
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Autonomic Goal-Driven Deployment in Heterogeneous
Computing Environments

Gabriel Siqueira Rodrigues

Dissertação apresentada como requisito parcial
para conclusão do Mestrado em Informática

Orientadora
Prof.a Dr.a Genaina Nunes Rodrigues

Brasília
2016

Universidade de Brasília — UnB
Instituto de Ciências Exatas
Departamento de Ciência da Computação
Mestrado em Informática

Coordenadora: Prof.a Dr.a Célia Ghedini Ralha

Banca examinadora composta por:

Prof.a Dr.a Genaina Nunes Rodrigues (Orientadora) — CIC/UnB
Prof. Dr. Vander Ramos Alves — CIC/UnB
Prof. Dr. Raian Ali — Bournemouth University

CIP — Catalogação Internacional na Publicação

Rodrigues, Gabriel Siqueira.

Autonomic Goal-Driven Deployment in Heterogeneous Computing En-
vironments / Gabriel Siqueira Rodrigues. Brasília : UnB, 2016.
103 p. : il. ; 29,5 cm.

Dissertação (Mestrado) — Universidade de Brasília, Brasília, 2016.

1. Engenharia de requisitos, 2. Variabilidade Arquitetural,
3. Ambientes Heterogêneos, 4. Implantação Automatizada

CDU 004.4

Endereço: Universidade de Brasília
Campus Universitário Darcy Ribeiro — Asa Norte
CEP 70910-900
Brasília–DF — Brasil

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Autonomic Goal-Driven Deployment in Heterogeneous
Computing Environments

Gabriel Siqueira Rodrigues

Dissertação apresentada como requisito parcial
para conclusão do Mestrado em Informática

Prof.a Dr.a Genaina Nunes Rodrigues (Orientadora)
CIC/UnB

Prof. Dr. Vander Ramos Alves Prof. Dr. Raian Ali
CIC/UnB Bournemouth University

Prof.a Dr.a Célia Ghedini Ralha
Coordenadora do Mestrado em Informática

Brasília, 16 de Dezembro de 2016

Agradecimentos

Firstly, I would like to express my gratitude to my advisor, Genaína, for her enthusi-
asm, patience and wisdom. Which was fundamental to the conclusion of this work. And
to the members of our research group Danilo Mendonça and Felipe Pontes.

i

Resumo

Vemos um crescente interesse em aplicações que devem contar com ambientes de com-
putação heterogêneos, como a Internet das Coisas (IoT). Esses aplicativos são destinados
a executar em uma ampla gama de dispositivos com diferentes recursos computacionais
disponíveis. Para lidar com algum tipo de heterogeneidade, como dois tipos possíveis
de processadores gráficos em um computador pessoal, podemos usar abordagens simples
como um script que escolhe a biblioteca de software certa a ser copiada para uma pasta.

Essas abordagens simples são centralizadas e criadas em tempo de design. Eles re-
querem um especialista ou equipe para controlar todo o espaço de variabilidade. Dessa
forma, essas abordagens não são escaláveis para ambientes altamente heterogêneos. Em
ambientes altamente heterogêneos, é difícil prever o ambiente computacional em tempo
de projeto, implicando provavelmente indecidibilidade na configuração correta para cada
ambiente. Em nosso trabalho, propomos GoalD: um método que permite a implantação
autônoma de sistemas, refletindo sobre os objetivos do sistema e seu ambiente computa-
cional. Por implantação autônoma, queremos dizer que o sistema é capaz de encontrar o
conjunto correto de componentes para o ambiente computacional alvo, sem intervenção
humana.

Nós avaliamos nossa abordagem em um estudo de caso: conselheiro de estação de
abastecimento, onde uma aplicação aconselha um motorista onde reabastecer / recarre-
gar seu veículo. Nós projetamos a aplicação com variabilidade em nível de requisitos,
arquitetura e implantação, o que pode permitir que a aplicação projetada seja executada
em diferentes dispositivos. Para cenários com diferentes ambientes, foi possível planejar a
implantação de forma autônoma. Além disso, a escalabilidade do algoritmo que planeja a
implantação foi avaliada em um ambiente simulado. Os resultados mostram que usando
a abordagem é possível planejar de forma autônoma a implantação de um sistema com
milhares de componentes em poucos segundos.

Palavras-chave: Engenharia de requisitos, Variabilidade Arquitetural, Ambientes Hete-
rogêneos, Implantação Automatizada

ii

Abstract

We see a growing interest in computing applications that should rely on heterogeneous
computing environments, like Internet of Things (IoT). Such applications are intended to
execute in a broad range of devices with different available computing resources. In order
to handle some kind of heterogeneity, such as two possible types of graphical processors
in a desktop computer, we can use simple approaches as a script at deployment-time that
chooses the right software library to be copied to a folder. These simple approaches are
centralized and created at design-time. They require one specialist or team to control
the entire space of variability. However, such approaches are not scalable to highly het-
erogeneous environments. In highly dynamic and heterogeneous environment it is hard
to predict the computing environment at design-time, implying likely undecidability on
the correct configuration for each environment at design-time. In our work, we propose
GoalD: a method that allows autonomous deployment of systems by reflecting about the
goals of the system and its computing environment. By autonomous deployment, we
mean that the system can find the correct set of components, for the target computing
environment, without human intervention.

We evaluate our approach on the filling station advisor case study where an application
advises a driver where to refuel/recharge its vehicle. We design the application with
variability at requirements, architecture, and deployment, which can allow the designed
application be executed in different devices. For scenarios with different environments, it
was possible to plan the deployment autonomously. Additionally, the scalability of the
algorithm that plan the deployment was evaluated in a simulated environment. Results
show that using the approach it is possible to autonomously plan the deployment of a
system with thousands of components in few seconds.

Keywords: Requirements Engineering, Architecture Variability, Heterogeneous Environ-
ments, Automated Deployment

iii

Contents

1 Introduction 1
1.1 Problem Definition . 1
1.2 Proposed Solution . 3
1.3 Contributions Summary . 3
1.4 Structure . 4

2 Background 5
2.1 Context-aware Systems . 5
2.2 Self-Adaptive Systems . 6

2.2.1 Development of Self-Adaptive Systems 7
2.3 Goal Modeling . 8

2.3.1 Software Deployment . 9
2.4 Software Components . 10

2.4.1 Component-Based Adaptation . 11
2.4.2 From Goals to Components . 12

3 Filling Station Advisor 14
3.1 Motivating Example: The Filling Station Advisor 14

4 The GoalD Approach 17
4.1 Offline . 18

4.1.1 Goal Modelling . 18
4.1.2 From Goals to Components Specification 19
4.1.3 Packaging Components into Artifacts 21
4.1.4 Development Process . 24
4.1.5 Activities . 24

4.2 Online . 25
4.2.1 Automated Deployment Planning 26
4.2.2 Deployment Execution . 28

5 Evaluation 31
5.1 Feasibility Assessment . 32
5.2 Scalability Assessment . 34
5.3 Threats to validity . 35

6 Related Work 37

iv

7 Conclusion 39
7.1 Conclusion and future work . 39

Referências 41

v

List of Figures

2.1 Context-aware services framework by [24] 5
2.2 MAPE-K Reference Architecture . 6
2.3 A Life-cycle model for Self-Adaptive Software System[3] 7
2.4 Artifacts Deployment . 10

3.1 CGM of the filling station advisor . 15
3.2 Variability in the Computing Environment 16

4.1 Overview of the steps in GoalD . 17
4.2 Artifact Structure . 22
4.3 Dependency graph . 23
4.4 Roles collaboration . 24
4.5 Deployment Process Activities . 25
4.6 Goald Autonomic Deployment . 26
4.7 The GoalD Deployment metamodel . 27
4.8 Representation of OSGi bundles lifecycle 30

5.1 Computing Environment Evaluation Scenarios 33
5.2 Passing Tests . 33
5.3 Scalability over the size of plan . 34
5.4 Scalability over variability level . 35

vi

Chapter 1

Introduction

Nowadays, people are surrounded by different devices with computing capability.
Phones, watches, TVs, and cars are example of daily devices for which there are smart
versions with computing capability and where is possible to install software applications.
Typically, these devices have connectivity capability and can form networks. These net-
works can be rich computing environments as each device brings different computing
resources. This presents a great potential, but developing software that harvests the ca-
pability of such environment is challenging. In this work, we call such an environment a
highly heterogeneous computing environment as it is formed by different sets of devices,
with different resources, and which are only partially known at design-time. Ubiquitous
Computing [11], Internet of Things (IoT) [8], Assisted Living [34] and Opportunistic Com-
puting [53] are examples of computing architectures that have to be typically designed
for a highly heterogeneous computing environment.

Software deployment is the process of getting a software ready to be used in a given
computing environment[16]. It involves planning which artifacts should be deployed,
moving compatible artifacts to the target environment, configuring the environment and
starting execution. Deployment planning is a specially challenging activity, it requires
analyzing the environment and the software architecture to solve variabilities, and coming
up with which software artifacts should be present in the deployment.

1.1 Problem Definition
Current software deployment approaches do not suit highly heterogeneous computing

environment[42]. The simplest approach to deployment as a whole is manual configura-
tion, in which a human conducts all steps in the deployment planning and execution. It
is normally applied when developing customized software that will be executed in devices
managed by the development team. Such approach does not scale for applications that
target massive use, because it requires the deployment to be executed by a person with
knowledge about the application internals[4]. Another approach, common in cloud en-
vironments, is the use of scripts to automate software deployment execution[54]. Such
approach is normally used in virtualized environments that simulate a very homogeneous
environment. The scripts are tailored at design-time a specific target environment. When
some variability can be solved at deployment-time with conditionals in the script, it does
not scale as the script relies on a centralized model created at design-time. Software

1

store is another alternative approach. Typically, the developer uploads to the store back-
end site the software configuration for each kind of target device, solving any variability
at this point. In such cases, the deployment execution can rely on actions by the end-
user such as accessing the store interface, searching for the application, and initiating
the installation of the application. Neither scripts nor software stores are suitable for
heterogeneous environments because they are highly dependent on a centralized method
for deployment that requires knowledge about the target environment at design-time. In
summary, current approaches for deployment do not suit deployment in highly heteroge-
neous computing environments as they require human interaction or knowledge about the
runtime environment at design-time.

The challenges related to deployment in emerging highly heterogeneous computing
environment can be summarized as follows:

• Challenge 1: heterogeneity. The system is meant to run in a broad range of
configurations of the computing environment.

• Challenge 2: uncertainty at design-time. The system architec/developer
cannot precisely ascertain the configuration of the end user computing environment.

• Challenge 3: deployment should be autonomous. A deployment special-
ist is unlikely available at deployment time for a particular environment, so the
deployment should be planned and executed autonomously.

