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RESUMO

An Immune-Inspired, Dependence-Based Approach to Blind Inversion of

Wiener Systems

Autor: Stephanie Milena Alvarez Fernandez

Orientador: Daniel Guerreiro e Silva

Programa de Pós-graduação em Engenharia Elétrica

Brasília, Março de 2016

Nas últimas décadas, o estudo de métodos para a inversão cega de sistemas de Wiener tem

recebido uma atenção signi�cativa, especialmente em áreas como a biologia, química, sociologia e

na indústria. Um grande número de métodos tem sido desenvolvidos com diferentes abordagens

e análises teóricas do problema, que incluem algoritmos de gradiente para minimizar a taxa de

informação mútua do sinal extraído, algoritmos genéticos para executar a tarefa de procurar os

parâmetros ótimos assim como algoritmos imuno-inspirados. Estes métodos têm como requisito

fundamental que o sinal de entrada seja originalmente i.i.d., além de algumas outras condições de

suavidade. Cenários de aplicação que cumprem com este requisito podem ser difíceis de ocorrer, na

prática; por isso, considerar fontes não-independentes tem se tornado uma importante abordagem.

Neste trabalho, propõem-se dois métodos baseados nas funções de autocorrelação e autocorren-

tropia para explorar a estrutura do tempo de um determinado sinal, com a �nalidade de promover

a inversão cega dos sistemas de Wiener usando sistemas Hammerstein. Filtros lineares com e sem

realimentação são considerados e um algoritmo imuno-inspirado é usado para permitir a otimização

de parâmetros sem a necessidade de manipular analiticamente a função custo, ao mesmo tempo

que se aumenta a probabilidade de convergência global. Os resultados experimentais indicam que

ambas as funções proporcionam meios e�cazes para a inversão do sistema e também ilustram o

efeito de realimentação linear sobre o desempenho global do sistema.

Palavras Chave: Sistemas de Wiener, Processamento de Sinais, Aprendizado Baseado na Teoria

da Informação, Correntropia.



ABSTRACT

An Immune-Inspired, Dependence-Based Approach to Blind Inversion of Wi-

ener Systems

Author: Stephanie Milena Alvarez Fernandez

Supervisor: Daniel Guerreiro e Silva

Programa de Pós-graduação em Engenharia Elétrica

Brasília, March of 2016

In the last decades, the study of blind inversion of Wiener systems has received signi�cant at-

tention, in a special manner in areas such as biology, chemistry, sociology, psychology and industry.

A large number of methods have been developed with di�erent approaches and theoretical analysis

of the problem, which include a gradient algorithm to minimize the mutual information rate of the

extracted signal, genetic algorithms to perform the task of searching for the optimal parameters as

well as immune-inspired algorithms. These methods have the particular requirement that the input

signal must be i.i.d. and, besides some smoothness conditions. This requirement may be hard to

be present in real-world problems, hence, considering non-independent sources have become an

interesting approach. In this work, we propose two methods based on the autocorrelation and

autocorrentropy functions for representing the time structure of a given signal, in order to cope

with the unsupervised inversion of Wiener systems by Hammerstein systems. Linear �lters with

and without feedback are considered and an immune-inspired algorithm is used to allow parameter

optimization without the need for explicitly manipulating the cost function, with the additional

bene�t of increasing the probability of global convergence. The experimental results indicate that

both functions provide e�ective means for system inversion and also illustrate the e�ect of linear

feedback on the overall system performance.

Keywords: Wiener systems, Signal Processing, Information Theoretic Learning, Correntropy.
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Sumário

Modelagem inversa adaptativa é uma tarefa importante, tendo em conta o seu vasto horizonte de

aplicações práticas na área de processamento de sinais. Isto é devido à necessidade de compreender,

analisar, prever e controlar sistemas reais, que tem crescido rapidamente com o avanço tecnológico

e industrial [1]. Ao longo dos anos, esta questão recebeu mais atenção devido aos crescentes avanços

tecnológicos em diversas áreas do conhecimento humano, inclusive no contexto de estruturas não-

lineares, que têm sido e�cazes em diversas áreas de aplicações onde a modelagem linear falha: por

exemplo, tecnologia de microondas e RF [2, 3], processos químicos [4, 5] e biologia [6, 7]. Sistemas

não-lineares também podem ser usados no modelo de controle preditivo [8].

Tradicionalmente, métodos de identi�cação de sistemas não-lineares assumem que o sinal de

referência está disponível. No entanto, é uma situação relativamente comum, no mundo real, não se

possuir acesso à entrada do sistema. A inversão cega de sistems não-lineares torna-se, então, uma

ferramenta necessária. O problema de inversão cega (intimamente relacionada com a identi�cação

cega e equalização) de sistemas não-lineares tem uma longa história, com muitos resultados e

aplicações teóricas, especialmente em telecomunicações [9].

Os reconhecidos sistemas de Wiener e de Hammerstein são dois tipos de modelos não-lineares

usados em muitos domínios, devido à sua simplicidade e signi�cado físico, onde o comportamento

em estado estacionário do sistema é determinado totalmente pela não-linearidade estática, en-

quanto o comportamento dinâmico do sistema é determinada por ambos, a não-linearidade e os

componentes do modelo linear [10].

Neste trabalho, consideramos o uso de sistemas Hammerstein para a modelagem inversa de

sistemas de Wiener. Em termos mais especí�cos, um sistema de Wiener consiste de um subsistema

linear invariante no tempo, do inglês Linear Time-Invariant (LTI) seguido por uma distorção sem

memória e não-linear, como ilustrado na Figura 1. Um sistema Hammerstein é apenas um sistema

de Wiener estruturalmente invertido, isto é, um bloco estático não-linear é seguido por um bloco de

resposta linear. As não-linearidades em sistemas de Wiener e de Hammerstein podem ser contínua

e/ou descontínua, contanto que inversíveis. Uma vantagem da distinção em blocos lineares e não-

lineares é que a estabilidade do sistema é determinada apenas pelas partes lineares do modelo, que

podem ser facilmente veri�cadas.

Apesar de sua simplicidade estrutural, esta modelagem tem encontrado aplicação na indústria,

sociologia e psicologia; é empregada com sucesso para o estudo de fenômenos importantes na

biologia e na química [4, 5, 6, 7]. Com efeito, a principal motivação para a utilização de sistemas de

1



f [·]

g[·]

s(n) v(n) x(n)

x(n) u(n) y(n)

h(n)

w(n)

Sistema de Wiener

Sistema Hammerstein

não - linear

não - linear

Figure 1: Diagrama do sistema de Wiener e do sistema Hammerstein

Wiener é a manipulação de dinâmicas lineares e não-lineares através de um tratamento matemático

simples. A Tabela 1 apresenta uma visão geral e comparação de alguns métodos de inversão cega

mais recentes que encontram-se disponíveis para sistemas não-lineares.

Taleb et al. [11] e Silva et al. [18] propõem métodos para a inversão cega de sistemas de Wiener

usando sistemas Hammerstein, nestes trabalhos os autores consideram que h(n), f [·] e s(n) são
desconhecidos, mas assume-se que s(n) é composto por amostras independentes e identicamente

distribuídas, i.i.d.. Neste contexto, o problema de inversão consiste em encontrar w(n) e g[·] de tal
modo que as estatísticas do sinal de saída y(n) do sistema Hammerstein sejam as mais próximas

daquelas conhecidas do sinal original s(n), apesar da ambiguidade da escala e atraso do tempo.

No entanto, se as amostras de s(n) são dependentes, as abordagens mencionadas anteriormente

não são capazes de obter a solução, uma vez que consideram critérios de independência máxima

para estimar os parâmetros ótimos do sistema Hammerstein. Neste caso, é plausível adotar alguma

medida de dependência como um novo critério para a tarefa de inversão. Além disso, assumindo

amostras dependentes estatisticamente, torna-se possível considerar outros tipos de sinais, por

exemplo, sinais codi�cados.

No contexto do Aprendizado Baseado na Teoria da Informação, do inglês Information Theoretic

Learning (ITL) [19, 20, 21], uma nova função de correlação generalizada, chamada correntropia, foi

recentemente introduzida. Juntamente com a função de autocorrelação, a função de correntropia

compartilha o fato de considerar a estrutura de tempo do processo aleatório [22]. No entanto, a

correntropia não está limitada a momentos de segunda ordem. Com isto em mente, este trabalho

pretende apresentar uma comparação entre estes critérios onde será possível formar uma visão mais

clara das suas potencialidades e também de algumas peculiaridades do problema em si, propondo

uma versão modi�cada do método original proposto em [18], considerando critérios baseados na

função da autocorrelação e na correntropia, estudando em mais detalhes os aspectos teóricos de

2



Modelo (abordagem) Métodos

Wiener-Hammerstein

(Taleb et al., 2001 [11]).

Informação Mútua

Entrada: não Gaussiana i.i.d.

Não-linearidade e �ltro inversível

Quase-não paramétrico

Wiener-Hammerstein

(Solé Casals et al., 2002 [12]).

Informação Mútua

Entrada: não Gaussiana i.i.d.

Paramétrico

Redes neuronais arti�cias ou polinômios

Wiener-Hammerstein

(Babaie-Zadeh et al., 2003 [13]).

Informação Mútua

Entrada: não Gaussiana i.i.d.

Não-linearidade e �ltro inversível

Minimização pelo gradiente

Wiener-Hammerstein

(Zhang and Chan, 2004 [14] e Solé Casals

et al. 2005 [15]).

Informação Mútua

Entrada: não Gaussiana i.i.d.

Técnicas de Gaussianização

Paramétrico

Wiener-Hammerstein

(Rojas et al., 2007 [16]).

Curtose

Entrada: não Gaussiana i.i.d.

Paramétrico polinomial

Algoritmo genético

Wiener-Hammerstein

(Solé-Casals and Caiafa, 2013 [17]).

Informação Mútua

Entrada: não Gaussiana i.i.d.

Filtro desconhecido e inversível

Paramétrico

Algoritmo de implementação acelerada

Wiener-Hammerstein

(Silva et al., 2015 [18]).

Informação Mútua

Entrada: não Gaussiana i.i.d.

Sistema Hammerstein com estrutura FIR

ou IIR

Algoritmo de otimização imuno-inspirado

Table 1: Comparação de alguns métodos de inversão cega para sistemas não-lineares recentemente

disponíveis .
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cada critério, potencialidades e novos algoritmos para busca dos parâmetros ótimos.

A primeira parte desta dissertação apresenta os aspectos fundamentais e históricos da Teoria da

Informação, uma área do conhecimento fundada pelo Claude E. Shannon, a qual fornece uma base

teórica para atividades como observação, medida, compressão e armazenamento de informação e,

que tem atraído o esforço de pesquisadores em diferentes áreas do conhecimento humano, tais como

economia, física, comunicações e processamento de sinais, entre outras. Então, são introduzidas as

idéias principais de Aprendizado de Maquina Baseado na Teoria da Infomação, ao mesmo tempo

que são apresentadas ferramentas e técnicas de processamento adaptativo de sinais, as quais têm

sido usadas no contexto de identi�cação, predição, cancelamento de ruído e equalização.

Em seguida, é apresentado o problema fundamental tratado nesta dissertação, além de men-

cionar as características do problema de inversão cega de sistemas de Wiener usando sistemas

Hammerstein, são revisados alguns conceitos teóricos necessários à compreensão dos procedimen-

tos propostos e dos resultados obtidos e, com base nessa teoria, são discutidas algumas das recentes

metodologias propostas até então, as quais empregam a abordagem de minimização da informação

mútua como critério para um processo de busca, bem como a consideração de sinais de entradas

compostos com amostras estatisticamente independentes.

Dadas as características do problema e, focando nas oportunidades de contribuições fundamen-

tadas nesta dissertação, a nova proposta inclui (i) a utilização de um critério baseado na corren-

tropia, bem como um critério baseado na função de autocorrelação, que exploram o per�l temporal

de sinais estatisticamente dependentes; (ii) a utilização de �ltro linear com realimentação no sis-

tema Hammerstein para melhorar a capacidade de inversão; e (iii) um algoritmo imuno-inspirado

com risco reduzido de convergência local, responsável pela busca dos valores ótimos dos parâmetros

do sistema inverso.

Finalmente, um conjunto de simulações numéricas é apresentado. Neste sentido, um experi-

mento preliminar de caráter qualitativo foi realizado a �m de avaliar o critério baseado na função

da correntropia, os resultados obtidos neste estudo prévio permitiram então a realização dos exper-

imentos de análise da nova proposta no contexto do problema Wiener-Hammerstein. Na análise

experimental da proposta, as simulações consideram sinais de entrada com amostras estatistica-

mente dependentes, que sofrem distorção por um canal de fase mínima e uma função não-linear. Os

resultados dos experimentos mostram que ambos os métodos estatísticos são viáveis nos cenários

avaliados, e também revelam o potencial da utilização de �ltros com realimentação no sistema

Hammerstein.
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Chapter 1

Introduction

Adaptive inverse modeling is an important task, in view of its vast horizon of practical applica-

tions in the signal processing area. This is due to the necessity to understand, analyze, predict and

control real systems, which has grown quickly with the technological and industrial advance [1].

