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RESUMO

Plasmas confinados em diferentes topologias magnéticas são uma tarefa importante na busca pela
Energia de Fusão. Hoje em dia, as formas mais estudadas de Fusão Termonuclear Controlada
focam em Confinamento Inercial, Stellarators e Tokamaks. No presente trabalho, estudaremos
os diferentes mecanismos de transporte presentes nos plasmas toroidalmente confinados. Vamos
rever a teoria a partir dos conceitos básicos de transporte de plasma, até as peculiaridades presen-
tes em plasmas toroidalmente confinados, conhecido como tokamak. Na fronteira do modelo de
transporte mais realista, a questão do transporte anômalo será tratada com a teoria do transporte
turbulento, no âmbito da teoria girocinética. O uso de ferramentas computacionais auxiliará na
análise do impacto das microinstabilidades no fluxo de partículas e calor, e auxiliará na validação
dessa abordagem, feita com uma análise da literatura.

ABSTRACT

Plasmas confined in several magnetics topologies are an important task in the quest for Fusion
Energy. Nowadays, the most studied forms of Controlled Thermonuclear Fusion focus on Inertial
Confinement, Stellarators and Tokamaks. In the present work, we are going to study the different
transport mechanisms present in toroidally confined plasmas. We are going to review the theory
from the basic concepts of plasma transport, until the peculiarities present in toroidally confi-
ned plasmas, known as tokamak. In the border of the realistic transport model, the issue of the
anomalous transport will be treated with the turbulent transport theory, in the framework of the
gyrokinetic theory. The use of computational tools will help us to assist the analysis of microins-
tabilities impact on flux levels, and to give support in the validation of this approach, done with a
thorough analysis the literatures.
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1 INTRODUCTION

1.1 INTRODUCTION

The increasing global energetic consume is reaching limits intolerable for the old means of
power production to provide sustainable electric energy. One of the most promising candidate to
deal with this issue is the Thermonuclear Controlled Fusion. The aim of this dissertation is to
provide an insightful understanding of the transport phenomena in Thermonuclear Plasmas, most
precisely anomalous and turbulent transport.

Transport is the study of the mechanism in which mass, energy and momentum are exchan-
ged in a given system. In complex systems such as magnetically confined plasmas, non intuitive
effects may appear due to the complexity of the interaction of the different particles with the back-
ground field and from the field with the particles. Disregarding the already known non orthodox
effects of transport phenomena in magnetized plasmas, new mechanisms that does not fit in the
old measurements are treated. Anomalous transport can be considered as the set of divergence of
orders of magnitude between neoclassical prediction and real measurements. It is mostly caused
by turbulence motion steered by micro-instabilities.

The structure of this monograph is as follows. Chapter 1 discusses a brief introduction to the
topic. Chapter 2 presents the mechanism of plasma confinement from the most basic approach,
up to the classical model. Chapter 3 discuss more realistic approach to the transport description,
and chapter 4 introduces the gyrokinetic solution to the anomalous issue. Chapter 5 introduces
and explains the numerical approach, and chapter 6 deals with examples, concluding with chapter
7.

1.2 THE QUEST FOR ENERGY

The world has been passing through important changes since the advent of the late modern
era, where the second industrial revolution in the beginning of the 20th century brought the in-
creasing need for new forms of energy in order to nurture a society increasingly dependent on
new technologies. In the end of the 19th century, based on the three-phase high-voltage electri-
cal power distribution from Nicolas Tesla, electric grids started to be formed as a main source
of distributed and accessible electricity (John W. Klooster, 2009). The uncontrolled onset of the
new demand brought together an inconvenience. Global temperature increase was reported by
different agencies in different countries world wide. Alternative forms of fuel, contrary to the
ordinary coal and gas, were needed but not noticed until the mid 20th century. Beyond the large
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impact on global warming, the rate of increase in consumption and population growth represent
a real treat to a sustainable evolution.

To discontinue technological progress is unfeasible and unreasonable. A new strategy in the
approach to progress needs to be taken. A brighter future is foreseen only if together with an
improvement of the status quo of the environmental panorama. Innovative energy sources are
needed and more efficient energy storage mechanism needs to be developed, in order to minimize
the effects caused by the enormous amount of gases released in the atmosphere during the last
century and to mitigate any other effect that may have impact in the environment whatsoever.

1.3 NUCLEAR ENERGY

In 1932, Ernest Rutherford was reported to have discovered that lithium atoms, when split
by protons, could release energy, in agreement with the mass-energy equivalence principle esta-
blished by Albert Einstein (Richard Rhodes, 1986). The late discovery of the neutron by James
Chadwick opened a path to what is known as the atomic era, where the nuclear energy was used
as an alternative form of electric energy and as a novel weaponry mechanism.

Nuclear energy is considered as all the energy that is provided by the break down or fusion
of nuclear particles (John R. Lamarsh, 2001). Two approaches are known, the one involving the
breakdown of heavy atom, known as Nuclear Fission and another one associated with the fusion
of light nuclei, known as Nuclear Fusion.

1.3.1 Nuclear Fission

Nuclear Fission is a subatomic process in which a heavy nucleus undergo a decay to another
nuclei with lighter atomic mass and is followed by the release of an amount of energy correspon-
dent to the difference in the biding energies of the primary nucleus and the two remaining nuclei.
It is important to understand that a Nuclear Reaction is caused by neutron bombing the heavy and
unstable nucleus, also know as radioactive decay, described as a spontaneous break of the nucleus
due to quantum mechanics effects acting within the subatomic particles. An example of Nuclear
Reaction, followed by the nucleus split and energy release is described as follows

1
0n +235

92 U!141
92 Ba +92

36 Kr + 310n + Energy (1.1)

A neutron collides with the nucleus of 235
92 U and as a result the nucleus is split in two lighter

elements and three new neutrons. The amount of energy released in this reaction is approximately
200MeV .
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The issue with the Nuclear Fission processes is the reaction chain. The three neutrons released
in the reaction 1.1 collide with three new nuclei and give rise to a chain of reaction that increases
its energy release exponentially. Controlled Nuclear Fission is a deep and complex field of study
that requires deep knowledge of the interplay of nuclear forces and feedback mechanism to the
proper management of the chain reaction. Another important issue with Nuclear Fission is the
radioactive waste. Since the products of the Nuclear Reactions are in its majority radioactive,
the process generates enormous amounts of material radioactively contaminated, and in cases
of human negligence or unpreparedness, leaks of contaminated material to the environment are
cause of concern and fear.

1.3.2 Nuclear Fusion

Contrary to the Nuclear Fission, Nuclear Fusion is a process in which two light nuclei, in
general Hydrogen isotopes, are put together and combine, originating a heavier element, generally
helium. Nuclear Fusion is the main form of energy release in all the stars in the Universe and the
pursuit of this form of energy on earth has been driving a considerable effort from humankind. In
order to maximize the effective cross section, the most effective elements used are the Deuterium,
2
1H, and the Tritium, 3

1H. The reaction is described as follows

2
1H +3

1 H!4
2 He +1

0 n + Energy (1.2)

In the case of heavenly bodies like stars, it is important to notice that the main chain of fusion
reaction of such bodies with the mass of the sun or less, is the proton-proton chain reaction.

1
1H +1

1 H!2
2 He + � !2

1 H + e+ + ⌫
e

+ 0.42MeV (1.3)

It is necessary to remember also that, due to the high value of mass, the gravitational pressure
of the sun exert enough force to keep the plasma confined, and high values of kinetic energy are
possible to be achieved by the protons due to the counterbalancing of the gravitational effect. In
the case of earthly magnetic confinement, the most common approach is using magnetic fields,
and as an alternative, a reaction with Deuterium Tritium is chosen due to its high cross section
and higher values of energy released.

Figure 1.1 shows us the different nature of the biding energy for different atomic numbers.
It is seen that the energy released per nucleon in the case of fusion reactions is larger than the
energy released in the fission case.

The temperatures necessary to Nuclear Fusion reactions to occur in a laboratory are of the
order of tens of KeV , contrary to the hundreds of KeV expected to overcome the Columb barrier
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Figura 1.1: Biding energy for different isotopes [reference:Pearson Prentice Hall]

of the two charged particles (Shultis, J.K. 2002), this is possible due to a mechanism known as
the Quantum Tunneling.

In Quantum Mechanics, particles are described as wave functions and their temporal behavior
is implied from the Schrödinger wave equation. In this scenario, the particle’s observables is
extracted as the result of a probability density function.

i~@ (r, t)
@t

=


~2
2µ
52 +V (r, t)

�
 (r, t) (1.4)

Schrödinger equation (1.4) describes the time evolution of the quantum state of a system,
where  (r, t) is the wave function, and V (r, t) represents the potential in which the particle is
submitted. By means of Fourier analysis, Equation 1.4 can be solved and the resulting equa-
tion 1.5 is the wave-like direct solution of Schrödinger equation, validating a non corpuscular
interpretation.

 (r, t) =
1

(
p
2⇡)3

Z
�(k)ei(k·r�wt)d3k (1.5)

As a consequence of the mathematical formulation, particles are expected to interact in a pro-
babilistic way with potential wells, and due to this mechanism, there is a non zero probability that
when faced with a higher potential compared to its own energy, a particle may overcome it. This
effect is known as Quantum Tunneling.

In the sun, in order to overcome the Columb repulsion potential, the energy required by the
protons would be in the order of thousands of KeV , but due to the Quantum Tunneling effect
and the high density in the core, the proton-proton chain reaction takes place more often than
classically expected. In laboratory, the same principle is applied.

4



From the reaction 1.2, 17.58MeV is released as energy. The essential point of the Nuclear
Fusion is that Deuterium is found in sea water, in the form of heavy water, and the Tritium can
be easily bred, making therefore the reaction cheaper and more abundant. In order to fuse, the
nuclei must be put close enough to overcome the electrostatic Columb potential. This means a
certain amount of energy must be deposited on the system in order to achieve what is known as
ignition. Ignition the point where the heat from the fusion reactions is enough to maintain the re-
action ongoing without external input and considering all the possible losses. The field of Physics
concerned with the study of such reactions is called Plasma Physics.

Plasma Physics is the field of physics concerned with the study of matter when electrons are
detached from atoms and behave freely from it.

Due ti the high temperatures required and the complex non linear dynamics of the Plasma,
this alternative as an energy source is seen almost as an utopia, but if there is something that
humankind learn through the centuries is that a dream dreamt together becomes reality. Due to
the absence of uncontrolled chain of reactions and almost no radioactive waste, Nuclear Fusion
has an enormous advantage when compared to Nuclear Fission.

1.4 THERMONUCLEAR CONTROLLED FUSION

Thermonuclear Fusion is considered the way to achieve nuclear fusion by means of extremely
high temperatures, in order to fulfill the Lawson Criteria. The Lawson Criteria measures a relation
between the plasma electron density n

e

and the energy confinement time ⌧
E

and gives condition
for a fusion reaction to reach ignition. More precisely, the Lawson criteria is a not-so-rigorous
principle, as described by J. D. Lawson himself, utilized to envisage the range of values of density
and energy confinement time of a burning plasma in order to achieve a self sustained reaction.
The equation represents a power balance in thermonuclear reactors in order to get an approxima-
tion of the referred quantity.

In the case of the Deuterium-Tritium reaction, for temperatures of the order of T = 14keV ,
the Triplet Product (J. D. Lawson, 1957) can be approximated by the following relation

nT ⌧
E

� 3 · 1021KeV s/m3 (1.6)

Here, n is the density, T is the temperature and ⌧
E

is the confinement time. It can be viewed
from the image below that the Lawson criteria can be used as a guide to understand at what values
of temperature the product of density n

e

and the energy confinement time ⌧
E

are better expected
to give rise to a self sustained reaction.
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Figura 1.2: Lawson curve for the D-T reaction [reference:Stanford]

Contemplating the above restrictions, some concern must be addressed to the approach in
which way the Plasma will be confined, and for how long its facing components will cope with
hundreds of million degrees and, furthermore, the best way the avoid instabilities.

In this scenario, two main approaches are considered, Inertial Confinement Fusion (ICF) and
the Magnetic Confinement Fusion (MCF). For ICF, lasers may be used in order to compress a
pellet of Deuterium-Tritium and induce the fusion process, the system is confined by the inertia
of the pallet due to the isotropic alignment of the lasers injection. MCF relays in Electromagnetic
heating, together with Neutral Beam Injection, in order to heat up the gas, and a magnetic field in
order to confine it. This topic will be further discussed with greater depth.
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2 PLASMA CONFINEMENT

The study of toroidally confined Plasmas cannot be accurately performed without a deep un-
derstanding of Magnetized Plasma. The need for it comes from the fact that, typical plasma
temperature in a fusion device are of the order of, 10KeV , as expected in ITER. In such scenario,
no known material is capable of coping with such temperatures and therefore, a broad expertise
in magnetically confined plasmas is required in order to avoid the melting of plasma facing com-
ponents.

Whilst dealing with magnetized plasma, a focus in fully ionized matter is required in order
to maintain the relevance in regard to core fusion devices. The plasma consist of unbounded
ions and electrons, forming a quasi-neutral fluid, which means that in a macroscopic first order
approximation, the plasma can be considered neutral. When closely analyzed, a parameter known
as Debye length plays an important role in defining first and further orders of approximation for
of plasma neutrality analysis. The Debye length is a measure of the persistence of electrostatic
effects in the plasma, in practical terms, it gives us the scale in which the quasi-neutrality can
be considered valid. The fact that the plasma does not allow macroscopic charge separation does
not mean that there are no electrostatic fields present, in most of the cases a property known as
self-organization, vastly present in magnetized fusion plasma, allows the appearance of structures
carrying significantly high values of electric fields (M. Mavridis, 2014).

