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The Numerical Modeling of Thermal
Turbulent Wall Flows with the Classical
κ − ε Model
The goal of this work is to propose a new methodology to simulate turbulent thermal wall
flows using the classicalκ − ε model. The focus of this approach is based on the manner
used to implement heat flux boundary conditions on the solid walls. In order to explain
and to validate this new algorithm, several test cases are presented, testing a great range
of flows in order to analyze the numerical response on different physical aspects of the
fluid flow. The proposed approach uses simultaneously a thermal wall law, an analogy be-
tween fluid friction and heat transfer and an interpolating polynomial relation that is con-
structed with a data base generated on experimental research and numerical simulation.
The algorithm used to execute the numerical simulations applies the classicalκ− ε model
with a consolidate Reynolds and Favre averaging process forthe turbulent variables. The
turbulent inner layer can be modeled by four distinct velocity wall laws and by one tem-
perature wall law. Spacial discretization is done by P1 and P1/isoP2 finite elements and
the temporal discretization is implemented using a semi-implicit sequential scheme of fi-
nite differences. The pressure-velocity coupling is numerically solved by a variation of
Uzawa’s algorithm. To filter the numerical noises, originated by the symmetric treatment
of the convective fluxes, it is adopted a balance dissipationmethod. The remaining non-
linearities, due to explicit calculations of boundary conditions by wall laws, are treated by
a minimal residual method.
Keywords: turbulence, finite element method, wall laws, analogies, turbulent heat flux

Introduction

Thermal turbulent flows over solid surfaces occur in many sit-
uations of industrial interest and the thermal boundary conditions
imposed on the boundaries of the computational grid may be oftwo
types: temperature and/or heat flux. The second condition ismore
usual in real problems and it brings some additional difficulties to its
numerical treatment.

According to Chen and Jaw (1998), the high Reynoldsκ − ε
model is the most used turbulence model in the treatment of indus-
trial flows. To model the behavior of the flow in the internal region
of the turbulent boundary layer, theκ − ε model uses analytical ex-
pressions known as wall laws. The main difficulty in simulating a
thermal turbulent flow with a heat flux boundary condition on the
wall using the high Reynoldsκ − ε model is the absence of a heat
flux wall law.

The method that we propose to solve this inconvenience is to
calculate the convective heat transfer coefficienth, along the solid
boundary, and use its value to convert an imposed heat flux on an
equivalent wall temperature. This information is then sentto a tem-
perature wall law that calculates the temperature boundarycondition
in the nodes placed on the border of the computational grid.

The main difficulty is to estimate, with a good accuracy, the nu-
merical values of the convective heat transfer coefficient,since it
strongly depends on the flow and on features like the thermodynam-
ical properties of the fluid, the solid geometry in which the flow
occurs and the Reynolds number of the flow. In this work, for non-
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detached boundary layers, the values ofh are calculated with the
use of analogies between fluid friction and heat diffusion. For de-
tached boundary layers the calculation is done using an interpolating
polynomial relation.

The good performance of classical analogies used to calculate
heat transfer rates on flat plates was shown by Gontijo and Fon-
toura Rodrigues (2006). The problem of using analogies between
fluid friction and heat diffusion in detached boundary layers was dis-
cussed in the work of Gontijo and Fontoura Rodrigues (2007).An
original approach based on the use of analogies for solving the prob-
lem of imposing heat flux boundary conditions on the high Reynolds
κ − ε model was first presented by Gontijo and Fontoura Rodrigues
(2008) and an evolution of this method was shown by Gontijo and
Fontoura Rodrigues (2009). The present work shows how this new
and original method can be used to simulate thermal turbulent flows
with heat flux boundary conditions over different geometries.

The solver used to execute the simulations, named Turbo 2D, is
a research Fortran numerical code that has been continuously de-
veloped by members of the Group of Complex Fluid Dynamics -
Vortex, of the Mechanical Engineering Department of the Univer-
sity of Brasilia, in the last twenty years. This solver is based on the
adoption of the finite elements technique, under the formulation of
weighted residuals proposed by Galerkin, adopting in the spatial dis-
cretization of the calculation domain triangular elementsof the type
P1 and P1-isoP2, as proposed by Brison, Buffat, Jeandel and Serres
(1985). The P1-isoP2 mesh is obtained dividing each elementof the
P1 mesh into four new elements. In the P1 mesh only the pressure
field is calculated, while all the other turbulent variablesare calcu-
lated with the P1-isoP2 mesh.
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Considering the uncertainties normally existing about theini-
tial condition of the flow field, it is adopted a temporal integration
scheme of the governing equations system. In the temporal inte-
gration process, the initial state corresponds to the beginning of the
flow and the final state occurs when temporal variations of veloc-
ity, pressure, temperature and other turbulent variables stop. In or-
der to reach the final state a pseudo transient occurs. The temporal
discretization of the governing equations is implemented by the al-
gorithm of Brun (1988), wich uses a sequential semi-implicit finite
differences method with truncation error of order0(∆t) and allows
a linear handling of the equation system, at each time step.