Over the years, this issue received further attention due to the increasing technological advances in

several areas of human knowledge, which led to nonlinear model structures that have been e�ective

in several application areas, where linear modelling has failed: e.g. microwave and RF technology

[2, 3], chemical processes [4, 5], biology [6, 7] and predictive control [8].

Traditionally, nonlinear systems identi�cation methods assume that a reference signal is avail-

able. However, in a real-world situation, one may have no access to the system input, hence, the

blind inversion of nonlinear systems becomes a necessary tool. Blind inversion (closely related

to blind identi�cation and equalization) of nonlinear systems has a long development, with many

theoretical results and applications, especially in telecommunications [9].

The well-known Wiener and Hammerstein systems are nonlinear models that are employed

within many domains, due to their simplicity and physical meaning, where the system steady-

state behavior is determined completely by the static nonlinearities, while the system dynamic

behavior is determined by both the nonlinearity and the linear model components. Formally

speaking, a Wiener system, depicted in Figure 1.1, consists of a linear time-invariant (LTI) �lter

subsystem, with impulse response h(n), followed by a memoryless, nonlinear distortion f [·]. A

Hammerstein system (Figure 1.1, bottom part) is just a Wiener system structurally reversed, i.e.

a nonlinear static block g[·] is followed by a linear dynamic block with impulse response w(n). The

nonlinearities in Wiener and Hammerstein systems can be continuous or discontinuous, as long as

they are invertible. An advantage of the distinction into nonlinear and linear blocks is that the

system stability is determined solely by the linear parts of the model, which can be easily checked.

In this work, we consider the inverse modeling of a Wiener system. Despite its simplicity, it has

been applied in many areas, such as industry, sociology and psychology; moreover, it is successfully

employed as a model for important phenomena in biology and chemistry [4, 5, 6, 7]. Indeed, a key

motivation for the use of Wiener systems is the handling of linear and non-linear dynamics within

a simple mathematical treatment.
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f [·]

g[·]

s(n) v(n) x(n)

x(n) u(n) y(n)

h(n)

w(n)

Wiener System

Hammerstein System

nonlinear

nonlinear

Figure 1.1: Diagram of Wiener and Hammerstein system

Various methods have been developed for the task of Wiener system inversion, such as tech-

niques based on linear optimization, nonparametric regression, and nonlinear optimization with

di�erent nonlinear models such as polynomials, arti�cial neural networks and orthogonal functions

[23, 24, 25]. Table 1.1 gives an overview and comparison of the most recently available blind inver-

sion methods for nonlinear systems. Every approach illustates the kind of source that is employed

as the input signal s(n) to the system, the model characteristics for the nonlinearity g[·] and the

LTI �lter w(n), the criterion chose to adjust the parameters of the Hammerstein system as well as

the search method for estimating the optimal values of these parameters.

Taleb et al. [11] and Silva et al. [18] proposed blind methods to invert Wiener systems through

Hammerstein models, assuming that h(n) and f [·] are unknown, as well as s(n), but with the

restriction that its samples are i.i.d.. In this context, the inversion problem consists of �nding

w(n) and g[·] such that statistics of the output signal y(n) of the Hammerstein system be as

close as possible to the known statistics of the original signal s(n), despite a scale and time delay

ambiguity.

However, if the samples of s(n) are dependent, the previously mentioned approaches are not

capable of obtaining the solution, since they consider maximal independence criterion to estimate

the Hammerstein system optimal parameters. In this case, it is plausible to adopt some dependence

measure as a new criterion for the inversion task. Additionally, by assuming statistically dependent

samples, it becomes possible to consider di�erent types of signals, for instance, encoded signals.

Blind inversion of Wiener systems is a challenging problem in signal processing and it has

potential applications in various real-world applications. It is important to reinforce that, in

the literature, there exists a very wide variety of methods and studies in the context of blind

inversion where the input of the Wiener system is assumed originally i.i.d., but in spite of e�orts

like [11, 12, 13, 15, 16, 17, 18], the inversion task for dependent sources still demands a dedicated
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Model (approach) Methods

Wiener-Hammerstein

(Taleb et al., 2001 [11]).

Mutual information

Input: non-Gaussian i.i.d.

Invertible nonlinearity and �lter

Quasi-nonparametric

Wiener-Hammerstein

(Solé-Casals et al., 2002 [12]).

Mutual information

Input: non-Gaussian i.i.d.

Arti�cial neural networks or polynomials

Parametric

Wiener-Hammerstein

(Babaie-Zadeh et al., 2003 [13]).

Mutual information

Input: non-Gaussian i.i.d.

Invertible nonlinearity and �lter

Minimization projection

Wiener-Hammerstein

(Zhang and Chan, 2004 [14] and Solé

Casals et al. 2005 [15]).

Mutual information

Input: non-Gaussian i.i.d.

Gaussianization techniques

Parametric

Wiener-Hammerstein

(Rojas et al., 2007 [16]).

Kurtosis

Input: non-Gaussian i.i.d.

Polynomial parametric

Genetic algorithm

Wiener-Hammerstein

(Solé-Casals and Caiafa, 2013 [17]).

Mutual information

Input: non-Gaussian i.i.d.

Unknown and invertible �lter

Parametric

Accelerated implementation algorithm

Wiener-Hammerstein

(Silva et al., 2015 [18]).

Mutual information

Input: non-Gaussian i.i.d.

Hammerstein system with FIR or IIR

structure

Immune-inspired optimization algorithms

Table 1.1: Comparison of recently available blind inversion methods for nonlinear systems.
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study. It should be mentioned that dependent sources are practically important in view of the

potential application of di�erent types of codes before signal transmission.

In recent times, Information Theoretic Learning (ITL) has gained attention in the signal pro-

cessing area [19, 20, 21] and a new generalized correlation function, called correntropy, has been

introduced. Correntropy is a positive de�nite function which yields a generalized similarity mea-

sure between random variables (or between time samples of a stochastic process) and it involves

higher-order statistics of input signals, therefore it can be a promising candidate for a diverse set

of applications in machine learning and signal processing.

Based on the promising properties of correntropy and considering, as well, a traditional depen-

dence measure as the autocorrelation function, in this work, we propose a modi�ed version of the

original method proposed in [18] to the blind inversion of Wiener systems. The proposal includes

(i) the use of a correntropy-based criterion as well as an autocorrelation-based function that explore

the temporal pro�le of the signal of interest; (ii) the use of linear �lter with and without feedback

in the Hammerstein system to improve inversion capability; and (iii) an immune-inspired search

algorithm with a relatively reduced risk of local convergence.

The outline of this work is as follows:

• In Chapter 2, the concepts of Information Theoretic Learning are introduced, starting from

primordial aspects of Information Theory, to then reach its connection with the adaptive

signal processing and machine learning theories.

• Supported by the concepts of the previous chapter, Chapter 3 gives a detailed description

of the blind inversion of Wiener systems problem, as well as the strategy of employing a

Hammerstein system for this task. It is introduced basics concepts of Arti�cial Immune

Systems, which are necessary for the parameters optimization step. Furthermore, two strate-

gies are introduced, in order to quantify the temporal structure of the involved signal and,

consequently, to represent the inversion criterion: the autocorrelation and autocorrentropy

functions.

• In Chapter 4 the performance of the procedure described in Chapter 3 is evaluated in various

scenarios. In addition to the numerical experiments of the proposal, the chapter presents an

empirical analysis of the correntropy-based criterion in a qualitative experiment.

• Finally, in Chapter 5, the �nal remarks about the work and future perspectives are drawn.
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Chapter 2

Information Theory and Adaptive

Filtering

This chapter initiates the theoretical basis of this dissertation, by presenting fundamental

aspects of Information Theory and the de�nition of its main measures, as well as the Renyi's

quadratic entropy and a new generalized correlation function. Notwithstanding, we link those

concepts with the main ideas of adaptive �ltering and machine learning, leading to the tools that

will be able to tackle, in this case, the blind inversion of Wiener systems.

All communication schemes lie in between the two limits on the compressibility of data and the

capacity of a channel. Information Theory can o�er means to achieve these theoretical limits, more

speci�cally, Information Theory deals with the measurement of information and the representation

of it (for example, coding) and the capacity of communication systems to transmit and process

information [26]. It was initiated by communication scientists who were studying the statistical

structure of electrical communication equipment and was principally founded by Claude E. Shan-

non in 1948 [27]. A key step in Shannon's work was his realization that, in order to have a theory,

communication signals must be treated in isolation from the meaning of the messages that they

transmit. Shannon produced a formula that showed how the bandwidth of a channel and its signal-

to-noise ratio a�ected its capacity to carry signals. In doing so, he was able to suggest strategies

for maximizing the capacity of a given channel and showed the limits of what was possible with a

given technology. This was a great utility to engineers, who could focus consequently on individual

cases and understand the speci�c trade-o�s involved. The principles and applications of the In-

formation Theory have deep connections with probability theory, statistics, electrical engineering,

signal processing and it has attracted an amount of research e�ort and provided several insights

into many research �elds, not only communication and signal processing in electrical engineering,

but also physics, computer science, economics, biology, etc [28].

A fundamental concept in Information Theory is that the amount of information contained in a

message is a well-de�ned and measurable mathematical value. We talk about entropy, which does

not refer to quantify the amount of data, but the probability of a message within a set of possible

messages be received. In most practical applications, the choice is between messages that have
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di�erent probabilities of being sent. The term entropy has been borrowed from thermodynamics

to designate the average amount of information in these messages.

2.1 Entropy

The concept of information may be too large to be captured by a single de�nition, however,

for any probability distribution, it is possible to de�ne a so-called entropy amount that has many

properties which are in accordance with the intuitive sense of what an information measure should

be. Shanon's entropy is the primary concept in Information Theory studies and indicates the

average degree of uncertainty associated with a given discrete random variable [29]:

H(X) = −
∑
x∈X

pX(x)logα[pX(x)], (2.1)

where pX(x) is the probability mass function (PMF) and X is the set of possible values taken by

the random variable X.

Eq. 2.1 allows us to speak of the information content or the entropy of a random variable.

Note that entropy is a function of the distribution of the random variable, therefore, it does not

depend on the values assumed by it, only on their probabilities.

Consider a random variable that takes on only two values, one with probability p and the other

with probability (1− p). Entropy is a concave function of this distribution, and equals 0 if p = 0

or p = 1:

H(X) = −p logα(p)− (1− p) logα(1− p) =̂ Hb(p), (2.2)

where Hb(p) is the binary entropy function. The function Hb(p) is shown in Figure 2.1.

If the logα in Eq. 2.1 is taken to be 2, then entropy is expressed in bits. If it is taken to be the

natural log, then entropy is expressed in nats. Commonly, entropy is expressed in bits, and unless

otherwise noted, we will assume a logarithm with base 2.

p
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

H
b(
p)

0

0.2

0.4

0.6

0.8

1
Hb(p) Vs p

Figure 2.1: Binary entropy function Hb(p) as a function of the probability of p.
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The extent of this de�nition for the continuous case is called di�erential entropy, and its cal-

culation for a random variable X is:

h(X) = −
ˆ
X
fX(x)ln[fX(x)]dx, (2.3)

where fX(x) is the probability density function (PDF) of X.

In the following, we introduce another relevant de�nitions and properties related to H(X),

which will be useful for future considerations:

Property 1: H(X) = 0 if and only if there is a single event with non-zero probability (i.e.,

unitary). This means that the entropy is zero when there is no uncertainty about the outcome

of a random experiment.

Property 2: Joint entropy is the entropy of a joint probability distribution. The joint entropy of

two random variables, X and Y , is de�ned by

H(X;Y ) = −
∑
x∈X

∑
y∈Y

pXY (x, y) log pXY (x, y), (2.4)

where pXY (x, y) is the joint PMF of X and Y . This de�nition gives in turn a signi�cant

inequality:

H(X;Y ) ≤ H(X) +H(Y ), (2.5)

whose equality occurs if and only if X and Y are statistically independent, i.e., when

pXY (x, y) = pX(x)pY (y). (2.6)

The joint entropy can be written as the sum

H(X,Y ) = H(X) +H(Y |X), (2.7)

where H(Y |X) is the conditional entropy of Y given X. We, of course, also have

H(X,Y ) = H(Y ) +H(X|Y ). (2.8)

Property 3: The conditional entropy of Y given X is de�ned as

H(Y |X) =
∑
x∈X

pX(x)H(Y |X = x)

=
∑
x∈X

pX(x)
∑
y∈Y

pY |X=x(y) log pY |X=x(y) . (2.9)

=
∑
x∈X

∑
y∈Y

pXY (x, y) log pY |X=x(y|x)

The joint entropy and conditional entropy are related by equations 2.7 and 2.8. It should

seem intuitive that the joint entropy of a pair of random variables is the entropy of one plus

the conditional entropy of the other. Thus, if we have three random variables X,Y, Z, the
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conditionalizing of the joint distribution of any two of them, upon the third, is also expressed

by the Chain Rule:

H(X,Y |Z) = H(X|Z) +H(Y |X,Z). (2.10)

A consequence of the Chain Rule for entropy is that if we have many di�erent random

variables X1, X2, . . . , Xn, then the sum of all their individual entropies is an upper bound on

their joint entropy:

H(X1, X2, . . . , Xn) ≤
n∑
i=1

H(Xi). (2.11)

Their joint entropy only reaches this upper bound if all of the random variables are indepen-

dent.

