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Resumo geral 

O Gran Chaco é uma região biogeográfica que forma, juntamente com o Cerrado e a 

Caatinga, a Diagonal seca sulamericana (Prado & Gibbs, 1993). Tal faixa abrange o Paraguai, 

Argentina, Bolívia e o Brasil, e caracteriza-se por ser uma das regiões com uma das maiores 

taxas de supressão de floresta seca no continente. O Chaco paraguaio destaca-se dentre 

todas as porções da Diagonal seca por ter sofrido a maior supressão da vegetação nativa nos 

últimos anos, tendo sido observadas taxas de desmatamento superiores a 4% ao ano (Grau & 

Aide 2008; Huang et al. 2009; Clark et al. 2010; Aide et al. 2012; Hansen et al. 2013; Vallejos et 

al. 2014; Graesser et al. 2015).  

O Paraguai, no centro da América do Sul, está em uma região de ecótono com uma 

alta biodiversidade, mas com baixo endemismo de aves, aspecto atribuído à localização central 

no continente (Spichiger et al. 2004). Ao todo são reconhecidas 18 aves como endêmicas do 

Gran Chaco (Short 1975). O Chaco paraguaio caracteriza-se por ter um clima seco e uma 

sazonalidade bem pronunciada. A precipitação decresce desde o sudeste ao noroeste, e a 

vegetação responde a esse gradiente climático. As duas maiores ecorregiões reconhecidas são 

o Chaco Seco no noroeste, uma região mais seca com florestas semidecíduas lenhosas, e 

Chaco úmido no sudeste, além do Médanos, Cerrado e Pantanal.  

A mudança na cobertura da terra do Chaco paraguaio ocorre devido a várias pressões 

externas oriundas do agronegócio, como demanda pela produção de grãos e de carne bovina, 

esta última bastante expressiva em virtude do aumento no preço internacional. Por outro lado, 

a configuração da paisagem é em parte determinada por leis estabelecidas pelo Governo do 

Paraguai, entre as quais destaca-se uma em particular que estabelece a obrigatoriedade dos 

proprietários de preservar faixas de vegetação entre as parcelas de desmatamento. Tais faixas 

são localmente conhecidas como quebra-vento possuem, em média, 100 metros de largura e 

conectam blocos maiores de vegetação nativa.  

A ocupação da paisagem se traduz em perda de hábitat para as aves endêmicas, 

aspecto que é agravado pela fragmentação e perda de conectividade. Nesse sentido, a 

identificação de áreas potenciais para conservação da biodiversidade local são úteis para um 

planejamento mais adequado da paisagem. O objetivo geral deste estudo foi mapear os sítios 

potenciais para conservação das aves endêmicas baseados na fragmentação e conectividade 

da paisagem, resultado da dinâmica de cobertura da terra no Chaco paraguaio. 

A cobertura da terra foi obtida a partir do processamento e classificação de imagens 

Landsat, tendo sido geradas duas classes básicas: uma referente à vegetação lenhosa (VL) e 

outra referente ao conjunto de áreas antrópicas (PVL) (ou áreas inicialmente ocupadas por 

vegetação lenhosa). Esse procedimento foi realizado para três períodos de estudo: 1995, 2005 

(sensor Thematic Mapper do Landsat 5) e 2014 (sensor Operational Land Imager do Landsat 

8). A classificação foi do tipo supervisionada, tendo sido baseada em espectros selecionados 

que caracterizaram cada ecorregião. Foi medida a perda de cobertura por ecorregião, nas 

Áreas Protegidas (AP) públicas e nas zonas de amortecimento. Neste estudo, o primeiro 
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período do mapeamento (1995 a 2005) foi denominado de “primeira trajetória” e o segundo 

período (2005 a 2014) foi denominado de segunda trajetória. A comparação das mudanças no 

uso da terra e cobertura vegetal foi objeto de estudo do primeiro capítulo da dissertação.  

Por meio de modelos de nicho ecológico desenvolvidos com o programa Maxent 

(Phillips et al. 2004), foi mapeada a distribuição potencial das 18 aves endêmicas a partir de 

pontos conhecidos de ocorrência no Gran Chaco. A qualidade dos modelos foi testada com a 

abordagem do ROC parcial, que compara o desempenho do modelo produzido com um modelo 

nulo (Peterson et al. 2008). A distribuição de cada espécie foi somada para obter o mapa de 

riqueza de aves endêmicas. 

Para avaliar o grau de conectividade da paisagem atual e a identificação de 

grupamentos funcionais de fragmentos, foi utilizada a Teoria dos Graphos (Rayfiel et al 2011). 

A teoria sugere que fragmentos localizados a uma determinada distância uns dos outros podem 

formar unidades funcionais que permitiriam a sobrevivência da biota em uma área maior do que 

a área de cada fragmento. O modelo de conectividade funcional foi feito com o mapa de 

cobertura de 2014 e com o uso do programa Graphab (Foltête et al. 2012). Para tanto, foram 

considerados os fragmentos maiores a 500 ha para as duas classes VL e PVL, sendo esta 

última composta por pastagens, assumindo que a maior quantidade de área convertida foi para 

esse uso (Caldas et al., 2013). As duas classes utilizadas formaram os gradientes de 

permeabilidade para a dispersão das aves, que no modelo de conectividade funcional 

representa o custo ou o esforço de deslocamento das espécies entre os fragmentos da 

paisagem. As áreas menos custosas são aquelas que receberam os menores valores (valor de 

1 para as áreas VL) e as áreas mais custosas, correspondentes à classe PVL, foram aquelas 

que receberam o valor arbitrário de (5). Os valores foram baseados na revisão de artigos 

científicos produzidos com o grupo taxonômico em questão e com a abordagem dos Grafos.  O 

mapa de riqueza de aves endêmicas foi cruzado com o mapa da conectividade funcional para a 

identificação das áreas que apresentassem, ao mesmo tempo, um maior número esperado de 

espécies e também que estivessem mais conectadas. O mapeamento das áreas mais 

importantes para a conservação das aves endêmicas da região foi objeto de estudo do 

segundo capítulo da dissertação. 

As mudanças na cobertura remanescente da vegetação nativa foram bastante distintas 

entre as duas trajetórias mapeadas (entre 1995-2005 e entre 2005-2014). Enquanto na 

primeira trajetória a taxa desmatada foi 0.74%, na segunda trajetória esse valor foi basicamente 

o triplo do período anterior, chegando a 1.99%. Tal pressão antrópica alterou profundamente a 

estrutura e configuração da paisagem, pois até a primeira a expansão da ocupação humana se 

dera de maneira radial e dispersa na segunda trajetória, ou seja, uma ocupação espacialmente 

indistinta. Todas as ecorregiões tiveram um aumento na mudança de cobertura da terra para os 

três anos mais recentes, ressaltando-se Médanos, que teve maior perda de VL em 2014, 

mesmo sendo a região com a maior quantidade de áreas protegidas. Foram detectadas perdas 

de VL nas zonas de amortecimento de 1 km no entorno das Áreas Protegidas (AP), chegando 

até o limite da AP e mesmo dentro delas. De maneira oposta, o Chaco Seco é a região com 
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menor porcentagem de proteção, mas com maior perda de cobertura em faixas mais distantes 

das poucas APs existentes. 

A região com maior riqueza esperada de espécies endêmicas localiza-se no Chaco 

Seco (porção nor-noroeste do Chaco), aspecto que corroborou avaliações anteriores (Nores, 

1992). A mudança de cobertura da terra também foi crítica nessa região (Vallejos et al. 2014, 

Caballero et al. 2014; Cardozo et al. 2013; Caldas et al. 2013), exercendo uma pressão na área 

de distribuição das aves endêmicas. Os maiores e mais conectados grupos de fragmentos 

identificados pelo modelo de conectividade estão localizados na porção norte do Chaco, região 

que coincidentemente também possui APs com maior área. Na situação oposta encontra-se o 

Chaco Central, região que apresentou um grande número de pequenos e desconectados 

fragmentos. A análise de conectividade funcional revelou que as áreas identificadas com maior 

potencial de conservação foram seis conjuntos de fragmentos identificados no Norte. Na área 

do Chaco central, região com mais tempo de desenvolvimento, foram identificados pequenos 

grupamentos de fragmentos onde há a maior riqueza de espécies endêmicas e também com 

grande demanda de restauração ecológica.  

A perda da cobertura natural dentro das AP e nas zonas de amortecimento evidencia a 

falta de interesse do governo do Paraguai para estabelecer limites de conservação e sua falta 

de compromisso para fiscalizar a conservação das áreas. Além disso, a pouca 

representatividade das ecorregiões em todas as APs é um agravante adicional para a 

conservação dos ambientes e suas espécies dependentes. 

O modelo de conectividade foi resultante da atual configuração da paisagem, que 

talvez ainda ofereça as condições necessárias para a conservação das aves endêmicas. Ao 

mesmo tempo, o modelo permitiu o reconhecimento das regiões com maior pressão antrópica. 

A indicação de manutenção da conectividade entre as áreas nativas e a redução do 

desmatamento na porção norte do Chaco representam duas ações necessárias e muito menos 

custosas do que as ações de restauração requeridas no Chaco Central. Assim, ainda é 

possível manejar a paisagem na porção norte para evitar o que aconteceu historicamente no 

Chaco Central. As áreas com potencial de conservação apontadas no Chaco Central buscam 

identificar as áreas com maior risco de desaparecimento, que poderiam abrigar populações de 

aves endêmicas com alto potencial para serem pesquisadas, medindo sua resposta às 

mudanças ambientais. É sabido que diferentes espécies respondem de maneira diferente às 

mudanças da cobertura, o que faz com que a conectividade dos fragmentos considerada neste 

estudo seja vista como uma estratégia preliminar de conservação na região. Por isso 

recomenda-se que novos estudos sejam conduzidos com as espécies que sobrevivem em 

pastagens introduzidas, pois as ações de manejo podem ser distintas em função da 

capacidade de dispersão dessas aves. Por outro lado, as aves mais associadas com a 

vegetação seca poderiam depender da proximidade e de conexões físicas dos fragmentos, 

como os quebra-ventos, para facilitar a dispersão pela paisagem. 

Talvez a principal contribuição deste trabalho relativamente à investigação da 

acelerada perda de habitat no Chaco paraguaio e a distribuição restrita das aves endêmicas 
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seja a inédita utilização da Teoria dos Grafos para a identificação de áreas importantes para a 

conservação do Chaco Paraguaio. A partir dessa proposta, espera-se que um novo e mais 

conciso zoneamento ecológico da região seja realizado e, desta maneira, espera-se que esses 

esforços resultem em benefícios tanto para o desenvolvimento econômico quanto para a 

conservação das aves endêmicas do Paraguai. 
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Abstract 

The Paraguayan Chaco is a great ecotonal region divided into five ecoregions: Wet 

Chaco, Dry Chaco, Pantanal, Médanos and Cerrado. This variety of environments 

allows the existence of a rich biodiversity that is threatened by high rates of land cover 

conversion. We analyzed the spatial-temporal land cover changes between 1995-2014, 

and verified whether the legislation is being complied with. We used Landsat 5 and 8 

imagery to generate maps of the first and second trajectories of land cover change 

(1995-2005 and 2005-2014 respectively) in order to evaluate local landscape changes 

and their impact on public protected areas. Changes in cover almost tripled in the 

second trajectory, from 0.74 to 1.99, which was determined by drivers at local, regional 

and global scales. The landscape is connected by windbreaks, but least so in the Central 

Chaco, where connectivity is threatened. Moreover, we identified plots which were 

converted into Protected Areas, but whose boundaries were threatened by subsequent 

land cover changes taking place at a distance of up to 1 km, indicating that the buffer 

zones are not working as a prevention area. The lack of planning for landscape changes 

threatens landscape connectivity for biodiversity, and the lack of incentives for 

conservation expose the Paraguayan Chaco to the ecological consequences of land 

conversion in semi-arid environments. 

