

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MÉDICAS

Análise proteômica comparativa da saliva entre diferentes períodos após a alimentação sanguínea de *Triatoma dimidiata*, triatomíneo vetor da doença de Chagas

Yanna Reis Praça

Brasília - DF, 2016.

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS MÉDICAS

Análise proteômica comparativa da saliva entre diferentes períodos após a alimentação sanguínea de *Triatoma dimidiata*, triatomíneo vetor da doença de Chagas

Yanna Reis Praça

Dissertação submetida ao Programa de Pós-Graduação em Ciências Médicas da Faculdade de Medicina-UnB como requisito parcial para a obtenção do grau de Mestre.

Orientadora: Profa. Dra. Carla Nunes de Araújo

Brasília - DF, 2016.

Este estudo foi desenvolvido no Laboratório de Interação Patógeno-Hospedeiro (LIPH) do Departamento de Biologia Celular da UnB.

Apoio financeiro:

FAPDF (193.001.053/2015)

Curso de Mestrado realizado com bolsa da CAPES

" Seja a mudança que você quer ver no mundo."

Manhatman Gandi

Dedicatória

Ao meu filho Kauã e aos meus pais Isabel Cristina e Nelson por serem os meus maiores incentivadores para o crescimento pessoal e profissional.

AGRADECIMENTOS

À minha orientadora, professora Carla Nunes, pela confiança e oportunidade a mim dada durante toda a realização do trabalho. Pela paciência e amizade adquirida durante todo o tempo de convivência.

Ao professor Jaime Santana pela preocupação e experiência compartilhada ao longo do projeto

À professora Flávia Nader pela ajuda, paciência, disponibilidade e pela amizade adquirida.

À professora Izabela Dourado pelo incentivo, preocupação e conselhos dados. Suas decisões foram importantes nesse projeto.

Ao professor Sébastien Charneau e Carlos Garcia pela ajuda e disponibilidade no decorrer do trabalho.

À Paula Beatriz, pela amizade, preocupação e o tempo disponibilizado para ensinar, consolar e pela maravilhosa convivência. Me espelho em você!

À Thuany pela amizade e pelo tempo disponibilizado para me ensinar e ajudar em algumas técnicas.

Aos amigos Camila, Clênia, Raquel, Milene, Grazi, Adriana, Natália Gil, Rayner, Carol pela convivência muito divertida e amizade construída.

A Adriana que sempre foi meu braço direito na manutenção da colônia de barbeiros no biotério.

À Bruna Kraus e Felipe Figueiredo pela amizade, ajuda, incentivo e disponibilidade ao longo do trabalho. Amo vocês!

Aos meus pais que abraçaram a causa junto comigo e que me ajudaram cuidando do Kauã além do incentivo, amor e paciência. Amo muito vocês!

Ao Kauã pela compreensão e as tentativas para entender a ausência e a falta de tempo da mamãe e ao amor incondicional sempre atribuído. Você é a melhor parte de mim, amo você!

À minha irmã Wlyana por ter sido a cabeça de todo esse processo e me incentivar a abraçar a oportunidade e o desafio. Amo você!

Ao amigo e namorado Henrique por sempre me incentivar e apoiar minhas escolhas, além da paciência exercida durante o processo. Amo você!

A todos vocês o meu, muito obrigada! Todos vocês foram muito importantes ao longo da conquista desse título.

ÍNDICE

LISTA DE ABREVIAÇÕES	9
LISTA DE FIGURAS	11
LISTA DE TABELAS	14
RESUMO	15
ABSTRACT	16
INTRODUÇÃO	17
Aspectos gerais dos artrópodes hematófagos	17
Aspectos gerais da doença de Chagas	17
Triatomíneos	21
Triatoma dimidiata	22
Rhodnius neglectus	22
O processo de alimentação dos triatomíneos	23
A saliva dos triatomíneos	24
Hemostasia	25
Proteomas salivares de triatomíneos hematófagos	26
Análise proteômica	27
Justificativa	28
OBJETIVOS	30
Objetivo 1	30
Objetivo 2	30
MATERIAIS E MÉTODOS	31
Manutenção da colônia de <i>T. dimidiata</i>	31
Extração das glândulas salivares	31
Eletroforese unidimensional – 1-DE	31
Eletroforese bidimensional – 2-DE	32
Preparação das amostras de saliva de <i>T. dimidiata</i> para a análise proteômica	33
LC-MS/MS e processamento dos dados	34
Análise de bioinformática	35
Análise <i>in silico</i> da sequência do antígeno 5 de <i>R. neglectus</i> (RNAV)	38
Linhagens de <i>E. coli</i> utilizadas	38
Amplificação do plasmídeo contendo o gene do RNAV	39
Transformação de <i>E. coli</i> com pET15b_RNAV	39

Indução da expressão do RNAV em <i>E. coli</i>	40
Western blot	41
RESULTADOS	43
Os perfis eletroforéticos uni e bidimensional da saliva de <i>T. dimidiata</i>	43
Análise proteômica da saliva de <i>T. dimidiata</i>	45
Análises in silico das proteínas identificadas 5 e 10 dias após a alimentação	46
5 dias após alimentação	52
10 dias após alimentação	52
Análise <i>in silico</i> do RNAV	64
Expressão do RNAV recombinante	70
DISCUSSÃO	72
Proteoma da saliva de <i>T. dimidiata</i>	72
Lipocalinas	73
Apirases	75
Inibidores de serino proteases	76
Superfamília hemocianina - Hexamerina	77
Lisozima	78
Selenoproteína	79
Proteína de ligação ao heme	80
Esterase e lipase	80
Enzima conversora de angiotensina (ECA)	81
Antígeno 5 de <i>R. neglectus</i>	81
CONCLUSÕES	83
REFERÊNCIAS BIBLIOGRÁFICAS	85

LISTA DE ABREVIAÇÕES

- 2-DE Eletroforese bidimensional
- ABP Amino binding protein
- ADP Adenosina Difosfato
- ASP Activation-associated secreted protein
- CAP cysteine rich secretory proteins, antigen 5, e pathogenesis-related 1

proteins

- CDD Conserved Domain Database
- CID collision-induced dissociation
- **CRISP** cysteine-rich secretory protein
- DMAV Antígeno V de Dipetalogaster maxima
- DTT Ditiotreitol
- FDR False Discovery Rate
- FI Fração Insolúvel
- FII Protrombina
- FT Fator Tecidual
- IEF Focalização isoelétrica
- **IPTG –** Isopropyl β-D-1- thiogalactopyranoside
- LB Luria Bertani
- LC-MS/MS Liquid chromatography–mass spectrometry
- PI Ponto isoelétrico
- RNAV Antígeno V Rhodnius neglectus
- ROS Espécies Reativas de Oxigênio
- **RPAI -** Rhodnius prolixus agregation inhibitor 1
- SDS-PAGE Dodecyl sulfate polyacrimide gel electrophoresis
- SEpro Search Engine Processor

- **TBS -** *Tris buffered saline*
- **TBST-** Tris buffered saline 0,1% tween 20
- TEAB Triethylamonium bicarbonat
- TFA Ácido trifluoroacético
- TIAV Triatoma infestans
- FA Ácido fórmico
- **Dpa –** Dias após a alimentação

LISTA DE FIGURAS

Figura 2. Ciclo de vida dos triatomíneos. O ciclo de vida é constituído pelo ovo, cinco estágios ninfais (1-4) e adultos (fêmea e macho). Todos os estágios ninfais e os adultos são hematófagos. Triatomíneos: fotos de Santiago............23

 Figura 10. Proteínas salivares de *T. dimidiata* encontradas apenas nas amostras coletadas 5 dias após a alimentação sanguínea, distribuídas segundo as categorias do *Gene Ontology*. (A) Componente celular. (B) Processo biológico. (C) Função molecular, de acordo com o programa Blast2GO. 49

Figura 13. Proteínas salivares de *T. dimidiata* 5 e 10 dias após a alimentação. (A) Predição das proteínas secretadas pela via clássica (VC) ou via não clássica (VNC), e não secretadas (NS). (B) Predição da localização celular das proteínas salivares não secretadas. TM – transmembrânica, realizada pelo programa TMHMM; S – secretada, M – mitocondrial, E – extramitocondrial, realizadas pelo programa TarqetP.

Figura 17. Alinhamento das sequências de aminoácidos do RNAV com a sequência putativa de proteína secretada por *Ancylostoma* (de *C. lectularius*) e com nove sequências putativas de alérgeno 5 do veneno de diferentes espécies de formigas e vespas. (*) resíduos idênticos; (:) resíduos altamente conservados; (.) resíduos semiconservados; (-) marca *gap* na sequência. 67

Figura 20. Predição de sítios de O-glicosilações na sequência de RNAV utilizando o programa GlycoEP. Em vermelhor, resíduos de serina e treonina. 69

Figura 21. Perfil de expressão dos clones de diferentes linhagens de *E. coli* transformadas com o plasmídeo pET15b_RNAV ou com o pET19b vazio como controle. (A) SDS-PAGE 10% corado com azul de Coomassie. 1 – lisado bacteriano anterior à indução da expressão com IPTG 0,4 mM; 2 - fração solúvel do lisado bacteriano; 3 - fração insolúvel do lisado bacteriano. (B) *Western blot.* C+ - controle positivo para o anticorpo anti-cauda de histidina (oligopeptidase B de *T. cruzi*). RNAV - fração solúvel de um clone de Rosetta2(DE3)pLysS transformada com o plasmídeo pET15b_RNAV. Mw – marcadores de peso molecular. Esperava-se visualizar a banda do RNAV na altura de 25 kDa.

LISTA DE TABELAS

Tabela 1. Proteínas salivares de <i>T. dimidiata</i> secretadas pela via clássica 55
Tabela 2. Proteínas salivares de T. dimidiata secretadas por vias não clássicas

RESUMO

Os triatomíneos são artrópodes hematófagos durante todo o seu ciclo de vida e para garantir o sucesso de seu repasto, desenvolveram estratégias adaptativas que contrapõem o sistema hemostático e imune do hospedeiro, injetando moléculas farmacologicamente ativas durante esse processo. Por possuirem diversas moléculas com interesse farmacológico, a saliva desses artrópodes hematófagos passou a ser alvo de pesquisas. Para ampliar o conhecimento sobre essas moléculas, esse trabalho teve como objetivos: 1) investigar a expressão protéica na saliva de Triatoma dimidiata em diferentes tempos após a alimentação sanguínea, por meio da análise proteômica comparativa por LC-MS/MS, eletroforese bidimensional e análises in silico, e 2) caracterizar in silico a seguência aminoacídica do antígeno 5 salivar de Rhodnius neglectus (RNAV), além da expressão dessa molécula em Escherichia coli. A análise proteômica comparativa da saliva de T. dimidiata levou à identificação de 362 proteínas, das quais 65 eram específicas da amostra de cinco dias após a alimentação sanguínea (dpa) e 79 específicas da amostra de 10 dpa, além de contribuir para validar dados do transcritoma dessa espécie disponível na literatura. A análise in silico do RNAV sugere que a molécula é secretada pela via clássica, que modificações pós-traducionais como fosforilação e glicosilação devem ocorrer na proteína, e que existem aproximadamente 25 resíduos de aminoácidos que podem estar presentes em epítopos lineares para células B. Não foi possível obter o RNAV recombinante. O conhecimento das proteínas salivares do T. dimidiata e sua comparação com as de outras espécies de artrópodes hematófagos pode ser útil para entender processos biológicos fundamentais como sobrevivência, adaptação e as interações desses vetores com seus hospedeiros e com os agentes infecciosos que eles são capazes de transmitir.

Palavras-chave: Proteoma, *Triatoma dimidiata*, *Rhodnius neglectus*, proteínas salivares, antígeno 5.

ABSTRACT

Triatomine are bloodsucking arthropods throughout their life cycle and to ensure the success of their meal, they have developed adaptive strategies that counteract the hemostatic and immune system of the host, injecting pharmacologically active molecules during this process. By owning several molecules with pharmacological interest, bloodsucking arthropods saliva has become the subject of various research. To enhance our knowledge about these molecules, this study aimed 1) to investigate the protein expression in Triatoma dimidiata saliva at different times after the blood feeding through comparative proteomic analysis using LC-MS/MS, 2-DE electrophoresis and bioinformatics, and 2) to characterize in silico the salivary antigen 5 of Rhodnius neglectus (RNAV), beyond its expressin in Escherichia coli. The comparative proteomic analysis of T. dimidiata saliva revealed 362 proteins, 65 specific of the sample collected 5 days after feeding and 79 specific of the sample collected 10 days after feeding, and aided to validate available data from T. dimidiata transcriptome. RNAV in silico analysis revealed this protein may be secreted by the classical pathway, phosphorilation and glycosilation sites, and the existence of 25 amino acid residues that may be present in linear epitopes to B cells. Our attempt failed to produce recombinant RNAV. Knowing T. dimidiata salivary proteins and comparison with those from other species of hematophagous arthropods may help to understand fundamental biological processes such as survival, adaptation, vector-host and vector-pathogens interactions.

Keywords: *Proteome*, *Triatoma dimidiata*, *Rhodnius neglectus, salivary proteins*, antigen 5.

INTRODUÇÃO

Aspectos gerais dos artrópodes hematófagos

Os artrópodes hematófagos compreendem principalmente os insetos e os carrapatos e desempenham um papel importante na transmissão de doenças aos animais vertebrados atuando como vetores (Balashov Yus, 1984). Eles estão distribuídos por todo o planeta, e são responsáveis pela transmissão de micro-organismos e parasitos causadores de mais de 17% de todas as doenças infecciosas, as quais causam mais de um milhão de mortes anualmente. Entre as doenças transmitidas por artrópodes hematófagos estão as infecções pelos vírus Chikungunya, Zika e Mayaro, dengue, febre amarela, encefalite japonesa, febre do Nilo, doença de Lyme, tularemia, rickettsioses, malária, leishmanioses, tripanossomíase africana, doença de Chagas, filaríase linfática, oncocercíase, entre outras (Who, 2016b)

Esses vetores de doenças são ectoparasitos (Guarneri *et al.*, 2000) que se alimentam do sangue de mamíferos, aves, répteis e, raramente, anfíbios, sendo que a maioria dos insetos e carrapatos realizam o repasto sanguíneo em espécies das duas primeiras classes (Balashov Yus, 1984). Na ocasião da alimentação em um hospedeiro infectado, os artrópodes hematófagos podem eventualmente ingerir os microorganismos causadores de doenças, e durante uma alimentação subsequente são capazes de transmiti-los para um novo hospedeiro, propagando a infecção (Who, 2016b).

Aspectos gerais da doença de Chagas

A doença de Chagas, também denominada Tripanossomíase americana, é um exemplo de doença transmitida por artrópodes hematófagos. Essa patologia foi descrita em 1909, pelo médico Carlos Chagas, que descreveu tanto as características clínicas quanto o ciclo completo da doença, relatando os triatomíneos hematófagos como os insetos vetores, e o parasito *Trypanosoma cruzi* como o agente etiológico da doença (Stuart *et al.*, 2008). Esse parasito infecta aproximadamente sete milhões de indivíduos no mundo. Essa doença era confinada ao continente americano central e latino, mas tem se disseminado para outros continentes (Who, 2016a). Ela faz parte do rol das Doenças Tropicais Negligenciadas, conjunto de enfermidades associadas à pobreza, moradias precárias, desnutrição, falta de saneamento básico, pouco ou nenhum acesso aos serviços de saúde, para as quais há pouco investimento no desenvolvimento de drogas, vacinas e programas de controle (Lindoso e Lindoso, 2009).

O T. cruzi é um protozoário flagelado da família Trypanosomatidae, que pertence à ordem Kinetoplastida. Nessa ordem, os protozoários possuem uma organela denominada cinetoplasto, que é preenchida com o genoma mitocondrial e encontra-se associada à base do flagelo (Coutinho et al., 1999; Stuart et al., 2008). A principal forma de transmissão do T. cruzi é a vetorial, que ocorre por meio das fezes ou urina eliminadas durante o repasto sanguíneo de triatomíneos contaminados com as formas tripomastigotas metacíclicas infectantes do protozoário. No hospedeiro vertebrado essas formas podem entrar em contato com a lesão tecidual que foi ocasionada pela picada do inseto ou até mesmo com as mucosas do nariz, olhos e boca, penetrando assim no hospedeiro (Prata, 2001). Adicionalmente, existem outras vias de transmissão, como a oral, a qual ocorre através do consumo de alimentos contendo as excretas de triatomíneos infectados com o T. cruzi, como por exemplo, a cana de açúcar e o açaí (Passos et al., 2012), a transmissão transfusional, a transmissão devido ao transplante de órgãos advindos de doadores infectados, a congênita e, sem importância epidemiológica, existe ainda a possibilidade de transmissão devido à acidentes laboratoriais (Prata, 2001; Who, 2016a).

No ciclo de vida do *T. cruzi* (Figura 1), após penetrarem no hospedeiro vertebrado, os tripomatigotas metacíclicos são internalizados em vacúolos parasitóforos por uma variedade de células hospedeiras. Dentro desses vacúolos, os tripomastigotas se diferenciam em amastigotas, que são as formas replicativas no hospedeiro vertebrado. Os amastigotas escapam do interior desses vacúolos para o citoplasma, onde se replicam e se diferenciam em tripomastigotas sanguíneos. Quando o citoplasma está repleto de parasitos, ocorre a ruptura da membrana celular, liberando-os na corrente sanguínea para que possam infectar novas células do hospedeiro em um ciclo infectante contínuo, que resulta no aumento da parasitemia. Durante o repasto, quando o

18

sangue do hospedeiro vertebrado contendo parasitos circulantes é ingerido pelo triatomíneo, o mesmo pode adquirir os tripomastigotas sanguíneos, que no seu intestino se diferenciam em epimastigotas, formas replicativas que colonizam o intestino médio do hospedeiro invertebrado. Os epimastigotas migram em direção ao intestino posterior, local onde se diferenciam em tripomastigotas metacíclicos que poderão infectar novos hospedeiros mamíferos durante repastos subsequentes (Coutinho & Dias, 1999).

Figura 1. Ciclo de vida do T. cruzi. **1** O triatomíneo ingere o sangue do hospedeiro e libera os tripomastigotas metacíclicos (TM) do T. cruzi nas fezes e urina; 2 os TM penetram em vários tipos celulares e se diferenciam em amastigotas; 6 OS amastigotas se reproduzem por divisão binária e depois se diferenciam em tripomastigotas sanguíneos (TS); ④ os TS entram na circulação sanguínea e podem invadir novas células; S o triatomíneo ingere o sangue do hospedeiro contendo TS; G os TS se diferenciam em epimastigotas no intestino médio do triatomíneo; 🔊 os epimastigotas se reproduzem por divisão binária; 3 e se diferenciam em TM no Modificado intestino posterior. Fonte: CDC Image Library. de https://commons.wikimedia.org/wiki/File:Trypanosoma_cruzi_LifeCycle.gif. Acessado em 30/06/2016.

A infecção pelo *T. cruzi* pode ser curada se o indivíduo iniciar o tratamento medicamentoso logo após a contaminação (Who, 2016a). No

entanto, a maioria dos indivíduos infectados apresenta uma fase aguda assintomática, e por esse motivo não realiza o tratamento. Ao contrário do que acontece nessa fase, em que é possível observar um elevado número de parasitos na circulação sanguínea, na fase crônica os parasitos se escondem principalmente no músculo cardíaco, o que pode resultar na destruição progressiva do músculo cardíaco e de seu sistema nervoso. Na fase crônica da doença, aproximadamente 30% dos indivíduos infectados desenvolvem alterações cardíacas e 10% alterações digestivas, neurológicas ou mistas que requerem tratamento específico (Who, 2016a).

O tratamento da doença de Chagas pode ser realizado com o uso de benzonidazol ou nifurtimox, efetivos na fase aguda, no entanto, há diminuição da eficácia desses medicamentos na fase crônica da doença. Essas drogas também são indicadas para adultos infectados sem manifestações clínicas, e em casos de reativação da doença. A duração do tratamento não deve ultrapassar dois meses em decorrência da toxicidade das drogas. Cerca de 40% dos indivíduos tratados apresentam reações adversas aos medicamentos. Ambas são contraindicadas durante a gestação, em casos de doenças hepática ou renal, e o nifurtimox em casos de desordens psiquiátricas ou neurológicas (Who, 2016a).

Apesar dos esforços para o desenvolvimento de uma vacina para a doença de Chagas (Dumonteil *et al.*, 2012; Lee *et al.*, 2012), esse tipo de prevenção ainda não está disponível. Ainda hoje o controle vetorial por meio do uso de inseticidas, melhoria das habitações, uso de medidas preventivas pessoais (telas mosqueteiras, por exemplo), boas práticas de higiene na preparação, transporte, estoque e consumo de alimentos, é o método mais efetor de prevenção da doença de Chagas na América Latina. É importante ressaltar que existem muitos animais silvestres reservatórios do *T. cruzi*, cenário que impede a erradicação do parasito da natureza (Who, 2016a).

20

Triatomíneos

Entre os artrópodes, os triatomíneos são uma subfamília da classe Insecta, ordem Hemiptera, família Reduviidae. Esses insetos são animais hemimetábolos, e durante o seu desenvolvimento passam por cinco estágios ninfais até chegarem à fase adulta (Jurberg e Galvao, 2006; Gurgel-Gonçalves, Rodrigo *et al.*, 2012). Os adultos diferem das ninfas pela presença de asas e genitália. Tanto as ninfas quanto os adultos ocupam habitat similares e possuem hábitos alimentares semelhantes. A duração do ciclo de vida, desde o ovo até o estágio adulto, depende da espécie e das condições ambientais, e varia de quatro a 24(Who, 2016a) meses.

Em ambiente silvestre, é comum encontrar membros dessa subfamília em tocas, ninhos, palmeiras, arbustos e pedras, onde vivem associados à diferente animais silvestres, como por exemplo, aves, morcegos, gambás, tatus, entre outros (Gurgel-Gonçalves, Rodrigo *et al.*, 2012; Who, 2016a). Os triatomíneos que se adaptaram ao ambiente humano, no interior ou na proximidade das casas, alimentam-se do sangue de animais domésticos, tais como galinhas, gado, cabras, cães e gatos e eventualmente do sangue humano. Esses insetos possuem diversos nomes populares e, no Brasil, são popularmente conhecidos como barbeiro devido ao hábito de picar a face do hospedeiro durante a noite (Schoefield e Galvão, 2009).

Cerca de 20 diferentes espécies de triatomíneos apresentam maior importância epidemiológica na transmissão do *T. cruzi* nas Américas do Norte, Central e do Sul, embora todas as espécies sejam consideradas potenciais transmissores deste protozoário(Otalora-Luna *et al.*, 2015). As espécies de maior importância epidemiológica na América Latina são *Triatoma infestans* (Klug), *Rhodnius prolixus* (Stål), *Triatoma dimidiata* (Latreille)(Dorn *et al.*, 2007), e *Triatoma brasiliensis* (Neiva) (Lent e Wygodzinsky, 1979)(Lent and Wygodzinsky 1979; Bargues et al. 2010; Rabinovich et al. 2011; Stevens et al. 2011). Gurgel e colaboradores (2012) analisaram a distribuição geográfica de 16 espécies de triatomíneos em território brasileiro, e demonstraram que existe uma associação entre os biomas analisados com a presença de determinadas espécies de triatomíneos e que, em sua maioria, habitam principalmente os biomas Cerrado, Caatinga e Amazônia. As espécies mais frequentes nesse estudo pertencem aos gêneros *Triatoma, Rhodnius* e *Panstrongylus* (Gurgel-Gonçalves, R. *et al.*, 2012). No Distrito Federal, as principais espécies transmissoras são *Panstrongylus megistus, Panstrongylus geniculatus, Panstrongylus diasi, Rhodnius neglectus, Triatoma pseudomaculata* e *Triatoma sordida* (Maeda et al., 2012). Abaixo estão descritas as distribuições das espécies que foram estudadas nesse projeto.

Triatoma dimidiata

T. dimidiata constitui um complexo de espécies que ocorre no México, Chile, Sul da Argentina (Hotez *et al.*, 2008), Guatemala, Belize, El Salvador, Honduras, Nicarágua, Costa Rica, Panamá, Colômbia, Venezuela, Guiana Francesa, Equador e Peru (Bargues *et al.*, 2008). Essa espécie é generalista quanto ao habitat, podendo ser encontrada em casas, peridomicílios e no meio silvestre, ocupando diversos locais no ecossistema, desde cavernas até árvores (Dorn *et al.*, 2007). As diferenças genotípicas e fenotípicas desse complexo variam conforme a região em que o inseto se encontra (Dorn *et al.*, 2007). Sua abundância e diversidade de populações é um importante obstáculo para o controle vetorial(Schofield *et al.*, 1999).

Rhodnius neglectus

A presença de *Rhodnius neglectus* foi relatada em vários estados brasileiros: Bahia, Distrito Federal, Goiás, Maranhão, Mato Grosso, Mato Grosso do Sul, Minas Gerais, Paraná, Pernambuco, Piauí, Rio de Janeiro, São Paulo e Tocantins (Gurgel-Gonçalves, R. *et al.*, 2012). Essa espécie é encontrada em associação a palmeiras como *Mauritia flexuosa* ou buriti (Gurgel-Gonçalves *et al.*, 2003) e *Livistona australis* ou palmeira australiana (Carvalho *et al.*, 2014), entre outras (Rodrigues *et al.*, 2014). A espécie já foi observada em ambientes intra e peridomiciliar no estado de Goiás (Oliveira e Silva, 2007), Tocantins (Gurgel-Gonçalves *et al.*, 2008), São Paulo (Silva *et al.*, 2006; Rodrigues *et al.*, 2014) e Mato Grosso do Sul (Almeida *et al.*, 2008).

R. neglectus é considerado importante para a transmissão enzoótica do *T. cruzi* e do *Trypanosoma rangeli,* este último um protozoário flagelado avirulento, no Distrito Federal (Gurgel-Gonçalves *et al.*, 2004; Gurgel-Gonçalves, R. *et al.*, 2012). Devido à transmissão da doença de Chagas e ao investimento necessário para a realização de seu controle, essa espécie é responsável por perdas econômicas importantes (Guarneri *et al.*, 2003).

Figura 2. Ciclo de vida dos triatomíneos. O ciclo de vida é constituído pelo ovo, cinco estágios ninfais (1-4) e adultos (fêmea e macho). Todos os estágios ninfais e os adultos são hematófagos. Triatomíneos: fotos de Santiago.

O processo de alimentação dos triatomíneos

Os triatomíneos alimentam-se exclusivamente de sangue durante todo o seu ciclo de vida. O aparelho bucal desses insetos é composto pelo lábio ou probóscida, um par de mandíbulas serrilhadas e um par de maxilas longas e flexíveis. Essas estruturas formam dois canais: o canal salivar, que conduz a saliva para o sítio da alimentação; e o canal alimentar, pelo qual o inseto ingere o sangue. No início do processo alimentar, o triatomíneo perfura a pele com as mandíbulas, introduz as maxilas e inicia a fase de sondagem de um vaso sanguíneo através de movimentos oscilatórios (Lavoipierre *et al.*, 1959). Ao término da fase de sondagem, que se dá quando as maxilas perfuram um vaso, inicia-se a fase de ingurgitamento, em que o inseto suga o sangue do vaso sanguíneo e o transfere, via canal alimentar, para o intestino anterior, onde é estocado. O bombeamento do sangue se deve a contrações periódicas dos músculos associados à bomba cibarial, localizada na cabeça do inseto. Quando os músculos contraem, geram uma pressão negativa no interior da câmara resultando na sucção do sangue, e quando relaxam, a câmara se fecha e empurra o sangue para o intestino(Bennet-Clark, 1963). Esse processo é sequencial, repetitivo e ocorre em intervalos regulares. Durante a fase de sondagem e por toda a fase de ingurgitamento ocorre a salivação.

O período de alimentação dura de poucos minutos a mais que uma hora, dependendo da espécie e do estágio de desenvolvimento, entre outras características do inseto e do hospedeiro (Araujo *et al.*). Entre as características do inseto que podem favorecer ou retardar a ingestão de sangue está a composição de sua saliva.

A saliva dos triatomíneos

Além das adaptações mecânicas sofisticadas do aparelho bucal apresentadas acima, os triatomíneos, assim como outros artrópodes hematófagos, apresentam em sua saliva moléculas que contrapõem a hemostasia do hospedeiro com a finalidade de uma alimentação sanguínea satisfatória (Ribeiro, 1995). Além disso, podem ainda modular a resposta imunológica no hospedeiro. Mesquita e colaboradores mostraram que a saliva de *R. prolixus* induz a quimiotaxia de células inflamatórias, e o aumento da parasitemia cerca de seis vezes, contribuindo para a transmissão do *T. cruzi* (Mesquita et al., 2008).

Entre as moléculas farmacologicamente ativas presentes na saliva dos triatomíneos. foram descritos anticoagulantes, vasodilatadores, antiagregadores de plaquetas induzidos por diferentes agonistas [tais como colágeno, adenosina difosfato (ADP), ácido araquidônico ou trombina), antide histamínicos, bloqueadores canal de sódio. anestésicos, imunomoduladores, entre outras (Ribeiro, 1995; Ribeiro e Francischetti, 2003a; Andersen, Gudderra, Francischetti, B., et al., 2005; Champagne, 2005; De Araújo et al., 2012). Essas moléculas variam em abundância e diversidade de uma espécie para outra (Santos et al., 2007; Assumpção et al., 2008).

Os aspectos gerais da hemostasia são revisados na próxima seção.

Hemostasia

A hemostasia é um importante mecanismo fisiológico do hospedeiro contra a perda de sangue em um vaso sanguíneo lesado. Esse processo pode ser dividido em três grandes etapas: vasoconstrição, agregação plaquetária e coagulação sanguínea. A vasocontrição é a resposta contrátil do vaso lesionado, resultando em seu estreitamento e na redução do fluxo sanguíneo (Ribeiro e Francischetti, 2003a; Kumar *et al.*, 2010). Quando um vaso é danificado, as plaquetas aderem ao sítio da lesão e formam um agregado que tem como principal função conter o fluxo sanguíneo. A agregação plaquetária é um evento dinâmico, dividido em três etapas: na iniciação, as plaquetas aderem ao sítio da lesão formando uma película de células plaquetárias; na extensão, há o recrutamento e a ativação de plaquetas adicionais formando o tampão plaquetário; e na estabilização, há deposição de fibrina sobre o tampão plaquetário, formando o coágulo sanguíneo (Versteeg *et al.*, 2013).

A coagulação é um processo complexo, dependente da ativação de uma cascata de moléculas que culmina na conversão do fibrinogênio em fibrina, e por fim na formação do coágulo. Esse processo também é dividido em três etapas: iniciação, amplificação e propagação. Com a ruptura da vasculatura, as células subendotelias (como as células musculares lisas e os fibroblastos) expõem o fator tecidual (FT) à circulação sanguínea, dando início à primeira

fase. FT se liga e atua como um cofator do fator VII (FVII), ativando sua proteólise e conversão para FVII ativado (FVIIa). O complexo TF/FVIIa cliva os fatores IX e X, convertendo-os em FIXa e FXa (ativados). Este último se associa com o FVa para formar o complexo protrombinase (Monroe e Hoffman, 2006), que converte protrombina (FII) em trombina. O fator V (FV) é ativado pelo FXa. O FXa pode se dissociar da célula que estiver expondo o FT para formar protrombinase nas membranas celulares de células distantes. Para limitar essa difusão, há no plasma peptídeos inibidores de serino proteases, por exemplo, do tipo Kunitz (Jesty, 1978).

A etapa da amplificação é caracterizada pela ativação das plaquetas, aderidas ao sítio de injúria, pela trombina, que converte FV em FVa, amplificando a atividade de protrombinase na superfície das plaquetas; converte FVIII em FVIIIa, um cofator de FIXa, gerando mais FXa; e convete FXI em FXIa (Versteeg *et al.*, 2013). Na etapa de propagação, FXIa converte FIX em FIXa, que se associa com FVIIIa para catalisar a conversão de FX a FXa; FXa/FVa produz trombina, que converte o fibrinogênio em fibras de fibrina. FXIIIa catalisa a formação de ligações covalentes entre as cadeias de fibrina adjacentes dando origem ao coágulo sanguíneo (Ariëns *et al.*, 2002). Quando há uma falha nesse sistema, e o equilíbrio desse processo é comprometido, pode ocorrer tanto hemorragia (perda excessiva de sangue) quanto a formação de trombos com componentes hematopoiéticos, que impedem o suprimento de sangue para os tecidos (Kumar *et al.*, 2010).

Proteomas salivares de triatomíneos hematófagos

O estudo das funções das moléculas salivares de artrópodes hematófagos tem mobilizado muitos pesquisadores acerca desse tema. Entre as técnicas que podem ser empregadas para a realização desses estudos, as análises transcriptômicas e as análises proteômicas têm contribuído significativamente para aumentar o conhecimento sobre a composição da saliva desses organismos. São exemplos de estudos da saliva de triatomíneos hematófagos que empregaram essas análises: *R. prolixus* (Ribeiro *et al.*, 2004), *T. infestans* (Charneau *et al.*, 2007; Assumpção *et al.*, 2008), *T. brasiliensis* (Santos *et al.*, 2007), *T. dimidiata* (Kato et al., 2010), *R. brethesi, R. robustus* (Bussacos, A. C. *et al.*, 2011; Costa *et al.*, 2011), *P. megistus* (Bussacos, A. C. M. et al., 2011), *Dipetalogaster maxima* (Assumpcao *et al.*, 2011), *T. rubida* (Ribeiro et al., 2012) e *R. neglectus* (Santiago et al., 2016). Para algumas das espécies acima foi descrito o sialoma: análise do transcritoma (conjunto de completo de transcritos de uma célula, tecido ou fluido biológico em um momento preciso) e proteoma (conjunto de proteínas expressas em uma determinada célula, tecido ou fluido biológico em um momento preciso.

O primeiro sialoma de uma espécie de triatomíneo hematófago a ser descrito foi o de *R. prolixus,* que contribuiu para o conhecimento de uma das famílias de proteínas mais abundantes na saliva dos triatomíneos, as lipocalinas (Ribeiro *et al.*, 2004). E o mais recente foi o de *R. neglectus*, que revelou elevado número de transcritos de serino proteases pela primeira vez no sialoma de um triatomíneo, sugerindo uma adaptação evolutiva para essa espécie (Santiago *et al.*, 2016).

Análise proteômica

A espectrometria de massa é uma técnica que possibilita a investigação simultânea e em larga escala de diversas substâncias através da análise da relação massa/carga (m/z) de peptídeos ionizados com o intuito de identificar proteínas ou quantificar os polipeptídeos de uma amostra. Junto com a bioinformática tem permitido a identificação de novas proteínas e/ou isoformas (Pandey e Mann, 2000). Há alguns anos, realizar esse tipo de análise era um desafio para os pesquisadores, enquanto hoje, já é possível identificar a maior parte das proteínas em um único experimento (Altelaar *et al.*, 2013). Existem dois tipos de abordagem, uma é o proteoma total que, como o próprio nome diz, é a análise de todas as proteínas expressas por um organismo. A segunda abordagem é o subproteoma, para o qual a amostra é submetida a um enriquecimento ou fracionamento celular possibilitando uma identificação minuciosa, o que resulta na detecção de proteínas pouco expressas, subrepresentadas ou não detectadas no proteoma total (Altelaar *et al.*, 2013).

Atualmente, com os avanços tecnológicos, a quantidadade de proteínas identificadas após as amostras serem submetidas à espectrometria de massa é cada vez maior.

A espectrometria de massa foi utilizada em 1899 por J.J.Thompson, inventor do primeiro espectômetro de massa. Contudo, só foi realmente difundida nos estudos de biologia molecular com o desenvolvimento de técnicas de ionização que mantivessem parcialmente ou totalmente intacta a estrutura primária da cadeia polipeptídica. Dentre as técnicas mais utilizadas destacam-se: a MALDI (*Matrix-assisted laser desorption/ionization*), método no qual a amostra é misturada a uma matriz orgânica em uma placa metálica e submetida a um feixe de laser para ionização (Tanaka *et al.*, 1988); e a ESI (*electrospray ionization*), neste caso a amostra é misturada com um solvente iônico e volátil, que após evaporação deixa os peptídeos ionizados em fase gasosa (Fenn *et al.*, 1989). Os peptídeos ionizados são submetidos a um campo elétrico ganhando energia cinética de acordo com sua relação m/z em direção ao detector de massa. O resultado final é processado por um programa computacional e representado por um espectro de massa.

Atualmente, um dos mais modernos espectrômetros de massa é o LTQ orbitrap, um espectrômetro de massa híbrido que fornece uma plataforma versátil e minuciosa, e utiliza uma abordagem em que as amostras de peptídeos são analisadas por cromatografia líquida acoplada à espectrometria de massa (LC-MS/MS), uma técnica poderosa para a análise e identificação de proteínas em larga escala em amostras biológicas complexas.

Justificativa

A abordagem proteômica permite a geração de um banco de proteínas expressas por determinadas células ou tecidos, as quais podem ser utilizadas em investigações futuras. Mais especificamente, as proteínas identificadas na saliva de triatomíneos podem contribuir na descoberta de alvos para o desenvolvimento de vacinas ou de inibidores que previnam o repasto satisfatório do triatomíneo e consequentemente, a transmissão do *T. cruzi* e *T.*

rangeli, protozoários transmitidos por esses vetores. Além disso, permite a bioprospecção de substâncias, por exemplo, marcadores de exposição, antimicrobianos, moléculas que possam ser utilizadas na prática clínica no âmbito das doenças hematológicas, entre outras. A amblyomina-X, um inibidor de serino protease do tipo Kunitz presente na saliva do carrapato *Amblyoma cajennense*, inibe a angiogênese que tem correlação direta com a metástase em pacientes com câncer (Drewes *et al.*, 2012; J. S. *et al.*, 2013; Ventura *et al.*, 2013). Dessa forma, as proteínas salivares dos triatomíneos e de outros artrópodes hematófagos são ferramentas científicas importantes para o desenho de moléculas terapêuticas e/ou para a prevenção da transmissão de doenças por esses vetores.

Com o intuito de realizar o estudo funcional de uma das proteínas salivares identificadas no sialoma de *R. neglectus* (Santiago et al., 2016), um dos objetivos desse estudo foi expressar o antígeno 5 da saliva dessa espécie em *Escherichia coli.* Em carrapatos, moscas e mosquitos hematófagos, as proteínas da família do antígeno 5 parecem estar envolvidas na supressão do sistema imunológico do hospedeiro ou na prevenção da coagulação para prolongar a hematofagia (Ribeiro e Francischetti, 2003b). Essa função biológica é similar à proposta para ASP (*activation-associated secreted protein*) e para uma CRISP (*cysteine-rich secretory protein*) de lampréia do rio (Ito *et al.*, 2007).

Entretanto, em decorrência da impossibilidade de expressar o antígeno 5 de *R. neglectus* (RNAV) em *E. coli*, outro objetivo foi proposto para esse estudo: realizar, por LC-MS/MS, a análise proteômica da saliva de *T. dimidiata* comparando as proteínas identificadas cinco e dez dias após a alimentação sanguínea. Essa análise complementa a análise transcriptômica realizada para a saliva dessa espécie por Kato e colaboradores (Kato *et al.*, 2010), e mais recentemente, o sialoma realizado por Santiago em sua tese de doutorado.

OBJETIVOS Objetivo 1

Investigar a expressão proteica na saliva de *Triatoma dimidiata* em diferentes tempos após a alimentação sanguínea, buscando alterações que possam contribuir para a elucidação dos mecanismos anti-hemostáticos e imunomodulatórios observados nesse inseto hematófago, além de contribuir para uma melhor compreensão do hábito hematofágico de triatomíneos.

Para alcançar este objetivo, as seguintes atividades foram desenvolvidas:

- 1. Manutenção da colônia de T. dimidiata;
- Obtenção do extrato salivar de *T. dimidiata* 5, 10 e 20 dias após a alimentação sanguínea;
- Verificação da integridade da fração salivar por meio de géis eletroforéticos uni e bidimensional;
- Identificar os padrões de expressão proteica diferencial entre as amostras de saliva de *T. dimidiata* provenientes de diferentes períodos após a alimentação sanguínea, por espectrometria de massas do tipo LC-MS/MS;
- Avaliar as possíveis funções das proteínas diferencialmente expressas no triatomíneo e no hospedeiro.

Objetivo 2

Caracterizar *in silico* a sequência aminoacídica, e expressar o antígeno 5 da saliva de *R. neglectus* (RNAV) em *Escherichia coli.*

Para alcançar este objetivo, as seguintes atividades foram desenvolvidas:

- 1. Caracterizar in silico a sequência aminoacídica do RNAV;
- 2. Realizar a expressão heteróloga do RNAV em E. coli;
- 3. Realizar processos de purificação da proteína recombinante expressa.

MATERIAIS E MÉTODOS

Manutenção da colônia de T. dimidiata

A colônia de *T. dimidiata* é descendente de insetos originários de Santander, Colômbia. Os triatomíneos são mantidos no Insetário do Biotério do Instituto de Biologia da Universidade de Brasília, em câmara climatizada sob temperatura de 27 ± 1°C e umidade relativa de 70–75% em um ciclo claro/escuro de 12/12 h. No insetário, os barbeiros são mantidos em frascos de polietileno para desenvolvimento e acasalamento, e alimentados quinzenalmente em aves (*Gallus gallus domesticus*) por 30 min. Insetos adultos foram usados nos experimentos.

Extração das glândulas salivares

A saliva do *T. dimidiata* foi coletada através da dissecação das glândulas salivares em diferentes dias após a alimentação: 5, 10 e 20 dias. Para cada período, 15 triatomíneos adultos foram utilizados. Após a dissecação, as glândulas de cada grupo de 15 insetos foram colocadas na parede de microtubos de 1,5 mL, delicadamente perfuradas e mantidas a 4 °C até o término da coleta, que ocorreu em aproximadamente 25 min Em seguida, um coquetel de inibidores de protease (*cOmplete Protease Inhibitor Cocktail*, Roche) foi acrescentado, e a amostra submetida a uma centrifugação a 16.000 *x g* por 15 min a 4 °C. As frações solúveis foram quantificadas no fluorímetro de Qubit 2,0 (Invitrogen, EUA), seguindo as instruções do fabricante, analisadas em gel SDS/PAGE e estocadas a -80 °C até o momento da análise proteômica.

Eletroforese unidimensional – 1-DE

As frações solúveis contendo as proteínas salivares de 5, 10 e 20 dias após a alimentação foram analisadas por eletroforese em gel de poliacrilamida SDS-PAGE 12% (Laemmli, 1970). As amostras foram diluídas em tampão de amostra (Tris HCl 50 mM pH 6,8, glicerol 10%, SDS 2%, azul de bromofenol 0,1%, β-Mercaptoetanol (β-ME)) fervidas por 5 min antes de serem aplicadas

no gel. A eletroforese foi realizada em sistema MiniProtean®3 Cell (BioRad), a temperatura ambiente, com voltagem constante de 90 V na faixa concentradora e 120 V na região separadora. O marcador Bench Mark[™] Protein Ladder (Invitrogen) foi utilizado como padrão de massa molecular. Ao término da eletroforese, o gel foi corado com Azul de Comassie (Metanol 45%, ácido acético 10%, Comassie Brilliant Blue R-250) por 2 h sob agitação constante, e posteriormente incubado com solução descorante (Ácido acético 10%).

Eletroforese bidimensional – 2-DE

A fração solúvel contendo as proteínas salivares de 20 dias após a alimentação foi analisada por eletroforese bidimensional em gel de poliacrilamida (2-DE). Na primeira dimensão, foi realizada focalização isoelétrica (IEF) para separar as proteínas com base em seus pontos isoelétricos (pl) seguida, na segunda dimensão, pela separação com base no peso molecular em SDS-PAGE 12%.

A fita de gradiente de pH imobilizado [pH 3-10 (GE Healthcare – Immobiline[™] DryStrip) de 13 cm pH foi rehidratada com o extrato de proteínas ressuspendido em 250ul de solução de rehidratação contendo uréia 7 M, tiouréia 2 M, 85mM de DTT, 2,5% de Triton X-100, 0,5% de anfólitos pH 3-10, 10% de isopropanol, e azul bromofenol. A rehidratação foi realizada por 1 h e 30 min a temperatura ambiente com o uso de 400 µL de óleo mineral para cobertura da tira, cuja finalidade é evitar que a amostra evapore e que se formem cristais de uréia.

A isoeletrofocalização foi realizada em sistema Ettan IPGphor3 (GE Healthcare). A programação utilizada foi: reidratação sem voltagem por 6 h, 30 V por 6h, 500 V por 1h, 1000 V por 1h, e 8000 V por 2h e 30min, totalizando 21.680 V por 16h e 30min. Após a focalização isoelétrica, a fita foi incubada com 50 ml de tampão de equilíbrio (Tris 1,5 M pH 8,8, Uréia 6 M, 30% de glicerol, 4% de SDS). Para a redução dos grupos tiólicos (-SH) das proteínas, a fita foi incubada com 3 ml de tampão de equilíbrio contendo 125 mM de DTT por 40 min a temperatura ambiente. Para a alquilação dos grupos tiol e sua estabilização, a fita foi incubada com 3 mL de tampão de equilíbrio contendo 300 mM de acrilamida por 20 min a temperatura ambiente. Em seguida, foi realizada uma lavagem com tampão de corrida SDS-PAGE por 1 min.

