
DISSERTAÇÃO DE MESTRADO

HUMAN ACTION RECOGNITION IN IMAGE SEQUENCES
BASED ON A TWO-STREAM

CONVOLUTIONAL NEURAL NETWORK CLASSIFIER

Vinícius de Oliveira Silva

Orientador: Prof. Dr. Alexandre Ricardo Soares Romariz

Brasília, Agosto de 2017

UNIVERSIDADE DE BRASÍLIA

FACULDADE DE TECNOLOGIA

FICHA CATALOGRÁFICA

SILVA, VINÍCIUS DE OLIVEIRA
HUMAN ACTION RECOGNITION IN IMAGE SEQUENCES BASED ON A TWO-STREAM CON-
VOLUTIONAL NEURAL NETWORK CLASSIFIER [Distrito Federal] 2017.
xvi, 66 p., 210 x 297 mm (ENE/FT/UnB, Mestre, Engenharia Elétrica, 2017).
Dissertação de Mestrado - Universidade de Brasília, Faculdade de Tecnologia.
Departamento de Engenharia Elétrica

1. Human action recognition 2. Convolutional neural networks
3. Dense Optical Flow 4. Transfer Learning
I. ENE/FT/UnB II. Título (série)

REFERÊNCIA BIBLIOGRÁFICA
SILVA, V.O. (2017). HUMAN ACTION RECOGNITION IN IMAGE SEQUENCES BASED ON A
TWO-STREAM CONVOLUTIONAL NEURAL NETWORK CLASSIFIER. Dissertação de Mestrado,
Publicação: PPGEA-672/2017, Departamento de Engenharia Elétrica, Universidade de Brasília, Brasília,
DF, 66 p.

CESSÃO DE DIREITOS
AUTOR: Vinícius de Oliveira Silva
TÍTULO: HUMAN ACTION RECOGNITION IN IMAGE SEQUENCES BASED ON A
TWO-STREAM CONVOLUTIONAL NEURAL NETWORK CLASSIFIER.
GRAU: Mestre em Engenharia de Sistemas Eletrônicos e Automação ANO: 2017

É concedida à Universidade de Brasília permissão para reproduzir cópias desta Dissertação de Mestrado e
para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. Os autores reservam
outros direitos de publicação e nenhuma parte dessa Dissertação de Mestrado pode ser reproduzida sem
autorização por escrito dos autores.

Vinícius de Oliveira Silva
Depto. de Engenharia Elétrica (ENE) - FT
Universidade de Brasília (UnB)
Campus Darcy Ribeiro
CEP 70919-970 - Brasília - DF - Brasil

Acknowledgments

I first thank God for the wisdom and knowledge that have been given to me.

I thank my father, Osmundo Brilhante and his wife Eliana Yukiko Takenaka, for the good
advices and for support that was given to me during this work. My grandparents Manoel Alexan-
dre da Silva and Maria José de Oliveira Silva and the other relatives who, even geographically
distant, have always been encouraging me.

I would also like to thank my teachers and supervisors, Prof. Alexandre Romariz and Prof.
Flávio Vidal, for the guidance, the teachings, the understanding and for believing that I was
capable of accomplishing this work.

To Professor Mylène, also my coordinator during the course of the Master’s Degree, for shar-
ing her knowledge and having been so solicitous and patient with me whenever I needed her help.
For the computer and room provided by the GPDS / ENE / FT / UnB (Digital Signal Processing
Group) that were fundamental for the completion of this work, thank you very much. Also to Pro-
fessors Daniel (ENE / FT), Antônio (ENE / FT), Li Weigang (CIC / UnB), José Maurício (ENM /
FT) whom I had the immense satisfaction of knowing in these two years.

I would like to thank the friends that I made during the Masters period that were very im-
portant in this journey, at a time when I was far from my family: Wiliam, Pedro Jorge, Wesley,
Josua, Henrique, Luiz, Hellard, Mauro and Maíra. To thank and dedicate this work to friends
and colleagues who participated more closely in the development of this project: Gustavo, Gizele,
Douglas, Guilherme, Frabrízio, Dário and Ana Paula, with whom I was able to exchange many
knowledge and I received many advices from.

I would also like to thank Prof. Flávio Vidal for the space provided in LISA / CIC / UnB
(Laboratory of Images, Signals and Audio) and by the computer "monstro verde" that allowed me
to execute my final tests of this project.

I would like to thank the staff of FT, CIC and SG11 who, directly or indirectly, contributed to
the realization of this project.

Vinícius de Oliveira Silva

ABSTRACT

The technological evolution in the last decades has contributed to the improvement of computers
with excellent processing and storage capacity and cameras with higher digital quality. Nowa-
days, video generation devices are simpler to manipulate, more portable and with lower prices.
This allowed easy generation, storage and transmission of large amounts of videos, which de-
mands a form of automatic analysis, independent of human assistance for evaluation and exhaus-
tive search of videos. There are several applications that can benefit from such techniques such as
virtual reality, robotics, tele-medicine, human-machine interface, tele-surveillance and assistance
to the elderly in timely caregiving.

This work describes a method for human action recognition in a sequence of images using two
convolutional neural networks (CNNs). The Spatial network stream is trained using frames from
a sequence of images with transfer learning techniques from the VGG16 network (pre-trained for
classification of objects). The other stream channel, Temporal stream, receives stacks of Dense
Optical Flow (DOF) as input and it is trained from scratch.

The technique was tested in two public action video datasets: Weizmann and UCF Sports. In
the Spatial stream approach we achieve 84.44% of accuracy on Weizmann dataset and 78.46% on
UCF Sports dataset. With the Temporal and Spatial streams combined, we obtained an accuracy
rate of 91.11% for the Weizmann dataset.

RESUMO

A evolução tecnológica nas últimas décadas contribuiu para a melhoria de computadores com
excelente capacidade de processamento, armazenamento e câmeras com maior qualidade digi-
tal. Os dispositivos de geração de vídeo têm sido mais fáceis de manipular, mais portáteis e
com preços mais baixos. Isso permitiu a geração, armazenamento e transmissão de grandes
quantidades de vídeos, o que demanda uam forma de análise automática de informações, in-
dependente de assistência humana para avaliação e busca exaustiva de vídeos. Existem várias
aplicações que podem se beneficiar de técnicas de inteligência computacional, tais como reali-
dade virtual, robótica, telemedicina, interface homem-máquina, tele-vigilância e assistência aos
idosos em acompanhamento constante.

Este trabalho descreve um método para o Reconhecimento de Ações Humanas em sequên-
cias de imagens usando duas Redes (canais) Neurais Convolutivas (RNCs). O Canal Espacial é
treinado usando quadros de uma sequência de imagens com técnicas de transferência de apren-
dizagem a partir da rede VGG16 (pré-treinada para classificação de objetos). O outro canal,
Canal Temporal, recebe pilhas de Fluxo Óptico Denso (FOD) como entrada e é treinado com
pesos inicais aleatórios.

A técnica foi testada em dois conjuntos de dados públicos de ações humanas: Weizmann e
UCF Sports. Na abordagem do Canal Espacial, conseguimos 84,44% de precisão no conjunto de
dados Weizmann e 78,46% no conjunto de dados UCF Sports. Com os canais temporal e espacial
combinados, obtivemos uma taxa de precisão de 91,11% para o conjunto de dados Weizmann.

CONTENTS

1 INTRODUCTION . 1
1.1 RELATED WORK . 2
1.2 GOALS AND CONTRIBUTIONS . 3
1.3 PRESENTATION OF THE MANUSCRIPT . 4

2 COMPUTER VISION . 5
2.1 OPTICAL FLOW . 5
2.1.1 IMAGE AND SEQUENCE OF IMAGES . 5
2.1.2 OPTICAL DISPLACEMENT AND OPTICAL FLOW . 7
2.1.3 OPTICAL FLOW CALCULATION . 10
2.2 FINAL CONSIDERATIONS . 19

3 MACHINE LEARNING . 20
3.1 CATEGORIES . 20
3.2 ARTIFICIAL NEURAL NETWORKS . 21
3.2.1 PERCEPTRON . 23
3.2.2 MULTILAYER PERCEPTRON . 24
3.2.3 ACTIVATION FUNCTIONS . 26
3.2.4 ERROR FUNCTIONS . 27
3.2.5 OPTIMIZERS . 28
3.2.6 THE BACK-PROPAGATION ALGORITHM . 28
3.2.7 GENERALIZATION . 30
3.3 DEEP LEARNING . 31
3.3.1 CNN: CONVOLUTIONAL NEURAL NETWORKS . 31
3.3.2 TRANSFER LEARNING . 36
3.4 FINAL CONSIDERATIONS . 39

4 METHODOLOGY . 40
4.1 APPROACH . 40
4.2 SPATIAL STREAM . 41
4.2.1 SPATIAL STREAM HISTOGRAM . 43
4.3 TEMPORAL STREAM . 44
4.3.1 STACKS OF DENSE OPTICAL FLOW . 44
4.3.2 TEMPORAL STREAM HISTOGRAM . 45
4.4 COMBINATION OF CLASSIFIERS . 46

5 RESULTS . 47
5.1 DATASETS . 47

viii

5.2 EXPERIMENTS . 49
5.2.1 SPATIAL CNN STREAM . 49
5.2.2 TEMPORAL CNN STREAM . 50
5.3 EXPERIMENTAL RESULTS . 51
5.3.1 PRELIMINARY SPATIAL NETWORK . 51
5.3.2 PRE-TRAINED SPATIAL NETWORK . 53
5.3.3 TEMPORAL NETWORK . 53
5.3.4 COMBINATION OF CLASSIFIERS . 54

6 CONCLUSIONS AND FUTURE WORKS . 58

REFERENCES . 60

LIST OF FIGURES

2.1 A digital image and the convention used for the pair of axes x and y. 6
2.2 RGB color image components. Adapted from Gonzalez and Woods [1] 6
2.3 Similarity of regions between images, illustrated by Minetto [2]......................... 7
2.4 (a) and (b) represent a pair of consecutive video frames with the area around a

moving hand outlined with a cyan rectangle. (c) represents a close-up of dense
optical flow in the outlined area Illustration by Simonyan and Zisserman [3]. 8

2.5 The optical flow equation that defines a line in velocity space, adapted from Beau-
chemin [4] .. 10

2.6 Aperture problem illustration. Adapted from Minetto [2] 10
2.7 Spatial and temporal relations, for the estimation of the partial derivatives of a

point of the image, positioned in the center of the cube. Adapted from Horn and
Schunck [5]. The index of column j represents the x-axis in the image, the index
of row i corresponds to the y-axis and the index k in the time axis. 12

2.8 (a) One frame of the Yosemite sequence. (b) The corresponding true velocity field
of the image in (a). Illustration by Farnebäck [6]... 17

2.9 (a) and (b) form a pair of consecutive video frames of the two-hands waving
movement. (c) is the horizontal component of the displacement vector field,
where higher intensity values represent positive values, lower ones represent neg-
ative values. (d) Vertical component of the displacement vector field. 18

3.1 Anatomy of a neuron. ... 21
3.2 Computational model of a neuron by McCulloch and Pitts [7]............................ 22
3.3 Perceptron Model... 23
3.4 Perceptron Multilayer Example ... 25
3.5 Activation functions: Logistic Sigmoid Function (in red), Hyperbolic Tangent

Sigmoid Function (in green) with γ = 1 e β = 1 and Rectified Linear Function (in
blue).. 26

3.6 Properly fitted nonlinear mapping (upper graph) and overfitted nonlinear mapping
(lower graph). Adapted from [8].. 30

3.7 (a) represents the second layer (feature maps) (low level features) learned from
faces dataset. (b) represents the third layer (feature maps) (higher level features)
learned from faces dataset. Both of them illustrated by Lee et al. [9]. 32

3.8 The forward propagation of a convolutional layer. ... 33
3.9 The forward propagation of a convolutional layer. ... 34
3.10 An overview of a Convolutional Neural Network. Adapted from LeCun et al. [10] . 34
3.11 Dropout illustration. Neurons in white color are dropped out. 35

4.1 Proposed Method. .. 42

x

4.2 Spatial CNN structure: it refers to the Spatial CNN block in the Figure 4.1. The
yellow block represents VGG16 convolutional blocks and the green block repre-
sents the MLP used. In the yellow block only the fourth and fifth blocks were
trained. .. 43

4.3 Histogram of frames classification for Sequence 8 (Weizmann Dataset). The red
bar indicates the expected class and the blue bars indicate the other classes........... 43

4.4 Temporal CNN structure: it refers to the Temporal CNN block in the Figure 4.1. ... 44
4.5 Stacks of Dense Optical Flow. .. 45
4.6 Histogram of OF stacks classification for Sequence 8 (Weizmann Dataset). The

red bar indicates the expected class and the blue bars indicate the other classes...... 45

5.1 Natural actions performed in the set of image sequences provided by the Weiz-
mann Institute of Science’s Computer Vision Laboratory [11]............................ 48

5.2 Actions performed by video sequences from UCF Sports dataset (illustrated by
Soomro and Zamir [12]). ... 49

5.3 Spatial CNN Architecture (Experiment 1).. 49
5.4 (a) Accuracy graphic during training. (b) Loss graphic during training................. 52
5.5 (a) Histogram of frames classification for Sequence 1. (b) Histogram of frames

classification for Sequence 4. (c) Histogram of frames classification for Sequence
23. The red bar indicates the expected class and the blue bar incorrect classifications 52

5.6 Confusion matrix of Weizmann dataset using leave-one-out cross-validation. 55
5.7 ROC curve of Weizmann dataset. .. 55
5.8 Confusion matrix of UCF Sports dataset using leave-one-out cross-validation. 56
5.9 ROC curve of UCF Sports dataset. ... 56

LIST OF TABLES

3.1 Main differences between L1 and L2 regularization ... 36
3.2 VGG16 Architecture. C denotes a Convolution layer, MP denotes a max pooling

layer and FC denotes a fully-connected layer. ... 38

5.1 Accuracies on both Weizmann and UCF datasets on each stream........................ 53
5.2 Comparison of accuracies on the Weizmann dataset... 54
5.3 Comparison of accuracies on the UCF dataset .. 57

xii

LIST OF SYMBOLS

Symbols

∆ Variation
x Input data to the neural network
w Weight of a synaptic connection between neurons
x Input vector or input matrix of the network
w Weights vector or weights matrix between layers
b Bias of a neuron
s Induced local field of a neuron
σ Activation function
y Output of a neuron
d Desired output of the neuron
D Optical flow stack size
o Overlap size between optical flow stacks
e Output error
ε Error function
η Learning rate
α Network momentum
δ Local gradient of the error function with respect to the

weights

xiii

Acronyms

ANN Artificial Neural Network
CEF Cross-Entropy Error Function
CNN Convolutional Neural Network
CNS Central Nervous System
DL Deep Learning
MBH Motion Boundary Histogram
ML Machine Learning
MLP Multilayer Perceptron
PNS Peripheral Nervous System
ReLU Rectified Linear Unit
RGB Red Green and Blue
RL Reinforcement Learning
SEF Squared Error Function
SGD Stochastic Gradient Descent
SURF Speeded-Up Robust Features
SVM Support Vector Machine

1 INTRODUCTION

The technological evolution during the last decades has contributed to the emergence of com-
puters with great processing and storage capacity and high quality digital video cameras. The
prices of these video-generating electronics are reducing and they have become portable and sim-
ple to manipulate. This allowed society to be able to generate, store and transmit large amounts
of media, such as videos. However, analysing the information and content of these videos is not
a simple task, often requiring an exhaustive search for the video. There is also a human depen-
dence on the evaluation of these videos, which increases the financial and time costs related to
their analysis.

