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Chapter 1

Introduction

In this work is verified how to assess the significance of factors effects in Data En-
velopment Analysis (DEA) measures of efficiency. In the theoretical aspect the thesis
contributes to the literature extending Banker’s theory ([7]) and in the empirical aspect
with an application to Brazilian banks comparing asymptotic, bootstrap and probabi-
listic approaches.

The theoretical part available focus on how to model DEA inefficiencies as dependent
of contextual variables by means of a statistical model similar in appearance to ineffi-
ciency component specifications in stochastic frontier models. This is an extension for
Banker [7].

In [7], Banker demonstrates that for deterministic univariate production models defi-
ned by independent identically distributed inefficiencies, the DEA estimator of a produc-
tion function maximizes the likelihood of the model if the inefficiency density function
is monotone decreasing. Banker also shows that the DEA estimator is weakly consistent
and that, in large samples, the distributional assumptions of the true inefficiencies are
carried to the estimated inefficiencies.

In this work, Souza and Staub [43] contribute relaxing the assumption of identically
distributed inefficiencies from Banker [7] and demonstrating the strong consistency of the
DEA production function and showing how one can model inefficiencies in a two-stage
approach. Using Monte Carlo simulation, it is found opposite arguments to the critics
postulated by Simar and Wilson [42] who assert that estimated DEA efficiencies are
correlated and consequently inference in the two-stage approach is invalid. The estimated
correlations are inspected in small samples, for a univariate production model assuming
original inefficiencies uncorrelated. The observed correlations were negligible and in this
case, Banker’s results remain valid. The theoretical contributions are available in chapter
3 and forthcoming on the International Transactions of Operations Research (ITOR)
journal, Souza and Staub [43].

The main objective of the empirical part is to compute efficiency measures for com-
mercial banks in Brazil and to verify the influence of contextual variables on it. Based
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on the recent critics postulated by Simar and Wilson [42] it is worthy to elaborate a
comparison of the results of different techniques, since Souza and Staub [43] found that
their arguments are not valid in all cases, as demonstrated in the theoretical part of this
work. The following techniques are used :

– 1) Maximum likelihood in the context of the truncated normal distribution, the ex-
ponential distribution and general Tobit models, as well as nonparametric analysis
of covariance (Banker [7] and Souza [11] and [17]) ;

– 2) Randomization process in a parametric analysis of covariance ;
– 3) Simple bootstrap with confidence intervals corrected for the bias (Souza [8]) ;
– 4) Simple and double bootstrap with correlation and bias problems correction

(Simar and Wilson [42]) ;
– 5) Probabilistic approach that defines a nonparametric frontier model for the pro-

duction set ([27]).

The first empirical methodology applied uses output oriented DEA measures of tech-
nical efficiency to assess the significance of technical effects for brazilian banks in a
two-stage context, with parameters estimated by maximum likelihood. It is based on
Banker’s [7] and Souza’s [11] and [17] results. Inference in the two-stage approach, out-
put simple (combined), is justified by the weak consistency of the production function
and that the estimated residuals have approximately, in large samples, the same behavior
as the original residuals. Souza [11] extended these conclusions to the heteroscedastic
case. Under these assumptions, the estimated dependent variables (residuals and DEA
measures) will be independent. Considering multiple output models not necessarily asso-
ciated to a production model, consistency of the efficiency measure still holds, validating
the use of these measures in the two-stage approach, but not the residuals.

The thesis contributes to the literature suggesting a collection of statistical models
that could be used in a DEA application using maximum likelihood estimation in the
context of the truncated normal distribution, the exponential distribution, and gene-
ral Tobit models, as well as a nonparametric analysis of covariance. They also improve
adequacy checking of the models by using the conditional moment test of specification
described in Greene [16]. This work is presented in chapter 4, Assessing the Signifi-

cance of Factors Effects in Output Oriented DEA Measures of Efficiency : an

Application to Brazilian Banks, published in Souza et al. ([44]).

In chapter 5, Evaluating the Significance of Factors Effects in Output Orien-

ted DEA Measures of Efficiency by a Randomization Process, is presented not
only the analysis of covariance of the DEA measurement, for a one dimensional and
3-dimensional output vector, but also justified its use by a randomization approach,
validating the statistical inference of the model. In this case, properties of the DEA
measures relative to the production frontier are not explored, but they are considered
as indexes to be adjusted to the covariates.

A bootstrap procedure is described and implemented in chapter 6.1, Simple Boots-

trap Bias Corrected Confidence Intervals for Factors Effects of Brazilian
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Banks DEA Efficiency Measures. To verify the consistency of the results obtai-
ned in the best inefficiency model of chapter 4, a bias corrected confidence interval is
applied to the brazilian banks data set. The bootstrap also allows us to identify the
distributional characteristics of the parameters.

In chapter 6.2, Estimation and Inference in a Double Bootstrap Applied to

the DEA Efficiency Measures of Brazilian Banks, it is focused on measures of
technical efficiency based on Data Envelopment Analysis (DEA) for brazilian banks and
related the variation observed to covariates of interest. In the two stage approach for the
DEA measures, the work on this thesis innovates using for the brazilian banks data set
a double bootstrap, and a DEA measure following a gamma distribution, with combined
output, so as to compare the results in chapter 4. The technique is implemented with the
aim of correcting for the parameters bias and correlation problems (Simar and Wilson
[42]). They justify that these problems invalidate most of the two-stage studies already
published.

The previous techniques are based on the separability condition between the in-
put/output space and the contextual variables. It means that the frontier is not influen-
ced by these variables. In the next application, the probabilistic approach, it is assumed
this assumption is not valid. In this case, contextual variables affect efficiency if they
alter the frontier, when the process is conditioned on them. Also another concept of
efficiency measure is used, the probabilistic, where the separability condition is not as-
sumed. The probabilistic nonparametric approach was suggested by Daraio and Simar
[27], following the lines in Wheelock and Wilson [45]. The results are shown in chap-
ter 7, A Probabilistic Approach for Brazilian Banks Contextual Variables in

Nonparametric Frontier Models. This context allows to explore the new concepts
of conditional efficiency measure and respective non-parametric estimators.

The inputs used in the analysis are labor, capital and loanable funds. Efficiency mea-
surements are computed for a multiple output (securities, loans, and demand deposits)
and for a single (combined) output. The technical effects of interest in the analysis are
bank nature (multiple and commercial), bank type (credit, business, bursary and retail),
bank size (large, medium, small and micro), bank control (private and public), bank ori-
gin (domestic and foreign), and non-performing loans. The latter is a measure of bank
risk. The data set is described in chapter 2.

Among the aspects analysed in the DEA application there are : the adequacy of statis-
tical distributions, independent identically distributed inefficiencies assumption, asymp-
totic results, randomization, parameters bias and separability condition. Also Banker
[7] results on the nonparametric estimation of production functions in the context of
deterministic models are extended.

Bank efficiency evaluation is closely related with financial stability, a theme of pri-
mordial concern for all central banks and financial supervisor institutions all over the
world. And it could not be different, since the social and financial consequences of bank
crisis can be dramatic. Besides, the increasing number of bankrupted institutions in un-
derdeveloped and developed countries alerts for the strong necessity of avoiding financial
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problems.

Central banks have the responsibility of assessing systemic risks and preventing sys-
temic crises. In this context, the degree of efficiency of banks is one of the possible ways
to indirectly supervise the quality of the administration of a bank. Additionally, it also
provides an extra information that ranks the units being analysed, allowing to compare
different performances and to identify the related reasons. It is not only a useful tool for
central banks, but also for the own institutions that are interested in being competitive
and efficient in financial markets.

Besides the high costs financial instability can cause the society, another remarkable
consequence is the loss of confidence in the banking system what can cause subsequent
bank ruins and affect the whole economy, since it depends on the health of the financial
system. As an example, in daily economy can observed that financial international in-
vestments on assets and bonds of a country can be quickly affected by ’bad’ news in the
financial market due to globalization. Besides, long term investments can be postponed
or even canceled, affecting economic growth and social benefits.

The possibility that also other countries suffer the consequences of financial crisis
from one country, known as contagion, is another point of interest, since financial crisis
can cross frontiers due to the possibility of instantaneous transactions, and also because
lots of banks have branches in different countries. It indicates that a conjoint preoccu-
pation of public authorities, motivating them to develop analytical tools for measuring
health and performance of financial institutions is of fundamental necessity.

7



Chapter 2

Specification of Inputs and Outputs

The definition of outputs and inputs in banking is controversial. See Colwell and
Davis [26], Berger and Humphrey [22] and Campos [14] for an in depth discussion on
the matter. As described in Campos [14] basically two approaches are possible - pro-
duction and intermediation. The production approach considers banks as producers of
deposits and loans using as inputs capital and labor. In such a context typically output
is measured by the number of deposit accounts and the number of transactions per-
formed. Under the intermediation approach banks function as financial intermediaries
converting and transferring financial assets between surplus units and deficit units. Each
output is measured in value not in number of transactions or accounts. There is not a
unique recommendation on what should be considered as the proper set of inputs and
outputs particularly under the intermediation approach.

The intermediation approach is followed and as output a combination of the compo-
nents of the vector y = (v1, v2, v3), defined by the variables v1 = securities, v2 = loans
and v3 = demand deposits, is taken. This output vector is also combined into a single
measure, denoted by yc, representing the sum of the values of vi. This approach follows
along the lines of Leightner and Lovell [36], Sathie [12] and Campos [14]. Although this
definition of output is not always in the banking literature, is the most common, as seen
in Campos [14]. Notice for example that the usage of demand deposits in the brazilian
banking literature also varies. Nakane [10] studying cost efficiency considers it as a co-
variate in the cost function although its specification in the translog cost function is
similar to an output. Silva and Neto [39], also in the context of cost functions, consider
demand deposits only as a factor influencing the technical efficiency component in the
model.

All production variables, as shown below, are measured as indices relative to a bench-
mark and are normalized by a measure of size. This approach has the advantage of ma-
king the banks more comparable through the reduction of variability and of the influence
of size in the DEA analysis.

It can be emphasized here that DEA is quite sensitive to the dimension and compo-
sition of the output vector. Tortosa-Ausina [13] provide examples showing that ordering
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in DEA efficiency may change substantially with the dimension of y. A single output is
the extreme case. The combined measure has the advantage of avoiding spurious DEA
measurements resulting from unique bank specializations. The use of combined output
also allows the use of the DEA residuals introduced by Banker [7]. In this sense it leads
to more robust and less conservative measures of technical efficiencies. The drawback
to its use is that it may show some double counting due to the nature of the output
components. But the double counting is also present in the multiple output vector. No-
netheless, most banking studies use a multiple output approach and thus the thesis will
follow this literature.

The inputs considered are labor (l), the stock of physical capital (k) which includes
the book value of premises, equipments, rented premises and equipment and other fixed
assets, and loanable funds (f) which include, transaction deposits, and purchased funds.

Typically the product oriented DEA efficiency analysis variables are specified using
input and output measured in physical quantities. This is not strictly necessary and does
not prevent its use in the intermediation approach even in a production function context.
One may work with indexes or proxies reflecting the intensity of usage of each variable
(input or output) in the production process. This is the case with the present application.
Total output, loanable funds and capital are values. Also, labor costs is found to be a
more reliable measure of the intensity of labor usage than the number of employees
which was much variable within the year. In this context, indexes are defined to reflect
the behavior of the production variables. These indexes were then further normalized
by an index of size defined by the number of employees in the end of the period under
analysis.

The data base used is COSIF, the plan of accounts comprising balance-sheet and
income statement items that all brazilian financial institutions have to report to the
Central Bank on a monthly basis. This is the same data base used in all studies on
the subject dealing with brazilian banking. See for example Nakane [10] and Campos
[14]. The classification of banks was provided by the Supervision Department of the
Central Bank of Brazil. They use cluster analysis to group banks according to their
characteristics. The total number of banks used in the analysis (sample size) is 94.

As pointed out above output and input variables are treated as indexes relative to a
benchmark. In this paper the benchmark for each variable, whether an input, an output
or a continuous covariate, was chosen to be the median value of 2001. Banks with a value
of zero for one of the inputs or the outputs were eliminated from the analysis. Outputs,
inputs, and the continuous covariate were further normalized through the division of
their respective indexes by an index of personnel intended to be a size adjusting factor.
The construction of this index follows the same method used for the other variables,
that is, the index is the ratio of the number of employees in December of 2001 by its
median value in the same month.

Even after size adjustment some banks still show values out of range either for in-
puts or outputs. There are some outliers in the data base. This is a problem for DEA
applications which is known to be very much sensitive to outliers. To eliminate non-
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conforming output and input vectors, a sort of Mahalanobis distance of common use
in regression analysis to identify outlying observations is considered. This amounts to
identify as outlying observations for which the ith element of the diagonal of the hat
matrix W (W ′W )−1W ′ is at least two times its trace. Here W = (1, Y ) or W = (1, X)
where 1 is a column of ones and Y and X are the matrices of output products and input
usage respectively.

The covariates of interest for our analysis - factors likely to affect inefficiency, are
nonperforming loans (q), bank nature (n), bank type (t) , bank size (s), bank control(c)
and bank origin (o). Nonperforming loans is a continuous variate and it is also measured
as a ratio of indices like an input or output. All other covariates are categorical. The
variable n assumes one of two values (commercial, multiple), the variable t assumes one
of four values (credit, business, bursary, retail), the variable s assumes one of four values
(large, medium, small, micro), the variable c assumes one of two values (private, public)
and the variable o assumes one of two values (domestic, foreign). There is a bank (Caixa
Econômica Federal - CEF) in the data base that requires a distinct classification due
to its nature - variable n. One more level for this bank is introduced. This amounts to
add one more level to the factor bank nature n. Dummy variables were created for each
categorical variable. They are denoted n1, n2, n3, t1, · · · , t4, s1, · · · , s4, c1, c2 and o1, o2

respectively.
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Chapter 3

Two Stage Inference Using DEA

Efficiency Measurements in Univariate

Production Models

In the paper Two Stage Inference Using DEA Efficiency Measurements in

Univariate Production Models, Souza and Staub [43] extends Banker [7] results on
the nonparametric estimation of production functions in the context of deterministic
models. Relaxing the assumption of iid inefficiencies it is shown the strong consistency
of the DEA production function and how one can model effects causing inefficiency,
in a manner typically used in stochastic frontier models, using a two stage inference
procedure. Asymptotic results are inspected in small samples by means of Monte Carlo
simulations. An empirical application illustrates the two stage inference procedure fitting
a deterministic production model for the major state company responsible for agricultu-
ral research in Brazil. Since the focus of this work is on the empirical results for brazilian
commercial banks, this last part will not be reproduced.

The main theoretical results providing justification for these procedures are based on
the seminal paper of Banker [7] where it is demonstrated, for deterministic univariate
production models defined by iid inefficiencies, that the DEA estimator of a production
function maximizes the likelihood of the model if the inefficiency density function is
monotone decreasing. It is also shown in Banker’s paper that the DEA estimator is
weakly consistent and that, in large samples, the distributional assumptions imposed on
the true inefficiency variables are carried to the empirical (estimated) inefficiencies. If
g(x) is the underlying production function, the deterministic model assumes that actual
input-output observations (xt, yt) satisfy the statistical model yt = g(xt)− ǫt where ǫt is
the inefficiency random variable.