2.1 CONFINEMENT MODELS

Within the MCF approach, different devices designs are often used. Magnetic mirrors pursue
the confinement by means of the mirror effect of magnetic fields and the formation of magnetic
bottles, structures formed when two diverging magnetic fields are put together. The pinch effect
is described as a compression of a filament of current by means of magnetic forces. In this con-
cept, two main devices are studied, the ✓ and Z pinch machines. In the Z pinch machine, figure
2.1, the current, (yellow), flows in the axis direction, and the magnetic field points to the poloidal
direction. Meanwhile in the ✓ pinch, figure 2.2, the magnetic field, (purple arrow), is the one to
stream in the axial direction, whereas the current points to the poloidal direction.

The main problem with the MCF approach described above is the edge physics, i. e., how the
plasma can be contained in the beginning and end of the device. In order to solve this problem,
a configuration in which the circular ends of the cylinder is joining together was proposed as a
solution.
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Figura 2.1: Z pinch. Yellow represents the current direction, and purple the magnetic field [credit: DaveBurke].

Figura 2.2: ✓ pinch. Purple represents the current direction, and yellow the magnetic field [credit: DaveBurke].

In topology theory, a Torus, figure 2.3, is a three dimensional solid obtained by the revolving
of a circle around a co-planar axis. When used to mold the shape of the plasma where the nuclear
fusion reactions are taking place, the torus shape presents the advantage of allowing the magne-
tic field to have, also, a toroidal geometry. Following the Poincaré–Hopf theorem of differential
topology and the Hairy Ball theorem of algebraic topology and its implications in topological pro-
perties of n-dimensional folds, the torus is a solid which possesses an Euler characteristic number
equal to zero ( Jean-Paul Brasselet, 2009), which means we can drawn a continuous vector field
in its surface with non vanishing points. It is important to fulfill this criteria because the magnetic
field formed in this shape cannot have any vanishing point, since it would lead the plasma to be
dislodged from its stability.

Following this geometry, two main models were suggested. The Stellarator, first proposed by
Lyman Spitzer in 1950, is a toroidal device in which the non azimuth symmetric magnetic field
is twisted in order to avoid drift losses to the containment. When toroidally confined, one of the
problems that occurs with the plasma dynamic is that, due to the change in the magnetic field
intensity inside and outside of the torus, a magnetic field gradient is generated. The plasma then
tends to drift in a direction perpendicular to the magnetic axis and the centrifugal direction, and
the reaction is terminated due to plasma losses. When compared to other approaches, the Stella-
rator, figure 2.4 , has the advantage that one does not need to rely on the complexity of currents
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Figura 2.3: Torus. The blue arrow represents the toroidal direction and red the poloidal direction.

drives in order to avoid the losses to the containment. The losses are avoided by the fact that the
planar cross sections are twisted in order to form a Möbius strip. This way, particles experiencing
an upward drift in one side will be counterbalanced by a downward drift in the other side, creating
an almost zero balance in the total drift.

Figura 2.4: Stellarator design [credit: IPP]

Another solution to the drift problem is to bend the axial magnetic field lines in a poloidal
direction, red line in figure 2.3, in this way, the field lines will created a flux surface rounding
the whole torus, and a counteraction will be generated in order to avoid the drift losses. This
approach is applied in the Tokamak reactors.

2.1.1 ITER and the tokamak model

Tokamak is the Russian acronym of the ipsis litteris "toroidal chamber with magnetic coils".
The first prototype was proposed by leading scientist Lev Artsimovich in 1956. The tokamak is
today the leading candidate design to reach the ignition and future economic feasibility in Nuclear
Fusion. By using magnetic coils around the torus chamber, a toroidal magnetic field is generated
in order to maintain the plasma confined. A second magnetic field, in the poloidal direction, is
generated in order to bend the magnetic field lines, avoiding the magnetic gradient drift generated
by the toroidal shape of the field. The latter field is generated by inducing a current in the plasma
itself, following the principle of the Z pinch machine.
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Following laser scattering measurements, and with the confirmation of the higher temperatu-
res and stability of the tokamak model, the Joint European Torus (JET) began to be constructed
in 1973. There are few operational tokamaks around the globe, one of them, the TCABR, can
be found in the University of Sao Paulo, USP. The tokamak fast became the most used confi-
nement approach around the world. The ITER, figure 2.5, latin for "the way", and acronym of
International Thermonuclear Experimental Reactor, started to be assembled in 2015, is the world
largest MCF device. Expected to deliver fusion electricity by the end of 2030 (European Fusion
Development Agreement, 2006).

Figura 2.5: cross section view of the ITER [credit: iter.org].

The use of a current driven in the tokamak leads the plasma to a series of instabilities. Most of
this instabilities are due to Magnetohydrodynamic (MHD) modes, i. e. this modes degraded the
confinement and can lead to plasma disruption. Microturbulences driven by ions also contributes
to plasma disruption scenario.

The full scenario of instabilities and degradation in ITER may be stabilized by a set of complex
feedback controls that increase the complexity of the machine.

2.2 DYNAMICS IN MAGNETIZED PLASMA

In order to understand the dynamic of plasma confinement, and therefore toroidal confine-
ment, one must first recall the orbit dynamic of particles under the influence of electric and mag-
netic fields. The orbit theory is used to study the dynamic of charged particles under the influence
of electric and magnetic fields. It is very important first order description of plasma behavior. It
does not take out the need for an improved statistic model, though, as the one used in the Kinetic
theory. The Hamiltonian mechanism is used in order to describe the dynamic of the system in the
space of the canonical coordinates and it can be used to elegantly describe the conservation of a
property known as adiabatic invariant.
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Let us consider the Lorentz equation for a particle with charge q under the action of a force ~F

due to the electric and magnetic fields ~E and ~B

dp

dt
= F = q(E + v ⇥ B) (2.1)

where ~p is the momentum of the particle and ~v its velocity. It is easy to see that under the
influence of a electrostatic field, eq.2.1 results

r(t) =
1

2
(
qE

m
)t2 + v0t+ r0 (2.2)

where r0 is the initial position and v0 is the initial velocity. In this case the particle has a cons-
tant acceleration, qE

m

. For a magnetostatic field the trajectory is found by separating the velocity of
the particle in parallel and the perpendicular direction of the magnetic field. The movement in the
direction of the magnetic field is not affected, and we are left with the perpendicular component
of the resulting Lorentz equation

dv?
dt

=
q

m
(v? ⇥ B) (2.3)

considering ⌦
c

= �qB
m

, and considering that ⌦
c

is constant in a constant magnetic field,
known as cyclotron frequency, we can observe that 2.3 can be integrated to

v? = ⌦
c

⇥ r
c

(2.4)

where ~r
c

is the the particle position related to the center of the gyration point, in a plane per-
pendicular to ~B. Equation 2.4 represents the rotation of the position ~r

c

. The resulting motion
of the particle is given by the superposition of the uniform motion along ~B and and the circular
motion perpendicular to ~B. The radius in which the particle gyro-rotates is known as Larmor
radius, defined as ⇢ = mv?

qB

.

The analysis of ~E together with ~B is done by separating the components of ~v and ~E parallel
and perpendicular to ~B. In the same direction of the magnetic field, we have

rk(t) =
1

2
(
qEk

m
)t2 + vk(0)t+ rk(0) (2.5)

The perpendicular solution can be found by separating v(t) in v0(t) + v
E

, being v
E

a velocity
in the plane perpendicular to B. Decomposing the perpendicular electric field in
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E? = �E? ⇥ B

B2
⇥ B (2.6)

one can finally arrive in the description of the particle motion unconstrained to a coordinate
frame

v(t) = ⌦
c

⇥ r
c

+
E? ⇥ B

B2
+

qEk

m
t+ vk(0) (2.7)

In equation 2.7, the term E?⇥B

B

2 represents the E ⇥ B drift. The result motion of the particle
is a cycloid.

It can be observed that, when E and B are perpendicular a confined plasma, a drift found in
the second term on RHS of equation 2.7, is created. Thus a possible loss of material in the v(t)

direction is foreseen and the confinement may be terminated.

2.3 TOROIDAL CONFINEMENT

Toroidal confinement is of great importance because it was the chosen configuration in which
most of the efforts to develop sustained nuclear power are put nowadays. Two important topics
in toroidal confinement must be contemplated for the scope of this work, firstly, classical motion
of particles in non uniform magnetic fields, and secondly, the equilibrium of forces in a toroidaly
magnetized plasma.

2.3.1 Classical Analysis

An important consideration that must be done is the drift in slowly changing fields. In the
case of a toroidally confined plasma, the geometry of the magnetic field does not allow it to have
a continuous value in all the space. A drift is generated due to changes in the magnetic field
intensity along the particle orbit.

First we need to consider the magnetic field, our object of study in this section, varying with
the position vector in reference to the gyrocenter direction, r

L

(t). The motion of the particle is in
the direction of the magnetic field, and the position and velocity vector can be decomposed in the
gyrocenter direction, related to the field line, and around the field line.

B(x(t)) = B(x(t)) + r
L

(t)) = B(x(t)) + (r
L

(t)) ·r)B (2.8)

Using Taylor expansion in the Lorentz equations, we have
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m
d[v

gc

(t) + v
l

(t)]

dt
= q[E(x

gc

(t)) + (r
l

(t) ·r)E] + q[v
gc

(t) + v
l

(t)]⇥ [B(x
gc

(t) + (r
l

(t) ·r)B]

(2.9)

And the first cyclotron motion can be extracted as

m
dv

l

(t)

dt
= qv

l

⇥ B(x
gc

(t)) (2.10)

and

m
dv

gc

(t)

dt
= q[E(x

gc

(t))+(r
l

(t)·r)E]+q[v
gc

(t)⇥ [B(x
gc

(t) + (r
l

(t) ·r)B] + v
l

(t)⇥ (r
l

(t) ·r)B]

(2.11)

Now, decomposing the gyrocentric velocity in two perpendicular components

v
gc

(t) =

(
v?gc

(t)

vkgc(t)B

)
(2.12)

The time derivative of the left hand side of 2.12 is taken as the sum of the two components in
the right hand side. Form here, a relation to the derivative of the magnetic field direction can be
taken

dB

dt
=

@B

@s

ds

dt
= vkgc(t)B ·rB (2.13)

Where s represents a field element line. We can, now, decompose Lorentz equation along and
perpendicular to B

m
dvkgc(t)

dt
= q

h
Ek(xgc

(t)) + hv
l

(t)⇥ (r
l

(t) ·r)Bik
i

(2.14)

and for the perpendicular direction

m[
dv?gc

(t)

dt
+ v2kgc(t)B ·rB] = q

264 E?(xgc

(t))

+v
gc

(t)⇥ B(x
gc

(t))

+ hv
l

(t)⇥ (r
l

(t) ·r)Bi?

375 (2.15)

In a more generic form

m
dv?gc

(t)

dt
= F? + qv

gc

⇥ B (2.16)

~F? being represented as
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F? = q [E?(xgc

(t)) + hv
l

(t)⇥ (r
l

(t) ·r)Bi?]�mv2kgc(t)B ·rB (2.17)

If we consider that v?gc

(t) has a slow time dependence, we can approximate the perpendicular
gyrocentric velocity

v?gc

(t) ' v
F

⌘ F? ⇥ B

qB2
(2.18)

Considering now an approximation to the first guess, v?gc

(t) = v
F

+v
P

and developing based
on the above assumption

m
dv

F

+ v
P

dt
= F? + q(v

F

+ v
P

)⇥ B (2.19)

and considering also that
��dvP

dt

��⌧ ��dvF
dt

�� we arrive in the general polarization drift

v
P

= � m

qB2

dv
F

dt
⇥ B (2.20)

In the case that we have ~v
F

= ~E ⇥ ~B the polarization drift becomes

v
P

= � m

qB2

dE

dt
(2.21)

If, now, we consider the drift generated by the curvature of the magnetic field, one should
just express how the perpendicular force is described in 2.18. Making a gyro average of the
perpendicular force in cylindrical coordinates, we get

hF?i = �2|m|( 1

2⇡

I
@B

@r
rd✓) = �|m|(rB)? (2.22)

The grad B drift becomes, so

vrB

= � |m|
q

(rB)⇥ B

B2
(2.23)

Equation 2.23 has a dependence in the particle charge, which means that electrons and ions
drift in opposite direction and generate a net electric current.

A centrifugal force associated with the movement of the particles is generate due to the shape
of the field. The force has the following form

F
c

= �
mv2kgc
R

R (2.24)
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Equation 2.24 represents the force associated with the curvature of fields line, and when subs-
tituted in 2.18 we get

v
c

= � 1

qB2

mv2kgcR

R
⇥ B (2.25)

Where R is the radius of the curvature. In a tokamak, it will be associated with the major
radius.

It is important to understand that, the transport study is directly connected with the type of
confinement constraining the particles. As seen above, classical electrodynamics provides us
with a rustic approximation to the study of particles behavior in confined plasmas, but the fluid
like nature of the plasma makes the study of transport relatively more complicated. A deeper
study of transport will be done in the next chapter. In the present one, we will restrict ourselves
with a phenomenological first order approximation description of the particle dynamic.