Action recognition in image sequences is a computer vision application in which a set of
image processing techniques and time series analysis are used to allow the computer to be able to
identify a captured gesture from a camera [13]. The most common application is the automatic
translation of sign language into words, but several applications can benefit from these techniques,
such as virtual reality, robotics, tele-medicine, man-machine interface and tele-surveillance.

Most of the human action recognition methods in the literature are developed for restricted and
short-lived videos that contain simple, well-defined human actions such as waving, running, and
jumping [14, 3, 15]. In comparison to the classification of static images, the temporal component
of the videos provides an important additional information for the recognition that is based on the
information of movement [3].

There are several methods for action recognition based on handcrafted features such as His-
tograms of Oriented Optical Flow (HOF), Histograms of Oriented Gradient (HOG) and Motion
Bountary Histogram (MBH) [16, 17] being used with the Support Vector Machines (SVM) clas-
sifier [18, 8].

In order to reduce the effect of camera movement, the Wang and Schmid method [19] produces
improved dense trajectories. The estimation of this movement is done using the SURF descrip-
tor [20]. A higher-level representation of the actions was proposed by Sadanand and Corso [21]
being combined with a linear SVM classifier.

In this work, we intend to use the Deep Convolutional Neural Networks (CNN), normally
used to classify static images, to recognize actions in video data [22]. These networks are used
in a Deep Learning (DL) method in which the network is able to find certain patterns through
its Convolution and Pooling layers [23]. In the literature, this task has been performed using the
frames of the image sequences in a stacked form as input to the network, but did not present good
results when compared with results of handcrafted shallow features [14].

In this work, an architecture based on a two-stream CNN was investigated, in which one net-
work receives single frames of the sequence of images (Spatial features). Another one receives
stacked dense optical flow components (Temporal features) [24, 25]. Then, those networks were

1

combined to produce a single output [14, 26]. With this, we expect to generate a robust discrimi-
native model.

1.1 RELATED WORK

Research in action recognition has been strongly driven by advances in image recognition
methods, which in turn have been adapted to serve video data. In general, action recognition
methods are divided into two groups. The first one is the conventional pipeline approach that uses
a descriptor followed by a classifier [27, 28, 29, 19, 21, 30] and the second one is a convolutional
approach based on deep learned features [22, 31, 32, 33, 34].

The first one models the dynamics of motion in the sequence of images using graphical mod-
els or identifying descriptive features [27, 35] through local spatio-temporal features such as
Histogram of Oriented Gradients (HOG) [36] and Histogram of Optical Flow (HOF), and then
performs classification, often using the SVM [18] classifier (handcrafted features approach). The
second one is based on deep convolutional neural networks (CNNs) [10] that can be trained end-
to-end (from raw images to labels) in a supervised manner.

There have been some attempts to develop a deep neural network architecture for video recog-
nition. In most of the works, the network received as input a stack of sequenced video frames.
With this, the model was expected to implicitly learn spatio-temporal motion features in its first
convolutional layers, however this task has proved more difficult than anticipated [3].

Ji et al. [34] used CNNs for discriminative end-to-end video learning and a comparison was
made between various CNN architectures for action recognition [22]. It was also verified that a
network, operating with sequenced frames stacked as input, has similar performance to a network
operating in individual video frames. It indicates that spatio-temporal motion features obtained
by sequentially stacked frames do not capture enough movement information to discriminate the
actions [22].

Ji at al. proposed a 3D CNN, so that the features were learned simultaneously in the spatial
and temporal dimensions through 3D convolutions [34]. However, in addition to the raw images, a
set of hardwired kernels is created to generate the gradients and optical flow that must be learned
by the proposed convolutional network, that is, handcrafted features are used. A two-stream
CNN was proposed by Simonyan and Zisserman [3], in which each frame of the video is used
individually for network training. One stream is fed by raw images and the other by dense optical
flow components calculated between consecutive frames. The classification is done by late fusion
of the two streams.

The use of pre-trained convolutional models has shown an improvement in classification
rates [22, 37, 38]. Karpathy et al. [22] analysed architectures in which different convolutional
networks were fused in their last completely connected layers for action recognition in a large
dataset and for extending the connectivity of a CNN in time domain to take advantage of local

2

spatio-temporal information.

In this work we use a two-stream convolutional architecture, in which each stream is trained
separately. One of them, called Spatial stream network in this work, uses a 2D convolutional
architecture named VGG16 [39], pre-trained on the largest and most challenging ILSVRC-2014
dataset, which has achieved good accuracy rates in object recognition. The other one (Temporal
stream network) is also a 2D convolutional network which receives stacked dense optical flow
components as input.

In the Spatial stream, we use the last convolutional block of the VGG16 network as a single-
frame descriptor, and these descriptors feed a multilayer perceptron network. This network is
trained with individual frames descriptors from the sequence of images. Next, a fine-tuning is
done on the last two convolutional blocks of the VGG16 network, using the previously trained
MLP, in order to bootstrap the convergence of the network and reduce possible overfitting during
training process. In the case of the Temporal stream network, each sequence of images provides
a certain amount of dense optical flow stacks, and during training, we use as training samples all
stacks belonging to all image sequences of the training dataset.

After both are trained, we generate histograms that indicate the frequency of frames (for the
Spatial stream) and stacks of dense optical flow (for the Temporal stream) assigned to each class.
We then normalize these histograms, finally classify the videos (image sequences) by adding
spatial and temporal normalized histograms and choosing the most frequent class.

1.2 GOALS AND CONTRIBUTIONS

The objective of this project is to develop modules that allow the extraction of features from
the optical flow and high level information capable of discriminating human gestures / actions in
image sequences; We investigate architectures of Deep Convolutional Neural Networks for action
recognition in image sequences, with the challenge of capturing complementary information from
the movement between video frames and the appearance of static frames [3].

A two-stream Convolutional Neural Network architecture is proposed, in which one stream is
related to the spatial component of the sequence of images and the other to the temporal compo-
nent. The temporal component is able to achieve good performance with the aid of multi-frame
dense optical flow [24]. Then these two structures are combined, so that a better accuracy rate in
the classification of the actions is reached.

As contributions, we showed that static frames belonging to a certain sequence of images
allow us to classify the action performed in such a sequence. We can also highlight the reuse of
pre-trained networks such as the VGG16 network, which was pre-trained for a dataset of 1000
classes of different objects and some actions are associated with certain types of objects. This
transfer learning contributed significantly to the learning of the spatial network.

3

1.3 PRESENTATION OF THE MANUSCRIPT

Chapter 2 describes the main techniques of optical flow calculation, as well as the Farnebäck
Algorithm, which was used in this work. Chapter 3 briefly discusses the area of Machine Learn-
ing, explains the most important concepts and algorithms on Artificial Neural Networks (ANNs),
emphasizing the Convolutional Neural Networks (CNNs) that formed the basis of the classifier
developed in this work. Chapter 3 also presents neural network regularization techniques and a
brief explanation of Transfer Learning.

Chapter 4 presents the methodology used for our human actions classifier, based on two
streams, a spatial network (Spatial CNN stream) and a temporal one (Temporal CNN stream)
and how the classification is made from their combination. In Chapter 5 we present the datasets
used for the experiments of this work, explain the experimental setup and present the respective
results. We conclude the paper in Chapter 6 by presenting our contributions and suggesting ideas
for future work.

4

2 COMPUTER VISION

Computer vision is a field that develops methods for acquisition, processing and analysis of
images and sequence of images (videos). Its purpose is to produce numeric or symbolic results to
be used by electronic systems [40]. This field also attempts to give human vision dual ability by
means of the understanding and perception of images electronically [41]. Such an understanding
of image can be seen as a transformation of symbolic information from image data into repre-
sentations for human perception. All this has been done using models developed with the aid of
geometry, statistics, and learning theory [42].

Computer vision systems try to automate tasks that the human visual system is capable of
performing. Its sub-fields include scene understanding, event detection, video tracking, image
restoration, object recognition and motion estimation.

This chapter provides a brief background on computer vision and optical flow algorithms. In
the following sections, the main concepts of computer vision used for the development of this
dissertation will be introduced to the reader.

2.1 OPTICAL FLOW

The calculation of Optical Flow is a Computer Vision technique normally used to estimate
the motion between two frames of a sequence of images. This method is able to estimate the
movement that occurs in the sequence of images without prior knowledge of the content of these
images. This section presents respectively the concepts of images, sequence of images and Opti-
cal Flow, as well as the main algorithms used to calculate the latter.

2.1.1 Image and Sequence of Images

An image is defined as a two-dimensional luminous intensity function, mathematically de-
scribed by a function f(x, y) at any point of spatial coordinates (x, y) and its value is proportional
to the brightness (or gray level) of the image in that point [1]. The image intensity levels are of-
ten called gray levels when those images are monochromatic (monochromatic light), that is, they
have only one channel.

In the case of images that have separate information in different frequency bands, a function
f(x, y) is required for each band. This is the case for RGB standard colored images, which are
formed by the information of additive primary colors, such as red (R - Red), green (G - Green)
and blue (B - Blue) [1].

In this work, we will use digital images. To digitize an image, its coordinates and intensity

5

Figure 2.1: A digital image and the convention used for the pair of axes x and y.

Figure 2.2: RGB color image components. Adapted from Gonzalez and Woods [1]

levels must be digitized. Then, the coordinate values are sampled and amplitude values of the
image are quantized. With the values of x, y and the amplitude of f(x, y) in discrete and finite
quantities, we can say that the image is digital and coordinates (x, y) represent a pixel. In the
course of this dissertation, we will represent a digital image as shown in the following Equation:

f(x, y) =

f(0, 0) f(0, 1) · · · f(0, N − 1)

f(1, 0) f(1, 1) · · · f(1, N − 1)
...

...
f(M − 1, 0) f(M − 1, 1) · · · f(M − 1, N − 1)

 , (2.1)

where M and N denote, in this order, the number of rows and columns of the digital image
resulting from the discretization of f(x, y), x = 0, 1, 2, ...,M − 1, y = 0, 1, 2, ..., N − 1 and
M ×N represents the size of this image.

A sequence of images is a three-dimensional function h(x, y, t) which has two or more images,
such as f1(x, y), f2(x, y), ..., fn(x, y), taken at discrete time instants represented by t.

6

2.1.2 Optical Displacement and Optical Flow

We present below a definition of optical correspondence between images by Minetto [2]. In
this work we will call it similarity of regions between images. Given a pixel p belonging to a
digital image J , we can define its corresponding pixel q in another image K, so that the simi-
larity between the pixel values of the image J in the neighborhood of p and the image K in the
neighborhood of q are maximized. One can observe in Figure 2.3 the illustration of this concept.

Figure 2.3: Similarity of regions between images, illustrated by Minetto [2]

In general, this concept of similarity applies to two images belonging to a sequence of images,
both of which present the same scene in different moments of time, due to the variation of the
position of the objects in the scene or to the camera movement. Similarly to Minetto [2], we will
denote mathematically the similarity of regions between images by

J(p) ≈ K(q). (2.2)

If p and q are similar pixels, we say that the displacement of p in the image J to the position q
in the image K, in the spatial domain of the image, is given by the vector f = q − p. In this way,
we define that the Optical Flow of an image J for a posterior image K in a sequence of images is
a function that maps each point p to its displacement vector f(p) and has the following property:

J(p) ≈ K(p+ f(p)). (2.3)

7

(a) (b) (c)

Figure 2.4: (a) and (b) represent a pair of consecutive video frames with the area around a moving hand outlined with
a cyan rectangle. (c) represents a close-up of dense optical flow in the outlined area Illustration by Simonyan and
Zisserman [3].

An illustration of an Optical Flow f is presented in Figure 2.4. It was sampled in a set of
points, p1, p2, ..., pn, and produced the displacement vectors f1, f2, ..., fn, in which each vector fi
has origin in pi, same direction of fi and length proportional to its magnitude.

To calculate the Optical Flow, we assume that the intensity of a particular region of an image
remains approximately constant in a short period of time, as it changes over time. With this, we
assume that the intensity of the corresponding pixels in a sequence of images remains constant.
Beauchemin and Barron [4] present a mathematical definition for this hypothesis, considering a
continuous sequence of images H , containing the images J and K, as indicated by:

J(p) = H(p, t) (2.4)

and
K(q) = H(p+ f(p), t+ δt), (2.5)

where δt corresponds to a very short time interval. Then, since x and y are the coordinates of p
and fx and fy are the vertical and horizontal components of the displacement f(p) between the
time instants t and t+ δt, we can rewrite Equation 2.2 as

H(x, y, t) = H(x+ δx, y + δy, t+ δt), (2.6)

once
J(p) = H(x, y, t) (2.7)

and
K(q) = H(x+ δx, y + δy, t+ δt) (2.8)

where δx and δy are respectively the individual displacements of the x and y coordinates
in the image region (x, y, t), after a duration of time δt. By expanding the right-hand side of
Equation 2.6 by the Taylor series in relation to δx, δy and δt, we obtain:

8

H(x, y, t) = H(x, y, t) + δx
∂H(x, y, t)

∂x
+ δy

∂H(x, y, t)

∂y
+ δt

∂H(x, y, t)

∂t
+O(δt2), (2.9)

where ∂H(x,y,t)
∂x

, ∂H(x,y,t)
∂y

and ∂H(x,y,t)
∂t

are respectively the partial derivatives of H with respect to
x, y and t, and O(δt2) is the second-order term, generally dismissed as negligible. By subtracting
H(x, y, t) on both sides, neglecting O(δt2), omitting (x, y, t) and dividing Equation 2.9 on both
sides by δt, we can rewrite it as:

∂H

∂x

δx

δt
+
∂H

∂y

δy

δt
+
∂H

∂t
= 0. (2.10)

Considering u = δx
δt

and v = δy
δt

and using Hx, Hy and Ht for the partial derivatives of the
image brightness with respect to x, y and t, in that order, we obtain a simple linear equation with
only two unknown variables as indicated below:

Hxu+Hyv +Ht = 0. (2.11)

The vector v = (u, v) represents the differential Optical Flow in a certain pixel of the image
or, more specifically, the instantaneous velocity of a pixel (x, y) at time t. Equation 2.11, also
known as the Optical Flow constraint equation, can be rewritten as

(Hx, Hy).(u, v) = −Ht, (2.12)

where (Hx,Hy) represents the spatial gradient of H at time t and defines a restriction at velocity
v, as shown in Figure 2.5.

In Figure 2.5, the normal velocity vector v⊥ is defined as the vector perpendicular to the
constraint line, which is the velocity with the smallest modulus in the Optical Flow constraint
line. Due to this constraint, it is not possible to calculate the two components of v, since the vector
has two components and only one constraint equation was obtained, and it is therefore possible
to estimate only the component in the direction of the local gradient of the intensity function
of image. We call this problem Optical Flow aperture problem. As stated by Beauchemin and
Barron in [4], the motion can be estimated from the Optical Flow constraint equation only in
regions of the image where there are well-structured information of intensity.