The resolution of the coupled equations of continuity and mo-
mentum is done by a variant of Uzawa’s algorithm, proposed by
Buffat (1981). The statistical formulation, used for obtaining the
system of average equations, is done with the simultaneous employ-
ment of the Reynolds (1895) and Favre (1965) decomposition.The
Reynolds stress tensor is calculated by the hypothesis of the turbu-
lent viscosity of Boussinesq (1877), wich is modeled by theκ − ε
model, proposed by Jones and Launder (1972) with the modifica-
tions introduced by Launder and Spalding (1974). The turbulent
heat flux is modeled algebraically using a turbulent Prandl number
with a constant value of 0.9.

In the program Turbo 2D, the boundary conditions of velocity
and temperature can be calculated by four velocity and two tem-
perature wall laws. The velocity wall functions used in thiswork
are: the classical logarithm law, and the laws of Mellor (1966),
Nakayama and Koyama (1984), and Cruz and Silva Freire (1998).
The temperature wall law used is the Cheng and Ng (1982) law. The
numerical instability resultant of the explicit calculation of veloc-
ity boundary conditions is controlled by the algorithm proposed by
Fontoura Rodrigues (1990). The numerical oscillations induced by
the Galerkin formulation, resultant of the centered discretization ap-
plied to a parabolic phenomenon, are cushioned by the technique
of balanced dissipation, proposed by Huges and Brooks (1979) and
Kelly, Nakazawa and Zienkiewicz (1976) with the numerical algo-
rithm proposed by Brun (1988).

In order to validate and quantify the consistence of the present
research code, the numerical results are compared with an extensive
experimental database, including several flows over distinct geome-
tries, based on the works of Ng (1981), Vogel and Eaton (1985),
Taylor et al. (1990), Liou et al. (1992), Buice and Eaton (1995) and
Loureiro et al.(2007).

Nomenclature

t time variable
xi spacial variable - component in thei direction
ui fluid velocity
ũi velocity’s mean value by Favre’s decomposition
u

′′

i velocity fluctuation by Favre’s decomposition
u∞ velocity of the free stream flow
uf friction velocity
T fluid temperature
T̃ temperature’s mean value by Favre’s decomposition
T∞ temperature of the free stream flow

Tf friction temperature
Tw wall temperature
p pressure
p̄ mean pressure by Fravre’s decomposition
q
′′

i heat flux vector
q
′′

w heat flux on the wall
k fluid’s thermal conductivity
Cp specific heat at constant pressure
gi gravitational acceleration vector
D
Dt Material’s derivative operator
R ideal gas constant
K Von Karman’s constant
α fluid’s thermal conductivity
αt turbulent thermal conductivity
ρ fluid’s density
ρ̄ density mean value by Reynolds decomposition
ρ

′′

density’s fluctuations
τij shear stress tensor in indicial notation
τw shear stresses on the wall
κ turbulent kinetic energy
ε dissipation of turbulent kinetic energy
ν kinematic viscosity
νt dynamic turbulent viscosity
µ dynamic viscosity
µt turbulent dynamic viscosity
β volumetric expansion coefficient
δij Kronecker’s delta operator
Fr Froude number
Ma Mach number
Nu Nusselt number
Pr Prandtl number
Prt turbulent Prandtl number
Re Reynolds number
Ret turbulent Reynolds number
St Stanton number
y+ Reynolds number of the turbulent boundary layer

Theoretical Formulation

Governing Equations

In this work all the dependent variables of the fluid are treated
as a time average value plus a fluctuation in a determinate point of
space and time. In order to account variations of density, the model
applies the well known Reynolds (1985) decomposition to pressure
and fluid density and the Favre (1965) decomposition to velocity and
temperature. In the Favre (1965) decomposition a generic variable
ϕ is defined as:

ϕ (~x, t) = ϕ̃ (~x) + ϕ
′′

(~x, t)

with

ϕ̃ =
ρϕ

ρ̄
and ϕ′′ (~x, t) 6= 0. (1)
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Applying the Reynolds (1895) and Favre (1965) decompositions
to the governing equations and taking the time average valueof those
equations, we obtain the mean Reynolds equations:

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0, (2)

∂

∂t
(ρũi) +

∂

∂xj
(ρũj ũi) = −

∂p

∂xi

+
∂

∂xj

[
τij − ρu′′

j u′′
i

]
+ ρgi, (3)

where

τij = µ

[(
∂ũi

∂xj
+

∂ũj

∂xi

)
−

2

3

∂ũl

∂xl
δij

]
, (4)

∂(ρT̃ )

∂t
+

∂(ũiT̃ )

∂xi
=

∂

∂xi

(
α

∂T̃

∂xi
− ρu′′

i T ′′

)
(5)

p = ρRT̃ (6)

In this system of equations,ρ is the fluid density,t is time,xi are
the space cartesian coordinates in index notation,µ is the dynamic
viscosity coefficient,α is the molecular thermal diffusivity,δij is
the Kronecker’s delta operator,gi is the acceleration due to gravity,
T is the fluid temperature,ui is the flow velocity,k is the thermal
conductivity,p is the fluid pressure andτ is the fluid stress tensor.
In these equations the tilde denotes the time-average of a quantity
whereas quotation marks denote the fluctuation of a quantityin the
sense of Favre (1965) decomposition. Similarly, overbar denotes
the time-average of a quantity in the sense of Reynolds (1985) de-
composition. Two new unknown quantities appear, respectively, in
the momentum (3) and in the energy equations (5), defined by the
correlations between velocity fluctuations, the so-calledReynolds
Stress, given by the tensor−ρu′′

i u′′
j , and by fluctuations of temper-

ature and velocity, the so-called turbulent heat flux, defined by the
vector−ρu′′

i T ′′.
The Reynolds stress of turbulent tensions is calculated by the

κ− ε model, proposed by Jones and Launder (1972) with the modi-
fications introduced by Launder and Spalding (1974), given by

−ρu′′
i u′′

j = µt

(
∂ũi

∂xj
+

∂ũj

∂xi

)

−
2

3

(
ρκ + µt

∂ũl

∂xl

)
δij , (7)

with

κ =
1

2
u′′

i u′′
i . (8)

and

µt = Cµρ̄
κ2

ε
=

1

Ret
. (9)

The turbulent heat flux is modeled using the Fourrier law and a
turbulent Prandl numberPrt equal to a constant value of 0.9 by the
relation:

−ρu′′
i T ′′ =

µt

Prt

∂T̃

∂xi
. (10)

In Eq. (9)Cµ is a constant of calibration of the model, equal to
0.09, κ represents the turbulent kinetic energy andε is the rate of dis-
sipation of the turbulent kinetic energy. Onceκ andε are additional
variables, we need to know the transport equations. The transport
equations ofκ andε were deduced by Jones and Launder (1972),
and the closed system of equations of theκ − ε model is given by:

∂ρ̄

∂t
+

∂(ρ̄ũi)

∂xi
= 0 , (11)

∂ (ρ̄ũi)

∂t
+ ũj

∂ (ρ̄ũi)

∂xj
= −

∂p̄∗

∂xi

+ ∂
∂xj

[(
1

Re + 1
Ret

)(
∂ũi

∂xj
+

∂ũj

∂xi

)]
+ 1

Fr ρ̄gi , (12)

∂
(
ρ̄T̃
)

∂t
+ ũj

∂
(
ρ̄T̃
)

∂xj
=

∂
∂xj

[(
1

Re Pr + 1
Ret Prt

)
∂T̃
∂xj

]
, (13)

∂ (ρ̄κ)

∂t
+ ũi

∂ (ρ̄κ)

∂xj
=

∂

∂xi

(
1

Re

∂κ

∂xi

)

+ ∂
∂xi

(
1

Retσκ

∂κ
∂xi

)
+ Π − ρ̄ε + ρ̄βgi

Ret Prt

∂T̃
∂xi

, (14)

∂ (ρ̄ε)

∂t
+ ũi

∂ (ρ̄ε)

∂xj
=

∂

∂xi

(
1

Re

∂ε

∂xi

)