2.3.2 Magnetic Equilibrium and the Grad Shafranov Equation

In order to achieve a sustained fusion reaction, an equilibrium between the plasma pressure
and the toroidal magnetic field must be achieved. Notwithstanding the instabilities generated by
the toroidal geometry, that further on will be discussed, an internal balance between the plasma
pressure and the forces from the magnetic field must be met. Such behavior is described by the
Grad Shafranov equation.

Consider the plasma pressure to be isotropic, which means that the pressure tensor can be
reduce to a diagonal matrix, the plasma momentum equation can be reduced to

J ⇥ B = rP (2.26)

Where J is the current density, B is the Magnetic field and P is the pressure. By considering
J , B, and P represented by a single-valued function of  , the poloidal magnetic flux function
determined by each poloidal flux associated with individual flux surfaces, one may represent the
force balance equation in terms of the new variable  .

Before proceeding, some assumptions are made. P is constant along a magnetic field line.
This assumption is important because, since P is represented as a function of  , the latter must,
also, be constant along a magnetic field line, and therefore, P can be expressed individually by
 .

B ·rP =
dP

d 
B ·r = 0 (2.27)
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In the toroidal direction, the space derivative of P vanishes, and from the plasma current
description, considering R the radial direction, Z the toroidal direction, and f = RB

�

(R,Z), we
can write the R and Z components of the current in terms of f as

J
R

= � 1

R

@f

@Z
(2.28)

and

J
Z

=
1

R

@f

@R
(2.29)

and, considering 2.28 and 2.29 in J
Z

B
R

� J
R

B
Z

= 0, we have

@f

@R
B

R

+
@f

@Z
B

Z

= 0 (2.30)

Which means, B ·rf = 0, in other words, f can, also, be described as a function of  .

Considering the balance in the R direction, using the proper terms to express the current
density and magnetic field, and considering that P and f are functions of  , one may arrive in

�⇤ = �R2dP

d 
� f

df

d 
(2.31)

described in another manner,

@2 

@Z2
+R

@

@R
(
1

R

@ 

@R
) = �R2dP

d 
� f

df

d 
(2.32)

Equation 2.32 is known as Grad Shafranov equation, and it is used in order to describe equili-
brium conditions for axisymmetric toroidal magnetized plasmas. This equation is widely used in
plasma simulation codes in order to minimize the value of the total energy of the plasma pressure
and magnetic field system, and find a suitable magnetic geometry that satisfies stability.

2.4 KINETIC THEORY

In the study of gases, the kinetic theory is responsible for analyzing the particles behavior
through a statistical point of view. Macroscopic effects may be extracted from microscopic phe-
nomena. Some assumptions must be made, nevertheless. The particles are smaller than the whole
system, they follow newton’s law of motion and undergo specific collision processes depending
on the approach taken. The random movement generates a Maxwellian distribution function sui-
table for a first order approximation of the system. In plasmas the scenario is similar.

16



The kinetic theory brings the microscopic effects of particles into the macroscopic world th-
rough the use of statistical tools. The averaging out of microscopic effects lead to statistic kinetic
effects, and these may lead us further to a particle-fluid characterization of the plasma.

In this section, one may see how statistic tools help us to extract information from the micros-
copic system and which is the role of Boltzmann and Vlasov equation in the description of the
plasma.

2.4.1 Distribution Function and Boltzmann Equation

Consider a 6 dimensional phase space containing the 3 coordinates of space, r, and 3 coordi-
nates of velocities, v, of a finite number of particles in a volume d3rd3v. Describing the number of
particle in such a infinitesimal section by d6N(r, v, t), the function that represents the statistical
distribution is denoted by the the number of particles over the volume of the phase space.

It is worth to notice that macroscopic quantities such as number density and average velocity
may be averaged out from the distribution function as follows

n(r, t) =

Z
f(r, v, t)d3v (2.33)

Where f(r, v, t) is the distribution function of the particles and the integral symbol stands for
a triple integral. The average velocity comes out as

u(r, t) =
1

n(r, t)

Z
vf(r, v, t)d3v (2.34)

Under specific considerations, the distribution function describes the change in the observable
parameter. The qualitative construction of such relation is describe as following.

Consider the acceleration a = F/m generated by a force F, acting in the volume element in
the phase space of the system. Such force will make the element move in the phase space. The
geometry of the volume element will change after a time t to a state f 0 as

[f(r0, v0, t+ dt)� f(r, v, t)]d3rd3v = 0 (2.35)

Using Taylor series and considering that the Jacobian transformation of the phase space from
d3rd3v to d3r0d3v0 is |J | = 1, we arrive in
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f(r + vdt, v + adt, t+ dt) = f(r, v, t) +


@f(r, v, t)

@t
+ v ·rf(r, v, t) + a ·r

v

f(r, v, t)

�
dt

(2.36)

Equation 2.36 can be rewritten as

@f(r, v, t)

@t
+ v ·rf(r, v, t) + a ·r

v

f(r, v, t) = 0 (2.37)

Known as the Boltzmann equation in the absence of collisions.

For a better description of transport phenomena, interactions must be taken into account, the
change in the phase space configuration due to collision modifies the aspect of the finite element,
introducing or withdrawing particles from its interior. Since the total balance of particles is in
principle unknown, a collisional operator, representing the rate of change of the main distribution
function, is introduced in the equation.


�f(r, v, t)

�t

�
coll

d3rd3vdt (2.38)

The modified equation thus becomes

@f(r, v, t)

@t
+ v ·rf(r, v, t) + a ·r

v

f(r, v, t) =

✓
�f(r, v, t)

�t

◆
coll

(2.39)

It is important to remember that the collisional model above described is a roughly, but accu-
rate, approach and that more rigorous description exists, e.g. the Fokker-Planck model.

2.4.2 Vlasov Equation

By taking into account electric and magnetic fields, a more precise approximation can be for-
mulated.

The Vlasov equation is described as the partial differential collisionless Boltzmann equation
in the presence of macroscopic electric and magnetic fields.

@f

@t
+ v ·rf +

1

m
(F

ext

+ q(E + v ⇥ B)) ·r
v

f = 0 (2.40)

Where F
ext

accounts for any other external force and inside the parenthesis is the Lorentz force
from electric and magnetic fields, that should meet the constrains of the Maxwell Equations.
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2.5 A FIRST APPROACH TO TRANSPORT THEORY

The transport theory is responsible for the study of transfer of quantities between and within a
set of systems or a given system. Mass, momentum, and energy are quantities frequently analyzed
as macroscopic variables of interest in order to describe plasma dynamics.

From the previously described Boltzmann equation and the particle distribution function, one
may, by means of solving the latter with the help of the former, arrive in a set of equations sui-
table to guide us in understanding how the transport phenomena occurs in magnetized plasma.
The plasma macroscopic transport equations are extracted directly from the Boltzmann equation
in form of moments of the distribution function. As a result we have a set of equations known as
moments of the Boltzmann equations. This moments can be associated with conservation equati-
ons of mass, momentum and energy, the objects of study of this section.

2.5.1 Qualitative analysis of moments of Boltzmann equation

The moments of the Boltzmann equation arise as an attempt to extract macroscopic properties
of the system by means of the distribution function and the Boltzmann equation. A way to do
so is to take the average of the distribution function in the Boltzmann equation considering the
phase space of the independent parameter of the physical variable in consideration. Suppose that
a given physical quantity, ⇣(v), is proposed to be studied by the method of moments. First, one
should average it out by multiplying it by the Boltzmann equation and integrating it in all space
of velocities, then dividing the result by the particle number density.

Consider the Boltzmann equation 2.39, multiplying it by ⇣(v) and integrating over the space
of velocities we get
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⇣
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d3v (2.41)

We now Independently analyze each of the terms. The first term can be rewritten as

Z
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⇣fd3v)�
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f
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@t
d3v (2.42)

Considering that ⇣(v) does not depend on time, the last term vanishes and using the standard
notation of averages, h⇣(v)i, and making use of 2.33:

Z
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⇣
@f

@t
d3v =

@

@t
(n h⇣(v)i) (2.43)

19



For the second term, the part containing the divergence vanishes due to the configuration of
the velocity in the space phase, and likewise r⇣(v) vanishes, since it is independent of the space
variable. The second term then becomes

Z
v

⇣v ·rfd3v = r · (n h⇣(v)i) (2.44)

The third term requires more attention. Assuming that the field of forces has divergence zero,
i.e., the force component in a given direction is independent of the velocity in that same direction,
and considering the expansion of the third term
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f d3v =
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· (a ⇣ f) d3v �
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f a ·r
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f ⇣ r
v

· a d3v (2.45)

From equation 2.45, the first term of the right-hand side is a sum of three triple integrals , and
each of this triple integrals result in zero, and the first integral in the right-hand side becomes

Z
v

⇣ a ·r
v

f d3v = �n ha ·r
v

⇣i (2.46)

Bringing together the separate result of the three terms, one is able to retrieve the general
transport equation,
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(2.47)

The right-hand side represents the rate in which collision modifies the quantity ⇣ and alter the
exchange of value .

2.5.2 Mass conservation

From this general principle, one may derive important relations that are helpful to understand
how transport takes place within the constrains previous established. By firstly considering ⇣ =

m, where m is the mass of a given species, we have

h⇣i = m (2.48)

h⇣vi = m hvi ⌘ m u (2.49)
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r
v

⇣ = r
v

m = 0 (2.50)

Replacing these quantities in the general transport equation we have

@⇢
m

@t
+r · (⇢

m

u) = S (2.51)

Equation ?? is known as the continuity equation. The term ⇢ represents the mass density n ·m,
u is the linear velocity, and S represents the collision term.

By considering a collisionless scenario, dividing 2.51 by the mass m, and multiplying the
whole equation by the charge of the specie, one may arrive at the conservation of the electric
charge equation

@⇢
m

@t
+r · J = 0 (2.52)

Where ⇢ = n · q is the charge density and J = ⇢u is the current density.

2.5.3 Momentum conservation

The conservation of momentum is extracted in a similar way as the mass conservation. Here,
a more throughout analysis must be done in order to consider the standard variable ⇣ = mv, being
v = w + u, where w is the random movement around the mean velocity, and hwi = 0.

Considering the acceleration in terms of the force and the mass, each of the terms can be
reduced to

@

@t
(n h⇣(v)i) = @

@t
(m n u) (2.53)

r
v

(m n hw
i

w
j

i) = �r · ! (2.54)

n hF i = �n(r, t) q(E + v ⇥ B) (2.55)

Where
 !
 is the dyadic of pressure generated by the friction arising from the random move-

ments w
i

and w
j

of the particles in different layers of the plasma. After considering the constric-
tions relative to the assumptions made, one will arrive at the following conservation equation

21



n m
Du

Dt
= n q (E + u⇥ B)�r · ! � � (2.56)

This is the momentum conservation equation. It roughly represents how the rate in change of
momentum varies with the collision term �.

2.5.4 Energy conservation

In a similar way as already considered, the energy transport equation can be extracted from
the Boltzmann equation in a partial differential form. Here, the general quantity ⇣ is replaced by
the particle kinetic energy mv

2

2 . In this case we have to consider the velocity as a two component
quantity, and treat each term separately
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And the collision term is
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(2.60)

representing the rate in which the energy is transferred among particles by collision effects.

Here, N represents the dimensional number in which the dyadic of pressure is considered, for
isotropic cases it is considered unit. The quantity Q is the heat flux, expressed as

Q =

Z
v

mw2

2
w f d3v (2.61)

Bringing up all the terms together and performing the necessary adjustments, we have
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(2.62)

Where � ·u represents the heating due to friction processes, and (@W
@t

)
coll

the energy transferred
by collision.
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2.6 CONSIDERATIONS

From the equations above described, it is advantageous to compute two quantities, relating
the moments extracted from the Boltzmann equation and the magnetic flux function, expressed in
two important transport quantities in terms of the flux function  .

h� ·r i =
⌧Z

v

d3vfu ·r 
�

(2.63)

hQ ·r i =
⌧Z

v

d3v
m u2

2
f u ·r 

�
(2.64)

Equation 2.63 represents the flux surface average of the radial particle flux, 2.64 is the energy
flux, and h·i denotes flux surface average.

Having derived the most important moments of the Kinetic Theory from the Boltzamnn equa-
tion, we notice that this set of partial differential equations describe how the movement of mass,
momentum and energy shall occur but it is important to observe that this model is a simple repre-
sentation of the classical transport expected in a Toroidaly confined plasma. A better description
of the plasma physics must be done in order to better foresee tokamak plasma dynamics.
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3 TOKAMAK

3.1 REALISTIC TRANSPORT MODELS

It is important to observe that, although elegantly derived from fluid dynamics and electro-
magnetic theory, the classical models of transport are not enough to describe the dynamics of the
particles in a tokamak. The consideration of the toroidal magnetic geometry of the device plays
an important role in most recent models, where effects due to the gradients of the field start to
show the importance and impact of morphological considerations.