A segunda dimensão foi realizada em gel de poliacrilamida SDS-PAGE 12%, em tampão de corrida Tris-glicina 25 mM, pH 8,3 cotendo SDS 0,1%. O marcador de peso molecular *Low molecular wheith calobration kit* (GE healthcare) de peso molecular foi utilizado. A fita já equilibrada foi posicionada na parte superior do gel e imobilizada pela adição de uma solução de agarose 0,3% em tampão de corrida previamente aquecido, que resfriou por 5 min. A corrida eletroforética foi realizada empregando 30 mA constante entre 18 °C e 20 °C por 3h e 30min, quando a linha de azul de bromofenol chegou à parte inferior do gel.

As proteínas separadas no gel foram visualizadas por coloração com nitrato de prata. O gel foi incubado em solução fixadora (50%metanol, 12% ácido acético e 0,005% de formaldeído 37%) por 1 h. Em seguida, foi lavado por 20 min com solução de lavagem (50% etanol), depois, sensibilizado (0,002% de tiossulfato de sódio) seguido por 3 lavagens com água miliQ durante 20s cada uma. A etapa de impregnação (0,2% de nitrato de prata e 0,075% de formaldeído 37%) foi feita durante 20min seguida por 2 lavagens de 20 s cada com água miliQ e por fim, revelado com a solução reveladora (6% NaCO3, 0,05% de formaldeído 37% e 0,4mg de tiossulfato de sódio). Ao término da revelação, o gel foi lavado 2 vezes por 2 min cada lavagem com água MiliQ, a reação foi parada com a mesma solução fixadora, durante 1h e depois transferido para uma solução contendo 0,5% de ácido acético.

Preparação das amostras de saliva de *T. dimidiata* para a análise proteômica

As frações solúveis contendo 200 µg de cada amostra (três replicatas biológicas:5 10 e 20 dpa. Para cada uma foram realizadas três replicatas técnicas) foram precipitadas com etanol/acetona. Neste procedimento foram

adicionados 4 volumes de etanol gelado, seguidos por mais 4 volumes de acetona gelada. As amostras foram incubadas a -80°C por 2h e centrifugadas a 15.000 *x g* por 15 min a 4 °C. O sobrenadante foi removido e descartado. O *pellet* foi lavado 3 vezes com uma solução contendo 40% etanol/40% acetona (Santiago *et al.*, 2016). As proteínas foram ressuspensas e desnaturadas em tampão TEAB 20 mM pH 8,5 contendo 8 M de uréia e amberlite 1% por 30 min, filtradas, reduzidas na presença de DTT 20 mM por 40 min a 25 °C, e depois, alquiladas com iodoacetamida 40 mM no escuro por 40 min.

Em seguida, as proteínas foram digeridas com tripsina por 17h a 25 °C. Para cada 100 µg de proteína, 1µg de tripsina foi utilizado. Após a digestão, as amostras foram acidificadas com TFA 0,1% (concentração final) e dessalinizadas. A dessalinização foi realizada em microcoluna *home made* com a resina Poros Oligo R3 (Applied Biosystems, Califórnia EUA).

LC-MS/MS e processamento dos dados

A aquisição dos dados foi realizada em sistema de LC-MS/MS com colunas capilares em Dionex UltimanteTM 3000 RSLCnano system (Thermo Fisher Scientific, Waltham, MA, USA) diretamente acoplado ao espectrômetro de massas híbrido do tipo iontrap-orbitrap, Orbitrap Elite™ ETD (Thermo Fisher Scientific, San Jose, CA, USA).

As amostras dessalinizadas foram primeiramente submetidas à uma précoluna capilar de fase reversa ReproSil-Pur-AQ C18 de 5 μ m empacotada manualmente de dimensões 2cm x 100 μ m (Dr. Maisch GmbH, Ammerbuch, Germany, cat. n# r13.aq.) e então fracionadas em coluna analítica de fase reversa ReproSil-Pur-AQ C18 (Dr. Maisch GmbH, Ammerbuch, Germany, cat. n# r15.aq.) de 35 cm e 75 μ m de diâmetro, montada manualmente.

Os peptídeos foram solubilizados em ácido fórmico 0,1%, injetados na pré-coluna pela técnica *Partial loading injection* e lavados em solução contendo 98% do solvente A (ácido fórmico 0,1%) e 2% solvente B (ácido fórmico 0,1%, acetonitrila 95%) em fluxo de 3 µL/min. A cromatografia foi realizada a um fluxo de 250 nL/min por 200 min, dividida em gradientes de 5-25% do solvente B por

130 min; 45-85% até 181 min; 85% por 10 min, até 191 min; e finalmente, 2% até 200 min. A amostra fracionada foi ionizada a 2,5 kV pela fonte de ionização Nanospray FlexTM (Thermo Fisher Scientific, Waltham, MA, USA) e temperatura de capilar a 275 °C.

Os dados foram adquiridos por espectrometria de massas em modo positivo por *Data-Dependent Acquisition*, operado pelo *programa* Xcalibur 2.2 SP 1.78 (Thermo Fisher Scientific, CA, USA). O escaner de varredura foi ajustado para utilizar resolução de 120.000 FWHM, m/z de 400, valor alvo de controle de ganho automático de 1x10⁶ íons para todas as leituras no FTMS e tempo máximo de preenchimento de 200 ms, faixa de m/z de 300 a 1650 e seleção dos 20 picos mais intensos com carga diferente de +1 a cada ciclo de trabalho para fragmentação por MS2 por *collision-induced dissociation* (CID), e energia de colisão normalizada de 35% e valor alvo de íons igual a 1E04 no *íon trap linear*.

Os eventos de leitura para isolamento do pico monoisotópico tiveram janela de 2 Th e carga padrão de 2. Não foi habilitada a função de massas fixas. Tempo de ativação de 0,1ms. Filtragem de estado de carga foi habilitada com as configurações de repetição de contagem = 1; duração da repetição = 90 s; exclusão de tamanho da lista de exclusão = 500. Parâmetro de ativação q = 0,25.

Análise de bioinformática

O programa PatternLab for Proteomics 4.0 (Carvalho et al., 2016) foi utilizado para identificação das proteínas. Para as identificações, utilizaram-se espectros de massa teóricos produzidos a partir de sequências depositadas em bancos de dados. A comparação dos dados teóricos com os dados experimentais foi analisada através da ferramenta *Comet MS/MS search engine v.2015.020* implementados no programa. O banco de dados com *target decoys* utilizado na busca por *Peptide Sequence Matches* foi elaborado no programa *PatternLab* a partir dos dados do *Triatoma dimidiata* depositados no banco *The Universal Protein Resource* (UniProt), baixado no formato FASTA

no dia 30/05/2016, totalizando 4153 sequências, incluindo 127 sequências de contaminantes-padrão oferecidas pelo programa. Os *Decoys* foram obtidos a partir de sequências reversas do banco de dados.

Para a identificação das proteínas, os espectros de massa em formato *.raw* foram submetidos à busca utilizando como parâmetros: especificidade enzimática na hidrólise protéica como semi-tríptica com tolerância para até 2 clivagens perdidas, modificação fixa de resíduos de cisteínas carbometiladas, *Fragment bin tolerance* = 1,0005%, *Fragment bin offset* = 0,40, *Theoretical frag ions* = *M peak only*, busca na faixa de massa entre 550 e 5500.

Os resultados da busca foram pós-processados е filtrados estatisticamente via Search Engine Processor (SEpro). O resultado de Peptide Sequence Matches foi obtido a partir desse processamento estatístico, que levou em conta somente os peptídeos com False Discovery Rate (FDR) de cada amostra. O FDR para a amostra com cinco dias após a alimentação foi de 0,16% para peptídeos e 0,66% para proteínas. Para a amostra com 10 dias após a alimentação o FDR foi de 0,14% para peptídeos e 0,66% para proteínas. Os valores de FDR foram calculados automaticamente pelo programa ao definir como aceitável somente FDR< 2% para peptídeos e FDR <1% para proteínas. Para cada grupo de proteínas foram utilizados valores Primary Score, Secundary Score e DeltaCN score para gerar automaticamente uma função de discriminador Bayesiano.

Utilizando a ferramenta computacional Blast2GO 3.3 básico, as sequências polipeptídicas das proteínas identificadas foram analisadas, em relação aos processos biológicos, componentes celulares e função molecular (Conesa et al., 2005). Outras análises *in silico* foram realizadas utilizando como arquivo de entrada um arquivo multi-fasta contendo as seqüências resultantes do pré-processamento: primeiramente, para a predição das proteínas secretadas pela via clássica, o *programa SignalP* foi utilizado para averiguar a presença de peptídeo sinal e a localização dos sítios de clivagem,A partir do resultado, as proteínas que putativamente contêm peptídeo sinal N-terminal, foram removidas dando origem ao subconjunto 1, o qual foi submetido ao *programa SecretomeP 2.0* (Bendtsen *et al.*, 2005) para a predição de secreção
por vias não clássicas. As proteínas preditas como secretadas por essas vias foram removidas, dando origem ao subconjunto 2, que foi submetido ao programa TMHMM, em sua versão 2.0 para a realização da predição de domínios α-hélices transmembrânicos. Não existem parâmetros que alterem a sensibilidade ou a especificidade das predições nesse programa, já que os parâmetros existentes se referem à forma de apresentação do resultado. A opção padrão de apresentação de resultados chamada Extensive, with graphics foi utilizada. As proteínas que apresentaram domínio transmembrana foram filtradas do subconjunto 2, originando o subconjunto 3. Por fim, este útimo subconjunto foi submetido ao programa TargetP, em sua versão 1.1 (Emanuelsson et al., 2007) para a realização das predições de localização subcelular. Para a execução do TargetP, os seguintes parâmetros foram considerados: Non-plant, que realiza predições para organismos não vegetais, e inclusão da predição de sítios de clivagem (Emanuelsson et al., 2007). O diagrama de Venn foi gerado com a utilização do programa Venny. Os gráficos foram gerados com a utilização do programa GraphPad Prism versão 7(Oliveiros, 2007-2015).

Figura 3. Representação esquemática dos passos envolvidos na análise proteômica das amostras de saliva de *T. dimidiata* coletadas 5, 10 e 20 dias após a alimentação sanguínea (dpa).

Análise in silico da sequência do antígeno 5 de R. neglectus (RNAV)

A busca da sequência codificadora para o antígeno 5 de *R. neglectus* (RNAV) foi realizada no transcritoma salivar dessa espécie (Santiago *et al.*, 2016). O alinhamento simples da sequência de aminoácidos com o objetivo de verificar dados de similaridade e identidade desta proteína em outros organismos foi realizado usando o algorítmo *Protein Blast* (Blastp, NCBI, Bethesda, MD, USA). Para o alinhamento múltiplo, sequências de aminoácidos de antígenos 5 de outras espécies foram alinhadas utilizando o algoritmo ClustalW (EMBL, Heildeberg, Alemanha). Para a identificação dos domínios conservados na sequência do RNAV foi utilizado o banco de dados CDD via BLAST (NCBI). Os seguintes programas também foram utilizados: *TargetP* 1.1 (Emanuelsson *et al.*, 2007) para predição da localização, *SignalP* 4.0 (Emanuelsson *et al.*, 2007; Petersen *et al.*, 2011) para predição de peptídeo sinal, *NetPhos* 2.0 para a predição de sítios de fosforilação, *GlycoEP* para a predição de sítios de glicosilação e *BepiPred* 1.0b para a predição de possíveis epítopos lineares para os linfócitos B.

Linhagens de *E. coli* utilizadas

Quatro linhagens de *E. coli* foram utilizadas: uma (TOP10) apenas para a amplificação do plasmídeo contendo a sequência do RNAV, e três na tentativa de expressar o RNAV recombinante: BL21(DE3), BL21(DE3)pLysS e Rosetta2(DE3)pLysS. Ambas podem ser utilizadas para expressões de proteínas recombinantes utilizando o promotor T7 que está presente no vetor pET utilizado (pET15b), e são lisógenos do fago λ DE3, ou seja, carregam uma cópia do gene da T7 RNA polimerase sob o controle do promotor indútivel por IPTG *lacUV5* em seu cromossomo. O plasmídeo pLysS carrega o gene que codifica para a lisozima T7 que diminui a expressão basal do gene alvo antes da adição de IPTG ao meio de cultura. Esse plasmídeo induz resistência ao cloranfenicol.

Amplificação do plasmídeo contendo o gene do RNAV

A sequência codificadora do RNAV foi clonada no vetor de expressão em bactérias pET15b (Novagen) entre os sítios de clonagem 5' Ndel e 3' BamHI (pET15b_RNAV) pela empresa Genecust (Dudelange, Luxemburgo). Esse plasmídeo contém uma cauda de seis histidinas na porção N-terminal e confere resistência à ampicilina. O plasmídeo foi utilizado para transformar bactérias E. coli da linhagem TOP10 e amplificado utilizando o kit PureLink HiPure Plasmid Midiprep (Invitrogen), seguindo as instruções do fabricante. Brevemente, uma cultura de TOP10 foi centrifugada a 4.000 x g por 10 min e o sobrenadante foi descartado. O sedimento foi homogeneizado em 4 mL de tampão R3 (ressuspensão, contém RNase). Em seguida, 4 mL de tampão de lise (L7) foram adicionados à solução, o tubo foi invertido gentilmente 5 vezes e incubado por mais 5 min a temperatura ambiente. 4 mL do tampão de precipitação (N3) foram adicionados e o tubo invertido para homogeneização. A solução foi centrifugada a 12.000 x g por 10 min à temperatura ambiente e aplicada à coluna de purificação previamente equilibrada com 10 mL de tampão EQ1. A passagem dos tampões na coluna se deu por gravidade. A coluna foi lavada duas vezes com 10mL de tampão de lavagem (W8) cada, e a eluição do DNA purificado foi realizada com 5 mL do tampão de eluição (E4) em tubo do tipo falcon de 15mL. Para a lavagem e precipitação do DNA, adicionou-se 3,5 mL de isopropanol e centrifugou-se a 12.000 x g por 30 min à 4°C. O sobrenadante foi descartado e ao sedimento acrescentou-se 3mL de etanol 70%. Foi realizada nova centrifugação a 12.000 x g por 5 min à 4°C, o sobrenadante foi descartado e o sedimento resultante foi deixado para secar por 10 min, resuspendido em 100 µL de água milliQ e estocado à -20°C.

Transformação de *E. coli* com pET15b_RNAV

Para a síntese do RNAV recombinante (RNAVr), BL21(DE3) e Rosetta2(DE3)plysS competentes foram transformadas com 1µL (100 ng/µL) do plasmídeo pET15b_RNAV, seguindo as instruções do manual *pET system*. Resumidamente, o plasmídeo foi adicionado ao microtubo contendo as células hospedeiras, que foi deixado por 30 min no gelo. Em seguida, o tubo foi

colocado a 42° C por 45 seg para o choque térmico e deixado por mais 2 min no gelo. Após esse procedimento, foram adicionados 250 µLde meio SOC a temperatura ambiente e incubado a 37°C por 1 h sob agitação de 250 rpm. 100 µL da cultura foram estricados em uma placa de meio Luria-Bertani-ágar (LBágar) contendo 100 µg/mLde ampicilina no caso de BL21(DE3), e no caso da Rosetta2(DE3)pLysS, 100 ug/mI de ampicilina e 34 µg/mL de cloranfenicol. As placas foram incubadas a 37°C *overnight* para o crescimento das colônias.

Indução da expressão do RNAV em *E. coli*

Cada clone de BL21(DE3), BL21(DE3)pLysS ou Rosetta2(DE3)pLysS transformado foi cultivado em 5 mL de meio LB líquido contendo antibióticos apropriados, sob agitação a 250 rpm (Shaker TE424, Tecnal), por aproximadamente 16 h. No dia seguinte, o pré-inóculo foi diluído em 50 mL de meio LB contendo os antibióticos apropriados e incubado a 37 °C, sob a mesma agitação, até atingir OD600 de aproximadamente 0,4-0,6 (multi-leitora de placas para fluorescência Spectra-Max M5). A expressão do RNAVr foi induzida pela adição de 0,25 mM a 1 mM de IPTG. A cultura foi incubada inicialmente por 3h, a 37 °C, sob agitação (250 rpm). Outras condições testadas foram: 6 h a temperatura ambiente, *overnight* a 20 °C. Ao término da incubação, a cultura foi centrifugada a 2.500 *x g* por 20 min e o sedimento foi homogeneizado em BugBuster (Novagen), reagente usado para lisar as bactérias, seguindo as instruções do fabricante.

Resumidamente, para cada g de sedimento, foram acrescentados 5 mL do reagente contendo DNase. O sedimento foi ressuspendido e agitado a temperatura ambiente por 20 min. Em seguida, foi centrifugado a 16.000 *x g* (CF16RXII, Hitachi) por 20 min a 4 ^oC. O sobrenadante ou fração solúvel (FS) foi transferido para um novo tubo. O sedimento ou fração insolúvel (FI) foi ressuspendido em água milliQ. Essas frações foram analisadas em gel SDS-PAGE 12% (Laemmli, 1970), corado com azul de Coomassie.

Western blot

As frações FS e FI descritas acima foram separadas em um gels SDS-PAGE 12% e transferidas para uma membrana de nitrocelulose (Amershan™ Potran® Supported, GE Healthcare) em sistema MiniProtean®3 Cell (BioRad), em sistema resfriado, com amperagem constante de 350 mA por 1h, para serem analisadas por western blot. O marcador de peso molecular pré-corado Color Burst Markers (Sigma- Aldrich) foi utilizado. A membrana foi blogueada com TBS (Tris buffered saline- 50mM Tris e 150mM NaCl) contendo leite 5% por 1 h. Em seguida, adicionou-se TBS leite 1% contendo o anticorpo anticauda de histidina (SIGMA) diluído 1:1000, e incubou-se durante a noite a 4 °C. No dia seguinte, a membrana foi lavada 4 vezes com TBS contendo 0,1% de Tween 20 por 5 min cada lavagem a temperatura ambiente e incubada com TBS leite 1% contendo o anticorpo secundário goat-anti mouse IgG horseradish peroxidase conjugated diluído 1:30000, por 2 h a temperatura ambiente. As etapas de lavagem foram repetidas e a revelação foi feita com o substrato quimioluminescente de peroxidase (ECLTM Prime Western blotting detection reagente, GE Healthcare) no equipamento ImageQuant LAS 4000 (GE Healthcare).

Figura 4. Representação esquemática dos passos envolvidos na expressão do antígeno 5 da saliva de R. neglectus (RNAV) em *Escherichia coli.*

RESULTADOS

Utilizando a metodologia proposta anteriormente , uma análise dos produtos secretados pelas glândulas salivares do triatomíneo *T. dimidiata* em diferentes tempos após o repasto foi realizada. Resumidamente, a integridade da saliva coletada foi investigada por eletroforese e em seguida a amostra foi submetida à espectrometria de massa para identificação das proteínas secretadas. Posteriormente diferentes programas computacionais foram utilizados para analisar os resultados da espectrometria.

Os perfis eletroforéticos uni e bidimensional da saliva de T. dimidiata

Para verificar a integridade das amostras de saliva de *T. dimidiata* coletadas 5, 10 e 20 dias após a alimentação, as amostras foram submetidas à análise em gel SDS-PAGE. O perfil eletroforético das bandas das proteínas salivares observadas na Figura 5 mostra que as amostras não parecem estar degradadas já que possuem o mesmo padrãoe, portanto, eram adequadas para a realização do gel bidimensional (Figura 6) e para a análise proteômica.

Figura 5. Eletroforese unidimensional das proteínas salivares de *T. dimidiata* coletadas 5, 10 e 20 dias após a alimentação sanguínea (dpa). SDS-PAGE 12% corado com azul de Coomassie. Mw – marcadores de peso molecular. (a) 20 ug; (b) 10 ug; (c) 5 ug; e (d) 2,5 ug de proteínas.

Com o intuito de comparar o perfil eletroforético bidimensional da saliva de *T. dimidiata* com o da saliva de *T. infestans*, realizou-se um gel bidimensional usando focalização isoelétrica na faixa de pH 3-10, a mesma utilizada por Charneau e colaboradores (Charneau *et al.*, 2007) em seu estudo. Assim como observado para a saliva de *T. infestans*, a maioria dos *spots* protéicos concentrou-se na região alcalina do gel. O perfil eletroforético bidimensional indicou que proteínas distribuídas na faixa de 14,4 kDa a 30 kDa são abundantemente expressas na saliva de *T. dimidiata*. Adicionalmente, é possível observar outros *spots* entre 68 kDa e 97 kDa, uma faixa menos abundante.

Figura 6. Eletroforese bidimensional das proteínas salivares de *T. dimidiata* 20 dias após a alimentação sanguínea. 2-DE foi realizado sob condições desnaturantes e corado com nitrato de prata. A amostra continha 100 ug de proteínas salivares. Mw – marcadores de peso molecular.

Análise proteômica da saliva de T. dimidiata

Os dados obtidos pela espectrometria de massas foram analisados no *programa PatternLab*. A identificação das proteínas foi possível mediante busca no banco de dados UniProt, o resultado pode ser observado em 2 tabelas contendo o número de acesso da sequência de maior *score* e a descrição putativa de cada proteína identificada nas amostras (Anexo 1).

Na amostra de 5dpa foram identificadas 283 proteínas a partir de 1167 peptídeos. Outras 297 proteínas foram identificadas de 1411 peptídeos na amostra de 10 dpa. O FDR para a amostra com 5 dias após a alimentação foi de 0,16% para peptídeos e 0,66% para proteínas. Para a amostra com 10 dias após a alimentação o FDR foi de 0,14% para peptídeos e 0,66% para proteínas.

A análise dos resultados permitiu observar que a maioria das proteínas encontradas está presente tanto em 5, quanto em 10 dias após a alimentação. Apenas 18% das proteínas identificadas em 5 dias são exclusivas deste período, enquanto 21,8% das proteínas da amostra de 10 dias são exclusivas desta (Figura 7). Em ambos os períodos, diferentes proteínas secretadas e intracelulares foram identificadas.

Figura 7. Diagrama de Venn gerado a partir do número de proteínas salivares de *T. dimidiata* compartilhadas e exclusivas das amostras de saliva coletadas 5 e 10 dias após a alimentação sanguínea e utilizadas nas análises comparativas.

Análises *in silico* das proteínas identificadas 5 e 10 dias após a alimentação

As sequências das proteínas identificadas foram submetidas a análises *in silico* em *programas* disponíveis *online* conforme descrito anteriormente na metodologia.

Primeiramente, utilizando o programa Blast2go, as sequências obtidas foram submetidas ao Gene Ontology Consortium. Para as análises, as sequências foram agrupadas da seguinte maneira: proteínas de 5 dias após a alimentação (dpa); proteínas de 10 dpa; proteínas específicas de 5 dpa; proteínas específicas de 10 dpa; e proteínas em comum. Para a classificação, as seguintes categorias foram utilizadas: componente celular, processo biológico e função molecular. As ontologias resultantes destas análises podem ser observadas nas figuras 8, 9, 10, 11 e 12.

Figura 8. Proteínas salivares de *T. dimidiata* coletadas 5 dias após a alimentação sanguínea, distribuídas segundo as categorias do *Gene Ontology*. (A) Componente celular. (B) Processo biológico. (C) Função molecular, de acordo com o programa Blast2GO.

Figura 9. Proteínas salivares de *T. dimidiata* coletadas 10 dias após a alimentação sanguínea, distribuídas segundo as categorias do *Gene Ontology*. (A) Componente celular. (B) Processo biológico. (C) Função molecular, de acordo com o programa Blast2GO.

Figura 10. Proteínas salivares de *T. dimidiata* encontradas apenas nas amostras coletadas 5 dias após a alimentação sanguínea, distribuídas segundo as categorias do *Gene Ontology.* (A) Componente celular. (B) Processo biológico. (C) Função molecular, de acordo com o programa Blast2GO.

Figura 11. Proteínas salivares de *T. dimidiata* encontradas apenas nas amostras coletadas 10 dias após a alimentação sanguínea, distribuídas segundo as categorias do Gene Ontology. (A) Componente celular. (B) Processo biológico. (C) Função molecular, de acordo com o programa Blast2GO.

Figura 12. Proteínas salivares de *T. dimidiata* comuns nas amostras coletadas 5 e 10 dias após a alimentação sanguínea, distribuídas segundo as categorias do Gene Ontology. (A) Componente celular. (B) Processo biológico. (C) Função molecular, de acordo com o programa Blast2GO.

A fim de investigar quais proteínas são realmente secretadas os conjuntos das sequências das proteínas identificadas em 5 e 10 dpa foram submetidos a dois *programas*, primeiramente ao SignalP (ref) e em seguida, ao SecretomeP (ref). O SignalP prediz se as proteínas são secretadas pela via clássica (presença de peptídeo sinal no N-terminal) e o SecretomeP se são secretadas por vias não clássicas.

5 dias após alimentação

Os resultados apontaram que, dentre as 283 proteínas salivares identificadas 5 dpa, 45 (15,9%) apresentaram peptídeo sinal e são secretadas pela via clássica. Outras 64 (22,6%) são secretadas pela via não clássica e o restante, 174 (61,5%) não são secretadas (Figura13, A).

O programa TMHMM revelou que, das 174 proteínas não secretadas, três proteínas (1,1%), A0A0V0G2F9 [*NADPH--cytochrome P450 reductase* (EC 1.6.2.4), A0A0V0G5R3 (*putative vacuolar h+-atpase v1 sector subunit a*) e A0A0V0G415 (*putative 26s proteasome regulatory complex subunit rpn2/psmd1*), contêm uma hélice transmembrânica (Figura13 B).

A análise realizada pelo *programa* TargetP nas 171 proteínas restantes, levou ao encontro de 18 (6,4%) proteínas mitocondriais, 151 (53,4%) extramitocondriais, e ainda 2 (0,7%) proteínas, A0A0V0G479 (*Putative phosphoinositide 3-kinase*) e A0A0V0G4S4 (*Malate dehydrogenase*), secretadas (Figura 13, B).

10 dias após alimentação

Entre as 297 proteínas salivares identificadas dez dias após a alimentação (10 dpa), 50 (16,8%) apresentaram peptídeo sinal e são secretadas pela via clássica. Outras 90 (30,3%) são secretadas pela via não clássica e o restante, 157 (52,9%) não são secretadas (Figura 13, A).

Aquelas três proteínas que contêm uma hélice transmembrânica pelo programa TMHMM na amostra de 5 dpa foram precisamente as mesmas

52

identificadas na amostra de 10 dpa. Finalmente, a análise realizada pelo *programa* TargetP revelou que 17 (5,7%) proteínas são mitocondriais, 135 (45,5%) são extramitocondriais, e ainda, 2 (0,7%) são secretadas (Figura 13, B). E, essas duas proteínas preditas como secretadas pelo TargetP são as mesmas identificadas na amostra de 5 dpa (Figura. 13, B).

Figura 13. Proteínas salivares de *T. dimidiata* 5 e 10 dias após a alimentação. (A) Predição das proteínas secretadas pela via clássica (C) ou via não clássica (NC), e não secretadas (NS). (B) Predição da localização celular das proteínas salivares não secretadas. TM – transmembrânica, realizada pelo programa TMHMM; S – secretada, M – mitocondrial, E – extramitocondrial, realizadas pelo programa TarqetP.

A soma das proteínas secretadas pela via clássica em 5 e 10 dpa totalizou 56 proteínas. Destas, 6 proteínas (10,7%) são específicas da amostra de saliva de 5 dpa, 11 (19,6%) são específicas da amostra de saliva de 10 dpa e 39 (69,6%) são comuns em ambas as amostras. As proteínas específicas da amostra de 5 dpa, são as seguintes: A0A0V0GCM8 (*Putative kazal-type inhibitor*), D1MXA9 (*Similar to heme-binding protein*), A0A0V0G803 (*Putative selenoprotein - Fragment*), A0A0V0G301 (*Putative esterase and lípase*), e duas proteínas não caracterizadas identificadas como D1MWE5 e D1MWD9. Já as proteínas secretadas específicas da amostra de saliva de 10 dpa são: D1MX91 (*Similar to biogenic amine-binding protein*), três proteínas identificadas como putativamente secretadas (A0A0V0GFI2, A0A0V0G611, A0A0V0G452) e sete proteínas não caractizadas identificadas como D1MWD8, D1MWE4, D1MWE2, D1MWB9, A0A0V0G2H3, D1MWD6 e D1MWB8.

Além disso, nas duas amostras foram identificadas proteínas comumente descritas na saliva de diferentes espécies de triatomíneos, como por exemplo, apirase (A0A0V0G2S8), lipocalinas (A0A0V0G2H8, A0A0V0G5Q2, A0A0V0G4M9, A0A0V0G2H6, A0A0V0G4L1, A0A0V0GAJ0), inibidores de proteases da família das serpinas (A0A0V0G2G2) ou do tipo Kazal (A0A0V0G4J9), proteína similar à tripsina (D1MXA8), além de uma proteína putativamente secretada (A0A0V0G2M6) e 19 proteínas não caracterizadas. A tabela 1 apresenta todas as proteínas salivares de T. dimidiata secretadas pela via clássica de acordo com o SignalP. Essas sequências foram novamente submetidas ao Gene Ontology Consortium e a Figura 14 apresenta as ontologias resultantes desta análise.

-	Descripés	Cp
	Descrição	(aa)^^
	Putative keyel type inhibitor (Frequent)	170
	Similar to home hinding protein clone: 1206	179
	Similar to heme-binding protein, cione. L2Go	100
AUAUVUG803	Putative selenoprotein (Fragment)	160
	Putative esterase and lipase (Fragment)	543
		194
DIMWD9	Uncharacterized protein	202
10 dna		
	Similar to biogenic amine-binding protein	206
	Putative secreted protein	144
	Putative secreted protein (Fragment)	136
A0A0V0G452	Putative secreted protein (Fragment)	175
	Uncharacterized protein	203
	Uncharacterized protein	167
	Uncharacterized protein	180
	Uncharacterized protein	203
	Uncharacterized protein	195
	Uncharacterized protein	178
	Uncharacterized protein	104
/10/10/00/2020		104
5 / 10 dpa		
A0A0V0G2S8	Putative cd73 ecto-5'-nucleotidase (Fragment)	425
A0A0V0G2H8	Putative salivary lipocalin 4 (Fragment)	165
A0A0V0G5Q2	Putative salivary lipocalin (Fragment)	192
A0A0V0G4M9	Putative triabin	148
A0A0V0G2H6	Putative triabin-like lipocalin (Fragment)	169
A0A0V0G4L1	Putative triabin (Fragment)	145
A0A0V0GAJ0	Putative nitrophorin	207
A0A0V0G2G2	Putative serpin (Fragment)	393
A0A0V0G4J9	Putative salivary secreted kazal type proteinase inhibitor	83
D1MXA8	Similar to trypsin, clone: L2E3	134
A0A0V0G2N7	Putative angiotensin i-converting enzyme (Fragment)	430
A0A0V0GDS7	Putative hexamerin (Fragment)	624
A0A0V0GD89	Putative lysozyme (Fragment)	122
A0A0V0G4R4	Putative microtubule-associated protein futsch (Fragment)	574
A0A0V0G3J5	Putative inositol polyphosphate 5-phosphatase (Fragment)	315
A0A0V0G6L7	Putative palmitoyl protein thioesterase (Fragment)	300
A0A0V0G5G2	Putative glutaminyl cyclase	342
A0A0V0G4P9	Putative prosaposin (Fragment)	817
A0A0V0G306	Peptidyl-prolyl cis-trans isomerase (PPlase) (EC 5.2.1.8) (Fragm.)	204

Tabela 1. Proteínas salivares de T. dimidiata secretadas pela via clássica

Identificação*	Descrição	Cp (aa)**
	Putative salivary secreted protein (Fragment)	169
D1MWC4	Uncharacterized protein	214
D1MWB4	Uncharacterized protein	177
D1MWC1	Uncharacterized protein	239
A0A0V0G2G8	Uncharacterized protein (Fragment)	190
D1MWC7	Uncharacterized protein	199
D1MWF2	Uncharacterized protein	181
D1MWC3	Uncharacterized protein	197
A0A0V0G1Z1	Uncharacterized protein	228
D1MWC6	Uncharacterized protein	196
A0A0V0G2V8	Uncharacterized protein	198
D1MWC5	Uncharacterized protein	221
A0A0V0G2E8	Uncharacterized protein	175
A0A0V0G3K6	Uncharacterized protein (Fragment)	198
A0A0V0G2K3	Uncharacterized protein (Fragment)	157
D1MWB2	Uncharacterized protein	177
D1MWB1	Uncharacterized protein	177
D1MWB7	Uncharacterized protein	197
D1MWB5	Uncharacterized protein	198
D1MWF1	Uncharacterized protein	177

*Número identificador atribuído pelo banco UniProtKB **Comprimento (total de aminoácidos)

Figura 14. Proteínas salivares de *T. dimidiata* secretadas pela via clássica, distribuídas segundo as categorias do *Gene Ontology*. (A) Componente celular. (B) Processo biológico. (C) Função molecular, de acordo com o programa Blast2GO.

As proteínas secretadas por vias não clássicas totalizaram 102 moléculas. Desse total, 12 proteínas (11,8%) são específicas da amostra de saliva de 5 dpa, 38 (37,3%) são específicas da amostra de saliva de 10 dpa e 52 (51%) são comuns das duas amostras. Os resultados revelaram que, deste total, seis proteínas não caracterizadas foram observadas, uma (A0A0V0G5F1) em 5 dpa, quatro (A0A0V0G5C8, A0A0V0G2P4, A0A0V0G2Y0, A0A0V0G5K2) em 10 dpa e apenas uma (A0A0V0G5L3) em ambos os períodos. As proteínas secretadas por vias não clássicas comuns nas amostras de 5 e 10 dpa que podem estar envolvidas no sucesso da hematofagia são: cinco lipocalinas (A0A0V0G1Y6, A0A0V0G2K7, A0A0V0G2N6, A0A0V0G2G7, A0A0V0G1Y5), um inibidor de serino protease da família da dipetalogastina (A0A0V0GC63), uma serino protease do tipo tripsina (A0A0V0G2A1). A tabela 2 apresenta todas as proteínas salivares de T. dimidiata secretadas por vias não clássicas de acordo com o programa SecretomeP. Essas sequências foram novamente submetidas ao Gene Ontology Consortium e a Figura 15 apresenta as ontologias resultantes desta análise.

Tabela 2. Prot	eínas salivares	de 7	Γ. dimidiata	secretadas	por \	/ias não	clássicas

Identificação*	Descrição	Cp (aa)**
5 dpa		
A0A0V0G5F1	Uncharacterized protein (Fragment)	500
A0A0V0G2T0	Putative electron transfer flavoprotein alpha subunit	330
A0A0V0G3R0	Putative phosphatidylethanolamine-binding protein	177
A0A0V0G493	Putative rab subfamily protein of small gtpase	202
A0A0V0G8D7	Adenylyl cyclase-associated protein (Fragment)	490
A0A0V0G8W6	Putative echinoderm microtubule-associated protein-like 1	871
A0A0V0G3N8	Putative cytoskeletal protein adducin (Fragment)	359
A0A0V0G4B1	Anion exchange protein (Fragment)	1122
A0A0V0G4D7	Putative programmed cell death protein	843
A0A0V0G4U3	Putative mitochondrial matrix protein p33	290
A0A0V0G5K4	Putative pyridoxamine 5'-phosphate oxidase (Fragment)	188
A0A0V0GB59	Putative f-actin capping protein beta subunit	275
10 dpa		
A0A0V0G5C8	Uncharacterized protein	1710
A0A0V0G2P4	Uncharacterized protein (Fragment)	153
A0A0V0G2Y0	Uncharacterized protein (Fragment)	118
A0A0V0G5K2	Uncharacterized protein	238
A0A0V0GC21	Putative tumor necrosis factor (Fragment)	321
A0A0V0G7P2	Putative carboxypeptidase inhibitor smci (Fragment)	1219
A0A0V0G337	Putative ubiquitin regulatory protein ubxd2	545
A0A0V0G3F9	Putative ubiquitin-conjugating enzyme e2	153
A0A0V0G3Y4	Small ubiquitin-related modifier (SUMO)	94
A0A0V0G440	Putative hydroxyacylglutathione hydrolase mitochondrial	296
A0A0V0G4R1	Putative myosin regulatory light chain 2-like protein	204

Identificação*	Descrição	Cp (aa)**
A0A0V0G4R6	Putative vesicle coat complex copii subunit sec31 (Fragment)	1027
A0A0V0G5E8	Putative hsp90 co-chaperone p23	174
A0A0V0G671	Putative molecular co-chaperone sti1 (Fragment)	542
A0A0V0G6J0	Putative rab subfamily protein of small gtpase	213
A0A0V0G9R6	Putative adaptor protein enigma	467
A0A0V0GAC3	Putative failed axon connections fax protein/glutathione s-transferase-like protein	377
A0A0V0GAF6	Putative oxysterol-binding protein	749
A0A0V0G383	Putative death-associated protein 1 dap-1	105
A0A0V0G3R2	Putative acyl-coa binding protein	89
A0A0V0G431	Putative serine/threonine-protein kinase kinx	406
A0A0V0G4E6	Putative thioredoxin-like protein	287
A0A0V0G4P2	Putative nucleotide excision repair factor nef2 rad23 component	334
A0A0V0G578	Putative muscle lim protein mlp84b	453
A0A0V0G5V0	Putative inorganic pyrophosphatase/nucleosome remodeling factor subunit nurf38 (Fragment)	288
A0A0V0G666	Putative titin (Fragment)	1430
A0A0V0G702	Putative carbonic anhydrase	271
A0A0V0G780	Putative niemann-pick type c2 (Fragment)	147
A0A0V0G808	Putative parvulin-like peptidyl-prolyl cis-trans isomerase	124
A0A0V0G916	Putative glycosyl transferase family 8 (Fragment)	607
A0A0V0G3W5	Putative k-similarity type rna binding protein (Fragment)	537
A0A0V0G474	Putative s10e ribosomal protein	158
A0A0V0G5W9	Citrate synthase	470
A0A0V0G658	Putative rho gdp-dissociation inhibitor	207
A0A0V0G6L2	Putative 26s proteasome regulatory complex subunit	382
A0A0V0G766	Putative casein kinase substrate phosphoprotein pp28	184
A0A0V0GBH9	Putative thioredoxin peroxidase 1 (Fragment)	219
A0A0V0GD03	Putative acyl-coa-binding protein 5	87

Identificação*	Descrição	Cp (aa)**
5 / 10 dpa		
A0A0V0G5L3	Uncharacterized protein	208
A0A0V0G1Y6	Putative triabin lipocalin (Fragment)	155
A0A0V0G2K7	Putative triabin lipocalin (Fragment)	152
A0A0V0G2N6	Putative triabin lipocalin (Fragment)	164
A0A0V0G2G7	Putative triabin lipocalin (Fragment)	169
A0A0V0G1Y5	Putative salivary lipocalin (Fragment)	155
A0A0V0GC63	Putative serine protease inhibitor dipetalogastin (Fragment)	333
A0A0V0G2A1	Putative trypsin-like protease (Fragment)	277
A0A0V0G4P0	Putative prolyl endopeptidase (Fragment)	706
A0A0V0G6K0	Putative transglutaminase/protease-like protein (Fragment)	691
A0A0V0G8V3	Putative lysophospholipase (Fragment)	202
A0A0V0GBZ5	Putative dipeptidase amino acid transport and metabolism (Fragment)	386
A0A0V0G2Z6	Peptidyl-prolyl cis-trans isomerase (PPlase) (EC 5.2.1.8) (Fragment)	141
A0A0V0G5S8	Putative farnesoic acid o-methyltransferase	305
A0A0V0G954	Putative formyltetrahydrofolate dehydrogenase (Fragment)	494
A0A0V0G2N3	Putative 15-hydroxyprostaglandin dehydrogenase (Fragment)	185
A0A0V0G3E5	Glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12)	333
A0A0V0G3N9	Malate dehydrogenase (EC 1.1.1.37)	341
A0A0V0G3Z1	Putative 3-oxoacyl coa thiolase	411
A0A0V0G4C4	Putative delta-1-pyrroline-5-carboxylate dehydrogenase mitochondrial	569
A0A0V0G4K8	Proteasome subunit beta type (EC 3.4.25.1)	274
A0A0V0G4M0	Putative carbonic anhydrase-like protein (Fragment)	260
A0A0V0G4W2	Putative elongation factor 1-gamma	425
A0A0V0G4X4	S-formylglutathione hydrolase (EC 3.1.2.12)	286
A0A0V0G525	Peptidyl-prolyl cis-trans isomerase	109
A0A0V0G575	Glutathione peroxidase (Fragment)	168

Identificação*	Descrição	Cp (aa)**
A0A0V0G5X6	Putative vacuolar protein (Fragment)	296
A0A0V0G5Y3	Putative dihydropteridine reductase dhpr/qdpr	235
A0A0V0G6D0	Eukaryotic translation initiation factor 3 subunit I (eIF3i)	324
A0A0V0G6V7	Putative fumarylacetoacetase (Fragment)	411
A0A0V0G6W9	Putative wd40 repeat stress protein/actin	602
A0A0V0G8A2	Putative gdp dissociation inhibitor	442
A0A0V0GCQ3	Putative vacuolar h+-atpase v1 sector subunit c	389
A0A0V0G2Q7	Putative multifunctional chaperone 14-3-3 family	247
A0A0V0G2R7	Putative mucin-2 (Fragment)	3651
A0A0V0G2X6	Putative cytochrome c	108
A0A0V0G3L4	Putative basement membrane-specific heparan sulfate proteoglycan core protein (Fragment)	2292
A0A0V0G481	S-(hydroxymethyl)glutathione dehydrogenase (EC 1.1.1.284) (Fragment)	346
A0A0V0G4A8	Putative actin-depolymerizing factor 1	148
A0A0V0G4C2	Putative peroxiredoxin posttranslational modification (Fragment)	234
A0A0V0G4H2	Putative prokaryotic long-chain fatty acid coa synthetase (Fragment)	569
A0A0V0G4J2	Putative f-actin capping protein alpha subunit	287
A0A0V0G4T6	Ubiquitin-fold modifier 1	88
A0A0V0G4X9	Putative aldo-keto reductase (Fragment)	245
A0A0V0G500	Putative rna polymerase ii transcriptional coactivator	113
A0A0V0G532	Putative leucine-rich acidic nuclear protein	255
A0A0V0G2U3	Putative peroxiredoxin posttranslational modification (Fragment)	151
A0A0V0G2W3	Catalase (EC 1.11.1.6)	504
A0A0V0G2Y1	Eukaryotic translation initiation factor 3 subunit D (eIF3d) (Eukaryotic translation initiation factor 3 subunit 7)	543
A0A0V0G426	Putative heat shock 70 kDa protein cognate 2	628
A0A0V0G4Q6	Putative puromycin-sensitive aminopeptidase (Fragment)	880
A0A0V0G5V3	Putative small heat shock protein hsp20 family	191

*Número identificador atribuído pelo banco UniProtKB. **Comprimento (total de aminoácidos)

Figura 15. Proteínas salivares de *T. dimidiata* secretadas por vias não clássicas, distribuídas segundo as categorias do *Gene Ontology*. (A) Componente celular. (B) Processo biológico. (C) Função molecular, de acordo com o programa Blast2GO.

Análise in silico do RNAV

A sequência nucleotídica RnSigp-SigP-2128 do transcritoma do triatomíneo *R. neglectus* (Santiago *et al.*, 2016), que codifica para o antígeno 5 putativo de *R. neglectus* (RNAV) foi utilizada nesse estudo. Resumidamente: 1) realizou-se a análise *in silico* para verificar a possível localização celular, presença de peptídeo sinal, hélices transmembrânicas, sítios de glicosilação, fosforilação e de possíveis epítopos lineares para células B; e 2) adquiriu-se um vetor contendo a sequência clonada do RNAV da empresa Genecust (Luxemburgo) para a expressão do RNAV em sistema procarioto de expressão.

A sequência nucleotídica do RNAV possui 665 pares de bases e a sequência aminoacídica possui 220 resíduos de aminoácidos (Figura 16). O peso molecular teórico do RNAV é 24.687,84 Da (http://web.expasy.org/cgi-bin/compute_pi/pi_tool).

Α

ATGCATCCCTTCATACAGATATTGCTAATCGCACTTGCAATTAAGTGCGCTCTATCCTGTCAGGGCGGCCAAGTCATTAA TCGAGAAGTTAGCCCTGAAGAGCAGCAACTAATTTTAGATGTGTGCACAACAGATATAGGCAAGCTATTGCGCTAGGAAAAA TTCGAGGCCAGCCAACCGGTTCGAACATGATAGAAATGTCTTGGGATGACGAATTAGGCAACATGGCGCAGCAATGGGCC GACAATTGTGTCTTTAAGCATGATACCAATATTAGGAGAACGTCAAGAAGATTTCCAGTTGGCCAAAATTTAGCTATATC GTGGAGTTCACCCACTCCAAATAAATATGGTGAGGCTGCAGAATGGGCTGCACAAATTCGAAATTGGTTTAATGAAGTTT ACACAAGTGGCAATGACATTAAGAAATCAGGACATTATACGCAGGTGGTGTGGGGAGATTCGTATCTGGTAGGTTGTGGT TACACAAAGTGCCAATGACATTAAGAAATCAGGACATTATACGCAGGTGGTGTGGCGAATATTAGGCCCTGCTGGGAACGTCAT TGGTGAGCCACCATATATTGAAGAACTCCTGGCTGTGATCGAAGTGGTTTAAAAACCTTCAAGCAGTTACTTAGGCCCTT GTGGAGCCACCATATATTGAAGGAACTCCTGGCTGTGATCGAAGTGATTTAAAACCTTCAAGCAGTTACTTAGGCCCTT GTGACTTCGTTGACTATTGAAGGAACC

В

1 MHPFIQILLI ALAIKCALSC QGGQVINREV SPEEQQLILD VHNRYRQAIA 51 LGKIRGQPTG SNMIEMSWDD ELANMAQQWA DNCVFKHDTN IRRTSRRFPV 101 GQNLAISWSS PTPNKYGEAA EWAAQIRNWF NEVYTSGNDI KKSGHYTQVV 151 WGDSYLVGCG YTYYKDPRKN GYVKLYVCNY GPAGNVIGEP PYIEGTPGCD 201 RSDLKPSSSY LGLCDFVDY*

Figura 16. (A) Sequência nucleotídica do cDNA do antígeno 5 [RnSigp-SigP-2128peptidase inhibitor 16-like isoform X2 (venom allergen)] de *R. neglectus*, contendo 665 pares de bases. (B) Sequência aminoácidica do produto do cDNA do antígeno 5 de *R. neglectus*, contendo 220 resíduos de aminoácidos.