Recently the inference procedures derived from Banker’s article have been put in
check by Simar and Wilson [42] and Wilson [15] who argue that the correlation among
the DEA efficiency measurements are sizable enough to invalidate the two stage proce-
dure carried out under the assumption of independent errors. In other words, p-values
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and t-tests will be wrong. Monte Carlo evidence on the contrary is presented here, at
least when the data generating process is defined by a deterministic univariate produc-
tion model. The correlation observed between estimated inefficiency errors associated
to theoretical uncorrelated inefficiencies were negligible in all simulations for all sample
sizes considered. Also p-values were not much divergent from what one would expect
from the asymptotic theory even for a small sample size.

Relaxing the assumption of identically distributed inefficiency errors it is shown in
Souza and Staub [43] that Banker [7] results described above remain valid. Minor modifi-
cations are necessary on the original proofs to achieve the extension. The new theoretical
framework allows one to model the efficiency measurements in a manner similar to the
approach considered in stochastic frontier analysis, were the inefficiency component is
assumed to be distributed as a truncated normal or as an exponential random variable
with the mean being a monotone function of a linear construct defined by a set of co-
variates affecting efficiency. See Coelli et al. [25] and Kumbhakar and Lovell [35]. These
results also allow a better foundation for the models used by Banker and Natarajan [19]
to estimate contextual variable effects using DEA under the assumption of stochastic
frontier errors with measurement errors bounded above.

3.1 The Statistical Model

Consider the DEA production function defined in section 4.1. Suppose that observa-
tions (xj, yj) satisfy the statistical model yj = g(xj)−ǫj, where the technical inefficiencies
ǫj are nonnegative random variables with probability density functions fj(ǫ) monotoni-
cally decreasing and concentrated on R+. The inputs xj are drawn independently from
probability density functions hj(x) with support set contained in K. Inefficiencies ǫj and
inputs xj are also independent.

The likelihood function for the statistical model is given by

L(g) =
n
∏

j=1

fj(g(xj) − yj)hj(xj)

Theorem 1 Among all production functions defined in K∗, g∗n(x) maximizes L(g). Any
other production function go(x) such that go(xj) = g∗n(xj) also maximizes L(g).

Proof For any production function g(x), since g∗n(x) is of minimum extrapolation, g(x) ≥
g∗n(x) in K∗

i . Then g∗n(xj)−yj ≤ g(xj)−yj. Since fj(ǫ) decreases with ǫ the result follows.

2

Theorem 2 Suppose that the sequence of pairs (xj, ǫj) satisfying the statistical model
yj = g(xj) − ǫj are drawn independently from the product probability density functions
hj(x)fj(ǫ) where
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1. The sequence of input densities hj(x) satisfies

0 < l(x) ≤ infjhj(x) ≤ supjhj(x) ≤ L(x)

for integrable functions l(x) and L(x) and x interior to K.

2. The inefficiency densities fj(ǫ) are such that

F (u) = infjFj(u) > 0, u > 0

where

Fj(u) =

∫ u

0

fj(ǫ)dǫ.

Then if x0 is a point in K∗ interior to K, g∗n(x0) converges almost surely to g(x0).

Proof Let B(v, δ) denote the open ball with center in v and radius δ. Since g(x) is
continuous, given ∆ > 0 there exists δ0 > 0 such that x ∈ B(x0, δ0) implies g(x) >
g(x0) − ∆. Let

A(δ) = {(x, ǫ), x ∈ B(x0, δ) and g(x) − ǫ > g(x0) − ∆} .

Consider the event Aj(δ) = {(xj, ǫj) ∈ A(δ)}. Since the functions l(x) and L(x) are
integrable and g(x) − g(x0) + ∆ > 0 on B(x0, δ0) we may choose 0 < δ < δ0 such that

0 <

∫

B(x0,δ)

L(x)dx < 1,

and

0 < p =

∫

B(x0,δ)

l(x)F (g(x) − g(x0) + ∆)dx < 1.

Now let pj = P {(xj, ǫj) ∈ A(δ)}. We have

1 >

∫

B(x0,δ)

L(x)dx ≥
∫

B(x0,δ)

hj(x)

(

∫ g(x)−g(x0)+∆)

0

fj(ǫ)dǫ

)

dx

≥
∫

B(x0,δ)

l(x)F (g(x) − g(x0) + ∆)dx,

and it follows that 0 < p ≤ pj < 1 for every j. By construction g∗n(x) ≥ Minjyj. Thus if
(xj, ǫj) ∈ A(δ)

yj = g(xj) − ǫj > g(x0) − ∆

and g∗n(x0) ≥ Minjyj > g(x0) − ∆. Then g(x0) − g∗n(x0) < ∆ and

P {g(x0) − g∗n(x0) ≥ ∆} ≤ P

{(

n
⋃

j=1

Aj(δ)

)c}

= P

{

n
⋂

j=1

Ac
j(δ)

}

≤ (1 − p)n.
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Strong consistency then follows from the Borel-Cantelli 0-1 law, since
∑+∞

n=1(1 − p)n <
+∞.

2

Assumption 2 of Theorem 2 is satisfied for exponential distributions if the scale
parameters are bounded away from zero. It will be true for the general gamma family
Γ(rj, λj) = λrjxrj−1 exp {−λjx} /Γ(rj) if the parameters λj and rj are restricted to closed
intervals [a, b] with 0 < a < b. It will be true for the family of half-normal distributions
N+(0, σ2

j ) if the sequence σ−1
j is bounded away from zero. It will also hold for positive

truncations of the N(µj, σ
2
j ) if the parameters µj and σ2

j satisfy σj/µj ∈ [−D;D] for
some D > 0.

Theorem 3 Suppose that Assumptions 1 and 2 of Theorem 2 are satisfied and that xj

is interior to K for every j. Let M be a subset of the DMUs included in the sample
that generates the n production observations. The asymptotic joint distribution of the
technical inefficiencies ǫ∗nj = g∗n(xj)− yj, j ∈M , coincides with the product distribution
of the ǫj, j ∈M .

Proof The following proof mimics Banker [7]. Since g(x) ≥ g∗n(x) we have

ǫj = g(xj) − yj ≥ g∗n(x) − yj = ǫ∗nj.

Let Ej be constants and define Am =
⋂

j∈M {ǫj ≤ Ej + 1/m}. The sequence Am de-
creases to

⋂

j∈M {ǫj ≤ Ej}. On the other hand, for every m,

⋂

j∈M

{

ǫ∗nj ≤ Ej

}

=

[(

⋂

j∈M

{

ǫ∗nj ≤ Ej

}

)

⋂

Am

]

⋃

[(

⋂

j∈M

{

ǫ∗j ≤ Ej

}

)

⋂

Ac
m

]

.

Then

P

(

⋂

j∈M

{

ǫ∗nj ≤ Ej

}

)

≤ P (Am) + P

((

⋂

j∈M

{

ǫ∗nj ≤ Ej

}

)

⋂

Ac
m

)

and therefore

P

(

⋂

j∈M

{

ǫ∗nj ≤ Ej

}

)

≤ P (Am) +
∑

j∈M

P

({

ǫj − ǫ∗nj >
1

m

})

.

Since
ǫj − ǫ∗nj = ǫj − yj + yj − ǫ∗nj = g(xj) − g∗n(xj),

let n,m→ ∞ to obtain by Theorem 3.2

limsupn→∞P
({

ǫ∗nj ≤ Ej,∀j ∈M
})

≤ P ({ǫj ≤ Ej,∀j ∈M}) .

Also,
⋂

j∈M

{ǫj ≤ Ej} ⊆
⋂

j∈M

{

ǫ∗nj ≤ Ej

}

,
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and hence

liminfn→∞P
({

ǫ∗nj ≤ Ej,∀j ∈M
})

≥ P ({ǫj ≤ Ej,∀j ∈M}) .

2

3.2 Statistical Inference

Theorem 3 is basic for statistical inference in the context of the deterministic produc-
tion model. The following proposition shows how to construct confidence intervals for the
production values g(xi). Joint confidence intervals may be obtained using Bonferroni’s
method.

Proposition 1 Under the assumptions of Theorem 2 let q̂i be such that P {ǫ∗ni ≤ q̂i} =
1 − α. The interval [g∗n(xi), g

∗
n(xi) + q̂i] has asymptotically level 1 − α for g(xi).

Proof Since g∗n(xi) ≤ g(xi) it follows that

g∗n(xi) ≤ g(xi) − ǫi + ǫi = yi + ǫi ≤ g∗n(xi) + ǫi.

Therefore 0 ≤ g(xi)−g∗n(xi) ≤ ǫi. Let qi be the quantile of ǫi of order 1−α. Since ǫi ≤ qi
implies 0 ≤ g(xi) − g∗n(xi) ≤ qi it follows that [g∗n(xi), g

∗
n(xi) + qi] has level 1 − α. Since

for large n ǫ∗ni ∼ ǫi by Theorem 3.3, the result follows. 2

The next two propositions assume iid inefficiencies when the common inefficiency
distribution is either exponential or half-normal. These results are due to Banker [7] and
here they are refined to include a measure of goodness of fit.

Proposition 2 Under the assumptions of Theorem 2 suppose that the ǫi are iid with a
common exponential density f(ǫ) = λ exp{−λǫ}, λ, ǫ > 0. Let M be any subset of DMUs
with m elements. Then

1. The quantity 2λ
∑

i∈M ǫ∗ni has, approximately, a chi-square distribution with 2m
degrees of freedom.

2. If M is the complete set of DMUs then

2
∑n

i=1 ǫ
∗
ni

s
,

where s is the sample standard error of the estimated residuals ǫ∗ni, has, approxi-
mately, a chi-square distribution with 2n degrees of freedom.
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Proof Since the true inefficiencies ǫi are iid exponential with parameter λ then 2λ
∑

i∈M ǫi
is chi-square with 2m degrees of freedom. If M coincides with the sample the distribution
will be chi-square with 2n degrees of freedom.

Let Fn(u) be the distribution function of the chi-square distribution with 2n degrees
of freedom. Given u, v > 0, since the chi-square densities are uniformly bounded, there
exists a constant C such that

| Fn(u) − Fn(v) ≤ C | u− v | .

Let F̂n(u) be the distribution function of 2
∑n

i=1 ǫi/s. Since F̂n(u) = Fn(λsu) it follows

| F̂n(u) − Fn(u) ≤ C | λs− 1 | u.
Statements 1 and 2 are then true for the inefficiencies ǫi since s is strongly consistent
for λ−1. By Theorem 3.3 they will also hold, approximately, for the ǫ∗ni. 2

Proposition 3 Under the assumptions of Theorem 2 suppose that the ǫi are iid with a
common half-normal density f(ǫ) =

(

2/
√

2πσ
)

exp{−ǫ2/2σ2}, σ > 0, ǫ > 0. Let M be
any subset of DMUs with m elements. Then

1. The quantity
∑

i∈M(ǫ∗ni)
2/σ2 has, approximately, a chi-square distribution with m

degrees of freedom.

2. If M is the complete set of DMUs then the quantities

S1 =

(

2

π

)∑n
i=1 (ǫ∗ni)

2

(ǭ ∗
n )2

and

S2 =

(

1 − 2

π

)∑n
i=1 (ǫ∗ni)

2

s2

where ǭ ∗
n and s2 are the sample mean and the sample variance of the ǫ∗ni, respecti-

vely, have, approximately, a chi-square distribution with n degrees of freedom.

Proof Under the assumptions
∑

i∈M ǫ2i /σ
2 is chi-square with m degrees of freedom. If M

coincides with the sample then the distribution is chi-square with n degrees of freedom.
Since the mean of the half-normal distribution is σ

√

2/π, the variance is (1 − 2/π)σ2,
and the chi-square densities are uniformly bounded, Results 1 and 2 are then true for
the inefficiencies ǫi. By Theorem 3.3 they will also hold for the ǫ∗ni. 2

The second statement appearing in Propositions 2 and 3, respectively, are essentially
goodness of fit measures and serve the purpose to test if the inefficiencies are iid with
the common distribution specified (exponential or half-normal). An alternative test of
this hypothesis, with a nonparametric flavor, can be carried out when the underlying
hypothesized distribution is assumed to be exponential. This is the Lilliefors test (Cono-
ver, 1998) which is a Kolmogorov-Smirnov type statistic. A similar result is not known

16



to the author for the half-normal distribution. QQ-plots, however, can always be used
to inspect departures from both parametric specifications.

The first statement appearing in Propositions 2 and 3, respectively, are used by Ban-
ker [7] to assess the difference in efficiencies between two groups M1 and M2 of decision
making units with m1 and m2 elements respectively. If the groups do not differ the ra-
tios

∑

i∈M1
ǫ∗ni/

∑

i∈M2
ǫ∗ni and

∑

i∈M1
(ǫ∗ni)

2 /
∑

i∈M2
(ǫ∗ni)

2 will follow the F -distribution
with (2m1, 2m2) and (m1,m2) degrees of freedom, respectively, depending on the as-
sumption imposed on the inefficiency distribution, namely exponential or half-normal.
A similar test may be employed to assess the scale of operation in g(x). See Banker and
Natarajan (2004).

It should be pointed out that Theorems 2 and 3 allow more flexible parametric
specifications for the inefficiencies than those suggested by Propositions 2 and 3. Suppose
that z0, . . . , zl are variables we believe to matter in explaining inefficiencies. Following
the Coelli, Battese, and Rao (1998) approach to stochastic frontier analysis it can be
postulated that

ǫi = zi0δ0 + . . .+ zilδl + wi

where the δj are parameters to be estimated, the zij are realizations of the zj and wi

is the truncation of the normal N(0, σ2) at −µi. These assumptions are consistent with
non-negative truncations of the N(µi, σ

2) with µi = zi0δ1 + . . .+zilδl. This model may be
fitted by maximum likelihood with the ǫ∗ni replacing the ǫi. One notices that the mean of
the positive truncation of the N(µi, σ

2), µi +σλi and the variance, σ2 [1 − λi(µi/σ + λi)]

where λi = φ(µi/σ)
Φ(µi/σ)

, φ(.) and Φ(.) being the density and the distribution function of the
standard normal respectively, are both monotonic functions of µi. The formulation also
allows heteroscedasticity. Group comparisons in the context studied in Propositions 2
and 3 can be performed in this more general setting taking some of the zj to be ap-
propriate dummy variables. Any number of groups is allowed. The same ideas may be
applied to the exponential family of densities λj exp{−λjt} imposing λj = exp{−µj}.
These two families, i.e, the exponential and the truncated normal, as in the stochastic
frontier analysis, seem to provide enough flexibility in applications.

The gamma distribution may not be fit by maximum likelihood directly since, typi-
cally, some DEA residuals will be zero. This contingency may be resolved adding to ǫ∗ni

a positive random variable converging in probability to zero, or using a truncated mo-
del at, for example 1/n. These procedures will not destroy the approximation given by
Theorem 3.3. In this context one may also fit the gamma density λp

j t
p−1 exp{−λjt}/Γ(p)

imposing λj = exp{−µj}.