3.1.1 Classical Transport Operators

The former Vlasov equation needs to be modified in the sense that it must now account for
effects like collisions. Classical and collision induced plasma current must be defined and irre-
ducible levels of transport caused by Coulomb collision must be included. Two operators are
considered. The Fokker-Planck coulomb collision operator makes the assumption that particles
can only collide with each other and with other particles, bringing us to a rate change in the
distribution function due to internal collisions, expressed as

C(f) ⌘
✓
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@t
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f(x, v, t)� f(x, v, t��t)
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(3.1)

The integro-differential form of the operator can be described as as
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The Operator is a scalar, invariant under rotation, and symmetric with respect to Galilean
transformations, making it a rotationally symmetric, or isotropic, operator. When expressed in
terms of the Rosenbluth Potentials, from the Rosenbluth-MacDonald-Judd form, and considering
the specific changes in velocity vector due to coulomb collisions of particle "a"with background
particle "b", one may get the form
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Where H
b

and G
b

represent the Rosenbluth potentials

H
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And the factor � is represented as

� =
q2
a

q2
b

ln(⇤
ab

)

4⇡✏0m2
a

(3.6)

Where ln(⇤
ab

) is the Coulomb logarithm. Another important consideration that must be done
in regard to the collision of particles with a stationary background, is the Lorentz Collision Ope-
rator expressed as:
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Where ⇣ =
vk
v

and ' = tan�1 v

y

v

x

. For h�vi
�t

= ⌫(v)v. This operator might be seen as a form of
angular scattering in the velocity space.

From now on, one must be capable of recognizing important factors and a more precise des-
cription of a tokamak plasma transport.

3.1.2 Electrical Conductivity within Lorentz operator

An important property that must be studied in order to precisely describe plasma inner me-
chanisms is known as electrical conductivity. The electrical conductivity help us to quantify a
material’s ability to allow transport of electric charges, be it electrons or ions. Following the
Spitzer-Härm argument, the study of plasma conductivity is done by assuming the application
of a Electrical field E in an infinite homogeneous plasma and analyzing its steady state current.
Something with the form J = �E is expected, being � the conductivity. Making use of the Vlasov
equation for the Maxwellian distribution function, one may get

q

m
E · @f

@v
= C(f) (3.8)

From a phenomenological point of view, a correct scaling with plasma parameters is found
when we consider the electron momentum balance and a shifted maxwellian distribution. Inte-
grating 3.8 in

R
mvd3v, resulting in �nqE �mn⌫v, we get

J = �nqv =
nq2

m⌫
E = �E ⌘ E

⌘
(3.9)
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the first order approximation of the plasma electrical conductivity is

�0 =
nq2

m⌫
(3.10)

Any improvement in this conductivity will only add numerical coefficients to the very same
value represented above, preserving the former scaling.

Consider, for instance, the Lorentz collision model. Expanding the electron distribution func-
tion for small E, we have f
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Where we consider that for ✏0 : f0 = f
m

(v), and f
m

is the maxwellian distribution. Using the
Legendre polynomial series f1(v, ⇣) =
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n=0 f1,n(v)Pn

(⇣), and using just the first term for this
approximation
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We have, therefore
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d3vqvf
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And so
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The increased observed in the Lorentz approximation for the electrical conductivity is due
to high energy electrons with lower collision frequency. A numerical solution found by Spitzer
gives us �

Sp

= 1
↵

nq

2

m⌫

, being ↵ a parameter dependent of the atomic number of the ions, ranging
from 0.51 for Z

i

= 1 to 0.29 for Z
i

!1.

3.1.3 Random walk approach

A random walk consists of a movement that in principle has no determined pattern, and it is
random by definition (D. Ben-Avraham, 2000). It is expressed as a succession of random steps.
Note that in this model, the true causal deterministic or non deterministic nature of the process
per se is not discussed. By using this argument, we are capable of deducing some transport coef-
ficients perpendicular to the magnetic field B.
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The randomness of the walk comes from collision of particles in their gyromotion orbits. The

diffusion coefficient is described as D ⇠ h(�x)2i
�t

⇠ ⇢2⌫. Any step with size comparable to ⇢ is
considered a classical transport.

It is interesting to notice that collision of alike particles does not lead to particle diffusion,
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= 0, but do lead to heat diffusion �?ee
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of unlike particles can lead to heat and particle diffusion, as expressed in D?ei
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. The classical perpendicular transport is the net sum of these various processes. For
electrons we have
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And for the ions we have a similar situation,
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It is easy to observe that since D?e

= D?i

, the perpendicular transport is ambipolar, and no
charge separation is generated.

Parallel to B, in a similar way, the transport coefficients can also be determined. We must con-
sider here that the step size is related to the mean free path of the particle, � = v

T

⌫

, consequently,
for the electron-electron case
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Dkee = 0 (3.20)

For the ion-ion case
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Dkii = 0 (3.22)

The electron-ion case is expressed as
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We also have for Electrons
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And for Ions
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Observe that, for a first order approximation where ions and electrons have the same tempera-
ture, perpendicular transport is highly dominated by Ion Heat Diffusion, but the parallel transport
is, differently, dominated by electron heat diffusion. The parallel heat transport, in this scenario,
can be up to thousands times larger than perpendicular heat transport.

3.1.4 The Braginskii equations

For a collisional and magnetized plasma, the Chapman-Enskog method, firstly thought for a
general gas, is an interesting approach in which a small parameter ✏, related to the collisional
time and macroscopic time scale, is used in order to solve the kinetic equation and compute
transport parameters. When assumed to be Maxwellian, the distribution function gives us a clear
and elegant collision operator, and assumes T

e

= T
i

and V
e

= V
i

. At this point, one could expand
the distribution function via momentum, and arrive at the following relation
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For the first term in the right hand side, one has the lowest order Mawxellian term, the second
and third terms are proportional to ✏ and ✏2 respectively. Following the moment approach to the
Spitzer problem, the moments of kinetic equation

R
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2

3 I)L
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i

gives
us a coupled set of equations for u0 and ⇧0 and its higher order complements. The multiplication
of this set of equations by the friction coefficient matrices gives us the parameters related to the
flow, u, and stress, ⇧.

The zeroth order of the conservation equations originated from the above description can be
listed. First, considering that the Fokker-Planck collision operator for conserved particles, we
have for the density
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momentum conservation case, one would get
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In the right hand side, we find terms corresponding to the Lorentz force, pressure, viscous
force and frictional forces, respectively. The same path could be followed in order to demonstrate
the respective equations for Energy and heat flux conservation. It is interesting to point out that,
for the case of flux conservation, a parallel, crossed (diamagnetic), and perpendicular components
are found, for the ionic case we have
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It is worth to mention that the collisional entropy can be extracted from the Bragisnkii equa-
tions just by taking in consideration the electron entropy equation S
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From the above equation we are capable to observe terms related to convection and conduc-
tion, or entropy flow, on the left hand side, and on the right hand side dissipation processes such
as heat transport, viscous heating and flow heating.

Despite of its robustness, the Braginskii equations possess some worth to comment prelimi-
nary limitations, mainly regarded to real case tokamaks. The parallel and perpendicular gradient
scale lengths of macroscopic quantities must be large in comparison to the collision mean free
path and gyroradius, respectively. Macroscopic quantities have, also, a moderated rate of change
when compared to collision frequency. Small scale processes may appear, but they are averaged
out from the net transport, they would have to, then, be described by kinetic characterization and
then added to the Braginskii’s equations.

If we consider the balance equations, with a gradient of the temperature equals zero and
E = EA � r�, we are capable of determining flows characteristic to classical transport and
its coefficients for magnetized plasmas.

From equation ??, we can arrive in the following relation
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= nq(EA �r�+ V ⇥ B)�rp�r · ⇧� nq

✓
Jk
�k

+
J?
�?

◆
(3.34)

From the above equation, a perpendicular, parallel and cross component to the flow may be
extracted. The parallel flow is determined by
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(3.35)

Consider b to be equal to B

|B| , the E ⇥ B and diamagnetic flows are retrieved as a first order
approximation of the perpendicular flows. For a first order perturbation approximation of � and
p, one gets
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The equations of the perpendicular transport flows are extracted from the perpendicular com-
ponents in higher orders
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Where the sum of the second, forth and fifth terms of the right hand side give us coefficients
related to neoclassical transport, and the third is related to classical transport. while the last one
is related to grid velocity.
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In the classical transport due to friction between diamagnetic flows the classical diffusion is
equal to D
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From the balance equations, a peculiar set of equations with important characteristics are
extracted. Consider an axisymmetric geometry, where

B = Ir⇣ +r⇣ ⇥r (3.40)

and,
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In a tokamak geometry, consider also that the axisymmetric condition bring us the following
considerations
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and,

hB ·rfi = 0 (3.43)

From the parallel momentum balance, expressed in equation 3.35, we have
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The particle flux can be reduced to

� ⌘ hV?,2 ·r i (3.45)
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Considering the description of V?,2 here exposed, one may arrive in the following relations

�neo

 = �I

q

⌧
1

B2
[nq(B ·r)�1 + (B ·r)p1 +B ·r · ⇧]

�
(3.46)

= nI

⌧✓
1

B2
� 1

hB2i

◆✓
JkB

�k
� EA

k B

◆�
+

nI

hB2i

⌧
JkB

�k
� EA

k B

�
(3.47)

The first bracket represents the Pfirsch-Schlüter transport, within the flux surface, and the se-
cond one, averaging the flux surface, the Banana-Plateau.

The total current within the flux surface, considering the charge continuity equation, is found
to be
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The first term in the right hand side is the Pfirsch-Schlüter current, resulting in a diffusive flux
�PF ⇠ q2( )D

CL

and larger than the classical diffusion values.

Albeit complete and rigorous, classical, mostly perpendicular, transport, does not account
for the experimental measurement (K.Tanaka, 2007). Banana orbits and instabilities fluctuations
may yet play a significant role and must be taken into account. A generalization of the Braginskii
equations for any ratio of mean free path to gradient lengths must be done as well as losses
processes in the case of open field lines and better accounting for effects of viscosity must be.

3.1.5 Neoclassical Transport

The neoclassical description comes in order to improve the outdated and mismatched classical
model and attempt to fill the gaps of divergences between classical predictions and real measure-
ments.

Perpendicular diffusion can be estimated with the random walk argument and is directly rela-
ted to the Banana regime, where D ⇠ ⌫⇢2q2/✏3/2 is phenomenologically described. Depending
on the collision frequency, the bananas orbits may be completed or not, arriving to the point of
drift off from the flux surface, where D ⇠ w

b

⇢2q2/✏3/2, and w
b

is the untrapped particle bounce
frequency. In the highest collision frequency cases, Pfirsch-Schlüter Diffusion dominates with
D ⇠ ⌫⇢2q2/✏3/2, and ⌫ >> w

b

.

In neoclassic processes, ion perpendicular heat transport takes an important role, and it do-
minantly affects the whole transport. Perpendicular transport is highly scaled with collisionality,
going from banana to Pfirsch-Schlüter regime depending on ⌫ as seen in figure 3.1. Electrical
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Figura 3.1: Diffusion level as function of collisionality regime [reference:Jan Mlynar]

conductivity is decreased due to trapped particle effects and the Bootstrap current, the parallel
component of viscous damping of poloidal electron diamagnetic flow and an important neoclas-
sical prediction, arises. Effects on viscous damping of poloidal flows, where untrapped particles
carry flow and collide with stationary trapped particles, are also observed.

Bootstrap current is driven by density and temperature gradient. It is independent of other cur-
rent drive mechanisms and provide most of the poloidal field in the advanced tokamak scenarios.

By applying the Braginskii theory in the framework of neoclassical transport, generalizing
parallel viscous stress, and some limitations, we can modify⇧ in order to have a better description
of the banana-plateau regime .

⇧ = ⇧k + ⇧⇤ + ⇧? (3.49)

Where⇧k is the divergent in the banana-plateau regime and the other two terms in the RHS are
negligible when compared to the first term. Making use of the Chew-Goldberger-Low description,
we have ⇧k = (pk � p?)(bb � I/3), considering again b = B/ |B|. The anisotropic pressure of
first degree is generated due to flow againstrB, and is related to the viscous damping frequency
µ, directly dependent on the collisionality regime.

pk + p? ⇡
�mnµ hB2i⌦
(b ·rB)2

↵V ·r lnB (3.50)

Viscous forces due to parallel viscous stress are of high importance in the description of the
banana orbits, since they play a direct role in the flux transport. The parallel component of the
force can be described as

B ·r · ⇧k = �(pk � p?)(b ·r)B +
2

3
(B ·r)(pk � p?) (3.51)

The flux surface averaged force gives us a picture of the effects of viscosity in the damping of
poloidal flows, and is described by using the magnetic field in poloidal coordinates:
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And its effect on poloidal flows is observed by using Newton’s second law on
⌦
VkB

↵
, and

cosidering µ as the parallel poloidal flow damping frequency.

mn
d

dt

⌦
VkB

↵
= �mnµu

✓

⌦
B2

↵
(3.54)

The parallel poloidal ion flow can also be determined by the momentum balance. Assuming
that the gradient of the temperature is zero, from Newton’s second law and summing over the
plasma species, one may have

0 = B ·r · (⇧ke + ⇧ki) ⇠ �mi

n
i

µ
i

U
✓i

( )
⌦
B2
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2 sin2 ✓ (3.55)

Leading us ultimately to

0 = U
✓i

( ) ⇠
Vk

B
+

1

BB
✓

(
d�0

dr
+

1

n
i

q
i

dp
i0

dr
) (3.56)

A resultant flow in the toroidal direction, when in equilibrium, damped on perpendicular trans-
port time scale is brought in association with the toroidal angular rotation frequency

w( ) ⌘ V ·r⇣ = �(d�0

d 
+

1

n
i

q
i

dp0i
d 
� 1.17

q
i

dT
i0

d 
) (3.57)

Where the value 1.17 is the correct value for a banana regime, in the case where the gradient
of the temperature is different of zero. The toroidal velocity can be approximated as
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Ohm’s Law is easily worked out in the framework of parallel electron momentum. In a similar
approach, using rT = 0, and considering the parallel momentum of electrons, we have

⌦
JkB

↵
= �k

⌦
EA

k B
↵
+

�k

n
e

e

⌦
B ·r · ⇧ke

↵
(3.59)

The last term will become something similar to equation 3.55, and the poloidal flow velocity,
U
✓e

, can be solved from the solution of the electron ion momentum balance. A resultant Ohm’s
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law from the flux surface averaged is

⌦
BJk

↵
=

�k

D
EA

k B
E

1 + µ
e

/⌫
e

� µ
e

/⌫
e

1 + µ
e

/⌫
e


I
d(p

e

+ p
i

/Z
i

)

d 
� n

e

eU
✓i

⌦
B2

↵�
(3.60)

The effects of trapped particles on electrical conductivity, due to viscosity effects, as well as
the Bootstrap current, due to viscous drag on poloidal electron diamagnetic flow, can be extracted
if one considers µ

e

/⌫
e

⇠ 2
p
✏, U

✓i

⇠ 0, and d ⇠ B
✓

Rdr. An interesting result in the frame
of radial particle flux in neoclassical Banana-Plateau regime is the ware pinch flux, that come as
a result of the consideration of poloidal electron flow in the radial particle flux component, it is
characterized by W = Iµ

e

/⌫
e

D
EA

k B
E

The total neoclassical transport is obtained by putting together Classical, Banana-Plateau, and
Pfirsch-Schlüter transports.

