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ABSTRACT
Marine sponges are the oldest Metazoa, very often presenting a complex
microbial consortium. Such is the case of the marine sponge Arenosclera brasilien-
sis, endemic to Rio de Janeiro State, Brazil. In this investigation we characterized the
diversity of some of the culturable heterotrophic bacteria living in association with
A. brasiliensis and determined their antimicrobial activity. The genera Endo-
zoicomonas (N = 32), Bacillus (N = 26), Shewanella (N = 17), Pseudovibrio (N = 12),
and Ruegeria (N = 8) were dominant among the recovered isolates, corresponding
to 97% of all isolates. Approximately one third of the isolates living in association
with A. brasiliensis produced antibiotics that inhibited the growth of Bacillus subtilis,
suggesting that bacteria associated with this sponge play a role in its health.

Subjects Biodiversity, Biotechnology, Marine Biology, Microbiology
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INTRODUCTION
Marine sponges are the oldest Metazoans living on Earth, and are considered to harbor

one of the richest microbial symbiont communities among marine invertebrates

(Taylor et al., 2007). More than 47 bacterial phyla have already been detected in sponges

(Reveillaud et al., 2014), some of which are almost exclusively found in these marine

invertebrates (Taylor et al., 2012). For example, a new species of Shewanella was isolated

from sponges (Lee et al., 2006) and a new candidate phyla, named Poribacteria, was

proposed to occur almost exclusively in association with sponges (Fieseler et al., 2004;

Taylor et al., 2012). In addition to the high taxonomic diversity of bacteria coexisting

in a single sponge individual, experimental evidences show that sponge-associated

microbial symbionts produce secondary metabolites (Noyer, Thomas & Becerro, 2011;

Sacristán-Soriano et al., 2011; Schneemann et al., 2011; Blunt et al., 2012). Moreover, sponge
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microbial symbionts present high metabolic diversity, based on variable sources of carbon,

nitrogen, oligoelements and other essential nutrients (Hoffmann et al., 2005; Weisz et

al., 2007). The investigation of the symbiotic microbial community diversity constitutes

an essential aspect to understand marine sponge ecology and possible biotechnological

applications.

A particularly relevant example of association between microorganisms and sponges

occurs between a Micromonospora strain, which produces a bioactive alkaloid, and a

haplosclerid sponge (Taylor et al., 2007). The direct assignment of a specific sponge-

associated isolate of biotechnological relevance is however a rare occurrence, even

considering the increasing efforts towards the discovery of sponge associated bacteria,

cyanobacteria and fungi capable of producing biologically active secondary metabolites

(Wang, 2006; Öztürk et al., 2013).

Generally, the assignment of an organism as the producer of a given compound is not

straightforward, since the production of the compound may be result of the cooperation

between symbionts and the host or among the symbionts (Hentschel et al., 2012). Many

sponge bioactive compounds are structurally similar to products of prokaryote polyketide

synthases (PKS) and non-ribosomal peptide synthases (NRPS). These two enzyme families

are involved in many biosynthetic pathways of natural products (Piel, 2009). Setting the

bacterial origin of bioactive compounds offers the possibility for heterologous large-scale

production (Graça et al., 2013).

The marine sponge Arenosclera brasiliensis Muricy & Ribeiro, 1999 (Haplosclerida:

Callyspongiidae), is endemic from the upwelling region of Cabo Frio, Rio de Janeiro State,

Brazil (Muricy et al., 2011), and the natural source of antibiotic and cytotoxic polycyclic

alkaloids (Torres et al., 2000; Berlinck et al., 2004). Evidences suggesting that bacteria

associated with A. brasiliensis are the source of bioactive compounds of pharmacological

interest are numerous. Recent metagenomic studies uncovered the highly diverse microbial

community of A. brasiliensis (Trindade-Silva et al., 2012). Metagenomic analysis of

A. brasiliensis also showed a high diversity of bacteria-derived genes encoding for a

ketosynthase (KS) domain of the multifunctional type I polyketide synthases (PKS-I)

(Trindade-Silva et al., 2013). Such feature is of particular interest, since it has been

hypothesized that alkaloids from haplosclerid sponges are assembled from polyketide

precursors related to type I PKS enzymology (Fontana, 2006). Moreover, it has been shown

that polyketide-derived secondary metabolites isolated from sponges and other marine

invertebrates frequently are metabolic products of associated bacteria (Piel et al., 2004;

Piel, 2006; Piel, 2009). Consequently, one could hypothesize that the biosynthetic pathway

leading to the formation of A. brasiliensis alkaloids may be of bacterial origin. Since many

bacterial PKS producers are culturable, the isolation and characterization of A. brasiliensis

associated-bacteria is the first step to establish the identity of sponge microorganisms

which may have biotechnological potential.