3.3 Monte Carlo Simulations

The objective in this section is to show the Monte Carlo simulation used to illus-
trate and verify the asymptotic results described in Propositions 2 and 3 and based on
Theorems 4 and 5.
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To perform the Monte Carlo simulation, consider the Cobb-Douglas production func-
tion y = 100x0.3

1 x0.7
2 where inputs (x1, x2) are generated independently from the uniform

distributions. Two distributions, the exponential and the half normal, are used to model
the inefficiencies. For each of these two distributions it is considered two means (300 and
600) and three sample sizes : n = 30, 90 and 150. The simulation process mimics the
assumptions set forth in Banker [7].

Two subgroups of n/2 DMUs are compared for each sample size n by means of F
tests. The process is repeated 1500 times.

The simulation process is defined as follows :

1. Repeat steps [a]-[d] to obtain 1500 samples of n DMUs for which the inefficiency
distribution has mean µ.

[a] Generate the inputs x1i and x2i independently from a uniform distribution
in (47, 57) and (67, 77) ;

[b] Compute the true output using the Cobb-Douglas production function
g(x1i, x2i) = 100x0.3

1i x
0.7
2i ;

[c] Generate the technical inefficiencies ǫi for the half-normal or the exponential
distribution with mean µ. 1

[d] Compute the actual output values yi = g(xi) − ǫi ;

2. For each of the 1500 samples of size n compute the DEA technical inefficiencies
ǫ∗ni defined in Theorem 3 based on (yi, x1i, x2i) for i = 1, · · · , n.

3. Given one of the 1500 samples of size n divide it into two subsamples with m = n/2
elements each. Compute the appropriate F-statistics for the exponential and the
half normal assumptions.

4. The F-statistics should follow, approximately, the F(n,n) distribution when the
inefficiencies are exponential and the F(n/2,n/2) distribution when the inefficiencies
are half normal.

The evidence from Tables A.15 and A.16, based on the F distribution, is that the
empirical quantiles are converging to the theoretical quantiles as expected, considering
both distributions. Even for n = 30 the theoretical approximations are acceptable. Re-
sults seem to be robust relative to the number of DMUs considered in each group and
the means of the underlying distributions.

In regard to correlations involving the DEA residuals, no significant values were
observed. They seem to mimic the order of magnitude of the correlations generated by
the simulated inefficiencies regardless of the distribution generating the data.

1To generate a random variate from the exponential distribution with mean 600, generate a random

variate from the density exp{−x}, x > 0 and multiply this number by 600. To generate a random

variate from the half normal distribution with mean 600, generate a random number w from the uniform

distribution and compute
√

π/2×600×Φ−1( 1+w

2
) where Φ(x) is the distribution function of the standard

normal.
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Chapter 4

Assessing the Significance of Factors

Effects in Output Oriented DEA

Measures of Efficiency : an Application

to Brazilian Banks

The main objective of this paper is to compute measures of technical efficiency based
on Data Envelopment Analysis (DEA) for the brazilian banks and to relate the variation
observed in these measurements to covariates of interest. This association is investiga-
ted in the context of several alternative models fit to DEA measurements of efficiency
and DEA residuals. The DEA residuals are derived from a single output oriented DEA
measure. They were introduced as a formal tool of analysis in DEA by Banker [7].

Output is measured both as a 3-dimensional vector formed by the variables invest-
ment securities, total loans and demand deposits and as a combined index of these
variables. The three input sources are labor, capital and loanable funds. The causal
factors considered here as affecting efficiency measurements an DEA residuals are bank
nature, bank type, bank size, bank control, bank origin and risky loans (nonperforming
loans).

The statistical methods used explore Banker [7] and Souza [11] and [17] results.

Several bank studies, among them Eisenbeis et al. [29], Sathye [12], Campos [14] and
Tortosa-Ausina [13] have considered the use of DEA to measure the relative efficiency
of a bank. Typically a DEA context is defined, such as a revenue or cost optimization,
input or output orientation, under constant or variable returns to scale, and subsequently
analyzed. If additionally an empirical investigation on the association between technical
effects and DEA measures is demanded, as in Eisenbeis et al. [29], regression is the
basic technique used in the analysis. The models suggested in the literature go from the
standard analysis of covariance models as suggested in Coelli et al. [25], to the Tobit
model as in McCarthy and Yaisawarng [37].
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Our contribution to this literature is twofold. Firstly we open the possibility of com-
bining output in banking studies which makes the Banker [7] kind of approach viable
in a context inherited from a production model. Relative to such models it is possible,
besides the assessment of significance of factor effects, to attach measures of error to
DEA efficiency measurements. Secondly, even if a deterministic univariate production
model is not justifiable one could still make use of a general class of censored models to
fit the DEA measurements, whether they are computed in the form of residuals from a
production model or simply as a measure of efficiency. In this context, the models we
use are similar in appearance to those used in the analysis of a stochastic frontier in a
DEA analysis. This is achieved generalizing the Tobit. The distributions other than the
normal considered in these extensions are the gamma and the truncated normal. This
order of ideas appears in Souza [17] and generalizes Banker and Natarajan [19].

4.1 Data Envelopment Analysis (DEA)

Consider a production process with n production units (banks). Each unit uses va-
riable quantities of p inputs to produce varying quantities of different outputs y. Denote
by Y = (y1, · · · , yn) the s×n production matrix of the n banks and by X = (x1, · · · , xn)
the p×n input matrix. Notice that the element yr ≥ 0 is the s×1 output vector of bank
r and xr is the p× 1 vector of inputs used by bank r to produce yr (the condition l ≥ 0
means that at least one component of l is strictly positive). The matrices Y = (yij) and
X = (xij) must satisfy :

∑

i pij > 0 and
∑

j pij > 0 where p is x or y.

In our application p = 3 and s = 1 or s = 3 and it will be required xr, yr > 0 (which
means that all components of the input and output vectors are strictly positive).

Definition 1 : The measure of technical efficiency of production of bank o under the
assumption of variable returns to scale and output orientation is given by the solution
of the linear programming problem Maxφ,λφ subject to the restrictions :

1. λ = (λ1, · · · , λn) ≥ 0 and
∑n

i λi = 1 ;

2. Y λ ≥ φyo ;

3. Xλ ≤ xo.

In the next part we consider statistical models adequate to the analysis of the op-
timum values φ∗

0 of Definition 1 when covariates are thought to affect them. These
models can be viewed as extensions of the univariate case, i.e, when s = 1. In this ins-
tance it is possible to model the input-output data observations as a production model
for which the DEA measurements under certain conditions behave as nonparametric
maximum likelihood estimators. These results were originally presented in Banker [7]
and are extended in Souza [11].

Suppose that s = 1 and that the production pairs (xi, yi), i = 1, · · · , n for the n
banks in the sample satisfy the deterministic statistical model
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yi = g(x) − ǫi (4.1)

where g(x) is an unknown continuous production function, defined on a compact and
convex set K. We assume g(x) to be monotonic and concave. The function g(x) also
satisfy g(xi) ≥ yi for all i. The quantities ǫi are inefficiencies which are independently dis-
tributed nonnegative random variables. The input variables xi are drawn independently
of the ǫi.

One can use the observations (xi, yi) and Data Envelopment Analysis to estimate
g(x) only in the set

K∗ =

{

x ∈ K;x ≥
n
∑

i=1

λixi, λi ≥ 0,
n
∑

i=1

λi = 1

}

. (4.2)

For x ∈ K∗ the DEA production function is defined by

g∗n(x) = sup

{

n
∑

i=1

λiyi;
n
∑

i=1

λixi ≤ x

}

(4.3)

where the sup is restricted to nonnegative vectors λ satisfying
∑n

i=1 λi = 1 .

For each bank o, gn(x0) = φ∗
0y0 . This function is a production function on K∗, in

other words, is monotonic, concave, gn(xi) ≥ yi , and satisfies the property of minimum
extrapolation, that is, for any other production function gu(x), x ∈ K, gu(x) ≥ g∗n(x),
x ∈ K∗.

4.2 Statistical Models Adequate to Study Product Orien-

ted DEA Inefficiencies

We begin our discussion here assuming s = 1. It is shown in Banker [7] that gn(x) is
weakly consistent for g(x) and that the estimated residuals :

ǫ∗i = (1 − φ∗
i )yi (4.4)

have approximately, in large samples, the same behavior as the ǫi. Souza [11] shows
that the same results hold under conditions that do not rule out heteroscedasticity.
These results validate the use of the DEA residuals or inefficiencies, or even the DEA
measurements themselves, as dependent variables in regression problems since under the
assumptions of the deterministic model they will be independent.

Banker [7] discusses two distributions for the ǫi (assumed to be iid random variables)
consistent with the asymptotic results cited above : the exponential and the half normal.
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Souza [11] extends the discussion to the exponential and truncated normal relaxing the
iid assumption. These more general models allow the use of typically stochastic frontier
methods in the DEA analysis.

One may argue that the use of distributions like the exponential or the truncated
normal are not totally adequate since in any particular application of DEA some resi-
dual observations will be exactly zero. This leads one naturally to the consideration of
censored models to describe the stochastic behavior of the DEA residuals.

Let z0, · · · , zb be variables (covariates) we believe to affect inefficiency. Based on
Souza [11] results the following two statistical models can be used to fit the inefficiencies
ǫ∗i under the assumptions of the deterministic model.

Firstly one may postulate the exponential density

λiexp(−λiǫ)

where λi = exp(−µi) with

µi = z0iβ0 + · · · + zbiβb. (4.5)

The zji are realizations of the zj and the βj are parameters to be estimated.

Secondly one may consider the model ǫ∗i = µi +wi where wi is the truncation at −µi

of the normal N(0, σ2). This model is inherited from the analysis of stochastic frontiers
of Coelli et al. [25] and is equivalent to truncations at zero of the normals N(µi, σ

2) .

For the exponential distribution the mean of the ith inefficiency error is exp(µi) and
the variance exp(2µi). For the truncated normal the mean is

µi + σξi (4.6)

and the variance
vi = σ2

(

1 − ξi

(µi

σ
+ ξi

))

(4.7)

where

ξi =
φ(µi/σ)

Φ(µi/σ)

φ(.) and Φ(.) being the density function and the distribution function of the standard
normal, respectively.

In both models the mean and the variance are monotonic functions of µi and thus
both specifications allow monotonic heteroscedasticity.

A censored model discussed in Souza [17] that could also be used impose the assump-
tion that the ǫ∗i satisfies the statistical model
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ǫ∗i =

{

wi, if wi > 0
0, if wi ≤ 0,

where wi = µi +ui the ui being iid normal errors with mean zero and variance σ2. This is
the Tobit model of McCarthy and Yaisawarng [37]. An extension allowing heteroscedas-
ticity can be introduced assuming that the variance σ2 is dependent on i and on some
set of observables li, in other words, σ2

i = exp {(1, l′i)ζ}, where the parameter vector ζ is
unknown. In our application this dependency will be on bank size.

The Tobit model is adequate when it is possible for the dependent variable to assume
values beyond the truncation point, zero in the present case. McCarthy and Yaisawarng
[37] argue that this is the case in the DEA analysis. Their wording on this matter is
as follows. It is likely that some hypothetical banks might perform better than the best
banks in the sample. If these unobservable banks could be compared with a reference
frontier constructed from the observable banks, they would show efficiency scores less
than unity (over efficiency). This would lead to a potential non positive residual.

Clearly the Tobit could also be defined for the efficiency measurements φ∗
i in which

case the truncation point would be one. We would have

φ∗
i =

{

wi, if wi > 1
0, if wi ≤ 1.

Maybe a more reasonable assumption in the context of the Tobit model is to allow
only for positive over efficiencies. In this case the distributions that readily come to mind
to postulate for wi are the truncation at zero of the normal N(µi, σ

2) and the gamma
with shape parameter constant P and scale λi.

The standard technique to analyze all these models is maximum likelihood. The
likelihood functions to be maximized with respect to the unknown parameters are defined
as follows.

For the exponential distribution is

L(δ) =
n
∏

i=1

λi exp {−λiǫ
∗
i } .

For the truncated normal is

L(δ, σ) =
n
∏

i=1

φ
(

ǫ∗i −µi

σ

)

σΦ
(

µi

σ

)

where φ(.) is the density of the standard normal and Φ(.) its distribution function.
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For the heteroscedastic Tobit model with censoring point at a = 0 or a = 1 is

L(δ, ζ) =
∏

i:y∗

i =a

Φ

(

a− µi

σi

)

∏

i:y∗

i >a

1

σ
φ

(

y∗i − µi

σi

)

where y∗i = ǫ∗i or y∗i = φ∗
i .

For the Tobit with censoring defined by a truncated normal is

L(δ, σ) =
∏

i:y∗

i =a

Φ
(

a−µi

σ

)

− Φ
(

−µi

σ

)

Φ
(

µi

σ

)

∏

i:y∗

i >a

1

σ

φ
(

y∗

i −µi

σ

)

Φ
(

µi

σ

) .

For the Tobit with censoring defined by a gamma distribution, let Γ(.) denote the
gamma function and let Gp(.) denote the distribution function of the gamma distribution
with shape parameter P and unit scale. The likelihood is

L(δ, p) =
∏

i:φ∗

i =1

Gp(λi)
∏

i:φ∗

i >1

λp
i (φ

∗
i )

p−1 exp {−λiφ
∗
i }

Γ(p)
.

Some of the results in Banker [7] and Souza [11] can be extended to multiple output
models not necessarily associated to a production model. Consistency of the φ∗

i is one of
them. See Kneip et al. [32] and Banker and Natarajan [18] and [19]. This suggests that
with the exception of the censoring at zero case and the models for DEA residuals all
approaches are viable for multiple outputs since in large samples the DEA measurements
φ∗

i will behave as in random sampling.

Another class of models that can be used in any instance is defined by the class
of analysis of covariance models as suggested in Coelli et al. [25]. Here we apply a
nonparametric version of the analysis of covariance taking as responses the rankings ri

of the observations on the variables under investigation (Conover [9]). In other words we
also use the model

ri = z0iδ0 + · · · + zbiδb + ui (4.8)

where the ui are independent N(0, σ2) non observable errors. This model shows approxi-
mate nonparametric properties.