O resultado da busca realizada no programa Blastp mostra que a RNAV tem relação de similaridade com a sequência de uma proteína secretada de Ancylostoma putativa de Cimex lectularius (XP_014255242.1) e com as sequências de proteínas do tipo alérgeno 5 do veneno de formigas ou vespas, exemplo Camponotus floridanus (XP_011255025.1), Wasmannia por auropunctata (XP 011704086.1). Dinoponera quadriceps (XP 014484388.1). (XP_011148558.1), Copidosoma Harpegnathos saltator floridanum (XP_014212871.1), Linepithema humile (XP_012230072.1), Polistes canadensis (XP_014601952.1), Diachasma alloeum (XP_015126083.1) e Polistes dominula (XP_015188005.1), entre outras. O alinhamento da sequência do RNAV com as dez sequências mencionadas foi realizado (Figura 17). A figura 18 mostra a árvore filogenética entre as mesmas sequências.

Essa busca direcionou, ainda, para o banco de dados de domínios conservados CDD (Anexo 1), que mostra a presença dos domínios SCP_euk (cd05380), SCP (smart00198), CAP (pfam00188), que estão conservados na família das proteínas secretadas ricas em cisteína (*Cysteine-rich secretory protein family*), a qual inclui os antígenos 5.

Rodneg	ATKCALSCOGGOVTNRE-VSPEEO
Cimloc	
Confle	
Сортто	MKLKGSAECEQKKKESKKIKIPVIVLVAVVLIAAMAPCCLACKGKNLMKIG-VSCQDK
Diaall	APLPISSSCAGKIVLRIGSLSCQDK
Polcan	MPSISRKNLNQFILLLGILVPVILSFNMVRANCTGKKMLRSGRISCEEK
Poldom	MPSILRKNLNQFTRLLGILVPVILSFNMVRANCTGKKMLRSGRISCEEK
Camflo	MIHCETSCVGKSLLRSGGISCEEK
Camflo	MIHCETSCVGKSLLRSGGISCEEK
Linhum	VNHGEATCIGKTMLRSGGISCEEK
Dingua	VEHCAPSCLGKSVLRSGSISCEEK
Harsal	TEHCAASCI GKTMLRSGGTSCEEK
101 501	* * · · · * · ·
Dedata	
Rodneg	QLILDVHNKYKQAIALGKIKGQPIGSNMIEMSWDDELANMAQQWADNCVFKHDINIKKIS
Cimlec	RLIVDAHNRLRQRVALGKVPGQSPAENMLEMSWDDELARGAQKWADQCIFQHNSQNDRRV
Copflo	RTILDEHNRLRQLVALGQIRGQPSAKMMMEMVWDDELAARAQQWASICAEDHDHSRNV
Diaall	QTILDEHNRLRQLVALGQIHGQPSAANMMEMVWDDELATMAQRWADSCAENHDATRNV
Polcan	QIILDEHNRLRQLVALGQIHGQPGAANMMEMLWDDELADVAQKWADSCAEVHDNYRNV
Poldom	QIILDEHNRLRQLVALGQIHGQPGAANMMEMLWDDELADVAQKWADNCAEVHDNYRNV
Camflo	OIILDEHNRLROLVALGOIRGOPGAANMMEMIWDDELAAIAORWADRCAESHDSLRNV
Camflo	OIILDEHNRLROLVALGOIRGOPGAANMMEMIWDDELAAIAORWADRCAESHDSLRNV
Linhum	OTTI DEHNRI ROLVALGOTHGOPSAANMMEMTWDDELAAMAORWADRCAESHDSL RNV
Dingua	OTTI NEHNRI ROLVAL GOTHGOPSAANMMEMTWDDEL AATAORWADRCAESHDSL RNV
Hancal	
ilai sd1	*** *** ** ***** ** *** ****** ** ** **
Rodneg	RRFPVGQNLAISWSSPTP-NKYGEAAEWAAQIRNWFNEV-YTSGNDIKKSGHYTQ
Cimlec	SRFLVGQNLAMTWSSPHP-NSLGDKPDFETQINNWFNEVRYYRGYYSTQVGHYTQPNGLY
Copflo	RRFQVGQNLARTWTTRTPANYYDTEPEWRVKIQDWFNEVQYYRAGFSPITAHYTQ
Diaall	RRFAVGQNIARTWTTRPP-GPYDAEPNWRRQISGWFNEVQHYQTGYSRATGHYTQ
Polcan	RRFAVGQNIARTWTTRPP-GPYDSEPNWRRQISGWFNEVQHYHTGYSKTTGHYTQ
Poldom	RRFAVGQNIARTWTTRPP-GPYDSEPNWRRQISGWFNEVQHYHTGYSKTTGHYTQ
Camflo	RRFAVGQNIARSWTFRPP-GRYGDEPDWRRQISGWFSEVQFYHSGYSTTTGHYTQ
Camflo	RRFAVGONIARSWTFRPP-GRYGDEPDWRROISGWFSEVOFYHSGYSTTTGHYTO
Linhum	RRFAVGONMARSWTTRPP-GPYDGEPNWRROISGWFNEVOYYHSGYSRTTGHYTO
Dingua	PREAVCONTARTHITTERR CLYRCERNIJRROTSCHENEVOVVHTCVSV ATCHVTO
DINUUA	REAVOUNTARIWITREESULTUGEENWARULSSWENEVUTTETUTSRATUETTUS
Harsal	RREAVGONTARTWTTRPP-GETDGEPNWRRQTSGWENEVQTTHTGTSKATGHTTQ
Harsal	RFAVGQNIARIWITRPP-GPUDGEPNWRRQISGWRVEVQTHTGSSKATGHTQ ** ******************************
Harsal	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISGWFNEVQYHTIGYSKATGHYTQ ** ****:* : : :* :* :* :* :* :* :* :* <td:< td=""> : :</td:<>
Harsal	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISGWFNEVQYHTIGYSKATGHYTQ ** ****:* ** ****:* ** ***** ** ***** ***** ** ****** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** *****
Harsal Rodneg	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISGWFNEVQYTHTGYSKATGHYTQ ** ****** ** ****** ** ****** ** ***** ** ****** ** ****** ** ****** ****** ***** ****** ****** ****** ***** ****** ***** ****** ***** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******* ******* ******** ********* ************************************
Rodneg Cimlec	RRFAVGQNIARIWTTRPP-GPYDGEPNWRRQISGWFNEVQYTHTGYSKATGHTQ RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISGWFNEVQYTHTGYSKATGHYTQ ** *****: :*: *:: :* .**.****** VVWGDSYLVGCGYTYYKDPRKNGYVKLYVCNYGPAGNVIGEPPYIEGTPGC EGVMVKLEELIWGDTYLVGCGYSYFLKGNQYTKYYVCNYGPAGNVRGFPPYKSGSPAC
Rodneg Cimlec Copflo	RRFAVGQNIARIWTTRPP-GPYDGEPNWRRQISGWFNEVQYTHTGYSKATGHTQ RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISGWFNEVQYYHTGYSKATGHYTQ ** ***** :* :* : *:: :* .**.****** VVWGDSYLVGCGYTYYKDPRKNGYVKLYVCNYGPAGNVIGEPPYIEGTPGC EGVMVKLEELIWGDTYLVGCGYSYFLKGNQYTKYYVCNYGPAGNVRGFPPYKSGSPAC VVWGDTFLVGCGYSYYYDPRN-GYTKNYVCNYGPSGNILGNEPYSFGWPEC
Rodneg Cimlec Copflo Diaall	RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISSWRNEVQTHTIGTSKATGHTQ RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISGWFNEVQYHTIGTSKATGHTQ ** *****: *: *: *: *: *: *: **: **: **:
Rodneg Cimlec Copflo Diaall Polcan	RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISSWRNEVQTHTIGTSKATGHTQ RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISGWFNEVQYHTIGTSKATGHTQ ** ****: *: *: *: *: *: *: *: *: *: *: *
Rodneg Cimlec Copflo Diaall Polcan Poldom	RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISSWRNEVQTHTIGTSKATGHTQ RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISGWFNEVQYHTIGTSKATGHTQ ** ****: :: :: :: :: :: :: :: :: :: :: :
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo	RFAVGQNIAR IWTTRPP-GPYDGEPNWRRQISSWRVEVQTHTGYSKATGHTQ RRFAVGQNIAR IWTTRPP-GPYDGEPNWRRQISGWFNEVQYTHTGYSKATGHTQ ** ****: :: :: :: :: :: :: :: :: :: :: :
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISGWFNEVQYHTIGYSKATGHTQ ** ****:* ** VVWGDSYLVGCGYTYYKDPRKNGYVKLYVCNYGPAGNVIGEPPYIEGTPGC EGVMVKLEELIWGDTYLVGCGYSYFLKGNQYTKYYVCNYGPAGNVRGFPPYKSGSPAC VVWGDTFLVGCGYSYFLKGNQYTKYVVCNYGPSGNILGNEPYSFGWPEC VVWGDTFLVGCGYSYFVDPAN-GYTKNVVCNYGPSGNILGNEPYSFGWPEC VVWGDTFLVGCGYSFYYDPAR-GYTKNVVCNYGPSGNLLGYQPYQFGQPSC VVWGDTFLGCGYSFYYDPAR-GYTKNVVCNYGPSGNILGYQPYQSGQPAC
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISSWRNEVQTHTIGTSKATGHTQ RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISGWFNEVQYTHTGTSKATGHTQ ** ****:* ** ****:* ······VWGDSYLVGCGYTYYKDPRKNGYVKLYVCNYGPAGNVIGEPPYIEGTPGC EGVMVKLEELIWGDTYLVGCGYSYFLKGNQYTKYYVCNYGPAGNVRGFPPYKSGSPAC ······VWGDTFLVGCGYSYFLKGNQYTKYYVCNYGPSGNILGNEPYSFGWPEC ······VWGDTFLVGCGYSYYDPRN-GYTKNYVCNYGPSGNLLGYQPYQFGQPSC ·······VWGDTFLVGCGYSFYYDPAK-GYTKNYVCNYGPSGNILGYQPYQSGQPAC ····································
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua	RRFAVGQNIAR WITRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ2 RRFAVGQNIAR TWITRPP-GPYDGEPNWRRQISGWFNEVQYHTIGYSKATGHTQ2 ** ****: : : : : : : : : : : : : : : :
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal	RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ2 RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISSWFNEVQYHTIGYSKATGHTQ2 ** ****: : : : : : : : : : : : : : : :
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWINE VQTHTIGYSKATGHTQ2 ** ****:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ2 RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ2 ** ****: :: :: :: :: :: :: :: :: :: :: :
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal	RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ2 RRFAVGQNIARIWITRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ2 ** ****: :: : : :: : * .**.*****
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWINE VQTHTIGYSKATGHTQ ******* ******* ******* ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ****** ************************************
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal Rodneg Cimlec Conflo	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISGWFNEVQYHTIGYSKATGHTQ ** ****: :: : :: : * .**.*
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWINE VQTHTIGYSKATGHTQ ******:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWINE VQTHTIGYSKATGHTQ ******:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWINE VQTHTIGYSKATGHTQ ******:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Polcan	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWINE VQTHTIGYSKATGHTQ2 ******:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*:*
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWINE VQTHTIGYSKATGHTVQ ******* ******** ******** ******* ******* ******* ****** ******* ****** ****** ****** ****** ****** ****** ****** ****** ****** ********* ************************************
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cimlec Copflo Diaall Polcan	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISSWRNEVQTHTIGYSKATGHTQ2 ******* ******* ******* ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ********** ************ ************************************
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Camflo Camflo Camflo Camflo Camflo Camflo	RRFAVGQNIAR WITTRPP-GPYDGEPNWRRQISSWINE VQTHTIGYSKATGHTQ ******** ******** ******* ******* ******* ****** ****** ****** ****** ****** ****** ****** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ***** ****** ***** ****** ***** ****** ****** ****** ****** ******* ****** ******* ********* ******** ************************************
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cimlec Copflo Diaall	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISSWFNEVQYTHTGYSKATGHTQ ** ****:
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Camflo Camflo Linhum Dinqua Harsal	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISSWTNEVQTHTIGYSKATGHTQ ** ****:
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Camflo Camflo Camflo Camflo Camflo Camflo Camflo Linhum Dinqua Harsal	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISSWFNEVQYTHTGYSKATGHTQ ** ****: ·····: ** ****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ·····: *****: ······: *****: ······: *****: ······: *****: ······: *****: ·······: *****: ·········: *****: ····································
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal	RRFAVGQNIARTWTTRPP-GPYDGEPNWRRQISSWFNEVQYTHTGYSKATGHTQ ******* ********
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal	RRFAVGQNIARIWTTRPP-GPYDGEPNWRRQISGWFNEVQYYHTGYSKATGHYTQ *******:*::::::::::::::::::::::::::::
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal	RRFAVGQNIARIWTTRPP-GPYDGEPNWRRQISGWFNEVQYYHTGYSKATGHYTQ ************************************
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal	RRFAVGQNIARIWTTRPP-GPYDGEPNWRRQISSWFNEVQYYHTGYSKATGHYTQ ************************************
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Dinqua Harsal	RRFAVGQNIARIWITRPP-GEYDGEPNWRRQISGWFNEVQYTHTGYSKATGHYTQ *** ****
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Polcan	RRFAVGQNIARTWTTRPP-GEYDGEPNWRRQISGWFNEVQYTHTGYSKATGHYTQ *** ****
Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Linhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cinhum Dinqua Harsal Rodneg Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Cimlec Copflo Diaall Polcan Poldom Camflo Camflo Diaall Polcan Poldom Camflo Camflo Diaall Polcan Poldom Camflo Diaall Polcan Poldom Camflo Diaall Polcan Poldom Camflo Camflo Diaall Polcan Poldom Camflo Diaall Polcan Poldom Camflo Diaall Polcan Poldom Camflo Diaall Polcan Poldom Camflo Diaall Polcan Poldom Camflo Diaall Polcan Poldom Camflo Camflo Diaall Polcan Poldom Camflo Dinqua Harsal	RRFAVGQUIARIWITTRPP-GEYDGEPNWRRQISGWFNEVQYTHTGYSKATGHYTQ *** ****

Camflo	
Linhum	
Dinqua	
Harsal	
Rodneg	
Cimlec	TNSKDKPEFPKQIKSWYDEVSLYQGYFTFEVGHYTQVVWADTYLVGCGYIYYKEGDKYTK
Copflo	YY <mark>PL</mark> G
Diaall	YYH <mark>L</mark> G
Polcan	YYHLG
Poldom	YYHLG
Camflo	YYH <mark>L</mark> G
Camflo	YYHLG
Linhum	YYH <mark>L</mark> G
Dinqua	YYH <mark>L</mark> G
Harsal	YYHLG
Rodneg	-DFVDYG
Cimlec	LYVCNYGPAGNIGEKRPYESGTKNCTHVNLTSGAKSKFQELCRPKNFTELRCKQQKRRS
Copflo	-YYCSYG
Diaall	-ALCAYAY
Polcan	-ALCAYG
Poldom	-ALCAYG
Camflo	-ALCIYG
Camflo	-ALCIYG
Linhum	-ALCVYG
Dinqua	-ALCVYG
Harsal	-ALCVYG
	*

Figura 17. Alinhamento das sequências de aminoácidos do RNAV com a sequência putativa de proteína secretada por *Ancylostoma* (de *C. lectularius*) e com nove sequências putativas de alérgeno 5 do veneno de diferentes espécies de formigas e vespas. (*) resíduos idênticos; (:) resíduos altamente conservados; (.) resíduos semiconservados; (-) marca *gap* na sequência.

Figura 18. Árvore filogenética construída utilizando o programa MUSCLE versão 3.8.31 a partir da sequência do RNAV e de uma sequência putativa de proteína secretada por *Ancylostoma* (de *C. lectularius*) e de nove sequências putativas de alérgeno 5 de veneno de formigas e vespas.

Utilizando-se o programa TargetP (Emanuelsson *et al.*, 2007), preditor de localização celular, observou-se que o RNAV é putativamente secretado (Anexo 2). A possível via de secreção utilizada pelo RNAV é a clássica, via dependente do retículo endoplasmático e/ou Golgi para secreção, já que a molécula possui peptídeo sinal, conforme observado na análise realizada com o programa SignalP (Emanuelsson *et al.*, 2007) e apresentada na Figura 19.

Figura 19. Predição de peptídeo sinal na sequência de RNAV utilizando o programa SignalP. *C-score (raw cleavage site score):* elevado na posição imediatamente após o sítio de clivagem – o primeiro resíduo do RNAV maduro. S-score (signal peptide score). Y-score (combined cleavage site score): predição do sítio de clivagem, já que distingue entre picos *C-score* pela escolha daquele onde o *S-score* declina.

A sequência do RNAV não possui nenhuma hélice transmembrânica, segundo predição realizada pelo programa TMHMM. O resíduo de treonina na

posição 196 é um sítio potencial de glicosilação ligada ao oxigênio (O), conforme analisado utilizando-se o programa GlycoEP (Figura 20). Não foram preditos sítios potenciais de glicosilação ligados ao nitrogênio (N), nem C-glicosilações.

>RnSigp Length = 220

Potential O-Linked Glycosylated Sites:

MHPFIQILLIALAIKCAL<mark>S</mark>CQGGQVINREVSPEEQQLILDVHNRYRQAIALGKIRGQPTGSNMIEMSWDDELANMAQQWADNCVFKHDTNIRRTSRRFPV GQNLAISWSSPTPNKYGEAAEWAAQIRNWFNEVYTSGNDIKKSGHYTQVVWGDSYLVGCGYTYYKDPRKNGYVKLYVCNYGPAGNVIGEPPYIEGTPGC DRSDLKPSSSYLGLCDFVDYG

Positi	on	Residue Score	Prediction
19	<u>s</u>	-0.42345411	Non-glycosylated
31	<u>s</u>	-0.54888102	Non-glycosylated
59	I	-0.13414441	Non-glycosylated
61	<u>s</u>	-0.39931998	Non-glycosylated
67	<u>s</u>	-0.45894218	Non-glycosylated
89	I	-0.063221502	Non-glycosylated
94	I	-0.1055797	Non-glycosylated
95	<u>s</u>	-0.32843672	Non-glycosylated
107	<u>s</u>	-0.13558709	Non-glycosylated
109	<u>s</u>	-0.030940418	Non-glycosylated
110	<u>s</u>	-0.001097065	Non-glycosylated
112	I	-0.036652816	Non-glycosylated
135	I	-0.14995788	Non-glycosylated
136	<u>s</u>	-0.37694094	Non-glycosylated
143	<u>s</u>	-0.03782812	Non-glycosylated
147	I	-0.32780748	Non-glycosylated
154	<u>s</u>	-0.2965361	Non-glycosylated
162	I	-0.1202564	Non-glycosylated
196	I	0.023848141	Potential Glycosylated
202	<u>s</u>	-0.22836254	Non-glycosylated

Figura 20. Predição de sítios de O-glicosilações na sequência de RNAV utilizando o programa GlycoEP. Em vermelhor, resíduos de serina e treonina.

Para predizer a presença de epítopos lineares para células B, utilizou-se o programa Bepipred 1.0 (Larsen *et al.*, 2006) 25 resíduos de aminoácidos na sequência do RNAV podem fazer parte de possíveis epítopos lineares para as células B (Anexo 3).

A análise de potenciais sítios de fosforilação pelo programa NetPhos 2.0 resultou na predição de 17 sítios de fosforilação: em sete resíduos de serina, dois resíduos de treonina e oito resíduos de tirosina da sequência do RNAV (Anexo 4).

Expressão do RNAV recombinante

Abaixo é apresentado apenas um dos ensaios para a expressão do RNAV recombinante, induzida pela adição de 0,4 mM de IPTG aos clones de bactérias transformadas com o plasmídeo pET15b_RNAV conforme descrito na metodologia. Neste ensaio, a indução foi realizada por 6 h a temperatura ambiente. Os perfis proteicos apresentados pelos clones das diferentes linhagens de E. coli testadas são semelhantes ao apresentado nos três últimos poços do gel, que contêm as amostras dos clones transformados com o plasmídeo pET19b que não continha a sequência do RNAV. Essa observação sugere que não houve expressão diferenciada de proteínas entre as bactérias transformadas com o vetor que continha a sequencia do RNAV e o vetor vazio. Não há sinal de expressão do RNAV recombinante nem na fração solúvel, nem na fração insolúvel dos clones avaliados, assim como no western blot realizado com a fração solúvel do clone de Rosetta2(DE3)pLysS, utilizando anticorpo anti-cauda de histidina. O peso molecular esperado para a banda do RNAV era em torno de 25 kDa. Nenhuma banda de proteína se sobressaiu nessa faixa do gel de poliacrilamida em nenhum dos ensaios realizados.

Figura 21. Perfil de expressão dos clones de diferentes linhagens de *E. coli* transformadas com o plasmídeo pET15b_RNAV ou com o pET19b vazio como controle. (A) SDS-PAGE 10% corado com azul de Coomassie. 1 – lisado bacteriano anterior à indução da expressão com IPTG 0,4 mM; 2 - fração solúvel do lisado bacteriano; 3 - fração insolúvel do lisado bacteriano. (B) *Western blot.* C+ - controle positivo para o anticorpo anti-cauda de histidina (oligopeptidase B de *T. cruzi*). RNAV - fração solúvel de um clone de Rosetta2(DE3)pLysS transformada com o plasmídeo pET15b_RNAV. Mw – marcadores de peso molecular. Esperava-se visualizar a banda do RNAV na altura de 25 kDa.

DISCUSSÃO

Proteoma da saliva de T. dimidiata

Os triatomíneos hematófagos desenvolveram estratégias ao longo de sua evolução para garantir a sua alimentação sanguínea. Eles utilizam a saliva, que é composta por moléculas que contrapõem o sistema hemostático/imune do hospedeiro e favorecem a transmissão de patógenos (Otalora-Luna et al, 2015). Por esse motivo, esse fluído tem sido objeto de estudos reallizados com diferentes espécies de artrópodes hematófagos vetores de doenças.

A análise proteômica da saliva de T. dimidiata coletada 5 dpa e 10 dpa realizada nesse trabalho levou à identificação de 362 proteínas. Não foi possível realizar a análise bioinformática da saliva coletada 20 dpa, pois os espectros das três replicatas técnicas dessa amostra biológica estavam corrompidos. O conjunto de proteínas identificado foi representado por proteínas salivares putativamente secretadas e proteínas constitutivas das glândulas salivares, que possivelmente foram liberadas no momento da perfuração das glândulas para liberação da saliva. Independente da liberação de moléculas intracelulares decorrentes dos danos causados às glândulas salivares, algumas proteínas constitutivas presentes na saliva podem realizar funções importantes para a hematofagia e para a transmissão de patógenos para o hospedeiro vertebrado. Um exemplo é a proteína peptidil-prolil cis-trans isomerase (PPIase - A0A0V0G306) identificada entre as proteínas secretadas pela via clássica de ambas as amostras de 5 dpa e 10 dpa. Essa proteína ajuda no enovelamento de proteínas e, em vertebrados é ubíqua e abundante no citosol, liberada no espaço extracelular durante respostas inflamatórias, capaz de induzir a quimiotaxia de monócitos, neutrófilos, eosinófilos e células T para a periferia (Xu et al., 1992; Yurchenko et al., 2002). No caso dos triatomíneos infectados pelo T. cruzi, a liberação dessa molécula juntamente com a saliva poderia recrutar células hospedeiras para infecção pelo protozoário, e seria um elo importante na interação vetor-patógeno-hospedeiro. Essa proteína é um exemplo de molécula que não foi observada no proteoma realizado por Santiago (2016).
Dentre as proteínas de maior relevância para a hematofagia já descritas, algumas foram encontradas apenas na amostra coletada 5 dpa, apenas na amostra coletada 10 dpa e a maioria era comum às duas amostras. Assim como no proteoma da saliva de T. dimidiata realizado por Santiago (2016), foram identificados membros das famílias das lipocalinas, triabina, apirase, antígeno 5, proteínas de ligação a aminas, proteína sensitiva de odor, proteases do tipo tripsina e inibidores de proteases do tipo serpina. Santiago identificou ainda as lipocalinas triatina e palidipina, a proteína formadora de poros trialisina e uma hemolisina, que foram identificadas nas amostras estudadas nesta análise proteômica como não caracterizadas com os seguintes códigos de identificação D1MWC6 (triatina), A0A0V0G1Z1 (palidipina), A0A0V0G3R1 e A0A0V0G2Y3 (trialisinas), D1MWC5 е (hemolisina).

No entanto, esta análise foi mais abrangente, pois permitiu a identificação de proteínas putativamente secretadas pela via clássica que não foram identificadas no proteoma realizado por Santiago (2016), entre elas o inibidor de protease do tipo kazal, nitroforina, lisozima, proteína de ligação ao heme, selenoproteína, proteína da família das esterases / lipases, enzima conversora de angiotensina, inositol polifosfato 5-fosfatase, hexamerina, prosaposina, palmitoil tioesterase, glutaminil ciclase, proteína futsch associada ao microtúbulo, peptidil-prolil cis-trans isomerase (já discutida acima), entre outras identificadas como não caracterizadas, mas que também podem estar envolvidas diretamente no processo de hematofagia, como já mencionado. Na próxima seção serão discutidas algumas das proteínas identificadas mais comumente relacionadas com a hematofagia.

Lipocalinas

As lipocalinas são proteínas altamente expressas na saliva de artrópodes hematófagos, e os dados apresentados corroboram essa informação, já que boa parte das proteínas encontradas pertence a essa família. Elas já foram descritas nas seguintes espécies de *Triatoma: T. pallidippenis* (Fuentes-Prior *et al.*, 1997) *T. infestans* (Charneau et al., 2007;

Assumpção et al., 2008), *T. rubida* (Ribeiro *et al.*, 2012), *T. matogrossensis* (Assumpção et al, 2012), e em *D. maxima* (Assumpcao et al., 2011) e *P. megistus* (Ribeiro *et al.*, 2015), ambas pertencentes à mesma tribo do *Triatoma*. Foram descritas também em espécies do gênero *Rhodnius* (Champagne *et al.*, 1995; Montfort *et al.*, 2000; Ribeiro *et al.*, 2004; Andersen, Gudderra, Francischetti e Ribeiro, 2005; Costa *et al.*, 2011; Santiago *et al.*, 2016).

As proteínas dessa família são caracterizadas por possuírem uma estrutura tridimensional bem conservada, com oito cadeias β -antiparalelas, formando uma cavidade hidrofóbica de interação com os ligantes (Hernandéz-Vargas *et al.*, 2016). Os *loops* que conectam as folhas- β são flexíveis, sendo responsáveis por garantirem a interação com ligantes com diferentes características químicas e/ou conformacionais, sem alterar o dobramento da proteína. Entretanto, apesar da estrutura bem conservada, as sequências polipeptídicas podem variar bastante(Flower, 1996; Andersen, Gudderra, Francischetti e Ribeiro, 2005).

Um exemplo de lipocalina são as nitroforinas. Essas proteínas têm sido descritas principalmente na saliva das espécies de *Rhodnius*. Membros dessa família sequestram a histamina liberada pelos mastócitos e estão envolvidas na modulação da resposta inflamatória e imune do hospedeiro (Zhang *et al.*, 1998; Weichsel *et al.*, 2000; Moreira *et al.*, 2003; Ribeiro *et al.*, 2004). Podem agir também como vasodilatadoras, pois têm a capacidade de estocar e liberar óxido nítrico (Walker, 2005), inibir a coagulação sanguínea, agindo diretamente no FX, impedindo sua conversão em FXa (Montfort *et al.*, 2000). Recentemente, Buarque e colaboradores mostraram que uma proteína semelhante à nitroforina é super-regulada no intestino de *T. infestans* infectados pelo *T. cruzi* (Buarque et al., 2013). Uma nitroforina putativa também foi identificada (A0A0V0GAJ0) nesse estudo, tanto 5 dpa quanto 10 dpa.

Outros exemplos de lipocalinas que atuam na hematofagia são a RPAI (*Rhodnius prolixus agregation inhibitor – 1*) e a ABP (*Amino binding protein*). A primeira inibe a agregação plaquetária por meio de doses baixas de ADP(Francischetti *et al.*, 2002), enquanto a segunda se liga a aminas

74

biogênicas como a norepinefrina e a serotonina, portanto pode atuar como vasodilatador ou anti-agregador plaquetário (Xu et al, 2013). As aminas biogênicas são liberadas por plaquetas e mastócitos durante a resposta inflamatória (Xanthos *et al.*, 2008). Nesse estudo a proteína identificada como D1MX91 é uma *biogenic amine-binding protein*, encontrada especificamente na amostra de saliva de 10 dpa predita como secretada pela via clássica. Elas são liberadas rapidamente no sangue para contrapor também as respostas inflamatórias, garantindo a alimentação ininterrupta. Calvo e colaboradores reportaram que essas moléculas também estão presentes na saliva de mosquitos para retardar a resposta imune do hospedeiro (Calvo *et al.*, 2009).

As triabinas agem como inibidores de trombina. Entre outras funções, a trombina converte o fibrinogênio em fibrina, estimulando a agregação plaquetária, conforme já demonstrado para *T. pallidipennis* (Noeske-Jungblut *et al.*, 1994; Hernandéz-Vargas *et al.*, 2016). Embora classificadas inicialmente como membros da família das lipocalinas, agora pertencem à superfamília das calicinas, uma família fortemente relacionada às lipocalinas (Flower *et al.*, 2000; Hernandéz-Vargas *et al.*, 2016)

Os dados obtidos neste estudo estão de acordo com os dados da literatura que mostram que as lipocalinas são proteínas expressas na saliva dos triatomíneos hematófagos durante o repasto, pois desempenham papéis importantes para o sucesso desse processo.

Apirases

As apirases são difosfohidrolases capazes de inibir a agregação plaquetária por meio da hidrólise da ligação fosfato no ATP e ADP, liberando Pi (Francischetti *et al.*, 2010). Essas enzimas têm sido descritas em triatomíneos (Faudry, Lozzi, *et al.*, 2004; Faudry, Rocha, *et al.*, 2004; Faudry *et al.*, 2006; Charneau *et al.*, 2007; Assumpcao *et al.*, 2011), mosquitos, por exemplo, em *Aedes aegypti* (Champagne, 2005), flebotomíneos, e carrapatos (Ribeiro *et al.*, 1984; Ribeiro, 1995; Ribeiro e Francischetti, 2003a; Champagne, 2005). Essas proteínas podem ser classificadas em três famílias: 5'-nucleotidases, família

CD39 e família Cimex. Um membro da família 5'-nucleotidase foi identificado (A0A0V0G2S8 - *cd73 ecto-5'-nucleotidase*) entre as proteínas secretadas pela via clássica comum aos 5 dpa e 10 dpa. A principal característica dessa família é a dependência de íons cálcio e ou magnésio. A família Cimex foi identificada em *C. lectularius* e tem como principal característica ser dependente exclusivamente de cálcio (Francischetti, 2011). E por último, a família CD39 foi descrita na pulga *Xenopsylla cheopis* (Andersen, Gudderra, Francischetti e Ribeiro, 2005). Novamente, a presença das apirases nas duas amostras de saliva de *T. dimidiata* e em outros animais hematófagos, demonstra a importância dessas moléculas e sugere uma evolução convergente entre os animais que possuem esse hábito alimentar.

A análise do perfil eletroforético em gel 2-DE revelou *spots* entre 68 kDa e 97 kDa que podem corresponder aos *spots* das apirases salivares encontrados no gel 2-DE de *T. infestans* (Charneau et al., 2007). Assim como para esta espécie, estes *spots* concentrados na região alcalina do gel formaram uma linha horizontal. Para confirmar se os spots correspondem às apirases, a excisão das bandas do gel para identificação por LC-MS/MS e a realização de *western blot* utilizando os anticorpos anti-apirases de *T. infestans* poderão ser realizados. A saliva do *T. infestans* parece diferir da saliva de outras espécies de insetos e carrapatos em relação à abundância e diversidade de apirases.

Inibidores de serino proteases

As serino proteases estão envolvidas em muitos processos fisiológicos importantes. Em mamíferos, atuam na cascata da coagulação sanguínea. Em artrópodes hematófagos, uma das estratégias para garantir a aquisição do sangue é a presença de inibidores naturais de serino proteases, que nesse contexto, atuam inibindo a trombina ou o fator de coagulação Xa, garantindo assim a fluidez do sangue e o sucesso de sua alimentação. Esses inibidores estão presentes em quase todos os organismos vivos (Agarwala *et al.*, 1996; Simonet *et al.*, 2003). Além disso, em artrópodes, também estão envolvidos no

processo de metamorfose, na coagulação da hemolinfa e na cascata da profenoloxidase, que resulta em um dos principais mecanismos de defesa dos artrópodes, a melanização de patógenos (Jiang e Kanost, 2000; Simonet *et al.*, 2002).

Uma serpina putativa (A0A0V0G2G2) foi encontrada em ambos os períodos após a alimentação. Essa proteína é membro da família de inibidores naturais de serino proteases, e possui entre 45 e 50 kDa. Sua principal caracteristíca é a presença de seis resíduos de cisteína, que são espaçados por três pontes dissulfeto. O sítio ativo se encontra exposto na superfície da molécula.

Outro inibidor identificado nesse estudo, 5 dpa e 10 dpa, foi o inibidor de serino protease do tipo Kazal. Membros dessa família apresentam estrutura primária conservada e conformação com uma α-hélice central e três folhas β-antiparalelas. Cada domínio possui entre 50-60 aminoácidos com seis cisteínas conservadas e presença de três pontes dissulfeto. A especificidade do inibidor do tipo Kazal depende do resíduo P1 no sítio ativo da protease (Zheng *et al.*, 2007). Inibidores com resíduos de Arg ou Lys que entrarão em contato com o resíduo de aminoácido da posição P1 tendem a inibir a tripsina (Zheng *et al.*, 2007). Em *D. maxima* (Mende *et al.*, 1999) e *R. prolixus* (Friedrich et al., 1993), o inibidor kazal é responsável pela inibição da trombina.

Superfamília hemocianina - Hexamerina

A superfamília hemocianina inclui cinco classes de proteínas que possuem estrutura similar e relação evolutiva. As classes são: hemocianinas (Hc), fenoloxidases (OP), pseudohemocianina / criptocianinas (Phc/Cc), hexamerinas (Hx) e receptores de hexamerinas (Hxr) (Burmester *et al.*, 1997). Em artrópodes, parece ter havido uma evolução de forma independente dos membros dessa família, sendo foco de muitos estudos de filogenia (Burmester e Hankeln, 2007).

A hexamerina está presente em alguns moluscos e artrópodes. Em insetos com desenvolvimento hemimetábolo, como o caso dos triatomíneos,

mas também holometábols, pode estar associada à metamorfose (Zouh, 2007, (Cristino *et al.*, 2010). Essas proteínas têm entre 75 e 90 kDa e desempenham um papel importante como proteínas de armazenamento, fornecendo aminoácidos para a metamorfose dos insetos (Cristino *et al.*, 2010). Elas estão envolvidas no processo de transporte de hormônio esteróide (Enderle et al, 1983). Portanto sua função está relacionada à estocagem de nutrientes e à sinalização nutricional (Burmester e Scheller, 1999).

Cristino forneceu evidências de que as hexamerinas estão envolvidas na produção dos ovos da vespa *Nasonia vitrippenis (Cristino et al., 2010)*. A maioria dos estudos sobre hexamerina foi realizada em Diptera e Lepidoptera (Cristino *et al.,* 2010) Até o momento, o papel das hexamerinas não está bem elucidado em triatomíneos. Um membro dessa família (A0A0V0GDS7) foi identificado na saliva do *T. dimidiata*, sendo comum nas duas amostras. Para o melhor entendimento da ação das hexamerinas no contexto da saliva do *T. dimidiata* são necessários novos estudos.

Lisozima

As lisozimas são proteínas que atuam na imunidade de diferentes organimos, plantas e animais, com função antibacteriana (Hultmark, 1996). Elas são divididas em três grupos: tipo C, tipo G e tipo I. As de inseto são do tipo C. Elas hidrolisam a ligação glicosídica β -(1,4) da camada de peptidoglicano, causando a ruptura da célula (Russel and Dunn, 1991; Danfre et al, 1994). Além desse efeito direto na parede das bactérias gram positivas, as lisozimas contribuem para a degradação das células bacterianas (Boman *et al*, 1991). Portanto, estão envolvidas tanto na imunidade, como no processo de digestão das bactérias ingeridas durante a alimentação (Moreira-Ferro *et al.*, 1998).

Essa função já foi descrita em *Musca domestica, Anastrepha fraterculus* e *Drosophila melanogaster* (Lemos e Terra, 1991; Regel et al, 1998). Em diferentes gêneros de mosquito, a lisozima parece atuar na atividade imune durante a alimentação, sendo expressa nas glândulas salivares de ambos os sexos (Rossignol e Luerdes, 1986; Pimentel e Rossignol, 1990; Moreira-Ferro *et al.*, 1999).

Em triatomíneos, as lisozimas já foram descritas na hemolinfa associada também à imunidade (Azambuja e garcia, 1987; Hultmark, 1996) Entretanto, a função digestiva dessas enzimas foi sugerida em *R. prolixus* pela primeira vez em 1984 (Ribeiro e Pereira, 1984). Em *T.infestans* e *T. brasiliensis* os genes que codificam para essa molécula já foram identificados e seus produtos se concentram no estômago e intestino (Araújo *et al.*, 2006; Ursic-Bedoya *et al.*, 2008). Sua atividade proteolítica acontece em meio ácido (Cançado et al, 2007).

Neste trabalho, uma lisozima (A0A0V0GD89) foi identificada entre as proteinas secretadas pela via clássica nas amostras de 5 dpa e 10 dpa, sugerindo que elas talvez desempenhem função de defesa logo no início da alimentação como ocorre em mosquitos, se estendendo ao processo de defesa e digestão no estômago e intestino.

Selenoproteína

Selenoproteína é uma família de proteínas amplamente diversa, que possui como característica a presença de resíduos de selenocisteína (Sec) no lugar de cisteína. Essa alteração pode resultar, por exemplo, em maior atividade enzimática, uma vantagem competitiva para os organismos que o utilizam. Em seu trabalho, Chapple e Guidó (2009) demonstraram que alguns insetos estão perdendo a capacidade de sintetizar essa molécula, que se acreditava ser essencial para essa classe (Chapple e Guigó, 2009).

As selenoproteinas são bem conservadas na saliva de artrópodes hematófagos e contrapõem o stress oxidativo presente durante a alimentação sanguínea, por exemplo, agindo na transformação do ácido araquidônico em prostaglandinas em carrapatos (Francischetti *et al.*, 2009). Uma selenoproteína (A0A0V0G803) foi identificada especificamente na amostra de 5 dpa.

Proteína de ligação ao heme

Transcritos para a proteína de ligação ao heme foram identificados na hemolinfa e nos oócitos de *R. prolixus* (Paiva-Silva *et al.*, 2002), nas glândulas salivares de *T. brasiliensis* (Santos *et al.*, 2007) e de *T. dimidiata* (Kato *et al.*, 2010). Entretanto, seu papel na saliva de animais que se alimentam de sangue ainda não foi elucidado. Santos e colaboradores sugeriram uma atuação na percepeção gustativa, pois essas proteínas possuem domínios conservados de ligação à feromônios e a odor, como descrito para *D. melanogaster* (Galindo e Smith, 2001).

Nesse estudo, uma metaloproteína de ligação ao heme (D1MXA9) foi identificada especificamente na amostra de 5 dpa, validando o encontro dos transcritos para essa proteína na análise transcritômica realizada por Kato e colaboradores (Kato *et al.*, 2010) e por Santiago (2016). Essa proteína pode ter surgido como uma estratégia para a detoxificação do heme, que livre é tóxico para as células do inseto, pois pode causar peroxidação lipídica e lise celular Entretanto, o seu papel, continua apenas como especulação.

Esterase e lipase

As esterases e lipases são enzimas multifuncionais com ampla especificidade para substratos e sítios de ligação. Em alguns artópodes, como o *R. prolixus,* atuam na digestão de triacilgliceróis liberando ácido graxos livres e glicerol (Grillo *et al.*, 2007). Em *Bombix mori,* uma lipase foi purificada e mostrou atividade antiviral (Ponnuvel *et al.*, 2003). Uma função importante descrita em insetos é a indução de resistência à insenticidas, pois são capazes de hidrolisar ligações éster presentes na maioria dos inseticidas (Montella, 2012). Uma esterase e lipase putativa (A0A0V0G301) foi identificada especificamente na amostra de 5 dpa, que poderia atuar em mecanismos de defesa do triatomíneo e/ou conferir resistência a inseticidas.

Enzima conversora de angiotensina (ECA)

A enzima conversora de angiotensina é uma peptidil-dipeptidase A que converte a angiotensina I em angiotensina II, peptídeo que atua no controle da pressão arterial (Studdy *et al.*, 1983). Sua função ainda não está bem esclarecida. Foi proposto que em insetos ela atua na biossíntese de hormônios e transmissores (Isaac *et al.*, 1998). Uma família de genes codificadores para essa enzima foi descrita em *Anopheles gambiae*, vetor da malária (Burnham *et al.*, 2005). Em nossa análise proteômica, foi identificada uma enzima conversora de angiotensina putativa (A0A0V0G2N7) especificamente na amostra de 5 dpa da saliva de *T. dimidiata*.

Antígeno 5 de R. neglectus

As proteínas da família do antígeno 5 estão entre as proteínas mais abundantes e imunogênicas presentes nas glândulas salivares de insetos picadores (King e Spangfort, 2000). Elas pertencem à superfamília CAP (*cysteine rich secretory proteins, antigen 5* e *pathogenesis-related 1 proteins*) de proteínas. Esta superfamília é caracterizada por vários domínios, dois deles estão definidos no banco de dados PROSITE (http://www.expasy.ch/prosite/): CAP1, [GDER][HR][FYWH][TVS][QA][LIVM][LIVMA]Wxx[STN], e CAP2, [LIVMFYH][LIVMFY]xC[NQRHS]Yx[P ARH]x [GL]N[LIVMFYWDN]. Outros dois motivos adicionais são CAP3 (HNxxR) e CAP4 (G[EQ]N[ILV]) (Gibbs *et al.*, 2008).

Essas moléculas foram identificadas inicialmente no veneno de formigas e vespas (King e Spangfort, 2000). São as proteínas mais abundantes do vespas е estão frequentemente associadas veneno das com 0 desencadeamento de uma forte resposta alérgica em humanos (King et al., 1978; King et al., 1983). No entanto, sua função não está esclarecida. Posteriormente, antígenos-5 foram descritos no intestino de Drosophila melanogaster (Kovalick et al., 1998) e na saliva de carrapatos (Mans et al., 2008), flebótomos (Charlab et al., 1999), moscas (Ameri et al, 2008), mosquitos (Valenzuela et al., 2002; Calvo et al., 2007) e no sialoma de algumas espécies de triatomíneos hematófagos (De Araújo et al., 2012).

Membros dessa família encontrados na saliva dos triatomíneos *D. maxima* (DMAV) e *T. infestans* (TIAV) foram expressos e apresentaram atividade antioxidante, inibiram a agregação plaquetária induzida por colágeno e o estresse oxidativo em neutrófilos. Os resultados revelaram, portanto, uma nova família de enzimas antioxidantes, importante para atenuar os eventos próinflamatórios associados com produção desregulada de espécies reativas de oxigênio (ROS) na microcirculação e, consequentemente, que poderia beneficiar os insetos hematófagos a se alimentarem satisfatoriamente do sangue de suas presas (Assumpção *et al.*, 2013).

Em vista do potencial biotecnológico dessa molécula, realizou-se a análise *in* silico de uma das sequências de RNAV identificadas no sialoma de *R. neglectus* (Santiago et al., 2016) e se propôs a expressão recombinante do RNAV em sistema de expressão procariótico. A sequência do RNAV possui peptídeo sinal e foi predita secretada pela via clássica. Essa localização foi confirmada pelo programa TargetP (Emanuelsson *et al.*, 2007). A proteína predita apresenta um sítio de O-glicosilação, vários sítios de fosforilação e 25 resíduos de aminoácidos que podem estar presentes em possíveis epítopos lineares para células B. Essa análise é interessante, visto que em outras espécies de artrópodes as proteínas da família do antígeno 5 são alérgenos (King *et al.*, 1983; Fang *et al.*, 1988; Hoffman, 1993; Barral *et al.*, 2000). Essa proteína recombinante poderia, nesse contexto, ser utilizada como marcador de exposição para a picada de triatomíneos.

Mesmo utilizando uma linhagem de bactérias que expressa tRNAs (RNAs transportadores) para aminoácidos raros em bactérias, a Rosetta2(DE3)pLysS, não foi prossível obter o RNAV recombinante. Além das linhagens bacterianas, outras variáveis foram alteradas na tentativa de expressar o RNAV recombinante, por exemplo, diferentes concentrações de agente indutor, tempos e temperatura de indução. Todas essas tentativas foram frustradas.

