 

checked daily. Considering the distance between transects in adjacent plots (ca. 200 m), the small 

size and territorialist behavior of the study species (Van Sluys 1997; Van Sluys 2000) and the dirt 

road separating adjacent plots, we did not expect lizard movements between adjacent plots to affect 

our results. Indeed, during the entire period of this study there was not a single recapture indicative 

of movements between plots. We recorded the SVL (with a ruler, 1 mm precision) and sex of each 

captured lizard, followed by individual marking (toe clipping) and release at the capture site. We 

determined the sex by hemipenis eversion in males and also by visually assessing the presence of 

eggs in females. Individuals that could not be sexed in the capture or next recaptures, we considered 

as juveniles. To assess differences in the number of captures or recaptures among plots, we used 
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sequential chi-square tests, removing variables (plots) from analyses based on their chi-square 

residuals until differences among plots were no longer significant (Zar 2010). 

 

Age structure 

 To identify seasonal or cyclic patterns and trends in the age structure of the lizard 

population in each plot, we transformed monthly means of SVL into time series. As we captured 

no lizards in some months/plots, and the time-series analyses cannot have missing data, we used 

multiple imputations (Rubin 1996; Zhang 2003) to replace missing data and estimate statistical 

parameters, with package Amelia II (Honaker, King & Blackwell 2012) in R (R Core Team 2015) 

as in (Sousa et al. 2015). We included the monthly means of climatic variables obtained from the 

RECOR meteorological station: precipitation (precip), evaporation (evap), relative air humidity 

(humid), insolation (sun), average air temperature (tmed), maximum air temperature (tmax) and 

minimum air temperature (tmin); to improve prediction (Honaker, King & Blackwell 2012). 

 We built a correlogram to identify cyclic patterns in SVL variation and created cyclic sine 

and cosine wave patterns along the months and among the years to assess the influence of climatic 

variables upon monthly means of SVL. We used an information-theory approach (Burnham & 

Anderson 2002), based on the Akaike information criterion corrected for finite sample sizes (AICc), 

to select linear mixed-effects (LME) models relating monthly means of SVL to climatic variables, 

with packages lme4 (Bates et al. 2014) and MuMIn (Bartón 2014) of R (R Core Team 2015). 

Because evaporation is highly correlated to air humidity (> 0.90) and we did not have any 

hypothesis relating it to SVL, we excluded it from the models selection. We undertook an 

exhaustive screening of all possible models to assess predictor importance, determined as the sum 

of the Akaike weights for all models containing a given predictor, and retained those where AICc 
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≤ 2 to assess predictor coefficients (Burnham & Anderson 2002). To account for the temporal 

pseudoreplication resulting from plots being sampled several times over the course of the study, 

we used the sine and cosine wave patterns previously identified and year as random factors in the 

LME models (Crawley 2013). 

 We used LME models to assess differences in SVL among plots along the year. In this 

analysis, we used fire regime (plot) as fixed factor and year (2005 to 2014) as a random factor. We 

assessed the significance of the fixed factors and their interaction by comparing the full model with 

simpler models, sequentially dropping terms and using a significance test (2) of the reduction in 

scaled deviance (Crawley 2013). We conducted all analyses in R (R Core Team 2015) and used a 

significance level of 5% in hypothesis testing. 

 

Demographic analyses 

 We used individual capture histories of Tropidurus itambere from November 2005 to 

November 2014 to assess the effects of climate variables and fire regime histories on estimates of 

demographic parameters. We used Pradel models, which estimate the probabilities of apparent 

survival (Φ), capture (p) and recruitment (f). With these parameters, the model is also able to derive 

the finite population growth (λ). We implemented the analyses in two steps, using RMark 2.1.14 

(Laake 2013) and MARK 8.0 (White & Burnham 1999). In the first step, we used model selection 

and model averaging to identify climate variables that best explain capture histories. We started 

the analysis with a general model, where Φ, p, and f were constrained by all climatic variables. To 

ensure that this general model adequately fitted the data, we conducted a goodness-of-fit (GOF) 

test, by comparing our general model with a saturated model where survival and recapture 

probabilities were constrained by the interaction of fire regime history and capture occasion 
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(Φ(g*t), p(g*t)), with U-CARE 2.3.2 (Choquet et al. 2009b). Next, we conducted a heuristic 

stepwise model selection based on AICc, retaining those models with ∆AICc ≤ 2 (Burnham & 

Anderson 2002). Finally, we assessed parameter importance as indicated above. 

 In the second step, we used model selection and model averaging to identify fire-related 

variables that best explain capture histories. Thus, we constrained Φ, p, and f by the climate 

variables identified in the first step and by burn frequency (biennial, quadrennial, and control), 

timing (late, middle, early and control), regime history (LB, MB, EB, Q, and C), a continuous 

vector indicating the time (in months) since last fire in each plot (TSLF), and a binomial vector 

indicating the occurrence of fire in each plot (0: no fire, 1: fire). Therefore, we attempted to model 

both the long-term (frequency, time, regime history, TSLF) and short-term (occurrence) effects of 

fire, accounting for variation in climate. We conducted model selection and averaging as indicated 

above, in the first step. 

 

Age-specific life tables and integral projection models 

 To estimate the life expectancy and produce age-specific life-tables we used individual 

capture histories among the years in the package BaSTA (Colchero, Jones & Rebke 2013). BaSTA 

uses Bayesian analyses coupled with Markov chain Monte Carlo (MCMC) methods to model age-

specific survival from capture-recapture data in the presence of covariates (Colchero & Clark 

2012). The following parameters were used in this analysis: Gompertz mortality function 

(model="GO") with a Makeham shape (shape="Makeham"), ten MCMC simulations (nsim=10) 

each with 105 iterations (niter=100,000), sampled at each 100 iterations (thinning=100), and 

discarding the first 104 iterations as burnin (burnin=10,001). Multiple runs were performed in 

parallel (parallel=T, ncpus=4), using package snowfall (Knaus 2013). 
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 We constructed integral projection models (IPMs) according to (Merow et al. 2014) 

(Appendixes 1 and 2) with the aid of package IPMpack (Metcalf et al. 2013). We built regressions 

of survival and growth predicted by size (SVL) for all the fire regimes with our own time series 

data (Figures S1, S2 and S3). In this analysis, if an individual was never recaptured in the next 

capture events, it was considered dead. To account for detectability, we took annual means of 

capture probability estimated by MARK in the previous section and divided the probability of 

surviving and growing by the capture probability in each fire regime. To predict fecundity, we 

gathered data from Paracatu, Minas Gerais, which we have information about clutch size and SVL 

of 67 reproductive individuals of Tropidurus itambere. We found females with both ovules and 

vitellogenic follicles, evidencing multiple clutches in the species (Van Sluys 1993b).To be more 

realistic, we considered as double the clutch size for the females larger than the smallest female 

with presence of ovules and vitellogenic follicles (more than an offspring per season). With the 

regressions for each fire regime, we produced five kernels of 50 grids that describes how the size 

distribution of individuals changes over time. These kernels can be split into a survival/growth 

kernel, and a fecundity kernel (Merow et al. 2014). The survival/growth kernel describes the 

probability that an individual survives over a month and grow (Merow et al. 2014). The fecundity 

kernel describes the number of offspring produced by reproductive individuals during the census 

interval, and the size distribution of those new offspring (Merow et al. 2014). In each fecundity 

function from the five fire regimes, we included the survival probability from the offspring 

produced as the maximum value from recruitment estimated by MARK. With those kernels, we 

made elasticity analyses based on the eigenvalues and eigenvectors in package popbio (Stubben & 

Milligan 2007). To estimate the quasi-extinction probability based on the kernels in the next 100 

years of populations from each fire regime, we simulated for structured populations in an 

independently and identically distributed stochastic environment with the function stoch.quasi.ext 
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from package popbio (Stubben & Milligan 2007) with 10 runs of 5000 iterations, with an initial 

population size of 4789 individuals distributed with sizes based on a normal distribution, and with 

a quasi-extinction probability threshold of 100 individuals. We also calculated the probability of 

quasi-extinction in the next 100 years with threshold of 100 individuals for the populations in each 

fire regime incorporating demographic stochasticity with the function multiresultm, from package 

popbio (Stubben & Milligan 2007) 

 

RESULTS 

 In nine years and one month, we marked 1083 individuals of Tropidurus itambere in the 

five plots, with 1609 captures and recaptures that result in 0.33 of average recapture. Eight hundred 

and eighty individuals were only captured once. The maximum number of recaptures from one 

individual was six times. There were no differences in the captures and recaptures in the early and 

middle biennial plots (captures: 1
2 = 0.10323, P = 0.748; recaptures: 1

2 = 1.48, P = 0.2238), which 

had significantly more captures and recaptures than the plots with different fire regimes (Figure 2, 

sequential 2 tests, P < 0.001). On the other side, we captured and recaptured less in this increasing 

order: control, quadrennial and for last in the late biennial plot (Figure 2, sequential 2 tests, P < 

0.001). 

 There is a clear seasonal variation in the SVL temporally, with little overlap between the 

generations (years) (Figure 3). The autocorrelation analysis of monthly means of SVL based on 

1000 imputed datasets revealed that the temporal autocorrelation is highest for a gap of 12 months 

(mean acf = 0.71), what demonstrates that the age structure has an annual cycle. Hatchlings appear 

from January to April, at the middle to the end of the rainy season. Reproduction occurs during the 

end of the dry and beginning of the rainy season: we found only two females bearing eggs, one in 
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September and another in November. Bayesian analysis in the capture histories indicated that 

individuals have constant mortality during life, with a life span of two and a half years, at maximum 

(Figure 4). In summary, the species presents an annual life cycle with low survivorship (Figure 4), 

breeding takes place at the end of the dry season to the beginning of the rainy season, and hatchlings 

appearing at the middle to the end of the rainy season (Figure 3). 