4.3 Data Analysis

We begin the discussion in this section with Tables A.1 to A.4 which show basic
statistics for DEA measures. DEA analysis was carried out using the software Deap 2.1
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(Coelli et al. [25]). Entries in Tables A.1 to A.3 relate to the behavior and the associa-
tion of the DEA measures of efficiency considered here and Table A.4 is a runs test of
randomization (Wonnacott and Wonnacott [46]). We do not see evidence from this table
against the assumption of independent observations. Table A.1 refers to (φ∗

i )
−1 when

the output is yc, i.e, combined. Table A.2 refers to the same variable when the output
is trivariate. Table A.3 presents a matrix of Spearman rank correlations between the
three responses of interest - DEA residuals and DEA measurements computed assuming
combined and multiple output. The rank correlations seem to point to differences in
the analysis with each variable. Although efficiency measurements computed conside-
ring the multiple output are much larger than the corresponding measurements for the
combined output the ordering induced by the two measures show a reasonable agree-
ment. For bank size and bank nature the averages of both measurements point to the
same direction. Commercial banks dominate multiple banks and small and micro banks
outperform medium and large banks. For bank control and bank origin however the
story is different. The combined output indicate that private and foreign banks perform
better. The multiple output puts private and public banks on equal footing and point to
a better performance of domestic over foreign banks. For bank type both output types
point to bursary banks as the best performance. They seem to differ significantly in
the worst performance however. Credit institutions for the combined output and retail
institutions for the multiple output. It should be said however that most of these diffe-
rences are not statiscally significant. Most pair of confidence intervals will have a non
empty intersection as can be seen in Tables A.1 and A.2. This fact is also captured in
the nonparametric analysis of covariance shown in Tables A.5, A.6, and A.7. The only
significant effects detected are bank origin, marginally, for ǫ∗ and bank type for φ∗ under
combined and multiple output, the last result being marginal.

It is important to mention here that in none of the models the variable nonperforming
loans (q) seems to affect efficiency (inefficiency) significantly. Berger and Young [21] find
mixed evidence regarding the role of nonperforming loans in banking efficiency studies.
They find evidence supporting both the bad luck and the bad management hypothesis.
The bad luck hypothesis suggests that bank failures are caused primarily by uncontrolled
events and thus a better proxy for riskiness of banks could be the concentration of
loans and the loans-to-assets ratio. On the other hand, the bad management hypothesis
implies that major risks for banking institutions are caused internally, which suggests
that supervisors and regulators should analyze bank efficiency along with credit losses
and credit risk.

In search for more powerful tests we now investigate the several parametric models
discussed in the previous chapter. Tables A.8 to A.10 show goodness of fit statistics for
the 14 alternatives implied by the consideration of different hypothesis on the output
and different censoring points. The models were fitted using SAS procedures QLIM
and NLMIXED. Initial values used for the Tobit alternatives involving the gamma,
exponential, and the truncated normal distributions are the estimates of the classical
Tobit models. No convergence or singularities were reported by SAS in the fitting process
of any of the models. The information measures of Akaike and Schwarz were used to pick
the best model for each response. The truncated normal (no Tobit censoring) was the
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best fit for DEA residuals. For DEA measurements both with combined and multiple
outputs the best alternative is provided by the Tobit censored at 1 defined by the gamma
distribution.

Tables A.11, A.12 and A.13 show the results of estimation for the best models. Table
A.14 shows the significance of each effect of interest by means of a likelihood ratio test.
The models seem to be more informative in regard to technical effects than the ancovas.
Significance of effects change with the model used. We see agreement only in bank nature
and nonperforming loans. These two effects are not significant in any of the models.

As a further check on model adequacy we use the conditional moment test of specifi-
cation described in Greene [16]. This is as follows. Let r(y, x, θ) be a vector of m moment
conditions, where y is the response variable, x is the vector of exogenous variables and
θ is the unknown parameter, if the model is properly specified, E(r(yi, xi, θ)) = 0 for
every i. The sample moments are

r̄(θ̂) =
1

n

n
∑

i=1

r(yi, xi, θ̂)

where θ̂ is the maximum likelihood estimator of θ. Let M be the n ×m matrix whose
ith row is r(yi, xi, θ̂) and G be the n × p matrix whose ith row is the gradient of the
log-likelihood with respect to θ evaluated at (yi, xi, θ̂). Let

S = Σ̂ =
1

n
[M ′M −M ′G(G′G)−1G′M ].

If the model is properly specified nr̄(θ̂)′S−1r̄(θ̂) converges in distribution to a chi-
square random variable with m degrees of freedom.

We apply the conditional moment test of specification to the model defined by pro-
duction residuals under the distributional assumption of truncated normal and for the
combined and multiple output efficiency measures defined by the Tobit with gamma
truncation. We begin the discussion with the production residuals and the truncated
normal distribution N(µi, σ

2) at −µi. Let

λi =
φ(µi/σ)

Φ(µi/σ)
.

The moment conditions we use are :

1. yi − µ̂i − σ̂λ̂i ;

2. y2
i − σ̂2 − λ̂σ̂µ̂− µ̂2 ;

3. y3
i − σ̂3(

√
2πΦ(µ̂/σ̂))

−1
h3(−µ̂/σ̂) ;

4. y4
i − σ̂4(

√
2πΦ(µ̂/σ̂))

−1
h4(−µ̂/σ̂) ;
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where,

hn(y) =

∫ +∞

y

(x− y)n exp(−0.5x2)∂x.

For the two Tobit gamma models with parameters (p, λi), for observations of the
response y greater than one, we compute :

1. yi − p̂/λ̂i ;

2. y2
i − p̂(p̂+ 1)/λ̂2

i ;

3. ln(yi) − Ψ(p̂) + ln(λ̂i) ;

4. 1/yi − λ̂i/(p̂− 1) ;

where Ψ(.) is the digamma function. For the censored observations we compute :

1. [(Gp̂+1(λ̂i) −Gp̂(λ̂i))/Gp̂(λ̂i)]p̂/λ̂i ;

2. [(Gp̂+2(λ̂i) −Gp̂(λ̂i))/Gp̂(λ̂i)]p̂(p̂+ 1)/λ̂2
i ;

3. ρ(p̂, λ̂i)/Gp̂(λ̂i) − Ψ(p̂) + ln(λ̂i) ;

4. [(Gp̂−1(λ̂i) −Gp̂(λ̂i))/Gp̂(λ̂i)]λ̂i/(p̂− 1) ;

where

ρ(p, λ) =
1

Gp(λ)Γ(p)

∫ 1

0

λpxp−1 exp(−λx)ln(x)∂x.v

The moment conditions for the gamma distribution may be seen in Greene [16].

The chi-square statistics we find for the truncated normal model for the production
residuals and the gamma censoring for the single and combined outputs are 0.57, 0.050
and 0.039 clearly non significant.

Which model should we choose ? Our criterion was to pick the model that would
mimic the direction of performance of the sample means for all significant effects. The
only model showing the proper signs and parameters estimates with this property was
the response defined by the multiple output DEA measurement φ∗

2. Significant effects
indicated by this model are bank type and bank origin. Domestic banks outperform
foreign banks and the significance in bank type is due only to pairwise contrasts with the
level retail. Finally we mention that these results marginally agree with those provided
by the corresponding ancova and both models show approximately the same Pearson
correlation between observed and predicted values (about 40%).

4.4 Summary and Conclusion

Output oriented efficiency measurements, calculated under the assumption of va-
riable returns to scale, in the context of Data Envelopment Analysis were investigated
for brazilian banks. In this analysis bank outputs investment securities, total loans and
demand deposits are analyzed combined in a single measure and as a multiple output
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vector to produce different DEA measurements of efficiency based on inputs labor, loa-
nable funds, and stock of physical capital. The intermediation approach is followed and
for each measure of efficiency several statistical models are considered as modeling tools
to assess the significance of technical effects bank nature, bank type, bank size, bank
control, bank origin, and nonperforming loans. The year of analysis is 2001.

The competing statistical models are justified in terms of the stochastic properties of
the production responses in the DEA context. The range of model alternatives include
the use of nonparametric analysis of covariance, the fit of the truncated normal and the
exponential distribution and a general class of Tobit models allowing for heteroscedas-
ticity. All parametric models are fit via maximum likelihood.

The response variable leading to the most informative statistical model uses as res-
ponse the multiple output-input production model. DEA is oriented to output and com-
puted under the assumption of variable returns to scale. The statistical model chosen is
a like a Tobit regression induced by a gamma distribution.

The methodological contributions of the article are as follows. Firstly new alterna-
tives to measure bank output are suggested with the objective of making banks more
comparable and to reduce variability and outliers. Secondly it is suggested a collection
of statistical models that one could use in a DEA application.

The empirical findings are that domestic banks outperform foreign banks and that all
levels of bank type outperform retail with no other pairwise contrasts being significant.
None of the models show a significant association of the response with nonperforming
loans.

Relevant questions to the administration of the Central Bank of Brazil like the in-
dication of a cut off point for inefficiency measures that would be indicative of bank
failure or excessive risk taking, the effect on efficiency of privatization of a public bank
or of selling a private bank to a foreign institution as well the effect of merging and ac-
quisitions on bank efficiency were not addressed and cannot be answered in the present
study. The reason for this is twofold. Firstly the measure of risk considered in the study,
nonperforming loans, is not significant. Secondly to properly address the issues of risk
much more complex models are necessary. A panel data structure and past information
on other risk and efficiency measures (as cost and revenue efficiencies) will have to be
investigated as well.
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Chapter 5

Evaluating the Significance of Factors

Effects in Output Oriented DEA

Measures of Efficiency by a

Randomization Process

In this part it is shown that despite of the argument presented by Simar and Wilson
[42] against the statistical inference traditionally used in the two-stage approach, the
analysis of covariance of non-parametric Data Envelopment Analysis (DEA) estimates
(δ̂i = 1/φ̂i) on contextual can be valid. For that, a randomization process is applied to the
treatments 10000 times and the resulting p-values of a parametric analysis of covariance
with the p-values of the same model, applied to the ’original’ data, are compared. The
aim is to verify the statistical fundaments on what this kind of analysis could be applied.

5.1 Analysis of Covariance

Similar to equation 4.8, a parametric analysis of covariance is used. But instead of
using as responses the rankings ri of the observations on the variables under investigation,
Data Envelopment Analysis (DEA) estimates (δ̂i = 1/φ̂i) for single and multiple output
are used. In the general linear model, the basic statistical assumption is that the observed
values of the dependent variable can be divided as the sum of two parts : a linear
function of the independent coefficients and a random noise component. In other words,
the following model is used

δ̂i = z0iα0 + · · · + zbiαb + ui (5.1)

The ui are independent N(0, σ2) non observable errors. Under normality, the least-
squares estimates are the maximum likelihood estimates. The significance levels and
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confidence limit intervals provided by the SAS GLM procedure are based on this as-
sumption but can be good approximations in many other cases.

5.2 Randomization Process

The randomization process is applied with the aim of verifying the validity of the
inference of the parametric analysis of covariance for DEA measurements computed
for combined and multiple outputs, according to equation (5.1). Randomization avoids
the effects of systematic biases that can exist and provides a basis for the assumptions
underlying the analysis.

In this case the randomization does not involve blocking and consists on randomly
permuting the overall order of the runs, assigning them to the response variable. At the
end, each level of a treatment appears once in the completely randomized design.

The variables considered as treatments are bank nature (n), bank type (t) , bank
size (s), bank control(c) and bank origin (o). For nonperforming loans (q), the original
order was kept.

It is expected, using this process, to obtain similar p-values as those obtained in the
parametric analysis of covariance, presented in Tables A.17 and A.19, so inference on
them could made. The observations could be considered independent if the subjects are
randomly assigned to the treatment levels and if variables associated with the conduct
of the experiment are also randomized.

The aleatorization algorithm to be implemented using software SAS [2], consists on :

Loop over the next five steps 10000 times :

1. Generate random numbers from 1 to 94 (number of bank units) ;

2. Identify the number of times each treatment is applied to the bank units, being
nt1 the number of units that received the first treatment, nt2 the number of units
that received the second treatment and so on ;

A treatment is considered as each different combination of the factors analysed
(Bank Nature, Bank Type, Bank Size, Bank Control and Bank Origin) ;

3. Associate to the first nt1 bank units of the sample randomly generated treatment
1, to the next nt1 + 1 until nt2 treatment 2, and so on ;

Keep the original order of the dependent variable (DEA efficiency) and non-
performing loans ;

4. Run a parametric analysis of covariance for DEA measurements computed for a
combined and multiple output on nonperforming loans and the randomized treat-
ments ;

5. Store the F values of the model for each variable.
End Loop.
At the end of the loop we have a matrix of 10000 F values for 6 variables.
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6. Apply a parametric analysis of covariance for DEA measurements computed for a
combined output on the original order of treatments and nonperforming loans ;

7. Store the ’original’ F value and p-values of the previous model of each variable ;

8. For each variable, calculate the number of F values of the randomized process that
exceeds the ’original’ F value. Dividing this number by 10000 we obtain a p-value
to compare with the ’original’ p-value of the ’original’ F test.

5.3 Empirical Results

As in Table A.14, the parametric analysis of covariance in Tables A.17 and A.19
shows that the only significant effects detected under combined and multiple outputs
are bank type for φ∗, the last result being marginal.

In Tables A.18 and A.20, there are the simulation results to evaluate if inference is
valid according to the validation process previously explained. P-values of the parame-
tric models for the combined and multiple output are compared with the p-values of the
simulation using the randomized process. As expected, the p-values of both cases are
really close to each other, specially for the categorized variables. For the variable non-
performing loans, the same level of proximity was not obtained, but still the conclusion
of the parametric models remain correct.
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Chapter 6

Bootstrap Procedures

6.1 Simple Bootstrap Bias Corrected Confidence In-

tervals for Factors Effects of Brazilian Banks DEA

Efficiency Measures

The use of bootstrap methods is attractive when distributional properties of an
estimator are unknown and the respective standard error is not easily obtained. This
method is used to check the results of the best model adjusted in chapter 4.2, to verify
their accordance in the sense of parameter’s significance, their bias and also to calculate
DEA efficiency confidence intervals. In the first part of this chapter it is briefly explained
the bootstrap method applied to the data set, according to Souza [8].

If the distribution of the parameters has appreciable bias, the performance of the
basic percentile confidence interval is affected. To avoid this problem, a bias corrected
percentile confidence interval was considered. How to calculate the bias, its significant
test and the confidence interval is included in subsection (6.1.1).

6.1.1 The Bootstrap Algorithm

The bootstrap applied considers the regression model defined in chapter 4.1, equation
(4.1) :

yi = g(xi) − ǫi (6.1)

where the inefficiency errors were supposed to be generated from a truncated normal
distribution. The subsequent algorithm reproduces the general steps to be followed in a
SAS program to implement the bootstrap theory. The bootstrap sample size is 1500. By
Hall [6], 1000 replications should be enough.
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Bootstrap Algorithm

1. Calculate the estimated DEA measures from Definition 1 (φ∗
i ) for each production

unit, using the inputs and outputs of the sample data ;

2. Get the inefficiency errors ǫ∗i from equation (4.4) ;

3. Obtain the maximum likelihood estimates of the parameters β̂ in (4.5), considering
the inefficiencies have a left-truncated normal distribution, with mean (m̂i) and
variance (v̂i), according to equations (4.6) and (4.7) ;

4. Loop over the next steps 1500 times to obtain the bootstrap sample of the para-
meters β̂ and efficiency (φ∗

i ) estimates, for each unit i = 1, · · · , n :
4.1 Generate errors (ǫbi) from a left-truncated normal distribution with mean

(m̂i) and variance (v̂i) ;
4.2 Adjust the regression model as in item 3, supposing the truncated normal

distribution, but using the bootstrap inefficiencies (ǫbi) and obtain the bootstrap
parameter estimates (β̂b) ;

4.3 Compute bootstrap efficiency measures φ̂b
i = 1 +

ǫb
i

yi
;

4.4 Keep the bootstrap estimated parameters (β̂b) obtained in subitem 4.2, as
also the bootstrap efficiency measures (φ̂b

i) from subitem 4.3 ;

5. End Loop.

6. For the parameters and DEA efficiencies, based on the bootstrap sample :
6.1 Calculate the estimated bias and test its significance ;
6.2 Construct the bias corrected percentile confidence intervals.