Keywords: natural vegetation loss, Landsat, windbreaks, protected area, buffer zone  
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1. Introduction 

The humanity modifies their environment as population grows and developing 

technologies expanded the scope and nature of this modification drastically, as 

consequences, the ecosystems are dominated directly by the humans. The land 

transformation represents the most substantial human alteration of the Earth system 

(Vitousek et al., 1997; Geist & Lambin, 2004; Mantyka-Pringle et al., 2015). 

Latin America and the Caribbean have the largest area of tropical forest, the 

globe‟s greatest amount of biodiversity, a large proportion of global aboveground 

carbon stock, and extensive protected area (PA), threatened by both internal and 

external drivers (Aide et al., 2012). Paraguay in the center of South America is a huge 

ecotone region with species diversity shared, presenting little endemism. The landscape 

is characterized by wide mosaic of forest-patches, intermingled with Palm-savannas, 

campos cerrados, fields and cultivated lands intermingling open vegetation formations, 

with climatic and edaphic gradients determining shifts from semideciduous forests in 

the southeast to Chaco vegetation in the northwest, separated by the Paraguay River in 

the centre (Werneck, 2011). Few efforts led to ecoregion assessment in the Chaco to 

establish areas of biological significance based on multiple taxa (TNC, 2005). 

Deforestation continues to be the dominant land-use trend in Latin America 

(Grau & Aide, 2008) and one of the regions with the highest rate of tropical forest loss 

is the South American dry forest. The Gran Chaco is a kind of Seasonally Dry Tropical 

Forests and, along the Cerrado and Caatinga, forms the "Dry diagonal" of South 

America (Neves et al., 2015; Werneck, 2011; Prado & Gibbs, 1993). It covers part of 

Bolivia, Paraguay, Argentina and Brazil and it can be divided in two main regions: an 

eastern humid sector and a western drier one (Lewis et al., 1990, Olson et al., 2001).  

Among the above-cited countries, Paraguay had the highest woodland loss of in 

the recent years (Grau & Aide, 2008; Huang et al., 2009; Hansen et al., 2013; Aide et 

al., 2012; Clark et al., 2010; Vallejos et al., 2014; Graesser et al., 2015). The 

Paraguayan Chaco has lost more than half million of hectares (ha) during the past 10 

years, which correspond to a deforestation rate of 105,557 ha/year (Mereles & Rodas, 

2014). Recent publications have pointed out that the deforestation process still persists 

with no trend of recrudescence (Cardozo et al., 2013; Caballero et al., 2014), aspect that 
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can compromise local biodiversity. Some of the most important drivers of land 

transformation are the food international market and policy of development in Paraguay 

(Grau & Aide, 2008), a situation favored by projects of development with international 

financing. Cattle production and soybean plantation have grown substantially in 

Paraguay along the past 10 years. According to the Food and Agriculture Organization – 

FAO (FAO 2016), the Paraguayan production of cattle beef and soybean experimented 

an expansion of 150% and 236% from 2001 to 2011, respectively. Comparing to other 

neighbor countries, the expansion of cattle beef production puts Paraguay is bigger than 

Argentina for cattle beef and proportionally bigger than Argentina and Brazil for 

soybean expansion (FAO 2016). 

Although the land change cover detected in the Paraguayan Chaco was made in 

large scale by using remotely sensed data (Clark et al., 2010; Aide et al., 2012; Hansen 

et al., 2013;; Vallejos et al., 2014; Graesser et al., 2015), few of them analyzed the 

spatially-temporal land cover change in a local context. The land use in rural properties 

must follow the Paraguayan legislation and rules, especially the Decree Nº 18831/86 

(http://faolex.fao.org/). This particular legislation, which affects farms bigger than 100 

ha, impose to the landowner the obligation to maintain of blocks of natural vegetation 

connected by narrow strips called windbreaks. The windbreaks are normally located 

along pathways, roads and the edges of a property and must be at least 100 m wide. 

They can potentially contribute to the dispersion and movements of small organisms 

and carbon storage. Nowadays, however, the rapid expansion of agriculture and cattle 

ranches has lead to a massive loss of natural vegetation and the legal accomplishment is 

being overlooked. 

The combination of high deforestation rate with an uncontrolled landscape 

occupation can cause significant impacts on local fauna and flora, mainly if habitat 

isolation and loss of connectivity, usually provided by the windbreaks, is increasing. 

Thus, the objective of this study was analyzed the spatially-temporal land cover changes 

between 1995-2014 in the Paraguayan Chaco and verify whether the legislation is being 

complied with. 
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2. Methods 

2.1. Study area 

Paraguay has two very distinct natural regions, the Occidental and Oriental regions, 

both physically and biologically, that are separated by the Paraguay River (Spichiger et 

al., 2004). The study area is the Occidental Region, also known as Chaco, an area of 

240.887 km
2
, roughly the size of the United Kingdom. The Chaco corresponds to an 

alluvial plain with some hills in the North (Oakley & Prado, 2011), being part of the 

Gran Chaco (Fig. 1). The Gran Chaco is covered by an open vegetation biome of 

lowland alluvial plains of central South America located in northern Argentina, western 

Paraguay, south-eastern Bolivia, and the extreme western edge of Mato Grosso do Sul 

state in Brazil, covering about 840,000 km
2
 (Pennington et al., 2000; Oakley & Prado, 

2011; Prado & Gibbs, 1993). The Gran Chaco is considered a biogeographical province 

with a complex biota representing elements from many other adjacent biomes (Morrone, 

2014). 

 

Fig. 1. Location of the Paraguayan Chaco in the Gran Chaco and the five ecoregions 

which occurs in the Paraguayan Chaco: Wet Chaco, Dry Chaco, Pantanal, Cerrado and 

Médanos (Mereles et al., 2013). 
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The soils of the Chaco plains are developed mainly from fluvial and eolic 

sediments in the north and from loessic material in the south, and range from sandy to 

heavy clay (Navarro et al., 2011). The climate of the region is mostly semiarid, 

responding to the rainfall values range from 564 to 1103 mm, in an increasing gradient 

from west to east and from south to north (Navarro et al., 2011), Thus, the aridity 

progressively increases to the west, culminating in the driest areas where the Chaco 

transitions to the Andean foothills (Adamoli, Sennhauser, Acero, & Rescia, 1990). It is 

also distinguished by its strong seasonality, with summer maxima of up to 49 °C, the 

highest temperatures recorded in South America, and severe winter frosts. With a dry 

season in the winter and spring and a rainy season in the summer; the dry season is 

generally negligible at the Chaco‟s eastern edge, and increases in duration from east to 

west. Thus, the vegetation of the Chaco is subjected to low soil moisture and freezing in 

the dry season and waterlogging and extremely high air temperatures during part of the 

rainy season (Pennington et al., 2000). 

Two main assemblages representing well-defined and stable plant compositions 

frequently characterize the Chaco: the dry (Chaco Seco) and the wet divisions (Chaco 

Húmedo) (Spichiger et al., 2004; Olson, 2000). The main vegetation types are described 

in Mereles and Rodas (2014), which mentioned forests with the difference 

representation: sub-humid and semi-deciduous forests, riparian hygrophilous forests and 

floodable forests, xeromorphic forests, the cerrados (woodland savannah) and 

cerradones, savannahs (tall savannah) and wetlands. All this diversification of 

vegetation divides the Paraguayan Chaco in five ecoregions: Dry Chaco, Wet Chaco, 

Médanos, Pantanal and the Cerrado (Mereles et al., 2013). This study will follow this 

classification because it corresponds to the main vegetation.  

2.2. Data sets 

In order to map the natural vegetation coverage of the windbreaks and for timeframe of 

our analyses (from 1995 to 2014), we used two sets of images from Landsat 5 Thematic 

Mapper (TM) and Landsat 8 Operational Land Imager (OLI) images, both with 30 m 

spatial resolution. Images were obtained from USGS (U.S. Geological Survey, from 

USA), which were already georeferenced (Tucker, 2004). The whole area includes 15 

Landsat scenes and the land transformation dynamics was evaluated for three years: 

1995, 2005 and 2014. A total of 45 Landsat images were analyzed and all of them 
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corresponding to the driest season on the region (August and September) (Prado & 

Gibbs, 1993). Images with no cloud coverage were selected and processed in high 

contrast false color composite (5-4-3 RGB band combination) in the ENVI version 5.1 

(Exelis Visual Information Solutions, Boulder, Colorado) and ArcGis 10.0 (ESRI 2010) 

software.  

2.3. Land cover and change detection 

Each image was initially processed for a radiometric calibration, where the pixel values 

were converted into the reflectance values in order to minimize the apparently noisy 

pixels that represent no change or actual forest canopy changes (Choppin & Bauer, 

1994). After this correction, representative spectral values were selected for each 

ecoregion and a spectral profile was created. The resulting image was used in a 

Supervision Classification Spectral Angle Mapper (SAM) available in the ENVI 5.1 

software (Fig. 2) with two classes, the natural vegetation (NV) and the natural 

vegetation loss (NVL). 

The classified raster files were converted to a vector format for further editions, 

for joining polygons that belonged to a same class. To improve the production of the 

final map, the Paraguayan Chaco was divided into two regions: Dry and Wet Chaco. 

The riparian areas of the Paraguay River, permanent and seasonally wetland areas were 

eliminated from the Wet Chaco, because those areas are essentially covered by 

Copernicia alba palms (hydromorphic savannahs of caranda'y according to Mereles 

(1998). Classes that are not naturally covered by vegetation, such as sand, water bodies 

and saline lagoon in the central Chaco were also eliminated from the Dry and Wet 

Chaco maps. Thus, the final map produced for 2014 had two classes: NV and NVL. The 

NV representing the riparian hygrophilous forests, xeromorphic forests, woodland and 

tall savannas (the cerrados and cerradones according to Mereles & Rodas, 2014) the 

vegetation of the Cerro León.  

The accuracy of the created map was tested by comparing it to a database 

produced by Vallejos et al. (2014). This database was manually generated by the cited 

authors to detect the deforestation in the Dry Chaco from 1976 to 2012. According to 

the authors, the database has an overall accuracy of 97.8%. The created map 
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corresponded to 2014, so the database had to be updated manually until 2014 using the 

Landsat 8 OLI imagery.  

The land cover for the years 1995 and 2005 was made by visual inspection using 

the post classification method, consisting in discounted the conversion area from the 

2014 map. The change conversion area was defined as a complete removal of vegetation 

cover at the Landsat pixel scale (Hansen et al., 2012). 