 The model selection of LME models relating monthly means of SVL to the climate 

variables retained two models, all containing, besides the seasonality (sine and cosine waves 

factors), the variables of temperature averages (minimum, mean and maximum) (Table 1). Means 

of SVL increased when values of temperature (minimum, mean and maximum) were low. The 

SVL did not vary among the plots (i.e., no significant effect of dropping the interaction term and 

fire history upon the scaled deviance; 2
[4] = 4.216, P = 0.377), nor the interaction between months 

of capture and the plots (i.e., no significant effect of dropping the interaction term upon the scaled 

deviance; 2
[4] = 6.124, P = 0.19), indicating no difference in the age structure among the different 

histories of fire (Figure 5). The means of SVL were affected significantly only by the months of 

the year (i.e., significant increase in scaled deviance after dropping all fixed effects and their 

interaction; 2
[1] = 331, P < 0.001) (Figure 6). 

 The demographic analyses with probability of survival (Φ), capture (p), and recruitment (f) 

constrained by climate variables retained eleven models with ∆AICc  2 (Table 2). All the variables 

contained in the most parsimonious model had 100% of importance in a model-averaging analysis 

(Table2), and insolation was the only important predictor of all three demographic parameters. In 

the second step of model selection with Φ, p, and f constrained by the climate variables identified 

in the first step and fire frequency, timing, history, occurrence, and time since the last fire, a single 

model with ∆AICc  2 was retained: Φ (TSLF+frequency+tmin+sun+humid) 
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Table 1. Coefficients, Akaike information criterion adjusted for small samples (AICc), and relative 

variable importance of two linear mixed-effects models, where AICc ≤ 2, relating monthly means 

of the SVL of Tropidurus itambere to climate predictors, in Reserva Ecológica do Roncador – 

RECOR, Brasília, Distrito Federal, Brazil, from November 2005 to December 2014. Precipitation 

(precip), relative air humidity (humid), insolation (sun), average air temperature (tmed), maximum 

air temperature (tmax), minimum air temperature (tmin) and sin and cos waves depicting the 

seasonal variation. 

Parameter Model 1 Model 2 Importance 

AICc 745.83 747.49  

Intercept 102.391 ± 13.244 102.255 ± 14.174 - 

cos waves 18.706 ± 1.019 18.804 ± 1.031 1.00 

sin waves - - 0.00 

tmed -2.315 ± 0.593 - 0.70 

tmax - -1.593 ± 0.526 0.30 

tmin  -0.504 ± 0.281 0.30 

insol - - 0.00 

humid - - 0.00 

precip - - 0.00 
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Table 2. Best Pradel models estimating the probabilities of survival (Φ), recapture (p) and 

recruitment (f) of Tropidurus itambere in Brasília, Distrito Federal, Brazil, from November 2005 

to December 2014, constrained by climate variables. precip: precipitation; humid: relative air 

humidity; sun: insolation; tmax: maximum air temperature; tmed: average air temperature; tmin: 

minimum air temperature; and sin and cos waves depicting the seasonal variation; AICc: Akaike 

information criterion corrected for small sample size; wAICc: Akaike weight. 

Model AICc wAICc Deviance 

Ф(tmin + humid + sun) p(sun + tmed + sin + cos + tmax + precip) f(sin + cos + 

tmed + sun + tmax + tmin) 
12447.9 0.170561 2475.799 

Ф(tmin + humid + sun + sin + cos) p(sun + tmed + sin + cos + tmax + precip) 

f(sin + cos + tmed + sun + tmax + tmin) 
12448.04 0.159414 2471.821 

Ф(tmin + humid + sun) p(sun + tmed + sin + cos + tmax + precip)f (sin + cos + 

tmed + sun + tmax + tmin + precip) 
12448.91 0.102955 2474.754 

Ф(tmin + humid + sun) p(sun + tmed + sin + cos + tmax + precip + humid) f(sin 

+ cos + tmed + sun + tmax + tmin) 
12449.33 0.083537 2475.172 

Ф(tmin + humid + sun + sin + cos) p(sun + tmed + sin + cos + tmax + precip) 

f(sin + cos + tmed + sun + tmax + tmin + precip) 
12449.58 0.073605 2471.305 

Ф(tmin + humid + sun) p(sun + tmed + sin + cos + tmax + precip + tmin) f(sin + 

cos + tmed + sun + tmax + tmin) 
12449.58 0.073501 2475.427 

Ф(tmin + humid + sun + sin + cos) p(sun + tmed + sin + cos + tmax + precip) 

f(sin + cos + tmed + sun + tmax + tmin + humid) 
12449.62 0.072256 2471.342 

Ф(tmin + humid + sun + tmed) p(sun + tmed + sin + cos + tmax + precip) f(sin 

+ cos + tmed + sun + tmax + tmin) 
12449.77 0.066873 2475.617 

Ф(tmin + humid + sun + sin + cos) p(sun + tmed + sin + cos + tmax + precip + 

tmin) f(sin + cos + tmed + sun + tmax + tmin) 
12449.79 0.066302 2471.513 

Ф(tmin + humid + sun) p(sun + tmed + sin + cos + tmax + precip) f(sin + cos + 

tmed + sun + tmax + tmin + humid) 
12449.8 0.065943 2475.644 

Ф(tmin + humid + sun + sin + cos) p(sun + tmed + sin + cos + tmax + precip + 

humid) f(sin + cos + tmed + sun + tmax + tmin) 
12449.83 0.065054 2471.551 
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p(occurrence+frequency+sun+tmed+sin_cos+tmax+precip) f(history+ sin_cos 

+tmed+sun+tmax+tmin) (AICc= 12,378.371, deviance= 2,387.661). In this model, survival and 

capture probabilities were best explained by fire frequency, whilst recruitment was affected by the 

fire history. In addition, the time since last fire affected the survival and the fire occurrence affected 

the capture probability. The demographic parameters exhibited regular, cyclical patterns 

throughout the years (Figure7). 

 The survival probability varied seasonally, driven by variations in insolation, air humidity 

and minimum temperatures, with higher survival in the wet season (Figure7, Table 3). It is 

important to notice that survival rates had higher variations when compared to capture and 

recruitment parameters (influence of sine and cosine waves) (Figure7, Table 3). Survival was 

negatively affected by the time since last fire in all fire regimes. However, survival rates were 

highest in quadrennial and lowest in biennial frequencies of fire (Figure7, Table 3). The capture 

probability increases at the middle of the wet season and reaches the peaks in the middle to the end 

of the dry season (when the mean temperatures are highest), when it decreases again (Figure7, 

Table 3). Recruitment was surprisingly fixed between the years, with one peak each year and 

always in January (Figure7, Table 3). Therefore, the recruitment is positively affected by high mean 

temperatures and low insolation, and when the extremes of temperature are lower (Figure7, Table 

3). The fire histories affected the recruitment, with lowest rates in quadrennial histories, and with 

the highest rates in the early and middle biennial regime histories (Figure7, Table 3). Population 

growth rates are constant in all fire regimes (Table 4). 

 The integral projection models revealed that the survival probability is not constant along 

the growth of the individuals (Supplementary Information). In all fire regimes, survival contributes 

more than 70% to the population growth, while fecundity contributes with less than 30%, based on 
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sensu stricto control and treatment plots of varying fire severity in central Brazil, from 2005 to 2013. Blue line 
indicates the monthly variation of insolation (Source: RECOR meteorological station).
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Table 3. Demographic analysis of Tropidurus itambere in plots subjected to controlled burns, in 

Brasília, Distrito Federal, Brazil, from November 2005 to December 2014. Values represent 

estimates of demographic parameters and coefficients of strata and covariates of the Pradel model 

Φ (TSLF+frequency+tmin+sun+humid) 

p(occurrence+frequency+sun+tmed+sin_cos+tmax+precip) 

f(history+sin_cos+tmed+sun+tmax+tmin). Coefficients () Φ: probability of survival, p: 

probability of capture, f: per capita recruitment. Strata: burn frequency (control, quadrennial and 

biennial), regime (control, quadrennial, early biennial, middle biennial and late biennial), time 

since last fire (TSLF) and fire occurrence (yes, no). 

Parameter Estimate (± SD) β (± SE) 

Ф   

Intercept (Biennial) 0.808 ± 0.055 6.546 ± 1.226 

Control 0.847 ± 0.045 0.326 ± 0.284 

Quadrennial 0.858 ± 0.043 0.366 ± 0.129 

TSLF - -0.000197 ± 0.000324 

tmin - -0.065 ± 0.031 

humid - -0.027 ± 0.012 

sun - -0.322 ± 0.073 

p   

Intercept (Biennial) 0.07 ± 0.032 -6.462 ± 0.853 

Control 0.014 ± 0.007 -1.675 ± 0.539 

Quadrennial 0.04 ± 0.019 -0.599 ± 0.196 

fire - -0.817 ± 0.285 

sin - -0.679 ± 0.122 

cos - 0.2 ± 0.078 

sun - 0.121 ± 0.034 

tmed - 0.608 ± 0.107 

tmax - -0.386 ± 0.094 

precip - 0.001 ± 0.001 

f   

Intercept (Control) 0.369 ± 1.144 -23.62 ± 2.141 

Quadrennial 0.27 ± 0.836 -0.313 ± 0.401 

Early Biennial 0.449 ± 1.394 0.198 ± 0.369 

Mid Biennial 0.442 ± 1.371 0.181 ± 0.37 

Late Biennial 0.398 ± 1.235 0.077 ± 0.371 
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sin - 16.411 ± 2.348 

cos - -1.259 ± 0.798 

tmed - 1.747 ± 0.062 

sun - -0.078 ± 0.035 

tmax - -1.028 ± 0.062 

tmin - -0.154 ± 0.062 
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Table 4. Annual geometric means of finite population growth rates (± SE) of Tropidurus itambere 

in plots subjected to controlled burns, in Brasília, Distrito Federal, Brazil, from November 2005 to 

December 2014. 