82

CONCLUSÕES

A presente análise proteômica da saliva de *T. dimidiata* coletada 5 e 10 dias após a alimentação sanguínea possibilitou a identificação de proteínas que podem estar relacionadas com processos bioquímicos da hematofagia. Uma maior quantidade de identificações foi observada nessa análise em comparação com a análise proteômica realizada previamente para a saliva dessa espécie de triatomíneo. As amostras analisadas pareciam estar íntegras e o perfil eletroforético das proteínas salivares de *T. dimidiata* no gel bidimensional é semelhante ao de *T. infestans*.

De interesse, poucas proteínas foram diferencialmente expressas nos dois períodos avaliados. Na amostra de 5 dpa, as proteínas identificadas foram: um inibidor de protease do tipo kazal, que pode ter efeito sobre a hemostasia do hospedeiro, inibindo a coagulação sanguínea e favorecendo o repasto do triatomíneo; uma metaloproteína de ligação ao heme, que pode ter surgido como uma estratégia para a detoxificação do heme, que livre é tóxico para as células do inseto pois pode causar peroxidação lipídica e lise celular; uma selenoproteína, proteína que possui selenocisteína (21⁰ resíduo de aminoácido de ocorrência natural) no lugar da cisteína; uma esterase / lipase que pode estar envolvida na resitência a inseticidas, sendo ainda importante no metabolismo de compostos endógenos, como por exemplo hormônios. Nenhuma dessas quatro proteínas havia sido observada no proteoma anterior da saliva de *T. dimidiata.* Além destas, duas proteínas não caracterizadas também foram observadas.

Na amostra de 10 dpa, foi encontrada uma proteína de ligação a aminas biogênicas, que pode apresentar efeito anti-inflamatório, por exemplo, antagonismo da histamina para impedir a rejeição do triatomíneo no momento do repasto. Além desta, três proteínas putativamente secretadas e sete proteínas não caracterizadas foram observadas 10 dpa. Em ambas as amostras, as proteínas não caracterizadas apresentam similaridade com as proteínas da família das lipocalinas.

Por fim, a sequência do antígeno 5 de *R. neglectus* foi caracterizada *in silico,* mas não foi produzida no sistema heterólogo procarioto proposto. Nova tentativa de produção do RNAVr será realizada em sistema heterólogo eucarioto.

REFERÊNCIAS BIBLIOGRÁFICAS

PAHO - Organização Panamericana de saúde. Disponível em: http://www.paho.org/bra. Acessado em: 05.04.2016 às 16:00.

AGARWALA, K. L. et al. Limulus intracellular Coagulation inhnitor type 3. **Biological Chemistry**, v. 271(29), p. 23768-23774, 1996.

ALMEIDA; D., P. S.; AL, E. Levantamento da fauna de Triatominae (Hemiptera:Reduviidae) em ambiente domiciliar e infeccao natural por Trypanosomatidae no Estado de Mato Grosso do Sul. **Rev. Soc. Bras. Med. Trop.,** v. 41(4), p. 374-380 2008. Disponível em: < <u>http://dspace.fsp.usp.br/xmlui/bitstream/handle/bdfsp/79/art_ALMEIDA_Levantamento_da_f</u> auna de Triatominae -Hemiptera Reduviidae- 2008.pdf?sequence=1 >.

ALTELAAR, A. F.; MUNOZ, J.; HECK, A. J. Next generation proteomics: towards and integrative view of proteome dynamics. **Nat. Vet. Gent,** v. 14(1), p. 35-48, 2013. ISSN 1471-0056.

ANDERSEN, J. F. et al. The role of salivary lipocalins in blood feeding by Rhodnius prolixus.: Archives of insect biochemistry and physiology. 58: 97–105 p. 2005.

_____. The role of salivary lipocalins in blood feeding by Rhodnius prolixus. Arch Insect Biochem Physiol, v. 58, n. 2, p. 97-105, Feb 2005. ISSN 0739-4462 (Print)

0739-4462 (Linking). Disponível em: < <u>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&li</u> <u>st_uids=15660358</u> >.

ARAUJO, R. N. et al. Electromyogram of the Cibarial Pump and the Feeding Process in Hematophagous Hemiptera.

ARAÚJO, C. A. C. et al. Sequence characterization and expression patterns of defensi and lysozyme enconding genes from the gut of reduviid bug *Triatom brasiliensis*. **Insect Biochemistry and Molecular Biology**, v. 36, p. 547-560, 2006.

ARIËNS, R. A. et al. Role of factor XIII in fibrin clot formation and effects of genetic polymorphisms. **Blood**, v. 100, n. 3, p. 743-54, Aug 2002. ISSN 0006-4971. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/12130481</u> >.

ASSUMPCAO, T. C. et al. Insight into the salivary transcriptome and proteome of Dipetalogaster maxima. **J Proteome Res,** v. 10, n. 2, p. 669-79, Feb 4 2011. ISSN 1535-3907 (Electronic)

1535-3893(Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=21058630

ASSUMPÇÃO, T. C. et al. Salivary antigen-5/CAP family members are Cu2+-dependent antioxidant enzymes that scavenge O_{2-} . and inhibit collagen-induced platelet aggregation and neutrophil oxidative burst. **J Biol Chem**, v. 288, n. 20, p. 14341-61, May 2013. ISSN 1083-351X. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/23564450</u> >.

ASSUMPÇÃO, T. C. F. et al. An insight into the sialome of the blood-sucking bug *Triatoma infestans* a vector of Chagas' disease. **Insect Biochemistry and Molecular Biology**, v. 38, p. 213-232, 2008.

BALASHOV YUS. Interaction between blood-sucking arthropods and their hosts, and its influence on vector potential. **Annu Rev Entomol,** v. 29, p. 137-56, 1984. ISSN 0066-4170. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/6362549</u> >.

BARGUES, M. D. et al. Phylogeography and genetic variation of Triatoma dimidiata, the main Chagas disease vector in Central America, and its position within the genus Triatoma. **PLoS Negl Trop Dis,** v. 2, n. 5, p. e233, 2008. ISSN 1935-2735. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/18461141</u> >.

BARRAL, A. et al. Human immune response to sand fly salivary gland antigens: a useful epidemiological marker? **Am J Trop Med Hyg,** v. 62, n. 6, p. 740-5, Jun 2000. ISSN 0002-9637. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/11304066</u> >.

BENDTSEN, J. D., L.; FAUSBOLL, A.; BRUNAK, S. Non-classical protein secretion in bacteria. **BMC Microbiology**, v. 5(58), 2005.

BENNET-CLARK, H. C. Negative pressures produced in the cibarial pump of the blood sucking bug *Rhodnius prolixus*. J. Exp. Biol, v. 40, p. 223-229, 1963.

BUARQUE, D. S. et al. Differential expression profiles in the midgut of Triatoma infestans infected with Trypanosoma cruzi. **PLoS One,** v. 8, n. 5, p. e61203, 2013. ISSN 1932-6203. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/23658688</u> >.

BURMESTER, T. et al. The evolution of Hexamerins and the Phylogeny of Insects. Jornal of Molecular evolution, v. 47, p. 93-108, 1997.

BURNHAM, S. et al. The angiotensin-converting enzyme (ACE) gene family of Anopheles gambiae. **BMC Genomics,** v. 6, p. 172, 2005. ISSN 1471-2164. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/16329762</u> >.

BUSSACOS, A. C. et al. Diversity of anti-haemostatic proteins in the salivary glands of Rhodnius species transmitters of Chagas disease in the greater Amazon. **J Proteomics**, v. 74, n. 9, p. 1664-72, Aug 24 2011. ISSN 1876-7737 (Electronic). Disponível em: <

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&li st_uids=21742069 >.

BUSSACOS, A. C. M. et al. Redundancy of proteins in the salivary glands of *Panstrongylus megistus* secures prolonged procurement for blood meals. **Journal of proteomics**, v. 74, p. 1693-1700, 2011.

CALVO, E. et al. An insight into the sialome of Anopheles funestus reveals an emerging pattern in anopheline salivary protein families. **Insect Biochem Mol Biol,** v. 37, n. 2, p. 164-75, Feb 2007. ISSN 0965-1748. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/17244545</u> >.

_____. Multifunctionality and mechanism of ligand binding in a mosquito antiinflamatpry protein **PNAS**, v. 106(10), p. 3728-3733, 2009. Disponível em: < <u>http://www.pnas.org/content/106/10/3728.full.pdf</u> >.

CARVALHO, D. B. et al. A novel association between Rhodnius neglectus and the Livistona australis palm tree in an urban center foreshadowing the risk of Chagas disease transmission by vectorial invasions in Monte Alto City, São Paulo, Brazil. **Acta Trop**, v. 130, p. 35-8, Feb 2014. ISSN 1873-6254. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/24145156</u> >.

CARVALHO, P. C. et al. Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. **Nat Protoc,** v. 11, n. 1, p. 102-17, Jan 2016. ISSN 1750-2799. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/26658470</u> >.

CHAMPAGNE, D. E. Antihemostatic molecules from saliva of blood-feeding arthropods. **Pathophysiol Haemost Thromb,** v. 34, n. 4-5, p. 221-7, 2005. ISSN 1424-8832. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/16707932</u> >.

CHAMPAGNE, D. E.; NUSSENZVEIG, R. H.; RIBEIRO, J. M. Purification, partial characterization, and cloning of nitric oxide-carrying heme proteins (nitrophorins) from salivary glands of the blood-sucking insect Rhodnius prolixus. **J Biol Chem**, v. 270, n. 15, p. 8691-5, Apr 14 1995. ISSN 0021-9258 (Print)

0021-9258(Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=7721773 >.

CHAPPLE, C. E.; GUIGÓ, R. Relaxation of Selective Constraints Causes Independent Selenoprorein Extinction in Insect Genomes. **PlosOne**, v. 3(8), 2009. Disponível em: < <u>http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0002968</u> >.

CHARLAB, R. et al. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. **Proc Natl Acad Sci U S A,** v. 96, n. 26, p. 15155-60, Dec 1999. ISSN 0027-8424. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/10611354 >.

CHARNEAU, S.; JUNQUEIRA, M.; COSTA, C. M. **The saliva proteome of the blood-feeding insect Triatoma infestans is rich in platelet-aggregation inhibitors.** International Journal of Mass Spectrometry. v. 268 p. 265–276 p. 2007.

COSTA, C. M. et al. 2-DE-based proteomic investigation of the saliva of the Amazonian triatomine vectors of Chagas disease: Rhodnius brethesi and Rhodnius robustus. **J Proteomics**, v. 74, n. 9, p. 1652-63, Aug 2011. ISSN 1876-7737. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/21362504</u> >.

COUTINHO, M.; FREIRE, O.; DIAS, J. C. The noble enigma: Chagas' nominations for the Nobel prize. **Mem Inst Oswaldo Cruz,** v. 94 Suppl 1, p. 123-9, 1999. ISSN 0074-0276. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/10677698</u> >.

CRISTINO, A. S. et al. Organization, evolution and transcriptional profile of hexamerins genes of the parasitic wasp *Nasonia vitripennis*(Hymenoptera: Pteromalidae). **Insec Molecular Biology,** v. 19, p. 137-146, 2010.

DE ARAÚJO, C. N. et al. Interactome: Smart hematophagous triatomine salivary gland molecules counteract human hemostasis during meal acquisition. **J Proteomics,** v. 75, n. 13, p. 3829-41, Jul 2012. ISSN 1876-7737. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/22579750</u> >.

DORN, P. L.; MONROY, C.; CURTIS, A. *Triatoma dimidiata* (Lateille, 1811): a review of its diversity across its geographic ranges and the relationship among populations. **Infect. Genet. Evol.**, v. 7, p. 343-352, 2007. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/17097928</u> >.

DREWES, C. C. et al. Actions of the Kunitz-type serine protease inhibitor Amblyomin-X on VEGF-A-induced angiogenesis. **Toxicon,** v. 60, n. 3, p. 333-40, Sep 2012. ISSN 1879-3150. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/22575283</u> >.

DUMONTEIL, E. et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. **Expert Rev Vaccines,** v. 11, n. 9, p. 1043-55, Sep 2012. ISSN 1744-8395. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/23151163</u> >.

EMANUELSSON, O. et al. Locating proteins in the cell using TargetP, SignalP and related tools. **Nat Protoc,** v. 2, n. 4, p. 953-71, 2007. ISSN 1750-2799. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/17446895</u> >.

FANG, K. S. et al. cDNA cloning and primary structure of a white-face hornet venom allergen, antigen 5. **Proc Natl Acad Sci U S A,** v. 85, n. 3, p. 895-9, Feb 1988. ISSN 0027-8424. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/3422469</u> >.

FAUDRY, E. et al. Triatoma infestans apyrases belong to the 5'-nucleotidase family. J Biol Chem, v. 279, n. 19, p. 19607-13, May 7 2004. ISSN 0021-9258 (Print)

0021-9258Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14985353

_____. Kinetics of expression of the salivary apyrases in Triatoma infestans. Insect Biochem Mol Biol, v. 34, n. 10, p. 1051-8, Oct 2004. ISSN 0965-1748 (Print)

0965-1748Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15475299

_____. Salivary apyrases of Triatoma infestans are assembled into homo-oligomers. **Biochem** J, v. 396, n. 3, p. 509-15, Jun 15 2006. ISSN 1470-8728 (Electronic)

0264-6021(Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16542158 >.

FENN, J. B. et al. Electrospray ionization for mass spectometry of large molecules. **Science**, v. 246(4926), p. 64-71, 1989.

FLOWER, D. R. The lipocalin family: structure and Function. **Biochem J.**, v. 318, p. 1-14, 1996.

FLOWER, D. R.; NORTH, A. C.; SANSOM, C. E. The lipocalin protein familily: Structural and sequence overview. **Biochim. Biophys. Acta**, v. 1482(1-2), p. 9-24, 2000.

FRANCISCHETTI, I. M.; ANDERSEN, J. F.; RIBEIRO, J. M. Biochemical and functional characterization of recombinant *Rhodnius prolixus* platelet agregation inhibitor 1 as novel lipocalin with high affinity for adenosine diphosphate and other adenine nucleotides. **Biochemistry**, v. 41(11), p. 3810-8, 2002.

FRANCISCHETTI, I. M. et al. Insight into the Sialome of Bed Bug, *Cimex lectularius*. J. Proteome Res., v. 6;9(8), p. 3820-31, 2010.

_____. The role of saliva in tick feeding. **Front Biosci (Landmark Ed),** v. 14, p. 2051-88, 2009. ISSN 1093-4715. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/19273185</u> >.

FRIEDRICH, T. et al. A Kazal-type inhibitor with thrombin specificity from Rhodnius prolixus. J Biol Chem, v. 268, n. 22, p. 16216-22, Aug 5 1993. ISSN 0021-9258 (Print)

0021-9258(Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8344906

FUENTES-PRIOR, P. et al. Structure of the thrombin complex with triabin, a lipocalin-like exosite-binding inhibitor derived from a triatomine bug. **Proc Natl Acad Sci U S A**, v. 94, n. 22, p. 11845-50, Oct 28 1997. ISSN 0027-8424 (Print)

0027-8424(Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=9342325

GALINDO, K.; SMITH, D. P. A large family of divergent *Drosophila* odorantbinding pronteins expresses in gustatory and olfactory sensilla. **Genetics**, v. 159, p. 1059-1072, 2001. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/11729153</u> >.

GIBBS, G. M.; ROELANTS, K.; O'BRYAN, M. K. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. **Endocr Rev**, v. 29, n. 7, p. 865-97, Dec 2008. ISSN 0163-769X. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/18824526</u> >.

GRILLO, L. A.; MAJEROWICZ, D.; GONDIM, K. C. Lipid metabolismo in *Rhodnius prolixus* (Hemiptera:Reduviidae): role of midgut triacylglycerol-lipase. **Insect Biochem Mol. Biol.**, v. 37, p. 579–588., 2007. Disponível em: < <u>http://europepmc.org/abstract/med/17517335</u> >.

GUARNERI, A. A. et al. Blood-feeding performance of nymphs and adults of Triatoma brasiliensis on human hosts. **Acta Trop,** v. 87, n. 3, p. 361-70, Aug 2003. ISSN 0001-706X. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/12875930</u> >.

GUARNERI, A. A.; PEREIRA, M. H.; DIOTAIUTI, L. Influence of the Blood Meal Source on the Development of *Triatoma infestans, Triatoma brasiliensis, Triatoma sordida,* and *Triatoma pseudomaculata* (Heteroptera, Reduviidae). Journal of Medical Entomology. 37 373–379 p. 2000.

GURGEL-GONÇALVES, R. et al. Is Rhodnius prolixus (Triatominae) invading houses in central Brazil? **Acta Trop,** v. 107, n. 2, p. 90-8, Aug 2008. ISSN 0001-706X. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/18550022</u> >.

______. Infestation of Mauritia flexuosa palms by triatomines (Hemiptera: Reduviidae), vectors of Trypanosoma cruzi and Trypanosoma rangeli in the Brazilian savanna. **Acta Trop**, v. 121, n. 2, p. 105-11, Feb 2012. ISSN 1873-6254. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/22037200</u> >.

______. **Guia de Triatomíneos da Bahia**. Feira de Santana - BA: 2012. 113 ISBN 978-85-99799-47-5.

_____. Sampling Rhodnius neglectus in Mauritia flexuosa palm trees: a field study in the Brazilian savanna. **Med Vet Entomol,** v. 17, n. 3, p. 347-50, Sep 2003. ISSN 0269-283X. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/12941022</u> >.

_____. Enzootic transmission of Trypanosoma cruzi and T. rangeli in the Federal District of Brazil. **Rev Inst Med Trop Sao Paulo,** v. 46, n. 6, p. 323-30, 2004 Nov-Dec 2004. ISSN 0036-4665. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/15654478</u> >.

HERNANDÉZ-VARGAS, M. J.; SANTIBÁÑEZ-LÓPEZ, C. E.; CORZO, G. An insight into the Triabin Protein family of American Hematophagous Reduvids: Funtional, Structural and Phylogenetic analysis. **Toxins**, v. 8(44), p. 1-19, 2016.

HOFFMAN, D. R. Allergens in Hymenoptera venom. XXV: The amino acid sequences of antigen 5 molecules and the structural basis of antigenic cross-reactivity. **J Allergy Clin Immunol**, v. 92, n. 5, p. 707-16, Nov 1993. ISSN 0091-6749. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/8227862</u> >.

HOTEZ, P. J. et al. The neglected tropical diseases of Latin America and the Caribbean: a review of disease burden and distribution and a roadmap for control and elimination. **PLoS Negl Trop Dis,** v. 2, n. 9, p. e300, 2008. ISSN 1935-2735. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/18820747</u> >.

ISAAC, R. et al. A novel peptide-processing activity of insect peptidyl-dipeptidase A (angiotensin I-converting enzyme): the hydrolysis of lysyl-arginine and arginyl-arginine from the C-terminus of an insect prohormone peptide. **Biochem J,** v. 330 (Pt 1), p. 61-5, Feb 1998. ISSN 0264-6021. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/9461491</u> >.

ITO, N. et al. Novel cysteine-rich secretory protein in the buccal gland secretion of the parasitic lamprey, Lethenteron japonicum. **Biochem Biophys Res Commun**, v. 358, n. 1, p. 35-40, Jun 2007. ISSN 0006-291X. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/17467660</u> >.

J. S., V. et al. A Kunitz- Type FXa inhibitor affects tumor progression, Hypercoagulable sate and tiggers apoptosis:: Biomed Pharmacother. 67: 192- 6 p. 2013.

JESTY, J. The inhibition of activated bovine coagulation factors X and VII by antithrombin III. **Arch Biochem Biophys**, v. 185, n. 1, p. 165-73, Jan 1978. ISSN 0003-9861. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/564164</u> >.

JIANG, H.; KANOST, M. R. The clip-domain of serine proteinases in arthropods. **Insect Biochemistry and Molecular Biology,** v. 30, p. 95-105, 2000.

JURBERG, J.; GALVAO, C. Biology, ecology, and systematics of Triatominae (Heteroptera, Reduviidae) vectors of Chagas disease and implications for human health. : Denisia 19: 1095–1116 p. 2006.

KATO, H. et al. A repertoire of the dominant transcripts from the salivary glands of the bloodsucking bug, Triatoma dimidiata, a vector of Chagas disease. **Infect Genet Evol**, v. 10, n. 2, p. 184-91, Mar 2010. ISSN 1567-7257 (Electronic)

1567-1348(Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&listuids=19900580>.

KING, T. P. et al. Immunochemical studies of yellowjacket venom proteins. **Mol Immunol**, v. 20, n. 3, p. 297-308, Mar 1983. ISSN 0161-5890. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/6865952</u> >.

_____. Protein allergens of white-faced hornet, yellow hornet, and yellow jacket venoms. **Biochemistry**, v. 17, n. 24, p. 5165-74, Nov 1978. ISSN 0006-2960. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/83154</u> >.

KING, T. P.; SPANGFORT, M. D. Structure and biology of stinging insect venom allergens. Int Arch Allergy Immunol, v. 123, n. 2, p. 99-106, Oct 2000. ISSN 1018-2438. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/11060481 >.

KOVALICK, G. E. et al. Structure and expression of the antigen 5-related gene of Drosophila melanogaster. **Insect Biochem Mol Biol,** v. 28, n. 7, p. 491-500, Jul 1998. ISSN 0965-1748. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/9718681</u> >.

KUMAR, V.; ABBAS, A. K.; FAUSTO, N. Robbins & Cotran Patologia: Bases patológicas das doenças. 10^a. 2010.

LAEMMLI, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. **Nature,** v. 227, n. 5259, p. 680-5, Aug 1970. ISSN 0028-0836. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/5432063</u> >.

LARSEN, J. E. P.; LUND, O.; NIELSEN, M. Improved method for predicting liner B- cell epitopes. **Immunnome Research**, v. 2(2), 2006.

LAVOIPIERRE, M. M.; DICKERSON, G.; GORDON, R. M. Studies on the methods of feeding of blood-sucking arthropods. I. The manner in which triatomine bugs obtain their blood-meal, as observed in the tissues of the living rodent, with some remarks on the effects of the bite on human volunteers. **Ann Trop Med Parasitol**, v. 53, p. 235-50, Jun 1959. ISSN 0003-4983 (Print)

0003-4983(Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14414675 >.

LEE, B. Y. et al. Modeling the economic value of a Chagas' disease therapeutic vaccine. **Hum Vaccin Immunother,** v. 8, n. 9, p. 1293-301, Sep 2012. ISSN 2164-554X. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/22894964 >.

LENT, H.; WYGODZINSKY, P. Revision of the Triatominae (Hemiptera, Reduviidae) and their significanse as vectors of Chagas disease. . **Bull. Am. Mus. Nat. Hist.,** v. 163, p. 125-520, 1979. Disponível em: < http://digitallibrary.amnh.org/handle/2246/1282 >.

LINDOSO, J. A.; LINDOSO, A. A. Neglected tropical diseases in Brazil. **Rev Inst Med Trop Sao Paulo**, v. 51, n. 5, p. 247-53, 2009 Sep-Oct 2009. ISSN 1678-9946. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/19893976</u> >.

MAEDA, M. H.; KNOX, M. B.; GURGEL-GONÇALVES, R. Occurrence of synanthropic triatomines (Hemiptera: Reduviidae) in the Federal District of Brazil. **Rev Soc Bras Med Trop,** v. 45, n. 1, p. 71-6, Feb 2012. ISSN 1678-9849. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/22370832</u> >.

MANS, B. J. et al. Comparative sialomics between hard and soft ticks: implications for the evolution of blood-feeding behavior. **Insect Biochem Mol Biol,** v. 38, n. 1, p. 42-58, Jan 2008. ISSN 0965-1748. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/18070664</u> >.

MENDE, K. et al. Dipetalogastin, a potent thrombin inhibitor from the blood-sucking insect. Dipetalogaster maximus cDNA cloning, expression and characterization. **Eur J Biochem,** v. 266, n. 2, p. 583-90, Dec 1999. ISSN 0014-2956. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/10561601</u> >.

MESQUITA, R. D. et al. Trypanosoma cruzi infection is enhanced by vector saliva through immunosuppressant mechanisms mediated by lysophosphatidylcholine. **Infect Immun,** v. 76, n. 12, p. 5543-52, Dec 2008. ISSN 1098-5522. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/18794282</u> >.

MONROE, D. M.; HOFFMAN, M. What does it take to make the perfect clot? **Arterioscler Thromb Vasc Biol,** v. 26, n. 1, p. 41-8, Jan 2006. ISSN 1524-4636. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/16254201</u> >.

MONTELLA, J., R.VALLE, D. The classification of esterases: an important gente family involved in insecticide resistance: a review. **Mem. Ist. Oswaldo Cruz,** v. 107(4), p. 427-49, 2012. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/22666852</u> >.

MONTFORT, W. R.; WEICHSEL, A.; ANDERSEN, J. F. Nitrophorins and related antihemostatic lipocalins from Rhodnius prolixus and other blood-sucking arthropods. **Biochim Biophys Acta**, v. 1482, n. 1-2, p. 110-8, Oct 18 2000. ISSN 0006-3002 (Print)

0006-3002(Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11058753 >.

MOREIRA, M. F. et al. Changes in salivary nitrophorin profile during the life cycle of the bloodsucking bug Rhodnius prolixus. **Insect Biochem Mol Biol**, v. 33, n. 1, p. 23-8, Jan 2003. ISSN 0965-1748 (Print)

0965-1748Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=12459197 >.

MOREIRA-FERRO, C. K. et al. A lysozime in the salivary glands of the malaria vector *Anopheles darlingi*. **Insect Mol. Bio.,** v. 7(3), p. 257-64, 1998. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/9662475</u> >.

MOREIRA-FERRO, C. K.; MARINOTTI, O.; BIJOSKY, A. T. Morphological and biochemical analyses of the salivary glands of the malaria vector *Anopheles darlingi*. **Tissue & Cell**, v. 31(3), p. 264-73, 1999. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/10481298</u> >.

NOESKE-JUNGBLUT, C. et al. An inhibitor of collagen-induced platelet aggregation from the saliva of Triatoma pallidipennis. **J Biol Chem,** v. 269, n. 7, p. 5050-3, Feb 18 1994. ISSN 0021-9258 (Print)

0021-9258Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=8106481 >.

OLIVEIRA, A. W. S. D.; SILVA, I. G. D. Geographical distribuition and indicators entomologic of sinantropic triatomines captured in the State of Goiás. **Revista Sociedade Brasileira de Medicina Tropical**, v. 40(2), p. 204-208, 2007.

OLIVEIROS, J. C. Venny. An interactive for comparing lists with Venn's diagrams. 2007-2015.

OTALORA-LUNA, F. et al. Evolution of hematophagous habit in Triatominae (Heteroptera:Reduviidae). **Revista Chilena de História Natural,** v. 88:4, 2015. Disponível em: < <u>http://link.springer.com/article/10.1186/s40693-014-0032-0#enumeration</u> >.

PAIVA-SILVA, G. O. et al. On the biosynthesis of *Rhodnius prolixus* heme-binding protein. . **Insect Biochem. Mol. Biol.**, v. 32, p. 1533–1541, 2002. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/12530221</u> >. PAHO - Organização Panamericana de saúde. Disponível em: http://www.paho.org/bra. Acessado em: 05.04.2016 às 16:00.

PANDEY, A.; MANN, M. Proteomics to study genes and genome. **Nature**, v. 485(6788), p. 837-46, 2000. ISSN 0028-0836.

PASSOS, L. A. C. et al. Sobrevivência e infectividade do *Trypanosoma cruzi* na polpa de açaí: estudo *in vitro* e *in vivo**. **Epidemiologia e Serviços de Saúde,** v. 21.2, p. 223-232, 2012.

PETERSEN, T. N. et al. SignalP 4.0: discriminating signal peptides from transmembrane regions. **Nat Methods,** v. 8, n. 10, p. 785-6, 2011. ISSN 1548-7105. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/21959131</u> >.

PIMENTEL, G. E.; ROSSIGNOL, P. A. Age dependence of salivary bacteriolytic activity in adult mosquitoes. **Comp. Biochem. Physiol,** v. 96, p. 549-51, 1990. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/2390862 >.

PONNUVEL, K. M. et al. A lipase isolated from the Silkworm *Bombyx mori* shows antiviral activity against nucleopolyhedrovirus. Journal of Virology v. 77(190), p. 10725–10729., 2003. Disponível em: < <u>http://jvi.asm.org/content/77/19/10725.full</u> >.

PRATA, A. Clinical and epidemiological aspects of Chagas disease. Lancet Infect Dis, v. 1, n. 2, p. 92-100, Sep 2001. ISSN 1473-3099. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/11871482 >.

RIBEIRO, J. M. Blood-feeding arthropods: live syringes or invertebrate pharmacologists? **Infect Agents Dis,** v. 4, n. 3, p. 143-52, Sep 1995. ISSN 1056-2044. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/8548192</u> >.

RIBEIRO, J. M. et al. Exploring the sialome of the blood-sucking bug Rhodnius prolixus. **Insect Biochem Mol Biol**, v. 34, n. 1, p. 61-79, Jan 2004. ISSN 0965-1748 (Print)

0965-1748Linking).Disponívelem:<</th>http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=14976983

_____. An insight into the sialotranscriptome of Triatoma rubida (Hemiptera: Heteroptera). J Med Entomol, v. 49, n. 3, p. 563-72, May 2012. ISSN 0022-2585. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/22679863</u> >.

RIBEIRO, J. M.; FRANCISCHETTI, I. M. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. **Annu Rev Entomol,** v. 48, p. 73-88, 2003a. ISSN 0066-4170. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/12194906</u> >.

______. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. **Annu Rev Entomol,** v. 48, p. 73-88, 2003b. ISSN 0066-4170. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/12194906</u> >.

RIBEIRO, J. M. et al. Salivary apyrase of *Aedes aegypti:* characterization and secretory fate. **Comp. Biochem. Physiol**, v. 79B, p. 81-86, 1984.

RIBEIRO, J. M.; SCHWARZ, A.; FRANCISCHETTI, I. M. A Deep Insight Into the Sialotranscriptome of the Chagas Disease Vector, Panstrongylus megistus (Hemiptera: Heteroptera). **J Med Entomol,** v. 52, n. 3, p. 351-8, May 2015. ISSN 0022-2585. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/26334808</u> >.

RODRIGUES, V. L. et al. Colonization of palm trees by Rhodnius neglectus and household and invasion in an urban area, Araçatuba, São Paulo State, Brazil. **Rev Inst Med Trop Sao Paulo**, v. 56, n. 3, p. 213-8, 2014 May-Jun 2014. ISSN 1678-9946. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/24878999</u> >.

ROSSIGNOL, P. A.; LUERDES, A. M. Bacteriolityc factor in the salivary glands *Aedes aegypti*. **Comp. Biochem. Physio,** v. 83B, p. 819-22, 1986. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/3519067</u> >.

SANTIAGO, P. B. et al. A Deep Insight into the Sialome of Rhodnius neglectus, a Vector of Chagas Disease. **PLoS Negl Trop Dis,** v. 10, n. 4, p. e0004581, Apr 2016. ISSN 1935-2735. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/27129103</u> >.

SANTOS, A. et al. The sialotranscriptome of the blood-sucking bug Triatoma brasiliensis (Hemiptera, Triatominae). **Insect Biochem Mol Biol**, v. 37, n. 7, p. 702-12, Jul 2007. ISSN 0965-1748. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/17550826</u> >.

SCHOEFIELD, C. J.; GALVÃO, C. Classification, evolution and species of groups within the Triatominae. Acta Tropica, v. 110, p. 88-100, 2009.

SCHOFIELD, C. J.; DIOTAITUI, L.; DUJARDIN, J. P. The process of Domestication in Triatominae<span style="font-size:11.0pt;line-height:115%;

font-family:"Calibri","sans-serif";mso-ascii-theme-font:minor-latin;mso-fareast-font-family:

Calibri;mso-fareast-theme-font:minor-latin;mso-hansi-theme-font:minor-latin;

mso-bidi-font-family:"Times New Roman";mso-bidi-theme-font:minor-bidi;

mso-ansi-language:PT-BR;mso-fareast-language:EN-US;mso-bidi-language:AR-SA">. **Mem. Inst. Oswaldo Cruz, Rio de Janeiro,** v. 94(1), p. 375-378, 1999.

SILVA, A. R. et al. Chagas' disease: Triatomines notification of the São Paulo State during the 1990s. **Revista da Sociedade Brasileira de Medicina Tropical**, 2006.

SIMONET, G.; CLAEYS, I.; BROECK, J. V. Structural and functional properties of a novel serine protease inhibiting peptide family in arthropods. **Comp. Biochem. Physiol.**, v. 132, p. 247-255, 2002.

SIMONET, G. et al. Genomics, evolution and biological functions of the pacifastin peptide family: a conserved serine proteaes inhibitor family in arthropods. **Peptides**, v. 24, p. 1633-1644, 2003.

STUART, K. et al. **Kinetoplastids: related protozoan pathogens, different diseases**: J Clin Invest. 118: 1301-10 p. 2008.

STUDDY, P. R.; LAPWORTH, R.; BIRD, R. Angiotensin-converting enzyme and its clinical significance--a review. **J Clin Pathol,** v. 36, n. 8, p. 938-47, Aug 1983. ISSN 0021-9746. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/6308066</u> >.

TANAKA, K. et al. Protein and polymer analyzes up m/z 100 000 by laser ionization time-of-flight mass spectometry. **Rapid Comunication in Mass Spectomtry**, v. 2(8), p. 151-153, 1988.

URSIC-BEDOYA, R. J. et al. Identification and characterization of two novel lysosymes from *Rhodnius prolixus*, vector of Chagas disease. J. Insect Physiol., v. 54(3), p. 593-603, 2008.

VALENZUELA, J. G. et al. Toward a description of the sialome of the adult female mosquito Aedes aegypti. **Insect Biochem Mol Biol,** v. 32, n. 9, p. 1101-22, Sep 2002. ISSN 0965-1748. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/12213246</u> >.

VENTURA, J. S. et al. A Kunitz- Type FXa inhibitor affects tumor progression, Hypercoagulable sate and tiggers apoptosis:: Biomed Pharmacother. 67: 192-6 p. 2013.

VERSTEEG, H. H. et al. New fundamentals in hemostasis. **Physiol Rev,** v. 93, n. 1, p. 327-58, Jan 2013. ISSN 1522-1210. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/23303912</u> >.

WALKER, F. A. Nitric oxide interaction with insect nitrophorins and thoughts on the electron configuration of the {FeNO}6 complex. **J Inorg Biochem**, v. 99, n. 1, p. 216-36, Jan 2005. ISSN 0162-0134. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/15598503</u> >.

WEICHSEL, A. et al. Nitric oxide binding to nitrophorin 4 induces complete distal pocket burial. **Nat Struct Biol,** v. 7, n. 7, p. 551-4, Jul 2000. ISSN 1072-8368. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/10876239</u> >.

WHO. Chagas disease (American trypanosomiasis). **Fact sheet N 340**, 2016a. Disponível em: < <u>http://www.who.int/mediacentre/factsheets/fs340/en/</u> >. Acesso em: June 14, 2016.

_____. Vector-borne diseases. Fact sheet n. 387.: http://www.who.int/mediacentre/factsheets/fs387/en/# 2016b.

XANTHOS, D. N.; BENETT, G. J.; CODERRE, T. J. Norepinephrine-induced nociception and vasoconstrictor hypersensitivity in rats with chronic post- ischemia pain. **Pain**, v. 137(3), p. 640-651, 2008. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4494839/</u>>.

XU, Q. et al. Leukocyte chemotactic activity of cyclophilin. J Biol Chem, v. 267, n. 17, p. 11968-71, Jun 1992. ISSN 0021-9258. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/1601866</u> >.

YURCHENKO, V. et al. Active site residues of cyclophilin A are crucial for its signaling activity via CD147. J Biol Chem, v. 277, n. 25, p. 22959-65, Jun 2002. ISSN 0021-9258. Disponível em: < http://www.ncbi.nlm.nih.gov/pubmed/11943775 >.

ZHANG, Y. et al. Nitrophorin-2: a novel mixed-type reversible specific inhibitor of the intrinsic factor-X activating complex. **Biochemistry**, v. 37, n. 30, p. 10681-90, Jul 1998. ISSN 0006-2960. Disponível em: < <u>http://www.ncbi.nlm.nih.gov/pubmed/9692958</u> >.

ZHENG, Q.-L. et al. Expression, purification and characterization of three-domain Kazal-Type inhibitor from silkworm pupae (*Bombyx mori*). **Comp. Biochem. and Physiol**, v. 146B, p. 234-240, 2007.

APÊNDICE A. Tabelas suplementares

 Tabela suplementar 1. Proteínas salivares putativas de T. dimidiata identificadas na amostra coletada 5 dias após a alimentação

				Cobertu	#Uniq ue Pepti	Sequ ence Coun	Spect rum Coun
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
A0A0V0G2V8	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	198	22635,8	0,6768	17	40	308
A0A0V0G4M9	Putative triabin OS=Triatoma dimidiata PE=4 SV=1	148	16617,2	0,3581	13	17	219
A0A0V0G3R1	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	220	23688,4	0,6	16	16	210
A0A0V0G3J5	Putative inositol polyphosphate 5-phosphatase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	315	36118,8	0,654	36	36	191
D1MWB7	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	197	22112,7	0,4162	13	33	189
D1MWB5	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	198	22506,7	0,4848	7	18	150
A0A0V0G2K3	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	157	17537,4	0,586	7	10	118
A0A0V0G1Y5	Putative salivary lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	155	17617,9	0,5161	16	16	83
A0A0V0G2A1	Putative trypsin-like protease (Fragment) OS=Triatoma dimidiata PE=3 SV=1	277	30777,9	0,7906	29	29	76
A0A0V0G2Y3	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	204	22263,7	0,5147	9	9	75
A0A0V0G2H8	Putative salivary lipocalin 4 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	165	18212,8	0,6424	13	13	74
D1MWB2	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	177	19914,8	0,2994	10	13	74
D1MWC1	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	239	26799,2	0,113	5	5	73
D1MXA8	Similar to trypsin, clone: L2E3 OS=Triatoma dimidiata PE=2 SV=1	134	14356	0,4104	5	5	70
A0A0V0G1Y6	Putative triabin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	155	17712	0,471	9	9	53
D1MWB1	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	177	20010,9	0,2429	3	6	48
A0A0V0G2K7	Putative triabin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	152	17213,4	0,6184	9	10	47
D1MWC3	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	197	22193,8	0,2132	2	5	41
A0A0V0G2N6	Putative triabin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	164	18350	0,3537	5	5	32
A0A0V0G3K6	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	198	22470,1	0,4394	9	9	30
A0A0V0G2R7	Putative mucin-2 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	3651	406749,4	0,115	24	24	29
A0A0V0GDS7	Putative hexamerin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	624	72775,9	0,3029	15	15	28

				Cobertu	#Uniq ue Ponti	Sequ ence	Spect rum
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
D1MWB4	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	177	19795,8	0,2712	5	5	26
D1MWC4	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	214	24199,1	0,0561	1	1	24
A0A0V0G2N7	Putative angiotensin i-converting enzyme (Fragment) OS=Triatoma dimidiata PE=3 SV=1	430	49852	0,3372	13	13	23
A0A0V0G3L4	Putative basement membrane-specific heparan sulfate proteoglycan core protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	2292	253391,1	0,1017	13	13	22
A0A0V0G2G8	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	190	22077,1	0,2211	5	5	22
A0A0V0G2I5	Putative tubulin OS=Triatoma dimidiata PE=3 SV=1	447	50180,2	0,4183	15	15	21
A0A0V0G386	Putative actin-2 OS=Triatoma dimidiata PE=3 SV=1	376	41740,8	0,3271	12	12	21
A0A0V0G573	Putative creatine kinase OS=Triatoma dimidiata PE=3 SV=1	356	40080,2	0,427	11	11	20
A0A0V0G3S4	Putative gnl-cdd-187611 cd05353 hydroxyacyl-coa-like dh sdr c-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	717	77909	0,3208	13	13	18
A0A0V0G546	Putative metalloexopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	478	53441,4	0,3389	11	11	17
D1MWF1	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	177	19772,6	0,3446	7	11	17
A0A0V0G6Y0	Putative tubulin OS=Triatoma dimidiata PE=3 SV=1	450	50055,6	0,3911	13	13	16
A0A0V0G3Q3	Putative inactive protein kinase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	238	26007,4	0,3866	7	7	16
A0A0V0G561	Putative ubiquitin-like modifier-activating enzyme 1 OS=Triatoma dimidiata PE=3 SV=1	1049	116919,9	0,163	11	11	15
A0A0V0GAP3	Aminomethyltransferase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	386	42483,8	0,5181	10	10	15
A0A0V0G435	Putative ca2+-binding actin-bundling protein OS=Triatoma dimidiata PE=4 SV=1	2414	278257,5	0,0862	12	12	14
A0A0V0G1Z1	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	228	25954,3	0,2456	6	6	14
A0A0V0G5R3	Putative vacuolar h+-atpase v1 sector subunit a OS=Triatoma dimidiata PE=3 SV=1	613	67674,5	0,2153	10	10	13
A0A0V0GB32	Putative prophenoloxidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	687	79507,9	0,2285	10	11	13
A0A0V0G2W3	Catalase OS=Triatoma dimidiata PE=3 SV=1	504	56757,4	0,2798	8	8	12
A0A0V0G3W3	Putative nadp-dependent isocitrate dehydrogenase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	397	44951,9	0,2544	8	8	12
A0A0V0G2P6	Putative xaa-pro dipeptidase OS=Triatoma dimidiata PE=3 SV=1	502	55197,9	0,2729	8	8	12
A0A0V0G373	Ubiquitin carboxyl-terminal hydrolase OS=Triatoma dimidiata PE=3 SV=1	228	25412,7	0,4737	6	6	12
A0A0V0G2W9	Putative hydrolase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	226	25178,3	0,4292	7	7	11
A0A0V0G2N3	Putative 15-hydroxyprostaglandin dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	185	20482,6	0,427	6	6	11

				Cobertu	#Uniq ue Pepti	Sequ ence Coun	Spect rum Coun
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
A0A0V0G2R0	Putative transitional endoplasmic reticulum atpase ter94 OS=Triatoma dimidiata PE=3 SV=1	803	89228,4	0,1905	8	8	10
A0A0V0G426	Putative heat shock 70 kDa protein cognate 2 OS=Triatoma dimidiata PE=3 SV=1	628	68645,1	0,1656	8	8	10
A0A0V0G3P4	Putative 60 kDa heat shock protein mitochondrial OS=Triatoma dimidiata PE=3 SV=1	571	60737	0,2627	8	8	10
A0A0V0G4W2	Putative elongation factor 1-gamma OS=Triatoma dimidiata PE=4 SV=1	425	48442,3	0,2235	8	8	10
A0A0V0G3E5	Glyceraldehyde-3-phosphate dehydrogenase OS=Triatoma dimidiata PE=3 SV=1	333	35775,2	0,3333	6	6	10
A0A0V0G3V6	Putative fructose-16-bisphosphatase OS=Triatoma dimidiata PE=3 SV=1	344	37657,2	0,3372	6	6	10
D1MWC6	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	196	22209,2	0,1582	5	5	10
A0A0V0G5S4	Phosphoglycerate kinase OS=Triatoma dimidiata PE=3 SV=1	428	46377,1	0,2944	9	9	9
A0A0V0G2U7	Aspartate aminotransferase OS=Triatoma dimidiata PE=3 SV=1	413	46337,5	0,2542	8	8	9
A0A0V0G3G9	Glucose-6-phosphate isomerase OS=Triatoma dimidiata PE=3 SV=1	555	62796,3	0,2198	8	8	9
A0A0V0G3N9	Malate dehydrogenase OS=Triatoma dimidiata PE=3 SV=1	341	35941,2	0,4487	8	8	9
A0A0V0G4C1	Putative transketolase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	612	66296	0,2108	7	7	9
A0A0V0G4D6	Putative methylmalonate semialdehyde dehydrogenase OS=Triatoma dimidiata PE=3 SV=1	523	56373,9	0,1912	7	7	9
A0A0V0G481	S-(hydroxymethyl)glutathione dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	346	36748,3	0,3555	6	6	8
A0A0V0G314	Putative 3-hydroxyisobutyrate dehydrogenase mitochondrial OS=Triatoma dimidiata PE=4 SV=1	292	31265,9	0,2363	6	6	8
A0A0V0G4A8	Putative actin-depolymerizing factor 1 OS=Triatoma dimidiata PE=3 SV=1	148	16940,4	0,4595	6	6	8
A0A0V0G8U2	Putative salivary secreted protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	531	61822,4	0,2109	6	6	8
A0A0V0G3V3	Putative chaperonin OS=Triatoma dimidiata PE=3 SV=1	540	58780,5	0,1667	5	5	8
A0A0V0G3L0	Putative transcriptional regulator dj-1 OS=Triatoma dimidiata PE=4 SV=1	219	23492,3	0,3333	5	5	8
A0A0V0G4L1	Putative triabin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	145	16417	0,3448	4	5	8
A0A0V0G3V2	Pyruvate kinase OS=Triatoma dimidiata PE=3 SV=1	536	58344,4	0,1772	7	7	7
A0A0V0G4R2	Putative gtp-binding adp-ribosylation factor-like protein arl1 OS=Triatoma dimidiata PE=3 SV=1	182	20674,6	0,5165	6	6	7
A0A0V0G3D5	Putative spectrin beta chain-like protein OS=Triatoma dimidiata PE=4 SV=1	2439	281049,6	0,0447	6	6	7
A0A0V0G5N1	Aconitate hydratase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	892	97720,4	0,1143	6	6	7
A0A0V0G3F6	Putative vacuolar h+-atpase v1 sector subunit b (Fragment) OS=Triatoma dimidiata PE=3 SV=1	495	54925,1	0,1434	6	6	7