Bias and Significance Test The relative bias of the parameters can be obtained by :

100
¯̂
βb − β̂

β̂
(6.2)

where ¯̂
βb is the bootstrap mean.

The significance of the bias can be tested knowing that

z =
√
B

¯̂
βb − β̂
√

V ar(β̂)
is N(0, 1) (6.3)

under the null hypothesis of bias inexistency, where B is the bootstrap sample size.

Confidence Intervals The bias corrected percentile confidence interval for a given
parameter β, at 100(1 − α)% significance level is given by :

[H−1(Φ(2z0 − zα/2)), H
−1(Φ(2z0 + zα/2))] (6.4)
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where z0 = Φ−1(H(β̂)), Φ(x) is the standard normal distribution function and H(u) is
the bootstrap distribution function of β̂b.

The same idea of subsection (6.1.1) can be used for the DEA efficiencies.

6.1.2 Bootstrap Results

In this part bootstrap results are showed. Based on the descriptive statistics and
the Kolmogorov-Smirnov test for normality in Table A.21, only five distributions of the
parameters follow normality : credit and business type (t1 and t2), large and medium
size (s1 and s2) and bank origin (o1) marginally. Also from Table A.21 it is observed
that the relative bias is extremely high for the intercept, commercial and multiple nature
(n1 and n2) variables, as also for the variance. The first three distributions are the most
assimetrics. The bias is significantly different from zero to all parameters as reported by
the z values.

Table A.22 provides the bootstrap confidence intervals and means, estimated confi-
dence intervals and parameters from the truncated normal model, bias and bias corrected
parameters. Differently from the results of the model adjustment, it can be seen that for
the bootstrap the parameters for large and medium size (s1 and s2) and private control
c1 are not significantly different from zero, but for the truncated normal model, their
significance was marginal (Table A.11). The bias corrected parameters have the same
sign as the original parameters of the model even for the most assimetric distributions
(intercept, n1 and n2).

6.2 Estimation and Inference in a Double Bootstrap

Applied to the DEA Efficiency Measures of Brazi-

lian Banks

The objective of this part is to compute efficiency measures for commercial banks
in Brazil and to verify the influence of contextual variables on it. A double bootstrap
proposed by Simar and Wilson [42] is applied. Initially, a DEA is performed as in chapter
4.1. But in the second stage, instead of only regressing the contextual variable on the
resulting efficiency, a double bootstrap procedure is applied, allowing for inference in the
regression model, according to Simar and Wilson [42], since it corrects for the correlation
and bias problem. These problems are consequences of the lack of specification of the
data generating process (DGP) of the DEA measures.

We apply the double bootstrap for the best parametric model for DEA measurements
from combined output (A.12). It is based on a Tobit model with censoring at 1 and
residuals with gamma distribution with shape parameter P.
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6.2.1 DEA Efficiency Measures

For the construction of efficiency measures, a production frontier can be defined in
different ways. Basically, the most used efficiency measures are based on Data Envelop-
ment Analysis and on the Free Disposal Hull estimates of the production set (Ψ).

Kneip et al. [32] and Park et al. [38] describe the tools for inference analysis based
on asymptotic or bootstrap results and Simar and Wilson [40] provide a survey of the
inference results for DEA/FDH efficiency scores.

As in chapter 4.1, define a production process with n production units that needs a
set of p inputs x to produce a quantity y of s outputs and denote by Y = (y1, ..., yn) the
s × n output matrix and by X = (x1, ..., xn) the p × n input matrix. The Farrell-Debreu
efficiency measure is defined as :

φ(x, y) = sup {φ|(x, φy) ∈ Ψ} . (6.5)

The Farrell-Debreu measure φ(x, y) ≥ 1 and the excess over 1 means the percentage
of output that could be increased to achieve efficiency, given that the input/output set
of the firm is (x, y).

The general formulation for a production set is given by :

Ψ =
{

(x, y) ∈ ℜp+s
+ |x produces y

}

. (6.6)

But the production set is not observable and must be estimated. And as previously
explained, DEA and FDH production sets are the two most used options to be plugged
in the input/output oriented measure, and are explained below.

For the DEA output oriented efficiency measure, the production set to be plugged
in is the smallest free disposal convex set that contains the input/output data set, and
is given by :

Ψ̂DEA =

{

(x, y) ∈ ℜp+s
+ |y ≤

n
∑

i=1

γiyi; x ≥
n
∑

i=1

γixi for (γ1, · · · , γn)

}

(6.7)

s.t.
n
∑

i=1

γi = 1; γi ≥ 0, i = 1, · · · , n. (6.8)

Under free disposability, if (x, y) ∈ Ψ, then (x′, y′) ∈ Ψ, as soon as x′ ≥ x and y′ ≤ y,
and without the assumption of convexity, from Deprins et al. [28], we have the Free
Disposal Hull production set :

Ψ̂FDH =
{

(x, y) ∈ ℜp+s
+ |y ≤ yi; x ≥ xi, i = 1, · · · , n

}

. (6.9)
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The construction of the DEA frontier is based on linear programming methods and
the efficiency measures are subsequently calculated relative to this surface. Charnes et
al. [24] published the first paper using the DEA term, proposing a model for the input
orientation and constant returns to scale. Previous work on that as Boles [3] and Afriat
[4] did not receive attention. Banker et al. [20] proposed an extension for the estimation
of DEA efficiencies considering variable returns to scale (VRS).

For the output case (VRS) the linear programming problem is given by Definition

1 in chapter 4.1. The solution for φ in the linear program for a given point (x, y) is the
estimated DEA efficiency measure (φ̂DEA(x, y)) of the unit. In this chapter the index
DEA is used to differentiate from the FDH efficiency measure.

The difference between constant returns to scale and variable returns to scale is
given by the addition of the convexity constraint : n1′λ = 1, which generates a tighter
production frontier that envelopes the whole data set. The linear programming problem
must be solved for each financial institution. Those with efficiency values equal to 1 are
on the frontier, it means, they achieved maximum efficiency.

The nonparametric FDH efficiency measure estimates (φ̂FDH(x, y)) for the output
oriented case are obtained substituting Ψ by Ψ̂FDH in equation (6.5), and for a given
point (x, y) it results in :

φ̂FDH(x, y) = sup
{

φ|(x, φy) ∈ Ψ̂FDH

}

. (6.10)

From Simar and Wilson [41] it can be computed by :

φ̂FDH(x, y) = max
i∈D(x,y)

{

min
j=1,...,p

(
yj

i

yj
)

}

(6.11)

where for a vector a, aj denotes the jth element of a, and

D(x, y) = {i|(xi, yi) ∈ χn, xi ≤ x, yi ≥ y} , (6.12)

χn = {(xi, yi), i = 1, · · · , n} and D(x, y) is the set of sample points dominating the point
of interest (x, y).

In Simar and Wilson [41] can be found a summary of asymptotic properties of Ψ̂DEA

and Ψ̂FDH . For example, from Korostelev et al. ([33] and [34]), for p = 1 and s ≥ 1,
under free disposability we have :

d∆(Ψ̂FDH ,Ψ) = Op(n
− 1

s+1 )

and under free disposability and convexity of the production set :

d∆(Ψ̂DEA,Ψ) = Op(n
− 2

s+2 )

36



where d∆(·, ·) is the Lebesgue measure (giving the volume) of the difference between the
two sets.

When s is small, the rates of convergence are larger, indicating the superiority of the
Ψ̂DEA estimator in this aspect. But convergence is obtained only if the DEA estimator
is consistent. And for consistency, the convexity assumption must hold what is not
necessary in the FDH context.

For the more general case when p ≥ 1, from Park et al. [38] and Kneip et al. [32] we
have the following FDH and DEA efficiency measures results :

φ̂FDH − φ = Op(n
− 1

p+s )

and under free disposability and convexity of the production set :

φ̂DEA − φ = Op(n
− 2

p+s+1 )

where φ̂FDH and φ̂DEA are the FDH and DEA efficiency measure estimators respectively.

As it can be observed, the rates of convergence depend on the size of the output and
input vector (p and s), the greater they are, the slower are the rates of convergence. It
is known as the ’curse of dimensionality’.

Again, superiority (slightly faster convergence rate) of the Ψ̂DEA estimator over
Ψ̂FDH exists in case of convexity of Ψ. This result is a consequence of the fact that
Ψ̂FDH ⊆ Ψ̂DEA ⊆ Ψ, it means, both estimators are biased by construction. In the
output orientation, this relationship implies that :

φ̂FDH(x, y) ≤ φ̂DEA(x, y) ≤ φ(x, y). (6.13)

6.2.2 Double Bootstrap in a Two-stage Approach

In their paper, Simar and Wilson show that the statistical inference traditionally used
in two-stage approaches, the regression of non-parametric Data Envelopment Analysis
(DEA) estimates φ̂i on contextual variables, are invalid. The usual parametrization is

φi = ziβ + ǫi ≥ 1 (6.14)

where zi is the i− th observation of the Z ∈ ℜr vector.

But since φi is not observable it must be estimated, and in equation (6.14) it can be
substituted by φ̂i, the nonparametric DEA estimate, and the following model could be
estimated :

φ̂i = ziβ + ξi ≥ 1. (6.15)
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As demonstrated by Simar and Wilson [42], in this case standard inference is flawed
due to the following reasons :

– although consistent, φ̂i has a strictly negative bias in finite samples ;
– the error term ǫi is correlated and is also correlated with the contextual variables
zi.

Since φ̂i is negatively biased in finite samples, it should be corrected for the bias,
resulting in the bootstrap bias-corrected estimator of φi :

ˆ̂
φi = φ̂i − ˆBIAS(φ̂i) (6.16)

The explanation comes from the fact that :

φ̂i = E(φ̂i) + ui (6.17)

where E(ui) = 0. Besides, by definition, the bias of φ̂i is :

BIAS(φ̂i) ≡ E(φ̂i) − φi. (6.18)

Substituting E(φ̂i) from (6.17) in (6.18) we get :

φi = φ̂i −BIAS(φ̂i) − ui. (6.19)

Finally, substituting φi in (6.14) results in :

φ̂i −BIAS(φ̂i) − ui = ziβ + ǫi ≥ 1 (6.20)

what justifies the regression in (6.15), considering that, asymptotically, ui → 0 and also
BIAS(φ̂i) and consequently, φ̂i is consistent.

Since BIAS(φ̂i) does not has zero mean and can be estimated by bootstrap methods,
differently from ui that has zero mean and cannot be estimated, the regression to be
estimated becomes :

ˆ̂
φi ≈ ziβ + ξi ≥ 1, (6.21)

on which maximum likelihood estimation can be applied, providing consistent estimates.

Some assumptions for the model are required, as explained in Simar and Wilson [42],
which are reproduced below :
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– Assumption A1 : the sample observations (xi, yi, zi) in γn = {(xi, yi, zi)}n
i=1

are realizations of identically, independently distributed random variables with
probability density function f(x, y, z) which has support over Ψ × ℜr, where
Ψ ⊂ ℜp+s

+ is a production set defined by

Ψ =
{

(x, y) ∈ ℜp+s
+ |x produces y

}

. (6.22)

– Assumption A2 : the conditioning in f(φi|zi) in the joint density f(xi, ηi, φi, zi) =
f(xi, ηi|φi, zi) f(φi|zi) f(zi) operates through the following mechanism :

φi = ψ(zi, β) + ǫi ≥ 1, (6.23)

where ψ is a smooth, continuous function, β is a vector of (possibly infinitely
many) parameters, ǫi is a continuous iid random variable, independent of zi and
ηi = [ηi1 ηi2 · · · ηi,s−1],

ηij =

{

arctan(
yi,j+1

yi1
), if yi1 > 0

π
2
, if yi1 = 0,

for j = 1, · · · , s− 1 and yi = [yi1 · · · yis].
– Assumption A3 : ǫi in (6.22) is distributed N(0, σ2

ǫ ) with left-truncation at 1 −
ψ(zi, β) for each i.

– Assumption A4 : Ψ is closed and convex ; y(x) is closed, convex and bounded
for all x ∈ ℜp

+ ; and χ(y) is closed and convex for all y ∈ ℜs
+, where y(x) ≡

{y|(x, y) ∈ Ψ} and χ(y) ≡ {x|(x, y) ∈ Ψ} are the sections of the production set Ψ.
– Assumption A5 : (x, y) /∈ Ψ if x = 0, y ≥ 0 , y 6= 0, i.e., all production requires

use of some inputs.
– Assumption A6 : for x′ ≥ x, y′ ≤ y, if (x, y) ∈ Ψ then (x′, y) ∈ Ψ and (x, y′) ∈ Ψ,

i.e., both inputs and outputs are strongly disposable.
– Assumption A7 : for all (x, y) ∈ Ψ such that (φ−1x, y) /∈ Ψ and (x, φy) /∈ Ψ for
φ > 1, f(x, y|z) is strictly positive, and f(x, y|z) is continuous in any direction
toward the interior of Ψ for all z.

– Assumption A8 : for all (x, y) in the interior of Ψ, φ(x, y|Ψ) is differentiable in
both its arguments. Where

φ(x, y|Ψ) =
w(φ(x, y|Ψ)y)

w(y)
, (6.24)

and w(y) = y′y.

In summary, assumption A1 represents the separability condition between the input
x output space and the space of values of z and A2 states how z influences the efficien-
cies. Assumption A3 associates the truncated normal distribution for the distribution
of the error term ǫi, A4 is related to some classical mathematical constraints in stan-
dard microeconomic theory of the firm. The inexistence of free lunch is characterized
by A5 and free disposability of inputs and outputs by A6. To assure consistency of the
estimates of Ψ and φi assumptions A7 and A8 are required. The main reason of defi-
ning these assumptions is to specify a semi-parametric data generating process for the
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vector (xi, yi, zi). But the problem of correctly estimating φi and the parameters of the
regression still remains.

The correlation in the error term in equation (6.15) comes from the fact that each
estimated efficiency measure φ̂i is calculated using all the observations (xi, yi) in γn =
{(xi, yi, zi)}n

i=1 through the estimator of the production set (Ψ̂). It means, if the value of
one observation changes, the estimated frontier will be affected and consequently, some
(or all) efficiency estimates.

The correlation of the error term with the dependent variable is a consequence of
A2. From Assumption A1 we have that the observations of γn are independently drawn,
although from A2 we have that xi and yi are correlated with zi. This assumption assures
that the conditional relation between φi and zi is given by :

φi = ϕ(zi, β) + ǫi ≥ 1 (6.25)

where ϕ must be a smooth, continuous function, β is the parameter’s vector and ǫi are
independent identically distributed, also independent of zi.

