

Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Mecânica Programa de Pós-Graduação em Ciências Mecânicas

JOÃO MARCELLO PEREIRA

AVALIAÇÃO DE DESEMPENHO DO PAINEL DE PLÁSTICO PET PARA RESFRIAMENTO EVAPORATIVO

DISSERTAÇÃO DE MESTRADO

Brasília 2017

JOÃO MARCELLO PEREIRA

AVALIAÇÃO DE DESEMPENHO DO PAINEL DE PLÁSTICO PET PARA RESFRIAMENTO EVAPORATIVO

Dissertação de mestrado apresentado ao programa de pós graduação em ciências mecânicas, como parte dos requisitos necessários à obtenção do título de mestre em engenharia mecânica.

Orientador: Mario Benjamin Siqueira

Brasília 2017

João Marcello Pereira AVALIAÇÃO DE DESEMPENHO DO PAINEL DE PLÁSTICO PET PARA RESFRIAMENTO EVAPORATIVO / João Marcello Pereira. – Brasília, 2017-192 p. : il. (algumas color.) ; 30 cm.

Orientador: Mario Benjamin Siqueira

Dissertação de Mestrado – Universidade de Brasília Faculdade de Tecnologia Departamento de Engenharia Mecânica Programa de Pós-Graduação em Ciências Mecânicas , 2017. João Marcello Pereira

AVALIAÇÃO DE DESEMPENHO DO PAINEL DE PLÁSTICO PET PARA RESFRIAMENTO EVAPORATIVO

Trabalho aprovado. Brasília, DATA DA APROVAÇÃO:

Mario Benjamin Siqueira Orientador

João Manoel Dias Pimenta Convidado 1

Taygoara Felamingo de Oliveira Convidado 2

Brasília

2017

Dedico este trabalho à minha família (Antônio Pereira In memoriam), a todos do Colégio Técnico de Bom Jesus, amigos do Bloco G e de Brasília. E ao povo do semiárido que pode se beneficiar com a aplicação deste trabalho.

Agradecimentos

Agradecimentos em ordem geográfica:

À minha mãe pelo motivação, carinho, dedicação e todas qualidades que foram presentes nestes anos.

Aos professores Mário Siqueira e João Pimenta pelo apoio ao projeto e orienta-

ção.

Ao professor Taygoara de Oliveira pelas observações e composição da banca avaliadora.

Ao professor Jorge Luiz Ferreira pelas dicas e observações no trabalho.

Aos meu companheiros e amigos do Bloco G pelos bons momentos nas aulas e madrugadas de experimentos no laboratório.

Aos técnicos Filipe de Carvalho, Denise Valadão, Artur Alves, Tarsis de Oliveira, Alexandre Silva e Francisco pelo apoio e ajuda nos experimentos.

Aos diretores do Colégio Técnico de Bom Jesus em nome dos professores Oldênia Guerra e Raimundo Falcão pela oportunidade em poder desenvolver este trabalho.

Aos professores e demais funcionários do Colégio Técnico de Bom Jesus que foram muito amigos e companheiros.

Afirmo muitas vezes que, se você medir aquilo de que está falando e expressar em números, você conhece alguma coisa sobre o assunto; mas, quando você não o pode exprimir em números, seu conhecimento é pobre e insatisfatório. William Thompson (Lord Kelvin)

Resumo

O conforto térmico é um aspecto importante na vida das pessoas, pois influencia não só o sentimento de conforto, mas também o desempenho no trabalho, a saúde e a qualidade de vida. Uma alternativa ao condicionamento de ar convencional por compressão de gás é o resfriamento evaporativo direto. O resfriamento evaporativo direto consiste na utilização da evaporação de água na presença de uma corrente de ar, com consequente redução da temperatura do ar sem redução da entalpia. Tem como atrativos o baixo consumo de energia e facilidades de manutenção e não utiliza gases HCFC. Este processo possui como principal característica o fato promover maior conforto térmico em climas quentes e secos. Isto significa que no Brasil, de acordo com o mapa de condição climática formatado pelo IBGE, apresenta potencial favorável ao resfriamento evaporativo em grande parte de nosso território, principalmente nas regiões centro-oeste e nordeste em função das altas temperaturas e baixa umidade maior parte do ano. Além disto, nestas regiões é maior a concentração de pessoas de baixa renda que necessitam de climatização ambiente de baixo custo. Apesar de eficiente, os climatizadores evaporativos diretos comerciais apresentam alto custo de aquisição devido, em grande parte, ao custo de fabricação do painel evaporativo de celulose resinada corrugada. Outros materiais, como a serragem de madeira, a argila expandida e as fibras naturais, apresentam rendimento inferior painel comercial, difícil modelagem e portabilidade, e baixa durabilidade. Dessa forma, uma alternativa sustentável e viável é a utilização do plástico PET (Polietileno tereftalato) como painel evaporativo. O PET é usado principalmente em embalagens de alimentos e, apesar de sua versatilidade, sua disposição é um problema ecológico significativo. O plástico PET na forma original é muito hidrófobo, ou seja, apresenta baixíssima absorção e retenção de água. No entanto, quando sua superfície é tratada mecanicamente (lixamento), há a formação de sulcos e escamas que permite ao material reter uma fina camada (filme) de água na superfície. Esta camada de água troca calor e massa em contato com a corrente de ar evaporando-se, de tal forma que ar após o painel apresenta temperatura de bulbo seco inferior ao ar de entrada. Neste trabalho, amostras de PET foram lixadas utilizando quatro tipos de lixas com três granulações diferentes a fim de determinar qual tipo de lixa e granulação provoca na superfície do PET a maior quantidade de água retida. Em seguida, foram construídos e avaliados painéis evaporativos de filetes de garrafas PET e celulose em bancada condicionadora de ar quanto à eficiência de resfriamento, redução de temperatura de bulbo seco e perda de carga, em diferentes pontos de temperatura e umidade relativa do ar.

Abstract

Thermal comfort is an important aspect of people's lives, as it influences not only the feeling of comfort, but also the performance at work, health and quality of life. An alternative to conventional gas compression air conditioning is direct evaporative cooling. The direct evaporative cooling consists in the use of water evaporation in the presence of a stream of air, with consequent reduction of the temperature of the air without reduction of the enthalpy. It has attractive low energy consumption and maintenance facilities and does not use HCFC gases. This process has as main characteristic the fact to promote greater thermal comfort in hot and dry climates. This means that in Brazil, according to the climate condition map formatted by IBGE, it has favorable potential for evaporative cooling in most of our territory, mainly in the central-west and northeast regions due to high temperatures and low humidity most of the year . In addition, in these regions, there is a greater concentration of low-income people who need low-cost air conditioning. Although efficient, direct commercial evaporative air conditioners have a high cost of acquisition due, in large part, to the manufacturing cost of the evaporative corrugated cellulose Panel. Other materials, such as wood sawdust, expanded clay and natural fibers, feature lower yield commercial panel, difficult modeling and portability, and low durability. Thus, a sustainable and viable alternative is the use of PET plastic (polyethylene terephthalate) as an evaporative panel. PET is mainly used in food packaging and, despite its versatility, its disposition is a significant ecological problem. The PET plastic in the original form is very hydrophobic, that is, it presents very low absorption and retention of water. However, when its surface is mechanically treated (sanding), there is the formation of grooves and scales which allows the material to retain a thin layer (film) of water on the surface. This layer of water exchanges heat and mass in contact with the stream of air evaporating in such a way that air after the panel presents dry bulb temperature lower than the incoming air. In this work, PET samples were sanded using four types of sandpaper with three different granulations in order to determine which type of sandpaper and granulation causes the largest amount of water retained on the PET surface. Then, evaporative panels of PET bottles and cellulose pulps were constructed and evaluated in air conditioners for cooling efficiency, dry bulb temperature reduction and pressure drop at different temperature and relative humidity points.

Résumé

Le confort thermique est un aspect important dans notre vie, car il influence non seulement le sentiment de confort, mais aussi la performance du travaille, la santé et la qualité de vie. Une alternative au conditionnement d'air classique par compression du gaz est le refroidissement par évaporation directe. Le refroidissement évaporatif consiste à l'utilisation d'évaporation de l'eau en présence d'un courant d'air, avec conséquente réduction de la température de l'air sans diminution de l'enthalpie. Attrayant pour sa faible consommation d'énergie, l'entretien des installations et surtout n'utilize pas les gaz de HCFC. La principale caractéristique de ce processus c'est de promouvoir un plus grand confort thermique dans les climats chauds et secs. Au Brésil, la carte des conditions climatiques formatées par l'IBGE, montre le potentiel en faveur du refroidissement évaporatif en grande partie de notre territoire, en particulier dans les régions du midwest et du nord-est en raison des températures élevées et faible humidité la plupart de l'année. En outre, ces régions concentrent la plus grande partie de personnes à faible revenu qui ont besoin d'air conditionné à faible coût. Bien qu'éfficace, les climatiseurs commerciaux ont un coût élevé d'acquisition due en grande partie au coût de fabrication du panneau de cellulose ondulé par évaporation enduite de résine. D'autres matériaux tels que la sciure de bois, l'argile expansée et de fibres naturelles présentent um rendement inférieur au panneau commercial, difficile modélisation et portabilité, et une faible durabilité. Ainsi, une alternative viable et durable consiste à utiliser le plastique PET (polyéthylène téréphtalate) en tant que panneau d'évaporation. Le PET est principalement utilisé dans les emballages alimentaires et, en dépit de leur polyvalence, leur élimination est un problème écologique important. Le PET dans sa forme originale est hydrophobe (faible rétention d'eau). Le plastique PET dans sa forme originale est très hydrophobe, à savoir, il a une très faible absorption et rétention d'eau. Cependant, lorsque sa superficie est traitée mécaniquement (sablage), on observe la formation d'arêtes et des écailles du matériau à retenir une couche mince (film) de l'eau sur la superficie. Cette couche d'eau en échange de chaleur en contact avec l'air, évapore, de sorte que le panneau est équipée de la température de bulbe sec inférieure à l'air d'entrée. Dans cet travail, des échantillons de PET ont été poncés à l'aide de quatre types de papier de verre avec trois granulations différentes pour déterminer quel type de papier de verre et granulation provoque sur la superfície du PET la plus grande quantité d'eau retenue. Ensuite, les panneaux évaporatifs de filets de bouteilles en PET et cellulose ont été construits et évalués avec l'objectif de connaître l'efficacité de refroidissement, la réduction de température de bulbe sec, la perte de charge em diférrents points de la température et l'humidité relative de l'air.

Lista de ilustrações

Figura 1 – Climatizador EB100 EcoBrisa	30
Figura 2 – Mapa Climático do Brasil	33
Figura 3 – Semi-árido Brasileiro	34
Figura 4 – Dados GPS do Laboratório LEA, UnB, Brasília - DF	43
Figura 5 – Diagrama psicrométrico para altitude de 1042m (Laboratório LEA,	
UnB, Brasília - DF)	44
Figura 6 – Guia de leitura de uma carta psicométrica	44
Figura 7 – Diagrama da força de coesão e tensão superficial	45
Figura 8 – Sistema de um climatizador evaporativo com painel de contato ar-água	48
Figura 9 – Sistema de um climatizador evaporativo por aspersão	49
Figura 10 – Climatizador por aspersão SpinFlash da marca TecnoFlash	49
Figura 11 – Carta psicrométrica e estados de um climatizador evaporativo ideal	50
Figura 12 – Diagrama resfriador evaporativo indireto - REI	51
Figura 13 – Painel evaporativo de celulose tipo colmeia	53
Figura 14 – Características anatômicas da fibra de coco	53
Figura 15 – Luffa cylindrica seca	54
Figura 16 – Fibras de Sisal	55
Figura 17 – Argila expandida	56
Figura 18 – Molécula de Poli (Tereftalato de Etileno)	57
Figura 19 – Enchimento de gargalos de garrafas PET	57
Figura 20 – Efetividade de resfriamento para os enchimentos de gargalo de gar-	
rafas PET e industrial	58
Figura 21 – (a) filetes cruzados, (b) filetes soltos, (c) gargalo 1 e (d) gargalo 2 .	59
Figura 22 – microfotografia amostra de PET lixada com lixa d'água de granulação	
60	61
Figura 23 – Amostras de PET liso (a) e lixado (b)	62
Figura 24 – Esquema de um painel evaporativo de PET ideal e volume de controle	63
Figura 25 – Diferenças de temperatura em função do contato entre o fluxo de ar	
e água na transferência de calor	66
Figura 26 – Diferenças de massa específica de vapor em função do contato entre	
o fluxo de ar e água na transferência de massa	67
Figura 27 – Perda de pressão em um painel evaporativo comercial de celulose	
Munters®	69
Figura 28 – Torno mecânico	71
Figura 29 – Bancada Cussons	71
Figura 30 – Bancada Cussons com revestimento isolante térmico	73

Figura 31 – Módulo de ventilação	74
Figura 32 – Banco de resistências	74
Figura 33 – Dimmer controlador de 3000W	75
Figura 34 – Evaporadora e outros componentes	75
Figura 35 – Compressor e outros componentes	75
Figura 36 – Módulo de umidificação do ar	76
Figura 37 – Ebulidor de 2000W e tampa do cilindro recipiente de água	76
Figura 38 – Módulo condicionador dos painéis	77
Figura 39 – Câmara de condicionamento dos painéis sem tampa com destaque	
para o seu interior e isolamento térmico	77
Figura 40 – Aspersor dos painéis	77
Figura 41 – Filetador manual	78
Figura 42 – Placa Arduino UNO	79
Figura 43 – Sensor DHT22	80
Figura 44 – Erro máximo de temperatura a 25ºC sensor DHT22	81
Figura 45 – Erro máximo de umidade sensor DHT22	81
Figura 46 – Sensor DS18B20 com cabo e armadura	82
Figura 47 – Manômetro diferencial Dwyer® Série 477-1	83
Figura 48 – Anemômetro AM-4201 LUTRON®	83
Figura 49 – Balança MARK "M223"	85
Figura 50 – Amostra celulose	89
Figura 51 – Corte da garrafa PET	89
Figura 52 – Amostra PET liso	89
Figura 53 – Corte da garrafa PET	90
Figura 54 – Amostra PET lixado com lixa d'água granulação 100	90
Figura 55 – Esquema medição da perda de carga dos painéis evaporativos	92
Figura 56 – Perda de carga média entre painéis evaporativos de PET e celulose	99
Figura 57 – Perda de carga entre os painéis evaporativos de PET e celulose	100
Figura 58 – Carta psicrométrica dos estados "A" (37ºC, 40%) e "B" (37ºC, 30%)	103
Figura 59 - Redução da temperatura de bulbo seco em função da umidade rela-	
tiva de entrada e temperatura de bulbo seco de entrada constante de	
27ºC	103
Figura 60 - Redução da temperatura de bulbo seco em função da umidade rela-	
tiva de entrada e temperatura de bulbo seco de entrada constante de	
32ºC	104
Figura 61 - Redução da temperatura de bulbo seco em função da umidade rela-	
tiva de entrada e temperatura de bulbo seco de entrada constante de	
37ºC	104

Figura 62 -	- Redução da temperatura de bulbo seco em função da temperatura	
	de bulbo seco de entrada e umidade relativa constante de 30%	105
Figura 63 -	- Redução da temperatura de bulbo seco em função da temperatura	
	de bulbo seco de entrada e umidade relativa constante de 40%	105
Figura 64 -	- Redução da temperatura de bulbo seco em função da temperatura	
	de bulbo seco de entrada e umidade relativa constante de 50%	106
Figura 65 -	- Efetividade em função da umidade de entrada (CAMARGO, 2003) .	109
Figura 66 -	- Efetividade painel de celulose Basenge em função da umidade rela-	
	tiva de entrada a 27ºC constante	109
Figura 67 -	- Efetividade painel de celulose Basenge em função da umidade rela-	
	tiva de entrada a 32ºC constante	110
Figura 68 -	- Efetividade painel de celulose Basenge em função da umidade rela-	
	tiva de entrada a 37ºC constante	110
Figura 69 -	- Efetividade de resfriamento evaporativo em função da umidade rela-	
	tiva de entrada e temperatura de bulbo seco constante de 27ºC	111
Figura 70 -	- Efetividade de resfriamento evaporativo em função da umidade rela-	
	tiva de entrada e temperatura de bulbo seco constante de 32ºC	111
Figura 71 -	- Efetividade de resfriamento evaporativo em função da umidade rela-	
	tiva de entrada e temperatura de bulbo seco constante de 37ºC	112
Figura 72 -	- Efetividade de resfriamento evaporativo em função da temperatura	
	de bulbo seco de entrada e umidade relativa de entrada constante	
	de 30%	112
Figura 73 -	- Efetividade de resfriamento evaporativo em função da temperatura	
	de bulbo seco de entrada e umidade relativa de entrada constante	
	de 40%	113
Figura 74 -	- Coeficiente de transmissão de calor por convecção em função da	
	temperatura de bulbo seco e umidade relativa constante de 30\% $$.	118
Figura 75 -	- Coeficiente de transmissão de calor por convecção em função da	
	temperatura de bulbo seco e umidade relativa constante de 40\% $$.	118
Figura 76 -	- Coeficiente de transmissão de calor por convecção em função da	
	temperatura de bulbo seco e umidade relativa constante de 50\%	119
Figura 77 -	- Coeficiente de transmissão de calor por convecção em função da	
	umidade relativa e temperatura de bulbo seco constante de $27^{\circ}C$	119
Figura 78 -	- Coeficiente de transmissão de calor por convecção em função da	
	umidade relativa e temperatura de bulbo seco constante de $32^{\circ}C$.	120
Figura 79 -	- Coeficiente de transmissão de calor por convecção em função da	
	umidade relativa e temperatura de bulbo seco constante de $37^{\circ}C$.	120
Figura 80 -	- Reta relação de Nusselt para painéis de PET liso e lixados nas	
	configurações "00", "01" e "02"	122

Figura 81 – Reta relação de Sherwood para painéis de PET liso e lixados nas	
configurações "00", "01" e "02"	123
Figura 82 – Posição do sensor no meio da secção reta do duto de escoamento	
do ar	134
Figura 83 – Localização dos sensores na secção reta	134
Figura 84 – Calibração sensor S1 de temperatura de bulbo seco	137
Figura 85 – Calibração sensor S2 de temperatura de bulbo seco	138
Figura 86 – Calibração sensor S1 de umidade relativa do ar	139
Figura 87 – Calibração sensor S2 de umidade relativa do ar	140
Figura 88 – Calibração sensor temperatura DS18b20	141
Figura 89 – Calibração Anemômetro de turbina - Lutron AM 4201	142
Figura 90 – Calibração Manômetro Dwyer 477-1	143
Figura 91 – Relação massa-área filetes de PET lixado	155
Figura 92 – Relação massa-área filetes de PET liso	156

Lista de quadros

Quadro 1 – Parâmetros conforto térmico	31
Quadro 2 – Quadro redução de temperatura dados BASENGE®	188

Lista de tabelas

Tabela 1 – Condições ideais de temperatura e umidade de conforto térmico	32
Tabela 2 – Amplitude térmica registrada no interior de sala de aula em escolas	
públicas de Teresina - PI	32
Tabela 3 – Redução de temperatura em função da temperatura e umidade	47
Tabela 4 – Características da fibra de côco	54
Tabela 5 – Características Físico-Químicas do Plástico PET	57
Tabela 6 – Resultados dos testes de efetividade de enchimento PET	59
Tabela 7 – Características técnicas sensor DHT22	80
Tabela 8 – Características técnicas sensor DS18b20.	82
Tabela 9 – Características técnicas manômetro diferencial	83
Tabela 10 – Características técnicas do anemômetro	84
Tabela 11 – Tabela características balança Bel Mark "M223"	85
Tabela 12 – Tipos de lixas e granulações	88
Tabela 13 – Características do painel de celulose	92
Tabela 14 – Características físicas dos painéis de PET liso e lixado	93
Tabela 15 – Média e desvio padrão das retenções de água superficial em gramas	
de água.das amostras de plástico PET lidadas e liso e celulose	97
Tabela 16 – Massa dos painéis , área estimada dos painéis, volume e compacta-	
ção dos painéis de PET	98
Tabela 17 – Redução de temperatura de bulbo seco (27ºC)	100
Tabela 18 – Redução de temperatura de bulbo seco (32ºC)	100
Tabela 19 – Redução de temperatura de bulbo seco (37ºC)	101
Tabela 20 – Efetividade dos painéis evaporativos de PET e celulose avaliado na	
temperatura de 27ºC e umidade variável entre 30 e 50%	106
Tabela 21 – Efetividade dos painéis evaporativos de PET e celulose avaliado na	
temperatura de 32ºC e umidade variável entre 30 e 50%	106
Tabela 22 – Efetividade dos painéis evaporativos de PET e celulose avaliado na	
temperatura de 37ºC e umidade variável entre 30 e 50%	107
Tabela 23 – Coeficiente de transferência de calor <i>hc</i> para temperatura de bulbo	
seco de 27°C e umidade variável entre 30 e 50%	113
Tabela 24 – Coeficiente de transferência de calor <i>hc</i> para temperatura de bulbo	
seco de 32°C e umidade variável entre 30 e 50%	113
Tabela 25 – Coeficiente de transferência de calor h para temperatura de bulbo	
seco de 37°C e umidade variável entre 30 e 50%	114
Tabela 26 – Coeficiente de transferência de calor h_m para temperatura de bulbo	
seco de 27°C e umidade variável entre 30 e 50%	115

Tabela 27 – Coeficiente de transferência de calor h_m para temperatura de bulbo	
seco de 32°C e umidade variável entre 30 e 50%	115
Tabela 28 – Coeficiente de transferência de calor h_n para temperatura de bulbo	
seco de 37°C e umidade variável entre 30 e 50%	116
Tabela 29 – Coeficiente de deterninação e parâmetro n1 para a relação de Nusse	e lt 21
Tabela 30 – Coeficiente de deterninação e parâmetro n2 para a relação de	
Sherwood	123
Tabela 31 – Umidade de entrada	134
Tabela 32 – Temperatura de bulbo seco de entrada	134
Tabela 33 – Temperatura de bulbo úmido de entrada	134
Tabela 34 – Dados calibração sensor de temperatura 1A	135
Tabela 35 – Dados calibração sensor de temperatura 1A	136
Tabela 36 – Dados calibração sensor de umidade 1A	137
Tabela 37 – Dados calibração sensor de umidade 1A	138
Tabela 38 – Dados calibração sensor de temperatura DS18b20	139
Tabela 39 – Dados calibração Anemômetro de turbina - Lutron AM 4201	140
Tabela 40 – Dados calibração manômetro Dwyer 477	141
Tabela 41 – Massa seca amostras PET liso	143
Tabela 42 – Massa seca amostras PET lixado com lixa de madeira	143
Tabela 43 – Massa seca amostras PET lixado com lixa de massa	144
Tabela 44 – Massa seca amostras PET lixado com lixa de ferro	144
Tabela 45 – Massa seca amostras PET lixado com lixa de d'água	145
Tabela 46 – Massa seca amostras de celulose	145
Tabela 47 – Massa molhada amostras de PET liso	146
Tabela 48 – Massa molhada amostras de PET lixado com lixa de madeira granu-	
lação 60	146
Tabela 49 – Massa molhada amostras de PET lixado com lixa de madeira granu-	
lação 80	147
Tabela 50 – Massa molhada amostras de PET lixado com lixa de madeira granu-	
lação 100	147
Tabela 51 – Massa molhada amostras de PET lixado com lixa de massa granula-	
ção 60	148
Tabela 52 – Massa molhada amostras de PET lixado com lixa de massa granula-	
ção 80	148
Tabela 53 – Massa molhada amostras de PET lixado com lixa de massa granula-	
ção 100	149
Tabela 54 – Massa molhada amostras de PET lixado com lixa de ferro granulação	
60	149

Tabela 55 – Massa molhada amostras de PET lixado com lixa de ferro granulação	150
80	150
Tabela 56 – Massa molhada amostras de PET lixado com lixa de ferro granulação 100 100	150
Tabela 57 – Massa molhada amostras de PET lixado com lixa d'água granulação	151
Tabela 58 – Massa molhada amostras de PET lixado com lixa d'água granulação	
80	151
Tabela 59 – Massa molhada amostras de PET lixado com lixa d'água granulação	
60	152
Tabela 60 – Massa molhada amostras de celulose	152
Tabela 61 – Relação massa-área painel PET lixado	153
Tabela 62 – Relação massa-área painel PET liso	154
Tabela 63 – Perda de carga painéis evaporativos	156
Tabela 64 – Coluna de água média e desvio padrão	157
Tabela 65 – Características dos painéis de PET e celulose	158
Tabela 66 – Dados PET liso 00 para temperatura de bulbo seco de 27°C e umi-	
dade relativa de 30% .	160
Tabela 67 – Dados PET liso 00 para temperatura de bulbo seco de 27 C e umi-	
dade relativa de 40% .	160
Tabela 68 – Dados PET liso 00 para temperatura de bulbo seco de 27°C e umi-	
dade relativa de 50%.	160
Tabela 69 – Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
30% para painel de PET liso 00	161
Tabela 70 – Dados PET liso 00 para temperatura de bulbo seco de 32°C e umi-	
dade relativa de 40%	161
Tabela 71 – Dados PET liso 00 para temperatura de bulbo seco de 32°C e umi-	
dade relativa de 50%	161
Tabela 72 – Dados PET liso 00 para temperatura de bulbo seco de 37°C e umi-	
dade relativa de 30%.	162
Tabela 73 – Dados PET liso 00 para temperatura de bulbo seco de 37°C e umi-	
dade relativa de 40%	162
Tabela 74 – Dados PET liso 00 para temperatura de bulbo seco de 3 ² C e umi-	
dade relativa de 50%	162
Tabela 75 – Dados PET liso 01 para temperatura de bulbo seco de 2 ² C e umi-	
dade relativa de 30%	163
Tabela 76 – Dados PET liso 01 para temperatura de bulho seco de 27° C e umi-	.00
dade relativa de 40%	163

Tabela 77 – Dados PET liso 01 para temperatura de bulbo seco de 27°C e umi-	
dade relativa de 50% .	163
Tabela 78 – Dados PET liso 01 para temperatura de bulbo seco de 32°C e umi-	
dade relativa de 30%	164
Tabela 79 – Dados PET liso 01 para temperatura de bulbo seco de 32°C e umi-	
dade relativa de 40%	164
Tabela 80 – Dados PET liso 01 para temperatura de bulbo seco de 32°C e umi-	
dade relativa de 50% .	164
Tabela 81 – Dados PET liso 01 para temperatura de bulbo seco de 37°C e umi-	
dade relativa de 30% .	165
Tabela 82 – Dados PET liso 01 para temperatura de bulbo seco de 37°C e umi-	
dade relativa de 40%	165
Tabela 83 – Dados PET liso 01 para temperatura de bulbo seco de 37°C e umi-	
dade relativa de 50% .	165
Tabela 84 – Dados PET liso 02 para temperatura de bulbo seco de 27°C e umi-	
dade relativa de 30%	166
Tabela 85 – Dados PET liso 02 para temperatura de bulbo seco de 27°C e umi-	
dade relativa de 40%	166
Tabela 86 – Dados PET liso 02 para temperatura de bulbo seco de 27°C e umi-	
dade relativa de 50% .	166
Tabela 87 – Dados PET liso 02 para temperatura de bulbo seco de 32°C e umi-	
dade relativa de 30% .	167
Tabela 88 – Dados PET liso 02 para temperatura de bulbo seco de 32°C e umi-	
dade relativa de 40%.	167
Tabela 89 – Dados PET liso 02 para temperatura de bulbo seco de 27°C e umi-	
dade relativa de 50% .	167
Tabela 90 – Dados PET liso 02 para temperatura de bulbo seco de 37°C e umi-	
dade relativa de 30% .	168
Tabela 91 – Dados PET liso 02 para temperatura de bulbo seco de 37°C e umi-	
dade relativa de 40%.	168
Tabela 92 – Dados PET liso 02 para temperatura de bulbo seco de 37°C e umi-	
dade relativa de 50% .	168
Tabela 93 – Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
30% para painel de PET lixado 00	169
Tabela 94 – Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
40% para painel de PET lixado 00	169
Tabela 95 – Dados de temperatura de bulbo seco de 27ºC e umidade relativa de	
50% para painel de PET lixado 00	169

Tabela 96 – Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
30% para painel de PET lixado 00	170
Tabela 97 – Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
40% para painel de PET lixado 00	170
Tabela 98 – Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
50% para painel de PET lixado 00	170
Tabela 99 – Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
30% para painel de PET lixado 00	171
Tabela 100–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
40% para painel de PET lixado 00	171
Tabela 101–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
50% para painel de PET lixado 00	171
Tabela 102–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
30% para painel de PET lixado 01	172
Tabela 103–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
50% para painel de PET lixado 01	172
Tabela 104–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
50% para painel de PET lixado 01	172
Tabela 105–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
30% para painel de PET lixado 01	173
Tabela 106–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
40% para painel de PET lixado 01	173
Tabela 107–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
50% para painel de PET lixado 01	173
Tabela 108–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
30% para painel de PET lixado 01	174
Tabela 109–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
40% para painel de PET lixado 01	174
Tabela 110–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
50% para painel de PET lixado 01	174
Tabela 111–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
30% para painel de PET lixado 02	175
Tabela 112–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
40% para painel de PET lixado 02	175
Tabela 113–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
50% para painel de PET lixado 02	175
Tabela 114–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
30% para painel de PET lixado 02	176

Tabela 115–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
40% para painel de PET lixado 02	176
Tabela 116–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
50% para painel de PET lixado 02	176
Tabela 117–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
30% para painel de PET lixado 02	177
Tabela 118–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
40% para painel de PET lixado 02	177
Tabela 119–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
50% para painel de PET lixado 02	177
Tabela 120–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
30% para painel de celulose	178
Tabela 121–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
40% para painel de celulose	178
Tabela 122–Dados de temperatura de bulbo seco de 27°C e umidade relativa de	
50% para painel de celulose	178
Tabela 123–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
30% para painel de celulose	179
Tabela 124–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
40% para painel de celulose	179
Tabela 125–Dados de temperatura de bulbo seco de 32°C e umidade relativa de	
50% para painel de celulose	179
Tabela 126–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
30% para painel de celulose	180
Tabela 127–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
40% para painel de celulose	180
Tabela 128–Dados de temperatura de bulbo seco de 37°C e umidade relativa de	
50% para painel de celulose	180

Lista de abreviaturas e siglas

ABNT	Associação Brasileira de Normas Técnicas
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning Engineers
IBGE	Instituto Brasileiro de Geografia e Estatística
LEA	Laboratório de energia e ambiente - UnB
LTS	Laboratório de sistemas térmicos
MIT	Massachusetts Institute of Technology
PET	Polietileno tereftalato
PUC-PR	Pontifícia universidade católica do paraná
RED	Resfriamento evaporativo direto
REI	Resfriador evaporativo indireto

Lista de símbolos

Gs	Grau de saturação
H_{as_e}	Entalpia do ar seco [kJ]
H_{au}	Entalpia do vapor d'água [kJ]
Н	Entalpia total da mistura [kJ / kg]
m_{as_e}	Massa de ar seco [kg]
m_v	Massa de vapor de água [kg]
P_{as_e}	Pressão parcial do ar seco [Pa]
P_{at}	Pressão atmosférica
Р	Pressão total da mistura [Pa]
P_v	Pressão de vapor
P_{vs_t}	Pressão de vapor saturado
R_m	Razão de mistura
T_{bs_e}	Temperatura bulbo seco [ºC]
T_{bu}	Temperatura de bulbo úmido [ºC]
TO	Temperatura de orvalho
Т	Temperatura [ºC]
U_r	Umidade relativa [
v_e	Volume Específico
V	Volume da mistura (ar - vapor d39;água)
w_{as}	Umidade absoluta do ar saturado [kg / kg de ar seco]
w	Umidade absoluta [kg / kg de ar seco]
x_v	Parte molar de vapor de água
x_{vs_t}	Parte molar de vapor em uma amostra de ar saturado

Sumário

1	INTRODUÇÃO	30
1.1	Contextualização	30
1.2	Objetivos	36
1.3	Estrutura do trabalho	36
2	REFERENCIAL TEÓRICO	38
2.1	Psicrometria	38
2.1.1	Ar seco e ar úmido	38
2.1.1.1	Propriedades relacionadas à temperatura	39
2.1.2	Propriedades relacionadas à umidade (massa de vapor d'água)	40
2.1.3	Propriedades relacionadas ao volume ocupado e à energia	42
2.1.4	Diagrama psicrométrico	43
2.2	Resfriamento Evaporativo: princípio e equipamentos	45
2.3	Painéis evaporativos	51
2.3.1	Comercial de celulose	52
2.3.1.1	Fibra de Coco	53
2.3.1.2	Luffa cylindrica	54
2.3.1.3	Fibra de Sisal	55
2.3.1.4	Argila expandida	56
2.4	Plástico PET: Características, potencialidades e meio ambiente.	56
2.4.1	Impacto ambiental e soluções sustentáveis	59
2.4.2	Tratamento da superfície do plástico PET	60
2.5	Modelagem matemática da eficiência de resfriamento e queda de	
	pressão de um sistema de resfriamento evaporativo direto (RED)	62
2.5.1	Eficiência de resfriamento	65
2.5.2	Queda de pressão	68
3	MATERIAIS E MÉTODOS	70
3.1	Limitações do trabalho .	70
3.2	Equipamentos	70
3.2.1	Torno mecânico	70
3.2.2	Bancada experimental	71
3.2.3	Filetador de garrafa PET	78
3.2.4	Instrumentos de medição	78
3.2.4.1	Arduino	78
3.2.4.1.1	Temperatura de bulbo seco e Umidade relativa do ar	79

3.2.4.1.2	Temperatura de bulbo úmido	81
3.2.4.2	Pressão diferencial	82
3.2.4.3	Velocidade do ar	83
3.2.4.4	Balança de precisão	84
4	METODOLOGIA	86
4.1	Determinar as lixas e granulações	87
4.2	Confecção das amostras de PET e celulose	88
4.3	Medidas de Massa Seca e Massa Molhada	91
4.4	Confecção dos Painéis Evaporativos	91
4.4.1	Perda de carga	91
4.4.2	Painel de Celulose	92
4.4.3	Painéis de PET liso e lixado	92
4.5	Relação massa-área dos painéis de PET e compactação	93
4.6	Avaliação da redução da temperatura de bulbo seco e efetivi-	
	dade de resfriamento dos painéis	93
5	RESULTADOS E DISCUSSÕES	96
5.1	Localização dos sensores	96
5.2	Medidas de massa seca e massa molhada das amostras de PET	
	e celulose	96
5.3	Relação Massa-área dos painéis de PET e compactação	97
5.4	Vazão Mássica de ar	98
5.5	Perda de carga dos painéis evaporativos	98
5.6	Redução de temperatura de bulbo seco	100
5.6.1	Redução da temperatura de bulbo seco em função da umidade relativa	
	de entrada e temperatura de bulbo seco constante	102
5.6.2	Redução da temperatura de bulbo seco em função da temperatura de	
	bulbo seco de entrada e umidade de entrada constante.	103
5.7	Análise da efetividade dos painéis evaporativos	105
5.7.1	Efetividade média em função da umidade relativa de entrada.	109
5.7.2	Efetividade média em função da temperatura de bulbo seco de entrada	
	e umidade de entrada constante.	111
5.8	Coeficiente de transferência de calor h_c e massa h_m	112
5.8.1	Coeficiente de transferência de calor por convecção em função da	
	temperatura de bulbo seco e umidade relativa constante	117
5.8.2	Coeficiente de transferência de massa em função da umidade relativa	
	e temperatura de bulbo seco constante	118
5.9	Relações de Nusselt e Sherwood	119
5.9.1	Nusselt	120

5.9.2	Sherwood	21
6	CONCLUSÕES E TRABALHOS FUTUROS	24
6.1	Conclusões	24
6.2	Sugestões para trabalhos futuros	25
	Referências	27
	APÊNDICES 13	32
	APÊNDICE A – LOCALIZAÇÃO DOS SENSORES 1	33
	APÊNDICE B – CALIBRAÇÃO DOS SENSORES E INSTRUMEN-	
	TOS 1	35
B.1	Sensor DHT22-AM2302	35
B.1.1	Temperatura de bulbo seco	35
B.1.2	Umidade relativa	37
B.2	Sensor de Temperatura DS18b20	39
B.3	Anemômetro de turbina - Lutron AM 4201	40
B.4	Manômetro digital Dwyer serie 477	41
	APÊNDICE C – MEDIDAS DE MASSA SECA E MASSA MOLHADA 14	43
C.1	Massa Seca	43
C.1.1	Amostras PET liso	43
C.1.2	Amostras de PET lixado com lixa de madeira	
C13		43
0.1.5	Amostras de PET lixado com lixa de massa	43 44
C.1.4	Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1	43 44 44
C.1.4 C.1.5	Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa de ferro 1 Amostras de PET lixado com lixa d'água 1	43 44 44 45
C.1.4 C.1.5 C.1.6	Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa d'água 1 Amostras de PET lixado com lixa d'água 1 Amostras de PET lixado com lixa d'água 1 Amostras de Celulose 1	43 44 44 45 45
C.1.4 C.1.5 C.1.6 C.2	Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa d'água 1 Amostras de PET lixado com lixa d'água 1 Amostras de celulose 1 Massa molhada 1	43 44 45 45 45
C.1.4 C.1.5 C.1.6 C.2 C.2.1	Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa d'água 1 Amostras de PET lixado com lixa d'água 1 Amostras de PET lixado com lixa d'água 1 Amostras de Celulose 1 Amostras de Celulose 1 Amostras de PET liso 1	43 44 45 45 45 45 46
C.1.4 C.1.5 C.1.6 C.2 C.2.1 C.2.2	Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa d'água 1 Amostras de celulose 1 Massa molhada 1 Amostras de PET lixado com lixa d'água 1 Amostras de celulose 1 Massa molhada 1 Amostras de PET liso 1 Amostras de PET liso 1 Amostras de PET liso 1	43 44 45 45 45 45 46 46
C.1.4 C.1.5 C.1.6 C.2 C.2.1 C.2.2 C.2.3	Amostras de PET lixado com lixa de massa1Amostras de PET lixado com lixa de Ferro1Amostras de PET lixado com lixa d'água1Amostras de celulose1Massa molhada1Amostras de PET liso1Amostras de PET lixado com lixa d'água1Amostras de celulose1Amostras de PET liso1Amostras de PET liso1Amostras de PET lixado com lixa de madeira1Amostras de PET lixado com lixa de madeira1Amostras de PET lixado com lixa de massa1	43 44 45 45 45 46 46 46 48
C.1.4 C.1.5 C.1.6 C.2 C.2.1 C.2.2 C.2.3 C.2.4	Amostras de PET lixado com lixa de massa1Amostras de PET lixado com lixa de Ferro1Amostras de PET lixado com lixa d'água1Amostras de celulose1Massa molhada1Amostras de PET liso1Amostras de PET liso1Amostras de PET liso1Amostras de PET lixado com lixa de madeira1Amostras de PET lixado com lixa de madeira1Amostras de PET lixado com lixa de madeira1Amostras de PET lixado com lixa de massa1Amostras de PET lixado com lixa de ferro1	43 44 45 45 45 45 46 46 48 49
C.1.4 C.1.5 C.1.6 C.2 C.2.1 C.2.2 C.2.3 C.2.3 C.2.4 C.2.5	Amostras de PET lixado com lixa de massa1Amostras de PET lixado com lixa de Ferro1Amostras de PET lixado com lixa d'água1Amostras de celulose1Massa molhada1Amostras de PET liso1Amostras de PET lixado com lixa de madeira1Amostras de PET lixado com lixa de massa1Amostras de PET lixado com lixa de ferro1Amostras de PET lixado com lixa d'água1	43 44 45 45 45 46 46 46 48 49 50
C.1.4 C.1.5 C.1.6 C.2 C.2.1 C.2.2 C.2.3 C.2.3 C.2.4 C.2.5 C.2.6	Amostras de PET lixado com lixa de massa1Amostras de PET lixado com lixa de Ferro1Amostras de PET lixado com lixa d'água1Amostras de celulose1Massa molhada1Amostras de PET liso1Amostras de PET liso1Amostras de PET liso1Amostras de PET lixado com lixa de madeira1Amostras de PET lixado com lixa de madeira1Amostras de PET lixado com lixa de massa1Amostras de PET lixado com lixa de ferro1Amostras de PET lixado com lixa d'água1Amostras de PET lixado com lixa d'água1Amostras de PET lixado com lixa d'água1	43 44 45 45 45 46 46 46 48 49 50 52
C.1.4 C.1.5 C.1.6 C.2 C.2.1 C.2.2 C.2.3 C.2.4 C.2.5 C.2.6	Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de celulose 1 Amostras de PET lixado com lixa de ferro 1 Amostras de celulose 1 Massa molhada 1 Amostras de PET liso 1 Amostras de PET lixado com lixa de madeira 1 Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de ferro 1 Amostras de PET lixado com lixa de ferro 1 Amostras de PET lixado com lixa de ferro 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa d'água 1 Amostras de celulose 1 AprêNDICE D – RELAÇÃO ÁREA - MASSA DOS FILETES DE PLÁS- TICO PET 1	43 44 45 45 45 46 46 48 49 50 52 52
C.1.4 C.1.5 C.1.6 C.2 C.2.1 C.2.2 C.2.3 C.2.4 C.2.5 C.2.6	Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa d'água 1 Amostras de PET lixado com lixa d'água 1 Amostras de celulose 1 Massa molhada 1 Amostras de PET liso 1 Massa molhada 1 Amostras de PET liso 1 Amostras de PET lixado com lixa de madeira 1 Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de massa 1 Amostras de PET lixado com lixa de Ferro 1 Amostras de PET lixado com lixa d'água 1 Amostras de PET lixado com lixa d'água 1 Amostras de Celulose 1 ApêNDICE D – RELAÇÃO ÁREA - MASSA DOS FILETES DE PLÁS- TICO PET 1 Painel de PET lixado 1	43 44 45 45 45 46 46 46 48 49 50 52 53 53

D.2	Painel de PET liso	154
	APÊNDICE E – PERDA DE CARGA DOS PAINÉIS	156
	APÊNDICE F – VAZÃO MÁSSICA	157
	APÊNDICE G – TESTES PAINÉIS - DADOS PSICROMÉTRICOS .	158
G.1	Painel de PET liso	159
G.1.1	Painel PET liso 00	160
G.1.1.1	Teste 1 PET liso Condições desejadas de entrada: temperatura de	
	bulbo seco de 27 °C e umidade relativa de entrada de 30%	160
G.1.1.2	Teste 2 PET liso 00. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 27 °C e umidade relativa do ar de 40%	160
G.1.1.3	Teste 3 PET liso 00. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 27 °C e umidade relativa do ar de 50%	160
G.1.1.4	Teste 4 PET liso 00. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa de 30%	161
G.1.1.5	Teste 5 PET liso 00. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa do ar de 40%	161
G.1.1.6	Teste 6 PET liso 00. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa de 50%	161
G.1.1.7	Teste 7 PET liso 00. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37°C e umidade relativa do ar de 30%	162
G.1.1.8	Teste 8 PET liso 00. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37 °C e umidade relativa do ar de 40%	162
G.1.1.9	Teste 9 PET liso 00. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37 °C e umidade relativa do ar de 50%	162
G.1.2	Painel PET liso 01	162
G.1.2.1	Teste 1 PET liso Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 27 °C e umidade relativa do ar de 30%	162
G.1.2.2	Teste 2 PET liso 01. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 27 °C e umidade relativa do ar de 40%	162
G.1.2.3	Teste 3 PET liso 01. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 27 °C e umidade relativa do ar de 50%	163
G.1.2.4	Teste 4 PET liso 01. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa do ar de 30%	164
G.1.2.5	Teste 5 PET liso 01. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa do ar de 40%	164
G.1.2.6	Teste 6 PET liso 01. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa do ar de 50%	164

G.1.2.7	Teste 7 PET liso 01. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37°C e umidade relativa do ar de 30%	165
G.1.2.8	Teste 8 PET liso 01. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37°C e umidade relativa do ar de 40%	165
G.1.2.9	Teste 9 PET liso 01. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37°C e umidade relativa do ar de 50%	165
G.1.3	Painel PET liso 02	166
G.1.3.1	Teste 1 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 27°C e umidade relativa do ar de 30%	166
G.1.3.2	Teste 2 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 27°C e umidade relativa do ar de 40%	166
G.1.3.3	Teste 3 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 27°C e umidade relativa do ar de 50%	166
G.1.3.4	Teste 4 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa do ar de 30%	167
G.1.3.5	Teste 5 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa do ar de 40%	167
G.1.3.6	Teste 6 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 32°C e umidade relativa do ar de 50%	167
G.1.3.7	Teste 7 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37°C e umidade relativa do ar de 30%	168
G.1.3.8	Teste 8 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37°C e umidade relativa do ar de 40%	168
G.1.3.9	Teste 9 PET liso 02. Condições iniciais do ar de entrada: temperatura	
	de bulbo seco de 37°C e umidade relativa do ar de 50%	168
G.2	Painel de PET lixado	169
G.2.1	Painel PET lixado 00	169
G.2.1.1	Teste 1 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27°C e umidade relativa do ar de 30%	169
G.2.1.2	Teste 2 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27°C e umidade relativa do ar de 40%	169
G.2.1.3	Teste 3 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27°C e umidade relativa do ar de 50%	169
G.2.1.4	Teste 4 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 30%	170
G.2.1.5	Teste 5 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 40%.	170
G.2.1.6	Teste 6 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 50%.	170

G.2.1.7	Teste 7 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37 °C e umidade relativa do ar de 30%	171
G.2.1.8	Teste 8 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37 °C e umidade relativa do ar de 40%	171
G.2.1.9	Teste 9 PET lixado 00. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37 °C e umidade relativa do ar de 50%	171
G.2.2	Painel PET lixado 01	172
G.2.2.1	Teste 1 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27 °C e umidade relativa do ar de 30%	172
G.2.2.2	Teste 2 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27°C e umidade relativa do ar de 40%	172
G.2.2.3	Teste 3 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27 °C e umidade relativa do ar de 50%	172
G.2.2.4	Teste 4 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 30%	173
G.2.2.5	Teste 5 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 40%	173
G.2.2.6	Teste 6 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 50%	173
G.2.2.7	Teste 7 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37 °C e umidade relativa do ar de 30%	174
G.2.2.8	Teste 8 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37 °C e umidade relativa do ar de 40%	174
G.2.2.9	Teste 9 PET lixado 01. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37 °C e umidade relativa do ar de 50%	174
G.2.3	Painel PET lixado 02	175
G.2.3.1	Teste 1 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27 °C e umidade relativa do ar de 30%	175
G.2.3.2	Teste 2 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27 °C e umidade relativa do ar de 40%	175
G.2.3.3	Teste 3 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 27 °C e umidade relativa do ar de 50%	175
G.2.3.4	Teste 4 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 30%	176
G.2.3.5	Teste 5 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 40%	176
G.2.3.6	Teste 6 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 32°C e umidade relativa do ar de 50%	176

G.2.3.7	Teste 7 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37 °C e umidade relativa do ar de 30%	177
G.2.3.8	Teste 8 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37°C e umidade relativa do ar de 40%	177
G.2.3.9	Teste 9 PET lixado 02. Condições iniciais do ar de entrada: tempera-	
	tura de bulbo seco de 37 °C e umidade relativa do ar de 50%	177
G.3	Painel de celulose	178
G.3.1	Painel PET celulose	178
G.3.1.1	Teste 1 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 27 °C e umidade relativa do ar de 30%	178
G.3.1.2	Teste 2 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 27 °C e umidade relativa do ar de 40%	178
G.3.1.3	Teste 3 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 27 °C e umidade relativa do ar de 50%	178
G.3.1.4	Teste 4 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 32°C e umidade relativa do ar de 30%	179
G.3.1.5	Teste 5 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 32°C e umidade relativa do ar de 40%	179
G.3.1.6	Teste 6 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 32°C e umidade relativa do ar de 50%	179
G.3.1.7	Teste 7 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 37 °C e umidade relativa do ar de 30%	180
G.3.1.8	Teste 8 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 37 °C e umidade relativa do ar de 40%.	180
G.3.1.9	Teste 9 Celulose. Condições iniciais do ar de entrada: temperatura de	
	bulbo seco de 37°C e umidade relativa do ar de 50%	180
	APÊNDICE H – CÓDIGO FONTE ARDUINO	181
	APÉNDICE I – SCRIPT EES	185
	ANEXOS	187
	ANEXO A – TABELA DE REDUÇÃO DE TEMPERATURA (BASENO	GE)188
	ANEXO B – CERTIFICADO DE CALIBRAÇÃO DOS SENSORES	189
	ANEXO C – CERTIFICADO DE CALIBRAÇÃO DO MANÔMETRO	190
	ANEXO D – CERTIFICADO DE CALIBRAÇÃO DO ANEMÔMETRO	191

1 INTRODUÇÃO

1.1 Contextualização

O resfriamento evaporativo é o processo natural endotérmico no qual a água troca calor com o ar evaporando-se e dessa forma o resultado é a redução de temperatura de bulbo seco do ar mantendo-se constante a entalpia. Este processo é utilizado em climatizadores (industriais e residenciais) evaporativos diretos (Figura 1), que comparado com o aparelho de ar condicionado, não utilizam gases nocivos à camada de ozônio e ainda apresentam baixo consumo de energia elétrica. Um sistema de resfriamento evaporativo reduz em mais de 70% o custo total de operação, em comparação com um sistema de refrigeração mecânica, para produzir o mesmo efeito térmico (ASHRAE, 2010 *apud* CAROSSI, 2006).

Figura 1 – Climatizador EB100 EcoBrisa

Fonte: www.ecobrisa.com.br

Dessa forma, é uma solução ecológica e efetivamente viável, em certas condições ambientais, para o conforto térmico humano e animal. Conforto térmico de acordo com Ruas (1999) é definido como:

O conforto térmico num determinado ambiente pode ser definido como a sensação de bem-estar experimentada por uma pessoa, como resultado da combinação satisfatória, nesse ambiente, da temperatura radiante média, umidade relativa, temperatura do ambiente e velocidade relativa do ar com a atividade lá desenvolvida e com a vestimenta usada pelas pessoas. As sensações são subjetivas, isto é, dependem das pessoas, portanto um certo ambiente confortável termicamente para uma pessoa pode ser frio ou quente para outra. Assim, entende-se como condições ambientais de conforto aquelas que propiciam bem-estar ao maior número possível de pessoas.

O conforto térmico é importante não só do ponto de vista da sensação de bem estar das pessoas, mas também está relacionado ao seu desempenho no trabalho e à sua saúde. Em relação à temperatura corporal humana e as variáveis de conforto térmico Olgyay (1973 *apud* DOMINGOS, 2014) destaca que:

a temperatura interna do corpo humano mantém-se constante. E para isso, o corpo é obrigado a dissipar todo o calor que gera. O equilíbrio da temperatura corpórea depende de 7 variáveis ou parâmetros, sendo que 3 deles dependem apenas do próprio indivíduo e são metabolismo, temperatura da pele e vestimentas que o indivíduo usa. As quatro variáveis restantes dependem do ambiente em que o indivíduo está, ou seja, do ambiente que envolve o seu corpo. Estas variáveis são temperatura do ar, umidade relativa, temperatura radiante média (temperatura na superfície dos elementos no local envolvente) e velocidade do ar.

A ABNT-Associação Brasileira de Normas Técnicas (sede no Rio de Janeiro, RJ) define parâmetros básicos de projeto de instalações centrais de ar-condicionado para conforto térmico no qual determina conforme quadro abaixo, as condições de temperatura e umidade ideais para cada tipo de ambiente.

Finalidada	Local	Recomendável		Máxima	
Finalidade	Local	(A) TBS (°C)	(B) UR (%)	(A) TBS (°C)	(B) UR (%)
Conforto	Residências Hotéis Escritórios Escolas	23 a 25	40 a 60	26,5	65
Lojas de curto tempo de ocupação	Bancos Barbearias Cabeleireiros Lojas Magazines Supermercados	24 a 26	40 a 60	27	65
Ambientes com grandes cargas de calor latente e/ou sensível	Teatros Auditórios Templos Cinemas Bares Lanchonetes Restaurantes Bibliotecas Estúdios de TV	24 a 26	40 a 65	27	65
Locais de reuniões com movimento	Boates Salões de baile	24 a 26	40 a 65	27	65
Ambientes de	Depósitos de livros, manuscritos, obras raras Museus e galerias	21 a 23 ^(C) 21 a 23 ^(C)	40 a 50 ^(C) 50 a 55 ^(C)	-	
Arte Acesso	de arte <i>Halls</i> de elevadores	-	-	28	70

Quadro 1 – Parâmetros conforto térmico

(A) TBS = temperatura de bulbo seco (°C).

(B) UR = umidade relativa (%).

^(C) * = condições constantes para o ano inteiro.

Fonte: Associação Brasileira de Normas Técnicas

Conforme o quadro 3, as condições ideais para o ambiente residencial podem ser resumidas da seguinte forma:

Temperatura (°	C)	Umidade (%))
Recomendável	Máxima	Recomendável	Máxima
23 a 25	26.5	40 a 60	65

Tabela 1 – Condições ideais de temperatura e umidade de conforto térmico

Condições desfavoráveis de conforto térmico provocam impacto significativo no rendimento ocupacional humano. No ambiente escolar Kowaltowski (2011) adverte que:

Situações de desconforto causadas seja por temperaturas extremas, falta de ventilação adequada, umidade excessiva combinada com temperaturas elevadas ou por radiação térmica de superfícies muito aquecidas podem ser prejudiciais e causar sonolência, alteração nos batimentos cardíacos, aumento da sudação. Psicologicamente, provoca apatia e desinteresse pelo trabalho. Essas situações são extremamente desfavoráveis num ambiente escolar.