				Cobertu	#Uniq ue Pepti	Sequ ence Coun	Spect rum Coun
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
A0A0V0G345	Putative enolase OS=Triatoma dimidiata PE=3 SV=1	432	47164,2	0,1366	5	5	7
A0A0V0G4N8	Putative aminopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	465	50380,2	0,228	5	5	7
A0A0V0G4X9	Putative aldo-keto reductase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	245	27531,3	0,4204	5	5	7
A0A0V0G6E2	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	206	22999,6	0,2913	4	4	7
A0A0V0G9B9	Putative bisphosphate 3'-nucleotidase bpnt1/inositol polyphosphate 1-phosphatase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	305	32561,9	0,1639	4	4	7
A0A0V0G7I4	Putative multifunctional chaperone 14-3-3 family OS=Triatoma dimidiata PE=3 SV=1	254	28942,4	0,3031	4	6	7
A0A0V0G4A7	Profilin OS=Triatoma dimidiata PE=3 SV=1	126	13762,1	0,4206	3	3	7
D1MWC5	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	221	22966,1	0,1991	3	3	7
A0A0V0G2Q7	Putative multifunctional chaperone 14-3-3 family OS=Triatoma dimidiata PE=3 SV=1	247	28134	0,2065	3	5	7
A0A0V0G4P0	Putative prolyl endopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	706	79699,6	0,1827	6	6	6
A0A0V0G5X5	Putative translation elongation factor 2 OS=Triatoma dimidiata PE=4 SV=1	844	94620,4	0,0865	5	5	6
A0A0V0G4Q6	Putative puromycin-sensitive aminopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	880	100660,2	0,0864	5	5	6
A0A0V0GA46	Putative heat shock protein 83 OS=Triatoma dimidiata PE=3 SV=1	728	83586,2	0,0755	5	5	6
A0A0V0G5Y7	Putative chaperonin subunit 6a zeta OS=Triatoma dimidiata PE=3 SV=1	534	58389,5	0,1592	5	5	6
A0A0V0G2M9	Putative fatty acid-binding protein fabp OS=Triatoma dimidiata PE=3 SV=1	134	15211,9	0,2537	4	4	6
A0A0V0G2Z6	Peptidyl-prolyl cis-trans isomerase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	141	15258,6	0,3759	4	4	6
A0A0V0G2E8	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	175	20138,6	0,3829	4	4	6
A0A0V0G537	Putative sulfotransferase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	315	37043,1	0,1968	4	4	6
A0A0V0G2W8	Glutamine synthetase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	362	40655,1	0,2017	4	4	6
A0A0V0G4C4	Putative delta-1-pyrroline-5-carboxylate dehydrogenase mitochondrial OS=Triatoma dimidiata PE=3 SV=1	569	63318,9	0,1002	3	3	6
A0A0V0G4Q3	Putative vacuolar h+-atpase v1 sector subunit h OS=Triatoma dimidiata PE=4 SV=1	479	55148,7	0,0793	3	3	6
A0A0V0G2X2	Putative salivary lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	175	20030,1	0,2057	2	2	6
A0A0V0G5Y3	Putative dihydropteridine reductase dhpr/qdpr OS=Triatoma dimidiata PE=4 SV=1	235	25361,2	0,3702	5	5	5
A0A0V0G8Z9	Putative ecdysteroid kinase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	411	47488,7	0,1606	5	5	5
A0A0V0GDV4	Putative glutathione s-transferase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	206	24063,6	0,2573	5	5	5

Identificação	Descrição	Longht	Mol/Wt	Cobertu	#Uniq ue Pepti	Sequ ence Coun	Spect rum Coun
	Putative ca2+-binding actin-bundling protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	890	102994.1	0.0674	<u>ues</u> 4	<u>ر</u>	<u>ر</u> 5
A0A0V0G3B6	Putative 26s proteasome regulatory complex subunit rpn1/psmd2 OS=Triatoma dimidiata PE=4 SV=1	891	98321	0.0673	4	4	5
D1MWC7	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	199	23002,4	0,1759	4	4	5
A0A0V0G4M0	Putative carbonic anhydrase-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	260	29686,8	0,1038	4	4	5
A0A0V0G2G7	Putative triabin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	169	19179,3	0,3254	3	3	5
A0A0V0G5A7	Putative alpha-ketoacid-coa transferase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	462	49473,7	0,1861	3	3	5
A0A0V0G4J5	Putative uridylate kinase/adenylate kinase OS=Triatoma dimidiata PE=3 SV=1	204	22402,5	0,2255	3	3	5
A0A0V0G3Z2	Putative enoyl-coa isomerase OS=Triatoma dimidiata PE=4 SV=1	279	30768,7	0,1219	3	3	5
A0A0V0GC63	Putative serine protease inhibitor dipetalogastin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	333	36692,9	0,1892	3	3	5
A0A0V0G7Q5	Putative prophenoloxidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	716	81907	0,0601	3	4	5
D1MXA9	Similar to heme-binding protein, clone: L2G6 OS=Triatoma dimidiata PE=2 SV=1	135	15022,6	0,1407	2	2	5
A0A0V0G552	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	258	28694,4	0,1318	2	2	5
A0A0V0G6K0	Putative transglutaminase/protease-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	691	78212	0,0796	4	4	4
A0A0V0G536	Putative mitochondrial succinate-semialdehyde dehydrogen (Fragment) OS=Triatoma dimidiata PE=3 SV=1	503	54841	0,1511	4	4	4
A0A0V0G4F2	Putative acetyl-coa hydrolase OS=Triatoma dimidiata PE=4 SV=1	482	52356,6	0,1452	4	4	4
A0A0V0G652	Glutathione synthetase OS=Triatoma dimidiata PE=3 SV=1	432	50411,9	0,1782	4	4	4
A0A0V0G404	Annexin OS=Triatoma dimidiata PE=3 SV=1	321	35290,6	0,2399	4	4	4
A0A0V0G350	Putative heat shock 70 kDa protein cognate 5 (Fragment) OS=Triatoma dimidiata PE=3 SV=1	637	69851,3	0,0706	4	4	4
A0A0V0G5Q2	Putative salivary lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	192	22013,9	0,0729	4	4	4
A0A0V0G3P6	Thioredoxin OS=Triatoma dimidiata PE=3 SV=1	105	11697	0,4	4	4	4
A0A0V0G2S8	Putative cd73 ecto-5'-nucleotidase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	425	47349,3	0,0353	3	3	4
A0A0V0G8A2	Putative gdp dissociation inhibitor OS=Triatoma dimidiata PE=4 SV=1	442	49838,2	0,1606	3	3	4
A0A0V0GBZ5	Putative dipeptidase amino acid transport and metabolism (Fragment) OS=Triatoma dimidiata PE=4 SV=1	386	42572,8	0,1192	3	3	4
A0A0V0G6W9	Putative wd40 repeat stress protein/actin OS=Triatoma dimidiata PE=4 SV=1	602	66228,2	0,1146	3	3	4
A0A0V0G7A9	Putative transglutaminase/protease-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	685	77610	0,0861	3	3	4

					#Uniq ue	Sequ ence	Spect rum
Identificação	Descrição	Lenght	Mol/Wt	Cobertu ra	Pepti des	Coun t	Coun t
A0A0V0G4K4	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	230	25891,2	0,2739	3	3	4
A0A0V0G479	Putative phosphoinositide 3-kinase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	772	86575,3	0,0648	3	3	4
A0A0V0G4W9	Putative fumarylacetoacetate hydralase OS=Triatoma dimidiata PE=4 SV=1	335	37225	0,0567	3	3	4
A0A0V0G4S9	Putative salivary lipocalin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	164	18729	0,1768	3	3	4
A0A0V0G4Z9	Histone H2A (Fragment) OS=Triatoma dimidiata PE=3 SV=1	147	15704,6	0,1837	3	3	4
A0A0V0G5L7	Putative hydroxyacyl-coa dehydrogenase/enoyl-coa hydratase OS=Triatoma dimidiata PE=4 SV=1	277	30662,1	0,1444	2	2	4
A0A0V0G3D9	Putative 26s proteasome regulatory complex subunit OS=Triatoma dimidiata PE=4 SV=1	464	53146,6	0,0819	2	2	4
A0A0V0G4J9	Putative salivary secreted kazaltype proteinase inhibitor OS=Triatoma dimidiata PE=4 SV=1	83	9357,3	0,3012	2	2	4
A0A0V0G8U1	Thymidine phosphorylase OS=Triatoma dimidiata PE=3 SV=1	437	46664,1	0,103	2	2	4
A0A0V0G5V8	Putative delta-aminolevulinic acid dehydratase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	332	36567,5	0,0693	2	2	4
A0A0V0GD89	Putative lysozyme (Fragment) OS=Triatoma dimidiata PE=3 SV=1	122	13951	0,2869	2	2	4
A0A0V0G3R8	T-complex protein 1 subunit gamma (Fragment) OS=Triatoma dimidiata PE=3 SV=1	542	60157,7	0,0664	2	2	4
A0A0V0G525	Peptidyl-prolyl cis-trans isomerase OS=Triatoma dimidiata PE=4 SV=1	109	11776,9	0,3486	2	2	4
A0A0V0G2Y1	Eukaryotic translation initiation factor 3 subunit D OS=Triatoma dimidiata PE=3 SV=1	543	62392,1	0,081	2	2	4
D1MWE5	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	194	22033,2	0,0464	1	1	4
A0A0V0G2G2	Putative serpin (Fragment) OS=Triatoma dimidiata PE=3 SV=1	393	44105,1	0,1196	3	3	3
A0A0V0G2W0	Putative fumarase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	465	50216,1	0,1075	3	3	3
A0A0V0G5G2	Putative glutaminyl cyclase OS=Triatoma dimidiata PE=4 SV=1	342	38924,1	0,1667	3	3	3
A0A0V0G3B8	Putative aminopeptidase npepI1 OS=Triatoma dimidiata PE=4 SV=1	509	54718,8	0,0904	3	3	3
A0A0V0G8W6	Putative echinoderm microtubule-associated protein-like 1 OS=Triatoma dimidiata PE=4 SV=1	871	95267,3	0,0861	3	3	3
A0A0V0G2X6	Putative cytochrome c OS=Triatoma dimidiata PE=3 SV=1	108	11813,2	0,3426	3	3	3
A0A0V0G4L9	Putative cytochrome p450 cyp3/cyp5/cyp6/cyp9 subfamily protein (Fragment) OS=Triatoma dimidiata PE=3 SV=1	329	37475,1	0,1398	3	3	3
A0A0V0G3X1	Proteasome subunit alpha type OS=Triatoma dimidiata PE=3 SV=1	234	25836,1	0,2607	3	3	3
A0A0V0G7G9	Putative methylthioadenosine phosphorylase mtap OS=Triatoma dimidiata PE=3 SV=1	276	30264,8	0,1775	3	3	3
A0A0V0G356	Putative oxoprolinase OS=Triatoma dimidiata PE=4 SV=1	1263	138636	0,0396	3	3	3

				Cobertu	#Uniq ue Pepti	Sequ ence Coun	Spect rum Coun
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
A0A0V0G5W2	Putative phosphoglucomutase/phosphomannomutase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	553	60931	0,0687	3	3	3
A0A0V0G2M6	Putative salivary secreted protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	169	18883,6	0,4142	3	3	3
A0A0V0G4P9	Putative prosaposin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	817	91753,9	0,0171	3	3	3
A0A0V0G4L8	Putative chaperonin OS=Triatoma dimidiata PE=3 SV=1	542	59281	0,0959	3	3	3
A0A0V0G2S7	ATP synthase subunit beta (Fragment) OS=Triatoma dimidiata PE=3 SV=1	520	55671,2	0,0846	3	3	3
A0A0V0G4U1	Putative vesicle coat complex copi gamma subunit (Fragment) OS=Triatoma dimidiata PE=4 SV=1	883	97581,1	0,0895	3	3	3
A0A0V0G4F6	Transaldolase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	322	35732	0,1025	3	3	3
A0A0V0G555	Putative aicar transformylase/imp cyclohydrolase/methylglyoxal synthase OS=Triatoma dimidiata PE=3 SV=1	591	64767,5	0,0575	3	3	3
A0A0V0G575	Glutathione peroxidase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	168	19119,6	0,3571	3	3	3
A0A0V0G515	Adenylate kinase OS=Triatoma dimidiata GN=Adk2 PE=3 SV=1	246	27759,2	0,2358	3	3	3
A0A0V0G5V3	Putative small heat shock protein hsp20 family OS=Triatoma dimidiata PE=3 SV=1	191	21344,8	0,2461	3	3	3
A0A0V0G5E2	Putative 20s proteasome regulatory subunit beta type psmb2/pre1 OS=Triatoma dimidiata PE=4 SV=1	197	22602,1	0,2335	2	2	3
A0A0V0G415	Putative 26s proteasome regulatory complex subunit rpn2/psmd1 OS=Triatoma dimidiata PE=4 SV=1	891	98695,7	0,037	2	2	3
A0A0V0G3A8	Putative ubiquitin-conjugating enzyme OS=Triatoma dimidiata PE=3 SV=1	147	16649,4	0,2993	2	2	3
A0A0V0G4G1	Putative calmodulin OS=Triatoma dimidiata PE=4 SV=1	149	16781,8	0,2215	2	2	3
A0A0V0G436	V-type proton ATPase subunit F OS=Triatoma dimidiata PE=3 SV=1	123	13758	0,2195	2	2	3
A0A0V0G3Z1	Putative 3-oxoacyl coa thiolase OS=Triatoma dimidiata PE=3 SV=1	411	43056,3	0,0608	2	2	3
A0A0V0G4E8	Protein kinase c inhibitor (Fragment) OS=Triatoma dimidiata PE=4 SV=1	127	13867,3	0,3543	2	2	3
A0A0V0G4U3	Putative mitochondrial matrix protein p33 OS=Triatoma dimidiata PE=4 SV=1	290	32247	0,1379	2	2	3
A0A0V0G4C2	Putative peroxiredoxin posttranslational modification (Fragment) OS=Triatoma dimidiata PE=4 SV=1	234	26307,7	0,1538	2	2	3
A0A0V0G548	Putative tata-binding protein-interacting protein OS=Triatoma dimidiata PE=4 SV=1	1244	138873,4	0,0241	2	2	3
A0A0V0G4F0	Putative ecdysteroid kinase OS=Triatoma dimidiata PE=4 SV=1	402	46842	0,0473	2	2	3
A0A0V0G4R4	Putative microtubule-associated protein futsch (Fragment) OS=Triatoma dimidiata PE=4 SV=1	574	64015,1	0,0348	2	2	3
A0A0V0G5P5	Putative phosphoglycerate mutase OS=Triatoma dimidiata PE=3 SV=1	255	28960,5	0,098	2	2	3
A0A0V0G398	Putative pfkb family carbohydrate kinase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	343	38082,6	0,102	2	2	3

	-			Cobertu	#Uniq ue Pepti	Sequ ence Coun	Spect rum Coun
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
AUAUVUGCE2	Putative historie tali methylase (Fragment) OS=1 riatoma dimidiata PE=4 SV=1	568	65079,8	0,044	2	2	3
A0A0V0GAD6	Putative attractin and platelet-activating factor acetylhydrolase OS=Triatoma dimidiata PE=4 SV=1	225	25575,1	0,1289	2	2	2
A0A0V0G2U3	Putative peroxiredoxin posttranslational modification (Fragment) OS=Triatoma dimidiata PE=4 SV=1	151	16133,3	0,0993	2	2	2
A0A0V0G428	Transgelin (Fragment) OS=Triatoma dimidiata PE=3 SV=1	165	18164,3	0,0909	2	2	2
A0A0V0G301	Putative esterase and lipase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	543	61868,8	0,0387	2	2	2
A0A0V0G4T6	Ubiquitin-fold modifier 1 OS=Triatoma dimidiata PE=3 SV=1	88	9360	0,3977	2	2	2
A0A0V0G571	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	277	30332,4	0,0433	2	2	2
A0A0V0G4R0	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	1177	136754,7	0,0272	2	2	2
A0A0V0GE53	Putative polyprenyl synthetase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	351	40159,4	0,094	2	2	2
A0A0V0G5K4	Putative pyridoxamine 5'-phosphate oxidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	188	21307,5	0,0638	2	2	2
A0A0V0G3N8	Putative cytoskeletal protein adducin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	359	40121,2	0,1393	2	2	2
A0A0V0G7G8	Putative aspartyl/asparaginyl-trna synthetase translation OS=Triatoma dimidiata PE=4 SV=1	553	63421,9	0,0579	2	2	2
A0A0V0G8V3	Putative lysophospholipase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	202	21648	0,1287	2	2	2
A0A0V0G4Z8	Ubiquitin carboxyl-terminal hydrolase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	311	35725,3	0,1093	2	2	2
A0A0V0G6V7	Putative fumarylacetoacetase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	411	45426,7	0,0608	2	2	2
A0A0V0G662	Putative pyridoxal/pyridoxine/pyridoxamine kinase OS=Triatoma dimidiata PE=4 SV=1	299	32692,2	0,0769	2	2	2
A0A0V0G4Y6	Putative vacuolar h+-atpase v1 sector subunit d OS=Triatoma dimidiata PE=4 SV=1	240	27016,8	0,125	2	2	2
A0A0V0G587	Putative puromycin-sensitive aminopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	894	103770,4	0,0324	2	2	2
A0A0V0G4Z6	Superoxide dismutase OS=Triatoma dimidiata PE=3 SV=1	216	24464,2	0,1898	2	2	2
A0A0V0G2J4	ATP synthase subunit alpha OS=Triatoma dimidiata PE=3 SV=1	551	59537,4	0,0363	2	2	2
A0A0V0G4X5	Putative vesicle coat complex copii subunit sec13 OS=Triatoma dimidiata PE=4 SV=1	287	32019,5	0,1324	2	2	2
A0A0V0G4N2	Putative thioredoxin and glutathione reductase selenoprotein OS=Triatoma dimidiata PE=3 SV=1	594	65153,9	0,0741	2	2	2
A0A0V0G5R2	Putative ras-related small gtpase rho type OS=Triatoma dimidiata PE=4 SV=1	193	21730,3	0,1192	2	2	2
A0A0V0G532	Putative leucine-rich acidic nuclear protein OS=Triatoma dimidiata PE=4 SV=1	255	29111,9	0,1216	2	2	2
A0A0V0G6I8	Putative succinyl-coa synthetase alpha subunit (Fragment) OS=Triatoma dimidiata PE=3 SV=1	325	34136,2	0,1015	2	2	2

					#Uniq	Sequ	Spect
				Cobertu	Pepti	Coun	Coun
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
A0A0V0G3H0	Putative serinetrna ligase cytoplasmic (Fragment) OS=Triatoma dimidiata PE=4 SV=1	476	54389,5	0,100	8 2	2	2
A0A0V0G528	Putative methylenetetrahydrofolate dehydrogenase/methylenetetrahydrofolate cyclohydrolase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	931	98890,3	0,0311	2	2	2
A0A0V0G7E1	Putative puromycin-sensitive aminopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	859	97298,8	0,014	2	2	2
A0A0V0G5S8	Putative farnesoic acid o-methyltransferase OS=Triatoma dimidiata PE=4 SV=1	305	33269,4	0,0656	2	2	2
A0A0V0G4S4	Malate dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	330	35948,6	0,0788	2	2	2
A0A0V0G5I9	Putative gdp-mannose pyrophosphorylase/mannose-1-phosphate guanylyltransferase OS=Triatoma dimidiata PE=4 SV=1	423	46572,9	0,1324	2	2	2
A0A0V0G2T0	Putative electron transfer flavoprotein alpha subunit OS=Triatoma dimidiata PE=4 SV=1	330	34420,3	0,0818	2	2	2
A0A0V0GCQ3	Putative vacuolar h+-atpase v1 sector subunit c OS=Triatoma dimidiata PE=4 SV=1	389	44713,9	0,1542	2	2	2
A0A0V0G2Z1	Superoxide dismutase [Cu-Zn] OS=Triatoma dimidiata PE=3 SV=1	154	15939,9	0,0844	2	2	2
A0A0V0G549	Putative cytosolic juvenile hormone binding protein 36 kDa subunit (Fragment) OS=Triatoma dimidiata PE=4 SV=1	289	33129,5	0,1003	2	2	2
A0A0V0GAJ0	Putative nitrophorin OS=Triatoma dimidiata PE=4 SV=1	207	23612	0,1304	2	2	2
A0A0V0G4X4	S-formylglutathione hydrolase OS=Triatoma dimidiata PE=3 SV=1	286	31623,4	0,1294	2	2	2
A0A0V0GEG6	Calponin (Fragment) OS=Triatoma dimidiata PE=3 SV=1	167	18844,6	0,1796	2	2	2
A0A0V0G752	Uroporphyrinogen decarboxylase OS=Triatoma dimidiata PE=3 SV=1	355	39904,8	0,0592	1	1	2
A0A0V0G954	Putative formyltetrahydrofolate dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	494	53721,1	0,0628	1	1	2
A0A0V0G6M8	Putative rna-binding protein OS=Triatoma dimidiata PE=4 SV=1	182	20465,7	0,1044	1	1	2
A0A0V0G413	TyrosinetRNA ligase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	524	58487,5	0,0458	1	1	2
A0A0V0G5P2	Putative mevalonate pyrophosphate decarboxylase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	333	36958,7	0,0721	1	1	2
A0A0V0G5L3	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	208	21576,1	0,0962	1	1	2
A0A0V0G4T1	Proteasome subunit alpha type OS=Triatoma dimidiata PE=3 SV=1	246	27368,7	0,0813	1	1	2
D1MWD9	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	202	23332,7	0,0594	1	1	2
A0A0V0G4H2	Putative prokaryotic long-chain fatty acid coa synthetase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	569	62403,6	0,0404	1	1	2
A0A0V0G4Q1	Putative transglutaminase/protease-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	694	78530,6	0,0216	1	1	2
A0A0V0G493	Putative rab subfamily protein of small gtpase OS=Triatoma dimidiata PE=4 SV=1	202	22656,5	0,0842	1	1	2
A0A0V0G462	Putative 26s protease regulatory subunit 6b-like protein OS=Triatoma dimidiata PE=3 SV=1	415	47007,2	0,0795	1	1	2

				Cobertu	#Uniq ue Pepti	Sequ ence Coun	Spect rum Coun
Identificação		Lenght	Mol/Wt	ra	des	t	t
A0A0V0G5F1	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	500	53840,3	0,034	1	1	2
A0A0V0G437	Putative dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	235	25465,1	0,0936	1	1	2
A0A0V0GBE7	Putative ras-related gtpase OS=Triatoma dimidiata PE=4 SV=1	184	20839,7	0,0652	1	1	1
A0A0V0G2F9	NADPHcytochrome P450 reductase OS=Triatoma dimidiata PE=3 SV=1	682	77158,7	0,022	1	1	1
A0A0V0G3R0	Putative phosphatidylethanolamine-binding protein OS=Triatoma dimidiata PE=4 SV=1	177	19962,1	0,0791	1	1	1
A0A0V0G6L7	Putative palmitoyl protein thioesterase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	300	34612,4	0,0733	1	1	1
A0A0V0G500	Putative rna polymerase ii transcriptional coactivator OS=Triatoma dimidiata PE=4 SV=1	113	12974,6	0,0885	1	1	1
A0A0V0G579	Putative cytidine deaminase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	139	15347,5	0,223	1	1	1
A0A0V0G9F0	Putative pyridoxine OS=Triatoma dimidiata PE=3 SV=1	227	25563,6	0,163	1	1	1
A0A0V0G7A3	Putative fed tick salivary protein 8 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	226	26127,6	0,1283	1	1	1
A0A0V0G5Z5	ATP-citrate synthase OS=Triatoma dimidiata PE=3 SV=1	108 4	119650,3	0,0194	1	1	1
A0A0V0G438	Putative 26s proteasome regulatory complex subunit OS=Triatoma dimidiata PE=4 SV=1	384	43474,8	0,0312	1	1	1
A0A0V0G7B3	Putative ubiquitin-conjugating enzyme e2-17 kDa (Fragment) OS=Triatoma dimidiata PE=3 SV=1	156	17701,2	0,1282	1	1	1
A0A0V0G2X8	D-3-phosphoglycerate dehydrogenase OS=Triatoma dimidiata PE=3 SV=1	525	55949,7	0,0267	1	1	1
A0A0V0G4D7	Putative programmed cell death protein OS=Triatoma dimidiata PE=4 SV=1	843	93737,7	0,0439	1	1	1
A0A0V0GA53	Putative diamine acetyltransferase OS=Triatoma dimidiata PE=4 SV=1	167	19521,9	0,0778	1	1	1
A0A0V0G3X9	Putative hydroxyacyl-coa dehydrogenase/enoyl-coa hydratase OS=Triatoma dimidiata PE=4 SV=1	763	82058,5	0,0236	1	1	1
A0A0V0GB59	Putative f-actin capping protein beta subunit OS=Triatoma dimidiata PE=4 SV=1	275	30823,3	0,0909	1	1	1
A0A0V0G4P6	Annexin OS=Triatoma dimidiata PE=3 SV=1	323	35728,4	0,0743	1	1	1
A0A0V0G4B4	Putative 26s proteasome regulatory complex subunit rpn11 OS=Triatoma dimidiata PE=4 SV=1	311	34570,6	0,1125	1	1	1
A0A0V0G981	Putative aldo/keto reductase family OS=Triatoma dimidiata PE=4 SV=1	318	36160,6	0,0786	1	1	1
A0A0V0G580	Serine/threonine-protein phosphatase OS=Triatoma dimidiata PE=3 SV=1	326	37245,6	0,0583	1	1	1
A0A0V0GEU9	Putative ubiquitin-protein ligase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	145	16712,8	0,1517	1	1	1
A0A0V0G4B1	Anion exchange protein (Fragment) OS=Triatoma dimidiata PE=3 SV=1	112 2	125549	0,0232	1	1	1
A0A0V0G589	Eukaryotic translation initiation factor 3 subunit C OS=Triatoma dimidiata PE=3 SV=1	884	102501,6	0,0181	1	1	1
				Cobertu	#Uniq ue Pepti	Sequ ence Coun	Spect rum Coun
---------------	---	---------	----------	---------	----------------------	----------------------	----------------------
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
A0A0V0G4M4	Putative thioredoxin and glutathione reductase selenoprotein (Fragment) OS=Triatoma dimidiata PE=3 SV=1	509	55244,2	0,0413	1	1	1
A0A0V0G803	Putative selenoprotein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	160	18351,2	0,0688	1	1	1
A0A0V0G642	Putative 26s proteasome regulatory complex subunit rpn7/psmd6 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	375	42870,8	0,0693	1	1	1
A0A0V0G6D0	Eukaryotic translation initiation factor 3 subunit I OS=Triatoma dimidiata PE=3 SV=1	324	36197,4	0,0494	1	1	1
A0A0V0G5X6	Putative vacuolar protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	296	32188,9	0,0811	1	1	1
A0A0V0G7H5	Putative 5'-phosphoribosylglycinamide formyltransferase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	999	107417,7	0,027	1	1	1
A0A0V0GBK7	Putative dual-specificity protein kinase OS=Triatoma dimidiata PE=3 SV=1	413	45174,8	0,0363	1	1	1
A0A0V0G5H8	Putative phosphoenolpyruvate carboxykinase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	600	66903,7	0,0267	1	1	1
A0A0V0G8D7	Adenylyl cyclase-associated protein (Fragment) OS=Triatoma dimidiata PE=3 SV=1	490	53066	0,0224	1	1	1
A0A0V0G4I9	Putative pterin carbinolamine dehydratase pcbd/dimerization cofactor of hnf1 (Fragment) OS=Triatoma dimidiata PE=3 SV	/=1 135	15422,2	0,1333	1	1	1
A0A0V0G3D1	Putative glycinetrna ligase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	700	78556,1	0,0286	1	1	1
A0A0V0G368	T-complex protein 1 subunit delta OS=Triatoma dimidiata PE=3 SV=1	532	57201,4	0,032	1	1	1
A0A0V0G778	Putative sulfotransferase OS=Triatoma dimidiata PE=4 SV=1	336	39878,3	0,0476	1	1	1
A0A0V0G376	Proteasome subunit alpha type OS=Triatoma dimidiata PE=3 SV=1	250	27966,6	0,088	1	1	1
A0A0V0GCM8	Putative kazal-type inhibitor (Fragment) OS=Triatoma dimidiata PE=4 SV=1	179	19648,5	0,1732	1	1	1
A0A0V0G306	Peptidyl-prolyl cis-trans isomerase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	204	22415,4	0,0588	1	1	1
A0A0V0G801	Putative diadenosine and diphosphoinositol polyphosphate phosphohydrolase OS=Triatoma dimidiata PE=4 SV=1	138	16233,2	0,087	1	1	1
A0A0V0G3L7	Putative vesicle coat complex copi beta subunit (Fragment) OS=Triatoma dimidiata PE=4 SV=1	970	107706,6	0,0113	1	1	1
A0A0V0G3A1	Putative chloride intracellular channel exc-4 isoform x2 OS=Triatoma dimidiata PE=4 SV=1	258	29674	0,0891	1	1	1
A0A0V0G522	Putative galactokinase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	442	48645,6	0,0362	1	1	1
A0A0V0G3U5	Putative chaperonin OS=Triatoma dimidiata PE=3 SV=1	549	59821,7	0,0528	1	1	1
D1MWF2	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	181	21206	0,0718	1	1	1
A0A0V0G4Q9	Putative purine nucleoside phosphorylase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	299	33141,7	0,097	1	1	1
A0A0V0G300	Putative eukaryotic translation initiation factor 2 subunit 3 x-linked OS=Triatoma dimidiata PE=4 SV=1	470	50755,1	0,0426	1	1	1
A0A0V0G2H6	Putative triabin-like lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	169	19481,2	0,0888	1	1	1

				Cabortu	#Uniq ue Donti	Sequ ence	Spect rum
Identificação	Descrição	Lenght	Mol/Wt	ra	des	t	t
A0A0V0G4L0	Putative aromatic-I-amino-acid/I-histidine decarboxylase OS=Triatoma dimidiata PE=3 SV=1	476	53777,2	0,0294	1	1	1
A0A0V0G4J2	Putative f-actin capping protein alpha subunit OS=Triatoma dimidiata PE=3 SV=1	287	33039,5	0,0767	1	1	1
A0A0V0GA07	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	320	35449,9	0,0781	1	1	1
A0A0V0G9H1	Malic enzyme (Fragment) OS=Triatoma dimidiata PE=3 SV=1	555	61742,5	0,0468	1	1	1
A0A0V0G783	Putative vesicle coat complex copii subunit sec23 OS=Triatoma dimidiata PE=4 SV=1	765	86109,7	0,034	1	1	1
A0A0V0G7N2	Methylthioribose-1-phosphate isomerase OS=Triatoma dimidiata PE=3 SV=1	360	39369,5	0,0639	1	1	1
A0A0V0GB10	Putative camp-dependent protein kinase types i and ii regulatory subunit (Fragment) OS=Triatoma dimidiata PE=4 SV=1	373	42632,5	0,0456	1	1	1
A0A0V0G4K8	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	274	30799,1	0,0511	1	1	1
A0A0V0G3U7	Putative peroxisomal 3-ketoacyl-coa-thiolase OS=Triatoma dimidiata PE=3 SV=1	542	59182,8	0,0387	1	1	1
A0A0V0G3H2	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	228	24477	0,0965	1	1	1
A0A0V0G7Z5	Putative phosphatidylinositol transfer protein sec14 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	288	33841,6	0,0486	1	1	1

Identificação	Descrição	Lengh t	Mol/Wt	Cobertur	#Unique Peptide s	Sequenc e Count	Spectru m Count
A0A0V0GDS 7	Putative hexamerin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	624	72775,9	0,1699	11	11	33
A0A0V0G2G 2	Putative serpin (Fragment) OS=Triatoma dimidiata PE=3 SV=1	393	44105,1	0,1069	5	5	13
A0A0V0G481	S-(hydroxymethyl)glutathione dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	346	36748,3	0,3064	7	7	10
A0A0V0G2F9	NADPHcytochrome P450 reductase OS=Triatoma dimidiata PE=3 SV=1	682	77158,7	0,0367	2	2	3
A0A0V0G5E 2	Putative 20s proteasome regulatory subunit beta type psmb2/pre1 OS=Triatoma dimidiata PE=4 SV=1	197	22602,1	0,2335	2	2	2
A0A0V0G440	Putative hydroxyacylglutathione hydrolase mitochondrial OS=Triatoma dimidiata PE=3 SV=1	296	32496,4	0,0743	1	1	3
A0A0V0G2Q 8	Putative arylalkylamine n-acetyltransferase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	223	24911,4	0,2018	3	3	15
A0A0V0G5V 0	Putative inorganic pyrophosphatase/nucleosome remodeling factor subunit nurf38 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	288	32934,4	0,0972	1	1	6
A0A0V0G3L4	Putative basement membrane-specific heparan sulfate proteoglycan core protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	2292	253391, 1	0,1178	17	17	61
A0A0V0G5R 3	Putative vacuolar h+-atpase v1 sector subunit a OS=Triatoma dimidiata PE=3 SV=1	613	67674,5	0,2594	11	11	34
A0A0V0G546	Putative metalloexopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	478	53441,4	0,4623	14	14	42
A0A0V0G7D 5	Glucosamine-6-phosphate isomerase OS=Triatoma dimidiata PE=3 SV=1	268	30438,6	0,1567	2	2	4
A0A0V0G2G 7	Putative triabin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	169	19179,3	0,3373	7	7	23
A0A0V0G2W 0	Putative fumarase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	465	50216,1	0,0452	2	2	7
A0A0V0G6L7	Putative palmitoyl protein thioesterase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	300	34612,4	0,0733	1	1	2
A0A0V0G2U 3	Putative peroxiredoxin posttranslational modification (Fragment) OS=Triatoma dimidiata PE=4 SV=1	151	16133,3	0,3775	5	5	9
A0A0V0G2S 8	Putative cd73 ecto-5'-nucleotidase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	425	47349,3	0,1529	5	5	14
A0A0V0G808	Putative parvulin-like peptidyl-prolyl cis-trans isomerase OS=Triatoma dimidiata PE=4 SV=1	124	13655,1	0,0968	1	1	2
A0A0V0GBR 6	Putative small heat shock protein OS=Triatoma dimidiata PE=3 SV=1	186	21420,1	0,2527	3	3	5
A0A0V0GFI2	Putative secreted protein OS=Triatoma dimidiata PE=4 SV=1	144	15617,8	0,0903	1	1	2
D1MWD8	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	203	23343,9	0,064	3	3	10

Tabela suplementar 2. Proteínas salivares putativas de *T. dimidiata* identificadas na amostra coletada 10 dias após a alimentação

Identificação	Descrição	Lengh t	Mol/Wt	Cobertur a	#Unique Peptide s	Sequenc e Count	Spectru m Count
A0A0V0G3R 9	3-hydroxyisobutyryl-CoA hydrolase, mitochondrial OS=Triatoma dimidiata PE=3 SV=1	380	42540,6	0,0711	2	2	3
A0A0V0G5G 2	Putative glutaminyl cyclase OS=Triatoma dimidiata PE=4 SV=1	342	38924,1	0,1345	3	3	12
_ A0A0V0G5W 9	Citrate synthase OS=Triatoma dimidiata PE=3 SV=1	470	51881,8	0,0511	2	2	3
A0A0V0G500	Putative rna polymerase ii transcriptional coactivator OS=Triatoma dimidiata PE=4 SV=1	113	12974,6	0,2035	2	2	5
A0A0V0GAF 6	Putative oxysterol-binding protein OS=Triatoma dimidiata PE=4 SV=1	749	85679,9	0,0721	3	3	6
A0A0V0G752	Uroporphyrinogen decarboxylase OS=Triatoma dimidiata PE=3 SV=1	355	39904,8	0,0592	2	2	2
A0A0V0G5A 7	Putative alpha-ketoacid-coa transferase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	462	49473,7	0,2359	6	6	13
A0A0V0G415	Putative 26s proteasome regulatory complex subunit rpn2/psmd1 OS=Triatoma dimidiata PE=4 SV=1	891	98695,7	0,0404	2	2	7
A0A0V0G5P 9	Putative 26s proteasome regulatory complex atpase rpt6 OS=Triatoma dimidiata PE=3 SV=1	400	45097,7	0,035	1	1	2
A0A0V0G428	Transgelin (Fragment) OS=Triatoma dimidiata PE=3 SV=1	165	18164,3	0,1758	3	3	10
A0A0V0G3S 9	Putative tomosyn OS=Triatoma dimidiata PE=4 SV=1	1054	114539, 1	0,0275	1	1	2
A0A0V0G337	Putative ubiquitin regulatory protein ubxd2 OS=Triatoma dimidiata PE=4 SV=1	545	61126	0,0239	2	2	4
A0A0V0G5E 8	Putative hsp90 co-chaperone p23 OS=Triatoma dimidiata PE=4 SV=1	174	19598,4	0,0575	1	1	3
A0A0V0GBH 9	Putative thioredoxin peroxidase 1 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	219	24674,3	0,1142	1	1	3
A0A0V0G5Z5	ATP-citrate synthase OS=Triatoma dimidiata PE=3 SV=1	1084	119650, 3	0,0194	1	1	2
A0A0V0G2I5	Putative tubulin OS=Triatoma dimidiata PE=3 SV=1	447	50180,2	0,5996	16	16	54
A0A0V0G2W 3	Catalase OS=Triatoma dimidiata PE=3 SV=1	504	56757,4	0,2917	12	12	31
A0A0V0G916	Putative glycosyl transferase family 8 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	607	62457	0,1334	5	5	15
A0A0V0G3V 2	Pyruvate kinase OS=Triatoma dimidiata PE=3 SV=1	536	58344,4	0,1381	7	7	11
A0A0V0G438	Putative 26s proteasome regulatory complex subunit OS=Triatoma dimidiata PE=4 SV=1	384	43474,8	0,0781	2	2	3
A0A0V0G561	Putative ubiquitin-like modifier-activating enzyme 1 OS=Triatoma dimidiata PE=3 SV=1	1049	116919, 9	0,1268	9	9	12
A0A0V0G4P 0	Putative prolyl endopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	706	79699,6	0,068	3	3	9
A0A0V0G2R 0	Putative transitional endoplasmic reticulum atpase ter94 OS=Triatoma dimidiata PE=3 SV=1	803	89228,4	0,1009	6	6	10

					#Unique		
Idontificação	Deserieão	Lengh	Ma1////	Cobertur	Peptide	Sequenc	Spectru
	Descrição	L 276	44740.9	a 0.0507	5 7		
	Putative actin-2 OS= matoma dimidiata PE=3 SV=1	376	41740,8	0,2527	1	1	20
3	Putative ubiquitin-conjugating enzyme e2-17 kDa (Fragment) OS=Triatoma dimidiata PE=3 SV=1	156	17701,2	0,25	2	2	5
A0A0V0G4T6	Ubiquitin-fold modifier 1 OS=Triatoma dimidiata PE=3 SV=1	88	9360	0,3977	2	2	3
A0A0V0G6J0	Putative rab subfamily protein of small gtpase OS=Triatoma dimidiata PE=4 SV=1	213	23268,8	0,1174	2	2	5
A0A0V0G3A 8	Putative ubiquitin-conjugating enzyme OS=Triatoma dimidiata PE=3 SV=1	147	16649,4	0,1973	3	3	7
A0A0V0G6L2	Putative 26s proteasome regulatory complex subunit OS=Triatoma dimidiata PE=4 SV=1	382	41280,4	0,0471	2	2	2
D1MWC6	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	196	22209,2	0,1173	8	8	25
A0A0V0G3R 1	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	220	23688,4	0,6	23	23	239
A0A0V0G9R 6	Putative adaptor protein enigma OS=Triatoma dimidiata PE=4 SV=1	467	51734,2	0,0771	2	2	13
A0A0V0G435	Putative ca2+-binding actin-bundling protein OS=Triatoma dimidiata PE=4 SV=1	2414	278257, 5	0,0389	5	5	7
A0A0V0G3B	Putative aminopeptidase npepI1 OS=Triatoma dimidiata PE=4 SV=1	509	54718,8	0,053	2	2	3
A0A0V0G6M	Putative proteasome assembly chaperone 1 OS=Triatoma dimidiata PE=4 SV=1	260	29834,8	0,0692	1	1	3
A0A0V0G7P	Putative carboxypeptidase inhibitor smci (Fragment) OS=Triatoma dimidiata PE=4 SV=1	1219	136988, 8	0,0812	4	4	15
_ A0A0V0G702	Putative carbonic anhydrase OS=Triatoma dimidiata PE=4 SV=1	271	30253,8	0,203	3	3	9
A0A0V0G6K 0	Putative transglutaminase/protease-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	691	78212	0,0941	4	4	7
A0A0V0G571	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	277	30332,4	0,0542	1	1	1
A0A0V0G4J5	Putative uridylate kinase/adenylate kinase OS=Triatoma dimidiata PE=3 SV=1	204	22402,5	0,201	3	3	6
A0A0V0G5N 1	Aconitate hydratase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	892	97720,4	0,0291	3	3	3
A0A0V0G3D 5	Putative spectrin beta chain-like protein OS=Triatoma dimidiata PE=4 SV=1	2439	281049, 6	0,0074	3	3	7
A0A0V0G5S	Putative metallopeptidase OS=Triatoma dimidiata PE=4 SV=1	386	43020,2	0,044	1	1	2
A0A0V0GBK 2	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	233	25234,7	0,103	1	1	1
	Putative salivary lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	155	17617,9	0,8129	29	29	417
A0A0V0G780	Putative niemann-pick type c2 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	147	16655,2	0,2313	3	3	10

Identificação	Descrição	Lengh t	Mol/Wt	Cobertur a	#Unique Peptide s	Sequenc e Count	Spectru m Count
A0A0V0G2A	Putative trypsin-like protease (Fragment) OS=Triatoma dimidiata PE=3 SV=1	277	30777,9	0,5704	32	32	133
A0A0V0G3E	Glyceraldehyde-3-phosphate dehydrogenase OS=Triatoma dimidiata PE=3 SV=1	333	35775,2	0,3814	8	8	24
A0A0V0G4R 0	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	1177	136754, 7	0,0212	2	2	4
A0A0V0G4G 1	Putative calmodulin OS=Triatoma dimidiata PE=4 SV=1	149	16781,8	0,2953	3	3	13
A0A0V0G2M 9	Putative fatty acid-binding protein fabp OS=Triatoma dimidiata PE=3 SV=1	134	15211,9	0,5149	12	12	33
A0A0V0G2X 6	Putative cytochrome c OS=Triatoma dimidiata PE=3 SV=1	108	11813,2	0,2685	3	3	10
A0A0V0G954	Putative formyltetrahydrofolate dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	494	53721,1	0,0628	1	1	3
A0A0V0G2X 8	D-3-phosphoglycerate dehydrogenase OS=Triatoma dimidiata PE=3 SV=1	525	55949,7	0,0267	1	1	2
A0A0V0G2N	Putative angiotensin i-converting enzyme (Fragment) OS=Triatoma dimidiata PE=3 SV=1	430	49852	0,3302	12	12	39
A0A0V0G5S 6	Putative chaperonin 10 kd subunit (Fragment) OS=Triatoma dimidiata PE=3 SV=1	103	11166,1	0,2621	2	2	5
A0A0V0G5Y 3	Putative dihydropteridine reductase dhpr/qdpr OS=Triatoma dimidiata PE=4 SV=1	235	25361,2	0,3277	4	4	7
A0A0V0G3R 2	Putative acyl-coa binding protein OS=Triatoma dimidiata PE=4 SV=1	89	10043	0,2022	1	1	1
D1MXA8	Similar to trypsin, clone: L2E3 OS=Triatoma dimidiata PE=2 SV=1	134	14356	0,4179	5	5	141
A0A0V0G4Q 6	Putative puromycin-sensitive aminopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	880	100660, 2	0,0648	5	5	12
A0A0V0G9W 4	Putative peroxiredoxin posttranslational modification (Fragment) OS=Triatoma dimidiata PE=4 SV=1	217	24289,4	0,1382	2	2	5
A0A0V0G981	Putative aldo/keto reductase family OS=Triatoma dimidiata PE=4 SV=1	318	36160,6	0,1164	2	2	8
A0A0V0G9I7	Putative phosphatidylinositol transfer protein sec14 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	311	36404,1	0,0547	1	1	1
A0A0V0G5C 8	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	1710	187841, 4	0,0123	1	1	1
A0A0V0G531	Putative proteasome beta type-1 subunit OS=Triatoma dimidiata PE=4 SV=1	215	23640,8	0,0651	1	1	3
A0A0V0G2Z6	Peptidyl-prolyl cis-trans isomerase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	141	15258,6	0,2979	3	3	6
A0A0V0G8A 2	Putative gdp dissociation inhibitor OS=Triatoma dimidiata PE=4 SV=1	442	49838,2	0,2602	7	7	18
A0A0V0G6Y 0	Putative tubulin OS=Triatoma dimidiata PE=3 SV=1	450	50055,6	0,3622	14	14	35