Year Control Quadrennial Early Biennial Mid Biennial Late Biennial 

2005 0.933 ± 0.027 0.94 ± 0.018 0.916 ± 0.024 0.916 ± 0.024 0.916 ± 0.024 

2006 0.977 ± 0.062 0.965 ± 0.033 0.962 ± 0.037 0.96 ± 0.037 0.95 ± 0.036 

2007 1.056 ± 0.081 1.036 ± 0.044 1.042 ± 0.048 1.04 ± 0.048 1.026 ± 0.046 

2008 1.039 ± 0.071 1.021 ± 0.04 1.028 ± 0.047 1.026 ± 0.047 1.013 ± 0.045 

2009 1.032 ± 0.061 1.015 ± 0.032 1.021 ± 0.036 1.02 ± 0.035 1.008 ± 0.035 

2010 1.015 ± 0.069 1 ± 0.037 0.999 ± 0.04 0.997 ± 0.04 0.985 ± 0.039 

2011 1 ± 0.068 0.985 ± 0.039 0.979 ± 0.044 0.978 ± 0.044 0.967 ± 0.043 

2012 0.963 ± 0.066 0.942 ± 0.037 0.927 ± 0.04 0.926 ± 0.04 0.917 ± 0.039 

2013 1.082 ± 0.075 1.046 ± 0.042 1.053 ± 0.047 1.051 ± 0.046 1.038 ± 0.045 

2014 1.011 ± 0.073 0.982 ± 0.042 0.978 ± 0.045 0.976 ± 0.045 0.965 ± 0.043 

Total 1.018 ± 0.069 0.998 ± 0.038 0.997 ± 0.042 0.996 ± 0.042 0.984 ± 0.041 
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the elasticity analyses. The elasticity analyses of the integral projection models indicated that the 

recruitment provided by the larger individuals contribute significantly to the population growth 

(Supplementary Information). However, the most important parameters to the population growth 

are the survival and growth of individuals between 25 and 35 mm (Supplementary Information). 

In all biennial plots, populations presented higher survival for smaller individuals in comparison 

to the other plots and consequently presented higher long-term finite population growth rates 

compared to the other fire regimes (Supplementary Information). The stochastic projections 

indicated that the population submitted to mid quadrennial fires must go to extinction in about 20 

years with 100% of probability, due to the low survivorship from smaller individuals and low 

recruitment rates. While in the other plots, quasi-extinction probability is negligible (0%). 

 

DISCUSSION 

 In this study, the climate seasonality and the perturbations caused by fire regimes affected 

the demography of Tropidurus itambere. To our knowledge, this is the first study to assess the 

extinction risks of an endemic animal from a Neotropical savanna of biodiversity hotspot based on 

integral projection models. Our results also present the size-specific vital rates of a species which 

benefits from specific fire regimes, which may elucidate questions about resilience of organisms 

to perturbations, as fire and climate variations. The low survivorship, short life-span (2.5 years), 

and the thermal preferences of the species show that even much abundant species may become 

threatened face to human disturbances, as global climate change and harmful fire regimes. In this 

study, we also found that other climatic conditions rather than rainfall and temperature might affect 

animal populations in tropical and seasonal environments, mainly those with ectothermic 

physiologies. 
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 Our results demonstrated that the climate seasonality in the Neotropical savanna affects the 

life cycles of Tropidurus itambere. The age structure varies along the year, with an abrupt drop of 

mature individuals between the generations, due to the high mortality rates and by the hatchlings. 

Hatchlings appear in the middle of the wet season, grow, reach sexual maturity and reproduce in 

the next breeding season, which happens in the middle to the end of the dry season. Individuals 

suffer constant high mortality rates along the aging, living up until 2.5 years in maximum. These 

findings were similar to a population in the southeast of Brazil (Van Sluys 1993b; Van Sluys 1998; 

Van Sluys 2000) and different from western populations (Ferreira, Kihara & Mehanna 2011), 

however comparisons may be set cautiously, because T. itambere is a species complex (Domingos 

and Colli, pers. comm.). Despite of it, other allopatric and sympatric Tropidurus reproduce in other 

seasons of the year (Ferreira, Kihara & Mehanna 2011), what reinforces the idea that the timing of 

reproduction must be a local adaptation with some physiological constraints (Shine & Schwarzkopf 

1992; Shine 2005; Warner & Shine 2007).  

 Remarkably, temperature was the most important climate variable affecting the age 

structure and the recruitment of the species. But why is the reproduction seasonal? In the wet 

season, when the eggs hatch and the age structure decreases, there is higher mean temperatures and 

lower variations at the extremes of temperature daily. Temperature positively affects the escape 

behavior, the growth and fitness of embryos and hatchlings (Lorenzon et al. 1999; Braña & Ji 2000; 

Samia et al. 2015). These low variations in extreme temperatures must be important for growth 

and survival of the young individuals, as they need to grow fast. On the other side, some reptile 

eggs and hatchlings are susceptible to water availability in the environment (Stamps & Tanaka 

1981; Lorenzon et al. 1999; Brown & Shine 2006), so concentration of eggs being laid in the wet 

season seems a selective force of the seasonality in precipitation and air humidity over reproduction 
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of T. itambere. Similarly, most Cerrado arthropods (food resource for T. itambere, mainly ants) are 

more abundant in the wet season (Pinheiro et al. 2002), which must be important for growth and 

survival of hatchlings as well. The hypothesis for lower predation on eggs and hatchlings at 

different times of the year may not also be discarded (Brown & Shine 2006), however, we have 

little information about predation rates along the year.  

 One noticeable aspect is the highly cyclic recruitment rates between the years. Every year, 

the peak of recruitment happened in January, despite of the climatic variations between the years. 

This result emphasizes the importance of environment clues to the reproduction cycles and 

population persistence (Reed et al. 2010). Changes in normal variations of insolation and 

temperature may disturb populations of Tropidurus itambere, because the individuals would not 

have reliable clues to predict the environment. 

 Survival rates varied much each year, with lower rates just after the recruitment and rates 

remained constantly low throughout the dry season. In the dry season, when temperature and 

insolation were high, population was also older and capture probability was high, presumably due 

to high activity of individuals. These findings reveal a tradeoff between activity and survival. Male 

tropidurids interact socially, they are territorialist, aggressive and larger than females (Van Sluys 

1997; Pinto, Wiederhecker & Colli 2005). In the dry season, when reproductive season occurs, this 

behavior may expose more these individuals to predation. The high activity in the dry season (when 

insolation is higher) also suggests that the ectothermic physiology is a constraint factor (Dunham, 

Grant & Overall 1989), not the food resources, which are more abundant in the wet season. 

Similarly, (Colli, Péres & Zatz 1997) observed that fat bodies from Cerrado lizards did not decrease 

in the dry season, what confirms our previous statement. In 2012, we may observe high variation 

in insolation averages that led to lower survivorship and decreased growth rate. These findings 



67 
 

emphasize that insolation must be more important to populations of ectothermic animals than 

temperature and precipitation because these animals depend on thermal opportunities to control 

their metabolisms(Hare & Cree 2010; Read et al. 2012; Sousa et al. 2015). 

 Short-term effects of fire affected survival and capture probabilities. In months with fire, 

probability of capture were lower and survival increased with the passage of fire in all plots and 

decreased along the time. These results reinforces the conception that lizards survive to the passage 

of fire, hiding themselves in holes and other refuges (Russell, Lear & Guynn Jr. 1999; Costa et al. 

2013). In Cerrado, fires are rapid and vegetation resprouts a few days or weeks after (Mistry 1998; 

Miranda, Bustamante & Miranda 2002). This burst of productivity increases the abundance of 

insects (Prada, Marini-Filho & Price 1995; Vieira, Andrade & Price 1996; Uehara-Prado et al. 

2010; Lopes & Vasconcelos 2011; Lepesqueur, Morais & Diniz 2012), which presumably 

increases food resources for lizards, consequently increasing survivorship. However, the opening 

of the vegetation probably changes the behavior of Tropidurus itambere, due to the decrease in 

capture probability in months of fire. As lizards are susceptible to avian predation (Shepard 2007b; 

Wilgers & Horne 2007a), individuals probably decrease their activity to enhance survival. Similar 

changes in behavior were observed for Chlamydosaurus kingii in Australia (Griffiths & Christian 

1996) and in Kentropyx  striata, Cnemidophorus lemniscatus and Anolis auratus in an Amazonian 

savanna (Faria, Lima & Magnusson 2004). 

 In the long term, fire histories had mixed effects upon the populations. Late dry season fires 

led to the lowest population growths, because of the low survival and recruitment, disproving our 

main hypothesis. Similarly, number of captures were lower than the other two biennial regimes. 

Fires that occur in the late dry season are of high intensity, because combustible fuel is dry and 

abundant, the air moisture is low, and wind speed is high (Mistry 1998; Miranda, Bustamante & 
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Miranda 2002; Ramos, dos Santos & Fortes 2009). Frequent fires also decrease the soil litter and 

moisture (Kauffman, Cummings & Ward 1994; Hoffmann 1996; Hoffmann & Moreira 2002), 

conditions that affect the egg development of lizards (Stamps & Tanaka 1981; Lorenzon et al. 