The purpose of the present investigation was the isolation and taxonomic identification

of bacteria associated with A. brasiliensis and to evaluate the ability of the bacterial isolates

to produce antibacterial metabolites.
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MATERIAL AND METHODS
Sample collection and bacterial isolation
Specimens of A. brasiliensis were collected at approximately 10 m depth by Scuba, at João

Fernandinho Beach, Búzios, state of Rio de Janeiro (22◦44′49′′S 41◦52′54′′W) in January

2011. The sampling site is characterized by tropical conditions with very low annual

rainfall. Water temperature ranges from 19 to 27 ◦C and mean daily air temperatures range

from 16 to 28 ◦C. This part of the coast is influenced by upwelling of cold, nutrient-rich

waters and the phenomenon is associated with local wind regime, bathymetry and

seasonality (Yoneshigue, 1985; Guimaraens & Coutinho, 1996). Sponge specimens were

transported to the laboratory in 20 L containers under controlled temperature (24 ◦C) in

aerated seawater for approximately 3 h. In the laboratory, two specimens were three times

washed in 10 mL sterile seawater for removing unassociated micro-organisms. Then, these

specimens were dried by gently pressing on sterile paper towels. A piece of sponge (approx.

1 g) was homogenized in 5 mL sterile saline solution (3% NaCl in distilled water). The

homogenate was 10-fold serially diluted starting with 100 µL homogenate in 900 µL sterile

water to obtain dilutions of 10−1; 10−2 and 10−3 of the initial concentration. A 100 µL

aliquot of each dilution was plated onto each of two growth media: BD DifcoTM Marine

Agar 2216 and MacConkey Agar, both supplemented with Amphotericin B (1 µg/mL)

to inhibit the growth of fungi. Isolated bacterial colonies from both media were selected

and streaked again at least twice to obtain pure cultures. Pure cultures were preserved in

glycerol 20% at −80 ◦C.

DNA extraction and 16S rRNA sequencing
Bacterial isolates were grown on the same media used for isolation and incubated for 2–3

days aerobically at 30 ◦C. Bacterial isolates were harvested from agar plates and suspended

in 200 µL of ultrapure sterile water. The bacterial suspensions were subjected to boiling for

10 min and freezing for 3 min to lyse the cells. The lysates were centrifuged for 1 min (4 ◦C

at 13,000 g) for pelleting the cells debris. The resulting supernatant DNA solutions were

used for the Polymerase Chain Reaction (PCR) as it follows.

Partial 16S rRNA gene sequences were amplified using the primers 27F (AGA GTT

TGA TCM TGG CTC AG) (Lane, 1991) and 1093R (GTT GCG CTC GTT GCG GGA

CT) (Thompson et al., 2001). A single PCR contained 25 µL with 1 µL DNA (10–80 ng);

1.5 mM MgCl2; 200 µM of each deoxynucleoside triphosphate; 0.5 µM forward and reverse

primers and 1 U goTaq DNA polymerase. PCR cycles consisted of initial denaturation at

95 ◦C for 5 min and cycles of 95 ◦C for 1.5 min, annealing at 55–51 ◦C (the temperature

was decreased by 1 ◦C between consecutive steps) for 1 min and the extension at 72 ◦C

for 2 min. The three first cycles containing the higher annealing temperatures (55–53)

were repeated 2 times followed by 5 repeats of the cycle with annealing at 52 ◦C. Finally,

28 repeats of the cycle with annealing at 51 ◦C and final extension at 72 ◦C for 4 min. PCR

amplicons were checked and the quantity was estimated by electrophoresis on 1% agarose

gels and KODAK MI SE—Molecular Imaging Software.
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The PCR products were purified using ExoSap-IT (USB Corporation, Cleveland, OH,

USA) and sequenced for both the forward and reverse strands using ABI Big Dye chemistry

on an ABI 3500 DNA sequencer (Applied Biosystems, Foster City, CA, USA).

Phylogenetic reconstruction
All sequences were edited using SEQMANII software (DNASTAR, Inc.) and aligned

in Clustal X with MEGA5 (Tamura et al., 2011). The aligned sequences were visually

inspected and edited when necessary.