Many works have investigated the relation of goals and architecture of a system
[35][46][47][48][60]. Some works in the literature have investigated variability in goal mod-
els with adaptation purpose [5][63]. These works show that goal modeling is a promising
approach to manage variability at the design of the software. But, to the best of our
knowledge, none investigated goal models at deployment level. Accordingly, our first
research question emerges:

Research Question 1 (RQ1): Would a goal-driven approach be suitable to manage
variability at deployment?

With RQ1 we are interested in extending goal-oriented variability models to deploy-
ment level. By addressing RQ1, we expect to allow the deployment of the system to be
adaptable to the characteristics of the target environment. However, in order to allow the
adaptation, we also need to solve the variability, that is, we need to evaluate the points
of variability of the system and the characteristics of the environment, and come up with
a valid configuration that adapts the system deployment for the environment. From this,
our second research question arises:

Research Question 2 (RQ2): Is it feasible and scalable to solve deployment vari-
ability autonomously at deployment time?

With RQ2, we will investigate how to autonomously solve the variability, then finding
a deployment plan that allows the achievement of user goals in the target computing
environment.

2

1.2 Proposed Solution
This work proposes GoalD: a method that follows a goal-oriented approach for deploy-

ment in highly heterogeneous computing environments, capable of determining a suitable
configuration from a general set of configurations for deployment. In particular, we focus
on autonomous deployment planning as the major part of the deployment in heteroge-
neous environments. In our approach, the planning is executed autonomously, that is, it
does not require a human to interact with the system at deployment time.

An abstract model is used that consider the following information: (i) what the system
needs to achieve (i.e., the goals), (ii) how it can achieve the goals (i.e., its alternative
strategies), and (iii) the restrictions to the strategies (i.e., the resources needed). Part (i)
comprehends requirements modeling. Part (ii) comprehends artifacts containing software
components and metadata. Part (iii) comprehends conditions that can be evaluated
against the environment in order to find if a given artifact can be deployed.

Goal-oriented Requirements Engineering is a suitable modeling approach to model
what the user wants to achieve, where system requirements are modeled as intentions of
actors in strategic goals[15][21][62]. Context goal models (CGMs) extend goal models[1],
inserting the context as another dimension. We propose to use CGMs to model resource
as context information that restricts how goals can be achieved, or more specifically which
artifacts can be deployed.

GoalD consists of: (i) rules to refine context-goal models into software components;
(ii) a description on how to create artifacts as packaged components with deployment
metadata information; (iii) a deployment metamodel that characterize deployment infor-
mation; (iv) an algorithm to analyze the deployment metamodel and, for a given comput-
ing environment together with a set of goals, select an appropriate set of artifacts that
allows the achievement of the goals in the computing environment. GoalD was evaluated
in a case study and using a randomly generated workload. The results show that the
approach can be used to guide the development and the autonomous planning is able to
plan the deployment of a system with thousands of artifacts in seconds.

1.3 Contributions Summary
This section summarizes the major contributions of this proposal.

1. A method to develop systems for heterogeneous computing environments that sup-
ports variability for software deployment, comprising:

• patterns to map components from a contextual goal model (CGM)
• guide on how to package the components into artifacts keeping variability

2. An approach to autonomously plan the deployment at the target environment com-
prising:

• A metamodel that describes the deployment
• An algorithm to autonomously planning the deployment
• A Java implementation of the algorithm

3

1.4 Structure
This dissertation is organized as follows. Chapter 2 introduces the theoretical back-

ground underlying our work. Chapter 3 Presents the case study of the Filling Station
Advisor. Chapter 4 presents patterns and guidelines to develop software to heterogeneous
computing environments and the support for autonomous deployment. Chapter 5 depicts
the evaluation of GoalD. Chapter 6 presents most relevant related literature work and
Chapter 7 concludes and outlines future works.

4

Chapter 2

Background

This chapter briefly reviews the concepts used throughout this work.

2.1 Context-aware Systems
Context-aware systems are those able to adapt their behavior according to changing

circumstances without user intervention. Finkelstein and Savigni [24] describe a frame-
work for context-aware services. Their approach is depicted in Figure 2.1.

Figure 2.1: Context-aware services framework by [24]

Environment is whatever in the world provides a surrounding in which the agent is
supposed to operate. The environment comprises such things as characteristics of the
device that the agent is expected to operate in. Context is the reification of the environ-
ment. The context provides a manageable, easily computer manipulable description of the
environment. A context-aware system should watch relevant environment properties and
keep a runtime model that represents those properties. By reasoning about that model
the system can change its behavior. A context can be either an activator of goals or a
precondition on the applicability of a certain strategy to reach a goal.

A goal is an objective the system should achieve. It is an abstract and long-term
objective of the system. A requirement operationalises a goal. It represents a more

5

concrete and short-term objective that is directly achievable through actions performed
by one or more agents. Service description is the meta-level representation of the actual,
real-world service. It should be a suitable formalism that allows services to be compared to
requirements in order to identify runtime violations. Service provides the actual behavior
as perceived by the user.

A reflective system is a system which incorporates structures representing (aspects of)
itself. A causal connection between a model and a modeled element exists if one of them
changes, this leads to a corresponding effect upon the other [38]. Following this approach,
the system should keep a causal connection between the service and the description.
The system adapts by manipulating the service description. Following the requirements
reflection vision [13], a system should keep software requirements model at runtime, and
use such model to drive the system adaptation.

2.2 Self-Adaptive Systems
Self-adaptivesses is an approach in which the system "evaluates its own behavior and

changes behavior when the evaluation indicates that it is not accomplishing what the soft-
ware is intended to do, or when better functionality or performance is possible." [36].
Self-adaptive systems (SAS) aims to adjust various artifacts or attributes in response
to changes in the self and in the context of a software system[51].

A key concept in self-adaptive systems is the awareness of the system. It has two
aspects[51]:

• context-awareness means that the system is aware of its context.

• self-awareness means a system is aware of its own states and behaviors.

Schilit et al.[33] define context adaptation as “a system’s capability of gathering in-
formation about the domain it shares an interface with, evaluating this information and
changing its observable behavior according to the current situation”.

Figure 2.2: MAPE-K Reference Architecture

MAPE-K is a reference architecture originally proposed for autonomic computing [32]
and that is often used as a model for architectures of SAS. It has a control loop, realized by

6

a simple sequence of four activities: monitor, analyze, plan, execute and a knowledge are.
The adaptive system interacts with the environment or managed sub-system through
sensors and actuators. The monitor activity collects data from sensors. That data is
analyzed, and if a need of change is identified, a change request is dispatched, them an
adaptation should be planned. The resulting plan is passed to the execute activity, which
is performed through actuators.

2.2.1 Development of Self-Adaptive Systems

For SAS some activities that traditionally occur at development-time are moved to
runtime. Andersson et al. [3] proposed a process for development of adaptive systems.
In their approach, activities performed externally to the adaptive system are referred as
off-line activities, and activities performed internally in the adaptive system are on-line
activities. Off-line activities are mainly related to the design of the system, while online
activities are related to the run-time of the system.

Figure 2.3: A Life-cycle model for Self-Adaptive Software System[3]

The left-hand side of Figure 2.3 represents a development life-cycle model. Off-line
activities work on design model and source code in a product repository and produce
the artifacts that will be used in the running system. The right-hand side of Figure 2.3
depicts a running SAS. In this approach, we have Domain Logic that is responsible for
final user goals achievements. Adaptation Logic is responsible for adapting the system in
response to changes in the environment. In addition, the adaptation logic implements a
control loop in line with the monitor-analyze-plan-execute (MAPE) loop [32].

7

2.3 Goal Modeling
Goal-Oriented Analysis is a requirements engineering approach that captures and doc-

uments the intentionality behind requirements. Goal-Oriented Requirements Engineering
(GORE) approaches have gained special attention as a technique to specify adaptable
systems [45]. Goals capture the various objectives the system under consideration should
achieve. In particular, Tropos[15] is a methodology for developing multi-agent systems
that uses goal models for requirement analysis.

The Tropos key concepts

Tropos uses a modeling framework based on i* [62] which proposes the concepts of
actor, goal, plan, resource and social dependency to model both the system-to-be and its
organizational operating environment [15] [44].

In Tropos, requirements are represented as actors goals that are successively refined
by AND/OR refinements. There are usually different ways to achieve a goal, and this is
captured in goal models through multiple OR refinements.

Key concepts in the Tropos metamodel are:

Actor is an entity that has strategic goals and intentionality

Agent is the physical manifestation of an actor.

Goals represent actors’ strategic interests. Hard goals are goals that have clear-cut crite-
ria for deciding whether they are satisfied or not. Soft goals have no clear-cut criteria
and are usually used to describe preferences and quality-of-service demands.

Plans represent a way of doing something. Plans are concrete actions or procedures that
an agent can perform. The execution of a plan can be a means for satisfying a goal
or for satisficing (i.e. sufficiently satisfying) a soft goal.

Resource represents a physical or an informational entity.

Dependency it is a relationship between two actors that specify that one actor (the
depended) has a dependency to another actor (the dependee) to attain some goal,
execute some plan or deliver a resource. The object of the dependence is the depen-
dum.

Capability represents both the ability of an actor to perform some action and the op-
portunity of doing so.

In Tropos requirements are represented as actors goals that are successively refined
by AND/OR refinements. There are usually different ways to achieve a goal, and this is
captured in goal models through multiple OR refinements.

Goal models are a traditional requirements tool, as such it must capture the solution
space and are not sufficiently detailed to reason about system execution and do not capture
information on the status of requirements as the system is executing, nor on the history of
an execution [14]. Traditional goal models can be named design-time goal model (DGM).
Dalpiaz et al.[20] describe a method for extending Design-time Goal Models (DGMs) to

8

create Runtime Goal Models (RGM). RGMs can be used to analyze the system’s runtime
behavior. Other works relate goal models with another dynamic aspects of systems, such
as configuration [63], behavior [20], probability of achieving success [41] and achievability
of goals [49].

Salehie et al. [52] propose a run-time goal model and its related action selection. They
model adaptable software as a system that exposes sensors and effectors and proposes a
model consisting in Goals, Attributes, and Action for selecting actions that will affect the
adaptable software at runtime, giving sensed attributes. So the adaptation mechanism is
to choose the best action given the actual attributes. It uses explicit runtime goals and
makes them visible and traceable.

Contextual Goal Model

Contextual Goal Model, proposed in [1], captures the relation between system goals
and the changes into the environment that surround it. Context goal models extends
goal models with context information. Goals and context is related by inserting context
conditions on variation points of the goal model. Context Analysis is a technique that
allows to derive a formula in verifiable peaces of information (facts). Facts are directed
verified by the system, while a formula represents whether a context holds.