1999; Brown & Shine 2006). This lack of conditions for egg development may affect the 

recruitment of Tropidurus itambere. Survival was lower in biennial frequencies and higher in the 

quadrennial frequencies and control plot, because fires that are more frequent lead to opening of 

vegetation (Hoffmann 1996; Mistry 1998; Hoffmann 1999; Hoffmann & Moreira 2002), which 

may turn lizards more susceptible to predation (Shepard 2007b; Wilgers & Horne 2007a). 

 Suppression of fire in the control plot led to lower number of captures and low recruitment 

rates. In addition, Tropidurus itambere survival was lower as the time since last fire increased in 

all plots. Lack of fire in open cerrado physiognomies results in encroachment of vegetation 

(Moreira 2000). Therefore, thermal opportunities and food resources seem to decrease the 

abundance of Tropidurus itambere in denser physiognomies in late-successional vegetation, since 

sun penetration is hampered and because ants (which are the main composition of its diet) are more 

abundant in our burned areas (Maravalhas & Vasconcelos 2014). 

 Elasticity analysis demonstrated that the survival and growth of young individuals between 

25 and 35 mm contribute more to the population growth. Based on the integral projection model, 

the population submitted to prescribed mid quadrennial fires will present decreased long-term 

population growth, with a probability of 100% of quasi-extinction in the next 20 years. The main 

reasons for that finding is the low survivorship and growth of younger individuals and low 

recruitment rates. This pattern also happened for the population in the control plot (lack of fire). In 

contrast, populations submitted to biennial fires in the early and mid-dry seasons benefit T. 
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itambere, because they enhance survival and growth of younger individuals and do not decrease 

the recruitment from the populations. 

 Therefore, results suggest that fire suppression and late dry season fires are very threatening 

managements for species like Tropidurus itambere that depend on open physiognomies to persist. 

Results from this study and from our previous one (Sousa et al. 2015) agree with authors that 

defend the management of fire in Cerrado (Durigan, Ratter & James 2016). Late dry season fires 

are increasing due to increased human disturbances and to lack of management of fire inside and 

outside of protected areas and many times are harder to control compared to early dry season fires 

(Klink & Machado 2005; Pivello 2011). Early and mid dry season biennial regimes seem beneficial 

for populations of Tropidurus itambere because they provide optimal habitats (Nogueira, Colli & 

Martins 2009) for survival, growth and recruitment of individuals, mainly of younger ones. The 

studies of populations’ trends are important to know the resilience of species to global changes and 

frequent disturbances as fire. As the responses from animals are very variable in each taxa (Driscoll 

& Henderson 2008; Lindenmayer et al. 2008; Smith, Michael Bull & Driscoll 2013; Kelly et al. 

2015), we highlight the importance of studying the long-term effects of different fire regimes upon 

different taxons. With such knowledge, stakeholders will be able to build management plans of fire 

in fire-prone environments (Kelly et al. 2015). We recommend the prescription of low intense fires 

in small patches in the early dry season, when air humidity is high and fuel content is low. Based 

on knowledge and experience from other studies in savanna areas in the world, small and low-

intense prescribed burns should benefit early-successional species (Nimmo et al. 2013) and late-

successional species that are more sensitive to fires, like some small mammals and birds (Kelly et 

al. 2011; Kelly et al. 2012; Watson et al. 2012b; Watson et al. 2012c; Griffiths & Brook 2014), 

because they avoid extensive late dry season burns. 
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Figure S1. Probability of survival/growth kernels from Tropidurus itambere made to produce integral 
projection models in five experimental plots submitted to different burn regimes at Reserva Ecol€gica 
do IBGE, Bras•lia, Distrito Federal, Brazil. The dashed line indicates stasis, individuals that fall above
this line neither grow nor shrink.
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Figure S2. Fecundity kernels from Tropidurus itambere made to produce integral projection models in 
five experimental plots submitted to different burn regimes at Reserva Ecol€gica do IBGE, Bras•lia, 
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Figure S3. Long-term population growth rate elasticity matrixes split into contributions made by the survival/growth 
(left column) and fecundity (right column) kernels from Tropidurus itambere in cerrado sensu stricto control and treatment plots 
of varying fire severity, in central Brazil. First line: control; 2‚ line: quadrennial; 3‚ line: early biennial; 4ƒ line: mid biennial; 5‚ line: 
late biennial.
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Capítulo 4: Autotomia caudal em um lagarto de uma savana Neotropical (Tropidurus 

itambere): padrões, custos e adaptabilidade 

 

A autotomia caudal é uma adaptação antipredatória extrema entre os lagartos, que é mantida 

somente se os benefícios superarem os custos. Nós investigamos os custos e a adaptabilidade da 

autotomia caudal como uma estratégia antipredatória no lagarto endêmico do Cerrado, Tropidurus 

itambere, em um estudo em longo prazo de marcação e recaptura. A condição corporal, 

sobrevivência e o crescimento corporal foram comparados entre indivíduos com e sem caudas para 

procurar por custos potenciais da autotomia. Nós contrastamos as frequências de autotomia caudal 

usando abertura do hábitat, sexo, ontogenia e estações como fatores. Nós também analisamos a 

regeneração de cauda ao longo da ontogenia para procurar por tradeoffs na alocação de energia. Os 

custos de sobrevivência, crescimento e condição corporal relacionados à autotomia caudal em T. 

itambere são baixos, exceto em machos, os quais tiveram sua sobrevivência reduzida após a perda 

das caudas. As frequências de autotomia caudal e sobrevivência não variaram com a abertura do 

hábitat, indicando provável compensação comportamental. Adicionalmente, a baixa frequência de 

autotomia caudal na espécie (9%) sugere que os indivíduos provavelmente se valem de outros 

mecanismos para evitar a predação (como a camuflagem), e que a pressão de predação deve ser 

baixa. Além disso, a regeneração da cauda foi mais rápida em sub-adultos do que em jovens e 

adultos maduros, o que sugere que a presença da cauda é mais importante no começo da maturidade 

do que em qualquer outro período de vida, provavelmente devido às interações reprodutivas. A 

autotomia caudal parece ser uma adaptação mais importante para adultos do que jovens em T. 

itambere, especialmente em machos, que precisam se esforçar em interações sociais agressivas, 
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por consequência se expondo mais a predadores. Este estudo traz perspectivas integradas sobre a 

autotomia caudal como uma adaptação antipredatória em lagartos.  
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Abstract 

Tail autotomy is an extreme antipredator adaptation among lizards that is only maintained in the 

species if benefits exceed costs. We investigated the costs and adaptability of tail autotomy as an 

antipredator strategy in the endemic Cerrado lizard (Tropidurus itambere) in a long-term mark and 

recapture study. Body condition, survival, and body growth were compared between tailed and 

tailless individuals to seek for potential costs of autotomy. We contrasted caudal autotomy 

frequencies using habitat openness, between sexes, along ontogeny and seasons as factors. We 

analyzed tail regeneration along the ontogeny to seek for tradeoffs in energy allocation. The costs 

of survival, body growth and condition in T. itambere are low, except in males, which had their 

survival reduced after tail loss. Tail autotomy frequencies and survival did not vary with the habitat 

openness, indicating that detection of the prey is an important factor involved in predation, 

probably because of behavior compensations. Additionally, the low frequency of autotomy in the 

species (9%) reveals that the individuals rely rather in crypsis than in autotomy to avoid predation, 

and that predation pressure might be very low. Moreover, tail regeneration was higher in early 

adults than juveniles or late adults, suggesting that tail presence is more important during the early 

maturity than in any other period of life, probably related to reproductive-time interactions. Tail 

autotomy seems to be an adaptation more important to adults than in juveniles of T. itambere, 

especially in males, which need to struggle in aggressive social interactions, wherefore they end 

up more exposed to predators. This study brings integrative perspectives upon the tail autotomy as 

an antipredator adaptation in lizards. 

 

Keywords: Survival; Body condition; Growth; Cerrado; Tail loss  
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Introduction 

Predation pressure is an important factor that affects directly individuals’ fitness. It shapes 

behavioral, ecological, morphological and physiological traits of the animals, and led to extreme 

escape tactics, as the tail autotomy in lizards (Arnold 1987; Bateman & Fleming 2009). This 

adaptation seems to be plesiomorphic in Squamata and was lost several times in the clade (Arnold 

1984). An autotomizable tail increases the chances of surviving to a predation attempt (Congdon, 

Vitt & King 1974; Vitt, Congdon & Dickson 1977; Vitt & Cooper 1986). However, the evolutive 

maintenance of this strategy in specific lineages depends on the tradeoffs between costs and 

benefits following the autotomy event (Vitt, Congdon & Dickson 1977; Arnold 1984; Arnold 

1987). 