+ ∂
∂xi

(
1

Retσε

∂ε
∂xi

)
+ ε

κ (Cε1Π − Cε2ρ̄ε)

+ ε
κ

(
Cε3

ρ̄βgi

Ret Prt

∂T̃
∂xi

)
, (15)

ρ̄
(
1 + T̃

)
= 1 , (16)

where:

1

Ret
= Cµρ̄

κ2

ε
, (17)

Π =
1

Ret

(
∂ũi

∂xj
+

∂ũj

∂xi

)
∂ũi

∂xj

− 2
3

(
ρ̄κ + 1

Ret

∂ũl

∂xl

)
δij

∂ũi

∂xj
, (18)
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p∗ = p̄ +
2

3

[(
1

Re
+

1

Ret

)
∂ũl

∂xl
+ ρ̄κ

]
(19)

with the model constants given by:

Cµ = 0, 09 , Cε1 = 1, 44 , Cε2 = 1, 92 ,

Cε3 = 0, 288 , σκ = 1 , σε = 1, 3 , P rt = 0, 9 .

Wall Functions

Theκ − ε turbulence model is uncapable of properly represent-
ing the laminar sub-layer and the transition regions of the turbulent
boundary layer. To solve this inconvenience, the solution adopted in
this work is the use of wall laws, capable of properly representing
the flow in the inner region of the turbulent boundary layer.

There are four velocity and two temperature wall laws imple-
mented on the code Turbo 2D. The laws used in this simulation are
explained bellow, except for the classical log law whose further ex-
planations are unnecessary.

Velocity wall law of Mellor (1966)

Deduced from the mean equation of Prandtl for the turbulent
boundary layer and considering the pressure gradient term for inte-
gration, this wall function is a primary approach to flows that suffer
influence of adverse pressure gradients. Its equations are,respec-
tively, for the laminar and turbulent regions

u∗ = y∗ +
1

2
p∗y∗2 , (20)

u∗ =
2

K

(√
1 + p∗y∗ − 1

)

+ 1
K

(
4y∗

2+p∗y∗+2
√

1+p∗y∗

)
+ ξp∗ , (21)

where the asterisk upper-index indicates dimensionless quantities of
velocityu∗, pressure gradientp∗ and distance to the wally∗ as func-
tions of scaling parameters at the near wall region, K is the Von
Karman constant andξp∗ is Mellor’s integration constant which is a
function of the near-wall dimensionless pressure gradient.

For calculation purposes the intersection of both regions is con-
sidered to be the same as the log law expressions, wherey∗ =
11, 64. The relations between the dimensionless near wall proper-
ties and the friction velocityuf are:

y∗ =
y uf

ν
,u∗ =

ũx

uf
and p∗ =

1

ρ̄

∂p̄

∂x

ν

uf
3

. (22)

The friction velocity is calculated by the relation:

uf =

(
1

Re
+

1

ReT

)
∂ui

∂xj
−

1

ρ

∂P

∂xi
δij (23)

In Eq. (21) the termξp∗ is a value obtained from the integration
process proposed by Mellor (1966) and is a function of the dimen-
sionless pressure gradient. Its values are obtained through interpo-
lation of those obtained experimentally by Mellor, shown inTable
1.

Table 1. Mellor’s integration constant (1966).

p∗ −0.01 0.00 0.02 0.05 0.10 0.20
ξp∗ 4.92 4.90 4.94 5.06 5.26 5.63
p∗ 0.25 0.33 0.50 1.00 2.00 10.00
ξp∗ 5.78 6.03 6.44 7.34 8.49 12.13

Velocity wall law of Nakayama and Koyama (1984)

In their work Nakayama and Koyama (1984) proposed a deriva-
tion of the mean turbulent kinetic energy equation, that resulted in
an expression to evaluate the velocity near solid boundaries. Us-
ing experimental results and those obtained by Strattford (1959), the
derived equation is

u∗ =
1

K∗

[
3(t − ts) + ln

(
ts + 1

ts − 1

t − 1

t + 1

)]
, (24)

with

t =

√
1 + 2τ∗

3
, τ∗ = 1 + p∗y∗,

K∗ = 0,419+0,539p∗

1+p∗
and y∗

s = eK C

1+p∗0,34 , (25)

whereK∗ is the expression for the Von Karman constant modified
by the presence of adverse pressure gradients,τ∗ is a dimensionless
shear stress,C = 5.445 is the log-law constant and the parameterts
is a value of t at a positiony∗

s.