In Figure 2.6, adapted from Minetto [2], we illustrate the aperture problem, where each point
p in the first image may have several options of point q in the second image that have equal or
close local similarities. The scene has a square in uniform color moving diagonally upwards, in
which its initial position is illustrated with full line and the final position with dashed line. To
indicate the local similarity of the most similar region and the Optical Flow of the points, circular
windows were used, indicated with full lines in the source image and with dashed lines in the
destination image.

9

Figure 2.5: The optical flow equation that defines a line in velocity space, adapted from Beauchemin [4]

Figure 2.6: Aperture problem illustration. Adapted from Minetto [2]

We can see in Figure 2.6 that, for points a and c, the ambiguity of similarity of regions between
images extends along a line, whereas for point b the displacement is well defined. For point d, the
ambiguity lies on a region.

In this way, we can estimate only the motion component in the direction of the local gradient
of the intensity function of an image. Many algorithms were proposed in order to overcome the
aperture problem. Some of these will be presented in the next subsection.

2.1.3 Optical Flow Calculation

The Optical Flow calculation consists of calculating a displacement representing the distance
of a pixel that moved between the previous frame and the current frame of a sequence of images
or, equivalently, associating a velocity vector with each pixel of an image.

McCane et al. [43], Barron et al. [44], and Galvin et al. [45] have conducted comparative
studies on the performance of various techniques of Optical Flow Calculation, which can be

10

categorized in differential, energy-based, phase-based and region-based methods.

In the following subsection, we describe the concepts related to the estimation of the partial
derivatives of an image point, which are fundamental for the understanding of the calculation
algorithms of the Optical Flow. Then, we present the algorithm by Lucas and Kanade [46,
47], which calculates the differential Optical Flow and the algorithm proposed by Horn and
Schunck [5], which seeks to meet the criteria of gradient and global smoothness.

2.1.3.1 Estimative of Partial Derivatives

For the calculation of the Optical Flow, we must have a consistent estimate of the partial
derivatives. The estimation of the partial derivatives is made from a discrete set of measures of
intensities. Horn and Schunck [5] present an equation that relates the changes of intensity of a
pixel in an image to the movement of its intensity pattern.

As we defined above, H(x, y, t) represents the intensity of an image in the pixel (x, y) taken
at the discrete time instant t. When a pattern moves, the intensity of a particular point will remain
constant, so that:

dH

dt
= 0. (2.13)

Applying the chain rule, we obtain the following equation:

∂H

∂x

dx

dt
+
∂H

∂y

dy

dt
+
∂H

∂t
= 0. (2.14)

Considering

u =
dx

dt
, (2.15)

v =
dy

dt
, (2.16)

Hx =
∂H

∂x
, (2.17)

Hy =
∂H

∂y
, (2.18)

and
Ht =

∂H

∂t
, (2.19)

we can rewrite Equation 2.14 as:

Hxu+Hyv +Ht = 0. (2.20)

Thus, we have a simple linear equation with only two unknown variables u and v, which
are components of the pixel motion vector (or its Optical Flow). In order to estimate the partial

11

derivatives Hx, Hy and Ht of a given point, Horn and Schunck [5] use a cube in which such point
is located in its center, formed by eight measures of intensity, whose spatial and temporal relation
are represented in Figure 2.7. Each estimate of the partial derivatives is a mean of the differences
of the four adjacent measures of the cube, as can be seen in the equations below:

Hx ≈
(Hi,j+1,k −Hi,j,k) + (Hi+1,j+1,k −Hi+1,j,k) + (Hi,j+1,k+1 −Hi,j,k+1) + (Hi+1,j+1,k+1 −Hi+1,j,k+1)

4
,

(2.21)

Hy ≈
(Hi+1,j,k −Hi,j,k) + (Hi+1,j+1,k −Hi,j+1,k) + (Hi+1,j,k+1 −Hi,j,k+1) + (Hi+1,j+1,k+1 −Hi,j+1,k+1)

4
,

(2.22)

Ht ≈
(Hi,j,k+1 −Hi,j,k) + (Hi+1,j,k+1 −Hi+1,j,k) + (Hi,j+1,k+1 −Hi,j+1,k) + (Hi+1,j+1,k+1 −Hi+1,j+1,k)

4
,

(2.23)

in which the index of column j represents the x-axis in the image, the index of row i corre-
sponds to the y-axis and the index k in the time axis.

Figure 2.7: Spatial and temporal relations, for the estimation of the partial derivatives of a point of the image,
positioned in the center of the cube. Adapted from Horn and Schunck [5]. The index of column j represents the
x-axis in the image, the index of row i corresponds to the y-axis and the index k in the time axis.

2.1.3.2 Horn and Schunck Algorithm

Horn and Schunck proposed a method in 1981 that had a restriction, in order to obtain the two
components of the vector v(u, v), capable of producing a consistent system with unique solution,
two equations and two unknown variables. In order to overcome the aperture problem, Horn and
Schunck [5] hypothesized that Optical Flow v(x, y) varies smoothly with the position (x, y), that
is, neighboring pixels have similar movements, generating an uniform flow. Thus, the goal of the

12

Horn and Schunck algorithm is to minimize the total energy given by:

ε2total =

∫ ∫
(α2ε2reg + ε2flow)dxdy, (2.24)

where the term εreg is calculated by:

εreg =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

, (2.25)

and corresponds to the spatial variation of the Optical Flow which, in turn, is weighted by α2,
depending on the quantization error of the image and the noise level present in the sequence of
images. It determines the influence of the regularity constraint on minimization. The term εflow

is calculated according to:
εflow = Hxu+Hyv +Ht, (2.26)

being related to the error of the changes in the intensity rate in the image, which do not respect
the Optical Flow constraint indicated by Equation 2.11.

The problem of minimization of total energy ε2total is reduced to solving a set of differential
equations, as stated by the following equations:

H2
xu+HxHyv = α2∇2u−HxHt, (2.27)

and
HxHyu+H2

yv = α2∇2v −HyHt. (2.28)

Applying the Laplacian approximation on these equations, we obtain the following system:

(α2 +H2
x)u+HxHyv = (α2ū−HxHt) (2.29)

and
HxHyu+ (α2 +H2

y)v = (α2v̄ −HyHt). (2.30)

This system can be rewritten as:

u = ū− Hx(Hxū+Hyv̄ +Ht)

α2 +H2
x +H2

y

(2.31)

and

v = v̄ − Hy(Hxū+Hyv̄ +Ht)

α2 +H2
x +H2

y

. (2.32)

In order to minimize the Equations 2.31 and 2.32, Horn and Schunck [5] suggest an iterative
solution, according to Equations 2.33 and 2.34, where ūn and v̄n are the mean velocities of the
neighbors of u and v in iteration n.

13

un+1 = ūn − Hx(Hxū
n +Hyv̄

n +Ht)

α2 +H2
x +H2

y

(2.33)

vn+1 = v̄n − Hy(Hxū
n +Hyv̄

n +Ht)

α2 +H2
x +H2

y

(2.34)

2.1.3.3 Lucas and Kanade Algorithm

Lucas and Kanade [46, 47] presented another proposal to solve the aperture problem of the
Optical Flow. The method of calculation of the Optical Flow proposed by Lucas and Kanade [46,
47] assumes three hypotheses:

• Constancy of intensity, that is, any pixel of any object in a scene of a sequence of images
will not change its appearance as it moves from frame to frame;

• Temporal persistence (or small movements). That is, objects in the images do not move too
much from one frame to another;

• Spatial coherence (or rigidity in movement). Neighboring pixels in a scene, which belong
to the same surface, have similar movements.

Based on the first hypothesis, we also use Equation 2.11. Isolating the partial derivative of t,
we can rewrite it so that

Hxu+Hyv = −Ht. (2.35)

Considering the constraint of spatial coherence, Lucas and Kanade defined similarity in a
two-dimensional neighborhood, called the integration window. As shown by Bouguet [48], con-
sidering that I and J are two images of a sequence of images H , where p = [px py]

T is a point
on the image I , q = [qx qy]

T is a point on the image J and that v = [u v]T is the velocity vector
(or Optical Flow) of the point p, the objective of the Optical Flow calculation algorithm is to find
the location of q = p+ v = [px + u py + v]T in the image J , so that I(p) ≈ J(q). Thus, vector v
is defined as the vector that minimizes the residual function, as shown in Equation 2.36:

ε(v) = ε(u, v) =

px+lx∑
x=px−lx

py+ly∑
x=py−ly

(I(x, y)− J(x+ u, y + v))2, (2.36)

in which lx and ly are integer values that define the size of the integration window W = (2lx +

1)× (2ly + 1), where the measure of similarity I(p) ≈ J(q) is calculated.

The calculation of the Optical Flow of a pixel p is done using the system of equations formed
by the pixels around it, belonging to the integration window W . Given that r = 2lx + 1 and
s = 2ly + 1, we can calculate the motion of p from n = rs equations:

14

Hx1u+Hy1v = −Ht1

Hx2u+Hy2v = −Ht2

Hx3u+Hy3v = −Ht3

...
...

...
Hxnu+Hynv = −Htn,

(2.37)

which can be rewritten in its matrix form as:

Hx1 Hy1

Hx2 Hy2

Hx3 Hy3

...
...

Hxn Hyn

[
u

v

]
= −

Ht1

Ht2

Ht3

...
Htn

 (2.38)

or

Av = −b. (2.39)

Thus, we obtain a system with two variables, with more than two equations, making the system
consistent with more than one solution. We can use the least squares method to find a solution
with minimal error. In its standard form ||Ad− b||2 is solved as follows:

(ATA)d = AT (−b), (2.40)

where we calculate the Optical Flow components u and v:

v =

[
u

v

]
= (ATA)−1AT (−b), (2.41)

where

ATA =

[∑
HxHx

∑
HxHy∑

HxHy

∑
HyHy

]
(2.42)

and

AT (−b) = −

[∑
HxHt∑
HyHt

]
. (2.43)

The problem can be solved when ATA has an inverse matrix, that is, when it has full rank
(matrix with two large eigenvectors), which means that the sequence of images H has significant

15

gradient in the neighborhood W of the pixel that is being analysed [2, 49]. The existence of
details in the neighborhood W allows the inversion of the ATA matrix and the calculation of the
Optical Flow. The absence of details, with regions of constant brightness or where the brightness
varies only in one direction, render the matrix null and impossible to calculate the Optical Flow
of the points in that region.

The algorithms by Horn and Schunck [5] and Lucas and Kanade [47] consider only small
movements. If objects are moving fast, the pixels will move very fast, and the spatial masks
of the spatial derivatives will fail. In order to achieve good accuracy we tend to choose small
integration windows to maintain the details of the image. The robustness of the algorithms is
related to the sensitivity of tracking to changes in the levels of image intensity and to the extent
of motion in the image. Therefore, it is common to prefer larger integration windows for larger
movements.

In order to establish a model that presented high robustness, a pyramidal implementation of
the classic Lucas and Kanade algorithm, the KLT matching algorithm, was proposed by Lucas
and Kanade [47] and developed by Tomasi and Kanade [50]. In summary, the KLT algorithm
identifies good features to track and then returns indications of how well tracking of each point is
occurring.

2.1.3.4 The Dense Optical Flow Algorithm

The two-frame motion estimation based on polynomial expansion is a method proposed in
2003 by Farnebäck [6] to calculate dense optical flow in real time.

Figure 2.8 presents the displacement vector of each pixel, but such displacement does not
appear to occur in certain regions of the image while the flow is determined for the neighborhood
of the pixel. Then the objective of the algorithm is to approximate some neighborhood of each
pixel with a polynomial, as stated by:

f(p) ∼ pTAp + bTp + c, (2.44)

where A is a symmetric matrix, b a vector, c is a scalar and p represents the pixels of the frame.
The coefficients of the polynomial are estimated from a least squares fit to the signal values in the
neighborhood, based on the normalized convolution [51].

16

(a) (b)

Figure 2.8: (a) One frame of the Yosemite sequence. (b) The corresponding true velocity field of the image in (a).
Illustration by Farnebäck [6]

The displacement between frames is determined by finding such an estimate for the two con-
secutive frames. After polynomial expansion, each neighborhood is approximated by a second-
order polynomial, according to the Equations 2.45 and 2.46, respectively for frames 1 and 2.

f1(p) = pTA1p + bT1 p + c1 (2.45)

f2(p) = f1(p− d) = (p− d)TA1(p− d) + bT1 (p− d) + c1 = pTA2p + bT2 p + c2 (2.46)

The matrix A gives us information about the even part of the signal, b over the odd part, and
c represents the local DC level. By calculating the neighborhood polynomials in the two subse-
quent images, we can obtain the displacement d, in the case of the ideal translation. Observing
Equations 2.45, 2.46, 2.47, 2.48 and 2.49, we can see how the coefficients of the polynomial of
the second frame are connected to those of the first one and also to the displacement d between
them.

A2 = A1, (2.47)

b2 = A1 − 2A1d (2.48)

and
c2 = dTA1d− bT1 d + c1 (2.49)

From Equation 2.48, it is possible to find d, as we can see in Equation 2.50.

d = −1

2
A−11 (b2 − b1) (2.50)

17

In practice, d contains an error e which can be minimized by refinement. The steps of the e
refinement process are:

• We take the average between matrixes A1 and A2 because they are different in practice;

• We assume that d is varying slowly and so the information by a neighborhood of each pixel
can be integrated;

• Parametrizing the displacement field to a motion model [51];

• Incorporating a priori knowledge through a pyramidal structure similar to that one described
by KLT algorithm [50];

The results of the optical flow calculations on a scale provide an approximate estimate of the
optical flow for the next processed scale. The polynomials need to be computed for each scale,
since the pyramidal structure (multi-scale) is being used.

The Figure 2.9 presents the horizontal and vertical components of the displacement vector
field.

(a) (b)

(c) (d)

Figure 2.9: (a) and (b) form a pair of consecutive video frames of the two-hands waving movement. (c) is the
horizontal component of the displacement vector field, where higher intensity values represent positive values, lower
ones represent negative values. (d) Vertical component of the displacement vector field.

18

2.2 FINAL CONSIDERATIONS

The Denso Optical Flow (DOF) calculation is a Computer Vision stage. Its importance con-
sists in the temporary information of movement that occurs in the sequence of images, being this
information relevant to the analysis and the recognition of movements (actions). In this Chapter
we described the best known techniques of Optical Flow and the technique of Farnebäck [6], used
in this work. In the next Section, we will talk about Machine Learning (ML) and Convolutional
Neural Networks (CNNs) that were used to develop this work.

19

3 MACHINE LEARNING

Machine learning is a field of data analysis that automates the development of analytical mod-
els. Through algorithms that learn iteratively from data, machine learning allows computers to
find relevant features in these data without explicit programming [52].