Property 4: From Eqs. 2.5 and 2.7, it is possible to obtain

H(Y ) ≥ H(Y |X). (2.12)

which reveals that the uncertainty of a random variable is never increased by knowledge of

another variable.

Property 5: The relative entropy or Kullback − Leibler distance between two probability mass

functions pX(x) and qX(x) with the same support X is de�ned by

D(p ‖ q) =
∑
x∈X

pX(x) log
pX(x)

qX(x)
. (2.13)

The properties given by the Eqs. 2.5 - 2.13 are directly extensible to the continuous case, just

consider integrals instead of sums and PDFs instead of PMFs. Moreover, there are other important

properties in Shannon's work related to the continuous case:

Property 6: The di�erential entropy can be negative.

Property 7: Under the restriction that a continuous random variable is limited to a �nite volume

of space, the probability density function with maximum entropy is uniform.

Property 8: If the covariance matrix of a continuous random variable is �xed a priori, the

probability density function with maximum entropy is Gaussian.

The rest of Shannon's work represents an exceptional e�ort that established a number of key results

to sources and continuous channels. Thanks to Shannon's work, Information Theory became a new

science topic, and a slew of studies have been developed in order to understand, consolidate and

expand the initial contributions made by Shannon.

Additionally, extensions of Shannon's original work have resulted in many alternative measures

of information or entropy. For instance, Rényi was able to extend Shannon's entropy to the Rényi

entropy of α order [30]. It is expressed, in the discrete case as

Hα(X) =
1

1− α
log
∑
x∈X

pαX(x), (2.14)
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and for continuous variables

hα(X) =
1

1− α
log

ˆ
X
fαX(x)dx. (2.15)

The α parameter of Rényi's entropy allows several uncertainty measurements for the same

distribution. Considering the continuous case, two scenarios are important to mention in this

context: �rst, when limα→1 hα(X) = h(X), which is Shannon's entropy and �nally, when α = 2,

which is the so-called Rényi's quadratic entropy

h2(X) = − log

ˆ
X
f2X(x)dx

= − logE[fX(x)], (2.16)

where E[·] denotes the statistical expectation.

The quadratic entropy plays an important role in Information Theoretic Learning because it

originates a family of estimators that has interesting features (from the machine learning perspec-

tive) such as being non-parametric, continuous and computationally simple to calculate.

2.2 Mutual Information

As we discussed in Section 2.1, Information theory is also capable of dealing with a pair or a

collection of random variables. It is able to quantify the amount of information that one variable

conveys about the other. Equivalently, the mutual information measures the average reduction in

uncertainty about X that results from learning about Y. Mutual information has risen in recent

years as an important measure of statistical dependence, mainly in the context of unsupervised

learning methods [31, 32]. It is de�ned as

I(X;Y ) =
∑
x∈X

∑
y∈Y

pXY (x, y) log
pXY (x, y)

pX(x)pY (y)
. (2.17)

Note that if the two random variables X and Y are independent, then the numerator inside the

logarithm equals to the denominator

pXY (x, y) = pX(x)pY (y), (2.18)

the log term vanishes, and mutual information equals to zero I(X;Y ) = 0, i.e. no information

about X is gained once Y is received.

Mutual information is a nonnegative measure, i.e. I(X;Y ) ≥ 0. In the event that the two

random variables are perfectly correlated, then their mutual information is the entropy of either

one alone. Another way to say this is: I(X;X) = H(X), the mutual information of a random

variable with itself is just its entropy.

These properties are re�ected in three equivalent de�nitions for the mutual information between

X and Y :

I(X;Y ) = H(X)−H(X|Y ), (2.19)

I(X;Y ) = H(Y )−H(Y |X) = I(Y ;X), (2.20)
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i.e., it is symmetric and able to detect nonlinear relationships between variables. Eq. 2.20 has

made mutual information a very popular criterion for feature selection [33, 34, 35]. And the last

de�nition is given by

I(X;Y ) = H(X) +H(Y )−H(X,Y ) (2.21)

The relationship between these measurements are expressed in Figure 2.2, recall that H(X|Y )

is the conditional entropy de�ned in Eq. 2.9, which measures the average uncertainty that remains

about X when Y is known.

H(X) H(Y )

H(X;Y )

H(X|Y ) H(Y |X)I(X;Y )

Figure 2.2: Venn diagram: Relationship among entropies and mutual information.

In a sense, the mutual information I(X;Y ) is the intersection between H(X) and H(Y ), since

it represents their statistical dependence. In the Venn diagram, the portion of H(X) that does not

lie within I(X;Y ) is just H(X|Y ). The portion of H(Y ) that does not lie within I(X;Y ) is just

H(Y |X).

Similarly to entropy, mutual information can also be extended to the continuous case:

I(X;Y ) =

ˆ
Y

ˆ
X
fXY (x, y) ln

[
fXY (x, y)

fX(x)fY (y)

]
dxdy, (2.22)

where fXY (x, y) is the joint probability density function and fX(x), fY (y) are the marginal density

functions.

Furthermore, for a random vector Z ∈ Rm, it is de�ned as

I(Z) = I(Z1; . . . ;Zm) (2.23)

=

ˆ
Rm

fZ(u) log

(
fZ(u)∏m

i=1 fZi(ui)

)
du

and in terms of di�erential entropy

I(Z) =
m∑
i=1

h(Zi)− h(Z), (2.24)
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where h(Zi) and h(Z) denote, respectively, the di�erential entropy of Zi and the joint di�erential

entropy of Z.

Finally, the notion of entropy and mutual information can also be formalized for a stochas-

tic process, i.e., consider the real-valued, discrete-time process Z = {z(n)}, one can de�ne the

di�erential entropy rate, as

H(Z) = lim
N→∞

h(z(−N); . . . ; z(N))

2N + 1
(2.25)

when the limit exists, which is true when Z is stationary [29]. Consequently, from Eq. 2.24 we

can also obtain the mutual information rate of the stationary process Z, given by

I(Z) = lim
N→∞

1

2N + 1

[
N∑

n=−N
h(z(n))− h(z(−N); . . . ; z(N))

]
= h(z(τ))− h(Z),

where τ ∈ {. . . ,−2,−1, 0, 1, 2, . . . } is arbitrary due to the stationarity assumption.

2.3 Adaptive Filtering

Adaptive �ltering involves the changing of �lter parameters (coe�cients) over time, to adapt to

changing signal characteristics. As the signal into the �lter continues, the adaptive �lter coe�cients

adjust themselves to achieve the desired result, such as identifying an unknown �lter or canceling

noise in the input signal. Techniques of adaptive �lters are related to the design of �lters using

statistical methods that take into account statistical information present in the variable to be

�ltered. The goal in the design process may be to minimize the mean square error of a certain

signal, usually de�ned as the di�erence between a given reference signal and the �lter output. The

solution to this problem optimizes the design of such �lters, and can be addressed by the Wiener

method, which results in the known Wiener �lter, an optimal choice in the sense of minimizing

the mean square error between a reference and the output of the designed �lter, when the input

has known and invariant statistical values over time [36, 37]. Adaptive �lters that are based

on Wiener's criterion make use of learning algorithms to converge to the optimal solution that

minimizes the mean square error, having little or no explicit information about the input signals

probability distribution.

The development of the most common techniques in adaptive �ltering aim to obtain a model

that can identify an unknown system. However, these same techniques can be applied to solve

various problems. In particular, one can identify four di�erent topologies that allow the adaptive

�lter to perform various applications, including:

• Identi�cation: In this case, adaptive �ltering techniques identify an unknown system making

that the input of the system and the adaptive �lter, x(n), are the same. The error signal,

e(n) = y(n)−d(n), where y(n) is the �lter output signal and d(n) is the output signal of the
system, is used by the corresponding iterative algorithm to minimize the cost function. The
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basic layout used in identi�cation applications is shown in Figure 2.3. It is important to note

that successful adaptive systems identi�cation start with choosing correctly the adaptive �lter

structure. When the system response is oscillatory in nature or has an asymptotic output, an

in�nite impulse response adaptive �lter updated might be used. When the system response

is short, an �nite impulse response transversal �lter is usually preferred for stability reasons

[37].

Adaptive Filter
y(n)

e(n)

−

+

System

x(n)

Input Output
d(n)

Figure 2.3: Block diagram of the general adaptive system identi�cation problem.

• Prediction: In this case, the adaptive �lter is used to predict the current value of a random

signal, providing an input to the �lter, x(n), composed of previous samples of the mentioned

signal, as shown in Figure 2.4. The iterative algorithm responsible for adjusting the adaptive

�lter coe�cients must minimize a cost function where the error e(n), is the di�erence between

the random signal d(n), and the �lter output, y(n). Depending on whether the system output

is the output of the adaptive �lter or the error signal e(n), it is obtained the predicted random

signal or the error respectively, which in this case yields the prediction error �lter [37].

Adaptive Filter
y(n)

e(n)

−

+

Delay
x(n)Input Output

d(n)

Figure 2.4: Block diagram of the general adaptive prediction problem.

• Interference cancellation: In this case, adaptive �ltering is intended to remove certain inter-

ference present in the input signal d(n) to the system. To achieve this result, reference x(n)
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is often used as input to the adaptive �lter, comprising a signal correlated with the interfer-

ence. In Figure 2.5 a basic outline of the con�guration of this type of application is shown.

A frequently mentioned application of adaptive interference canceling is cleaning power-line

interference from weak sensor signals. This is essential in applications such as recording elec-

trocardiograms (ECGs) [38], weak vibration measurements, audio frequency measurements

using microphones, and many other applications that employ sensors to collect input data

[39]. The interference can be occasionally reduced by proper grounding and using shielded

cables, but can not be completely eliminated.

Adaptive Filter
y(n)

e(n)

−

+x(n)

Input

Output

d(n)

Reference

Figure 2.5: Block diagram of the adaptive interference canceling problem.

• Inverse modeling: In this case, an adaptive �ltering is used to dynamically perform the task

of counterbalancing the e�ects of a system. The inverse modeling using adaptive �ltering

is shown in Figure 2.6. Inverse modeling has found many practical applications in control

systems and communication systems. The most widely used application of this technique is

channel equalization, where the physical system is a communication channel and the adaptive

�lter is referred to as an adaptive channel equalizer �lter. Channel equalizers are usually

implemented as adaptive transversal FIR �lters. Adaptive inverse modeling is precisely the

kind of problem under study in this dissertation, but with the restriction of not having access

to the reference signal d(n).

Adaptive Filter
y(n)

e(n) −

+

System
x(n)Input

Delay
Outputd(n)

Figure 2.6: Block diagram of the general adaptive inverse modeling problem.
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2.4 Information Theoretic Learning

In recent years Information Theory has had an increasing impact on the important issue of ex-

tracting information directly from data, i.e., learning from examples. The learning-from-examples

scenario starts with a data set that carries information about a real-system, and the objective is

to capture the information in the parameters of a learning machine. Machine learning has been

extraordinarily successful in providing tools and practical algorithms for extracting information

from massive data sets. In this context, the implicit problem usually involves an adaptation pro-

cess, where the parameters of the learning system are adjustable in a way that implementation

improves through repeated presentation of exemplars to the system.

The performance measure that is adopted will determine the type of information which can

be extracted from the data. Through the work of Wiener [40], as already introduced in Section

2.3, it was established the possibility of using adaptive �ltering structures under a probabilistic

perspective. Two premises were fundamental in the consolidation of this approach: the use of linear

structures for adaptation and a criterion for setting parameters based on second-order statistics

such as the mean square error (MSE), variance and correlation.

Since early researches were concentrated on linear adaptive systems, the adoption of such

second-order statistics optimality measures resulted in quadratic performance surfaces, for which

the analytical expression of the optimal solution could be easily obtained [41]. Thus, the mainstay

of adaptive systems has been second-order statistics criterion. However, for some machine learning

problems, second-order statistics may be not su�cient to extract the structure of data. Examples

of such problems are typically found on unsupervised tasks, i.e. when there is no reference signal,

e.g. blind source separation, blind deconvolution and equalization, clustering, subspace projections

[12, 13, 42, 43]. These challenging scenarios make necessary the use of cost functions which can

capture higher order statistical properties of the data. Such cost functions can be provided by

Information Theory, since, as we could see in Sections 2.1 and 2.2, information-theoretic measures

are capable of capturing all the data statistics, since they are nonlinear functions of probability

densities.

Through the inspiring work of Principe et al., [19], which was the �rst to formalize the notion

of Information Theoretic Learning (ITL), the interest has risen in the use of criteria derived from

Information Theory and that would allow to overcome the limitations of second-order statistics.

This progress can be achieved with continuous data, as well as with discrete data. Figure 2.6 from

Section 2.3 could illustrates a typical ITL system. In information-theoretic machine learning, the

output is given by y(n) = f [W, x(n)], where x(n) is the signal presented to the system, the function

f [W] represents a possibly non-linear data transformation, which depends on the parameters given

by W, e(n) is the error signal (or only the output y(n), if there is no desired response), which is

provided as input to the criterion for adjusting the �lter parameters. The goal may be to train the

system to perform a speci�c task, according to an information-theoretic criteria.