Velocity wall law of Cruz and Silva Freire (1998)

Analyzing the asymptotic behavior of the
boundary layer flow under adverse pressure gradients, Cruz
and Silva Freire (1998) derived an expression for the velocity in
the inner region of turbulent boundary layer. The solution of the
asymptotic approach is

u =
τw

|τw|

2

K

√
τw

ρ
+

1

ρ

dpw

dx
y +

τw

|τw|

uf

K
ln

(
y

Lc

)

with Lc =

√
( τw

ρ )
2
+2 ν

ρ
dpw
dx

uf−
τw
ρ

1

ρ
dpw
dx

(26)

where the sub-indexw indicates the properties at the wall, K is the
Von Karman constant,Lc is a length scale parameter anduf is the
friction velocity.
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The proposed equation for the velocity, equation (26), has abe-
havior similar to the log law far from the separation and reattach-
ment points, but, close to the separation point, it gradually tends to
Stratford’s equation (1959).

Temperature wall law of Cheng and Ng (1982)

In this work it is used the temperature wall law of Cheng and Ng
(1982). For the calculation of the temperature profile in thenear wall
region, Cheng and Ng (1982) derived an expression similar tothe
logarithmic law for velocity. For the laminar and turbulentregions,
the equations are respectively

(T0 − T )y

Tf
= y∗ Pr and

(T0−T )y

Tf
= 1

KNg
ln(y∗) + CNg

with y∗ =
uf y
ν (27)

whereT0 is the environmental temperature,y is the normal distance
up to the wall,ν is the cinematic viscosity andTf is the friction
temperature, as defined by Brun (1988)

Tf =
1

uf

[(
1

RePr
+

1

ReT PrT

)
∂T̃

∂xj

]

δ

, (28)

and the friction velocityuf is calculated by Eq. (23).
The intersection of these regions are aty∗ = 15, 96 and the con-

stantsKNg andCNg are, respectively,0, 8 and12, 5.

The Heat Flux Boundary Condition And The κ − ε

Model

As discussed before, imposing a heat flux boundary conditionon
the wall in a high Reynolds turbulence model, such as the classical
κ − ε, requires a special treatment since there are no heat flux wall
functions available. This work proposes a new method to solve this
inconvenience without the need of creating a heat flux wall law. The
main idea is to use the Colburn (1933) analogy, Eq. (29), to estimate
the Stanton number for non-detached boundary layers.

Stx =
Cfx

2Pr
2

3

, (29)

whereCfx is the local friction coefficient and the local Stanton num-
ber can be evaluated by

Stx =
qx

ρcpu∞(Tw − T∞)
, (30)

where, for a flat plate

qx = −k

(
∂T

∂y

)

y=0

. (31)

By Eq. (30) it is possible to convert an imposed heat flux on the
wall into an equivalent wall temperature by knowing the behavior of
the local Stanton number, since

Tw = T∞ +
qx

ρCpu∞Stx
. (32)

If there is an unheated starting length, so the thermal boundary
layer begins its development under a pre-existing velocityboundary
layer an adjustment is necessary to take into account this peculiarity
of the flow. The adjust proposed by Kays and Crowford (1993) can
be done on Eq. (29) resulting in the Eq. (36),

Stx =
Cfx

2Pr
2

3

(
δu

δT

) 1

7

, (33)

where δu and δT denotes, respectively, the velocity and thermal
boundary layer thickness.

In equation (30) an accurate calculation of the temperaturegra-
dient is a difficult task since the use of wall laws produces the loss
of some information in the wall region. On the other hand, this dif-
ficulty can be avoided by employing equations (29) or (36), where
the local friction coefficientCfx is calculated with the use of the
friction velocityuf , wich is calculated by equation (23), so:

Cfx

2
=

τw

ρu2
∞

with τw = ρu2
f

and Cfx = 2
u2

f

u2
∞

. (34)

By these calculations it is possible to estimate, with a goodac-
curacy, the heat transfer rates in turbulent flows where the boundary
layer is well structured, for example, in flows over flat plates and
other geometries that don’t generate boundary layer detachment.

The problem in using this formulation happens when we analyze
the flow inside or at downstream of a recirculation region, where
the boundary layer is not well structured and the use of analogies is
not a viable alternative. In these cases, Gontijo and Fontoura Ro-
drigues (2009) developed an expression using a previously experi-
mental work of Vogel and Eaton (1985), where the authors studied a
turbulent flow over a heated backward facing step that had a condi-
tion of a constant heat flux imposed on its lower wall. The relation
obtained is expressed by Eq. (35).

