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Diacutaneous fibrolysis versus passive stretching 
after articular immobilisation: muscle recovery and 

extracellular matrix remodelling
WR Martins1*, MM Carvalho1, Mota MR2, GFB Cipriano1, FAS Mendes1, LR Diniz1, 
GC Junior1, RL Carregaro1, JLQ Durigan1

Abstract
Introduction
Atrophy and muscle shortening 
due to articular immobilisation are 
common  problems in musculoskel-
etal rehabilitation. Muscle stretching 
mechanical stimuli might be consid-
ered as the golden standard proce-
dure to improve muscle flexibility 
in rehabilitation. Muscle stretching 
generates mechanotransduction, po-
tentiating specific gene expression 
and promotes sarcomerogenesis and 
extracellular matrix remodelling on 
shortened and atrophied muscles.
Hypothesis
Diacutaneous fibrolysis, like stretch-
ing, uses an external force to stress 
connective and muscle tissues me-
chanically to treat muscle short-
ening; thus, it is widely used in 
clinical practice even if there is no 
evidence to support it. Consider-
ing this subject, we have hypoth-
esised that diacutaneous fibrolysis 
can generate mechanotransduction, 
affecting muscle hypertrophy and  
extracellular matrix remodelling after  
immobilisation.
Evaluation of hypothesis 
We have designed a laboratory ex-
perimental study with a sample of 
50 rats. The sample was randomly di-
vided into five groups: Control group 
(n = 10) with non–immobilised rats; 
3–week immobilisation group (n = 

10); 3–week immobilisation/3–week 
non–immobilisation group (n = 10); 
3–week immobilisation/3–week 
stretching group (n = 10); and 3–
week immobilisation/3–week dia-
cutaneous fibrolysis group (n = 10). 
All rats had their left tibiotarsal joint 
immobilised in maximum plantar 
flexion with the orthotics for 3 con-
secutive weeks. After the immobilisa-
tion period, the intervention groups 
received their respective interven-
tion on their left triceps suralis for 
3 weeks. Dependent variables of the 
study were  sarcomere analysis, poly-
merase chain reaction, connective 
tissue density, collagen birefringence 
and matrix metalloproteinases. Sta-
tistical analysis was performed using 
analysis of variance and Duncan post 
hoc test was applied for differences 
between groups. For all calculations, 
a 5% (p < 0.05) significance level was 
established. 
Conclusion
If the hypothesis is confirmed, the 
present study might provide evidence 
to support the use of this physical  
therapy resource widely used to treat 
muscle dysfunctions.

Introduction
Muscle plasticity is a remarkable me-
chanical property; it is the ability of 
muscle cells to alter their structure 
and function in accordance to differ-
ent stimuli. Articular immobilisation 
leads to muscle atrophy and rigidity, 
characterised by decrease in muscle 
fibre protein content and size1 and 
increase in  their connective tissue2.

Data show that during the first 6 
hours of articular immobilisation, 

the synthesis of muscle protein is re-
duced, and within 72 hours, it might 
reduce the muscle mass up to 30% of 
its original size3,4. Seven days of im-
mobilisation results in loss of muscle 
fibres, reduces the number of serial 
and parallel sarcomeres and leads 
to muscle atrophy and shortening5,6. 
Evidence shows that the increase in  
connective tissue diminishes blood 
flow, water and proteoglycans into 
muscle fibres; binding of abnormal 
collagen fibres occurs, which induces 
rigidity and loss of flexibility of the 
connective tissue7,8.

Passive muscle stretching is con-
sidered as an effective resource and 
is often used to increase muscle and 
joint flexibility. Previous studies have 
showed that muscle stretching pro-
motes sarcomerogenesis (contractile 
protein synthesis triggered by spe-
cific muscle gene potentiation)9–12 by 
mechanotransduction (mechanical 
stimulus conversion into chemical 
activity)13–15. During muscle stretch-
ing, mechanical stimuli are first 
transmitted to the extracellular ma-
trix (ECM), and the integrins on their 
membrane detect those stimuli and 
transmit them to the cell interior, ac-
tivating a series of nuclear proteins 
responsible for modifying the specif-
ic gene transcription that regulates 
sarcomerogenesis16.

Stretching–induced mechanotrans-
duction affects connective tissue 
remodelling through matrix metal-
loproteinases  (MMPs) because they 
degrade ECM components. MMPs 
play a role in both tissue function and 
development, which include patho-
logical processes. Coutinho et al.2.  
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the greater curve of the hook fits the 
muscle surface involving it. Figure 2 
shows the traction technique adapted  
to rats.