Estudo realizado por Sousa, Silva e Andrade (2013) apresentado no encontro de geógrafos da América latina (EGAL) sobre a variação de temperatura em sala de aula durante o turno vespertino nas escolas públicas estaduais de Teresina-PI durante os meses secos e chuvosos na capital (Tabela 2), revelou uma realidade comum de muitas escolas públicas no qual os estudantes e professores estão submetidos ao desconforto térmico prejudicial ao ensino.

Tabela 2 – Amplitude térmica registrada no interior de sala de aula em escolas públicas de Teresina - PI

Escolas Públicas	Temperatura (℃)		
	Máxima	Mínima	
Unidade Escolar Professor Joca Vieira	36.8 (28/06/2012)	27.9 (20/06/2012)	
Unidade Escolar Firmina Sobreira	37.0 (11/07/2012)	32.5 (04/07/2012)	

O Brasil, de acordo com o mapa de condição climática formatado pelo IBGE (Figura 2), apresenta potencial favorável ao resfriamento evaporativo em grande parte de nosso território, correspondendo as regiões de clima semi-úmido e semi-árido em função das elevadas temperaturas (média > 18 °C em todos os meses e durante todo o ano (IBGE, 2002). Destas, podemos destacar grande parte das regiões centro-oeste e nordeste, e norte de Minas Gerais.

Figura 2 – Mapa Climático do Brasil Fonte: IBGE

Essas regiões em destaque compreendem o semi-árido e o semi-úmido brasileiro que são regiões com todas as qualidades climáticas e socioeconômicas para a desenvolvimento de tecnologias de climatização por resfriamento evaporativo. O semi-árido apresenta o maior potencial de aplicação de tecnologia de climatização evaporativa, pois concentra 1135 (mil cento e trinta e cinco) municípios, distribuídos em oito estados do nordeste, com exceção do Maranhão, além dos municípios da região norte de Minas Gerais, totalizando uma área de 969 589.4 km² e uma população de 25 milhões de habitantes (IBGE, 2011) (Figura 3). É uma região que concentra muitas pessoas de baixa renda e de acordo com os dados de 2007, Saboya (2010) ressalta que o PIB per capita da região atingiu o equivalendo a 70.0% do PIB per capita do Nordeste. O clima da região apresenta características específicas, que podem ser resumidas da seguinte forma: a) temperaturas altas, acima dos 20 ℃ de médias anuais (picos na faixa dos 40 ℃) ; b) precipitações escassas, entre 280 a 800 mm; e c) déficit hídrico (ARAÚJO, 2011).

Figura 3 – Semi-árido Brasileiro Fonte: MinistériodaIntegraçãoMinistro Nacional (2005)

Equipamentos de resfriamento evaporativo são uma solução viável e ecológica de conforto térmico para uma região que apresenta aspectos climáticos e socioeconômicos favoráveis. No entanto, o custo de aquisição de um climatizador, apesar de inferior ao condicionador de ar convencional, é ainda muito elevado. Uma razão para isto se deve ao elevado custo do painel evaporativo de celulose resinado. Outros materiais alternativos ao painel de celulose são objetos de pesquisa no qual existem vários trabalhos que apresentam análise de fibras vegetais e outros materiais inorgânicos com potencial de resfriamento significativo e baixo custo de produção. No entanto, as pesquisas apontam uma eficiência de resfriamento inferior ao painel de celulose e dessa forma ainda não existe no mercado um substituto que tenha compatibilidade (ou superior) de eficiência e baixo custo de produção.

O principal enchimento utilizado nos climatizadores evaporativos é o painel de papel Kraft resinado na forma de colmeia. Munters (1999 *apud* CAMARGO, 2004) informa que com o avanço tecnológico e o desenvolvimento das células evaporativas os equipamentos atuais apresentam efetividades entre 70% e 75% para o sistema indireto e entre 90% e 95% para o sistema direto. Apesar desta vantagem expressiva, o painel de celulose apresenta custo elevado implicando diretamente no custo dos climatizadores. A partir disto, surge a oportunidade de pesquisar materiais alternativos para a

confecção de painéis evaporativos alternativos que possam competir em desempenho de resfriamento e menor custo. Alguns desses materiais alternativos como a serragem de madeira (CAMARGO; SANTOS, 2010), a argila expandida (SILVA, 2002) e algunas fibras naturais (OLIVEIRA, 2011b) (ARAÚJO, 2006) (COSTA, 2006), apresentam rendimento inferior ao papel kraft resinado, difícil modelagem e portabilidade e alguns ainda possuem baixa durabilidade.

Seguindo a tendência de materiais alternativos, o plástico PET (Politereftalato de etileno) é um importante nicho de pesquisa em função dos problemas ambientais causados pelo descarte impróprio e sua ótima versatilidade de reciclagem. Do ponto de vista ambiental, o plástico PET, empregado principalmente na confecção de garrafas de refrigerantes e similares, apesar de muito útil é um grande inconveniente mundial. Devido a grande produção de garrafas e sua utilização cada vez mais frequente pela indústria, o lixo produzido pelo descarte das garrafas PET é um problema ecológico considerável. Destacando o aspecto funcional das garrafas PET, a reciclagem na forma de painel evaporativo é uma alternativa viável para um produto considerado um problema ambiental quando descartado erroneamente.

Trabalhos realizados por Oliveira (2009) e Costa (2006) avaliaram enchimentos de torres de resfriamento na forma de filetes de superfície lisa e gargalos de garrafas PET no qual concluíram que este tipo de enchimento apresenta-se como uma alternativa viável e ecológica. Apesar disto, o plástico PET na forma original é muito hidrófobo, ou seja, apresenta baixíssima retenção de água em sua superfície e molhabilidade. E esta camada de água sobre a superfície é importante para melhor rendimento dos painéis tendo em vista que uma maior área úmida implica diretamente na troca de calor e massa entre a água e o fluxo de ar que atravessa o painel.

Uma solução encontrada para elevar a molhabilidade da superfície do plástico PET e dessa forma aumentar a área úmida do painel, é o tratamento da superfície do plástico PET. Existe estudos sobre diversos tipos de tratamento e neste trabalho é avaliado o tratamento mecânico por lixamento. Quando a superfície do plástico PET é lixada, formam-se sulcos, fios e escamas, permitindo ao plástico PET reter uma fina camada (filme) de água na superfície que provoca aumento da área úmida do painel. Dessa forma, filetes de garrafa PET lixados foram avaliados quanto à efetividade de resfriamento como painel alternativo ao comercial de celulose. Neste trabalho de dissertação, o plástico PET (Polietileno tereftalato) é analisado como painel evaporativo alternativo para uso em climatizadores evaporativos destinado ao conforto térmico
humano.

1.2 Objetivos

Dentro deste contexto, o tema deste trabalho é o desempenho do plástico PET na forma de filetes como painel evaporativo alternativo ao comercial de celulose para uso em climatizadores residenciais. Seu objetivo principal é avaliar o tipo de lixa que produz o maior efeito de retenção de água na superfície, a redução de temperatura de bulbo seco e a efetividade de resfriamento do painel evaporativo de PET (lixado e liso) para diferentes compactações submetido à variação de temperaturas de bulbo seco e umidade relativa do ar, mantendo constante a velocidade de escoamento do ar.

Entre os objetivos específicos podem ser citados:

- Selecionar um conjunto de lixas usualmente encontradas no mercado que serão utilizadas para produzir o lixamento da superfície das amostras e filetes de PET ;
- Determinar qual tipo de lixa aplicado à amostras de plástico PET produz o efeito de melhor retenção de água na superfície;
- Verificar experimentalmente a redução de temperatura e eficiência de resfriamento do painel de celulose e PET de acordo com sua compactação, submetido a variação de temperatura de bulbo seco e umidade relativa do ar;
- 4) Encontrar as relações termodinâmicas de Nusselt e Sherwood.

1.3 Estrutura do trabalho

Este trabalho está organizado em 6 capítulos. No primeiro capítulo é feita uma introdução ao tema, justificando a importância do trabalho no contexto de conforto térmico. Este capítulo também apresenta os objetivos e as limitações do estudo, o método de trabalho e a estrutura da dissertação.

O segundo capítulo trata do referencial teórico. É feita uma revisão bibliográfica contemplando: (i) propriedades psicrométricas do ar úmido; (ii) trabalhos realizados sobre de painéis evaporativos alternativos e comercial (iii) características físico-químicas e ambientais do plástico PET (iv) modelagem matemática da efetividade de uma painel evaporativo direto ideal.

O terceiro capítulo é composto por duas fases correlacionadas. A primeira consiste em uma descrição das limitações do trabalho no qual é exposto os limites dos equipamentos e do plano experimental. A segunda fase define as características dos materiais utilizados nos experimentos.

O quarto capítulo descreve a metodologia dos experimentos envolvidos no trabalho no qual é contemplado: (i) Escolha dos tipos de lixa e granulações; (ii) confecção das mostras a partir de garrafas PET; (iii) testes de massa seca e massa molhada das amostras de PET; (iv) experimento de determinação da perda de carga dos painéis; (v) determinação da vazão volumétrica do ar a partir da diferença de pressão de placa de orifício; (vi) confecção dos painéis de plastico PET liso e lixado; (vii) relação entre a massa seca e área dos painéis de PET; (viii) experimento de determinação da efetividade dos painéis.

O quinto capítulo apresenta os resultados e discussões a respeito dos experimentos feitos. São ainda mostrados diversos gráficos comparativos da efetividade dos painéis.

O sexto capítulo apresenta as conclusões obtidas a partir do trabalho desenvolvido e esclarecendo as limitações da pesquisa. Neste capítulo também são propostas sugestões para trabalhos futuros que possam dar continuidade ao trabalho desenvolvido.

2 REFERENCIAL TEÓRICO

Neste capítulo será abordado alguns conteúdos importantes para consolidar a estrutura do trabalho no qual será os conteúdos de psicrometria, princípios do resfriamento evaporativo direto e indireto, revisão de trabalhos sobre painéis evaporativos alternativos e comercial e modelagem matemática da efetividade de resfriamento evaporativo direto.

2.1 Psicrometria

A psicrometria é a parte da ciência termodinâmica da medição das temperaturas de bulbo seco e bulbo úmido. Dessa forma, psicrometria é o estudo das propriedades termodinâmicas da mistura ar-vapor d'água e seu uso na análise das condições e processos que envolvem o ar úmido. O estudo da psicrometria é um dos pilares de sustentação da análise e do entendimento dos processos de manipulação do ar úmido. O conhecimento das condições psicrométricas do ar é de fundamental relevância para muitos setores da atividade humana, como o dimensionamento de sistemas para condicionamento térmico de animais e plantas, e a conservação de alimentos.

2.1.1 Ar seco e ar úmido

O ar seco é composto por uma mistura de gases no qual temos em maior concentração o nitrogênio (78.10%), oxigênio (20.95%) e outros gases em menor concentração, além de vapor de água e elementos contaminantes, como partículas sólidas em suspensão (WYLEN, 1995). De acordo com Schneider (2012) essa mistura se mantém homogênea na fase gasosa para uma grande faixa de temperaturas e pressões, para as quais há habitabilidade no planeta. O ar seco pode ser modelado como um gás ideal para a faixa de temperatura entre -10 ℃ a 50 ℃ (BOLES; CENGEL, 2013).

Ar úmido é a mistura de ar seco com vapor d'água que apresenta variação de zero (ar seco) até um valor máximo que depende da temperatura e da pressão. Este valor máximo corresponde à condição de saturação, no qual existe o equilíbrio entre a troca de moléculas de água entre o ar e a superfície líquida, e dessa forma pode ocorrer naturalmente o processo de condensação.

O estudo do ar úmido é dividido nas seguintes propriedades: propriedades relacionadas à temperatura, propriedades relacionadas à umidade (massa de vapor d'água) e propriedades relacionadas ao volume ocupado e à energia.

2.1.1.1 Propriedades relacionadas à temperatura

• Temperatura de bulbo seco (T_{bs})

É a temperatura medida por um termômetro que pode ser de bulbo de mercúrio ou similar cujo bulbo se encentra seco.

• Temperatura de bulbo úmido (T_{bu})

Pode se descrita como temperatura de bulbo úmido psicrométrica e termodinâmica. A temperatura de bulbo úmido psicrométrica é a temperatura no qual um termômetro comum tem o seu bulbo revertido com um tecido de algodão embebido em água destilada. De acordo com Camargo (2009) a temperatura de bulbo úmido termodinâmica pode ser definida como:

> [...] decorre de uma condição de equilíbrio termodinâmico pelo processo de saturação adiabática e é, portanto, uma propriedade termodinâmica do ar . A temperatura de bulbo úmido resulta de um processo de equilíbrio dinâmico de transferência de calor e massa e depende de vários fatores como a velocidade do ar e a geometria do bulbo, entre outros, mas, em termos práticos , elas estão muito próximas para uma mistura de ar seco e vapor d'água .

Na prática, estas temperaturas são consideradas iguais (SILVA, 2008). Um ponto importante na medição da temperatura de bulbo úmido é a velocidade do ar sobre o bulbo. De acordo com Gatley (2013) a velocidade do fluxo de ar que passa pelo bulbo úmido deve ser maior ou igual a 4m/s e ASHRAE (1994 *apud* CUNHA; VOLPE, 2013) informa que que a velocidade mínima deve ser maior que 1.8m/s. Vale ressaltar que é a temperatura mais baixa que pode ser alcançada apenas pela evaporação da água.

• Temperatura de orvalho (To)

É a temperatura em que o ar úmido se torna saturado, ou seja, é a temperatura correspondente ao ponto de início da condensação do vapor d'água presente no ar úmido quando seu resfriamento ocorre a pressão constante. De forma geral, é a temperatura na qual o ar úmido inicia o processo de condensação para um processo de resfriamento isobárico e aumentando a concentração de vapor d'água ao ar elevase o ponto de temperatura de formação de orvalho. É importante observar que a temperatura de ponto de orvalho é diferente da temperatura de bulbo úmido, pois esta é determinada por resfriamento evaporativo induzido. Somente na condição de ar saturado as temperatura de bulbo úmido, de ponto de orvalho e do ar ambiente são

iguais. Fora da condição de saturação do ar, a temperatura de bulbo úmido é maior que a de ponto de orvalho (GATLEY, 2013).

- 2.1.2 Propriedades relacionadas à umidade (massa de vapor d'água)
 - Pressão de vapor (P_v)

De acordo com a lei de Dalton para os gases ideais, a pressão total da mistura, P, é igual a soma das pressões que cada gás exerceria se ocupasse isoladamente o volume do reservatório, que contém a mistura e estivesse a temperatura, T da mistura. Conforme esta descrição, para a mistura de ar seco e vapor d'água temos que a pressão P é definida como a soma da pressão parcial do ar seco e da pressão parcial do vapor d'água P_v na mistura:

$$P = P_{as_e} + P_v \tag{2.1}$$

Para o ar saturado, a pressão de vapor é igual à pressão de saturação da água (BOLES; CENGEL, 2013)

• Razão de umidade (x)

É definida como a razão entre a massa de vapor de água m_v e a massa de ar seco m_{as_e} em dado volume da mistura.

$$x = \frac{m_v}{m_{as_e}} \quad \left[\frac{kg_{m_v}}{kg_{m_{as_e}}}\right] \tag{2.2}$$

Definindo em função da pressão de vapor P_v e da pressão atmosférica P_{at} :

$$x = \frac{0.622P_v}{P - P_v}$$

• Umidade absoluta (w)

É a razão entre a massa de vapor de água m_v e a massa de ar seco m_{as_e} de uma amostra de ar.

$$w = \frac{m_v}{m_{as_e}}$$

$$\left[\frac{kg \ de \ vapor}{kg \ de \ ar \ seco} \right]$$
(2.3)

Utilizando a relação entre pressão de vapor P_v e pressão parcial de ar seco P_{as_e} : onde P é a pressão total da mistura e é igual à soma das pressões parciais de vapor P_v e de ar seco P_{as_e} .

• Umidade relativa (ϕ)

É a razão entre a parte molar de vapor x_v de água contido no ar e a parte molar de vapor em uma amostra de ar saturado x_{vs_t} à mesma temperatura e pressão.

$$\phi = \frac{x_v}{x_{vst}} \times 100 \quad [\%] \tag{2.4}$$

Uma outra forma é escrever em função das pressões de vapor P_v e pressão de vapor saturado P_{vs_t}

$$\phi = \frac{P_v}{P_{vs_t}} \times 100 \quad [\%]$$
(2.5)

Grau de saturação (μ)

É a relação percentual entre a umidade absoluta (w) e a umidade absoluta do ar saturado (w_{as}) na mesma temperatura.

$$\mu = 100 \times \frac{w}{w_{as}} \quad [\%] \tag{2.6}$$

2.1.3 Propriedades relacionadas ao volume ocupado e à energia

• Volume Específico (v_e)

Razão entre o volume ocupado pela mistura de ar seco e vapor de água e a massa de ar seco na mesma temperatura.

$$v_e = \frac{V}{v_{as_e}} \quad \left[\frac{m^3}{kg \; (ar \; seco)}\right] \tag{2.7}$$

Utilizando a definição da umidade absoluta, temos que:

$$v_e = 0.2870 \frac{T}{P} (1 + 1.6078w) \left[\frac{m^3}{kg \ (ar \ seco)}\right]$$
 (2.8)

• Entalpia total da mistura (H)

A entalpia total da mistura é dada pela contribuição isolada da entalpia do ar seco (H_{as_e}) e do vapor d'água (H_{au}), dada a hipótese do gás perfeito (PIMENTA, 2009). É expressa em kcal ou kJ por kg de ar seco.

$$H = H_{as_e} + H_{au} \tag{2.9}$$

A entalpia pode ser expressa em função da temperatura de bulbo seco (T_{bs} , Kelvin) e umidade absoluta (w) de acordo com a fórmula (SILVA, 2008):

$$H = 1.006(T_{bs} - 273.15) + w(2501 + 1.775(T_{bs} - 273.15)) \left\lfloor \frac{kJ}{kg} \right\rfloor$$
(2.10)

2.1.4 Diagrama psicrométrico

O diagrama psicrométrico é uma valiosa ferramenta porque nele relacionam-se vários parâmetros que caracterizam as propriedades do ar úmido. Os diagramas são construídos de acordo com a pressão atmosférica, de tal forma que para determinadas pressões existem curvas de correção para ajustar o diagrama. O diagrama psicrométrico abaixo (Figura 5) foi gerado pelo software online "Psicro_carta" produzido pelo laboratório de sistemas térmicos (LTS) da Pontifícia universidade católica do Paraná (PUC-PR) para uma altitude de 1042m referente a localização do laboratório de energia e ambiente (LEA) da universidade de Brasília, DF, conforme dados do GPS (Figura 5). Neste diagrama podemos localizar as curvas caraterísticas seguindo a indicação da legenda, no qual temos: a temperatura de bulbo úmido, bulbo seco, volume específico, umidade relativa, umidade absoluta e entalpia.

Figura 4 – Dados GPS do Laboratório LEA, UnB, Brasília - DF

Figura 5 – Diagrama psicrométrico para altitude de 1042m (Laboratório LEA, UnB, Brasília - DF) Fonte: http://www2.pucpr.br/educacao/lst/software_psico_carta1.html

O diagrama psicrométrico é melhor entendido observando as curvas características de forma independente conforme é ilustrado na Figura 6 .

Figura 6 – Guia de leitura de uma carta psicométrica

Fonte: JUNIOR, 2003

O digrama psicrométrico é utilizado neste trabalho para determinar as condições iniciais de testes dos experimentos e determinar a temperatura de bulbo úmido - importante para calcular a eficiência de resfriamento evaporativo.

2.2 Resfriamento Evaporativo: princípio e equipamentos.

Silva (2002) enfatiza que o ar atmosférico é uma mistura de ar seco e vapor de água e para uma dada condição de temperatura e pressão esta mistura tem capacidade de conter uma guantidade máxima de vapor d'água. Dessa forma, o resfriamento evaporativo aproveita esta capacidade do ar de conter água em forma de vapor e opera utilizando a água e o ar como fluidos de trabalho. O resfriamento evaporativo é uma técnica ou fenômeno natural de troca de calor e massa que utiliza a evaporação da água para reduzir a temperatura de um determinado local ou material e ocorre pelo contato do ar circulante e superfície úmida. Do ponto de vista físico-químico, o fenômeno da evaporação da água é formulado através da teoria cinética molecular. De acordo com esta teoria, a uma dada temperatura há moléculas com energia cinética suficientemente maior que a média das demais, capaz de vencer a força de coesão que compõe a tensão superficial da interface água-ar para evapora-se (Figura 7). Diversos fatores determinam a evaporação da água em contato com o ar, entre eles podemos citar a temperatura da superfície, umidade do ar, velocidade do ar, superfície de contato e pressão do ar. O aumento da temperatura provoca aumento da energia cinética das moléculas e redução da tensão superficial, facilitando dessa forma maior escape das moléculas. A umidade relativa do ar, definida na sessão 2.1.2, constitui a concentração de vapor de água na atmosfera cuja associação com a temperatura ambiente, determina a pressão de vapor. A pressão de vapor corresponde à pressão exercida pelo vapor sobre o a superfície do líquido em equilíbrio termodinâmico e determina a volatilidade do líquido - ocorre na interface líquido-vapor, quando a pressão de vapor é menor do que a pressão de saturação do líquido a uma determinada temperatura (CENGEL; GHAJAR, 2012). A transposição de moléculas do líquido para o ar ocorre em função da difusão molecular na camada limite da superfície úmida e pela efeito turbulento do ar.

Figura 7 – Diagrama da força de coesão e tensão superficial

O princípio de funcionamento de um sistema de resfriamento evaporativo é baseado na evaporação da água em contato com uma corrente de ar no qual há redução da temperatura de bulbo seco do ar e aumento da umidade, sem ocorrer vari-

ação da entalpia. De modo geral, Guan, Bennett e Bell (2015) define o princípio de funcionamento como:

O resfriamento evaporativo é um processo que pode ser usado para arrefecer o ar e/ou a água, empregando grande entalpia de vaporização de água. O princípio subjacente é converter calor sensível para calor latente durante a evaporação da água, causando uma diminuição da temperatura e um aumento na umidade do ar circundante.

Apesar de eficiente, de acordo com as condições psicrométricas adequadas, o uso do resfriamento evaporativo para conforto térmico não é um conceito novo. Watt (1986) descreve que:

> O resfriamento evaporativo era conhecido pelos antigos egípcios. Afrescos de aproximadamente 2500 aC. mostram os escravos abanando jarros de água para resfriá-los. Os vasos eram suficientemente porosos para manter as superfícies úmidas para facilitar o processo. Uma pintura de parede na cidade de Herculano (antiga cidade romana na região italiana da Campânia, província de Nápoles) de cerca de 70 A.D. descreve uma garrafa de água de couro usado para refrigerar a água potável. Senhoras da corte de Francisco I enviaram para Portugal "vasos de barro que tornariam a água mais fria e mais saudável". O resfriamento evaporativo primitivo, ocorre hoje de forma similar em cantis de lonas, os chamados"sacos de água do deserto", usados no sudoeste dos Estados Unidos pelos soldados para beberem água fresca, e o ollas, ou jarros porosos da água, de índios americanos e de mexicanos. Na Índia, a evaporação até ajudou a fazer gelo. Covas rasas na terra, enchidas com um pé (30.5 cm) de isolamento de palha, suportavam panelas rasas de barro na parte superior. Em noites frias, mesmo quando a temperatura do ar não caía abaixo de 6.1 °C, formava-se gelo, às vezes de1.5 polegadas (3.8 cm) de espessura, graças à evaporação e irradiação para o céu noturno.

Esse processo possui como principal característica o fato de ser mais eficiente quando as temperaturas são mais elevadas, ou seja, quando a necessidade de resfriamento é maior para o conforto humano (CAMARGO; TRAVELHO; CARDOSO, 2000). Tem ainda como atrativos o baixo consumo de energia (na evaporação de 1.0 kg de água consome-se aproximadamente 2.442 kJ, energia suficiente para resfriar 39 kg de água de 35 para 20 °C), aumento da umidade do ar e facilidades de manutenção, instalação e operação dos equipamentos que utilizam este sistema de resfriamento. Além disso, um sistema de resfriamento evaporativo pode ser integrado ao ar-condicionado tradicional, assumindo funções adicionais. Vale destacar que possibilidades de arrefecimento da saturação adiabática variam Inversamente com a umidade do ar a ser resfriada (WATT, 1986). Dessa forma em locais de clima úmido (litoral e região amazônica), a redução de temperatura provocada por um climatizador evaporativo não é significativa e portanto não é recomendado. A Tabela 3 permite identificar o potencial de redução de temperatura em função da umidade relativa do ar e temperatura ambiente. De acordo com os dados apresentados pelo fabricante de climatizadores **Ecobrisa**, na tableta 3 é observado que quanto maior a temperatura e menor umidade, maior a redução da temperatura do ar de saída do climatizador.

Temperatura de entrada do ar	25℃	32°C	37℃	
Umidade Relativa	Reduçã	Redução da Temperatura		
30%	8.5℃	9.5℃	11.0℃	
40%	7.0°C	℃.8	8.5℃	
50%	5.5℃	6.5℃	7.0℃	
60%	4.5℃	5.0℃	5.5℃	
75%	2.5℃	2.5℃	3.0℃	

Tabela 3 – Redução de temperatura em função da temperatura e umidade

Fonte:(Ecobrisa, 2010)

O processo de resfriamento evaporativo direto é largamente utilizado em torres de resfriamento de água, lavadores de ar, condensadores evaporativos, resfriadores de líquidos e também para amenizar a temperatura em ambientes onde existe grande geração de calor. No entanto é pouco explorado e difundido para conforto térmico humano (CAMARGO, 1999). Os equipamentos de resfriamento evaporativo podem ser classificados de acordo com o método empregado de resfriamento, no qual podemos destacar os resfriadores evaporativos direto (RED) e os de resfriadores evaporativos indireto (REI).

No resfriamento evaporativo direto (RED) Castro e Pimenta (2004) informam que o ar é resfriado e umidificado adiabaticamente ao entrar em contato com uma superfície úmida apropriada (painel evaporativo ou meio úmido), onde a água está evaporando. O processo de evaporação resulta na conversão de calor sensível em calor latente a uma temperatura de bulbo úmido constante; como resultado, o ar fornecido não só é mais frio, mas também é mais úmido (SANTAMOURIS, 2007). No RED, temperatura mínima do ar entregue ao ambiente é limidado à temperatura de bulbo úmido do ar que entra no sistema. Equipamentos RED podem ser classificados de acordo com o meio de contato com a água, no qual podemos ter os equipamentos de contato com superfície sólida úmida, superfície líquida ou ainda contato direto da água por spray. Vale lembrar segundo Bom et al. (1999) que:

> Ao contrário do ar condicionado de compressão de vapor, que pode funcionar em praticamente todas as condições climáticas, o climatizador evaporativo varia em aplicabilidade e eficiência de acordo com a umidade relativa do ar externo: isto é, quanto mais seco o ar, mais adequado e melhor ele esfria.

O funcionamento básico do RED (Figura 8) é caracterizado da seguinte forma: o ar externo entra no painel, troca calor com a água e evapora, e sai com temperatura de bulbo seco menor. Uma maior redução de temperatura de bulbo seco ocorre quando a água que alimenta o painel evaporativo é resfriada anteriormente e dessa forma há soluções como o uso de gelo ou a utilização de recipientes contendo termo-gel pré resfriados. A água utilizada para manter o painel úmido, após sucessivas recirculações, atinge uma temperatura de equilíbrio próxima da temperatura de bulbo úmido do ar de entrada e dessa forma pode ser utilizada para outros fins de resfriamento. Um RED, de forma simplificada, é basicamente uma torre de resfriamento no qual o elemento resfriado de uso será o ar frio destinado ao conforto térmico.

Figura 8 – Sistema de um climatizador evaporativo com painel de contato ar-água Fonte: http://ecovendasbrasil.com.br

Nos resfriadores evaporativos direto por micro aspersão de água (Spray) a água é atomizada sob alta pressão através de bicos aspersores que formam uma névoa composta de gotículas de água. A corrente de ar evapora uma parte da água e isto provoca um abaixamento na temperatura de bulbo seco do ar e um aumento em sua umidade absoluta (CAMARGO, 1999). A figuras 9 e 10 permitem visualizar o esquema técnico e um climatizador que utiliza este tipo de resfriamento.

Figura 9 – Sistema de um climatizador evaporativo por aspersão

Figura 10 – Climatizador por aspersão SpinFlash da marca TecnoFlash. Fonte:http://www.tecnoflash.com.br/

Uma vantagem dos equipamentos RED em relação aos aparelhos de condicionamento tradicional por compressão a gás, é que não recirculam o ar, ou seja, o ar é passado apenas uma vez através do sistema. Isso proporciona uma qualidade superior ao ar interior que é sempre renovado. Os processos psicrométricos de um RED ideal é ilustrado pela carta psicrométrica abaixo representada pela Figura 11. Conforme explica Watt (1986) temos que:

A verdadeira saturação adiabática ocorre quando: (1) O contato do ar com a superfície úmida cuja temperatura da água é igual à entrada do ar na temperatura do bulbo úmido, a partir de vários ciclos repetidos de umidificação, (2) não entra calor de outras fontes, tal como em refrigeradores isolados ou sombreados. O ponto "A" representa o ar exterior entrando no climatizador. O ponto "B" representa a temperatura de bulbo úmido do ar e a temperatura da água. A maior parte do ar é resfriado e umidificação escapa ao processo de umidificação e mantém a condição "A". As duas frações se misturam, criando a condição de ar "C". Esta mistura de ar entra no ventilador do climatizador e dutos no qual absorve calor sensível "D", quando é entregue como "ar lavado" para fins de arrefecimento. A partir do ponto "D", o calor do local é absorvido, aquecendo o ar .

Figura 11 – Carta psicrométrica e estados de um climatizador evaporativo ideal

Um resfriador evaporativo indireto (REI), que vale ressaltar não faz parte das do escopo deste trabalho, é um sistema de resfriamento mais sofisticado que utiliza um RED para resfriar o ar insuflado para o ambiente climatizado. Santamouris (2007) descreve que:

> O resfriamento evaporativo indireto reduz a temperatura do bulbo seco do ar sem aumentar seu teor de umidade: O ar fornecido ao espaço condicionado é alimentado através de um trocador de calor que contém ar ou água que foi arrefecido separadamente por um resfriador evaporativo direto. Muitos edifícios comerciais empregam refrigeradores evaporativos indiretos de grande escala, que fornecem um fluido de troca de calor para refrigeração espacial por meio de unidades de ventilador instaladas no interior do edifício.

De acordo com a Figura 12 um RED fornece ar frio e úmido para o trocador de calor que reduz a temperatura do ar externo isolado e insufla ar frio (sem elevar a umidade) para o ambiente interno.

Figura 12 – Diagrama resfriador evaporativo indireto - REI

2.3 Painéis evaporativos

Os painéis evaporativos têm como principal função promover uma eficiente troca de calor entre o ar e água na superfície. Para isto, um painel ideal devem apresentar as características destacadas (BOM et al., 1999) :

- Resistência mínima ao fluxo de ar;
- · Máximo contato com o ar e superfície úmida;
- Resistência à degradação química ou biológica;
- Capacidade de filtrar as impurezas transportadas pelo ar;
- Durabilidade e desempenho consistente ao longo do ciclo de vida;
- · Baixo custo.

Na realidade, todos os painéis ficam aquém deste ideal e, portanto, exigem algumas adaptações entre as vantagens (BOM et al., 1999). Em relação ao modelo de resfriamento evaporativo por aspersão, os painéis evaporativos apresentam vantagem significativa em relação à saúde dos usuários pois não atuam como vetor da bactéria *Legionella pneumophyla* causadora da legionelose ou doença dos legionários. Puckorius, Thomas e Augspurger (1995) alerta que:

> As bactérias são em forma de bastonetes, 1 a 3 microns de tamanho, e pode ser transportado por aerossóis grandes o suficiente para transportá-los. No entanto, apenas os aerossóis entre 1 e 5 mícrons de tamanho podem ser inalados profundamente pelos pulmões. Resfriadores evaporativos tipo painéis rígidos liberam água principalmente como vapor. No entanto, este vapor é demasiado pequeno para transportar a bactéria. Os dispositivos geradores de névoa criam pequenas gotas de água que podem estar na faixa de 1 a 5 mícrons. Maior cuidado

deve ser tomado ao usar qualquer um destes tipos de climatizadores evaporativos ou umidificadores. Todas as anilhas de ar do tipo spray devem ter eliminadores de gotas adequados e bem conservados para evitar se tornarem um meio transmissor.

A "doença dos legionários" é uma doença que ataca os pulmões causada pela bactéria flagelada, gram negativa e do gênero Legionella, *Legionella pneumophila,* e pode ser contraída pela inalação de aerossóis contaminados. As bactérias do gênero Legionella, encontram-se em ambientes aquáticos naturais e também em sistemas artificiais, como redes de abastecimento e distribuição de água, redes prediais de água quente e água fria, ar condicionado e sistemas de arrefecimento (torres de refrigeração, condensadores evaporativos e umidificadores) existentes em edifícios, nomeadamente em hotéis, termas, centros comerciais e hospitais (QUIRINO, 2011). Em relação a patogênese, Quirino (2011) informa :

A capacidade da Legionella pneumophila causar a doença depende da sua multiplicação no interior dos macrófagos pulmonares, provocando lesão pulmonar, responsável pelo aparecimento dos sintomas, entre dois a dez dias após o início da infecção. As bactérias produzem citotoxinas, destroem os macrófagos e são libertadas no meio extracelular, recomeçando o ciclo infeccioso intracelular em outro macrófago.

Existem modelos de painéis evaporativos comerciais amplamente utilizados em climatizadores e também outros modelos alternativos desenvolvidos a partir de pesquisas acadêmicas. Entre os painéis evaporativos alternativos apresentados neste trabalho (sessões 2.3.1.1, 2.3.1.2, 2.3.1.3 e 2.3.1.4), observa-se menor eficiência de resfriamento em relação ao painel comercial de celulose conforme os dados a seguir.

2.3.1 Comercial de celulose

O principal painel comercial existente no mercado destinado a climatizadores residenciais é o painel de celulose (Figura 13). Este painel evaporativo é formado pela junção de várias folhas de papel kraft corrugada e resinada para dar mais resistência. Apresenta a configuração de uma "colmeia" no qual a junção das camadas formam dutos para a passagem do ar e corrimento da água de circulação.

Figura 13 – Painel evaporativo de celulose tipo colmeia Fonte: http://www.megabrisa.com.br/

Oliveira (2011b) apresenta a efetividade de até 84.6% para um painel retangular de celulose (20 x 60 x 15cm) aplicado a um túnel de vento com velocidade média de 0.6m/s e temperatura média de bulbo seco de 36 °C. Os testes desenvolvidos por Araújo (2006) para o enchimento comercial (30 x 30 x 30cm), à temperatura média de entrada de 39 °C e velocidade do ar de 1.5 m/s , determinaram eficiência média de 65.92%.

2.3.1.1 Fibra de Coco

A fibra de coco é extraída do mesocarpo do coqueiro (*cocus nucifera*) (Figura 14) e apresenta uma elasticidade superior a outras fibras vegetais, além de uma elevada capacidade de resistir à umidade e a altas variações nas condições climáticas. É constituída de materiais lignocelulósicos, sendo suas principais características a baixa densidade, a boa flexibilidade no processamento e a facilidade de modificação perante agentes químicos, além de fonte de recursos renováveis, biodegradáveis e não abrasivos (PANNIRSELVAM et al., 2005 *apud* CASTILHOS, 2011). Quimicamente as características da fibra de coco estão relacionadas na Tabela 4.

Figura 14 – Características anatômicas da fibra de coco Fonte: http://images.slideplayer.com.br/7/1786152/

Comprimento da fibra	12 a 33 cm
Diâmetro da fibra	0.05 a 0.4mm
Higroscopicidade	Tolerância de 13%
Cor	Marrom claro e escuro

Tabela 4 – Características da fibra de côco

Oliveira (2011b) obteve uma efetividade de até 79.87% utilizando um painel de 15 cm de espessura com um arranjo das fibras próximo das características do painel comercial de celulose aplicado em túnel de vento com velocidade média de 0.60m/s e temperatura média de bulbo seco de $36 \,^{\circ}$ C. Freitas (2007) obteve uma eficiência de 55% utilizando um painel feito com duas placas de 50 x 40cm e duas placas de 40 x 40cm em uma geometria diferenciada. Araújo (2006) relata que para um painel de fibra de coco, à temperatura média de entrada de $39 \,^{\circ}$ C e velocidade do ar de 1.5 m/s, obteve uma eficiência média de 52.24%. Costa (2006) utilizou fibra de coco na forma de cordão trançada em um suporte metálico aplicado a uma torre de resfriamento experimental. De acordo com o experimento, foi obtido a efetividade de 36.5% com uma carga térmica de 3284W e vazão de água de 0.111/s.

2.3.1.2 Luffa cylindrica

A bucha vegetal (*Luffa cylindrica*) (Figura 15) é uma planta herbácea trepadeira e tem espécies originárias na Ásia, na África e na América. Os frutos apresentam comprimento de 0.8 a 1.6m e são dotados de fibras finas, resistentes, elásticas e macias. São largamente utilizadas como esponja-de-banho, esponja para limpeza em geral e em peças de artesanato. Embora a bucha tenha sido pouco estudada, existem algumas características em comum com outras fibras lignocelulósicas como juta, rami e sisal, por exemplo. As fibras de bucha são constituídas cerca de 54% de celulose e 15% de lignina (NAVARRO; MEDEIROS; MAIA, 1991 *apud* ALMEIDA, 2007).

Figura 15 – Luffa cylindrica seca

Fonte: http://www.albaniles.org/

Oliveira (2011b) obteve uma efetividade de até 77.20% utilizando um painel de 15cm de espessura com um arranjo das fibras próximo das características do painel comercial de celulose aplicado em túnel de vento com velocidade de 0.6m/s e temperatura média de bulbo seco de 36 °C. Araújo (2006) relata que para um painel de bucha vegetal, à temperatura média de entrada de 39 °C e velocidade do ar de 1.5 m/s obteve eficiência média de 44.72%. Costa (2006) utilizou a bucha vegetal na forma de anéis em um suporte metálico aplicado a uma torre de resfriamento experimental. De acordo com o experimento, foi obtido a efetividade de 27% com uma carga térmica de 3299W e vazão de água de 0.11l/s.

2.3.1.3 Fibra de Sisal

O sisal (*Agave sisalana*, família *Agavaceae*) (Figura 16) é originária da península de Yucatã no México. As fibras são extraídas das folhas, que possuem de 8 a 10 cm de largura e de 150 a 200cm de comprimento. Da folha se obtém de 3 a 5% do seu peso em fibra. As fibras são constituídas de fibrilas ou fibras elementares que tem de 1.5 a 4.0 mm de comprimento, diâmetro de 10 a 30μ m, e a espessura da parede celular varia de 6 a 9μ m (MARTIN; MARTINS; SILVA, 2009). A fibra de sisal é uma substância complexa cuja composição química média (em seco) é: Celulosa 73%, hemicelulosas 13%, lignina 11% e pectina 2% (GUIMARÃES, 2014).

Figura 16 – Fibras de Sisal Fonte: Embrapa, Campina Grande, PB (2006)

Araújo (2006), realizou testes de efetividade e diferença de temperatura para um painel de fibra de sisal. O painel foi aplicado à temperatura média de entrada de 39 ℃ e velocidade do ar de 1.5m/s, obteve eficiência média de 44.93%.

2.3.1.4 Argila expandida

A argila expandida (Figura 17) é um agregado leve que se apresenta em forma de bolinhas de cerâmica leves e arredondadas, com uma estrutura interna formada por um a espuma cerâmica com micro poros e com uma casca rígida e resistente. De acordo com Silva (2002):

A argila expandida (CINASITA) é um agregado que apresenta forma aproximadamente esférica de cerâmica leves, com uma estrutura interna formada por um tipo de espuma cerâmica com microporos e uma casca rígida e resistente. É produzida em grandes fornos rotativos, utilizando argilas especiais que se expandem quando expostas a altas temperaturas (1100°C), transformando-as em um produto leve, de elevada resistência mecânica, ao fogo e aos principais ambientes ácidos e alcalinos, como os outros materiais cerâmicos

Figura 17 – Argila expandida Fonte:https://upload.wikimedia.org

Estudos realizados por Tinôco et al. (2002) em Viçosa, MG, demonstraram que a cinasita apresenta-se como um material que possibilita a melhor eficiência em sistemas de resfriamento evaporativo, comparativamente ao carvão e a fibra vegetal. Silva (2002) realizou estudo de placas de cinasita poroso umedecido por gotejamento aplicado à produção de frango de corte no qual obteve eficiência de até 68.4%.

2.4 Plástico PET: Características, potencialidades e meio ambiente.

Polímero é uma palavra originária do grego formado pelas palavras poli (muitos) e meros (partes). São macromoléculas formadas por moléculas que se ligam por meio da reação de polimerização. O PET - Poli (Tereftalato de Etileno) - é um polímero termoplástico produzido a partir dos monômeros de etileno glicol (EG) e ácido tereftálico (TPA) através de uma reação de condensação (Figura 18). O plástico PET é uma resina de alta resistência mecânica, elevada temperatura de fusão, elevada estabilidade eletrolítica em função da presença de anéis aromáticos na cadeia principal, além de outras características apresentadas na Tabela 5.

Figura 18 – Molécula de Poli (Tereftalato de Etileno) Fonte: http://www.gorni.eng.br/

Massa molar	15000 - 42000 g/mol
Densidade	1.33 - 1.45 g/cm³
Índice de refração	1.65 - 1.66
Temperatura de fusão	250 - 270 ℃
Temperatura de transição vítrea	70 - 74 <i>°</i> C

Tabela 5 – Características Físico-Químicas do Plástico PET

Fonte: Abipet

No ano de 1946 foi descoberto pelos químicos Whinfield e Dickson e somente nos anos 70 começou a ser utilizado pela indústria de embalagens. O PET chegou ao Brasil em 1988 e seguiu uma trajetória semelhante ao resto do mundo, sendo utilizado primeiramente na indústria têxtil. Apenas a partir de 1993 passou a ter forte expressão no mercado de embalagens, notadamente para os refrigerantes (OLIVEIRA, 2009).

Costa (2006) realizou testes de eficiência de resfriamento entre enchimentos industriais e enchimentos de gargalos de garrafas PET aplicados uma torre experimental de resfriamento. Os gargalos foram organizados em um suporte de 48x45x52cm feito de perfis "L" de 1/8" de alumínio conforme (Figura 19). A efetividade máxima de resfriamento do enchimento de gargalo foi de 36.91% contra 45.80% do enchimento industrial submetidos a uma carga de aproximadamente 8750W (Figura 20)

Figura 19 – Enchimento de gargalos de garrafas PET Fonte: COSTA, 2006

Figura 20 – Efetividade de resfriamento para os enchimentos de gargalo de garrafas PET e industrial

Fonte: COSTA, 2006

Oliveira (2009) realizou testes de eficiência de resfriamento entre enchimentos industriais e enchimentos de filetes de PET de 3mm de largura e gargalos de garrafas PET aplicados uma torre experimental de resfriamento. Os gargalos e os fios foram organizados em suportes com dimensão total de 47cm x 47cm x 50cm feito de perfis "L" de 1/4" de alumínio. Foram testados 4 tipos de enchimentos classificados como, enchimento fio cruzado (Figura 21a), enchimento fio solto (Figura 21b), enchimento gargalo1 (Figura 21c) e enchimento gargalo2 (Figura 21d). A Tabela 6 apresenta um resumo da efetividade máxima dos enchimentos.

Figura 21 – (a) filetes cruzados, (b) filetes soltos, (c) gargalo 1 e (d) gargalo 2 OLIVEIRA, 2009

Tabela 6 – Resultados	dos test	es de efetiv	idade de e	enchimento	PET
-----------------------	----------	--------------	------------	------------	-----

	Filete Cruzado	Filete Solto	Gargalo 1	Gargalo 2
Temperatura (°C)	34.00	34.00	34.00	36.00
Vazão do ar (m ³ /s)	0.44	0.44	0.44	0.44
Vazão de água (l/s)	0.19	0.19	0.19	0.19
Efetividade (%)	39.32	39.28	39.44	33.06

Fonte: (Andrezza Carolina Carneiro Tomás Oliveira, 2009)

2.4.1 Impacto ambiental e soluções sustentáveis

O plastico PET é muito versátil do ponto de vista logístico e dessa forma permite substituir embalagens de vidro, metal, cerâmicas e outros materiais. Essa substituição é muito benéfica para a indústria pois proporciona uma economia significativa em várias frentes da cadeia de negócios. Com relação ao impacto ambiental, Machado (2011) esclarece que:

[...] a sua produção é ambientalmente nociva principalmente pelo elevado número de sacos produzidos ao ano (cerca de 150t por pessoa) e por não ser biodegradável o plástico pode causar grandes danos ao meio ambiente. Este é um material difícil de compactar e gera um grande volume de lixo onde passa a ocupar muito espaço no meio ambiente dificultando assim a decomposição de outros materiais orgânicos. É resistente aos fungos e as bactérias e por este motivo tem uma degradação muito lenta. Quando colocado em contato direto com o meio ambiente demora aproximadamente 100 mil anos para se decompor, a partir daí os problemas em descartar o plástico começam a surgir.

O plástico PET, em função da sua pouca degradabilidade (acima de 100 anos), permanecem na natureza por períodos longos, provocando impactos ambientais consideráveis. A reciclagem é uma forma sustentável de benefício social e econômico à sociedade, no qual Coelho e Castro (2010) esclarece:

> A reciclagem do PET traz muitos benefícios econômicos: redução do volume de lixo coletado, que é removido para aterros sanitários; economia de energia elétrica e petróleo, pois a maioria dos plásticos é derivada do petróleo (um quilo de plástico equivale a um litro de petróleo em energia); geração de empregos (catadores, sucateiros, operários, etc.); menor preço para o consumidor dos artefatos produzidos com plástico reciclado aproximadamente 30% mais baratos do que os mesmos produtos fabricados com matéria-prima virgem; reciclagem mecânica de embalagens plásticas para bebidas (PET) que requer, em média, apenas 30% da energia necessária para a produção de matéria-prima.

As embalagens de PET correspondem a um polímero com grande potencial de reprocessamento, devido a suas características físico-químicas. De acordo com a PET (2013), o consumo de plástico PET no Brasil em 2011 foi de 572ktons e em função do evento Rio2016, a estimativa é de 840ktons. O Brasil, de acordo com dados da associação, é um dos maiores recicladores do mundo, responsável em 2015 por índice de 57% (274 ktons) de reciclagem do plástico PET.

2.4.2 Tratamento da superfície do plástico PET

Os plásticos apresentam superfície quimicamente inertes, não porosa e com baixa tensão superficial o que passam a ser não receptivos à aderência de outros substratos, tintas, revestimentos e adesivos (SOARES JÚNIOR, 2008). O plástico PET na forma original é muito hidrófobo, ou seja, apresenta baixíssima absorção e retenção de água. De acordo com a modelagem matemática proposta na sessão 2.5 um painel será capaz de determinar uma maior redução de temperatura e eficiência de resfriamento, além de economia energética de projeto, se denotar uma grande área úmida de contato com o fluxo de ar externo, maior coeficiente de transferência de calor por convecção e baixa perda de carga. Diante do exposto e considerando os trabalhos apresentados sobre o desempenho do plástico PET liso (sessão 2.4), a baixa retenção de água na superfície é uma desvantagem considerável em relação a outros enchimentos alternativos e ao comercial de celulose. Uma solução para este problema de baixa molhabilidade é o tratamento superficial do plástico PET a fim de reduzir a hidrofobia do material. Oliveira (2011a) descreveu que as amostras de PET tratadas com NaOH (Hidróxido de sódio) a 4% apresentaram aumento da molhabilidade superficial elevando dessa forma a área úmida de troca de calor com ar insuflado. Outros tratamentos utilizados para modificar a superfície do PET são a descarga de corona e descarga de plasma. O tratamento corona consiste na aplicação de descargas eletrostáticas sobre a superfície do filme, de modo a aumentar sua energia superficial, permitindo uma boa ancoragem do substrato (WITMANN, 2010). O tratamento por descarga de plasma se mostra mais eficiente e consiste em pequenas descarga elétricas de um gás ionizado e utiliza diferença de potencial menor do que o tratamento por corona. O tratamento por plasma também torna a superfície do substrato polar, uma vez que as moléculas de oxigênio ionizadas se ligam quimicamente às terminações das moléculas do substrato em tratamento. A velocidade com que o bombardeamento de elétrons ocorre é até 100 vezes maior. Como resultado tem-se uma maior erosão da superfície do substrato e ligações mais fortes ao longo do seu comprimento (SOARES JÚNIOR, 2008).

O tratamento superficial do plástico PET apresentado neste trabalho é totalmente mecânico na forma de lixamento. O lixamento da superfície dos filetes de PET provoca o aumento da rugosidade através da formação de sulcos, escamas e pequenos fios (Figura 22), e dessa forma permite ao plástico PET reter uma fina camada (filme) de água na superfície. Esta camada de água retida na superfície é importante pois troca calor e massa em contato com o fluxo de ar de entrada evaporando-se, de tal forma que a massa de ar após o painel apresenta temperatura de bulbo seco inferior ao ar de entrada.

Figura 22 – microfotografia amostra de PET lixada com lixa d'água de granulação 60

Um problema encontrado na formulação do tratamento mecânico de lixamento foi de identificar qual tipo de lixa e granulação abrasiva provocava melhor efeito de retenção de água na superfície do plástico PET. De acordo com dados obtidos experimentalmente utilizando amostras de PET lixadas (Figura 23) com um conjunto definido de diferentes tipos de lixas e de diferentes granulações, observou-se o predomínio de um tipo lixa e granulação quanto à maior retenção de água em gramas na superfície das

amostras. Os dados podem ser observados no Apêndice C e os resultados no tópico 5.2 dos resultados e discussões.

Figura 23 – Amostras de PET liso (a) e lixado (b)

2.5 Modelagem matemática da eficiência de resfriamento e queda de pressão de um sistema de resfriamento evaporativo direto (RED)

O modelo matemático de um resfriador evaporativo direto, de acordo com Castro e Pimenta (2004) é definido como:

O modelo matemático apresentado tem com objetivo quantificar alguns parâmetros de sistemas resfriamento evaporativo por painéis de contato, como efetividade de resfriamento e queda de pressão. Para isso a modelagem da transferência de calor e massa é baseada em um balanço de massa e energia na corrente de ar que atravessa o painel úmido.

Para simplificar a análise da transferência de calor algumas considerações foram feitas:

- O ar seco e vapor de água têm comportamento de gás ideal;
- O ar é uma mistura binária de dois gases (ar seco e vapor de água);
- · Perdas de calor para o ambiente são desprezíveis;
- · Processo se dá em regime permanente;
- As variações de energia cinética e potencial são desprezíveis;
- A água do sistema contida em um recipiente (2) é continuamente recirculada através de uma bomba (3) e mangueira (4) até um recipiente aspersor (5), considerados todos ideais sem troca de calor entre o ar e água;

- A temperatura da água de recirculação do painel (1) é considerada próxima da temperatura de bulbo úmido da massa de ar de entrada;
- Considera-se toda a área útil do painel (1) de contato com ar molhada.

Figura 24 – Variáveis envolvidas no processo de transferência de calor e massa, (a) esquema de um painel evaporativo de PET ideal com recirculação de água e (b) volume de controle

De acordo com a figura 24 há troca de calor e massa entre a massa de ar de entrada e o painel evaporativo molhado de tal forma que a massa de ar resultante de saída apresenta menor temperatura de bulbo seco. Feitas as considerações acima e aplicando a 1ª lei da termodinâmica (conservação da energia) temos que a energia da massa de ar de entrada é igual a energia da massa de ar de saída:

$$\dot{m}_a h_{a1} + \dot{m}_{v1} h_{v1} + \dot{m}_e h_{vwb} = \dot{m}_a h_{a2} + m_{v2} h_{v2} + \dot{q}$$
(2.11)

Sendo:

- \dot{q} taxa de transferência de calor do ar para água de recirculação (interna ao volume de controle), W
- \dot{m}_a vazão de massa de ar seco, kg/s
- $\dot{m}_{v1} e \dot{m}_{v2}$ vazões mássicas de vapor de água do ar na entrada e saída do painel, respectivamente, kg/s
- \dot{m}_e vazão de massa de vapor de água evaporado, kg/s

- $h_{a1} \ e \ h_{a2}$ entalpia do ar seco na entrada e na saída do painel, J/kg de ar seco
- + $h_{vwb}\,$ entalpia do vapor de água na temperatura de bulbo úmido, J/kg de ar seco
- $h_{v1} e h_{v2}$ entalpia do vapor de água na entrada e na saída do painel, respectivamente, J/kg de ar seco

Para o balanço de massa na corrente de ar, temos:

$$\dot{m}_e + \dot{m}_{v1} - \dot{m}_{v2} = 0 \tag{2.12}$$

considerando que a massa do vapor d'água por massa de ar seco corresponde à umidade absoluta ($\frac{\dot{m}_v}{\dot{m}_a} = w$), podemos dividir a Eq. 2.12 por \dot{m}_a e reorganizando o resultado, temos:

$$\dot{m}_e = \dot{m}_a (w_2 - w_1) \tag{2.13}$$

Sendo $w_1 e w_2$ correspondente as umidades absoluta da massa de ar na entrada e saída do painel evaporativo. Substituindo a Eq. 2.13 na Eq. 2.11, temos:

$$\dot{q} = \dot{m}_a(h_{a1} - h_{a2}) + \dot{m}_a(w_1h_{v1} - w_2h_{v2}) + \dot{m}_a(w_2 - w_1)h_{vwb}$$

$$\dot{q} = \dot{m}_a(h_{a1} - h_{a2} + w_1(h_{v1} - h_{vwb}) - w_2(h_{v2} + h_{vwb}))$$
(2.14)

Considerando o ar como gás ideal, o calor específico a pressão constante é definido como:

.

$$C_{pa} = \left(\frac{dh}{dt}\right) \tag{2.15}$$

Integrando a Eq 2.15 na condição de $C_{pa} = k$, sendo k constante, resulta em:

$$C_{pa} = \frac{h_2 - h_1}{(T_2 - T_1)} \tag{2.16}$$

Considerando que a entalpia do vapor de água no ar se encontra no estado saturado (WILBERT F. STOECKER, *apud* CASTRO; PIMENTA, 2004) e substituindo a Eq. 2.16 na Eq. 2.14 temos:

$$\dot{q} = \dot{m}_a (c_{pa}(T_1 - T_2) + w_1(h_{g1} - h_{gwb}) - w_2(h_{g2} - h_{gwb}))$$
(2.17)

sendo:

- $T_1 e T_2$ as temperaturas da massa de ar na entrada e saída do painel em kelvin (K)
- h_{qwb} entalpia do vapor de água saturado na temperatura de bulbo úmido
- + $h_{g1}~e~h_{g2}$ entalpia do vapor de água saturado na entrada e saída, J/kg

A Eq. 2.17 é utilizada no Script do software EES para o cálculo no cálculo da transferência de calor entre o fluxo de ar e superfície úmida.