� = hnV ·r i =
⌧

1

B2
r · B ⇥

✓
nqJ?
�?

+ nqr�1 +rp1 +r · ⇧k

◆�
(3.61)

Where the first term inside the right-hand-side parenthesis accounts for the classical transport,
and the last three terms for Pfirsch-Schlüter and Banana-Plateau transport. In a reduced matrix
form, the flux surface averaged neoclassical transport equations can be shown as
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Consider q
i

= �n�
i

dT
i

/dr, D
e

⇠ �
e

in the neoclassical approach, and the right-hand-side of
equation 3.62 the linkage between the transport components and thermodynamic forces.

Aspects related to impurity tendency to peak at certain regions of the torus, radial ambipo-
lar transport and nonaxisymmetric toroidal Magnetic field ripple can also be extracted from the
neoclassical transport approach

3.2 ANOMALOUS MECHANISMS

Notwithstanding the advances brought in neoclassical tokamak transport theory, diverse ano-
malous effects are found when some of the flux parameters are contrasted with real experimental
measurements. From the various discrepancies, processes related to electron heat diffusivity, par-
ticle diffusion, and electron runaway diffusion seems to be the most attenuated ones.
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Perpendicular Ion heat transport in large tokamaks seems to be the most troublesome parame-
ter, together with perpendicular electron heat and particle transport. The idea to develop a more
complete set of equations for any degree of collisionality brings us to the development of a class
of transport phenomena called Anomalous Transport, responsible to describe the discrepancy
between experimental and neoclassical transport.
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4 ANOMALOUS TRANSPORT

It is found that measurements of transport levels in tokamaks exceeds the values predicted
by the neoclassical theory. Due to the excess in transport levels, neoclassical transport is hardly
properly tested. A new model must be developed in order to match the experimental transport
levels measured.

Anomalous transport is the theory responsible to quantify and study the additional part of the
transport measured in magnetic confined plasmas. It is found to be driven mostly by turbulence
and micro-instabilities ( A.J.Wootton, 1990). In this chapter, we are going to examine the elemen-
tal foundations of the anomalous transport theory, and understand how this framework of study
can, later, be used to solve accurate numerical problems that meets the expected transport levels.

4.1 THE NEW TRANSPORT MECHANISM

4.1.1 Bohm Diffusivity

After it was observed that the divergence of flux levels was enough to disturb precise predic-
tion of the neoclassical theory, the study of the new transport mechanism led to the establishment
of the Bohm diffusion as determined by anomalous processes. The Bohm diffusion coefficient is
characterized by the following proportionality:

D(B) ' K
B

T

eB
(4.1)

Here, it is easy to observe the relation of the diffusion to the magnetic field strength B and the
temperature T . It is important to observe that the level of transport is, therefore, determined by
empirical observations.

It is argued that the main responsible for the anomalous level of transport divergence from
neoclassical predictions is turbulence generated by micro-instabilities. It is easy to accept this
argument when one acknowledges the reduction to neoclassical levels of transport when self-
organization plays a role in the formation of H-modes and Internal Transport Barriers, later dis-
cussed.
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4.1.2 The role of Turbulence

Turbulence is thought to be the mechanism in which fluids dissipate energy input from large
scales to small scales, releasing it in the form of heat. The apparent random behavior of turbulent
flows does not necessarily means that it is not deterministic, and therefore, a mathematical appro-
ach can be developed in order to comprehend the mechanism (Ben Dudson, 2014).

In magnetically confined plasmas, the role of turbulence is also understood as a way to dis-
sipate the energy from the larger scales to the small ones, in form of micro-instabilities. The
turbulent regime is characterized by small fluctuations in the mean plasma parameters, such as
pressure, electric field and temperature. In this case, the energy is passed from larger scales to
small ones, through cascades, where the energy can be finally released in the form of heat, as
schematized in figure 4.1.

Figura 4.1: Archetype of dissipation pathways within turbulent framework[P H Diamond1 et. al.]

In order to describe the modus operandi of turbulent behavior, we are going to work in the
framework of the Gyrokinetic description of the plasma. In this scheme, the fluctuations present
in the parameters of interest can be analyzed in more detail, and it opens, also, a path for a redu-
ced numerical solution of the whole process, which is interesting if one thinks about the use of
computational resources as a tool for the description of the phenomena.

4.2 GYROKINETIC APPROACH

The gyrokinetic approach to the study of plasma dynamics allows us to describe perpendicular
waves with k? ' ⇢

e,i

, where k? is the typical wave number perpendicular to B, and ⇢
e,i

is the
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gyroradius. With time scales smaller than the ion cyclotron frequency. In order to compute any
parameter, one needs first to compute the distribution function, as shown with the Vlasov theory.

From the Fokker-Planck equation, one must rewrite the main parameters in a perturbed ex-
pansion, which will be the focus of our analysis. The expanded equation is described as


@
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+ v ·r+
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In order to isolate the perturbed part, one could subtract from the previous equation an average
of the same ensemble, leading to
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Here, it is important to notice that there is a crossed effect of the main value of the distribution
function on the perturbed part of the main parameters, represented on the right hand side of the
equation. The last term on the right hand side is an operator responsible for the description of the
averaged out interaction between the fluctuations with the particles of the systems

⌅ = � q
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⌧
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p
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) · @fp
@v

�
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(4.4)

One must, then, pass the frame of reference to the one coinciding with the guiding center of
the particle’s orbit. In this way, the dimensionality and complexity of the problem is reduced,
since the complicated behavior of the particle around its guiding center can now be reduced to the
movement of a parallel velocity, vk, and a magnetic momentum described as

µ =
mv?2

2B
(4.5)

A first order solution of equation 4.3, taking in consideration the gyrokinetic approach, is
described as the adiabatic and non adiabatic solution of the perturbed distribution

f
p,1(r) = �

q�
p

(r)

T
+H(r) (4.6)

In terms of the gyrocenter position r, and as a function of the operator

h(r) = H(r)� qf
p,0=(r)
T

(4.7)

considering
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The next order solution of the gyro-averaged equation is described as
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Considering the perturbed drift velocity as vd
p
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One could consider the filed to be described as

X
p
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ik?·x (4.10)

Considering X⇤(r), and k? to be slowly varying functions, we have the gyro average h·i
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of
the field perturbation as
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It could be described in terms of a Bessel function of first kind, considering
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we would have, therefore
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With a straightforward algebraic manipulation, we can describe the field =
p

, as a function of
the omitted gyrocenter frame of reference
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Even when considered as a linear approach to the gyrokinetic theory, equation 4.9 has a com-
plex solution, that makes it hard to be analytically solvable regardless of the simplicity of the
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chosen geometry.

4.2.1 Ballooning properties

It is interesting to notice that, turbulence in plasma is normally elongated in the direction of
the magnetic field, in the torus around the plasma bulk, but despite of that, a small perpendicular
component exists. A way to analyze these short perturbations is to represent it in a flute-like des-
cription proportional to ei(m��n�), being m, and n an integer number, and where � is the poloidal,
and � is the toroidal coordinates.

Since the microinstabilities modes are not localized, but in fact spread over different flux
surfaces, one could use instead of a flux approach, a ballooning representation, and compact the
small perpendicular and elongated parallel modes. Disregarding the time dependence, and using a
toroidal harmonic description of the perturbed fields X

p

, we can have the expression in a compact
form as (J. W. Connor, 1980)

X
p

(r,�,�) = x
p,n

(r,�)e�in[��q(r)]� (4.17)

Considering, implicitly, a ballooning function depending on the poloidal angle �.

Observe that, simple modes are radially periodic, and in order to simplify the approach, the
constant parameters over the radial domain could be approximated, leading to a flattened profile,
this is useful when ⇢ ! 0, and the perturbed parameters can be expanded in a perpendicular
direction.

One could describe the non adiabatic part of the distribution h in a ballooning representation
as (F. Romanelli, 1990)
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qR

@
✓

h� i(w � w
D

)h� C[h] = �iqf0
T

(w � w0
T

)�J0(z) (4.18)

With h, and � as perturbed functions of the Ballooning function described above. Since
the time derivatives are in function of the frequency, w

T

is proportional to w0, the diamagnetic
frequency, and w

D

is the magnetic drift frequency.

4.3 FLUX QUANTITIES

To understand how turbulence arises in the gyrokinetic theory, one could analyze the potential
perturbation �

p

, corresponding to a perturbed drift velocity described as
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generating ambipolar effects. The average over a flux surface of this flow gives us the particle
flux. Its dependence on the perturbed density n

p

, and its direct relation to the potential perturba-
tion are one of the indicators of its perturbed property.
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Where the operator < represents the density response of the plasma, and the whole left hand
side is averaged in a flux surface. For a energy flux analysis, a similar operator to < is responsible
to represent the plasma temperature response
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also averaged out over a flux surface. Notice that the perturbed properties of these quantities
depend on the fact that the density, or temperature, perturbations are not aligned with the per-
turbed potential. If one thinks about the non adiabatic electron response, the particle flux is non
existent if one does not consider any sort of impurities, and the adiabatic part of f

p

does not lead
to any flux in the radial direction, in this approximation.

Trivially, the magnitude of the fluxes depend directly on the perturbation potentials, and it is
now easy to see the reason why this problem needs enormous computational resources in order to
be accurately solved. In this cases, the best solution is the performance of nonlinear simulations,
where the saturation mechanisms guides the magnitude of the perturbations.

Magnetic perturbations can, also, have an impact on the fluxes analysis. Following the gyro-
kinetic approach, the particle flux can be described as
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⌧Z

d3vH
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Averaged over a flux surface. Here, H is determined by the electrostatic gyrokinetic equation
and
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i /B. The electromagnetic case has H represented by 4.9 with source terms
from other origins such as
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4.4 ONSET OF MICROINSTABILITIES

Microinstabilities are thought to be a good candidate to solve the problem of anomalous trans-
port. Given the fact that microturbulences have wave lengths comparable with the ion gyroradius,
and considering that an overall picture of turbulent transport could help us to have hints in th-
reshold saturation levels and parametric dependence of fluxes, one could possibly identified dri-
ven mechanisms with the help of a more detailed analysis.

Instabilities transfer the free energy from the plasma to turbulent flows. Drift waves are a
particular class of waves that exist as a source of plasma turbulence. Depending on the kinetic
pressure normalized to the magnetic pressure � = p/(B2/2µ0), electromagnetic or electrostatic
instabilities may be predominant. For plasmas near the Maxwellian distribution, the growth rate
of instabilities is approximated by ((T

e

+ T
i

)1/2/m
i

)/a, where a is the plasma radius.

For low values of �, or large magnetic field, the B constrains the motion of the plasma and,
therefore, the resulting turbulence is electrostatic. In contrast to the case of high �, where a fluid-
like behavior is seen, and turbulence arises in the form of Alfven waves.

Microturbulence led by microinstabilities are, normally, of the order of the gyro-Bohm diffu-
sion rate, D = ⇢2C

s

/a, where C
s

is the plasma sound speed, with relatively small amplitudes. In
this section, we are going to deal with three prominent micronistabilities, Ion and Electron Tem-
perature Gradient, ITG and ETG, respectively, and Trapped Electron Mode (TEM). It is important
to notice that, due to its dimensional size, and its propagating velocity, microinstabilities does not
perturb the plasma quasineutrality approach. Notwithstanding the importance of all three parties,
a greater attention will be given to the ITG mode.

4.4.1 Ion Temperature Gradient

In order to analyze the ion response, one could consider a energy-dependent Krook collisional
model in a strong ballooning limit

C[h] = � ⌫

x3
h (4.23)

and after some algebraic manipulation, one gets
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Some considerations must be taken into account here. The parallel comprehensibility is des-
cribed by kkvk, and x = v/v

T

, and ⌘ = L
n

/L
T

. Here, w⇤
D

is described as

w⇤
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=
w
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v2
T

v2?/2 + v2k
(4.25)

Remembering that w
D

is the magnetic drift frequency. In 4.24, transforming the ion density
response from gyrocenter space to real space, lead us to a velocity integral, one in which the poles
are responsible for the interpretation of resonances and destabilizing modes. Depending whether
we have a magnetic drift or a collisional resonance mode, the ITG is be defined as slab or toroidal.