Mendonça et al. [41] propose GODA: a methodology for dependability analysis by
which the software engineer, at design-time, annotates the goal decomposition in goal
model and specify context variables. A special tool generates a formula to evaluate for a
given context the probability of achieving a goal at runtime.

2.3.1 Software Deployment

Software deployment refers to all activities that make a software system available for
use[16]. These activities result in the creation and distribution of artifacts, from the devel-
opment environment to the target runtime environment. Artifacts are files that package
software components and assets. The deployment process can vary depending on the
application domain and execution platform. In embedded platforms, the deployment can
consist in burning software into a chip. In consumers’ personal or business domain, for a
desktop platform, the deployment can consist of an installation process with collaboration
between a person and a script that automates some steps. In an enterprise domain, for
a web platform it can consist in coping and editing some files in a couple of machines.
In many of those scenarios software will be periodically updated, frequently becoming
unavailable during the update process. The complexity of the software deployment can
also vary as a function of how much the platform is distributed (i.e. the number of nodes),
how much heterogeneous it is, and how much is known about the deployment computing
environment at design-time. In a dynamic and heterogeneous environment deployment
can be specially complex.

Deployment artifacts are the artifacts needed at the deployment environment. Ar-
tifacts are built at development and build environment. Built artifacts are moved to a
delivery system where they can be accessed from the target environment. At deployment
the artifacts are moved from the delivery system to the target computing environment.
Also, configuration activities can be realized. In the software industry, a continuous in-
tegration[30] environment applies automation in building and getting components ready

9

Figure 2.4: Artifacts Deployment

to delivery. In such environment if a developer pushes changes to a code repository,
components are automatically built and published to delivery system. The build process
commonly involves fetching build dependencies, compiling source code, running auto-
mated quality control (tests and static analysis) and packaging components into artifacts.
Artifacts are published if target quality policies are met. Fundamental to continuous in-
tegration environments are Dependency Management Systems tools, such as Maven[7] for
Java platform. These tools simplify the management of software dependencies [55]. Such
tools ensure that development team members are working with same dependencies that
are used in the build environment.

Research in software configuration and deployment, has focused on responding to dy-
namisms in a known environment. This could be costs and failures in a cloud environmet
[23], changes in managed resources [27], and changes in the context of operation [12].

Continuous delivery [30] extends the continuous integration environment, moving com-
ponents from the delivery system to a target computing environment with none or mini-
mum human intervention.

In the industry, package managers such as aptitute/apt-get(Debian based Linux distri-
butions) [6], yum (Red Hat based Linux distributions) [56], Homebrew (MacOS)[29] and
Chocolatey (Windows)[17] are capable of solving dependencies and deploying software.
They require that a managed application declare their dependencies by name and version.
DevOps[9] is a movement in software industry that advocates that all configuration steps
needed to configure the computing environment should be written as code (infrastructure
as code), following best practices of software development. That movement favors the doc-
umentation, reproducibility, automation and scalability. DevOps allows for management
of scalable computing environments. It can offer a significant advantage for enterprise en-
vironment in relation to manual approaches in which system administrators configure the
system by manually following configuration steps. Current continuous integration/deliv-
ery and DevOps practices are not sufficient for highly dynamic and heterogeneous target
computing environments; they require that highly specialized system administrators to
analyze the environment and create environment configuration descriptors.

2.4 Software Components
Heineman defines software component as a “software element that conforms to a com-

ponent model and can be independently deployed and composed without modification
according to a composition standard”[28].

10

Software components are units of composition. Software systems are built by compos-
ing different components. Software components must conform to a component model by
having contractually specified interfaces and explicit context dependencies only.[58].

A component interface “defines a set of component functional properties, that is, a
set of actions understood by both the interface provider (the component) and user (other
components, or other software that interacts with the provider)”[19]. A component in-
terface has a role as a component specification and also a means for interaction between
the component and its environment. A component model is a set of standards for a
component implementation. These standards can standardize naming, interoperability,
customization, composition, evolution and deployment.[28] The component deployment
is the process that enables component integration into the system. A deployed compo-
nent is registered in the system and ready to provide services[19]. Component binding is
the process that connects different components through their interfaces and interaction
channels.

Software architecture deals with the definition of components, their external behavior,
and how they interact[31]. The architectural view of a software can be formalized via an
architecture description language (ADL)[40].

Component-based software engineering (CBSE) approach consists of building systems
from components as reusable units and keeping component development separate from
system development[19].

CBSE is built on the following four principles[19]:

• Reusability. Components, developed once, have the potential for reuse many times
in different applications.

• Substitutability. Systems maintain correctness even when one component replaces
another.

• Extensibility. Extensibility aims to support evolution by adding new components or
evolving existing ones to extend the system’s functionality.

• Composability. A system should support the composition of functional properties
(component binding). Composition of extra functional properties, for example, com-
position of components’ reliability, is another possible form of composition.

2.4.1 Component-Based Adaptation

In the literature, there has been proposals of framework for architecture and compo-
nents based adaptation.

Rainbow[26] is a framework for architecture based self-adaptation. It keeps a model
of the architecture of the system and can be extended with rules to analyze the system
behavior at runtime, find adaptation strategies and perform changes. It separates the
functional code (internal mechanisms) from adaptation code (external mechanism) in a
schema called external control, influenced by control theory.

MUSIC[50] project provides a component-based middleware for adaptation that pro-
poses to separate the self-adaptation from business logic and delegate adaptation logic
to generic middleware. It adapts by evaluating in runtime the utility of alternatives, to
chose a feasible one (e.g., the one evaluated as with highest utility).

11

Flashmob [57] is an approach for distributed self-assembly. Different from MUSIC
and Rainbow, it handles component-based adaptation in a distributed environment. The
self-assembly can be described as: given a set of available components (with various
functional and non-functional properties), and a configuration of components which are
already running, find a new configuration which works (better) in the changed execution
environment (including hardware), meets new user requirements or takes account of new
component implementations [57]. Flashmod uses a three-layer model: goals, management
and components proposed by Kramer and Magee [35], extending it to allow distributed
agreement in a given configuration.

OSGi[59] is a Java centric platform that allows dynamic bind and unbind of compo-
nents, usually named bundles. Ferreira et al.[22] proposed a framework for adaptation
based on OSGi.

2.4.2 From Goals to Components

Lamsweerde [60] presents a method for deriving architecture from KAOS goal model[21].
Firstly, an abstract draft is generated from functional goals. Secondly, the architecture is
refined to meet non-functional requirements such as cohesion.

Pimentel et al. [48] present a method using i* models to produce architectural models
in Acme, a language employed to describe architectural models. Firstly, i* model is
transformed into a modular i* model employing a horizontal transformation. Secondly,
an architecture model is created from the i* modularized model employing a vertical
transformation. Architectural design models is made easier by the presence of actor and
dependency concepts.

Yu et al. [63] proposed an approach for keeping the variability that exists in the goal
model into the architecture. It presents a method for creating a component-connector view
from a goal model. A preliminary component-connector view is generated from a goal
model by creating an interface type for each goal. The interface name is directly derived
from the goal name. Goals refinements result in the implementation of components. If a
goal is And-decomposed, the component has as many requires interfaces as subgoals.
Component G {

provides IG;
requires IG1 , IG2;

}

If the goal is OR-decomposed, the interface type of subgoals are the interface type of
the parent goal.
Component G1 {

provides IG;
}

Component G2 {
provides IG;

}

12

Dependency Injection

Dependency Injection is a pattern that allows for wiring together software components
that were developed without the knowledge about each other. [25]

In OO languages normally one instantiates an object from a class using an operator
(new for Java) and a reference to such class. Interfaces create architecture independence.
Yet, even using interfaces we can can have static dependencies at some point, at the
implementation instantiation. The object that is instantiating (the client) is dependent
on the referenced class (the service).

So the use of the new operator lead to the following disadvantages:

• impose compile time dependency between two classes

• impose runtime dependency between two classes

In case of strongly typed languages, normally one will get an exception if the referenced
class is not present.

The basic idea of the Dependency Injection is to have a separate object, an assembler,
that wires together the components at runtime[25]. The client class refers to the service
using its interface (the service interface). The assembler can use alternative ways to the
new to instantiate an object so that the wiring between client objects and implementation
service classes could be postponed to runtime. Using reflexive platforms we can eliminate
the static dependency as the platform can find available interfaces implementations at
runtime. The assembler can use reflexive capabilities of the platform to discover the
available implementations and instantiate them.

In the context of component-based adaptation, decoupling client components from
service components would be specially useful, allowing runtime reasoning about what
implementation to choose.

13

Chapter 3

Filling Station Advisor

3.1 Motivating Example: The Filling Station Advisor
In this work, we use a filling station advisor application as a case study to exemplify

the application of our approach. Filling station here refers to a place where the car can
be refueled or recharged (gas station/petrol or charge station). The main goal of the
filling station advisor is to give directions to a driver about nearby filling stations that
can be reached conveniently. By convenient we mean that certain conditions for the
chosen station have to be fulfilled as well as user preferences are considered. Examples
of conditions are: fuel is compatible with the vehicle; station is located inside the vehicle
distance-to-empty. Examples of users preferences are: low price, low number of stops,
small deviation from an actual route, and station reputation.

In this work, we will focus on the challenge of handling the computing variability when
developing such application. To maximize the utility, the filling station advisor should
be able to run in a broad range of devices like smart-phones and car navigation systems.
Each of such devices can have a different set of resources that can be used to find a
convenient filling station according to the user preferences. For example, in a scenario
(s1) where a human driver is using the application with a smart phone, we could use the
GPS resource to track the position and the distance since the last refueling; the Internet
connection to find nearby filling stations; the device text-to-speech engine to create a
voice message to alert the driver when he is passing by a convenient filling station. In
another scenario (s2), in which the application is running in onboard computer of an
Internet connected self-driving car, we could use a more precise distance-to-empty data
from onboard computer, and replace the text-to-speech notification with a system call to
the vehicle self-driving system advising the next filling station stop.

The main goal of the application is refined in the following five goals, each one with
its own computing resources requirements:

Get Position: the system should identify the vehicle position using an available posi-
tioning system. To fulfil such goal, a GPS or cell antenna triangulation could be
used.

Assess Distance to Empty: the system should make use of the best available data
about the vehicle distance to empty. It could be: access a standard or proprietary
interface within the vehicle that provides the data directly as calculated by the

14

onboard computer; use an interface to access data about fuel level and mileage
average and calculate the distance to empty; use user input about tank capacity,
vehicle mileage, and keep track of distance traveled since the last time the tank was
felt completely.