Partial 16S rRNA gene sequences were analyzed first via BLASTn tool (nucleotide collec-

tion database) (Altschul et al., 1990) and RDP Naive Bayesian rRNA Classifier Version 2.6,

Sep 2013 (Wang et al., 2007) to aid selection of most closely related reference sequences.

The alignment containing isolates and reference sequences was used first for determining

the substitution model of evolution using Modeltest (Posada & Crandall, 1998) for

maximum likelihood (ML) and neighbor-joining (NJ) phylogenetic reconstruction using

MEGA5. Model-test result was Tamura Nei model with Gamma distributed rates among

sites (TrN + G). Both phylogenetic methods were run with 1,000 bootstrap replicates.

Gene sequences obtained in this study are available through the website TAXVIBRIO

(http://www.taxvibrio.lncc.br/) and at GenBank database under the accession numbers

KJ372433 to KJ372528.

Antimicrobial activity assays
Antimicrobial activity against Bacillus subtilis was assessed using an adapted top agar

method (Brady, 2007). Briefly, bacterial isolates were grown at 28 ◦C in the center of

squares (5.76 cm2) marked in 245 mm × 245 mm sterile plates (Corning) during 6 days.

After this period, the plates containing isolates were exposed to 3 mL of chloroform,

during 1 h in order to kill the isolates, and then the plates were left opened to ensure

complete chloroform evaporation. An overlay with B. subtilis LMG 7135T was poured over

the killed isolates. The soft agar medium containing B. subtilis was prepared as follows:

firstly, B. subtilis was grown in 50 mL Luria Broth (LB) medium at 28 ◦C for 16 h. Then,

200 mL of LB soft agar (0.7% agar) at 45 ◦C was added to B. subtilis inoculum. This

semi solid medium containing B. subtilis was then poured over those killed isolates. The

antimicrobial activity was taken into account with the appearance of haloes in B. subtilis

confluent growth after 24 and 48 h. Four replicates were performed for each isolate in order

to confirm antimicrobial activity. Control tests corresponded to squares where no isolate

was inoculated and complete growth of B. subtilis was expected.

Antimicrobial activity against Vibrio sinaloensis LMG 25238T was also screened by a

modified double-layer method previously described (Westerdahl et al., 1991). Briefly, the

isolates were individually cultivated in Trypic Soil Agar (TSA) (NaCl 3%) for 48 h at 30 ◦C,

under aerobic conditions. Dilutions on sterile distilled water (NaCl 3.0%) were adjusted

using a spectrophotometer to optical density of 0.08–0.1 at 625 nm, corresponding to

approx. 108 cells mL−1 and seeded, using a steers replicator, on plates containing marine

agar. After incubation for 48 h at 30 ◦C, under aerobic conditions, growing spots were

observed. V. sinaloensis (108 cels mL−1) was incorporated into sterile fluid semisolid
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marine medium (0.5% agar) and spread over the plates containing the isolated bacterial

spots. Plates containing the isolates and the test-strain were incubated for 48 h at 30 ◦C.

The bacterial growth inhibition was observed by determining the presence of the inhibition

zones. The assay was performed in triplicate.

RESULTS
A total of 98 culturable bacterial isolates were obtained and their partial 16S rRNA gene

sequences were compared with the GenBank and RDP databases in order to find the

closest neighbors and the respective type-strain. Genera Endozoicomonas (N = 32),

Bacillus (N = 26), Shewanella (N = 17), Pseudovibrio (N = 12), and Ruegeria (N = 8)

were dominant among the culturable microbiome of A. brasiliensis, corresponding to

approx. 97% of all isolates (Complete list of isolates is on http://www.taxvibrio.lncc.

br/). The three remaining isolates were closely related to Paenibacillus (N = 2) and

Micrococcus (N = 1). Besides the taxonomic identification through comparisons of 16S

rRNA sequences with databases, the 16S rRNA sequences were grouped using phylogenetic

methods. The Endozoicomonas isolates presented sequence with 97.5% similarity towards

the type strain of E. montiporae (Fig. 1; Fig. S1). The Shewanella isolates clustered all

together, having at maximum 98% 16S rRNA sequence similarity towards S. irciniae type

strain (Fig. 1; Fig. S2). Ruegeria isolates had 100% similarity with Ruegeria atlantica type

strain (Fig. 1; Fig. S3). Part of Pseudovibrio isolates had 100% similarity with the sequence

of P. denitrificans type strain and the remainder had identical 16S rRNA sequences with

the P. asceidicola type strain (Fig. 1; Fig. S4). Paenibacillus isolates showed 99.8% similarity

with P. illinoiensis type strain. Bacillus isolates had 100% similarity with the B. pumillus,

B. safensis, B. thuringiensis, B. cereus, B. barbaricus and B. arsenicus type-strains (Fig. 1;

Figs. S5–S6).