Speci�cally, Principe et al., [19] argued that one should make as few assumptions as possible

about the structure of the probability density functions in question. The Parzen window method
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of PDF estimation is fundamental in all e�orts to create algorithms to manipulate entropy. The

principal approach of designing practical information-theoretic criteria is by using Renyi's quadratic

entropy. Quadratic entropy can be easily integrated with the Parzen window estimator.

The Parzen window estimator is a technique based on the use of kernel functions to approximate

the PDF fX(x) of a vector of continuous random variables X. The problem can be described as

follow: let X = {x1, x2, · · · , xN} be a set of N i.i.d. m-dimensional observations drawn from an

unknown PDF fX(x). It is assumed that there is an adequate approximation f̂X(x) given by [44]:

f̂X(x) =
1

N

N∑
i=1

κ(x− xi), (2.26)

where κ(·) is called the Parzen window or kernel. Kernel functions are a special class of functions

that meets the required properties for the role of window function and, therefore, are the most

used in the method. More speci�cally, the circular Gaussian kernel function is one of the most

widely adopted, with the expression:

κσ(x, xi) =
1√
2πσ

exp

(
−‖x− xi‖2

2σ2

)
, (2.27)

where σ is the window width parameter. The Parzen window method using a Gaussian kernel is

given by

f̂X(x) =
1

N

N∑
i=1

κσ(x− xi). (2.28)

With a method to estimate the probability function that describes the data, one can apply

its expression to Shannon's and Rényi's di�erential entropy. When Shannon's entropy is used

along with this PDF estimation strategy, an algorithm to estimate entropy becomes complicated

as Viola [45] realized. Fortunately, Rényi's quadratic entropy can be easily integrated with the

Parzen window estimator, hence providing a means to estimate the entropy directly from the data

set. As we de�ned in Section 2.1, Rényi's entropy quadratic is given by Eq. 2.16. Since the

logarithm is a monotonic function, the quantify of interest is V (X) =
´
X f

2(x)dx, which is called

the information potential [19]. We have then

V̂ (X) =

ˆ
X

1

N

N∑
j=1

κσ(x− xj)
1

N

N∑
k=1

κσ(x− xk)

=
1

N2

ˆ
X

 N∑
j=1

N∑
k=1

κσ(x− xj)κσ(x− xk)

dx (2.29)

=
1

N2

N∑
j=1

N∑
k=1

ˆ
X
κσ(x− xj)κσ(x− xk)dx

=
1

N2

N∑
j=1

N∑
k=1

κ2σ(xj − xk)

Rényi's quadratic entropy estimator is the starting point for various ITL criteria, such as the

MEE (minimum entropy error) supervised criterion and also for new information measures, such

as correntropy, which we discuss in the following.
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2.4.1 Correntropy Function

Correntropy or, more speci�cally, the autocorrentropy function was �rst introduced by Santa-

maria et al. [46], who suggested an initial application to blind deconvolution. Its name stresses the

connection to correlation, but also indicates the fact that its mean value across time or dimensions

is associated with entropy, more precisely to the information potential, which is the argument of

the log in Renyi's quadratic entropy estimated with Parzen windows as was derivated in Eq. 2.29.

This relation to quadratic entropy shows that correntropy contains information beyond second-

order moments.

Correntropy generalizes the autocorrelation function to nonlinear spaces: if {xi, i ∈ N} is a
stochastic process within an index set N , then the correntropy function V (i1, i2) is de�ned as

V (i1, i2) = E[κσ(xi1 − xi2)], (2.30)

where E[·] denotes the statistical expectation and κσ(·) is the Gaussian kernel, given in Eq. 2.27.

Using a Taylor series expansion for the Gaussian kernel, Eq. 2.30 can be rewritten as

V (i1, i2) =
1√
2πσ

∞∑
n=0

(−1)n

2nσ2nn!
E ‖xi1 − xi2‖

2n (2.31)

which involves all the even-order moments of the random variable ‖xi1 − xi2‖ . More speci�cally,

the term corresponding to n = 1 in Eq. 2.31 is proportional to

E
[
‖ xi1 ‖2

]
+ E

[
‖ xi2 ‖2

]
− 2E [〈xi1 − xi2〉] = σ2xi1

+ σ2xi2
− 2Cx(i1, i2) (2.32)

where Cx(i1, i2) is the covariance function of the random process; this shows that the information

provided by the conventional covariance function (the autocorrelation for zero mean processes) is

included within the correntropy.

For a discrete-time strictly stationary stochastic processes, correntropy can be easily estimated

through the sample mean:

V̂ (m) =
1

N −m+ 1

N∑
n=m

κσ(xn − xn−m), (2.33)

where N is the size of the data window used to estimate the correntropy, m is the lag being

considered and xn is the data samples available {xn, n = 0, 1, . . . , N − 1}.

From the de�nition of correntropy, the kernel size σ is a crucial factor, since it in�uences in the

nature of the performance surface, like the presence of local optima and rate of convergence [47].

Correntropy has interesting properties that make it useful for machine learning and signal

processing. Several properties of correntropy and their proofs are presented in [46, 48]. Here we

present, without proof, only the ones that are relevant to this dissertation.

Property 1: V (m) is a symmetric function V (−m) = V (m).

Property 2: V (m) reaches its maximum at the origin, i.e., V (m) ≤ V (0), ∀m.
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Property 3: V (m) ≥ 0 and V (0) = 1/
√
2πσ.

Property 4: Let {xn ∈ R, n ∈ N} be a discrete-time wide-sense stationary, zero-mean Gaussian

process with autocorrelation function R[m] = E[xnxn−m]. The correntropy function for this

process is illustrated in Figure 2.7 and is given by

V (m) =


1√
2πσ

, m = 0

1√
2π(σ2+σ2[m])

, m 6= 1
, (2.34)

where σ is the kernel size and σ2[m] = 2(R[0] − R[m]). Since the correntropy function is

de�ned as V (m) = E[κσ(xn − xn−m)], where xn is a zero-mean Gaussian random process,

for m 6= 0, zm = xn−xn−m is also a zero-mean Gaussian random variable with variance

σ2[m] = 2(R[0]−R[m]). Therefore

V (m) =

ˆ ∞
−∞

kσ(zm)
1√
2πσ

exp−
(

z2m
2σ2[m]

)
dzm. (2.35)

Since we are considering a Gaussian kernel with variance σ2, Eq. 2.35 is the convolution of

two zero-mean Gaussians of variances σ2 and σ2[m] evaluated at the origin; this yields Eq.

2.34.

Property 4 illustrates that correntropy function conveys information about the time structure of

the process.
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Figure 2.7: Correntropy of a zero-mean Gaussian process.
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2.5 Summary

This chapter presented the fundamental and theoretical aspects of Information Theory as well

as the main ideas of adaptive �ltering, proposing a series of techniques and tools in the context of

learning machine. Finally, it is presented the main aspects and the origins of the recent introduced

area called Information Theoretic Learning, the mentioned concepts and criteria can be used for a

very large number of di�erent applications. In the next chapter is shown the appliance of them in

the context of blind inversion of Wiener systems.
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Chapter 3

Blind Inversion of Wiener Systems

As we discussed in Chapter 1, the study of nonlinear systems identi�cation/inversion has re-

ceived much attention in recent decades, since the demand to understand, analyze, predict, and

control real systems have grown rapidly with technological and industrial advances. Identi�ca-

tion and/or the inversion of such systems is a well-established �eld with a number of approaches

and algorithms. The key task of system identi�cation is to �nd out a best suitable mathematical

model. Models can be useful for gaining a better understanding of the system and to predict

or simulate a system's behavior. After selecting the model structure and possible identi�cation

strategies, based on the inputs and outputs, the parameters of the model will be determined by an

optimization process with minimization (or maximization) of a criterion to solve the data-�tting

problem. A number of successful methods are available identify/invert nonlinear systems, in time

or in frequency domain, using iterative or non iterative schemes. Actually, all physical systems

are nonlinear to an extent. A system is called nonlinear if the input-output steady state relation

is nonlinear. Because nonlinear models are able to describe the system behavior in a much larger

operating region than corresponding linear models, it is reasonable and necessary to character-

ize or predict the behavior of real nonlinear processes directly using nonlinear models to improve

inversion/identi�cation performance over the whole operating range [10].

Over the years, this issue received further attention and has become a demanding problem in

signal processing, with practicable applications in various real-world applications. While all the

blind techniques for inversion of a nonlinear model like the Wiener system require the source signal

to be independent, non-independent sources do exist in many applications. Inherent dependence

character exist in some types of sources such as images [34, 49], or multiple-input multiple-output

wireless relay systems [50, 51], to name a few.

In order to describe adequately the nonlinear behavior of the system over the entire range of

operating conditions, a nonlinear block-oriented model is often used and the system is generally

subdivided into linear dynamic sub-systems and nonlinear static sub-systems. In this work, as

already mentioned in Chapter 1, the inverse modeling of a particular and appealing model, the

Wiener system, is considered. AWiener system (remember Figure 1.1 from Chapter 1), is composed

of a linear time-invariant (LTI) sub-system h(n) followed by a memoryless, nonlinear distortion
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f [·]. Despite its simplicity, it can be applied within many contexts [1, 5, 6, 7], by providing

a simple mathematical treatment for handling nonlinear dynamics. The following describes the

main methods that deal, in a unsupervised manner, with this model, plus a critical analysis of the

main points to improve, and the chapter is concluded by addressing our proposal based on the

autocorrelation and autocorrentropy functions for representing the time structure of a given signal,

in the context of new criteria for blind inversion of Wiener systems by Hammerstein systems.

3.1 Related Work

Many methods based on linear and nonlinear optimization with di�erent nonlinear models

such as nonlinear control, model predictive control, neural networks, fuzzy control, polynomials

and combinations of them have been extensively developed to solve Wiener system inversion,

thereby achieving desired performance. To date, these approaches have attached much attention

in industrial applications [23, 24, 25]. Specially, one straightforward structure to invert a Wiener

system is the well-known Hammerstein system (see Figure 1.1 from Chapter 1), which consists as

mentioned before, of a nonlinear memoryless element followed by a linear dynamical sub-system.

As brie�y introduced in Chapter 1, Taleb et al. [11] and Silva et al. [18] proposed blind methods

to invert Wiener systems through Hammerstein models, assuming that h(n) and f [·] are unknown,
as well as s(n), but with the restriction that the samples are i.i.d. In this context, the inversion

problem consists of �nding w(n) and g[·] such that the output y(n) of the Hammerstein system be

as close as possible to the original signal s(n), despite a scale and time delay ambiguity.

Assume that S ={s(n)} is a discrete-time stochastic process and that both the LTI sub-system

with impulse response h(n) and the nonlinear mapping f [·] are invertible. We can represent the

output of the Wiener system as:

x(n) = f [v(n)], (3.1)

= f [h(n) ∗ s(n)]

where s(n)∗h(n) is the convolution between s(n) and h(n). The result is submitted to the nonlinear

distortion f [·].

As already mentioned, we consider the Hammerstein system de�ned in Figure 1.1, to invert

the Wiener system. Likewise to the idea underlying Eq. 3.1, we mathematically obtain the model

output as

y(n) = w(n) ∗ u(n) (3.2)

where u(n) = g[x(n)]. In the following, the main strategies to cope with the solution of Eq. 3.2

are discussed.
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3.1.1 Taleb, Solé-Casals and Jutten Methodology for Blind Inversion of Wiener

Systems

Given the i.i.d. hypothesis of the source signal, Taleb et al. developed in their work a theoretical

analysis of the Wiener system inversion problem that led to the proposal of a gradient algorithm to

minimize the mutual information rate of the output signal, hence assuming that the independence

recovery (with the known ambiguities), as well. An overview of their results can be studied in

[11, 52]. In the context of the Wiener-Hammerstein structure illustrated in Figure 1.1, as S is

stationary and h(n), w(n) are LTI systems, and following the notation introduced in Section 2.21:

I(Y) = hd(y(τ))− hd(Y), (3.3)

where τ is an arbitrary instant. Moreover, Taleb et al. establish that, since w(n) is invertible, the

criterion represented in Eq. 3.3 can be expressed in terms of the parameters of each sub-system

and of X = {x(n)}, which yields

Î(Y) = hd(y(τ))−
1

2π

ˆ 2π

0
log |W (θ)|dθ − E

[
log g′(x(τ))

]
− hd(X ), (3.4)

where W (θ) is the discrete time Fourier transform of w(n) and E[·] is the expected value of a

random variable. The above criterion uses all higher order statistics by the means of the entropy

function. The minimization of 3.4 is done by a gradient technique with respect to the coe�cients of

a non-casual, �nite impulse response (FIR) structure that represents the linear stage of the inverse

system. The input-output relation this model is given by

y(n) =

Ma∑
k=−Ma

aku(n− k), (3.5)

where 2Ma + 1 is the number of adjustable coe�cients ak.