 

Fig. 2. Flow chart showing the datasets and the land cover used for changing detection. 

2.4. Data analyses 

The temporal analyses were divided in two trajectories, being the first one 

corresponding to 1995-2005 period and the second one to 2005-2014. The annual rate of 

transformation proposed by Food Agriculture Organization (FAO, 1995) was calculated 

for each trajectory by using the following formula: 

q = 100 × [(A2/A1)
1/(t

2
–t

1
)
 – 1] 
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Where “q” is the rate of change in natural vegetation as a percentage; A1 and A2 

represent the areas of natural vegetation in the years t1 and t2 (2005 and 2014, for 

instance).  

The spatially analyses also considered the woodland loss in each ecoregions and 

the existing PA (SINASIP, 2007). This was done by creating different buffer zones (1, 5 

and 15 kilometers surrounding each PA) and evaluating the level of land transformation 

during the considered timeframe.  

3. Results 

3.1. Spatial- temporal dynamics 

The land cover map showed an overall accuracy of 98.86% and a kappa coefficient 

0.88. The total area lost between 1995 and 2014 summed 5.29 million ha, while the 

remaining cover of woodland was 13.29 million ha for the Paraguayan Chaco. This 

conversion represents 28.46% and the NV cover 71.54% from the total area analyzed 

(Fig. 3).  

 

Fig. 3. Reduction of area and percentage of natural vegetation cover for the three 

periods 1995 – 2005 and 2014. 
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The rate of transformation for the first trajectory (1995-2005) was 0.74%, and 

for the second trajectory (2005-2014) was 1.99%, which indicates that land cover loss 

almost tripled in nine years. The same pattern was observed for all ecoregions, in which 

land cover loss increased each year (Fig. 4). 

 

Fig. 4. Increase in the proportion of land cover change suppressed in all ecoregions for 

the three periods. 

The deforestation pattern can be easily identified on the region, because the NV 

is removed in large squared blocks and only narrows strips, corresponding to the 

windbreakers, are left on the landscape. The converted plot had a mean of 0.09 ha. The 

extension of the windbreaker was changed in recent years and during the first trajectory 

most of them almost disappeared in Central Chaco. In the second trajectory, the 

windbreakers were more homogeneous in extension.  
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Fig. 5. Spatial and temporal land cover changes in the Paraguayan Chaco. The radial 

growth pattern characterized the conversion plots in 1995. For 2005 and 2014 the 

conversion plots had a disperse pattern in the landscape. 

3.2. Protected Areas 

The total NV until 2014 represented in the nine PA was 10%, and the majors are in the 

North of the Paraguayan Chaco (Huang et al., 2009). The protection of each ecoregion 

is relatively low, less than 15% for Cerrado, Dry Chaco and Wet Chaco, except for the 

Médanos ecoregion with 33%. All ecoregions had woodland loss within the 1-km buffer 

zones, except for the Cerrado, where conversion started in 2014. The Dry Chaco 

ecoregion lost the greatest amount of woodland area throughout all periods, while the 

Médanos lost the least amount of native vegetation (Table 1).  
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Table 1. Protected Area (PA) in each ecoregion and land cover changes in the buffer 

zones corresponded to 1- 5 and 15 km for the three periods 1995 – 2005 and 2014 

The results indicate that the deforestation process is concentrated outside the 

existing PAs but our study identified a total 37125.9 ha deforested inside existing PA, 

being the Park Tinfunque the most impacted area with 24188.94 ha. Nevertheless, 

physical connections between adjacent PAs, as is the case of the Defensores del Chaco, 

Medanos del Chaco and Cabrera Timane National Parks, had been compromised by 

deforestations located on the 5 km buffer zone (Fig. 6a). 

 

Fig. 6. Forest cover and change within the Protected Areas and the 5-km buffer zones 

surrounding them in the North of the Paraguayan Chaco. Structural connectivity 

between the Cabrera Timane, Medanos del Chaco and Defensores del Chaco National 

Parks with the 5 km buffer (a). The windbreaks between the conversion plots (b). 
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4. Discussion 

4.1. Drivers of land cover dynamics 

Ours results, obtained by using Landsat images for different periods, indicated that 

habitat loss on the Paraguayan Chaco is severe and has caused the suppression of 21.9% 

of the region‟s natural coverage over the last 19 years. This data corroborate the results 

of other studies, which put Paraguay among the top countries with high deforestation 

rate in Latin America (Clark et al., 2010; Aide et al., 2012; Hansen et al., 2012; Vallejos 

et al., 2014; Graesser et al., 2015).  

Paraguay, like others countries of Latin American, is largely influenced by 

external pressures that drive the land cover change dynamics, mainly by changing 

economic opportunities that are linked to social, political, and infrastructural aspects 

(Lambin et al., 2001). While since the 1980s soybean cultivation has been a major 

driver of land-cover change in the Argentinian Chaco and in the Amazon region (Caldas 

et al., 2013), in the Paraguayan Chaco was the cattle ranching (Graesser et al., 2015). 

The limiting factors for soybean cultivation in the region is the rainfall regime and soil 

texture (Grau et al., 2005; Gasparri et al, 2015), which demand more investment in 

developing this practice. However, this scenario can change and contributes to the 

activity‟s expansion, principally because the changes pattern in precipitation could 

increase rainfall, as observed in Argentina (Zak et al., 2008). On top of that, new 

varieties of soybean, including glyphosate-resistant transgenic cultivars, are increasing 

yields and overcoming the environmental constraints, making this a very profitable 

agricultural endeavor (Grau et al., 2005). This actually occurs in the arid region of the 

Paraguayan Chaco, but all the studies to detect the land use was made at a global or 

regional scale and not be classified or detected, so it is recommendable to do it at a local 

scale to detect this treatment. 

We divided the drivers in three groups, considering the scale of influence of each 

one. First, in a global scale, are the socioeconomic drivers linked to the international 

market and commodity prices. The demands for beef, for instance, increases as 

population grows and stimulates more investments that, in its turn, caused a faster 

conversion of the region (Caldas et al., 2013; Campos & Wisley, 2011). The observed 

differences in the quantified deforestation rate for the two trajectories of our study can 

be also related to international indicators. The FAO Food Price Index (FPI), a number 
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that monthly averages the international prices of five food commodities (see FAO, 2016 

for details) has changed significantly between the two deforestation trajectories. From 

1990 to 2004 (our first trajectory), the annual mean of real FPI was 98.9, while for 2004 

to 2014 (our second trajectory) the index was 147.2 (roughly 1.5 bigger than the 

previous period).   

Second, at local scale, are the drives representing the infrastructure projects, 

such as roads, that was null in the first trajectory, and that could contributed in the 

dynamics on the second one like happened in Argentina (Gasparri et al., 2015). One 

example is a planned infrastructural project in the Occidental Region, aimed to create 

and maintain roads to connect the entire Paraguayan Chaco (IDB Report, 2011).  

Finally, the third group of drivers is represented by the changes on the 

Paraguayan legislation, which caused a shift in the deforestation patterns or, as pointed 

out by Aide et al. (2012), the displaced deforestation. In 2004 the Paraguayan 

Government launched the Zero Deforestation Act that covered the Eastern region of 

Paraguay (Law 2524/04). The Law prohibited any conversions from forest to other 

forms of land use in eastern Paraguay (Grossman, 2015), especially where the forest 

was already fragmented (Huang et al, 2009). As a consequence, it was observed a 

displacement of the deforestation from the Oriental to the Occidental or Chaco region. 

For this region the annual rate of deforestation increased from 2005, a situation also 

indicated by other studies (Vallejos et al., 2014; Caldas et al., 2013). 

Furthermore, while studies indicated the reduction of deforestation in the 

Amazonas (Hansen et al., 2013, Graesser et al., 2015), the Paraguayan Chaco has 

received new investing immigrants arriving from Brazil, which were looking for 

opportunities to increase meat production (Mereles & Rodas, 2014, Graesser et al., 

2015). They were basically motivated by the cheap lands, but with the necessary money 

for investing in the hostile region (Lambin et al., 2001). This movement involves 

changes in the frontier development and policies by national governments that pull and 

push migrants into sparsely occupied areas (Rudel et al., 1993). This process is well 

known as indirect land-use changes (Lapola et al., 2010), which indicates the 

displacement of the productive land. 
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4.2. Patterns spatial changes on the windbreaks  

The NVL in 1995 correspond majority to the historic deforestation (Vallejos et al., 

2014), particularly strong in the central region known as Chaco Central, that was began 

in 1940 with Mennonite colonies, as a result of extensive mechanization processes 

(Mereles & Rodas, 2014; Caldas et al., 2013). The dynamic of loss was growing radially 

from the center of the Chaco. Perhaps, in the land cover of 2005, the change has 

intensified in the Northeast department of Alto Paraguay where the land was favored 

with rainfall in the Chaco Pantanal and the Cerrado ecoregions (Fig. 5). The radial 

spatial pattern disappears in 2014, (Caldas et al., 2013) the deforestation was 

widespread in the landscape.  

Historic deforestation in the Central Chaco promoted a disordered disposition of 

the legally required windbreaks, being in many landscape portions there is a clear law 

inobservance. The produced maps show the lack of natural vegetation between plots 

where there is a consolidated land-use (such as close to cities or livestock systems 

(Mereles & Rodas, 2014)). During the second trajectory the Paraguayan Government 

created the Resolution N 303/04, which defined how agricultural areas or cattle ranches 

should be disposed in the landscape. Before this legislation was implanted, landowners 

did not had the obligation to present to local authorities an occupation plan for their 

rural properties. We believe that this particular legislation contributed expressively to 

have a less heterogeneous landscape, i.e., it is quite common to observe large blocks of 

land dominated by agricultural activities. A typical plan, necessary to obtain the right 

for land clearance, is elaborated without considering the situation of neighboring 

properties. To aim to planning and maintain the structural connectivity of the landscape, 

this plots could spatially ordered to maintain a representative area of NV and avoid the 

fragmented landscapes of the Oriental Region of the Paraguay (Quintana & Muse, 2005; 

Graesser et al., 2015).The landscape connectivity can be defined as the capacity of the 

landscape to facilitates movements of the biota and matter (Forman and Godron, 1986; 

Baguette and Van Dyck, 2007), being the fragmentation process the disruption of the 

links between natural habitats (Tischendorf and Fahrig, 2000). The NV of the 

Paraguayan Chaco was once considered to be a large continuous area (Vallejos et al., 

2014). Except for the fragmented NV in an agricultural matrix in the central Chaco, the 

rest of the landscape appears to be connected due to the presence of windbreaks. As we 
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saw among the compared years, the degradation of these connectors might become a 

risk for the landscape connectivity of the Paraguayan Chaco NV. Just like the 

Paraguayan portion of the Chaco, the Argentinean side is also facing a potential threat 

that may compromise the landscape connectivity. According to Piquer-Rodízguez et al. 

(2015), a new Argentinean legislation can allow different provinces to implement their 

own land-use plan. Similarly to the Paraguayan recent situation, the lack of a broad 

view of any zoning plan can cause the loss of landscape connectivity, with serious 

consequences for the biodiversity.   