Recover information about nearby filling stations: the system should recover in-
formation about nearby filling stations by: querying available services on the In-
ternet, if connection and servers are available. Otherwise, the system should use
previously cached results.

Decide on the most convenient filling station: Based on position, distance to empty
and nearby gas stations, the application should try maximize some user preference,
it being low cost, low number of stops, prioritize an automotive fuel brands or gas
station reputation.

Notify Driver: the application should decide when and how to notify the driver with
advices on when to stop in a filling station. The notification could be integrated
with an active navigation system if such an interface exists; otherwise it should
notify the driver using text-to-speech engine, a pre-recorded voice audio, or on-
screen notification.

Figure 3.1: CGM of the filling station advisor

The CGM presented in Figure 3.1 depicts the goals to be achieved by the Filling
Station Advisor. The root objective G0: Assist Vehicle Refueling is AND-refined into 5
others objectives G1, G2, G3, G4 and G5. In the Goal modeling semantics it means that
in order to achieve the root Goal G0, the agent should achieve the goals G1, G2, G3, G4
and G5. G1:Get Position has a means-end association with P1, P2 and P3. It means
that the goal G1 can be achieved by executing that plans. As it is an OR-refinements, it
means that G1 can be achieved by successfully executing any of the plans P1, P2 or P3.

15

This OR-refinement introduces a variability to the system, allowing it to achieve to root
goals in different ways. The contexts C1 in the association between P1 and G1 means
that the Plan P1 is executable if the context C1 holds. Context conditions on the example
are of the type "required context" [1]. These annotations means that a certain way for
achieving (executing) a goal (plan) is applicable if the condition holds for the context.

Figure 3.2: Variability in the Computing Environment

Figure 3.2 outlines the context space of the target computing environment. It contains
variability contexts that are expected to occur in 4 subgoals (G1-G3 and G5) of the
application.

16

Chapter 4

The GoalD Approach

Our approach to goal-driven automated deployment (GoalD) is divided into offline
and online activities. This differentiation is in line with established concepts on soft-
ware development processes for variability configuration and adaptive systems (e.g., [3]).
Offline activities are conducted by software engineers and result in development and pub-
lishing of software components. The online activities are autonomously executed in the
target environment and result in the deployment of the system. Figure 4.1 presents an
overview of GoalD.

Figure 4.1: Overview of the steps in GoalD

The offline activities are conducted by software engineers and include the capturing
of requirements and the development and publishing of software components to achieve
them. In GoalD, the offline activities consist of: (i) requirements modeling as goals
(Section 4.1.1), (ii) goal mapping to components (Section 4.1.2), and (iii) components
packaging into artifacts, which are then published to a components repository (Section
4.1.3).

The online activities concern the selection and application of the components that fit
the host environment. In GoalD, we aim to make this activity supported by automated
reasoning and potentially embedded in the software itself. The online activities in GoalD
include: (i) deployment planning, which includes automated reasoning and decision on
the artifacts suitable for the target computing environment so that goals depicted in the
offline activities are achieved (Section 4.2.1), and (ii) architecture deployment based on
artifacts fetching and binding (Section 4.2.2).

In the next sections we further explain each of the steps in detail.

17

4.1 Offline
Previously, goal-driven approaches were proposed for introducing variability at re-

quirements, context modeling, software behavior, and software architecture[5][63]. In our
methodology, we propose a systematic approach to support deployment variability, from
requirements to deployment. Deployment variability is important since not taking into
account the heterogeneity of a computing environment may lead to unnecessary or even
unsuited deployment of components. Such scenario would bring a negative impact to soft-
ware performance, or in some cases represent inconsistent deployment of functionalities
on the target device.

When developing a monolithic software, we implement in the same codebase all func-
tionalities, then all code is built and deployed together. In the Filling Station Advisor
example, if implementing it as a monolithic software, the logic to get the vehicle posi-
tion using GPS or antenna triangulation would stay in the same codebase and would
be deployed altogether in the target environment, even when it does not have antenna
triangulation capability.

In order to better cope with heterogeneity in the computing environment, we should
minimize the coupling between parts of the code that have dependencies on specific re-
sources in the environment. By encapsulating dependencies of specific resources into
components, it is possible to create variability at architecture level. By packaging the
components into different artifacts, it is possible to maintain such variability at deploy-
ment level. Such variability is useful as it allows the deployment of components only to
environment that have the required resources.

Regarding the Filling Station Advisor example, depicted in Figure 3.1, for goal G1 (Get
Position), components can be implemented providing the actual position of the device by
means of GPS or antenna triangulation. Such components can be packaged into different
artifacts that will only be deployed when the target environment has the appropriate
resources.

4.1.1 Goal Modelling

The modelling structure of GoalD is the Deployment Goal Model (DGM) a specialized
version of CGM with resource notion, that specifies restrictions to the applicability of
plans in relation to the deployment environment.

Definition 1 (Resource) A resource is a specific computing capability that could be
available in the computing environment and used in plans. A resource receives a label.

In GoalD, the context as a description of the target computing environment is con-
cretized as a set of resources. The semantics is that if the resource is present in the context,
the associated computing capability is available in the target computing environment. In
our example, the set [c1, c5, c8] is an example of context, representing that GPS (c1),
Internet connection (c5), and voice synthesizing (c8) are capabilities that should be avail-
able in the computing environment to have their related plans executed. For example,
the execution of plan P1:Get position using GPS requires GPS (c1) to be available.

Plans can require resources in order to be applicable, for example, P1: get position
using GPS requires the resource GPS to be available. The Deployment Goal Model

18

(DGM) extends a goal model with resource related restrictions to the applicability of
plans.

Henceforth, we will refer to DGM as our underlying goal model structure. We formally
define the DGM as follows:

Definition 2 (Deployment Goal Model) A Deployment Goal Model (DGM) is a tu-
ple (M, env_res, ctx_cond) where:

• M is a design-time goal model defined as a tuple (N, R), where N is a set of goals
and plans in the model, and R the corresponding set of relationship links between
the elements in N.

• env_res is a set of environment resources.

• ctx_cond: R → env_res associates a relationships in R with a resource or more in
env_res.

Context conditions are restrictions to the applicability of a plan and are used to solve
variability at deployment. A context condition (ctx_cond) is satisfied if its associated
environment resource is present in the context. For example, in a scenario with context
ctx=[c1, c5], the context condition c1 is satisfied. In Figure 3.1, the goal G1:Get position
has two alternatives to be achieved: by executing the plans P1:Get position using GPS
or P2:Get position using antenna triangulation. The plan P1 is applicable if the context
condition c1 (GPS) is satisfied, which is the case when GPS capability is available in the
target environment.

4.1.2 From Goals to Components Specification

Components are units of composition with contractually specified interfaces and ex-
plicit context dependencies [18]. Components and interfaces can be described using ar-
chitecture description languages (ADLs). Yu et al. [63] adapt the Darwin ADL [39] with
elements borrowed from one of its extensions, namely Koala [61]. They also provide a
method for relating goals with components, but without taking into account context con-
ditions. In GoalD, we define patterns to map CGM elements into architectural elements,
which are specified as ADL elements mostly borrowed from Yu et al. proposal [63].

The patterns present in Table 4.1 are used to map components based on the DGM of
the system. By mapping components we mean identifying which component should be
developed in order to reflect the DGM of the system. By using the proposed patterns, the
variability present in the DGM is kept at the architecture of the system. Theses patterns
are an extension of Yu et al.[63] patterns for the Goals-Component view. We extended Yu
et al.[63] patterns with context conditions. The presented patterns are described using
goals but they can be applied for goals and plans without distinction.

An AND-refinement results in a components specification that realizes the achieve-
ment of the parent goal by achieving all its subgoals. For an AND-refinement, we define
an AND-pattern applied as follows: (i) an interface specification for each node and (ii)
a component specification that provides the node interface and requires each interface
generated for each subnode of the AND-refinement.

19

Table 4.1: Contextual Goal Model to components - patterns

And-Refinement
Component CG {

provides IG;
requires

IGA , IGB;
}

Or-Refinement
Component CGA {

provides IG;
}
Component CGB {

provides IG;
}

Context-condition
Component CG {

provides IG;
condition C;

}

The latter component implements a strategy to achieve its provided goal. It coordi-
nates the more specific subgoals by calling them and passing one result as the input to
another, when applicable. As an example, applying AND-refinement patterns for goal G4
of the Filling Station Advisor application, will result in the specifications of the interface
and its respective component DecideMoreConvenient and DecideMoreConvenientImpl,
requiring both interfaces GetConstraints (from plan P12) and ChooseFillingStation
(from plan P13). The resulting specification follows:

interface DecideMoreConvenient {}
interface GetConstraints {}
interface ChooseFillingStation {}

component DecideMoreConvenientImpl
{

provides DecideMoreConvenient;
requires GetConstraints ,

ChooseFillingStation;
}

An OR-refinement should result in one interface specification and multiple components
specifications that provide the implementation of such an interface. In GoalD, the OR-
pattern is applied as follows: (i) an interface specification for the OR-refined node and
(ii) a component specification for each subnode providing the interface of the OR-refined
node. For example, in the Filling Station Advisor, applying the patterns for G1, P1 and

20

P2 will result in the specification of the interface GetPosition and of the two compo-
nents GetPositionUsingGPS and GetPositionUsingAntenna, both providing the inter-
face GetPosition. The resulting specification is as follows:

interface GetPosition {}
component GetPositionUsingGPS
{

provides GetPosition;
condition c1;

}
component GetPositionUsingAntenna
{

provides GetPosition;
condition c2;

}

Differently from AND-refinements, components derived from subgoals of OR-refinements
provide, i.e. implement, the interface derived from their parent node. It means that
each of such implementations represents an architecture variability. At the architecture
level, such variability reflects as a decoupling of their respective components, following
the proposed OR-pattern.

In CGM, AND/OR-refinements can be associated with context conditions present
in the CGM refinements. Such conditions are propagated to the body of the mapped
components as a condition element. This is the case in the OR-refinement of G1 via P1
and P2 where the plans are associated with the context conditions c1 and c2, respectively.
In particular, context conditions associated to OR-refinements restrict the applicability
of the alternative strategies to the availability of different resources in the computing
environment.

Using the association of an AND/OR-refinement and context conditions in the com-
ponent analysis, we extend the variability present in the CGM and its conditions to
the architecture of the system. For example, component GetPositionUsingGPS and
GetPositionUsingAntenna provide the same goal but have different context conditions
(c1 and c2). It means that we can achieve the same goal by deploying one of the two
component variants given that the resources are available.

By using the proposed patterns, the variability presented in the goal model is catered
for in the architecture of the system. Such variability in the architecture enables adapta-
tion to the heterogeneity in the target environment. Specified components and interfaces
should then be implemented as concrete components. For example, in the Java platform,
interfaces and components specified in an ADL could be implemented as Java interfaces
and classes.