If one considers a full dispersion relation, with electrons in the response term, the resultant
differential equation would be hardly possible to be solved analytically without further conside-
rations.

The ITG is considered a passing particle mode with a frequency range between the ion and
electron. For an adiabatic electron response, equation 4.24 holds as a first approximation. In a
toroidal geometry, the curvature becomes the main driving mechanism. The quasineutrality leads
us to an eigenfuction problem, and the solution peaks at the ballooning angle equals to 0, in the
region where the curvature is considered not weak. The result is a ballooning structure, where the
magnetic drift destabilize the mode through ITG.

Figure 4.2 help us to illustrate the modus operandi of the mechanism. There, we can observe
how the temperature perturbation in the plasma, in the outer part of the torus, is affected by the
magnetic drift of the particles, leading to a growing density perturbation. The density perturbation
generate, then, E⇥B flows. It is easy to see that the curvature of the torus generate good and bad
regions on the plasma, that will directly affect the stabilization of the ITG modes. The ballooning
form is gained due to the drive source and the stabilization shape’s dependence on the poloidal
angle.

Observe that turbulent fluctuations generate no toroidal nor poloidal mode perturbations, and
are therefore not dumped by Landau mechanisms. The generated flows appear to be mostly in a
poloidal direction inside each of the flux surfaces with a direction varying on a radial scale.

The in-flux-surface zonal flow, together with neoclassical flows, possess a strong stabilizing
effect, that when considered with the radial correlation length, can lead to a reduction in the trans-
port level.
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Figura 4.2: ITG instability[credit:Aaron Scheinberg]

4.4.2 Electron Temperature Gradient

Considering Ions responding adiabatically, but electrons not, a microinstability mode can arise
in the form of the ETG mode. Because the ions respond adiabatically, they are free to cross the
field lines in response to changes in the potential, disregarding zonal flows, since the ion response
is to the full variation in the electric potential.

The extend of the radial scale of the constant potential contours is limited by the ion gyro-
radius, that way, the ions are free to respond adiabatically. Due to a great anisotropy, the ETG
transport can be comparable to the ITG with zonal flows (F. Jenko, 2000) . In the electrostatic
and adiabatic limit, the ETG mode is similar to the ITG mode, with the ions interchanged by the
electrons.

Recently, it was argued that gradient driven turbulent modes are nonlinearly generated by ra-
dially extended non linear perturbations, called streamers (J. Drake, 1988). An analysis of this
phenomena shows us that theses streamers saturate by the secondary Kelvin-Helmholtz instability
mechanism.

ETG structures are possibly dominated by radially extended streamers, generated from a iso-
tropic turbulent state within a modulational instability mechanism. From the Braginskii 2- fuid
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equations a model for the ETG mode in the hydrodynamic approximation can be drawn. Con-
sisting of the electron continuity equation, the parallel equation of motion and the temperature
equation coupled with expressions for perpendicular drifts of the electron fluid, we have the fol-
lowing equation
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Where we can observe a E ⇥B drift, together with diamagnetic and polarization drifts. Note
that the perturbation of the magnetic field in the parallel direction, B

p,k affects the equation in
more than one term, and therefore, couples the ETG mode to the perpendicular and parallel mag-
netic perturbations directions. The streamers are, then, nonlinearly excited through modulation
instability, arising from scaling transformations. Nonlinearities arising from the electrostatic per-
turbed equations manifest themselves and large amplitude anisotropic eddies are created, such
eddies represent the streamers discussed in this paragraph. A modulation instability analysis
indicates that homogeneous isotropic turbulence of ETG modes is unstable to the formation of
streamers.

Figura 4.3: ETG saturation and streamers formation[credit:20th IAEA Fusion Energy Conference]

In figure 4.3 we can easily observe how streamers are formed close to the good curvature in
the torus, where the shear is higher, holding up the argument that magnetic shear could possible
be responsible for turbulence anisotropy.

4.4.3 Trapped Electron Mode

Trapped Electron Mode (TEM) appears when non adiabatic trapped electron response is intro-
duced, generating a new root, distinct from the ITG mode. In this case, trapped electron bounce
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between the High Side Field and the Low Side Field like small magnetic dipoles, µ, due to the
magnetic mirror force generated between the inside and the outside region of the torus. These
electron are mostly found in the unfavorable part of the curvature, giving a direction to the curva-
ture drift, and the local electrostatic field E ⇥ B gives origin to microinstabilities that, due to its
inertia, does not follow the electrostatic perturbation and behave, therefore, non-adiabatically.

Figura 4.4: Trapped particle mode instability[credit:Ben Dudson]

Collision plays an important role in the rise of trapped instabilities, since if they are not too
frequent, these particle can remain longer in the bouncing regime. Trapped electron mode is a
prominent contributor of the anomalous fluxes in tokamaks, and the study of electron cyclotron
heated Ohmic plasmas demonstrate us the importance of trapped electron mode driven transport.

TEM are similar to sausage instabilities, in the sense that, as seen in figure 4.4, a charge sepa-
ration is formed due to the bouncing of electrons. Note that, due to the nature of the effect of the
passing particles, they act as a background and with Boltzmann response.

4.5 OVERVIEW

It was shown in this chapter the role of microturbulence in order to quantify the turbulent
transport, and the onset of three modes of microinstabilities. Ion Temperature Gradient, Electron
Temperature Gradient, and Trapped Electron Mode, are found to be in a fairly adjacent range of
proximity.

The different growth rates, �, of these instabilities is observed in figure 4.5. It is easy to un-
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Figura 4.5: Range of instability growth rate, �, for different microninstabilities range [credit:F. Jenko]

derstand this image when one has in mind the scales of the microinstabilities per se, being ion
larmor radius for ITG, electron larmor radius for ETG and in-between for TEM.

We saw also that, zonal flows generated by microturbulences are sheared, disrupting its eddies,
decreasing thus transport levels, which could indicate a stabilization mechanism arising from the
initial considerations. In that panorama, the shearing of E⇥B flows could generate a mechanism
responsible for the reduction of the anomalous transport (B. N. Rogers, 2007).

One could reasonably argue that anomalous transport can, in fact, be described by turbulent
transport. Most specifically, one could claim that the nonlinear dynamic of microturbulence ge-
nerated by small scales structures could give us a valid picture of tokamak transport. In order to
do so, computational validations must be done is the aim of our next chapter.
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5 NUMERICAL SIMULATIONS

In the previous chapter, we learnt that the once valid transport theory fails to predict the cor-
rect flux levels of real experiments. We, then, rapidly discussed an approach on the framework of
gyrokinetic theory, in order to model which phenomena may be taking place instead of exclusi-
vely the neoclassic transport.

We discovered that microinstabilities may be the mechanism responsible for driving free
energy flows from different scales in the plasma, and therefore, they could be a possible expla-
nation for the flux levels observations, and why they are not met when only neoclassic transport
theory is considered.

In order to validate the gyrokinetic theory, numerical simulations can be performed, and rea-
listic fluxes levels are computationally predicted. In this chapter, we are going to talk about one of
the numerous codes used to solve the problem of the anomalous transport, but before deepening
ourselves on the idiosyncrasies of specific codes, and in order to understand the cpmplexity of
the problem of turbulence, a few words will be given in an important topic, High Performance
Computing.

5.1 HIGH PERFORMANCE COMPUTING

High Performance Computing (HPC) is defined (G. Sravanthi, 2014) as "the practice of ag-
gregating computing power in a way that delivers much higher performance than one could get
out of a typical desktop computer or workstation in order to solve large problems in science, en-
gineering, or business".

Following the advent of the new era, where computers are used as an indispensable assessment
tool in research and development, some computing demanding problems cannot be approached
with only one processor, due to its high complexity and nonlinearity properties, and a cluster of
computers is needed. In this cases, a program is said to be "parallelized"when its code lines are
adapted to run in a parallel processing environment, like a supercomputer.

Problems involving turbulent flows are among the most used in high performance computing
environments, like in the case of turbulent transport in thermonuclear plasmas, as studied in the
present work.
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5.1.1 Parallelization

Parallel computing is a form of computation in which different parts of the code are processed
simultaneously. A traditional computer code is normally written in a linear sequence of tasks, and
these processes are computed in the order described by the code. The parallel paradigm allows
us to process different executions at the same time, by dividing the workload in smaller parts,
dividing them among the working nodes, and communicating different processors between them-
selves in order to maintain the hierarchic properties of the computed data. In the software point
of view, two important levels of parallelism deserve our consideration, data parallelism and task
parallelism.

The data parallelism divide the data and distribute it among the working nodes, it is the most
used form of parallelism in Particle In Cell programs. Task parallelism relies on the identification
of the different tasks, and the description of the software in a way that allows independent tasks
to run simultaneously, in different processors.

In the hardware level, other form of parallelizations are worth our attention. We are going to
briefly discuss two of them in the following chapter.

5.1.1.1 Single-instruction-multiple-data

In data parallelism, single-instruction-multiple-data (SIMD) codes can be parallelized by dis-
tributing the data across the different nodes in the system. In this scenario, the data must have
an hierarchy such that it allows the parallelization without any loss of performance and accuracy.
The method can be applied in arrays and matrices, where the data is processed simultaneously.

Figura 5.1: Data parallelism scheme for SIMD architecture. [credit: Intel]

In image 5.1 we can see how the data, X and Y variables, can be computed in a system with
four processors (indicated with the different colors) at the same time, without loss of correctness
of the result. This process allows to a optimum load balance of the tasks and a synchronous
computation, where all processes are synchronized at regular points.
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5.1.1.2 Multiple-instruction-multiple-data

Multiple-instruction-multiple-data, (MIMD), is an approach in which the tasks are divided
into different threads and processed at the same time. The parallelization occurs when different
threads are executed on the same or different data. In general, the threads must communicate with
each other in order to allow the data to be shared among the nodes when there is need for data
sharing among the threads.

In the most general case, MIMD codes allow for the simultaneous computation of multiple
autonomous processors executing different instructions on different data. This allows for a high
performance computation of the data, with less waste of computational resources by idle proces-
sors.

Figura 5.2: Data parallelism scheme for MIMD architecture. [credit: Colin M.L. Burnett]

In image 5.2 we can observe how the MIMD architecture works in processors level. The Ins-
truction pool is divided and distributed to the processing units (PU), where each PU is responsible
for a fraction of the total data pool.

5.1.2 Message Passing and Open Multi-Processing

The message passing is a technique used to communicate different processes. It provides a
layer for common services to communicate a systems made up of sub-systems that can be invo-
ked in different locations and at different times. Open Multi-Processing serves as thread manager,
allocating the proper resources for each invoked thread, and ensuring that the message is put in a
queue if the desired object is not currently available, and then invoking the message when the ob-
ject is accessible. Two kinds of approaches are discussed here, Message Passing Interface (MPI)
and Open Multi-Processing (OpenMP).
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MPI is a message passing protocol used for communication in parallel systems. It is defined
as ( L. Gropp, 1996) "It is a message-passing application programmer interface, together with
protocol and semantic specifications for how its features must behave in any implementation.". It
allows for the inter node communication among the processes, using a communication network,
as seen in image 5.3.

Figura 5.3: Distributed shared memory scheme. [credit: Blaise Barney]

OpenMP is an Application Program Interface (API), or a set of protocols and tools used for
the development of software applications, and it is used to direct multi-threaded, shared memory
parallelism. It uses a Fork-Join mechanism, as seen in image 5.4, in which a thread, labeled ’mas-
ter’, invoke parallel threads in order to realize a task.

Figura 5.4: OpenMP Fork-Joint mechanism. credit: Blaise Barney

As it can be seen in the image, after the task is completed, the master thread is responsible
for synchronize and terminate all the team threads, and the information executed by them is made
available for the next step of the computation.

5.1.3 Executing in parallel

Different from an ordinary computer, when a simulation is started in a supercomputer, the job,
as it is called in the HPC jargon, is submitted to a batch queue. The queue system is responsible
to schedule the requested number of processors and check the availability of the processors in
the system. The administrator is also responsible for the verification of the job priority, and for
the supervision of idle processors in the system. The job queue system is a useful tool when
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one wishes to have a optimum utilization of a large number of computational resources. The job
queue is useful to have a common policy for several users and assign fairly the execution time for
their jobs.

As it can be seen in image 5.5, the job is submitted to the system through the login nodes, or
heads. The job is scheduled and put in wait until the queue system allows the code to run. The
simulation is, then, performed in the various computer nodes available in the system.

Figura 5.5: Scheme of a submission process. [credit: Brandon Barker]

It is important to keep in mind that not every program is suitable to be optimally used in an
environment like the one described above. In order to be properly used, the code should be paral-
lelized.

All this information gives us enough background to comprehend better one of the innumerous
approaches used to solve the anomalous transport problem. The code described in the following
section runs in a hybrid MPI-OpenMP environment, and has a linear scalability up to 250.000
processors.

5.2 THE GENE CODE

The GENE, acronym for Gyrokinetic Electromagnetic Numerical Experiment, is an "open
source plasma microturbulence code which can be used to efficiently compute gyroradius-scale
fluctuations and the resulting transport coefficients in magnetized fusion and astrophysical plas-
mas. To this aim, it solves the nonlinear gyrokinetic equations on a fixed grid in five-dimensional
phase space (plus time)". The code solves the equations in a flux-tube domain, and a solver for
the neoclassical equilibrium is already considered in it. The GENE code is highly parallelized,
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and it runs on most of the world’s powerful supercomputers.