St (x∗) = 0, 00106 + 0, 00912x∗ − 0, 00895x∗2 + 0, 00233x∗3,

with

x∗ =
x − xd

xr − xd
, (35)

wherex defines the local coordinate in the flow direction,xd is the
detachment point andxr is the reattachment point.

Expression (35) presents good results in other geometries,dif-
ferent from the backward facing step, as the next section will show.
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Results

Several test cases were used to validate this methodology inor-
der to show its generality. First it is shown the good performance
of analogies in cases where there is no boundary layer detachment.
Following are addressed problems of using classical analogies when
the boundary layer is not well structured. Thereafter, it isshown
the arguments taken into account to develop a new approach tocal-
culate the Stanton number inside a recirculation region and, finally,
this approach is tested for different geometries that induce boundary
layer detachment. A mesh study was done for each test case and
more details on the numerical process can be found in the Master’s
Dissertation of Gontijo (2009).

Use of analogies on flat plates with unheated starting lengths
and low temperature gradients

First it is shown the performance of the Colburn analogy in the
estimation of the local Stanton number for four different test cases,
based on the experimental works of Taylor et al. (1990). In this
work the authors made several measurements of the local Stanton
number over a heated flat plate. The plate had2.4m long. The flow
is considered two-dimensional in the midle section and the velocity
of the free stream flow isU∞ = 28m/s. The results presented in
Fig. (1) show the behavior of four different test cases, varying the
initial unheated starting length.

Rex
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t x

2E+06 4E+060.001

0.002

0.003

0.004
Numerical 1
Numerical 2
Experimental
Empirical correlation

(a)
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Numerical 2
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Empirical correlation
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Figure 1. Local Stanton number for Taylor et al. (1990) test case.
U∞ = 28 - Isothermal plate (a),ξ=0,36 m (b),ξ=0,76 m (c) and

ξ=1,36 m (d).

In the legend the experimental result is obtained from the work
of Taylor et al. (1990), empirical correlation denotes the Kays and

Crowford (1993) correlation, given by

Stx =
Cfx

2Pr2/3

[
1 −

(
ξ

x

)9/10
]−1/9

, (36)

wherex is the distance from the beginning of the plate andξ is the
unheated starting length. The numerical value of the local Stanton
number was calculated by two different ways, using Eqs. (30)and
(36) called in Fig. (1), respectively, numerical 1 and numerical 2.
The main idea of the works of Taylor et al. (1990) is to evaluate
the influence of a thermal boundary layer starting over a developed
velocity boundary layer in the behavior of the heat transferrates
over a plate with low temperature gradients. In these cases,there
is a difference of18K between the temperature of the plate and of
the free stream flow. The numerical P1-isoP2 mesh used to execute
the simulations had 18447 nodes and 35872 elements. In this case
the wall law used for velocity was the classic logarithm law and for
temperature the wall law of Cheng and Ng (1982), since there are
no significative pressure gradients imposed by this geometry. It is
possible to notice that the use of the Colburn (1933) analogycalcu-
lated by Eq. (36) produces better results. The explanation for this
behavior consists on the fact that the derivatives of temperature in
the normal direction of the plate are not taken on the wall, since the
use of a high Reynolds model restrict the numerical simulation to a
certain distance above it.

Analogies in an isothermal flat plate with high temperature
gradients

In order to validate the use of the Colburn (1933) analogy in
problems where the temperature and velocity fields are coupled due
to a high temperature gradient, a simulation of a problem first stud-
ied by Ng (1981) is presented. In this test case a flat plate of0.25m
long, heated in a constant temperature of1250K, receives a flow
of air with a free stream velocity of10, 7m/s and with an uniform
temperature of293K. In this work the range of the local Reynolds
number is placed between5.0 105 < Rex < 7.8 105. There is a
difference of957K between the temperature of the plate and of the
free stream flow. It was used a P1-isoP2 mesh with 6499 nodes and
12672 elements. The simulation was done with the classic wall law
for velocity and the wall law of Cheng and Ng (1982) for temper-
ature. Figure (2) shows the variation of the local Stanton number
through the plate calculated by the same way as those from theTay-
lor et. al (1990) test case.