 The tail loss per se implies physiological costs to a lizard because it may lose important 

energetic reserves (Congdon, Vitt & King 1974; Vitt, Congdon & Dickson 1977; Dial & Fitzpatrick 

1981; Vitt 1981; Wilson & Booth 1998; Langkilde, Alford & Schwarkzopf 2005; Lin, Qu & Ji 

2006; Sun, Yang & Ji 2009; Boozalis, LaSalle & Davis 2012; Lu et al. 2012; Russell et al. 2015) 

and may to require increase metabolism to regenerate the lost appendage (Dial & Fitzpatrick 1981; 

Chapple & Swain 2002; Naya et al. 2007). Besides, the tailless animals will probably be more 

susceptible to predation, since they do not have the tail to use in future predation attempts 

(Congdon, Vitt & King 1974; Vitt, Congdon & Dickson 1977; Daniels, Flaherty & Simbotwe 1986; 

Vitt & Cooper 1986; Medel et al. 1988; Downes & Shine 2001; Langkilde, Alford & Schwarkzopf 

2005). In addition to these intrinsic costs, the autotomy may have secondary costs related to 

locomotion and behavior. Several studies report reduction in speed and stride length (Ballinger, 

Nietfeldt & Krupa 1979; Anderson et al. 2012; Cromie & Chapple 2012; Lu, Ji & Du 2013; 

McElroy & Bergmann 2013) with consequent effects on the species behavior (Martin & Salvador 
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1992; Martin & Salvador 1993a; Martin & Salvador 1993b; Martin & Salvador 1993c; Salvador & 

López 1995; Martin & Salvador 1997; Salvador & Veiga 2005). Behavior changes documented 

after tail loss also include reduction of social status (Fox, Rose & Myers 1981; Fox & Rostker 

1982; Fox, Heger & Delay 1990; Martin & Salvador 1993b), microhabitat selection (Martin & 

Salvador 1992; Martin & Salvador 1997; Downes & Shine 2001), movements (Martin & Salvador 

1997), thermoregulation (Martin & Salvador 1993c), food intake (Salvador & López 1995), activity 

(McConnachie & Whiting 2003; Salvador & Veiga 2005), foraging (Martin & Salvador 1993a; 

Cooper 2003), and escape tactics (Cooper 1998; Downes & Shine 2001; Cooper 2003; Cooper 

2007; Cooper & Wilson 2010; Domínguez-López, Ortega-león & Zamora-abrego 2015). These 

possible costs may affect individual life history characteristics such as survival probability (Wilson 

1992; Niewiarowski et al. 1997; Fox & McCoy 2000; Webb 2006), growth rate (Niewiarowski et 

al. 1997; Salvador & Veiga 2005; Webb 2006; Iraeta, Salvador & Díaz 2012; Russell et al. 2015), 

and reproductive output (Dial & Fitzpatrick 1981; Wilson & Booth 1998; Chapple, McCoull & 

Swain 2002; Lu et al. 2012), which in turn affect the individual fitness. However, studies relating 

caudal autotomy to life history traits are concentrated in few species under unnatural conditions, 

which are often not able to mimic the environmental and ecological factors involved after the tail 

loss (Wilson 1992; Webb 2006). 

 The effects of tail loss on individual survival and growth in the field are very variable, both 

within and between lizard species (Fox & McCoy 2000). The costs depend on the amount of energy 

contained in the tail and the compensatory behaviors adopted after autotomy, which vary between 

sex and along ontogeny (Fox & McCoy 2000), because the tradeoffs may be different among them. 

Environmental and ecological factors such as resource availability and predation pressure should 

also influence the outcomes (Althoff & Thompson 1994; Niewiarowski et al. 1997). Compensatory 
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mechanisms include high tail regeneration rates (Vitt, Congdon & Dickson 1977), enhanced food 

intakes (Dial & Fitzpatrick 1981), enhanced activity if predation pressures are low and energy 

requirements are high (Martin & Salvador 1997), or decreased activity if the opposite is true 

(Cooper 2003; Cooper 2007; Cooper & Wilson 2010; Cromie & Chapple 2012). 

 The frequency of tail autotomy in lizard natural populations may be an important measure 

to explain the maintenance of this tactic (Chapple & Swain 2004). For instance, under low 

predation pressure the ease to shed the tail decreases, which leads to low autotomy frequencies in 

natural populations (Pafilis et al. 2009). In such cases, the costs of the autotomy may supersede the 

benefits in some lizards (Pafilis et al. 2009). The frequencies of caudal autotomy in natural lizard 

populations were commonly used to estimate the predation intensity (Pianka & Pianka 1976; 

Pianka & Huey 1978; Schall & Pianka 1980). However, predator inefficiency and survival rates 

might explain caudal autotomy frequency, better than predation intensity (Schoener 1979; Jaksic 

& Fuentes 1980; Schoener & Schoener 1980; Medel et al. 1988; Bateman & Fleming 2011). These 

confounding factors highlight the importance of combining demographic estimates with the 

autotomy frequencies and knowledge about local potential predators to explain the evolutionary 

maintenance of autotomy (Schoener & Schoener 1980; Chapple & Swain 2004; Cooper, Prez-

Mellado & Vitt 2004; Bateman & Fleming 2011). 

 The habitat openness may affect predation intensity and efficiency. For instance, lizard 

populations in structurally open habitats may have higher frequency of autotomy than in close 

habitats, responding to higher predation intensity and lower efficiency in the former (Pianka & 

Huey 1978; Tanner & Perry 2007). Besides, differences in tail loss frequencies between sexes are 

expected if they have sexual dimorphism and attain different social roles, which lead to differing 

costs (Arnold 1987; Bateman & Fleming 2009). Behavioral differences between juveniles and 
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adults, and the time in which an animal is exposed to predators may also cause variation in the 

autotomy frequency along the ontogeny (Vitt, Congdon & Dickson 1977; Vitt & Cooper 1986; 

Hawlena et al. 2006; Hawlena 2009). Moreover, the tail regeneration rate may be low for 

hatchlings, which need to allocate more energy to body growth than tail regeneration (Vitt, 

Congdon & Dickson 1977). Alternatively, in some species, individuals that have low probability 

to survive to the next breeding season and that reproduce more than once in the same reproductive 

season, quickly regenerate tails because fitness may be enhanced with a longer tail (Vitt, Congdon 

& Dickson 1977). In addition, predation intensity and conspecific interactions may vary seasonally 

(McMillan & Irschick 2010; Sousa et al. submitted), thereby may affect the autotomy frequencies. 

 Herein, we aim to study the causes (exposure of predation, seasonality, sexual dimorphism 

and ontogeny) and costs (body condition and growth, and survival) of autotomy in Tropidurus 

itambere Rodrigues, 1987 (Tropiduridae). Tropidurus itambere is an endemic lizard from the 

Brazilian Cerrado savannahs (Rodrigues 1987), which feeds on several groups of arthropods, 

mostly ants and termites (Van Sluys 1993a). It is an ambush forager with cryptic coloration spotted 

and most of the times the individuals from this species are exposed in the sun and motionless (Faria 

& Araujo 2004). When approached, the most used escape tactic is to flight to a known refuge (Faria 

& Araujo 2004). This species presents sexual dimorphism, with males being larger (Schall & 

Pianka 1980; Van Sluys 1993b). Males and females have small home range sizes with little overlap, 

hence they potentially perform territoriality (Van Sluys 1997). This short-lived species (until 2.5 

years) has seasonal reproduction and activity, with hatching at the rainy season (Van Sluys 1998; 

Van Sluys 2000). 

 We assessed the costs of tail autotomy in Tropidurus itambere by measuring allocation of 

energy reserves (using body condition as a surrogate); survival probability; and body growth rate. 
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We hypothesize that tail loss and the size of the autotomized portion of the tail should decrease 

body condition, body growth, survival, and recapture (1) due to loss of stored energy, energy 

allocation to the tail regeneration and impaired locomotion; and (2) mainly in adults, due to energy 

allocation towards reproduction and social interactions. Further, we hypothesize that T. itambere 

would have higher frequencies of autotomized tails in (3) more exposed habitats; in (4) the 

reproductive season, when animals are more active; in (5) older individuals; and in (6) males, which 

are more prone to predators and conspecific aggressive interactions when approaching females and 

defending territory. We also hypothesize that (7) tail regeneration would be larger and faster in 

adults, because juveniles allocate proportionally more energy to body growth and less to tail 

regeneration than adults do. 

 

Materials and methods 

Study area and population monitoring 

We conducted this study in Reserva Ecológica do IBGE – RECOR (15°56’41” S e 47°53’07” W), 

Brasília, Distrito Federal, Brazil, at the core of the Cerrado biome (Oliveira & Marquis 2002; 

Ribeiro 2011). Climate is markedly seasonal, with a wet season from October to April, followed 

by a dry season from May to September. From 1972 to 1990, the RECOR was fully protected from 

fires. A long-term experiment was initiated in 1989 to evaluate the effects of different burn regimes 

upon animals and plants (Miranda 2010; Pivello et al. 2010; Miranda et al. 2011). The sampling 

area was divided into 10 ha plots, each submitted to a different burn regime, characterized by a 

combination of the timing (early, modal and late dry season) and frequency (biennial and 

quadrennial) of burns, including unburned plots. We selected five plots (Fig. 1) in an area of cerrado 
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sensu stricto vegetation physiognomy (Oliveira-Filho & Ratter 2002): three subjected to prescribed 

biennial burns (late biennial - LB, middle biennial - MB, and early biennial - EB), one subjected 

to quadrennial burns (middle quadrennial - Q), and one “control” plot (without fires - C). These 

treatments of burn regimes were presented as a gradient of disturbance, reflecting a gradient of 

habitat openness promoted by fire. The gradient vary from the densest woody-vegetation stands in 

plot C to the most open in plot LB , which is the least shaded plot (Pantoja 2007a; Costa 2011). 

Density of grass varies in the opposite way (Pantoja 2007a; Costa 2011). Therefore, fire severity 

and habitat openness in the experimental plots increased in this order: C  Q  EB  MB  

LB. We assumed that lizards inhabiting plots with increased habitat openness and reduced leaf 

litter are more exposed to predators and, as a consequence, should exhibit higher frequency of tail 

autotomy (Pianka & Huey 1978; Tanner & Perry 2007). 

 From Oct 2010 to Dec 2014, we monitored the five plots with pitfall traps with drift fences. 