More details can be obtained in Simar and Wilson [41].

Asymptotically, the bias and correlation problems disappear at a slow rate, it assures
consistency of β and σ. But in the case of finite samples, it is necessary to correct for
these problems so as to be able to make inference about β. The authors suggest two
bootstrap procedures. The first one permits inference but does not correct for the bias.
The second one corrects for both problems : bias and correlation.

For both alternatives (presented below) and the simple regression, inference perfor-
mances in the second-stage approach were checked by Monte Carlo experiments. Simar
and Wilson consider the coverage of confidence intervals and the root mean square error
(RMSE) of the coefficients to evaluate the bootstraps. In general, coverages improve
as n increases and become worst as p + q increases, as it reduces the precision of the
estimates in the second stage. Comparing algorithms #1 and #2, the second reveals
improved coverages in number of cases, but as in algorithm #1, the coverages obtained
with the simple regression are broadly similar to those in algorithm #2. Considering
the RMSE, for p = q = 1, 2 or 3, and sample size of 100, better results are obtained
for the simple regression. By the other side, when n increases to 400, with p = q = 1
or 2, algorithm #2 provides lower RMSE for the intercept and slope estimators of the
efficiency.

Algorithm 1 This bootstrap is built to improve inference, the double bootstrap takes
also the bias into account.

1. Calculate the DEA efficiency measure φ̂i, for i = 1, · · · , n ;
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2. Based on a gamma regression (Tobit truncated at 1) with shape parameter p of
φ̂i on zi, estimate β̂ and p̂ by MLE, deleting the spurious φ̂i = 1, using m < n
observations ;

3. For b1 = 1, · · · , L1 obtain the bootstrap estimates β̂∗ and the shape parameter p̂∗

(for i = 1, · · · ,m), based on the following steps :
3.1. Generate φ∗

iG, where φ∗
iG is G(p̂, λ̂i), where λ̂i = exp(−ziβ̂) ;

3.2. Compute φ∗
i . If φ∗

iG ≤ 1 then φ∗
i = 1, else φ∗

i = φ∗
iG ;

3.3. Based on the gamma regression (Tobit truncated at 1) of φ∗
i on zi, estimate

β̂∗ and the shape parameter p̂∗ by MLE ;

4. Construct confidence intervals based on β̂ and p̂ and the bootstrap estimates β̂∗

and p̂∗ for the β vector and p shape parameter.

Algorithm 2 - Double Bootstrap The double bootstrap procedure, suggested by
Simar and Wilson [42], provides ways of constructing confidence intervals for the second
stage regression that allow for valid inference on the parameters of the model. It can be
implemented following the steps described below :

1. Calculate the DEA efficiency measure φ̂i, for i = 1, · · · , n ;

2. Based on a gamma regression (Tobit truncated at 1) with shape parameter p of φ̂i

on zi, estimate β̂ and p̂ by MLE, deleting the spurious φ̂i = 1 ;

3. For b1 = 1, · · · , L1 obtain the bootstrap estimates φ̂∗
ib (for i = 1, · · · , n), based on

the following steps :
3.1. Generate φ∗

iG, where φ∗
iG is G(p̂, λ̂i), where λ̂i = exp(−ziβ̂) ;

3.2. Compute φ∗
i . If φ∗

iG ≤ 1 then φ∗
i = 1, else φ∗

i = φ∗
iG ;

3.3. Define x∗i = xi and y∗i = yiφ̂i

φ∗

i

;

3.4. Redefine a new production set Ψ̂∗ based on Y ∗ = [y∗1 . . . y∗n] and X∗ =
[x∗1 . . . x∗n] and calculate φ̂∗

ib = φ(xi, yi|Ψ̂∗) ;

4. For each observation, calculate the bias-corrected estimator ˆ̂
φi = 2φ̂i −

∑L1

b=1
φ̂∗

ib

L1
;

5. Based on a gamma regression (Tobit truncated at 1) with shape parameter p of ˆ̂
φi

on zi, estimate ˆ̂
β and ˆ̂p by MLE ;

6. For b2 = 1, · · · , L2 calculate the bootstrap estimates ˆ̂
β∗ and ˆ̂p∗, based on the

following steps :

6.1. Generate φ∗
iG, where φ∗

iG is G(ˆ̂p,
ˆ̂
λi), where ˆ̂

λi = exp(−zi
ˆ̂
β) ;

6.2. Compute φ∗∗
i . If φ∗

iG ≤ 1 then φ∗∗
i = 1, else φ∗∗

i = φ∗
iG ;

6.3. Based on a gamma regression (Tobit truncated at 1) with shape parameter

p of φ∗∗
i on zi, estimate ˆ̂

β∗ and ˆ̂p∗ by MLE ;

7. Construct confidence intervals based on the bootstrap estimates ˆ̂
β∗∗ and ˆ̂p∗∗ for

the β vector and p shape parameter.
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To compute the bias-corrected estimates ˆ̂
φi the number of replications L1 suggested

by the authors is 100. The small number of replications is justified because only the mean
of the generated parameter is obtained from the algorithm. In the second bootstrap, the
number of replications must be much greater, 1000 by Hall [6], since the objective is
to obtain confidence intervals for the parameters. Simar and Wilson [42] used 2000
replications for the second loop where the truncated regression model is bootstrapped.

Empirical Results

The bootstrap is implemented for the parametric model in Table A.12 for combined
output, a Tobit with censoring at 1, and gamma distribution with shape parameter P .

In the second step of algorithms 1 and 2, Simar and Wilson suggest to run the
parametric regression excluding the observations whose estimated efficiencies equal 1
(Table A.23) and to consider these estimates on the bootstrap. They argue that the
probability mass at 1 is an artifact of finite samples and is not related to the true model
specified in 6.23. From Table A.23 some estimated parameters change significantly when
compared to those specified in Table A.12. The strongest difference is for the shape
parameter P, the ’new’ confidence interval (3.28, 5.99) not even includes the original
estimated parameter (3.08). Also, the variable s2 (medium size) is considered significant
when excluding estimated efficiencies equal to 1, differently from before.

Algorithm 1 This algorithm does not include a bias correction, but it is applied for
the bootstrap mean, so as to calculate a bias corrected percentile confidence interval,
according to 6.4. The results are presented in Table A.24. In step 3 the loop has 2500
replications.

Without φ̂∗1 = 1 in step 2 the conclusions differ from A.12. The shape parameter is
not included in the confidence interval and the variable s2 (medium size) is considered
significant.

The Pearson correlation between observed and predicted values is 60%.

Algorithm 2 The results are related to a double bootstrap applied for the best pa-
rametric model for DEA measurements from combined output (A.12). It is based on a
Tobit model with censoring at 1 and residuals with gamma distribution with shape pa-
rameter P. The first loop (step 3) has 1000 replications and the second one (step 6) 2000.
We observe that observation 80 has an extremely low value for the estimated efficiency,
but since it was not influent on the parameter estimates, we decided to keep it on the
analysis.

In Table A.25 we have the double bootstrap means and confidence intervals for
the Tobit model censored at 1, gamma distribution with shape parameter P (without
φ̂∗1 = 1 in step 2) and respective measures of the original model, as in Table A.12.
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The original shape parameter (3.08) is not included in the double bootstrap confidence
interval (3.16, 5.78). Excluding φ̂∗1 = 1 in the second step of the bootstrap we remark
that variable s2 (medium size) is considered significant, but marginally.

The Pearson correlation between observed and predicted values is 60%.

Algorithms 1 and 2 are consistent with each other but differ in a similar way to the
Tobit model (Table A.12). So as to be able to compare the Pearson correlation between
observed and predicted values from the original model, we applied a bias corrected boots-
trap to it, and the Pearson correlation was also around 60%. It is worthy to remark that
also the sigificance of the parameters did not change in this bootstrap, when compared
to the model in Table A.12.
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Chapter 7

A Probabilistic Approach for Brazilian

Banks Contextual Variables in

Nonparametric Frontier Models

In this chapter we present a probabilistic interpretation of the Farrell-Debreu effi-
ciency scores. The formulation proposed by Daraio and Simar [27] is for a nonparametric
frontier model that can also consider external contextual factors (neither outputs nor
inputs) that might influence the production process. For that, a probabilistic model is
necessary to define the data generating process.

In this context, the new concept of conditional efficiency measure and respective non-
parametric estimators are also presented. The previous ideas were developed initially by
Cazals et al. [23]. The authors also proposed the order-m methods due to the sensitivity
of the DEA and FDH to outliers. An empirical evidence of this problem can be found
in Wheelock and Wilson [45] in their study of efficiency and technical change in U.S.
commercial banking. Basically, the results are more robust since the frontier does not
envelope all the data, since they are not constructed using all the observations available,
but a subset of it. Instead of this method, we opt for excluding outliers before calculating
the efficiency measures.

As pointed out by Daraio and Simar [27], one main difference between the two stage
approach and the probabilistic formulation is that the first depends on the separability
condition between the contextual variable Z and the input x output set (X,Y ), what
is not necessary in the second one. This condition implies that the production frontier
does not change with a different set of the contextual variable, since it does not depend
on that.

Besides, in the two stage approach the Data Envelopment Analysis that incorporates
convexity assumption is used, while in the probabilistic formulation, the use of the
Free Disposal Hull (FDH) efficiency scores does not require this hypothesis. Another
difference is that the probabilistic approach is non parametric while in the two stage
we need to specify a parametric function to be able to regress the estimated efficiency
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on the contextual variables. In most of the studies, the error term is supposed to follow
a truncated normal distribution. Although other authors as Banker [7] and Souza [11]
have already studied other possibilities as the use of an exponential distribution.

To verify the influence of the contextual variable z on the production process the
FDH efficiency scores conditional and non-conditional on this variable are compared.

In the stochastic approach, the stochastic part of the DGP specified in Assumptions
A1 until A8, through the probability density function f(x, y) or the corresponding dis-
tribution function F (x, y) is substituted by the following probability function (Simar
and Wilson [41]) :

HXY (y, x) = P (Y ≥ y,X ≤ x). (7.1)

The authors provide the following interpretations and properties :
– "HXY (y, x) gives the probability that a unit operating at input, output levels (x,

y) is dominated, i.e., that another unit produces at least as much output while
using no more of any input than the unit operating at (x, y).

– HXY (y, x) is monotone, non-decreasing in x and monotone non-increasing in y.
– The support of the distribution function HXY (., .) is the attainable set Ψ ; i.e.,

HXY (y, x) = 0 ∀ (x, y) /∈ Ψ.” (7.2)

Applying Bayes’ rule in the probability function HXY (y, x) we get :

HXY (y, x) = P (X ≤ x|Y ≥ y)P (Y ≥ y) = FX/Y (x|y)SY (y) (7.3)

and
HXY (y, x) = P (Y ≥ y|X ≤ x)P (X ≤ x) = SY/X(y|x)FX(x). (7.4)

New concepts of efficiency measures can be defined for the input-oriented case and
output-oriented case, assuming SY (y) > 0 and FX(x) > 0 :

θ(x, y) = inf
{

θ|FX/Y (θx|y) > 0
}

= inf {θ|HXY (θx, y) > 0} (7.5)

and
λ(x, y) = sup

{

λ|SY/X(λy|x) > 0
}

= sup {λ|HXY (λy, x) > 0} , (7.6)

since the support of the joint distribution is the attainable set, boundaries of Ψ can be
defined in terms of the conditional distributions.

Comparing with the DEA measures, there is also a difference in the interpretation
of the efficiency scores in (7.5) and (7.6) :

– Input case : is the proportionate reduction of inputs (holding output levels fixed)
required for a unit operating at (x, y) to achieve zero probability of being domina-
ted ;
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– Output case : is the proportionate increase in outputs required for the same unit
to have zero probability of being dominated, holding input levels fixed.

Considering that the output orientation is of interest for the empirical work, also in
this chapter, only this case will be presented in more details. This part of the analysis
will be based in the following two output oriented efficiency measures : Free Disposal
Hull (FDH) and conditional FDH efficiency measure.

7.1 Unconditional Probabilistic Formulation

The Farrell-Debreu output efficiency measure for a given level of input (x) and output
(y) is defined as in equation (6.5) and in the free disposability context is given by

λ(x, y) = sup
{

λ|SY |X(λy, x) > 0
}

(7.7)

where SY |X(y|x) = P (Y ≥ y|X ≤ x).

And it can be non parametrically estimated by

λ̂n(x, y) = sup
{

λ|ŜY |X,n(λy|x) > 0
}

(7.8)

where ŜY |X,n(y|x) =
Pn

i=1
I(xi≤x,yi≥y)Pn

i=1
I(xi≤x)

.

In practice, it is estimated by

λ̂n(x, y) = sup
{

λ|(x, λy) ∈ Ψ̂FDH

}

= max
i|xi≤x

{

min
j=1,...,q

(
yj

i

yj
)

}

(7.9)

because, as observed by Cazals et al. [23], it coincides with the FDH estimator.

As already mentioned, the estimated FDH production set is very sensitive to outliers,
and consequently, are the estimated efficiency scores. Daraio and Simar [27] proposed
the concept of the robust order-m efficiency measure to overcome this problem since it
considers another definition of the benchmark against which units are compared, with
the introduction of a new order-m frontier.

The full frontier gives the full maximum achievable level of output over all production
plans that are technically feasible. An alternative benchmark is obtained by defining the
expected maximum output achieved by m firms chosen randomly from the population
and using a maximum quantity of inputs at level x. In summary, the order-m frontier
provides a less extreme frontier in case of outliers. As m increases, the order-m frontier
converges to the full frontier. This method was substituted by excluding the outliers
before calculating the efficiency measures.
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7.2 Conditional Probabilistic Formulation

Cazals et al. [23] proposed the use of probabilistic non-parametric frontier models
for the univariate case, permitting one input in the input oriented case and one output
for the output oriented case. Supposing that the separability condition is not valid and
the production frontier is influenced by the contextual variables, they also suggested the
introduction of Z ∈ ℜr by conditioning the production process on it.

Daraio and Simar [27] extended their approach to the multivariate case. In their
paper, the authors explicit the input oriented framework that we adapt here for the
output oriented case. Conditioning on Z = z, the efficiency measure is given by :

λ(x, y|z) = sup {λ|FY (λy|x, z) > 0} , (7.10)

where FY (y|x, z) = Prob(Y ≥ y|X ≤ x, Z = z).

As FY (y|x, z) is not observable, it is necessary to define a non-parametric estima-
tor for it applying smoothing techniques on z due to the continuity of this variable.
Considering the sample size n, the following kernel estimator for FY (y|x, z) is defined
as :

F̂Y,n(y|x, z) =

∑n
i=1 I(xi ≤ x, yi ≥ y)K( z−zi

hn
)

∑n
i=1 I(xi ≤ x)K( z−zi

hn
)

, (7.11)

where K(.) is the kernel and hn is the bandwidth. The bandwidth selection suggested by
Daraio and Simar [27], the likelihood cross validation criterion, using a k-NN method,
is described in Silverman [5].