Identificação	Descrição	Lengh t	Mol/Wt	Cobertur a	#Unique Peptide s	Sequenc e Count	Spectru m Count
A0A0V0G3F6	Putative vacuolar h+-atpase v1 sector subunit b (Fragment) OS=Triatoma dimidiata PE=3 SV=1	495	54925,1	0,1333	4	4	10
A0A0V0G426	Putative heat shock 70 kDa protein cognate 2 OS=Triatoma dimidiata PE=3 SV=1	628	68645,1	0,1465	9	9	29
A0A0V0GD0	Putative acyl-coa-binding protein 5 OS=Triatoma dimidiata PE=4 SV=1	87	9907,2	0,3793	2	2	8
A0A0V0G4R 6	Putative vesicle coat complex copii subunit sec31 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	1027	112404, 1	0,0419	3	3	6
A0A0V0G8V 3	Putative lysophospholipase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	202	21648	0,1584	2	2	6
A0A0V0G4C 4	Putative delta-1-pyrroline-5-carboxylate dehydrogenase mitochondrial OS=Triatoma dimidiata PE=3 SV=1	569	63318,9	0,0351	1	1	2
A0A0V0GEU 9	Putative ubiquitin-protein ligase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	145	16712,8	0,1517	1	1	1
A0A0V0G2Y 0	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	118	12529,1	0,1864	1	1	3
A0A0V0G4C	Putative transketolase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	612	66296	0,2092	8	8	20
A0A0V0GAP	Aminomethyltransferase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	386	42483,8	0,2591	6	6	22
A0A0V0G3X	Proteasome subunit alpha type OS=Triatoma dimidiata PE=3 SV=1	234	25836,1	0,2265	3	3	8
A0A0V0G6V 7	Putative fumarylacetoacetase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	411	45426,7	0,1606	5	5	8
A0A0V0G436	V-type proton ATPase subunit F OS=Triatoma dimidiata PE=3 SV=1	123	13758	0,3252	2	2	3
A0A0V0G8Y 8	Putative sugar phosphatase had superfamily protein OS=Triatoma dimidiata PE=4 SV=1	276	31061	0,0688	1	1	1
A0A0V0G3D	Putative 26s proteasome regulatory complex subunit OS=Triatoma dimidiata PE=4 SV=1	464	53146,6	0,1552	5	5	9
A0A0V0G2E	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	175	20138,6	0,2114	4	4	23
A0A0V0G4A 7	Profilin OS=Triatoma dimidiata PE=3 SV=1	126	13762,1	0,4048	3	3	12
A0A0V0G4F2	Putative acetyl-coa hydrolase OS=Triatoma dimidiata PE=4 SV=1	482	52356,6	0,1037	5	5	7
A0A0V0G537	Putative sulfotransferase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	315	37043,1	0,2159	5	5	14
A0A0V0G642	Putative 26s proteasome regulatory complex subunit rpn7/psmd6 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	375	42870,8	0,0427	1	1	4
A0A0V0G3Z1	Putative 3-oxoacyl coa thiolase OS=Triatoma dimidiata PE=3 SV=1	411	43056,3	0,0925	2	2	5
A0A0V0GB3 2	Putative prophenoloxidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	687	79507,9	0,2271	10	10	24
A0A0V0G474	Putative s10e ribosomal protein OS=Triatoma dimidiata PE=4 SV=1	158	18168,4	0,0823	1	1	2

Identificação	Descrição	Lengh t	Mol/Wt	Cobertur a	#Unique Peptide s	Sequenc e Count	Spectru m Count
A0A0V0G5K	Putative ca2+-binding actin-bundling protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	890	102994, 1	0,0382	2	2	2
, A0A0V0G766	Putative casein kinase substrate phosphoprotein pp28 OS=Triatoma dimidiata PE=4 SV=1	184	20875,6	0,0815	1	1	3
A0A0V0G6D	Eukaryotic translation initiation factor 3 subunit I OS=Triatoma dimidiata PE=3 SV=1	324	36197,4	0,0864	2	2	6
A0A0V0G5X 6	Putative vacuolar protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	296	32188,9	0,0811	1	1	2
A0A0V0G652	Glutathione synthetase OS=Triatoma dimidiata PE=3 SV=1	432	50411,9	0,0787	2	2	3
A0A0V0G3P 4	Putative 60 kDa heat shock protein mitochondrial OS=Triatoma dimidiata PE=3 SV=1	571	60737	0,1401	6	6	16
A0A0V0GAP 9	Vacuolar protein sorting-associated protein 29 OS=Triatoma dimidiata PE=3 SV=1	182	20476,5	0,0714	1	1	3
A0A0V0G823	Putative dihydroorotase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	466	50566,5	0,0494	1	1	4
A0A0V0G6U 9	Putative cysteinetrna ligase cytoplasmic OS=Triatoma dimidiata PE=3 SV=1	720	82605	0,0222	1	1	1
A0A0V0G3F9	Putative ubiquitin-conjugating enzyme e2 OS=Triatoma dimidiata PE=4 SV=1	153	17483,8	0,1699	2	2	6
A0A0V0G314	Putative 3-hydroxyisobutyrate dehydrogenase mitochondrial OS=Triatoma dimidiata PE=4 SV=1	292	31265,9	0,2329	4	4	9
A0A0V0G2G 8	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	190	22077,1	0,1053	6	6	21
Ã0A0V0G2Y 3	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	204	22263,7	0,5784	13	13	99
A0A0V0G4I9	Putative pterin carbinolamine dehydratase pcbd/dimerization cofactor of hnf1 (Fragment) OS=Triatoma dimidiata PE=3 SV=1	135	15422,2	0,2296	3	3	6
A0A0V0GDV 4	Putative glutathione s-transferase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	206	24063,6	0,1311	2	2	6
A0A0V0G3B 6	Putative 26s proteasome regulatory complex subunit rpn1/psmd2 OS=Triatoma dimidiata PE=4 SV=1	891	98321	0,0842	4	4	5
A0A0V0GBZ	Putative dipeptidase amino acid transport and metabolism (Fragment) OS=Triatoma dimidiata PE=4 SV=1	386	42572,8	0,1166	3	3	4
A0A0V0G4E	Protein kinase c inhibitor (Fragment) OS=Triatoma dimidiata PE=4 SV=1	127	13867,3	0,3543	2	2	4
A0A0V0G7G 9	Putative methylthioadenosine phosphorylase mtap OS=Triatoma dimidiata PE=3 SV=1	276	30264,8	0,1775	4	4	8
A0A0V0G404	Annexin OS=Triatoma dimidiata PE=3 SV=1	321	35290,6	0,19	4	4	5
A0A0V0GBK 7	Putative dual-specificity protein kinase OS=Triatoma dimidiata PE=3 SV=1	413	45174,8	0,0387	1	1	1
A0A0V0G662	Putative pyridoxal/pyridoxine/pyridoxamine kinase OS=Triatoma dimidiata PE=4 SV=1	299	32692,2	0,1371	2	2	3
A0A0V0G5K	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	238	26231,4	0,0798	1	1	2

Identificação	Descrição	Lengh t	Mol/Wt	Cobertur	#Unique Peptide	Sequenc	Spectru
2	Descrição		101/101	a	3	ecount	in count
A0A0V0G4J9	Putative salivary secreted kazaltype proteinase inhibitor OS=Triatoma dimidiata PE=4 SV=1	83	9357,3	0,2169	11	11	57
A0A0V0G2U 7	Aspartate aminotransferase OS=Triatoma dimidiata PE=3 SV=1	413	46337,5	0,2034	7	7	14
, A0A0V0G3G 9	Glucose-6-phosphate isomerase OS=Triatoma dimidiata PE=3 SV=1	555	62796,3	0,2577	9	9	24
A0A0V0G5S 4	Phosphoglycerate kinase OS=Triatoma dimidiata PE=3 SV=1	428	46377,1	0,2921	11	11	20
A0A0V0G3S 4	Putative gnl-cdd-187611 cd05353 hydroxyacyl-coa-like dh sdr c-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	717	77909	0,3515	17	17	40
A0A0V0GA4 6	Putative heat shock protein 83 OS=Triatoma dimidiata PE=3 SV=1	728	83586,2	0,1016	7	7	18
D1MWE4	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	195	22598	0,1795	4	4	14
A0A0V0G7A 9	Putative transglutaminase/protease-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	685	77610	0,035	2	2	5
A0A0V0G6C 1	Putative pyridoxal 5-phosphate OS=Triatoma dimidiata PE=3 SV=1	251	28302,3	0,0797	2	2	6
A0A0V0G6W 9	Putative wd40 repeat stress protein/actin OS=Triatoma dimidiata PE=4 SV=1	602	66228,2	0,0781	2	2	7
A0A0V0G8U 1	Thymidine phosphorylase OS=Triatoma dimidiata PE=3 SV=1	437	46664,1	0,0503	1	1	3
A0A0V0G552	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	258	28694,4	0,3101	4	4	13
A0A0V0G3Z2	Putative enoyl-coa isomerase OS=Triatoma dimidiata PE=4 SV=1	279	30768,7	0,1505	3	3	3
A0A0V0GC2 1	Putative tumor necrosis factor (Fragment) OS=Triatoma dimidiata PE=3 SV=1	321	36796,1	0,0779	2	2	5
A0A0V0G3V 3	Putative chaperonin OS=Triatoma dimidiata PE=3 SV=1	540	58780,5	0,1667	5	5	13
A0A0V0G778	Putative sulfotransferase OS=Triatoma dimidiata PE=4 SV=1	336	39878,3	0,0506	1	1	1
A0A0V0G4Y 6	Putative vacuolar h+-atpase v1 sector subunit d OS=Triatoma dimidiata PE=4 SV=1	240	27016,8	0,0792	3	3	3
A0A0V0G2W 9	Putative hydrolase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	226	25178,3	0,4912	9	9	27
A0A0V0G1Z1	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	228	25954,3	0,307	8	8	29
A0A0V0G368	T-complex protein 1 subunit delta OS=Triatoma dimidiata PE=3 SV=1	532	57201,4	0,0771	5	5	9
A0A0V0G4C 2	Putative peroxiredoxin posttranslational modification (Fragment) OS=Triatoma dimidiata PE=4 SV=1	234	26307,7	0,0897	1	1	6
A0A0V0G4A 8	Putative actin-depolymerizing factor 1 OS=Triatoma dimidiata PE=3 SV=1	148	16940,4	0,4932	8	8	20

Idontificação	Descrição	Lengh	Mol/Wt	Cobertur	#Unique Peptide	Sequenc	Spectru
A0A0V0G3W		<u>ر</u>	14054.0	a 0.0400	5	e count	
3	Putative hadp-dependent isocitrate denydrogenase (Fragment) OS=1 flatoma dimidiata PE=4 SV=1	397	44951,9	0,3199	11	11	30
A0A0V0G5W 2	Putative phosphoglucomutase/phosphomannomutase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	553	60931	0,0868	3	3	5
A0A0V0G373	Ubiquitin carboxyl-terminal hydrolase OS=Triatoma dimidiata PE=3 SV=1	228	25412,7	0,6009	8	8	20
A0A0V0G4K 4	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	230	25891,2	0,187	2	2	10
A0A0V0G4Q 3	Putative vacuolar h+-atpase v1 sector subunit h OS=Triatoma dimidiata PE=4 SV=1	479	55148,7	0,0564	2	2	3
A0A0V0G376	Proteasome subunit alpha type OS=Triatoma dimidiata PE=3 SV=1	250	27966,6	0,06	2	2	6
D1MX91	Similar to biogenic amine-binding protein OS=Triatoma dimidiata PE=2 SV=1	206	23344,9	0,0534	1	1	3
D1MWC5	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	221	22966,1	0,2172	4	4	19
A0A0V0G4Z6	Superoxide dismutase OS=Triatoma dimidiata PE=3 SV=1	216	24464,2	0,0602	1	1	3
A0A0V0G413	TyrosinetRNA ligase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	524	58487,5	0,1031	3	3	3
A0A0V0G3J5	Putative inositol polyphosphate 5-phosphatase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	315	36118,8	0,7048	44	44	344
A0A0V0G3L0	Putative transcriptional regulator dj-1 OS=Triatoma dimidiata PE=4 SV=1	219	23492,3	0,4612	9	9	19
A0A0V0G5L3	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	208	21576,1	0,2933	4	4	15
A0A0V0G5P 2	Putative mevalonate pyrophosphate decarboxylase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	333	36958,7	0,0991	2	2	4
A0A0V0G4X 5	Putative vesicle coat complex copii subunit sec13 OS=Triatoma dimidiata PE=4 SV=1	287	32019,5	0,0801	1	1	1
A0A0V0G350	Putative heat shock 70 kDa protein cognate 5 (Fragment) OS=Triatoma dimidiata PE=3 SV=1	637	69851,3	0,044	2	2	4
A0A0V0G801	Putative diadenosine and diphosphoinositol polyphosphate phosphohydrolase OS=Triatoma dimidiata PE=4 SV=1	138	16233,2	0,1957	2	2	5
A0A0V0GBC 6	Putative gamma interferon inducible lysosomal thiol reductase gilt (Fragment) OS=Triatoma dimidiata PE=4 SV=1	186	20902,5	0,1183	1	1	1
A0A0V0G671	Putative molecular co-chaperone sti1 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	542	61046,3	0,0369	1	1	3
A0A0V0G1Y 6	Putative triabin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	155	17712	0,5226	13	13	131
A0A0V0G306	Peptidyl-prolyl cis-trans isomerase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	204	22415,4	0,1569	4	4	7
A0A0V0G2R 7	Putative mucin-2 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	3651	406749, 4	0,1569	36	36	111
A0A0V0G4D 6	Putative methylmalonate semialdehyde dehydrogenase OS=Triatoma dimidiata PE=3 SV=1	523	56373,9	0,153	5	5	7

Idontificação	Descripão	Lengh	MolAN	Cobertur	#Unique Peptide	Sequenc	Spectru
A0A0V0G3Q		<u>ر</u>		a 0.0407	3		
3	Putative inactive protein kinase (Fragment) OS=I riatoma dimidiata PE=4 SV=1	238	26007,4	0,3487	1	1	22
AUAUVUG2M 6	Putative salivary secreted protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	169	18883,6	0,1183	2	2	3
A0A0V0G4T1	Proteasome subunit alpha type OS=Triatoma dimidiata PE=3 SV=1	246	27368,7	0,2561	4	4	12
A0A0V0G4W 9	Putative fumarylacetoacetate hydralase OS=Triatoma dimidiata PE=4 SV=1	335	37225	0,0925	2	2	5
A0A0V0G3A	Putative chloride intracellular channel exc-4 isoform x2 OS=Triatoma dimidiata PE=4 SV=1	258	29674	0,0465	2	2	3
A0A0V0G5Q 2	Putative salivary lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	192	22013,9	0,2448	5	5	11
	Putative delta-aminolevulinic acid dehydratase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	332	36567,5	0,1416	4	4	9
A0A0V0G479	Putative phosphoinositide 3-kinase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	772	86575,3	0,0181	1	1	2
A0A0V0G2N 6	Putative triabin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	164	18350	0,4268	8	8	85
A0A0V0GD8	Putative lysozyme (Fragment) OS=Triatoma dimidiata PE=3 SV=1	122	13951	0,4098	3	3	7
A0A0V0G3R	T-complex protein 1 subunit gamma (Fragment) OS=Triatoma dimidiata PE=3 SV=1	542	60157,7	0,1218	4	4	14
A0A0V0G345	Putative enolase OS=Triatoma dimidiata PE=3 SV=1	432	47164,2	0,2523	9	9	24
D1MWE2	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	180	20280,2	0,0944	2	2	9
A0A0V0G4L8	Putative chaperonin OS=Triatoma dimidiata PE=3 SV=1	542	59281	0,1458	5	5	12
A0A0V0G611	Putative secreted protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	136	14945	0,2426	2	2	5
A0A0V0G6H 8	Putative nuclear envelope protein (Fragment) OS=Triatoma dimidiata PE=3 SV=1	566	65148,2	0,0371	1	1	4
A0A0V0G4U 1	Putative vesicle coat complex copi gamma subunit (Fragment) OS=Triatoma dimidiata PE=4 SV=1	883	97581,1	0,0283	1	1	1
Á0A0V0G4E 6	Putative thioredoxin-like protein OS=Triatoma dimidiata PE=4 SV=1	287	32200,2	0,0592	1	1	1
A0A0V0G578	Putative muscle lim protein mlp84b OS=Triatoma dimidiata PE=4 SV=1	453	48530,4	0,1876	7	7	23
A0A0V0G522	Putative galactokinase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	442	48645,6	0,0362	1	1	4
A0A0V0G4P 9	Putative prosaposin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	817	91753,9	0,0171	3	3	7
A0A0V0G8U 2	Putative salivary secreted protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	531	61822,4	0,1073	6	6	13
A0A0V0G6I8	Putative succinyl-coa synthetase alpha subunit (Fragment) OS=Triatoma dimidiata PE=3 SV=1	325	34136,2	0,0492	1	1	5

Identificação	Descrição	Lengh t	Mol/Wt	Cobertur a	#Unique Peptide s	Sequenc e Count	Spectru m Count
A0A0V0G7Q	Putative prophenoloxidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	716	81907	0,1369	5	5	11
A0A0V0G3Y	Small ubiquitin-related modifier OS=Triatoma dimidiata PE=3 SV=1	94	10559,2	0,1277	1	1	3
A0A0V0G3U 5	Putative chaperonin OS=Triatoma dimidiata PE=3 SV=1	549	59821,7	0,0455	3	3	7
A0A0V0G3S 8	Proteasome subunit alpha type OS=Triatoma dimidiata PE=3 SV=1	246	27338,9	0,0528	1	1	2
A0A0V0G3N 9	Malate dehydrogenase OS=Triatoma dimidiata PE=3 SV=1	341	35941,2	0,4985	9	9	18
A0A0V0G4H 2	Putative prokaryotic long-chain fatty acid coa synthetase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	569	62403,6	0,0281	2	2	4
D1MWC4	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	214	24199,1	0,0561	3	3	42
A0A0V0G5A 6	Putative medium subunit of clathrin adaptor complex OS=Triatoma dimidiata PE=3 SV=1	512	57181,6	0,0938	3	3	7
D1MWF2	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	181	21206	0,1381	2	2	6
A0A0V0GAH 2	Glycerol-3-phosphate dehydrogenase [NAD(+)] OS=Triatoma dimidiata PE=3 SV=1	355	39158,6	0,0338	1	1	3
A0A0V0G555	Putative aicar transformylase/imp cyclohydrolase/methylglyoxal synthase OS=Triatoma dimidiata PE=3 SV=1	591	64767,5	0,0525	3	3	5
A0A0V0G532	Putative leucine-rich acidic nuclear protein OS=Triatoma dimidiata PE=4 SV=1	255	29111,9	0,1255	2	2	8
A0A0V0G3K 6	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	198	22470,1	0,5253	19	19	89
A0A0V0G4N 8	Putative aminopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	465	50380,2	0,2237	7	7	16
A0A0V0G2H 6	Putative triabin-like lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	169	19481,2	0,1598	3	3	6
A0A0V0G3H 0	Putative serinetrna ligase cytoplasmic (Fragment) OS=Triatoma dimidiata PE=4 SV=1	476	54389,5	0,1197	3	3	6
A0A0V0G2H 8	Putative salivary lipocalin 4 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	165	18212,8	0,5939	18	18	95
A0A0V0G7E 1	Putative puromycin-sensitive aminopeptidase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	859	97298,8	0,0279	1	1	1
A0A0V0G575	Glutathione peroxidase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	168	19119,6	0,1012	1	1	5
A0A0V0G4J2	Putative f-actin capping protein alpha subunit OS=Triatoma dimidiata PE=3 SV=1	287	33039,5	0,1359	2	2	4
A0A0V0G2P 4	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	153	16415,9	0,3791	4	4	12
A0A0V0G4L0	Putative aromatic-l-amino-acid/l-histidine decarboxylase OS=Triatoma dimidiata PE=3 SV=1	476	53777,2	0,063	1	1	3
A0A0V0G666	Putative titin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	1430	168821,	0,0133	1	1	1

					#Unique	-	
Identificação	Descrição	Lengh t	Mol/Wt	Cobertur a	Peptide s	Sequenc e Count	Spectru m Count
			1				
A0A0V0G3W 5	Putative k-similarity type rna binding protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	537	56703,4	0,0317	1	1	1
A0A0V0G5P 5	Putative phosphoglycerate mutase OS=Triatoma dimidiata PE=3 SV=1	255	28960,5	0,1216	3	3	8
A0A0V0G9H 1	Malic enzyme (Fragment) OS=Triatoma dimidiata PE=3 SV=1	555	61742,5	0,1171	4	4	8
A0A0V0G4R 4	Putative microtubule-associated protein futsch (Fragment) OS=Triatoma dimidiata PE=4 SV=1	574	64015,1	0,0819	7	7	18
A0A0V0G2X 2	Putative salivary lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	175	20030,1	0,2629	4	4	18
D1MWC7	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	199	23002,4	0,0603	3	3	11
A0A0V0G4M 0	Putative carbonic anhydrase-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	260	29686,8	0,1654	6	6	17
A0A0V0G4H 8	Phosphotransferase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	441	49139,1	0,034	1	1	5
A0A0V0G5S 8	Putative farnesoic acid o-methyltransferase OS=Triatoma dimidiata PE=4 SV=1	305	33269,4	0,0656	1	1	2
A0A0V0G4Q 1	Putative transglutaminase/protease-like protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	694	78530,6	0,0432	3	3	4
A0A0V0G4S 4	Malate dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	330	35948,6	0,1303	3	3	6
A0A0V0G658	Putative rho gdp-dissociation inhibitor OS=Triatoma dimidiata PE=4 SV=1	207	23521	0,0821	2	2	6
A0A0V0G3V 6	Putative fructose-16-bisphosphatase OS=Triatoma dimidiata PE=3 SV=1	344	37657,2	0,2965	6	6	8
A0A0V0GDQ 1	Putative trypsin-like serine protease (Fragment) OS=Triatoma dimidiata PE=3 SV=1	195	21394,8	0,0923	1	1	3
A0A0V0G4R 1	Putative myosin regulatory light chain 2-like protein OS=Triatoma dimidiata PE=4 SV=1	204	22308,2	0,1422	2	2	7
A0A0V0G7R 6	Serine/threonine-protein phosphatase OS=Triatoma dimidiata PE=3 SV=1	309	35477,3	0,068	1	1	2
A0A0V0G5Y 7	Putative chaperonin subunit 6a zeta OS=Triatoma dimidiata PE=3 SV=1	534	58389,5	0,1798	5	5	12
D1MWB9	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	167	18630,1	0,1078	5	5	15
A0A0V0GC6 3	Putative serine protease inhibitor dipetalogastin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	333	36692,9	0,1622	4	4	13
A0A0V0G2N 3	Putative 15-hydroxyprostaglandin dehydrogenase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	185	20482,6	0,5081	8	8	21
A0A0V0G5D 1	Putative short-chain dehydrogenase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	251	26769	0,0518	1	1	2

Identificação	Descrição	Lengh t	Mol/Wt	Cobertur a	#Unique Peptide s	Sequenc e Count	Spectru m Count
A0A0V0G525	Peptidyl-prolyl cis-trans isomerase OS=Triatoma dimidiata PE=4 SV=1	109	11776,9	0,2752	2	2	6
A0A0V0G431	Putative serine/threonine-protein kinase kinx OS=Triatoma dimidiata PE=4 SV=1	406	43533,5	0,0936	4	4	10
A0A0V0G383	Putative death-associated protein 1 dap-1 OS=Triatoma dimidiata PE=4 SV=1	105	11394,7	0,1143	1	1	3
A0A0V0G452	Putative secreted protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	175	20126,6	0,08	1	1	2
A0A0V0G3P 6	Thioredoxin OS=Triatoma dimidiata PE=3 SV=1	105	11697	0,3143	2	2	6
A0A0V0G7Q 8	Putative myotrophin OS=Triatoma dimidiata PE=4 SV=1	116	12584,5	0,2069	1	1	3
A0A0V0G4K 8	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	274	30799,1	0,0511	1	1	4
A0A0V0G5I9	Putative gdp-mannose pyrophosphorylase/mannose-1-phosphate guanylyltransferase OS=Triatoma dimidiata PE=4 SV=1	423	46572,9	0,0307	2	2	3
A0A0V0G398	Putative pfkb family carbohydrate kinase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	343	38082,6	0,0671	1	1	3
A0A0V0G4W 2	Putative elongation factor 1-gamma OS=Triatoma dimidiata PE=4 SV=1	425	48442,3	0,24	8	8	26
A0A0V0G2H 3	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	194	22107,9	0,3093	8	8	26
A0A0V0G6E 2	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	206	22999,6	0,1117	2	2	6
A0A0V0G5V 3	Putative small heat shock protein hsp20 family OS=Triatoma dimidiata PE=3 SV=1	191	21344,8	0,3665	5	5	10
A0A0V0G4X 9	Putative aldo-keto reductase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	245	27531,3	0,298	4	4	8
A0A0V0G3U 7	Putative peroxisomal 3-ketoacyl-coa-thiolase OS=Triatoma dimidiata PE=3 SV=1	542	59182,8	0,048	2	2	6
A0A0V0G357	Putative sulfotransferase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	332	38762,5	0,0331	1	1	3
A0A0V0G2W 8	Glutamine synthetase (Fragment) OS=Triatoma dimidiata PE=3 SV=1	362	40655,1	0,1243	6	6	19
A0A0V0G2Y 1	Eukaryotic translation initiation factor 3 subunit D OS=Triatoma dimidiata PE=3 SV=1	543	62392,1	0,0442	1	1	2
A0A0V0G573	Putative creatine kinase OS=Triatoma dimidiata PE=3 SV=1	356	40080,2	0,4382	14	14	50
A0A0V0GAC 3	Putative failed axon connections fax protein/glutathione s-transferase-like protein OS=Triatoma dimidiata PE=4 SV=1	377	43703,9	0,122	2	2	8
A0A0V0G4P 2	Putative nucleotide excision repair factor nef2 rad23 component OS=Triatoma dimidiata PE=4 SV=1	334	36156	0,0479	1	1	3
D1MWD6	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	203	23648,5	0,064	2	2	5
A0A0V0G3H 2	Proteasome subunit beta type OS=Triatoma dimidiata PE=3 SV=1	228	24477	0,0965	1	1	2

		Lengh		Cobertur	#Unique Peptide	Sequenc	Spectru
Identificação	Descrição	t	Mol/Wt	а	S	e Count	m Count
A0A0V0GCQ 3	Putative vacuolar h+-atpase v1 sector subunit c OS=Triatoma dimidiata PE=4 SV=1	389	44713,9	0,0694	1	1	3
A0A0V0G549	Putative cytosolic juvenile hormone binding protein 36 kDa subunit (Fragment) OS=Triatoma dimidiata PE=4 SV=1	289	33129,5	0,1972	5	5	14
D1MWC1	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	239	26799,2	0,1213	4	4	116
A0A0V0G9B 9	Putative bisphosphate 3'-nucleotidase bpnt1/inositol polyphosphate 1-phosphatase (Fragment) OS=Triatoma dimidiata PE=4 SV=1	305	32561,9	0,2689	7	7	14
A0A0V0G7Z5	Putative phosphatidylinositol transfer protein sec14 (Fragment) OS=Triatoma dimidiata PE=4 SV=1	288	33841,6	0,1458	3	3	5
A0A0V0G2Z1	Superoxide dismutase [Cu-Zn] OS=Triatoma dimidiata PE=3 SV=1	154	15939,9	0,7403	8	8	41
A0A0V0GAJ0	Putative nitrophorin OS=Triatoma dimidiata PE=4 SV=1	207	23612	0,1981	2	2	3
A0A0V0G2P 6	Putative xaa-pro dipeptidase OS=Triatoma dimidiata PE=3 SV=1	502	55197,9	0,0558	1	1	4
A0A0V0G4X 4	S-formylglutathione hydrolase OS=Triatoma dimidiata PE=3 SV=1	286	31623,4	0,2273	4	4	10
A0A0V0GEG 6	Calponin (Fragment) OS=Triatoma dimidiata PE=3 SV=1	167	18844,6	0,1796	2	2	5
D1MWC3	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	197	22193,8	0,2538	4	9	143
A0A0V0G2K 3	Uncharacterized protein (Fragment) OS=Triatoma dimidiata PE=4 SV=1	157	17537,4	0,5924	9	14	202
A0A0V0G4R 2	Putative gtp-binding adp-ribosylation factor-like protein arl1 OS=Triatoma dimidiata PE=3 SV=1	182	20674,6	0,3077	3	4	10
A0A0V0G5K 3	Putative gtp-binding adp-ribosylation factor-like protein arl1 OS=Triatoma dimidiata PE=3 SV=1	180	20540,7	0,1444	1	2	4
A0A0V0G7I4	Putative multifunctional chaperone 14-3-3 family OS=Triatoma dimidiata PE=3 SV=1	254	28942,4	0,2047	4	5	10
A0A0V0G2Q 7	Putative multifunctional chaperone 14-3-3 family OS=Triatoma dimidiata PE=3 SV=1	247	28134	0,2591	6	7	18
A0A0V0G4M 9	Putative triabin OS=Triatoma dimidiata PE=4 SV=1	148	16617,2	0,5743	21	23	362
D1MWB8	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	178	19843,8	0,2191	2	10	88
D1MWF1	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	177	19772,6	0,2938	9	18	165
A0A0V0G2K 7	Putative triabin lipocalin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	152	17213,4	0,4342	18	19	101
A0A0V0G4L1	Putative triabin (Fragment) OS=Triatoma dimidiata PE=4 SV=1	145	16417	0,4	11	12	90
D1MWB5	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	198	22506,7	0,5202	7	15	286
D1MWB7	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	197	22112,7	0,5228	25	34	346

					#Unique		
Identificação	Descrição	Lengh t	Mol/Wt	Cobertur a	Peptide s	Sequenc e Count	Spectru m Count
A0A0V0G2V 8	Uncharacterized protein OS=Triatoma dimidiata PE=4 SV=1	198	22635,8	0,6818	20	33	447
D1MWB4	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	177	19795,8	0,1582	6	7	47
D1MWB2	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	177	19914,8	0,1808	5	6	43
D1MWB1	Uncharacterized protein OS=Triatoma dimidiata PE=2 SV=1	177	20010,9	0,1299	5	6	26

NCBI Conserved Domain Search

References:

👼 Marchler-Bauer A et al. (2015), "CDD: NCBI's conserved domain database.", Nucleic Acids Res.43(D)222-6.

💯 Marchler-Bauer A et al. (2011), "CDD: a Conserved Domain Database for the functional annotation of proteins.", Nucleic Acids Res.39(D)225-9.

መ Marchler-Bauer A et al. (2009), "CDD: specific functional annotation with the Conserved Domain Database.", Nucleic Acids Res.37(D)205-10.

💯 Marchler-Bauer A, Bryant SH (2004), "CD-Search: protein domain annotations on the fly.", Nucleic Acids Res.32(W)327-331.

Help | Disclaimer | Write to the Help Desk NCBI | NLM | NIH

TargetP 1.1 Server - prediction results

Technical University of Denmark

### targetp v1.1 Number of query s Cleavage site pro Using NON-PLANT n	prediction resu sequences: 1 edictions includ networks.	lts ##### ed.	#######	######	#####	####	######
Name	Len	mTP	SP	other	Loc	RC	TPlen
rf	220	0.023	0.923	0.065	s	1	19
cutoff		0.000	0.000	0.000			

Explain the output. Go back.

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

NetPhos 2.0 Server - prediction results

Technical University of Denmark

220 rf	
MHPFIQILLIALAIKCALSCQGGQVINREVSPEEQQLILDVHNRYRQAIALGKIRGQPTGSNMIEMSWDDELANMAQQWA	80
DNCVFKHDTNIRRTSRRFPVGQNLAISWSSPTPNKYGEAAEWAAQIRNWFNEVYTSGNDIKKSGHYTQVVWGDSYLVGCG	160
YTYYKDPRKNGYVKLYVCNYGPAGNVIGEPPYIEGTPGCDRSDLKPSSSYLGLCDFVDYG	240
SS	80
Y.SY.	160
YYYYYYYTSS	240

Phosphorylation sites predicted: Ser: 7 Thr: 2 Tyr: 8

Serine predictions

Name	Pos	Context	Score	Pred
		V		
rf	19	KCALSCQGG	0.135	•
rf	31	NREVSPEEQ	0.998	*S*
rf	61	QPTGSNMIE	0.009	
rf	67	MIEMSWDDE	0.962	*S*
rf	95	IRRTSRRFP	0.997	*S*
rf	107	NLAISWSSP	0.809	*S*
rf	109	AISWSSPTP	0.002	
rf	110	ISWSSPTPN	0.906	*S*
rf	136	EVYTSGNDI	0.978	*S*
rf	143	DIKKSGHYT	0.196	
rf	154	VWGDSYLVG	0.019	
rf	202	GCDRSDLKP	0.025	
rf	207	DLKPSSSYL	0.236	
rf	208	LKPSSSYLG	0.681	*S*
rf	209	KPSSSYLGL	0.227	
		^		

Threonine predictions

Name	Pos	Context	Score	Pred
		V		
rf	59	RGQPTGSNM	0.060	•
rf	89	FKHDTNIRR	0.077	
rf	94	NIRRTSRRF	0.981	*T*
rf	112	WSSPTPNKY	0.365	
rf	135	NEVYTSGND	0.251	
rf	147	SGHYTQVVW	0.334	
rf	162	GCGYTYYKD	0.109	
rf	196	YIEGTPGCD	0.885	*T*
		^		

Tyrosine predictions

Name	Pos	Context	Score	Pred
		v		
rf	45	VHNRYRQAI	0.014	
rf	116	TPNKYGEAA	0.597	*Y*
rf	134	FNEVYTSGN	0.956	*Y*
rf	146	KSGHYTQVV	0.687	*Y*
rf	155	WGDSYLVGC	0.517	*Y*
rf	161	VGCGYTYYK	0.065	
rf	163	CGYTYYKDP	0.065	•
rf	164	GYTYYKDPR	0.555	*Y*

rf	172	RKNGYVKLY	0.963	*ү*
rf	176	YVKLYVCNY	0.559	*ү*
rf	180	YVCNYGPAG	0.027	•
rf	192	GEPPYIEGT	0.966	*ү*
rf	210	PSSSYLGLC	0.259	•
rf	219	DFVDYG	0.263	•
		^		

NetPhos 2.0: predicted phosphorylation sites in rf

Explain the output. Go **back**.

CENTERFO RBIOLOGI CALSEQU ENCEANA LYSIS CBS

BepiPred 1.0b Server - prediction results

Technical University of Denmark

##gff-version 2 ##source-version bepipred-1.0b ##date 2016-06-22 ##Type Protein rf ##Protein rf cat seq.1.fsa ##MHPFIQILLIALAIKCALSCQGGQVINREVSPEEQQLILDVHNRYRQAIALGKIRGQPTGSNMIEMSWDDELANMAQQWA ##DNCVFKHDTNIRRTSRRFPVGQNLAISWSSPTPNKYGEAAEWAAQIRNWFNEVYTSGNDIKKSGHYTQVVWGDSYLVGCG ##YTYYKDPRKNGYVKLYVCNYGPAGNVIGEPPYIEGTPGCDRSDLKPSSSYLGLCDFVDYG
 source
 feature
 start
 end
 score
 N/A
 ?

 bepipred-1.0b
 epitope
 1
 1
 -0.951
 ...
 M

 bepipred-1.0b
 epitope
 2
 2
 -0.925
 ...
 H

 bepipred-1.0b
 epitope
 4
 4
 -1.600
 ...
 F

 bepipred-1.0b
 epitope
 5
 5
 -1.847
 ...
 I

 bepipred-1.0b
 epitope
 7
 7
 -2.327
 ...
 I

 bepipred-1.0b
 epitope
 10
 -2.640
 ...
 I
 ...

 bepipred-1.0b
 epitope
 11
 11
 -2.549
 ...
 A
 ...

 bepipred-1.0b
 epitope
 13
 1.988
 ...
 A
 ...

 bepipred-1.0b
 epitope
 13
 1.988
 ...
 A
 ...

 bepipred-1.0b
 epitope
 17
 -0.931
 ...
 A
 ...

 bepipred-1.0b
 epitope
 ##end-Protein source # segname feature start end score N/A ? rf rf

22/06/2016

rf	beninred-1.0b enitor	e 48	48	-0.473		AL.
rf	beninned_1 0b enitor	40	10	-0 175	•••	ті.
nf	boninned 1 Ob onitor		50	0.475	•••	<u>-</u> •
n	beninned 1 Ob enitor		50	-0.500	•••	
1·1	beninned 1 Ob enitor		51	-0.352	•••	
rt	bepipred-1.0b epitor	e 52	52	-0.406	•••	G[.
rt	bepipred-1.0b epitop	e 53	53	-0.116	• •	Кļ.
rf	bepipred-1.0b epitop	e 54	54	0.382	• •	I .
rf	bepipred-1.0b epitop	e 55	55	0.720		R .
rf	bepipred-1.0b epitor	e 56	56	1.291		G .
rf	bepipred-1.0b epitor	e 57	57	1.403		OİE
rf	bepipred-1.0b epitor	e 58	58	1.481		PİE
rf	beninred-1.0b enitor	e 59	59	1.490		TIF
rf	heninged 1 0h enitor	60	60	1 127	•••	G
nf	boninned 1 Ob onitor	60 61	61	0 059	•••	
۱۱ م	beninned 1 Ob enitor		62	0.550	•••	5]. NI
1°T	bepipred-1.00 epicop	62 62	62	0.527	•••	
rt	bepipred-1.0b epitor	e 63	63	0.424	• •	MI.
rf	bepipred-1.0b epitor	e 64	64	-0.038	•••	IĮ.
rf	bepipred-1.0b epitop	e 65	65	-0.046	• •	Ε .
rf	bepipred-1.0b epitop	e 66	66	0.012		м .
rf	bepipred-1.0b epitor	e 67	67	0.091		s .
rf	bepipred-1.0b epitor	e 68	68	0.049		Wİ.
rf	bepipred-1.0b epitor	e 69	69	0.290		рİ.
rf	beninred-1.0b enitor	ne 70	70	0.314		рі.
rf	heninred-1 0h enitor	ne 70 Ne 71	71	0 368	•••	F I
nf	boninged 1 0h onitor	71	71	0.000	•••	L •
1°1 ~f	beninned 1 Ob enitor	72 72	72	0.233	• •	
I'T	bepipred-1.00 epicor	ie 73	75	0.511	• •	
rt	bepipred-1.0b epitor	e 74	74	0.3//	• •	N .
rt	bepipred-1.0b epitop	e 75	/5	0.029	• •	Μ[.
rf	bepipred-1.0b epitor	e 76	76	-0.072	•••	Αļ.
rf	bepipred-1.0b epitop	e 77	77	0.296	• •	Q .
rf	bepipred-1.0b epitop	e 78	78	0.425	• •	Q .
rf	bepipred-1.0b epitop	e 79	79	0.267		W .
rf	bepipred-1.0b epitor	e 80	80	0.140		AÌ.
rf	bepipred-1.0b epitor	e 81	81	-0.241		Dİ.
rf	bepipred-1.0b epitor	e 82	82	-0.304		мİ.
rf	heninred-1 0h enitor	e 83	83	-0 447	•••	ci
rf	heninged 1 0h enitor	A 8/	8/	-0 079	•••	
nf	beninned_1 0b enitor	A 85	85	-0.073	•••	
1°1 ~f	beninned 1 Ob enitor		00	-0.075	•••	Г • V
1·1	beninned 1 Ob enitor		00	-0.122	•••	N •
rt	bepipred-1.0b epitor	e 87	8/	-0.421	•••	ні.
rt	bepipred-1.0b epitor	e 88	88	-0.287	•••	DI.
rf	bepipred-1.0b epitor	e 89	89	-0.026	•••	тן.
rf	bepipred-1.0b epitop	e 90	90	0.442	• •	N .
rf	bepipred-1.0b epitop	e 91	91	0.525		I .
rf	bepipred-1.0b epitop	e 92	92	0.536		R .
rf	bepipred-1.0b epitor	e 93	93	0.413		R .
rf	bepipred-1.0b epitor	e 94	94	0.109		тΪ.
rf	bepipred-1.0b epitor	e 95	95	0.045		si.
rf	bepipred-1.0b epitor	e 96	96	0.252		кİ.
rf	heninred-1 0h enitor	e 97	97	0 470	•••	RÍ
rf	heninred-1 0h enitor	98	98	0 526	•••	F I
nf	beninned_1 0b enitor	20 90 90	20	0.520	•••	
n	beninned 1 Ob enitor	100	100	0.390	•••	
1°T	bepipred-1.00 epicop	100	100	0.187	•••	
rt	bepipred-1.00 epitor	ie 101	101	0.091	•••	
rt	bepipred-1.0b epitor	e 102	102	-0.279	•••	QI.
rt	bepipred-1.0b epitop	e 103	103	0.053	• •	Nļ.
rf	bepipred-1.0b epitop	e 104	104	-0.216	• •	Lļ.
rf	bepipred-1.0b epitop	e 105	105	0.075	•••	Α .
rf	bepipred-1.0b epitop	e 106	106	0.098		I .
rf	bepipred-1.0b epitop	e 107	107	0.295		S .
rf	bepipred-1.0b epitor	e 108	108	0.483		WÌ.
rf	bepipred-1.0b epitor	e 109	109	1.047		sİ.
rf	bepipred-1.0b epitor	e 110	110	1.366		SIE
rf	bepipred-1.0h enitor	e 111	111	1.867		PIF
rf	beninred-1.0h enitor	e 112	112	1.763		TIF
rf	heninred_1 0h enitor	112 A	112	2 172	•••	
nf	heninned_1 Oh onitor	111 111	11/	2,120	• •	
n 1	boninned 1 0b anitar		114	2.0/2	•••	
1°F	bepipped-1.00 epitop	115 I	112	1 722	•••	K E
I'T	vepiprea-1.00 epitop	ie 116	110	1./20	• •	ΥĮΕ

22/06/2016

BepiPred 1.0b Server - prediction results

nf	honinnod 1 Oh	onitono	117	117	1 576		c	
	Depipred-1.00	epicope	11/	11/	1.570	•••		
rt	bepipred-1.0b	еріторе	118	118	1.138	•••	E	•
rf	bepipred-1.0b	epitope	119	119	0.946	• •	A	•
rf	bepipred-1.0b	epitope	120	120	0.691		Α	1.
rf	beninred-1.0b	enitone	121	121	0.762		F	İ.
rf	heninred-1 0h	enitone	122	122	0 <u>4</u> 01		W	i
~f	beninned 1 Ob	cpicope	122	122	0.401	• •	~	
rt	bepipred-1.00	еріторе	123	123	0.231	•••	А	•
rt	bepipred-1.0b	epitope	124	124	0.141	•••	A	•
rf	bepipred-1.0b	epitope	125	125	-0.184		Q	
rf	bepipred-1.0b	epitope	126	126	-0.588		I	1.
rf	heninred-1.0h	enitone	127	127	-0.355		R	İ.
nf	boninnod 1 0h	opitope	120	120	0.335	•••	N	i ·
11 	bepipred-1.00	epitope	120	120	-0.557	• •		•
rt	bepiprea-1.0b	еріторе	129	129	-0.420	• •	W	•
rf	bepipred-1.0b	epitope	130	130	-0.554	• •	F	•
rf	bepipred-1.0b	epitope	131	131	-0.251		N	1.
rf	bepipred-1.0b	epitope	132	132	-0.109		E	1.
rf	heninred-1 Oh	enitone	133	133	0 089		v	1
nf	boninnod 1 Ob	cpitope	124	12/	0.005	• •	v	•
1.1	Depipred-1.00	epicope	154	154	0.519	•••	T T	•
rt	bepipred-1.0b	epitope	135	135	0.959	• •	1	•
rf	bepipred-1.0b	epitope	136	136	0.709		S	1.
rf	bepipred-1.0b	epitope	137	137	0.740		G	1.
rf	heninred-1.0h	enitone	138	138	0.945		N	İ.
nf	boninnod 1 Ob	onitono	120	120	1 167	•••	 D	ŀ
	Depipred-1.00	epicope	139	123	1.107	•••	-	•
rt	bepipred-1.0b	еріторе	140	140	1.201	•••	T	•
rf	bepipred-1.0b	epitope	141	141	1.085	• •	K	•
rf	bepipred-1.0b	epitope	142	142	0.837		K	1.
rf	bepipred-1.0b	epitope	143	143	0.695		S	İ.
rf	heninred-1 Oh	enitone	144	144	0 502		G	
nf	boninnod 1 Ob	cpitope	145	1/5	0.502	• •	U U	ŀ
1.1	Depipred-1.00	epicope	145	145	0.541	•••	п	•
rt	bepipred-1.0b	epitope	146	146	0.315	• •	Y	•
rf	bepipred-1.0b	epitope	147	147	-0.006	• •	Т	•
rf	bepipred-1.0b	epitope	148	148	-0.017		Q	1.
rf	beninred-1.0b	enitone	149	149	0.114		v	İ.
rf	heninred_1 0h	enitone	150	150	0 177	• •	v	i
۰۱ م	bepipred 1.0b	epitope	150	150	0.177	•••	v Lu	· ·
	bepipred-1.00	epicope	151	121	0.074	• •	W	•
rt	bepipred-1.0b	epitope	152	152	-0.254	• •	G	•
rf	bepipred-1.0b	epitope	153	153	-0.541		D	
rf	bepipred-1.0b	epitope	154	154	-0.400		S	
rf	bepipred-1.0b	epitope	155	155	-0.315		Y	İ.
rf	heninred_1 0h	enitone	156	156	0 012	• •		i
	bepipted=1.00	epitope	150	150	0.012	•••		•
rt	bepipred-1.00	epitope	157	157	-0.249	• •	V	•
rt	bepipred-1.0b	epitope	158	158	-0.420	•••	G	•
rf	bepipred-1.0b	epitope	159	159	-0.641		C	
rf	bepipred-1.0b	epitope	160	160	-0.558		G	Ι.
rf	heninred-1 0h	enitone	161	161	-0 076		Y	i .
nf	boninnod 1 0h	opitope	162	162	0.462	•••	т	i ·
11 	bepipred-1.00	epitope	102	102	0.402	• •	I V	•
rt	bepiprea-1.0b	еріторе	163	163	0.618	• •	Y	•
rt	bepipred-1.0b	epitope	164	164	0.866	• •	Y	•
rf	bepipred-1.0b	epitope	165	165	1.002		K	•
rf	bepipred-1.0b	epitope	166	166	1.266		D	
rf	bepipred-1.0h	epitope	167	167	1.276	• •	Р	Ι.
rf	heninred_1 0h	enitone	168	168	1 21/		R	F
nf	boninged 1 04	opitope	160	160	1 100	• •		1
r r	bepipred-1.00	epitope	109	109	1.195	•••	ĸ	•
rt	bepipred-1.0b	epitope	170	170	0.967	• •	N	•
rf	bepipred-1.0b	epitope	171	171	0.313	• •	G	•
rf	bepipred-1.0b	epitope	172	172	-0.093		Y	1.
rf	beninred-1.0b	enitone	173	173	-0.580		v	İ.
rf	heninred_1 0h	enitone	17/	17/	-0 950		ĸ	i
n f	boninged 1 0	opitope	175	175	1 0-7	• •		· ·
	pepiprea-1.00	epicope	1/5	1/5	-1.05/	• •	L	•
rt	pepipred-1.0b	epitope	176	176	-1.154	• •	Y	•
rf	bepipred-1.0b	epitope	177	177	-0.861	• •	V	•
rf	bepipred-1.0b	epitope	178	178	-0.500		C	
rf	bepipred-1 0h	epitope	179	179	-0.252		N	ί.
rf	heninred_1 0h	enitone	180	180	0 350	• •	v	i
nf	boninned 1 0	opitope	101	101	0.000	• •	~	· ·
	pepiprea-1.00	epicope	101	TQT	0.090	• •	9	•
rt	penipred-1.0b	еріторе	182	182	0.878		P	•
nf								
11	bepipred-1.0b	epitope	183	183	0.804		Α	
rf	bepipred-1.0b bepipred-1.0b	epitope epitope	183 184	183 184	0.804 0.932	•••	A G	. .