Antimicrobial activity
Antimicrobial activity was detected in 28.5% of the A. brasiliensis bacterial isolates of

different species (Table 1). Bacillus subtilis test strain was susceptible to the supernatant

of different A. brasiliensis bacterial isolates. The antimicrobial activity was widespread

through different taxonomic groups of bacteria. Vibrio sinaloensis was susceptible to four

isolates: two isolates closely related to Shewanella spongiae (i.e. Ab 105 and Ab 216), and

two isolates closely related to Pseudovibrio ascidiaceicola (i.e. Ab 133 and Ab134).

DISCUSSION
As primitive Metazoans, marine sponges have established long-term associations with an

array of microorganisms, which mainly include bacteria and cyanobacteria (Taylor et al.,

2007). In the present investigation, we observed that all bacterial genera found among

the culturable heterotrophic community of A. brasiliensis have already been isolated from

other marine sponges, but, the present combination of bacterial genera was never reported

within a single marine sponge. Comparisons between culturable bacterial communities

from marine sponges are difficult to address since differences in media and culture

conditions can significantly influence the isolation and cultivability of distinct bacterial
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Figure 1 Phylogenetic tree of partial 16S rRNA sequences (302 bp) of A. brasiliensis isolates and type
strains sequences. The phylogeny reconstruction was based on neighbor-joining method and 1,000
bootstrap replications.
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Table 1 Bacterial isolates of A. brasiliensis showed antimicrobial activity. Results of antimicrobial
activity tests. Isolates belonging to different species inhibit the growth of B. subtilis.

B. subtilis was susceptible to the following isolates

Genus Isolates

Endozoicomonas montiporae Ab107/Ab227MC/Ab112/Ab213

Shewanella irciniae Ab114/Ab 101/Ab105/Ab109/Ab202/Ab216

Ruegeria atlantica Ab137/Ab138

Pseudovibrio ascidiaceicola Ab126/Ab132

Pseudovibrio denitrificans Ab127/Ab133/Ab134

Paenibacillus illinoiensis Ab232

Bacillus pumillus Ab 147/Ab148/Ab153/Ab161/ Ab166

Bacillus cereus Ab158/Ab160/Ab164/Ab233

Bacillus nanhaiensis Ab238

isolates (Sipkema et al., 2011). In spite of this, it seems that some genera are commonly

found among marine sponges, such as Pseudovibrio (Enticknap et al., 2006; Mohamed et al.,

2008; Menezes et al., 2010; Santos et al., 2010; Flemer et al., 2011; Bruck, Reed & McCarthy,

2012; Margassery et al., 2012), Bacillus (Hentschel et al., 2001; Webster et al., 2001; Pabel et

al., 2003; Lafi, Garson & Fuerst, 2005; Zhu, Li & Wang, 2008; Bruck et al., 2010; Devi et al.,

2010; Santos et al., 2010; Flemer et al., 2011; Phelan et al., 2011; Bruck, Reed & McCarthy,

2012; Margassery et al., 2012), and Ruegeria (Mohamed et al., 2008; Menezes et al., 2010;

Bruck, Reed & McCarthy, 2012; Margassery et al., 2012; Esteves et al., 2013; Haber & Ilan,

2013). Such bacterial genera can be found in distinct marine sponge species collected

at distant geographic areas and with low phylogenetic relationship. On the other hand,

Endozoicomonas, usually referred to as Spongiobacter (Mohamed et al., 2008; Flemer et al.,

2011), and Shewanella (Flemer et al., 2011; Margassery et al., 2012; Haber & Ilan, 2013) are

bacterial genera less frequently found within marine sponges (Table S1).

Endozoicomonas isolates obtained in this investigation were closely related to those

isolates from Australian sponges and corals. Similarly, Shewanella, Ruegeria, Pseudovibrio,

Paenibacillus, Bacillus and Micrococcus isolates grouped with related isolates obtained from

different sponge species collected at different geographic locations (Figs. S1–S7).