In the legend of Fig. (2) the experimental values are taken from
the work of Ng (1981) and the numerical values are obtained bythe
same way that in the Taylor et al. (1990) test case. The behavior ob-
served is the same, the use of the Colburn (1933) analogy calculated
by Eq. (36) is the best option to estimate the heat transfer rates. It is
important to notice that the Colburn analogy works well evenwhen
the temperature gradients involved are very strong.

The use of analogies in a recirculation region

To check the behavior of the heat transfer rates inside a recircu-
lation region and the performance of analogies in this situation, it
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Figure 2. Local Stanton number for Ng (1981) test case.

was selected a test case based on the works of Liou et al. (1992).
In this test case, artificial roughness elements calledribs are used to
induce the flow separation, increasing the turbulence levels and, by
consequence, the heat transfer rates. The ribbed channel studied in
this work presents a Reynolds number of 12600. The velocity on
witch the Reynolds number was calculated is7.4m/s and the height
of the rib is0.008m. The P1-isoP2 mesh used on the simulations
had 3739 nodes and 7200 elements. In the experimental work of
Liou et al. (1992), the rib was made of aluminum and it was heated
by a thermal film in its underside, providing a condition of constant
heat flux. The top part of the channel was insulated, so an adiabatic
wall was created. The height of the rib represents twenty percent
of the height of the channel. Figure (3) shows the behavior ofthe
heat transfer rates along the channel. In the legend of Fig. (3) the
experimental values are taken from the work of Liout et al. (1992).
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Figure 3. Nusselt number along the bottom wall (a), structure of the
recirculation regions (b).

In this work, the wall heat flux is calculated in the non dimen-

sional form of the Nusselt number that for a channel can be calcu-
lated by the following relation:

Nux =
2qxPrH

µCp(Tw − Tbulk)
(37)

In the equation above,Nux represents the local Nusselt number,
qx is the local heat flux,Pr is the Prandtl number of the fluid, H
is the height of the channel, andTw is the temperature of the wall.
Combining Eq. (37) with the Colburn (1933) analogy, Eq. (30),
and with the definition of the local Stanton number, where thebulk
temperature may be taken as

Tbulk =
Tw + T∞

2
, (38)

it is possible to establish a relation between the local Nusselt number
and the friction velocity as

Nux =
4Pr

1

3 u2
fxH

νu∞
. (39)

The values ofNus, shown in Fig. (3), are the local Nusselt num-
bers for a channel without the presence of the Ribs, calculated by the
Dittus-Boeltter equation. It is possible to observe a good agreement
between numerical and experimental data in non detached regions
(places A, B and C). Inside the recirculation zones, the use of the
Colburn analogy does not present good results. This was already ex-
pected, since analogies between fluid friction and heat transfer can
only be done in a well structured boundary layer. The resultsof Fig.
(3) show the necessity of an alternative treatment to estimate, with a
good accuracy, the behavior of the local Stanton number in regions
of the flow where the boundary layer is not well structured, like in-
side recirculation zones and after the reattachment of the boundary
layer, as the following test case will illustrate.

An approach to estimate the Stanton number in detached
flows

In order to propose a new methodology to estimate the local
Stanton number inside a recirculation region, the experimental work
of Vogel and Eaton (1985) was set as the benchmark to develop this
approach. In this test case a backward facing step, with a height of
0.038m is heated in the bottom plate with a constant heat flux of
270W/m2. The Reynolds number based on the height of the step
is 27023. The free stream velocity of the flow is11.3m/s. The
P1-isoP2 mesh used to execute the simulation has 4191 nodes and
8016 elements. Figure (4) shows the behavior of the local Stanton
number when calculated by the use of the Colburn analogy. This be-
havior suggests that after the reattachment point the boundary layer
is being restructured. This restructure occurs in a region that has
approximately the same length of the recirculation region.

Results in Figs. (4.a) and (5) marked as experimental are taken
from the work of Vogel and Eaton (1985). The results of Fig. (4.a)
suggest that it is possible to calibrate a polynomial relation to cal-
culate the local Stanton number, inside the recirculation region from
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Figure 4. Numerical and experimental behavior of the Stanton num-
ber (a), streamlines of the flow (b).
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Figure 5. Adjusts obtained by the proposed relation.

the detachment point to a distance of twice the recirculation zone
length, based on the physical reality of the backward facingstep of
Vogel and Eaton. This relation is given by Eq. (35). By using this
equation the behavior of the local Stanton number, in a simulation
done with the Cruz and Silva Freire wall law, is shown in Fig. (5).
The adjust obtained with Eq. (35) shows a good accuracy between
numerical and experimental values and the transition from the use of
this equation to the calculation with the Colburn analogy issmooth,
after the restructuring region of the boundary layer. It is important
to say that the necessary length for the boundary layer restructuring
is still an open problem and needs further studies. However,this
methodology turns viable the simulation of turbulent thermal flows
with the high Reynoldsκ − ε model with wall laws and heat flux
boundary conditions. In order to validate this methodologyto other
geometries with boundary layer detachment, the next section shows
its performance in an asymmetric plane diffuser and on a smooth
hill.