4.1.3 Packaging Components into Artifacts

In the architecture level, goals in the CGM are contractually specified as interfaces,
which in turn, are implemented by components. From the deployment point of view,
components and interfaces represent deployment units and should be packaged as files for
distribution. We call them artifacts. To allow automated deployment, GoalD artifacts in-
clude packaged components and interfaces as well as metadata that describe the packaged
elements, which can be either components or interfaces, as depicted in Figure 4.2.

21

Figure 4.2: Artifact Structure

Artifacts metadata describe the artifact’s goals, dependencies, and context condi-
tions and are characterized by the following information: (i) name, (ii) conditions, (iii)
defines, (iv) implements and (v) depends. Firstly, name metadata uniquely identifies
an artifact. Secondly, conditions metadata describes the context conditions needed to
deploy an artifact to a given environment. Lastly, defines, implements, and depends
metadata are specified in terms of goals and used to analyze contractual responsibili-
ties between artifacts: defines declare that an artifact defines the contract for a set of
goals; implements declares that an artifact provides implementation for a set of goals
(i.e. implements the contract declared for the goal); depends declares that an artifact has
a dependency relationship towards artifacts that define and implement each of a set of
goals.

All components packaged together in an artifact will be delivered together. In order to
favor low coupling in the GoalD approach, components and interfaces should be packaged
in separated artifacts, so they can be delivered only to environments where they are
required and further used. In order to maximize the flexibility of systems following the
GoalD deployment approach, we package interfaces and components in two respective
artifact types: definition and implementation.

A definition artifact packages interfaces derived from the application of the patterns
presented in Section 4.1.2 and, via its metadata, it declares the set of goals it provides
a definition for. In a definition artifact, the metadata defines contains a list of goals it
provides definition for as packaged interfaces, i.e. contracts. For example, the interface
definition for goal G1 of the Filling Station Advisor, namely GetPosition, is packaged
in a definition artifact along with the following metadata:
name: GetPosition.def
defines: GetPosition

The implementation artifact type packages components, where the implements meta-
data contains the list of goals provided by the packaged components of the artifact, speci-
fied in accordance with those AND/OR-patterns in Section 4.1.2. The depends metadata
contains a list of goals that packaged components depends on. For example, the com-
ponent for goal G4 of the Filling Station Advisor, namely DecideMoreConvenient, is
packaged in an implementation artifact along with the following metadata:

22

name: DecideMoreConvenient.impl
implements: DecideMoreConvenient
depends:GetConstraints ,ChooseFillingStation;

Note that DecideMoreConvenient.impl depends on the definition and implemen-
tation of goals GetConstraints and ChooseFillingStation. Therefore, at deployment
time, components that defines and implements goals GetConstraints and ChooseFillingStation
should be included in order to successfully deploy DecideMoreConvenient.impl artifact.

Finally, the condition metadata of implementation artifacts reflects the context con-
ditions of packaged components. For example, in the Filling Station Advisor, the compo-
nents GetPositionUsingGPS and GetPositionUsingAntenna are packaged into separate
artifacts with the following metadata:
name: GetPositionUsingGPS.impl
implements: GetPosition
conditions: c1

name: GetPositionUsingAntenna.impl
implements: GetPosition
conditions: c2

GetPositionUsingGPS and GetPositionUsingAntenna are artifacts that implement
the same goal GetPosition and can be deployed in different contexts, keeping at deploy-
ment level the variability introduced by the CGM as well as the decoupling following the
patterns applied in previous Section 4.1.2.

Artifacts forms dependency trees. Figure 4.3 depicts the dependency relationship
between artifacts. A1 is a root interface and have 3 dependencies, that are provides by
A2, A3 and A4. A2 and A3 have one common dependency, provided by A5. A5 and A6
have no dependencies.

Figure 4.3: Dependency graph

After components and their corresponding metadata information are packaged accord-
ingly into artifacts, they are registered in a repository so that they can be distributed to
the target environment. In the registration process, an artifact is uploaded to the reposi-
tory, its metadata is processed and registered in the repository database, where they can
be queried in the next step of GoalD: the deployment planning.

23

4.1.4 Development Process

In previous subsections we proposed techniques to support the design of software with
variability from requirements to deployment. In this section we present activities to apply
such techniques in a software development process.

Roles

The proposed process considers three roles: users, requirements engineers and software
architects. Figure 4.4 summarizes the collaboration between the roles.

Figure 4.4: Roles collaboration

User This role has access to a particular computing environment and wants to achieve
some goals there.

Requirements Engineer Is responsible for translating users goals to a goal model. Also
is responsible for analyzing the different contexts that the system is meant to operate
and how they affect the goals, defining the DGM of the system.

Architect Projects the software architecture so as to permit variability of deployment.
From the point of view of dynamic heterogeneous computing environments, the
focus is to create interfaces for components that can allow for goal achievements
using different computing resources.

4.1.5 Activities

Figure 4.5 describes the development process activities.

Goal Modeling

This phase is coordinated by a requirements engineer with the participation of a do-
main specialist, possibly the user. In this activity a goal model is created. At the goal

24

Figure 4.5: Deployment Process Activities

model it is identified the solution space, what the system should achieve, and possible
strategies to achieve the goals. Also, the goal model creates a common language between
users and software engineers. In this activity, relevant resources should be identified and
the goal model should be annotated with context conditions related to the computing
environment using the formalism described in Section 4.1.1.

Component Analysis

The architect is the responsible for this activity. It receives as input a DGM. Then,
variability points, components and its interfaces are identified. Component interfaces are
created following the guidelines described in Section 4.1.2.

Component Development

The architect is the responsible for this activity. Component development includes
the coding, build and test of software components. Then, components are package into
artifacts and put in the repository as described in Section 4.1.3.

4.2 Online
In the online part of the approach, the artifacts present in the repository are au-

tonomously deployed to the target computing environment.
Figure 4.6 depicts the online activities. In the first step, a user interested in using

a computing environment to achieve a set of goals submits to such environment which
goals it wants to achieve in the form of a deployment request. In the second step, the
target environment realizes a deploymeng planning by analyzing the available computing
resources and artifacts present in the repository, then generating a deployment plan: a
selection of artifacts that can allow for the goals achievement in the available computing
environment. Finally, the deployment is executed by fetching the selected artifacts from
the repositories and binding them.

25

Figure 4.6: Goald Autonomic Deployment

After components and their corresponding metadata information are packaged accord-
ingly into artifacts, they are registered in a repository so that they can be distributed to
the target environment. In the registration process, an artifact is uploaded to the reposi-
tory, its metadata is processed and registered in the repository database, where they can
be queried in the next step of GoalD: the deployment planning.

4.2.1 Automated Deployment Planning

In the online part of the approach, the focus is on the automated deployment planning
of the artifacts present in the components repository. In order to carry out such planning,
the stakeholders explicitly define a set of goals to be achieved in a computing environment
as a deployment request. Then, the target environment realizes a deployment planning by
analyzing the available computing resources and artifacts present in the repository. The
deployment plan consists of a selection of artifacts that can allow for the goals achievement
relying on the available computing environment. Finally, the deployment is executed by
fetching the selected artifacts from the repositories and binding them.

Prior to presenting GoalD’s approach to automated deployment planning, we present
GoalD’s deployment metamodel in the following Section 4.2.1 as the underlying structure
that defines major conceptual elements of GoalD’s automated deployment. Then we
present the algorithm in Section 4.2.1 to automate the deployment planning.

Metamodel

The metamodel of GoalD consists of six major elements: (1)Goal, (2)Artifact, (3)Agent,
(4)Repository, (5)Deployment Request, and (6)Deployment Plan. Figure 4.7 presents the
GoalD metamodel.

Artifact is the central entity at deployment level. As described in Section 4.1.3, ar-
tifacts have conditions, defines, implements, and depends which create inter-relations

26

amongst artifacts, so that an artifact that has a goal dependency is dependent on an
artifact that provides definition and implementation for such a goal. An artifact is de-
ployable if all its context conditions and dependencies are satisfiable. Goals are achievable
if their artifacts are deployable as part of a deployment plan to achieve such goals. The
Agent can accept deployment requests, an action that should trigger the deployment plan-
ning. An agent knows the repository where it looks for artifacts. A repository has a set of
artifacts that it can be queried about by the queryForArtifacts method, which receives
a goal as argument and returns all artifacts in the repository providing that goal. An
agent can verify conditions of an artifact by evoking the isSatisfied method for it. The
Deployment Request is a set of goals that an external entity sends to an agent, requesting
it to plan a deployment. Agent ’s doPlanDeployment method returns a Deployment Plan,
which is a set of artifacts that provides the goals specified in the Deployment Request.
Finally, a Deployment Plan is composed of a set of artifacts that realizes a set of goals in a

Figure 4.7: The GoalD Deployment metamodel

certain computing environment. The plan of such deployment is devised by the algorithm
further presented in the next section.

Planning Algorithm

To come up with a deployment plan for a given deployment request and context, we
present Algorithm 1. It implements the Agent ’s doPlanDeployment method of the GoalD

27

metamodel.
Algorithm 1 works as follows: it receives a deployment request as a parameter, which

contains a list of goals. For each goal in the list, it queries the repository for an artifact
that provides definition of the goal (line 4). If no definition is found, the algorithm returns
NULL (line 6). Otherwise, the returned definition is included in a sub-plan (line 9) and
the repository in queried for implementations (line 11). Next, the repository returns a
list of artifacts. For each artifact, the algorithm looks for a sub-plan for such an artifact
(lines 12-30). First, the context conditions are verified (line 13). If the context is satisfied
(line 14), a new plan is created with the artifact (lines 15-16). If the list of dependencies
of the artifact is empty (line 17), the new plan is added to the sub-plan (line 18). Else, if
the artifact has dependencies, the algorithm is recursively called for these dependencies.
If the result of the recursive call is not NULL (line 23), the resulting plan is added to the
new plan and included into the sub-plan (lines 24-25). In both cases that new plan is
added to a sub-plan, the look for a deployment plan that satisfies the selected goal is over
and the inner for loop is halted (lines 19 and 26) and then the sub-plan is added to the
resulting plan (line 32). Otherwise, if the conditions evaluation (line 13) returns FALSE
or the recursive call returns NULL, the artifact can not be deployed. The loops continue
for the other artifacts. If after all tries the sub-plan is EMPTY (line 34), the deployment
for the selected goal is not possible, and the algorithm returns NULL (line 35). Note that
the algorithm will return NULL if for any of the goals in the request it is not possible to
come up with a plan. Otherwise, the algorithm will return a valid plan.