The public policies should ideally have a broad view of a region, where natural 

and productive areas should be planned on the first hand. At the local scale, concessions 

for vegetation suppression should safeguard the necessary connections to maintain local 

dynamics of dispersal and movement of the biota. This means that regional plans must 

avoid the analysis of individual properties, but considering the role that a set of 

croplands and pastures with windbreaks might have to ensure the functional connection 

for keystone species. At the end, it is expected a major contribution from rural 

landowners for the preservation of the Paraguayan Chaco and its biodiversity. 

4.3. Protected areas and conservation  

In the past, the proportion of land allocated to parks and reserves in Paraguay used to be 

higher than the average in South America (2.7%) (Yahnke et al., 1998). Since then, the 

PA in the country has grown to 14.9% (SINASIP, 2007), including the private reserves 

and the El Chaco Biosphere Reserve, designated as such in 2005 (UNESCO, 2005). Our 

study shows that the current set of PA in the Paraguayan Chaco represents 10.64% of 

the remaining natural vegetation. As in any other region, Paraguayan reserves and parks 

do not receive the proper financial support or management, essential to ensure the real 

protection of the PA. 

The low representation protection of environmental diversities (Redford et al., 

1990) is a consequence to the criteria used to establish the PA. In 1969, areas identified 

as potential parks were chosen according to their scenic attributes or for being historic 

sites where the Chaco war has happened. At that time, no area was designated 

specifically to preserve unique natural features, flora, fauna or ecological systems 

(Yahnke et al., 1998.)  
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It is well known that PA ensures the conservation of biodiversity components 

better than outside their boundaries (Bruner et al, 2001), but significant impacts over the 

PA should be avoided by promoting a better environment management of their buffer 

zones, which is not this case, specially we highlight the pressure of the land 

transformation for the PA, in the buffer of 1 km. Such zones should promote the 

regional integration of a PA (Thomas and Middleton, 2003), shielding the PA from 

being exploited and maintaining wildlife corridors from the PA to other native areas on 

its surroundings. The high rate of loss of native vegetation can adversely impact the PA, 

promoting the rapid forest loss within the PA and left them isolated as an ecological 

“island” (Huang et al., 2009).  

Another consideration is the habitat loss detected inside the PA, which was 

previously detected by Huang et al. (2009). The plots converted are within the 

boundaries of each PA, which suggests the uncertainty of the boundaries, the need for 

an update of these boundaries (SINASIP, 2007), or the advance of the deforestation 

frontier. Furthermore, the fact that official georeferenced boundaries are unavailable 

leads to a lack of transparency and commitment to the preservation of these areas, and 

the weakness of the environmental law enforcement in Paraguay.  

The structural connectivity refers to the contiguity of habitat (Tischendorf and 

Fahrig, 2000). Between Defensores del Chaco and Medanos del Chaco National Parks 

exist a structural connectivity which can be increased with the addition of Cabrera 

Timane National Park, attending the buffer of 5 km, ensuring the connection between 

the majors PA in the North of the Paraguayan Chaco (Fig. 6a). The identification of 

priority areas for conservation must receive urgent attention from the Paraguayan 

Government, because important structural connections between the PA are threatened 

by the uncontrolled expansion of agriculture and cattle raise activities in the region, as 

shown by our study.  

4.4. Ecological consequences 

The land cover change process alters the function and the structure of ecosystems, 

compromises the carbon natural cycle and affecting local and regional climate regimes 

(Vitousek et al., 1997). The complexity of ecological process of the Chaco region is not 

well known, so is unclear how local biota and ecological processes would react upon 
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those impacts caused by deforestation and habitat fragmentation. The land degradation 

in arid, semi-arid and dry sub-humid areas resulting from various factors, including 

climatic variations and human activities could cause desertification (UNEP, 1994). 

Some of these factors that could contribute with desertification can be observed in the 

Paraguayan Chaco, such as fasten land cover change, increased aridity, both indirectly 

through greater rainfall variability and directly through prolonged droughts, the fire 

regimes caused for the reposition of the grassland before the seasonal rainfall and 

greater soil erosion (Bestelmeyer et al., 2008; Geist & Lambin, 2004). Also, it is well 

known that the loss of dominant perennial plants leads to a reduction in soil water 

infiltration, accelerated erosion that reduces soil fertility, rising water tables resulting in 

salinization, or even changes in local climate (Bestelmeyer et al., 2008). 

The degradation of the Paraguayan Chaco is a process, is a state of change that 

happens now with its complexity, and in this way need to be focus for more studies that 

could determine the risks and the spatial consequences for the variability of 

environments.  

5. Conclusions 

The Paraguayan Chaco still have a large representative landscape of the Gran Chaco, 

but the high rate of the land conversion, the low representative protection of each 

ecoregion and the lack of a more effective regional planning can jeopardize local 

biodiversity and ecological processes. It is urgent to develop incentives to protect the 

Paraguayan Chaco, incentive the land‟s owner to participate of the payment for 

ecosystem services and to develop research to improve the planning connectivity of the 

windbreaks to ensure the landscape connectivity between the land use and the PA. 

Acknowledgements 

We thank the Graduate Program in Ecology of the University of Brasilia and the 

Brazilian National Council of Scientific and Technological Development (CNPq), for 

the scholarship awarded to Romina Cardozo. We would also like to thanks Dr. Prof. 

Osmar Abilio Carvalho Junior, Sandro Nunes and Nickolas Castro from the System of 

Spatial Information Laboratory (LSIE) at the Geography Department of the University 

of Brasilia. 



 

24 
 

Figures caption 

Fig. 1. Location of the Paraguayan Chaco in the Gran Chaco and the five ecoregions 

which occurs in the Paraguayan Chaco: Wet Chaco, Dry Chaco, Pantanal, Cerrado and 

Médanos (Mereles et al., 2013). 

Fig. 2. Flow chart showing the datasets and the land cover used for changing detection. 

Fig. 3. Reduction of area and percentage of natural vegetation cover for the three 

periods 1995 – 2005 and 2014. 

Fig. 4. Increase in the proportion of land cover change suppressed in all ecoregions for 

the three periods. 

Fig. 5. Spatial and temporal land cover changes in the Paraguayan Chaco. The radial 

growth pattern characterized the conversion plots in 1995. For 2005 and 2014 the 

conversion plots had a disperse pattern in the landscape. 

Fig. 6. Forest cover and change within the Protected Areas and the 5-km buffer zones 

surrounding them in the North of the Paraguayan Chaco. Structural connectivity 

between the Cabrera Timane, Medanos del Chaco and Defensores del Chaco National 

Parks with the 5 km buffer (a). The windbreaks between the conversion plots (b). 
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Table 1. Protected Area (PA) in each ecoregion and land cover changes in the buffer zones corresponded to 1- 5 and 15 km for the three periods 1 

1995 – 2005 and 2014 2 

    
1995 2005 2014 

 
NV area  (ha) NV pro  (ha) % NV pro 1km 5km 15km 1km 5km 15km 1km 5km 15km 

M 321 088.23 104 366.02 33 5.22 64.08 878.67 5.22 64.08 878.67 5.22 271.17 5733.45 

C 1 141 488.56 96 175.95 8 0 0 401.76 0 301.68 3814.92 451.8 2499.75 13120.92 

P 2 228 100.59 75 515.69 3 185.13 786.51 4142.07 520.47 3309.03 8126.64 1901.88 12584.43 32805.54 

WC 1 436 023.65 109 354.52 8 103.05 542.52 1415.97 232.02 1395.72 4583.97 1549.71 6856.92 14993.82 

DC 8 167 603.06 1 028 555.13 13 1257.48 7497.45 28125.27 3162.96 20317.32 77661.99 8514.18 63783.36 205386.48 

M: Médanos, C: Cerrado, P: Pantanal, WC: Wet Chaco, DC: Dry Chaco; NV pro: natural vegetation protected; 1km, 5km and 15 km are refers to 3 

the buffers area in hectares (ha4 



 

26 
 

References 

Adámoli, J., Sennhauser, E., Acero, J. M., & Rescia, A. (1990). Stress and disturbance: 

vegetation dynamics in the dry Chaco region of Argentina. Journal of Biogeography, 

17(4), 491–500. http://doi.org/10.2307/2845381 

Aide, T. M., Clark, M. L., Grau, H. R., Lopez-Carr, D., Levy, M. A., Redo, D., … Muñiz, 

M. (2012). Deforestation and Reforestation of Latin America and the Caribbean (2001 

– 2010). Biotropica, 45(2), 262–271. http://doi.org/10.1111/j.1744-7429.2012.00908.x 

Baguette, M. & Van Dyck, H. (2007) Landscape connectivity and animal behavior: 

functional grain as a key determinant for dispersal. Landscape Ecology, 22, 1117-

1129. 

Bestelmeyer, B. T., Okin, G. S., Duniway, M. C., Archer, S. R., Sayre, N. F., Williamson, 

J. C., & Herrick, J. E. (2015). Desertification, land use, and the transformation of 

global drylands. Frontiers in Ecology and the Environment, 13(1), 28–36. 

http://doi.org/10.1890/140162 

Bruner, a G., Gullison, R. E., Rice, R. E., & da Fonseca, G. a. (2001). Effectiveness of 

parks in protecting tropical biodiversity. Science (New York, N.Y.), 291(5501), 125–

128. http://doi.org/10.1126/science.291.5501.125 

Caballero, J., Palacios, F., Arévalos, F., Rodas, O., & Yanosky, A. (2014). Cambio de uso 

de la tierra en el Gran Chaco Americano en el año 2013. Paraquaria Natural, 2(1), 21–

28. 

Caldas, M. M., Goodin, D., Sherwood, S., Campos Krauer, J. M., & Wisely, S. M. (2013). 

Land-cover change in the Paraguayan Chaco: 2000–2011. Journal of Land Use 

Science, (April), 1–18. http://doi.org/10.1080/1747423X.2013.807314 

Campos-Krauer, J. M., & Wisely, S. M. (2011). Deforestation and cattle ranching drive 

rapid range expansion of capybara in the Gran Chaco ecosystem. Global Change 

Biology, 17(1), 206–218. http://doi.org/10.1111/j.1365-2486.2010.02193.x 



 

27 
 

Cardozo, R., Palacios, F., Rodas, O., & Yanosky, A. (2013). Cambio en la cobertura de la 

tierra del Gran Chaco Americano en el año 2012. Paraquaria Natural, 1(2), 43–49. 

Clark, M. L., Aide, T. M., Grau, H. R., & Riner, G. (2010). A scalable approach to mapping 

annual land cover at 250 m using MODIS time series data: A case study in the Dry 

Chaco ecoregion of South America. Remote Sensing of Environment, 114(11), 2816–

2832. http://doi.org/10.1016/j.rse.2010.07.001 

Coppin, P. R., & Bauer, M. E. (1994). Processing of multitemporal Landsat TM imagery to 

optimize extraction of forest cover change features. IEEE Transactions on Geoscience 

and Remote Sensing, 32(4), 918–927. http://doi.org/10.1109/36.298020 

ESRI (2010) ArcGIS 10.0 - Geographical Information System. Environment System Research 

Institute, Inc. 

FAO (Food Agriculture Organization of the United Nations). (1995). Forest Resources 

Assessment 1990. In Global Sintheis. Forestry Paper (vol. 124). FAO, Rome. 