2.5.1 Eficiência de resfriamento

Com base no esquema ilustrado na figura 24 temos T_1 a temperatura do ar na entrada do painel, T_2 a temperatura de saída do painel, T_s a temperatura da superfície da água e A a área da superfície em m² do painel onde ocorre a transferência de calor. A taxa de transferência de calor entre o ar e a superfície úmida do painel de acordo com a lei de Newton de resfriamento, pode ser dada por:

$$q = h_c A \Delta T_{med} \tag{2.18}$$

Sendo h_c o coeficiente médio de transferência de calor por convecção em W/mK e ΔT_{med} é a diferença adequada de temperatura média entre o ar e a superfície da água.

Como o resfriamento evaporativo por painéis de contato trata-se fundamentalmente de um trocador de calor de superfície úmida em corrente cruzada, uma análise baseada na teoria sobre trocadores de calor é aplicada considerando-se diferenças médias logarítmicas de temperatura e massa específica como no método da LMTD (Log Mean Difference Temperature) (CASTRO; PIMENTA, 2004). O método LMTD ou DTML (diferença de temperatura média logarítmica) é a média ponderada da temperatura entre o lado de maior temperatura e lado de menor temperatura do trocador de calor. De acordo com a figura 25 a temperatura T_1 corresponde a temperatura de buldo seco do ar na entrada do painel evaporativo e em função da troca de calor com a superfície úmida do painel, a temperatura é reduzida até a próximo da temperatura de saturação T_s quando então sai do painel.

Figura 25 – Diferenças de temperatura em função do contato entre o fluxo de ar e água na transferência de calor

A ΔT_{ML} é a média logarítmica das diferenças de temperaturas entre o ar e a superfície úmida, em K, dada por:

$$\Delta T_{ML} = \frac{(T_2 - T_1)}{\ln \frac{(T_2 - T_s)}{(T_1 - T_s)}}$$
(2.19)

Fazendo $\Delta T_{ML} = \Delta T_{med}$ e substituindo a Eq. 2.19 na Eq. 2.18, temos os seguintes passos:

$$q = h_c A \frac{(T_2 - T_1)}{ln \frac{(T_2 - T_s)}{(T_1 - T_s)}}$$
(2.20)

$$ln\frac{(T_2 - T_s)}{(T_1 - T_s)} = \frac{h_c A(T_2 - T_1)}{q_s}$$
(2.21)
$$exp(ln\frac{(T_2 - T_s)}{(T_1 - T_s)}) = exp(\frac{h_c A(T_2 - T_1)}{q})$$

$$\frac{(T_2 - T_s)}{(T_1 - T_s)} = exp(\frac{h_c A(T_2 - T_1)}{q})$$

Acrescentando $(T_1 - T_s) - (T_1 - T_s)$ no primeiro termo

$$\frac{(T_2 - T_s) + (T_1 - T_s) - (T_1 - T_s)}{(T_1 - T_s)} = exp(\frac{h_c A(T_2 - T_1)}{q})$$

Após algumas manipulações algébricas:

$$\frac{(T_2 - T_1)}{(T_1 - T_s)} + 1 = exp(\frac{h_c A(T_2 - T_1)}{q})$$

Multiplicando por (-1) em ambos os termos:

$$\frac{(T_1 - T_2)}{(T_1 - T_s)} - 1 = -exp(-\frac{h_c A(T_1 - T_2)}{q})$$

A efetividade de resfriamento de um painel evaporativo é dado por:

$$\varepsilon = \frac{(T_1 - T_2)}{(T_1 - T_s)}$$
 (2.22)

$$\varepsilon = \frac{(T_1 - T_2)}{(T_1 - T_s)} = -exp(-\frac{h_c A(T_1 - T_2)}{q}) + 1$$
(2.23)

Observando a Eq.2.22 , verifica-se que a efetividade máxima (100%) ocorre quando a temperatura de saída do painel evaporativo corresponde à temperatura de bulbo úmido (T_s). Para isto, e necessário que se tenha um painel com elevada área úmida e alto coeficiente de transferência de calor por convecção.

A taxa de transferência de massa $\dot{m_e}$ é definida com a massa evaporada em função da massa de ar de entrada e diferença de umidade absoluta, pode ser expressa em função da área úmida, média logarítmica das diferenças de massa específica de vapor $\Delta \rho$ (Figura 26) e coeficiente de transferência de massa h_m :

Figura 26 – Diferenças de massa específica de vapor em função do contato entre o fluxo de ar e água na transferência de massa

$$\dot{m_e} = h_m \cdot \Delta \rho_{LM} \cdot A \tag{2.24}$$

Sendo:

- ho_{V1} massa específica do vapor na entrada do painel evaporativo (kg)
- ρ_{V2} massa específica do vapor na saída do painel evaporativo (kg)
- *ρ*_{Vwb} massa específica do vapor de água na temperatura de bulbo úmido do ar (kg/m³)
- \dot{m}_e taxa de transferência de massa na forma de vapor de água
- h_m coeficiente de transferência de massa (m/s)
- $\Delta\rho_{LM}~$ média logarítmica das diferenças de massa específicas do vapor de água

$$\Delta \rho_{LM} = \frac{(\rho V_2 - \rho V_1)}{ln[\frac{(\rho V_2 - \rho V_{Vwb})}{\rho V_1 - \rho V_{Vwb}}]}$$
(2.25)

2.5.2 Queda de pressão

O escoamento interno em um ambiente de escoamento de ar sofre forte influência das paredes e elementos de barreira que dissipam energia devido ao atrido. Em um climatizador a principal barreira é o painel evaporativo que dissipação de energia provocando redução da pressão do escoamento entre as faces do painel. De acordo com Castro e Pimenta (2004) temos que:

> Ao entrar no painel de contato o escoamento sofre contração devido a uma mudança de área. Através do painel, o ar sofre fricção nas paredes, além de poder sofrer contrações e expansões sucessivas durante a passagem pela estrutura em colméia. Por fim, na saída do painel, o ar sofre uma expansão devido a uma mudança de área. Tais efeitos resultam numa perda de pressão total do ar úmido que no presente trabalho é representada por um modelo semi-empírico baseado na dependência existente com a pressão dinâmica do escoamento.

O modelo proposto de queda de pressão para um painel de celulose entre a entrada e a saída de ar é dado por :

$$\Delta P = C \cdot \frac{\rho U^2}{2} \quad [Pa] \tag{2.26}$$

Sendo C o parâmetro característico do painel de contato e U a velocidade do ar. Considerando C e $\frac{\rho}{2}$ constantes, a variação em função exclusiva da velocidade de escoamento do ar é:

$$\Delta P = C_0 \cdot U^2 \quad [Pa] \tag{2.27}$$

A partir de dados disponíveis do catálogo do fabricante para a variação da queda de pressão em painéis comerciais, pode-se então obter a constante C_0 para diferentes espessuras de painéis (CASTRO; PIMENTA, 2004). A partir dessa observação a constante C_0 pode ser substituída por ξL , que compreende uma constante de proporcionalidade e espessura do painel.

$$\Delta P = \xi \cdot L \cdot U^2 \quad [Pa] \tag{2.28}$$

A perda de pressão em painéis comerciais da marca Munters® é observada na Figura 27. De acordo com o gráfico, podemos observar que a queda de pressão é proporcional à velocidade ao quadrado (U^2) e espessura do painel (L).

Figura 27 – Perda de pressão em um painel evaporativo comercial de celulose Munters® www.munters.com.br

3 MATERIAIS E MÉTODOS

3.1 Limitações do trabalho

As limitações estão delimitadas nas seguintes partes:

- Limitações das amostras de PET e celulose: As amostras de PET e celulose utilizadas nos testes de massa seca e massa molhada foram cortadas no formato retangular de 15 x 5cm. As amostras de PET lixadas apresentam lixamento cruzado. Não é considerado outras geometrias de lixamento e cortes das amostras
- 2) Limitações dos painéis: O trabalho apresenta foco na redução de temperatura de bulbo seco e eficiência de resfriamento evaporativo de painéis de plástico PET filetados (lixado e liso) com largura 5mm ± 1mm e geometria irregular em relação ao painel de celulose. Não será abordado outras geometrias, larguras diferente dos filetes e forma de corte do plástico PET. Não será abordado aspectos ecológicos de logística e ou de vantagem econômica na reciclagem do plástico PET na forma de painéis.
- 3) Limitações dos equipamentos: A velocidade de escoamento do ar da bancada condicionadora CUSSONS é limitada em 1.1m/s devido a instabilidade da própria máquina de testes. A bancada não permite regular a temperatura da serpentina de resfriamento e toda variação da temperatura será por meio das resistências.
- 4) Limitações de medidas: foram utilizadas nos experimentos as temperatura de bulbo seco de 27, 32 e 37 °C , umidade relativa de 30, 40 e 50% e velocidade do ar de 1.1m/s. Esta limitação se deve a estabilidade da bancada CUSSONS.

3.2 Equipamentos

Os equipamentos descrito neste tópico foram utilizados na confecção dos amostras e painéis de plástico PET, testes experimentais e coleta de dados.

3.2.1 Torno mecânico

O torno mecânico utilizado para lixar as garrafas PET é o modelo CL 175 marca "South Bend" (Figura 28) com rotação de 600 RPM.

Figura 28 – Torno mecânico

3.2.2 Bancada experimental

A bancada experimental modelo P5698 da CUSSONS® (Figura 29) é capaz de variar o fluxo de ar, pré-aquecer e umidificar o ar no primeiro estágio (Pre-Heat), resfriar o ar com um resfriador a gás no segundo estágio e reaquecer o ar no terceiro estágio (Re-Heat). De modo geral, a bancada é um túnel de vento no qual é possível controlar temperatura, umidade e fluxo do ar.

Figura 29 – Bancada Cussons

De acordo com o desenho, temos as seguintes partes:

- 1 Ventilador centrífugo.
- 2 Resistências elétricas.
- 3 Evaporadora da unidade refrigeradora a gás.
- 4 Painel da bancada.
- 5 Válvula de controle de vazão (Damper) de seção transversal de 0.09m² confeccionado em chapa de aço galvanizado e flanges.
- 6 Condicionador de escoamento com finalidade de diminuir a turbulência e uniformizar o fluxo de ar depois do duto de ligação.
- 7 Localização dos sensores.
- 8 Recipiente aspersor de água para os painéis.
- 9 Bomba d'água submersa com vazão de 540L/h
- 10 Cilindro condicionador de água da unidade geradora de vapor de 12L de capacidade.
- 11 Ebulidor de água tipo mergulhão de 2000W da unidade geradora de vapor.
- 12 Tubo aspersor de vapor.
- 13 Recipiente para conter água condensada da unidade geradora de vapor.
- 14 Câmara em acrílico condicionadora dos painéis evaporativos.
- 15 Registro.
- 16 Válvula de esfera de aço.

A bancada sofreu algumas modificações necessárias para realizar os procedimentos experimentais, tendo em vista a necessidade de um regime de fluxo permanente de ar, mantido constante a temperatura e umidade no interior da bancada de testes. São elas:

 Isolamento térmico. A bancada apresenta duto de ar construído com chapas de zinco e aço inox. Consequentemente, quando está em operação, ocorre uma grande amplitude térmica entre a temperatura da superfície do duto e a temperatura ambiente, de tal forma que a temperatura ambiente provoca interferência nas medições. A bancada foi revertida com isopor de 30mm (0.035 W/mK) e aplicado espuma de poliuretano nas juntas curvas do duto (Figura 30).

Figura 30 – Bancada Cussons com revestimento isolante térmico

- Controle dos vazamentos. As juntas da câmara em acrílico condicionadora dos painéis evaporativos (14) foram seladas com silicone branco a fim de evitar vazamentos de água e as placas de acrílico da parte de trás da bancada também foram seladas com silicone branco para evitar vazamento do ar condicionado.
- 2) Isolamento da evaporadora original. A evaporadora original da bancada não permite regulagem da quantidade de vapor e está localizada na parte inferior da bancada abaixo do duto de ar e antes da serpentina resfriadora. Este posicionamento provoca aquecimento do duto e quando utilizada em conjunto com o serpentina fria, ocorre congelamento das aletas em função do volume de vapor. Foi então isolada e substituída por uma evaporadora externa (10), localizada após a serpentina e com regulagem do fluxo de vapor (15) e válvula de segurança (16).
- Controle de temperatura. Em uma das resistências (2) de reaquecimento (Re-Heat) de 1kW foi instalado um dimmer de 3kW para permitir a variação da temperatura em 1 ℃.
- 4) Adequação da câmara de troca de calor (14). A câmara no qual fica localizado o painel evaporativo recebeu uma "armadura" de isopor de 30mm para melhor condicionar o painel evaporativo e dessa forma permitir a passagem do ar somente pelo painel em teste.

- Retirada a bomba externa. A bomba de circulação da água externa foi substituída por uma bomba interna (9) com o objetivo de evitar acidentes caso ocorra vazamentos.
- 6) Isolamento dos instrumentos de medição próprio da bandada. Os instrumentos de medição presentes no painel da bancada foram isolados em função do estado de conservação e somente foram utilizados instrumentos externos.

A bancada neste trabalho foi dividida nas seguintes partes:

 Módulo de ventilação: é composta pelo ventilador centrífugo (1) com capacidade de vazão de 0.04 a 0.4 m³/s. O fluxo de ar insuflado é controlado por um *dumper* (5) (Figura 31).

Figura 31 – Módulo de ventilação

 Módulo de aquecimento do ar: composta por 2 conjunto de resistências (2) sendo cada conjunto composto por 3 resistências de 1kW de potência (Figura 32). Em uma das resistências de reaquecimento (Re-Heat) de 1kW foi instalado um dimmer de 3kW no painel da bancada para permitir a variação da temperatura em 1 °C (Figura 33).

Figura 32 – Banco de resistências

Figura 33 – Dimmer controlador de 3000W

Módulo de refrigeração do ar: composta por um conjunto condicionador de ar contendo condensador, compressor, válvulas, fluido refrigerante R22 e dreno de escape de água condensada no interior da bandada (Figura 34 e Figura 35). A evaporadora do fluido refrigerante é utilizado para refrigerar e desumidificar o ar de entrada. A água condensada escapa pelo dreno e fica depositada em um recipiente fora da máquina.

Figura 34 – Evaporadora e outros componentes

Figura 35 – Compressor e outros componentes

Módulo de umidificação do ar: composta por um cilindro de 200 x 450mm (10) de 12L de capacidade de água, ebulidor de água de 2000W (11), tubos de saída de vapor (12) e recipiente coletor de água condensada (13) (Figura 36). O ebulidor aquece a água do cilindro e o vapor gerado é vazado através do tubo (12) até o interior da máquina. O registro (15) permite regular a vazão de vapor e a válvula de esfera de aço (16) controla a pressão interna do cilindro a

fim de evitar acidentes. A junção das partes do cilindro (10) e ebulidor (Figura 37) é feito com cola silicone de alta temperatura. Nos testes experimentais foi observado que é necessário existir um espaço de 15cm entre o nível de água e a tampa do cilindro para que o fluxo de vapor se mantenha estável dentro da máquina.

Figura 36 – Módulo de umidificação do ar

Figura 37 – Ebulidor de 2000W e tampa do cilindro recipiente de água

 Módulo condicionador dos painéis: composta por uma câmara em acrílico (14), bomba d'água (9) de 540L/h de vazão máxima marca SarloBetter®, mangueira e recipiente aspersor de água para os painéis (8) (Figura 38). A câmara foi modificada colocando-se placas de isopores de 30mm a fim de permitir isolamento térmico e a passagem do ar somente pelos painéis. A parte inferior da câmara possui capacidade de 7L de água. O fluxo de água nos painéis é constante de 0.058L/s.

Figura 38 – Módulo condicionador dos painéis

Figura 39 – Câmara de condicionamento dos painéis sem tampa com destaque para o seu interior e isolamento térmico

Figura 40 – Aspersor dos painéis

3.2.3 Filetador de garrafa PET

O filetador de garrafas PET é uma pequena máquina de uso manual de construção simples utilizando materiais de fácil aquisição: madeira (1), parafusos (2), pocas (3), arruelas (4) e uma lâmina de apontador de lápis (5) (Figura 41). O equipamento, apesar de simples, permite regular a largura dos filetes com precisão de ± 1mm.

Figura 41 – Filetador manual

3.2.4 Instrumentos de medição

Medição é a base de todo processo experimental. Na física, em todas as ciências experimentais e em trabalhos de aplicação técnica, estamos sempre envolvidos com resultados de medidas (HELENE; VANIN, 1991). Dessa forma entendemos que a utilização de um instrumento de acordo com a técnica necessária para a realização das medições é de vital importância no contexto experimental. Foram utilizados sensores de temperatura e umidade em conjunto com uma placa de prototipagem Arduino além de instrumentos de medição da velocidade do ar e pressão diferencial entre os painéis. Todos os instrumentos foram calibrados e os ajustes estão no Apêndice B. Em relação a quantidade de sensores, de acordo com dados coletados em 5 (cinco) pontos localizados na secção perpendicular da região de posicionamento de sensores (7) constatou-se que devido à baixa velocidade do ar a média das medidas de temperatura e umidade nestes pontos se mostram equivalentes ao ponto central (Apêndice A). Dessa forma, os experimentos foram realizados com 1 (um) sensor termo-higrômetro na entrada e 1 (um) sensor termo-higrômetro na saída do painel evaporativo em teste.

3.2.4.1 Arduino

O Arduino é uma plataforma de prototipagem de código aberto baseada em hardware e software livres (licença GLP e Creative Commons) desenvolvidos na cidade de Ivrea na Itália por Massimo Banzi, David Cuartielles, Tom Igoe, Gianluca Martino e David Mellis (Figura 42). Na engenharia o Arduino tem importância significativa, uma vez que permite reduzir os custos de prototipação e aquisição de dados. Conforme McRoberts (2011): Em termos práticos, um Arduino é um pequeno computador que você pode programar para processar entradas e saídas entre o dispositivo e os componentes externos conectados a ele. O Arduino é o que chamamos de plataforma de computação física ou embarcada, ou seja, um sistema que pode interagir com seu ambiente por meio de hardware e software.

Figura 42 – Placa Arduino UNO Fonte: Arduino.cc

Com o Arduíno é possível controlar LEDs, motores, eletrodomésticos, obter dados através de sensores, comunicar-se com outros dispositivos (computadores, smartphones e outros controladores) e muitas outras possibilidades, permitindo dessa forma uma diversas aplicações. Neste trabalho o Arduíno será utilizado como plataforma de aquisição de dados via sensores de temperatura e umidade.

3.2.4.1.1 Temperatura de bulbo seco e Umidade relativa do ar

Foram utilizados sensores termo-higrometros modelo DHT22 AM2302 (Figura 43) marca *Aosong*. O DHT22 é um sensor de temperatura e umidade de baixo custo e interface serial a um fio (single wire). O sensor é calibrado de fábrica em câmara de calibração de umidade extremamente precisa e não necessita de hardware adicional para funcionar. Permite realizar leituras de temperaturas entre -40 a 80 °C e umidade entre 0 a 100% e é adaptado ao Arduino, Raspberry e outros microcontroladores pois possui apenas 1 pino digital de comunicação serial. De acordo com o manual do fabricante, é utilizado em equipamentos de teste e inspeção, automotivo, controle automático, eletrodomésticos, regulador de umidade, equipamentos médicos, estações meteorológicas e outros medição de umidade e controle. As características do sensor podem ser observadas na Tabela 7.

Figura 43 – Sensor DHT22

Fonte: http://www.aosong.com/en/home/index.asp

Tabela 7 – Características técnica	as sensor DHT22
------------------------------------	-----------------

Modelo		AM2303 - DHT22		
Tensão alimentação	de	3.3 - 6V DC		
Sinal de saída		Sinal digital através de um único barramento		
Elemento sensor		Capacitor de polímero para umidade e sensor de estado sólido de temperatura DS18B20		
Faixa de medição	D	Umidade 0 - 100%; Temperatura -40 \sim 125 $^{\circ}\!\mathrm{C}$		
Precisão		Umidade ± 2% (Max ± 5%); Temperatura ± $0.5 ^{\circ}$ C		
Resolução sensibilidade	ou	Umidade 0.1%; Temperatura 0.1 ℃		
Repetibilidade		Umidade ± 1%; Temperatura ± 0.2℃		
Histerese umidade	de	± 0.3%		
Estabilidade a Longo Prazo		± 0.5%/ano		
Período de detecção		Tempo médio: 2s		
Intercomutabilidade		totalmente comutável		

Fonte: www.aosong.com

A escolha do sensor DHT22 se deve ao fato de apresentar, conforme dados do fabricante, considerável precisão de medida e estabilidade dentro da faixa de temperatura (27 - 37° C) e umidade (30 - 50%) definida no plano experimental do trabalho. De acordo com a Figura 44 e Figura 45 o erro máximo nas medidas é inferior a ± 2% para a faixa de temperatura e umidade dos experimentos. Os sensores de

temperatura e umidade foram calibrados e os ajustes da calibração estão no Apêndice B.1 . Os cabo de conexão dos sensores são blindados (malha de terra) para evitar interferências.

Figura 44 – Erro máximo de temperatura a 25 ℃ sensor DHT22

Fonte: http://www.aosong.com/en/home/index.asp

Figura 45 – Erro máximo de umidade sensor DHT22

Fonte: http://www.aosong.com/en/home/index.asp

3.2.4.1.2 Temperatura de bulbo úmido

Foi utilizado o sensor de temperatura de líquidos modelo DS18B20 marca Dallas Semiconductor (Figura 46). Este sensor é capaz de medir temperatura com resolução de 9 a 12-bit (configurável) e possui uma função de alarme programável em memória não volátil para valores abaixo ou acima das temperaturas desejadas e comunicação é feita por 1-Wire. Pode operar entre -55 °C até +125 °C com precisão de ±0.5 °C se estiver operando dentro da faixa de -10 °C até +85 °C (Tabela 8). Cada DS18B20 possui um número serial único de 64-bit, o que permite que vários DS18B20 funcionem no mesmo barramento 1-Wire, permitindo conectar vários sensores em um microcontrolador. De forma geral apresenta as mesmas qualidades do elemento sensor de temperatura do DHT22 e a escolha se deve aos motivos ja descritos anteriormente. A temperatura da água de recirculação dos painéis é medida diretamente no interior do recipiente. O sensor de temperatura foi calibrado e os ajustes da calibração estão no Apêndice B.2. Os cabo de conexão dos sensores são blindados (malha de terra) para evitar interferências.

Figura 46 – Sensor DS18B20 com cabo e armadura http://www.arduinobr.com/

Tabela 8 – Características técnicas sensor DS18b20

Tensão alimentação	de	3.0 - 5.5 VDC
Leitura temperatura	de	-55℃ a +125℃
Tempo atualização	de	<750ms
Precisão		±0.5℃ na faixa de -10℃ a +85℃
Resolução		9 a 12 bits

Fonte: www.alldatasheet.com

3.2.4.2 Pressão diferencial

Para medir as pressões médias na seção transversal a montante e jusante da seção de teste entre os painéis e diferença da coluna de água na placa de orifício na entrada do ventilador centrífugo da bancada, foi utilizado o Manômetro Digital Portátil Dwyer® Série 477-1 (Figura 47). O Manômetro é um instrumento completo para medir e registrar baixa pressão com precisão, rapidez e maior facilidade de manuseio. É possível selecionar nove unidades de pressão mais utilizadas além de registrar até 20 dados em memória não volátil. Permite ainda leitura com Tubo Pilot na transversal do fluxo de ar em dutos. A função HOLD, congela temporariamente o valor atual em situações onde ocorrem flutuações para pressão. Para proteção contra sobre-pressão, estão inclusos alarmes audível e visual. O Manômetro Digital Portátil Dwyer Série 477-1 foi calibrado e os ajustes da calibração estão no Apêndice B.4.

Figura 47 – Manômetro diferencial Dwyer® Série 477-1

Serviço	Ar e gases compatíveis
Precisão	±0.5% fundo de escala em 15° a 25℃ ± 0.1% fundo de escala em 0° a 15℃ e 25° à 40℃.
Histerese de pressão	±0.1% fundo de escala
Pressão máxima	0 - 20 pol.CA 0 - 5kPa 11 psi (0.75 bar)
Alimentação	Bateria de 9V alcalina

Tabela 9 – Características técnicas manômetro diferencial

Fonte:www.dwyer-inst.com

3.2.4.3 Velocidade do ar

O anemômetro portátil AM-4201 LUTRON® (Figura 48) apresenta sensor fabricado com rolamento de esferas de baixa fricção que permite movimento da hélice com precisão tanto em altas ou baixas velocidades. O anemômetro AM-4201 LUTRON foi calibrado e os ajustes da calibração estão no Apêndice B.3 . A Tabela 10 apresenta as características do anemômetro.

Figura 48 – Anemômetro AM-4201 LUTRON®

Medições	m/s km/h ft/min knots Data hold		
Temperatura de operação	0℃ a 50℃ (32℉ to 122℉)		
Umidade de operação	Umidade relativa menor que 80%		
Estrutura do sensor de velocidade do ar	Hélice de palhetas convencionais e baixa fricção Rolamento de esferas		
Fonte de energia	DC 9V		
Consumo de energia	Aproximadamente DC 9 mA		
Massa	325g incluindo bateria		
Velocidade do ar	m/s $0.4 \sim 30.0 \text{ m/s}$ $0.1 \text{ m/s} \pm (2\% +1d)$ km/h $1.4 \sim 108.0 \text{ km/h} 0.1 \text{ km/h} \pm (2\% +1d)$ ft/min $80 \sim 5910 \text{ ft/min} 10 \text{ ft/min} \pm (2\% +1d)$ knots $0.8 \sim 58.3 \text{ knots}$ $0.1 \text{ knots} \pm (2\% +1d)$		

Tabela 10 –	Características	técnicas do	anemômetro
	ouractoriotiouo	100111040 40	anomotion

Fonte: http://www.lutron.com.tw/

3.2.4.4 Balança de precisão

A massa das amostas de plástico PET e celulose utilizadas nos testes de massa seca e massa molhada foram medidas utilizando uma Balança MARK "M223" (Figura 49). Esta balança de precisão faz parte de uma serie de balanças de alta qualidade e confiabilidade nas medições, equipada com o sensor de peso "sem-block" de tecnologia híbrida controlada por microprocessador e sistema mecânico de proteção a sobrecarga. Possui calibração automática com peso interno e servomotor, que controla a estabilidade da leitura recalibrando a balança em função da temperatura em intervalos de tempo pré-determinados. A Tabela 11 apresenta as características da balança.

Figura 49 – Balança MARK "M223"

Manual de uso disponível http://www.beleng.com.br/

Tabela 11 – Características da Balança MARK "M223"

Resolução (g)	0.001
Repetibilidade (g)	0.0005
Linearidade (g)	±0.002
Tempo de resposta (s)	2
Faixa de temperatura operacional (°C)	5 - 35
Desvio de sensibilidade (10 - 30℃)	± 4 ppm/°C
Tamanho da prato (mm)	110
Alimentação elétrica	230/115 Vac ±15% 50/60Hz

Fonte: http://www.beleng.com.br/

4 METODOLOGIA

O desenvolvimento deste trabalho será feito a partir de cinco fases sendo que as fases 2 e 3 são de caráter experimental:

A primeira fase envolve o estudo teórico sobre resfriamento evaporativo, psicrometria e transferência de calor, no qual se busca conhecimentos referentes ao funcionamento e características dos painéis evaporativos.

A segunda fase consiste em selecionar os tipos de lixas (granulação e tipo de material) usualmente encontradas no mercado, realizar o lixamento cruzado das amostras de plástico PET e determinar experimentalmente qual lixa provoca maior retenção de água na superfície das amostras de PET.

A terceira fase visa determinar a redução da temperatura de bulbo seco e eficiência de resfriamento evaporativo dos painéis de plástico PET lixados (lixa determinada na etapa anterior), PET liso e painel comercial de celulose.

A quarta e última fase é a análise dos dados da etapa anterior. A discussão será feita com base nos dados de: localização dos sensores de temperatura e umidade, medidas de massa seca e massa molhada das amostras de plástico PET e celulose, relação massa-área dos painéis de PET, vazão mássica de ar, perda de carga dos painéis evaporativos, redução de temperatura de bulbo seco e efetividade de resfriamento dos painéis evaporativos.

O procedimento experimental (fases 2 e 3) foi realizado em 9 (nove) etapas:

- Determinar as lixas e granulações. Esta etapa consiste em selecionar os tipos de lixas e respectivas granulações que serão utilizadas no tratamento mecânico de lixamento da superfície das amostras e garrafas PET. Para seleção das lixas foram levado em conta a disponibilidade no mercado, custo de aquisição e capacidade abrasiva.
- Confecção das amostras de plástico PET e celulose. Consiste em obter amostras de celulose e amostras de garrafas PET lisas e lixadas de acordo com as lixas determinadas na etapa I.
- III) Medidas de massa seca e massa molhada. Teste que visa identificar qual tipo de lixa e granulação determina a maior quantidade água em gramas retida na superfície das amostras de plástico PET e celulose.
- IV) Confecção dos painéis evaporativos. Utilizando o tipo de lixa e granulação determinada na etapa anterior, as garrafas PET foram lixadas e filetadas com largura

de 5mm ± 1mm.

- V) Curvas de calibração dos sensores e equipamentos. A partir dos dados de calibração realizados em laboratório foram determinadas as curvas de calibração dos sensores e equipamentos.
- VI) Localização dos sensores. Determinar a quantidade necessária de sensores no duto de ar.
- VII) Relação massa-área dos filetes de PET. Encontrar a relação matemática entre a massa dos filetes e área dos painéis a partir da análise de amostras de filetes de PET liso e lixado.
- VIII) Vazão mássica de ar. Determinar a massa de ar de entrada através de diferença de pressão a partir da placa de orifício localizada na entrada do ventilador centrífugo.
- IX) Avaliação da redução da temperatura de bulbo seco. Consiste na coleta de dados através de bancada experimental e sensores conectados à placa Arduino, de temperatura e umidade de entrada e saída dos painéis de PET e celulose tomados a média das medidas no intervalo de 5s para cada minuto de teste, condicionados a diferentes pontos de umidade relativa do ar.

4.1 Determinar as lixas e granulações

As lixas foram selecionadas quanto ao tipo (madeira, massa, ferro e d'água) e granulação (60, 80, 100) (Tabela 12). A lixa é caracterizado por uma folha papel reforçada com material de superfície abrasiva composta em geral por minerais, de uso comum no polimento de metais, madeira, entre outros materiais. A granulação das lixas comerciais varia de 16 a 3000 grãos de areia por centímetro quadrado, de tal forma que quanto maior a granulação menos abrasiva é a lixa. A escolha das lixas ocorreu em função da disponibilidade no mercado, dado que lixas de granulação e tipo de aplicação diferentes das selecionadas na tabela 12 são difíceis de serem encontradas em lojas convencionais de construção.

Tipos de Lixas	Granulação	Granulação (Grãos de areia por centímetro quadrado)			
Madeira	60	80	100		
Ferro	60	80	100		
Massa	60	80	100		
D'água	60	80	100		

Tabela 12 – Tipos de lixas e granulações

4.2 Confecção das amostras de PET e celulose

As amostras de PET liso e lixadas foram confeccionadas a partir de garrafas PET marcas Fanta® e Sprite® em função do melhor formato cilíndrico do tronco e as amostras de celulose foram retiradas de um painel comercial de celulose da marca Equipaves®. Foram selecionadas 10 amostras de celulose e 10 amostas de PET lixado para cada tipo de lixa e granulação (120 amostras no total), cortadas no tamanho de 15x5cm. O tamanho das amostras se deve ao fato da quantidade de água retida na superfície ser inferior a 1g de água na superfície. O procedimento de confecção das amostras segue os seguintes passos:

1) Celulose

- 1) Separar uma folha de celulose de um painel evaporativo comercial e cortar as amostras no formato 15x5 cm
- 2) Classificar as amostras de 1 a 10 (Figura 50).

Figura 50 – Amostra celulose

- 2) Plástico PET
 - 1) Separar 20 garrafas PET de refrigerante marcas Fanta® e Sprite®, lavar com detergente e esperar secar.
 - 2) Amostras de PET liso
 - Cortar 2 garrafas PET conforme Figura 51. A parte cônica superior e o fundo serão descartados e somente o tronco cilíndrico será aproveitado para retirar as amostras.

Figura 51 – Corte da garrafa PET

2) Extrair as amostras de PET liso no formato de 15 x 5 cm e classificar as amostras de 1 a 10 (Figura 52).

Figura 52 – Amostra PET liso

- 3) Amostras de PET lixado
 - Lixamento para cada tipo de lixa e granulação. As lixas foram coladas em esponjas e em um suporte de cano pvc para o lixamento interno. O lixamento ocorreu em dois passos: (a) Lixar as garrafas de forma perpendicular ao comprimento da garrafa utilizando o torno mecânico com auxílio de bucha pelo período de tempo de 10s. (b) lixamento manual ao longo do comprimento da garrafa. O resultado são linhas cruzadas de lixamento em toda a garrafa (dentro e fora).
 - Cortar as garrafas PET lixado conforme Figura 53. A parte cônica superior e o fundo foram cartados e somente o tronco cilíndrico foi aproveitado para retirar as amostras.

Figura 53 – Corte da garrafa PET

- Colocar as garrafas lixadas submersa em água a temperatura ambiente por 1h para retirar impurezas do processo de lixamento e secar a sombra por 1h.
- 4) Extrair as amostras de PET liso no formato de 15 x 5 cm das garrafas lixadas e classificar as amostras conforme o tipo e granulação e lixa utilizada, no formato: " x, y, z". No qual "x" é a ordem da amostra (1 a 10), "y" é o tipo de lixa (Madeira, Massa, Ferro e D'água) e "z" é a granulação (60, 80 e 100) (Figura 54).

Figura 54 – Amostra PET lixado com lixa d'água granulação 100

De posse das amostras separadas e classificadas, o próximo passo é realizar o experimento de massa seca e massa molhada.

4.3 Medidas de Massa Seca e Massa Molhada

O experimento de medida de massa seca e massa molhada das amostras de PET visa determinar qual tipo de lixa e granulação resulta na maior quantidade de água retida na superfície da amostra. O procedimento de medir a massa seca consiste em realizar duas medições das amostras secas sendo que a cada inicio de medida a balança MARK "M223" é tarada. O procedimento de mediar a massa da amostra molhada é realizado submergindo a amostra de PET em um recipiente contendo água à temperatura ambiente por 5s e em seguida a amostra é colocada sobre o prato da balança de precisão. Para cada amostra medida, o prato da balança é seco com papel absorvente e a balança tarada novamente. Este procedimento é repedido 6 vezes para cada tipo de amostra. No apêndice C estão os dados dos experimentos de massa seca e massa molhada.

4.4 Confecção dos Painéis Evaporativos

Os painéis de plástico PET e celulose foram confeccionados para serem colocados dentro da câmara em acrílico condicionadora da bancada de testes CUS-SONS® (Figura30). O painel de celulose já vem de fábrica pronto para uso e apenas foi cortado nas dimensões necessárias do experimento. Os painéis de PET são formados por vários filetes de garrafas PET lixadas e grupados na forma de filete solto. Os painéis de PET liso e lixados foram determinados a partir da informação da perda de carga inicial mais próxima da perda de carga do painel de celulose. A partir disto foi estruturado a confecção de 3 (três) painéis de PET liso e lixado seguindo a ordem de "00", "01" e "02". O painel de ordem "01" apresenta menor perda de carga e massa e o painel de ordem "02" maior massa e perda de carga.

4.4.1 Perda de carga

Para medir as pressões médias na seção transversal do duto de escoamento de ar foi utilizado dois anéis piezométricos com quatro tomadas de pressão interligadas e uma saída cada entre o painel da seção de teste. A saída do anel a montante deve ser conectada à entrada positiva do transdutor de pressão diferencial. E a saída do anel a jusante conectada à entrada negativa do transdutor. A Figura 55 representa o esquema montado, no qual podemos observar o painel evaporativo (1), as mangueira do anel (2), os bicos de coleta de ar (3) e o manômetro diferencial (4). Para estabelecer as condições iniciais de pressão do ar na entrada da seção, uma tomada de pressão foi ligada a entrada positiva do segundo transdutor e a entrada negativa foi deixada em aberto. Assim tem-se a diferença entre a pressão na entrada e a pressão atmosférica local. Foram tomados 50 (cinquenta) pontos de dados de pressão em um intervalo de 5s para cada painel e os dados podem ser conferidos no Apêndice E.

Figura 55 – Esquema medição da perda de carga dos painéis evaporativos

4.4.2 Painel de Celulose

O painel utilizado nos testes é da marca Equipaves (www.equipaves.com.br), fabricado com folhas de papel de celulose impregnada e corrugada com canais cruzados e apresenta as seguintes características de acordo com a Tabela 13:

Massa	460.000 ± 0.002g
Volume	0.0163 ± 0.0001 m ³
Ângulo de entrada do ar	15°
Ângulo de saída do ar	45°
Dimensões	0.330 x 0.330 x 0.150 ± 0.001 m

Tabela 13 – Características do painel de celulose

4.4.3 Painéis de PET liso e lixado

Os painéis de plástico PET lixado foram confeccionados com os filetes das garrafas lixadas com a lixa d'água de granulação 60. Esta lixa determinou o melhor resultado de retenção de água na superfície conforme o experimento de massa seca e molhada (Apêndice C). Os painéis foram construídos em 3 (três) níveis de compactação, definidos como "Liso 00, Liso 01 e Liso 02" e "Lixado 00, Lixado 01 e Lixado 02". O

painel de PET inicial ("00") foi construído a partir da quantidade de massa de filetes de PET suficiente que determinou a perda de carga mais próxima em relação à perda de carga do painel de celulose. Os painéis seguintes ("01 e 02") foram construídos adicionado 105g de filetes. A compactação foi definida dividindo a massa pela pelo volume correspondente ao volume do painel de celulose que por sua vez corresponde ao volume ocupado na câmara de condicionamento dos painéis. As características podem ser observadas na tabela 14:

	Painel PET 00	Painel PET 01	Painel PET 02
Massa	446.0 ± 6.0g	555.0 ± 6.0g	666.0 ± 6.0g
Volume	0.0163 ± 0.0001 m ³	0.0163 ± 0.0001 m³	0.0163 ± 0.0001 m ³
Largura dos filetes	5.0 ± 1.0mm	5.0 ± 1.0mm	5.0 ± 1.0mm
Dimensõe	0.330 x 0.330 x 0.150 ± s 0.001 m	0.330 x 0.330 x 0.150 ± 0.001 m	0.330 x 0.330 x 0.150 ± 0.001 m

Tabela 14 – Características físicas dos painéis de PET liso e lixado

4.5 Relação massa-área dos painéis de PET e compactação

Os painéis de plastico PET utilizado nos experimentos são formado pelo emaranhamento dos filetes. Diferentemente do painel de celulose, o painel de PET não possui geometria definida e dessa forma o cálculo da área é muito complexo. A solução encontrada foi relacionar a área de amostras de filetes de PET lisos e lixados com suas respectivas áreas superficiais. A função característica desta relação é determinada no Apêndice D.

4.6 Avaliação da redução da temperatura de bulbo seco e efetividade de resfriamento dos painéis

As medidas de temperatura e umidade foram obtidas através dos sensores DHT22 em conjunto com uma placa Arduino UNO. O código fonte foi escrito em linguagem de programação C e pode ser visto no Apêndice H. A temperatura de bulbo úmido não foi obtida experimentalmente em função da velocidade do fluxo do ar no interior da bancada mantida constante em 1.1m/s (a recomendada para este tipo de medição é de 3m/s). As medições são divididas em duas partes: Entrada e saída do painel. Medições de entrada do painel são referentes às medidas de temperatura de bulbo seco, temperatura da água de recirculação e umidade relativa do ar. Medições

de saída do painel são referentes às medidas de temperatura de bulbo seco e umidade relativa do ar. Foram seguidos os seguintes procedimentos:

a) Antes das medições:

- Verificar o nível da água da evaporadora em 7L de água e funcionamento do ebulidor;
- Verificar se todos os tubos estão desobstruídos instalados na bancada CUS-SONS®;
- Verificar se a água no interior da câmara de troca de calor está isenta de impurezas;
- Verificar se o painel evaporativo está bem posicionado a ponto de receber água do recipiente aspersor;
- Verificar se o isolamento térmico da bancada CUSSONS® está bem fixado às paredes de metal da bancada;
- Verificar se o filtro de água localizado no bico da mangueira da bomba de recirculação de água está devidamente limpo.
- · Verificar o funcionamento das resistências;
- Verificar a velocidade do ar de acordo com o plano experimental;
- Verificar o posicionamento funcionamento dos sensores e demais equipamentos de medição.
 - b) Início das medições:
- Ligar a bomba de recirculação de água durante 20 minutos para umedecer uniformemente o painel evaporativo. O fluxo de água nos painéis é constante de 0.058L/s;
- Ligar o condicionador de ar;
- Ligar as resistências, ajustando através do dimmer para a condição desejada;
- Ligar o computador e iniciar o Arduino;
- Ligar a evaporadora para umidificador de ar, se assim, for necessário;
- Ajustar as condições de temperatura e umidade e esperar o sistema estabilizar as condições do processo de transferência de calor e massa durante 20 minutos antes de cada início de testes;

 Iniciar a coleta de dados e acompanhar o comportamento dos parâmetros de acordo com o tempo estabelecido de 15min.

c) Durante as medições:

 Observar o comportamento das condições de entrada do painel e se necessário, realizar ajustes finos para manter os valores conforme definido no plano experimental;

d) Término das medições:

- Interromper a coleta de dados e salvar os dados em arquivo;
- Desligar a evaporada se utilizada;
- Esperar 10 minutos para iniciar a nova medição;
- Introduzir as novas condições de teste;
- Retornar ao procedimento "c".
 - e) Encerramento das medições:
- Desligar a bomba de recirculação de água;
- · Desligar as resistências;
- Desligar a unidade condicionadora de ar;
- Desligar a evaporadora;
- Esperar secar o painel em teste;
- Desligar o módulo de ventilação;
- · Desligar o computador e demais equipamentos de medição;
- Desligar a bancada CUSSONS®;
- Retirar o painel evaporativo.

e) Resultados Obtidos:

Os dados brutos das medidas de temperatura e umidade estão tabelados no Apêndice G.

5 RESULTADOS E DISCUSSÕES

5.1 Localização dos sensores

Conforme os dados do Apêndice A, a média geral das medidas de umidade relativa e temperatura de bulbo seco dos sensores ficam muito próximas. Na prática, utilizando a temperatura de bulbo úmido como referência, podemos observar que não há diferença significativa entre a média geral das temperaturas de bulbo úmido e a temperatura de bulbo úmido obtida a partir do sensor central (tabela33).

5.2 Medidas de massa seca e massa molhada das amostras de PET e celulose

A tabela 15 informa a média e desvio padrão das retenções de água superficial das amostras de PET liso e lixado e celulose. Conforme os dados, as amostras de PET lixadas com lixa d'água com granulação 60 determinaram a maior média em gramas de água retida na superfície. O gráfico a seguir permite visualizar a quantidade de água retida.

Amostras de PET e celulose	$ar{\mu}$	σ
celulose	1.043	0.058
PET lixado com lixa d'água granulação 100	0.768	0.030
PET lixado com lixa d'água granulação 60	1.005	0.030
PET lixado com lixa d'água granulação 80	0.743	0.041
PET lixado com lixa ferro granulação 100	0.794	0.045
PET lixado com lixa ferro granulação 60	0.940	0.029
PET lixado com lixa ferro granulação 80	0.789	0.062
PET lixado com lixa madeira granulação 100	0.782	0.028
PET lixado com lixa madeira granulação 60	0.835	0.029
PET lixado com lixa madeira granulação 80	0.758	0.032
PET lixado com lixamassa granulação 100	0.808	0.024
PET lixado com lixamassa granulação 60	0.791	0.024
PET lixado com lixa massa granulação 80	0.821	0.070
PET liso	0.149	0.029

Tabela 15 – Média e desvio padrão das retenções de água superficial em gramas de água das amostras de plástico PET lidadas e liso e celulose

5.3 Relação Massa-área dos painéis de PET e compactação

Através da tabela de dados do Apêndice D foi possível determinar as equações D.1 e D.2 . Utilizando esta equação é possível estimar a área superficial dos painéis de PET liso e lixado. A partir dos dados da área estimada, foi calculada a compactação dos painéis de PET.

Painéis	Massa	Área estimada	Volume	Compactação
PET liso	446.0 ±	2.3000 ±	0.0160 ±	140.8 ±
00	6.0g	0.0310 m²	0.0001m ³	2.199 m²/m³
PET liso	556.0 ±	2.8680 ±	0.0160 ±	175.6 ±
01	6.0g	0.0310 m²	0.0001m³	2.351 m²/m³
PET liso	666.0 ±	3.4350 ±	0.0160 ±	210.3 ±
02	6.0g	0.0310 m²	0.0001m³	2.523 m²/m³
PET	446.0 ±	2.2310 ±	0.0160 ±	136.6 ±
lixado 00	6.0g	0.0300 m²	0.0001m³	2.131 m²/m³
PET	556.0 ±	2.7810 ±	0.0160 ±	170.2 ±
lixado 01	6.0g	0.0300 m²	0.0001m³	2.278 m²/m³
PET	666.0 ±	3.3310 ±	0.0160 ±	203.9 ±
lixado 02	6.0g	0.0300 m²	0.0001m³	2.446 m²/m³

Tabela 16 – Massa dos painéis , área estimada dos painéis, volume e compactação dos painéis de PET.

5.4 Vazão Mássica de ar

Conforme os dados da coluna de água obtida a partir da diferença de pressão da placa de orifício da entrada do ventilador centrífugo (Apêndice F) foi possível calcular a vazão mássica do ar de acordo com a equação 5.1 disponível no manual da bancada CUSSONS®.

$$Q = 0.034 \cdot \sqrt{h}$$
 $[m^3/s]$ (5.1)

Sendo *h* a altura da água em milímetros. A altura média da coluna de água obtida de 50 pontos medidas foi de 8.7 ± 0.01 mm. A vazão constante volumétrica de ar foi calculada em 0.10030 ± 5.764 e-5 m³/s de ar. Para esta vazão de ar do ventilador, considerando a área de secção transversal de 0.0900 ± 0.0004 m², teremos uma velocidade no duto de teste de 1.120 ± 0.052 m/s. Essa velocidade concorda com a velocidade ajustada Eq. B.6 (Apêndica B) de 1.16 ± 0.1 m/s obtida com o anemômetro de turbina utilizado nos experimentos.

5.5 Perda de carga dos painéis evaporativos

Os painéis foram construídos para obter o valor mais próximo da perda de carga do painel de celulose, tendo em vista que a geometria dos painéis é muito irregular o que dificulta um valor exatamente igual ao painel de celulose. A tabela 63 do Apêndice E, apresenta a média das perdas de cargas dos painéis evaporativos tomados 50 medidas. A partir dos destes dados, o gráfico em barras (Figura 56) permite visualizar um comparativo das perdas de cargas médias entre os painéis de celulose, PET lixado e PET liso. De acordo com o gráfico, o painel de PET liso apresenta maior perda de carga em todas as configurações. Isto ocorre devido a maior rigidez dos filetes e espessura. O gráfico *boxplot* 57 é utilizado para avaliar a distribuição empírica das perdas de cargas no qual é possível observar a maior amplitude

Figura 56 – Perda de carga entre os painéis evaporativos de PET e celulose

Figura 57 – BoxPlot perda de carga entre os painéis evaporativos de PET e celulose

5.6 Redução de temperatura de bulbo seco

De acordo com os dados do Apêndice G, as tabelas (17, 18 e 19) apresentam uma compilação das informações da redução da temperatura de bulbo seco (diferença entre a temperatura de bulbo seco de entrada e saída) para todos os painéis em função da temperatura de bulbo seco de entrada e umidade relativa de entrada. Estes dados estão apresentados na forma de gráfico nos subtópicos seguintes.

Painéis	30%		40%	/ o	50%	
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ
PET liso 00	7.1	0.1	6.1	0.1	5.0	0.0
PET liso 01	7.3	0.1	6.4	0.1	5.6	0.0
PET liso 02	8.2	0.1	6.7	0.1	5.9	0.1
PET lixado 00	7.7	0.1	6.2	0.1	5.3	0.0
PET lixado 01	8.1	0.0	6.6	0.1	5.6	0.0
PET lixado 02	8.6	0.1	7.0	0.1	5.9	0.1
Celulose	7.9	0.1	6.6	0.0	5.1	0.1

Tabela 17 – Redução da temperatura de bulbo seco de entrada (27 °C) (°C)

Tabela 18 – Redução de temperatura da bulbo seco de entrada (32 °C) (°C)

Painéis	30%		40%		50%	
	$ar{\mu}$	σ	$ar{\mu}$	σ		σ
PET liso 00	8.2	0.1	6.6	0.1	5.5	0.1
PET liso 01	9.1	0.1	7.5	0.1	6.1	0.1
PET liso 02	8.9	0.1	7.6	0.0	6.7	0.0
PET lixado 00	8.6	0.0	6.9	0.1	5.6	0.1
PET lixado 01	9.3	0.1	7.8	0.1	6.2	0.1
PET lixado 02	9.2	0.1	7.9	0.0	6.7	0.1
Celulose	9.2	0.1	7.3	0.0	5.9	0.0

Painéis	30%		40%		50%	
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ
PET liso 00	8.7	0.1	7.5	0.1	6.6	0.1
PET liso 01	10.5	0.1	8.6	0.0	7.1	0.1
PET liso 02	10.5	0.0	8.5	0.1	7.0	0.1
PET lixado 00	9.4	0.1	7.9	0.0	6.9	0.1
PET lixado 01	10.7	0.1	9.0	0.1	7.2	0.0
PET lixado 02	10.8	0.1	8.7	0.1	7.8	0.1
Celulose	9.9	0.1	8.4	0.1	7.4	0.1

Tabela 19 – Redução de temperatura da bulbo seco de entrada (37 ℃) (℃)

As reduções de temperatura visualizadas nos gráficos abaixo estão em concordância com o referencial teórico (seção2.2 e seção 2.5). A análise dos resultados confirma a influência da temperatura de bulbo seco e umidade relativa de entrada na redução da temperatura do ar. Verifica-se que, quanto maior a temperatura de bulbo seco e menor umidade relativa de entrada, é maior a redução de temperatura do ar, o que representa uma característica muito importante para este tipo de sistema de resfriamento quando aplicado a climas quentes e secos. Estes fatores favorecem a troca de calor e massa entre a superfície úmida do painel e ar que atravessa-o. Dessa forma, a redução de temperatura de bulbo seco em um sistema de resfriamento evaporativo é fortemente dependente da quantidade de água evaporada contida na superfície de um painel, tendo em vista que a energia cinética das moléculas de água deve superar a tensão superficial do líquido na interface líquido-vapor. Devido a isto, a evaporação da água ocorre em maiores taxas em função do aumento da temperatura de bulbo seco do e menor umidade relativa de entrada, dado que há uma maior energia cinética das moléculas na água e menor concentração de vapor no ar. Além disso, a quantidade de água evaporada a partir de uma superfície úmida é condicionada à pressão de vapor do ar úmido, de tal forma que mantendo constante a temperatura de bulbo seco e variando a umidade do ar, a maior diferença de temperatura ocorrerá no ponto de baixa umidade do ar. Isto pode ser comprovado através da carta psicrométrica (Figura 58) observando os estados "A" e "B" do painel de PET lixado 02 no gual temos a pressão de vapor no estado "A" maior que a pressão no estado "B", $Pv_a > Pv_b$. Outro fator importante é a turbulência provocada pelo ar em movimento e por convecção

térmica, que possibilita arrastar o vapor das camadas em contato com a superfície úmida mantendo contínuo o processo de evaporação.