As we have seen, fast gyromotion can be analytically removed from the initial equations, and
therefore, separately computed. In GENE, the objects of interest are the time-dependent distri-
bution function in a five-dimensional phase space of electrons, the main ion, and other particle
species, apart of the Maxwell field equations. Remembering that now, due to the gyrokinetic ap-
proach, the helical movement around the field lines is reduce to a linear movement of a magnetic
dipole.

It is considered that in the flux-tube approximation, as seen in the left hand side of image 5.6,
the neoclassical equilibrium contained in the gyrokinetic equations decouples as a non-fluctuating
part, and then both parts can be solved separately. The code considers magnetic fluctuations in
perpendicular and parallel directions, individual Landau-Boltzmann operator collision discretized
in a finite volume scheme for each of the particle species, and a general MHD equilibria, where
local Miller, consistent circular and other models are considered.

Figura 5.6: Global GENE simulation of AUG reactor. credit: genecode.org

The operator is discretized in all direction, being the x, and y direction spectrally discretized.
The perpendicular directions are treated with a careful method involving a special kind of Fast
Fourier Transform (FFT) algorithm solver, due to its term involving E ⇥ B nonlinearities. The
parallel direction is discretized using n

z

points in the poloidal angle, and a trapezoid rule is used
in order to integrate the terms and compute the volume averages.

At this point, it is interesting to recapitulate the last topic, in which HPC was discussed. In
order to solve the eigenvalue spectrum of the linear gyrokinetic operators, GENE uses a exten-
sion called SLEPc, from the PETSc package, in which, in order to solve the eigenvalue problems,
it repeatedly applies matrix-vector multiplications representing the evaluation of the linearized
gyrokinetic equation. In a non HPC environment, such processes, for a large group of particles
would take up to a decade for a linear run. Because the matrix problem can be properly distributed
in the different nodes, the computing time is reduced to days.
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An initial problem case is also possible to be done in GENE, the eigenvalue solver is in this
case the discretization of the time derivative of the linearized gyrokinetic equation, and computa-
tion of the initial value problem, with a superposition of the linear modes as initial conditions. By
using an appropriate step scheme, the initial solver is normally faster than the eigenvalue solver,
in GENE, up to the time of this writing, a modified Runge-Kutta of 4th order is normally used as
a time discretization method.

For non linear simulations, the capability to run in many processors at the same time is es-
sential in order to have the results of the simulation within a life-time period. A typical non-
linear simulation of gene, with a nx0 box size equals to 256, and L

x

equals to 128, and with
128⇥ 64⇥ 24⇥ 48⇥ 8⇥ 2 points for the distribution function of the main parameters (k

y

, z, vk,
µ and species), would take up to 100.000 CPU-hours to run a complete simulation.

GENE run in a distributed and shared memory architecture. In the distributed case, a heavy
use of MPI is required. In these cases, all the parameters of interest, including the field equations
and the elements of the Runge-Kutta schemes are cut into sub-arrays and distributed to the pro-
cessors. In the case that a processor needs the information from a parameter in another processor,
to compute, e. g. spatial derivatives, the information has to be sent explicitly from one processor
to the other, by using the MPI standards. GENE is MPI-parallelized along the k

y

, z, vk, µ and
species directions.

Because it is also parallelized within its numerically expensive loops, the use of OpenMP,
allows for efficient use even when MPI parallelization is not possible. The most recommended
use of the code is in hybrid mode, MPI/OpenMP, in which the performance is enhanced up to
300.000 folds.

5.2.1 The equations

An equation of interest solved in the GENE code is the Gyrokinetic Vlasov equation for the
different species. Taking in consideration the collision operator, consisting of advective and dif-
fusive terms in the velocity space, we have

@f

@t
+ Ẋ ·rf + v̇k

@f

@vk
+ µ̇

@f

@µ
= C(f) (5.1)

where f represents the distribution function of a given species. It must be taken in conside-
ration that µ̇ = 0, and that here, the term Ẋ represents the gyrocenter position, and is described
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as

Ẋ = vkn̂0 +
B0

B0,k
v? (5.2)

The drift velocities must also be taken care of. GENE combines them in one single equation,
creating a dependence with a generalized potential

v? ⌘
c

B2
0

�⇥ B0 +
µ

m⌦
n̂0 ⇥rB0 +

v2k
⌦
(r⇥ n̂)? (5.3)

And considering the generalized potential as

� = �1 �
vk
c
A1 +

µ

q
B1,k (5.4)

The parallel velocity is another parameter needed in order to compute the energy and fluxes
in different direction. Considering the electric field described as

E1 = �r�1 �
n̂0

c

@

@t
A1,k (5.5)

The parallel velocity is computed as

v̇k =
Ẋ

mvk
· (qE1 � µr(B0 +B1,k)) (5.6)

In equation 5.6, it is important to notice the dipole momentum connection with both the initial
and parallel perturbed magnetic fields.

In order to solve the problem, Ampere’s law and the Poisson equation needs to be, also,
implemented in the gyrokinetic framework:

r2
?�1 = �4⇡

X
qn1 (5.7)

In which n1 is related to the density perturbation, and

r2
?A1,k = �

4⇡

c

X
j1,k (5.8)

B1,k = �4⇡
X p1,?

B0
(5.9)

Where the current perturbation, j1, is summed over all the species.
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In a local approximation, the moments can be described in a Fourier space as

n1,k =
2⇡B0

m

Z
dvkdµ


J0h1,k � q�1,k

F0

T0

�
(5.10)

j1,k,k = q
2⇡B0

m

Z
dvkdµvk


J0h1,k � q�1,k

F0

T0

�
(5.11)

And,

p1,?,k

⌘ 2⇡B0

m

Z
dvkdµµB0I1h1,k (5.12)

Considering the non adiabatic part of f1 as

h1 ⌘ f1 +
⇥
qJ0�1 + µI1B1k

⇤ F0

T0
(5.13)

It is necessary to recall that h1 must be computed for each one of the species considered in the
problem. The Bessel function is given by

J0 = J0(k?⇢) (5.14)

And,

I1 = I1(k?⇢) = 2
J1(k?⇢)

k?⇢
(5.15)

5.2.2 The output files

After the simulation is finished, GENE has a large number of output files written in the desired
directory. The main output files are the "nrg", containing time trace information such as density
and temperature, the files "field"and "mom"have three-dimensional information about the fields
and moments of the distribution function, written in smaller time steps than the "nrg"files due to
its sizes.

In the "nrg"file, the normalized fluctuating quantities are spatially averaged with respect to the
full simulation volume. Considering f pc the particle distribution function, the heat and parallel
momentum fluxes are computed as
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� =

Z
d3vf pc

1 v
D

(5.16)

Q =

Z
d3v(
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2
mv2)f pc
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D

(5.17)

⇧ =

Z
d3v(mvk)f

pc

1 v
D

(5.18)

Where v
D

is the generalized E ⇥ B velocity drift. The fluxes are divided into an electromag-
netic and electrostatic radially projected components.

The "field"file is a binary file, consisting of the time steps and complex values in three dimen-
sions (k

x

, k
y

, z).

�1

�
A1k

⇥
B1k

⇤ 
(5.19)

Being A1k and B1k only computed in the electromagnetic case.

The "mom"file contain values for each of the computed species, and it consists of velocity
space moments, in which their average combination yield the parallel heat current density

q1k + 1.5p0u1k =
1

2

Z
d3vv3kf

pc (5.20)

q1? + p0u1k =
1

2

Z
d3vvkv

2
?f
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Where u1k is defined as

u1k =
1

n0

Z
d3vvkf

pc

1 (5.22)

As outputs, GENE still has other files, manly involving neoclassical results, information about
the velocity space, information about instabilities growth rates � and frequencies !, checkpoint
files, and information about the time evolution of free energy quantities.

Considering the modified perturbed distribution function

h1 = F1 +

✓
q

T0�1

+ µB1k

◆
F0 (5.23)
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The free energy operator is described as a volume average

"[A] =
X

Re

⇢⌧
n0T0

Z
dµdvk

h

F0
A

��
(5.24)

Taking into account the summation over all species, n0 as the equilibrium density, T0 the equi-
librium temperature, and considering A to be correspondent to the distribution function F1 or any
of its time derivatives in the gyrokinetic equation, and normalized to units of reference.

5.2.3 The Diagnostic Tool

GENE has an state-of-the-art diagnostic tool. It uses an IDL environment, and assists the user
to easily navigate through the data, showing parameters of interest in different time steps of the
simulation, if required.

One could, following the scope and objective of the present work, analyze the different insta-
bilities growth rates for different scenarios, and thus, evaluate the impact of modifications of the
set up of experiments. In our case, it would be interesting to study the effective particle and heat
flux levels, and study the effectiveness of the gyrokinetic approach in order to give support to the
anomalous transport problem.

The Graphical User Interface, (GUI), allows for a visualization of all the parameters of the
simulation, as well as a pre-vizualization of some of the required outputs in a preview window
offered in the GUI itself. The data can be treated within the tool, and a careful selection of final
outputs give us the possibility to select specific variables to be analyzed.

The next chapter will give us a clearer picture of the functionalities of the GENE diagnostic
tool, as well as display some of its idiosyncrasies.

5.3 SUMMARY

In this chapter, we studied a particular numerical solver of the turbulent transport problem, the
GENE code. We consider some of its eigenvalues solver, and the importance of HPC in solving
problems of this magnitude.

We identified the equations used in GENE, and it can be observed that it is in agreement with
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the theory described in the past chapters, giving us the possibility to argue in favor of the accuracy
of the implementation of the problem.

We then examined the files produced from a simulation, and since one wants to demonstrate
the effectiveness of the gyrokinetic approach, our object of interest will be the fluxes and, to
analyze the impact of microturbulence in the energy flow, the instability growth rate.
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6 EXAMPLES

In the previous chapters, we have studied how the transport in the plasma is understood from
a classical and neoclassical point of view. We have, then, studied the turbulent approach to solve
the problem of higher-than-expected flux levels that appeared when experimental results were
contrasted with the theoretical values.

In this conjuncture, the studied gyrokinetic approach is the framework in which turbulent
transport can be simplified from a 6 dimensional phase-space, plus time, to a 5 dimensional
phase-space, plus time. In this approach, one can, additionally, investigate the onset of microins-
tabilities, a phenomena that is thought to be the mechanism in which the energy is released from
the different-sized scales in the turbulent motion of the plasma.

This approximation brings us, together with the assistance of high performance computing, to
the description of a gyrokinetic code capable of solving numerically gyrokinetic set of equations
for a realistic case, enabling us to contrast theoretical levels with experimental ones. The purpose
of this chapter is to recognize and understand the accuracy of the gyrokinetic model based on the
literature. More precisely, a throughout analysis of the literature is done in order to define the
level of efficiency of the gyrokinetic approach, using the code GENE as reference.

6.1 SELF ORGANIZED CRITICALITY

Self organized criticality (SOC) is a phenomena exhibited by dynamical systems with spatial
degrees of freedom. It is a mechanism that develops local instabilities and relaxes them. Scale
invariance and self-similarity are features of self organized systems.

In magnetically confined plasmas, specifically in toroidal confinement, SOC is thought to play
a role in the formation of the H-modes in tokamak plasmas. H-modes are states in which the con-
finement time of the plasma is enhanced by a factor of 2 or more. It is still unknown which exact
mechanism triggers the formation of H-modes. In this state, the formation of an Edge Transport
Barrier (ETB) is seen to appear in the pedestal of the plasma. The rapid rise in the pressure pro-
file due to the reduction of transport through the ETB is responsible for the enhancement of the
confinement.

As seen in image 6.1 the formation of a more augmented profile is seen with the appearance
of the Internal Transport Barrier (ITB). This advanced scenario is being currently explored.
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Figura 6.1: Formation of enhanced modes in a tokamak scenario [credit: CEA]

Although it is known that the formation of ITB and ETB are responsible for the enhancement
of the confinement, no known mechanism describes precisely the formation of the barriers. In
this sense, a broad group of possible ways all include features of a SOC systems.

A study ( M. Mavridis et al., 2014) determines that some features of SOC can be described
with the gyrokinetic code GENE. The use of local gyrokinetic simulations has been already pro-
posed to the study SOC systems by McMillian et al as well.

The study of time series of GENE radially averaged heat fluxes marginally stable give us in-
sights in some SOC properties that arise from the gyrokinetic system of equations. In this cases,
the contrast of the gyrocentered approach with known expected physical mechanism reassure the
validity of this framework.

An important property of SOC systems is the 1/f noise, which is a low-frequency spectra
with a power-law behavior f�� , observed in different time scales. It is described in the statement
from Per Bak et al., 1987.

“The system will become stable precisely at the point when the network of minimally
stable states has been broken down to the level where the noise signal cannot be com-
municated through infinite distances. At this point, there will be no length scale in
the problem so that one might expect the formation of a scale-invariant structure of
minimally stable states.”

62



We could try to imagine a sandpile with a large slope. The collapse of such pile stops when a
critical value is reached and the system is stable with respect to small perturbations. In this exam-
ple, the 1/f noise is the "dynamical response of the sandpile to small random perturbations".

A power spectrum of time series analysis of the GENE data is a convenient tool to analyze the
noise property in the gyrokinetic equations.