We should note that deployment plan is valid for a given context if: (i) for each artifact
in the plan, all context conditions hold, (ii) for each dependency in a plan, there is at least
one component within the plan that defines and one that implements the dependency. A
deployment plan is complete if, for each goal in the request, there is at least one fulfilling
artifact in the deployment plan. A deployment plan satisfies a deployment request if it is
valid, and complete.

Being so, we can verify if a deployment plan satisfies a deployment request by executing
the following steps that verify such properties: (i) check if for all selected artifacts, all
context conditions are met; (ii) check if for all selected artifacts, the dependencies are
within the deployment plan; (iii) check if for all goals in the deployment request there is
at least one artifact that declares each intended goal and one that provides such goal.

• Check if for all selected artifacts, all context conditions are met.

• Check if for all selected artifacts, the dependencies are within the deployment plan.

• Check if for all goals in the deployment request there is at least one artifact that
declares each intended goal and one that provides such goal.

4.2.2 Deployment Execution

Once the deployment plan has been devised in GoalD, the deployment execution will
become ready to take place. The execution involves (i) fetching the artifacts present
in the deployment plan from the repository to the target environment, and (ii) binding
the components present into such artifacts, creating the application runtime architecture.
The binding can then use alternative ways to bind between client objects to their re-
quested implementation service at runtime. Using reflexive platforms allows eliminating

28

Input: DeploymentRequest request
Result: DeploymentPlan plan

1 var resultingPlan ← new DeploymentPlan()
2 foreach Goal selectedGoal in request.goals do
3 var subPlan ← new DeploymentPlan()
4 var definition ← repository.

queryForDefinition(selectedGoal)
5 if definition == NULL then
6 return NULL
7 end
8 else
9 subPlan.add(definition);

10 end
11 var artifacts ← repository.

queryForImplementation(selectedGoal)
12 foreach Artifact artifact in artifacts do
13 var contextSatisfaction ←

isSatisfied(artifact.conditions)
14 if contextSatisfaction then
15 var plan ← new DeploymentPlan ()
16 plan.add(artifact)
17 if artifact.depends == EMPTY then
18 subPlan.add(plan)
19 break
20 end
21 else
22 var depPlan ← doPlanDeployment (artifact.depends)
23 if depPlan != NULL then
24 plan.add(depPlan)
25 subPlan.add(plan)
26 break
27 end
28 end
29 end
30 end
31 if subPlan != EMPTY then
32 resultingPlan.add(subPlan)
33 end
34 else
35 return NULL
36 end
37 end
38 return resultingPlan

Algorithm 1: doPlanDeployment (Goals list)

29

static dependencies of components as available interface implementations are assembled
at runtime.

To avoid static dependency between component implementations, the Dependency
Injection[25] design pattern can be used. Dependency Injection is a pattern that allows
for wiring together software components that were developed without the knowledge about
each other. [25] The basic idea of the Dependency Injection is to have a separate object,
an assembler, that wires together the components at runtime[25]. The client class refers
to the service using its interface (the service interface). The assembler can use alterna-
tive ways to the new to instantiate an object so that the wiring between client objects
and implementation service classes could be postponed to runtime. Using reflexive plat-
forms we can eliminate the static dependency as the platform can find available interfaces
implementations at runtime.

Figure 4.8: Representation of OSGi bundles lifecycle

In order to fetch and bind the components, we can make use of OSGi platform[59].
OSGi is a Java centric platform that allows dynamic fetching, binding and unbinding of
components, usually named bundles. Figure 4.8 illustrates the lifecycle of bundles in the
OSGi platform[59]. Nodes represent the states of bundles and edges represent commands
that can be issued to the platform. The lifecycle begins with an install command. This
command instructs the platform to fetch the component from a repository. When the
component is already in the target environment, it is INSTALLED. Then, the platform
starts looking for the bundle dependencies. If all dependencies are INSTALLED the
bundle is moved to the RESOLVED state. RESOLVED bundles can be started. In
the starting process the component is wired to its dependencies. When the starting
process is concluded, the bundle gets ACTIVE. The lifecycle of the bundle can come to
an end by sequence of commands stop and uninstall. A bundle in states INSTALLED and
RESOLVED can be updated to a newer version by the command update. The integration
to such approaches is seamless in our GoalD approach. Since the implementation of such
integration is platform specific, it is left for a future stage of our work.

30

Chapter 5

Evaluation

In this chapter, we focus on the evaluation of the proposed approach. To do so we
used the Goal-Question-Metric (GQM) evaluation methodology [10].

Our first evaluation goal G1 is to assess the feasibility of the approach. To do so,
we need to evaluate if a software architect/developer can follow the proposed patterns
to refine a goal model into components and artifacts. Also, we need to evaluate if the
proposed planning algorithm is capable of autonomously creating a reliable deployment
plan. Such an evaluation required the definition of the following questions and metrics:

• Q1.1: Are the offline activities of GoalD feasible to map artifacts from the CGM of
the Filling Station Advisor case study?

– Accurately maps goals, components and artifacts for the Filling Station Advisor
case study.

• Q1.2: How long would the deployment plan algorithm take to deliver a result?

– Time to produce a deployment plan.

• Q1.3: How reliable would a plan provided by the algorithm be?

– Percentage of valid plan.

Our second goal G2 aims at providing a more comprehensible scalability evaluation
of GoalD. The time required for planning the deployment could restrict the applicability
of the approach. Some scenarios can require a timely response. Which could be the case
for self-adaptable systems using adaptation at deployment to respond to changes in the
computing environment or in user goals.

In such case, the number of artifacts needed to satisfy the deployment request as well
as the number of variants of each artifact present in the repository could be high, putting
pressure on the time needed to come up with a deployment plan. Hence, we define the
following questions and metrics:

• Q2.1: How does the algorithm scale over the number of artifacts in the deployment
plan?

– M2.1: The time consumed to come up with a deployment plan.

31

In the context of heterogeneity, we can have various artifacts in the repository that
provide the same goal but with different context conditions. We named the number
of artifacts present in the repository that provide the same goal as variability level.
The variability level can affect the scalability of the planning because it requires
the algorithm to verify alternative dependency trees. This task can be computing
intensive.

• Q2.2: How does the algorithm scale over the variability level of the repository?

– M2.2: The time consumed to come up with a deployment plan, where each
variability level accounts for a distinctive set of context conditions.

The experiments were conducted using a virtual machine in the Azure Cloud. A
F1 instance, with 2.4 GHz Intel Xeon R© E5-2673 v3 (Haswell) processor, 2GB DDR3
1600MHz memory, and Linux (Kernel 4.4.0-47-generic) was used. OpenJDK(1.9 64bits-
build 9) was used to build and run the project. The experiments to evaluate the algorithm
correctness were implemented as automated tests under Java’s JUnit framework. The code
for the execution of the evaluation, the data obtained and scripts used to analyze it are
available on a public repository1.

5.1 Feasibility Assessment
We validated the feasibility of GoalD based on the Filling Station Advisor example.
Q1.1, mapping components and artifacts: We applied the patterns described in

Section 4.1.2 to the case study specified in Figure 3.1. Then we defined the artifacts
that would package that components following the approach proposed in Section 4.1.3.
We then mapped 21 different artifacts.

Q1.2 and Q1.3: Planning time and Reliability: We instantiated an artifact repository
with the mapped artifacts. We defined the following seven deployment scenarios with
different contexts for the evaluation: (S1) simple phone with ODB2, (S2) smartphone
with ODB2, (S3) smartphone without car connection, (S4) dash computer with GPS
and no navigation system integration, and (S5) dash computer, connected, with GPS
and navigation system integration. Scenarios (S6) dash computer without GPS and (S7)
navigation system without Internet connection or available storage are scenarios for which
there is no valid deployment plan. Figure 5.1 summarizes the computing heterogeneity
that affects the system and the evaluation scenarios.

Q1.2: How long would the algorithm take to come up with a deployment plan? In each
scenario, the time spent by the algorithm was measured. We executed the planning 100
times for each scenario. Table 5.1 shows the scenarios, the context, average time spent
for planning in each scenario, in milliseconds together with standard deviation.

Q1.3: How reliable would a plan provided by the algorithm be? Test cases were cre-
ated for each scenario (S1-S7). To validate the algorithm’s correctness, we verified the
generated plans in each test case, asserting if the expected artifacts are in the resulting
plan. For scenarios S1-S5, the planning resulted in valid plans, with the correct artifacts.

1Evaluation assets repository https://github.com/lesunb/goald-evaluation/ last accessed on
January 10th, 2017

32

https://github.com/lesunb/goald-evaluation/

Figure 5.1: Computing Environment Evaluation Scenarios

For scenarios S6 and S7, the algorithm returned NULL as expected, since in such scenarios
we tested the case where there was at least one artifact in the repository not present for
certain context conditions.

Table 5.1: Time to come up with a plan
ScenarioContext Condi-

tion
Time
(ms)

Std

S1 c2, c4, c6, c9 12.28
ms

30.69

S2 c1, c3, c5, c8 6.24 ms 16.22
S3 c1, c5, c8 9.27 ms 20.62
S4 c1, c3, c6, c10 9.01 ms 20.94
S5 c1, c3, c5, c7 6.83 ms 17.18
S6 c3, c6, c8 8.74 ms 18.76
S7 c1, c3, c7 6.44 ms 17.51

Figure 5.2: Passing Tests

33

5.2 Scalability Assessment
Since the Filling Station Advisor has a limited size and does not allow for controlled

experiments, we further evaluated our approach for scalability over the time to come up
with a deployment plan. A repository as big as 140,000 artifacts was randomly generated.
Out of the artifacts generated, different dependencies level of such artifacts was progra-
matically configured for up until 3,000 hierarchical pathways to goals fulfillment. To
empirically evaluate the impact of the various hierarchical levels on the deployment plan-
ning time, we executed 100 deployment planning requests and repeated each experiment
10 times.

Q2.1: How does the algorithm scale over the number of artifacts in the deployment
plan? We executed 100 deployment planning requests, with different levels of complexity,
where the generated plans were composed of artifacts summing from 40 to 3,100 artifacts.
The experiment was repeated 10 times and the observed time vs plan size is shown in a
boxplot graph in Figure 5.3.

0 217 465 713 961 1240 1550 1860 2170 2480 2790 3100

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

Size

T
im

e
(m

s
)

Figure 5.3: Scalability over the size of plan

Q2.2: How does the algorithm scale over the variability level on the repository? By
answering this question we aim at evaluating how GoalD performs the planning for het-

34

erogeneous computing environments. For this purpose, we conducted the experiment for
different levels of variability in the repository, from 1 to 10. By variability level we mean
the number of different artifacts that implement the same goal, considering that each vari-
ability accounts for a distinctive set of context conditions. For example, for a variability
level 2, there are two different artifacts that implement the same goal, where each artifact
runs on a distinctive context condition.