This field was born from pattern recognition and the idea that computers should be capable
of learning without being programmed for specific tasks. The iterative character of machine
learning is important because models are exposed to new data, and such models are able to adapt
independently. They learn from previous calculations to obtain reasonably reliable results [8].
This mechanism works exactly as Alan Turing proposed in his article Computing Machinery and
Intelligence in which he also proposed to change the question "Can machines think?" for "Can
machines do what we (as thinking entities) Can?" [53].

While many machine learning algorithms have been proposed long time ago, their ability to
perform complex iterative calculations on large data, with enough speed, is a recent development.
This is because computational processing has become cheaper and more powerful and there is
affordable data storage.

Machine learning is a multidisciplinary field. It relies on results from artificial intelligence,
control theory, information theory, probability and statistics, computational complexity theory,
philosophy, psychology, neurobiology and other fields [52].

3.1 CATEGORIES

We can categorize the learning processes through which machine learning algorithms work as
follows: learning from a teacher (supervised learning) and learning without a teacher. This latter
form of learning can be subdivided into unsupervised learning and reinforcement learning [8, 54].

Such categories are:

Supervised Learning: It is a machine learning approach in which a function is inferred from
supervised training data. That is, a training data set in which each sample is formed by an input
object and the desired output value (called a label) for the system. The algorithm analyses the
training data and produces a function that is able to generalize a classification rule from training
data.

Unsupervised Learning: Unsupervised learning consists of analysing data and looking for
patterns. It is an extremely powerful tool for identifying the nature of the data. The system has to
discover relationships, patterns, regularities or categories, by itself, in the data presented to it and
to encode them in the outputs.

20

Reinforcement Learning: It is learning based on interaction with the environment. There
is an RL agent which learns from the consequences of its actions rather than being explicitly
taught. In addition, its actions are determined by its past experiences (exploitation) and also by
new choices made (exploration) [55]. The reinforcing signal that the RL agent receives is called
a reward which encodes how good the outcome of an executed action was, and the agent learns
how to select actions that increase its rewards accumulated over time.

In this work, the machine learning approach used for the experiments is supervised learning.

3.2 ARTIFICIAL NEURAL NETWORKS

In machine learning, artificial neural networks (ANNs) are machines inspired by how the brain
performs certain tasks or functions [54].

The human brain has about 10 billion neurons. These structures connect to each other through
synapses composing a neural network. Neurons are the most important structures of the brain and
spinal cord of the central nervous system (CNS) and also of the ganglia of the peripheral nervous
system (PNS) [8].

The main components of neuron, a simplified neural model generally used to build ANNs,
are:

• Dendrites, which receive stimuli from other neurons;

• The cell body, which stores and combines information coming from other neurons;

• And the axon, which is shaped like tubular fiber and transmits stimuli to other nerve cells.

as shown in Figure 3.1.

Figure 3.1: Anatomy of a neuron.

21

The first mentioned information about Neural computation dates back to 1943, in papers by
McCulloch and Pitts [7], in which they suggested the construction of a machine based on the
human brain. Hence we had our first model of computational cells known as "neurons" (as
shown in Figure 3.2). The artificial neural networks generally present an interconnection between
those cells which communicate with each other, so that such neurons have numerical weights,
w1, w2, ..., wm, associated with them, input data, x1, x2, ..., xm, and they can be tuned according
to the system experience, allowing the network to adapt to input data and be able to learn from
them.

Figure 3.2: Computational model of a neuron by McCulloch and Pitts [7].

According to Haykin [8]:

"A neural network is a massively parallel distributed processor made up of simple processing
units that has a natural propensity for storing experiential knowledge and making it available for
use. It resembles the brain in two respects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the acquired
knowledge."

For example, a neural network for handwritten digit recognition could have a set of input
neurons that can be activated by the pixel values of an input image. As already mentioned, each
neuron has weights associated with it, which are modified during the learning process, and the
outputs of these neurons are passed on to other neurons until a neuron from the network output is
activated. This activation indicates the handwritten digit that was read by the system.

Artificial neural networks have been applied, along with other machine learning methods, to
a wide range of tasks, such as computer vision and speech recognition applications that would
be more complicated to solve by simple rule-based programming [54]. These networks can be
implemented by means of electronic components or software on digital computers. The artificial
neural nets were implemented by software in this work.

22

3.2.1 Perceptron

The previously mentioned McCulloch and Pitts model inspired some later work until the first
neuro-computer began to succeed in the years 1957 and 1958 [8]. This neuro-computer, called
perceptron, was created by Frank Rosenblatt [56], Charles Wightman and others.

The perceptron is a mathematical model of a neuron and it works as a binary classifier. When
it is combined with other counterparts, it can be used for multi-class classification in pattern
recognition [56]. As shown in the model of Figure 3.3, a perceptron receives an input vector
x= [x1, x2, ..., xm] and has a weight vector w = [w1, w2, ..., wm] associated to it, in which b in
the Figure 3.3 is a bias, a sort of neuron threshold. In order to obtain the perceptron output, the
dot product between the vectors x and w is calculated and added to b according to Equation 3.1,
producing s (called induced local field), so the result is used as input of an activation function σ
(step function in Equation 3.2) which will give us the neuron return value.

s =
m∑
i=1

xiwi + b (3.1)

σ(s) =

{
−1 , if s < 0

1 , if s ≥ 0
(3.2)

y = σ(s) (3.3)

For example, to explain the meaning of the value of y, let us consider that there are only two
classes that we want to separate. In perceptron, when we get a value of s greater than or equal to
0, y is equal to 1 and that indicates that the input data belongs to a class ζ1, whereas if s is less
than 0, y is equal to -1 and that gives us the input data belonging to the other class ζ2, as seen in
Equation 3.2.

Figure 3.3: Perceptron Model

Each perceptron has its own weights vector and its bias b. They are very important in the

23

perceptron learning process, because these parameters are necessary to minimize a function that
represents the error produced by the neuron through the search for the optimum combination of
weights and bias (See Equation 3.4)

ε(w, b) =
1

2

n∑
j=1

(σ(
m∑
i=1

(wix
j
i) + b)− dj)2. (3.4)

In the above equation, we have:

• ε is the error function, also called loss function;

• m is the number de elements in the weights vector;

• n is the number of samples in the training set;

• w is the weights vector associated with the perceptron and wi is the i-th element in this
vector;

• b is the bias of the perceptron;

• σ is the activation function of the perceptron;

• xji is the i-th position of the input vector x from the j-th sample in the training set;

• dj is the perceptron output we expect for, when it receives the j-th training sample as input.

The perceptron adjustable weights allow the model to learn. A numerical model is reached
from supervised training. The η variable is the learning rate applied in the each iteration, which
corresponds to the displacement step used to minimize the error e (See in Algorithm 1). If it is
too large, this might make it difficult to reach the minimum value, whereas if it is too small, it
might slow down convergence process. This η value can be fixed throughout the training, being
only a value 0 < η < 1, thus we have a fixed-increment adaptation rule for the perceptron [8]. The
perceptron convergence algorithm is stated in Algorithm 1 and explained in details by Haykin [8].
Convergence will be achieved when all training samples have the expected output.

3.2.2 Multilayer Perceptron

As already stated, the simple perceptron is capable of separating data, as long as they are
linearly separable. It can delimit a hyperplane in which the data belonging to a class are on one
side, whereas the data belonging to another class is on the other side. The multilayer perceptron
(MLP), however, allows the separation of classes of data that are not linearly separable [8].

In theory, perceptrons can be combined according to our desire, but in more than thirty years
of research, rules for feed-forward networks have been commonly adopted in order to efficiently
solve problems in pattern recognition.

24

Algorithm 1 Perceptron Convergence Algorithm

Require: 0 < η < 1
Initialize w(0) = 0
while perceptron does not converge do

Randomly select a sample x(j)

Calculate s (see Equation 3.1) with sample x(j)

if σ(s) (see Equation 3.2) is not equal to dj then
e← dj − σ(s), in which e is the error
∆w(j)← η.e.x(j)

Weights update:
w(j + 1)← w(j) + ∆w(j)

end if
end while

A MLP must have one or more input neurons, that is, neurons that receive the input data from
the neural network as input; A MLP must have as many output neurons as the number of classes,
each of which represents a class; Given an input pattern, a MLP must associate such a pattern with
the class represented by the output neurons which has the highest value among all; Normally, all
neurons that belong to the same layer must share the same activation function in a MLP and the
connections between them should not be cyclic.

.

.

.

.

.

.

.

.

.

Hidden
layers

Output
layer

Data
input

Figure 3.4: Perceptron Multilayer Example

Figure 3.4 shows a widely used MLP architecture. It is a three layer architecture, consisting of
a data input, two hidden layers and one output layer. The data input is composed of propagators
that feed all the neurons of the first hidden layer with some data. In the hidden layer, each neuron
is connected to another in the next layer, and so it goes to the output layer that does not have
output connections.

In the example in Figure 3.4, we have an artificial feed-forward neural network in which

25

neurons receive their input data only from previous layers and send their outputs to later layers.

In order to train a neural network, a powerful technique known as back-propagation is used [57].
With this algorithm, it is possible to adjust the weights of the entire network by propagating the
error of its output backwards, that is, starting from the output layer. This technique will be ex-
plained in the next subsection.

3.2.3 Activation functions

In the simple perceptron, the activation function used is the step function, but to train a MLP
network, using the back-propagation technique, the activation functions of the neurons must be
differentiable. The commonly used activation functions are the logistic sigmoid function:

sigm(s) =
1

1 + e−s
(3.5)

and the hyperbolic tangent sigmoid function:

γ tanh(βs) = γ
eβs − e−βs

eβs + e−βs
. (3.6)

Sigmoidal functions are monotonically increasing (as illustrated in Figure 3.5) and asymptotic
with smooth derivatives. The logistic function varies between 0 and 1 and the hyperbolic function
varies between -1 and 1 when γ = 1 and β = 1, but published results suggest to use γ = 1.7159

and β = 2/3 [58], because, since tanh is sometimes computationally expensive, an approximation
of it by a ratio of polynomials can be used.

Sigmoidal functions that are symmetrical in relation to the origin as the hyperbolic are prefer-
able, because their outputs tend to average to zero, which makes the input to the next layer unbi-
ased [59], in the same way as the normalization of the network inputs make the convergence of
the network faster.

Figure 3.5: Activation functions: Logistic Sigmoid Function (in red), Hyperbolic Tangent Sigmoid Function (in
green) with γ = 1 e β = 1 and Rectified Linear Function (in blue).

26

We also have the Rectified Linear Unity (ReLU) or rectified linear function of equation:

relu(s) = max(0, s) (3.7)

and shown in Figure 3.5. This activation function has been widely used in the context of con-
volutional neural networks, since it has shown an improvement in the discriminative capacity of
neural networks [60]. Tests performed by Krizhevsky in [23] showed convergence 6 times faster
using ReLU activations when compared to the hyperbolic tangent in equivalent networks.

Usually for classification problems, the last layer of the network uses another activation func-
tion, called Softmax. It is useful for the last layer of the network mainly by allowing a proba-
bilistic interpretation over network outputs. The Softmax function is defined by:

yli =
es

l
i∑

j e
slj
, (3.8)

where sli is the induced local field of the neuron i and yli is the output of the neuron i after
passing through the Softmax function, which divides the exponential of the induced local field
from neuron i by the sum of the exponentials of the induced local fields from all the neurons in
the layer.

3.2.4 Error Functions

The error function, also known as loss function, is defined in order to train an artificial neural
network. This function calculates the error of the network predictions made on the dataset. In
the training process, we wish to minimize the sum of this error function over all samples in the
dataset.

The commonly used loss functions are the square error function (SEF), described by Equa-
tion 3.9, and the cross-entropy error function (CEF), described by Equation 3.10, in which both
calculate the error for a single sample of the dataset.

In these equations dj and ylj respectively represent the desired output of neuron j and the
output obtained by neuron j from layer l. Entropy requires positive values of ylj .

ε =
1

2

∑
j

(ylj − dj)2 (3.9)

ε = −
∑
j

[djlog (ylj) + (1− dj)log (1− ylj)] (3.10)

It can be shown that the true posterior probability is a global minimum for both the cross-
entropy function (CEF) and squared error function (SEF). Thus, in theory a neural network can
be trained equally by minimizing either function. In practice, however, CEF leads to faster con-
vergence and better results in terms of classification error rates, which made it to become more
popular in recent years [61].

27

3.2.5 Optimizers

The training of neural networks aims to modify the parameters of the model, so that the output
layer produces the desired results. As already mentioned, learning the parameters requires the
minimization of the loss function. In order to do it, we can use Stochastic Gradient Descent
(SGD) [62], stated in Equation 3.11:

wlji(n+ 1) = wlji(n)− η ∂ε

∂wlji(n)
, (3.11)

where η is the learning rate, wl(n) are the weights of the layer l at iteration n and ε is the loss
function.

In general, to estimate the direction of steepest gradient descent an average gradient over
subset (called batch) of training examples is used instead of the complete training set. Batch
size is usually determined empirically. It regulates the trade-off between the variance of gradient
estimative and computational time.

Determining a good learning rate η makes optimization better. If η is too high, the network
may not reach the desired local minimum, if η is too low, the learning process can be very slow.
In order to alleviate this process, we might use ADADELTA [63] optimizer, which adapts the
learning rate during training process. At iteration n ADADELTA updates the parameters as stated
in Equation 3.12 [63].

wlji(n+ 1) = wlji(n)−
RMS[∆wlji]n−1

RMS[g]n
gn, (3.12)

where
RMS[g]n =

√
E[g2]n + ε (3.13)

and
E[g2]n = ρE[g2]n−1 + (1− ρ)g2n. (3.14)

Equation 3.14 is an exponentially decaying average of the squared gradients g2 with a decay

rate ρ. Similarly, RMS[∆wlji]n−1 =
√
E[(∆wlji)

2]n−1 + ε is an average of the decay of previous
updates and ε is a small constant that ensures the existence condition of theRMS[g]n denominator
and the beginning of the first iteration, when E[g2]0 = 0. ADADELTA assigns each dimension
in the space of parameters its own dynamic learning rate with some desired properties, which are
detailed in Zeiler’s paper [63].

3.2.6 The Back-propagation Algorithm

In the back-propagation algorithm, at each iteration, the network will be trained with all input
patterns of the training set. Initially, the vectors of initial weights of each neuron should be
generated randomly. If they were initialized with the same value, all neurons in each layer would
be updated with the same value, which would cause the entire system to learn only one feature.

28

Then, the first layer of the network is fed with the input signals x and the forward propagation
of the signals is processed. It is processed as in the simple perceptron, where, for the neuron j in
layer l, the local induced field s in iteration n is:

slj(n) =
∑
i

wlji(n)yl−1i (n), (3.15)

where yl−1i (n) is the output of the previous layer. Then, applying the activation function σ on the
induced local field slj(n), we obtain the neuron output of the layer l, given by:

ylj(n) = σj(s
l
j(n)). (3.16)

If the neuron belongs to the first hidden layer, its output will be:

y1j (n) = σj(
∑
i

w1
ji(n)xi(n)), (3.17)

where xi(n) is the i-th position of the input vector x in the n-th iteration.

If the neuron j belongs to the output layer, that is, L being the depth of the network and l = L,
we have:

yLj (n) = oj(n), (3.18)

where oj is the output obtained by neuron j from the output layer. Thus, the calculated error in
the last layer is given by:

ej(n) = dj(n)− oj(n), (3.19)

where dj(n) is the expected value for the output of neuron j from the last layer.