Retrieved from http://www.fao.org/docrep/007/v5695e/V5695E00.htm 

FAO (Food Agriculture Organization of the United Nations). (2016). Statistic Division 

production of livestock and crops. Available at 

http://faostat3.fao.org/browse/area/169/E. Accessed in 01/19/2016. 

Gasparri, N. I., Grau, H. R., & Sacchi, L. V. (2015). Determinants of the spatial distribution 

of cultivated land in the North Argentine Dry Chaco in a multi-decadal study. Journal 

of Arid Environments, 1–9. http://doi.org/10.1016/j.jaridenv.2015.05.005 

Geist, H. J., & Lambin, E. F. (2004). Dynamic Causal Patterns of Desertification. 

BioScience, 54(9), 817. 

http://doi.org/10.1641/00063568(2004)054[0817:DCPOD]2.0.CO;2 

Gibbs, P. E. (2015). Distributions in the dry seasonal forests of South America ‟ patterns of 

species. Annals of the Missouri Botanical Garden, 80(4), 902–927. 



 

28 
 

Grau, H. R., & Aide, M. (2007). Globalization and Uncertainty in Latin America. Ecology 

And Society, 13(2). http://doi.org/10.1057/9780230603554 

Grau, H. R., Gasparri, N. I., & Aide, T. M. (2005). Agriculture expansion and deforestation 

in seasonally dry forests of north-west Argentina. Environmental Conservation, 

32(02), 140. http://doi.org/10.1017/S0376892905002092 

Grossman, J. J. (2015). Ecosystem service trade-offs and land use among smallholder 

farmers in eastern Paraguay. Ecology and Society, 20(1), 19. 

http://doi.org/10.5751/ES-06953-200119 

Hansen, M. C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. a, Tyukavina, a, … 

Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover 

change. Science (New York, N.Y.), 342(6160), 850–3. 

http://doi.org/10.1126/science.1244693 

Huang, C., Kim, S., Altstatt, A., Townshend, J. R. G., Davis, P., Song, K., … Musinsky, J. 

(2007). Rapid loss of Paraguay‟s Atlantic forest and the status of protected areas. A 

Landsat assessment. Remote Sensing of Environment, 106(4), 460–466. 

http://doi.org/10.1016/j.rse.2006.09.016 

Huang, C., Kim, S., Song, K., Townshend, J. R. G., Davis, P., Altstatt, A., … Musinsky, J. 

(2009). Assessment of Paraguay‟s forest cover change using Landsat observations. 

Global and Planetary Change, 67(1-2), 1–12. 

http://doi.org/10.1016/j.gloplacha.2008.12.009 

IDB (Banco Interamericano de Desarrollo). (2011). Programa de Corredores de Integración 

del Occidente. Retrieved from 

http://idbdocs.iadb.org/wsdocs/getdocument.aspx?docnum=36241964 

Jetz, W., McPherson, J. M., & Guralnick, R. P. (2012). Integrating biodiversity distribution 

knowledge: Toward a global map of life. Trends in Ecology and Evolution, 27(3), 

151–159. http://doi.org/10.1016/j.tree.2011.09.007 

http://doi.org/10.1016/j.tree.2011.09.007


 

29 
 

Lambin, E. F., Turner, B. L., Geist, H. J., Agbola, S. B., Angelsen, A., Folke, C., … 

Veldkamp, T. A. (2001). The causes of land-use and land-cover change : moving 

beyond the myths. Global Environmental Change, 11, 261–269. http://doi.org/0959-

3780/01/$ 

Lewis, J. P., Pire, E. F., Prado, D. E., Stofella, S. L., Franceschi, E. a., & Carnevale, N. J. 

(1990). Plant communities and phytogeographical position of a large depression in the 

Great Chaco, Argentina. Vegetatio, 86(1), 25–38. http://doi.org/10.1007/BF00045133 

Mantyka-Pringle, C. S., Visconti, P., Di Marco, M., Martin, T. G., Rondinini, C., & 

Rhodes, J. R. (2015). Climate change modifies risk of global biodiversity loss due to 

land-cover change. Biological Conservation, 187, 103–111. 

http://doi.org/10.1016/j.biocon.2015.04.016 

Mereles, F. (1998). Etude de la flore et de la végètation de la mosaïque fôret-savanne 

palmerai dans le Chaco boreal, Paraguay. Thése. Faculté des Sciences. Université de 

Gèneve, Suisse. 

Mereles, M. F., & Rodas, O. (2014). Assessment of rates of deforestation classes in the 

Paraguayan Chaco (Great South American Chaco) with comments on the vulnerability 

of forests fragments to climate change. Climatic Change, 127(1), 55–71. 

http://doi.org/10.1007/s10584-014-1256-3 

Mereles, F., Cartes, J.C., Clay, R., Cacciali, P., Paradeda, C., Rodas, O., Yanosky, A. 

(2013). Análisis cualitativo para la definición de las ecorregiones de Paraguay 

occidental. Paraquaria Natural, 1(2), 12–20. 

Morrone, J. J. (2014). Cladistic biogeography of the Neotropical region: Identifying the 

main events in the diversification of the terrestrial biota. Cladistics, 30(2), 202–214. 

http://doi.org/10.1111/cla.12039 

Navarro, G., Molina, J. A., & Vega, S. (2011). Soil factors determining the change in 

forests between dry and wet Chacos. Flora - Morphology, Distribution, Functional 

Ecology of Plants, 206(2), 136–143. http://doi.org/10.1016/j.flora.2010.09.002 



 

30 
 

Neves, D. M., Dexter, K. G., Pennington, R. T., Bueno, M. L., & Oliveira Filho, A. T. 

(2015). Environmental and historical controls of floristic composition across the South 

American Dry Diagonal. Journal of Biogeography, 42(8), 1566–1576. 

http://doi.org/10.1111/jbi.12529 

New, M., Hulme, M., & Jones, P. (1999). Representing Twentieth-Century Space – Time 

Climate Variability . Part I : Development of a 1961 – 90 Mean Monthly Terrestrial 

Climatology. Journal of Climate, 12, 829–856. http://doi.org/10.1175/1520-

0442(1999)012<0829:RTCSTC>2.0.CO;2 

Oakley, L. J., & Prado, D. E. (2011). Neotropical seasonally dry forests dominion and the 

pleistocenic arc presence in Paraguayan Republic ], 10(1), 55–75. 

Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., Powell, G. V. N., 

Underwood, E. C., … Kassem, K. R. (2001). Terrestrial Ecoregions of the World: A 

New Map of Life on Earth. BioScience, 51(11), 933. http://doi.org/10.1641/0006-

3568(2001)051[0933:TEOTWA]2.0.CO;2 

Pennington, R. T., & Pendry, C. a. (2000). Neotropical seasonally dry forests and 

Quaternary vegetation changes, 261–273. 

Piquer-Rodríguez, M., Torella, S., Gavier-Pizarro, G., Volante, J., Somma, D., Ginzburg, 

R. & Kuemmerle, T. (2015) Effects of past and future land conversions on forest 

connectivity in the Argentine Chaco. Landscape Ecology, 30, 817-833. 

Prado, D. E., & Gibbs, P. E. (1993). Patterns of Species Distributions in the Dry Seasonal 

Forests of South America. Missouri Botanical Garden Press, 80(4), 902–927. 

Quintana, J., & Morse, S. (2005). Social interactions and resource ownership in two private 

protected areas of Paraguay. Journal of Environmental Management, 77(1), 64–78. 

http://doi.org/10.1016/j.jenvman.2005.02.014 



 

31 
 

Rudel, T. K., Defries, R., Asner, G. P., & Laurance, W. F. (2009). Changing Drivers of 

Deforestation and New Opportunities for Conservation. Conservation Biology, 23(6), 

1396–1405. http://doi.org/10.1111/j.1523-1739.2009.01332.x 

Rudel, T., & Roper, J. (1997). The paths to rain forest destruction: Crossnational patterns of 

tropical deforestation, 1975–1990. World Development, 25(1), 53–65. 

http://doi.org/10.1016/S0305-750X(96)00086-1 

SINASIP (Sistema Nacional de Areas Silvestres Protegidas). (2007). ASAP (Areas 

Silvestres Protegidas del Paraguay). Retrieved from 

http://www.py.undp.org/content/paraguay/es/home/library/environment_energy/areas-

protegidas-del-paraguay-2007.html 

Spichiger, R., Calenge, C., & Bise, B. (2004). Geographical zonation in the Neotropics of 

tree species characteristic of the Paraguay-Paraná Basin. Journal of Biogeography, 

31(9), 1489–1501. http://doi.org/10.1111/j.1365-2699.2004.01071.x 

Thomas, L., Middleton, J. & Phillips, A. (2003) Guidelines for management planning of 

protected areas. IUCN, Cardiff, Wales, 87 p. 

Tischendorf, L., & Fahrig, L. (2000). On the usage and measurement of landscape 

connectivity. Oikos, 90(1), 7–19. http://doi.org/10.1034/j.1600-0706.2000.900102.x 

Tucker, C. J., Grant, D. M., & Dykstra, J. D. (2004). NASA ‟ s Global Orthorectified 

Landsat Data Set. Photogrammetric Engineering & Remote Sensing, 70(3), 313–322. 

http://doi.org/10.14358/PERS.70.3.313 

UNEP. (1992). Status of desertification and implementation of the United Nations plan of 

action to combat desertification. United Nations Environment Programme. Nairobi, 

Kenya. 

UNESCO (United Nations Educational, S. and C. O. (2005). Biosphere Reserve of Chaco. 

Retrieved from 

http://www.unesco.org/mabdb/br/brdir/directory/biores.asp?code=PAR+02&mode=all 



 

32 
 

Vallejos, M., Volante, J. N., Mosciaro, M. J., Vale, L., Bustamante, M. L., & Paruelo, J. M. 

(2014). Dynamics of the natural cover transformation in the Dry Chaco ecoregion: A 

plot level geo- database from 1976 to 2012. Journal of Arid Environments, (1700), 1–

9. http://doi.org/10.1016/j.jaridenv.2014.11.009 

Vitousek, P. M., Mooney, H. a, Lubchenco, J., & Melillo, J. M. (1997). Human Domination 

of Earth‟ s Ecosystems. Science, 277(July), 494–499. 

http://doi.org/10.1126/science.277.5325.494 

Werneck, F. P. (2011). The diversification of eastern South American open vegetation 

biomes: Historical biogeography and perspectives. Quaternary Science Reviews, 

30(13-14), 1630–1648. http://doi.org/10.1016/j.quascirev.2011.03.009 

Yahnke, C. J., Fox, I. G. & Colman, F. (1998). Mammalian species richness in Paraguay : 

the effectiveness of national parks in preserving biodiversity. Biological Conservation, 

84(3): 263-268. 