0

1000

2000

3000

4000

0 1000 2000 3000

Plan Size

A
ve

ra
g
e
 T

im
e
(m

s
)

Variability

10

9

8

7

6

5

4

3

2

1

Figure 5.4: Scalability over variability level

The experiment was also repeated 10 times. We represent the average of the measures
obtained for each experiment in Figure 5.4, where each curve represents a different level
of variability. Results show that, in the worst case scenario where a deployment plan of
3,000 artifacts, with 10 alternative implementations for each artifact, it took less than
5 seconds to be planned by GoalD. Based on such results, the time spent to plan the
deployment should not be an overhead to the deployment of the artifacts to the target
environment, even on highly heterogeneous computing environments.

5.3 Threats to validity
We recognize some threats to the validity of the evaluation:
Construct validity: We used GQM methodology to proper design our experiments.

We did an assumption that goal can be traced to implemented component and so the
artifacts. The mapping of goals and plans to their concrete counterparts in the system
architecture is a well-known problem of the requirements engineering community.

Internal validity: The suitability of GoalD for deployment of Filling Station Advisor
has been presented. The deployment planning result for the scenarios was validated. In
regard to scalability, we executed each experiment in a single resource and evaluated each
time a single controlled variable.

35

External validity: The scalability was evaluated for a randomly generated repository.
For other repositories, the chains of dependencies could have different properties, which
could change how the planning algorithm scale over the plan size. Another threat is that
the scalability evaluation was conducted in a cloud environment on a reasonably powerful
machine. In other scenarios, we could have a much more limited machine in relation
to processor power, memory size, network bandwidth, and battery. In that case, the
planning could take longer.

36

Chapter 6

Related Work

In this section we discuss most related work whether they are goal oriented, handle
heterogeneity, and support automated deployment.

Angelopoulos et al. [5] present an approach to handle variability at three different
dimensions: goals, behavior, and architecture. Variability can occur at the goal level as
an OR-refinement or context selection; at the behavior level as different plans flows; and at
the architecture level addressing the variability of components and their implementations.
GoalD can augment this approach by handling variability as a deployment problem and
explicitly captures and caters for the different settings of the hosting environment.

Ali et al.[2] explore the optimization of the deployment for a given context variability
space. Contextual Goal Models (CGM) are used to represent aspects of the environment
elicited because of their relation to the solutions presented in the goal model. GoalD puts
a primary focus on the context related to the computing environment and enriches the
notion of resources and the mapping between goal achievement alternatives and software
artifacts.

The Dynamic Software Product Line (DSPL) paradigm is motivated by a rapid pro-
duction of software from a set of reusable assets to fit variability in users requirements
and system environments. Bencomo et al. [12] use an SPL approach to adaptation by
associating an architecture variability model with an environment variability model. Mi-
zouni et al. [43] use a feature model associated with context requirements. The use of
DSPL and its associated approaches is mainly focused on runtime adaptation where soft-
ware systems switch amongst already implemented and deployed artifacts configurations.
GoalD handles the step preceding that, i.e. the deployment stage and its decisions.

Leite et al. [37] propose an approach for automatic deployment on inter-cloud envi-
ronments. It relies on abstract and concrete features models and constraint satisfaction
problem solver to create a computing environment using resources distributed across var-
ious clouds. The abstract feature model is tailored to the variability of resources present
in an inter-cloud environment, such as variability in processing power, memory, storage,
and network. Different in GoalD the metamodel has no limit concerning the type of the
resource. In Leite et al.’s the deployment adaptation is executed by solving variabilities in
the deployment scripts. In GoalD we avoid the need for deployment scripts by putting the
deployment variability at components level and providing a method to solve the variability
autonomously.

37

Gunalp et al. [27] present an approach for automated deployment, which is the closest
in nature to GoalD. In their approach, a specialist has to specify deployment a priori in
terms of resources and their desired target states. They use an operational model to drive
the adaptation: implemented strategies to move monitored resources to the target states.
Differently, GoalD tackles the problem at the level of goals enabling an earlier treatment.

38

Chapter 7

Conclusion

7.1 Conclusion and future work
In this work, we presented GoalD, a novel approach to tackle deployment in highly het-

erogeneous computing environments. GoalD allows systems deployment to heterogeneous
environments, partially unknown at design-time, without requiring a system administra-
tor. We expect GoalD to be a suitable approach for scenarios that require an autonomous
system, running on a heterogeneous environment, to interact with users and the physical
world. This systems should use different resources to sense and actuate in the surround-
ings. This could be the case, for example, in a assisted living scenario, where the system
could make use of different sensors to detect and emergency situation and also, could
make use of different actuators to avoid further damages and call for help.

GoalD consists in support to design a system with the needed variability to handle the
heterogeneity, from requirements, through architecture, and deployment. And in online
support for solving the variability at deployment time, finding the correct set of artifacts
that allows the user achieve its goals in a given target computing environment. GoalD
uses a CGM to specify variability at requirements. Further, patterns are used to map
components from the CGM and keep the variability at architecture level and deployment
level. The novelty of our approach is that we provide a systematic way to design a system
with focus in variability from requirements to deployment.

Following our approach the system implemented reflects the goal-model, keeping the
goals traceable to components and artifacts. Via such traceability the adequate set of
artifacts is autonomously chosen achieving the target software goal in a given computing
environment. Since goal models are highly abstract models, using it to drive the system
adaptation, we expect to achieve a higher level of flexibility transcending the lower-level
abstraction computing layers. In addition, by using context-goal models, we can handle
computing resources variability. By using CGM for deployment, rework is avoided, as
CGM is a model already developed in the requirements elicitation stage.

In a preliminary evaluation, we applied the GoalD approach in a case study. Further,
we evaluated the scalability of the algorithm when planning in a large scenario, using
a randomly generated repository and deployment requests. The results show that the
algorithm is capable of coming up with a plan, in a reasonably large scenario in few
seconds.

39

GoalD’s goal model is based on Tropos syntax, which tree-like style reduce the com-
plexity of analysis but also can be less expressive them others. The lack of expressiveness
can lead to difficult at the design of the system. Which could limit the applicability of
GoalD as it depends on the goal model to drive the design of the system at architecture
and deployment levels. In future work, richer goal modeling syntaxes can be adopted to
extend GoalD.

This work fits in our long-term vision of a method for design systems with variability
at all stages of system design, from requirements to deployment. And a self-adaptable
platform that can adapt the software deployment in order to make high-level user goals
achievable. This work fits in this vision by providing the knowledge and planning part in
a MAPE-K[32] architecture. We should note that this work aims at identifying a single
valid deployment plan, as long as it exists. However, it is out of scope of our current
work to find the best valid plan in case multiple valid plans exist. In future work, a CSP
approach might integrate our deployment plan algorithm to address such issue.

For future work, we plan to: (1) extend GoalD with deployment planning for multiple
nodes by including delegation as another form of variability; (2) evolve GoalD deployment
planning in a self-adaptive approach for deployment, based on MAPE-K, with addition of
monitoring, analyzing, and executing capabilities; (3) evaluate GoalD in an open adapta-
tion scenario with multiple developers providing components to the environment; and (4)
evaluate self-adaptation at deployment level as a method of fault-tolerance that adapts
the system deployment in response to failures in resources.

40

Referências

[1] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. A goal-based framework for contex-
tual requirements modeling and analysis. RE Journal, 15(4):439–458, July 2010. 3,
9, 16

[2] Raian Ali, Fabiano Dalpiaz, and Paolo Giorgini. Requirements-driven Deployment.
In Software and Systems Modeling, volume 13, pages 433–456, February 2014. 37

[3] Jesper Andersson, Luciano Baresi, Nelly Bencomo, Rogério de Lemos, Alessandra
Gorla, Paola Inverardi, and Thomas Vogel. Software Engineering Processes for Self-
Adaptive Systems. In Rogério de Lemos, Holger Giese, Hausi A. Müller, and Mary
Shaw, editors, Software Engineering for Self-Adaptive Systems II, number 7475 in
LNCS, pages 51–75. Springer Berlin Heidelberg, 2013. vi, 7, 17

[4] Andersson, Jesper. A deployment system for pervasive computing. In International
Conference on Software Maintenance, pages 262–270, 2000. 1

[5] Konstantinos Angelopoulos, Vítor E. Silva Souza, and John Mylopoulos. Capturing
Variability in Adaptation Spaces: A Three-Peaks Approach. In ER, volume 9381 of
LNCS, pages 384–398. Springer, 2015. 2, 18, 37

[6] Osamu Aoki. Debian Manual Chapter 2. Debian package management, 2016. 10

[7] Apache. Apache Maven Project, 2016. 10

[8] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of Things: A
Survey. Computer Networks, 54(15):2787–2805, October 2010. 1

[9] Soon K. Bang, Sam Chung, Young Choh, and Marc Dupuis. A Grounded Theory
Analysis of Modern Web Applications: Knowledge, Skills, and Abilities for DevOps.
In Proceedings of the 2Nd Annual Conference on Research in Information Technology,
RIIT ’13, pages 61–62, New York, NY, USA, 2013. ACM. 10

[10] Victor R. Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal Question
Metric Approach. In Encyclopedia of Software Engineering. Wiley, 1994. 31

[11] Genevieve Bell and Paul Dourish. Yesterday’s Tomorrows: Notes on Ubiquitous
Computing’s Dominant Vision. Personal Ubiquitous Comput., 11(2):133–143, Jan-
uary 2007. 1

41

[12] Nelly Bencomo, Peter Sawyer, Gordon S. Blair, and Paul Grace. Dynamically Adap-
tive Systems are Product Lines too: Using Model-Driven Techniques to Capture
Dynamic Variability of Adaptive Systems. In SPLC, pages 23–32, 2008. 10, 37

[13] Nelly Bencomo, Jon Whittle, Pete Sawyer, Anthony Finkelstein, and Emmanuel
Letier. Requirements reflection: requirements as runtime entities. In Proceedings of
the 32nd ACM/IEEE International Conference on Software Engineering-Volume 2,
pages 199–202. ACM, 2010. 6

[14] Alexander Borgida, Fabiano Dalpiaz, Jennifer Horkoff, and John Mylopoulos. Re-
quirements Models for Design- and Runtime: A Position Paper. In Proceedings of the
5th International Workshop on Modeling in Software Engineering, MiSE ’13, pages
62–68, Piscataway, NJ, USA, 2013. IEEE Press. 8

[15] Paolo Bresciani, Anna Perini, Paolo Giorgini, Fausto Giunchiglia, and John Mylopou-
los. Tropos: An Agent-Oriented Software Development Methodology. Autonomous
Agents and Multi-Agent Systems, 8(3):203–236, May 2004. 3, 8