The authors of [11] proposed a quasi nonparametric algorithm to model the nonlinear mapping

g[·]. As mentioned before, the algorithm proposed is based on gradient descent and, therefore,

vulnerable to risk of inopportune convergence to suboptimal solutions. Afterwards, an alternative

with a parametric model was introduced in a following work, by Solé-Casals et al. [12], adopting

arti�cial neural networks and polynomial functions. These approaches have shown promising

results in applications of seismic data and even in the inversion problem for correlated signals,

as long as the correlation �lter is known by the user. But it is important to emphasize that the

inversion procedure, in both cases, is based on the minimization of the mutual information rate of

the inverse system output.

The work of Taleb et al. has been further developed by, among others, Babaie-Zadeh [13],

Zhang and Chan [14], Solé-Casals [15] and Solé-Casals and Caiafa [17]. The approaches followed

by these authors are based on similar ideas and some alternative extensions were pursued, which

include the use of the score function di�erence [13], the use of Gaussianization techniques in order

1Hereinafter is employed the notation hd(·) for entropy to avoid confusion with the impulse response of the

Wiener sub-system h(n).
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to reduce the e�ects of nonlinearity estimation [14, 15] and the use of spline interpolation functions

to decrease the cost estimation of score functions [17].

It is appropriate to lay emphasis on the idea that the essence of the algorithm proposed in [11],

as well of its subsequent extensions is some method of gradient-based search as well as a minimum

mutual information criterion.

Also, as an alternative to gradient-based algorithms, Rojas et al. [16] employ a genetic algo-

rithm (GA), in order to perform the search task for the optimal values of the parameters. The

nonlinear part of the Hammerstein system may be approximated by n-th order odd polynomials.

Similarly to the methodology proposed by Taleb et al., the linear part is an anti-causal FIR �lter

and the criterion chosen is the maximization of the Hammerstein system output kurtosis.

These works, despite their di�erences, still employ the premise of i.i.d..

3.1.2 Silva, et al. Immune Inspired Methodology for Blind Inversion of Wiener

Systems

Section 3.1.1 discussed that the core of the algorithm proposed by Taleb et al. is a method

of gradient-based search, which means that the obtained solutions may be suboptimal. Silva et

al. [18], based on these statements and the limitations of other previous works [11, 12, 13, 16],

proposed a new approach to the blind inversion of Wiener systems. They proposed a solution that

combines immune-inspired search with information-theoretic criteria. The algorithm proposed a

new framework bringing together [52]:

• A novel estimation strategy to derive the mutual information-based cost function: the �rst

criterion is the sum of pairwise mutual information [13], which estimates the value of mutual

information between each pair of signals, by employing the mutual information estimator

based on adaptive partitioning of the observation space

ĴI(g, w) =

D∑
m=1

ÎA(y(n); y(n−m)), (3.6)

where D is the number of lags that are considered and ÎA is the mutual information estimated

according to Darbellay et al. in [42]. The second criterion is based on the de�nition of mutual

information rate

ĴR(g, w) = ĥo(y(τ))−
1

K

K−1∑
k=0

log |WK(k)| −
1

N

N∑
i=1

log g′(x(i)). (3.7)

The �rst term of the equation ĥo(y(τ)) is the order-statistics based entropy estimator, pro-

posed by Pham [53] in the context of blind source separation, the second term is obtained by

employing the K-point discrete Fourier transform (DFT) of w(n), denoted by WK(k) and

�nally the last term is the sample mean estimator over the N samples of the signal x(n).

The derivative of g(x) is analytically evaluated according to the parametric model chosen to

represent the nonlinearity.
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• In�nite impulse response (IIR) �lters in the Hammerstein system to improve inversion ca-

pability: the Hammerstein system has a linear part that can be composed of either FIR or

IIR �lters, thus increasing the potential of e�ective inversion under a limited number of free

parameters, whose input-output relation is de�ned by

y(n) =
M∑
k=0

aku(n− k) +
Q∑
k=1

bky(n− k), (3.8)

where M + 1 and Q are the number of adjustable coe�cients ak, bk of the model.

• An immune-inspired optimization algorithm: the CLONALG algorithm is adopted to perform

the adaptation of the parameters of the related model.

The authors presented experimental results which indicates that the proposed framework is e�cient

in performing the inversion task, being more accurate when the second criterion of estimating the

mutual information rate of the output signal is employed. Moreover, the adoption of an IIR �lter

improved the solutions for the cases where the perfect inversion of the original linear sub-system

was not possible.

3.2 Proposal

As seen in Section 3.1, the main blind inversion approaches assume that h(n), f [·] and s(n) are
unknown, but the latter is assumed to be composed of i.i.d. samples. Based on the assumption that

the signals are i.i.d., it is conjectured in the work of Taleb et al. 2001 [11] that an independence

maximization criterion can retrieve the original signal. Then, the algorithm proposed in [11] is

based on gradient descent search, and as a result, is inherently vulnerable to risk of premature

convergence to a local minimum. On the other hand, we also found that the technique developed

by Rojas et al. [16], although it is more robust in terms of the potential for local convergence

consider that the original source s(n) is a non-Gaussian i.i.d. process, which makes exploring a

limited set of signals. Additionally, Silva et al. [18] proposed a solution combining immune inspired

algorithms and information theory that yield a robust scheme. Nevertheless, the three methods

limit the input of the Wiener system to i.i.d. signals.

Consequently, if the samples of s(n) are dependent, the previously mentioned approaches are

not capable of obtaining an appropriate solution. In this case, it is plausible to adopt dependence

measures as new criteria for the inversion task, since there are real-world situations - as frequently

in sensor and measurement applications [54] - where the system input is dependent. Besides, as

we discussed in Chapter 1, by assuming statistically dependent samples, it becomes possible to

consider a new set of signals, for instance, encoded signals.

Hence, this work develops a new framework for blind inversion that consider dependence mea-

sures as cost function, at the same time that maintains a search strategy by means of population

metaheuristics. Figure 3.1 illustrates an overview of the proposal, with each of its characteristic

aspects highlighted by the numbered circles. In the following, we detail these aspects and in Section

3.2.2 the CLONALG method is described.
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g[·]
x(n) y(n)u(n)

Criterion

w(n)

CLONALG

1 2

3

Figure 3.1: Block diagram of the proposal to the Wiener system inversion.

1. The nonlinear function g[·] is de�ned as a polynomial of k-order (composed entirely of odd

degree monomials) with strictly positive coe�cients:

g[x] = c1x
1 + c2x

3 + ...+ ckx
2k−1, ck ≥ 0, ∀k.

These restrictions make that the polynomial is monotonically increasing (and therefore in-

vertible), because its �rst derivative is positive for any value.

2. Despite the adoption by some authors of a FIR model for the linear sub-system [11], we em-

ploy, in consonance with [18], a more powerful linear structure which is represented by an IIR

�lter with �nite number of coe�cients (M +1 delay taps FIR and Q feedback loops), whose

transfer function has been previously described in Eq. 3.8, which theoretically improves the

ability to �nd good solutions within a limited number of coe�cients.

3. The optimization criterion is chosen between the two dependence measures described in

Section 3.2.1.

Finally, the identi�cation of Hammerstein systems via CLONALG algorithm with real encoding

is the search procedure responsible to seek the parameters of g[·] and w(n) that minimize the

cost function J(·), assessed by one of the two criteria described in the following section. Due to

the di�culties of gradient-based methods to avoid local convergence and stability issues with IIR

�lters, and based on the successful results, in this context, of the previous proposal of Silva et al.

[18], this work maintains CLONALG as the optimization method.

3.2.1 Dependence Measures

The straightforward dependence measure is the autocorrelation function, easily de�ned for a

wide sense stationary stochastic process {xn} as

Rx(m) = E[xnxn−m]. (3.9)

28



In the context of the blind deconvolution of signals composed of statistically dependent samples,

Fantinato et al. [22] employ the autocorrelation function as a criterion to explore the temporal

pro�le of the signal of interest. In this sense, we similarly use an autocorrelation-based criterion,

de�ned as:

JR(θ) =
P∑

m=1

(Ry(m)−Rs(m))2, (3.10)

where Rs(m) and Ry(m) are the autocorrelation functions of the signals s(n) and y(n), respectively,

θ are the equalizer parameters and P is the largest considered lag.

Recalling the ideas seen in Chapter 1, this work considers another attractive dependence mea-

sure: the correntropy function. This function, as we discussed before in Chapter 2, is an appealing

generalization, since it is capable of taking into account the time structure of signals as well as the

use of richer statistical information. Currently, one can �nd several applications of correntropy in

di�erent domains, e.g. nonlinear regression, equalization, blind source separation, independence

tests [55], etc.. In the context of blind deconvolution, the authors of [46] proposed a correntropy-

based criterion to be minimized:

Jcor(θ) =

P∑
m=1

(Vs(m)− Vy(m))2. (3.11)

Where θ are the equalizer parameters and P is the number of lags. Note that the lag m = 0

is not considered since it is always equal to κ(0) = 1/(
√
2πσ). This criterion tries to match the

correntropy Vs(m) associated with the source s(n) to the correntropy Vy(m) of the equalizer output

y(n).

In the context of this work, where s(n) is the input to the Wiener system and y(n) is the output

of the Hammerstein system, we propose, analogously to the linear blind deconvolution problem,

to employ Eqs. 3.11 and 3.10 as criteria to estimate the inverse model. The idea is that the

temporal dependence signature of the original signal provides su�cient information to estimate

the Hammerstein system and, consequently, to obtain an estimate for s(n). It is important to

note that with these criteria, the user does not know the samples s(n), only the autocorrelation or

autocorrentropy of s(n).

3.2.2 The CLONALG Algorithm

Arti�cial Immune Systems (AIS) are algorithms and systems that use the human immune

system as inspiration. The human immune system is robust, error tolerant and extremely adaptive.

Such properties are highly desirable for the development of novel computer systems. The �eld of

AIS encompasses a spectrum of algorithms, where each one implements di�erent mechanisms of

the immune system. All AIS algorithms mimic the behavior and properties of immunological cells,

speci�cally B-cells (a particular type of lymphocyte, white blood cell), T-cells (a type of white

blood cell that play a central role in cell-mediated immunity) and dendritic cells (DCs), but the

resultant algorithms exhibit di�erent levels of complexity and can perform a wide range of tasks.
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The B-cell model seemed mature for exploitation, given the similarities with local search and

optimization techniques. In the case of clonal selection principle, this was initially based on works

carried in the 1970 by Burnett [56], where a�nity metrics were �rst characterized mathematically,

this work served as inspiration for CLONALG [57], a popular AIS algorithm involving an abstract

version of the cloning and hypermutation process. All clonal selection-based algorithms essentially

center around a repeated cycle of match, clone, mutate and replace, and numerous parameters can

be tuned, including the cloning rate, the initial number of antibodies, and the mutation rate for

the clones.

Standard genetic algorithms and other bio-inspired proposals and immune-inspired algorithms

such as CLONALG have generated high-quality solutions to complex problems in signal processing

(see, for example, the results of Dias et al. [43], Wada et al. [58] and Romano et al. [59]) and

CLONALG particularly has the intrinsic ability of balancing the exploitation of the best solutions

with the exploration of the search space, which can be very important to increase the probability

of �nding the global optimum or a good solution.

The CLONALG algorithm, described in Algorithm 3.1, is inspired in the Clonal Selection

principle [56], and is characterized by a population of antibodies, Ab, whose a�nity (or �tness) with

respect to the antigen Ag is represented by the objective function. The algorithm initializes with an

Ab pool of �xed size Ninitial, in which every Abi represents an element from the parameter space,

possibly an optimal solution. First, the �tness function evaluates fAg(Abi) for all Ab members,

then, it proceeds by selecting a subset of n antibodies that have the highest a�nities, which are

subsequently cloned (nC clones per antibody). The set of clones C are then conducted to an

a�nity maturation process, where the number of modi�cations is inversely proportional to their

parent's a�nity. In the sequence, the clones are compared to their parent in order to select the one

with the highest a�nity. The main loop is concluded with a random generation of b new antibodies

that will replace the lowest a�nity Ab in the current population. The process repeats itself until

a number of iterations maxIT is executed. After that, the solution is the best individual of Ab

(higher a�nity).

Algoritmo 3.1 Pseudo-code of CLONALG algorithm for optimization
Require: [Ab] = clonalg(Ninitial,nC,b, range)

Ensure: Ab = random(Ninitial, range)

1: while iteration ≥ maxIT do

2: Solve fit = affinity(Ab)

3: C = clone(Ab, nC)

4: C∗ = mutate(C, fit)

5: Fit′ = affinity(C∗)

6: P = select(C∗, F it′)

7: Ab = replace(P, random(b, range))

8: end while
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3.3 Summary

In this chapter a new framework was presented. The approach adressed the blind inversion of

the Wiener systems with a new dependence-based criteria that explore the temporal structure of a

given signal and an immune-inspired algorithm to allow parameter optimization with a signi�cant

probability of global convergence. Also, the proposed method employs IIR structure in the Ham-

merstein system and a set of non-independent sources is considered as the input of the Wiener

system. Table 3.1 revisits the main characteristics of the present proposal.

Model (approach) Method

Wiener-Hammerstein

Dependence-based

Input: non i.i.d.