Therefore, the objective is to as-
sess diacutaneous fibrolysis effects 
on muscle atrophy signalling path-
ways, sarcomerogenesis and ECM 
remodelling of muscles in disuse and 
compare them to the effects of pas-
sive muscle stretching by applying 
the same analysis.

Evaluation of Hypothesis
The authors have referenced some of 
their own studies in this hypothesis. 
The protocols of these studies have 
been approved by the relevant ethics 
committees related to the institution 
in which they were performed. Ani-
mal care was in accordance with the 
institution guidelines.

The authors have designed an ex-
perimental research because of the 
research problem. The research was 
conducted in accordance with the 
Guide for Care and Use of Laboratory 
Animals of the University of Brasília.

A sample of 50 rats (Wistar lineage 
Rattus norvegicus) was selected from 
the University of Brasília’s vivarium. 
These animals were randomly di-
vided into five groups: Control group 
(CG, n = 10) with non–immobilised 
rats; 3–week immobilisation group 
(IG3, n = 10); 3–week immobilisa-
tion/3–week non–immobilisation 
group (INIG3, n = 10); 3–week im-
mobilisation/3–week stretching 
group (STR, n = 10); and 3–week 
immobilisation/3–week diacutane-
ous fibrolysis group (DF, n = 10). All 
rats had their left tibiotarsal joint 
immobilised in maximum plantar 
flexion with the orthotics described 
by Coutinho et al.23 for 3 consecutive 
weeks. After the immobilistion peri-
od, STR and DF groups received their 
respective intervention on their left 
TS for 3 weeks. 

The STR group had the TS pas-
sively stretched by maintaining a 
maximum tibiotarsal dorsiflexion 
for 1 minute in accordance with the 

fibrolysis on human skeletal muscles  
through the use of surface electro-
myography, confirming that the trac-
tion technique presented neural and 
mechanical effects similar to those 
observed in studies which assessed 
passive muscle stretching. We ob-
tained the significant Tmax/Mmax (mV) 
reflex reduction and passive mechan-
ical tension (Nm) of the triceps suralis 
(TS) muscle of young adults 30 min-
utes after diacutaneous fibrolysis. 

Diacutaneous fibrolysis is an exter-
nal force that stimulates muscle and 
connective tissues mechanically. This 
hypothesis is based on the affirmative  
that the traction technique produces 
enough muscle tension to provoke 
mechanotransduction. Thus, we hy-
pothesise that the diacutaneous fi-
brolysis traction technique affects 
muscle plasticity, promoting sarcom-
erogenesis and ECM remodelling 
in muscle atrophy and shortening, 
based on the work of Veszely et al.22. 

Figure 1 shows the traction tech-
nique on the muscle belly of the biceps  
braquialis of a patient presenting 
muscle shortening, which shows that 

Demonstrated that daily sessions of 
muscle stretching for 3 weeks were 
enough to rearrange collagen bands 
of rats’ immobilised muscle, showing 
positive outcomes of muscle stretch-
ing in ECM remodelling. 

Diacutaneous fibrolysis17,18 is a non–
invasive physiotherapeutic method to 
treat musculoskeletal disorders and 
movement restriction19 that uses a 
stainless steel hook to generate me-
chanical stimulus20 from lateral trac-
tion movement of the muscle belly. 
This traction technique is performed 
manually with smooth and precise 
anatomical knowledge. Despite the 
extensive use of diacutaneous fibroly-
sis in physical therapy clinical prac-
tice to release adherences between 
muscle, aponeurosis and tendons21,  
we found no evidence of its effects on 
muscle plasticity. 

Hypothesis
To the best of our knowledge, no 
previous study has described diacu-
taneous fibrolysis in skeletal mus-
cle adaptations. But, Veszely et al.22 
analysed the effects of diacutaneous 

Figure 1: Traction technique on the muscle belly of the biceps braquialis of a 
patient presenting muscle shortening.
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Dependent variables
Sarcomere analysis
We used a stereomicroscope (Stemi 
DRC, Zeiss) to isolate muscle fibres in 
a Petri dish with forceps. Histological 
sections were stained with Gomori’s 
trichrome and were analysed by vis-
ible light optical microscopy with an 
immersion lens (100×). Five muscle 
fibres from the medial portion were 
selected from all the slides and sar-
comere count was started, dividing 
the slides into six distinct fields of 50 
µm, with a total of 300 µm/muscle 
fibres. The number of serial sarcom-
eres along the fibre were estimated 
by a simple rule of three26.