Figura 58 – Carta psicrométrica dos estados "A" (37 °C, 40%) e "B" (37 °C, 30%)

5.6.1 Redução da temperatura de bulbo seco em função da umidade relativa de entrada e temperatura de bulbo seco constante

Os gráficos a seguir permitem visualizar as reduções de temperatura em função da variação da umidade relativa do ar de entrada para todos os painéis avaliados.

Figura 59 – Redução da temperatura de bulbo seco em função da umidade relativa de entrada e temperatura de bulbo seco de entrada constante de 27 °C

Figura 60 – Redução da temperatura de bulbo seco em função da umidade relativa de entrada e temperatura de bulbo seco de entrada constante de 32 °C

Figura 61 – Redução da temperatura de bulbo seco em função da umidade relativa de entrada e temperatura de bulbo seco de entrada constante de 37 °C

5.6.2 Redução da temperatura de bulbo seco em função da temperatura de bulbo seco de entrada e umidade de entrada constante.

Os gráficos a seguir permitem visualizar as diferenças de temperaturas (entrada - saída) em função da variação da temperatura de bulbo seco de entrada.

Figura 62 – Redução da temperatura de bulbo seco em função da temperatura de bulbo seco de entrada e umidade relativa constante de 30%

Figura 63 – Redução da temperatura de bulbo seco em função da temperatura de bulbo seco de entrada e umidade relativa constante de 40%

Figura 64 – Redução da temperatura de bulbo seco em função da temperatura de bulbo seco de entrada e umidade relativa constante de 50%

5.7 Análise da efetividade dos painéis evaporativos

A efetividade de um resfriador evaporativo é definida como a taxa entre a queda real de temperatura de bulbo seco e a máxima queda teórica que a temperatura de bulbo seco poderia ter se o resfriador fosse 100% eficiente e o ar saísse saturado. Neste caso a temperatura de bulbo seco na saída seria igual à temperatura de bulbo úmido do ar na entrada (COMPANY, 1978). De acordo com o exposto, quanto mais próximo a temperatura de bulbo seco de saída do painel estiver da temperatura de bulbo úmido, será maior efetividade de resfriamento evaporativo. Nas tabelas abaixo temos as efetividades de resfriamento dos painéis evaporativos de PET e celulose.

Painéis	30%		40%	ว	50%	
	$ar{\mu}$	σ	$ar{\mu}$		$ar{\mu}$	σ
PET liso 00	61.40	0.74	63.88	0.90	64.81	0.50
PET liso 01	63.19	0.70	67.74	0.80	72.75	0.40
PET liso 02	71.07	0.50	70.97	0.50	76.23	0.70
PET lixado 00	67.11	0.50	65.40	0.60	69.30	0.70
PET lixado 01	70.47	0.40	69.00	0.80	72.70	0.30
PET lixado 02	75.19	0.60	72.84	0.80	76.77	0.70
Celulose	68.33	0.80	69.64	0.70	65.51	1.00

Tabela 20 – Efetividade (%) dos painéis evaporativos de PET e celulose avaliado na temperatura de 27 °C e umidade variável entre 30 e 50%

Tabela 21 – Efetividade (%) dos painéis evaporativos de PET e celulose avaliado na temperatura de 32 °C e umidade variável entre 30 e 50%

Paineis	30%		40%		50%		
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	
PET liso 00	62.56	0.40	61.78	1.00	65.60	1.20	
PET liso 01	69.71	0.40	70.09	0.60	72.14	0.90	
PET liso 02	68.57	0.60	71.01	0.40	77.01	0.80	
PET lixado 00	66.07	0.70	64.01	0.90	66.12	1.20	
PET lixado 01	71.44	0.80	73.22	0.80	72.89	0.80	
PET lixado 02	70.90	0.50	73.29	0.90	79.04	1.00	
Celulose	70.96	0.50	68.06	0.70	69.76	0.70	
Paineis	30%		40%	>	50%		
------------------	-----------	----------	-----------	----------	-----------	----------	--
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	
PET liso 00	60.31	0.70	64.21	0.50	70.74	1.10	
PET liso 01	72.87	0.50	72.66	0.60	75.55	0.50	
PET liso 02	72.85	0.20	72.09	1.00	74.75	1.60	
PET lixado 00	64.99	0.50	67.23	0.60	72.75	1.30	
PET lixado 01	74.25	0.40	76.06	0.90	76.35	1.10	
PET lixado 02	75.36	0.70	73.64	0.40	82.49	1.10	
Celulose	68.87	0.60	70.67	0.40	79.09	1.30	

Tabela 22 – Efetividade (%) dos painéis evaporativos de PET e celulose avaliado na temperatura de 37 °C e umidade variável entre 30 e 50%

A efetividade encontrada nos resultados experimentais evidencia a situação no qual a efetividade dos painéis aumenta em função da temperatura de bulbo seco e umidade relativa de entrada. Este resultado contrasta com os trabalhos de outros autores citados nesta dissertação, segundo os quais, informam que a efetividade é maior em climas quentes e secos. Camargo (2003) apresenta a metodologia e os resultados dos ensaios de desempenho e de conforto térmico de um climatizador RED ECOBRISA 20, no qual conclui que este tipo de sistema apresenta maior efetividade em climas mais secos (Figura 65). Em outro cenário, partindo dos dados disponíveis na tabela de redução de temperatura confeccionada pela empresa BASENGE® (www.basenge.com.br) (Anexo) para um painel de celulose, foi possível desenhar os gráficos a partir do cálculo das efetividades em função da umidade relativa de entrada. Podemos observar que na faixa de umidade entre 30 e 50% os resultados do painel da empresa BASENGE® concordam com os resultados apresentados neste trabalho. Este fato é explicável em função da temperatura de bulbo seco de saída do painel ser mais próxima da temperatura de bulbo úmido de entrada.

Figura 65 – Efetividade em função da umidade de entrada (CAMARGO, 2003) Fonte: CAMARGO, 2003

Figura 66 – Efetividade painel de celulose em função da umidade relativa de entrada a 27 °C constante

Figura 67 – Efetividade painel de celulose em função da umidade relativa de entrada a 32 °C constante

Figura 68 – Efetividade painel de celulose em função da umidade relativa de entrada a 37 °C constante

5.7.1 Efetividade média em função da umidade relativa de entrada.

Os gráficos a seguir apresentam a efetividade em função da umidade relativa de entrada para temperatura de bulbo seco de entrada constante.

Figura 69 – Efetividade de resfriamento evaporativo em função da umidade relativa de entrada e temperatura de bulbo seco constante de 27 ℃

Figura 70 – Efetividade de resfriamento evaporativo em função da umidade relativa de entrada e temperatura de bulbo seco constante de 32 ℃

Figura 71 – Efetividade de resfriamento evaporativo em função da umidade relativa de entrada e temperatura de bulbo seco constante de 37 ℃

5.7.2 Efetividade média em função da temperatura de bulbo seco de entrada e umidade de entrada constante.

Figura 72 – Efetividade de resfriamento evaporativo em função da temperatura de bulbo seco de entrada e umidade relativa de entrada constante de 30%

Figura 73 – Efetividade de resfriamento evaporativo em função da temperatura de bulbo seco de entrada e umidade relativa de entrada constante de 40%

5.8 Coeficiente de transferência de calor h_c e massa h_m

O coeficiente de transferência de calor h_c convecção pode ser definido como a relação de transferência de calor entre uma superfície sólida e um fluido por unidade de área superficial por unidade de diferença de temperatura (CENGEL; GHAJAR, 2012). A partir da Eq.2.33 foi possível calcular o coeficiente de transferência de calor (h_c) . O procedimento de cálculo foi realizado no software EES (Engineering Equation Solver) conforme código disponível no Apêndice I.

1) Coeficiente de transferência de calor hc

Painéis	30%		40%	6	50%		
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	
pet liso 00	45.22	0.93	49.00	1.24	50.79	0.70	
pet liso 01	37.70	0.70	42.82	0.90	50.34	0.63	
pet liso 02	38.52	0.51	39.03	0.51	46.48	0.94	
pet lixado 00	53.50	0.74	51.91	0.83	58.84	1.18	
pet lixado 01	47.00	0.51	45.90	1.08	51.86	0.41	
pet lixado 02	44.63	0.72	42.95	0.96	48.74	1.01	
celulose	19.59	0.42	20.65	0.43	18.97	0.51	

Tabela 23 – Coeficiente de transferência de calor hc para temperatura de bulbo seco de 27 ℃ e umidade variável entre 30 e 50%

Tabela 24 – Coeficiente de transferência de calor hc para temperatura de bulbo seco de 32 °C e umidade variável entre 30 e 50%

Painéis	30%		40%	6	50%		
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	
pet liso 00	46.88	0.56	47.25	1.27	52.48	1.77	
pet liso 01	45.50	0.53	47.05	0.73	50.10	1.19	
pet liso 02	36.33 0.66		40.32	0.39	49.65	1.21	
pet lixado 00	53.17	1.00	51.66	1.26	55.14	1.84	
pet lixado 01	48.99	1.15	52.89	1.22	52.92	1.24	
pet lixado 02	40.16	0.54	43.83	1.08	51.63	1.46	
celulose	21.16	0.28	20.12	0.39	21.65	0.43	

Painéis	30%		40%	6	50%		
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	
pet liso 00	45.48	0.83	52.48	0.64	65.40	1.97	
pet liso 01	50.57	0.64	52.74	0.90	58.59	0.86	
pet liso 02	34.73	0.48	33.70	0.54	38.20	0.76	
pet lixado 00	51.48	0.67	56.77	0.97	68.30	2.62	
pet lixado 01	53.66	0.61	59.06	1.61	62.66	2.12	
pet lixado 02	46.72	1.05	47.09	0.54	62.74	2.27	
celulose	20.56	0.37	22.73	0.28	29.44	1.16	

Tabela 25 – Coeficiente de transferência de calor hc para temperatura de bulbo seco de 37 ℃ e umidade variável entre 30 e 50%

O coeficiente de transferência de calor é fortemente influenciado pela natureza do fluido, velocidade do escoamento e geometria do objeto observado. O painel de PET apresentou o maior coeficiente de transferência h_c em relação ao painel de celulose em todos os testes. Este fato indica que o painel de PET é mais eficiente na troca de calor por convecção que o painel de celulose e uma causa provável é o escoamento turbulento do ar entre os filetes de PET em função da sua geometria irregular no qual favorece a formação de vórtices. A variabilidade dos coeficientes h_c dos painéis de PET ocorre em função da alteração da geometria dos painéis causado por manipulação. Já o painel de celulose não apresenta variabilidade significativa comparado com o painel de PET devido sua geometria ser regular. Além disto, o painel de celulose apresenta menor coeficiente h_c , porém é compensado pela maior área que resulta em efetividade comparável àos painéis de PET.

2) Coeficiente de transferência de massa *h_m*

Painéis	30%		409	%	50%		
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	
pet liso 00	0.0085	0.0001	0.0112	0.0002	0.0112	0.0000	
pet liso 01	0.0066	0.0001	0.0090	0.0001	0.0095	0.0002	
pet liso 02	0.0078	0.0001	0.0061	0.0001	0.0085	0.0002	
pet lixado 00	0.0095	0.0001	0.0085	0.0001	0.0092	0.0001	
pet lixado 01	0.0086	0.0000	0.0098	0.0001	0.0070	0.0003	
pet lixado 02	0.0084	0.0001	0.0088	0.0000	0.0064	0.0000	
celulose	0.0039	0.0000	0.0042	0.0000	0.0044	0.0000	

Tabela 26 – Coeficiente de transferência de calor hm para temperatura de bulbo seco de 27 ℃ e umidade variável entre 30 e 50%

Tabela 27 – Coeficiente de transferência de calor hm para temperatura de bulbo seco de 32 ℃ e umidade variável entre 30 e 50%

Painéis	30%		409	%	50%		
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	
pet liso 00	0.0090	0.0001	0.0106	0.0001	0.0114	0.0002	
pet liso 01	0.0098	0.0001	0.0101	0.0001	0.0104	0.0001	
pet liso 02	0.0068	0.0001	0.0092	0.0000	0.0091	0.0001	
pet lixado 00	0.0118	0.0001	0.0120	0.0002	0.0132	0.0007	
pet lixado 01	0.0099	0.0001	0.0109	0.0001	0.0115	0.0001	
pet lixado 02	0.0079	0.0000	0.0094	0.0001	0.0076	0.0001	
celulose	0.0040	0.0000	0.0045	0.0000	0.0048	0.0000	

Painéis	30%		40%	6	50%		
	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	
pet liso 00	0.0097	0.0001	0.0100	0.0003	0.0089	0.0005	
pet liso 01	0.0108	0.0000	0.0117	0.0001	0.0105	0.0001	
pet liso 02	0.0061	0.0001	0.0055	0.0001	0.0060	0.0001	
pet lixado 00	0.0124	0.0002	0.0139	0.0001	0.0099	0.0004	
pet lixado 01	0.0113	0.0000	0.0122	0.0001	0.0101	0.0003	
pet lixado 02	0.0084	0.0001	0.0103	0.0000	0.0093	0.0001	
celulose	0.0045	0.0000	0.0049	0.0000	0.0036	0.0002	

Tabela 28 – Coeficiente de transferência de calor hm para temperatura de bulbo seco de 37 ℃ e umidade variável entre 30 e 50%

O coeficiente de transferência de massa por convecção h_m é dependente da diferença de concentração de vapor de água no ar. Da mesma forma como ocorreu com o coeficiente de transferência de calor, os painéis de PET apresentam maior coeficientes de transferência de massa e dois fatores podem estar contribuindo para este comportamento: a geometria dos painéis como ja mencionado anteriormente e diferenças de capilaridade na superfície dos materiais.

5.8.1 Coeficiente de transferência de calor por convecção em função da temperatura de bulbo seco e umidade relativa constante

Figura 74 – Coeficiente de transferência de calor por convecção em função da temperatura de bulbo seco e umidade relativa constante de 30%

Figura 75 – Coeficiente de transferência de calor por convecção em função da temperatura de bulbo seco e umidade relativa constante de 40%

Figura 76 – Coeficiente de transferência de calor por convecção em função da temperatura de bulbo seco e umidade relativa constante de 50%

5.8.2 Coeficiente de transferência de massa em função da umidade relativa e temperatura de bulbo seco constante

Figura 77 – Coeficiente de transferência de calor por convecção em função da umidade relativa e temperatura de bulbo seco constante de 27 °C

Figura 78 – Coeficiente de transferência de calor por convecção em função da umidade relativa e temperatura de bulbo seco constante de 32°C

Figura 79 – Coeficiente de transferência de calor por convecção em função da umidade relativa e temperatura de bulbo seco constante de 37 °C

5.9 Relações de Nusselt e Sherwood

Dowdy, Reid e Handy (1993) determinaram a correlação dos números admensionais de Nusselt e Sherwood com o comprimento característico $(\frac{l_e}{l})$ na forma:

$$Nu = C_1 \left(\frac{l_e}{l}\right)^{n_1} Re^{m_1} Pr^{\frac{1}{3}} \left(\frac{Pr}{Pr_s}\right)^{\frac{1}{4}}$$
(5.2)

$$Sh = C_2 \left(\frac{l_e}{l}\right)^{n_2} Re^{m_2} Sc^{\frac{1}{3}} \left(\frac{Sc}{Sc_s}\right)^{\frac{1}{4}}$$
(5.3)

Sendo $Pr_S e Sc_S$ são respectivamente o número de Prandtl e o número de Schmidt, ambos à temperatura da água. A razão desta correlação ocorre porque a troca de calor e massa está relacionada com a área de contato entre os fluidos e esta depende da espessura do painel evaporativo, l.

5.9.1 Nusselt

A velocidade do ar se manteve constante, dessa forma não houve variação do número de Reynolds para o escoamento no interior da bancada CUSSONS. Além disto, número de Prandtl também se mantém constante dado que é a razão entre a viscosidade cinemática do ar seco na temperatura de entrada e difusidade térmica a temperatura de entrada. Desta forma definimos a constante K_1 como:

$$K_1 = C_1 R e^{m_1} P r^{\frac{1}{3}} \left(\frac{Pr}{Pr_s}\right)^{\frac{1}{4}}$$
(5.4)

Substituindo na equação X e aplicando logarítmo nos dois termos, temos:

$$log(Nu) = log(K_1(\frac{l_e}{l})^{\frac{1}{4}})^{n_1}$$
(5.5)

$$log(Nu) = log(K_1) + n_1 log(\frac{l_e}{l})^{\frac{1}{4}}$$
 (5.6)

De acordo com os dados psicrométricos para os painéis de PET liso e lixado (Apêndice G), foi possível determinar o coeficiente de determinação R^2 e parâmetro n_1 através de regressão linear (Tabela 29)

Figura 80 – Reta relação de Nusselt para painéis de PET liso e lixados nas configurações "00", "01" e "02"

Painel	Coeficiente de Determinação	Parâmetro n1
Liso	0.8268	1.5649
Lixado	0.8420	1.3673

5.9.2 Sherwood

Seguindo o mesmo raciocínio da sessão 6 e sabendo que o número de Schmidt é a razão entre a viscosidade cinemática do ar seco na temperatura de entrada e o coeficiente de difusão na entrada do painel, definimos K_2 como:

$$K_2 = C_2 R e^{m_2} S c^{\frac{1}{3}} \left(\frac{Sc}{Sc_s}\right)^{\frac{1}{4}}$$
(5.7)

Substituindo na equação XX e aplicando logarítmo nos dois termos, temos:

$$log(Sh) = log(K_2(\frac{l_e}{l})^{\frac{1}{4}})^{n_2}$$
(5.8)

$$log(Sh) = log(K_2) + n_2 log(\frac{l_e}{l})^{\frac{1}{4}}$$
 (5.9)

De acordo com os dados psicrométricos para os painéis de PET liso e lixado (Apêndice G), foi possível determinar o coeficiente de determinação R^2 e parâmetro n_2 através de regressão linear (Tabela)

Figura 81 – Reta relação de Sherwood para painéis de PET liso e lixados nas configurações "00", "01" e "02"

Painel	Coeficiente de determinação	Parâmetro n2
Liso	0.7686	1.7652
Lixado	0.7887	1.6245

Tabela 30 – Coeficiente de deterninação e parâmetro n2 para a relação de Sherwood

6 CONCLUSÕES E TRABALHOS FUTUROS

6.1 Conclusões

A importância deste trabalho pode ser caracterizada pela falta, na literatura técnica, de um trabalho experimental com relação as características de resfriamento evaporativo e efetividade de painéis de filetes de plástico PET no qual os painéis foram submetidos a variação de temperatura de bulbo seco e umidade relativa.

O resfriamento evaporativo, embora ainda pouco difundido no Brasil, possui um grande potencial como alternativo de conforto térmico em relação ao modelo convencional de condicionamento de ar por compressão de gás. O Brasil apresenta potencial favorável ao resfriamento evaporativo em grande parte de nosso território, principalmente na região do semi-árido e semi-úmido em função dos climas quentes e baixa umidade a maior parte do ano. Além disso a região do semi-árido apresenta maior potencial de aplicação tendo em vista os fatores climáticos e sociais (deficiência de recurso hídricos e energéticos, e população de 25 milhões de habitantes de baixo IDH).

O material PET na forma original é muito hidrofóbico, ou seja apresenta baixíssima absorção e retenção de água. No entanto, os experimentos demostraram que o tratamento mecânico de lixamento da superfície a redução da hidrofobia do PET ocasionando a retenção de uma fina camada (filme) de água na superfície. Esta fina camada de água é importante no processo de transferência de calor e massa de tal forma que o painel de PET lixado apresentou vantagem de resfriamento evaporativo frente ao painel de PET liso. Os experimentos de massa seca e massa molhada demonstraram vantagem significativa das amostras lixadas com lixa d'água com granulação 60 frente as outras amostras lixadas com outras configurações de lixas.

Considerando a grande produção de embalagens de plastico PET os impactos ambientais causados pelo descarte incorreto das garrafas PET, os painéis desenvolvidos com filetes de PET podem ser uma alternativa ecológica de resfriamento de baixo custo destinado, principalmente, à população da região semi-árido.

A temperatura da água de recirculação foi um importante parâmetro para determinar o instante de equilíbrio de troca de calor e massa entre o painel molhado e o fluxo de ar. De acordo com os dados, quando a temperatura da água se mantém constante próximo da temperatura de bulbo úmido, os outros dados se mantém estáveis próximo da média calculada.

A análise dos resultados confirma a influência da temperatura de bulbo seco e umidade relativa de entrada na redução da temperatura do ar. Verifica-se que, quanto maior a temperatura de bulbo seco e menor umidade relativa de entrada, é maior a redução de temperatura do ar, o que representa uma característica muito importante para este tipo de sistema de resfriamento quando aplicado a climas quentes e secos - este fato confirma os dados apresentados da literatura presente na bibliografia.

A efetividade, de acordo com o exposto no tópico 2.5.1, é a relação entre a redução de temperatura promovida pela troca de calor e massa entre a superfície do painel úmido e a máxima redução possível (diferença entre a temperatura de bulbo seco de entrada e temperatura de bulbo úmido) para um sistema de resfriamento evaporativo direto. Observa-se nos experimentos que houve um aumento da efetividade em função da temperatura de bulbo seco e umidade relativa contrastando com a expectativa inicial. No entanto, este fato é explicável em função da temperatura de bulbo úmido se aproximar da temperatura de bulbo seco de entrada do painel conforme variação da umidade relativa de entrada do ar. Além disso os gráficos da efetividade para o painel de celulose da empresa BASENGE® mostram também essa relação para os intervalos de temperatura e umidade experimentados.

O painel de PET lixado "02" apresentou a maior redução de temperatura em várias avaliações conforme as tabelas (17, 18 e19) e figuras (59, 60, 61, 62, 63 e 64), superando até o painel de celulose com o máximo de 0.9° C de diferença. A efetividade do painel de PET lixado 02 também se superior em várias avaliações conforme as tabelas (20, 21e 22) e figuras (69, 70, 71, 72, 73 e 74) com o máximo de 11.26% (27 °C 50%). Os painéis de PET apresentam maior coeficiente de transferência de calor e massa que o painel de celulose, indicando que a geometria adotada conforme as condições psicrométricas definidas determina maior eficiência termodinâmica.

As relações de Nusselt e Sherwood foram determinadas considerando constantes as características relacioandas às propriedades do ar no qual foi possível calcular os coeficientes n_1 e n_2 mantendo o número de Reynolds constante.

6.2 Sugestões para trabalhos futuros

Como sugestão para futuros trabalhos nesta área pode-se citar:

- Construção de um climatizador de baixo custo que utilize filetes de garrafas PET para famílias carentes;
- Construção de um túnel de vento específico para ensaios de painéis evaporativos;
- 3) Realizar outros experimentos com outras geometrias para os filetes de PET;
- Realizar outros experimentos com os mesmos painéis variando a velocidade do ar;

- Determinar as correlações de Nusselt e Sherwood para transferência de calor e massa;
- 6) Realizar experimentos com cortes das garrafas diferentes do de filetes;
- Elaborar outros painéis de filetes de PET utilizando outros tratamentos (físicos ou químicos) da superfície;
- 8) Avaliar a relação entre o índice de rugosidade superficial das amostras de plastico PET e retenção de água na superfície.

Referências

ALMEIDA, A. L. F. S. d'. *Influência de Tratamentos Superficiais no Comportamento Mecânico de Compósitos Poliméricos Reforçados por Fibras Lignocelulósicas*. 2007. 336 p. Tese (Tecnologia de Processos Químicos e Bioquímicos) — Universidade Federal do Rio de Janeiro. Disponível em: http://186.202.79.107/download/influencia-de-tratamentos-superficiais-no-comportamento-mecanico-de-compositos.pdf. Citado na página 54.

ARAÚJO, S. D. O. Análise do desempenho térmico de fibras vegetais em sistemas de resfriamente evaporativo. 2006. 78 p. Dissertação (Engenharia Mecânica) — Universidade Federal de Pernambuco. Disponível em: http://repositorio.ufpe.br/handle/123456789/5577>. Citado 4 vezes nas páginas 35, 53, 54 e 55.

ARAÚJO, S. M. S. de. A região semiárida do nordeste do brasil: Questões ambientais e possibilidades de uso sustentável dos recursos. *Rios Eletrônica - Revista Científica da FASETE*, Paulo Afonso - BA, n. 05, p. 89 – 98, Dezembro 2011. ISSN 1982 - 0577. Disponível em: http://www.fasete.edu.br. Citado na página 34.

ASHRAE. ASHRAE STANDARD 41.6 - Methods for measurement of moist air properties. Atlanta, 1994. Disponível em: https://www.ashrae.org/resources--publications-. Citado na página 39.

ASHRAE. *ASHRAE Standard 55*. 55. ed. N.E. Atlanta, 2010. Disponível em: <https://www.ashrae.org>. Citado na página 30.

BOLES, M. A.; CENGEL, Y. A. *Termodinâmica*. [S.I.: s.n.], 2013. v. 1. ISBN 9788580552003. Citado 2 vezes nas páginas 38 e 40.

BOM, G. J. et al. *Evaporative Air-Conditioning Applications for Environmentally Friendly Cooling*. Washington, D.C, 1999. Citado 2 vezes nas páginas 48 e 51.

CAMARGO, J. R. *Análise de Métodos para Avaliar a Viabilidade Técnica de Sistemas de Resfriamento Evaporativo Aplicados ao Condicionamento de Ar para Conforto*. 1999. 97 p. Dissertação (Engenharia Mecânica) — Universidade de Taubaté. Disponível em: http://repositorio.unesp.br/bitstream/handle/11449/106460/camargo_jr_dr_guara. pdf?sequence=1>. Citado 2 vezes nas páginas 47 e 48.

CAMARGO, J. R. *Sistemas de resfriamento evaporativo-adsortivo aplicados ao condicionamento de ar*. 2003. 140 p. Tese (Engenharia Mecânica) — Universidade Estadual Paulista. Disponível em: http://repositorio.unesp.br/bitstream/handle/11449/106460/ camargo_jr_dr_guara.pdf?sequence=1>. Citado na página 108.

CAMARGO, J. R. Resfriamento evaporativo: poupando energia e o meio ambiente. *Revista Ciências Exatas*, Taubaté, v. 9/10, n. 1-2, p. 69 – 75, 2004. Citado na página 34.

CAMARGO, J. R. *Resfriamento evaporativo - Climatização ecológica*. 1. ed. Rio de Janeiro: Ciência Moderna, 2009. ISBN 987857393795-4. Citado na página 39.

CAMARGO, J. R.; SANTOS, T. S. dos. THE USE OF FIBER WOOD AS EVAPORATIVE PAD PACKAGING MATERIAL. In: ABCM, 2010, João Pessoa-PB. *VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA*. 2010. p. 1502 – 1518. Disponível em: http://www.abcm.org.br/anais/conem/2010/pdf/CON10-1502.pdf). Citado na página 35.

CAMARGO, J. R.; TRAVELHO, J. dos S.; CARDOSO, S. Utilização do resfriamento evaporativo para conforto térmico humano em diversas cidades brasileiras. *Conem*, Natal-RN, 2000. Disponível em: http://www.abcm.org.br/anais/conem/2000/MC9580. pdf>. Citado na página 46.

CAROSSI, G. de A. B. *Resfriamento evaporativo*: estudo do potencial de sua aplicação no Brasil. 2006. 127 p. Dissertação (Engenharia Mecânica) — Universidade Federal de Uberlândia. Disponível em: https://repositorio.ufu.br/handle/123456789/14816>. Citado na página 30.

CASTILHOS, L. F. F. de. *Aproveitamento da fibra de coco*. [S.I.], 2011. Disponível em: ">http://sbrt.ibict.br/dossie-tecnico/downloadsDT/NTY0MA==>. Citado na página 53.

CASTRO, W. P. de; PIMENTA, J. M. D. Modelagem e simulação de painéis evaporativos diretos. In: BRAZ. SOC. OF MECHANICAL SCIENCES AND ENGINEE-RING – ABCM, 2004, Rio de Janeiro-RJ. *Proceedings of the 10o Brazilian Congress of Thermal Sciences and Engineering – ENCIT 2004*. 2004. Disponível em: <http://www.abcm.org.br/anais/encit/2004/artigos/symp_thermal/CIT04-0500.pdf>. Citado 5 vezes nas páginas 47, 62, 65, 68 e 69.

CENGEL, Y. A.; GHAJAR, A. J. *Transferência de Calor e Massa - Uma Abordagem Prática*. 4. ed. Porto Alegre - RS: AMGH Editora Ltda, 2012. ISBN 9788580551273. Citado 2 vezes nas páginas 45 e 113.

COELHO, T. M.; CASTRO, R. de. *Logística reversa no Brasil*. 2010. Dissertação (Mestrado) — Universidade Estadual Paulista (UNESP). Disponível em: http://hdl.handle.net/11449/92978>. Citado na página 60.

COMPANY, T. Trane air conditioning manual. [S.I.], 1978. Citado na página 106.

COSTA, J. A. P. da. *Utilização de materiais alternativos como enchimento de torres de resfriamento*. 2006. 190 p. Dissertação (Engenharia Mecânica) — Universidade Federal de Pernambuco. Disponível em: ">http://repositorio.ufpe.br/bitstream/handle/123456789/5550/arquivo7609_1.pdf?sequence=1&isAllowed=y>. Citado 4 vezes nas páginas 35, 54, 55 e 57.

CUNHA, A. R. D.; VOLPE, C. A. Medidas Automatizadas De Psicrômetro De Termopar Aspirado Versus Não Aspirado. *Revista Brasileira de Meteorologia*, v. 29, n. 02, p. 271 – 280, Agosto 2013. ISSN 1982-4351. Disponível em: http://www.scielo.br/pdf/rbmet/v29n2/a10v29n2.pdf>. Citado na página 39.

DOMINGOS, B. E. M. *Métodos para o conforto térmico e acústico em habitações de contêineres*. 2014. 70 p. Monografia (Pós-Graduação em Projeto Arquitetônico) — Universidade Estadual de Londrina, Londrina-PR. Disponível em: http://docslide.com. br/>. Citado na página 31.

DOWDY, J. A.; REID, R. L.; HANDY, E. T. Experimental Determination of Heat And Mass Transfer Coefficients In Rigid Impregnated Cellulose Evaporative media. *ASHRAE Transactions (2A)*, ASHARE, Nashville, v. 92, p. 382 – 395, 1993. Acesso em: 17/08/2017. Citado na página 120.

FREITAS, E. F. de. *Construção de uma bancada otimizada para estudo de painéis evaporativos e ensaios de painéis de fibras vegetais*. 2007. 56 p. Monografia (Engenharia Mecânica) — Universidade de Brasília. Citado na página 54.

GATLEY, D. P. *Understanding psychrometrics*. 3. ed. [S.I.], 2013. Citado 2 vezes nas páginas 39 e 40.

GUAN, L.; BENNETT, M.; BELL, J. Evaluating the potential use of direct evaporative cooling in Australia. *Energy and Buildings*, Elsevier, n. 108, p. 185 – 194, setembro 2015. ISSN 0378-7788. Disponível em: <www.elsevier.com/locate/enbuild>. Acesso em: 11/2016. Citado na página 46.

GUIMARÃES, B. M. G. *Estudo das características físico-químicas de fibras têxteis vegetais de espécies de Malvaceae*. 2014. 170 p. Dissertação (Programa de Pós-Graduação em Têxtil e Moda) — Universidade de São Paulo, São Paulo. Disponível em: http://www.teses.usp.br/teses/disponiveis/100/100133/tde-22042014-230234/ publico/DissertacaoCorrigidaBARBARA.pdf>. Citado na página 55.

HELENE, O. A. M.; VANIN, V. R. *Tratamento estatístico de dados em física experimental.* 2. ed. São Paulo- SP: Edgard Blücher, 1991. Citado na página 78.

IBGE. *Mapa clima do Brasil*. 2002. Disponível em: <http://mapas.ibge.gov.br/tematicos>. Acesso em: 10/10/2016. Citado na página 33.

IBGE, I. B. de Geografia e E. . Censo Demográfico 2010. *Censo 2010*, 2011. Disponível em: http://www.ibge.gov.br. Citado na página 33.

KOWALTOWSKI, D. C. C. K. Arquitetura Escolar - o Projeto do Ambiente de Ensino . 1. ed. [S.I.]: Oficina de Textos, 2011. Citado na página 32.

MACHADO, R. de C. *Plástico e meio ambiente uma relação possível?* 2011. Disponível em: . Acesso em: 20/03/2017">http://www.cienciaecultura.ufba.br/agenciadenoticias/opiniao/plastico-e-meio-ambiente-uma-relacao-possivel/>. Acesso em: 20/03/2017. Citado na página 59.

MARTIN, A. R.; MARTINS, L. H. C. M. M. A.; SILVA, O. R. R. F. Caracterização Química e Estrutural de Fibra de Sisal da Variedade Agave sisalana. *Polímeros: Ciência e Tecnologia*, São Carlos, v. 19, n. 01, p. 40 – 46, 2009. ISSN 1678-5169. Disponível em: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-14282009000100011). Citado na página 55.

MCROBERTS, M. Arduino Básico. 1. ed. São Paulo - SP: Novatec, 2011. ISBN 978-85-7522-274-4. Citado na página 78.

MUNTERS. Sistema de ventilação com resfriamento do ar através do processo natural de evaporação da água. Curitiba-PR, 1999. Citado na página 34.

NAVARRO, R.; MEDEIROS, J.; MAIA, D. Determinação do Conteúdo de Celulose e Lignina em Fibras de Luffa Cilíndrica. In: *Anais do 1o Congresso Brasileiro de Polímeros*. [S.I.: s.n.], 1991. v. 02. Citado na página 54.

OLGYAY, V. *Design With Climate*: Bioclimatic Approach to Architectural Regionalism. 4. ed. New Jersei-US: Princeton University Press, 1973. ISBN 0691079439. Citado na página 31.

OLIVEIRA, A. C. C. T. Análise da utilização de gargalos e fios de garrafa pet Como enchimento de torres de resfriamento. 2009. 144 p. Dissertação (Engenharia Mecânica) — Universidade Federal de Pernambuco. Disponível em: ">http://repositorio.ufpe.br/bitstream/handle/123456789/5339/arquivo3891_1.pdf?sequence=1&isAllowed=y>. Citado 3 vezes nas páginas 35, 57 e 58.

OLIVEIRA, A. K. da R. *Modificação superficial do pet (poli tereftalato de etileno) para beneficiamento na reciclagem*. 2011. 100 p. Dissertação (Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais) — Universidade Federal do Rio Grande do Sul, Porto Alegre. Disponível em: http://www.lume.ufrgs.br/handle/10183/61006>. Citado na página 61.

OLIVEIRA, R. S. de. Análise experimental e numérica da eficiência de resfriamento de painéis de fibras vegetais utilizados em sistemas de resfriamento evaporativo. 2011. Dissertação (Mestrado) — UFPE, acesso em 15 Abr.2016. Disponível em: http://repositorio.ufpe.br/bitstream/handle/123456789/5577/arquivo7623_1.pdf? sequence=1&isAllowed=y>. Citado 4 vezes nas páginas 35, 53, 54 e 55.

PANNIRSELVAM, P. V. et al. Desenvolvimento de projeto para produção de fibra de coco com inovação de tecnologia limpa e geração de energia. *Revista Analytica*, Fevereiro/Março 2005. Disponível em: ">https://www.academia.edu/>. Citado na página 53.

PET, A. A. B. da Indústria do. *Indústria do PET no Brasil*. [S.I.], 2013. Disponível em: br/>. Citado na página 60.">http://www.abipet.org.br/>br/>. Citado na página 60.

PIMENTA, J. Psicrometria. Brasília, 2009. Nota de aulas - Slides. Citado na página 42.

PUCKORIUS, P. R.; THOMAS, P. T.; AUGSPURGER, R. L. Why evaporative coolers have not caused legionnaires disease. *ASHRAE Journal*, p. 29 – 33, Janeiro 1995. Citado na página 51.

QUIRINO, J. P. R. de S. *Doença dos Legionários*: Uma Revisão Crítica. 2011. 59 p. Monografia (Ciências Farmacêuticas) — Universidade Fernando Pessoa, Porto - PT. Disponível em: http://bdigital.ufp.pt/handle/10284/2455>. Citado na página 52.

RUAS, A. C. *Conforto Térmico nos Ambientes de Trabalho*. 1. ed. [S.I.], 1999. Disponível em: <www.fundacentro.gov.br/>. Citado na página 30.

SABOYA, A. *Semiárido em transformação*: panorama sócio-econômico e entraves para o desenvolvimento . 2010. Disponível em: https://criseoportunidade.wordpress.com/. Acesso em: 25/12/2016. Citado na página 33.

SANTAMOURIS, M. *Advances in Passive Cooling*. 1. ed. London - UK: Earthscan, 2007. ISBN 978-1-84407-263-7. Citado 2 vezes nas páginas 47 e 50.

SCHNEIDER, P. S. *Termometria e Psicrometria*. [S.I.], 2012. Disponível em: <www. geste.mecanica.ufrgs.br>. Citado na página 38.

SILVA, C. E. da. Comparação de painéis evaporativos de argila expandida e celulose para sistemas de resfriamento evaporativo adiabático do ar em galpões avícolas com pressão negativa em modo túnel . 2002. 77 p. Tese (Pós-Graduação em Engenharia Agrícola) — Universidade Federal de Viçosa. Disponível em: http://arquivo.ufv.br/dea/ambiagro/arquivos/TesedeCláudioElias2002.pdf>. Citado 3 vezes nas páginas 35, 45 e 56.

SILVA, J. de Sousa e. *Secagem e armazenagem de produtos agrícolas*. 2. ed. Viçosa – MG: Editora Aprenda Fácil, 2008. ISBN 978-85-62032-00-4. Disponível em: <www.ufv. br>. Citado 2 vezes nas páginas 39 e 42.

SOARES JÚNIOR, J. dos A. *Tratamento de superfícies quimicamente inertes*. [S.I.], 2008. Disponível em: http://www.respostatecnica.org.br. Citado 2 vezes nas páginas 60 e 61.

SOUSA, S. R. C. T. de; SILVA, B. O.; ANDRADE, C. S. P. de. Clima, Conforto Térmico e Rendimento Escolar Na Escola De Rede Pública Municipal De Teresina-Pi, Prof. Marcilio Flávio Rangel De Farias. In: UNIVERSIDADE FEDERAL DO PIAUÍ – UFPI, 2013. 2013. Disponível em: http://www.egal2013.pe>. Citado na página 32.

TINÔCO, I. de F. F. et al. Avaliação de materiais alternativos utilizados na confecção de placas porosas para sistemas de resfriamento adiabático evaporativo. *Revista Brasileira de Engenharia Agrícola e Ambiental*, scielo, v. 6, p. 147 – 150, 04 2002. ISSN 1415-4366. Disponível em: http://www.scielo.br/scieloOrg/php/articleXML.php?lang=pt&pid=S1415-43662002000100026>. Citado na página 56.

WATT, J. R. *Evaporative air conditioning handbook*. 2. ed. New York - US: CHAPMAN & HALL, 1986. ISBN 13 :978-1-4612-9387-3. Citado 2 vezes nas páginas 46 e 49.

WILBERT F. STOECKER. 1. ed. [S.I.]. Citado na página 65.

WITMANN, G. C. P. Tratamento superficial de filmes plásticos. *Tecnologia Gráfica*, São Paulo-SP, n. 75, Dezembro 2010. Disponível em: http://www.revistatecnologiagrafica. com.br/>. Citado na página 61.

WYLEN, G. J. V. *Fundamentos da Termodinâmica Clássica*. 4. ed. São Paulo-SP: Blucher, 1995. ISBN 9788521201359. Citado na página 38.

Apêndices

APÊNDICE A – LOCALIZAÇÃO DOS SENSORES

Os sensores temperatura e umidade DHT22-AM2302 foram posicionados em 5 (cinco) pontos a 32cm de distância da câmara de acordo com as seguintes posições: Meio (M), Superior (S), Inferior (I), EsqUrerda (E) e Direita (D) (Figura82). Há uma separação de 4cm entre a parede interior do duto de ar e o sensor conforme Figura 83. Foram executadas 50 (cinqUrenta) medições de temperatura (Tmp) e umidade relativa (Umd) tomados num intervalo de 5s totalizando um tempo total de 4.16min. Os dados estão compilados na Tabela 33.

Figura 82 - Posição do sensor no meio da secção reta do duto de escoamento do ar

Figura 83 – Localização dos sensores na secção reta

Umo (%) M	1	Um (% S	d)	Um (% I	d))	Um (% E	d)	Um (% D	d)	Um (% Méd Gera	d) ia al
$ar{\mu}$ 44.76	σ 0.38	$ar{\mu}$ 44.12	σ 0.33	$ar{\mu}$ 44.88	σ 0.33	$ar{\mu}$ 44.76	σ 0.43	$ar{\mu}$ 44.08	σ 0.27	$ar{\mu}$ 44.57	σ 0.39

Tabela 31 – Umidade de entrada

Tabela 32 – Temperatura de bulbo seco de entrada

Tmp (℃ M)	Tmp (℃ S	Гтр Ттр Т (°С) (°С) (S I		Tmր (℃ E	Tmp Tmp (℃) (℃) E D			Tmp (℃) Média Geral		
$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ
30.37	0.07	30.58	0.04	30.24	0.04	30.37	0.07	30.46	0.06	30.38	0.13

Tabela 33 – Temperatura de bulbo úmido de entrada

TBu (℃) M)	TBu (℃) S)	ΤΒι (℃ Ι	ר ()	ΤΒι (℃ Ε	ı)	TBu (℃ D)	TB∟ (℃ Médi Gera	ı) a al
$\bar{\mu}$	σ	$\bar{\mu}$	σ	$ar{\mu}$	σ	$\bar{\mu}$	σ	$ar{\mu}$	σ	$ar{\mu}$	σ
20.93	0.11	21.00	0.08	20.89	0.07	20.97	0.08	20.90	0.06	20.94	0.04

APÊNDICE B – CALIBRAÇÃO DOS SENSORES E INSTRUMENTOS

As tabelas abaixo são referentes aos pontos comparativos entre os valores medidos pelo instrumento (V.I) e valores de referência (V.R) obtido pelo equipamento da empresa de teste. Os relatórios de calibração dos sensores e equipamentos de medição estão no Anexo B, C e D.

B.1 Sensor DHT22-AM2302

- B.1.1 Temperatura de bulbo seco
 - Sensor termohigrômetro 1A

V.I (°C)	V.R (℃)
10.0	9.9
40.0	40.1
60.0	60.2

Tabela 34 – Dados calibração sensor de temperatura 1A

De acordo com dados, temos as constantes da reta, coeficiente de determinação, equação de ajUrste e gráfico dos pontos e reta de ajuste:

 $a = 1.00605, b = -0.15526, r^2 = 0.99999$

$$y = 1.00605 \cdot x - 0.15526 \tag{B.1}$$

Figura 84 – Calibração sensor S1 de temperatura de bulbo seco

• Sensor termohigrômetro 1B

V.I (℃)	V.R (℃)
10.0	9.9
40.0	40.0
60.0	60.1

Tabela 35 – Dados calibração sensor de temperatura 1B

$$a = 1.00395, b = -0.14474, r^2 = 0.99999$$

$$y = 1.00395 \cdot x - 0.14474 \tag{B.2}$$

Figura 85 – Calibração sensor S2 de temperatura de bulbo seco

B.1.2 Umidade relativa

Sensor termohigrômetro 1A

V.I (%UR)	V.R (%UR)
20	18.2
50	49.1
90	88.3

Tabela 36 – Dados calibração sensor de umidade 1A

$$a = 1.00027, b = -1.48108, r^2 = 0.99980$$

$$y = 1.00027 \cdot x - 1.48108 \tag{B.3}$$

Figura 86 - Calibração sensor S1 de umidade relativa do ar

• Sensor termohigrômetro 1B

V.I (%UR)	V.R (%UR)
20.0	19.1
50.0	49.5
90.0	88.3

Tabela 37 –	Dados d	alibração	sensor	de um	idade	1R
	Duuos (Janbiação	3011301	uc um	luuuu	

$$a = 0.98757, \ b = -0.37027, \ r^2 = 0.99985$$

$$y = 0.98757 \cdot x - 0.37027 \tag{B.4}$$

Figura 87 – Calibração sensor S2 de umidade relativa do ar

B.2 Sensor de Temperatura DS18b20

Tabela 38 – Dados calibração sensor de temperatura DS18b20

VI (℃)	VR(°C)
-10.0	-10.06
0.0	0.0
30.0	29.62
60.0	59.83
110.0	109.70

$$a = 0.99795, b = -0.10416, r^2 = 0.99999$$

$$y = 0.99795 \cdot x - 0.10416 \tag{B.5}$$

Figura 88 – Calibração sensor temperatura DS18b20

B.3 Anemômetro de turbina - Lutron AM 4201

V.I (m/s)	V.R (m/s)
2.5	2.5
5.0	5.0
10.0	10.0
15.5	14.9

De acordo com dados, temos as constantes da reta, coeficiente de determinação, equação de ajUrste e gráfico dos pontos e reta de ajuste:

 $a = 0.95617, \ b = 0.21157, \ r^2 = 0.99913$

$$y = 0.95617 \cdot x + 0.21157 \tag{B.6}$$

Figura 89 – Calibração Anemômetro de turbina - Lutron AM 4201

B.4 Manômetro digital Dwyer serie 477

Tabela 40 – Dados	s calibração	manômetro	Dwyer -	477
-------------------	--------------	-----------	---------	-----

V.I (mbar)	V.R (mbar)
0.0	0.0
10.0	10.1
20.0	20.3
30.0	30.3
40.0	40.3
60.0	60.5

$$a = 1.00771, b = 0.04429, r^2 = 0.99999$$

$$y = 1.00771 \cdot x + 0.04429 \tag{B.7}$$

Figura 90 – Calibração Manômetro Dwyer 477-1
APÊNDICE C – MEDIDAS DE MASSA SECA E MASSA MOLHADA

C.1 Massa Seca

Foram realizados 2 ensaios utilizando a balança "MARK 225" com precisão de 0.002g para 10 amostras de plástico PET (liso e lixado) e celulose de 15x5cm.

C.1.1 Amostras PET liso

Tabela 41 -	 Massa seca 	em gramas	amostras	PET liso
-------------	--------------------------------	-----------	----------	-----------------

Ensa	aioGran Amostras (± 0.002g)										
		1	2	3	4	5	6	7	8	9	10
1	-	2.310	2.228	2.328	2.341	2.309	2.245	2.269	2.268	2.336	2.238
2	-	2.310	2.229	2.329	2.340	2.309	2.245	2.269	2.267	2.338	2.235

C.1.2 Amostras de PET lixado com lixa de madeira

Tabela 42 – Massa seca amostras PET lixado com lixa de madeira

Ensa	ioGran	Amostras (± 0.002g)									
		1	2	3	4	5	6	7	8	9	10
1	60	2.552	2.590	2.548	2.593	2.519	2.512	2.621	2.535	2.590	2.605
2	60	2.552	2.590	2.548	2.591	2.516	2.512	2.619	2.535	2.589	2.609
1	80	2.644	2.677	2.498	2.511	2.685	2.554	2.649	2.529	2.548	2.673
2	80	2.643	2.677	2.498	2.511	2.685	2.555	2.649	2.529	2.548	2.674
1	100	2.511	2.449	2.540	2.512	2.509	2.560	2.546	2.498	2.531	2.484
2	100	2.510	2.449	2.541	2.513	2.509	2.561	2.547	2.500	2.532	2.486

C.1.3 Amostras de PET lixado com lixa de massa

Ens	aioGran	Amostras (± 0.002g)									
		1	2	3	4	5	6	7	8	9	10
1	60	2.347	2.142	2.078	2.113	2.397	2.198	2.101	2.384	2.422	2.310
2	60	2.346	2.143	2.078	2.113	2.400	2.200	2.104	2.388	2.420	2.310
1	80	2.310	2.591	2.556	2.298	2.567	2.356	2.282	2.267	2.309	2.615
2	80	2.311	2.591	2.557	2.300	2.567	2.357	2.282	2.268	2.310	2.614
1	100	2.234	2.243	2.211	2.227	2.272	2.288	2.264	2.289	2.272	2.313
2	100	2.234	2.243	2.210	2.226	2.271	2.288	2.265	2.289	2.270	2.314

Tabela 43 – Massa seca amostras PET lixado com lixa de massa

C.1.4 Amostras de PET lixado com lixa de Ferro

Tabela 44 – Massa seca amostras PET lixado com lixa de feerro

Ensai	oGran	Amostras (± 0.002g)									
		1	2	3	4	5	6	7	8	9	10
1	60	2.671	2.647	2.445	2.475	2.651	2.452	2.457	2.686	2.586	2.533
2	60	2.671	2.646	2.444	2.474	2.651	2.451	2.457	2.687	2.587	2.534
1	80	2.209	2.218	2.250	2.506	2.482	2.550	2.160	2.211	2.477	2.184
2	80	2.208	2.218	2.251	2.506	2.483	2.551	2.161	2.210	2.478	2.184
1	100	2.237	2.261	2.225	2.225	2.256	2.258	2.241	2.238	2.255	2.253
2	100	2.237	2.260	2.225	2.223	2.256	2.258	2.240	2.239	2.255	2.250

C.1.5 Amostras de PET lixado com lixa d'água

Ensa	ioGran	Amostras (± 0.002g)									
		1	2	3	4	5	6	7	8	9	10
1	60	2.149	2.200	2.303	2.271	2.200	2.162	2.304	2.299	2.316	2.322
2	60	2.149	2.199	2.303	2.272	2.199	2.161	2.301	2.299	2.314	2.322
1	80	2.521	2.489	2.517	2.496	2.136	2.134	2.111	2.095	2.103	2.155
2	80	2.520	2.489	2.518	2.497	2.136	2.134	2.112	2.096	2.103	2.154
1	100	2.141	2.108	2.149	2.114	2.116	2.256	2.311	2.216	2.218	2.269
2	100	2.141	2.109	2.149	2.114	2.117	2.257	2.311	2.214	2.219	2.268

Tabela 45 – Massa seca amostras PET lixado com lixa d'água

C.1.6 Amostras de celulose

Tabela 46 – Massa seca amostras de celulose

Ensaid	Gran	Amostras (± 0.002g)									
		1	2	3	4	5	6	7	8	9	10
1	-	1.074	1.072	1.100	1.059	1.058	1.101	1.056	1.058	1.052	1.084
2	-	1.073	1.072	1.099	1.058	1.058	1.102	1.056	1.059	1.050	1.087

C.2 Massa molhada

Foram realizados 6 ensaios utilizando a balança "MARK 225" com precisão de 0.002g para 10 amostras de plástico PET (liso e lixado) e celulose de 15x5cm.