Finally, the back-propagation algorithm, in which the error is propagated backwards through
the layers, calculating the local gradients of the error function with respect to the weights, δlj , as
can be seen in Equation 3.20:

δlj(n) =

{
eLj σ

′
j(s

L
j (n)), for the neuron j in the output layer L

σ′j(s
L
j (n))

∑
k δ

l+1
k (n)wl+1

kj (n), for the neuron j in a hidden layer l
(3.20)

where σ′ represents the derivative of the neuron activation function.

After calculating the error, the weights of the neurons are adjusted by means of the Delta
Rule [8] shown in the following equation:

wlji(n+ 1) = wlji(n) + α[∆wlji(n− 1)] + ηδlj(n)yl−1i (n), (3.21)

with η being the learning rate and α the momentum constant, a sort of penalty on the weights of
the previous iteration to update the weights of the future iteration.

29

The forward propagation of information and the backward propagation of the error will be
repeated until the stopping criterion used has been fulfilled.

3.2.7 Generalization

In back-propagation learning, we use a training sample to compute the synaptic weights of a
multilayer perceptron. The network is trained by loading as many of the training sample examples
as possible and we expect the neural network designed to generalize well. A network is said to
generalize well when the input–output mapping computed by the network is correct (or nearly so)
for test data never used in creating or training the network [8].

The learning process of a neural network can be seen as a fitting problem. The network can be
considered as a non-linear input-output mapping. So we can consider generalization as the effect
of good non-linear interpolation of input data.

Training data points
Generalization point

Input

Input

Output

Output

Figure 3.6: Properly fitted nonlinear mapping (upper graph) and overfitted nonlinear mapping (lower graph). Adapted
from [8]

As we can see in Figure 3.6, in the upper graph the model obtained with the training data
presents a nonlinear mapping properly fitted, whereas in the lower graph, the mapping is overfit-
ted, with poor generalization, because even if it passes through the training points very well, for
input data that were not used in training, it presents a large error interpolation.

A neural network that is designed to generalize well will generate a correct input-output map-
ping, even when the input from the network is slightly different from the examples used to train
it [8], as illustrated in Figure 3.6. However, if a neural network learns from many examples, it
can store (or “memorize”) the training data. It can do so due to the noise present in the training
samples, which do not really characterize the function that must be modeled. To this phenomenon
we call overfitting or overtraining.

30

3.3 DEEP LEARNING

Deep learning (deep machine learning, or hierarchical learning, or sometimes DL) is a part
of machine learning that comprises a set of algorithms. Those algorithms model high level ab-
stractions from training data through model architectures with complex structures. Otherwise, is
composed of multiple non-linear transformations [64, 65]. Deep learning belongs to a broader
family of machine learning methods that are based on the representations of learning data. An
observation of an image, for example, which is presented as input to a deep learning architecture,
and can be encoded in several ways: as a vector of pixel intensities, a set of horizontal, vertical or
diagonal edges (in a more abstract way), gradients, specific shapes found in these images. Some
representations found in these architectures allow the system to learn tasks or classify objects
more easily (for example, recognition of facial expressions) from examples [66].

The most representative characteristic of deep learning is the depth of their networks. In
theory, a two layer model has universal approximation property, but in practice multiple layers
proved essential. With the increasing amount of data and computational power now available,
the construction of deep neural networks with a large number of layers has been advantageously
possible. Another important feature about deep learning is the ability to replace handcrafted
features with efficient algorithms for learning unsupervised or semi-supervised features as well
as extracting hierarchical features [67].

Some of the DL representations are inspired by advances in neuroscience and are based on
the vague interpretation of information processing and communication patterns of the nervous
system, such as neural coding that attempts to define a relationship between stimuli and neuronal
responses in the brain [68].

Many deep learning architectures such as deep neural networks, deep convolutional neural
networks, recurrent neural networks and deep belief networks have been applied in fields such
as natural language processing, speech recognition, computer vision and bioinformatics, showing
good results in the state-of-the-art [69].

3.3.1 CNN: Convolutional Neural Networks

Convolutional networks are based on three main ideas: local receptive fields, shared weights
and spatial or temporal sub-sampling [10]. This type of neural network has been widely used for
object or face recognition problems, and has recently obtained results in more challenging tasks
such as the ImageNet Large Scale Visual Recognition Challenge [70]. In their structure, they
receive as input an image. Typically, the training process of these networks is accelerated by the
use of GPUs (Graphical Processing Units). In the following subsections, we will describe the
types of layers of convolutional neural networks.

31

(a) (b)

Figure 3.7: (a) represents the second layer (feature maps) (low level features) learned from faces dataset. (b) repre-
sents the third layer (feature maps) (higher level features) learned from faces dataset. Both of them illustrated by Lee
et al. [9].

Figure 3.7 illustrates an example of feature maps learned in the second and third convolution
layers of a convolutional neural network, used to classify faces. As shown in Figure 3.7, lower
layers have low level features (more generic ones) and deeper layers have higher level features
(more specific ones). We observe that this type of neural network model can identify detectors
of interesting characteristics, such as straight edges detector, simple colors (for color images) and
curves.

3.3.1.1 Convolutional Layer

Convolutional layers have filters, also known as feature maps (see Figure 3.10), which are
trainable and are applied to the entire input image [68]. Each filter is an array of neurons, in
which each neuron is connected only to a subset of the neurons of the previous layer, called the
receptive field. When the input is an image, the filters define a convolution kernel with small area,
usually 3x3 or 5x5 pixels, and each map neuron is connected only to the pixels that are contained
in that area of the image. If previous layer is a matrix of neurons, it is the same rule. The weights
of the neurons of the same feature map are shared, allowing them to learn patterns that occur
frequently in any part of the image.

The definition for a 2D convolution layer is given in Equation 3.22. In this equation, the
discrete convolution is applied to the inputs yl−1 with a set of weights wl, by adding a bias bl and
then applying the non-linear activation function σ:

ylmn = σ(
Nm∑
i=1

Nn∑
j=1

yl−1(m+i−1)(n+j−1)w
l
ij + bl), (3.22)

where ylmn is the output neuron at position (m,n), wlij is the weight value at position (i, j) of
the kernel, Nm and Nn are the number of rows and columns of the 2D kernel, bl is the bias and
yl−1(m+i−1)(n+j−1) is the value of the input of this layer (or output of the previous layer) at position
(m+ i− 1, n+ j − 1).

32

Equation 3.22 represents the output of the neuron at position (m,n) on the feature map, in
which m ∈ {1, ..., Sm−Nm + 1} and n ∈ {1, ..., Sn−Nn + 1}, where Sm and Sn are the number
of rows and columns of the input matrix of this layer l. But the convolution layer can be applied to
all possible inputs or not. It is also possible to apply the convolution only to inputs that are spaced
apart by a distance s, known as stride, which can be useful, for example, to reduce computational
time and reduce area overlapping between receptive fields. In Figure 3.8, we have, as an example,
the forward propagation of the convolution layer with stride s = 1.

Figure 3.8: The forward propagation of a convolutional layer.

In convolutional layers all the weights are learned with back-propagation and convolutional
networks can be seen as synthesizing their own feature extractor, according to LeCun et al. [10].

3.3.1.2 Pooling Layer

Pooling layers apply a non-linear downsampling function on their previous layer in order to
reduce their size and collect information from invariance to transalation and other distortions.
There are two forms of pooling layer, known as average pooling and max pooling. In this work
we will use the max pooling layer, whose function is formulated by:

ylmn = max
i,j∈{0,1,2,...,p}

yl−1(m+i−1)(n+j−1), (3.23)

where ylmn is the output at position (m,n), yl−1(m+i−1)(n+j−1) is the input value at position (m +

i− 1, n + j − 1) and p is the size of the area in which the max pooling function will be applied.
Similarly to the convolution layer, the pooling layer also has a stride parameter s. In Figure 3.9,
we illustrate the forward propagation phase of pooling with s = 1, that is, passing through all
possible pooling windows.

33

Figure 3.9: The forward propagation of a convolutional layer.

Pooling layers make the CNN architecture more robust, providing a certain degree of invari-
ance to translation because the activated neurons are independent of the spatial location of the
image features within the pooling window [71]. According to Scherer et al. [72], max pooling
layers presented better results than other pooling architectures.

Figure 3.10 shows an example of a convolutional network model.

Figure 3.10: An overview of a Convolutional Neural Network. Adapted from LeCun et al. [10]

3.3.1.3 Dropout

Dropout is a technique used to prevent neural networks from overfitting and to provide a way
of combining exponentially many different neural network architectures efficiently [73]. During
the training process of a neural network, each neuron has probability p to be temporarily removed
from the network, as shown in Figure 3.11. This is therefore done randomly. This neuron with
dropout probability pwill be ignored both in the forward pass and in the back-propagation process
during training. By dropping out a unit, we mean that we temporarily remove the unit from the
network along with all its input and output connections. This technique prevents neurons from
co-adapting too much.

For example, if a layer has n neurons, we have 2n different possible neural networks during

34

the training process. These networks share weights and for each presentation of each training
sample, a new network is sampled and trained. But when the model is tested, no neurons are
dropped out and their weights will be scaled by p, which makes it possible for 2n networks with
the same parameters to be combined in one neural network.

The weights of this combined network are scaled-down versions of the trained weights from
each one of the 2n networks. If a neuron is retained with probability p during training, the outgo-
ing weights of that neuron are multiplied by p during test process.

Figure 3.11: Dropout illustration. Neurons in white color are dropped out.

3.3.1.4 L1 and L2 Regularizers

Regularization is a selection of complexity level or tuning of the model that allows the clas-
sifier model to have a better performance in its classification. A central problem in machine
learning is how to make an algorithm that will perform well not just on the training data, but also
on new inputs [74], and regularization helps to achieve this goal.

Regularization is necessary especially when the data set is of a high dimensionality and does
not have many data instances. In the case of artificial neural networks, which is the focus of this
work, the loss function can be regularized by adding to it a penalty function:

35

Table 3.1: Main differences between L1 and L2 regularization

L1 Regularization L2 Regularization
Computational inefficient on non-sparse cases Computational efficient (analytical solutions)
Sparse outputs Non-sparse outputs
Built-in feature selection No feature selection

εR = ε+R(w), (3.24)

where ε is the loss function indicated in Equations 3.9 and 3.10, εR is the regularized loss function,
w is the weight array of the neural network and R(w) is the regularizing penalty function.

There are two types of regularization functions most used, they are L1 and L2 regularization,
given by:

L1 : R(w) = λ

n∑
i=1

|wi| (3.25)

and

L2 : R(w) = λ
n∑
i=1

w2
i , (3.26)

where n is the number of components of the array w, wi is the i-th component of the array w and
λ is the regularization parameter.

Conceptually, L1 regularization, which is known to induce sparsity, requires a number of
samples proportional to the logarithm of irrelevant features and L2 regularization, also known
as Euclidian norm, requires a number of samples proportional to irrelevant features. We show
L1 and L2 regularization main differences in Table 3.1 and, mathematically, their Equations 3.25
and 3.26.

By applying the penalty function R(w) on the loss function, when the gradient is applied, this
will cause a natural tendency for weights that are not essential for network performance to be
decreased.

3.3.2 Transfer Learning

In general, to train convolutional neural networks from scratch, it is necessary a dataset of
sufficient size because with so many parameters and few training samples, it can easily generate
overfitting. So it has been very common to pre-train a CNN in a very large dataset, such as
ImageNet [67], which has 1.2 million images with 1000 categories. Then we use such a network
just for training initialization or as a feature extractor for another classifier. This practice is known
as Transfer Learning, which can be used in two main ways [75]:

• CNN as a feature extractor: We take a CNN pre-trained (VGG16 [39] network) on a very

36

large dataset, such as ImageNet, then we remove the last fully-connected layer, that is, the
layer with outputs which are the class scores. We treat the rest of the network as a feature
extractor for our new dataset and train a multilayer perceptron (MLP) with (Softmax) on
these features;

• CNN Fine-tuning: In the second strategy, besides training a non-linear classifier on the
new dataset using the pre-trained CNN as a feature extractor, we fine-tune the weights of
the pre-trained network by back-propagation. We do not train some of the layers, in order
to avoid overfitting, and only train some layers of the network, because lower layers contain
more generic features and higher ones, more specific features to the details of the classes
from the original dataset used to pre-train the network [75].

The two main factors taken into account when deciding how to do fine tuning are the size of
the new dataset (small or large) and its level of similarity to the dataset originally used to pre-
train the network. Remembering that generic features are in shallower layers of the convolutional
networks and in deeper layers, we have features more specific to the original dataset, we have the
following rules for fine-tuning:

• New dataset is small and similar to the original dataset: Because the dataset is small it is
not interesting to perform fine-tuning because it can generate overfitting. As the new dataset
is similar to the original, we expect high-level features of the network to be beneficial to the
new dataset, so we train a classifier on the features generated from the high-level layers of
the pre-trained network.

• New dataset is large and similar to the original dataset: When the dataset is really large,
we do not worry about overfitting and because of its similarity as the original dataset, we
can fine-tune across the entire network.

• New dataset is small and very different from original: When the dataset is small and very
different from the original dataset it is better to train a classifier from features generated in
lower layers, since the higher ones would have more specific information from the original
dataset.

• New dataset is large and very different from the original: Because the dataset is large, we
could simply train CNN from scratch. However, we can benefit from the weights already
obtained by the pre-trained network. In this case, we would have enough confidence to
fine-tune through the entire neural network.

A smaller learning rate is commonly used for CNNs weights that are being fine-tuned, when
compared to the weights randomly-initialized for the new classifier added on top of the network
to train the new dataset. This is because we do not want to distort the CNN weights too quickly,
since they are relatively good based on the CNN pre-training [75].

37

The VGG16 is a CNN [39] pre-trained on the largest and most challenging ILSVRC-2014
dataset, which have achieved good accuracy rates in object recognition. We will use it in our
methodology. Its architecture is described in Table 3.2.

ImageNet is a dataset of over 15 million labeled high-resolution images belonging to roughly
22,000 categories. The images were collected from the web and labeled by human labelers using
Amazon’s Mechanical Turk crowd-sourcing tool. Starting in 2010, as part of the Pascal Visual
Object Challenge, an annual competition called the ImageNet Large-Scale Visual Recognition
Challenge (ILSVRC) has been held. ILSVRC uses a subset of ImageNet with roughly 1000
images in each of 1000 categories. In all, there are roughly 1.2 million training images, 50,000
validation images, and 150,000 testing images [23]. This dataset have in its categories different
types of animals, plants, sport activities, material (fabric), instrumentation and tools, scenes and
foods.

Table 3.2: VGG16 Architecture. C denotes a Convolution layer, MP denotes a max pooling layer and FC denotes a
fully-connected layer.