Zak, M. R., Cabido, M., Cáceres, D., & Díaz, S. (2008). What Drives Accelerated Land 

Cover Change in Central Argentina? Synergistic Consequences of Climatic, 

Socioeconomic, and Technological Factors. Environmental Management, 42(2), 181–189. 

http://doi.org/10.1007/s00267-008-9101-y 

  



 

33 
 

Appendix 1 Landsat images used in this study 

1995 (Landsat 5 TM) 
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Abstract 

The Paraguayan Chaco is a region with endemic birds, threatened by high rates of land 

cover conversion. Our main goal was to evaluate potential sites for the conservation of 

endemic birds based on community richness and landscape fragmentation in the 

Paraguayan Chaco. We modeled the distribution of endemic birds, identified the regions 

with higher richness, and crossed the resulting map with that of the 2014 land cover, 

excluding the area lost by deforestation. We characterized the landscape fragments with 

potential to harbor stable populations and measured a connectivity index between them 

based on a least-cost approach. The region with the greatest richness of birds was the Dry 

Chaco, which is also the region with the greatest loss of habitat. Fragments are larger in the 

Northern region, which is comprised primarily of protected areas, while the smaller 

fragments, mainly composed of windbreaks, were concentrated in the Central Chaco, a 

highly anthropogenic region. The connections between patches are favored in the North 

because of the proximity between them, while in the Central Chaco they were considered 

weak connections due to higher isolation rates. Potential sites for conservation are 

represented by clusters in the North, and noteworthy sites for restoration are in Central 

Chaco. Our study allowed the mapping of the Paraguayan Chaco landscape, and the 

identification of sites with high biological significance. These areas can be used as a basis 

for new zoning policies that promote and create strategies for landscape connectivity. 

Keywords: fragmentation, connectivity, habitat loss, richness, clusters, landscape. 
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1. Introduction 

Land use and cover change are the main drivers that promote habitat loss (Vitousek et al. 

1997; Geist and Lambin 2004; Sala et al. 2010; Mantyka-Pringle et al. 2015) and 

fragmentation worldwide. Among the consequences of these processes are the reduction of 

natural habitat, increasing of isolation of remaining patches, modification of patches‟ shape 

and orientation, as well as the structure and type of matrix where the fragments are inserted 

(Fahrig 1997, 2003). Ecologically, such alterations affect population sizes, the dynamic and 

probability of extinction (Haski 1991) and the processes that could allow the species 

persistence in fragmented landscapes (Fahrig 2003).  

The Gran Chaco is the second largest dry forest formation in South America (Prado 

and Gibbs, 1993; Pennington et al. 2000; Werneck 2011; Oakley and Prado 2011; Morrone 

2014) and one of the regions with highest rate of deforestation. The Paraguayan Chaco has 

sadly leaded the rank of dry forests conversion in South America over the last years (Grau 

and Aide 2008; Huang et al. 2009; Clark et al. 2010; Hansen et al. 2013; Aide et al. 2012; 

Vallejos et al. 2014; Graesser et al. 2015), reaching 4% in 2010 (Vallejos et al. 2014). The 

recent loss of natural vegetation had changed the landscape structure of the Paraguayan 

Chaco, which used to be represented mainly by blocks of natural vegetation connected by 

windbreaks. Windbreaks are narrow strips of natural vegetation usually 100 meters wide 

located along roads, streams, and property fences. The Paraguayan legislation and rules, 

especially the Decree Nº 18831/86 (http://faolex.fao.org/), obligates that windbreaks must 

be maintained by the landowner whose rural property is bigger than 100 ha. At the regional 

scale, is important to understand how a massive suppression of the vegetation will affects 

connectivity and how local species, particularly those endemic to the region, would respond 

to such changes, assuming that corridors as critical to ensuring the persistence of 

populations (Piquer-Rodríguez et al. 2015). 

Compared to other countries, Paraguay has few endemic birds due to its central 

position on the continent (Spichiger et al. 2004). Actually, there are 694 species of birds 

documented (see http://www.museum.lsu.edu/~Remsen/SACCCountryLists.htm for more 

details), 495 birds inhabit in the Paraguayan Chaco and 18 of them are endemic from the 

Gran Chaco (Short 1975; Porzecanski and Cracraft 2005). The studies about distribution of 
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the Paraguayan Chaco birds are few (Neris and Colman 1991; Brooks 1997; Ericson and 

Amarilla 1997; Brooks 2000; Zyskowski et al. 2003) and the majority is based on the 

presence data or complements the geographic distribution formulated by Hayes (1995). As 

far as we know, none had analyzed the situation of the endemic birds on the region. On top 

of that, few studies surprisingly have evaluated the effect of habitat fragmentation in the 

Paraguayan Chaco. Mereles and Rodas (2014) for instance, compared the evolution of the 

natural vegetation from 1975 to 2007 and investigated how the average size of the 

fragments changed through the time. These authors, however, did not consider a biological 

group and the study was restricted to physical characteristics of the fragments. Another 

study (Vallejos et al. 2014) also dealt exclusively with fragmentation and no biological 

group was included on the analysis. For regional future planning it is necessary to have a 

better understanding on how current distribution of the endemics birds might be affected by 

habitat fragmentation and how the connectivity between fragments should be kept. Several 

methods to identify areas with high biodiversity value have been proposed, including 

quantitative approaches like hotspots of richness, hotspots of rarity and complementary 

areas (Williams et al. 1996; Margules and Pressey 2000). 

The aim of our study was to identify important areas for endemic bird species on the 

Paraguayan Chaco, taking in account the fragmentation status the natural vegetation. Thus, 

we expect that the massive habitat destruction of the Paraguayan Chaco would substantially 

reduce the conservation opportunities to endemic bird species. In order to demonstrate that,  

we mapped the potential occurrence of endemic birds richness and used the graph theory to 

identify clusters of connected or nearby fragments, estimating habitat connectivity 

represented by a set nodes (habitat patches) and links that connect pairs of nodes.  

2. Materials and methods 

2.1.Study area  

The Chaco is considered a biogeographic region, and can be characterize as an open 

vegetation biome of lowland alluvial plains of central South America. This biome or 

ecoregion covers an area of 840,000 km
2
, extending from northern Argentina, western 

Paraguay, south-eastern Bolivia, and the extreme western edge of Mato Grosso do Sul state 
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in Brazil (Prado and Gibbs 1993; Pennington et al. 2000; Werneck 2011; Oakley and Prado 

2011) (Fig. 1). 

The climate of the Chaco is generally semiarid, responding to the rainfall values 

ranging from 564 to 1103 mm, with a remarkable gradient from west to east and from south 

to north (Navarro et al. 2011). The aridity increases progressively to the west, culminating 

in the driest areas where the Chaco transitions to the Andean foothills (Adamoli et al. 

1990). The biome can be also distinguished by its strong seasonality and severe winter 

frosts. Thus, the vegetation of the Chaco is subjected to low soil moisture and freezing in 

the dry season and waterlogging and extremely high air temperatures during part of the 

rainy season (Pennintong et al. 2000). 

There are two main assemblages that represent well-defined and stable plant 

compositions conspicuous to the Paraguayan Chaco: the dry Chaco (locally names as 

Chaco Seco) and the wet Chaco (locally named as Chaco Húmedo) (Olson et al. 2001; 

Spichiger et al. 2004). The main vegetation types are described in details by Mereles and 

Rodas (2014), which mentioned the vegetation with the difference representation: sub-

humid and semi-deciduous forests, riparian hygrophilous forests and floodable forests, 

xeromorphic forests, the cerrados and cerradones, savannahs and wetlands. 

2.2.Ecological niche modeling and endemic richness 

We obtained georreferenced data of 18 endemics birds from the Guyra Paraguay 

Biodiversity Datasets (BDBGP 2014), which includes scientific papers and Museums 

occurrence, and from the Global Biodiversity Information Facility (www.gbif.org).  

We used climatic variables from the WorldClim bioclimatic database (Hijmans et al. 

2005; see http://www.worldclim.org for more details) for present day as our environmental 

data. In order to avoid the spatial autocorrelation for species occurrences, all environmental 

data were in 2.5‟ resolution (approximately 5x5 km). In order to exclude variables that were 

too correlated with each other (Dormann et al. 2013), we performed a factor analyses (i.e. 

by selecting variables with the highest loadings in the first five eigenvectors; Terribile et al. 

2012). This analysis was done in the program R 3.1.2 (R Development Core Team, 2010) 

http://www.gbif.org/
http://www.worldclim.org/
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and were selected five: Isothermality (BIO3), Max Temperature of Warmest Month 

(BIO5), Mean Temperature of Warmest Quarter (BIO8), Precipitation of Driest Month 

(BIO14), and Precipitation of Driest Quarter (BIO17).  

We used the maximum entropy algorithm (Maxent) for the ecological niche 

modeling, which an algorithm based in the relationship and restrictions between the 

geographic presence data and the environmental data (Pearson and Dawson 2003) and 

results in the most plausible distribution (Phillips et al. 2004, 2006). The absence data are 

generated by randomly selecting „„pseudo-absence‟‟ points in a major area (background), 

(Anderson et al., 2003). In this case, we used the Chacoan region (Löwenberg-Neto 2014) 

as a geographical mask. The resulting model is a map of environmental suitability, which 

represents the potential distribution of a species (Guisan and Thuiller 2005).  

We kept only one of any duplicated points of presence that occurred in a single grid 

cell and randomly divided the points into two groups: the training data group (70% of the 

points for species with more than 100 occurrences and 80% for those with less than 100 

occurrences) and test data (30% or 20% of the points). Thus, we used the training points to 

generate the models (the average of 10 replicates cross-validate) and the testing points to 

evaluate their quality. We used an approach suggested by Peterson et al. (2008) to test the 

models. The procedure, called Partial Receiver Operating Characteristic (Partial ROC), 

consists in a series of iterations that uses a subset of the training points to compare the area 

under the curve (AUC) at the given 1-omission threshold to the random AUC (50%). Then, 

a ratio between the partial ROC-AUC and the random AUC is calculated. This proceeding 

was implemented in a Partial ROC program (Barbe 2008). Once the results were obtained 

from the Partial ROC program, we performed a t Test to verify if the Partial AUC was 

significantly greater than expected by chance. All statistical analyses were done with 

program R 3.1.2 (R Development Core Team 2010). 

After the models were tested, we converted each species model to a 

presence/absence map by reclassifying the environmental suitability value according the 

threshold value Maximizing the Sum of Sensitivity and Specificity (Max SSS). This 

threshold is not affected by pseudo-absences (Liu et al. 2013), which is the case of our 

dataset. For the purposes of this study, we called the original species distribution model – 
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SDM as the species the historical distribution (hereafter just SDMh), i.e., the expected 

distribution without deforestation. On the other hand, we defined the remaining distribution 

of the species (SDMr) by eliminating all anthropic areas on the region implemented after 

the natural vegetation has been removed. The endemic bird richness region was obtained by 

sum each raster SDM map and then calculated the SDMh and SDMr for this region. 

In order to map the windbreaks and natural vegetation loss on the Paraguayan 

Chaco landscape, we used Landsat images from 1995 and 2014. Therefore, our analysis 

compare the changes observed along 19 years. Although there are other natural vegetation 

formations on the region, we restricted our analysis to the dry forest vegetation type, since 

it is the main natural vegetation for the endemic birds (Short 1975). We made all map 

calculations and classifications with the ArcGIS v. 10.0 (ESRI 2010) software. 