Hammerstein system with FIR or IIR

structure

Immune-inspired optimization algorithm

Parametric polynomial

Table 3.1: Main characteristics of the present proposal in the context of blind inversion of Wiener

systems.

In the following, the experimental simulations of this new framework covering the inversion

task are presented.
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Chapter 4

Results

This chapter presents the experimental results of the proposed framework. It begins with a

qualitative study of the correntropy-based criterion to determine empirically whether this criterion

has the minimum requirements for the recovery of dependent signals. Then, it is presented a more

thorough experimental analysis, in order to assess the proposed algorithm behavior.

4.1 Preliminary Experiments

After the presentations of the concepts about the problem of blind inversion of Wiener sys-

tems, the existing solution strategies and the proposal that we introduced in this work, it may be

interesting to note, in a qualitative experiment, if the correntropy-based criterion of the system

output works as a contrast.

The implementation in Matlab consists of performing an exhaustive search within the decon-

volution �lter parameters in order to build the mapping of the cost function stated by Eq. 3.11,

with respect to the parameters of a simpli�ed Hammerstein system.

In this preliminary experiment we have N samples of some correlated source signal s(n), the

source distribution changes among uniform, Laplace and a binary signal {+1,−1}. We consider a

baud rate sampled baseband representation of a linearly precoded digital communication system

illustrated in Figure 4.1 [46]. An i.i.d. source is linearly precoded at the transmitter to form a

sequence of correlated symbols s(n), which mimes the idea of some error coding channel. Through

the present work we employ the linear precoder given by P (z) = 1 + z−1, which is the �lter used

in a duobinary modulation.

Equalizer
Wx(z)

u(n)v(n) x(n) y(n)
Linear

P (z)

Channel
H(z)

s(n)Source i.i.d.
f [·] g[·]precoder

Figure 4.1: Block diagram of a system with linear precoding.

For the three cases of distributions, N = 10000 samples, with zero mean and unit variance
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are submitted to the system, which after going through the precoder P (z), su�ers distortion of

a minimum phase channel H(z) = 1 + 0.5z−1 and the nonlinearity f [v] = sign(v) 3
√
| v |. The

number of lags used in the Jcor(·) cost function for equalization is P = 10 and the kernel size is

de�ned as σ = 0.4. We have removed the zero lag for reasons already explained in Section 3.2.1.

Since it is necessary the knowledge of the autocorrentropy function of s(n), which is a cumbersome

task in the continuous case, it is estimated from 2000 samples of s(n), which are distinct from the

(unknown to the algorithm) samples to be submitted to the Wiener system. For the binary signal

{+1,−1}, the autocorrentropy function is analytically given by [46]

Vs(m) =


κ(0), m = 0

1
2κ(0) +

1
2κ(2), m = ±1

3
8κ(0) +

1
2κ(2) +

1
8κ(1), | m |> 1

. (4.1)

In the �rst preliminary scenario, the Hammerstein system is modeled by a linear �lter de�ned

by the transfer function

W1(z) =
1

1 + θz−1
, (4.2)

and nonlinear distortion

g[x] = x3 + φx. (4.3)

On the second preliminary scenario, the Hammerstein system is modeled by a linear �lter de�ned

by the transfer function

W2(z) = 1 + θz−1, (4.4)

and the same nonlinear distortion de�ned in Eq. 4.3.

The expected result in both scenarios is that the output signal y(n) is the most similar possible

to s(n−d). Table 4.1 shows the MSE between y(n) and s(n−d) for the three distributions as well
as the solution obtained for each �lter model.

Uniform Laplace Binary

W1(z)
1

1+0.5500z−1
1

1+0.5000z−1
1

1+0.5000z−1

MSE 2.1044−04 1.4116−31 4.5958−32

W2(z) 1− 0.5000z−1 1− 0.4500z−1 1− 0.3500z−1

MSE 0.0737 0.0816 0.0537

Table 4.1: FIR and IIR �lters obtained by the criterion Jcor(·) for inverting the channel H(z) =

1 + 0.5z−1

Figures 4.2 and 4.3 illustrate an example of the results obtained for the uniform distribution,

with the linear system W1(z), analyzing the solution presented in Table 4.1 as well as the mapping

of the cost function, we can note that the solution may be considered perfect since the MSE value

is small.
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Figure 4.2: Example of Jcor(·) surface for a simple Wiener-Hammerstein con�guration with Uni-

form source.
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Figure 4.3: Example of s(n) and y(n), with uniform source in a simple Wiener-Hammerstein

con�guration.

Figures 4.4 and 4.5 illustrate an example of the results obtained in this case for the Laplace

distribution, with the linear system W1(z), note that Figure 4.4 is quite di�erent from what was

seen for the uniform scenario, unlike the valley format that we saw in the previous case. Also, the

solution provided in this case presented a perfect inversion channel. Moreover, the output signal

y(n) is very similar to respect the input signal s(n).
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Figure 4.4: Example of Jcor(·) surface for a simple Wiener-Hammerstein con�guration with Laplace

source.
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Figure 4.5: Example of s(n) and y(n), with Laplace source in a simple Wiener-Hammerstein

con�guration.

Finally, Figure 4.6 shows that when the source is binary, the criterion acquire a perfect solution,

the regions of optimal points are easier to identify in this case, which are equivalent to the solution

presented in Table 4.1. This can be better understood if we look at the signals s(n) and y(n) of

the solution which is shown in Figure 4.7.
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Figure 4.6: Example of Jcor(·) surface for a simple Wiener-Hammerstein con�guration with binary

source.
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Figure 4.7: Example of s(n) and y(n), with binary source in a simple Wiener-Hammerstein con-

�guration.

With the preliminary experiment one can consider that the autocorrentropy-based criterion

has the potential to be tested now in full condition of blind inversion of Wiener systems, in

the context of our proposal presented in Section 3.2. The obtained results in this qualitative

experimental, with the autocorrentropy-based criterion suggested in this proposal, con�rm that the

criterion in question presents advantages in non-independent sources. In the follow sections, the

autocorrentropy as well as the autocorrelation criterion will be analyze in more complex scenarios.
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4.2 Experimental Analysis

This section tests the proposal performance in two sets of experiments. The �rst experiment

comprises input signals continuously distributed, in Section 4.2.1, and the second experiment

considers input signals discretely distributed, in Section 4.2.2. The �rst experiment analyzes the

algorithm behavior with two di�erent distributions, the original sequence s(n) is either uniform

or laplacian. For the second experiment, tests were made where the source distribution changes

among the Alternate Mark Inversion (AMI) [60] and an i.i.d. signal with samples drawn from the

alphabet {+1,−1}. All signals, except AMI, are submitted to the linear precoder P (z) used in the

preliminary experiments, in order to generate dependent samples. They were then submitted to

di�erent situations with di�erent settings of the deconvolution �lter w(n), considering FIR �lters

and also IIR structures with di�erent values of M and Q. The polynomial part vary the amount

of coe�cients from k = 3 and k = 5.

To eliminate the indeterminacies, at every �tness evaluation, the output of the nonlinear stage

u(n), n = 1, 2, . . . , N is centered and normalized as well as the output of the linear stage y(n). For

example, the mean and variance of u(n) are calculated as follow

µ̂u =
1

N

N∑
n=1

u(n) (4.5)

σ̂u =

√√√√ 1

N − 1

N∑
n=1

(u(n)− µ̂u)2 (4.6)

and u(n) is centered and normalized by

u(n)← u(n)− µ̂u
σ̂u

. (4.7)

The same normalization scheme is applied for y(n).

For all scenarios, N = 2000 samples of s(n) are considered, where the resulting signal x(n)

is provided to the algorithm. The number of lags used in the Jcor(·) as well as in the JR(·) cost
function for equalization is P = 10, the kernel size is discussed in the following Section and we

have removed the zero lag for reasons previously clari�ed in Section 3.2.1.

The CLONALG parameters were adjusted to the values suggested in [18], i.e. 300 iterations, 50

individuals, and 10% of new individuals inserted per iteration. Other CLONALG parameters were

de�ned with the aid of a preliminary cross-validation routine, which comprised 10 independent

trials of the algorithm, with the correntropy cost function, for each possible con�guration: the

clone number parameter β ∈ {0.1, 0.2, 0.3} and the mutation rate ρ ∈ {2, 3, 4, . . . , 8}.

In order to evaluate the average behavior, we compute the mean values of SNR over a set of 10

independent algorithm executions for each experiment, calculated between the output signal and

the original signal for the optimal equalization delay. The SNR can be measured with the output

signal to noise ratio
σ2s
σ2n

= E[y2(n)]/E[(s(n)− y(n))2], (4.8)
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where σ2n is the error power and σ2s is the estimated signal power.

4.2.1 Continuous Case

First, we consider the input signal to be either an uniform or laplacian i.i.d. sequence that

is submitted to the linear precoder P (z). Thereby, an i.i.d. source is linearly precoded to form

a sequence of correlated symbols, hence we have dependent samples s(n) [46]. As we discussed

in Section 4.1, the autocorrentropy as well as the autocorrelation are estimated from 500 samples

of s(n), which are distinct from the (unknown to the algorithm) samples to be submitted to the

Wiener system. Then, we analyze the performance of the algorithm in a series of scenarios varying

the parameters of the Wiener system (the linear H(z) and nonlinear distortion f [·]) as well as the
number of coe�cients of the Hammerstein linear sub-system W (z).

Before starting the experimental analysis of our framework we must empirically de�ne an

appropriate value for the kernel size of the autocorrentropy criterion, thus, we test the performance

of the algorithm with respect to this key parameter for both distributions. We choose 5 kernel

sizes: 0.1, 0.4, 1, 2.2, and 4.6. For each kernel size the Wiener system is modeled by a minimum

phase system with coe�cients H(z) = 1 + 0.5z−1 and nonlinear distortion f [v] = sign(v) 3
√
| v |.

The polynomial model is set to k = 3 and the linear sub-system parameters are set to M = 1 and

Q = 1. The results are presented in Figure 4.8 where the best kernel size is de�ned as σ = 0.4.

However, note that when the kernel size was σ = 2.2 the Laplace distribution perform a similar

course.

Figure 4.8: Kernel performance for the continuous case with parameters M = 1, and Q = 1 and

minimum phase system H(z) = 1 + 0.5z−1 and nonlinear distortion f [v] = sign(v) 3
√
| v |.

In order to clear doubts, we repeat the experiment, nonetheless by this time we increase the

number of coe�cients of the Wiener system i.e. H(z) = 1− 0.0919z−1 +0.2282z−2 − 0.1274z−3 +

0.1408z−4−0.0189z−5+0.0173z−6−0.0072z−7+0.0038z−8 and we modify the cubic root function to

represent a harder nonlinear distortion, f [v] = tanh(3v), consequently we increment the �exibility
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of the polynomial model of the Hammerstein system by setting k = 5. Figure 4.9 shows that in

this more complex test the kernel size σ = 0.4 presented the best performance with the uniform

distribution. However, the kernel size σ = 2.2 presented again a similar result, the red line point

out that the small kernel won narrowly. These evidences were enough to keep the kernel size as

σ = 0.4 in the following scenarios.

Figure 4.9: Kernel performance for the continuous case with parameters M = 1, and Q = 1

minimum phase system H(z) = 1− 0.0919z−1+0.2282z−2− 0.1274z−3+0.1408z−4− 0.0189z−5+

0.0173z−6 − 0.0072z−7 + 0.0038z−8 and nonlinear function f [v] = tanh(3v).

After asserting the kernel size σ = 0.4 of the autocorretropy-based algorithm, we continue to

test the algorithm. In the �rst scenario, the Wiener system is modeled by a minimum phase system

with coe�cientsH(z) = 1+0.5z−1 and the nonlinear distortion is a cubic root f [v] = sign(v) 3
√
| v |.

The polynomial model is �t to k = 3. Table 4.2 shows the mean and standard deviation of SNR

for both distributions. The highlighted values correspond to the best results for each criterion.

This case was interesting because when s(n) was uniform, the best con�guration for both criteria

was obtained with the IIR �lter that correspond to the perfect inverse of h(n), i.e. M = 1, Q = 1.

For the Laplace distribution, the performance of the correntropy-based algorithm was inferior with

the IIR con�guration, the SNR values obtained with the FIR con�guration (the �rst column),

are actually satisfactory. In general, the autocorrelation criterion keeps a behavior among both

distributions which can be considered good.
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Table 4.2: Performance results for the first scenario. Top values of each cell corre-

spond to the framework with Jcor(·) and the lower values with JR(·).