22/06/2016	BepiPred 1.0b Server - prediction results				
rf	bepipred-1.0b epitope	186 186	1.324		VE
rf	bepipred-1.0b epitope	187 187	1.312		ΙİΕ
rf	bepipred-1.0b epitope	188 188	1.205		Gİ.
rf	bepipred-1.0b epitope	189 189	0.877		Εİ.
rf	bepipred-1.0b epitope	190 190	0.926		Ρİ.
rf	bepipred-1.0b epitope	191 191	1.245		Ρ.
rf	bepipred-1.0b epitope	192 192	1.744		ΥİΕ
rf	bepipred-1.0b epitope	193 193	1.720		ΙĖ
rf	bepipred-1.0b epitope	194 194	1.584		EE
rf	bepipred-1.0b epitope	195 195	1.415		GE
rf	bepipred-1.0b epitope	196 196	1.433		ΤİΕ
rf	bepipred-1.0b epitope	197 197	1.391		ΡİΕ
rf	bepipred-1.0b epitope	198 198	1.608		GE
rf	bepipred-1.0b epitope	199 199	1.631		C E
rf	bepipred-1.0b epitope	200 200	1.284		D .
rf	bepipred-1.0b epitope	201 201	1.170		R .
rf	bepipred-1.0b epitope	202 202	1.125		s .
rf	bepipred-1.0b epitope	203 203	1.184		D .
rf	bepipred-1.0b epitope	204 204	1.338		L E
rf	bepipred-1.0b epitope	205 205	1.226		к .
rf	bepipred-1.0b epitope	206 206	1.090	• •	Ρ .
rf	bepipred-1.0b epitope	207 207	0.659	• •	s .
rf	bepipred-1.0b epitope	208 208	0.412	• •	s .
rf	bepipred-1.0b epitope	209 209	0.201	• •	s .
rf	bepipred-1.0b epitope	210 210	-0.085	• •	Υ .
rf	bepipred-1.0b epitope	211 211	-0.198		L .
rf	bepipred-1.0b epitope	212 212	-0.785		G .
rf	bepipred-1.0b epitope	213 213	-1.184		L .
rf	bepipred-1.0b epitope	214 214	-1.124		c .
rf	bepipred-1.0b epitope	215 215	-1.102		D .
rf	bepipred-1.0b epitope	216 216	-0.655		F .
rf	bepipred-1.0b epitope	217 217	-0.659		v .
rf	bepipred-1.0b epitope	218 218	-0.335	• •	D.
rf	bepipred-1.0b epitope	219 219	-0.254	• •	Y .
rf	bepipred-1.0b epitope	220 220	-0.308	• •	G .
#					

Explain the output. Go **back**.

Parasites & Vectors

Proteases of haematophagous arthropod vectors are involved in blood feeding, yolk formation and immunity - a review --Manuscript Draft--

Manuscript Number:			
Full Title:	roteases of haematophagous arthropod vectors are involved in blood feeding, yolk rmation and immunity - a review		
Article Type:	Review		
Section/Category:	Vector-Borne Zoonoses and One Health		
Funding Information:	Fundação de Apoio à Pesquisa do Distrito Federal (BR) (193.001.076/2015)	Izabela M. Dourado Bastos	
	Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR) (407730/2013-3)	Jaime Martins Santana	
	Conselho Nacional de Desenvolvimento Científico e Tecnológico (BR) (407855/2013-0)	Izabela M. Dourado Bastos	
	Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (BR) (23038.005298/2011-83)	Sébastien Charneau	
	Fundação de Apoio à Pesquisa do Distrito Federal (BR) (193.001.053/2015)	Dr Carla Nunes de Araújo	
	Fundação de Apoio à Pesquisa do Distrito Federal (BR) (193.000.822/2015)	Jaime Martins Santana	
Abstract:	Ticks, mosquitoes, sandflies and triatomines comprise a large number of haematophagous arthropods considered vectors of infectious diseases of worldwide importance. These insects are able to transmit pathogens while consuming blood to obtain the nutrients necessary to carry on life functions. Among the molecules related to the blood feeding habit, proteases play an essential role. In this review, we describe proteases from arthropods with regard to their activity on haematophagy, on different mechanisms of digestion reported for insects and ticks, on egg development and immunity. As they act in central biological processes, haematophagous proteases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control.		
Corresponding Author:	Jaime M Santana, PhD Universidade de Brasilia BRAZIL		
Corresponding Author Secondary Information:			
Corresponding Author's Institution:	Universidade de Brasilia		
Corresponding Author's Secondary Institution:			
First Author:	Paula Beatriz Santiago, Ph.D.		
First Author Secondary Information:			
Order of Authors:	Paula Beatriz Santiago, Ph.D.		
	Carla Nunes de Araújo, Ph.D.		
	Flavia Nader Motta, Ph.D.		
	Yanna Reis Praça		
	Sébastien Charneau, Ph.D.		

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

	Izabela M. Dourado Bastos, Ph.D.
	Jaime Martins Santana, Ph.D.
Order of Authors Secondary Information:	

Manuscript

Click here to view linked References

1	Proteases of haematophagous arthropod vectors are involved in blood feeding,	
2	yolk formation and immunity - a review	
3	Paula Beatriz Santiago ¹ , Carla Nunes de Araújo ^{1,2} , Flávia Nader Motta ^{1,2} , Yanna Reis	
4	Praça ^{1,3} , Sébastien Charneau ⁴ , Izabela M. Dourado Bastos ¹ and Jaime M. Santana ^{1*}	
5		
6	¹ Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular,	
7	Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy	
8	Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil	
9	² Faculdade de Ceilândia, Universidade de Brasília, Centro Metropolitano, Conjunto A,	
10	Lote 01, 72220-275 Brasília, DF, Brazil	
11	³ Programa Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade	
12	de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, 70910-900 Brasília, DF,	
13	Brazil	
14	⁴ Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular,	
15	Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy	
16	Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil	
17		
18	* Corresponding author:	
19	Jaime M. Santana	
20	Laboratório de Interação Patógeno-Hospedeiro, Departamento de Biologia Celular,	
21	Instituto de Ciências Biológicas, Universidade de Brasília, Campus Universitário Darcy	
22	Ribeiro, Asa Norte, 70910-900 Brasília, DF, Brazil	
23	E-mail: jsantana@unb.br	

24	
25	Paula Beatriz Santiago (paulabeatriz@hotmail.com)
26	Carla Nunes de Araújo (cnunes@unb.br)
27	Flávia Nader Motta (fnmotta@unb.br)
28	Yanna Reis Praça (rp.yanna@gmail.com)
29	Sébastien Charneau (charneau@unb.br)
30	Izabela Marques Dourado Bastos (dourado@unb.br)
31	

32 Abstract

Ticks, mosquitoes, sandflies and triatomines comprise a large number of haematophagous arthropods considered vectors of infectious diseases of worldwide importance. These insects are able to transmit pathogens while consuming blood to obtain the nutrients necessary to carry on life functions. Among the molecules related to the blood feeding habit, proteases play an essential role. In this review, we describe proteases from arthropods with regard to their activity on haematophagy, on different mechanisms of digestion reported for insects and ticks, on egg development and immunity. As they act in central biological processes, haematophagous proteases may influence vector competence to transmit pathogens to their prey, and thus could be valuable targets for vectorial control.

Keywords: proteases, haematophagy, digestion, yolk formation, insect immunity,
insects, sandflies, triatomines, ticks.

Haematophagous arthropods are spread worldwide and present medical and veterinary importance since their blood feeding habit provides a scenario to the transmission of a variety of pathogens during their meals, including virus, bacteria, protozoans, and helminthes [1]. Although there are clinical differences among the diseases caused by these microorganisms, they share common features, including association with poor in low and middle-income countries, where they tend to coexist. Additionally, for the majority of the diseases transmitted by vectors there are neither vaccines nor preventive treatments, generating social and economic losses. Chikungunya, Zika, and Mayaro virus infections, dengue fever, rift valley fever, vellow fever, malaria, japanese encephalitis, lymphatic filariasis, West Nile fever, leishmaniasis, Crimean-Congo haemorrhagic fever, lyme disease, tick-borne encephalitis, tularaemia, Chagas disease, sleeping sickness, plague, rickettsiosis, and onchocerciasis are examples of vector-borne diseases with global impact on morbidity and mortality, since they affect more than one billion individuals and cause over one million deaths every year [2].

Ecological factors are associated with vector dispersion to urban areas [3]. Ticks, fleas, triatomine bugs, mosquitoes, sandflies, tsetse flies and black flies are examples of haematophagous arthropod vectors [2], which present different feeding habits. In ticks, triatomines and fleas, the blood feeding habit occurs in both sexual forms and in all stages of development. Changing from one stage to the next requires at least one blood meal. On the other hand, only females of mosquitoes and sandflies require a blood meal to fulfil their need to complete oogenesis process [4]. Vascular damage caused by the haematophagous bite during the repast triggers physiological defence responses in the host that are mainly determined by three important events: haemostasis, immunity and inflammation. To accomplish a continued blood flow into the arthropod mouthparts, a saliva array of pharmacologically active biomolecules, anti-inflammatory and as antihaemostatic, immunomodulatory compounds, is injected into the bite site [5-7]. Within this context, different pathogens can be transmitted by vector saliva [7, 8]. Depending on each feeding habit, after achieving the necessary fluidity the haematophagous can consume a large amount of blood in a single meal, and proceed to digestion [9]. The digestive process includes various proteases that act to obtain the necessary energy for biological processes, guaranteeing their survival, biological development and reproduction [10].

Proteases are enzymes that hydrolyse (a) peptide bond(s) in amino acid residue sequences; if such catalysis occurs in internal peptide bonds of a protein, they are called endopeptidases. However, when cleavage of a peptide bond takes place at the N- or C-terminal of a polypeptide chain, those enzymes are named exopeptidases. Protease classification involves the clustering of related sequences into families. Currently, there are seven main different families of proteases: aspartic, cysteine, glutamic, metallo, serine, threonine peptidase and asparagine lyase, all grouped accordingly to the molecular composition of their active sites [11]. The clans represent one or more families that have evolutionary relationships evidenced by their tertiary structures or, when no tertiary structures are available, by the order of acid amino residues in the catalytic site and/or by common sequences around it [11]. Each clan is identified by two letters where the first represents the catalytic type of the families included in the clan. There are three additional letters to assign a clan: P, for peptidases of mixed catalytic type; U, for peptidases of unknown catalytic type; and I, for inhibitors that are proteins.
A clan identifier example is PA, which contains both serine PA(S) and cysteine peptidases PA(C). Regarding the family identification, it contains a letter representing the peptidase catalytic type together with a unique number [11]. For instance, S1 is the family of trypsin and chymotrypsin that also belongs to PA(S) clan. Another clan example is CA, which contains several families of cysteine peptidases with structures similar to that of papain [11]. In this clan, C1 is the family of cathepsin B and L, peptidases that may act in the digestive vacuoles of protozoa and/or in the lysosomal system of eukaryotic cells [12].

Proteolytic enzymes may be synthesized as zymogens (inactive precursors) or as inactive forms binding to natural inhibitors to prevent unwanted protein degradation, and to facilitate spatial and temporal organization of proteolytic activity [13]. Zymogen conversion to the active enzyme occurs by removal of an inhibitory segment from its tertiary structure within an appropriate subcellular compartment or at the extracellular environment. The inhibitory segment proteolysis may be performed by another peptidase or by autocatalysis, requiring, for instance, a drop in pH to take place [13]. An example of peptidase family containing zymogens is the already mentioned S1, possibly the most well-known of all serine peptidases [14]. The active forms of S1 zymogens participate in complex and tightly controlled tasks such as the proteolytic cleavage cascade required during the formation of a blood clot in mammals; during protein digestion and catabolism; the yolk maturation and the defence mechanisms in arthropods. In this review, we highlight the functions of the haematophagous arthropod proteases in blood-dependent biological processes, with an emphasis to their roles in vector biology.

119 The role of arthropod proteases in blood dependent processes

Although arthropod saliva presents many protein families to secure the fluidity of prey blood and the success of meal uptake, few salivary proteases have been characterized [15-18]. Instead, there is a variety of salivary natural protease inhibitors. pointing to the diverse cocktail arthropods produce against host proteases. Advances in transcriptomic approaches have made possible the analysis of the biochemical complexity of the saliva from many haematophagous arthropods, unravelling coding sequences for salivary gland proteases [17, 19-23]. However, these sequences are not a guarantee of salivary protein expression. From our experience, saliva of triatomine bugs displays low proteolytic activities, tested by in-gel zymography or direct incubation of saliva with fluorogenic substrates (unsubmitted).

132 Digestion

Proteins represent about 95% of the blood, from which haemoglobin (Hb) is the most representative. That is probably the reason proteases are the main enzymes in the arthropod midgut [9]. In insects, proteases are secreted in the gut lumen where extracellular digestion occurs, generating peptides, which are then degraded in the epithelial cells [9]. On the other hand, tick gut cells digest proteins by heterophagy. Some blood proteins are internalized by unspecific endocytosis and addressed to small acidic vesicles, while Hb is specifically recognized by surface receptors and directed to large endosomal vesicles. The digestion occurs in those respective acidic intracellular compartments orchestrated by multiple enzymes [24] (Fig. 1). The Hb degradation process initially results in 8-11 kDa fragments, which are hydrolysed into smaller peptides around 3–7 kDa, and finally to dipeptides and free amino acids [25, 26].

145 Yolk formation

Blood meal provides the necessary resources to haematophagous female arthropods produce their eggs [9]. The yolk precursor protein vitellogenin (Vg) is, in arthropods, synthesized in the fat body and then secreted into haemolymph. After being uptaken by oocyte coated vesicles, the Vg suffers dissociation and a crystallization process occurs in the endosome compartment, forming the volk body. Following Vg proteolysis, the vitellin (Vt) protein is generated in lysosome-like organelles, called yolk granules. The final step is a mature yolk body containing the crystalline Vt form, which provides the energy to support the embryo development, together with lipids and sugars [27].

In female arthropods, the accumulation of yolk proteins is regulated by the developmental hormones, juvenile hormone (JH) and the 20-hydroxyecdysona (20-HE), both found in low levels in young females. Once adult undergoes eclosion, the level of JH rises and the fat body becomes responsive to signals that induce vitellogenesis [28]. The role of JH also includes the growth of terminal follicles and development of oocyte competence for protein internalization [27].

Upon a blood meal, the JH level drops in haemolymph, while that of the egg development neurosecretory hormone (EDNH) increases to stimulate the release of ecdysone by ovaries. The later is a steroidal prohormone that is converted in 20-HE, the main regulator of vitellogenesis in the fat body. This hormone stimulates the expression of Vg, which is secreted in the haemolymph and endocytosed by oocytes [28]. Besides the 20-HE, the nutrients consumed during the blood meal could also be a signal to the vitellogenesis regulation by the fat body [29]. The hormonal regulated yolk formation steps are summarized in the Fig. 2.

Immunity

Proteases have been implicated in vector immunity responses leading to early parasite mortality. Thus, once acquired by the vectors, parasites must survive to the proteolytic attack in the midgut before undergoing a complex cycle of development, in order to infect a new host in a subsequent meal, perpetuating the disease cycle [30].

Orthologous genes, involved in Drosophila immune signalling, have been described in arthropods in response to a variety of pathogens limiting infection [31]. although transmission rates of infectious disease can be maintained. Three major arthropod immune pathways have been described: the Toll, the immunodeficiency (IMD), and the JAK-STAT. After cleavage of Relish (REL) in the first pathway, and IMD in the second, by a caspase-8 like (DREDD), humoral innate immune response is triggered, inducing antimicrobial peptide gene expression [32]. The JAK-STAT pathway also exerts its activity against pathogens, for instance viruses [33], bacteria [34-36], and *Plasmodium* [35, 37]. The activation of theses pathways leads to the generation of anti-microbial, cytotoxic, opsonic, or encapsulation-promoting factors [38].

Melanization of pathogens and damaged tissues is one of the major innate defence systems in invertebrates. This process is controlled by phenoloxidase (PO) that is regulated in an intricate manner by specific protease inhibitors aiming to avoid superfluous activation and production of toxic and reactive compounds. Tiny amounts of microbial compounds, such as beta-1,3-glucans, lipopolysaccharides, and peptidoglycans ensure the activation of zymogenic proPO into active PO by a cascade of serine proteases and other factors in the presence of potential pathogens [38].

194 Proteases from haematophagous arthropods

Figure 3 and additional table file (Additional file 1) show a summary of theproteases from haematophagous arthropods.

198 Cysteine proteases

Cysteine protease is a large family of peptidases that contains endo- and exopeptidases. Members from C1 and C13 families of cysteine proteases act mainly in the lysosomal system. In haematophagous arthropods, C1 family comprises cathepsin-L, cathepsin-B, and dipeptidyl-peptidases, and present a catalytic dyad formed by Cys and His amino acid residues in this order in their primary sequence. C13 family comprises legumain-like cysteine proteases, and the active site shows the residues His and Cys in this order in its sequence. Furthermore, a third residue, Asn, could be present forming a catalytic triad [12].

208 Cathepsin-L

There are a few reports on insect cathepsin-L. In triatomine bugs, two cathepsin L-like proteases present in the midgut of *Triatoma brasiliensis*, TBCATL-1 and TBCATL-2, have been characterized Their proteolytic activities have been detected in the acidic pH of the posterior midgut by zymogram assay. Specific antibodies aided to confirm the enzymes belong to cathepsin-L family [39]. In both, *T. infestans* and *R. prolixus*, digestive cathepsin L cDNAs have also been reported [40-42], but there is no information about the corresponding enzymes. Two cathepsin L-like cysteine proteases have been reported in the guts of Haemaphysalis longicornis [43] and *Ixodes ricinus* [44] ticks. In the first, HICPL-A is up-regulated during the repast and cleaves bovine Hb in a dose-dependent manner at pH 5.5 [43]. In the second, IrCL1 is localized inside the digestive gut cells and shows low stability at pH above 5, a feature that could prevent enzyme activity outside the gut cell environment [44]. Another two cathepsin L-like genes, HLCG-A and HLCG-B, have been reported in *H. longicornis* [45] and they may also have important functions in the digestion of host Hb.

Cathepsin L-like cysteine activities are present in *Rhipicephalus (Boophilus)* microplus tick crude midgut extracts [46-48], larvae [49, 50], and eggs [51]. The enzymes mediating these activities are named <u>Boophilus microplus cathepsin L-like</u> (BmCL1), R. microplus larval cysteine endopeptidase (RmLCE), and vittelin degrading cysteine endopeptidase (VTDCE), respectively. RmLCE is possibly the native form of the recombinant BmCL1 [49]. VTDCE is present in fat body, gut, salivary glands, ovary extracts, and haemolymph from partially or fully engorged females, suggesting it could have an extra ovarian origin, to be later internalized by oocytes [51]. It was proposed a coexistence between VTDCE and Vg/Vt with no polypeptide cleavage during vitellogenesis [52]. Although VTDCE has been classified as a cathepsin L-like cysteine [51], a very low similarity was found between its deduced amino acid sequence (AFK78425.1) and any other cysteine endopeptidase. On the other hand, phylogenetic sequence analyses revealed that VTDCE is similar to some tick antimicrobial peptides [53]. Moreover, the presence of VTDCE significantly inhibits Staphylococcus epidermidis growth after a period of 24 h. This was the first arthropod protease to be reported as an antimicrobial that is not correlated to its peptidase activity [53]. Finally,

VTDCE, BmCL1 and RmLCE hydrolyse Hb and vitellin at acidic pH [48, 49, 51], and
may have a fundamental role during tick development.

Taking into consideration the works mentioned above had been published before the R. (B) microplus genome sequencing [54], we decided to carry out a deeper investigation to differentiate the sequence annotations and features of those three proteases. After a search into R. (B) microplus genome database (GenBank: HM748961), ten different protein-coding genes for cathepsin L were identified, including BmCL1 (AAF61565.1); nevertheless none of them codes for VTDCE. A comparative pairwise amino acid sequence alignment demonstrated a homology of, at least, 97% among the sequences (Table 1), that together with the fully identity of the active site residues (Additional file 2) may indicate R. (B.) microplus presents ten active cathepsin L isoforms. It is not possible to conclude if BmCL1 and RmLCE are exactly the same isoform. However, a stage specific expression pattern may exist to guarantee the success of cathepsin L blood dependent process in this tick.

Table 1 Percentage of sequence identity between predicted Cathepsin L from *R*. (*B*.)
 microplus after pairwise alignment performed by EMBOSS Needle

Accession number	AFQ 98389.1	AFQ9 8385.1	AFQ 98392.1	AFQ 98386.1	AGK 88363.1	AFQ 98393.1	AFQ 98390.1	AFQ 98387.1	AAF61565.1 (BmCL1)	AFQ 98388.1
AFQ98389.1	100	99.4	98.5	98.2	98.2	98.2	98.2	98.5	98.2	98.2
AFQ98385.1		100	99.1	98.8	98.8	98.8	98.8	99.1	98.8	98.2
AFQ98392.1			100	98.5	98.5	99.7	99.7	98.8	99.1	97.3
AFQ98386.1				100	98.8	98.2	98.8	98.5	98.8	97.6
AGK88363.1					100	98.2	98.8	98.5	98.8	97.6
AFQ98393.1						100	99.4	98.5	98.8	97.0
AFQ98390.1							100	99.1	99.4	97.6
AFQ98387.1								100	99.1	97.9
AAF61565.1 (BmCL1)									100	97.6
AFQ98388.1										100

 257 Cathepsin-B

The cathepsin B-like activity from the midgut of R. prolixus increases following a blood meal [55]. Indeed, trace amounts of cathepsin B are detected in the lysosome of *R. prolixus* midgut cells before feeding, but after blood sucking, cathepsin B localizes in a granular precipitate associated with this organelle, and maybe is released in the gut lumen [56]. A strong acidic peptidase activity found in the gut extract of T infestans is possibly mediated by a cathepsin B. Although the molecular features and functional properties of the protein are unknown, the enzymatic activity is efficiently inhibited by CA-074, a specific cathepsin-B inhibitor [42]. In Aedes aegypti mosquito, vitellogenic cathepsin B (VCB) is specifically expressed by fat body during vitellogenesis in response to repast, internalized by developing oocytes, and deposited in the yolk bodies to the onset of embryogenesis. VCB hydrolyses Vg at acidic pH, and may be involved in the embryonic degradation of yolk proteins, although it is produced as a precursor by extraovarian tissue [57].

Tsuji et al. have reported the molecular characterization of a cathepsin B-like named longipain from the midgut epithelium of *Haemaphysalis longicornis* tick [58]. The enzyme is specifically localized in the lysosomes and secreted into the intestinal lumen, following blood feeding. Enzymatic assays with natural substrates revealed that longipain cleaves spectrin, an important component of erythrocytes membranes, but not Hb. Endogenous longipain RNAi knockdown has revealed that treated ticks diminish feeding capacity, and show an increased number of Babesia equi protozoan parasites in their midguts, suggesting longipain exerts a killing effect against parasites [58]. It is worth pointing out that this toxic effect may be direct and/or by means of the degradation of ingested proteins and peptides.

Two legumains, H. longicornis legumain 1 (HlLgm1) and H. longicornis legumain 2 (HlLgm2), from the gut of *H. longicornis* have been characterized by their ability to cleave Z-Ala-Ala-Asn-AMC, a legumain specific substrate, over a neutral to basic pH [59, 60]. HlLgm1 and HlLgm2 localize in midgut epithelium and are upregulated during blood feeding process. Moreover, the cleavage of bovine Hb by these legumains corroborates their role in the digestion of blood proteins. [61]. Silencing of both genes by RNAi has revealed an extended feeding period, survival decrease, weight loss, delayed oviposition and reduced number of normal eggs. In addition, the epithelium of the gut shows, upon this condition, damage and disruption of normal cellular remodelling during the feeding, resulting in luminal narrowing in silenced individuals [61]. IrAE, a legumain from the gut of *Ixodes ricinus* is effectively inhibited by the specific legumain inhibitor Aza-Asn-11a using the same HlLgm1 and HlLgm2 substrate [62]. The knowledge of their molecular and enzymatic properties will largely improve our understanding about the environment and extent of the involvement of these peptidases in haematophagy.

299 Serine proteases

Serine proteases (SPs) are known to be crucial for blood protein hydrolysis in haematophagous arthropods. Additionally, they are known to participate in other critical processes, such as yolk protein digestion, immune protection, fertilization, embryonic development, molting and metamorphosis of insects [17, 63]. Among SP families, S1 is the most representative and diverse family, and encompasses trypsin and chymotrypsinlike SPs. This family encloses the His-Asp-Ser catalytic triad [12].

307 In triatomines

Triapsin is a trypsin-like SP purified from the D2 pair of T. infestans salivary glands, expressed as an inactive precursor and activated during salivation stimulated by biting. Triapsin shows high specificity towards arginine at the P1 site. This protease may be involved in hydrolysis of the superfamily of Proteinase Activated G protein-coupled Receptors (PAR), which regulates growth, development, inflammation, and responses to injury. Triapsin is unlikely to be involved in digestion since this phenomenon in Hemiptera seems to depend exclusively on the action of cysteine and aspartic proteases [15]. However, it is imperative to perform experiments to test the involvement of this peptidase on the physiology of triatomines and other insect vectors of illnesses.

Our group has used next-generation sequencing and mass spectrometry-based protein identification to study the transcriptome and proteome of R. neglectus salivary glands (sialome) [17]. The results have revealed abundant transcripts of putative secreted trypsin-like peptidases, although only one serine protease was detected in the proteome, suggesting physiological conditions may influence secretion [17]. Sequence alignments disclosed the presence of domains currently present in proteins that act in haemostasis and immunity such as the CUB (complement C1r/C1s, Uegf, Bmp1) domain [64] and the cysteine-stabilized structures for molecular recognition (CLIP, LDLa and SUSHI domains). Five SP sequences of *R. neglectus* sialotranscriptome [17] match to SPs sequences from T. infestans [20, 65], T. braziliensis [21], P. megistus [22], and R. prolixus [41]. Although physiological roles of SPs are unknown, their presence in the sialotranscriptome of different triatomine species is an indicative of the importance of these proteases in haematophagy.

332 In mosquitoes

Trypsin-like SPs from both Aedes [66] and Anopheles share an acidic isoelectric point but differ in size [67]. Two different groups of Ae. aegypti female gut trypsins regulated at the midgut cellular level are proposed that show different levels of expression after blood meal. The first one is the early trypsin group, which transcription occurs in the midgut of newly emerged adult before feeding and under the control of JH [68], being translated at detectable levels after blood feeding [69, 70]. Early trypsins, secreted either through stretching of the midgut or osmotic effect, would be required for the transcription of the second group, the late trypsins. It is possible that released amino acids are also involved in this process [71, 72]. Expression of late trypsins requires complete synthesis of new mRNAs after feeding, produced in large amounts 8-10 h after blood meal, suggesting it may have the major role in the digestive process [69]. These two phases would allow the mosquitoes to assess the quality of the meal before committing to the synthesis of late trypsins, since large amount of these proteases in the absence of blood might be harmful for the mosquito [71].

Three trypsins of Ae. aegypti [Aedes Early Trypsin (AaET), AaSPVI and AaSPVII] had their enzymatic activities compared among them and with bovine trypsin (BvT). The specific activities of AaET and BvT are comparable, and 5-10 times higher than those of AaSPVI and AaSPVII late trypsins. In addition, AaSPVI is 3-4 times more active on Hb than AaET and AaSPVII [73]. AaSPVI RNAi knockdown, but not that of AaSPVII, have triggered a significant decrease in late phase trypsin-like activity. In contrast, injection of AaSPVI, and AaSPVII dsRNAs decreases both degradation of endogenous serum albumin in vivo and egg production. Taken together, these data indicate that AaSPVI, and AaSPVII contribute to blood digestion and oocyte maturation [74]. Ae. aegypti late trypsin (AaLT), that lacks trypsin-like activity, and AaSPI are

classified as collagenase-like SP and might be related to mosquito defence against complement cascade ingested with the blood meal [75]. Two different trypsin-like SPs and one chymotrypsin have been identified by means of two-dimensional electrophoresis of midgut proteins from *Ae. albopictus* female [76].

A gene cluster of gut trypsin-like SPs, Antryp 1-7, has been identified in Anopheles gambiae [77-79]. Antryp 1 and 2 show selective proteolytic activity against blood components; Antrypl mediates degradation of both Hb and serum albumin whereas Antryp2 seems to be mainly active against Hb [77-79]. While transcription of Antryp 1 and 2 are induced after blood meal [77-79], Antryp 3-7 are constitutively transcribed in females and their levels are down regulated after blood feeding [77-79]. These observations suggest that Antryp 3-7 are involved in initiating the events leading to the expression of other SPs directly associated with digestion [77-79]. Trypsin-like SPs activities have been also observed in An. Aquasalis females [80].

Regarding SPs of *Culex quinquefasciatus*, a proteomic approach associated with zymographic analysis had identified eight trypsin-like peptidases in the midgut of females fed on sugar [81]. These enzymes are specific to *C. quinquefasciatus* when compared to the culicids genomes sequenced so far. Moreover, these proteases exhibit singularities at the protein sequence level such as the presence of different amino acids at the autocatalytic motif and substrate binding regions [81].

A female specific *Ae. aegypti* chymotrypsin-like SP gene (JHA15 or AaJA15) is required in the yolk for embryo development and is regulated in a dose-dependent manner by JH [82]. Other five *Ae. aegypti* chymotrypsin-like SP genes (AaChymo, AaSP II-V) have been cloned and sequenced [75]. Northern and Western blots analyses have shown that AaChymo mRNA is abundant in adult female midgut and its

expression is induced after a blood meal [83]. On the other hand, midgut AaSP II–V are
equally expressed before and after blood meal [75]. An explanation for this observation
awaits further investigations.

A study of two midgut An. gambiae chymotrypsins (Anchym1 and Anchym2) have revealed the presence of N-terminus preceded by an arginine, indicating zymogen activation by tryptic cleavage. It has been suggested that these chymotrypsins are members of a digestive cascade initiated upon tryptic activation [84]. A midgut An. gambiae chymotrypsin (AgChyL) is restricted to adult female stage and contains a Thr residue at the position 182, feature that could determine its narrow specificity range [85]. In other two species of Anopheles, An. aquasalis (Anachy1 and Anachy2) and An. darlingi (Andchy1 and Andchy2), two closely related chymotrypsins has been also reported. Anachyl and Anachyl mRNAs seem to be detectable only in adult females, approximately 24 h after the blood meal [86].

An intriguing possibility is that SPs levels in the haematophagous vectors may be associated with susceptibility to infections. Eight immune related SPs have been described in An. gambiae: ISPL5, ISP13 [87, 88], AgSp14D1 [89], Sp14A, Sp14D2, Sp18D, Sp2A [90], and Sp22D [90, 91]. These SPs, except Sp18D and Sp2A, probably participate in the anti-bacterial and -Plasmodium defence mechanisms [87-89]. Furthermore, AgSp14D1 catalytic domain has similar sequence identities to kallikreins and coagulation factors, members that are involved in immune and wound responses [89]. Sp14A, Sp14D1, and Sp14D2 present an amino-terminal clip domain, characteristic of secreted proteases that activate prophenoloxidases and regulate melanotic parasite encapsulation or antimicrobial peptide synthesis [89]. Regarding Sp22D mRNA, it is expressed constitutively in the three immune related cell types: adult hemocytes, fat body, and midgut epithelial cells. The authors suggest that Sp22D

is secreted into the hemolymph where it may interact with pathogen surfaces and initiate
an immune response, as rapidly as pathogen detection [91]. Sp2A and Sp18D functions
remain to be characterized, however Sp18D present the clip domain and Sp2A is similar
to vertebrate and invertebrate blood coagulation factors [89]. In the main vector of
malaria in Southeast Asia, *An. dirus*, the SP cDNAs for ClipSP1, SerF2, and SerF3 have
been analysed upon *P. falciparum* infection. Only SerF3 seems to be up regulated in
infected *An. dirus*, and might also play a role in the mosquito immunity [92].

414 In sandflies

Four trypsin-like (Pptryp1-Pptryp4) and two chymotrypsin-like (Ppchym1 and Ppchym2) cDNAs from Phlebotomus papatasi midgut have been studied. Ppchym1 and Ppchym2 expression profiles are similar to Ae. aegypti early and late trypsins, suggesting that a two-phase digestive mechanism also occurs in sandflies [93]. In Lutzomyia longipalpis two trypsin-like SP cDNAs, Lltryp1 and Lltryp2, have been described [94]. While Lltryp1 is expressed in females after blood meal, Lltryp2 is detected in both sexes independently of feeding. L. longipalpis infection by Leishmania *major* promastigotes has not modified the expression levels of Lltryp1 and Lltryp2. It is plausible that different results may be obtained when infections are performed with Leishmania chagasi amastigotes [95]. In contrast, a correlation has been reported between Leishmania infections and reduced trypsin-like SP activity in P. papatasi. The presence of specific inhibitors of trypsin in the blood meal prevents the early killing of L. major and Leishmania donovani in the midgut of this insect species, implying that the proteolytic activity in the sandfly midgut modulates the vector susceptibility to infections [96-98].

431 In ticks

Some SPs have been also described in ticks. HLSG-1 and HLSG-2 SPs of the hard tick H. longicornis, which carries and transmits various pathogens [99], are blood meal-induced and expressed in the midgut, salivary glands as well as other organs [100]. Another H. longicornis SP named HISP is expressed during the development and is localized in adult tick midgut. This protease contains both domains, CUB and LDL, important at mediating protein-protein interactions in various extracellular proteins [101-103]. The presence of low levels of HISP upon RNAi correlates well with diminished capacity of ticks to degrade host erythrocytes, suggesting this enzyme is involved in hemolysis. Moreover, the recombinant protein rHISP also shows hemolytic activity in vitro in a dose-dependent manner [102]. Two other SPs studied, HISP2 and HISP3, are also localized in the midgut epithelial cells and lumen of adult ticks [104]. Silencing of these three SP genes together by RNAi have resulted in a major impact on body weight reduction, indicating they may form a proteolytic network for host Hb digestion in the midgut of ticks [104]. Finally, a carboxypeptidase-like SP from H. longicornis, HISCP1, is found in the vacuoles of midgut endothelial cells of this tick, and its up regulation is observed after blood meal. Of interest, this protease is able to cleave Hb [105].

450 Aspartic proteases

Aspartic proteases contain two aspartate residues at their catalytic site and play a role in numerous physiological functions in parasitic organisms, such as in tissue invasion, migration, digestion, moulting, and reproduction [106]. In the case of haematophagous arthropods, these proteases seems to be associated mainly with digestion [107]. Pepsinogen, renin, cathepsin E, and cathepsin D are examples of the

456 largest aspartic protease group, the A1 family. Among soluble lysosomal aspartic 457 endopeptidases, cathepsin D is a glycoprotein synthesized as a preprocathepsin D, 458 targeted to intracellular vesicular structures such as lysosomes, endosomes, and 459 phagosomes after removing of the signal peptide [108, 109].

A cathepsin D aspartic-like protease activity is detecbale in the blood-sucking triatomine R. prolixus [110]. Trypanosoma cruzi colonization of R. prolixus may modulate the expression of cathepsin D in the invertebrate since its activity is much higher on days 1-3 after infection [110]. A similar result has been found in T. infestans [111], another vector of T. cruzi. Yet, T. infestans midgut TiCatD is strongly induced after feeding whereas TiCatD2 is upregulated only 10 to 20 days after meal, suggesting that the former might play a role in processes related to early digestion [112]. More recently, triatomine cathepsin D had been also proposed to be involved in vitellogenesis. A Dipetalogaster maxima cathepsin D (DmCatD) is expressed in the fat body and ovarian tissues during the reproductive cycle. As for other peptidases, DmCatD also degrades Vt. Early activation of DmCatD had shown to be a relevant physiological mechanism in yolk protein degradation during follicular atresia to either, increase female lifetime or sustain younger oocytes until improvement of nutritional conditions [113].

In ticks, aspartic proteases play a key role in Hb proteolysis, and may be also involved in yolk degradation [10]. Eggs of *R*. (*B*.) *microplus* express two aspartic proteinases able to degrade Vt: boophilus yolk cathepsin (BYC) and tick heme-binding protease (THAP). In addition, the activity of THAP seems to be regulated by heme molecule, and BYC also cleaves Hb [114-116]. Interestingly, a cathepsin D from this tick midgut (BmAP) may be responsible for the generation of antimicrobial peptides, suggesting that proteases play roles in immune response against parasite invasion [117]. At last, a *H. longicornis* cathepsin D is highly expressed in the salivary gland and
midgut after blood meal and also hydrolyses Hb [118].

484 Metalloproteases

Metalloproteases are enzymes that require a metal ion at the active site to hydrolyse the peptide bond [119]. This family possesses a characteristic motif HEXXH, being the glutamate residue important for catalysis [12]. These proteases are involved in regulating a wide range of biological processes [120].

Two R. prolixus metalloproteases were characterized from the haemolymph of insects infected with Enterobacter cloacae [121] or Trypanosoma rangeli [122]. The source of these proteases is the fat body, and they are released into the haemolymph upon infection, what suggests these enzymes may be involved in *R. prolixus* defence mechanisms. In T. matogrossensis saliva [123] and R. prolixus oddities [41], sequences related to the astacin family of metalloproteases have been reported. In the sialome of R. neglectus, one CDS related to the zinc-dependent metalloproteases from the astacin-like metalloproteases, and other two related to the adamalysin/reprolysin family, which includes ADAMTS (A Disintegrin And Metalloproteinase with Thrombospondin motifs) have been also reported. Both are members of the metzincins metalloproteases superfamily [17]. Astacin family members have the ability to hydrolyse fibrinogen and fibronectin [124-126], leading to local haemorrhage [127], whereas disintegrins bind to platelets acting as potent inhibitors of platelet aggregation [128-130]. These proteases may have key functions in the maintenance of blood flow at the bite site.

Late metalloprotease trypsin, leucineaminopeptidase (LpNa), carboxypeptidase A (HPA) and carboxypeptidase B (HA) of the midgut of *Ae. aegypti* females present

enzymatic activities stimulated 20–24 h after a blood or protein, but not amino acid
meal. There is a positive correlation between metalloprotease activity and protein
concentration in the meal [131].

AgMMP1, a matrix metalloprotease (MMP) from *An. gambiae*, is expressed as a trans-membrane/membrane protein (MT-MMP1) in epithelial tissues and as a secreted (S-MMP1) isoform in hemocytes. MT-MMP1 transcript levels shows a remarkable response to blood meal digestion and to midgut infection and invasion by *Plasmodium* ookinetes [132]. Since tissue invaded by pathogens has often been associated with increased MMP activity, this study suggests MMPs may have an impact in vector competence determination [133, 134].

I. scapularis degradome (the full repertoire of proteases encoded by the genome) is mainly represented by metalloproteases (~40%), in contrast to those of blood feeding insects, that show serine proteases as the predominant component. I. scapularis putatively active metalloproteases are organized in 23 families, but functions in tick physiology are unknown for many of them. M12 family contains 14 enzymes that are believed to be involved in blood meal feeding regulation [135]. Recombinant M12 AAP22067 has gelatinase and fibrinogenolytic activities [18], essential to maintain host blood in a fluid state during tick feeding. Protein sequences of the reproplysin family of metalloproteases from Ixodes persulcatus (Ip-MPs), Rhipicephalus sanguineus (Rs-MPs) and *R. microplus* (BrRm-MPs) have been found in the salivary glands of partially and fully fed female ticks. Those data lead to the hypothesis that these proteases are required during tick feeding to manipulate host defences and support tick haematophagy [136].

RNAi silencing of metalloproteases affect feeding efficiency and fertility of R. microplus [117] and I. ricinus [118]. The presence of specific antibodies against a recombinant tick metalloprotease induces lower feeding efficiency of *H. longicornis* on rabbits [137]. In the sialotranscriptome of *Haemaphysalis flava*, metalloprotease genes involved in modulating host haemostasis are over expressed in semi-engorged ticks, probably in order to maintain blood flow [138]. Finally, three metalloprotease sequences from Amblyoma americanum show identity to annotated tick metalloproteases, and another shows identity to I. scapularis endothelin-converting enzyme (ECE) [139]. Endothelins are a family of potent vasoconstrictive peptides [140]. Thus the role of ECE in haematophagous arthropod saliva might be the hydrolysis of endothelins in order to impair vasoconstriction.

Conclusions

In this review, we discussed the role of proteases involved in processes related to blood feeding behaviour of arthropods: blood sucking, digestion, yolk formation and immunity, and even if indirectly, in the transmission and survival of pathogens. Inevitably, the success of haematophagy is dependent on the ability of the invertebrates to impair prey haemostasis and inflammation in the feeding foci. However, few proteases are present in the saliva probably to avoid triggering platelet aggregation in the prey and furthermore saliva presents several protease inhibitors maybe to prevent thrombin-induced platelet aggregation and preserve prey blood flow during feeding.

549 Since the common meal is blood, we reported that haematophagous arthropod 550 proteases share structural and functional features resulting in the generation of the 551 essential nutrients and detoxification of the adverse molecules to their development, reproduction, and survival. Ticks and insects have evolved different mechanisms of digestion. In ticks, protein digestion occurs intracellularly using aspartic and cysteine proteases, while in insects the digestion occurs in the gut lumen mainly realized by trypsin-like serine proteases.

After we have prospected many related papers, we noticed authors have given different names for proteases belonging to the same clan or isoforms even in a single organism. This issue claims for a unified nomenclature to avoid misunderstanding and ambiguities. Thus, we suggest that a careful sequence analysis be done when describing a new gene in order to name it according to the clan (or clan prototype) name and in the studied **MEROPS** case of already proteases, rename them. database (merops.sanger.ac.uk) is very useful to define accurate systematic nomenclature, since it allows search for organism peptidase, family, clans, substrates, inhibitors and other resources.

565 Considering the central functions of haematophagous arthropod proteases have, 566 they could be employed as potential targets for the development of alternative strategies 567 for arthropod vector control. For instance, arthropod protease inhibitor investigation is 568 emerging [141].