Polymerase chain reaction
The fragments were  readily stored 
at  −80°C after dissection for fur-
ther total RNA extraction. The frag-
ments were homogenised with Trizol 
(1 ml), according to the manufactur-
er’s protocol (Life Technologies Inc., 
USA). Extracted RNAs were dissolved 
in Tris–HCL and in ethylenediamine 
tetra–acetic acid (EDTA) (pH 7.6), 
and quantified by spectrophotom-
etry. RNA reverse transcription was 
conducted in a thermoclycler (Ep-
pendorf AG, Germany), using reac-
tion mixture consisting of 1 µg of total 
RNA, 4 µl of 5× Buffer, 0.8 mM dNTPs 
(Invitrogen), 4 mM DTT (Invitro-
gen), 200 µl of reverse transcriptase  
(Invitrogen). 

Primer pairs were coded for the 
myostatin (GenBank, AF019624), 
atrogin–1 (GenBank, AF441120), 
and the transcription factor IID (TFI-
ID; GenBank, D01034) using Primer 
Express software v2.0 (Applied Bio-
systems, Foster City, Califórnia). TFI-
ID were  used as an internal control 
because of the constant expression 
levels in musculoskeletal stretching 
models. We obtained MyoD muscle–
specific transcription from Hill et al.27 
and primers were synthesised by Im-
print kit (Sigma–Aldrich Co. LLC.). 
RNA transcription levels for experi-
mental and control groups were si-
multaneously analysed in duplicates 

an intraperitoneal injection of 
 Xylazine (12 mg/kg) and Ketamine 
(95 mg/kg) for anaesthesia. All were 
euthanised with anaesthetic over-
dose. Then, the soleus muscle was 
removed and  fixated in 5% para-
formaldehyde aqueous solution for 4 
hours at ambient temperature. Then, 
they were dehydrated by  sequential 
immersion in alcoholic solutions 
with a decreasing water percentage, 
diaphonised in Xylol, and embedded 
in hot paraffin. The paraffin blocks 
were refrigerated until the microto-
mic section. For every 250–μm slice, a 
sample of 5–μm thickness was select-
ed for further analysis. The morpho-
metric study was conducted by only 
one observer using an optical micro-
scope with topographic magnifica-
tion and the images were captured 
by AxioCam (Carl Zeiss, Germany)  
microscope camera. To isolate mus-
cle fibres, the samples were  fixated 
in polystyrene plates, immerged in 
2.5% glutaraldehyde solution for 3 
hours and in 30% nitric acid solution 
for 2 days for connective tissue hy-
drolysis; after that, they were stored 
in 50% glycerol solution. 

protocol of Coutinho et al.2. Each rat 
was subjected to 3 sessions/day with 
1 minute interval between each ses-
sion, and 5 days/week. The authors 
chose manual passive stretching 
because it is most commonly used 
in humans24,25.  The DF group re-
ceived the traction technique at the 
left TS with the tibiotarsal joint in 
the neutral position, and the trac-
tion was performed with the hook’s 
greater curve, following the protocol: 
(1) 20 traction movements of the 
medial portion of the muscle belly; 
(2) 20 traction movements of the 
lateral portion. The hook always fits 
the muscle surface with slow and 
smooth movements.

The INIG3 rats had their tibiotarsal 
joints immobilised for 3 weeks and 
after the joint release, they walked 
freely inside the cage for 3 weeks, 
with no intervention. The IG3 group 
was subjected to euthanasia after 
orthotics removal; and the CG group 
was also subjected to the same pro-
cedure after 3 weeks of free walk 
 inside the cage.

All animals subjected to immobili-
sation and/or intervention  received 

Figure 2: Details of the traction technique adapted to rats.
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Diacutaneous fibrolysis might be 
more beneficial than passive stretch-
ing in clinical practice due to two 
 aspects: (i) the procedure does not 
produce pain or discomfort; and  
(ii) does not promote joint movement. 
These aspects might be relevant for 
muscle stimulation in early treat-
ment of intra–articular fractures, lux-
ation and muscle lesions, when joint 
movement is counter–indicative. 

Conclusion
If the hypothesis is confirmed, the 
present study might provide evi-
dence to support the use of this phys-
ical therapy resource widely used to 
treat muscle dysfunctions. 

Abbreviations list
ANOVA, analysis of variance; CG, Con-
trol group; DF, diacutaneous fibroly-
sis; ECM, extracellular matrix; EDTA, 
ethylenediamine tetra–acetic acid; 
IG, immobilisation group; INIG, 3–
week immobilisation/3–week non–
immobilisation group; MMP, matrix 
metalloproteinases; STR, stretching 
group; TFIID, transcription factor 
IID; TS, triceps suralis.
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