2.3.Connectivity modeling technique and potential sites for conservation 

We used the Graphab 1.2.3 in order to identify potential connectivity between fragments on 

the studied region. Due to restrictions of computer processing, we degraded the raster map 

regarding the remaining natural vegetation coverage in 2014 to a spatial resolution of 150 

m (i.e., the pixel size). Graphab software indicates the landscape connectivity after 

identifying the least-cost-path between pairs of fragments. Thus, the pathways represent the 

shortest distance to be travelled between two patches when considering a dispersal-cost 

surface (Foltête et al. 2012). The dispersal-cost surface is a raster grid where each pixel‟s 

value represents dispersal cost of interpatch-crossing distance between two fragments. 

(Lecher et al. 2014), 

The minimum area of each path considered here was 500 ha because we aimed to 

include only large patches suitable to maintain viable population. Furthermore, we also 

assumed that those patches would be able to contribute to local dispersal, recolonization of 

unoccupied habitat patches, seasonal migration, and metapopulation persistence (Hanski 

1991). This assumption, of course, depends on the ability of different bird species to move 

and disperse from one path to another, which on the other hand is related to their plasticity 

to move among the matrix, body size, dietary requirements (Tksisky et al. 1999; Castellon 

et al. 2006; Velez et al. 2015). Nevertheless, we collect some data on the specialized 
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literature (Marini 2010; Castellon et al. 2015) in order to define the minimum dispersal 

distance necessary to characterize the functional connectivity between patches (sensu 

Taylor et al. 1993). Therefore, we used two generic values to identify clusters of patches on 

the Paraguayan Chaco, being 500 m as the maximum distance to structurally link one patch 

to another, and 300 m for the functional connectivity of the graph. As the analysis requires 

a cost-surface map, the values, represented as percentage, were assigned to each land cover 

type in order to reflects the ecological costs for species to move through it (Tksisky et al. 

1999; Rayfiel et al 2011; Lecher et al. 2014). For natural vegetation coverage and for 

habitat loss classification we used 1 and 5 respectively, based on Gil-Tena et al. (2014) to 

forest and grassland. Details about the input values can be viewed in the Table 1. 

To identify potential sites for conservation, the richness of endemic bird on the 

region was intersected with the map created on the connectivity analysis. We used the 

Zonal Statistic of the Spatial Analysis Tool in the Arc Map 10.0 software (ESRI 2010) in 

order to map the priority areas. 

3. Results 

3.1.Distribution of endemic birds and land cover conversion 

We collected a reasonable set of occurrence points for the 18 endemic bird species of 

Paraguayan Chaco (Table 2), aspect that contributes to the quality of the final models. In 

average, we had 101.3 training points (ranging from 18 to 288 points) and 45.2 testing 

points (ranging from 5 to 124 points). The final continuous maps for each species‟ allowed 

us to map suitable areas in the region for each species, (Appendix 1).The test of partial 

ROC values showed that all individual species models were better than expected by change 

(Table 2), enabling us to use all the models in the subsequent analyses. 

The SDMh models (historical species distribution) indicate that endemic bird 

species could occupy, in average, up to 84% of the Paraguayan Chaco. The endemic birds 

with higher historic occupancy were Knipolegus striaticeps, Ortalis canicollis and 

Xiphocolaptes major (99%), and with the smaller one was Rhynchospiza strigiceps (48%).  

Our results indicate that the endemic bird richness region is restricted to the Dry Chaco, as 

pointed out by other authors (Short 1975; Porzecanski and Cracraft 2005) (Fig. 2). 
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The SDMr (current species distribution) represent the present distribution or the 

available habitat for each endemic bird by 2014. Considering the 1995-2014 period, human 

activities caused loss up to 32% on natural vegetation during the last 19 years. In average, 

bird species lost 24.4% of their original habitat on the Dry Chaco between up to 2014 

(Table 2). The most impacted species was Rhynchospiza strigiceps, which has lost 32% of 

its original area (annual loss of 2.47%) and the least impacted were Campephilus 

leucopogon, Knipolegus striaticeps, Strix chacoensis, and Xiphocolaptes major, which lost 

22% of their original area (an average loss of 1.5% per year).  

From the set of 18 endemics birds, seven species can be found on the converted 

habitat, i.e., the grassland. Five of them correspond to species adapted to open vegetation 

areas, such as Furnarius cristatus or Pseudocolopteryx dinelliana are associated with 

grassland (Table 3).  

Up to the date, none of the endemic species are considered threatened by extinction 

and only one, Pseudocolopteryx dinelliana, is recognized as Near Threatened (IUCN 2015). 

All other are classified as Least Concern (LC) (Table 3). Pseudocolopteryx dinelliana 

inhabits flooded rushy and grassy marsh vegetation and shrubbery near watercourses in 

lowland scrub (Birdlife International 2016), so the habitat loss to the grassland conversion 

may not affect its distribution. 

3.2.Connectivity modeling and potential sites for conservation 

A total of 1083 patches greater than 500 ha were identified. Each patch represents the nodes 

of clusters that may or may not be linked to other nodes. Our analysis shows that the 

highest concentration of big clusters is observed on the northern part of Dry Chaco, and 

small clusters or isolated fragments are located on the southern part (Fig. 3). The largest 

clusters correspond to big protected areas in the region: the Defensores del Chaco and 

Medanos del Chaco National Park, representing 33% of the total patch area. Other six 

important graphs do not have a formal legal protection and they are located in the North 

(Fig. 4). Those areas represent 19% of the total patch area. Thus, the most important 

clusters (two large clusters on the north and six other located on the center of the region) 

represent 52% of all remaining natural seasonal forest fragments. All other remaining areas 



 

44 
 

are represented by small or isolated fragment that are scattered through the region and they 

form small or no clusters at all (Fig. 3).  

The Central Chaco is highly fragmented consisting in few small and isolated 

patches, which are represented by the windbreaks principally. Those patches are already 

broken apart from the largest patches identified in the North and few significant clusters 

were identified in this region (Fig. 3). The crossing process of the map of endemic species 

richness with the cluster map suggests that priority clusters for conservation are located on 

the North, while priority clusters for landscape management are located on the center of the 

region (Fig. 4). Our least-cost analysis suggests that the connections between fragments 

located on the existing clusters in the center of the region and in part of the northern region. 

4. Discussion 

4.1.Distribution of endemic birds  

This study provides an innovate analysis about the conservation strategies for the endemic 

birds of the Paraguayan Chaco, where the combination of ecological niche models, current 

land use map and the graph theory were used to identify priority areas for conservation and 

for maintenance of landscape connectivity. This approach can be very helpful to draw 

conservation scenarios in regions where human pressure on natural ecosystems is of a great 

concern, as in the Paraguayan Chaco. Our analysis also brings an update of the situation of 

endemic bird species in the region, considering that previous studies that dealt to this 

subject are from the 70‟s and the 80‟s (Short 1975; Cracraft 1985).  

Although conservation scenarios can be drawn and negotiated with local authorities 

and society, the high rate of natural vegetation conversion in the Paraguayan Chaco, which 

is prognosticated to continue because the available land for conversion (Lambin et al. 

2013), immediate actions to reduce deforestation are required. The pressure over natural 

areas is favored for the Paraguay government to develop the Chaco, supported by 

international financing projects to construct highways promoting the access and the demand 

for beef (Grau and Aide 2008; Campos and Wisley 2011; Caldas et al. 2013; Graesser et al. 

2015). 
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Species distribution modeling is an important tool to know where is the potential 

distribution of the bird and, therefore, can potentially help scientist and specialized 

technicians to identify important regions for additional research and conservation. The 

distribution modeling (Phillips et al. 2004; Guisan and Zimmermann 2000; Peterson 2001) 

is currently the main tool used to derive spatially explicit predictions of environmental 

suitability for species (Guisan et al. 2013; Elith and Leathwick 2009; Guisan and Thuiller 

2005), an information useful for formulate conservation management decisions (Guisan et 

al. 2013; Elith and Leathwick 2009).  

Although all produced models in our study had a good quality, i.e., the models 

adequately previewed where the species actually occur, the results must be viewed with 

precaution. The modeling process of confirmed occurrence does not provide much 

information about the extrapolated regions where a species could occur (Rondinini et al. 

2006). Nevertheless, ecological niche models are indicated as a valid approach to propose 

conservation actions worldwide, including South America (Avalos and Hernández 2015; 

Ramirez-Villegas et al. 2014; Teixeira et al. 2014). 

Our analysis of land use mapping indicates that areas with high concentration of 

endemic bird species are those highly affected by habitat loss in the Paraguayan Chaco. 

Habitat loss, as detected by other studies on the Paraguayan Chaco (Torres et al. 2014), can 

create local barriers and operating as a habitat restriction for local biodiversity. The 

availability of habitat also determines how birds will respond and how they will be locally 

distributed (Maqui et al. 2015; Mastrangelo and Gavin 2014; Machi and Grau 2012; 

Mastrangelo and Gavin 2012). Birds with little distribution or requirements for specific 

habitats to survive could be more affected to the land conversion process, and pronounced 

changes in local richness patterns or ecosystem services can be altered (Torres et al. 2014; 

Sala et al. 2010). 

The endemic bird richness region, resulting from the overlaid distribution of 18 

endemic birds, is restricted to the Dry Chaco, confirming the geographic distribution 

adopted by Hayes (1995). According to this author, the ornithological region of Alto Chaco 

has birds species not recorded elsewhere in Paraguay, with a marginal occurrence in other 

Chaco regions. The area along the Bermejo and Pilcomayo rivers represents the 



 

46 
 

conjunction of woodland and grassland habitats where the distributions of several species 

of birds met (Nores 1992). In addition of being the most important area for the endemic 

birds, the region is one of the most threatened areas due to the habitat conversion (Vallejos 

et al. 2014, Caballero et al. 2014; Cardozo et al. 2013; Caldas et al. 2013). The high 

deforestation rate observed in this and other studies (e.g. Vallejos et al. 2014) is 

consequence of the radially anthropic expansion of the Central Chaco, favored with the 

construction of roads to connect the Chaco (IDB Report 2011). 

4.2. Landscape connectivity 

The adoption of the graph theory in our study resulted in a connectivity map of the 

Paraguayan Chaco landscape, being the first time that this kind of analysis is used for the 

country or for the Chaco ecoregion. Whenever it is created by natural or anthropic causes, 

habitat fragmentation is a process that can reduce the availability of suitable natural areas 

for species and led to biodiversity loss. A recent compilation of habitat fragmentation 

studies (Haddad et al. 2015) indicates up to 75% of local biodiversity can be reduced and 

important ecosystem functions can be heavily impacted. Besides, the structure of remaining 

natural ecosystems left in a landscape is important to define how species will survive and 

how they will use the natural resources, although some authors have suggested that species 

are more or less tolerant to habitat fragmentation (Villard et al. 2014). The way that species 

dealt with habitat fragmentation is through the use a set of nearby fragments, aspect related 

to the functional connectivity in a landscape. Thus, clusters of fragments can be viewed as a 

single unit connected by logical links that compose a local network of natural patches. In 

our case, links between remaining fragments of natural vegetation were identified by using 

to the least cost dispersion through the matrix, a clear generalization of specie‟s ecological 

characteristics.  