570 Acknowledgements

571 DPP/UnB.

573 Funding

574 This work was supported by MCTI/CNPq/FNDCT/PRO-CENTRO-OESTE 575 [407730/2013-3 and 407855/2013-0], CAPES/Incentivo a Pesquisa em Parasitologia

-	576	Básica [23038.005298/2011-83], FAPDF [193.001.076/2015, 193.001.053/2015 an	d									
1 2 3	577	193.000.822/2015], CNPq, Finep and UnB.										
4 5	578											
6 7 8	579	Authors' contributions										
9 10	580	PBS, CNA, FNM, YRP, SOC, IMDB: conceived the study, and wrote the manuscript.										
11 12 12	581	JMS: participated in design, coordination and wrote the manuscript. All authors read										
13 14 15	582	and approved the final manuscript.										
16 17	583											
18 19 20	584	Competing interests										
21 22	585	The authors declare that they have no competing interests.										
23 24 25	586											
26 27	587											
28 29												
30 21												
31 32												
33												
34												
35 36												
37												
38												
39												
40 41												
42												
43												
44												
45												
47												
48												
49 50												
51												
52												
53												
54 55												
56												
57												
58												
60												
61												
62		2	6									
63 64												
65												

588 **References**

1

- ² 589 1. Mehlhorn H: Arthropods as Vectors of Emerging Diseases, vol. 3. Germany:
 ³ 590 Springer International Publishing AG; 2012.
- $_{5}^{4}$ 591 2. WHO: Vector-borne diseases. Fact sheet n. 387., vol. 2016: WHO; 2016.
- Solution
 Solution
 Solution
 Solution
 Solution
 Reis MG: Frequent house invasion of *Trypanosoma cruzi*-infected triatomines in a suburban area of Brazil. PLoS Negl Trop Dis 2015, 9(4):e0003678.
- ⁹
 ⁹
 ¹⁰
 ¹¹
 ¹²
 ¹⁵
 ¹⁶
 ¹⁷
 ¹⁶
 ¹⁷
 ¹⁶
 ¹⁷
 ¹⁸
 ¹⁷
 ¹⁸
 ¹⁹
 ¹⁹
 ¹⁹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹

- 135985.Ribeiro JM: Role of saliva in blood-feeding by arthropods. Annu Rev Entomol145991987, 32:463-478.
- ¹⁵
 ¹⁶
 ¹⁶
 ¹⁷
 ¹⁷
 ¹⁸
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 <li
- ¹⁹
 ²⁰
 ²⁰
 ²⁰
 ²⁰
 ²⁰
 ²⁰
 ²⁰
 ²¹
 ²⁰
 ²¹
 ²⁰
 ²¹
 ²⁰
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 ²¹
 <li
- 236068.Ribeiro JM: Vector salivation and parasite transmission. Mem Inst Oswaldo24607Cruz 1987, 82 Suppl 3:1-3.
- 608
 608
 609
 609
 Cambridge University Press; 2005.
- 610 10. Sojka D, Franta Z, Horn M, Caffrey CR, Mareš M, Kopáček P: New insights into the machinery of blood digestion by ticks. Trends Parasitol 2013, 29(6):276-285.
- 613 11. Rawlings ND, Barrett AJ, Finn R: Twenty years of the MEROPS database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res 2016, 44(D1):D343-350.
- 616
 617
 7
 618
 617
 618
 617
 618
 617
 618
 617
 618
 617
 618
 617
 618
 617
 618
 617
 618
 618
 618
 618
 618
 619
 610
 610
 611
 612
 613
 614
 615
 615
 616
 617
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
 618
- 3061913.Khan AR, James MN: Molecular mechanisms for the conversion of zymogens to
active proteolytic enzymes. Protein Sci 1998, 7(4):815-836.
- 41 621 14. Rawlings ND, Salvesen G: Handbook of Proteolytic Enzymes, vol. 3: Academic
 42 622 Press; 2013.
 43 622 15 Araina P. Tanaha AS, Salvesen St. Taianain an annual activately a series.
- 623 15. Amino R, Tanaka AS, Schenkman S: Triapsin, an unusual activatable serine protease from the saliva of the hematophagous vector of Chagas' disease *Triatoma infestans* (Hemiptera: Reduviidae). Insect Biochem Mol Biol 2001, 31(4-5):465-472.
- ⁴⁸
 ⁴⁹
 ⁶²⁷
 ^{16.} Assumpcao TC, Ribeiro JM, Francischetti IM: Disintegrins from hematophagous sources. Toxins (Basel) 2012, 4(5):296-322.
- 5162917.Santiago PB, Assumpção TC, Araújo CN, Bastos IM, Neves D, Silva IG,52630Charneau S, Queiroz RM, Raiol T, Oliveira JV et al: A Deep Insight into the53631Sialome of *Rhodnius neglectus*, a Vector of Chagas Disease. PLoS Negl Trop54632Dis 2016, 10(4):e0004581.
- 633 18. Francischetti IM, Mather TN, Ribeiro JM: Cloning of a salivary gland
 634 metalloprotease and characterization of gelatinase and fibrin(ogen)lytic activities
 635 in the saliva of the Lyme disease tick vector *Ixodes scapularis*. Biochem
 636 Biophys Res Commun 2003, 305(4):869-875.

27

- 637 19. Assumpcao TC, Charneau S, Santiago PB, Francischetti IM, Meng Z, Araujo
 1 638 CN, Pham VM, Queiroz RM, de Castro CN, Ricart CA et al: Insight into the
 2 639 salivary transcriptome and proteome of *Dipetalogaster maxima*. J Proteome Res
 3 640 2011, 10(2):669-679.
- 641 20. Assumpcao TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM,
 642 Ribeiro JM: An insight into the sialome of the blood-sucking bug *Triatoma* 643 *infestans*, a vector of Chagas' disease. Insect Biochem Mol Biol 2008,
 644 38(2):213-232.
- 644
 645
 645
 646
 646
 647
 648
 648
 648
 644
 644
 645
 645
 645
 646
 647
 648
 648
 648
 648
 644
 644
 645
 645
 645
 646
 647
 647
 648
 648
 648
 648
 648
 648
 648
 649
 649
 649
 649
 649
 649
 649
 649
 640
 641
 641
 641
 642
 643
 644
 644
 645
 645
 646
 647
 647
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 648
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
 74
- Ribeiro JM, Schwarz A, Francischetti IM: A Deep Insight Into the Sialotranscriptome of the Chagas Disease Vector, *Panstrongylus megistus* (Hemiptera: Heteroptera). J Med Entomol 2015, 52(3):351-358.
- Karim S, Singh P, Ribeiro JM: A deep insight into the sialotranscriptome of the gulf coast tick, *Amblyomma maculatum*. PLoS One 2011, 6(12):e28525.
- ²⁰ 21
 ²¹ 654
 ²² 655
 ²³ 656
 ²⁴ Zhou G, Flowers M, Friedrich K, Horton J, Pennington J, Wells MA: Metabolic fate of [14C]-labeled meal protein amino acids in *Aedes aegypti* mosquitoes. J Insect Physiol 2004, 50(4):337-349.
- 657 25. Horn M, Nussbaumerová M, Sanda M, Kovárová Z, Srba J, Franta Z, Sojka D, Bogyo M, Caffrey CR, Kopácek P et al: Hemoglobin digestion in blood-feeding ticks: mapping a multipeptidase pathway by functional proteomics. Chem Biol 2009, 16(10):1053-1063.
- 661 26. Sojka D, Francischetti IM, Calvo E, Kotsyfakis M: Cysteine proteases from bloodfeeding arthropod ectoparasites. Adv Exp Med Biol 2011, 712:177-191.
- ³¹
 ³²
 ³³
 ³⁶
 ³¹
 ³²
 ³³
 ³⁶
 ³¹
 ³²
 ³³
 ³⁶
 ³¹
 ³¹
 ³²
 ³³
 ³¹
 ³¹
 ³²
 ³³
 ³¹
 ³¹
 ³¹
 ³²
 ³³
 ³¹
 ³¹
 ³¹
 ³²
 ³³
 ³⁴
 ³⁵
 ³⁵
 ³⁵
 ³⁶
 ³⁶
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 <li
- 3466528.Attardo GM, Hansen IA, Raikhel AS: Nutritional regulation of vitellogenesis in35666mosquitoes: implications for anautogeny. Insect Biochem Mol Biol 2005,3666735(7):661-675.3766235(7):661-675.
- 668 29. Uchida K, Ohmori D, Yamakura F, Suzuki K: Changes in free amino acid concentration in the hemolymph of the female *Culex pipiens pallens* (Diptera: Culicidae), after a blood meal. J Med Entomol 1990, 27(3):302-308.
- ⁴¹
 ⁴²
 ⁴²
 ⁴²
 ⁴³
 ⁶⁷¹
 ⁴⁰
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴³
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴³
 ⁴²
 ⁴³
 ⁴²
 ⁴³
 ⁴²
 ⁴³
 ⁴²
 ⁴³
 ⁴¹
 ⁴²
 ⁴³
 ⁴¹
 ⁴²
 ⁴³
 ⁴¹
 ⁴²
 ⁴³
 ⁴¹
 ⁴²
 ⁴³
 ⁴¹
 ⁴²
 ⁴²
 ⁴³
 ⁴¹
 ⁴²
 ⁴³
 ⁴³
 ⁴³
 ⁴³
 ⁴³
 ⁴⁴
 ⁴³
 ⁴⁴
 ⁴⁵
 ⁴⁴
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 <l
- 4367331.Severo MS, Sakhon OS, Choy A, Stephens KD, Pedra JH: The 'ubiquitous'45674reality of vector immunology. Cell Microbiol 2013, 15(7):1070-1078.
- ⁴⁶
 ⁴⁷
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁶⁷⁶
 ⁴⁸
 ⁶⁷⁷
 ⁴⁸
 ⁶⁷⁷
 ⁴⁰
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴²
 ⁴²
 ⁴²
 ⁴³
 ⁴³
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁶
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁷
 ⁴⁸
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
 ⁴⁹
- 5067833.Souza-Neto JA, Sim S, Dimopoulos G: An evolutionary conserved function of51679the JAK-STAT pathway in anti-dengue defense. Proc Natl Acad Sci U S A526802009, 106(42):17841-17846.
- ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁸
 ⁵⁸
 ⁵⁶
 ⁵⁶
 ⁵⁸
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵¹
 ⁵²
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁷
 ⁵⁸
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁸
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹</l
- 684 35. Gupta L, Molina-Cruz A, Kumar S, Rodrigues J, Dixit R, Zamora RE, Barillas 685 Mury C: The STAT pathway mediates late-phase immunity against Plasmodium in the mosquito *Anopheles gambiae*. Cell Host Microbe 2009, 5(5):498-507.

- 68736.Liu L, Dai J, Zhao YO, Narasimhan S, Yang Y, Zhang L, Fikrig E: Ixodes1688scapularis JAK-STAT pathway regulates tick antimicrobial peptides, thereby2689controlling the agent of human granulocytic anaplasmosis. J Infect Dis 2012,3690206(8):1233-1241.
- ⁴
 ⁵
 ⁶
 ⁶
 ⁷
 ⁸
 ⁶
 ⁸
 ⁸
 ⁶
 ⁴
 ⁶
 ⁷
 ⁸
 ⁸
 ⁸
 ⁸
 ⁸
 ⁹
 ⁹
 ⁸
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
 ⁹
- ¹²
 ¹³
 ¹³
 ¹⁴
 ¹⁵
 ¹⁶
 ¹⁷
 ¹⁸
 ¹⁹
 ¹⁹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹²
 ¹³
 ¹⁴
 ¹⁴
 ¹⁴
 ¹⁵
 ¹⁵
 ¹⁶
 ¹⁷
 ¹⁸
 ¹⁹
 ¹⁹
 ¹¹
 ¹¹
 ¹¹
 ¹²
 ¹²
 ¹³
 ¹⁴
 ¹⁴
 ¹⁴
 ¹⁵
 ¹⁵
 ¹⁶
 ¹⁷
 ¹⁸
 ¹⁸
 ¹⁹
 ¹⁹
 ¹⁹
 ¹⁹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 <li
- 1570040.Lopez-Ordoñez T, Rodriguez MH, Hernández-Hernández FD: Characterization17701of a cDNA encoding a cathepsin L-like protein of *Rhodnius prolixus*. Insect Mol18702Biol 2001, 10(5):505-511.
- 703
 703
 704
 705
 706
 706
 707
 708
 709
 709
 700
 701
 702
 703
 704
 705
 705
 706
 706
 707
 708
 708
 709
 709
 700
 700
 700
 701
 701
 702
 703
 704
 705
 705
 706
 705
 706
 707
 708
 708
 709
 709
 701
 700
 700
 701
 701
 702
 703
 704
 705
 705
 706
 705
 706
 708
 709
 709
 701
 701
 702
 703
 704
 705
 705
 705
 706
 705
 706
 706
 707
 708
 709
 709
 701
 701
 702
 703
 704
 705
 705
 705
 706
 705
 706
 706
 706
 706
 708
 709
 709
 709
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
- 707 42. Kollien AH, Waniek PJ, Nisbet AJ, Billingsley PF, Schaub GA: Activity and sequence characterization of two cysteine proteases in the digestive tract of the reduviid bug *Triatoma infestans*. Insect Mol Biol 2004, 13(6):569-579.
- 710 43. Yamaji K, Tsuji N, Miyoshi T, Islam MK, Hatta T, Alim MA, Anisuzzaman,
 711 Takenaka A, Fujisaki K: Hemoglobinase activity of a cysteine protease from the
 712 ixodid tick *Haemaphysalis longicornis*. Parasitol Int 2009, 58(3):232-237.
- 713
 713
 714
 715
 715
 716
 717
 718
 718
 719
 719
 710
 710
 710
 711
 712
 713
 714
 714
 715
 715
 716
 717
 718
 718
 719
 719
 710
 710
 710
 711
 712
 712
 713
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 715
 714
 714
 714
 715
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
 714
- ³⁵
 ³⁶
 ³⁷
 ³⁷
 ³⁸
 ³⁵
 ³⁵
 ³⁶
 ³⁷
 ³⁷
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁸
 ³⁷
 ³⁷
 ³⁷
 ³⁸
 ³⁷
 ³⁷
 ³⁷
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁸
 ³⁹
 ³⁹
 ³⁹
 ³⁹
 ³⁹
 ³⁹
 ³⁹
 ³⁹
 ³⁹
 <li
- 719 46. Mendiola J, Alonso M, Marquetti MC, Finlay C: *Boophilus microplus*: multiple proteolytic activities in the midgut. Exp Parasitol 1996, 82(1):27-33.
- 721
 721
 721
 722
 722
 723
 723
 724
 724
 724
 725
 726
 726
 726
 721
 721
 727
 728
 729
 729
 729
 720
 720
 720
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 721
 722
 721
 721
 721
 721
 721
 721
 721
 722
 721
 721
 722
 721
 721
 721
 721
 721
 721
 721
 721
 722
 721
 721
 722
 721
 721
 722
 721
 721
 721
 722
 721
 721
- 46
 47
 48
 49
 725
 48. Renard G, Lara FA, de Cardoso FC, Miguens FC, Dansa-Petretski M, Termignoni C, Masuda A: Expression and immunolocalization of a *Boophilus microplus* cathepsin L-like enzyme. Insect Mol Biol 2002, 11(4):325-328.
- 72849.Estrela AB, Seixas A, Teixeira VeO, Pinto AF, Termignoni C: Vitellin- and
hemoglobin-digesting enzymes in *Rhipicephalus (Boophilus) microplus* larvae51729nd females. Comp Biochem Physiol B Biochem Mol Biol 2010, 157(4):326-
335.53731335.
- 732 50. Estrela A, Seixas A, Termignoni C: A cysteine endopeptidase from tick (*Rhipicephalus (Boophilus) microplus*) larvae with vitellin digestion activity.
 734 Comp Biochem Physiol B Biochem Mol Biol 2007, 148(4):410-416.
- 59
- 60 61
- 62 63 64
- 65

51. Seixas A, Dos Santos PC, Velloso FF, Da Silva Vaz I, Masuda A, Horn F, Termignoni C: А **Boophilus** microplus vitellin-degrading cysteine endopeptidase. Parasitology 2003, 126(Pt 2):155-163. Seixas A, Estrela AB, Ceolato JC, Pontes EG, Lara F, Gondim KC, Termignoni 52. C: Localization and function of Rhipicephalus (Boophilus) microplus vitellin-degrading cysteine endopeptidase. Parasitology 2010, 137(12):1819-1831. Oldiges DP. Parizi LF. Zimmer KR. Lorenzini DM. Seixas A. Masuda A. da 53. Silva Vaz I, Termignoni C: A Rhipicephalus (Boophilus) microplus cathepsin with dual peptidase and antimicrobial activity. Int J Parasitol 2012, 42(7):635-645. 54. Moolhuijzen PM, Lew-Tabor AE, Morgan JA, Valle MR, Peterson DG, Dowd SE, Guerrero FD, Bellgard MI, Appels R: The complexity of Rhipicephalus (Boophilus) microplus genome characterised through detailed analysis of two BAC clones. BMC Res Notes 2011, 4:254. Houseman JG, Downe A: Activity cycles and the controlo of four digestive 55. proteinases in the posterior midgut of *Rhodnius prolixus* Stal (Hemiptera: Reduviidae). In: J Insect Physiol, vol. 29. Great Britain: Pergamon Press Ltd; 1983: 141-148. 56. Billingsley PF, Downe AE: The effects of artificial diets on the anterior intestinal cell ultrastructure of Rhodnius prolixus (Hemiptera:Reduviidae). Int J Parasitol 1989, 19(3):291-299. Cho WL, Tsao SM, Hays AR, Walter R, Chen JS, Snigirevskava ES, Raikhel 57. AS: Mosquito cathepsin B-like protease involved in embryonic degradation of vitellin is produced as a latent extraovarian precursor. J Biol Chem 1999, 274(19):13311-13321. 58. Tsuji N, Miyoshi T, Battsetseg B, Matsuo T, Xuan X, Fujisaki K: A cysteine protease is critical for Babesia spp. transmission in Haemaphysalis ticks. PLoS Pathog 2008, 4(5):e1000062. Abdul Alim M, Tsuji N, Miyoshi T, Khyrul Islam M, Huang X, Motobu M, 59. Fujisaki K: Characterization of asparaginyl endopeptidase, legumain induced by blood feeding in the ixodid tick Haemaphysalis longicornis. Insect Biochem Mol Biol 2007, 37(9):911-922. Alim MA, Tsuji N, Miyoshi T, Islam MK, Huang X, Hatta T, Fujisaki K: 60. HlLgm2, a member of asparaginyl endopeptidases/legumains in the midgut of the ixodid tick Haemaphysalis longicornis, is involved in blood-meal digestion. J Insect Physiol 2008, 54(3):573-585. 61. Alim MA, Tsuji N, Miyoshi T, Islam MK, Hatta T, Fujisaki K: Legumains from the hard tick Haemaphysalis longicornis play modulatory roles in blood feeding and gut cellular remodelling and impact on embryogenesis. Int J Parasitol 2009, 39(1):97-107. Sojka D, Hajdusek O, Dvorák J, Sajid M, Franta Z, Schneider EL, Craik CS, 62. Vancová M, Buresová V, Bogyo M et al: IrAE: an asparaginyl endopeptidase (legumain) in the gut of the hard tick Ixodes ricinus. Int J Parasitol 2007, 37(7):713-724. Jiang H, Kanost MR: The clip-domain family of serine proteinases in 63. arthropods. Insect Biochem Mol Biol 2000, 30(2):95-105. Gaboriaud C, Gregory-Pauron L, Teillet F, Thielens NM, Bally I, Arlaud GJ: 64. Structure and properties of the Ca(2+)-binding CUB domain, a widespread ligand-recognition unit involved in major biological functions. Biochem J 2011, 439(2):185-193.

- 785 65. Schwarz A, Medrano-Mercado N, Schaub GA, Struchiner CJ, Bargues MD,
 1 786 Levy MZ, Ribeiro JM: An updated insight into the Sialotranscriptome of
 787 *Triatoma infestans*: developmental stage and geographic variations. PLoS Negl
 788 Trop Dis 2014, 8(12):e3372.
- 789 66. Graf R, Raikhel AS, Brown MR, Lea AO, Briegel H: Mosquito trypsin:
 790 immunocytochemical localization in the midgut of blood-fed *Aedes aegypti* (L.).
 791 Cell Tissue Res 1986, 245(1):19-27.
- ⁸ 792 67. Graf R, Boehlen P, Briegel H: Structural diversity of trypsin from different mosquito species feeding on vertebrate blood. Experientia 1991, 47(6):603-609.
- 1079468.Edgar KA, Noriega FG, Bonning BC, Wells MA: Recombinant juvenile12795hormone esterase, an effective tool for modifying juvenile hormone-dependent13796expression of the early trypsin gene in mosquitoes. Insect Mol Biol 2000,147979(1):27-31.
- 15
 16
 17
 18
 18
 197
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 191
 <l
- 801 70. Noriega FG, Wang XY, Pennington JE, Barillas-Mury CV, Wells MA: Early trypsin, a female-specific midgut protease in *Aedes aegypti:* isolation, aminoterminal sequence determination, and cloning and sequencing of the gene.
 803 804 Insect Biochem Mol Biol 1996, 26(2):119-126.
- 805
 806
 806
 807
 808
 808
 71. Barillas-Mury CV, Noriega FG, Wells MA: Early trypsin activity is part of the signal transduction system that activates transcription of the late trypsin gene in the midgut of the mosquito, *Aedes aegypti*. Insect Biochem Mol Biol 1995, 25(2):241-246.
- 809
 809
 810
 810
 811
 812
 812
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 809
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
 800
- Rascón AA, Gearin J, Isoe J, Miesfeld RL: In vitro activation and enzyme kinetic analysis of recombinant midgut serine proteases from the Dengue vector mosquito *Aedes aegypti*. BMC Biochem 2011, 12:43.
- 816
 816
 74. Isoe J, Rascón AA, Kunz S, Miesfeld RL: Molecular genetic analysis of midgut serine proteases in *Aedes aegypti* mosquitoes. Insect Biochem Mol Biol 2009, 39(12):903-912.
- ⁴¹
 ⁴²
 ⁴²
 ⁴³
 ⁴³
 ⁴⁴
 ⁴⁴
 ⁴⁵
 ⁴²
 ⁴²
 ⁴⁵
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴²
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴¹
 ⁴²
 ⁴¹
 ⁴²
 ⁴¹
 ⁴²
 ⁴¹
 ⁴²
 ⁴²
 ⁴¹
 ⁴²
 ⁴¹
 ⁴²
 ⁴²
 ⁴¹
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴²
 ⁴³
 ⁴⁴
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵
 ⁴⁵</l
- 823
 824
 825
 76. Saboia-Vahia L, Cuervo P, Borges-Veloso A, de Souza NP, Britto C, Dias-Lopes G, De Jesus JB: The midgut of *Aedes albopictus* females expresses active trypsin-like serine peptidases. Parasit Vectors 2014, 7:253.
- 1082677.Müller HM, Crampton JM, della Torre A, Sinden R, Crisanti A: Members of a51827trypsin gene family in Anopheles gambiae are induced in the gut by blood meal.52828EMBO J 1993, 12(7):2891-2900.
- ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁵
 ⁵⁶
 ⁵³
 ⁵³
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁰
 ⁵¹
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵³
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁰
 ⁵¹
 ⁵¹
 ⁵¹
 ⁵²
 ⁵³
 ⁵⁴
 ⁵⁵
 ⁵⁶
 ⁵⁶
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁶
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁷
 ⁵⁸
 ⁵⁷
 ⁵⁸
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹
 ⁵⁹</l
- ⁵⁷ 832 79. Müller HM, Catteruccia F, Vizioli J, della Torre A, Crisanti A: Constitutive and blood meal-induced trypsin genes in *Anopheles gambiae*. Exp Parasitol 1995, 81(3):371-385.
 - 31

61

- 835 80. Dias-Lopes G, Borges-Veloso A, Saboia-Vahia L, Domont GB, Britto C,
 1 836 Cuervo P, De Jesus JB: Expression of active trypsin-like serine peptidases in the
 2 837 midgut of sugar-feeding female Anopheles aquasalis. Parasit Vectors 2015,
 838 8:296.
- 839 81. Borges-Veloso A, Saboia-Vahia L, Dias-Lopes G, Domont GB, Britto C,
 840 Cuervo P, De Jesus JB: In-depth characterization of trypsin-like serine
 841 peptidases in the midgut of the sugar fed *Culex quinquefasciatus*. Parasit
 842 Vectors 2015, 8:373.
- 843
 843
 843
 844
 844
 845
 845
 845
 846
 847
 847
 848
 848
 849
 849
 849
 849
 849
 840
 840
 841
 841
 841
 842
 842
 843
 844
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
 845
- ¹³
 ¹⁴
 ¹⁴
 ¹⁵
 ¹⁶
 ¹³
 ¹⁴
 ¹⁴
 ¹⁴
 ¹⁵
 ¹⁶
 ¹⁶
 ¹⁷
 ¹⁸
 ¹⁹
 ¹⁹
 ¹⁹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹²
 ¹³
 ¹⁴
 ¹⁴
 ¹⁵
 ¹⁶
 ¹⁶
 ¹⁶
 ¹⁷
 ¹⁸
 ¹¹
 ¹⁹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 ¹¹
 <li
- 849
 849
 849
 850
 851
 851
 852
 852
 854
 855
 854
 855
 855
 856
 857
 858
 850
 851
 851
 852
 852
 852
 852
 853
 854
 854
 855
 855
 856
 857
 857
 858
 858
 859
 850
 850
 850
 851
 852
 852
 852
 852
 852
 854
 855
 855
 856
 857
 857
 858
 858
 859
 850
 850
 850
 851
 851
 852
 852
 852
 854
 855
 855
 855
 856
 857
 857
 858
 858
 859
 850
 850
 850
 850
 851
 852
 852
 852
 852
 852
 854
 855
 855
 856
 857
 858
 858
 858
 859
 859
 850
 850
 850
 851
 852
 852
 852
 852
 854
 855
 855
 856
 857
 858
 858
 858
 859
 850
 850
 851
 852
 852
 852
 852
 854
 854
 855
 855
 856
 856
- 853
 854
 854
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 854
 855
 855
 855
 855
 855
 855
 855
 855
 856
 856
 857
 857
 857
 857
 857
 857
 857
 857
 857
 857
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
- 856
 856
 857
 858
 858
 856
 857
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
 858
- 859
 859
 860
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
 861
- 3286288.Dimopoulos G, Richman A, della Torre A, Kafatos FC, Louis C: Identification34863and characterization of differentially expressed cDNAs of the vector mosquito,35864Anopheles gambiae. Proc Natl Acad Sci U S A 1996, 93(23):13066-13071.
- ³⁶
 ³⁷
 ³⁶
 ³⁷
 ³⁶
 ³⁷
 ³⁶
 ³⁷
 ³⁸
 ³⁶
 ³⁸
 ³⁹
 ³⁶
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁹
 ³⁶
 ³⁷
 ³⁸
 ³⁷
 ³⁸
 ³⁹
 ³⁶
 ³⁷
 ³⁸
 ³⁹
 ³⁶
 ³⁷
 ³⁸
 ³⁹
 ³⁶
 ³⁷
 ³⁸
 ³⁹
 ³⁹
 ³⁰
 ³¹
 ³¹
 ³¹
 ³¹
 ³²
 ³²
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³²
 ³¹
 ³¹
 ³²
 ³²
 ³²
 ³²
 ³¹
 ³²
 ³²
 ³²
 ³²
 ³²
 ³²
 ³²
 ³²
 ³²
 ³²
 ³²
 ³²
 ³²
 ³³
 ³²
 ³³
 ³⁴
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 ³⁵
 <li
- 868
 869
 869
 869
 869
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
 870
- 4387191.Gorman MJ, Andreeva OV, Paskewitz SM: Sp22D: a multidomain serine45872protease with a putative role in insect immunity. Gene 2000, 251(1):9-17.
- 873
 874
 874
 874
 875
 876
 876
 877
 878
 879
 874
 875
 876
 876
 876
 876
 876
 876
 876
 876
 876
 876
 877
 878
 92. Sriwichai P, Rongsriyam Y, Jariyapan N, Apiwathnasorn C, Sattabongkot J, Paskewitz S: Expression of three serine protease genes from the South East Asian malaria vector, *Anopheles dirus*, in relation to blood feeding and parasite infection. Dev Comp Immunol 2008, 32(9):1011-1014.
- 5187793.Ramalho-Ortigão JM, Kamhawi S, Rowton ED, Ribeiro JM, Valenzuela JG:52878Cloning and characterization of trypsin- and chymotrypsin-like proteases from53879the midgut of the sand fly vector *Phlebotomus papatasi*. Insect Biochem Mol55880Biol 2003, 33(2):163-171.
- 881 94. Telleria EL, Pitaluga AN, Ortigão-Farias JR, de Araújo AP, Ramalho-Ortigão
 882 JM, Traub-Cseko YM: Constitutive and blood meal-induced trypsin genes in *Lutzomyia longipalpis*. Arch Insect Biochem Physiol 2007, 66(2):53-63.
- 60 61
- 62

- 88495.Telleria EL, de Araújo AP, Secundino NF, d'Avila-Levy CM, Traub-Csekö YM:1885Trypsin-like serine proteases in Lutzomyia longipalpis--expression, activity and2886possible modulation by Leishmania infantum chagasi. PLoS One 2010,38875(5):e10697.
- 888 96. Borovsky D, Schlein Y: Trypsin and chymotrypsin-like enzymes of the sandfly
 889 *Phlebotomus papatasi* infected with Leishmania and their possible role in vector
 890 competence. Med Vet Entomol 1987, 1(3):235-242.
- 891
 97. Pimenta PF, Modi GB, Pereira ST, Shahabuddin M, Sacks DL: A novel role for the peritrophic matrix in protecting Leishmania from the hydrolytic activities of the sand fly midgut. Parasitology 1997, 115 (Pt 4):359-369.
- 894
 895
 896
 98. Schlein Y, Jacobson RL: Resistance of *Phlebotomus papatasi* to infection with *Leishmania donovani* is modulated by components of the infective bloodmeal. Parasitology 1998, 117 (Pt 5):467-473.
- 1689799.Liu LM, Liu JN, Liu Z, Yu ZJ, Xu SQ, Yang XH, Li T, Li SS, Guo LD, Liu JZ:17898Microbial communities and symbionts in the hard tick Haemaphysalis18899longicornis (Acari: Ixodidae) from north China. Parasit Vectors 2013, 6(1):310.
- 900 100. Mulenga A, Sugimoto C, Ingram G, Ohashi K, Misao O: Characterization of two cDNAs encoding serine proteinases from the hard tick *Haemaphysalis longicornis*. Insect Biochem Mol Biol 2001, 31(8):817-825.
- 903 101. Miyoshi T, Tsuji N, Islam MK, Kamio T, Fujisaki K: Cloning and molecular
 904 characterization of a cubilin-related serine proteinase from the hard tick
 905 *Haemaphysalis longicornis*. Insect Biochem Mol Biol 2004, 34(8):799-808.
- 906 102. Miyoshi T, Tsuji N, Islam MK, Huang X, Motobu M, Alim MA, Fujisaki K:
 907 Molecular and reverse genetic characterization of serine proteinase-induced
 908 hemolysis in the midgut of the ixodid tick *Haemaphysalis longicornis*. J Insect
 909 Physiol 2007, 53(2):195-203.
- ³¹ 910 103. Bork P, Beckmann G: The CUB domain. A widespread module in developmentally regulated proteins. J Mol Biol 1993, 231(2):539-545.
- 912 104. Miyoshi T, Tsuji N, Islam MK, Alim MA, Hatta T, Huang X, Fujisaki K: A set of serine proteinase paralogs are required for blood-digestion in the ixodid tick *Haemaphysalis longicornis*. Parasitol Int 2008, 57(4):499-505.
 914 105
- 37
38915
915105.Motobu M, Tsuji N, Miyoshi T, Huang X, Islam MK, Alim MA, Fujisaki K:
Molecular characterization of a blood-induced serine carboxypeptidase from the
ixodid tick Haemaphysalis longicornis. FEBS J 2007, 274(13):3299-3312.
- 918
 918
 919
 919
 919
 920
 920
 921
 921
 921
 920
 921
 920
 921
 921
 920
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
 921
- 922 107. Nisbet AJ, Billingsley PF: A comparative survey of the hydrolytic enzymes of
 923 ectoparasitic and free-living mites. Int J Parasitol 2000, 30(1):19-27.
 100 H iii A Di Ghl EF. Di school of the hydrolytic enzymes of
- 924 108. Hasilik A, Neufeld EF: Biosynthesis of lysosomal enzymes in fibroblasts.
 925 Synthesis as precursors of higher molecular weight. J Biol Chem 1980, 255(10):4937-4945.
- ⁵² 927 109. Kornfeld S: Lysosomal enzyme targeting. Biochem Soc Trans 1990, 18(3):367 ⁵³ 928 374.
- 929 110. Borges EC, Machado EM, Garcia ES, Azambuja P: *Trypanosoma cruzi*: effects
 930 of infection on cathepsin D activity in the midgut of *Rhodnius prolixus*. Exp
 931 Parasitol 2006, 112(2):130-133.
- ⁵⁸
 932 111. Buarque DS, Braz GR, Martins RM, Tanaka-Azevedo AM, Gomes CM, Oliveira FA, Schenkman S, Tanaka AS: Differential expression profiles in the
- 61 62 63 64

midgut of Triatoma infestans infected with Trypanosoma cruzi. PLoS One 2013, 8(5):e61203.

- Balczun C, Siemanowski J, Pausch JK, Helling S, Marcus K, Stephan C, Meyer 112. HE, Schneider T, Cizmowski C, Oldenburg M et al: Intestinal aspartate proteases TiCatD and TiCatD2 of the haematophagous bug Triatoma infestans (Reduviidae): sequence characterisation, expression pattern and characterisation of proteolytic activity. Insect Biochem Mol Biol 2012, 42(4):240-250.
- 113. Levria J, Fruttero LL, Nazar M, Canavoso LE: The Role of DmCatD, a Cathepsin D-Like Peptidase, and Acid Phosphatase in the Process of Follicular Atresia in Dipetalogaster maxima (Hemiptera: Reduviidae), a Vector of Chagas' Disease. PLoS One 2015, 10(6):e0130144.
- Logullo C, Vaz IaS, Sorgine MH, Paiva-Silva GO, Faria FS, Zingali RB, De 114. Lima MF, Abreu L, Oliveira EF, Alves EW et al: Isolation of an aspartic proteinase precursor from the egg of a hard tick, Boophilus microplus. Parasitology 1998, 116 (Pt 6):525-532.
- Abreu LA, Valle D, Manso PP, Facanha AR, Pelajo-Machado M, Masuda H, 115. Masuda A, Vaz I, Lenzi H, Oliveira PL et al: Proteolytic activity of Boophilus microplus Yolk pro-Cathepsin D (BYC) is coincident with cortical acidification during embryogenesis. Insect Biochem Mol Biol 2004, 34(5):443-449.
- Sorgine MH, Logullo C, Zingali RB, Paiva-Silva GO, Juliano L, Oliveira PL: A 116. heme-binding aspartic proteinase from the eggs of the hard tick Boophilus microplus. J Biol Chem 2000, 275(37):28659-28665.
- Cruz CE, Fogaça AC, Nakayasu ES, Angeli CB, Belmonte R, Almeida IC, 117. Miranda A, Miranda MT, Tanaka AS, Braz GR et al: Characterization of proteinases from the midgut of Rhipicephalus (Boophilus) microplus involved in the generation of antimicrobial peptides. Parasit Vectors 2010, 3:63.
- 118. Boldbaatar D, Sikalizyo Sikasunge C, Battsetseg B, Xuan X, Fujisaki K: Molecular cloning and functional characterization of an aspartic protease from the hard tick Haemaphysalis longicornis. Insect Biochem Mol Biol 2006, 36(1):25-36.
- 119. Ugalde AP, Ordóñez GR, Quirós PM, Puente XS, López-Otín C: Metalloproteases and the degradome. Methods Mol Biol 2010, 622:3-29.
- Hatfield KJ, Reikvam H, Bruserud Ø: The crosstalk between the matrix 120. metalloprotease system and the chemokine network in acute myeloid leukemia. Curr Med Chem 2010, 17(36):4448-4461.
- Feder D, Salles JM, Garcia ES, Azambuja P: Haemolymph and fat body 121. metallo-protease associated with Enterobacter cloacae infection in the bloodsucking insect, Rhodnius prolixus. Mem Inst Oswaldo Cruz 1998, 93(6):823-826.
- 122. Feder D, Gomes S, Garcia E, Azambuja P: Metalloproteases in Trypanosoma rangeli-infected Rhodnius prolixus. Mem Inst Oswaldo Cruz 1999, 94(6):771-777.
- Assumpção TC, Eaton DP, Pham VM, Francischetti IM, Aoki V, Hans-Filho G, 123. Rivitti EA, Valenzuela JG, Diaz LA, Ribeiro JM: An insight into the sialotranscriptome of Triatoma matogrossensis, a kissing bug associated with fogo selvagem in South America. Am J Trop Med Hyg 2012, 86(6):1005-1014.
- 124. da Silveira RB, dos Santos Filho JF, Mangili OC, Veiga SS, Gremski W, Nader HB, von Dietrich CP: Identification of proteases in the extract of venom glands from brown spiders. Toxicon 2002, 40(6):815-822.

- 983125.Feitosa L, Gremski W, Veiga SS, Elias MC, Graner E, Mangili OC, Brentani1984RR: Detection and characterization of metalloproteinases with gelatinolytic,2985fibronectinolytic and fibrinogenolytic activities in brown spider (Loxosceles3986intermedia) venom. Toxicon 1998, 36(7):1039-1051.
- 126. da Silveira RB, Wille AC, Chaim OM, Appel MH, Silva DT, Franco CR, Toma 987 5 L, Mangili OC, Gremski W, Dietrich CP et al: Identification, cloning, 6 988 7 expression and functional characterization of an astacin-like metalloprotease 989 8 990 toxin from Loxosceles intermedia (brown spider) venom. Biochem J 2007, 9 991 406(2):355-363. 10
- 992127.Trevisan-Silva D, Gremski LH, Chaim OM, da Silveira RB, Meissner GO,12993Mangili OC, Barbaro KC, Gremski W, Veiga SS, Senff-Ribeiro A: Astacin-like13994metalloproteases are a gene family of toxins present in the venom of different14995species of the brown spider (genus Loxosceles). Biochimie 2010, 92(1):21-32.
- 15996128.Hsu CC, Wu WB, Chang YH, Kuo HL, Huang TF: Antithrombotic effect of a17997protein-type I class snake venom metalloproteinase, kistomin, is mediated by18998affecting glycoprotein Ib-von Willebrand factor interaction. Mol Pharmacol199992007, 72(4):984-992.
- 1000
 129.
 1001
 129.
 1001
 129.
 1001
 129.
 Huang TF, Chang MC, Teng CM: Antiplatelet protease, kistomin, selectively cleaves human platelet glycoprotein Ib. Biochim Biophys Acta 1993, 1158(3):293-299.
- 1003
 130. Hsu CC, Wu WB, Huang TF: A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J Thromb Haemost 2008, 6(9):1578-1585.
- 1006131.Noriega FG, Edgar KA, Bechet R, Wells MA: Midgut exopeptidase activities in291007Aedes aegypti are induced by blood feeding. J Insect Physiol 2002, 48(2):205-301008212.
- 1009
 132.
 1010
 34
 1011
 132.
 1010
 132.
 1010
 132.
 1010
 1010
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1011
 1
- ³⁵ 1012 133. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H:
 ³⁶ 1013 Activation of matrix metalloproteinases by peroxynitrite-induced protein S ³⁷ 1014 glutathiolation via disulfide S-oxide formation. J Biol Chem 2001, 276(31):29596-29602.
- 134. Okamoto T, Akuta T, Tamura F, van Der Vliet A, Akaike T: Molecular 40 1016 41 mechanism for activation and regulation of matrix metalloproteinases during 1017 42 bacterial infections and respiratory inflammation. 1018 Biol Chem 2004. 43 1019 385(11):997-1006. 44
- 451020135.Mulenga A, Erikson K: A snapshot of the *Ixodes scapularis* degradome. Gene4610212011, 482(1-2):78-93.
- ⁴⁷ 1022 136. Ali A, Tirloni L, Isezaki M, Seixas A, Konnai S, Ohashi K, da Silva Vaz Junior
 ⁴⁸ 1023 I, Termignoni C: Reprolysin metalloproteases from *Ixodes persulcatus*, *Rhipicephalus sanguineus* and *Rhipicephalus microplus* ticks. Exp Appl Acarol 2014, 63(4):559-578.
- 1026 137. Imamura S, da Silva Vaz I, Konnai S, Yamada S, Nakajima C, Onuma M, Ohashi K: Effect of vaccination with a recombinant metalloprotease from *Haemaphysalis longicornis*. Exp Appl Acarol 2009, 48(4):345-358.
- 1029
 138. Xu XL, Cheng TY, Yang H, Yan F, Yang Y: De novo sequencing, assembly and analysis of salivary gland transcriptome of *Haemaphysalis flava* and identification of sialoprotein genes. Infect Genet Evol 2015, 32:135-142.
- 60
- 61 62

- 1032139.Radulović Ž, Kim TK, Porter LM, Sze SH, Lewis L, Mulenga A: A 24-48 h fed11033Amblyomma americanum tick saliva immuno-proteome. BMC Genomics 2014,2103415:518.
- ³ 1035 140. Masaki T: Historical review: Endothelin. Trends Pharmacol Sci 2004, 5 1036 25(4):219-224.
 - 1037 141. da Silva DS, de Oliveira CF, Parra JR, Marangoni S, Macedo ML: Short and long-term antinutritional effect of the trypsin inhibitor ApTI for biological control of sugarcane borer. J Insect Physiol 2014, 61:1-7.
 - 1040 142. Chraïbi A, Vallet V, Firsov D, Hess SK, Horisberger JD: Protease modulation of
 1041 the activity of the epithelial sodium channel expressed in *Xenopus oocytes*. J
 1042 Gen Physiol 1998, 111(1):127-138.

Fig. 1 Haemoglobin digestion in mosquitoes and ticks. (A) Host erythrocytes undergo lysis and release haemoglobin (Hb) and other proteins in the lumen of the midgut (1). In mosquitoes, proteases are secreted in the gut lumen for initial Hb extracellular digestion (2), generating peptides that will be further internalized and hydrolyzed in the epithelial cells (3). Upon degradation of Hb, free heme must be detoxified (4). (B) In ticks, Hb is internalized by receptor-mediated endocytosis (2), and directed to large endosomal vesicles that fuse with lysosomes containing cysteine and aspartic proteases where it is degraded (3). Upon degradation of Hb, free heme must be detoxified (4).

Fig. 2 Hormonal control of yolk formation. There are three invertebrate hormones that play major roles in yolk formation. Young females have a high level of juvenile hormone (JH), which is produced by corpora allata located in the arthropod brain and acts on fat body and ovaries (1). Upon a blood meal, the JH level drops in haemolymph, and egg development neurosecretory hormone (EDNH) (2) level increases to stimulate the release of ecdysone (Ec) (3) by ovaries that is converted in 20-hydroxyecdysona (20-HE) in the fat body. Together with 20-HE, the nutrients consumed during the blood meal stimulate the expression and secretion, by fat body cells, of yolk precursor proteins (YPP) (4) that are essentials in vitellogenesis.

Fig. 3 Overview of proteases from haematophagous arthropods. The columns show proteases reported in: (A) ticks, arthropods from Arachnida class; and also in (B) Diptera (Culicidae) and (C) Hemiptera (Reduviidae:Triatomine), orders from Insecta class. The colors used group the proteases according to their biological function as follows: orange, digestion; blue, haematophagy; green, immunity; and red, yolk formation. The symbols above the words add the following information: black triangle, proteins identified using proteomic approach; black circle, proteases described through
in silico analysis; asterisk, sequences obtained using transcriptomic approach; hashtag,
protease activity derived from tissue extracts (midgut or salivary gland).

1075 Additional files

1076 Additional table file 1 Characteristics of proteases from hematophagous arthropods1077

1078 Additional file 2 Overview of multiple sequence alignment of ten predicted Cathepsin

1079 L from R. (B.) microplus. The alignments were performed by Multiple Sequence

1080 Comparison - Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/), and manually

edited using Aline (http://bondxray.org/software/aline.html). Black – fully conserved
residues. Gray – not conserved residues. Blue – catalytic residues.

Click here to access/download Supplementary Material Additional file 1.pdf Supplementary Material 2

Click here to access/download Supplementary Material Additional file 2.bmp Co-author signed letter

Dear Editors,

All authors of this manuscript declare that we have seen and approved the submitted version of this manuscript.

Yours faithfully,

Name	Date	Signature
Jaime M. Santana	10/06/2016	Santana

Dear Editors,

All authors of this manuscript declare that we have seen and approved the submitted version of this manuscript.

Yours faithfully,

Name	Date	Signature
Paula Beatriz Santiago	10/06/2016	Naula Jautiop
Carla Nunes de Araújo	10/06/2016	Curla numer de Oranjo
Flávia Nader Motta	10/06/2016	Stania mette
Yanna Reis Praça	10/06/2016	Honna:
Sébastien Charneau	10/06/2016	Agenoga
Izabela M. Dourado Bastos	10/06/2016	Jubbeles
- y		

UNIVERSIDADE DE BRASÍLIA - UnB Instituto de Ciências Biológicas Laboratório de Interação Patógeno- Hospedeiro Phone: +556131073053

Brasília, June 14th, 2016

Dr. Filipe Dantas-Torres, Editor of *Vector-borne zoonoses and One Health* section Parasites & Vectors

Dear Dr. Dantas-Torres,

Please, find the enclosed review manuscript for your appreciation, entitled "Proteases of haematophagous arthropod vectors are involved in blood feeding, yolk formation and immunity - a review".

This manuscript brings a review on proteases of haematophagous arthropods vectors of diseases. These enzymes have central roles in many physiological processes and we emphasize their involvement in haematophagy, digestion, yolk formation, and immunity.

Transmission of parasites by arthropods is crucially dependent on successful blood feeding, a process mediated by saliva injected at the site of feeding to counteract host haemostasis, inflammation, and immune responses. Knowledge about proteases repertoire could lead to improved strategies for disrupting parasite transmission, allowing the prevention of new cases of vector-borne diseases. Likewise, comparison of insects and ticks physiology may reveal common and/or different patterns among them helping to highlight the potential targets.

I declare that all authors have contributed significantly to the manuscript and that they are in agreement with its content. This manuscript has not been published elsewhere and is not under consideration by another journal.

I suggest the following as potential peer reviewers, as they are experts in their respective fields:

- Claudia Masini d'Avila Levy. Fundação Oswaldo Cruz, Instituto Oswaldo Cruz. Laboratório de Estudos Integrados em Prtozoologia, Av. Brasil 4365. Manguinhos. 21045-900, Rio de Janeiro, Brasil. <u>davila.levy@ioc.fiocruz.br</u>
- Jose Marcos Chaves Ribeiro. Vector Biology Section. Laboratory of Malaria

and Vector Research. National Institute of Allergy and Infectious Diseases. TW3 BG RM 2E32. 12735 Twinbrook PKWY. Rockville MD 20852. jose.ribeiro@nih.gov

 Theresa HT Coetzer. Rabie Saunders Building, no: 31. University of KwaZulu-Natal, Durban. <u>Coetzer@ukzn.ac.za</u>

Sincerely yours,

Santana

Jaime Martins de Santana, Ph.D Department of Cell Biology University of Brasilia, Brazil E-mail: jsantana@unb.br