Each trap consisted of four 30 l buckets buried until ground level and arranged in a “Y” shape, 

interconnected by 6 m long metal drift fences. We installed ten traps in each plot and checked daily 

during six consecutive days every month. We recorded the following data of each captured lizard: 

snout-vent-length (SVL), tail length, and length of regenerated portion of tail (RTL, if any) with a 

ruler (1 mm precision); body mass, with a spring scale (0.1 g precision); and sex, by observation 

of the presence of blotches in the belly and ventral parts of the thighs in males (Pinto, Wiederhecker 

& Colli 2005). Individuals smaller than the smallest male with dimorphism were assigned as 

juveniles. Next, we marked each individual with a unique combination of clipped toes and released 

them a few meters from capture spot. Handling and marking procedures strictly followed animal 

handling regulations from the Brazilian federal council of biology (Conselho Federal de Biologia 

2012) 
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Costs to body condition 

We accessed differences on body condition (as a surrogate of energetic cost of tail autotomy) using 

the “scaled mass index” (SMI) of Peig and Green (Peig & Green 2009), computed as: 

SMI:  𝑀𝑖̂ = 𝑀𝑖 (
𝐿0

𝐿𝑖
)

𝑏𝑆𝑀𝐴

 

where Mi and Li are the body mass and the SVL of individual i, respectively; L0 is the mean SVL 

in the study population; and bSMA is a scaling factor. We computed bSMA from a standardized major 

axis (SMA) regression (Warton et al. 2006) of ln(M + 1) on ln(L), using the package lmodel2 

(Legendre 2014) in R environment (R Core Team 2015). Unlike most conventional methods of 

estimating body condition, the SMI can successfully account for the varying relationship between 

M and L during ontogeny (Peig & Green 2010) and is a good predictor of variations in fat and 

protein reserves in diverse vertebrate groups (Peig & Green 2009). Next, we built a generalized 

linear mixed model (GLMM), implemented in the package lme4 (Bates et al. 2014), in which SMI 

was the response variable, tail state (autotomized vs. intact) was the fixed-effect, and year and 

individual (identity) were random effects to account for recaptures. We also used GLMMs to test 

for the significance of the relationship between the SMI (as response variable) with the proportion 

of the regenerated tail length (RTL. SVL-1). Later, we investigated the effects of tail state and RTL. 

SVL-1 between adults of each sex and juveniles. As SMI varied with SVL (2
[1] = 234.55, P < 

0.001), we included it as a covariate in the tests. To assess the adequacy of the models we compared 

simpler models (including the random effects) with models with covariates to be tested via the 

Pearson 2 statistic (Crawley 2013). 
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Costs to body growth 

To assess the potential costs of tail loss and regeneration to the body growth, we calculated the 

body growth rate as the difference in the SVL between two consecutive captures divided by the 

period between these captures in months. Next, we tested separately with GLMMs with year and 

individual (identity) as random effects, the fixed-effects of tail state (autotomized vs. intact) and 

RTL. SVL-1 on body growth rate, with SVL as a covariate (2
[1] = 25.86, P < 0.001). We did not 

consider sex differences because of the small sample size in females and juveniles. We assessed 

the adequacy of the models as above. 

 

Costs to survival and recapture probabilities 

To determine the effects of tail loss on the survival and recapture rates and the relationship between 

frequency of autotomy and habitat openness, we used monthly individual capture histories and 

performed analyses in program MARK 8.0, implemented in the package RMark (Laake 2013). We 

created multi-state models, in which the tail state (autotomized vs. intact), the habitat openness 

(five stands corresponding to each burn regime plot), their interaction (tail state: regime) or a 

constant (.) could explain the apparent survival (S) and the recapture probability (p) rates. We also 

allowed the multi-state model to estimate the autotomy probability (psi) (Cooch & White 2015). 

To obtain the transition from tail state (intact to autotomized) we fixed to zero the transition 

probability from tail state autotomized to the intact and included models constraining this 

parameter with the habitat openness to test for the relationship between tail state and habitat. 

Afterward, we investigated the effects of tail loss between each sex and juveniles through their 

interaction (tail state: sex), the variables alone (sex or tail state) or a constant (.). We ranked all 

possible models based on the AICc and model-averaged the rate probabilities when AIcc ≤ 2 
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(Burnham & Anderson 2002). We made goodness-of-fit tests to test the assumptions of the multi-

state model using the program U-CARE v. 2.3.2 and all were acceptable (Choquet et al. 2009a). 

 

Tail state and regeneration 

To assess the effects of habitat openness, seasonality (based on the monthly insolation variation), 

sex, and ontogeny (based on the SVL) upon the occurrence of tail autotomy, we used a GLMM 

with a binomial error distribution and a logit link function (Crawley 2013). Further, we assessed 

the effects of these same variables on the proportion of the regenerated tail length (RTL. SVL-1). 

Adequacy of the models were conducted in a similar way as the body condition and growth 

sections. We calculated the tail regeneration rate in a similar way of the body growth, but instead 

of SVL, we used the RTL. SVL-1. As the response of tail regeneration rate to the ontogeny (average 

SVL between two consecutive captures) was not linear, we tested the removal effect of SVL via 

Fisher statistic with a generalized additive model with a Gaussian error distribution, implemented 

in the package mgcv in R (Wood 2004; Crawley 2013). We conducted all statistical analyses with 

R v. 3.1.3 (R Core Team 2015) and we used a significance level of 5% when testing hypotheses. 

 

Results 

In four years, we captured 494 individuals, representing 672 captures and recaptures in the five 

populations monitored. On average, each lizard was captured 1.26 times and 8.91% of the 

individuals had autotomized tails. From 621 individuals sexed, 313 were addressed to juveniles, 

90 to females and 218 to males. Overall, individuals with intact tails of Tropidurus itambere present 

tails 21% longer than their SVL (Table 1), averaging 57.52 ± 19.68 mm (range: 21 – 109 mm), in 
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Table 1 Averages [mean ± SD (mininum-maximum)] of snout-vent length (SVL, in mm), body condition (scaled mass index), body 

growth (mm. month -1), tail length (mm), regenerated tail length (RTL, in mm), proportion of tail length in relation to the snout-vent 

length (Tail length. SVL-1), and the proportion of the regenerated tail length (RTL. SVL-1) of Tropidurus itambere at Reserva Ecológica 

do IBGE, Brasília, Distrito Federal, Brazil. 

  All Tail intact Tail autotomized 

Pooled individuals (n = 632) (n = 571) (n = 61) 

SVL 48.23 ± 15.51 (21 - 85) 47.59 ± 15.42 (21 - 85) 54.34 ± 15.07 (27 - 80) 

Body condition (n = 564; n = 511; n = 53) 4.15 ± 1.49 (0 - 17.59) 4.12 ± 1.51 (0 - 17.59) 4.41 ± 1.26 (1.46 - 6.37) 

Body growth (n = 106; n = 88; n = 18) 3.39 ± 2.34 (0 - 9) 3.47 ± 2.33 (0 - 9) 3.00 ± 2.40 (0 - 9) 

Tail length 56.29 ± 20.16 (7 - 109) 57.52 ± 19.68 (21 - 109) 44.74 ± 21.07 (7 - 81) 

RTL 1.31 ± 5.92 (0 - 56) - 13.56 ± 14.14 (0 - 56) 

Tail length. SVL-1 1.17 ± 0.20 (0.24 - 2.09) 1.21 ± 0.13 (0.58 - 2.09) 0.80 ± 0.29 (0.24 - 1.30) 

RTL. SVL-1 0.02 ± 0.10 (0.00 - 0.75) - 0.23 ± 0.22 (0 - 0.75) 

Adult females (n = 89) (n = 81) (n = 8) 

SVL 62.52 ± 8.62 (40 - 79) 62.05 ± 8.88 (40 - 79) 67.25 ± 2.12 (64 - 70) 

Body condition (n = 85; n = 78; n = 7) 4.65 ± 0.85 (2.35 - 7.01) 4.59 ± 0.86 (2.35 - 7.01) 5.26 ± 0.48 (4.34 - 5.74) 

Body growth (n = 22; n = 20; n =2) 1.78 ± 1.73 (0 - 4.5) 1.94 ± 1.72 (0 - 4.5) 0.12 ± 0.18 (0 - 0.25) 

Tail length 70.01 ± 11.89 (20 - 90) 72.42 ± 8.71 (44 - 90) 45.62 ± 12.73 (20 - 60) 

RTL 1.71 ± 7.29 (0 - 48) - 19.00 ± 17.13 (4 - 48) 

Tail length. SVL-1 1.13 ± 0.19 (0.31 - 1.52) 1.18 ± 0.12 (0.72 - 1.52) 0.68 ± 0.18 (0.31 - 0.90) 

RTL. SVL-1 0.03 ± 0.11 (0 - 0.72) - 0.28 ± 0.25 (0.06 - 0.72) 

Adult males (n = 213) (n = 182) (n = 31) 

SVL 60.66 ± 10.79 (40 - 85) 60.58 ± 10.76 (40 - 85) 61.13 ± 11.15 (42 - 80) 

Body condition (n = 197; n = 169; n = 28) 5.06 ± 1.58 (1.46 - 17.59) 5.12 ± 1.62 (2.49 - 17.59) 4.7 ± 1.26 (1.46 - 6.37) 
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Body growth (n = 51; n = 39; n = 12) 3.71 ± 2.5 (0 - 9) 3.89 ± 2.66 (0 - 9) 3.11 ± 1.89 (0 - 6) 

Tail length 72.51 ± 16.49 (22 - 109) 75.34 ± 14.30 (40 - 109) 55.90 ± 18.81 (22 - 81) 

RTL 2.22 ± 7.72 (0 - 56) - 15.26 ± 14.67 (0 - 56) 

Tail length. SVL-1 1.20 ± 0.20 (0.38 - 2.09) 1.25 ± 0.14 (0.74 - 2.09) 0.91 ± 0.25 (0.38 - 1.30) 

RTL. SVL-1 0.04 ± 0.12 (0 - 0.75) - 0.25 ± 0.22 (0 - 0.75) 

Juveniles (n = 231) (n = 219) (n = 12) 

SVL 32.08 ± 3.97 (21 - 39) 32.09 ± 4.01 (21 - 39) 32.00 ± 3.30 (27 - 38) 

Body condition (n = 206; n = 196; n = 10) 3.17 ± 1.11 (0 - 9.3) 3.18 ± 1.13 (0 - 9.3) 3.04 ± 0.79 (1.83 - 4.3) 

Body growth (n = 27; n = 24; n = 3) 3.92 ± 1.86 (0 -7) 4.1 ± 1.85 (0 - 7) 2.44 ± 1.5 (1 - 4) 

Tail length 37.13 ± 7.28 (7 - 60) 38.07 ± 5.72 (21 - 60) 20.00 ± 11.05 (7 - 36) 

RTL 0.14 ± 1.28 (0 - 17) - 2.75 ± 5.12 (0 - 17) 

Tail length. SVL-1 1.16 ± 0.18 (0.25 - 1.70) 1.19 ± 0.11 (0.11 - 0.58) 0.62 ± 0.34 (0.25 - 1.20) 

RTL. SVL-1 0.00 ± 0.04 (0 - 0.57) - 0.09 ± 0.17 (0 - 0.57) 
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contrast to autotomized tails that averaged 44.74 ± 21.07 mm (7 - 81). The average regenerated tail 

length (RTL) corresponds to 23.6% of the average intact tail length (Table 1). 