The diversity and abundance of the genera detected through
culture-dependent and culture-independent means have limited
overlap
The diversity of culturable bacterial isolates recovered from A. brasiliensis presented

similarity to the A. brasiliensis metagenomes previously analyzed by us (Trindade-Silva

et al., 2012). For example, Pseudovibrio (N = 5), Ruegeria (N = 23), Shewanella

(N = 16), Paenibacillus (N = 1) and Bacillus (N = 1) were observed in the metagenomic

sequences analyzed previously, whereas Endozoicomonas and Micrococcus were not

detected in the metagenomes of A. brasiliensis. In addition, we identified Pseudovibrio,

Ruegeria, Shewanella, Paenibacillus, Bacillus, and Micrococcus in sequence libraries of

polyketide synthase (PKS) genes originated from A. brasiliensis (Trindade-Silva et al.,
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2013), indicating some overlap between the culture-dependent and culture-independent

studies. It demonstrates that suitable culture conditions can recover some of the bacterial

genera detected by metagenomic analysis. Comparisons between culture-dependent and

culture-independent approaches suggest that novel culturing approaches are needed in

order to cultivate the missing bacterial diversity (Lavy et al., 2014).

The culturable heterotrophic bacteria of A. brasiliensis comprise
well known antibiotic producers
Bacterial isolates belonging to the genera Endozoicomonas, Pseudovibrio and Paenibacillus

are known for their ability to produce antibiotics. Pseudovibrio isolates originated from

marine invertebrates such as tunicates (Sertan-de Guzman et al., 2007; Riesenfeld, Murray

& Baker, 2008), corals (Rypien, Ward & Azam, 2010) and sponges showed antimicrobial

activity (Santos et al., 2010; O’ Halloran et al., 2011). Pseudovibrio isolates from corals

have antagonist effect against V. coralliilyticus (Rypien, Ward & Azam, 2010). In our study,

we demonstrate that Pseudovibrio isolates of A. brasiliensis showed antimicrobial activity

against Bacillus subtilis and Vibrio sinaloensis.

Bourne et al. (2008) found a correlation between the presence of Endozoicomonas

(= Spongiobacter) and the health of corals. The authors argue that Endozoicomonas may be

excluding potential pathogenic microorganisms from the holobiont. Mohamed and

coworkers (2008) showed that an Endozoicomonas-related isolate from sponges produce

a repertoire of N-acyl homoserine lactones. These quorum-sensing signaling metabolites

may help delineate and structure the microbial communities in sponges. In the present

study, several Endozoicomonas isolates showed antimicrobial activity against B. subtilis

(Table 1). Endozoicomonas may play an ecological role in marine holobionts, shaping

the associated microbial community through antimicrobial substances and signaling

molecules.

Paenibacillus isolates belong to the microbial community of sponges, although they

are found less abundantly than Bacillus (Phelan et al., 2011). The physiological role of

sporeformers within sponge tissues is still unknown (Phelan et al., 2011), but probiotic

activity was verified in Bacilluscereus and Paenibacillus sp. against Vibrio spp., conferring

high levels of survival of shrimp larvae (Ravi et al., 2007). Additionally, antimicrobial

activity was already detected in extracts of Paenibacillus isolates (Romanenko et al., 2013).

Micrococcus was the only Actinobacteria represented in the culturable community of A.

brasiliensis, with a single isolate. Actinobacteria is a bacterial phylum commonly observed

in invertebrate-associated microbial communities. Moreover, Actinobacteria comprises

some of the most ingenious producers of potent antibiotics (Sun et al., 2010). Previous

studies showed more diverse and abundant Actinobacteria communities in marine

invertebrates than we recovered from A. brasiliensis. However, specific Actinobacteria

growth conditions and nutrient requirements were not applied in the present study,

which are normally required for enriching the isolation of representative isolates of this

taxonomic group (Jiang et al., 2008; Sun et al., 2010). The diversity of actinomycetes

recovered from A. brasiliensis is possibly underestimated; however, the microbes associated
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with A. brasiliensis may be providing protection against pathogens and keeping a healthy

interaction with the symbiont community.

CONCLUSIONS
The sponge A. brasiliensis yielded a diverse culturable microbial community, including

Endozoicomonas, Shewanella, Ruegeria, Pseudovibrio, Bacillus, and Paenibacillus isolates

with high potential for antibiotic production. The compounds with antibiotic activity that

can be explored as sources of natural products can also be those delineating the taxonomic

composition of the associated microbial community. Genomic and post-genomic features

of the antibiotic bacterial producers will enable to unveil the genes involved in the

antibiotic production and define the chemical nature of the antibiotics. In addition,

future studies will investigate whether antibiotics produced by microbes associated with

A. brasiliensis may serve as chemical defenses in order to control the diversity and

abundance of potential environmental pathogens.
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