C.2.1 Amostras de PET liso

Ensai	oGra	n		Amosti	ras (± 0	.002g)					
		1	2	3	4	5	6	7	8	9	10
1	-	2.450	2.402	2.469	2.510	2.496	2.389	2.382	2.455	2.501	2.379
2	-	2.430	2.382	2.450	2.476	2.518	2.357	2.360	2.431	2.604	2.357
3	-	2.423	2.416	2.472	2.515	2.519	2.349	2.360	2.424	2.520	2.361
4	-	2.503	2.389	2.490	2.532	2.495	2.401	2.407	2.310	2.540	2.366
5	-	2.437	2.427	2.434	2.510	2.443	2.310	2.360	2.428	2.495	2.361
6	-	2.400	2.380	2.477	2.490	2.513	2.425	2.430	2.290	2.539	2.412

Tabela 47 – Massa molhada amostras de PET liso

C.2.2 Amostras de PET lixado com lixa de madeira

Tabola 48 - Massa molhada amostras	de DET livedo	com liva de madeira	granulação 60
Tabela 40 – Massa momaua amostras		com inta de madeira	granulação ou

Ensai	EnsaioGran			Amostras (± 0.002g)							
		1	2	3	4	5	6	7	8	9	10
1	60	3.280	3.361	3.375	3.446	3.277	3.254	3.438	3.399	3.381	3.478
2	60	3.295	3.279	3.294	3.297	3.279	3.258	3.395	3.244	3.342	3.397
3	60	3.434	3.401	3.409	3.523	3.375	3.301	3.505	3.432	3.484	3.516
4	60	3.438	3.359	3.367	3.453	3.368	3.358	3.510	3.340	3.457	3.492
5	60	3.425	3.460	3.321	3.496	3.373	3.294	3.510	3.507	3.586	3.490
6	60	3.450	3.423	3.327	3.501	3.410	3.433	3.437	3.412	3.494	3.470

Ensai	EnsaioGran				Amostras (± 0.002g)							
		1	2	3	4	5	6	7	8	9	10	
1	80	3.242	3.312	3.221	3.203	3.426	3.190	3.341	3.217	3.237	3.412	
2	80	3.287	3.421	3.178	3.235	3.247	3.158	3.328	3.165	3.252	3.436	
3	80	3.462	3.420	3.272	3.291	3.470	3.297	3.392	3.286	3.299	3.450	
4	80	3.525	3.576	3.313	3.235	3.463	3.301	3.351	3.310	3.457	3.504	
5	80	3.538	3.409	3.396	3.299	3.478	3.215	3.464	3.319	3.368	3.516	
6	80	3.475	3.526	3.397	3.338	3.402	3.354	3.477	3.288	3.427	3.437	

Tabela 49 – Massa molhada amostras de PET lixado com lixa de madeira granulação 80

Tabela 50 – Massa molhada amostras de PET lixado com lixa de madeira granulação 100

Ensai	EnsaioGran			Amostras (± 0.002g)							
	1		2	3	4	5	6	7	8	9	10
1	100 3	8.216	3.136	3.101	3.239	3.215	3.236	3.350	3.201	3.188	3.241
2	100 3	8.251	3.189	3.284	3.210	3.273	3.323	3.410	3.247	3.239	3.234
3	100 3	8.310	3.220	3.290	3.360	3.203	3.351	3.274	3.452	3.232	3.367
4	100 3	8.381	3.264	3.337	3.346	3.283	3.386	3.390	3.353	3.344	3.331
5	100 3	3.322	3.145	3.472	3.424	3.375	3.194	3.352	3.359	3.317	3.240
6	100 3	8.257	3.189	3.477	3.288	3.323	3.496	3.423	3.257	3.309	3.312

C.2.3 Amostras de PET lixado com lixa de massa

Tabela 51 – Massa molhada	amostras de F	PET lixado co	m lixa de	massa	granulação	60

Ensai	oGra	n		Amost	ras (± 0	.002g)					
		1	2	3	4	5	6	7	8	9	10
1	60	3.036	2.931	2.749	2.676	3.033	2.941	2.833	3.083	3.023	2.968
2	60	3.233	3.004	2.837	2.807	3.161	2.980	2.980	3.172	3.247	3.075
3	60	3.165	2.955	2.814	2.878	3.226	2.989	2.917	3.106	3.266	3.036
4	60	3.222	2.813	2.963	2.958	3.172	3.011	2.933	3.193	3.312	3.177
5	60	3.222	3.007	2.757	2.965	3.172	3.069	3.006	3.260	3.182	3.128
6	60	3.091	2.923	2.934	3.014	3.296	3.085	2.963	3.176	3.194	3.100

|--|

Ensai	oGra	n		Amost	ras (± 0	.002g)					
		1	2	3	4	5	6	7	8	9	10
1	80	3.197	3.261	3.254	3.091	3.276	3.114	3.004	2.991	3.160	3.376
2	80	3.136	3.271	3.332	3.102	3.323	3.154	3.253	2.963	3.231	3.392
3	80	3.203	3.336	3.366	3.146	3.268	3.187	3.150	3.117	3.231	3.389
4	80	3.155	3.331	3.330	3.271	3.307	3.166	3.292	3.172	3.244	3.477
5	80	3.125	3.346	3.317	3.120	3.307	3.102	3.242	3.175	3.275	3.450
6	80	3.286	3.409	3.297	3.229	3.352	3.207	3.263	3.102	3.242	3.300

Ensai	oGrar	ו		Amost	ras (± 0	.002g)					
		1	2	3	4	5	6	7	8	9	10
1	100	2.945	2.899	2.829	2.927	2.955	3.115	3.014	3.071	2.940	3.002
2	100	3.128	3.019	2.954	2.828	3.134	3.050	2.996	3.165	3.234	3.192
3	100	3.038	3.089	3.057	3.102	2.996	3.105	3.136	3.035	3.169	3.123
4	100	3.058	3.019	2.907	3.014	3.085	3.111	3.080	3.113	3.107	3.174
5	100	3.180	3.166	3.109	3.046	3.104	3.120	3.067	3.107	3.123	3.089
6	100	3.108	3.148	3.069	3.093	3.148	3.099	3.117	3.066	3.150	3.122

Tabela 53 – Massa molhada amostras de PET lixado com lixa de massa granulação 100

C.2.4 Amostras de PET lixado com lixa de Ferro

Tat	pela	a 54	4 — I	Massa	moll	had	a amostras (de	ΡΕΤ	lixad	o com	lixa c	le i	ferro g	granul	açã	ão (60
-----	------	------	-------	-------	------	-----	--------------	----	-----	-------	-------	--------	------	---------	--------	-----	------	----

Ensai	oGra	n		Amost	ras (± 0	.002g)					
		1	2	3	4	5	6	7	8	9	10
1	60	3.546	3.624	3.356	3.426	3.524	3.304	3.353	3.625	3.505	3.346
2	60	3.676	3.692	3.314	3.453	3.580	3.344	3.473	3.649	3.557	3.591
3	60	3.432	3.572	3.249	3.349	3.504	3.246	3.334	3.493	3.473	3.385
4	60	3.648	3.546	3.286	3.352	3.580	3.482	3.472	3.738	3.600	3.537
5	60	3.542	3.548	3.446	3.456	3.581	3.343	3.512	3.641	3.657	3.489
6	60	3.764	3.707	3.483	3.504	3.628	3.420	3.502	3.634	3.573	3.350

Ensai	oGra	n		Amost	ras (± 0	.002g)					
		1	2	3	4	5	6	7	8	9	10
1	80	2.963	2.918	3.001	3.169	3.138	3.185	2.893	2.981	3.176	2.983
2	80	3.001	3.055	3.052	3.194	3.099	3.294	2.958	3.097	3.130	2.940
3	80	3.078	3.070	2.986	3.335	3.126	3.236	3.048	3.072	3.313	3.069
4	80	3.054	3.052	3.206	3.319	3.225	3.268	2.774	3.109	3.297	2.987
5	80	3.157	2.921	3.191	3.259	3.244	3.281	2.908	3.088	3.320	2.985
6	80	3.193	3.010	3.170	3.335	3.158	3.269	3.020	3.059	3.282	3.107

Tabela 55 – Massa molhada amostras de PET lixado com lixa de ferro granulação 80

Tabela 56 – Massa molhada amostras de PET lixado com lixa de ferro granulação 100

Ensai	oGrai	n		Amost	ras (± 0	.002g)					
		1	2	3	4	5	6	7	8	9	10
1	100	3.085	3.093	3.055	2.980	2.957	2.981	2.977	3.091	3.072	3.100
2	100	2.995	3.045	3.031	2.866	2.988	2.980	3.061	3.059	3.049	3.015
3	100	2.842	3.040	2.902	3.081	3.046	2.988	3.510	3.170	3.108	3.043
4	100	2.923	3.147	3.044	3.001	2.944	3.022	3.221	2.960	3.042	3.101
5	100	2.988	3.030	2.955	3.042	3.029	3.035	2.980	3.011	3.070	3.130
6	100	2.972	2.989	2.985	3.000	3.057	3.220	3.020	2.990	3.110	3.120

C.2.5 Amostras de PET lixado com lixa d'água

Ensaid	Gra	n		Amost	tras (± 0).002g)					
		1	2	3	4	5	6	7	8	9	10
1	60	3.134	3.186	3.236	3.214	3.150	3.081	3.272	3.349	3.426	3.327
2	60	3.150	3.180	3.327	3.261	3.095	3.131	3.326	3.274	3.205	3.248
3	60	3.131	3.293	3.353	3.383	3.246	3.217	3.295	3.367	3.188	3.322
4	60	3.081	3.162	3.347	3.285	3.208	3.176	3.137	3.336	3.221	3.370
5	60	3.129	3.220	3.280	3.328	3.109	3.230	3.276	3.358	3.396	3.334
6	60	3.139	3.281	3.371	3.295	3.200	3.191	3.300	3.470	3.400	3.440

Tabela 57 – Massa molhada amostras de PET lixado com lixa d'água granulação 60

Tabela 58 – Massa molhada amostras de PET lixado com lixa d'água granulação 80

Ensai	oGra	n		Amost	ras (± 0	.002g)					
		1	2	3	4	5	6	7	8	9	10
1	80	3.200	3.289	3.243	3.335	2.893	2.924	3.064	2.883	2.893	3.063
2	80	3.110	3.230	3.271	3.308	2.982	2.867	2.889	2.893	2.838	2.954
3	80	3.177	3.266	3.227	3.222	2.796	2.862	2.893	2.895	2.797	2.897
4	80	3.267	3.122	3.177	3.242	2.833	2.804	2.920	2.817	2.812	3.101
5	80	3.245	3.112	3.254	3.230	2.835	2.808	2.894	2.810	2.844	2.834
6	80	3.300	3.173	3.153	3.187	2.889	2.798	2.880	2.999	2.820	2.776

Ensai	oGran		Amost	ras (± 0	.002g)					
	1	2	3	4	5	6	7	8	9	10
1	100 2.862	2.898	2.838	2.937	2.888	3.042	3.109	2.975	2.980	3.016
2	100 2.966	2.920	2.944	2.919	2.857	3.092	3.141	3.103	3.102	3.065
3	100 2.943	2.878	2.899	2.896	2.749	3.068	3.062	2.893	2.968	2.933
4	100 2.968	2.949	2.888	2.840	2.781	3.042	3.075	2.895	3.047	2.999
5	100 2.908	2.911	2.934	2.845	2.789	2.992	3.102	2.991	2.990	2.944
6	100 2.935	2.799	2.936	2.931	2.960	3.022	3.132	2.934	3.034	2.964

Tabela 59 – Massa molhada amostras de PET lixado com lixa d'água granulação 100

C.2.6 Amostras de celulose

Tabela 60 – Massa molhada amostras	de celulose
Tabela 00 – Massa momaua amostras	ue celuiose

Ensa	aioGra	an		Amostras (± 0.002g)							
		1	2	3	4	5	6	7	8	9	10
1	-	1.989	2.042	1.950	2.072	2.028	2.076	1.970	2.065	1.929	2.208
2	-	2.005	2.087	2.086	2.106	2.094	2.170	2.055	2.093	2.008	2.286
3	-	2.093	2.095	2.152	2.173	2.175	2.224	2.062	2.123	2.090	2.237
4	-	2.098	2.128	2.176	2.167	2.130	2.267	2.087	2.093	2.103	2.220
5	-	2.096	2.095	2.126	2.120	2.082	2.225	2.090	2.080	2.110	2.300
6	-	2.097	2.103	2.105	2.114	2.113	2.239	2.035	2.108	2.118	2.293

APÊNDICE D – RELAÇÃO ÁREA - MASSA DOS FILETES DE PLÁSTICO PET

Foram selecionados 10 amostras de 1m de comprimento de diferentes filetes de PET liso e lixado. Através dos dados, foi calculado os coeficientes lineares da reta de ajUrste dos pontos e coeficientes de determinação para os painéis de PET liso e lixado.

Tabela 61 – Relação massa-área painel PET lixado

Comprimento (± 0.001 m)	Massa (±0.002g)	Área (±0.001 m²)
1.0	1.605	0.01
2.0	3.500	0.02
3.0	5.816	0.03
4.0	7.756	0.04
5.0	9.629	0.05
6.0	11.432	0.06
7.0	13.538	0.07
8.0	15.569	0.08
9.0	17.658	0.09
10.0	19.709	0.10

D.1 Painel de PET lixado

De acordo com dados da tabela62, temos as constantes da reta, coeficiente de determinação, equação de ajUrste e gráfico dos pontos e reta de ajuste:

 $a = 0.00500, b = 0.00191, r^2 = 0.99962$

$$y = 0.00500 \cdot x + 0.00191 \tag{D.1}$$

D.2 Painel de PET liso

Comprimento (m)	Massa (±0.002g)	Área (±0.001 m²)
1.0	1.950	0.01
2.0	3.961	0.02
3.0	5.845	0.03
4.0	7.735	0.04
5.0	9.736	0.05

Tabela 62 – Relação massa-área painel PET liso

Comprimento (m)	Massa (±0.002g)	Área (±0.001 m²)
6.0	11.578	0.06
7.0	13.598	0.07
8.0	15.548	0.08
9.0	17.436	0.09
10.0	19.459	0.10

De acordo com dados da tabela 62, temos as constantes da reta, coeficiente de determinação, equação de ajUrste e gráfico dos pontos e reta de ajuste:

$$a = 0.00510, b = -0.00012, r^2 = 0.99995$$

$$y = 0.00510 \cdot x - 0.00012 \tag{D.2}$$

Figura 92 – Relação massa-área filetes de PET liso

APÊNDICE E – PERDA DE CARGA DOS PAINÉIS

Tabela **??** de dados referente a perda de carga dos painéis evaporativos tomados 50 (cinqUrenta) pontos de dados de pressão em um intervalo 5s para cada painel. As pressões médias na seção transversal do duto de escoamento de ar foram medias utilizado dois anéis piezométricos com quatro tomadas de pressão interligadas e uma saída cada, entre o painel avaliado da seção de teste.

Painel	$ar{\mu}$	σ
Celulose	4.36	1.06
PET liso 00	4.46	1.25
PET liso 01	6.65	6.65
PET liso 02	9.05	1.09
PET lixado 00	4.42	1.28
PET lixado 01	6.61	2.01
PET lixado 02	8.97	1.00

Tabela 63 – Perda de carga dos painéis evaporativos analisados (Pa)

APÊNDICE F – VAZÃO MÁSSICA

A massa de ar no interior da bancada CUSSONS foi obtida conforme diferença de pressão obtida via placa de orifício na entrada de ar do ventilador centrífugo. Foram coletados 50 pontos de dados a cada 5s utilizando o manômetro Dwyer 477-1. Os dados de pressão são observados na tabela abaixo.

$ar{\mu}$	σ
8.7	0.3

Tabela 64 – Coluna de água média e desvio padrão (mm)

APÊNDICE G – TESTES PAINÉIS - DADOS PSICROMÉTRICOS

Os painéis foram divididos conforme a compactação calculada. A referência "00" indica o painel inicial de perda de carga de semelhante à perda de carga do painel de celulose e "02" o de maior perda de carga. A tabela 65 apresenta as características dos painéis de PET e celulose.

Painéis	Massa	Área estimada	Volume	Compactação
PET liso 00	446.0 ± 6.0g	2.3000 ± 0.0310 m²	0.0160 ± 0.0001 m³	140.8 ± 2.2 m²/m³
PET liso 01	556.0 ± 6.0g	2.8680 ± 0.0310 m²	0.0160 ± 0.0001 m³	175.6 ± 2.4 m²/m³
PET liso 02	666.0 ± 6.0g	3.4350 ± 0.0310 m²	0.0160 ± 0.0001 m³	210.3 ± 2.5 m²/m³
PET lixado 00	446.0 ± 6.0g	2.2310 ± 0.0300 m²	0.0160 ± 0.0001 m³	136.6 ± 2.1 m²/m³
PET lixado 01	556.0 ± 6.0g	2.7810 ± 0.0300 m²	0.0160 ± 0.0001 m³	170.2 ± 2.3 m²/m³
PET lixado 02	666.0 ± 6.0g	3.3310 ± 0.0300 m²	0.0160 ± 0.0001 m³	203.9 ± 2.4 m²/m³
Celulose	460.0 ± 6.0g	6.3180 ± 0.0451	0.0163 ± 0.0001 m³	386.8 ± 4.1m²/m³

Tabela 65 – Características dos painéis de PET e celulose

G.1 Painel de PET liso

Foram avaliados os painéis de PET liso 00, 01 e 02, correspondente à ordem crescente de perda de carga e massa conforme as condições iniciais do ar de entrada em relação a temperatura de bulbo seco e umidade relativa. Os dados das tabelas são: intervalo de tempo do ponto de dado (Tempo), Temperatura de entrada (Te), temperatura de saída (Ts) umidade relativa do ar de entrada (Ure), umidade relativa do ar de saída (Urs), temperatura da água (Ta), temperatura de bulbo úmido (Tbu), efetividade de resfriamento (E), coeficiente de transferência de calor (hc), coeficiente de transferência de massa (hm), número de Nusselt (Nus) e número de Sherwood (Sh).

G.1.1 Painel PET liso 00

G.1.1.1 Teste 1 PET liso 00. Condições iniciais o ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 30%.

	labela 66 – Dados PET liso 00 para temperatura de bulbo seco de 27°C e umidade relativa de 30%.											
tempo	Te	Ure	Ts	Urs	Ta	Tbu	E	hc	hm m/a	Nus	Sh	
(5)	(\mathbf{C})	(70)	(\mathbf{C})	(70)	(0)	(0)	(-)		11/5	(-)	(-)	
60	27.0±0.5	0.30±0.01	19.9±0.5	0.76±0.02	17.1±0.5	15.3±0.4	0.609±0.056	45.00±6.73	0.0086±0.0005	12.43±1.87	2.124±0.136	
120	27.0±0.5	0.30±0.01	19.9±0.5	0.76±0.02	17.1±0.5	15.3±0.4	0.609±0.056	45.00±6.73	0.0086±0.0005	12.43±1.87	2.124±0.136	
180	27.0±0.5	0.30±0.01	19.9±0.5	0.76±0.02	17.1±0.5	15.3±0.4	0.609±0.056	45.00±6.73	0.0086±0.0005	12.43±1.87	2.124±0.136	
240	27.0±0.5	0.31±0.01	19.9±0.5	0.76±0.02	17.1±0.5	15.6±0.4	0.620±0.057	46.43±7.06	0.0084±0.0005	12.82±1.96	2.086±0.140	
300	27.1±0.5	0.31±0.01	19.9±0.5	0.76±0.02	17.1±0.5	15.6±0.4	0.628±0.057	47.32±7.18	0.0084±0.0005	13.07±1.99	2.078±0.140	
360	27.1±0.5	0.31±0.01	20.0±0.5	0.76±0.02	17.1±0.5	15.6±0.4	0.619±0.057	46.25±7.02	0.0085±0.0005	12.77±1.95	2.090±0.141	
420	27.1±0.5	0.31±0.01	20.0±0.5	0.76±0.02	17.2±0.5	15.6±0.4	0.619±0.057	46.25±7.02	0.0085±0.0005	12.77±1.95	2.090±0.141	
480	27.1±0.5	0.30±0.01	20.0±0.5	0.76±0.02	17.2±0.5	15.4±0.4	0.608±0.056	44.83±6.68	0.0086±0.0005	12.38±1.86	2.128±0.136	
540	27.1±0.5	0.30±0.01	20.0±0.5	0.75±0.02	17.2±0.5	15.4±0.4	0.608±0.056	44.83±6.68	0.0083±0.0005	12.38±1.86	2.062±0.136	
600	27.1±0.5	0.30±0.01	20.0±0.5	0.75±0.02	17.2±0.5	15.4±0.4	0.608±0.056	44.83±6.68	0.0083±0.0005	12.38±1.86	2.062±0.136	
660	27.0±0.5	0.30±0.01	20.0±0.5	0.76±0.02	17.2±0.5	15.3±0.4	0.601±0.056	43.99±6.59	0.0086±0.0005	12.15±1.83	2.135±0.136	
720	27.0±0.5	0.30±0.01	19.9±0.5	0.76±0.02	17.1±0.5	15.3±0.4	0.609±0.056	45.00±6.73	0.0086±0.0005	12.43±1.87	2.124±0.136	
780	27.0±0.5	0.30±0.01	20.0±0.5	0.76±0.02	17.2±0.5	15.3±0.4	0.601±0.056	43.99±6.59	0.0086±0.0005	12.15±1.83	2.135±0.136	
840	27.1±0.5	0.30±0.01	20.0±0.5	0.76±0.02	17.1±0.5	15.4±0.4	0.608±0.056	44.83±6.68	0.0086±0.0005	12.38±1.86	2.128±0.136	
900	27.1±0.5	0.30±0.01	20.0±0.5	0.76±0.02	17.2±0.5	15.4±0.4	0.608±0.056	44.83±6.68	0.0086±0.0005	12.38±1.86	2.128±0.136	

G.1.1.2 Teste 1 PET liso 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 40%.

	- Dados Pi	= 1 1150 00	para tempe	ratura de puil	oo seco de 4		e relativa de 407	0.
Lire	Te	l Ire	Ta	Thu	F	hc	hm	

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	27.0±0.5	0.40±0.01	21.0±0.5	0.87±0.02	18.6±0.5	17.4±0.4	0.623±0.069	47.49±8.69 0	0.0111±0.0007	13.12±2.41	2.750±0.187
120	27.0±0.5	0.41±0.01	21.0±0.5	0.88±0.02	18.6±0.5	17.6±0.4	0.636±0.071	49.19±9.20 (0.0113±0.0007	13.59±2.55	2.806±0.192
180	27.1±0.5	0.41±0.01	21.0±0.5	0.87±0.02	18.6±0.5	17.6±0.4	0.645±0.070	50.39±9.41 0	0.0110±0.0007	13.91±2.61	2.710±0.193
240	27.1±0.5	0.41±0.01	21.0±0.5	0.88±0.02	18.6±0.5	17.6±0.4	0.645±0.070	50.39±9.41 0	0.0113±0.0007	13.91±2.61	2.798±0.193
300	27.1±0.5	0.40±0.01	21.0±0.5	0.88±0.02	18.6±0.5	17.4±0.4	0.632±0.069	48.62±8.88 0	0.0114±0.0007	13.42±2.46	2.826±0.187
360	27.0±0.5	0.40±0.01	21.0±0.5	0.87±0.02	18.7±0.5	17.4±0.4	0.623±0.069	47.49±8.69 0	0.0111±0.0007	13.12±2.41	2.750±0.187
420	26.9±0.5	0.40±0.01	20.9±0.5	0.87±0.02	18.6±0.5	17.3±0.4	0.624±0.069	47.66±8.75 0	0.0111±0.0007	13.17±2.42	2.744±0.186
480	26.9±0.5	0.40±0.01	20.8±0.5	0.87±0.02	18.6±0.5	17.3±0.4	0.635±0.069	48.98±8.99 0	0.0110±0.0007	13.53±2.49	2.730±0.186
540	26.9±0.5	0.40±0.01	20.9±0.5	0.87±0.02	18.6±0.5	17.3±0.4	0.624±0.069	47.66±8.75 0	0.0111±0.0007	13.17±2.42	2.744±0.186
600	26.9±0.5	0.40±0.01	20.9±0.5	0.87±0.02	18.6±0.5	17.3±0.4	0.624±0.069	47.66±8.75 0	0.0111±0.0007	13.17±2.42	2.744±0.186
660	26.9±0.5	0.40±0.01	20.8±0.5	0.88±0.02	18.6±0.5	17.3±0.4	0.635±0.069	48.98±8.99 0	0.0114±0.0007	13.53±2.49	2.814±0.186
720	26.9±0.5	0.41±0.01	20.8±0.5	0.88±0.02	18.6±0.5	17.5±0.4	0.648±0.071	50.77±9.53 0	0.0113±0.0007	14.03±2.64	2.786±0.191
780	27.0±0.5	0.41±0.01	20.9±0.5	0.88±0.02	18.6±0.5	17.6±0.4	0.646±0.071	50.58±9.47 (0.0113±0.0007	13.97±2.63	2.792±0.192
840	27.0±0.5	0.40±0.01	20.9±0.5	0.88±0.02	18.6±0.5	17.4±0.4	0.633±0.069	48.80±8.93 0	0.0114±0.0007	13.48±2.48	2.820±0.186
900	27.1±0.5	0.41±0.01	21.0±0.5	0.87±0.02	18.6±0.5	17.6±0.4	0.645±0.070	50.39±9.41 (0.0110±0.0007	13.91±2.61	2.710±0.193

G.1.1.3 Teste 1 PET liso 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 50%.

	J /0.										
	Tabela 68 – Dados PET liso 00 para temperatura de bulbo seco de 27ºC e umidade relativa de 50%.										
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²ºC)	hm m/s	Nus (-)	Sh (-)
60	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.2±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
120	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.2±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
180	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.2±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
240	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.2±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
300	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.2±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
360	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.2±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
420	26.9±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.2±0.5	19.2±0.5	0.633±0.088	3 49.67±11.45	0.0112±0.0010	13.72±3.17	2.774±0.262
480	26.9±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.3±0.5	19.2±0.5	0.633±0.088	3 49.67±11.45	0.0112±0.0010	13.72±3.17	2.774±0.262
540	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.3±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
600	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.3±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
660	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.3±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
720	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.3±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
780	27.0±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.3±0.5	19.2±0.5	0.645±0.087	′ 51.20±11.80	0.0112±0.0010	14.14±3.26	2.758±0.264
840	26.9±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.3±0.5	19.2±0.5	0.633±0.088	3 49.67±11.45	0.0112±0.0010	13.72±3.17	2.774±0.262
900	26.9±0.5	0.50±0.01	22.0±0.5	0.89±0.02	20.3±0.5	19.2±0.5	0.633±0.088	3 49.67±11.45	0.0112±0.0010	13.72±3.17	2.774±0.262

G.1.1.4 Teste 4 PET liso 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32ºC e umidade relativa do ar de 30%.

		Tabela 69) – Dados F	PET liso 00 p	oara tempe	ratura de b	ulbo seco de	32°C e umida	de relativa de 30	%.	
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²ºC)	hm m/s	Nus	Sh (-)
60	32.0±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.6±0.5	18.9±0.4	0.618±0.050	46.64±6.16	0.0090±0.0006	12.70±1.69	2.158±0.159
120	32.0±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.6±0.5	18.9±0.4	0.618±0.050	46.64±6.16	0.0090±0.0006	12.70±1.69	2.158±0.159
180	32.0±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.6±0.5	18.9±0.4	0.618±0.050	46.64±6.16	0.0090±0.0006	12.70±1.69	2.158±0.159
240	32.0±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.6±0.5	18.9±0.4	0.618±0.050	46.64±6.16	0.0090±0.0006	12.70±1.69	2.158±0.159
300	32.0±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.6±0.5	18.9±0.4	0.618±0.050	46.64±6.16	0.0090±0.0006	12.70±1.69	2.158±0.159
360	32.1±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.6±0.5	19.0±0.4	0.625±0.050	47.42±6.25	0.0090±0.0006	12.91±1.72	2.148±0.160
420	32.1±0.5	0.29±0.01	23.9±0.5	0.75±0.02	20.6±0.5	18.7±0.4	0.613±0.049	45.89±5.94	0.0092±0.0006	12.49±1.63	2.197±0.154
480	32.1±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.7±0.5	19.0±0.4	0.625±0.050	47.42±6.25	0.0090±0.0006	12.91±1.72	2.148±0.160
540	32.0±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.7±0.5	18.9±0.4	0.618±0.050	46.64±6.16	0.0090±0.0006	12.70±1.69	2.158±0.159
600	31.9±0.5	0.30±0.01	23.8±0.5	0.75±0.02	20.6±0.5	18.8±0.4	0.620±0.050	46.79±6.20	0.0090±0.0006	12.74±1.70	2.153±0.159
660	32.0±0.5	0.30±0.01	23.8±0.5	0.75±0.02	20.7±0.5	18.9±0.4	0.626±0.050	47.57±6.28	0.0090±0.0006	12.95±1.73	2.143±0.159
720	32.0±0.5	0.30±0.01	23.8±0.5	0.75±0.02	20.7±0.5	18.9±0.4	0.626±0.050	47.57±6.28	0.0090±0.0006	12.95±1.73	2.143±0.159
780	32.1±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.6±0.5	19.0±0.4	0.625±0.050	47.42±6.25	0.0090±0.0006	12.91±1.72	2.148±0.160
840	32.1±0.5	0.30±0.01	23.9±0.5	0.75±0.02	20.6±0.5	19.0±0.4	0.625±0.050	47.42±6.25	0.0090±0.0006	12.91±1.72	2.148±0.160
900	32.1±0.5	0.29±0.01	23.9±0.5	0.75±0.02	20.7±0.5	18.7±0.4	0.613±0.049	45.89±5.94	0.0092±0.0006	12.49±1.63	2.197±0.154

G.1.1.5 Teste 5 PET liso 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 40%.

		Tabela 70	– Dados P	ET liso 00 p	ara temper	atura de bu	Ibo seco de 3	2ºC e umidad	le relativa de 40)%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	32.0±0.5	0.39±0.01	25.5±0.5	0.81±0.02	22.7±0.5	21.0±0.4	0.592±0.061	44.68±7.13	0.0104±0.0009	12.17±1.95	2.488±0.221
120	32.1±0.5	0.40±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.3±0.4	0.612±0.062	47.25±7.67	0.0105±0.0009	12.86±2.10	2.512±0.231
180	32.1±0.5	0.39±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.1±0.4	0.600±0.061	45.62±7.26	0.0107±0.0009	12.42±1.99	2.567±0.221
240	32.1±0.5	0.39±0.01	25.4±0.5	0.82±0.02	22.6±0.5	21.1±0.4	0.609±0.061	46.70±7.42	0.0107±0.0009	12.71±2.03	2.545±0.221
300	32.1±0.5	0.40±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.3±0.4	0.612±0.062	47.25±7.67	0.0105±0.0009	12.86±2.10	2.512±0.231
360	32.1±0.5	0.40±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.3±0.4	0.612±0.062	47.25±7.67	0.0105±0.0009	12.86±2.10	2.512±0.231
420	32.1±0.5	0.40±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.3±0.4	0.612±0.062	47.25±7.67	0.0105±0.0009	12.86±2.10	2.512±0.231
480	32.1±0.5	0.41±0.01	25.5±0.5	0.83±0.02	22.6±0.5	21.5±0.4	0.625±0.063	48.99±8.13	0.0107±0.0010	13.33±2.22	2.553±0.239
540	32.2±0.5	0.41±0.01	25.5±0.5	0.83±0.02	22.6±0.5	21.6±0.4	0.633±0.063	50.06±8.29	0.0106±0.0010	13.62±2.27	2.536±0.241
600	32.2±0.5	0.40±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.4±0.4	0.620±0.062	48.26±7.81	0.0105±0.0009	13.13±2.14	2.495±0.232
660	32.1±0.5	0.40±0.01	25.5±0.5	0.83±0.02	22.6±0.5	21.3±0.4	0.612±0.062	47.25±7.67	0.0109±0.0009	12.86±2.10	2.609±0.229
720	32.1±0.5	0.40±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.3±0.4	0.612±0.062	47.25±7.67	0.0105±0.0009	12.86±2.10	2.512±0.231
780	32.1±0.5	0.40±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.3±0.4	0.612±0.062	47.25±7.67	0.0105±0.0009	12.86±2.10	2.512±0.231
840	32.0±0.5	0.40±0.01	25.5±0.5	0.82±0.02	22.6±0.5	21.2±0.4	0.604±0.062	46.26±7.53	0.0106±0.0009	12.60±2.06	2.528±0.229
900	32.0±0.5	0.40±0.01	25.4±0.5	0.82±0.02	22.6±0.5	21.2±0.4	0.613±0.062	47.38±7.71	0.0105±0.0009	12.90±2.11	2.505±0.230

G.1.1.6 Teste 6 PET liso 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 50%.

Tabela 71 – Dados PET liso 00 para temperatura de bulbo	o seco de 32°C e umidade relativa de 50%.
---	---

tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	32.1±0.5	0.50±0.01	26.6±0.5	0.87±0.02	24.0±0.5	23.5±0.5	0.637±0.079	9 51.88±10.60	0.0115±0.0014	14.12±2.89	2.739±0.336
120	32.1±0.5	0.50±0.01	26.6±0.5	0.87±0.02	24.1±0.5	23.5±0.5	0.637±0.079	9 51.88±10.60	0.0115±0.0014	14.12±2.89	2.739±0.336
180	32.0±0.5	0.50±0.01	26.6±0.5	0.87±0.02	24.1±0.5	23.4±0.5	0.627±0.079	9 50.50±10.32	0.0116±0.0013	13.75±2.82	2.765±0.333
240	32.0±0.5	0.50±0.01	26.6±0.5	0.87±0.02	24.1±0.5	23.4±0.5	0.627±0.079	9 50.50±10.32	0.0116±0.0013	13.75±2.82	2.765±0.333
300	32.1±0.5	0.50±0.01	26.6±0.5	0.87±0.02	24.2±0.5	23.5±0.5	0.637±0.079	9 51.88±10.60	0.0115±0.0014	14.12±2.89	2.739±0.336
360	32.0±0.5	0.51±0.01	26.6±0.5	0.87±0.02	24.2±0.5	23.6±0.5	0.642±0.081	52.64±11.06	0.0112±0.0014	14.33±3.02	2.688±0.352
420	32.0±0.5	0.50±0.01	26.6±0.5	0.87±0.02	24.2±0.5	23.4±0.5	0.627±0.079	9 50.50±10.32	0.0116±0.0013	13.75±2.82	2.765±0.333
480	31.9±0.5	0.50±0.01	26.5±0.5	0.87±0.02	24.2±0.5	23.3±0.5	0.628±0.079	9 50.61±10.37	0.0115±0.0013	13.78±2.83	2.757±0.332
540	32.0±0.5	0.51±0.01	26.5±0.5	0.87±0.02	24.2±0.5	23.6±0.5	0.654±0.081	54.25±11.44	0.0111±0.0014	14.77±3.12	2.652±0.354
600	32.0±0.5	0.51±0.01	26.5±0.5	0.87±0.02	24.2±0.5	23.6±0.5	0.654±0.081	54.25±11.44	0.0111±0.0014	14.77±3.12	2.652±0.354
660	32.0±0.5	0.51±0.01	26.6±0.5	0.88±0.02	24.2±0.5	23.6±0.5	0.642±0.081	52.64±11.06	0.0118±0.0014	14.33±3.02	2.827±0.344
720	32.0±0.5	0.51±0.01	26.5±0.5	0.88±0.02	24.2±0.5	23.6±0.5	0.654±0.081	54.25±11.44	0.0117±0.0014	14.77±3.12	2.793±0.347
780	32.0±0.5	0.52±0.01	26.5±0.5	0.88±0.02	24.2±0.5	23.8±0.5	0.670±0.083	3 56.70±12.34	0.0114±0.0015	15.44±3.37	2.713±0.367
840	32.0±0.5	0.51±0.01	26.6±0.5	0.87±0.02	24.2±0.5	23.6±0.5	0.642±0.081	52.64±11.06	0.0112±0.0014	14.33±3.02	2.688±0.352
900	32.0±0.5	0.50±0.01	26.5±0.5	0.87±0.02	24.2±0.5	23.4±0.5	0.638±0.079	9 52.00±10.65	0.0114±0.0014	14.16±2.91	2.731±0.335

G.1.1.7 Teste 7 PET liso 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 30%.

		Tabela 72	2 – Dados I	PET liso 00	para tempe	eratura de b	ulbo seco de	37⁰C e umid	lade relativa de	30%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	36.9±0.5	0.30±0.01	28.3±0.5	0.73±0.01	23.7±0.5	22.4±0.4	0.593±0.045	44.93±5.36	0.0095±0.0008	12.07±1.46 2	.198±0.186
120	37.0±0.5	0.30±0.01	28.4±0.5	0.73±0.01	23.8±0.5	22.5±0.4	0.592±0.045	44.83±5.33	0.0095±0.0008	12.04±1.45 2	2.205±0.187
180	37.0±0.5	0.30±0.01	28.4±0.5	0.73±0.01	23.9±0.5	22.5±0.4	0.592±0.045	44.83±5.33	0.0095±0.0008	12.04±1.45 2	2.205±0.187
240	37.0±0.5	0.30±0.01	28.4±0.5	0.73±0.01	23.9±0.5	22.5±0.4	0.592±0.045	44.83±5.33	0.0095±0.0008	12.04±1.45 2	2.205±0.187
300	36.9±0.5	0.30±0.01	28.4±0.5	0.73±0.01	24.0±0.5	22.4±0.4	0.586±0.045	44.15±5.27	0.0096±0.0008	11.86±1.43	2.218±0.186
360	36.9±0.5	0.30±0.01	28.3±0.5	0.73±0.01	24.0±0.5	22.4±0.4	0.593±0.045	44.93±5.36	0.0095±0.0008	12.07±1.46 2	2.198±0.186
420	37.0±0.5	0.30±0.01	28.4±0.5	0.74±0.01	24.1±0.5	22.5±0.4	0.592±0.045	44.83±5.33	0.0099±0.0008	12.04±1.45 2	2.289±0.187
480	37.1±0.5	0.30±0.01	28.4±0.5	0.74±0.01	24.1±0.5	22.5±0.4	0.598±0.045	45.53±5.40	0.0099±0.0008	12.22±1.47 2	2.275±0.187
540	37.1±0.5	0.30±0.01	28.4±0.5	0.74±0.01	24.1±0.5	22.5±0.4	0.598±0.045	45.53±5.40	0.0099±0.0008	12.22±1.47 2	2.275±0.187
600	37.0±0.5	0.30±0.01	28.3±0.5	0.74±0.01	24.1±0.5	22.5±0.4	0.599±0.045	45.62±5.42	0.0098±0.0008	12.25±1.47 2	2.269±0.187
660	36.9±0.5	0.30±0.01	28.2±0.5	0.74±0.01	24.1±0.5	22.4±0.4	0.600±0.045	45.72±5.44	0.0098±0.0008	12.28±1.48 2	2.262±0.186
720	37.0±0.5	0.30±0.01	28.2±0.5	0.74±0.01	24.1±0.5	22.5±0.4	0.606±0.045	46.43±5.51	0.0097±0.0008	12.46±1.50 2	2.249±0.187
780	37.0±0.5	0.30±0.01	28.2±0.5	0.74±0.01	24.1±0.5	22.5±0.4	0.606±0.045	46.43±5.51	0.0097±0.0008	12.46±1.50 2	2.249±0.187
840	37.1±0.5	0.30±0.01	28.2±0.5	0.74±0.01	24.1±0.5	22.5±0.4	0.611±0.045	47.14±5.58	0.0097±0.0008	3 12.65±1.52	2.235±0.188
900	37.0±0.5	0.30±0.01	28.2±0.5	0.74±0.01	24.1±0.5	22.5±0.4	0.606±0.045	46.43±5.51	0.0097±0.0008	12.46±1.50 2	2.249±0.187

G.1.1.8 Teste 8 PET liso 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 40%.

		Tabela 73	5 – Dados F	'ET liso uu p	para tempe	ratura de bi	ulbo seco de	37°C e umida	de relativa de 40	%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	37.0±0.5	0.40±0.01	29.4±0.5	0.80±0.02	25.8±0.5	25.1±0.4	0.641±0.057	′ 53.03±7.77	0.0103±0.0012	14.24±2.10 2	2.385±0.285
120	37.0±0.5	0.40±0.01	29.4±0.5	0.80±0.02	25.9±0.5	25.1±0.4	0.641±0.057	′ 53.03±7.77	0.0103±0.0012	14.24±2.10 2	2.385±0.285
180	36.9±0.5	0.40±0.01	29.4±0.5	0.80±0.02	26.0±0.5	25.1±0.4	0.633±0.057	52.02±7.63	0.0104±0.0012	13.97±2.06 2	2.408±0.282
240	36.8±0.5	0.40±0.01	29.4±0.5	0.80±0.02	26.0±0.5	25.0±0.4	0.626±0.057	′ 51.02±7.49	0.0105±0.0012	13.70±2.03 2	2.430±0.280
300	36.9±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.1±0.5	25.1±0.4	0.633±0.057	52.02±7.62	0.0099±0.0012	13.97±2.06 2	2.292±0.286
360	37.0±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.1±0.5	25.1±0.4	0.641±0.057	′ 53.03±7.77	0.0098±0.0012	14.24±2.10 2	2.268±0.288
420	37.0±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.1±0.5	25.1±0.4	0.641±0.057	′ 53.03±7.77	0.0098±0.0012	14.24±2.10 2	2.268±0.288
480	37.0±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.1±0.5	25.1±0.4	0.641±0.057	′ 53.03±7.77	0.0098±0.0012	14.24±2.10 2	2.268±0.288
540	37.1±0.5	0.40±0.01	29.5±0.5	0.80±0.02	26.2±0.5	25.2±0.4	0.639±0.057	′ 52.93±7.74	0.0104±0.0012	14.21±2.09 2	2.392±0.285
600	36.9±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.2±0.5	25.1±0.4	0.633±0.057	52.02±7.62	0.0099±0.0012	13.97±2.06 2	2.292±0.286
660	36.9±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.2±0.5	25.1±0.4	0.633±0.057	52.02±7.62	0.0099±0.0012	13.97±2.06 2	2.292±0.286
720	36.9±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.2±0.5	25.1±0.4	0.633±0.057	52.02±7.62	0.0099±0.0012	13.97±2.06 2	2.292±0.286
780	36.9±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.2±0.5	25.1±0.4	0.633±0.057	52.02±7.62	0.0099±0.0012	13.97±2.06 2	2.292±0.286
840	37.0±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.2±0.5	25.1±0.4	0.641±0.057	′ 53.03±7.77	0.0098±0.0012	14.24±2.10 2	2.268±0.288
900	37.0±0.5	0.40±0.01	29.4±0.5	0.79±0.02	26.2±0.5	25.1±0.4	0.641±0.057	′ 53.03±7.77	0.0098±0.0012	14.24±2.10 2	2.268±0.288

G.1.1.9 Teste 9 PET liso 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 50%.

Tabela 74 – Dados PET liso 00 para temperatura de bulbo seco de 37ºC e umidade relativa de 50%.

		Tubelu /-	- Duuos		pulu tempe					/0.	
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	37.0±0.5	0.50±0.01	30.3±0.5	0.84±0.02	27.8±0.5	27.5±0.5	0.709±0.073	65.77±12.60	0.0094±0.0020	17.66±3.39 2	2.165±0.476
120	37.0±0.5	0.50±0.01	30.3±0.5	0.83±0.02	27.8±0.5	27.5±0.5	0.709±0.073	65.77±12.60	0.0086±0.0021	17.66±3.39 1	1.989±0.492
180	36.9±0.5	0.50±0.01	30.3±0.5	0.83±0.02	27.8±0.5	27.5±0.5	0.699±0.073	64.14±12.21	0.0088±0.0021	17.22±3.29 2	2.035±0.483
240	37.0±0.5	0.50±0.01	30.3±0.5	0.83±0.02	27.8±0.5	27.5±0.5	0.709±0.073	65.77±12.60	0.0086±0.0021	17.66±3.39 1	1.989±0.492
300	37.0±0.5	0.50±0.01	30.3±0.5	0.83±0.02	27.8±0.5	27.5±0.5	0.709±0.073	65.77±12.60	0.0086±0.0021	17.66±3.39 ²	1.989±0.492
360	37.1±0.5	0.50±0.01	30.4±0.5	0.83±0.02	27.8±0.5	27.6±0.5	0.707±0.073	65.66±12.54	0.0086±0.0021	17.62±3.38	1.996±0.493
420	37.1±0.5	0.49±0.01	30.4±0.5	0.83±0.02	27.8±0.5	27.4±0.5	0.691±0.071	62.64±11.52	0.0093±0.0019	16.81±3.10 2	2.147±0.453
480	37.0±0.5	0.50±0.01	30.4±0.5	0.83±0.02	27.8±0.5	27.5±0.5	0.698±0.073	64.03±12.16	0.0088±0.0021	17.19±3.27 2	2.042±0.484
540	36.9±0.5	0.50±0.01	30.4±0.5	0.84±0.02	27.8±0.5	27.5±0.5	0.689±0.073	62.45±11.80	0.0098±0.0020	16.77±3.18 2	2.258±0.461
600	36.9±0.5	0.51±0.01	30.4±0.5	0.83±0.02	27.8±0.5	27.7±0.5	0.706±0.075	65.48±12.85	0.0083±0.0022	17.58±3.46	1.929±0.519
660	37.0±0.5	0.50±0.01	30.4±0.5	0.83±0.02	27.8±0.5	27.5±0.5	0.698±0.073	64.03±12.16	0.0088±0.0021	17.19±3.27 2	2.042±0.484
720	37.0±0.5	0.51±0.01	30.4±0.5	0.83±0.02	27.8±0.5	27.8±0.5	0.715±0.075	67.20±13.28	0.0081±0.0023	18.04±3.58 ²	1.879±0.530
780	37.0±0.5	0.51±0.01	30.3±0.5	0.84±0.02	27.8±0.5	27.8±0.5	0.726±0.075	69.10±13.81	0.0087±0.0022	18.55±3.72 2	2.008±0.520
840	36.9±0.5	0.50±0.01	30.3±0.5	0.84±0.02	27.8±0.5	27.5±0.5	0.699±0.073	64.14±12.21	0.0095±0.0020	17.22±3.29 2	2.208±0.468
900	37.0±0.5	0.51±0.01	30.3±0.5	0.84±0.02	27.8±0.5	27.8±0.5	0.726±0.075	69.10±13.81	0.0087±0.0022	18.55±3.72 2	2.008±0.520

G.1.2 Painel PET liso 01

G.1.2.1 Teste 1 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 30%.

		Tabela 7	5 – Dados F	PET liso 01 p	ara temper	atura de bu	ulbo seco de 2	27⁰C e umida	de relativa de 30%	%.	
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	27.0±0.5	0.30±0.01	19.7±0.5	0.74±0.01	16.9±0.5	15.3±0.4	0.626±0.056	37.77±5.62	0.0064±0.0004	8.37±1.25	1.266±0.084
120	27.1±0.5	0.29±0.01	19.7±0.5	0.74±0.01	16.9±0.5	15.2±0.4	0.622±0.055	37.28±5.43	0.0065±0.0004	8.26±1.21	1.287±0.082
180	27.1±0.5	0.30±0.01	19.7±0.5	0.75±0.02	16.9±0.5	15.4±0.4	0.633±0.056	38.48±5.71	0.0066 ± 0.0004	8.52±1.27	1.304±0.084
240	27.0±0.5	0.30±0.01	19.7±0.5	0.75±0.02	16.9±0.5	15.3±0.4	0.626±0.056	37.77±5.62	0.0066 ± 0.0004	8.37±1.25	1.309±0.084
300	27.0±0.5	0.30±0.01	19.7±0.5	0.75±0.02	16.9±0.5	15.3±0.4	0.626±0.056	37.77±5.62	0.0066 ± 0.0004	8.37±1.25	1.309±0.084
360	27.1±0.5	0.30±0.01	19.8±0.5	0.75±0.02	16.9±0.5	15.4±0.4	0.625±0.056	37.62±5.59	0.0066 ± 0.0004	8.33±1.24	1.311±0.085
420	27.1±0.5	0.29±0.01	19.8±0.5	0.74±0.01	16.9±0.5	15.2±0.4	0.614±0.055	36.46±5.32	0.0065±0.0004	8.07±1.18	1.295±0.082
480	27.0±0.5	0.29±0.01	19.7±0.5	0.74±0.01	16.8±0.5	15.1±0.4	0.615±0.055	36.61±5.35	0.0065±0.0004	8.11±1.19	1.292±0.081
540	27.0±0.5	0.30±0.01	19.7±0.5	0.75±0.02	16.8±0.5	15.3±0.4	0.626±0.056	37.77±5.62	0.0066 ± 0.0004	8.37±1.25	1.309±0.084
600	27.0±0.5	0.31±0.01	19.8±0.5	0.76±0.02	16.8±0.5	15.6±0.4	0.629±0.057	38.10±5.78	0.0067±0.0004	8.44±1.28	1.334±0.087
660	27.1±0.5	0.31±0.01	19.8±0.5	0.75±0.02	16.9±0.5	15.6±0.4	0.636±0.057	38.84±5.88	0.0065±0.0004	8.60±1.31	1.284±0.088
720	27.1±0.5	0.31±0.01	19.8±0.5	0.75±0.02	16.9±0.5	15.6±0.4	0.636±0.057	38.84±5.88	0.0065±0.0004	8.60±1.31	1.284±0.088
780	27.0±0.5	0.30±0.01	19.8±0.5	0.75±0.02	16.9±0.5	15.3±0.4	0.618±0.056	36.92±5.50	0.0066 ± 0.0004	8.18±1.22	1.316±0.084
840	27.1±0.5	0.30±0.01	19.8±0.5	0.74±0.01	16.9±0.5	15.4±0.4	0.625±0.056	37.62±5.59	0.0064±0.0004	8.33±1.24	1.268±0.085
900	27.1±0.5	0.30±0.01	19.8±0.5	0.75±0.02	16.9±0.5	15.4±0.4	0.625±0.056	37.62±5.59	0.0066±0.0004	8.33±1.24	1.311±0.085

G.1.2.2 Teste 2 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 40%.

Tabela 76 – Dados PET liso 01 para temperatura de bulbo seco de 27°C e umidade relativa de 40%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.40±0.01	20.7±0.5	0.87±0.02	18.6±0.5	17.4±0.4	0.654±0.069	41.33±7.58 (0.0088±0.0006	9.15±1.68 1	.741±0.116
120	27.0±0.5	0.40±0.01	20.7±0.5	0.88±0.02	18.6±0.5	17.4±0.4	0.654±0.069	41.33±7.58 (0.0091±0.0006	9.15±1.68 1	.796±0.116
180	27.0±0.5	0.40±0.01	20.6±0.5	0.88±0.02	18.6±0.5	17.4±0.4	0.664±0.069	42.47±7.80 0	0.0090±0.0006	9.41±1.73 1	.788±0.116
240	27.0±0.5	0.40±0.01	20.6±0.5	0.88±0.02	18.6±0.5	17.4±0.4	0.664±0.069	42.47±7.80 0	0.0090±0.0006	9.41±1.73 1	.788±0.116
300	26.9±0.5	0.40±0.01	20.6±0.5	0.88±0.02	18.6±0.5	17.3±0.4	0.656±0.069	41.49±7.63 0	0.0090±0.0005	9.19±1.69 1	.793±0.115
360	26.9±0.5	0.40±0.01	20.5±0.5	0.88±0.02	18.6±0.5	17.3±0.4	0.666±0.069	42.64±7.86 0	0.0090±0.0005	9.45±1.74 1	.784±0.115
420	26.9±0.5	0.40±0.01	20.5±0.5	0.88±0.02	18.5±0.5	17.3±0.4	0.666±0.069	42.64±7.86 0	0.0090±0.0005	9.45±1.74 1	.784±0.115
480	27.1±0.5	0.40±0.01	20.6±0.5	0.88±0.02	18.5±0.5	17.4±0.4	0.673±0.069	43.48±7.99 0	0.0090±0.0006	9.63±1.77 1	.783±0.116
540	27.0±0.5	0.40±0.01	20.6±0.5	0.88±0.02	18.5±0.5	17.4±0.4	0.664±0.069	42.47±7.80 0	0.0090±0.0006	9.41±1.73 1	.788±0.116
600	27.0±0.5	0.40±0.01	20.5±0.5	0.88±0.02	18.5±0.5	17.4±0.4	0.675±0.069	43.66±8.05 0	0.0090±0.0005	9.67±1.78 1	.780±0.116
660	27.0±0.5	0.40±0.01	20.5±0.5	0.88±0.02	18.5±0.5	17.4±0.4	0.675±0.069	43.66±8.05 0	0.0090±0.0005	9.67±1.78 1	.780±0.116
720	27.0±0.5	0.40±0.01	20.5±0.5	0.88±0.02	18.5±0.5	17.4±0.4	0.675±0.069	43.66±8.05 0	0.0090±0.0005	9.67±1.78 1	.780±0.116
780	27.0±0.5	0.40±0.01	20.5±0.5	0.88±0.02	18.5±0.5	17.4±0.4	0.675±0.069	43.66±8.05 0	0.0090±0.0005	9.67±1.78 1	.780±0.116
840	27.0±0.5	0.40±0.01	20.5±0.5	0.88±0.02	18.5±0.5	17.4±0.4	0.675±0.069	43.66±8.05 0	0.0090±0.0005	9.67±1.78 1	.780±0.116
900	27.0±0.5	0.40±0.01	20.5±0.5	0.88±0.02	18.5±0.5	17.4±0.4	0.675±0.069	43.66±8.05 0	0.0090±0.0005	9.67±1.78 1	.780±0.116

G.1.2.3 Teste 3 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 50%.

Tabela 77 – Dados PET liso 01 para temperatura de bulbo seco de 27°C e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
120	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
180	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
240	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
300	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
360	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
420	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
480	27.1±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.3±0.5	0.733±0.087	51.98±12.56	0.0093±0.0008 1	1.51±2.78	1.841±0.164
540	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
600	27.0±0.5	0.50±0.01	21.4±0.5	0.91±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0093±0.0008 1	1.16±2.67	1.848±0.163
660	27.0±0.5	0.50±0.01	21.4±0.5	0.92±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0097±0.0008 1	1.16±2.67	1.926±0.160
720	27.0±0.5	0.50±0.01	21.4±0.5	0.92±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0097±0.0008 1	1.16±2.67	1.926±0.160
780	26.9±0.5	0.50±0.01	21.4±0.5	0.92±0.02	20.1±0.5	19.2±0.5	0.711±0.087	48.86±11.63	0.0097±0.0008	10.83±2.57	1.932±0.160
840	27.0±0.5	0.50±0.01	21.4±0.5	0.92±0.02	20.1±0.5	19.2±0.5	0.722±0.087	50.39±12.07	0.0097±0.0008 1	1.16±2.67	1.926±0.160
900	27.1±0.5	0.49±0.01	21.4±0.5	0.92±0.02	20.1±0.5	19.1±0.4	0.717±0.085	49.57±11.51	0.0098±0.0008	10.98±2.55	1.940±0.155

G.1.2.4 Teste 4 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 30%.