The smoothing technique is necessary if Z is a continuous variable. The basic idea
is of smoothing the conditional distribution function (F̂Y,n(y|x, z)) estimation, selecting
a bandwidth h which could optimize the estimation of the Z density, in the sense of
yielding a density estimate which is close to the true density in terms of the Kullback-
Leibler information distance. The choice of the k-NN method results in the choice of a
local bandwidth hzi

, always with the same number of observations, it means, k points
zj verifying |zj − zi| ≤ hzi

.

The cross validation criteria evaluates the leave-one-out kernel density estimate of
Z, f̂ (−i)

k (Zi), i = 1, · · · , n, for some values of k and choose the one that maximizes the
score function :

CV (k) = n−1

n
∑

i=1

log(f̂
(−i)
k (Zi)),

f̂
(−i)
k (Zi) =

1

(n− 1)hZi

n
∑

j=1,j 6=i

K

(

Zj − Zi

hZi

)

.
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Also from Silverman [5], for a specific kernel function, the discrepancy between the
density estimator and the true density f(x) can be measured by the mean integrated
square error (MISE) :

MISE(h) =

∫

x

{

E(f̂h(x) − f(x))
}2

dx+

∫

x

V AR(f̂h(x))dx,

based on the sum of the integrated squared bias and the variance. The bandwidth h is
specified as :

h = CQn− 1

2 ,

where C is the kernel-option. If Q is the interquartile range, and n is the sample size,
then C is related to h by the previous formula. We considered C = MISE.

An approximation is provided by :

AMISE(h) =
1

4
h4

(
∫

t

t2k(t)dt

)2 ∫

x

(f ′′(x))2dx+
1

nh

∫

t

k(t)2dt.

Plugging in the estimator of equation (7.11) in equation (7.10), we get the conditional
FDH efficiency measure for the output oriented case :

λ̂n(x, y|z) = sup
{

λ|F̂Y (λy|x, z) > 0
}

. (7.12)

Simar and Daraio remember that the asymptotic properties for this estimator have
not yet been derived.

48



7.3 Empirical Results

In this application only the continuous variable nonperforming loans (q) was analy-
sed. The discrete ones were not considered since to calculate efficiencies based on the
probabilistic approach, it would be necessary to divide the data set in so many groups as
provided by the combinations of the levels of each variable. At the end, the subsamples
are too small. The main routines to compute the probabilistic measures where gently
provided by professor Simar and Cinzia Daraio. They were implemented using MATLAT
([1]).

Since the main interest is to investigate the influence of nonperforming loans on
bank efficiency, it is calculated the unconditional and conditional probabilistic efficiency
measures, λ̂n(x, y) and λ̂n(x, y|q) respectively. Differences on them indicate that non-

performing loans do influence the process. A graph of the rank of their ratio ( λ̂n(x,y|q)

λ̂n(x,y)
)

versus the rank of nonperforming loans is available in Figure A.1.

The bandwidth selection method (k-Nearest Neighbor-KNN) suggested by Daraio
and Simar [27] required to obtain the nonparametric estimator of F (x|y, q) was not
adequate to this data set. The number of observations k provided by this method was
either the full sample size or only one observation. The mean integrated square error
method (MISE), which value was minimized by the quadratic kernel with bandwidth
h = 0.5308, is chosen.

To evaluate the relationship between the efficiency score and nonperforming loans, it

is calculated the Spearman rank correlation between λ̂n(x,y|q)

λ̂n(x,y)
and q (−0.32, p-value=0.0019),

significant at the 1% level. Based on the Kolmogorov-Smirnov two-sample test (Table
A.27) it is evaluated if the empirical distribution coincides with the expected distribution
assuming λ̂n(x, y) = λ̂n(x, y|q). At the 1% level the distributions differ.

Spearman rank correlation and Kolmogorov-Smirnov test indicate that nonperfor-
ming loans influence the production process. The negative correlation means that the
contextual variable (nonperforming loans) corresponds to an unfavorable factor to the
response. The efficiency level decreases as nonperforming loans increases. Also a regres-
sion model was applied (Table A.28), confirming previous results. Assuming a gamma
distribution, also nonperforming loans is significant, and as it increases, the level of
efficiency decreases.
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Chapter 8

Conclusions

The thesis extends Banker’s results [7] that fundaments a formal statistical basis for
the efficiency evaluation techniques of DEA. It is demonstrated the strong consistency of
the DEA estimator of a monotone increasing and concave production function, relaxing
the assumption of identically distributed inefficiencies. This desirable asymptotic pro-
perty justifies inference in a two-stage approach that models effects causing inefficiency.

Small samples results are inspected by Monte Carlo simulation. Inefficiencies are
estimated based on a univariate production model assuming original inefficiencies un-
correlated. Since the observed correlations were not significant, there is evidence in a
production model against Simar and Wilson critics concerning the use of the two-stage
approach. They argue that estimated DEA efficiencies are correlated and consequently
inference in the two-stage approach may be invalid.

Techniques are considered to evaluate the influence of some contextual variables on
the output oriented efficiency measures of commercial banks in Brazil for the year 2001.
Investment securities, total loans and demand deposits are the bank outputs used as a
multiple output vector and also combined in a single measure. Labor, loanable funds and
stock of physical capital are the bank inputs. The significance of the following technical
effects is evaluated : bank nature, bank type, bank size, bank control, bank origin and
nonperforming loans. Here, specific results for the technical effects that classify the banks
will be omitted, since the main interest is on the influence of nonperforming loans on
the level of efficiency.

The thesis contributes to the literature suggesting competing statistical models that
are justified in terms of the stochastic properties of the production responses in the
DEA context. These models are presented in Chapter 4 . The range of model alterna-
tives include the use of nonparametric analysis of covariance, the fit of the truncated
normal and the exponential distribution and a general class of Tobit models allowing for
heteroscedasticity, fit via maximum likelihood. Conditional moment test of specification
is a new alternative suggested that confirm the adequacy of the models.

In Chapter 5 a parametric analysis of covariance is applied and its adequacy is checked
by a randomization process with the aim of checking models assumptions.
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It is demonstrated, by Monte Carlo simulation, that the restrictions highlighted by
Simar and Wilson [42] can not be generalized. Inference on the two-stage approach is for-
mally justified relaxing the assumption of independent identically distributed inefficien-
cies in production models. Bootstrap procedures are applied with the aim of confirming
and comparing asymptotic results. Neither the simple bootstrap algorithm corrected for
the bias, nor the algorithms suggested by Simar and Wilson showed different results
concerning the significance of nonperforming loans. This variable does not influence the
efficiency level.

The previous empirical analysis are based on a two-stage approach where first a
nonparametric DEA efficiency measure is obtained and then the efficiency score is re-
gressed on some technical effects. It is based on the separability condition between the
input/output space and the contextual variables space, distributional assumptions and
linearity. In none of these models nonperforming loans appeared to have significant in-
fluence on the level of efficiency of brazilian banks.

A different result was obtained for the probabilistic approach, explored in Chapter
7. There is evidence that nonperforming loans do influence other efficiency measures.
The conclusion is based on the Spearman rank correlation between the ratio of the
conditional probabilistic measure to the unconditional and nonperforming loans. Also the
Kolmogorov-Smirnov two-sample test is considered to compare the empirical distribution
with the ratio of the conditional to unconditional probabilistic distribution function.
There is evidence that the two distributions differ. The observed negative correlation
means that the contextual variable (nonperforming loans) corresponds to an unfavorable
factor to the response. The same conclusion arrived when one regresses the ratio against
nonperforming loans.

The probabilistic efficiency measure relies on a new definition of the production
process. It is described by the joint probability measure of (X,Y) (H(x, y)). The sup-
port of the joint distribution is the attainable set, consequently, the production frontier
can be obtained in terms of the conditional distribution, in the output case given by
P (Y ≥ y|X ≤ x). The inclusion of the contextual variable is done by conditioning the
joint distribution on q. The separability condition is not assumed and it is not neces-
sary to impose linearity nor any probabilistic distribution. This new characterization
of the frontier, and the efficiency measure, allows for the identification of the influence
of nonperforming loans on the efficiency level by analysing the differences between the
conditional and unconditional measures. It indicates how important is the choice of how
to calculate efficiency and suggest us to explore other measures to find out if significance
of other effects are masked.

A variety of efficiency models have been suggested in the literature. In the banking
context many papers have focused on cost and profit efficiencies. These efficiency mo-
dels could be studied using our methodology, and we would expect that results would
change depending on specific variables that are being employed. Future research could
focus on comparing the performance of such models and understanding their advan-
tages/disadvantages and in which context they are useful for regulators and bank risk
managers.
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Another aspect that can still be explored as extension of this work is to apply a
similar analysis to a panel data and verify not only the variables that influence the
production process, but also if changes occurred during this period. Institutions that
supervise the banking system have main interest in following bank’s performance. The
literature suggests the use of Malmquist indices and respective decompositions that
usually involve ratios of distance functions, following the lines suggested by Fare and
Grosskopf ([30] and [31]).
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Variable Level N Mean L U

Bank Nature Commercial 12 0.462 0.267 0.657
Multiple 81 0.378 0.317 0.44

Bank Type Credit 33 0.408 0.32 0.496
Business 24 0.526 0.405 0.646
Bursary 3 0.746 0 1
Retail 34 0.508 0.487 0.056

Bank Size Large 18 0.317 0.181 0.452
Medium 30 0.386 0.27 0.502
Small 25 0.419 0.316 0.522
Micro 21 0.409 0.28 0.538

Bank Control Private 79 0.405 0.341 0.469
Public 15 0.288 0.16 0.415

Bank Origin Foreign 28 0.404 0.291 0.516
Domestic 66 0.379 0.311 0.447

Tab. A.1 – Descriptive statistics for categorical variables. Response is 1/φ∗
j for a model

with combined output yc. L and U are lower and upper 95% confidence limits.

Variable Level N Mean L U

Bank Nature Commercial 12 0.633 0.466 0.8
Multiple 81 0.585 0.525 0.646

Bank Type Credit 33 0.642 0.559 0.726
Business 24 0.646 0.531 0.761
Bursary 3 0.75 0 1
Retail 34 0.478 0.384 0.572

Bank Size Large 18 0.522 0.388 0.655
Medium 30 0.528 0.422 0.633
Small 25 0.634 0.527 0.741
Micro 21 0.674 0.553 0.795

Bank Control Private 79 0.594 0.533 0.654
Public 15 0.555 0.39 0.72

Bank Origin Foreign 28 0.534 0.419 0.65
Domestic 66 0.61 0.546 0.674

Tab. A.2 – Descriptive statistics for categorical variables. Response is 1/φ∗
j for a model

with multiple output. L and U are lower and upper 95% confidence limits.
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Variable ǫ∗ φ∗1 φ∗2

ǫ∗ 1 0.412 0.527
φ∗1 - 1 0.798
φ∗2 - - 1

Tab. A.3 – Rank correlation between DEA residuals ǫ∗, combined output DEA φ∗1 and
multiple output DEA φ∗2.

Variable Runs z p-value

ǫ∗ 43 -1.037 0.230
φ∗1 43 -1.037 0.230
φ∗2 44 -0.830 0.407

Tab. A.4 – Runs test for DEA residuals ǫ∗, combined output DEA φ∗1 and multiple
output DEA φ∗2.

Source df Sum of Squares Mean Square F p-value

Model 11 16,676.60 1,516.05 2.37 0.014
Bank Nature 2 1,742.18 871.09 1.36 0.262
Bank Type 3 1,612.79 537.598 0.84 0.476
Bank Size 3 2,910.93 970.31 1.52 0.217
Bank Control 1 1,565.25 1,565.25 2.45 0.122
Bank Origin 1 2,175.47 2,175.47 3.4 0.069
q 1 95.029 95.029 0.15 0.701
Error 82 52,488.90 640.109 - -
Total 93 69,165.50 - - -

Tab. A.5 – Nonparametric analysis of covariance for DEA residuals.

Source df Sum of Squares Mean Square F p-value

Model 11 26,438.22 2,403.48 4.61 <0.001
Bank Nature 2 2,282.39 1,141.20 2.19 0.118
Bank Type 3 17,049.21 5,683.07 10.91 <0.001
Bank Size 3 2,167.12 722.374 1.39 0.253
Bank Control 1 198.099 198.099 0.38 0.539
Bank Origin 1 67.824 67.824 0.13 0.719
q 1 565.008 565.008 1.08 0.301
Error 82 42,723.78 521.022 - -
Total 93 69,162.00 - - -

Tab. A.6 – Nonparametric analysis of covariance for DEA measurements computed for
a combined output.

59



Source df Sum of Squares Mean Square F p-value

Model 11 12,083.20 1,098.47 1.59 0.118
Bank Nature 2 1,856.74 928.372 1.34 0.267
Bank Type 3 4,829.72 1,609.91 2.33 0.081
Bank Size 3 1,292.42 430.807 0.62 0.602
Bank Control 1 325.078 325.078 0.47 0.495
Bank Origin 1 1,445.03 1,445.03 2.09 0.152
q 1 104.035 104.035 0.15 0.699
Error 82 56,715.31 691.65 - -
Total 93 68,798.50 - - -

Tab. A.7 – Nonparametric analysis of covariance for DEA measurements computed for
a multiple output.

Model -2ll Parms AIC BIC

Truncated Normal 167.7 13 193.7 226.8
Exponential 196.2 12 220.2 250.7
Tobit (at zero) 210.1 13 236.1 269.1
Heteroscedastic Tobit (at zero) 206.2 16 238.3 279.0

Tab. A.8 – Parametric models for DEA residuals ǫ∗. -2ll is twice the log-likelihood,
Parms is the number of parameters and AIC and BIC are the Akaike and Schwarz
information criteria, respectively.

Model -2ll Parms AIC BIC

Tobit (at 1) 429.3 13 455.3 488.4
Heteroscedastic Tobit (at 1) 413.6 16 445.6 486.3
Truncated Normal (Tobit at 1) 408.5 13 434.5 467.6
Gamma (Tobit at 1) 393.4 13 419.4 452.5
Exponential (Tobit at 1) 436.0 12 460 490.5

Tab. A.9 – Parametric models for DEA responses for combined output φ∗1. -2ll is twice
the log-likelihood, Parms is the number of parameters and AIC and BIC are the Akaike
and Schwarz information criteria, respectively.
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Model -2ll Parms AIC BIC

Tobit (at 1) 328.7 13 354.7 387.8
Heteroscedastic Tobit (at 1) 307.2 16 339.2 379.2
Truncated Normal (Tobit at 1) 310.8 13 336.8 369.9
Gamma (Tobit at 1) 296.3 13 317.3 350.4
Exponential (Tobit at 1) 428.3 12 452.3 482.8

Tab. A.10 – Parametric models for DEA responses for multiple output φ∗2. -2ll is twice
the log-likelihood, Parms is the number of parameters and AIC and BIC are the Akaike
and Schwarz information criteria, respectively.