Extension of this new approach to other detached flows in-
duced by different geometries

In order to extend this methodology to other geometries, twonew
test cases were proposed, based on studies of the asymmetricplane

diffuser of Buice and Eaton (1995) and the turbulent flow overa 2D
hill, studied by Loureiro et al. (2007). The boundary conditions
used to execute these simulations are illustrated in Figs. (6) and (7).

Figure 6. Geometry and boundary conditions of the Buice and Eaton
(1995) diffuser.

Figure 7. Geometry and boundary conditions of the Loureiro et al.
(2007) 2D hill.

In the experimental works of Buice and Eaton (1995) and
Loureiro et al. (2007), the thermal field is not considered. They
studied only the dynamical field. What was done to create two new
test cases based on these experimental works was to calculate first
the dynamical field of these flows, without inputing any thermal
boundary condition. Then, a simulation with an imposed constant
temperature on the wall was executed. After this step, the equiva-
lent thermal energy injected in the flow is calculated by measuring
the temperature profiles before and after the heated wall. After this
step, an equivalent heat flux was calculated and imposed in the same
wall, where the constant temperature condition was imposed. By
doing this procedure it is expected that the same energy injected in
the flow, by the constant temperature boundary condition, should be
injected by the equivalent constant heat flux condition. It is impor-
tant to say that in both cases occur the boundary layer detachment.
In order to obtain an accurate behavior of the velocity and temper-
ature fields inside the recirculation regions, the law of thewall of
Cruz and Silva Freire (1998) was used in both cases. This law was
the one with the best performance among all the laws of the wall
tested. These results were published in the master’s dissertation of
Gontijo (2009), where more details can be found.
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Figure 8. Temperature profiles in the asymmetric diffuser ofBuice
and Eaton (1995) - X/h=26 (a) and in the 2D hill of Loureiro et al.

(2007) in X/h=6.5 (b).

Figure (8) illustrates, respectively, the temperature profiles taken
after the heated walls for the asymmetric plane diffuser of Buice and
Eaton (1995) and the 2D hill of Loureiro et al. (2007) test
cases. The expected profile line indicates a temperature profile
taken when an equivalent constant temperature is imposed, more
details are given in the master’s dissertation of Gontijo (2009).
This approach is able to predict the equivalent wall temperature in-
side the recirculation regions of flows over distinct boundary ge-
ometries, even when the mechanism responsible by the bound-
ary layer detachment is a very smooth adverse pressure gradi-
ent. More details over the proccess of development of this new
methodology are given by Gontijo and Fontoura Rodrigues (2009).
It is important to notice that the temperature profiles should not be
exactly the same when simulations are taken using a constanttem-
perature and a constant heat flux boundary condition, even ifthe en-
ergy injected by both boundary conditions is the same. The energy
injected in the flow, associated with the integral of the temperature
profile should be the same instead. The error on the energy injected
by both boundary conditions, obtained with this methodology based
on the physical reality of the backward facing step and extended to
other geometries is0.21% for the diffuser and0.06% for the smooth
hill.

Conclusions

This work proposed, implemented and validated, successfully, a
original numerical methodology used to impose heat flux boundary
conditions in the high Reynoldsκ − ε model, without the need to
create a heat flux law of the wall. Past works done by the authors
were used to develop this methodology based on the employment
of classical analogies between fluid friction and heat transfer on the
wall. The test case used to develop this methodology and alsoto
understand the main obstacles of this approach was the Vogeland
Eaton (1985) backward facing step. The advances done based in
this test case were then tested in two other geometries and showed
that this methodology can be extended to distinct geometries, even
when the detached is induced by smooth adverse pressure gradients.
One of the aspects that can be better studied is the necessarylength
to the restructuring of the boundary layer after the detachment, even
though in the studied test cases the adopted standard considered in

this work has provided good results.
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