		Tabela 78	I – Dados F	PET liso 01 p	ara temper	atura de bu	ulbo seco de	32°C e umida	de relativa de 30	%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	31.9±0.5	0.30±0.01	22.9±0.5	0.87±0.02	20.7±0.5	18.8±0.4	0.689±0.05	0 44.95±6.01	0.0098±0.0005	9.82±1.32	1.871±0.098
120	31.9±0.5	0.30±0.01	22.9±0.5	0.87±0.02	20.7±0.5	18.8±0.4	0.689±0.05	0 44.95±6.01	0.0098±0.0005	9.82±1.32	1.871±0.098
180	32.0±0.5	0.30±0.01	22.9±0.5	0.87±0.02	20.7±0.5	18.9±0.4	0.695±0.049	9 45.70±6.12	0.0097±0.0005	9.98±1.34	1.868±0.098
240	32.0±0.5	0.30±0.01	22.9±0.5	0.87±0.02	20.7±0.5	18.9±0.4	0.695±0.049	9 45.70±6.12	0.0097±0.0005	9.98±1.34	1.868±0.098
300	32.0±0.5	0.30±0.01	22.9±0.5	0.87±0.02	20.7±0.5	18.9±0.4	0.695±0.049	9 45.70±6.12	0.0097±0.0005	9.98±1.34	1.868±0.098
360	32.0±0.5	0.30±0.01	22.9±0.5	0.88±0.02	20.7±0.5	18.9±0.4	0.695±0.049	9 45.70±6.12	0.0100±0.0005	9.98±1.34	1.914±0.099
420	32.0±0.5	0.30±0.01	22.9±0.5	0.88±0.02	20.7±0.5	18.9±0.4	0.695±0.049	9 45.70±6.12	0.0100±0.0005	9.98±1.34	1.914±0.099
480	32.0±0.5	0.30±0.01	22.9±0.5	0.88±0.02	20.7±0.5	18.9±0.4	0.695±0.049	9 45.70±6.12	0.0100±0.0005	9.98±1.34	1.914±0.099
540	32.1±0.5	0.30±0.01	22.9±0.5	0.87±0.02	20.7±0.5	19.0±0.4	0.701±0.04	9 46.47±6.23	0.0097±0.0005	10.14±1.36	6 1.865±0.099
600	32.2±0.5	0.30±0.01	23.0±0.5	0.87±0.02	20.7±0.5	19.0±0.4	0.699±0.04	9 46.29±6.18	0.0098±0.0005	10.10±1.36	6 1.868±0.099
660	32.1±0.5	0.30±0.01	23.0±0.5	0.87±0.02	20.7±0.5	19.0±0.4	0.693±0.049	9 45.53±6.08	0.0098±0.0005	9.94±1.33	1.871±0.099
720	31.9±0.5	0.31±0.01	23.0±0.5	0.87±0.02	20.7±0.5	19.1±0.4	0.694±0.05	1 45.70±6.26	0.0097±0.0005	9.98±1.37	1.864±0.101
780	32.0±0.5	0.30±0.01	23.0±0.5	0.87±0.02	20.7±0.5	18.9±0.4	0.687±0.05	0 44.78±5.97	0.0098±0.0005	9.78±1.31	1.875±0.099
840	32.0±0.5	0.30±0.01	23.0±0.5	0.87±0.02	20.7±0.5	18.9±0.4	0.687±0.05	0 44.78±5.97	0.0098±0.0005	9.78±1.31	1.875±0.099
900	32.0±0.5	0.30±0.01	23.0±0.5	0.87±0.02	20.7±0.5	18.9±0.4	0.687±0.05	0 44.78±5.97	0.0098±0.0005	9.78±1.31	1.875±0.099

G.1.2.5 Teste 5 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 40%.

|--|

tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	31.9±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.2±0.5	21.2±0.4	0.689±0.062	46.19±7.66	0.0101±0.0007	10.09±1.67	1.940±0.138
120	32.0±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.3±0.5	21.2±0.4	0.697±0.062	47.18±7.84	0.0101±0.0007	10.30±1.71	1.933±0.138
180	32.1±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.3±0.5	21.3±0.4	0.705±0.062	48.19±8.03	0.0101±0.0007	10.52±1.76	1.926±0.139
240	32.1±0.5	0.39±0.01	24.5±0.5	0.89±0.02	22.3±0.5	21.1±0.4	0.690±0.060	46.27±7.47	0.0102±0.0007	10.10±1.63	1.949±0.134
300	32.1±0.5	0.39±0.01	24.5±0.5	0.89±0.02	22.3±0.5	21.1±0.4	0.690±0.060	46.27±7.47	0.0102±0.0007	10.10±1.63	1.949±0.134
360	32.0±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.3±0.5	21.2±0.4	0.697±0.062	47.18±7.84	0.0101±0.0007	10.30±1.71	1.933±0.138
420	32.0±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.3±0.5	21.2±0.4	0.697±0.062	47.18±7.84	0.0101±0.0007	10.30±1.71	1.933±0.138
480	31.9±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.4±0.5	21.2±0.4	0.689±0.062	46.19±7.66	0.0101±0.0007	10.09±1.67	1.940±0.138
540	31.9±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.3±0.5	21.2±0.4	0.689±0.062	46.19±7.66	0.0101±0.0007	10.09±1.67	1.940±0.138
600	32.0±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.3±0.5	21.2±0.4	0.697±0.062	47.18±7.84	0.0101±0.0007	10.30±1.71	1.933±0.138
660	32.0±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.4±0.5	21.2±0.4	0.697±0.062	47.18±7.84	0.0101±0.0007	10.30±1.71	1.933±0.138
720	32.0±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.4±0.5	21.2±0.4	0.697±0.062	47.18±7.84	0.0101±0.0007	10.30±1.71	1.933±0.138
780	32.1±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.4±0.5	21.3±0.4	0.705±0.062	48.19±8.03	0.0101±0.0007	10.52±1.76	1.926±0.139
840	32.1±0.5	0.40±0.01	24.5±0.5	0.89±0.02	22.4±0.5	21.3±0.4	0.705±0.062	48.19±8.03	0.0101±0.0007	10.52±1.76	1.926±0.139
900	32.1±0.5	0.40±0.01	24.6±0.5	0.90±0.02	22.4±0.5	21.3±0.4	0.695±0.062	47.03±7.79	0.0104±0.0007	10.26±1.70	2.000±0.138

G.1.2.6 Teste 6 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 50%.

Tabela 80 – Dados PET liso 01	para temperatura de bulbo seco o	de 32ºC e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Ta	Tbu	E	hc	hm	Nus	Sh
(S)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(vv/m-°C)	m/s	(-)	(-)
60	32.0±0.5	0.50±0.01	25.9±0.5	0.91±0.02	24.0±0.5	23.4±0.5	0.708±0.079	9 49.87±10.56 0	0.0104±0.0010	10.89±2.31 1	.985±0.203
120	32.0±0.5	0.50±0.01	25.9±0.5	0.91±0.02	24.1±0.5	23.4±0.5	0.708±0.079	9 49.87±10.56 0	0.0104±0.0010	10.89±2.31 1	.985±0.203
180	32.0±0.5	0.50±0.01	25.9±0.5	0.91±0.02	24.1±0.5	23.4±0.5	0.708±0.079	9 49.87±10.56 0	0.0104±0.0010	10.89±2.31 1	.985±0.203
240	32.0±0.5	0.50±0.01	25.8±0.5	0.91±0.02	24.1±0.5	23.4±0.5	0.719±0.079	9 51.43±11.00	0.0103±0.001	0 11.23±2.40	1.968±0.203
300	32.0±0.5	0.50±0.01	25.9±0.5	0.91±0.02	24.1±0.5	23.4±0.5	0.708±0.079	9 49.87±10.56 0	0.0104±0.0010	10.89±2.31 1	.985±0.203
360	32.1±0.5	0.50±0.01	25.8±0.5	0.91±0.02	24.1±0.5	23.5±0.5	0.730±0.079	9 52.88±11.40	0.0102±0.001	0 11.54±2.49	1.955±0.205
420	32.0±0.5	0.49±0.01	25.8±0.5	0.91±0.02	24.1±0.5	23.2±0.5	0.703±0.077	7 49.06±10.10 0	0.0105±0.0010	10.71±2.20 2	.003±0.194
480	31.9±0.5	0.50±0.01	25.8±0.5	0.91±0.02	24.1±0.5	23.3±0.5	0.709±0.079	9 50.02±10.63 0	0.0103±0.0010	10.92±2.32 1	.980±0.202
540	31.9±0.5	0.50±0.01	25.8±0.5	0.91±0.02	24.0±0.5	23.3±0.5	0.709±0.079	9 50.02±10.63 0	0.0103±0.0010	10.92±2.32 1	.980±0.202
600	32.0±0.5	0.50±0.01	25.8±0.5	0.91±0.02	24.0±0.5	23.4±0.5	0.719±0.079	9 51.43±11.00	0.0103±0.001	0 11.23±2.40	1.968±0.203
660	32.1±0.5	0.49±0.01	25.9±0.5	0.91±0.02	24.0±0.5	23.3±0.5	0.701±0.077	7 48.92±10.04 0	0.0105±0.0010	10.68±2.19 2	.008±0.195
720	32.1±0.5	0.49±0.01	25.9±0.5	0.91±0.02	24.1±0.5	23.3±0.5	0.701±0.077	7 48.92±10.04 0	0.0105±0.0010	10.68±2.19 2	.008±0.195
780	32.1±0.5	0.50±0.01	25.9±0.5	0.91±0.02	24.1±0.5	23.5±0.5	0.718±0.079	951.27±10.93	0.0103±0.0010	11.19±2.39	1.972±0.204
840	32.0±0.5	0.50±0.01	26.0±0.5	0.91±0.02	24.1±0.5	23.4±0.5	0.696±0.079	9 48.38±10.16 0	0.0105±0.0010	10.56±2.22 2	.003±0.202
900	32.1±0.5	0.50±0.01	26.0±0.5	0.91±0.02	24.1±0.5	23.5±0.5	0.706±0.079	9 49.73±10.50 0	0.0104±0.0010	10.86±2.29 1	.990±0.204

G.1.2.7 Teste 7 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 30%.

		Tabela 81	– Dados F	PET liso 01 p	ara temper	ratura de bi	ulbo seco de	37°C e umida	de relativa de 30%	%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	36.8±0.5	0.30±0.01	26.4±0.5	0.88±0.02	24.3±0.5	22.3±0.4	0.719±0.045	49.78±6.12	0.0108±0.0006	10.72±1.33	1.999±0.114
120	36.9±0.5	0.30±0.01	26.4±0.5	0.88±0.02	24.3±0.5	22.4±0.4	0.724±0.045	50.55±6.23	0.0108±0.0006	10.89±1.35	1.995±0.114
180	37.0±0.5	0.30±0.01	26.5±0.5	0.88±0.02	24.3±0.5	22.5±0.4	0.723±0.045	50.39±6.19	0.0108±0.0006	10.85±1.34	1.999±0.114
240	37.1±0.5	0.30±0.01	26.5±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.728±0.045	51.16±6.31	0.0108±0.0006	11.01±1.37	1.994±0.115
300	37.1±0.5	0.30±0.01	26.5±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.728±0.045	51.16±6.31	0.0108±0.0006	11.01±1.37	1.994±0.115
360	37.1±0.5	0.30±0.01	26.5±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.728±0.045	51.16±6.31	0.0108±0.0006	11.01±1.37	1.994±0.115
420	37.2±0.5	0.30±0.01	26.5±0.5	0.88±0.02	24.4±0.5	22.6±0.4	0.734±0.045	51.95±6.42	0.0108±0.0006	11.18±1.39	1.990±0.115
480	37.1±0.5	0.30±0.01	26.6±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.721±0.045	50.23±6.16	0.0108±0.0006	10.81±1.33	2.003±0.115
540	37.0±0.5	0.30±0.01	26.6±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.716±0.045	49.47±6.05	0.0108±0.0006	10.65±1.31	2.008±0.115
600	37.0±0.5	0.30±0.01	26.5±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.723±0.045	50.39±6.19	0.0108±0.0006	10.85±1.34	1.999±0.114
660	37.1±0.5	0.30±0.01	26.5±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.728±0.045	51.16±6.31	0.0108±0.0006	11.01±1.37	1.994±0.115
720	37.1±0.5	0.30±0.01	26.6±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.721±0.045	50.23±6.16	0.0108±0.0006	10.81±1.33	2.003±0.115
780	37.1±0.5	0.30±0.01	26.6±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.721±0.045	50.23±6.16	0.0108±0.0006	10.81±1.33	2.003±0.115
840	37.1±0.5	0.30±0.01	26.6±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.721±0.045	50.23±6.16	0.0108±0.0006	10.81±1.33	2.003±0.115
900	37.0±0.5	0.30±0.01	26.5±0.5	0.88±0.02	24.4±0.5	22.5±0.4	0.723±0.045	50.39±6.19	0.0108 ± 0.0006	10.85±1.34	1.999±0.114

G.1.2.8 Teste 8 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 40%.

|--|

tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164
120	37.1±0.5	0.40±0.01	28.5±0.5	0.91±0.02	26.7±0.5	25.2±0.4	0.724±0.056	52.60±8.05	0.0117±0.0009	11.32±1.74	2.174±0.165
180	37.0±0.5	0.41±0.01	28.5±0.5	0.91±0.02	26.7±0.5	25.4±0.4	0.732±0.058	53.95±8.53	0.0116±0.0009	11.61±1.84	2.154±0.171
240	37.0±0.5	0.40±0.01	28.5±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.716±0.056	51.57±7.86	0.0118±0.0008	11.10±1.70	2.183±0.164
300	37.0±0.5	0.40±0.01	28.5±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.716±0.056	51.57±7.86	0.0118±0.0008	11.10±1.70	2.183±0.164
360	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164
420	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164
480	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164
540	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164
600	37.0±0.5	0.41±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.4±0.4	0.741±0.058	55.20±8.81	0.0115±0.0009	11.88±1.90	2.139±0.171
660	36.9±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.718±0.057	51.70±7.90	0.0117±0.0008	11.13±1.71	2.177±0.164
720	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164
780	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164
840	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164
900	37.0±0.5	0.40±0.01	28.4±0.5	0.91±0.02	26.7±0.5	25.1±0.4	0.725±0.056	52.73±8.09	0.0117±0.0008	11.35±1.75	2.168±0.164

G.1.2.9 Teste 9 PET liso 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 50%.

Tabela 83 - Dados PET liso 01 para temperatura de bulbo seco de 37ºC e umidade relativa de 50%.

		Tabola o	Budde		para tempe	natura ao k				/01	
tempo (s)	Te (°C)	Ure (%)	Ts (℃)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²ºC)	hm m/s	Nus (-)	Sh (-)
60	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.8±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
120	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
180	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
240	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
300	36.9±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.742±0.073	57.38±11.40	0.0105±0.0014	12.36±2.46	1.955±0.261
360	36.9±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.742±0.073	57.38±11.40	0.0105±0.0014	12.36±2.46	1.955±0.261
420	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
480	37.1±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.6±0.5	0.760±0.073	60.46±12.28	0.0103±0.0014 13	3.01±2.64 1.9	916±0.267
540	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
600	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
660	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
720	37.1±0.5	0.49±0.01	29.9±0.5	0.90±0.02	27.9±0.5	27.4±0.5	0.742±0.071	57.35±11.08	0.0107±0.0013	12.34±2.39	1.977±0.251
780	37.1±0.5	0.49±0.01	29.9±0.5	0.90±0.02	27.8±0.5	27.4±0.5	0.742±0.071	57.35±11.08	0.0107±0.0013	12.34±2.39	1.977±0.251
840	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.8±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264
900	37.0±0.5	0.50±0.01	29.9±0.5	0.90±0.02	27.8±0.5	27.5±0.5	0.751±0.073	58.89±11.82	0.0104±0.0014	12.68±2.55	1.936±0.264

G.1.3 Painel PET liso 02

G.1.3.1 Teste 1 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 30%.

		Tabela 84	4 – Dados I	PET liso 02	para tempe	ratura de b	ulbo seco de	27°C e umida	ide relativa de 30°	%.	
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	27.1±0.5	0.30±0.01	18.9±0.5	0.88±0.02	17.0±0.5	15.4±0.4	0.702±0.055	5 38.58±5.81	0.0076±0.0003	7.13±1.08	1.264±0.058
120	27.1±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.0±0.5	15.4±0.4	0.710±0.055	5 39.49±5.98	0.0078±0.0003	7.30±1.11	1.292±0.058
180	27.1±0.5	0.30±0.01	18.9±0.5	0.89±0.02	17.0±0.5	15.4±0.4	0.702±0.055	5 38.58±5.81	0.0078±0.0003	7.13±1.08	1.293±0.058
240	27.0±0.5	0.30±0.01	18.9±0.5	0.88±0.02	17.1±0.5	15.3±0.4	0.695±0.055	5 37.87±5.70	0.0076±0.0003	7.00±1.05	1.265±0.058
300	26.9±0.5	0.30±0.01	18.8±0.5	0.88±0.02	17.1±0.5	15.3±0.4	0.697±0.056	38.04±5.75	0.0076±0.0003	7.04±1.06	1.263±0.058
360	27.0±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.0±0.5	15.3±0.4	0.704±0.055	5 38.76±5.86	0.0078±0.0003	7.17±1.08	1.292±0.058
420	27.0±0.5	0.30±0.01	18.8±0.5	0.88±0.02	17.0±0.5	15.3±0.4	0.704±0.055	5 38.76±5.86	0.0076±0.0003	7.17±1.08	1.263±0.058
480	26.9±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.0±0.5	15.3±0.4	0.697±0.056	38.04±5.75	0.0078±0.0003	7.04±1.06	1.292±0.058
540	26.9±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.0±0.5	15.3±0.4	0.697±0.056	38.04±5.75	0.0078±0.0003	7.04±1.06	1.292±0.058
600	27.0±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.0±0.5	15.3±0.4	0.704±0.055	5 38.76±5.86	0.0078±0.0003	7.17±1.08	1.292±0.058
660	27.0±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.1±0.5	15.3±0.4	0.704±0.055	5 38.76±5.86	0.0078±0.0003	7.17±1.08	1.292±0.058
720	26.9±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.1±0.5	15.3±0.4	0.697±0.056	38.04±5.75	0.0078±0.0003	7.04±1.06	1.292±0.058
780	26.9±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.1±0.5	15.3±0.4	0.697±0.056	38.04±5.75	0.0078±0.0003	7.04±1.06	1.292±0.058
840	27.1±0.5	0.30±0.01	18.8±0.5	0.89±0.02	17.1±0.5	15.4±0.4	0.710±0.055	5 39.49±5.98	0.0078±0.0003	7.30±1.11	1.292±0.058
900	27.1±0.5	0.30±0.01	18.9±0.5	0.89±0.02	17.1±0.5	15.4±0.4	0.702±0.055	5 38.58±5.81	0.0078±0.0003	7.13±1.08	1.293±0.058

G.1.3.2 Teste 2 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 40%.

Tabela 85 – Dados PET liso 02 para temperatura de bulbo seco de 27ºC e umidade relativa de 40%.													
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Та (°С)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)		
60	27.0±0.5	0.40±0.01	20.2±0.5	0.83±0.02	18.4±0.5	17.4±0.4	0.706±0.069	39.62±7.41	0.0062±0.0005	7.33±1.37	1.024±0.083		
120	27.0±0.5	0.40±0.01	20.2±0.5	0.83±0.02	18.3±0.5	17.4±0.4	0.706±0.069	39.62±7.41	0.0062±0.0005	7.33±1.37	1.024±0.083		
180	27.0±0.5	0.40±0.01	20.2±0.5	0.83±0.02	18.3±0.5	17.4±0.4	0.706±0.069	39.62±7.41	0.0062±0.0005	7.33±1.37	1.024±0.083		
240	27.0±0.5	0.40±0.01	20.2±0.5	0.83±0.02	18.3±0.5	17.4±0.4	0.706±0.069	39.62±7.41	0.0062±0.0005	7.33±1.37	1.024±0.083		
300	27.1±0.5	0.40±0.01	20.3±0.5	0.83±0.02	18.3±0.5	17.4±0.4	0.704±0.069	39.45±7.36	0.0062±0.0005	7.29±1.36	1.026±0.083		
360	27.0±0.5	0.40±0.01	20.3±0.5	0.82±0.02	18.3±0.5	17.4±0.4	0.696±0.069	38.53±7.17	0.0060 ± 0.0005	7.13±1.32	0.990±0.084		
420	26.9±0.5	0.40±0.01	20.2±0.5	0.83±0.02	18.3±0.5	17.3±0.4	0.697±0.069	38.69±7.22	0.0062±0.0005	7.16±1.33	1.029±0.082		
480	26.9±0.5	0.40±0.01	20.2±0.5	0.83±0.02	18.3±0.5	17.3±0.4	0.697±0.069	38.69±7.22	0.0062±0.0005	7.16±1.33	1.029±0.082		
540	27.0±0.5	0.40±0.01	20.3±0.5	0.83±0.02	18.3±0.5	17.4±0.4	0.696±0.069	38.53±7.17	0.0062±0.0005	7.13±1.32	1.031±0.083		
600	27.1±0.5	0.40±0.01	20.3±0.5	0.83±0.02	18.3±0.5	17.4±0.4	0.704±0.069	39.45±7.36	0.0062±0.0005	7.29±1.36	1.026±0.083		
660	27.1±0.5	0.40±0.01	20.3±0.5	0.82±0.02	18.3±0.5	17.4±0.4	0.704±0.069	39.45±7.36	0.0060 ± 0.0005	7.29±1.36	0.985±0.084		
720	27.0±0.5	0.40±0.01	20.3±0.5	0.83±0.02	18.3±0.5	17.4±0.4	0.696±0.069	38.53±7.17	0.0062±0.0005	7.13±1.32	1.031±0.083		
780	27.0±0.5	0.40±0.01	20.3±0.5	0.82±0.02	18.3±0.5	17.4±0.4	0.696±0.069	38.53±7.17	0.0060±0.0005	7.13±1.32	0.990±0.084		
840	27.0±0.5	0.40±0.01	20.3±0.5	0.82±0.02	18.3±0.5	17.4±0.4	0.696±0.069	38.53±7.17	0.0060 ± 0.0005	7.13±1.32	0.990±0.084		
900	27.0±0.5	0.40±0.01	20.3±0.5	0.83±0.02	18.3±0.5	17.4±0.4	0.696±0.069	38.53±7.17	0.0062±0.0005	7.13±1.32	1.031±0.083		

G.1.3.3 Teste 3 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 50%.

Tabela 86 – Dados PET liso 02 para temperatura de bulbo seco de 27°C e umidade relativa de 50%.

										-	
tempo	Te (°C)	Ure	Ts (°C)	Urs	Ta (°C)	Tbu (°C)	E	hc (\\//m²ºC)	hm m/s	Nus	Sh
(3)	(0)	(70)	(\mathbf{C})	(70)	(0)	(\mathbf{O})	(-)	(10/111 C)	11//3	(-)	(-)
60	27.0±0.5	0.50±0.01	21.2±0.5	0.93±0.02	20.0±0.5	19.2±0.5	0.748±0.087	45.17±11.11	0.0084±0.0006	8.35±2.05	1.385±0.109
120	27.1±0.5	0.50±0.01	21.3±0.5	0.93±0.02	20.1±0.5	19.3±0.5	0.746±0.087	44.97±11.02	0.0084±0.0006	8.31±2.03	1.387±0.110
180	27.0±0.5	0.50±0.01	21.2±0.5	0.93±0.02	20.1±0.5	19.2±0.5	0.748±0.087	45.17±11.11	0.0084±0.0006	8.35±2.05	1.385±0.109
240	27.0±0.5	0.50±0.01	21.2±0.5	0.93±0.02	20.1±0.5	19.2±0.5	0.748±0.087	45.17±11.11	0.0084±0.0006	8.35±2.05	1.385±0.109
300	27.0±0.5	0.50±0.01	21.1±0.5	0.93±0.02	20.1±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0083±0.0006	8.66±2.16	1.380±0.109
360	27.0±0.5	0.50±0.01	21.1±0.5	0.93±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0083±0.0006	8.66±2.16	1.380±0.109
420	27.0±0.5	0.50±0.01	21.1±0.5	0.94±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0087±0.0006	8.66±2.16	1.435±0.108
480	27.0±0.5	0.50±0.01	21.1±0.5	0.94±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0087±0.0006	8.66±2.16	1.435±0.108
540	27.0±0.5	0.50±0.01	21.1±0.5	0.94±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0087±0.0006	8.66±2.16	1.435±0.108
600	27.0±0.5	0.50±0.01	21.1±0.5	0.94±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0087±0.0006	8.66±2.16	1.435±0.108
660	27.0±0.5	0.50±0.01	21.1±0.5	0.94±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0087±0.0006	8.66±2.16	1.435±0.108
720	27.0±0.5	0.50±0.01	21.1±0.5	0.93±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0083±0.0006	8.66±2.16	1.380±0.109
780	27.0±0.5	0.50±0.01	21.1±0.5	0.94±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0087±0.0006	8.66±2.16	1.435±0.108
840	27.0±0.5	0.50±0.01	21.1±0.5	0.94±0.02	20.0±0.5	19.2±0.5	0.761±0.087	46.84±11.71	0.0087±0.0006	8.66±2.16	1.435±0.108
900	27.1±0.5	0.50±0.01	21.1±0.5	0.93±0.02	20.0±0.5	19.3±0.5	0.772±0.087	48.37±12.27	0.0083±0.0006	8.94±2.26	1.378±0.110

.

G.1.3.4 Teste 4 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 30%.

Tabela 87 – Dados PET liso 02 para temperatura de bulbo seco de 32ºC e umidade relativa de 30%.												
tempo	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²ºC)	hm m/s	Nus	Sh (-)	
60	32.1±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	(0) 19.0±0.4	0.686±0.049	37.26±4.95	0.0067±0.0004	6.79±0.90	1.079±0.068	
120	32.1±0.5	0.29±0.01	23.1±0.5	0.79±0.02	20.7±0.5	18.7±0.4	0.673±0.048	35.94±4.66	0.0067±0.0004	6.55±0.85	1.065±0.065	
180	31.9±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	18.8±0.4	0.673±0.050	36.04±4.79	0.0068±0.0004	6.57±0.87	1.086±0.067	
240	31.9±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	18.8±0.4	0.673±0.050	36.04±4.79	0.0068±0.0004	6.57±0.87	1.086±0.067	
300	31.9±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	18.8±0.4	0.673±0.050	36.04±4.79	0.0068±0.0004	6.57±0.87	1.086±0.067	
360	31.9±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	18.8±0.4	0.673±0.050	36.04±4.79	0.0068±0.0004	6.57±0.87	1.086±0.067	
420	32.0±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	18.9±0.4	0.679±0.050	36.64±4.87	0.0068±0.0004	6.68±0.89	1.083±0.068	
480	32.0±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	18.9±0.4	0.679±0.050	36.64±4.87	0.0068±0.0004	6.68±0.89	1.083±0.068	
540	32.1±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	19.0±0.4	0.686±0.049	37.26±4.95	0.0067±0.0004	6.79±0.90	1.079±0.068	
600	32.0±0.5	0.30±0.01	23.1±0.5	0.80±0.02	20.7±0.5	18.9±0.4	0.679±0.050	36.64±4.87	0.0068±0.0004	6.68±0.89	1.083±0.068	
660	32.0±0.5	0.30±0.01	23.1±0.5	0.81±0.02	20.7±0.5	18.9±0.4	0.679±0.050	36.64±4.87	0.0070±0.0004	6.68±0.89	1.116±0.067	
720	32.0±0.5	0.29±0.01	23.1±0.5	0.80±0.02	20.7±0.5	18.7±0.4	0.667±0.049	35.36±4.58	0.0069±0.0004	6.45±0.84	1.100±0.065	
780	31.9±0.5	0.29±0.01	23.0±0.5	0.80±0.02	20.7±0.5	18.6±0.4	0.668±0.049	35.49±4.61	0.0069±0.0004	6.47±0.84	1.098±0.065	
840	31.9±0.5	0.29±0.01	23.0±0.5	0.80±0.02	20.7±0.5	18.6±0.4	0.668±0.049	35.49±4.61	0.0069±0.0004	6.47±0.84	1.098±0.065	
900	32.0±0.5	0.30±0.01	23.0±0.5	0.80±0.02	20.7±0.5	18.9±0.4	0.687±0.050	37.39±4.98	0.0067±0.0004	6.82±0.91	1.077±0.067	

G.1.3.5 Teste 5 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32ºC e umidade relativa do ar de 40%.

Tabela 88 – Dados PET liso 02 para temperatura de bulbo seco de 32ºC e umidade relativa de 40%.

tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	32.1±0.5	0.40±0.01	24.4±0.5	0.92±0.02	23.0±0.5	21.3±0.4	0.714±0.062	41.24±6.92	0.0092±0.0006	7.52±1.26	1.468±0.093
120	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	23.0±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
180	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	23.0±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
240	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	23.0±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
300	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
360	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
420	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
480	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
540	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
600	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
660	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
720	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
780	32.0±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.706±0.062	40.37±6.74	0.0092±0.0006	7.36±1.23	1.471±0.093
840	31.9±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.698±0.062	39.52±6.58	0.0092±0.0006	7.21±1.20	1.475±0.093
900	31.9±0.5	0.40±0.01	24.4±0.5	0.92±0.02	22.9±0.5	21.2±0.4	0.698±0.062	39.52±6.58	0.0092±0.0006	7.21±1.20	1.475±0.093

G.1.3.6 Teste 6 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32ºC e umidade relativa do ar de 50%.

Tabela 89 – Dados PET liso 02	para tempera	atura de bulbo	seco de 27°C	e umidade	relativa de 50%

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	32.0±0.5	0.49±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.2±0.5	0.759±0.077	47.72±10.42	0.0092±0.0008 8	.70±1.90 1	.464±0.130
120	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
180	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
240	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
300	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
360	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	24.0±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
420	32.0±0.5	0.49±0.01	25.3±0.5	0.93±0.02	24.0±0.5	23.2±0.5	0.759±0.077	47.72±10.42	0.0092±0.0008 8	.70±1.90 1	.464±0.130
480	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
540	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
600	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
660	32.0±0.5	0.49±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.2±0.5	0.759±0.077	47.72±10.42	0.0092±0.0008 8	.70±1.90 1	.464±0.130
720	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
780	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
840	32.0±0.5	0.50±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.4±0.5	0.777±0.079	50.36±11.59	0.0090±0.0008	9.18±2.11	1.445±0.135
900	32.0±0.5	0.49±0.01	25.3±0.5	0.93±0.02	23.9±0.5	23.2±0.5	0.759±0.077	47.72±10.42	0.0092±0.0008 8	.70±1.90 1	.464±0.130

G.1.3.7 Teste 7 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37ºC e umidade relativa do ar de 30%.

	Tabela 90 – Dados PET liso 02 para temperatura de bulbo seco de 37°C e umidade relativa de 30%.											
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh	
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)	
60	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	34.54±5.14 0	.0061±0.0003	6.39±0.95 1.	013±0.057	
120	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	34.54±5.14 0	.0061±0.0003	6.39±0.95 1.	013±0.057	
180	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	34.54±5.14 0	.0061±0.0003	6.39±0.95 1.	013±0.057	
240	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	34.54±5.14 0	.0061±0.0003	6.39±0.95 1.	013±0.057	
300	27.1±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.4±0.4	0.668±0.055	35.18±5.23 0	.0061±0.0003	6.51±0.97 1.	011±0.057	
360	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	34.54±5.14 0	.0061±0.0003	6.39±0.95 1.	013±0.057	
420	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	34.54±5.14 0	.0061±0.0003	6.39±0.95 1.	013±0.057	
480	26.9±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.654±0.056	33.90±5.06 0	.0061±0.0003	6.27±0.94 1.	016±0.057	
540	26.9±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.654±0.056	33.90±5.06 0	.0061±0.0003	6.27±0.94 1.	016±0.057	
600	27.1±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.4±0.4	0.668±0.055	35.18±5.23 0	.0061±0.0003	6.51±0.97 1.	011±0.057	
660	27.1±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.4±0.4	0.668±0.055	35.18±5.23 0	.0061±0.0003	6.51±0.97 1.	011±0.057	
720	27.0±0.5	0.30±0.01	19.3±0.5	0.80±0.02	16.7±0.5	15.3±0.4	0.661±0.056	34.54±5.14 0	.0063±0.0003	6.39±0.95 1.	043±0.057	
780	27.1±0.5	0.30±0.01	19.3±0.5	0.80±0.02	16.7±0.5	15.4±0.4	0.668±0.055	35.18±5.23 0	.0063±0.0003	6.51±0.97 1.	041±0.057	
840	27.0±0.5	0.30±0.01	19.2±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.669±0.056	35.34±5.27 0	.0061±0.0003	6.54±0.98 1.	009±0.057	
900	27.0±0.5	0.30±0.01	19.2±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.669±0.056	35.34±5.27 0	.0061±0.0003	6.54±0.98 1.	009±0.057	

G.1.3.8 Teste 8 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37ºC e umidade relativa do ar de 40%.

Tabela 91 – Dados PET liso 0.	para temperatura de	DUIDO SECO de 37°C e umid	ade relativa de 40%
Tabala 04 Dadaa DET liaa 0			

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.40±0.01	20.7±0.5	0.80±0.02	18.3±0.5	17.4±0.4	0.654±0.069	34.51±6.32	0.0057±0.0005	6.38±1.17 (0.939±0.086
120	26.9±0.5	0.40±0.01	20.7±0.5	0.80±0.02	18.2±0.5	17.3±0.4	0.645±0.069	33.70±6.18	0.0057±0.0005	6.23±1.14 (0.945±0.085
180	27.0±0.5	0.40±0.01	20.7±0.5	0.80±0.02	18.2±0.5	17.4±0.4	0.654±0.069	34.51±6.32	0.0057±0.0005	6.38±1.17 (0.939±0.086
240	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	33.58±6.14	0.0055±0.0005	6.21±1.13 (0.907±0.087
300	27.1±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.652±0.069	34.38±6.28	0.0054±0.0005	6.36±1.16 (0.901±0.087
360	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	33.58±6.14	0.0055±0.0005	6.21±1.13 (0.907±0.087
420	26.9±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.3±0.4	0.635±0.069	32.79±6.01	0.0055±0.0005	6.07±1.11 0).913±0.086
480	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	33.58±6.14	0.0055±0.0005	6.21±1.13 (0.907±0.087
540	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	33.58±6.14	0.0055±0.0005	6.21±1.13 (0.907±0.087
600	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	33.58±6.14	0.0055±0.0005	6.21±1.13 (0.907±0.087
660	26.9±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.3±0.4	0.635±0.069	32.79±6.01	0.0055±0.0005	6.07±1.11 0).913±0.086
720	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	33.58±6.14	0.0055±0.0005	6.21±1.13 (0.907±0.087
780	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	33.58±6.14	0.0055±0.0005	6.21±1.13 (0.907±0.087
840	27.1±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.652±0.069	34.38±6.28	0.0054±0.0005	6.36±1.16 (0.901±0.087
900	27.1±0.5	0.40±0.01	20.9±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.642±0.069	33.45±6.10	0.0055±0.0005	6.18±1.13 (0.909±0.087

G.1.3.9 Teste 9 PET liso 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37ºC e umidade relativa do ar de 50%.

oela 92 -	Dados PFT lisc	02 para temperatu	ira de bulbo sec	:ode 37ºC e u	midade relativa de 50%
JUIU JE -					

Tabela 92 – Dados PET liso 02 para temperatura de bulbo seco de 37ºC e umidade relativa de 50%.													
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)		
60	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.683±0.087	37.94±8.85	0.0060±0.0008	7.02±1.63	0.989±0.129		
120	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.683±0.087	37.94±8.85	0.0060±0.0008	7.02±1.63	0.989±0.129		
180	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.683±0.087	37.94±8.85	0.0060±0.0008	7.02±1.63	0.989±0.129		
240	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.683±0.087	37.94±8.85	0.0060±0.0008	7.02±1.63	0.989±0.129		
300	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.683±0.087	37.94±8.85	0.0060±0.0008	7.02±1.63	0.989±0.129		
360	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.683±0.087	37.94±8.85	0.0060±0.0008	7.02±1.63	0.989±0.129		
420	27.0±0.5	0.49±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.1±0.4	0.668±0.085	36.34±8.22	0.0062±0.0007	6.72±1.52	1.020±0.121		
480	26.9±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.685±0.088	38.08±8.91	0.0060±0.0008	7.04±1.65	0.986±0.128		
540	26.9±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.685±0.088	38.08±8.91	0.0060±0.0008	7.04±1.65	0.986±0.128		
600	26.9±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.685±0.088	38.08±8.91	0.0060±0.0008	7.04±1.65	0.986±0.128		
660	27.0±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.696±0.087	39.26±9.22	0.0059±0.0008	7.26±1.70	0.977±0.130		
720	27.0±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.696±0.087	39.26±9.22	0.0059±0.0008	7.26±1.70	0.977±0.130		
780	27.0±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.696±0.087	39.26±9.22	0.0059±0.0008	7.26±1.70	0.977±0.130		
840	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.683±0.087	37.94±8.85	0.0060±0.0008	7.02±1.63	0.989±0.129		
900	27.1±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.3±0.5	0.695±0.087	39.11±9.16	0.0059±0.000	8 7.23±1.69	9 0.979±0.130		

.

G.2 Painel de PET lixado

Foram avaliados os painéis de PET lixado 00, 01 e 02, correspondente à ordem crescente de perda de carga e massa conforme as condições iniciais do ar de entrada em relação a temperatura de bulbo seco e umidade relativa. Os dados das tabelas são: intervalo de tempo do ponto de dado (Tempo), Temperatura de entrada (Te), temperatura de saída (Ts) umidade relativa do ar de entrada (Ure), umidade relativa do ar de saída (Urs), temperatura da água (Ta), temperatura de bulbo úmido (Tbu), efetividade de resfriamento (E), coeficiente de transferência de calor (hc), coeficiente de transferência de massa (hm), número de Nusselt (Nus) e número de Sherwood (Sh). G.2.1 Painel de PET lixado 00.

G.2.1.1 Teste 1 PET lixado 00. Condições iniciais o ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 30%.

	Tabela 93 – Dados PET lixado 00 para temperatura de bulbo seco de 27ºC e umidade relativa de 30%.													
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh			
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)			
60	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	53.20±7.94	0.0094±0.0005	15.16±2.28	2.404±0.144			
120	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	53.20±7.94	0.0094±0.0005	15.16±2.28	2.404±0.144			
180	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	53.20±7.94	0.0094±0.0005	15.16±2.28	2.404±0.144			
240	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	53.20±7.94	0.0094±0.0005	15.16±2.28	2.404±0.144			
300	27.1±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.4±0.4	0.668±0.055	54.20±8.08	0.0094±0.0005	15.43±2.32	2.398±0.145			
360	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	53.20±7.94	0.0094±0.0005	15.16±2.28	2.404±0.144			
420	27.0±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.661±0.056	53.20±7.94	0.0094±0.0005	15.16±2.28	2.404±0.144			
480	26.9±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.654±0.056	52.22±7.81	0.0094±0.0005	14.88±2.24	2.410±0.144			
540	26.9±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.654±0.056	52.22±7.81	0.0094±0.0005	14.88±2.24	2.410±0.144			
600	27.1±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.4±0.4	0.668±0.055	54.20±8.08	0.0094±0.0005	15.43±2.32	2.398±0.145			
660	27.1±0.5	0.30±0.01	19.3±0.5	0.79±0.02	16.7±0.5	15.4±0.4	0.668±0.055	54.20±8.08	0.0094±0.0005	15.43±2.32	2.398±0.145			
720	27.0±0.5	0.30±0.01	19.3±0.5	0.80±0.02	16.7±0.5	15.3±0.4	0.661±0.056	53.20±7.94	0.0097±0.0005	15.16±2.28	2.474±0.145			
780	27.1±0.5	0.30±0.01	19.3±0.5	0.80±0.02	16.7±0.5	15.4±0.4	0.668±0.055	54.20±8.08	0.0097±0.0005	15.43±2.32	2.469±0.145			
840	27.0±0.5	0.30±0.01	19.2±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.669±0.056	54.43±8.14	0.0094±0.0005	15.51±2.34	2.394±0.144			
900	27.0±0.5	0.30±0.01	19.2±0.5	0.79±0.02	16.7±0.5	15.3±0.4	0.669±0.056	54.43±8.14	0.0094±0.0005	15.51±2.34	2.394±0.144			
C 2 1	2.2.1.2.Teste 2.DET livede 00. Condições iniciais de entredeu temperature de hulho seco de 2700 o umidade relative													

G.2.1.2 Teste 2 PET lixado 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 40%.

	iabela 94 – Dados MET lixado ou para temperatura de buibo seco de 27°C é umidade relativa de 40%.												
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²ºC)	hm m/s	Nus (-)	Sh (-)		
60	27.0±0.5	0.40±0.01	20.7±0.5	0.80±0.02	18.3±0.5	17.4±0.4	0.654±0.069	53.15±9.75	0.0087±0.0008	15.14±2.79	2.228±0.209		
120	26.9±0.5	0.40±0.01	20.7±0.5	0.80±0.02	18.2±0.5	17.3±0.4	0.645±0.069	51.91±9.54	0.0088±0.0008	14.79±2.73	2.242±0.208		
180	27.0±0.5	0.40±0.01	20.7±0.5	0.80±0.02	18.2±0.5	17.4±0.4	0.654±0.069	53.15±9.75	0.0087±0.0008	15.14±2.79	2.228±0.209		
240	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	51.72±9.48	0.0084±0.0008	14.73±2.71	2.152±0.211		
300	27.1±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.652±0.069	52.95±9.69	0.0084±0.0008	15.08±2.77	2.137±0.212		
360	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	51.72±9.48	0.0084±0.0008	14.73±2.71	2.152±0.211		
420	26.9±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.3±0.4	0.635±0.069	50.51±9.27	0.0085±0.0008	14.39±2.65	2.167±0.209		
480	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	51.72±9.48	0.0084±0.0008	14.73±2.71	2.152±0.211		
540	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	51.72±9.48	0.0084±0.0008	14.73±2.71	2.152±0.211		
600	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	51.72±9.48	0.0084±0.0008	14.73±2.71	2.152±0.211		
660	26.9±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.3±0.4	0.635±0.069	50.51±9.27	0.0085±0.0008	14.39±2.65	2.167±0.209		
720	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	51.72±9.48	0.0084±0.0008	14.73±2.71	2.152±0.211		
780	27.0±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.644±0.069	51.72±9.48	0.0084±0.0008	14.73±2.71	2.152±0.211		
840	27.1±0.5	0.40±0.01	20.8±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.652±0.069	52.95±9.69	0.0084±0.0008	15.08±2.77	2.137±0.212		
900	27.1±0.5	0.40±0.01	20.9±0.5	0.79±0.02	18.2±0.5	17.4±0.4	0.642±0.069	51.53±9.42	0.0085±0.0008	14.67±2.69	2.157±0.211		
G.2.1.	G.2.1.3 Teste 3 PET lixado 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa												

do ar de 50%.

Tabela 95 – Dados PET lixado 00 para temperatura de bulbo seco de 27°C e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	ı E	h	c hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C) (°C) (-)) (W/n	າ²⁰C) m/s	s (-)	(-)
60	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.683±0.087	58.44±13.64	0.0092±0.0012	16.65±3.89 2.340	6±0.309
120	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.683±0.087	58.44±13.64	0.0092±0.0012	16.65±3.89 2.34	6±0.309
180	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.683±0.087	58.44±13.64	0.0092±0.0012	16.65±3.89 2.34	6±0.309
240	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.683±0.087	58.44±13.64	0.0092±0.0012	16.65±3.89 2.340	6±0.309
300	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.683±0.087	58.44±13.64	0.0092±0.0012	16.65±3.89 2.34	6±0.309
360	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.683±0.087	58.44±13.64	0.0092±0.0012	16.65±3.89 2.340	6±0.309
420	27.0±0.5	0.49±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.1±0.4 0	.668±0.085	55.98±12.67	0.0095±0.0011	15.95±3.62 2.42	1±0.292
480	26.9±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.685±0.088	58.65±13.74	0.0092±0.0012	16.71±3.92 2.34	0±0.308
540	26.9±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.685±0.088	58.65±13.74	0.0092±0.0012	16.71±3.92 2.34	0±0.308
600	26.9±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.685±0.088	58.65±13.74	0.0092±0.0012	16.71±3.92 2.34	0±0.308
660	27.0±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.696±0.087	60.47±14.22	0.0091±0.0012	17.23±4.06 2.31	7±0.311
720	27.0±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.696±0.087	60.47±14.22	0.0091±0.0012	17.23±4.06 2.31	7±0.311
780	27.0±0.5	0.50±0.01	21.6±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.696±0.087	60.47±14.22	2 0.0091±0.0012	17.23±4.06 2.31	7±0.311
840	27.0±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.2±0.5 0	.683±0.087	58.44±13.64	0.0092±0.0012	16.65±3.89 2.34	6±0.309
900	27.1±0.5	0.50±0.01	21.7±0.5	0.85±0.02	19.9±0.5	19.3±0.5 0	.695±0.087	60.24±14.12	0.0091±0.0012	17.16±4.03 2.32	2±0.312

G.2.1.4 Teste 4 PET lixado 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32ºC e umidade relativa do ar de 30%.

Tabela 96 – Dados PET lixado 00 para temperatura de bulbo seco de 32ºC e umidade relativa de 30%.													
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)		
60	32.1±0.5	0.31±0.01	23.5±0.5	0.84±0.02	20.2±0.5	19.2±0.4	0.667±0.051	54.86±7.42	0.0118±0.0006	15.40±2.10	2.895±0.177		
120	32.1±0.5	0.31±0.01	23.5±0.5	0.84±0.02	20.3±0.5	19.2±0.4	0.667±0.051	54.86±7.42	0.0118±0.0006	15.40±2.10	2.895±0.177		
180	32.1±0.5	0.31±0.01	23.5±0.5	0.84±0.02	20.4±0.5	19.2±0.4	0.667±0.051	54.86±7.42	0.0118±0.0006	15.40±2.10	2.895±0.177		
240	32.1±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	19.0±0.4	0.655±0.050	52.96±7.00	0.0119±0.0006	14.87±1.99	2.927±0.172		
300	32.1±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	19.0±0.4	0.655±0.050	52.96±7.00	0.0119±0.0006	14.87±1.99	2.927±0.172		
360	32.1±0.5	0.30±0.01	23.5±0.5	0.83±0.02	20.4±0.5	19.0±0.4	0.655±0.050	52.96±7.00	0.0116±0.0006	14.87±1.99	2.850±0.172		
420	32.1±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	19.0±0.4	0.655±0.050	52.96±7.00	0.0119±0.0006	14.87±1.99	2.927±0.172		
480	32.0±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	18.9±0.4	0.649±0.050	52.09±6.89	0.0119±0.0006	14.63±1.96	2.934±0.172		
540	32.0±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	18.9±0.4	0.649±0.050	52.09±6.89	0.0119±0.0006	14.63±1.96	2.934±0.172		
600	32.1±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	19.0±0.4	0.655±0.050	52.96±7.00	0.0119±0.0006	14.87±1.99	2.927±0.172		
660	32.1±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	19.0±0.4	0.655±0.050	52.96±7.00	0.0119±0.0006	14.87±1.99	2.927±0.172		
720	32.1±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	19.0±0.4	0.655±0.050	52.96±7.00	0.0119±0.0006	14.87±1.99	2.927±0.172		
780	32.0±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	18.9±0.4	0.649±0.050	52.09±6.89	0.0119±0.0006	14.63±1.96	2.934±0.172		
840	32.0±0.5	0.31±0.01	23.5±0.5	0.84±0.02	20.4±0.5	19.1±0.4	0.661±0.051	53.94±7.30	0.0118±0.0006	15.15±2.07	2.903±0.177		
900	32.0±0.5	0.30±0.01	23.5±0.5	0.84±0.02	20.4±0.5	18.9±0.4	0.649±0.050	52.09±6.89	0.0119±0.0006	14.63±1.96	2.934±0.172		

G.2.1.5 Teste 5 PET lixado 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 40%.

Tabela 97 – Dados PET lixado 00 para temperatura de bulbo seco de 32ºC e umidade relativa de 40%.

					Para 10p			• • = • • • •			
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	32.0±0.5	0.41±0.01	25.2±0.5	0.86±0.02	22.5±0.5	21.5±0.4	0.645±0.064	53.19±8.87	0.0121±0.0010	14.94±2.50	2.982±0.249
120	31.9±0.5	0.40±0.01	25.1±0.5	0.85±0.02	22.6±0.5	21.2±0.4	0.633±0.062	51.39±8.39	0.0118±0.0009	14.44±2.37	2.921±0.240
180	31.9±0.5	0.40±0.01	25.1±0.5	0.85±0.02	22.6±0.5	21.2±0.4	0.633±0.062	51.39±8.39	0.0118±0.0009	14.44±2.37	2.921±0.240
240	31.9±0.5	0.40±0.01	25.1±0.5	0.86±0.02	22.6±0.5	21.2±0.4	0.633±0.062	51.39±8.39	0.0123±0.0009	14.44±2.37	3.023±0.239
300	31.9±0.5	0.40±0.01	25.1±0.5	0.86±0.02	22.6±0.5	21.2±0.4	0.633±0.062	51.39±8.39	0.0123±0.0009	14.44±2.37	3.023±0.239
360	32.0±0.5	0.40±0.01	25.1±0.5	0.85±0.02	22.6±0.5	21.2±0.4	0.641±0.062	52.49±8.55	0.0118±0.0009	14.74±2.42	2.905±0.241
420	32.0±0.5	0.40±0.01	25.2±0.5	0.86±0.02	22.6±0.5	21.2±0.4	0.632±0.062	51.25±8.34	0.0123±0.0009	14.39±2.36	3.031±0.240
480	32.0±0.5	0.40±0.01	25.2±0.5	0.85±0.02	22.6±0.5	21.2±0.4	0.632±0.062	51.25±8.34	0.0119±0.0009	14.39±2.36	2.928±0.241
540	32.0±0.5	0.39±0.01	25.2±0.5	0.85±0.02	22.6±0.5	21.0±0.4	0.619±0.061	49.43±7.87	0.0121±0.0009	13.88±2.22	2.977±0.232
600	32.0±0.5	0.38±0.01	25.1±0.5	0.84±0.02	22.6±0.5	20.8±0.4	0.615±0.059	48.84±7.61	0.0118±0.0009	13.71±2.15	2.904±0.225
660	32.1±0.5	0.40±0.01	25.1±0.5	0.85±0.02	22.5±0.5	21.3±0.4	0.649±0.062	53.61±8.73	0.0117±0.0009	15.05±2.47	2.890±0.242
720	32.1±0.5	0.40±0.01	25.2±0.5	0.86±0.02	22.6±0.5	21.3±0.4	0.640±0.062	52.34±8.51	0.0122±0.0009	14.69±2.40	3.016±0.241
780	32.1±0.5	0.40±0.01	25.2±0.5	0.86±0.02	22.6±0.5	21.3±0.4	0.640±0.062	52.34±8.51	0.0122±0.0009	14.69±2.40	3.016±0.241
840	32.1±0.5	0.40±0.01	25.2±0.5	0.85±0.02	22.6±0.5	21.3±0.4	0.640±0.062	52.34±8.51	0.0118±0.0009	14.69±2.40	2.913±0.242
900	32.1±0.5	0.40±0.01	25.2±0.5	0.86±0.02	22.6±0.5	21.3±0.4	0.640±0.062	52.34±8.51	0.0122±0.0009	14.69±2.40	3.016±0.241

G.2.1.6 Teste 6 PET lixado 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 50%.

Tabela 98 - Dados PET lixado 00 para temperatura de bulbo seco de 32°C e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	32.1±0.5	0.50±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.5±0.5	0.660±0.079	56.75±11.68	0.0133±0.0013	15.93±3.29	3.273±0.343
120	31.9±0.5	0.50±0.01	26.4±0.5	0.91±0.02	24.4±0.5	23.3±0.5	0.639±0.079	53.76±11.04	0.0140±0.0013	15.10±3.11	3.457±0.333
180	31.9±0.5	0.50±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.3±0.5	0.639±0.079	53.76±11.04	0.0135±0.0013	15.10±3.11	3.319±0.338
240	31.9±0.5	0.50±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.3±0.5	0.639±0.079	53.76±11.04	0.0135±0.0013	15.10±3.11	3.319±0.338
300	32.0±0.5	0.49±0.01	26.4±0.5	0.85±0.02	24.4±0.5	23.2±0.5	0.635±0.077	52.99±10.59	0.0108±0.0014 1	4.88±2.98 2.	668±0.353
360	32.1±0.5	0.50±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.5±0.5	0.660±0.079	56.75±11.68	0.0133±0.0013	15.93±3.29	3.273±0.343
420	32.1±0.5	0.50±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.5±0.5	0.660±0.079	56.75±11.68	0.0133±0.0013	15.93±3.29	3.273±0.343
480	32.1±0.5	0.51±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.7±0.5	0.676±0.081	59.30±12.60	0.0130±0.0014 1	6.65±3.55 3.	207±0.360
540	32.1±0.5	0.49±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.3±0.5	0.645±0.077	54.40±10.87	0.0135±0.0013 1	5.27±3.06 3.	333±0.328
600	32.0±0.5	0.50±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.4±0.5	0.650±0.079	55.23±11.35	0.0134±0.0013	15.51±3.20	3.296±0.341
660	32.0±0.5	0.50±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.4±0.5	0.650±0.079	55.23±11.35	0.0134±0.0013	15.51±3.20	3.296±0.341
720	32.0±0.5	0.50±0.01	26.4±0.5	0.90±0.02	24.4±0.5	23.4±0.5	0.650±0.079	55.23±11.35	0.0134±0.0013	15.51±3.20	3.296±0.341
780	31.9±0.5	0.49±0.01	26.3±0.5	0.90±0.02	24.4±0.5	23.1±0.5	0.636±0.077	53.11±10.64	0.0136±0.0013	14.92±3.00	3.345±0.324
840	31.9±0.5	0.49±0.01	26.3±0.5	0.90±0.02	24.4±0.5	23.1±0.5	0.636±0.077	53.11±10.64	0.0136±0.0013	14.92±3.00	3.345±0.324
900	32.0±0.5	0.50±0.01	26.3±0.5	0.90±0.02	24.4±0.5	23.4±0.5	0.661±0.079	56.89±11.74	0.0132±0.0013	15.98±3.30	3.264±0.342

G.2.1.7 Teste 7 PET lixado 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 30%.