Variable Estimate Standard Error t p-value

Intercept 0.012 1.412 0.01 0.993
n1 -1.299 1.412 -0.92 0.360
n2 -0.491 1.327 -0.37 0.712
t1 0.411 0.483 0.85 0.397
t2 0.258 0.383 0.67 0.502
t3 -0.827 0.908 -0.91 0.365
s1 1.136 0.606 1.87 0.064
s2 0.846 0.481 1.76 0.082
s3 0.895 0.437 2.05 0.043
c1 0.914 0.535 1.71 0.091
o1 -0.567 0.278 -2.04 0.044
q 0.040 0.076 0.52 0.605
σ2 0.788 0.198 3.97 <0.001

Tab. A.11 – Parametric model for DEA residuals ǫ∗. Truncated normal distribution.
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Variable Estimate Standard Error t p-value

Intercept 1.773 0.673 2.63 0.010
n1 -0.823 0.624 -1.32 0.190
n2 -0.617 0.606 -1.02 0.311
t1 -1.067 0.240 -4.44 <0.001
t2 -1.144 0.198 -5.79 <0.001
t3 -1.752 0.397 -4.41 <0.001
s1 -0.778 0.276 -2.82 0.006
s2 -0.284 0.217 -1.31 0.193
s3 -0.051 0.198 -0.26 0.797
c1 0.238 0.200 1.19 0.237
o1 -0.167 0.150 -1.11 0.269
q -0.046 0.039 -1.18 0.243
P 3.079 0.463 6.65 <0.001

Tab. A.12 – Parametric model for DEA measurements from combined output φ∗1. Tobit
with censoring at 1, gamma distribution with shape parameter P .

Variable Estimate Standard Error t p-value

Intercept 1.135 0.687 1.65 0.012
n1 -0.967 0.635 -1.50 0.132
n2 -0.860 0.615 -1.40 0.165
t1 -0.588 0.245 -2.40 0.018
t2 -0.523 0.204 -2.56 0.012
t3 -0.938 0.411 -2.28 0.025
s1 -0.354 0.279 -1.27 0.208
s2 -0.015 0.22 -0.07 0.944
s3 0.127 0.199 0.64 0.525
c1 0.119 0.210 0.57 0.572
o1 -0.395 0.153 -2.58 0.011
q -0.024 0.042 -0.58 0.565
P 2.976 0.486 6.12 <0.001

Tab. A.13 – Parametric model for DEA measurements from multiple output φ∗2. Tobit
with censoring at 1, gamma distribution with shape parameter P .
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Response ǫ∗ φ∗1 φ∗1

Model -2ll LR p-value -2ll LR p-value -2ll LR p-value

Full 167.710 291.338 393.406
Bank Nature 170.662 2.953 0.228 294.135 2.798 0.247 395.882 2.476 0.290
Bank Type 170.550 2.840 0.417 299.671 8.333 0.040 424.586 31.180 <0.001
Bank Size 173.551 5.441 0.142 295.483 4.145 0.246 402.648 9.242 0.026
Bank Control 171.099 3.390 0.066 291.656 0.318 0.573 394.783 1.376 0.241
Bank Origin 171.950 4.240 0.039 297.887 6.549 0.010 394.655 1.249 0.264
q 167.973 0.264 0.607 291.655 0.317 0.573 394.649 1.243 0.265

Tab. A.14 – Likelihood ratio test statistic -LR for the effects of interest. -2ll is twice the
log-likelihood. ǫ∗ is the DEA residual. φ∗1 and φ∗2 are DEA measurements for combined
and multiple outputs respectively.

Sample Percentile Quantile Empirical Percentile
(%) F(n,n) µ = 300 µ = 600

30 99 2.39 98.87 98.47
95 1.84 93.13 93.33
90 1.61 88.40 87.93

90 99 1.64 98.73 98.80
95 1.42 94.27 94.13
90 1.31 89.07 88.47

150 99 1.46 98.87 98.87
95 1.31 94.80 94.80
90 1.23 89.80 89.80

Tab. A.15 – Empirical percentiles for group comparisons when residuals are generated
independently from exponential distributions with means µ = 300 and µ = 600.
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Sample Percentile Quantile Empirical Percentile
(%) F(n/2,n/2) µ = 300 µ = 600

30 99 3.52 97.60 97.73
95 2.40 92.80 92.93
90 1.97 86.80 87.33

90 99 2.02 98.73 98.73
95 1.64 94.33 94.33
90 1.47 89.73 89.73

150 99 1.72 99.20 99.20
95 1.47 94.47 94.47
90 1.35 88.93 88.93

Tab. A.16 – Empirical percentiles for group comparisons when residuals are generated
independently from half normal distributions with means µ = 300 and µ = 600.

Source DF Sum of Squares Mean Square F Value Pr > F

Model 11 2.0830 0.1894 2.98 0.0022
Bank Nature 2 0.1643 0.0822 1.29 0.2797
Bank Type 3 1.6268 0.5423 8.54 <.0001
Bank Size 3 0.2603 0.0868 1.37 0.2588
Bank Control 1 0.0042 0.0042 0.07 0.7974
Bank Origin 1 0.0313 0.0313 0.49 0.4843
q 1 0.0657 0.0657 1.04 0.312
Error 82 5.2065 0.0635 - -
Total 93 7.2894 - - -

Tab. A.17 – Parametric analysis of covariance for DEA measurements computed for a
combined output

Variable p-value (model) p-value (simulation)

Bank Nature 0.2797 0.2865
Bank Type <.0001 0.0001
Bank Size 0.2588 0.2624
Bank Control 0.7974 0.7946
Bank Origin 0.4843 0.4894
q 0.3120 0.4425

Tab. A.18 – P-values of the parametric analysis of covariance on a combined output
and respective p-values of the simulation for each variable
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Source DF Sum of Squares Mean Square F Value Pr > F

Model 11 1.0404 0.0946 1.32 0.2305
Bank Nature 2 0.1372 0.0686 0.95 0.3891
Bank Type 3 0.4734 0.1578 2.2 0.0948
Bank Size 3 0.1170 0.0390 0.54 0.6546
Bank Control 1 0.0327 0.0327 0.45 0.502
Bank Origin 1 0.1180 0.1180 1.64 0.2036
q 1 0.0134 0.0134 0.19 0.6672
Error 82 5.8932 0.0719 - -
Total 93 6.9336 - - -

Tab. A.19 – Parametric analysis of covariance for DEA measurements computed for a
multiple output

Variable p-value (model) p-value (simulation)

Bank Nature 0.3891 0.4336
Bank Type 0.0948 0.0955
Bank Size 0.6546 0.6479
Bank Control 0.5020 0.5065
Bank Origin 0.2036 0.2010
q 0.6672 0.7538

Tab. A.20 – P-values of the parametric analysis of covariance on a multiple output and
respective p-values of the simulation for each variable
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Variable Mean Std Skew Kurt KS p-value Rel Bias Z P(Z>z)

Intercept -1.15 4.67 -4.80 28.55 0.25 0.01 -9411.55 31.80 0.00
n1 0.01 4.63 4.74 27.78 0.25 0.01 -101.04 36.00 0.00
n2 0.79 4.61 4.87 29.19 0.25 0.01 -260.76 37.40 0.00
t1 0.38 0.47 -0.01 0.22 0.01 0.15 -6.94 2.29 0.01
t2 0.24 0.37 0.00 0.22 0.01 0.15 -8.12 2.12 0.02
t3 -1.02 1.20 -2.60 16.04 0.11 0.01 23.63 8.33 0.00
s1 1.06 0.57 0.15 0.08 0.02 0.15 -6.24 4.53 0.00
s2 0.79 0.44 0.13 0.15 0.01 0.15 -6.59 4.49 0.00
s3 0.84 0.39 0.29 0.41 0.03 0.01 -5.71 4.54 0.00
c1 0.88 0.52 0.44 0.54 0.04 0.01 -3.57 2.36 0.01
o1 -0.54 0.27 -0.07 0.01 0.02 0.07 -4.03 3.19 0.00
q 0.03 0.08 -0.27 0.59 0.03 0.01 -17.63 3.55 0.00
σ2 0.66 0.18 1.01 1.90 0.08 0.01 -16.03 24.68 0.00

Tab. A.21 – Bootstrap mean, standard error, skewness and kurtosis. Kolmogorov-
Smirnov (KS) test for normality, relative bias and its significance test.

Param. Lower Upper Boot Param. Lower Upper Bias Bias
Boot. CI Boot. CI Mean Model Model CI Model CI Corrected

Intercept -11.02 2.36 -1.15 0.01 -2.79 2.82 -1.16 1.17
n1 -3.99 4.62 0.01 -1.30 -4.10 1.50 1.31 -2.61
n2 -2.82 6.84 0.79 -0.49 -3.13 2.14 1.28 -1.77
t1 -0.47 1.34 0.38 0.41 -0.55 1.37 -0.03 0.44
t2 -0.44 0.97 0.24 0.26 -0.50 1.02 -0.02 0.28
t3 -3.69 0.62 -1.02 -0.83 -2.63 0.98 -0.20 -0.63
s1 0.12 2.39 1.06 1.14 -0.07 2.34 -0.07 1.21
s2 0.07 1.81 0.79 0.85 -0.11 1.80 -0.06 0.90
s3 0.23 1.82 0.84 0.90 0.03 1.76 -0.05 0.95
c1 0.09 2.17 0.88 0.91 -0.15 1.98 -0.03 0.95
o1 -1.17 -0.07 -0.54 -0.57 -1.12 -0.02 0.02 -0.59
q -0.12 0.19 0.03 0.04 -0.11 0.19 -0.01 0.05
σ2 0.58 1.68 0.66 0.79 0.39 1.18 -0.13 0.91

Tab. A.22 – Bootstrap confidence intervals and means, estimated confidence intervals
and parameters from the truncated normal model, bias and bias corrected parameters.
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Var Estimate Standard Error t p-value Lower Upper

Intercept 1.358 0.562 2.41 0.018 0.24 2.48
n1 -0.673 0.514 -1.31 0.194 -1.69 0.35
n2 -0.555 0.497 -1.12 0.267 -1.54 0.43
t1 -1.183 0.203 -5.84 <.0001 -1.59 -0.78
t2 -1.098 0.170 -6.45 <.0001 -1.44 -0.76
t3 -1.476 0.380 -3.89 0.000 -2.23 -0.72
s1 -0.857 0.240 -3.58 0.001 -1.33 -0.38
s2 -0.433 0.186 -2.32 0.023 -0.80 -0.06
s3 -0.162 0.172 -0.94 0.348 -0.50 0.18
c1 0.290 0.170 1.7 0.092 -0.05 0.63
o1 -0.095 0.130 -0.73 0.467 -0.35 0.16
q -0.019 0.036 -0.54 0.592 -0.09 0.05
P 4.635 0.683 6.79 <.0001 3.28 5.99

Tab. A.23 – Parametric model for DEA measurements from combined output φ∗1, ex-
cluding φ̂∗1 = 1. Tobit with censoring at 1, gamma distribution with shape param. P

Var Bootstrap without φ̂∗1 = 1 Model
Mean Low Upper Mean Low Upper

Intercept 1.61 0.40 2.59 1.77 0.42 3.12
n1 -0.74 -1.62 0.51 -0.82 -2.06 0.41
n2 -0.63 -1.47 0.51 -0.62 -1.82 0.59
t1 -1.18 -1.61 -0.77 -1.07 -1.54 -0.59
t2 -1.09 -1.43 -0.78 -1.14 -1.54 -0.75
t3 -1.39 -2.25 -0.71 -1.75 -2.54 -0.97
s1 -0.85 -1.35 -0.34 -0.78 -1.33 -0.23
s2 -0.43 -0.81 -0.04 -0.28 -0.71 0.15
s3 -0.16 -0.49 0.16 -0.05 -0.44 0.34
c1 0.28 -0.06 0.64 0.24 -0.16 0.63
o1 -0.10 -0.34 0.15 -0.17 -0.46 0.13
q -0.01 -0.10 0.05 -0.05 -0.12 0.03
P 3.74 3.32 5.40 3.08 2.16 4.00

Tab. A.24 – Algorithm 1 - Bias corrected bootstrap means and percentile confidence
intervals with and without estimated efficiencies equal to 1 (φ̂∗1 = 1) and parameters
of the Tobit model with censoring at 1, gamma distribution with shape param. P and
respective confidence intervals
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Var Bootstrap without φ̂∗1 = 1 Model
Mean Low Upper Mean Low Upper

Intercept 1.63 0.25 2.83 1.77 0.42 3.12
n1 -0.70 -1.85 0.62 -0.82 -2.06 0.41
n2 -0.47 -1.57 0.83 -0.62 -1.82 0.59
t1 -1.19 -1.62 -0.73 -1.07 -1.54 -0.59
t2 -1.23 -1.59 -0.87 -1.14 -1.54 -0.75
t3 -1.83 -2.55 -1.14 -1.75 -2.54 -0.97
s1 -0.89 -1.38 -0.39 -0.78 -1.33 -0.23
s2 -0.39 -0.76 -0.01 -0.28 -0.71 0.15
s3 -0.13 -0.46 0.22 -0.05 -0.44 0.34
c1 0.27 -0.12 0.64 0.24 -0.16 0.63
o1 -0.09 -0.35 0.19 -0.17 -0.46 0.13
q -0.05 -0.14 0.02 -0.05 -0.12 0.03
P 4.29 3.16 5.78 3.08 2.16 4.00

Tab. A.25 – Algorithm 2 - Double bootstrap means and percentile confidence intervals
with and without estimated efficiencies equal to 1 (φ̂∗1 = 1) and parameters of the Tobit
model with censoring at 1, gamma distribution with shape param. P and respective
confidence intervals

Fig. A.1 – Rank of λ̂n(x,y|q)

λ̂n(x,y)
against rank of nonperforming loans (q)
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Correlation Significance
Spearman -0.317 0.0019
Pearson correlation -0.362 0.0003

Tab. A.26 – Pearson and Spearman rank correlation between λ̂n(x,y|q)

λ̂n(x,y)
and nonperforming

loans and respective levels of significance

Statistic Value

KS 0.101
D 0.202
KSa 1.386
Pr > KSa 0.043

Tab. A.27 – Asymptotic Kolmogorov-Smirnov two sample test

Var Estimate Standard Error t p-value Lower Upper

Intercept -2.545 0.365 -6.96 <.0001 -3.271 -1.820
n1 0.070 0.319 0.22 0.827 -0.564 0.703
n2 0.070 0.309 0.23 0.822 -0.544 0.683
t1 -0.001 0.122 -0.01 0.992 -0.242 0.240
t2 -0.050 0.098 -0.51 0.611 -0.245 0.145
t3 -0.179 0.193 -0.93 0.356 -0.562 0.204
s1 0.026 0.143 0.18 0.854 -0.257 0.310
s2 -0.027 0.108 -0.25 0.801 -0.242 0.187
s3 -0.093 0.097 -0.96 0.340 -0.287 0.100
c1 -0.074 0.105 -0.71 0.481 -0.283 0.134
o1 0.056 0.072 0.77 0.442 -0.088 0.199
q -0.064 0.021 -3.01 0.003 -0.105 -0.022
P 12.098 1.741 6.95 <.0001 8.641 15.554

Tab. A.28 – Parametric model for the regression of the ratio λ̂n(x,y|q)

λ̂n(x,y)
on q, assuming a

gamma distribution with shape parameter P
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