Figura 6.2: The f�� behavior observed in a power spectra of GENE simulation [credit: M Mavridis]

We can observe in figure 6.2 that for different regions of the frequency range, the � exponent
of the power-law decay is different. Intermediated frequencies represent the overlapping of ava-
lanches, a common feature of SOC systems, and a phenomena similar to streamers, discussed in
the present work. The last region of higher frequencies is associated with small scale events.

In figure 6.2, the colors red, blue and green represent different simulations with distinct tem-
perature gradients L/R

T

, we can see that as the temperature gradient changes, the position of
the 1/f behavior changes as well. This behavior can be interpreted in terms of the number of k

y

modes in the Fourier space for the various parameters.

Regarding the avalanche effects, a main feature in a SOC system, statistic analysis of the heat
flux can be performed in order to establish their features and properties in a radius time plane.

The formation of radial traveling two-dimensional structures in the contour plot of the heat
flux, associated with tilting reinforce the idea that SOC peculiarities known as avalanches are also
found in non linear GENE simulations. The large radial extend of such structures is a common
attribute of avalanche processes.

The analysis of the fractal dimension is an important assessment tool, it is a ratio that provide
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Figura 6.3: Heat flux fluctuations in normalized scales for a R/LT = 6.5 [credit: M Mavridis]

a statistical indicator of complexity. It compares the resolution in a fractal pattern, and how it
changes with the scale at which it is measured. From figure 6.3, the calculation of the probabi-
lity distribution function of the radial extends, computed from the determination of the extend of
these structures in the radial direction, together with the fractal dimension analysis, allows us to
identify the structure in figure 6.3 as an avalanche.

6.2 SHORTFALL

The evolution of the numerical solutions of turbulent transport in the gyrokinetic framework
has seen a substantial improvement in the last decades, either due to the refinement in the gyroki-
netic theory, or due to the rump up in the use of high performance computing.

In 2008, an analysis (C. Holland et al., 2008) done with the support of another gyrokinetic
tool known as GYRO, in a L-mode discharge from the DIII-D tokamak, from General Atomics,
showed an underprediction of a factor of seven of the energy flows, and by a factor of 3 of the
fluctuation amplitudes in the outer layer of the tokamak, the ion heat flux mismatch can be seen
in figure 6.4.

The significant discrepancy between the experimental and computed heat flux is known as
shortfall. Questions related to the universality of the shortfall in L-mode and the extent of the
gap from the simulation and the experimental values put into question the validity of the physics
underlying the gyrokinetic approach.
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Figura 6.4: Ion heat flux underprediction in GYRO simulation of DIII-D [credit: C. Holland ]

An posterior analyses (T. Görler et al., 2014) realized with the use of GENE re-established
the underprediction in the scenario above described. In Görler’s work, an attempt to correct the
past outcomes, and match the gyrokinetic predictions with the results from the diagnostic system
is done.

Following the physical description of some input parameters of the discharge, the experimen-
tal set up can be reproduced as input of the GENE code. The main parameters of concern are the
radial particle and heat transfer rate.

An analysis of the different microinstabilities taking place in the problem is done with the
help of linear scans, an useful feature present in the GENE code. It allows us to run simultaneous
simulations with different specific parameters, and therefore, give us the possibility to measure
the impact of factors playing relevant roles in parameters of interest.

It is identified that, for a value of toroidal mode number in the rage between 10 - 100, subs-
tantially ITG driven modes are seen in the linear simulations. In figure 6.5, it can be seen by the
positive upturn in the sign of the frequency of the instability. The black lines represent the two
radial position of interest. The underprediction took place in the outer layer, and the horizontal
grid represent the zero for the frequency w.

Other instabilities such as ETG and TEM do not contribute substantially to the ion heat trans-
port in this case, and were not taken in account in the present analysis.

Since the issue with the past simulation may be related to the critical value of the mode exci-

65



Figura 6.5: Negative frequency versus toroidal mode number and radial position [credit: T. Görler ]

tation due to uncertainties in the input, a series of scans within the 30% of experimental errors is
done in some of these parameters.

It is found that inside the errors margins, no significant impact is caused due to variation in the
parameters. The collisional effect have reasonable impact on the TEMs, but negligible on the ITG
mode. Ion temperature gradients are identified as the most impacting effect, when considered in
the toroidal region of interest.

Outer-core nonlinear simulations with GENE gives us a smaller underprediction than the one
obtained with the GYRO code. In here, a factor of 2 in the transport is found, rather than a factor
of almost 7 as in the previous case.

Figura 6.6: Ion heat transfer of GENE simulations the ONETWO experimental values [credit: T. Görler ]

As we can observe in figure 6.6, the GENE simulations with the nominal values of parame-
ters, in blue, underpredicts the ONETWO reconstruction only by a factor of approximately 2 in
the region of interest. The simulations are done, also, considering a 20% margin within the range
of accuracy. Light blue is the GENE case with variations in the temperature gradient parame-
ter ↵/L

T i

, the logarithmic temperature gradient, and it seems to almost perfectly reproduce the
experimental curve. The red and orange points represents the nominal and varied values for the
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previous simulation made by C. Holland et al. In the orange case, considerations on the E ⇥ B

shear flow were taken into account, this shear must be also considered in the GENE case, since
the shear flow and parallel flow shear have an important effect in turbulence. Neoclassical trans-
port is also shown and interestingly it demonstrates the difference in levels between the different
transports.

6.3 ELECTROMAGNETIC STABILIZATION

A well known effect thought to be associated with the reduction of ITG instability and of
turbulent heat transport is the electromagnetic (EM) stabilization. The electromagnetic finite �

stabilization happens when the ballooning parameter ↵ ⇠ q2
P

i

�
i

approaches the threshold of
the ideal magnetohydrodynamic MHD ballooning mode.

A study (J. Citrin et al., 2015) investigates the impact of finite � electromagnetic and shear
stabilization at high-� scenario in JET discharges. The Joint European Torus (JET) is the world’s
largest operational tokamak, located at Oxfordshire, in United Kingdom.

By examining the stiffness reduction in both inner and outer core radii, a study of the impact
of microturbulence stabilization is done with the assistance of GENE nonlinear simulation, and
experimental heat fluxes are retrieved. Stiffness is, then, defined as:

“The gradient of the gyroBohm normalized ion heat flux with respect to the driving
normalized logarithmic ion temperature gradient R/L

T

i

.”

It is found that the inclusion of fast ions increases the suprathermal pressure gradients, incre-
asing the EM stabilization effects. It is important to assess the presence of fast ions due to the
relevance to ITER-like scenarios, where toroidal rotation will not be as prone as in present cases,
and the presence of fusion born ↵ particles will change the EM dynamics of the system.

The definition of the parameter �/�
crit

is done in order to facilitate the analysis of the impact
of the EM ion mode with relation to its kinetic � limit. From the � definition, we can see that an
increase in ITG stabilization is expected around the � limit imposed in this case. We must take
into consideration, thus, that suprathermal pressures can increase the pressure gradient (⇠ �) and
therefore enhance the stabilization mechanism.

With the support of a series of linear simulations carried out at k
y

= 0.2, the most unstable
KBM mode, it is possible to establish a transition from ITG mode to a KBM mode.

67



KBM modes are Magnetohydrodynamical instabilities that originates in the plasma when high
electromagnetic activity takes place due to high � effects.

Figura 6.7: Linear growth rate and KBM threshold [credit: J. Citrin]

In figure 6.7 we can observe the sharp increase in the curve direction, characteristic of the ITG
to KBM transition happening with the increase of �. The nominal value of the magnetic shear is
s = 0.7, but the transition is observed for any value of s within the sensitivity scan. This study is
important in order to assess the �

crit

dependence with the low-s increased de-stiffening.

At lower s and with suprathermal pressure gradients, �
crit

is found to be reduced, bringing
the conclusion that enhanced ITG EM stabilization is expected at low s and high suprathermal
pressure, generated by fast ions. For highly driven systems, in the studied case, �

KBM

< �
NZT

,
considering �

NZT

as the � of non-zonal transitions, an apparent reduction of zonal flow activity
brought on by magnetic field perturbations affecting fluxes surfaces. This is an stimulating result,
since the approach of � ⇠ �

KBM

has good impact on the ITG stabilization mechanism.

Inner core nonlinear simulations demonstrate a good agreement between numerical solutions
and experimental values. The case is simulated with fast ions (30% reduced), without the fast
ions, and with fast ions in an electrostatic scenario (� = 0).

In figures 6.8 and 6.9, we can observe the impact of the addition of fast ions on the ion and
electron heat flux. The nonlinear EM stabilization is shown mostly as stiffness reduction, and
it is crucial for the matching with the experimental flux values. Limits to the EM stabilization
effects are found when the �/�

crit

ratio is increased, and the KBM margin is passed. Decreases
in �/�

crit

are also related to the decrease in the stabilization mechanism in the curves with and
without fast ions. Specifically in figure 6.9, we can observe that the impact in the electron heat
flux is not as prone as in the ion case.
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Figura 6.8: Ion Heat Flux at inner radius [credit: J. Citrin]

Figura 6.9: Electron Heat Flux at inner radius [credit: J. Citrin]

This results are extremely encouraging not only as a support to the validation of the gyrokine-
tic theory, but also to the use of this theory as a predictor of high-� regime in ITER like scenarios,
where low rotation and high suprathermal pressure gradients are more likely to take place, just as
the case here analyzed.

6.4 SUMMARY

In this chapter, we have seen how the use of numerical solutions in the framework of the
gyrokinetic theory can help us to match simulations with experimental results, helping us to un-
derstand underlying mechanisms taking place in specific underpredicted scenarios, and allowing
us to extrapolate our assumptions to ITER like scenarios, since the control over a set of input pa-
rameters grant us the possibility to study sensitivity scans and, within uncertainties and the error
bars, predict possible results to case not yet fully experimentally investigated.
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The use of such tools is of extreme importance, since experiments take a long period of time
to be done, and in most cases costs enormous amount of money, not to mention the bureaucratic
factor in experiments of global scale such as ITER. What is more, these findings gives us adequate
arguments to validate the use of GENE and the gyrokinetic approach to the representation of real
tokamak-like microturbulent phenomena.
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7 CONCLUSION

In the course of this work, we have studied the physics of transport of particles and heat in
toroidally confined plasmas. We have seen how the different confinement models have evolved
at the same time that a more particular description of the magnetic geometry was developed. We
have seen, then, how the problem of higher-than-expected flux levels could be solved with the
support of the gyrokinetic theory of turbulent transport. The use of extensive computer simulati-
ons is of utter importance for the realization of such task, and the usage of a highly parallelized
gyrokinetic numerical code was introduced and explained.

Below, a short overview of the main outcomes of this work is discussed. More comprehensive
descriptions can be found at the ends of some of the respective chapters.

7.1 SUMMARY

Plasma Confinement

In this section, we explained the different confinement models for thermonuclear controlled
plasmas, and an analytical development of the theoretical framework for toroidal confinement
was given. A study of a first approach for the transport theory is shown, and the conservation of
the main quantities was demonstrated.

Realistic models

After a review of the more general approach to the transport theory, the tokamak concept is
introduced and realistic transport models are discussed in this groundwork. An extensive analysis
of the theoretical framework allows us to derive the foundations of the neoclassical transport, and
the concept of anomalous transport is introduced as a mean to categorize the higher-than-expected
flux levels.

Anomalous Transport

In order to sane the higher-than-expected flux levels, turbulent theory is shown as a well suited
foundation that explains a series of features present in real cases experiments. For this reason, the
gyrokinetic approach is used as a tool to analytically assess the underlying turbulent mechanisms
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present in tokamak-like geometries. Ballooning properties are shown, and three main types of
microinstabilities are discussed.

Numerical Approach

In order to validate the gyrokinetic theory, a numerical approach is introduce in the scope of
high performance computing. Due to the nature of the phenomena in question, the use of single
core computer to simulate relevant cases is not satisfactory. For that reason, an introduction to
High Performance Computing is given, and the particularities of the field are briefly explained.
The chapter follows with the introduction to the Gyrokinetic Electromagnetic Numerical Expe-
riment, a highly parallelized code used to compute microturbulence analysis in thermonuclear
toroidally confined plasmas.

Examples

In this section, we observed how the GENE code helps us in the validation of the gyroki-
netic theory by answering open questions in the literature, and clarifying mechanisms not fully
understood from experimental results. Here, an extended analysis of three paper is done, and
an impartial analysis of the impact of the code on the description of experimental phenomena is
discussed. It is found that most of GENE results are in good agreement with the experimental
events, and that the analysis explains with good assertion the problems involving turbulent trans-
port, mostly associated with the stabilization of the ITG microinstability.

7.2 OUTLOOK

The use of extensive computer resources have helped tremendously the Fusion community,
but much more needs to be done. Here, it is shown the analysis of problems around the ion
gyro-radii scale, but the coupling with problems in the MHD frequency scale and free-mean-path
scale is needed. In order to do so, a series of approximation in both theories must be done. An
optimization of numerical solutions must be accomplished, not only in the software but also in
the hardware point of view, since the use of extensive computing time will be always part of the
quest for sustainable fusion energy.

A more complete theoretical framework for the study of gyrokinetic theory could be also ex-
tended, mainly with respect to the development of more accurate collision operators and operators
related to wave-particle interaction. A broader phenomenological study would be also required,
in order to expand the understanding of the anomalous transport through another optics, e.g. non-
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local transport.

To conclude, with great struggle from different levels, theoretical and computational plasma
physics are capable of contributing to the design and, in the future, construction of a working
fusion power station, helping us to content the energy necessities of the near future.
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