		Tabela 99	 Dados Pl 	ET lixado 00	para temp	eratura de l	bulbo seco d	le 37°C e umid	lade relativa de 3	80% .	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	37.1±0.5	0.30±0.01	27.7±0.5	0.83±0.02	24.2±0.5	22.5±0.4	0.646±0.04	5 51.45±6.10	0.0125±0.0007	13.81±1.66	2.885±0.188
120	37.1±0.5	0.30±0.01	27.7±0.5	0.83±0.02	24.3±0.5	22.5±0.4	0.646±0.04	5 51.45±6.10	0.0125±0.0007	13.81±1.66	2.885±0.188
180	37.1±0.5	0.30±0.01	27.7±0.5	0.83±0.02	24.3±0.5	22.5±0.4	0.646±0.04	5 51.45±6.10	0.0125±0.0007	13.81±1.66	2.885±0.188
240	37.1±0.5	0.31±0.01	27.7±0.5	0.83±0.02	24.4±0.5	22.8±0.4	0.658±0.046	6 53.37±6.48	0.0123±0.0008	14.32±1.76	2.842±0.194
300	37.0±0.5	0.30±0.01	27.7±0.5	0.83±0.02	24.4±0.5	22.5±0.4	0.640±0.04	5 50.68±6.02	0.0125±0.0007	13.60±1.64	2.895±0.187
360	37.1±0.5	0.30±0.01	27.7±0.5	0.82±0.02	24.4±0.5	22.5±0.4	0.646±0.04	5 51.45±6.10	0.0121±0.0007	13.81±1.66	2.804±0.188
420	37.2±0.5	0.30±0.01	27.7±0.5	0.82±0.02	24.4±0.5	22.6±0.4	0.651±0.04	5 52.23±6.19	0.0121±0.0007	14.01±1.68	2.793±0.188
480	37.1±0.5	0.30±0.01	27.7±0.5	0.82±0.02	24.4±0.5	22.5±0.4	0.646±0.04	5 51.45±6.10	0.0121±0.0007	13.81±1.66	2.804±0.188
540	37.0±0.5	0.30±0.01	27.6±0.5	0.83±0.02	24.4±0.5	22.5±0.4	0.647±0.04	5 51.57±6.13	0.0125±0.0007	13.85±1.67	2.877±0.187
600	36.9±0.5	0.30±0.01	27.6±0.5	0.83±0.02	24.4±0.5	22.4±0.4	0.641±0.04	5 50.80±6.04	0.0125±0.0007	13.64±1.64	2.888±0.187
660	36.9±0.5	0.30±0.01	27.6±0.5	0.83±0.02	24.4±0.5	22.4±0.4	0.641±0.04	5 50.80±6.04	0.0125±0.0007	13.64±1.64	2.888±0.187
720	37.0±0.5	0.30±0.01	27.6±0.5	0.83±0.02	24.4±0.5	22.5±0.4	0.647±0.04	5 51.57±6.13	0.0125±0.0007	13.85±1.67	2.877±0.187
780	37.0±0.5	0.30±0.01	27.6±0.5	0.82±0.02	24.4±0.5	22.5±0.4	0.647±0.04	5 51.58±6.13	0.0121±0.0007	13.85±1.67	2.796±0.187
840	36.9±0.5	0.30±0.01	27.6±0.5	0.83±0.02	24.4±0.5	22.4±0.4	0.641±0.04	5 50.80±6.04	0.0125±0.0007	13.64±1.64	2.888±0.187
900	37.0±0.5	0.30±0.01	27.6±0.5	0.83±0.02	24.4±0.5	22.5±0.4	0.647±0.04	5 51.57±6.13	0.0125±0.0007	13.85±1.67	2.877±0.187

G.2.1.8 Teste 8 PET lixado 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 40%.

tempo	Te	Ure	Ts (°C)	Urs	Ta	Tbu	E	hc	hm m/s	Nus	Sh
(5)	(0)	(70)	(0)	(70)	(0)	(0)	(-)		111/5	(-)	(-)
60	37.1±0.5	0.40±0.01	29.1±0.5	0.88±0.02	26.5±0.5	25.2±0.4	0.673±0.056	6 57.59±8.52	0.0138±0.0011	15.46±2.30	3.189±0.267
120	37.1±0.5	0.40±0.01	29.1±0.5	0.88±0.02	26.5±0.5	25.2±0.4	0.673±0.056	657.59±8.52	0.0138±0.0011	15.46±2.30	3.189±0.267
180	37.0±0.5	0.40±0.01	29.1±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.666±0.057	′ 56.49±8.35	0.0139±0.0011	15.17±2.26	3.206±0.266
240	37.0±0.5	0.40±0.01	29.1±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.666±0.057	′ 56.49±8.35	0.0139±0.0011	15.17±2.26	3.206±0.266
300	37.0±0.5	0.41±0.01	29.1±0.5	0.88±0.02	26.5±0.5	25.4±0.4	0.680±0.058	3 58.85±8.95	0.0136±0.0011	15.80±2.42	3.151±0.277
360	37.0±0.5	0.40±0.01	29.1±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.666±0.057	′ 56.49±8.35	0.0139±0.0011	15.17±2.26	3.206±0.266
420	36.9±0.5	0.40±0.01	29.0±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.667±0.057	′ 56.60±8.38	0.0138±0.0011	15.20±2.27	3.197±0.265
480	36.9±0.5	0.40±0.01	29.0±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.667±0.057	′ 56.60±8.38	0.0138±0.0011	15.20±2.27	3.197±0.265
540	36.9±0.5	0.40±0.01	29.0±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.667±0.057	′ 56.60±8.38	0.0138±0.0011	15.20±2.27	3.197±0.265
600	36.9±0.5	0.40±0.01	29.0±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.667±0.057	′ 56.60±8.38	0.0138±0.0011	15.20±2.27	3.197±0.265
660	36.9±0.5	0.40±0.01	29.0±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.667±0.057	′ 56.60±8.38	0.0138±0.0011	15.20±2.27	3.197±0.265
720	37.0±0.5	0.40±0.01	29.0±0.5	0.89±0.02	26.5±0.5	25.1±0.4	0.674±0.057	7 57.71±8.56	0.0142±0.0011	15.49±2.31	3.291±0.265
780	37.0±0.5	0.40±0.01	29.1±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.666±0.057	′ 56.49±8.35	0.0139±0.0011	15.17±2.26	3.206±0.266
840	37.0±0.5	0.39±0.01	29.1±0.5	0.88±0.02	26.5±0.5	24.9±0.4	0.652±0.055	54.30±7.81	0.0141±0.0010	14.58±2.11	3.256±0.256
900	37.0±0.5	0.40±0.01	29.1±0.5	0.88±0.02	26.5±0.5	25.1±0.4	0.666±0.057	′ 56.49±8.35	0.0139±0.0011	15.17±2.26	3.206±0.266

G.2.1.9 Teste 9 PET lixado 00. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 50%.

Tabela 101 – Dados PET lixado 00 para	mperatura de bulbo seco	o de 37ºC e umidade relativa de 50%
---------------------------------------	-------------------------	-------------------------------------

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	36.9±0.5	0.49±0.01	30.0±0.5	0.85±0.02	27.9±0.5	27.2±0.5	0.714±0.071	66.24±12.46	0.0102±0.0019	17.79±3.36 2	2.367±0.437
120	36.9±0.5	0.49±0.01	30.0±0.5	0.85±0.02	27.9±0.5	27.2±0.5	0.714±0.071	66.24±12.46	0.0102±0.0019	17.79±3.36 2	2.367±0.437
180	37.0±0.5	0.51±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.8±0.5	0.748±0.075	73.15±15.01	0.0090±0.0022	19.64±4.04 2	2.083±0.519
240	37.1±0.5	0.50±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.6±0.5	0.739±0.073	71.26±14.07	0.0095±0.0021	19.12±3.79 2	2.194±0.484
300	37.0±0.5	0.49±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.3±0.5	0.712±0.071	66.12±12.40	0.0103±0.0019	17.75±3.34 2	2.375±0.438
360	37.0±0.5	0.50±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.5±0.5	0.730±0.073	69.45±13.59	0.0097±0.0020	18.64±3.66 2	2.238±0.475
420	36.9±0.5	0.50±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.5±0.5	0.721±0.073	67.70±13.14	0.0099±0.0020	18.18±3.54 2	2.280±0.466
480	36.9±0.5	0.49±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.2±0.5	0.703±0.071	64.51±12.03	0.0104±0.0018	17.32±3.24 2	2.413±0.431
540	37.0±0.5	0.50±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.5±0.5	0.730±0.073	69.45±13.59	0.0097±0.0020	18.64±3.66 2	2.238±0.475
600	37.0±0.5	0.50±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.5±0.5	0.730±0.073	69.45±13.59	0.0097±0.0020	18.64±3.66 2	2.238±0.475
660	37.0±0.5	0.49±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.3±0.5	0.712±0.071	66.12±12.40	0.0103±0.0019	17.75±3.34 2	2.375±0.438
720	37.0±0.5	0.49±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.3±0.5	0.712±0.071	66.12±12.40	0.0103±0.0019	17.75±3.34 2	2.375±0.438
780	37.0±0.5	0.49±0.01	30.1±0.5	0.85±0.02	27.9±0.5	27.3±0.5	0.712±0.071	66.12±12.40	0.0103±0.0019	17.75±3.34 2	2.375±0.438
840	37.1±0.5	0.50±0.01	30.1±0.5	0.85±0.02	28.0±0.5	27.6±0.5	0.739±0.073	71.26±14.07	0.0095±0.0021	19.12±3.79 2	2.194±0.484
900	37.1±0.5	0.50±0.01	30.1±0.5	0.85±0.02	28.0±0.5	27.6±0.5	0.739±0.073	71.26±14.07	0.0095±0.0021	19.12±3.79 2	2.194±0.484

G.2.2 Painel PET lixado 01

G.2.2.1 Teste 1 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 30%.

		Tabela 102	– Dados P	ET lixado 01	l para temp	eratura de	bulbo seco d	e 27°C e umic	lade relativa de	30%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
120	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
180	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
240	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
300	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
360	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
420	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
480	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
540	27.1±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.4±0.4	0.702±0.055	647.65±7.19	0.0086±0.0004	10.88±1.65	1.749±0.090
600	27.1±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.4±0.4	0.702±0.055	647.65±7.19	0.0086±0.0004	10.88±1.65	1.749±0.090
660	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
720	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
780	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089
840	27.0±0.5	0.31±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.6±0.4	0.708±0.057	′ 48.49±7.51	0.0085±0.0004	11.08±1.72	1.736±0.092
900	27.0±0.5	0.30±0.01	18.9±0.5	0.84±0.02	16.9±0.5	15.3±0.4	0.695±0.055	646.77±7.05	0.0086±0.0004	10.68±1.62	1.751±0.089

G.2.2.2 Teste 2 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 40%.

Tabela 103 – Dados PET lixado 01 para temperatura de bulbo seco de 27°C e umidade relativa de	40%
---	-----

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.39±0.01	20.4±0.5	0.90±0.02	18.2±0.5	17.2±0.4	0.672±0.067	44.56±8.03	0.0099±0.0005	10.18±1.84	2.016±0.119
120	27.0±0.5	0.40±0.01	20.4±0.5	0.91±0.02	18.2±0.5	17.4±0.4	0.685±0.069	46.28±8.57	0.0101±0.0006	10.57±1.96	2.061±0.122
180	27.0±0.5	0.40±0.01	20.4±0.5	0.90 ± 0.02	18.2±0.5	17.4±0.4	0.685±0.069	46.28±8.57	0.0098±0.0006	10.57 ± 1.96	2.003±0.122
240	27.0±0.5	0.40±0.01	20.4±0.5	0.90 ± 0.02	18.2±0.5	17.4±0.4	0.685±0.069	46.28±8.57	0.0098±0.0006	10.57 ± 1.96	2.003±0.122
300	26.9±0.5	0.40±0.01	20.4±0.5	0.90±0.02	18.2±0.5	17.3±0.4	0.676±0.069	45.20±8.36	0.0098±0.0006	10.33±1.91	2.006±0.122
360	26.9±0.5	0.40±0.01	20.4±0.5	0.90 ± 0.02	18.2±0.5	17.3±0.4	0.676±0.069	45.20±8.36	0.0098±0.0006	10.33±1.91	2.006±0.122
420	27.0±0.5	0.41±0.01	20.4±0.5	0.90±0.02	18.2±0.5	17.6±0.4	0.699±0.070	48.14±9.18	0.0097±0.0006	11.00±2.10	1.988±0.126
480	27.1±0.5	0.39±0.01	20.4±0.5	0.90±0.02	18.2±0.5	17.2±0.4	0.680±0.067	45.60±8.22	0.0098±0.0005	10.41±1.88	2.013±0.119
540	27.1±0.5	0.41±0.01	20.5±0.5	0.91±0.02	18.2±0.5	17.6±0.4	0.698±0.070	47.94±9.11	0.0100±0.0006	10.95 ± 2.08	2.053±0.126
600	27.1±0.5	0.40±0.01	20.5±0.5	0.90 ± 0.02	18.3±0.5	17.4±0.4	0.684±0.069	46.10±8.51	0.0098±0.0006	10.53±1.94	2.006±0.123
660	27.0±0.5	0.40±0.01	20.5±0.5	0.90±0.02	18.3±0.5	17.4±0.4	0.675±0.069	45.02±8.30	0.0098±0.0006	10.28±1.90	2.010±0.123
720	27.0±0.5	0.40±0.01	20.5±0.5	0.90 ± 0.02	18.3±0.5	17.4±0.4	0.675±0.069	45.02±8.30	0.0098±0.0006	10.28±1.90	2.010±0.123
780	27.0±0.5	0.40±0.01	20.5±0.5	0.90±0.02	18.3±0.5	17.4±0.4	0.675±0.069	45.02±8.30	0.0098±0.0006	10.28±1.90	2.010±0.123
840	27.0±0.5	0.41±0.01	20.5±0.5	0.90±0.02	18.3±0.5	17.6±0.4	0.689±0.070	46.79±8.87	0.0098±0.0006	10.69±2.03	1.995±0.126
900	27.0±0.5	0.40±0.01	20.5±0.5	0.90 ± 0.02	18.3±0.5	17.4±0.4	0.675±0.069	45.02±8.30	0.0098±0.0006	10.28±1.90	2.010±0.123

G.2.2.3 Teste 3 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 50%.

Tabela 104 – Dados PET lixado 01 para temperatura de bulbo seco de 27°C e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
120	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
180	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
240	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
300	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
360	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
420	27.0±0.5	0.50±0.01	21.4±0.5	0.82±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0058±0.0011	11.87±2.84	1.184±0.224
480	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
540	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
600	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
660	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
720	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
780	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
840	27.0±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.722±0.087	51.97±12.45	0.0071±0.0010	11.87±2.84	1.453±0.201
900	26.9±0.5	0.50±0.01	21.4±0.5	0.85±0.02	19.9±0.5	19.2±0.5	0.711±0.087	50.39±11.99	0.0072±0.0010	11.51±2.74	1.468±0.199

G.2.2.4 Teste 4 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 30%.

		Tabela 105	– Dados P	ET lixado 01	l para temp	eratura de	bulbo seco d	e 32°C e umic	lade relativa de 3	80%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	32.1±0.5	0.31±0.01	22.8±0.5	0.87±0.02	20.0±0.5	19.2±0.4	0.722±0.050) 50.85±7.06	0.0099±0.0005	11.45±1.60	1.961±0.108
120	32.0±0.5	0.31±0.01	22.8±0.5	0.87±0.02	20.1±0.5	19.1±0.4	0.716±0.050) 49.99±6.92	0.0099±0.0005	11.26±1.57	1.964±0.108
180	32.0±0.5	0.31±0.01	22.8±0.5	0.87±0.02	20.1±0.5	19.1±0.4	0.716±0.050) 49.99±6.92	0.0099±0.0005	11.26±1.57	1.964±0.108
240	32.0±0.5	0.31±0.01	22.8±0.5	0.87±0.02	20.1±0.5	19.1±0.4	0.716±0.050) 49.99±6.92	0.0099±0.0005	11.26±1.57	1.964±0.108
300	32.0±0.5	0.30±0.01	22.8±0.5	0.86±0.02	20.1±0.5	18.9±0.4	0.702±0.049	9 48.11±6.47	0.0098±0.0005	10.83±1.46	1.930±0.105
360	31.9±0.5	0.29±0.01	22.7±0.5	0.86±0.02	20.0±0.5	18.6±0.4	0.691±0.049	9 46.53±6.10	0.0098±0.0005	10.48±1.38	1.942±0.102
420	32.0±0.5	0.29±0.01	22.7±0.5	0.86±0.02	20.0±0.5	18.7±0.4	0.697±0.048	3 47.29±6.21	0.0098±0.0005	10.65±1.41	1.939±0.102
480	32.0±0.5	0.29±0.01	22.6±0.5	0.86±0.02	19.9±0.5	18.7±0.4	0.704±0.048	3 48.25±6.36	0.0098±0.0005	10.87±1.44	1.932±0.101
540	32.0±0.5	0.29±0.01	22.6±0.5	0.86±0.02	19.9±0.5	18.7±0.4	0.704±0.048	8 48.25±6.36	0.0098±0.0005	10.87±1.44	1.932±0.101
600	32.0±0.5	0.30±0.01	22.6±0.5	0.87±0.02	19.9±0.5	18.9±0.4	0.718±0.049	9 50.13±6.81	0.0100±0.0005	11.29±1.54	1.967±0.104
660	32.0±0.5	0.30±0.01	22.7±0.5	0.87±0.02	19.9±0.5	18.9±0.4	0.710±0.049	9 49.11±6.63	0.0100±0.0005	11.06±1.50	1.973±0.105
720	32.0±0.5	0.30±0.01	22.7±0.5	0.87±0.02	20.0±0.5	18.9±0.4	0.710±0.049	9 49.11±6.63	0.0100±0.0005	11.06±1.50	1.973±0.105
780	32.0±0.5	0.30±0.01	22.7±0.5	0.87±0.02	20.0±0.5	18.9±0.4	0.710±0.049	9 49.11±6.63	0.0100±0.0005	11.06±1.50	1.973±0.105
840	32.0±0.5	0.30±0.01	22.7±0.5	0.87±0.02	20.0±0.5	18.9±0.4	0.710±0.049	9 49.11±6.63	0.0100±0.0005	11.06±1.50	1.973±0.105
900	32.0±0.5	0.30±0.01	22.7±0.5	0.87±0.02	20.0±0.5	18.9±0.4	0.710±0.049	9 49.11±6.63	0.0100±0.0005	11.06±1.50	1.973±0.105

G.2.2.5 Teste 5 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 40%.

	Tabela 106 – Dados PET lixado 01 para temperatura de bulbo seco de 32ºC e umidade relativa de 40
--	--

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	32.0±0.5	0.41±0.01	24.1±0.5	0.91±0.02	22.4±0.5	21.5±0.4	0.750±0.063	56.23±10.01	0.0108±0.0007	12.66±2.26	2.128±0.150
120	32.0±0.5	0.40±0.01	24.2±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.725±0.062	52.41±8.89	0.0109±0.0007	11.80±2.01	2.158±0.145
180	32.0±0.5	0.40±0.01	24.2±0.5	0.91±0.02	22.6±0.5	21.2±0.4	0.725±0.062	52.41±8.89	0.0109±0.0007	11.80±2.01	2.158±0.145
240	32.0±0.5	0.40±0.01	24.2±0.5	0.91±0.02	22.6±0.5	21.2±0.4	0.725±0.062	52.41±8.89	0.0109±0.0007	11.80±2.01	2.158±0.145
300	31.9±0.5	0.40±0.01	24.2±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.717±0.062	51.30±8.66	0.0109±0.0007	11.55±1.96	2.164±0.145
360	31.9±0.5	0.40±0.01	24.2±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.717±0.062	51.30±8.66	0.0109±0.0007	11.55±1.96	2.164±0.145
420	31.9±0.5	0.40±0.01	24.1±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.726±0.062	52.60±8.96	0.0109±0.0007	11.85±2.02	2.154±0.145
480	32.0±0.5	0.40±0.01	24.1±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.734±0.062	53.75±9.20	0.0109±0.0007	12.10±2.08	2.148±0.145
540	32.0±0.5	0.40±0.01	24.1±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.734±0.062	53.75±9.20	0.0109±0.0007	12.10±2.08	2.148±0.145
600	32.0±0.5	0.40±0.01	24.1±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.734±0.062	53.75±9.20	0.0109±0.0007	12.10±2.08	2.148±0.145
660	32.0±0.5	0.40±0.01	24.2±0.5	0.90±0.02	22.5±0.5	21.2±0.4	0.725±0.062	52.41±8.89	0.0106±0.0007	11.80±2.01	2.090±0.146
720	32.0±0.5	0.40±0.01	24.2±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.725±0.062	52.41±8.89	0.0109±0.0007	11.80±2.01	2.158±0.145
780	32.0±0.5	0.40±0.01	24.1±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.734±0.062	53.75±9.20	0.0109±0.0007	12.10±2.08	2.148±0.145
840	32.0±0.5	0.40±0.01	24.2±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.725±0.062	52.41±8.89	0.0109±0.0007	11.80±2.01	2.158±0.145
900	32.0±0.5	0.40±0.01	24.2±0.5	0.91±0.02	22.5±0.5	21.2±0.4	0.725±0.062	52.41±8.89	0.0109±0.0007	11.80±2.01	2.158±0.145

G.2.2.6 Teste 6 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 50%.

Tabela 107 – Dados PET lixado 01 para temperatura de bulbo seco de 32ºC e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	32.0±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.4±0.5	0.719±0.079	53.03±11.35	0.0115±0.0010	11.94±2.56	2.280±0.208
120	32.0±0.5	0.50±0.01	25.7±0.5	0.93±0.02	24.4±0.5	23.4±0.5	0.731±0.079	54.70±11.84	0.0115±0.0010	12.32±2.67	2.264±0.208
180	32.0±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.4±0.5	0.719±0.079	53.03±11.35	0.0115±0.0010	11.94±2.56	2.280±0.208
240	32.0±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.4±0.5	0.719±0.079	53.03±11.35	0.0115±0.0010	11.94±2.56	2.280±0.208
300	32.0±0.5	0.51±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.6±0.5	0.737±0.081	55.73±12.45	0.0114±0.0011	12.55±2.80	2.249±0.217
360	32.0±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.4±0.5	0.719±0.079	53.03±11.35	0.0115±0.0010	11.94±2.56	2.280±0.208
420	32.0±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.4±0.5	0.719±0.079	53.03±11.35	0.0115±0.0010	11.94±2.56	2.280±0.208
480	32.0±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.4±0.5	0.719±0.079	53.03±11.35	0.0115±0.0010	11.94±2.56	2.280±0.208
540	32.0±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.4±0.5	0.719±0.079	53.03±11.35	0.0115±0.0010	11.94±2.56	2.280±0.208
600	31.9±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.3±0.5	0.709±0.079	51.58±10.96	0.0116±0.0010	11.62±2.47	2.292±0.207
660	31.9±0.5	0.51±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.5±0.5	0.726±0.081	54.14±11.99	0.0114±0.0011	12.20±2.70	2.261±0.216
720	31.9±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.3±0.5	0.709±0.079	51.58±10.96	0.0116±0.0010	11.62±2.47	2.292±0.207
780	31.9±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.3±0.5	0.709±0.079	51.58±10.96	0.0116±0.0010	11.62±2.47	2.292±0.207
840	31.9±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.3±0.5	0.709±0.079	51.58±10.96	0.0116±0.0010	11.62±2.47	2.292±0.207
900	31.9±0.5	0.50±0.01	25.8±0.5	0.93±0.02	24.4±0.5	23.3±0.5	0.709±0.079	51.58±10.96	0.0116±0.0010	11.62±2.47	2.292±0.207

G.2.2.7 Teste 7 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 30%.

		Tabela 108	– Dados P	ET lixado 01	para temp	eratura de	bulbo seco d	le 37ºC e umic	lade relativa de 3	0% .	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	37.1±0.5	0.30±0.01	26.4±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.735±0.045	5 53.75±6.67	0.0114±0.0006	11.93±1.49	2.168±0.122
120	37.1±0.5	0.30±0.01	26.4±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.735±0.045	5 53.75±6.67	0.0114±0.0006	11.93±1.49	2.168±0.122
180	37.0±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.736±0.045	5 53.93±6.71	0.0113±0.0006	11.97±1.50	2.163±0.122
240	37.0±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.736±0.045	5 53.93±6.71	0.0113±0.0006	11.97±1.50	2.163±0.122
300	36.9±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.4±0.4	0.731±0.045	5 53.11±6.59	0.0113±0.0006	11.79±1.47	2.168±0.121
360	37.0±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.736±0.045	5 53.93±6.71	0.0113±0.0006	11.97±1.50	2.163±0.122
420	37.0±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.736±0.045	5 53.93±6.71	0.0113±0.0006	11.97±1.50	2.163±0.122
480	37.1±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.742±0.045	5 54.77±6.84	0.0113±0.0006	12.16±1.53	2.159±0.122
540	37.1±0.5	0.29±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.3±0.4	0.728±0.044	4 52.50±6.33	0.0114±0.0006	11.65±1.42	2.176±0.118
600	37.1±0.5	0.29±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.3±0.4	0.728±0.044	4 52.50±6.33	0.0114±0.0006	11.65±1.42	2.176±0.118
660	37.0±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.736±0.045	5 53.93±6.71	0.0113±0.0006	11.97±1.50	2.163±0.122
720	36.9±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.4±0.4	0.731±0.045	5 53.11±6.59	0.0113±0.0006	11.79±1.47	2.168±0.121
780	37.0±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.736±0.045	5 53.93±6.71	0.0113±0.0006	11.97±1.50	2.163±0.122
840	37.0±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.736±0.045	5 53.93±6.71	0.0113±0.0006	11.97±1.50	2.163±0.122
900	37.0±0.5	0.30±0.01	26.3±0.5	0.89±0.02	23.9±0.5	22.5±0.4	0.736±0.045	5 53.93±6.71	0.0113±0.0006	11.97±1.50	2.163±0.122

G.2.2.8 Teste 8 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 40%.

Tabela 109 – Dados PET lixado 01 para temperatura de buido seco de 37°C e umidade relativa de 40%

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	36.9±0.5	0.40±0.01	28.0±0.5	0.92±0.02	26.2±0.5	25.1±0.4	0.752±0.057	58.35±9.24	0.0122±0.0009	12.96±2.06	2.335±0.173
120	37.0±0.5	0.40±0.01	28.0±0.5	0.92±0.02	26.2±0.5	25.1±0.4	0.759±0.056	59.54±9.50	0.0122±0.0009	13.22±2.11	2.327±0.173
180	37.0±0.5	0.40±0.01	28.1±0.5	0.92±0.02	26.2±0.5	25.1±0.4	0.750±0.056	58.19±9.18	0.0122±0.0009	12.92±2.04	2.340±0.173
240	37.0±0.5	0.40±0.01	28.1±0.5	0.92±0.02	26.2±0.5	25.1±0.4	0.750±0.056	58.19±9.18	0.0122±0.0009	12.92±2.04	2.340±0.173
300	37.0±0.5	0.40±0.01	28.0±0.5	0.92±0.02	26.2±0.5	25.1±0.4	0.759±0.056	59.54±9.50	0.0122±0.0009	13.22±2.11	2.327±0.173
360	37.0±0.5	0.41±0.01	28.0±0.5	0.92±0.02	26.2±0.5	25.4±0.4	0.775±0.058	62.57±10.47	0.0120±0.0009	13.89±2.33	2.299±0.180
420	37.0±0.5	0.40±0.01	28.1±0.5	0.92±0.02	26.2±0.5	25.1±0.4	0.750±0.056	58.19±9.18	0.0122±0.0009	12.92±2.04	2.340±0.173
480	36.9±0.5	0.40±0.01	28.0±0.5	0.92±0.02	26.2±0.5	25.1±0.4	0.752±0.057	58.35±9.24	0.0122±0.0009	12.96±2.06	2.335±0.173
540	37.0±0.5	0.40±0.01	28.0±0.5	0.92±0.02	26.1±0.5	25.1±0.4	0.759±0.056	59.54±9.50	0.0122±0.0009	13.22±2.11	2.327±0.173
600	37.1±0.5	0.39±0.01	28.0±0.5	0.92±0.02	26.1±0.5	25.0±0.4	0.750±0.055	57.91±8.91	0.0123±0.0008	12.85±1.98	2.344±0.167
660	37.0±0.5	0.39±0.01	28.0±0.5	0.92±0.02	26.1±0.5	24.9±0.4	0.743±0.055	56.79±8.68	0.0123±0.0008	12.61±1.93	2.352±0.167
720	37.0±0.5	0.40±0.01	28.0±0.5	0.92±0.02	26.1±0.5	25.1±0.4	0.759±0.056	59.54±9.50	0.0122±0.0009	13.22±2.11	2.327±0.173
780	36.9±0.5	0.40±0.01	28.0±0.5	0.92±0.02	26.1±0.5	25.1±0.4	0.752±0.057	58.35±9.24	0.0122±0.0009	12.96±2.06	2.335±0.173
840	37.0±0.5	0.41±0.01	28.0±0.5	0.92±0.02	26.1±0.5	25.4±0.4	0.775±0.058	62.57±10.47	0.0120±0.0009	13.89±2.33	2.299±0.180
900	36.9±0.5	0.40±0.01	28.0±0.5	0.92±0.02	26.1±0.5	25.1±0.4	0.752±0.057	58.35±9.24	0.0122±0.0009	12.96±2.06	2.335±0.173

G.2.2.9 Teste 9 PET lixado 01. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 50%.

Tabela 110 - Dados PET lixado 01 para temperatura de bulbo seco de 37°C e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	36.9±0.5	0.50±0.01	29.8±0.5	0.89±0.02	27.9±0.5	27.5±0.5	0.752±0.073	60.87±12.27	0.0101±0.0015	13.52±2.73	1.937±0.289
120	36.9±0.5	0.50±0.01	29.8±0.5	0.90±0.02	27.9±0.5	27.5±0.5	0.752±0.073	60.87±12.27	0.0107±0.0014	13.52±2.73	2.053±0.280
180	37.0±0.5	0.51±0.01	29.8±0.5	0.89±0.02	27.9±0.5	27.8±0.5	0.780±0.075	66.10±14.26	0.0096±0.0016	14.68±3.17	1.834±0.314
240	37.0±0.5	0.50±0.01	29.8±0.5	0.89±0.02	27.9±0.5	27.5±0.5	0.762±0.073	62.49±12.74	0.0100±0.0015	13.87±2.83	1.914±0.292
300	37.0±0.5	0.49±0.01	29.8±0.5	0.89±0.02	27.9±0.5	27.3±0.5	0.743±0.071	59.27±11.49	0.0104±0.0014	13.16±2.55	1.986±0.273
360	37.0±0.5	0.50±0.01	29.8±0.5	0.89±0.02	27.9±0.5	27.5±0.5	0.762±0.073	62.49±12.74	0.0100±0.0015	13.87±2.83	1.914±0.292
420	36.9±0.5	0.50±0.01	29.8±0.5	0.89±0.02	28.0±0.5	27.5±0.5	0.752±0.073	60.87±12.27	0.0101±0.0015	13.52±2.73	1.937±0.289
480	36.9±0.5	0.51±0.01	29.7±0.5	0.89±0.02	27.9±0.5	27.7±0.5	0.782±0.075	66.27±14.36	0.0096±0.0016	14.72±3.19	1.829±0.313
540	36.9±0.5	0.50±0.01	29.8±0.5	0.89±0.02	28.0±0.5	27.5±0.5	0.752±0.073	60.87±12.27	0.0101±0.0015	13.52±2.73	1.937±0.289
600	37.0±0.5	0.50±0.01	29.8±0.5	0.89±0.02	28.0±0.5	27.5±0.5	0.762±0.073	62.49±12.74	0.0100±0.0015	13.87±2.83	1.914±0.292
660	37.1±0.5	0.50±0.01	29.9±0.5	0.89±0.02	28.0±0.5	27.6±0.5	0.760±0.073	62.35±12.66	0.0101±0.0015	13.84±2.81	1.920±0.293
720	37.1±0.5	0.50±0.01	29.9±0.5	0.89±0.02	28.0±0.5	27.6±0.5	0.760±0.073	62.35±12.66	0.0101±0.0015	13.84±2.81	1.920±0.293
780	37.0±0.5	0.50±0.01	29.8±0.5	0.89±0.02	28.0±0.5	27.5±0.5	0.762±0.073	62.49±12.74	0.0100±0.0015	13.87±2.83	1.914±0.292
840	37.0±0.5	0.51±0.01	29.8±0.5	0.89±0.02	28.0±0.5	27.8±0.5	0.780±0.075	66.10±14.26	0.0096±0.0016	14.68±3.17	1.834±0.314
900	37.1±0.5	0.51±0.01	30.0±0.5	0.90±0.02	28.1±0.5	27.9±0.5	0.768±0.075	64.00±13.50	0.0104±0.0015	14.20±3.00	1.994±0.301

G.2.3 Painel PET lixado 02

G.2.3.1 Teste 1 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 30%.

		Tabela 111	– Dados Pl	ET lixado 02	para temp	eratura de	bulbo seco de	e 27ºC e umid	lade relativa de 30	0%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.30±0.01	18.3±0.5	0.91±0.02	16.6±0.5	15.3±0.4	0.747±0.055	45.00±7.04	0.0084±0.0003	8.58±1.34	1.431±0.064
120	27.0±0.5	0.30±0.01	18.3±0.5	0.91±0.02	16.6±0.5	15.3±0.4	0.747±0.055	45.00±7.04	0.0084±0.0003	8.58±1.34	1.431±0.064
180	27.0±0.5	0.30±0.01	18.3±0.5	0.92±0.02	16.6±0.5	15.3±0.4	0.747±0.055	45.00±7.04	0.0086±0.0004	8.58±1.34	1.462±0.064
240	27.1±0.5	0.30±0.01	18.4±0.5	0.92±0.02	16.7±0.5	15.4±0.4	0.745±0.055	44.77±6.97	0.0086±0.0004	8.54±1.33	1.463±0.064
300	27.0±0.5	0.31±0.01	18.4±0.5	0.92±0.02	16.7±0.5	15.6±0.4	0.751±0.056	45.70±7.34	0.0086±0.0004	8.72±1.40	1.463±0.066
360	26.9±0.5	0.30±0.01	18.4±0.5	0.91±0.02	16.7±0.5	15.3±0.4	0.731±0.055	43.11±6.66	0.0084±0.0003	8.22±1.27	1.430±0.063
420	26.9±0.5	0.31±0.01	18.4±0.5	0.91±0.02	16.7±0.5	15.5±0.4	0.745±0.056	44.81±7.16	0.0084±0.0004	8.55±1.37	1.429±0.065
480	26.9±0.5	0.31±0.01	18.4±0.5	0.92±0.02	16.7±0.5	15.5±0.4	0.745±0.056	44.81±7.16	0.0086±0.0004	8.55±1.37	1.462±0.066
540	27.0±0.5	0.30±0.01	18.4±0.5	0.91±0.02	16.7±0.5	15.3±0.4	0.738±0.055	43.93±6.81	0.0084±0.0003	8.38±1.30	1.431±0.063
600	27.0±0.5	0.30±0.01	18.4±0.5	0.91±0.02	16.7±0.5	15.3±0.4	0.738±0.055	43.93±6.81	0.0084±0.0003	8.38±1.30	1.431±0.063
660	26.9±0.5	0.30±0.01	18.3±0.5	0.91±0.02	16.7±0.5	15.3±0.4	0.740±0.055	44.16±6.88	0.0084±0.0003	8.42±1.31	1.430±0.063
720	26.9±0.5	0.30±0.01	18.3±0.5	0.91±0.02	16.7±0.5	15.3±0.4	0.740±0.055	44.16±6.88	0.0084±0.0003	8.42±1.31	1.430±0.063
780	26.9±0.5	0.30±0.01	18.3±0.5	0.91±0.02	16.7±0.5	15.3±0.4	0.740±0.055	44.16±6.88	0.0084±0.0003	8.42±1.31	1.430±0.063
840	27.0±0.5	0.30±0.01	18.3±0.5	0.91±0.02	16.7±0.5	15.3±0.4	0.747±0.055	45.00±7.04	0.0084±0.0003	8.58±1.34	1.431±0.064
900	27.1±0.5	0.30±0.01	18.3±0.5	0.91±0.02	16.7±0.5	15.4±0.4	0.753±0.055	45.87±7.21	0.0084±0.0004	8.75±1.37	1.432±0.064

G.2.3.2 Teste 2 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 40%.

Tabela 112 – Dados PET lixado 02	para tem	peratura de bulbo seco	de 27°C (e umidade relativa de 40%

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.1±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.5±0.5	17.4±0.4	0.725±0.068	43.04±8.15	0.0088±0.0005	8.21±1.55	1.506±0.083
120	27.1±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.5±0.5	17.4±0.4	0.725±0.068	43.04±8.15	0.0088±0.0005	8.21±1.55	1.506±0.083
180	27.0±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.716±0.069	42.02±7.92	0.0088±0.0005	8.01±1.51	1.507±0.083
240	27.0±0.5	0.41±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.6±0.4	0.731±0.070	43.82±8.55	0.0088±0.0005	8.36±1.63	1.502±0.086
300	27.0±0.5	0.41±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.6±0.4	0.731±0.070	43.82±8.55	0.0088±0.0005	8.36±1.63	1.502±0.086
360	27.0±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.716±0.069	42.02±7.92	0.0088±0.0005	8.01±1.51	1.507±0.083
420	27.1±0.5	0.40±0.01	20.2±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.715±0.069	41.84±7.86	0.0088±0.0005	7.98±1.50	1.509±0.083
480	27.1±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.725±0.068	43.04±8.15	0.0088±0.0005	8.21±1.55	1.506±0.083
540	27.0±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.716±0.069	42.02±7.92	0.0088±0.0005	8.01±1.51	1.507±0.083
600	27.0±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.716±0.069	42.02±7.92	0.0088±0.0005	8.01±1.51	1.507±0.083
660	27.0±0.5	0.40±0.01	20.0±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.727±0.069	43.23±8.22	0.0088±0.0005	8.24±1.57	1.504±0.083
720	27.0±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.716±0.069	42.02±7.92	0.0088±0.0005	8.01±1.51	1.507±0.083
780	27.1±0.5	0.41±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.6±0.4	0.740±0.070	44.92±8.82	0.0088±0.0005	8.56±1.68	1.502±0.086
840	27.1±0.5	0.40±0.01	20.1±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.725±0.068	43.04±8.15	0.0088±0.0005	8.21±1.55	1.506±0.083
900	27.1±0.5	0.40±0.01	20.0±0.5	0.93±0.02	18.6±0.5	17.4±0.4	0.735±0.068	44.28±8.46	0.0088±0.0005	8.44±1.61	1.503±0.084

G.2.3.3 Teste 3 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 50%.

Tabela 113 – Dados PET lixado 02 para temperatura de bulbo seco de 27ºC e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
120	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
180	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
240	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
300	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
360	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
420	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
480	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
540	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
600	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
660	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
720	27.1±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.3±0.5	0.772±0.087	49.88±12.65	0.0064±0.0008	9.51±2.41	1.095±0.133
780	27.0±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.2±0.5	0.761±0.087	48.30±12.08	0.0065±0.0008	9.21±2.30	1.103±0.133
840	27.1±0.5	0.50±0.01	21.0±0.5	0.87±0.02	19.9±0.5	19.3±0.5	0.785±0.087	51.79±13.41	0.0064±0.0008	9.87±2.55	1.085±0.134
900	27.1±0.5	0.50±0.01	21.1±0.5	0.87±0.02	19.9±0.5	19.3±0.5	0.772±0.087	49.88±12.65	0.0064±0.0008	9.51±2.41	1.095±0.133

G.2.3.4 Teste 4 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 30%.

		Tabela 114	– Dados P	ET lixado 02	2 para temp	eratura de	bulbo seco d	e 32°C e umic	lade relativa de 3	0%.	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	32.0±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	18.9±0.4	0.702±0.049	9 40.16±5.39	0.0079±0.0004	7.55±1.02	1.311±0.071
120	31.9±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.6±0.5	18.8±0.4	0.696±0.050) 39.50±5.30	0.0080±0.0004	7.43±1.00	1.313±0.071
180	31.9±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.6±0.5	18.8±0.4	0.696±0.050) 39.50±5.30	0.0080±0.0004	7.43±1.00	1.313±0.071
240	31.9±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	18.8±0.4	0.696±0.050) 39.50±5.30	0.0080±0.0004	7.43±1.00	1.313±0.071
300	31.9±0.5	0.30±0.01	22.7±0.5	0.85±0.02	22.5±0.5	18.8±0.4	0.704±0.050) 40.32±5.43	0.0079±0.0004	7.58±1.02	1.308±0.071
360	31.9±0.5	0.30±0.01	22.7±0.5	0.85±0.02	22.5±0.5	18.8±0.4	0.704±0.050) 40.32±5.43	0.0079±0.0004	7.58±1.02	1.308±0.071
420	31.9±0.5	0.30±0.01	22.7±0.5	0.85±0.02	22.5±0.5	18.8±0.4	0.704±0.050) 40.32±5.43	0.0079±0.0004	7.58±1.02	1.308±0.071
480	31.9±0.5	0.30±0.01	22.7±0.5	0.85±0.02	22.5±0.5	18.8±0.4	0.704±0.050) 40.32±5.43	0.0079±0.0004	7.58±1.02	1.308±0.071
540	31.9±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	18.8±0.4	0.696±0.050) 39.50±5.30	0.0080±0.0004	7.43±1.00	1.313±0.071
600	31.9±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	18.8±0.4	0.696±0.050) 39.50±5.30	0.0080±0.0004	7.43±1.00	1.313±0.071
660	32.0±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	18.9±0.4	0.702±0.049	0 40.16±5.39	0.0079±0.0004	7.55±1.02	1.311±0.071
720	32.1±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	19.0±0.4	0.708±0.049	040.84±5.49	0.0079±0.0004	7.68±1.03	1.308±0.071
780	32.1±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	19.0±0.4	0.708±0.049	0 40.84±5.49	0.0079±0.0004	7.68±1.03	1.308±0.071
840	32.1±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	19.0±0.4	0.708±0.049	040.84±5.49	0.0079±0.0004	7.68±1.03	1.308±0.071
900	32.1±0.5	0.30±0.01	22.8±0.5	0.85±0.02	22.5±0.5	19.0±0.4	0.708±0.049	0 40.84±5.49	0.0079±0.0004	7.68±1.03	1.308±0.071

G.2.3.5 Teste 5 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32ºC e umidade relativa do ar de 40%.

Tabela 115 – Dados PET lixado 02 para temperatura de bull	ibo seco de 32°C e umidade relativa de 40%.
---	---

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	32.0±0.5	0.40±0.01	24.1±0.5	0.92±0.02	22.4±0.5	21.2±0.4	0.734±0.062	44.88±7.68	0.0094±0.0006	8.44±1.44	1.545±0.099
120	32.0±0.5	0.40±0.01	24.1±0.5	0.92±0.02	22.4±0.5	21.2±0.4	0.734±0.062	44.88±7.68	0.0094±0.0006	8.44±1.44	1.545±0.099
180	32.0±0.5	0.40±0.01	24.1±0.5	0.93±0.02	22.4±0.5	21.2±0.4	0.734±0.062	44.88±7.68	0.0096±0.0006	8.44±1.44	1.591±0.098
240	32.0±0.5	0.40±0.01	24.1±0.5	0.92±0.02	22.5±0.5	21.2±0.4	0.734±0.062	44.88±7.68	0.0094±0.0006	8.44±1.44	1.545±0.099
300	32.0±0.5	0.40±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.2±0.4	0.725±0.062	43.76±7.42	0.0094±0.0006	8.23±1.39	1.551±0.099
360	32.1±0.5	0.40±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.3±0.4	0.733±0.062	44.71±7.62	0.0094±0.0006	8.40±1.43	1.547±0.099
420	32.1±0.5	0.39±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.1±0.4	0.718±0.060	42.83±7.04	0.0095±0.0006	8.05±1.32	1.558±0.096
480	32.1±0.5	0.40±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.3±0.4	0.733±0.062	44.71±7.62	0.0094±0.0006	8.40±1.43	1.547±0.099
540	32.1±0.5	0.39±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.1±0.4	0.718±0.060	42.83±7.04	0.0095±0.0006	8.05±1.32	1.558±0.096
600	32.1±0.5	0.39±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.1±0.4	0.718±0.060	42.83±7.04	0.0095±0.0006	8.05±1.32	1.558±0.096
660	32.1±0.5	0.40±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.3±0.4	0.733±0.062	44.71±7.62	0.0094±0.0006	8.40±1.43	1.547±0.099
720	32.0±0.5	0.39±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.0±0.4	0.710±0.060	41.94±6.87	0.0095±0.0006	7.89±1.29	1.562±0.096
780	31.9±0.5	0.39±0.01	24.1±0.5	0.92±0.02	22.5±0.5	20.9±0.4	0.711±0.061	42.09±6.92	0.0094±0.0005	7.91±1.30	1.559±0.095
840	32.0±0.5	0.40±0.01	24.2±0.5	0.92±0.02	22.4±0.5	21.2±0.4	0.725±0.062	43.76±7.42	0.0094±0.0006	8.23±1.39	1.551±0.099
900	32.0±0.5	0.40±0.01	24.2±0.5	0.92±0.02	22.5±0.5	21.2±0.4	0.725±0.062	43.76±7.42	0.0094±0.0006	8.23±1.39	1.551±0.099

G.2.3.6 Teste 6 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 50%.

Tabela 116 - Dados PET lixado 02 para temperatura de bulbo seco de 32°C e umidade relativa de 50%.

										- / • ·	
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	32.0±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.4±0.5	0.777±0.079	51.93±11.95	0.0076±0.0010	9.76±2.24	1.255±0.161
120	32.0±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.4±0.5	0.777±0.079	51.93±11.95	0.0076±0.0010	9.76±2.24	1.255±0.161
180	32.0±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.4±0.5	0.777±0.079	51.93±11.95	0.0076±0.0010	9.76±2.24	1.255±0.161
240	32.0±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.4±0.5	0.777±0.079	51.93±11.95	0.0076±0.0010	9.76±2.24	1.255±0.161
300	32.0±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.4±0.5	0.777±0.079	51.93±11.95	0.0076±0.0010	9.76±2.24	1.255±0.161
360	31.9±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.3±0.5	0.767±0.079	50.43±11.45	0.0077±0.0009	9.48±2.15	1.266±0.160
420	32.0±0.5	0.49±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.2±0.5	0.759±0.077	49.21±10.74	0.0078±0.0009	9.25±2.02	1.291±0.152
480	32.1±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.5±0.5	0.787±0.079	53.49±12.51	0.0075±0.0010	10.05±2.35	1.244±0.162
540	32.0±0.5	0.49±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.2±0.5	0.759±0.077	49.21±10.74	0.0078±0.0009	9.25±2.02	1.291±0.152
600	31.9±0.5	0.50±0.01	25.2±0.5	0.89±0.02	24.1±0.5	23.3±0.5	0.779±0.079	52.12±12.05	0.0076±0.0010	9.80±2.26	1.252±0.160
660	32.1±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.5±0.5	0.787±0.079	53.49±12.51	0.0075±0.0010	10.05±2.35	1.244±0.162
720	31.9±0.5	0.49±0.01	25.2±0.5	0.89±0.02	24.1±0.5	23.1±0.5	0.761±0.077	49.38±10.82	0.0078±0.0009	9.29±2.03	1.288±0.151
780	32.0±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.4±0.5	0.777±0.079	51.93±11.95	0.0076±0.0010	9.76±2.24	1.255±0.161
840	31.9±0.5	0.50±0.01	25.2±0.5	0.89±0.02	24.1±0.5	23.3±0.5	0.779±0.079	52.12±12.05	0.0076±0.0010	9.80±2.26	1.252±0.160
900	32.1±0.5	0.50±0.01	25.3±0.5	0.89±0.02	24.1±0.5	23.5±0.5	0.787±0.079	53.49±12.51	0.0075±0.0010	10.05±2.35	1.244±0.162

G.2.3.7 Teste 7 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 30%.

	Tabela 117 – Dados PET lixado 02 para temperatura de bulbo seco de 37ºC e umidade relativa de 30%.												
tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh		
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)		
60	37.0±0.5	0.30±0.01	26.1±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.750±0.045	5 46.76±5.90	0.0084±0.0005	8.67±1.10	1.338±0.083		
120	37.0±0.5	0.30±0.01	26.1±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.750±0.045	5 46.76±5.90	0.0084±0.0005	8.67±1.10	1.338±0.083		
180	37.0±0.5	0.30±0.01	26.1±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.750±0.045	5 46.76±5.90	0.0084±0.0005	8.67±1.10	1.338±0.083		
240	37.0±0.5	0.31±0.01	26.1±0.5	0.85±0.02	24.2±0.5	22.8±0.4	0.765±0.046	6 48.90±6.42	0.0083±0.0005	9.06±1.19	1.318±0.086		
300	37.0±0.5	0.30±0.01	26.2±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.743±0.045	5 45.88±5.75	0.0084±0.0005	8.50±1.07	1.344±0.083		
360	37.0±0.5	0.30±0.01	26.2±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.743±0.045	5 45.88±5.75	0.0084±0.0005	8.50±1.07	1.344±0.083		
420	37.0±0.5	0.30±0.01	26.2±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.743±0.045	5 45.88±5.75	0.0084±0.0005	8.50±1.07	1.344±0.083		
480	37.0±0.5	0.30±0.01	26.1±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.750±0.045	546.76±5.90	0.0084±0.0005	8.67±1.10	1.338±0.083		
540	37.0±0.5	0.30±0.01	26.2±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.743±0.045	5 45.88±5.75	0.0084±0.0005	8.50±1.07	1.344±0.083		
600	37.0±0.5	0.30±0.01	26.2±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.743±0.045	5 45.88±5.75	0.0084±0.0005	8.50±1.07	1.344±0.083		
660	37.0±0.5	0.30±0.01	26.1±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.750±0.045	5 46.76±5.90	0.0084±0.0005	8.67±1.10	1.338±0.083		
720	37.0±0.5	0.30±0.01	26.2±0.5	0.85±0.02	24.2±0.5	22.5±0.4	0.743±0.045	5 45.88±5.75	0.0084±0.0005	8.50±1.07	1.344±0.083		
780	36.9±0.5	0.30±0.01	26.1±0.5	0.85±0.02	24.2±0.5	22.4±0.4	0.745±0.045	546.04±5.78	0.0084±0.0005	8.54±1.08	1.341±0.083		
840	36.9±0.5	0.31±0.01	26.1±0.5	0.85±0.02	24.2±0.5	22.7±0.4	0.759±0.046	6 48.11±6.29	0.0083±0.0005	8.92±1.17	1.322±0.086		
900	37.1±0.5	0.31±0.01	26.2±0.5	0.85±0.02	24.2±0.5	22.8±0.4	0.764±0.046	6 48.72±6.38	0.0083±0.0005	9.03±1.18	1.320±0.087		

G.2.3.8 Teste 8 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 40%.

	Tabela 118 – Dados PET lixado 02	para temperatu	ra de bulbo seco de 37º0	C e umidade relativa de 40%.
--	----------------------------------	----------------	--------------------------	------------------------------

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	36.9±0.5	0.40±0.01	28.2±0.5	0.92±0.02	26.4±0.5	25.1±0.4	0.735±0.057	46.55±7.22	0.0103±0.0007	8.63±1.34	1.647±0.119
120	37.1±0.5	0.40±0.01	28.3±0.5	0.92±0.02	26.5±0.5	25.2±0.4	0.740±0.056	47.36±7.37	0.0103±0.0007	8.78±1.37	1.645±0.120
180	37.1±0.5	0.40±0.01	28.3±0.5	0.92±0.02	26.5±0.5	25.2±0.4	0.740±0.056	47.36±7.37	0.0103±0.0007	8.78±1.37	1.645±0.120
240	37.1±0.5	0.40±0.01	28.3±0.5	0.92±0.02	26.5±0.5	25.2±0.4	0.740±0.056	47.36±7.37	0.0103±0.0007	8.78±1.37	1.645±0.120
300	37.0±0.5	0.40±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.1±0.4	0.733±0.056	46.42±7.18	0.0103±0.0007	8.61±1.33	1.651±0.119
360	36.9±0.5	0.41±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.3±0.4	0.742±0.058	47.65±7.63	0.0103±0.0007	8.84±1.41	1.638±0.124
420	37.0±0.5	0.40±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.1±0.4	0.733±0.056	46.42±7.18	0.0103±0.0007	8.61±1.33	1.651±0.119
480	37.1±0.5	0.40±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.2±0.4	0.740±0.056	47.36±7.37	0.0103±0.0007	8.78±1.37	1.645±0.120
540	37.1±0.5	0.40±0.01	28.4±0.5	0.92±0.02	26.6±0.5	25.2±0.4	0.732±0.056	46.30±7.14	0.0104±0.0007	8.58±1.32	1.655±0.120
600	37.0±0.5	0.40±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.1±0.4	0.733±0.056	46.42±7.18	0.0103±0.0007	8.61±1.33	1.651±0.119
660	36.9±0.5	0.41±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.3±0.4	0.742±0.058	47.65±7.63	0.0103±0.0007	8.84±1.41	1.638±0.124
720	36.8±0.5	0.41±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.2±0.4	0.735±0.058	46.69±7.43	0.0103±0.0007	8.66±1.38	1.644±0.123
780	36.9±0.5	0.41±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.3±0.4	0.742±0.058	47.65±7.63	0.0103±0.0007	8.84±1.41	1.638±0.124
840	37.0±0.5	0.41±0.01	28.4±0.5	0.92±0.02	26.6±0.5	25.4±0.4	0.741±0.058	47.53±7.58	0.0103±0.0007	8.81±1.41	1.642±0.124
900	36.9±0.5	0.41±0.01	28.3±0.5	0.92±0.02	26.6±0.5	25.3±0.4	0.742±0.058	47.65±7.63	0.0103±0.0007	8.84±1.41	1.638±0.124

G.2.3.9 Teste 9 PET lixado 02. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 50%.

Tabela 119 - Dados PET lixado 02 para temperatura de bulbo seco de 37°C e umidade relativa de 50%.