M
Q

0 1 2

Uniform

1 N/A
14.8568 ±3.9057 10.5581±6.4042

14.6424 ±3.5231 12.1894 ±4.8719

2
6.9127 ±4.6778 6.5298 ±4.4481 6.5864 ±2.3673

9.6851 ±3.4061 9.9486 ±5.2356 8.0404 ±4.8041

3
4.2240 ±2.1388 7.8640 ±3.6413 7.0788 ±3.8619

7.1719 ±3.3396 7.2597 ±4.1099 6.1361 ±3.6377

4
5.2360 ±3.4400 5.7305 ±3.0323 4.3977 ±2.8700

8.1795 ±3.6980 5.1590 ±2.3961 9.0349 ±5.1689

Laplace

1 N/A
4.8299 ±0.5993 3.6216 ±0.7221

4.9733 ±0.6191 4.6350 ±0.8511

2
12.7572 ±4.4355 8.6372 ±3.4385 6.2717 ±5.0701

6.1112 ±1.5163 8.5274 ±7.1925 7.2257 ±3.6272

3
10.0389 ±3.8887 5.2167 ±3.4704 4.8022 ±2.1240

6.0616 ±3.0833 6.4510 ±4.7069 6.1691 ±2.5043

4
9.6916 ±4.7279 7.4234 ±4.4944 5.0443 ±2.6607

5.8004 ±1.1480 7.0782 ±3.0639 6.7976 ±4.6523

Next, in a second scenario we analyze a more complex situation, with a linear sub-system with

higher number of coe�cients, i.e. H(z) = 1 − 0.0919z−1 + 0.2282z−2 − 0.1274z−3 + 0.1408z−4 −
0.0189z−5 + 0.0173z−6 − 0.0072z−7 + 0.0038z−8 and the same cubic root nonlinear distortion.

The Hammerstein polynomial model is kept �xed, with respect to the previous scenario. Table

4.3 presents the results. This case was particularly interesting for the reason that for a long

channel the autocorrentropy criterion obtained the best results for both distributions with one

delay in the FIR part as well as in the IIR part, i.e. M = 1 and Q = 1. The autocorrelation

criterion achieved better results in most cases with the uniform distribution and with the Laplace

distribution, nevertheless, the correntropy-based algorithm is fairly similar with respect to the

autocorrelation-based algorithm.
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Table 4.3: Performance results for the second scenario. Top values of each cell corre-

spond to the framework with Jcor(·) and the lower values with JR(·).

M
Q

0 1 2

Uniform

1 N/A
14.3675 ±1.3090 12.1697 ±3.9542

10.0483 ±2.6356 10.9514 ±2.4465

2
10.3487 ±4.8042 4.2215 ±2.6087 5.6993 ±3.9722

12.2270 ±1.9237 7.1159 ±5.7061 5.8529 ±3.1429

3
7.9271 ±5.4106 4.1403 ±2.1130 4.6832 ±2.6312

9.4325 ±3.5489 4.1403 ±4.8972 7.5669 ±5.5669

4
5.8392 ±3.6569 3.1586 ±1.7876 4.2030 ±2.0286

5.9517 ±3.1271 4.9308 ±3.3318 9.5028 ±3.5657

Laplace

1 N/A
12,8232 ±2.5805 10.6611 ±3.8431

9,0241 ±1.7864 7.9572 ±1.0392

2
10.8289 ±4.5698 6,9777 ±4.7980 6.9542 ±3.9372

9.3756 ±1.4639 10,7657 ±4.8344 6.4196 ±2.5645

3
9.0718 ±4.1196 7,1028 ±3.7207 6.1031 ±4.1582

7.6368 ±2.9561 7,2779 ±3.7073 6.2302 ±4.3222

4
6.7983 ±3.0400 5,7620 ±4.1957 6.5560 ±4.2270

5.7902 ±1.2705 6,9577 ±3.8080 4.1066 ±3.0345

As observed, the general behavior of the algorithm can be considered similar among all possible

con�gurations, for both distributions, since the SNR values were relatively close with a small

di�erence between each other. Here the inclusion of a feedback loop was relevant to enhance the

inversion performance.

Following, in the third scenario we modify the cubic root function to represent a harder nonlin-

ear distortion, f [v] = tanh(3v). The linear channel remains as H(z) = 1−0.0919z−1+0.2282z−2−
0.1274z−3+0.1408z−4−0.0189z−5+0.0173z−6−0.0072z−7+0.0038z−8 and we increment the �ex-

ibility of the polynomial model of the Hammerstein system by setting k = 5. The results presented

in Table 4.4, show that the autocorrelation-based algorithm achieved better results for both distri-

butions, however, the results were comparatively close, the autocorrentropy criterion was slightly

inferior. For the uniform distribution the IIR structure played a relevant role to highlight the

inversion performance and the SNR values obtained with the FIR con�guration can be considered

fair for the Laplace distributed signal.
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Table 4.4: Performance results for the third scenario. Top values of each cell corre-

spond to the framework with Jcor(·) and the lower values with JR(·).

M
Q

0 1 2

Uniform

1 N/A
6.6408 ±0.4852 7.1136 ±0.9926

8.4698 ±1.1950 7.5135 ±0.8659

2
5.3037 ±1.7731 3.5200 ±2.2806 3.4118 ±3.9057

5.6166 ±0.7256 4.6532 ±2.1918 4.3149 ±2.0068

3
5.9823 ±1.7657 2.7248 ±1.9703 2.7801 ±2.0592

4.1090 ±1.3381 3.1194 ±1.6949 3.1099 ±2.2759

4
4.0638 ±1.9985 2.8662 ±2.2546 2.2321 ±1.5921

4.3067 ±0.7420 3.5884 ±1.5798 3.9430 ±2.1250

Laplace

1 N/A
5.5722 ±0.9826 5.6373 ±1.7084

6.9036 ±0.9193 7.0176 ±1.2008

2
5.8718 ±0.8484 3.2309 ±2.9480 3.6815 ±2.2600

6.8963 ±0.6402 5.9120 ±2.1063 5.2697 ±1.8783

3
5.4386 ±1.1977 4.7709 ±2.3995 2.7367 ±2.5375

5.6730 ±1.1698 4.4340 ±2.6679 4.4865 ±2.8044

4
4.5855 ±1.1322 1.4664 ±1.1923 1.7542 ±2.2162

4.2183 ±1.2551 3.9375 ±1.8202 4.2981 ±2.4042

Finally, in the fourth scenario, the Wiener system is described by H(z) = 1 + 0.5z−1, and the

same nonlinear distortion, f [v] = tanh(3v) and the polynomial model is kept to k = 5. Table

4.5 presents the results. As noticed, in overall, when the Wiener system contains the nonlinear

distortion f [v] = tanh(3v), the algorithm su�ers an evident depreciation. A possible explanation

for this behavior may lie on the parametric polynomial that our technique adopts which may not

be �exible enough to invert the nonlinear mapping. Notwithstanding, the autocorrelation criterion

attained slitghtly better results for both distributions.
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Table 4.5: Performance results for the fourth scenario. Top values of each cell corre-

spond to the framework with Jcor(·) and the lower values with JR(·).

M
Q

0 1 2

Uniform

1 N/A
6.3965 ±0.2584 4.3140 ±1.0687

6.5296 ±3.5231 6.1625 ±4.8719

2
2.8539 ±0.7036 2.3227 ±1.3197 3.3606 ±1.2090

6.0263 ±3.4061 5.3250 ±5.2356 5.4100 ±4.8041

3
3.1804 ±2.1984 2.4631 ±1.7538 2.6322 ±1.7173

5.1739 ±3.3396 5.8894 ±4.1099 5.2675 ±3.6377

4
2.6404 ±1.3311 2.9340 ±1.9044 3.0756 ±1.4558

6.2219 ±3.6980 5.8681 ±2.3961 4.3480 ±5.1689

Laplace

1 N/A
4.8299 ±0.5993 3.6216 ±0.7221

4.9733 ±0.6191 4.6350 ±0.8511

2
2.5883 ±1.3352 3.7914 ±1.3024 1.6851 ±2.1414

4.1779 ±1.0477 3.9551 ±1.3525 4.4669 ±0.8409

3
2.7929 ±1.8486 1.7669 ±1.8518 1.1340 ±1.8968

3.8905 ±0.9037 4.0634 ±1.5235 3.4007 ±1.7619

4
2.4208 ±1.3721 1.2515 ±1.5480 1.7168 ±1.8169

3.9706 ±0.6846 4.4175 ±1.3796 1.9301 ±1.3848

As manifested, in cases where the linear channel H(z) is composed with a large number of coef-

�cients and the nonlinear distortion remains as f [v] = tanh(3v), the performance of the algorithm

is better than when the linear channel is H(z) = 1 + 0.5z−1. This may happens due to the fact

that the longest channel generates a signal at the input of the nonlinear distortion f [v] = tanh(3v),

with more states than the shorter channel. On the other hand, in most of the cases in the four

scenarios with continuously distributed signals, the IIR structure presented better results with

respect to the SNR values obtained with purely FIR con�gurations.
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4.2.2 Discrete Case

For the discrete case, we consider the input is an i.i.d. signal with samples drawn from the

alphabet {−1,+1} submitted to the same linear precoder P (z), whose analytical autocorrentropy

functions was already given by the Eq. 4.1, in the preliminary experiments of Section 4.1, and its

autocorrelation function is given by

Rs(m) =


2σ2s , m = 0

σ2s , m = ±1

0, | m |≥ 2

,

where σ2s is the variance of s(n). We also consider the Alternate Mark Inversion (AMI) source [60],

whose dependent symbol sequence is drawn from the alphabet {−1, 0,+1}, its autocorrentropy

function is analytically given by [46]

Vs(m) =


κ(0), m = 0

1
4κ(0) +

1
2κ(1) +

1
4κ(2), m = ±1

3
8κ(0) +

1
2κ(1) +

1
8κ(2), | m |> 1

,

and autocorrelation is de�ned by

Rs(m) =


σ2s , m = 0

−1
2σ

2
s , m = ±1

0, | m |≥ 2

.

The number of lags used in the Jcor(·) as well as in the JR(·) cost function for equalization is

P = 10.

Once in the continuous scenarios we tested the performance of the autocorrentropy-based algo-

rithm with respect to the kernel size, we repeat the same experiments presented in Section 4.2.1,

this time with the discrete distributions previously mentioned. Figures 4.10 and 4.11 indicate that

the algorithm obtained better results whit the kernel size σ = 0.4 for both cases.
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Figure 4.10: Kernel performance for the discrete case in the �rst scenario with parameters M = 1,

and Q = 1 and minimum phase system H(z) = 1 + 0.5z−1 and nonlinear distortion f [v] =

sign(v) 3
√
| v |.

Figure 4.11: Kernel performance for the discrete case in the third scenario with parametersM = 1,

and Q = 1 and minimum phase systemH(z) = 1−0.0919z−1+0.2282z−2−0.1274z−3+0.1408z−4−
0.0189z−5 + 0.0173z−6 − 0.0072z−7 + 0.0038z−8 and nonlinear distortion f [v] = tanh(3v).

Now, the same scenarios of the continuous case are considered in this case, as well. In the �rst

one, the Wiener system is modeled by a minimum phase system with coe�cients H(z) = 1+0.5z−1

and nonlinear distortion f [v] = sign(v) 3
√
| v |, the polynomial model is set to k = 3. Table 4.6

shows the mean and standard deviation of SNR, in dB, for the two distributions. In all cases the

results obtained by the autocorrentropy criterion indicate that the desired signal is recovered with

a signi�cant degree of accuracy, this is remarkably noticeable in the duobinary {+1,−1} signal
code, where the autocorrelation was inferior. For the AMI line code, the autocorrentropy criteria
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Table 4.6: Performance results for the first scenario. Top values of each cell corre-

spond to the framework with Jcor(·) and the lower values with JR(·).

M
Q

0 1 2

Binary

1 N/A
42.3971 ±22.9748 34.1152 ±11.8529

8.3664 ±0.6832 6.0335 ±0.3755

2
15.4638 ±5.1540 15.0029 ±14.5091 33.4532 ±9.9356

9.3447 ±1.5647 7.2518 ±0.6168 8.7425 ±0.7005

3
24.5195 ±0.9949 26.0103 ±10.3711 27.8254 ±7.8177

10.1324 ±2.0326 6.6126 ±1.6287 7.8646 ±0.7984

4
24.9277 ±2.4238 29.1586 ±5.6757 29.5466 ±5.3453

9.0018 ±0.9443 7.1526 ±2.3802 6.9511 ±2.3962

AMI

1 N/A
76.5697 ±17.1204 36.7313 ±26.5264

14.8651 ±2.4182 16.5883 ±4.4528

2
5.2648 ±0.2427 15.6042 ±25.0736 11.5516 ±30.3120

6.5509 ±0.1529 14.7809 ±3.2623 10.7013 ±3.6170

3
18.4655 ±0.0399 5.6490 ±16.1036 11.8754 ±18.4088

7.9706 ±3.9259 8.4627 ±4.0956 10.2360 ±4.4483

4
24.6631 ±0.2584 15.0663 ±0.2584 6.9703 ±14.1611

10.1143 ±2.9990 8.9963 ±7.6855 6.0951 ±2.5593

present better results than autocorrelation, one can note that the linear part of the Wiener system

was total and perfectly inverted with the IIR �lter that corresponds to M = 1, Q = 1. For the

autocorrentropy optimization criteria in both distributions, the IIR con�guration was relevant to

raise the inversion. Although the autocorrentropy criteria show the best results in most of the

cases, the results with the autocorrelation criteria in both distributions can be considered good.