According to the landscape connectivity analysis combined with species distribution 

modeling, our region can be divided in two important areas for priority actions, an action 

for increased protection and other for environmental management (Fig. 4): one,  composed 

by large patches and little fragmented region represented by the existing Protected Areas 

and adjacent natural vegetation areas located in the northern Chaco; the second region can 

be characterized by small and isolated patches plus the windbreaks and is located in the 
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Central Chaco, where exists a high endemic bird richness and high fragmentation. It is 

known that patches size is correlated to the abundance of resources, especially in areas with 

high quality (Rayfiel et al 2011) and we can expect that the Protected Areas probably offers 

conditions to maintain stable population of birds. On the other hand, the bird population in 

the Central Chaco could remain like isolated population and act like a metapopulation 

(Hanski 1991). The fragments in the North can result in corridors extending the protection 

area. Studies refers that birds moved more often between forest patches connected by forest 

corridors than between forest patches without a connection (Andrade and Marini, 2002) 

reducing the effects of fragmentation (Fahrig 1997). In comparison to the North region, the 

Central Chaco was heavily impacted and had most of its natural coverage suppressed. Not 

only the habitat loss, but also isolation of the remaining vegetation is also another huge 

difference between these two parts of the Dry Chaco as a consequence of historical 

development of the region (Mereles and Rodas 2014; Caldas et al. 2013). This fragmented 

region is a threatened region where the species are more at risk (Williams et al., 1996) and 

where the fragments are more susceptible to disappear for being in an anthropogenic 

region, sensitive to influences of the land use and consequences of intensification (Grau et 

al. 2008) that could result in habitat degradation and habitat loss compromising the 

landscape connectivity.  

The nodes and links define and determine whether the habitat cluster represents 

structural, potential or functional connectivity among habitat patches (Rayfield et al. 2006). 

This aspect supposedly depends on the birds‟ movements, which may be affected in 

different ways by the type of habitat conversion or the matrix (Antongiovanni and Metzger 

2005) compromising the dispersal and maintenance viable populations in the fragmented 

landscapes (Marini, 2010). In fact, birds respond negatively to habitat conversion, 

principally in an agricultural dominated landscape (Machi et al. 2015; Torres et al. 2014), 

otherwise, in a grassland expansion, the silvopasture could maintenance a tradeoff between 

bird diversity and production (Mastrangelo and Gavin 2012). In the Paraguayan Chaco the 

most important pressure to natural vegetation areas is the introduction of planted pastures 

(Campos-Krauer and Wisel2011; Caldas et al. 2015). Thus, seven bird species conspicuous 

in the region (Ortalis canicollis, Chunga burmeisteri, Eudromia Formosa, Nothoprocta 

cinerascens, Furnarius cristatus, Rhinocrypta lanceolata, Pseudocolopteryx dinelliana), 
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that use grasslands, could have their dispersal capacity favored by habitat fragmentation, 

since that there is no indication they could find suitable habitats on the open habitats 

created by cattle ranch production (Torres et al. 2014). Castellon and Sieving (2006) 

suggested that these birds should be focal species for a conservation planning on the region 

because a landscape that provides functional connectivity for the group would probably 

meet the dispersal requirements for other species. On the other hand, in the case of 

woodland-dependent species, the matrix could be unsuitable and potentially hostile (Arendt 

2004; Antongiovanni and Metzger 2005), but it is rarely a complete barrier to dispersal. 

The dispersal will highly depend on the patches that are connected (or close enough to be 

reached), or the movement ability of the bird (Antongiovanni and Metzger 2005; Castellon 

and Sieving 2006; Marini 2010). Further and specific analyses are indicated for these 

particular birds in order to review their population status because of the accelerating land 

cover change in the last years. 

Habitat loss is currently the most important threaten to biodiversity worldwide, and 

it is expected that local extinctions will be observed by the year 2100 (Sala et al. 2010). 

Species with small geographical distribution, as the endemic birds are, can be viewed as  a 

strategic indicator to lead the process of protected area creation, which should be 

established to form a representative network that benefits different biodiversity components  

(Williams et al. 1996; Myers et al., 2000). Considering that the Paraguayan Chaco is a 

poorly studied region, we believe that more fieldwork is necessary to clarify how local 

biodiversity, and especially endemic bird species, responds to habitat loss and habitat 

fragmentation. Specifically, it is important to stimulate studies aimed to identify the 

ecological mechanisms, such as dispersion dynamics through the human dominated matrix, 

that are important for bird communities persistence. Also, compared to others vertebrates‟ 

distribution, the region should be evaluated like endemic hotspots (Williams et al. 1996; 

Myers et al. 2000) or Important Bird Area (IBA) for the patches that have not been 

included yet. 

We hope that our analysis will stimulate the development of policies aimed to 

improve the zoning process in the Paraguayan Chaco. Like other countries in South 

America, there is an urgent need to implement feasible conservation actions that involves a 
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common ground to conservationists and policy-makers. There is no question about the 

importance of food production, but wise strategies toward to combine an efficient land use 

with the conservation of biodiversity are urgently demanded demand on the Paraguayan 

Chaco.  
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Table 1. Landscape parameters and input layers used in the connectivity model. 

Description Value Source 

Dispersal and habitat characteristics 

Patch size 500 ha  

Interpatch-crossing distance 

threshold with structural 

connectivity and no dispersal 

costs 

500 m Marini, 2010; Castellon et al., 2015 

Gap-crossing distance 

threshold 

300 m Marini, 2010; Castellon et al., 2015 

Dispersal cost surface 

Natural vegetation  1 Gil-Tena et al. (2014) 

Habitat loss 5 Gil-Tena et al. (2014) 

Geoprocessing 

Land cover and vegetation layer 30 m Land cover layer based on 2014 Landsat 

image classification 

Pixel size for connectivity model 150 m Based on smallest pixel size processed  
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Table 2 Spatial statistics for the endemics birds of the Chaco.  

Species N 

(training) 

N 

(testing) 

Partial ROC 

(Ẋ) * 

SDMh (km
2
) SDMr  

(km
2
) 

SDM loss 

(km
2
) 

% Loss % Annual 

loss (km
2
) 

Campephilus leucopogon 151 65 1.003 235 930.49 183 465.98 52 464.52 22 1.51 

Chunga burmeisteri 80 34 1.039 219 050.37 168 743.04 50 307.33 23 1.57 

Drymornis bridgesii 140 60 1.012 212 823.12 164 213.40 48 609.72 23 1.56 

Dryocopus schulzi 26 7 1.124 134 506.41 94 602.86 39 903.55 30 2.22 

Eudromia formosa 39 10 1.096 204 858.92 156 571.16 48 287.76 24 1.62 

Furnarius cristatus 108 47 1.049 206 458.46 157 562.20 48 896.26 24 1.63 

Knipolegus striaticeps 86 37 1.022 240 532.07 187 883.81 52 648.26 22 1.47 

Nothoprocta cinerascens 92 39 1.003 178 072.03 132 089.88 45 982.15 26 1.83 

Ortalis canicollis 215 92 1.036 240 386.83 187 746.19 52 640.64 22 1.48 

Poospiza melanoleuca 288 124 1.000 235 566.96 183 321.36 52 245.60 22 1.50 

Pseudocolopteryx dinelliana 18 5 1.236 211 299.45 160 059.37 51 240.08 24 1.68 

Rhinocrypta lanceolata 86 37 1.030 191 420.68 144 451.23 46 969.45 25 1.71 

Rhynchospiza strigiceps 68 17 1.010 117 963.55 80 330.46 37 633.09 32 2.47 

Saltatricula multicolor 124 53 1.010 220 526.96 169 148.11 51 378.84 23 1.60 
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Spiziapteryx circumcincta 47 12 1.040 120 459.61 84 844.16 35 615.46 30 2.21 

Strix chacoensis 46 12 1.028 235 494.48 183 267.68 52 226.81 22 1.50 

Tarphonomus certhioides 73 31 1.028 195 171.34 148 730.08 46 441.26 24 1.64 

Xiphocolaptes major 138 59 1.014 240 653.10 188 001.86 52 651.24 22 1.47 

Endemic bird richness region - - - 94 330.90 60 419.73 33 911.17 36 2.95 

 

N (training): numbers of points using to obtain the SDM (Species Distribution Modeling); N (testing): number of points to evaluate the SDM (for 

species with more than 100 occurrence points was used 70% for training and 30% for testing; Underlined numbers on Testing column indicate species 

with less than 100 occurrence points); Partial Roc (Ẋ): mean of the Partial Receiver Operating Characteristic. The „*‟ means p<0.05 or that models are 

better than expected by chance; SDMh: distribution modeling area for the birds; SDMr: SDM less conversion area; SDM loss (km
2
): SDMh – SDMr; % 

Loss: (SDMh – SDMr)/ SDMh*100; % Annual loss (km
2
): (((SDMh – SDMr)/ 19)/ SDMr)*-100; Endemic bird richness region: region where the 18 

endemic birds occurs.  
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Table 3 Conservation status of the endemic bird species of the Paraguayan Chaco.WL: dry forest-dependent species; GL: grassland; 

LC: least concern; NT: near threatened. 

Species Family Habitat  IUCN conservation 

status (2015) 

Campephilus leucopogon Picidae WL LC 

Chunga burmeisteri Cariamidae GL LC 

Drymornis bridgesii Dendrocolaptidae  WL LC 

Dryocopus schulzi Picidae WL LC 

Eudromia formosa Tinamidae GL LC 

Furnarius cristatus Furnariidae GL LC 

Knipolegus striaticeps Tyrannidae WL LC 

Nothoprocta cinerascens Tinamidae GL LC 

Ortalis canicollis Cracidae GL LC 

Poospiza melanoleuca Emberizidae WL LC 

Pseudocolopteryx dinelliana Tyrannidae GL NT 

Rhinocrypta lanceolata Rhinocryptidae GL LC 

Rhynchospiza strigiceps Emberizidae WL LC 

Saltatricula multicolor Emberizidae WL LC 

Spiziapteryx circumcincta Falconidae WL LC 

Strix chacoensis Strigidae WL LC 

Tarphonomus certhioides Furnariidae WL LC 

Xiphocolaptes major Dendrocolaptidae WL LC 
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Figures caption 

Fig. 1 Location of the study area within the Gran Chaco (Olson et al. 2001), which includes 

Argentina, Brazil, Bolivia and Paraguay. 

Fig. 2 Historical and current distribution of endemic birds in the Paraguayan Chaco. The 

current distribution refers to the remaining natural vegetation in 2014. The black area 

corresponds to the endemic bird richness region.  

Fig. 3 Connectivity modeling using least–cost paths for patches greater than 500 ha. 

Circular graduated symbols describe patch area located at the center of each patch and links 

to connect the patches with the functional connectivity.  

Fig. 4 Potential sites for conservation and landscape management on the Paraguayan 

Chaco. Black clusters are those with a high concentration of endemic species and high 

percentage of remaining natural vegatation. The black lines in the center and in the north of 

the region represents potential connections based on a least cost analysis between major 

fragments in the Central Chaco. 
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Fig. 1  

 



 

56 
 

Fig. 2  
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Fig. 3 
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Fig. 4  
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Appendix 1 Historical suitability maps in the Chacoan region generated for each 
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