Layer Type Output Maps (neurons) Kernel size Pooling size
1 C 64 feature maps 3x3 -
2 C 64 feature maps 3x3 -
3 MP 64 feature maps - 2x2
4 C 128 feature maps 3x3 -
5 C 128 feature maps 3x3 -
6 MP 128 feature maps - 2x2
7 C 256 feature maps 3x3 -
8 C 256 feature maps 3x3 -
9 C 256 feature maps 3x3 -

10 MP 256 feature maps - 2x2
11 C 512 feature maps 3x3 -
12 C 512 feature maps 3x3 -
13 C 512 feature maps 3x3 -
14 MP 512 feature maps - 2x2
15 C 512 feature maps 3x3 -
16 C 512 feature maps 3x3 -
17 C 512 feature maps 3x3 -
18 MP 512 feature maps - 2x2
19 FC 4096 neurons - -
20 FC 4096 neurons - -
21 FC 1000 neurons - -

38

3.4 FINAL CONSIDERATIONS

Artificial Neural Networks (ANNs) are robust tools commonly used to solve problems that
require learning, such as pattern detection and recognition. In this Chapter we approached a vision
about Machine Learning and described the main concepts of Artificial Neural Networks, showing
their main algorithms. Within the field of Deep Learning research we approached theories about
Convolutional Neural Networks (CNNs), which in turn were used to classify human actions in
this work.

In the following Chapter we will present the proposed methodology for the human action
recognition in image sequences, in which we use stacks of Dense Optical Flow (DOF) applied to
a temporal convolutional network (Temporal stream) and apply raw images to another convolu-
tional network, called Spatial stream.

39

4 METHODOLOGY

In order to classify the type of human action performed in a sequence of images, we propose
the methodology illustrated in Figure 4.1, which uses certain techniques of Computer Vision and
Computational Intelligence combined. In the Computer Vision stage, we calculate the Dense
Optical Flow (DOF) of the motion presented in the sequence of images and generate stacks of
Optical Flow of the same size from each sequence. These stacks are applied to a convolutional
neural network, here called the Temporal CNN stream, during its training process. We extract the
frames from the sequence of images that feed another convolutional neural network, here called
Spatial CNN stream. The spatial network is trained by using the transfer learning technique
applied to the pre-trained VGG16 convolutional network [39].

In different moments of the video, the Spatial CNN stream may indicate different classes
based on the frames of the sequence. By hypothesizing that certain static frames can lead to a
correct classification, we generate a histogram to make a final classification based on the most
frequent class assignment. Then, after training both convolutional networks, we will have the
Spatial CNN stream histogram and, in the case of Temporal CNN stream, we also generated a
histogram showing the number of stacks of Optical Flow classified in each class of the problem.
After generating the histograms, they are normalized and summed, so that the resulting histogram
will classify the action of the sequence of images based on the class with the highest value. At
different moments in the video the system can indicate different classes, and so we generate a
histogram to do the final classification based on the assignment of the most frequent class. In
fact, we are adopting a somewhat bold hypothesis: that certain static frames can lead to correct
classification of actions, as well as stacks of Optical Flow generated from the video sequence.

In the following sections we describe the inputs and outputs of each stage of the methodology,
as well as the parameters used to configure the Computer Vision and Computational Intelligence
algorithms.

4.1 APPROACH

In order to classify the action performed in a sequence of images, we propose the methodology
illustrated in Figure 4.1.

This approach is based on Convolutional Neural Networks [10] and in this proposed method-
ology two streams are used: The first one as a Spatial Stream and the second one as a Temporal
Stream. In this paper, an architecture based on the Lenet [10] architecture, originally created for
image recognition, was used to recognize actions in videos.

Figure 4.1 shows a sequence of images as the input of the system. This sequence is input to

40

the spatial network (Spatial CNN), each frame of the sequence is evaluated by the network and,
afterwards, we generate a normalized histogram of classification of these frames, which presents
the frequency of each class as the sequence passes through the spatial network. In parallel, the
sequence of input images of the system goes through a step of calculating the optical flow between
its consecutive frames. Then, stacks of optical flow components are generated and will be used
as temporal network (Temporal CNN) input, see Figure 4.1. In the same way as in the spatial
network, we generate a normalized histogram of classification of these stacks for the temporal
network. To perform the final classification of the action in the sequence, we sum these histograms
and the resulting histogram gives us the sequence classification by its highest frequency class.

The Spatial stream was trained from the frames of the sequence of images and the Tempo-
ral stream was trained with stacks of Farnebäck Dense Optical Flow (DOF) [6], also used by
Simonyan and Zisserman [3]. The spatial stream was trained by using a transfer learning tech-
nique applied to the pre-trained VGG16 convolutional network [39] (pre-trained on the largest
and most challenging ILSVRC-2014 dataset, which have achieved good accuracy rates in object
recognition), in order to take advantage of the features previously learned by the network.

The two networks were trained separately and for each sequence we generated a histogram.
Each histogram is generated by the number of assignments to each class as the sequence of images
is presented to the each stream then we combine them in order to classify the sequences based on
the most frequent class assignment.

4.2 SPATIAL STREAM

The input samples of the spatial network were the frames of each video (sequence of images)
of the training dataset. We used the pre-trained VGG16 network (see Table 3.2) in the ImageNet
dataset [39], which was trained to classify 1000 categories of objects. As indicated in Figure 4.2,
we did not train the first three convolutional blocks (each convolutional block is separated from
the others by a MaxPooling layer) and trained the last two ones. Then, we trained a multilayer
perceptron (MLP) by fine-tuning the network with the new dataset features, as we mentioned in
Subsection 3.3.2. The weights of the net were learned using the Stochastic Gradient Descent
(SGD) and fine-tuning should be done at a very slow learning rate, and usually with the SGD
optimizer instead of an adaptive learning rate optimizer. This is to ensure that the magnitude of
the updates remain very small, so as not to destroy previously learned features. If the frames
of the analyzed dataset had resolution less than 224 x 224, we used their original dimensions,
otherwise we set them to 224 x 224.

41

Te
m

p
o
ra

l C
N

N

S
p
a
tia

l C
N

N

C
la

ssifi
ca

tio
n

(o
u
tp

u
t)

D
e
n
se

 O
p
tica

l
Flo

w

S
e
q
u
e
n
ce

 o
f Im

a
g
e
s

(in
p
u
t)

...

sta
ck

 m

}

}
Tra

in
in

g
 o

n
 e

a
ch

 sta
ck

sta
ck

 1

Fra
m

e
C

la
ssifi

ca
tio

n
(o

u
tp

u
t)

S
ta

ck
C

la
ssifi

ca
tio

n
(o

u
tp

u
t)

S
in

g
le

-fra
m

e
C

la
ssifi

ca
tio

n
H

isto
g
ra

m

S
ta

ck
C

la
ssifi

ca
tio

n
H

isto
g
ra

m

Figure 4.1: Proposed Method.

42

1st to 3rd
Convolutinal

blocks
(VGG16)

(not trained)

4th and 5th
Convolutinal

blocks
(VGG16)

(trained)

+

MLP
full1
256

dropout

full2
100

dropout

softmax

Spatial CNN

+

Figure 4.2: Spatial CNN structure: it refers to the Spatial CNN block in the Figure 4.1. The yellow block represents
VGG16 convolutional blocks and the green block represents the MLP used. In the yellow block only the fourth and
fifth blocks were trained.

4.2.1 Spatial Stream Histogram

Once the network is trained with the new dataset, we are able to classify each frame coming
from any sequence of images. Then, to classify the action present in the sequence, we generate a
histogram based on the frequency of each assigned class as the sequence is presented. Final class
assignment is to the class assigned to most of the frames in the sequence. Figure 4.3 shows an
example of histogram based on classes frequency.

Figure 4.3: Histogram of frames classification for Sequence 8 (Weizmann Dataset). The red bar indicates the ex-
pected class and the blue bars indicate the other classes.

43

4.3 TEMPORAL STREAM

The samples used for temporal network training are stacks of Dense Optical Flow (DOF),
also similarly used by Simonyan and Zisserman [3], generated from the input sequence of images
(Figure 4.1). The displacement between frames is determined by finding such an estimate for two
consecutive frames by using Farnebäck’s algorithm [6].

4.3.1 Stacks of Dense Optical Flow

We calculate the optical flow of the input sequence and then apply the optical flow stack-
ing according to Algorithm 2. In a stack of size D, we stack D/2 horizontal components, D/2
corresponding vertical components and then stack the resulting stacks. The structure of our tem-
poral network is illustrated in Figure 4.4. Figure 2.9 (in page 18) illustrates an example of two
consecutive frames and horizontal and vertical optical flow components respectively.

Temporal CNN
Conv1

20 maps
kernel: 5x5

Conv2
20 maps

kernel: 5x5
pool 2x2
dropout

Conv4
50 maps

kernel: 5x5
pool 2x2
dropout

Conv3
50 maps

kernel: 5x5

Conv6
80 maps

kernel: 3x3
pool 2x2
dropout

Conv5
80 maps

kernel: 3x3

full1
500

dropout

softmaxfull2
800

dropout

Figure 4.4: Temporal CNN structure: it refers to the Temporal CNN block in the Figure 4.1.

Algorithm 2 Stacks of Dense Optical Flow

Input: sequence of images, overlap size between stacks (o), stack size (D)
Output: stacks of DOF [6] from the sequence.

Calculate horizontal (Dx) and vertical (Dy) DOF componentes between each two consecutive frames
of the sequence. fx and fy are empty lists for the stacked components.
N = number of frames −1

step = (D/2)− o
for i = 1 to N step step do

if ((N − i) ≥ (D/2)− 1) then
for j = i to i+ (D/2)− 1 do

Append Dx[j] to fx and append Dy[j] to fy
end for
Stack fx elements into flowX and stack fy elements into flowY
stack = stacks(flowX, flowY)

Append stack to stacksList
end if

end for
Stack stacksList elements to get the final output
return output

44

We have an illustration of stacks of Dense Optical Flow (DOF) generated from a sequence of
images in the Figure 4.5.

Stacking
Dense Optical

Flow components

Sequence of Images
(input)

...

stack m} }
Stacks of the sequence

stack 1

Figure 4.5: Stacks of Dense Optical Flow.

4.3.2 Temporal Stream Histogram

With the temporal network trained, we can classify each stack coming from any sequence of
images. In order to classify the action of the sequence, we then use the same procedure for the
spatial CNN. Final class assignment is the class assigned for most of the stacks. Figure 4.6 shows
an example of histogram based on classes frequency.

Figure 4.6: Histogram of OF stacks classification for Sequence 8 (Weizmann Dataset). The red bar indicates the
expected class and the blue bars indicate the other classes.

45

4.4 COMBINATION OF CLASSIFIERS

After both networks were trained, we can have the histograms mentioned in Subsections 4.2.1
and 4.3.2, that indicate the frequency of each class for all frames (for the Spatial stream) and
stacks (for the Temporal stream). We then normalize these histograms and we finally classify the
videos (image sequences) by summing spatial and temporal normalized histograms and choosing
the class with the higher frequency of classification in the resulting histogram.

In the next Chapter we will present the datasets used in this work, the experimental setup used,
some experiments carried out and their results.

46

5 RESULTS

In this Chapter we present the results obtained with the implementation of the prototype pro-
posed in Chapter 4, in which the techniques presented in Chapters 2 and 3 were used.

Our prototype was developed in the Python language. To calculate the Dense Optical Flow in
the image sequences we use the OpenCV library [76], developed in C and C ++, with a Python
version. This library can be used in Mac, Windows and Linux operating systems. For the devel-
opment of Convolutional Neural Network (CNN) algorithms, we used the Keras framework [77],
developed in Python, with beckend for Theano library [78], also written in Python. For training
the CNNs, we used a NVIDIA GeForce GTX 970, RAM memory of 4GB and 1664 CUDA Cores.

In this Chapter, we will use two public datasets to test the methodology: Weizmann and UCF
Sports. We also describe the experiments performed and how the results were validated.

5.1 DATASETS

In order to verify the performance of our methodology, we tested our approach in two public
action video datasets: Weizmann and UCF Sports.

The Weizmann dataset is provided by the Weizmann Institute of Science’s Computer Vision
Laboratory [11], which contains 90 image sequences showing nine different people, each one
performing 10 natural actions. These actions are Bending (bend), Jumping Jack (jack), Jumping
(jump), Jumping in place (pjump), Galloping sideways (side), Running (run), Skipping (skip),
Walking (walk), One-hand waving (wave1), Two-hands waving (wave2), as shown in Figure 5.1.
All images sequence were recorded in low resolution, with 50 frames per second, at 180 x 144
pixels. In order to evaluate this dataset on our approach we used a Leave-one-out Cross-validation,
in which eight actors were used for training and the ninth actor for testing. This was repeated over
nine actors and their results were averaged.

UCF Sports consists of various sports actions collected from broadcast television channels [12].
The dataset includes 10 actions: Diving, Golfing, Kicking, Weightlifting, Horseback-riding, Run-
ning, Skateboarding, Swinging 1 (gymnastics, on the pommel horse and floor), Swinging 2 (gym-
nastics, on the high and uneven bars) and walking, as shown in Figure 5.2. This dataset has a total
of 150 sequences with the resolution of 720 x 480 and with 10 frames per second. In order to
evaluate this dataset on our approach we used a five-fold cross-validation, in which 1/5 of the data
containing all classes is used for testing and the 4/5 are used for training. This was repeated over
the 5 configurations and their results were averaged.

47

(a) Bending (b) Jumping Jack (c) Jumping

(d) Jumping in place (e) Running (f) Galloping sideways

(g) Skipping (h) Walking (i) One-hand waving

(j) Two-hands waving

Figure 5.1: Natural actions performed in the set of image sequences provided by the Weizmann Institute of Science’s
Computer Vision Laboratory [11]

48

Figure 5.2: Actions performed by video sequences from UCF Sports dataset (illustrated by Soomro and Zamir [12]).

5.2 EXPERIMENTS

To produce the final architecture proposed in this work that is based on the outputs obtained by
two convolutional neural networks, here called Spatial CNN Stream Spatial and Temporal CNN
Stream, we performed some experiments. The two following subsections respectively show the
experiments performed.

5.2.1 Spatial CNN stream

The experiment 1, whose scheme is illustrated in Figure 5.3, represents our initial proposed
Spatial CNN Stream .

Sequence of images
(input)

Spatial CNN stream

Conv1
20 maps

kernel: 5x5

Conv2
20 maps

kernel: 5x5
pool 2x2
dropout

Conv4
50 maps

kernel: 5x5
pool 2x2
dropout

Conv3
50 maps

kernel: 5x5

full
500

dropout

softmax Frame
Classification

(output)

Training process on each frames

Figure 5.3: Spatial CNN Architecture (Experiment 1).

As we can see in Figure 5.3, our network starts with two layers of Convolution, both with
20 feature maps and a 5x5 kernel, in which the second presents a Pooling layer. This layer was
trained using Dropout with probability p = 0.25. The following two Convolution layers have the
same structure, except that they have 50 feature maps each one and then a fully connected layer
with 500 neurons (all layers up to the fully connected one used Rectified Linear Unit (ReLU)).
Finally, the 10 neurons (representing the 10 classes) with their softmax activation functions and
the optimizer used by the network were the Adadelta [63].

We used the validation method to leave a group out, the data belonging to the training group
are different from the data of the validation group. The result of this method depends on how

49

the training and validation data were separated. In this experiment, approximately 70% of the
image sequences were used in the training group and 30% in the validation group,that is 60 image
sequences for training and 30 for validating our model during training process.