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	37.0±0.5	0.50±0.01	29.2±0.5	0.92±0.02	27.8±0.5	27.5±0.5	0.825±0.073	62.67±14.54	0.0093±0.0012	2 11.62±2.69	1.483±0.187
120	37.0±0.5	0.50±0.01	29.2±0.5	0.92±0.02	27.8±0.5	27.5±0.5	0.825±0.073	62.67±14.54	0.0093±0.0012	2 11.62±2.69	1.483±0.187
180	37.0±0.5	0.50±0.01	29.2±0.5	0.92±0.02	27.8±0.5	27.5±0.5	0.825±0.073	62.67±14.54	0.0093±0.0012	11.62±2.69	1.483±0.187
240	37.0±0.5	0.51±0.01	29.2±0.5	0.92±0.02	27.8±0.5	27.8±0.5	0.846±0.075	67.15±17.01	0.0090±0.0012	2 12.45±3.15	1.443±0.196
300	37.1±0.5	0.50±0.01	29.2±0.5	0.92±0.02	27.8±0.5	27.6±0.5	0.834±0.073	64.57±15.35	0.0092±0.0012	2 11.97±2.84	1.472±0.188
360	37.0±0.5	0.50±0.01	29.2±0.5	0.92±0.02	27.9±0.5	27.5±0.5	0.825±0.073	62.67±14.54	0.0093±0.0012	2 11.62±2.69	1.483±0.187
420	37.0±0.5	0.51±0.01	29.2±0.5	0.92±0.02	27.8±0.5	27.8±0.5	0.846±0.075	67.15±17.01	0.0090±0.0012	2 12.45±3.15	1.443±0.196
480	37.0±0.5	0.50±0.01	29.2±0.5	0.92±0.02	27.9±0.5	27.5±0.5	0.825±0.073	62.67±14.54	0.0093±0.0012	11.62±2.69	1.483±0.187
540	37.0±0.5	0.50±0.01	29.3±0.5	0.92±0.02	27.9±0.5	27.5±0.5	0.814±0.073	60.67±13.70	0.0094±0.0012	2 11.25±2.54	1.497±0.187
600	37.0±0.5	0.50±0.01	29.3±0.5	0.92±0.02	27.9±0.5	27.5±0.5	0.814±0.073	60.67±13.70	0.0094±0.0012	2 11.25±2.54	1.497±0.187
660	37.0±0.5	0.50±0.01	29.3±0.5	0.92±0.02	27.9±0.5	27.5±0.5	0.814±0.073	60.67±13.70	0.0094±0.0012	2 11.25±2.54	1.497±0.187
720	37.0±0.5	0.50±0.01	29.3±0.5	0.92±0.02	27.9±0.5	27.5±0.5	0.814±0.073	60.67±13.70	0.0094±0.0012	2 11.25±2.54	1.497±0.187
780	37.0±0.5	0.50±0.01	29.3±0.5	0.92±0.02	27.9±0.5	27.5±0.5	0.814±0.073	60.67±13.70	0.0094±0.0012	11.25±2.54	1.497±0.187
840	37.0±0.5	0.50±0.01	29.3±0.5	0.92±0.02	27.9±0.5	27.5±0.5	0.814±0.073	60.67±13.70	0.0094±0.0012	11.25±2.54	1.497±0.187
900	37.0±0.5	0.51±0.01	29.3±0.5	0.92±0.02	27.9±0.5	27.8±0.5	0.835±0.075	64.84±15.87	0.0091±0.0012	12.02±2.94	1.456±0.197

G.3 Painel de celulose

O painel de celulose é único adquirido pronto na forma retangular. Os dados das tabelas são: intervalo de tempo do ponto de dado (Tempo), Temperatura de entrada (Te), temperatura de saída (Ts) umidade relativa do ar de entrada (Ure) umidade relativa do ar do ar de saída (Urs), temperatura da água (Ta), temperatura de bulbo úmido (Tbu), efetividade de resfriamento (E), coeficiente de transferência de calor (hc), coeficiente de transferência de massa (hm), número de Nusselt (Nus) e número de Sherwood (Sh).

G.3.1 Painel Celulose

G.3.1.1 Teste 1 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 30%.

	Tabela 120 – Dados celulose	para temperatura de bulbo seco	de 27°C e umidade relativa de 30%
--	-----------------------------	--------------------------------	-----------------------------------

tempo	Те	Ure	Ts	Urs	Та	Tbu	Е	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²ºC)	m/s	(-)	(-)
60	27.0±0.5	0.31±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.6±0.4	0.690±0.057	20.36±3.12	0.0039±0.0002	2.05±0.31	0.347±0.017
120	27.0±0.5	0.30±0.01	19.2±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.669±0.056	19.21±2.86	0.0039±0.0002	1.93±0.29	0.351±0.016
180	27.0±0.5	0.30±0.01	19.2±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.669±0.056	19.21±2.86	0.0039±0.0002	1.93±0.29	0.351±0.016
240	27.0±0.5	0.30±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.678±0.056	19.66±2.94	0.0039±0.0002	1.98±0.29	0.350±0.016
300	27.0±0.5	0.30±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.678±0.056	19.66±2.94	0.0039±0.0002	1.98±0.29	0.350±0.016
360	27.0±0.5	0.30±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.678±0.056	19.66±2.94	0.0039±0.0002	1.98±0.29	0.350±0.016
420	27.0±0.5	0.30±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.678±0.056	19.66±2.94	0.0039±0.0002	1.98±0.29	0.350±0.016
480	27.0±0.5	0.31±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.6±0.4	0.690±0.057	20.36±3.12	0.0039±0.0002	2.05±0.31	0.347±0.017
540	27.0±0.5	0.30±0.01	19.2±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.669±0.056	19.21±2.86	0.0039±0.0002	1.93±0.29	0.351±0.016
600	27.1±0.5	0.31±0.01	19.2±0.5	0.85±0.02	16.6±0.5	15.6±0.4	0.689±0.056	20.26±3.09	0.0039±0.0002	2.04±0.31	0.348±0.017
660	27.1±0.5	0.30±0.01	19.2±0.5	0.85±0.02	16.6±0.5	15.4±0.4	0.676±0.055	19.57±2.91	0.0039±0.0002	1.97±0.29	0.350±0.016
720	27.0±0.5	0.30±0.01	19.2±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.669±0.056	19.21±2.86	0.0039±0.0002	1.93±0.29	0.351±0.016
780	26.9±0.5	0.30±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.671±0.056	19.30±2.88	0.0039±0.0002	1.94±0.29	0.350±0.016
840	26.9±0.5	0.30±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.671±0.056	19.30±2.88	0.0039±0.0002	1.94±0.29	0.350±0.016
900	26.9±0.5	0.30±0.01	19.1±0.5	0.85±0.02	16.6±0.5	15.3±0.4	0.671±0.056	19.30±2.88	0.0039±0.0002	1.94±0.29	0.350±0.016

G.3.1.2 Teste 2 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 40%.

	Tabela 121 – Dados celulose para temperatura de bulbo seco de 27ºC e umidade relativa de 40%												
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²ºC)	hm m/s	Nus (-)	Sh (-)		
60	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.06	9 20.37±3.77	0.0042±0.0002	2.05±0.38	0.377±0.023		
120	27.0±0.5	0.41±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.6±0.4	0.699±0.07	0 21.19±4.03	0.0041±0.0003	2.13±0.40	0.373±0.023		
180	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.06	9 20.37±3.77	0.0042±0.0002	2.05±0.38	0.377±0.023		
240	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.069	9 20.37±3.77	0.0042±0.00022	2.05±0.38	0.377±0.023		
300	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.069	9 20.37±3.77	0.0042±0.00022	2.05±0.38	0.377±0.023		
360	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.069	9 20.37±3.77	0.0042±0.00022	2.05±0.38	0.377±0.023		
420	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.069	9 20.37±3.77	0.0042±0.00022	2.05±0.38	0.377±0.023		
480	26.9±0.5	0.40±0.01	20.3±0.5	0.89±0.02	18.2±0.5	17.3±0.4	0.687±0.069	9 20.46±3.79	0.0042±0.00022	2.06±0.38	0.376±0.022		
540	27.0±0.5	0.40±0.01	20.3±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.696±0.069	9 20.95±3.89	0.0042±0.00022	2.11±0.39	0.375±0.023		
600	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.06	9 20.37±3.77	0.0042±0.00022	2.05±0.38	0.377±0.023		
660	27.1±0.5	0.41±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.6±0.4	0.708±0.070	0 21.71±4.15	0.0041±0.0003	2.18±0.42	0.373±0.023		
720	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.06	9 20.37±3.77	0.0042±0.00022	2.05±0.38	0.377±0.023		
780	27.0±0.5	0.41±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.6±0.4	0.699±0.070	0 21.19±4.03	0.0041±0.0003	2.13±0.40	0.373±0.023		
840	27.1±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.694±0.06	9 20.86±3.86	0.0042±0.00022	2.10±0.39	0.376±0.023		
900	27.0±0.5	0.40±0.01	20.4±0.5	0.89±0.02	18.2±0.5	17.4±0.4	0.685±0.069	9 20.37±3.77	0.0042±0.0002	2.05±0.38	0.377±0.023		

G.3.1.3 Teste 3 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 27°C e umidade relativa do ar de 50%.

Tabela 122 – Dados celulose para tem	peratura de bulbo seco de 27°C e umidade relativa de 50%
--------------------------------------	--

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	27.0±0.5	0.50±0.01	22.1±0.5	0.91±0.02	20.4±0.5	19.2±0.5	0.632±0.088	18.02±4.14 (0.0044±0.0004	1.81±0.41	0.399±0.033
120	27.1±0.5	0.50±0.01	22.0±0.5	0.91±0.02	20.4±0.5	19.3±0.5	0.656±0.087	19.21±4.42 (0.0044±0.0004	1.93±0.44	0.394±0.033
180	27.0±0.5	0.50±0.01	22.0±0.5	0.91±0.02	20.4±0.5	19.2±0.5	0.645±0.087	18.64±4.29 (0.0044±0.0004	1.87±0.43	0.396±0.033
240	27.0±0.5	0.50±0.01	22.0±0.5	0.91±0.02	20.4±0.5	19.2±0.5	0.645±0.087	18.64±4.29 (0.0044±0.0004	1.87±0.43	0.396±0.033
300	26.9±0.5	0.50±0.01	22.0±0.5	0.91±0.02	20.3±0.5	19.2±0.5	0.633±0.088	18.08±4.16 (0.0044±0.0004	1.82±0.42	0.398±0.032
360	27.0±0.5	0.50±0.01	22.0±0.5	0.91±0.02	20.3±0.5	19.2±0.5	0.645±0.087	18.64±4.29 (0.0044±0.0004	1.87±0.43	0.396±0.033
420	27.0±0.5	0.50±0.01	22.0±0.5	0.91±0.02	20.3±0.5	19.2±0.5	0.645±0.087	18.64±4.29 (0.0044±0.0004	1.87±0.43	0.396±0.033
480	27.1±0.5	0.50±0.01	22.0±0.5	0.91±0.02	20.3±0.5	19.3±0.5	0.656±0.087	19.21±4.42 (0.0044±0.0004	1.93±0.44	0.394±0.033
540	27.0±0.5	0.50±0.01	21.9±0.5	0.91±0.02	20.3±0.5	19.2±0.5	0.658±0.087	19.28±4.45 (0.0044±0.0004	1.94±0.45	0.393±0.033
600	27.0±0.5	0.50±0.01	21.9±0.5	0.91±0.02	20.3±0.5	19.2±0.5	0.658±0.087	19.28±4.45 (0.0044±0.0004	1.94±0.45	0.393±0.033
660	27.1±0.5	0.50±0.01	21.9±0.5	0.91±0.02	20.3±0.5	19.3±0.5	0.669±0.087	19.87±4.59 (0.0044±0.0004	2.00±0.46	0.391±0.033
720	27.0±0.5	0.50±0.01	21.9±0.5	0.91±0.02	20.3±0.5	19.2±0.5	0.658±0.087	19.28±4.45 (0.0044±0.0004	1.94±0.45	0.393±0.033
780	27.0±0.5	0.50±0.01	21.9±0.5	0.91±0.02	20.3±0.5	19.2±0.5	0.658±0.087	19.28±4.45 (0.0044±0.0004	1.94±0.45	0.393±0.033
840	27.0±0.5	0.50±0.01	21.9±0.5	0.91±0.02	20.2±0.5	19.2±0.5	0.658±0.087	19.28±4.45 (0.0044±0.0004	1.94±0.45	0.393±0.033
900	27.0±0.5	0.50±0.01	21.9±0.5	0.92±0.02	20.2±0.5	19.2±0.5	0.658±0.087	19.28±4.45 (0.0045±0.0003	1.94±0.45	0.408±0.032

G.3.1.4 Teste 4 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32°C e umidade relativa do ar de 30%.

Tabela 123 – Dados celulose para temperatura de bulbo seco de 32ºC e umidade relativa de 30%												
	tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
	60	31.9±0.5	0.30±0.01	22.8±0.5	0.83±0.02	20.0±0.5	18.8±0.4	0.696±0.050	20.83±2.79	0.0040±0.0002	2.06±0.28	0.346±0.019
	120	31.9±0.5	0.30±0.01	22.8±0.5	0.83±0.02	20.0±0.5	18.8±0.4	0.696±0.050	20.83±2.79	0.0040±0.0002	2.06±0.28	0.346±0.019
	180	32.0±0.5	0.30±0.01	22.8±0.5	0.83±0.02	20.0±0.5	18.9±0.4	0.702±0.049	21.18±2.84	0.0040±0.0002	2.10±0.28	0.345±0.019
	240	32.0±0.5	0.30±0.01	22.8±0.5	0.83±0.02	20.0±0.5	18.9±0.4	0.702±0.049	21.18±2.84	0.0040±0.0002	2.10±0.28	0.345±0.019
	300	32.1±0.5	0.29±0.01	22.8±0.5	0.83±0.02	20.0±0.5	18.7±0.4	0.695±0.048	20.74±2.71	0.0040±0.0002	2.05±0.27	0.348±0.018
	360	32.0±0.5	0.30±0.01	22.8±0.5	0.83±0.02	20.0±0.5	18.9±0.4	0.702±0.049	21.18±2.84	0.0040±0.0002	2.10±0.28	0.345±0.019
	420	32.1±0.5	0.30±0.01	22.8±0.5	0.83±0.02	20.0±0.5	19.0±0.4	0.708±0.049	21.53±2.89	0.0040±0.0002	2.13±0.29	0.344±0.019
	480	32.1±0.5	0.30±0.01	22.8±0.5	0.83±0.02	20.0±0.5	19.0±0.4	0.708±0.049	21.53±2.89	0.0040±0.0002	2.13±0.29	0.344±0.019
	540	32.1±0.5	0.29±0.01	22.8±0.5	0.83±0.02	20.0±0.5	18.7±0.4	0.695±0.048	20.74±2.71	0.0040±0.0002	2.05±0.27	0.348±0.018
	600	32.0±0.5	0.30±0.01	22.7±0.5	0.83±0.02	19.9±0.5	18.9±0.4	0.710±0.049	21.61±2.91	0.0039±0.0002	2.14±0.29	0.343±0.019
	660	31.9±0.5	0.30±0.01	22.7±0.5	0.83±0.02	19.9±0.5	18.8±0.4	0.704±0.050	21.26±2.86	0.0040±0.0002	2.11±0.28	0.344±0.019
	720	31.9±0.5	0.30±0.01	22.7±0.5	0.83±0.02	19.9±0.5	18.8±0.4	0.704±0.050	21.26±2.86	0.0040±0.0002	2.11±0.28	0.344±0.019
	780	31.9±0.5	0.30±0.01	22.7±0.5	0.83±0.02	20.0±0.5	18.8±0.4	0.704±0.050	21.26±2.86	0.0040±0.0002	2.11±0.28	0.344±0.019
	840	32.0±0.5	0.30±0.01	22.8±0.5	0.84±0.02	20.0±0.5	18.9±0.4	0.702±0.049	21.18±2.84	0.0041±0.0002	2.10±0.28	0.355±0.019
	900	32.0±0.5	0.30±0.01	22.8±0.5	0.83±0.02	20.0±0.5	18.9±0.4	0.702±0.049	21.18±2.84	0.0040±0.0002	2.10±0.28	0.345±0.019

G.3.1.5 Teste 5 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32ºC e umidade relativa do ar de 40%.

Tabela 124 – Dados celulose	para temperatu	ra de bulbo seco de 32	2°C e umidade relativa de 40%

tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	32.0±0.5	0.39±0.01	24.8±0.5	0.87±0.02	22.6±0.5	21.0±0.4	0.655±0.061	19.16±3.05	0.0044±0.0003	1.90±0.30 (0.385±0.027
120	32.0±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.5±0.5	21.2±0.4	0.678±0.062	20.40±3.35	0.0045±0.0003	2.02±0.33 0	0.390±0.028
180	32.0±0.5	0.39±0.01	24.7±0.5	0.87±0.02	22.5±0.5	21.0±0.4	0.664±0.061	19.62±3.14	0.0044±0.0003	1.94±0.31 (0.383±0.027
240	32.0±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.4±0.5	21.2±0.4	0.678±0.062	20.40±3.35	0.0045±0.0003	2.02±0.33 0	0.390±0.028
300	32.0±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.5±0.5	21.2±0.4	0.678±0.062	20.40±3.35	0.0045±0.0003	2.02±0.33 0	0.390±0.028
360	32.0±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.5±0.5	21.2±0.4	0.678±0.062	20.40±3.35	0.0045±0.0003	2.02±0.33 0	0.390±0.028
420	32.0±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.5±0.5	21.2±0.4	0.678±0.062	20.40±3.35	0.0045±0.0003	2.02±0.33 0	0.390±0.028
480	32.1±0.5	0.40±0.01	24.8±0.5	0.88±0.02	22.5±0.5	21.3±0.4	0.677±0.062	20.33±3.33	0.0045±0.0003	2.01±0.33 0	0.391±0.028
540	31.9±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.5±0.5	21.2±0.4	0.670±0.062	19.97±3.28	0.0045±0.0003	1.98±0.32 0	0.392±0.028
600	31.9±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.5±0.5	21.2±0.4	0.670±0.062	19.97±3.28	0.0045±0.0003	1.98±0.32 0	0.392±0.028
660	31.9±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.5±0.5	21.2±0.4	0.670±0.062	19.97±3.28	0.0045±0.0003	1.98±0.32 0	0.392±0.028
720	32.0±0.5	0.39±0.01	24.7±0.5	0.87±0.02	22.4±0.5	21.0±0.4	0.664±0.061	19.62±3.14	0.0044±0.0003	1.94±0.31 0	0.383±0.027
780	32.0±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.4±0.5	21.2±0.4	0.678±0.062	20.40±3.35	0.0045±0.0003	2.02±0.33 0	0.390±0.028
840	32.0±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.4±0.5	21.2±0.4	0.678±0.062	20.40±3.35	0.0045±0.0003	2.02±0.33 0	0.390±0.028
900	32.0±0.5	0.40±0.01	24.7±0.5	0.88±0.02	22.4±0.5	21.2±0.4	0.678±0.062	20.40±3.35	0.0045±0.0003	2.02±0.33 (0.390±0.028

G.3.1.6 Teste 6 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 32ºC e umidade relativa do ar de 50%.

Tabela 125 – Dados celulose para temperatura de bulbo seco de 32ºC e umidade relativa de 50%

tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	31.9±0.5	0.50±0.01	26.0±0.5	0.91±0.02	24.3±0.5	23.3±0.5	0.686±0.079	9 21.37±4.46 0	0.0048±0.0005	2.12±0.44	0.415±0.041
120	32.0±0.5	0.50±0.01	26.0±0.5	0.91±0.02	24.3±0.5	23.4±0.5	0.696±0.079	921.96±4.61 0	0.0047±0.0005	2.18±0.46	0.413±0.041
180	32.0±0.5	0.50±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.685±0.079)21.31±4.44 (0.0048±0.0005	2.11±0.44	0.417±0.041
240	32.0±0.5	0.50±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.685±0.079)21.31±4.44 (0.0048±0.0005	2.11±0.44	0.417±0.041
300	32.0±0.5	0.51±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.6±0.5	0.701±0.081	22.32±4.82 0	0.0047±0.0005	2.21±0.48	0.409±0.043
360	32.0±0.5	0.50±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.685±0.079	921.31±4.44 0	0.0048±0.0005	2.11±0.44	0.417±0.041
420	32.0±0.5	0.51±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.6±0.5	0.701±0.081	22.32±4.82 0	0.0047±0.0005	2.21±0.48	0.409±0.043
480	32.0±0.5	0.50±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.685±0.079	921.31±4.44 0	0.0048±0.0005	2.11±0.44	0.417±0.041
540	32.0±0.5	0.50±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.685±0.079	921.31±4.44 0	0.0048±0.0005	2.11±0.44	0.417±0.041
600	32.0±0.5	0.50±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.685±0.079)21.31±4.44 (0.0048±0.0005	2.11±0.44	0.417±0.041
660	32.0±0.5	0.50±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.685±0.079	921.31±4.44 0	0.0048±0.0005	2.11±0.44	0.417±0.041
720	32.0±0.5	0.51±0.01	26.1±0.5	0.91±0.02	24.4±0.5	23.6±0.5	0.701±0.081	22.32±4.82 0	0.0047±0.0005	2.21±0.48	0.409±0.043
780	32.0±0.5	0.50±0.01	26.0±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.696±0.079	921.96±4.61 0	0.0047±0.0005	2.18±0.46	0.413±0.041
840	32.0±0.5	0.50±0.01	26.0±0.5	0.91±0.02	24.4±0.5	23.4±0.5	0.696±0.079	921.96±4.61 0	0.0047±0.0005	2.18±0.46	0.413±0.041
900	31.9±0.5	0.50±0.01	26.0±0.5	0.91±0.02	24.3±0.5	23.3±0.5	0.686±0.079	9 21.37±4.46 0	0.0048±0.0005	2.12±0.44	0.415±0.041
G.3.1.7 Teste 7 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 30%.

		Tabela 12	26 – Dados	celulose pa	ra tempera	tura de bull	bo seco de 37	7°C e umidade	e relativa de 30%		
tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²ºC)	hm m/s	Nus (-)	Sh (-)
60	37.1±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.5±0.4	0.687±0.045	5 20.83±2.49	0.0045±0.0003	2.03±0.24	0.380 ± 0.023
120	37.1±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.5±0.4	0.687±0.045	5 20.83±2.49	0.0045±0.0003	2.03±0.24	0.380 ± 0.023
180	37.0±0.5	0.30±0.01	27.0±0.5	0.84±0.02	24.2±0.5	22.5±0.4	0.688±0.045	5 20.89±2.50	0.0045±0.0003	2.04±0.24	0.379 ± 0.023
240	37.0±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.5±0.4	0.681±0.045	5 20.52±2.45	0.0045±0.0003	2.00±0.24	0.381 ± 0.023
300	37.1±0.5	0.29±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.3±0.4	0.674±0.044	4 20.05±2.33	0.0046±0.0003	1.96±0.23	0.385 ± 0.022
360	37.1±0.5	0.29±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.3±0.4	0.674±0.044	4 20.05±2.33	0.0046±0.0003	1.96±0.23	0.385 ± 0.022
420	37.1±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.1±0.5	22.5±0.4	0.687±0.045	5 20.83±2.49	0.0045±0.0003	2.03±0.24	0.380 ± 0.023
480	37.0±0.5	0.31±0.01	27.1±0.5	0.85±0.02	24.2±0.5	22.8±0.4	0.695±0.046	5 21.33±2.62	0.0046±0.0003	2.08±0.26	0.387 ± 0.024
540	36.9±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.4±0.4	0.676±0.045	5 20.21±2.41	0.0045±0.0003	1.98±0.23	0.382 ± 0.023
600	36.9±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.4±0.4	0.676±0.045	5 20.21±2.41	0.0045±0.0003	1.98±0.23	0.382 ± 0.023
660	36.9±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.4±0.4	0.676±0.045	5 20.21±2.41	0.0045±0.0003	1.98±0.23	0.382±0.023
720	37.0±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.5±0.4	0.681±0.045	5 20.52±2.45	0.0045±0.0003	2.00±0.24	0.381 ± 0.023
780	37.1±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.5±0.4	0.687±0.045	5 20.83±2.49	0.0045±0.0003	2.03±0.24	0.380 ± 0.023
840	37.0±0.5	0.30±0.01	27.1±0.5	0.84±0.02	24.2±0.5	22.5±0.4	0.681±0.045	5 20.52±2.45	0.0045±0.0003	2.00±0.24	0.381±0.023
900	36.9±0.5	0.30±0.01	27.0±0.5	0.84±0.02	24.2±0.5	22.4±0.4	0.683±0.045	5 20.57±2.46	0.0045±0.0003	2.01±0.24	0.380 ± 0.023

G.3.1.8 Teste 8 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 40%.

Tabela 127 – Dados celulose	para temperatur	a de bulbo seco de	e 37°C e umidade relativa de 40%

tempo (s)	Te (°C)	Ure (%)	Ts (°C)	Urs (%)	Ta (°C)	Tbu (°C)	E (-)	hc (W/m²⁰C)	hm m/s	Nus (-)	Sh (-)
60	37.0±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.4±0.5	25.1±0.4	0.700±0.057	22.41±3.36	0.0049±0.0004	2.19±0.33 0).411±0.034
120	37.0±0.5	0.41±0.01	28.7±0.5	0.88±0.02	26.4±0.5	25.4±0.4	0.715±0.058	23.40±3.63	0.0048±0.0004	2.29±0.35 0	0.404±0.036
180	37.0±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.4±0.5	25.1±0.4	0.700±0.057	22.41±3.36	0.0049±0.0004	2.19±0.33 0).411±0.034
240	37.1±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.4±0.5	25.2±0.4	0.707±0.056	22.85±3.44	0.0049±0.0004	2.23±0.33 0).409±0.034
300	37.1±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.4±0.5	25.2±0.4	0.707±0.056	22.85±3.44	0.0049±0.0004	2.23±0.33 0).409±0.034
360	37.0±0.5	0.40±0.01	28.6±0.5	0.88±0.02	26.3±0.5	25.1±0.4	0.708±0.057	22.90±3.46	0.0049±0.0004	2.24±0.34 0).408±0.034
420	36.9±0.5	0.40±0.01	28.6±0.5	0.88±0.02	26.3±0.5	25.1±0.4	0.701±0.057	22.46±3.38	0.0049±0.0004	2.20±0.33 0).410±0.034
480	36.9±0.5	0.40±0.01	28.6±0.5	0.88±0.02	26.3±0.5	25.1±0.4	0.701±0.057	22.46±3.38	0.0049±0.0004	2.20±0.33 0).410±0.034
540	36.9±0.5	0.40±0.01	28.6±0.5	0.88±0.02	26.3±0.5	25.1±0.4	0.701±0.057	22.46±3.38	0.0049±0.0004	2.20±0.33 0).410±0.034
600	37.0±0.5	0.40±0.01	28.6±0.5	0.88±0.02	26.3±0.5	25.1±0.4	0.708±0.057	22.90±3.46	0.0049±0.0004	2.24±0.34 0	0.408±0.034
660	37.1±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.3±0.5	25.2±0.4	0.707±0.056	22.85±3.44	0.0049±0.0004	2.23±0.33 0).409±0.034
720	37.1±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.4±0.5	25.2±0.4	0.707±0.056	22.85±3.44	0.0049±0.0004	2.23±0.33 0).409±0.034
780	37.1±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.4±0.5	25.2±0.4	0.707±0.056	22.85±3.44	0.0049±0.0004	2.23±0.33 0).409±0.034
840	37.1±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.4±0.5	25.2±0.4	0.707±0.056	22.85±3.44	0.0049±0.0004	2.23±0.33 0).409±0.034
900	37.0±0.5	0.40±0.01	28.7±0.5	0.88±0.02	26.3±0.5	25.1±0.4	0.700±0.057	22.41±3.36	0.0049±0.0004	2.19±0.33 0).411±0.034

G.3.1.9 Teste 9 Celulose. Condições iniciais do ar de entrada: temperatura de bulbo seco de 37°C e umidade relativa do ar de 50%.

Tabela 128 – Dados celulose para temperatura de bulbo seco de 37ºC e umidade relativa de 50%

tempo	Те	Ure	Ts	Urs	Та	Tbu	E	hc	hm	Nus	Sh
(s)	(°C)	(%)	(°C)	(%)	(°C)	(°C)	(-)	(W/m²⁰C)	m/s	(-)	(-)
60	37.0±0.5	0.51±0.01	29.6±0.5	0.87±0.02	27.7±0.5	27.8±0.5	0.802±0.075	30.96±6.97	0.0035±0.0008	3.03±0.68	0.292±0.068
120	37.0±0.5	0.51±0.01	29.6±0.5	0.87±0.02	27.7±0.5	27.8±0.5	0.802±0.075	30.96±6.97	0.0035±0.0008	3.03±0.68	0.292±0.068
180	37.0±0.5	0.49±0.01	29.6±0.5	0.86±0.02	27.7±0.5	27.3±0.5	0.764±0.071	27.58±5.50	0.0036±0.0007	2.70±0.54	0.306±0.059
240	37.0±0.5	0.50±0.01	29.5±0.5	0.87±0.02	27.7±0.5	27.5±0.5	0.793±0.073	30.06±6.47	0.0036±0.0007	2.94±0.63	0.305±0.063
300	37.0±0.5	0.50±0.01	29.6±0.5	0.87±0.02	27.7±0.5	27.5±0.5	0.783±0.073	29.17±6.15	0.0037±0.0007	2.85±0.60	0.312±0.062
360	36.9±0.5	0.50±0.01	29.5±0.5	0.87±0.02	27.7±0.5	27.5±0.5	0.784±0.073	29.24±6.19	0.0037±0.0007	2.86±0.60	0.311±0.062
420	37.0±0.5	0.50±0.01	29.5±0.5	0.87±0.02	27.7±0.5	27.5±0.5	0.793±0.073	30.06±6.47	0.0036±0.0007	2.94±0.63	0.305±0.063
480	37.1±0.5	0.50±0.01	29.6±0.5	0.87±0.02	27.7±0.5	27.6±0.5	0.792±0.073	29.98±6.42	0.0036±0.0007	2.93±0.63	0.306±0.063
540	37.0±0.5	0.50±0.01	29.5±0.5	0.86±0.02	27.6±0.5	27.5±0.5	0.793±0.073	30.06±6.47	0.0033±0.0008	2.94±0.63	0.280±0.066
600	37.1±0.5	0.50±0.01	29.5±0.5	0.87±0.02	27.7±0.5	27.6±0.5	0.803±0.073	30.91±6.77	0.0036±0.0008	3.02±0.66	0.300±0.064
660	37.0±0.5	0.50±0.01	29.6±0.5	0.87±0.02	27.7±0.5	27.5±0.5	0.783±0.073	29.17±6.15	0.0037±0.0007	2.85±0.60	0.312±0.062
720	37.0±0.5	0.49±0.01	29.6±0.5	0.87±0.02	27.6±0.5	27.3±0.5	0.764±0.071	27.58±5.50	0.0039±0.0007	2.70±0.54	0.329±0.057
780	37.0±0.5	0.49±0.01	29.6±0.5	0.87±0.02	27.7±0.5	27.3±0.5	0.764±0.071	27.58±5.50	0.0039±0.0007	2.70±0.54	0.329±0.057
840	37.0±0.5	0.50±0.01	29.6±0.5	0.87±0.02	27.7±0.5	27.5±0.5	0.783±0.073	29.17±6.15	0.0037±0.0007	2.85±0.60	0.312±0.062
900	37.0±0.5	0.50±0.01	29.6±0.5	0.87±0.02	27.7±0.5	27.5±0.5	0.783±0.073	29.17±6.15	0.0037±0.0007	2.85±0.60	0.312±0.062

APÊNDICE H – CÓDIGO FONTE ARDUINO

Código fonte em linguagem de programação C da plataforma arduino modelo UNO para obter dados de temperatura e umidade dos sensores DHT 22 e DS18b20

Código H.1 – Código sensores DHT22

```
1 # i n c l u d e<OneWire . h>
 2 # i n c l u d e<DallasTemperature . h>
3 //#include<Wire.h> //Vem no Arduino
4 #include<Adafruit_Sensor.h>
                                           i
 6 // Defini o dos pinosde dados dos sensores
     # d e f i n e DHTPIN1 2
7
8
     #defineDHTPIN23
     # d e f i n e ONE_WIRE_BUrs 4
9
10
11 // DHT 22 (AM2302), AM2321
     # d e f i n e DHTTYPE DHT22
12
13
14 // Carrega as
                informa es so sensor DHT e DS18B20
   DHT dht_Ent_S1 ( DHTPIN1 , DHTTYPE) ;
15
    DHT dht Sai S2 (DHTPIN2, DHTTYPE);
16
17
     OneWire oneWire (ONE WIRE BUrs);
18
     DallasTemperature DS18b20(& oneWire );
19
20 // Inicializao contatodas medidas
21
    int contado¥0;
22
23 // Inicializadas vari veis iniciais
    float media_umid_Ent_S1 = 0.0;
24
25
     float media_umid_Sai_S2 = 0.0;
26
27
     float media Temp Ent S1 = 0.0;
28
     float media Temp Sai S2 = 0.0;
29
     f | o a t mediaAGUA = 0.0:
30
31
32
     float vector_umid_Ent_S1 = 0.0;
     float vector umid Sai S2 = 0.0;
33
34
     float vector_temp_Ent_S1 = 0.0;
35
     float vector_temp_Sai_S2 = 0.0;
36
     float vectorAGUA = 0.0;
37
38 // Tempo de espera em segundos en treas medio es.
39
       int DELAY = 5;
40
41 void setup()
42 {
43
     // Inicializa o da portaserial
       Serialbegin(9600);
44
45
46
     // Cabealho
47
       Serialprintln("INICIOMEDI ODE TEMPERATURA E UMIDADE");
       Serialprint("Tempoentreas medi es (s):");
48
49
       Serialprintln(DELAY);
50
       Serialprintln("AutorJo o MarcelloPereira([emailprotected]UnB,
           Laboratrio de energiae ambiente – LEA");
       Serialprintln("Verso: 16.0");
51
52
       Serialprintln("");
53
54
       SeriaJprintln("Tempo(s)) tt Contador\t ,\t Umi_Ent_S1\t ,\t Media_Umid_Ent_S1\t
           , \t Temp Ent S1 \t, \t Media Temp Ent S1 \t, \t Umi Sai S2 \t, \t
           Media_Umid_Sai_S2 \ t , \ t Temp_Sai_S2 \ t , \ t Media_Temp_Sai_S2 \ t , \ t
```

```
Dt Entrada Saida \ t , \ t Du Entrada saida
                                                      \t,\t TempAGUA\t,\t Media TempAGUA")
55
56
      // Inicializa o dos sensores
57
        dht_Ent_S1 . begin ();
58
        dht Sai S2.begin();
        DS18b20.begin();
59
60 }
61
62 void loop()
63 {
64
65
      // delayentreas medidas
66
        delay (DELAY *1000);
67
68
        DS18b20 . reqUrestTemperatures ();
69
70
      // Le as umidades em %
        float Ure1 = dht_Ent_S1.readHumidity();
 71
72
        f \mid o a t umid\_Ent\_S1 = 1.00027
                                     *Ure1 - 1.48108;
73
        float Urs2 = dht_Sai_S2.readHumidity();
74
75
        float umid Sai S2 = 0.98757
                                                 0.37027;
                                      ∗ Urs2
76
77
      // Leas temperaturasem CelsiUrs
78
        float Te1= dht_Ent_S1 . readTemperature ();
79
        f \mid o a t temp_Ent_S1 = 1.00605
                                     ∗Te1 - 0.15526;
80
        float Ts2 = dht_Sai_S2 . readTemperature ();
81
82
        float temp_Sai_S2 = 1.00395
                                      ∗Ts2
                                                0.14474;
83
84
        float Ta = DS18b20.getTempCByIndex(0);
        float tempAGUA = 0.99795 *Ta - 0.10416;
85
86
      // Testa conexo dos sensores
87
88
        if (is n a n (umid_Ent_S1) || is n a n (temp_Ent_S1))
89
        {
90
           Serialprintln ("FALHA AO LER SENSOR 1 ! EXAMINE AS CONEC ES");
91
          return;
92
        }
        elseif (isnan(umid Sai S2)|| isnan(temp Sai S2))
93
94
        {
95
          Serialprintln("FALHA AO LER SENSOR 2 ! EXAMINE AS CONEC ES ");
96
          return;
97
        }
98
99
        elseif (isnan (tempAGUA))
100
        {
          Serialprintln("FALHA AO LER SENSOR 3 ! EXAMINE AS CONEC ES");
101
102
          return;
103
        }
104
105
        else
106
        {
107
           // Incremento contador
108
            contador++;
109
          // Media temperatu eaumidade
110
111
             if ((contado% (60/DELAY)) != 0)
112
             {
               vector_umid_Ent_S1
                                     = vector_umid_Ent_S1
                                                             + umid_Ent_S1;
113
                                     = vector_umid_Sai_S2
               vector_umid_Sai_S2
114
                                                             + umid_Sai_S2;
115
                                                             + temp_Ent_S1 ;
116
               vector_temp_Ent_S1
                                     = vector_temp_Ent_S1
               vector temp Sai S2
                                     = vector temp Sai S2
                                                             + temp Sai S2;
117
118
119
               vectorAGUA = vectorAGUA + tempAGUA ;
120
            }
121
```

122 else 123 { 124 media_umid_Ent_S1 = (vector_umid_Ent_S1 + umid_Ent_S1) / (60/DELAY); 125 media_umid_Sai_S2 = (vector_umid_Sai_S2 + umid_Sai_S2) / (60/DELAY); 126 127 media_Temp_Ent_S1 = (vector_temp_Ent_S1 + temp_Ent_S1) / (60/DELAY); (vector_temp_Sai_S2 + temp_Sai_S2) 128 media_Temp_Sai_S2 = / (60/DELAY); 129 mediaAGUA = (vectorAGUA + tempAGUA) / (60/DELAY); 130 131 132 vector umid Ent S1 = 0; vector umid Sai S2 = 0; 133 vector_temp_Ent_S1 = 0; 134 135 vector temp Sai S2 = 0; 136 vectorAGUA = 0; 137 } 138 139 140 // Apresenta o dos dados 141 // Tempo em segundos 142 Serialprint((contad*DELAY),1); 143 Serialprint("\t\t,\t"); 144 145 Serialprint(contador); 146 Serialprint("\t\t,\t"); 147 148 // SENSOR 1 // Umidade 149 150 Serialprint(umid_Ent_S1, 0); 151 Serialprint("\t\t,\t"); 152 153 // Media umidade Serialprint(media_umid_Ent_S1, 0); 154 Serialprint("\t\t\t,\t"); 155 156 157 // Temperatura Serialprint(temp_Ent_S1, 1); 158 159 Serialprint("\t\t,\t"); 160 // Media Temperatura 161 Serialprint(media_Temp_Ent_S1, 1); 162 163 Serialprint("\t\t\t,\t"); 164 // SENSOR 2 165 166 // Umidade 167 Serialprint(umid_Sai_S2, 0); Serialprint("\t\t,\t"); 168 169 170 // Media umidade 171 Serialprint(media_umid_Sai_S2, 0); 172 Serialprint("\t\t\t,\t"); 173 174 // Temperatura 175 Serialprint(temp_Sai_S2, 1); 176 Serialprint("\t\t,\t"); 177 178 // Media Temperatura Serialprint(media_Temp_Sai_S2, 1); 179 180 Serialprint("\t\t\t,\t"); 181 // RESULTADOS 182 // "Diferena de temperatur(aEnt - Sai) 183 Serialprint(media_Temp_Sai_S2 - media_Temp_Ent_S1, 1); 184 Serialprint("\t\t\t,\t"); 185 186 187 // Diferena deumidade (Ent - Sai): 188 SeriaJprint(media_umid_Sai_S2 - media_umid_Ent_S1, 0); Serialprint("\t\t\t,\t"); 189

190 191 192 193 194	<pre>// SENSOR DS18B2 // Temperatua da agua Serialprint(tempAGUA,1); Serialprint("\t\t,\t");</pre>
195 196 197 198	<pre>// Media Temperatura Serialprint(mediaAGUA,1); Serialprintln("");</pre>
199 200 201 202 }	}

APÊNDICE I – SCRIPT EES

Código I.1 – Script EES

" DADOS DE ENTRADA E SAÍDA DE TEMPERATURA, UMIDADE, TEMP ÁGUA" Te =27[C] " Temperatura de entrada" " Temperatura de saída" Ts = 19,9[C]URe = 0, 3" Umidade relativa de entrada" Urs = 0,85Tagua = 20[C]Patm = 89726[Pa]" Pressão atmosférica local Lea, Brasília 1042m" "DADOS PAINEL" "Aumida = $6[m^2]$ " " Área molhada do painel" " Perda de carga do painel" DP = 4,5[Pa]Vpainel=0,0163 [m^3] " Volume do Painel" " Comprimento do Painel" ll=0,15 [m] le=Vpainel/Aumida " Comprimento carcterístico" "DADOS VENTILADOR" PVent = 85,315506[Pa] " Pressão ventilador centrífugo" Aduto = $0, 09 [m^2]$ " Área secão reta do duto de ar" " Pressão total" P1 = Patm + Pvent " Pressão painel" P2 = P1 - DP" Vazão de ar" $Q = 0, 10032 [m^3/s]$ " Velocidade do ar" Var = Q/Aduto da_s = Density(Air;T=Te;P=P1) " Densidade do ar seco" " Calor específico à pressão constante" Cpa = Cp(Air;T=Te) $ma = da_s Q$ " Massa de ar" "DADOS DE TEMP BULBO UMIDO, UMIDADE ABSOLUTA, ENTALPIA" Tbu = WetBulb(AirH2O;T=Te;r=URe;P=P1 " Temperatura de bubo úmido" " Máxima redução de temperatura por evaporação" DTwb = (Te - Tbu) w1 =HumRat(AirH2O;T=Te;r=URe;P=P1)
w2 = HumRat(AirH2O;T=Ts;r=URs;P=P2)
hg1 = Enthalpy(AirH2O;T=Te;r=1;P=P1)
hg2 =Enthalpy(AirH2O;T=Ts;r=1;P=P2)
hg2 = Enthalpy(AirH2O;T=Ts;r=1;P=P2)
hg2 = Enthalpy(AirH2O;T=Ts;r=1;P=P2)
hg3 = Enthalpy(AirH2O;T=Ts;r=1;P=P2)
hg3 = Enthalpy(AirH2O;T=Ts;r=1;P=P2)
hg3 = Enthalpy(AirH2O;T=Ts;r=1;P=P2)
hg4 = Enth hgwb = Enthalpy(AirH2O;T=Tbu;r=1;P=P1 " Entalpia do vapor d'água saturado na temp. de bulbo úmido" "DADOS DE EFETIVIDADE, CALOR E HC" E = DT/DTwb " Efetividade de resfriamento" qH = ma*Cpa *(Te - Ts) + ma* (w1*(hg1 - hgwb - w2*(hg2 - hgwb))) " Taxa de transferência de calor" hc = (ln(1-E)*qH)/(Aumida*(Ts- Te)) " Coeficiente de transferência de calor" "DADOS DE VISCOSIDADE, CONDUTIVIDADE, DIFUSIBILIDADE, DIFUSÃO, MASSA EVAPORADA, DENSIDADE " Viscosidade do ar" mu=Viscosity(Air;T=Te) " Condutividade térmica do ar" k=Conductivity(Air;T=Te) " Difusividade térmica da ar" alpha=ThermalDiffusivity(Air;T=Te;P=P1) " Viscosidade cinemática do ar" nu=mu/da s D=1,87e-10*ConvertTemp(C;K;Te)^2,072/(P1/101325) " Coeficiente de difusão de massa"

<pre>me=ma*(w2-w1) dv1=Density(AirH2O;T=Te;w=w1;P=P1) dv2=Density(AirH2O;T=Ts;w=w2;P=P2) dvwb=Density(AirH2O;T=Tbu;r=1;P=P1)</pre>	" Massa evaporada" " Densidade do vapor d´água na entrada" " Densidade do vapor d´água na entrada" " Densidade do vapor d´água saturado"
"DADOS DE	E MLDM, HM"
MLDM=(dv2-dv1)/ln((dv2-dvwb)/(dv1-dvwb)) específica"	" Média logartimica da diferença de massa
hM=-(me/Aumida)*(1/MLDM)	" Coeficiente de transferência de massa"
"DADOS NUMEROS	S ADMENSIONAIS"
Re=Var*le/nu	" Número de Reynolds"
Pr=nu/alpha	" Número de Prandtl"
Sc=nu/D	" Número de Schmidt"
Nus=hc*le/k	" Número de Nusselt"
Sh=hM*le/D	" Número de Sherwood"
"Propriedades do ar r	na temperatura da água"
Cpa_s = Cp(Air;T=Tagua)	" Calor específico à pressão constante"
da_ss = Density(Air;T=Tagua;P=P1)	" Densidade do ar seco"
mu_s=Viscosity(Air;T=Tagua)	" Viscosidade do ar"
k_s=Conductivity(Air;T=Tagua)	" Condutividade térmica do ar"
alpha_s=k_s/(da_ss*Cpa_s)	" Difusividade térmica da ar"
nu_s=mu_s/da_ss	" Viscosidade cinemática do ar"
<pre>D_s=1,87e-10*ConvertTemp(C;K;Tagua)^2,072/(B</pre>	P1/101325)
Pr_s=nu_s/alpha_s	" Número de Prandtl"
Sc_s=nu_s/D_s	" Número de Schmidt"

Anexos

ANEXO A – TABELA DE REDUÇÃO DE TEMPERATURA (BASENGE)

Terro	UR	Tam	Returks	Tamo	UR	Tem	Reticto	Tamo	UR	Tamp	Retato	Temp	UR	Temperatura	Red
Externa	Externa	Resultante	Temp.	Externa	Externa	Resultante	Temp.	Edema	Externa	Resultance	Temp.	Externa	Externa	Resultante	Te
	20%	12.5	9,5		20%	17	11		20%	21	13		20%	25	1
	25%	13	9	1	25%	17.5	10.5	1	25%	22	12	1	25%	26,5	1
	30%	14	8	1	30%	18.5	9.5	1	30%	23	11		30%	28	
22°C	35%	145	75	1	35%	10,0	0		35%	24	10	1	35%	29	
	40.00	14,5	7	1	400	20		34°C	40%	24	0		40%	30	
	40%	15	1	-	40%	20	0		40%	25		1000	40%	30	-
	45%	15,5	6,5	28 - C	45%	21	1		45%	26	0	400	4370	31	-
	50%	16,5	5,5		50%	21,5	6,5		50%	27	7		50%	32	
	55%	17	5		55%	22,5	5,5		55%	28	6		55%	33	
	60%	18	4		60%	23	5	1	60%	28,5	5,5		60%	34	
	65%	18.5	3.5		65%	24	4	1	65%	29	5	1	65%	35	
	70%	10	3		70%	24.5	35	1	70%	30	4	1	70%	35.5	
	70%	10 5	26		75.04	24,5	3,5		750	24	2		75%	00,0	-
-	1070	19,5	6,5	-	1370	20		-	1376	31	125	-	2004	-	
	20%	13	10		20%	17,5	11,5		20%	21,5	13,5		20%	20	-
	25%	14	9		25%	18,5	10,5		25%	22,5	12,5		25%	27,5	1
	30%	15	8		30%	19,5	9,5		30%	24	11		30%	28,5	1
	35%	15,5	4 3,5 3 2,5 10 9 8 7,5 5,5 5,5 5,5 6 4,5 4,5 4,5 4,5 8,5 8,5 8,5 8,5 8,5 6 5 4,5 6 5 4,5 9,5 8,5 6 5 4,5 9,5 8,5 7 7 6,5 5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	35%	20	9	1	35%	25	10		35%	30	
	40%	16	7	1	40%	21	8	1	40%	25.5	9.5	1	40%	31	
23°C	4594	16.5	65	2990	45%	22	7	35%	45%	27	A	41%	45%	32	
	5000	10,0	5.5		50%	22.5		1	504	28	7	1	50%	33	-
	50%	11,5	5,5		00%	22,0	0,0		00%	20	-		SC N	33	-
	55%	18	5		35%	23,5	5,5		33%	28,5	0,5		0000	34	-
	60%	18,5	4,5		60%	24	5		60%	29,5	5,5		60%	35	-
	65%	19	4		65%	24,5	4,5		65%	30	5		65%	36	
	70%	20	3		70%	25,5	3,5		70%	31	4		70%		
	75%	20.5	2.5		75%	26	3	1 1	75%	31.5	3.5		75%		
-	20%	19.5	10.5		20%	18	12		20%	22.5	13.5		20%	26.5	1
	2076	13,8	10,5		2070	10	14		2070	22,5	10,0		2010	20,0	-
	25%	14,5	8,5		25%	19	11		25%	23,5	12,5		2076	20	-
	30%	15,5	8,5		30%	20	10		30%	24,5	11,5		30%	29	
	35%	16	6 8		35%	21	9		35%	25,5	10,5		35%	30,5	1
	40%	17	7		40%	22	8		40%	26,5	9,5		40%	31,5	1
24°C	45%	17.5	65	30~C	45%	22.5	7.5	36°C	45%	27.5	8.5	42°C	45%	33	
	6094	18	E		50%	23.5	85		50%	28.5	75		50%	34	
50% 55% 60%	50 %	10	0		SU N	20,0	0,0	1 1	50 10	20,5	85		EEN	36	
	55%	19	5		55%	24	0		00%	29,5	0,5		00%	35	-
	60%	19,5	4,5		60%	25	5		60%	30,5	5,5		00%	30	-
	65%	20	4		65%	25,5	4,5		65%	31	5		65%		-
	70%	20,5	3,5		70%	26,5	3,5		70%	32	4		70%		
	75%	21	3		75%	27	3		75%	32,5	3,5		75%	-	
_	20%	14.5	10.5		20%	19	12		20%	23	14		20%	27.5	1
	254	15.5	0.5		25%	20	44		25%	24	13		25%	29	
	2070	15,5	9,0		20%	20	10		2010	25.5	14.5		20%	20	
	30%	10	8		30%	21	10		30%	25,5	11,5	43°C	30 10	30	
	35%	17	8		35%	21,5	9,5		35%	26,5	10,5		35%	31	
	40%	18	7		40%	22,5	8,5		40%	27,5	9,5		40%	32,5	1
25°C	45%	18,5	6,5	31%	45%	23,5	7,5	37°C	45%	28,5	8,5		45%	33,5	5
	50%	19	6	1	50%	24.5	6.5	1	50%	29,5	7,5		50%	34,5	2
. 1	55%	20	5		55%	25	6		55%	30	7		55%	35.5	1
	60%	20.5	45		80%	26			80%	31	6		60%	36.5	1
	00%	20,5	6,9		OU %	20	0		0076	31	0		een	30,5	-
	65%	21	4		65%	26,5	4,5		65%	32	5		0,00		-
	70%	21,5	3,5		70%	27	4		70%	33	4		10%		-
	75%	22	3		75%	28	3		75%	33,5	3,5		75%	•	
	20%	15.5	10.5		20%	19.5	12,5		20%	24	14		20%	28	
	25%	16	10		25%	20.5	11.5		25%	25	13		25%	29.5	1
	300	47	0		30%	21.5	10.5		30%	26	12		30%	31	
	30%	17			369	20.5	0.5		35.04	20	14		35.0	32	-
	30%	10	0		3370	44,3	9,9		3370	21	0.5		400	32 6	-
100	40%	19	1	and the	40%	23,5	8,5		40%	28,5	9,5	1100	40%	33,5	
26°C	45%	19,5	6,5	32°C	45%	24	8	38°C	45%	29,5	8,5	44%	45%	34,5	1
	50%	20	6		50%	25	7		50%	30,5	7,5		50%	35,5	11
	55%	21	5		55%	26	6		55%	31	7		55%	36,5	1
	60%	21.5	45		60%	27	5		60%	32	6		60%		
	859	22	1		65%	27.6	45		REW	33	5		65%		
	00076	44	4		704	21,0	4,0		701	33			70%	-	-
	10%	22,5	3,5		70%	28	4		10%	34	4		70%		-
	75%	23	3		75%	29	3		75%	34,5	3,5		15%	•	-
	20%	16	11		20%	20,5	12,5		20%	24,5	14,5		20%	29	
	25%	17	10		25%	21.5	11.5		25%	26	13		25%	30	
	30%	17.5	9.5		30%	22.5	10.5		30%	27	12		30%	31.5	1
	30%	10.5	8,5	1.1.1	350	0.33	10,0		35.04	28	11	1	35%	33	
	30%	10,5	0,0		3076	23	10		1000	20	10		400	34	
	40%	19	8		40%	24	9		40%	29	10	4000	40%	34	-
27°C	45%	20	7	33°C	45%	25	8	39°C	45%	30	9	45°C	45%	35,5	1 5
	50%	21	6		50%	26	7		50%	31	8		50%	36,5	1
	55%	22	5		55%	27	6		55%	32	7		55%	-	
	60%	22.5	4.5		60%	28	5		60%	33	6		60%		
60	10.14	0.0			65%	28.5	45		65%	34	5		65%		-
	65%	73				£ 10 · · ·			and the second s				Ww 20	-	

Quadro 2 - Quadro redução de temperatura dados BASENGE®

ANEXO B – CERTIFICADO DE CALIBRAÇÃO DOS SENSORES

ANEXO C – CERTIFICADO DE CALIBRAÇÃO DO MANÔMETRO

ANEXO D – CERTIFICADO DE CALIBRAÇÃO DO ANEMÔMETRO