The second scenario analyzes the algorithm in a more complex situation, as the Winer system

is formed by H(z) = 1−0.0919z−1+0.2282z−2−0.1274z−3+0.1408z−4−0.0189z−5+0.0173z−6−
0.0072z−7+0.0038z−8 and the same nonlinear distortion f [v] = sign(v) 3

√
| v | with the polynomial

model kept to k = 3. Table 4.7 presents the results. For the duobinary {+1,−1} signal, it is

remarkable that, the IIR structure is more e�cient from the standpoint inversion system with the

autocorrentropy criteria, which illustrates the potential advantages of using a recurrent �lter in

the Hammerstein system. On the other hand, for the AMI line code, note that the performance

of the algorithm with the autocorrentropy criterion presented inferior results with respect to the
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Table 4.7: Performance results for the second scenario. Top values of each cell corre-

spond to the framework with Jcor(·) and the lower values with JR(·).

M
Q

0 1 2

Binary

1 N/A
14.9085 ±0.2570 18.8647 ±0.5799

11.5885 ±0.9077 6.4354 ±0.7243

2
14.8598 ±0.2019 2.5390 ±0.3407 16.7106 ±0.2174

7.9064 ±2.0373 6.8221 ±0.5538 8.2442 ±0.3275

3
20.1459 ±0.8004 21.2914 ±1.0035 22.3770 ±1.5154

7.2140 ±0.6360 6.1165 ±1.4536 7.1126 ±1.4768

4
20.5990 ±0.6557 11.0622 ±11.3577 13.5573 ±10.8867

6.2557 ±0.8187 7.3473 ±1.5524 8.1772 ±1.2897

AMI

1 N/A
4.5801 ±0.8405 4.3686 ±1.0847

7.4608 ±0.7446 6.8574 ±0.9419

2
3.5905 ±1.4828 4.8299 ±0.2775 3.5960 ±1.9341

5.6506 ±3.8338 7.8432 ±7.4359 5.8440 ±4.7018

3
3.3818 ±1.7300 4.2166 ±1.4110 3.0845 ±1.0944

6.4164 ±2.6637 3.2790 ±1.4989 7.2741 ±4.7657

4
3.3337 ±2.5240 3.0204 ±2.3695 2.7375 ±2.0971

4.9267 ±1.4839 5.9401 ±3.2289 3.8521 ±1.9609

duobinary {+1,−1} signal, also, although the autocorrelation criterion was better, the general

behavior was inferior with respect to the duobinary {+1,−1} signal.

We can see that the algorithm with the duobinary {+1,−1} signal for both criteria and both

scenarios and the AMI line code for both criteria in the �rst scenario present such a better behavior

with respect to the continuous case in these same scenarios. On the other hand, the standard

deviation is larger for AMI line code in the �rst scenario, which may be a subject of analysis in the

future. Also, it is visible that the AMI line code in the second scenario for both criteria presented

an inferior performance with respect to the �rst one, and it may indicate that these criteria with

this particular signal, is more sensitive to domains with larger search spaces.

Next, the third scenario is composed of a Wiener system with a harder nonlinear distortion

f [v] = tanh(3v) and we increment the �exibility of the polynomial model of the Hammerstein

system by setting k = 5. The linear channel is kept �xed, with respect to the previous scenario.

In Table 4.8 we can see the results. As we can observe, for both criteria, the precoded duobinary
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signal {−1,+1} provided better results than the AMI line code, note that the IIR structure with

M = 2, Q = 2 provided the best performance for the autocorrentropy criterion, which led better

results in comparison with the autocorrelation criterion. Then again, the autocorrentropy criterion

with the AMI line code is limited for searching an ideal solution inversion.

Table 4.8: Performance results for the third scenario. Top values of each cell corre-

spond to the framework with Jcor(·) and the lower values with JR(·).

M
Q

0 1 2

Binary

1 N/A
27.1582 ±2.3291 26.3274 ±3.18161

11.4609 ±1.3548 6.8779 ±0.5564

2
27.2379 ±2.6070 27.0057 ±3.8345 28.3819 ±4.3323

5.6971 ±0.1138 6.1671 ±0.3077 7.9212 ±0.3867

3
22.3939 ±3.4233 25.6450 ±10.3711 26.1593 ±2.8519

6.3156 ±0.4363 6.4826 ±1.9191 8.7940 ±0.2716

4
26.4549 ±2.3703 24.7444 ±2.4619 25.2451 ±1.9930

7.1988 ±0.6260 6.4536 ±1.6520 7.2348 ±1.6392

AMI

1 N/A
5.6105 ±3.9239 1.4308 ±4.3520

8.7712 ±0.2614 8.6935 ±0.7230

2
0.7853 ±0.0859 0.1777 ±0.9319 3.6273 ±1.3206

4.1404 ±0.5087 4.2678 ±4.3620 5.3170 ±3.4674

3
3.4488 ±1.4149 4.1253 ±0.1393 3.0500 ±1.1166

3.1774 ±0.6927 4.0420 ±2.2997 5.3144 ±3.1668

4
3.7339 ±0.7518 3.6607 ±10.3711 3.5601 ±0.9476

3.6231 ±1.2135 3.6399 ±1.5418 3.9534 ±2.5417

Finally, in the fourth scenario the Wiener system is described by H(z) = 1 + 0.5z−1, and the

same nonlinear distortion, f [v] = tanh(3v) and the polynomial model is kept to k = 5. Table 4.9

exhibits the results. A highlighted value corresponds to the best result for each criterion. As we

can see, once again, the performance of the algorithm experiences a depreciation in its performance

when the linear channel is shorter with respect to the previous scenario.

48



Table 4.9: Performance results for the fourth scenario. Top values of each cell corre-

spond to the framework with Jcor(·) and the lower values with JR(·).

M
Q

0 1 2

Binary

1 N/A
4.9167 ±0.2174 3.1764 ±2.4140

5.5307 ±0.2880 7.5144 ±0.1467

2
4.9772 ±0.3420 2.2236 ±1.3044 3.4316 ±4.1865

9.5335 ±0.3517 9.3313 ±0.1670 9.1858 ±0.3202

3
4.5591 ±0.1248 3.2175 ±2.3347 2.4382 ±2.1489

9.7029 ±0.5925 7.0029 ±2.8907 6.5468 ±1.5105

4
4.5109 ±0.1253 5.8063 ±2.9019 3.9344 ±2.8939

7.1639 ±0.6990 7.4731 ±1.3221 5.3900 ±2.3291

AMI

1 N/A
4.6721 ±3.6613 1.5216 ±0.1286

13.4194 ±0.9629 5.6747 ±5.7263

2
1.6445 ±0.9317 1.2171 ±0.1080 1.5887 ±0.3240

8.9709 ±0.2696 5.4681 ±5.6308 2.1092 ±1.0327

3
1.9804 ±1.2897 1.5110 ±0.2060 1.7387 ±0.9394

7.1056 ±2.5710 7.0846 ±4.9281 7.1243 ±4.9943

4
3.6749 ±4.8210 0.9921 ±1.4930 1.2119 ±1.3420

6.6887 ±4.2382 7.5635 ±3.0442 5.2383 ±3.4621

In view of the repeated behavior of the algorithm, when the linear channel H(z) is composed

with a larger number of coe�cients presents better results than when the linear channel is shorter,

we made a straightforward experiment to analyze closer this kind of conduct. For this, we consider

the duobinary {+1,−1} signal in the third and fourth scenarios with the autocorrentropy criterion.

Figures 4.12 and 4.13 con�rm what we suggested previously in the continuous case, i.e. the longest

channel generates a signal at the input of the nonlinear distortion f [v] = tanh(3v), with more states

than the shorter channel, these �more diversi�ed� states may cause the output of the nonlinear

distortion to be not saturated at +1/− 1, and possibly facilitating the nonlinear inversion task for

the polynomial model.
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Figure 4.12: Experiment with the duobinary {+1,−1} signal with the autocorrentropy criterion.

The Figure of the left correspond to the signal after passing through the linear channel H(z) =

1+0.5z−1 and the other one through H(z) = 1−0.0919z−1+0.2282z−2−0.1274z−3+0.1408z−4−
0.0189z−5 + 0.0173z−6 − 0.0072z−7 + 0.0038z−8.
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Figure 4.13: Filtered duobinary {+1,−1} signal after passing through the nonlinear distortion

f [v] = tanh(3v). The Figure of the left correspond to the signal after passing through the linear

channel H(z) = 1 + 0.5z−1 and the other one through H(z) = 1 − 0.0919z−1 + 0.2282z−2 −
0.1274z−3 + 0.1408z−4 − 0.0189z−5 + 0.0173z−6 − 0.0072z−7 + 0.0038z−8.

In a general perspective, the autocorrelation and the correntropy-based criterion provided rea-

sonable results that validate the idea of using dependence as criterion to invert the original system.

One can see that the correntropy-based criterion presented the best results: for all cases in the

continuous scenario and for the precoded duobinary signal {−1,+1} in the �rst, second and third

scenarios. Furthermore, it is possible to see that the feedback loop in the linear �lter was perti-

nent to build up the inversion performance, since most of the top scores, for both criteria, were

obtained with Q ≥ 1. However, the correntropy-based criterion showed an inferior overall perfor-

mance for the AMI line code in the third scenario, where predominantly autocorrelation-based

criterion performed better.

Finally, for the sake of illustration, we show in Figure 4.14 the algorithm results of the precoded

binary signal in the third scenario using the correntropy criteria and with M = 2 , and Q = 2.

The �gures con�rm that the algorithm inverted almost perfectly the desired signal, this can be

observed in the error signal illustrated in the �gure of the top. Also, in the second �gure the

estimated correntropy of the output signal Vy(m) practically matches the analytical correntropy

of Vs(m). Moreover, the last �gure shows the convolution between h(n) and w(n).
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Figure 4.14: Example of algorithm results with duobinary signal source {+1,−1}, M = 2, and

Q = 2 for third scenario.
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4.3 Summary

In this chapter we presented a set of experiments in order to evaluate the framework proposed

in Chapter 3. The �rst experiment was allowing to show us whether the based-autocorrentropy

criterion has the potential to be applied in full conditions in the context of blind inversion of Wiener

systems. The partial success in the preliminary test yielded the realization of an experimental

analysis of the new framework for the Wiener-Hammerstein problem, and the results indicated

that the framework is feasible, ensuring a valid performance of the method.

The next chapter concludes this dissertation, with the �nal considerations of the presented

work and the future outlook of research and study.
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Chapter 5

Conclusion

Nonlinear models can provide an accurate description and prediction of physical systems that

have a nonlinear behavior. Wiener systems and Hammerstein systems are nonlinear models that are

used in many domains for their simplicity and physical meaning. Particularly, blind identi�cation

of nonlinear systems has become an important issue with many practical applications. However,

most of the identi�cation/inversion approaches assume the availability of input of the system which

in most of the cases is considered i.i.d..

Given the characteristics of the mentioned problem, it was developed a new framework, incorpo-

rating an immune-inspired strategy for searching and the use of dependence measures, particularly

the new generalized correlation function as well as the autocorrelation, as new criteria for the

inversion task. The proposed approach was shown to be able to deal with non-independent signals

and to perform considerably good in performing the inversion task. As examples of the �exibility

of the proposed approach, two di�erent dependence-based criteria were presented on completely

di�erent scenarios, the �rst scenario where continuously distributed input signals were tested and

the second experiment considered input signals that are discretely distributed.

After the introduction chapter, Chapter 2 presents a description of the historical aspects and

de�nitions of Information Theoretic Learning, and later Chapter 2 links this primary subject with

the adaptive signal processing and machine learning theories. Although this description may be

tedious for some readers it is important for the full understanding of all the work presented in this

dissertation.

Prior works in the context of inversion of Wiener systems assume originally i.i.d. signals as

the input of the system, although di�erent blind inversion methods are proposed. Although in

a real-world situation non-independent sources are common, the inversion task for these signals

still demands a deeper research. This leads to problems unanswered in the literature. The �rst

part of the Chapter 3 presents the main contributions of the related work in the context of blind

inversion of Wiener systems. The second part of the Chapter presents this dissertation proposal:

a framework based on CLONALG algorithm and dependence-based criteria as objective functions

of the parameter optimization problem. In the structure of this framework, linear stages with and

without feedback (FIR or IIR) enhancing the �exibility on modeling the Hammerstein system were
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considered.

Finally, the Chapter 4 presents the experimental results of the proposed approach. We per-

formed a qualitative study of the performance of the autocorrentropy criterion in the context of

a Wiener system which provided evidence of the algorithm feasibility for a non-linear setting. A

series of simulations were carried out, in di�erent scenarios, which showed that the new method

has satisfactory performance in the scenarios that were evaluated. It is not conclusive which one

of the two possibilities of criteria is preferable. Notwithstanding, considering the previously known

methods, both criteria indicate that the exploration of the temporal structure of the input signals

can lead to the inversion of Wiener systems.

Future Work

Given the results, there are a number of possible future work to be done, and we have listed

below some of them.

• It is interesting the study of more pliable nonlinearity models, e.g. monotonic neural net-

works, in order to search for further improvement of the algorithm.

• It may be interesting to apply the proposed framework to real systems where the input signal

is non-independent, for instance, a piece of a song.

• Perform a comparative analysis of existing methodologies for involving a higher number of

channels scenarios, source signals and nonlinearities.
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