In general, to train convolutional neural networks from scratch a dataset of sufficient size is
necessary, because with so many parameters and few training samples, it can easily generate over-
fitting. We decided to use a CNN pre-trained on a very large dataset (VGG16 [39] network), such
as ImageNet, then we removed the last fully-connected layer, that is, the layer with outputs which
are the class scores. We fine-tuned the weights of the pre-trained network by back-propagation.
We did not train some of the layers, in order to avoid overfitting, and only trained some layers of
the network, because lower layers contain more generic features and higher ones, more specific
features to the details of the classes from the original dataset used to pre-train the network [75].

As indicated in Figure 4.2, we did not train the first three convolutional blocks (each convo-
lutional block is separated from the others by a MaxPooling layer, see Table 3.2) and trained the
last two ones. Then, we trained a multilayer perceptron (MLP) by fine-tuning the network with
the new dataset features. Because the Weizmann dataset is quite different from the dataset in
which the VGG16 network was pre-trained, we wanted to only use features learned by VGG16
in the lower layers (more generic features, such as edges, curves, etc.) and train the deeper ones
because they are more specific to the objects in the pre-trained dataset. With the UCF Sports base
we could take some deeper layers, since some of its actions are associated with certain objects
(for which the VGG16 network was pre-trained), but we used exactly the same training setup for
both datasets, In order to evaluate it in a generic way.

We took a validation dataset from the training dataset to monitor the training and stop it
when necessary. Through this validation data, to follow the evolution of the loss function of our
optimizer, we used the early-stopping technique to interrupt training process. We followed the
loss function with a minimum variation of 0.01 in its value, so that if the error rate did not improve
in 20 epochs, we would stop training.

The weights of the net were learned using the Stochastic Gradient Descent (SGD) with mo-
mentum equal to 0.9 and learning rate is set to 10−4. Fine-tuning was done at a very slow learning
rate, with the SGD optimizer instead of an adaptive learning rate optimizer. This was done to en-
sure that the magnitude of the updates remained very small, so that it did not destroy previously
learned features. If the frames of the analyzed dataset had resolution less than 224 x 224, we
would use their original dimensions, otherwise we would set them to 224 x 224.

5.2.2 Temporal CNN stream

For the temporal network, the Dense Optical Flow was calculated with a pyramid of 3 levels
and a scale of 0.5, that is, each next layer of the pyramid is twice smaller than the previous
one [6]. For the DOF algorithm we used a window size of 15, polynomial expansion with pixel
neighborhood 5 and 3 iterations the algorithm does at each pyramid level.

50

The temporal network was trained from scratch and its structure is illustrated in Figure 4.4.
We used the Adadelta optimizer [63] to train it, which does not need a manual setting of a learning
rate. After some tests, we realized that a good approach to generate the stacks of optical flow must
be with overlap between stacks equal to 3 (o = 3) frames and stack size 10 (d = 10), so the format
of the input sample of the network is a tensor 10 x 224 x 224.

To avoid overfitting, monitored by a set of validation data taken from the training data, we
used L2 regularization with parameter λ = 10−4 (see Subsection 3.3.1.4), and we also used data
augmentation techniques so the network could generalize better. In the temporal one, overfitting
began to happen before, probably because the amount of training samples generated from the
training dataset was small. So we used L2 regularization with λ = 10−2, and inserted dropout
layers with probability 0.25 between the convolutional blocks and 0.5 and 0.6 after the first two
fully-connected layers as indicated in Figure 4.4.

5.3 EXPERIMENTAL RESULTS

In this section we will analyze the results of experiments with the trained spatial network from
scratch, fine-tuned spatial network and temporal network.

5.3.1 Preliminary spatial network

The first experiment was performed with this convolutional network trained with all the frames
of each sequence of images belonging to the training data set, where each frame was labeled with
the respective class of the sequence of images to which it belonged. The graphic of the loss
function during the training already shows overfitting in the initial epochs (as observed in the
Figure 5.4(b)), because the function starts to increase instead of continuing to decrease its values,
which made us stop the training at third epoch (see Figure 5.4) and that is when the validation
reached an accuracy of 62.87%.

After the network training with the frames of image sequences, the frames of the test dataset
(in this first experiment, the validation dataset was used as test dataset as well, only to check the
model for classifying the sequences instead of frames) were tested orderly for each sequence,
and the network outputs were observed. The outputs varied through time as the sequence of
images was presented. From that data, a histogram was built, and the final decision was to assign
the sequence to the most frequent label assigned by the network to the frames, as seen in the
histograms of Figure 5.5.

Note that in Figure 5.5(a) jump is the expected class and most frames in the sequence were
classified as jump. In the histogram of Figure 5.5(c), all frames were correctly classified (class
wave2). In Figure 5.5(b), we note that the sequence was classified incorrectly, instead of pjump,
most frames were classified as jack.

51

(a) (b)

Figure 5.4: (a) Accuracy graphic during training. (b) Loss graphic during training.

(a) (b) (c)

Figure 5.5: (a) Histogram of frames classification for Sequence 1. (b) Histogram of frames classification for Sequence
4. (c) Histogram of frames classification for Sequence 23. The red bar indicates the expected class and the blue bar
incorrect classifications

Based on the frequency of correct frames per sequence of images, the network correctly clas-
sified 20 out of 30 image sequences, which corresponds to 66.66% of them. This is a surprising
result coming from a action classifier in videos from still images. Based on this, we tried to
improve the frame classifier in order to consequently improve the classification of the sequence
of images. For this, we kept the same architecture, with the same configurations, but we used
the technique of Data Augmentation (in order to apply different types of samples to the network
and avoid early overfitting), in which we randomly generated versions of training samples with

52

horizontal flip and vertical and horizontal shift of the images in 20% of their dimensions. As a
result, the accuracy rate has increased.

This improved performance comes from combining a deep architecture, high-capacity model,
and an augmented training set [79]. This is reflected in the accuracy of the classification of the
model which has increased to 76.67%.

5.3.2 Pre-trained spatial network

When we trained the spatial network in the Weizmann dataset we obtained the individual
results presented in Table 5.1. The spatial network reached 84.44% (See Table 5.1), an improved
accuracy compared to the first experiment, considering that the classification was made based
only on the frequency of correctly classified frames of the sequence of images, which is quite
interesting. This rate was due to the fact that some actions may be associated with specific object
types and the VGG16 network was pre-trained for a dataset of 1000 different object categories.
Also, we fine-tuned the network and trained only high level features and we used the lower layers
of the network as descriptors, which were already pre-trained to find edges, curves and other low
level features also useful for the Weizmann dataset.

Table 5.1: Accuracies on both Weizmann and UCF
datasets on each stream

Dataset Spatial stream Temporal stream
Weizmann 84.44% 78.89%
UCF Sports 78.46% 15.38%

When we trained the spatial network in the UCF Sports dataset we obtained the individual
results presented also in Table I. The reason we obtained that rate was due to the same reason for
Weizmann dataset (We took advantage of the pre-trained VGG16 network for object recognition).
We did not pre-process any image, we used raw images as input and the spatial network worked
well on frames.

5.3.3 Temporal network

For the temporal network we also reached 78.89% (see Table 5.1), but we had a weaker result
for the spatial one. This happened because the number of stacks generated by the training dataset
was small, so the network failed to generalize very well.

On the other hand, we did an additional test of the UCF Sports dataset on the same temporal
stream used for the Weizmann dataset and we obtained a weaker result (15.38%).

This occurred with temporal stream due to the fact that the dataset UCF Sports has sequences
with 10 frames per second and the number of stacks generated was less than the number generated
by the Weizmann base (50 frames per second). Besides, the different frame rates from the two

53

datasets made the velocities of motion performed in the videos different and the setup of the
algorithm parameters of stacks of Dense Optical Flow would have to be different.

5.3.4 Combination of classifiers

When classified by the two-stream method, the rate has greatly improved to 91.11% (see
Table 5.2) on Weizmann dataset, which is comparable to published results. Temporal network
on UCF SPorts dataset reached 15.38%, which was prejudicial using this stream in combination
with the spatial stream. 70.77% of accuracy rate was obtained with the combination of spatial
and temporal streams.

Table 5.2: Comparison of accuracies on the Weizmann dataset

Method Accuracy
Our method (Spatial CNN) 84.44%

Hoai et al. [80] 87.7%
Huang and Wu [81] 88.8%

Our method (combination: Temporal and Spatial CNNs) 91.11%
Zhang et al. [82] 92.89%

Bregonzio et al. [83] 96.66%
Sun et al. [84] 97.8%

Weinland and Boyer [85] 100%

We can observe in Figure 5.6 the confusion matrix for the experiment performed in the Weiz-
mann dataset, confusing only the run class with the skip and walk classes and the skip class with
the side class. Since this classification methodology is partly based on frames, we can understand
the confusion made between the run, skip and walk classes. This occurs because some frames
presented during these movements can be quite similar and thus the classifier can make errors
about these classes.

54

be
nd

ja
ck

ju
m
p

pj
um

p
ru

n
si
de sk

ip
w
al
k

w
av

e1

w
av

e2

bend

jack

jump

pjump

run

side

skip

walk

wave1

wave2

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.56 0.0 0.33 0.11 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.33 0.11 0.56 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Predicted label

Tr
u
e
 l
a
b
e
l

Figure 5.6: Confusion matrix of Weizmann dataset using leave-one-out cross-validation.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

bend
jack
jump
pjump
run
side
skip
walk
wave1
wave2

False Positive Rate

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

ROC

Figure 5.7: ROC curve of Weizmann dataset.

The Receiver Operating Characteristic (ROC) curve for this experiment (see Figure 5.7) also
shows the efficiency of the method. This curve was generated by varying the value of a deci-
sion threshold on the outputs of the classifier, evaluating for each case one class against all
the others. In the same way as the confusion matrix, we observed that the classes not correctly
classified were run and skip.

Our method achieves an accuracy comparable with published accuracies (91.11%), outper-
forming [80, 81] (see Table 5.2). And [82, 83, 84, 85] methods present better accuracy rates,

55

however they use handcrafted descriptors.

Di
vi
ng

Go
lf

Ki
ck

in
g

Li
ft i
ng

Ri
di
ng Ru

n

Sk
at
e

Sw
in
g1

Sw
in
g2

W
al
k

Diving

Golf

Kicking

Lift ing

Riding

Run

Skate

Swing1

Swing2

Walk

1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.67 0.07 0.0 0.0 0.0 0.0 0.0 0.13 0.13

0.05 0.0 0.65 0.0 0.0 0.05 0.0 0.1 0.15 0.0

0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.8 0.1 0.0 0.0 0.1 0.0

0.0 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.4 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.1 0.1 0.0

0.05 0.0 0.0 0.0 0.0 0.0 0.0 0.75 0.2 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

0.05 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.3 0.35
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Predicted label

Tr
u
e
 l
a
b
e
l

0.07 0.0 0.0 0.0 0.0 0.0 0.13 0.13

0.05 0.0

Figure 5.8: Confusion matrix of UCF Sports dataset using leave-one-out cross-validation.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Diving
Golf
Kicking
Lifting
Riding
Run
Skate
Swing1
Swing2
Walk

False Positive Rate

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

ROC

Figure 5.9: ROC curve of UCF Sports dataset.

56

Table 5.3: Comparison of accuracies on the UCF dataset

Method Accuracy
Rodriguez et al. [86] 69.2%

Our method (combination: Temporal and Spatial CNNs) 70.77%
Our method (Spatial CNN) 78.46%

Yeffet and Wolf [87] 79.2%
Wang et al. [88] 85.6%

We can observe in Figure 5.8 the confusion matrix for the experiment performed in the dataset
UCF Sports, presenting a weaker result than for the dataset Weizmann, occurring confusion be-
tween the Golf class and the classes Kicking, Swing2 and Walk and between the Walk and Diving
classes, for example. The ROC curve for this experiment (see Figure 5.9) also reflects the classes
classified incorrectly. The classes that are farthest from the top left of the chart are the Golf,
Kicking, Run and Walk classes.

We outperform only Rodriguez et al. [86] (see Table 5.3), but Yeffet and Wolf [87] use local
trinary patterns and Wang et al. [88] use 3D-HOG descriptors, whereas we do not perform any
pre-processing, using raw images as input to our spatial stream.

In the next chapter we conclude this dissertation with the final considerations, the main con-
tributions of this research work and the suggestions for future work.

57

6 CONCLUSIONS AND FUTURE WORKS

In this work, an architecture based on a two-stream CNN was investigated, in which we have
each frame of the sequence of images (Spatial features) as an input training sample of one CNN,
another CNN in which the inputs are the stacked dense optical flow components between the
frames of the sequence (Temporal features).

The Spatial network stream uses a 2D convolutional architecture named VGG16, pre-trained
on the largest and most challenging ILSVRC-2014 dataset [39], which have achieved good accu-
racy rates in object recognition.

These two structures were trained separately and we generated histograms to make the se-
quence classification on each network based on the most frequent class from the sequence. For
the final classification, both histograms were normalized and were summed to produce a single
output.

Initially, we trained a convolutional network from zero with the frames of its image sequences,
in order to analyze if the network could classify only from frames of the sequence. We observed
that the outputs varied through time as the sequence of images was presented. From that data, a
histogram was built, and the final decision was to assign the sequence to the most frequent label
assigned by the network to the frames. With this, we reached 66.66% of accuracy on Weizmann
dataset.

Based on the hypothesis that the network was able to classify the videos from their frames,
we worked on the classifier improvement. Applying Data Augmentation technique, in which we
randomly generated versions of training samples with horizontal flip and vertical and horizontal
shift of the images, we increased the classification accuracy to 76.67% on Weizmann dataset.

We realized that in general to train a convolutional neural network requires a reasonable
amount of data. Whereas the Weizmann and UCF Sports datasets are not as large, we fine-tuned
the weights of the pre-trained (pre-trained VGG16 network [39]) network by back-propagation.
Thus, we have achieved an accuracy rate of 84.44% on Weizmann dataset. We also trained from
scratch a temporal convolutional network with stacks of Dense Optical Flow (DOF), and on Weiz-
mann dataset we reached an accuracy of 78.89%. Combining spatial and temporal classifiers we
obtained 91.11% on Weizmann dataset.

We showed that still frames belonging to a certain sequence of images curiously make it
possible to classify the action performed in such a sequence. We believe that, since the VGG16
network was pre-trained for a dataset of 1000 classes of different objects and some actions are
associated with certain types of objects, this contributed significantly to the learning of the spatial
network. This indicates that the transfer learning technique was used efficiently to recognize
human actions, using a previously trained network to recognize objects.

58

Even though the results with the temporal stream in the dataset UCF Sports were not the
best, the result with the spatial stream is comparable to published results and the temporal stream
can have improvements in its architecture through the number of epochs, training optimization
method and network depth.

As future work, we intend to further explore the capacity of learning actions from single
frames, combining our spatial network with other classifiers. Also, make our architecture more
generic for videos with different frames per second rates and try it with even more challenging
datasets such as UCF-101 [89] and HMDB-51 [90].

59

REFERENCES

[1] R. C. Gonzalez and R. E. Woods, Digital image processing, 3rd ed. Prentice Hall, Boston,
MA, USA, 2007.