 

Costs to body condition, body growth, and survival and recapture probabilities 

There was no significant difference in the body condition between tailed and tailless individuals 

(2
[1] = 0.08, P = 0.773), neither in the interaction between tail state and sex (2

[2] = 4.47, P = 

0.107). Similarly, the RTL. SVL-1 did not affect the body condition alone (2
[1] = 3.40, P = 0.065) 

or among males, females, and juveniles (2
[2] = 2.10, P = 0.349) (Table 1). Tail state (2

[1] = 0.12, 

P = 0.729) and RTL. SVL-1 (2
[1] = 0.22, P = 0.641) did not affect body growth. 

 Overall, the tail autotomy affected positively the survival when we pooled the data (Table 

2 and 3). However, tail autotomy affected differently each sex and juveniles (Table 2). Males that 

lost tails had a subtraction of 10% on survival rate, and more than double recapture probability 

relative to those with intact tails (Table 3). Contrarily, females and juveniles that lost tails had 

higher survival rate, and lower recapture probabilities relative to those with intact tails (Table 3). 

The best models did not include habitat openness affecting the survival neither the probability of 

losing the tail (Tables 2 and 3).  

 

Tail state and regeneration 

The probability of losing the tail (change tail state) was not affected by habitat openness (i.e., no 

differences between plots: 2
[4] < 0.001, P = 1.000) (Fig. 2). Seasonality (insolation: 2

[1] < 0.001, 

P = 0.991) and sex (2
[1] = 0.016, P = 0.901) did not affect probability of autotomy either, despite 
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Table 2 Best MARK multi-state models (AICc ≤ 2) with factors in parentheses, with respective 

number of parameters (npar), Akaike information criteria corrected for small sample sizes (AICc), 

difference between AICc and the best model’s AICc (AICc), weight and deviance). Survival (S), 

recapture (p) and transition to state (Psi) were constrained to vary with tail state, regime, sex, their 

possible interactions (tail state: regime and tail state: sex), or constantly (.). 

Model npar AICc AICc weight Deviance 

tail state: regime      

S(tail state)p(regime)Psi(.) 8 1150.288 0.000 0.391 788.044 

S(.)p(regime)Psi(.) 7 1150.932 0.644 0.284 790.742 

S(.)p(tail state + regime)Psi(.) 8 1151.922 1.634 0.173 789.679 

S(tail state)p(tail state + regime)Psi(.) 9 1152.173 1.885 0.152 787.869 

tail state: sex      

S(tail state: sex)p(tail state: sex)Psi(sex) 17 1088.539 0.000 0.548 683.532 

S(tail state: sex)p(tail state: sex)Psi(.) 15 1088.927 0.388 0.452 688.151 
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Table 3 Model-averaged (AICc ≤ 2) survival (S), recapture (p) and transition to state (Psi) 

probabilities (estimate ± SE) among juveniles, females and males of Tropidurus itambere in 

regimes of different severity of fire at Reserva Ecológica do IBGE, Brasília, Distrito Federal, 

Brazil. C: control, EB: early biennial, LB: late biennial, MB: middle biennial, Q: quadrennial. 

Group S p Psi 

tail state: regime       

Intact tails in C 0.75 ± 0.02 0.03 ± 0.02 0.02 ± 0.01 

Intact tails in Q 0.75 ± 0.02 0.06 ± 0.02 0.02 ± 0.01 

Intact tails in EB 0.75 ± 0.02 0.08 ± 0.02 0.02 ± 0.01 

Intact tails in MB 0.75 ± 0.02 0.11 ± 0.02 0.02 ± 0.01 

Intact tails in LB 0.75 ± 0.02 0.11 ± 0.03 0.02 ± 0.01 

Autotomized tails in C 0.79 ± 0.04 0.03 ± 0.02 1 

Autotomized tails in Q 0.79 ± 0.04 0.07 ± 0.02 1 

Autotomized tails in EB 0.79 ± 0.04 0.09 ± 0.03 1 

Autotomized tails in MB 0.79 ± 0.04 0.12 ± 0.03 1 

Autotomized tails in LB 0.79 ± 0.04 0.12 ± 0.04 1 

tail state: sex       

Juveniles with intact tails 0.33 ± 0.07 0.26 ± 0.09 0.07 ± 0.07 

Females with intact tails 0.88 ± 0.03 0.07 ± 0.02 0.02 ± 0.01 

Males with intact tails 0.76 ± 0.03 0.12 ± 0.02 0.02 ± 0.01 

Juveniles with autotomized 

tails 
0.79 ± 0.07 0.09 ± 0.05 1 

Females with autotomized 

tails 
0.95 ± 0.05 0.01 ± 0.01 1 

Males with autotomized tails 0.66 ± 0.08 0.28 ± 0.09 1 

  



−1.1

0.0

1.1

Pearson
residuals

PC=C 0.4057
LateCbiennial

MiddleCbiennial

TailCintact Autotomized

EarlyCbiennial

Quadrennial

Control

F
ire

Cs
ev

er
ity

H
ab

ita
tCo

pe
nn

es
s

Fig. 2 Extended mosaic plot with residual-based shading depicting the proportion of individuals of the lizard Tropidurus itambere with 
autotomized or intact tails, in five experimental plots submitted to different burn regimes at Reserva Ecol€gica do IBGE, Bras•lia, Distrito Federal, 
Brazil. The width of each cell is proportional to the number of captured lizards.
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males having a slightly higher frequency of autotomy than females (14% vs. 10%). Conversely, 

ontogeny (SVL: 2
[1] = 4.92, P = 0.026) affected positively the probability of autotomy, with longer 

individuals (assumed to be older) having higher frequencies of autotomy (Fig. 3). Similarly, only 

the ontogeny affected RTL. SVL-1 (SVL: 2
[1] = 18.42, P < 0.001; insolation: 2

[1] = 2.35, P = 

0.125; plots: 2
[4] = 2.79, P = 0.594; and sex: 2

[1] < 0.001, P = 0.997) with a positive relationship 

(Fig. 4). In addition, ontogeny had a non-linear significant effect upon the tail regeneration rate 

(F[2.71] = 0.; P = 0.02, r2 = 0.36). The response was modular, and the higher regeneration rates were 

concentrated between 50 and 60 mm of length (Fig. 5). The average tail regeneration rate was 13.88 

± 11.32 mm. month-1 (n = 18; range: 1 – 33 mm. month-1). 

 

Discussion 

Costs to body condition, body growth, and survival and recapture probabilities 

Individuals of Tropidurus itambere seem to have low (potentially irrelevant) costs regarding to 

energy loss, because we did not detect negative effects of autotomy in body condition, neither in 

body growth. Our results agree with other studies that investigated these costs, especially for body 

condition (or mass), since body condition was never negatively affected by the autotomy (Vitt & 

Cooper 1986; Martin & Salvador 1993b; Salvador & López 1995; Naya et al. 2007; Cooper, 

Wilson & Smith 2009; Pleguezuelos, Feriche & Santos 2013). Authors explained the increases in 

body mass after autotomy by compensations with higher food intakes (Vitt & Cooper 1986; Martin 

& Salvador 1993b; Salvador & López 1995). Another study with T. itambere, in the southeast 

Brazil also found that autotomy did not affect the body growth of individuals (Van Sluys 1998). 
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 As previously suggested by (Van Sluys 1998) results and in agreement with our data, T. 

itambere probably do not own high contents of lipid reserves in the tail, and individuals probably 

compensate for the tail loss and higher metabolism for tail regeneration increasing food intakes. 

Reduced locomotor performance after autotomy is very common in the close related lizard family 

Iguanidae (McElroy & Bergmann 2013), and may affect the body condition and growth as well 

(Niewiarowski et al. 1997; Salvador & Veiga 2005; Iraeta, Salvador & Díaz 2012). However, T. 

itambere is an ambush foraging lizard that feeds upon ants and termites (Van Sluys 1993a; Faria 

& Araujo 2004), which are considered relatively abundant and easily captured preys, especially in 

Cerrado (Colli, Constantino & Costa 2006). Therefore, the generalist diet combined with small 

home range sizes, sedentary behavior, and tail breaks that occur in distal portions probably allow 

increase food intake of T. itambere without the necessity of individuals to change their activity 

patterns, which permit the individuals to maintain the body condition and continue to grow and 

regenerate the tail. 