[16] Antonio Carzaniga, Alfonso Fuggetta, Richard S. Hall, Dennis Heimbigner, André
van der Hoek, and Alexander L. Wolf. A Characterization Framework for Software
Deployment Technologies. Technical report, 1998. 1, 9

[17] Chocolatey. Chocolatey - The package manager for Windows, 2016. 10

[18] Ivica Crnkovic and Magnus Larsson. Component-based software engineering-new
paradigm of software development. Invited talk and report, MIPRO, pages 523–524,
2001. 19

[19] Ivica Crnkovic, Judith Stafford, and Clemens Szyperski. Software Components be-
yond Programming: From Routines to Services. IEEE Software, 28(3):22–26, 2011.
11

[20] F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos. Runtime goal models:
Keynote. In 2013 IEEE Seventh International Conference on Research Challenges in
Information Science (RCIS), pages 1–11, May 2013. 8, 9

[21] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. Science of Computer Programming, 20(1–2):3–50, April 1993. 3,
12

[22] João Ferreira, João Leitão, and Luís Rodrigues. A-OSGi: A Framework to Support
the Construction of Autonomic OSGi-based Applications. Int. J. Auton. Adapt.
Commun. Syst., 5(3):292–310, July 2012. 12

[23] Alessandro Ferreira Leite. A user centered and autonomic multi-cloud architecture
for high performance computing applications. PhD thesis, Paris 11, 2014. 10

[24] Anthony Finkelstein and Andrea Savigni. A framework for requirements engineering
for context-aware services. 2001. vi, 5

42

[25] Martin Fowler. Inversion of Control Containers and the Dependency Injection pat-
tern, 2004. 13, 30

[26] D. Garlan, Shang-Wen Cheng, An-Cheng Huang, B. Schmerl, and P. Steenkiste.
Rainbow: architecture-based self-adaptation with reusable infrastructure. Computer,
37(10):46–54, October 2004. 11

[27] Ozan Gunalp, Clement Escoffier, and Philippe Lalanda. Rondo A Tool Suite for
Continuous Deployment in Dynamic Environments. In International Conference on
Services Computing, pages 720–727. IEEE , June 2015. 10, 38

[28] George T. Heineman and William T. Councill, editors. Component-based Software
Engineering: Putting the Pieces Together. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001. 10, 11

[29] Homebrew. Homebrew, The missing package manager for macOS, 2016. 10

[30] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st
edition, 2010. 9, 10

[31] Arvinder Kaur and Kulvinder Singh Mann. Component Based Software Engineering.
International Journal of Computer Applications, 2(1):105–108, May 2010. Published
By Foundation of Computer Science. 11

[32] J.O. Kephart and D.M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, January 2003. 6, 7, 40

[33] Cornel Klein, Reiner Schmid, Christian Leuxner, Wassiou Sitou, and Bernd Span-
felner. A Survey of Context Adaptation in Autonomic Computing. pages 106–111.
IEEE, March 2008. 6

[34] Thomas Kleinberger, Martin Becker, Eric Ras, Andreas Holzinger, and Paul Müller.
Ambient Intelligence in Assisted Living: Enable Elderly People to Handle Future In-
terfaces. In Proc. of the 4th International Conference on Universal Access in Human-
computer Interaction: Ambient Interaction, pages 103–112. Springer, 2007. 1

[35] Jeff Kramer and Jeff Magee. Self-managed systems: an architectural challenge. In
Future of Software Engineering, 2007. FOSE’07, pages 259–268. IEEE, 2007. 2, 12

[36] Robbert Laddaga. Self Adaptive Software SOL BAA 98 12. Technical report, 1997.
6

[37] Alessandro Ferreira Leite, Vander Alves, Genaína Nunes Rodrigues, Claude Tadonki,
Christine Eisenbeis, and Alba Cristina Magalhaes Alves de Melo. Automating Re-
source Selection and Configuration in Inter-clouds through a Software Product Line
Method. In 8th IEEE International Conference on Cloud Computing, CLOUD 2015,
New York City, NY, USA, June 27 - July 2, 2015, pages 726–733, 2015. 37

[38] Pattie Maes. Concepts and experiments in computational reflection. In ACM Sigplan
Notices, volume 22, pages 147–155. ACM, 1987. 6

43

[39] Jeff Magee and Jeff Kramer. Dynamic structure in software architectures. In ACM
SIGSOFT Software Engineering Notes, volume 21, pages 3–14. ACM, 1996. 19

[40] Nenad Medvidovic and Richard N. Taylor. A classification and comparison frame-
work for software architecture description languages. Software Engineering, IEEE
Transactions on, 26(1):70–93, 2000. 11

[41] Danilo Mendonça. Dependability Verification for Contextual/Runtime Goal Mod-
elling, 2015. 9

[42] Daniele Miorandi, Sabrina Sicari, Francesco De Pellegrini, and Imrich Chlamtac.
Internet of things: Vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, September 2012. 1

[43] Rabeb Mizouni, Mohammad Abu Matar, Zaid Al Mahmoud, Salwa Alzahmi, and
Aziz Salah. A framework for context-aware self-adaptive mobile applications SPL.
Expert Systems with Applications, 41(16):7549–7564, November 2014. 37

[44] Mirko Morandini, Fabiano Dalpiaz, Cu Duy Nguyen, and Alberto Siena. The Tropos
Software Engineering Methodology. In Massimo Cossentino, Vincent Hilaire, Ambra
Molesini, and Valeria Seidita, editors, Handbook on Agent-Oriented Design Processes,
pages 463–490. Springer Berlin Heidelberg, 2014. 8

[45] Mirko Morandini, Frédéric Migeon, Marie Pierre Gleizes, Christine Maurel, Loris
Penserini, and Anna Perini. A Goal-Oriented Approach for Modelling Self-organising
MAS. In ESAW, volume 5881 of LNCS, pages 33–48. Springer, 2009. 8

[46] Mirko Morandini, Loris Penserini, and Anna Perini. Towards Goal-oriented Devel-
opment of Self-adaptive Systems. In Proceedings of the 2008 International Workshop
on Software Engineering for Adaptive and Self-managing Systems, SEAMS ’08, pages
9–16, New York, NY, USA, 2008. ACM. 2

[47] Loris Penserini, Anna Perini, Angelo Susi, Mirko Morandini, and John Mylopoulos.
A Design Framework for Generating BDI-agents from Goal Models. In Proceedings
of the 6th International Joint Conference on Autonomous Agents and Multiagent
Systems, AAMAS ’07, pages 149:1–149:3, New York, NY, USA, 2007. ACM. 2

[48] João Pimentel, Márcia Lucena, Jaelson Castro, Carla Silva, Emanuel Santos, and
Fernanda Alencar. Deriving software architectural models from requirements mod-
els for adaptive systems: the STREAM-A approach. RE Journal, 17(4):259–281,
November 2012. 2, 12

[49] Felipe Pontes Guimaraes, Genaina Nunes Rodrigues, Daniel Macedo Batista, and
Raian Ali. Pragmatic Requirements for Adaptive Systems: A Goal-Driven Modeling
and Analysis Approach. pages 50–64. Springer International Publishing, Cham, 2015.
9

[50] Romain Rouvoy, Paolo Barone, Yun Ding, Frank Eliassen, Svein Hallsteinsen, Jorge
Lorenzo, Alessandro Mamelli, and Ulrich Scholz. MUSIC: Middleware Support for
Self-Adaptation in Ubiquitous and Service-Oriented Environments. pages 164–182.
Springer-Verlag, Berlin, Heidelberg, 2009. 11

44

[51] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive Software: Landscape and Re-
search Challenges. volume 4, pages 14:1–14:42, May 2009. 6

[52] Mazeiar Salehie and Ladan Tahvildari. Towards a Goal-driven Approach to Action
Selection in Self-adaptive Software. Softw. Pract. Exper., 42(2):211–233, February
2012. 9

[53] Stephen D. Smaldone. Improving the Performance, Availability, and Security of Data
Access for Opportunistic Mobile Computing. PhD thesis, Rutgers University, New
Brunswick, NJ, USA, 2011. AAI3474990. 1

[54] D. Spinellis. Don’t Install Software by Hand. IEEE Software, 29(4):86–87, July 2012.
1

[55] D. Spinellis. Package Management Systems. Software, IEEE, 29(2):84–86, March
2012. 10

[56] Maxim Svistunov, Stephen Wadeley, and Tomáš Čapek. Red Hat Enterprise Linux
6 - Chapter 8. Yum, 2016. 10

[57] Daniel Sykes, Jeff Magee, and Jeff Kramer. FlashMob: Distributed Adaptive Self-
assembly. In Proceedings of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’11, pages 100–109, New York, NY,
USA, 2011. ACM. 12

[58] Clemens Szyperski. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 2002.
11

[59] The OSGi Alliance. OSGi Service Platform Core Specification, Release 4.1. 2007.
12, 30

[60] Axel Van Lamsweerde. From system goals to software architecture. In Formal Meth-
ods for Software Architectures, pages 25–43. Springer, 2003. 2, 12

[61] Rob van Ommering, Frank van der Linden, Jeff Kramer, and Jeff Magee. The
Koala Component Model for Consumer Electronics Software. Computer, 33(3):78–85,
March 2000. 19

[62] Eric Siu-Kwong Yu. Modelling Strategic Relationships for Process Reengineering.
PhD thesis, University of Toronto, Toronto, Ont., Canada, Canada, 1996. UMI
Order No. GAXNN-02887 (Canadian dissertation). 3, 8

[63] Yijun Yu, Alexei Lapouchnian, Sotirios Liaskos, John Mylopoulos, and Julio CSP
Leite. From goals to high-variability software design. In Foundations of Intelligent
Systems, pages 1–16. Springer, 2008. 2, 9, 12, 18, 19

45

	Agradecimentos
	Resumo
	Abstract
	Introduction
	Problem Definition
	Proposed Solution
	Contributions Summary
	Structure

	Background
	Context-aware Systems
	Self-Adaptive Systems
	Development of Self-Adaptive Systems

	Goal Modeling
	Software Deployment

	Software Components
	Component-Based Adaptation
	From Goals to Components

	Filling Station Advisor
	Motivating Example: The Filling Station Advisor

	The GoalD Approach
	Offline
	Goal Modelling
	From Goals to Components Specification
	Packaging Components into Artifacts
	Development Process
	Activities

	Online
	Automated Deployment Planning
	Deployment Execution

	Evaluation
	Feasibility Assessment
	Scalability Assessment
	Threats to validity

	Related Work
	Conclusion
	Conclusion and future work

	Referências