[2] R. Minetto, “Detecção robusta de movimento de camera em videos por analise de fluxo otico
ponderado,” Ph.D. dissertation, Universidade Estadual de Campinas, 2007.

[3] K. Simonyan and A. Zisserman, “Two-stream convolutional networks for action recognition
in videos,” in Advances in Neural Information Processing Systems, 2014, pp. 568–576.

[4] S. S. Beauchemin and J. L. Barron, “The computation of optical flow,” ACM computing
surveys (CSUR), vol. 27, no. 3, pp. 433–466, 1995.

[5] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelligence, vol. 17,
no. 1-3, pp. 185–203, 1981.

[6] G. Farnebäck, “Two-frame motion estimation based on polynomial expansion,” in Scandi-
navian conference on Image analysis. Springer, 2003, pp. 363–370.

[7] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous activity,”
The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[8] S. S. Haykin, Neural networks and learning machines. Pearson Upper Saddle River, NJ,
USA:, 2009, vol. 3.

[9] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief networks for
scalable unsupervised learning of hierarchical representations,” in Proceedings of the 26th
annual international conference on machine learning. ACM, 2009, pp. 609–616.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to docu-
ment recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[11] M. Blank, L. Gorelick, E. Shechtman, M. Irani, and R. Basri, “Actions as space-time
shapes,” in Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume
1, vol. 2. IEEE, 2005, pp. 1395–1402.

[12] K. Soomro and A. R. Zamir, “Action recognition in realistic sports videos,” in Computer
Vision in Sports. Springer, 2014, pp. 181–208.

[13] L.-P. Morency, A. Quattoni, and T. Darrell, “Latent-dynamic discriminative models for
continuous gesture recognition,” in 2007 IEEE conference on computer vision and pattern
recognition. IEEE, 2007, pp. 1–8.

[14] A. Dehghan, O. Oreifej, and M. Shah, “Complex event recognition using constrained low-
rank representation,” Image and Vision Computing, vol. 42, pp. 13–21, 2015.

60

[15] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” Acm computing surveys
(CSUR), vol. 38, no. 4, p. 13, 2006.

[16] L. Wang, Y. Qiao, and X. Tang, “Action recognition with trajectory-pooled deep-
convolutional descriptors,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 4305–4314.

[17] X. Peng, L. Wang, X. Wang, and Y. Qiao, “Bag of visual words and fusion methods for
action recognition: Comprehensive study and good practice,” Computer Vision and Image
Understanding, 2016.

[18] M. Hasan and F. Boris, “Svm: Machines à vecteurs de support ou séparateurs à vastes
marges,” Rapport technique, Versailles St Quentin, France. Cité, p. 64, 2006.

[19] H. Wang and C. Schmid, “Action recognition with improved trajectories,” in Proceedings of
the IEEE International Conference on Computer Vision, 2013, pp. 3551–3558.

[20] H. Baya, A. Essa, T. Tuytelaarsb, and L. Van Goola, “Speeded-up robust features (surf),”
Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359, 2008.

[21] S. Sadanand and J. J. Corso, “Action bank: A high-level representation of activity in video,”
in Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012, pp. 1234–1241.

[22] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-scale
video classification with convolutional neural networks,” in Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, 2014, pp. 1725–1732.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” in Advances in neural information processing systems, 2012, pp.
1097–1105.

[24] T. Brox, A. Bruhn, N. Papenberg, and J. Weickert, “High accuracy optical flow estimation
based on a theory for warping,” in European conference on computer vision. Springer,
2004, pp. 25–36.

[25] D. Fleet and Y. Weiss, “Optical flow estimation,” in Handbook of mathematical models in
computer vision. Springer, 2006, pp. 237–257.

[26] C. Feichtenhofer, A. Pinz, and A. Zisserman, “Convolutional two-stream network fusion for
video action recognition,” arXiv preprint arXiv:1604.06573, 2016.

[27] A. Klaser, M. Marszałek, and C. Schmid, “A spatio-temporal descriptor based on 3d-
gradients,” in BMVC 2008-19th British Machine Vision Conference. British Machine Vision
Association, 2008, pp. 275–1.

61

[28] P. Scovanner, S. Ali, and M. Shah, “A 3-dimensional sift descriptor and its application to ac-
tion recognition,” in Proceedings of the 15th ACM international conference on Multimedia.
ACM, 2007, pp. 357–360.

[29] G. Willems, T. Tuytelaars, and L. Van Gool, “An efficient dense and scale-invariant spatio-
temporal interest point detector,” in European conference on computer vision. Springer,
2008, pp. 650–663.

[30] E. E. Aksoy, A. Abramov, J. Dörr, K. Ning, B. Dellen, and F. Wörgötter, “Learning the
semantics of object–action relations by observation,” The International Journal of Robotics
Research, vol. 30, no. 10, pp. 1229–1249, September 2011.

[31] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng, “Learning hierarchical invariant spatio-
temporal features for action recognition with independent subspace analysis,” in Computer
Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on. IEEE, 2011, pp. 3361–
3368.

[32] M. Baccouche, F. Mamalet, C. Wolf, C. Garcia, and A. Baskurt, “Spatio-temporal convolu-
tional sparse auto-encoder for sequence classification.” in BMVC, 2012, pp. 1–12.

[33] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, “Convolutional learning of spatio-
temporal features,” in European conference on computer vision. Springer, 2010, pp. 140–
153.

[34] S. Ji, W. Xu, M. Yang, and K. Yu, “3d convolutional neural networks for human action
recognition,” IEEE transactions on pattern analysis and machine intelligence, vol. 35, no. 1,
pp. 221–231, 2013.

[35] H. Wang, H. Zhou, and A. Finn, “Discriminative dictionary learning via shared latent struc-
ture for object recognition and activity recognition,” in 2014 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2014, pp. 6299–6304.

[36] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
(CVPR’05), vol. 1. IEEE, 2005, pp. 886–893.

[37] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning spatiotemporal fea-
tures with 3d convolutional networks,” in 2015 IEEE International Conference on Computer
Vision (ICCV). IEEE, 2015, pp. 4489–4497.

[38] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov, “Exploiting
image-trained cnn architectures for unconstrained video classification,” arXiv preprint
arXiv:1503.04144, 2015.

[39] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” arXiv preprint arXiv:1409.1556, 2014.

62

[40] T. Morris, Computer vision and image processing. Palgrave Macmillan, 2004.

[41] M. Sonka, V. Hlavac, and R. Boyle, Image processing, analysis, and machine vision. Cen-
gage Learning, 2014.

[42] D. A. Forsyth and J. Ponce, “A modern approach,” Computer Vision: A Modern Approach,
pp. 88–101, 2003.

[43] B. McCane, K. Novins, D. Crannitch, and B. Galvin, “On benchmarking optical flow,” Com-
puter Vision and Image Understanding, vol. 84, no. 1, pp. 126–143, 2001.

[44] J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Performance of optical flow techniques,”
International journal of computer vision, vol. 12, no. 1, pp. 43–77, 1994.

[45] B. Galvin, B. McCane, K. Novins, D. Mason, S. Mills et al., “Recovering motion fields: An
evaluation of eight optical flow algorithms.” in BMVC, vol. 98, 1998, pp. 195–204.

[46] B. D. Lucas, “Generalized image matching by the method of differences,” 1985.

[47] B. D. Lucas, T. Kanade et al., “An iterative image registration technique with an application
to stereo vision,” 1981.

[48] J.-Y. Bouguet, “Pyramidal implementation of the affine lucas kanade feature tracker descrip-
tion of the algorithm,” Intel Corporation, vol. 5, no. 1-10, p. 4, 2001.

[49] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library.
" O’Reilly Media, Inc.", 2008.

[50] C. Tomasi and T. Kanade, “Detection and tracking of point features,” 1991.

[51] G. Farnebäck, “Polynomial expansion for orientation and motion estimation,” Ph.D. disser-
tation, Linköping University Electronic Press, 2002.

[52] T. M. Mitchell, “Machine learning,” Burr Ridge, IL: McGraw Hill, vol. 45, 1997.

[53] S. Harnad, “The annotation game: On turing (1950) on computing, machinery, and intelli-
gence,” The Turing test sourcebook: philosophical and methodological issues in the quest
for the thinking computer, 2006.

[54] S. J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards, Artificial intelligence:
a modern approach. Prentice hall Upper Saddle River, 2003, vol. 2.

[55] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press Cam-
bridge, 1998, vol. 1, no. 1.

[56] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and organiza-
tion in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958.

[57] Y. Chauvin and D. E. Rumelhart, Backpropagation: theory, architectures, and applications.
Psychology Press, 1995.

63

[58] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient backprop,” in Neural net-
works: Tricks of the trade. Springer, 2012, pp. 9–48.

[59] Y. LeCun et al., “Generalization and network design strategies,” Connectionism in perspec-
tive, pp. 143–155, 1989.

[60] K. Jarrett, K. Kavukcuoglu, Y. LeCun et al., “What is the best multi-stage architecture for
object recognition?” in Computer Vision, 2009 IEEE 12th International Conference on.
IEEE, 2009, pp. 2146–2153.

[61] P. Golik, P. Doetsch, and H. Ney, “Cross-entropy vs. squared error training: a theoretical
and experimental comparison.” in Interspeech, 2013, pp. 1756–1760.

[62] H. Robbins and S. Monro, “A stochastic approximation method,” The annals of mathemati-
cal statistics, pp. 400–407, 1951.

[63] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint arXiv:1212.5701,
2012.

[64] D. Yu, L. Deng, and D. Yu, “Deep learning methods and applications,” Foundations and
Trends in Signal Processing, 2014.

[65] Y. Bengio, I. J. Goodfellow, and A. Courville, “Deep learning,” An MIT Press book in prepa-
ration. Draft chapters available at http://www. iro. umontreal. ca/ bengioy/dlbook, 2015.

[66] P. O. Glauner, “Deep convolutional neural networks for smile recognition,” arXiv preprint
arXiv:1508.06535, 2015.

[67] H. A. Song and S.-Y. Lee, “Hierarchical representation using nmf,” in International Confer-
ence on Neural Information Processing. Springer, 2013, pp. 466–473.

[68] B. A. Olshausen et al., “Emergence of simple-cell receptive field properties by learning a
sparse code for natural images,” Nature, vol. 381, no. 6583, pp. 607–609, 1996.

[69] L. Gomes, “Machine-learning maestro michael jordan on the delusions of big data and other
huge engineering efforts,” IEEE Spectrum, Oct, vol. 20, 2014.

[70] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein et al., “Imagenet large scale visual recognition challenge,” Interna-
tional Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[71] Y. Bengio, “Deep learning of representations: Looking forward,” in International Confer-
ence on Statistical Language and Speech Processing. Springer, 2013, pp. 1–37.

[72] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling operations in convolutional
architectures for object recognition,” in International Conference on Artificial Neural Net-
works. Springer, 2010, pp. 92–101.

64

[73] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfitting.” Journal of Machine Learning
Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[74] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016, http://www.
deeplearningbook.org.

[75] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are features in deep neural
networks?” in Advances in neural information processing systems, 2014, pp. 3320–3328.

[76] W. Garage, “Opencv,” Open Source Computer Vision Library.(Accessed 2010) Available at:
http://opencv. willowgarage. com, 2014.

[77] F. Chollet, “Keras,” https://github.com/fchollet/keras, 2015.

[78] Theano Development Team, “Theano: A Python framework for fast computation of
mathematical expressions,” arXiv e-prints, vol. abs/1605.02688, May 2016. [Online].
Available: http://arxiv.org/abs/1605.02688

[79] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data augmentation
for environmental sound classification,” IEEE Signal Processing Letters, vol. 24, no. 3, pp.
279–283, 2017.

[80] M. Hoai, Z.-Z. Lan, and F. De la Torre, “Joint segmentation and classification of human
actions in video,” in Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Confer-
ence on. IEEE, 2011, pp. 3265–3272.

[81] W. Huang and Q. J. Wu, “Human action recognition based on self organizing map,” in
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference
on. IEEE, 2010, pp. 2130–2133.

[82] Z. Zhang, Y. Hu, S. Chan, and L.-T. Chia, “Motion context: A new representation for human
action recognition,” Computer Vision–ECCV 2008, pp. 817 – 829, 2008.

[83] M. Bregonzio, S. Gong, and T. Xiang, “Recognising action as clouds of space-time interest
points,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, 2009, pp. 1948 – 1955.

[84] X. Sun, M. Chen, and A. Hauptmann, “Action recognition via local descriptors and holistic
features,” in Computer Vision and Pattern Recognition Workshops, 2009. CVPR Workshops
2009. IEEE Computer Society Conference on. IEEE, 2009, pp. 58 – 65.

[85] D. Weinland and E. Boyer, “Action recognition using exemplar-based embedding,” in Com-
puter Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on. IEEE,
2008, pp. 1 – 7.

65

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://github.com/fchollet/keras
http://arxiv.org/abs/1605.02688

[86] M. D. Rodriguez, J. Ahmed, and M. Shah, “Action mach a spatio-temporal maximum aver-
age correlation height filter for action recognition,” in Computer Vision and Pattern Recog-
nition, 2008. CVPR 2008. IEEE Conference on. IEEE, 2008, pp. 1– 8.

[87] L. Yeffet and L. Wolf, “Local trinary patterns for human action recognition,” in Computer
Vision, 2009 IEEE 12th International Conference on. IEEE, 2009, pp. 492 – 497.

[88] H. Wang, M. M. Ullah, A. Klaser, I. Laptev, and C. Schmid, “Evaluation of local spatio-
temporal features for action recognition,” in BMVC 2009-British Machine Vision Confer-
ence. BMVA Press, 2009, pp. 124 – 1.

[89] K. Soomro, A. R. Zamir, and M. Shah, “Ucf101: A dataset of 101 human actions classes
from videos in the wild,” arXiv preprint arXiv:1212.0402, 2012.

[90] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “Hmdb: a large video database
for human motion recognition,” in Computer Vision (ICCV), 2011 IEEE International Con-
ference on. IEEE, 2011, pp. 2556–2563.

66

	Sumário
	Lista de figuras
	Lista de tabelas
	Introduction
	Related Work
	Goals and Contributions
	Presentation of the manuscript

	Computer Vision
	Optical Flow
	Image and Sequence of Images
	Optical Displacement and Optical Flow
	Optical Flow Calculation

	Final Considerations

	Machine Learning
	Categories
	Artificial Neural Networks
	Perceptron
	Multilayer Perceptron
	Activation functions
	Error Functions
	Optimizers
	The Back-propagation Algorithm
	Generalization

	Deep Learning
	CNN: Convolutional Neural Networks
	Transfer Learning

	Final Considerations

	Methodology
	Approach
	Spatial Stream
	Spatial Stream Histogram

	Temporal Stream
	Stacks of Dense Optical Flow
	Temporal Stream Histogram

	Combination of classifiers

	Results
	Datasets
	Experiments
	Spatial CNN stream
	Temporal CNN stream

	Experimental Results
	Preliminary spatial network
	Pre-trained spatial network
	Temporal network
	Combination of classifiers

	Conclusions and Future Works
	REFERENCES