 Following tail autotomy, lizards cannot perform it again in an immediately next predation 

attempt and may have increased mortality rates (Congdon, Vitt & King 1974; Vitt, Congdon & 

Dickson 1977; Daniels, Flaherty & Simbotwe 1986; Vitt & Cooper 1986; Medel et al. 1988; 

Downes & Shine 2001; Langkilde, Alford & Schwarkzopf 2005). After losing the tail, males of T. 

itambere were recaptured more and survived less. This may happen because of increased activity, 

and hence increased exposure to predators (Wilson 1992; Martin & Salvador 1997). Autotomy can 

reduce social status in some species and lead individuals to lower quality areas (Fox & Rostker 

1982; Fox, Heger & Delay 1990; Martin & Salvador 1993b; Fox & McCoy 2000), so males of T. 

itambere possibly need to expend more energy to maintain territory and social status after losing 

the tail. The opposite may happen for females and juveniles (Niewiarowski et al. 1997), which 
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enhanced survival and were less recaptured after tail losses. However, females of T. itambere may 

reduce fecundity as consequence of reduced activity (Martin & Salvador 1993b; Niewiarowski et 

al. 1997; Langkilde, Alford & Schwarkzopf 2005). Although these results demonstrate how the 

sexual, spatial and temporal variations influence the effects of autotomy upon survival, there is a 

lack of studies regarding to the social costs due to tail loss and reproduction (Fox & McCoy 2000). 

 

Adaptability 

The autotomy frequency of approximately 9% is one of the lowest already registered for the family 

Tropiduridae (Vitt 1983; Zani 1996; Galdino, Pereira & Fontes 2006; Passos et al. 2013) and was 

lower in comparison to a previous study with the same species (23%) (Van Sluys, Vrcibradic & 

Rocha 2002). We argue that this low frequency is due to particular habitat features in our study 

area, where lizards are probably less exposed to predators. Van Sluys (Van Sluys, Vrcibradic & 

Rocha 2002) studied T. itambere in pastures with rocky outcrops, whereas our study area lacks 

rocky outcrops and contains a more preserved and denser woody vegetation. Despite these 

differences, autotomy frequency is generally lower in ambush foraging species because of their 

high crypsis in relation to the substrate (Fleming, Valentine & Bateman 2013).  

 Sexual differences in tail loss frequencies might be explained by intra-sexual aggressive 

encounters among males (Vitt 1981). Several species of Tropidurus perform territoriality and 

conspecific aggressive behaviors (Kohlsdorf, Ribeiro & Navas 2006), and individuals of T. 

itambere have small home range sizes with little overlap, an evidence of territoriality (Van Sluys 

1997). Nevertheless, we did not detect sexual differences in autotomy frequencies, what happens 

with more frequency among lizards, probably because both sexes share the same probability of 
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predation (Bateman & Fleming 2009). Besides, tail loss can lead to social costs and shed the tail 

of conspecifics may not be advantageous (Bateman & Fleming 2009). Similarly, seasonality did 

not affect the autotomy frequencies, probably because the predation intensity does not vary 

seasonally. Ontogeny, however, affected the probability of an individual lose its tail (Fig. 3). This 

finding corroborates the idea that probability of suffering a predation attempt increases with age 

(time of life) (Vitt, Congdon & Dickson 1977; Vitt & Cooper 1986). Other possibilities are that 

adults are more conspicuous to predators because of their size (Vitt, Congdon & Dickson 1977; 

Vitt & Cooper 1986) or shed the tails more easily (Fox, Conder & Smith 1998). 

 Predation attacks may be more frequent in more open habitats driven by fires (Shepard 

2007a; Wilgers & Horne 2007b). In our study, both survival rates and autotomy frequencies did 

not vary with the habitat openness (Table 2 and Fig. 2). Considering that in open habitats lizards 

are more exposed to predators, our work evidences that predation intensity or escape effectiveness 

in T. itambere do not vary with predation exposure within the studied gradient. Probably, the high 

camouflage of the species and other escape tactics (e.g. fleeing and hiding) decrease the potential 

frequency of tail loss (Fleming, Valentine & Bateman 2013). Adding to our previous work with 

another Cerrado endemic lizard Micrablepharus atticolus (Sousa et al, submmited), this paper 

highlights the importance of the detection of the prey by the predator for the occurrence of a 

predation attempt (Lima & Dill 1990; Schwarkzopf & Shine 1992), which affects the caudal 

autotomy frequencies. Therefore, predation intensity is not only influenced by predator abundance, 

but also by their prey detection capacity, which also may be interpreted as predator efficiency. We 

argue that predation intensity, predation inefficiency, predator preferences, and prey abilities and 

availabilities are important drivers of the tail autotomy frequencies in natural lizard populations. 
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 The size of the regenerated portions increases along the ontogeny of T. itambere and 

stabilizes after certain size (Fig. 4). Accordingly, the tail regeneration rate is faster between a 

certain period of the adultness (Fig. 5). Tropidurus itambere is a short-lived species (may live until 

2.5 years, at maximum), presents fast growing and early maturation, being sexually mature in the 

first year of life (Van Sluys 1993b; Van Sluys 1998; Van Sluys 2000). Our results show that tail 

regeneration is not a priority for the juveniles, because they need to allocate more energy to body 

growth and probably do not suffer high predation risk (Vitt, Congdon & Dickson 1977). Thus, the 

slow regeneration in the early age demonstrates a tradeoff between growing body and regenerating 

tail, and when individuals achieve sexual maturity this tradeoff must reduce considerably. 

However, too old animals have also lower tail regeneration rates, maybe because they need to 

allocate more energy to reproduction (larger size often related to clutch size in females) or suffer 

lower risks of predation than smaller individuals (McCormick & Polis 1982). Yet, larger males are 

often the dominant ones in the territory and to lose the tail is not a great cost to these animals 

(Martin & Salvador 1993b), so investing in tail regeneration might not be energetically profitable 

for them. Therefore, tail presence seems to be more important during the early maturity than in any 

other period of life (youth or senescence). This pattern makes evolutive sense if individuals of T. 

itambere usually survive to only one reproductive season and if tail presence affects fecundity 

(because of social status, for example). Comparing to other species, T. itambere has in average 

similar tail regenerations rates than others that are considered fast tail regenerating species (Vitt 

1981; Vitt & Cooper 1986; Langkilde, Alford & Schwarkzopf 2005; Tsasi et al. 2009; Iraeta, 

Salvador & Díaz 2012). 

 In conclusion, the costs of tail loss to body condition, body growth, and survival in 

Tropidurus itambere are low, especially in females and juveniles. In addition, tail length is 
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relatively smaller compared to other species; tail loss comprises only 24% of the average original 

tail length; frequency of tail autotomy was low in all populations; and tail regeneration rate was 

low in juveniles, revealing that other anti-predatory strategies as camouflage should be more 

important during early ages. These low costs may also have been resulted from behavioral changes 

after autotomy, as in food intake and activity. Reproductive and locomotory costs remain to be 

studied in the species and we highlight the lack of studies of tail autotomy in the Cerrado lizards. 
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Conclusões Gerais 

 A demografia de Micrablepharus atticolus e de Tropidurus itambere mostram 

claramente que mesmo animais adaptados a situações microclimaticamente extremas não 

possuem viabilidade populacional de longo prazo em condições adversas. Queimadas 

frequentes e intensas geram microclimas desfavoráveis para a sobrevivência e recrutamento 

destas espécies, pela provável redução do alimento e umidade para os indivíduos e 

desenvolvimento dos embriões. A supressão do fogo também é prejudicial às duas espécies, 

já que são heliófilas e mais abundantes em hábitats mais abertos, provavelmente devido a 

oportunidades termorregulatórias. As duas espécies apresentam reprodução sazonal e a 

insolação e temperatura foram as variáveis climáticas que melhor explicaram sua estrutura 

etária e parâmetros demográficos. Tais variáveis climáticas influenciam na disponibilidade 

alimentar, atividade, termorregulação, crescimento e desenvolvimento dos indivíduos, 

trazendo consequências para a sobrevivência. 

 Em Micrablepharus atticolus a autotomia caudal não está correlacionada com a 

eficiência de predação, mas sim com a intensidade de predação. No regime de queima 

intermediário de severidade e, consequentemente, de abertura do habitat, há menor 

frequência de caudas partidas e maior sobrevivência. Contudo, para Tropidurus itambere a 

frequência de autotomia caudal foi tão baixa que não houve diferenças ao longo do gradiente 

de abertura de habitat, assim como nas taxas de sobrevivência. Contudo, machos sofreram 

maior mortalidade após a perda das caudas, o que sugere que estes indivíduos não mudam o 

comportamento, pois os custos em manter o território e consequentemente reprodutivos 

podem ser grandes. Dessa forma, se expõem mais a predadores e sofrem maior mortalidade 

em comparação com jovens e fêmeas que também perderam a cauda. 
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 Este trabalho inova nas predições das populações de animais frente a diferentes 

regimes de queima em uma savana Neotropical. Em 100 anos, as populações de Tropidurus 

itambere correm pouco riscos de extinção, principalmente se queimadas bienais forem 

prescritas no começo da estação seca, entre maio e agosto. O uso de modelos de projeção 

integrais é uma ferramenta poderosa para se analisar a viabilidade populacional de espécies 

e estimar o risco de extinções futuras. 

 Os resultados deste trabalho sugerem a necessidade da criação de um programa de 

manejo de fogo no Cerrado, tanto dentro quanto fora de áreas protegidas. Pequenas 

queimadas prescritas no começo da estação seca, entre maio e agosto, que resultam em 

queimadas de baixa intensidade devem beneficiar espécies de sucessão do fogo precoce e 

tardia, pois além de criarem condições adequadas para espécies de animais especialistas em 

hábitats abertos, evitam que queimadas em áreas extensas e de intensidade alta modifiquem 

os hábitats fechados, favoráveis a espécies de sucessão tardia. 

 




