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Resumo

Os sistemas passivos de dissipação de energia abrangem uma variedade de materiais
e dispositivos para melhorar o amortecimento de estruturas. Entre os atuais sistemas de
dissipação de energia passiva, o amortecedor de coluna de líquido sintonizado (TLCD),
uma classe de controle passivo que utiliza líquido em um reservatório de forma “U”, tem
sido amplamente pesquisado em diversas aplicações. O principal objetivo desta dissertação
é desenvolver técnicas de análise numéricas e experimentais para um TLCD com aplicação
em turbinas eólicas submetido a cargas de vento aleatório.

A análise numérica está dividida em duas etapas. A primeira etapa considera o
modelo determinístico da turbina e TLCD. Um algoritmo de otimização é utilizado para
encontrar parâmetros ótimos do TLCD submetido a espectros de vento aleatório. Em
seguida, um exemplo numérico com um modelo de turbina eólica simplificado é estudado
para ilustrar a eficácia do TLCD e é mostrado que diferentes espectros de vento podem
afetar significativamente os resultados de otimização, isto é, os parâmetros do TLCD. Os
resultados no tempo e frequência da análise de vibração aleatória mostram uma redução
satisfatória dos níveis de vibração de resposta.

Na segunda etapa, considera-se o modelo não determinista com objetivo de quantifi-
car incertezas nos parâmetros do TLCD e da estrutura. A função de resposta em frequência
do sistema com TLCD é investigada considerando dois casos de incerteza de parâmetros.
Para o primeiro caso, os resultados mostraram que a incerteza só é predominante perto
da região de ressonância e antirressonância e pode interferir na condição ideal do TLCD.
Para o segundo caso, as incertezas estão presentes em todas a faixa de frequência.

Finalmente, uma análise experimental é realizada. A caracterização dos parâmetros
modais do TLCD e da estrutura é realizada e os resultados numéricos e teóricos se
mostram em boa concordância. Em seguida, A resposta do sistema acoplado é investigada.
Os resultados mostram que o efeito da massa adicional é o predominante. Embora o efeito
do TLCD tenha sido pequeno, ele apresenta uma redução de vibração próximo a sua
frequência natural.

Palavras-chaves: vibração aleatória, análise estocástica, otimização, quantificação
de incertezas
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Abstract

Passive energy dissipation systems encompass a range of materials and devices for
enhancing damping. Among the current passive energy dissipation systems, tuned liquid
column damper (TLCD), a class of passive control that utilizes liquid in a “U” shape
reservoir to control structural vibration of the primary system, has been widely researched
in a variety of applications. The main objective of this thesis is to develop numerical and
experimental analysis techniques for a liquid column damper subjected to random wind
loads with particular application in wind turbines.

The numerical analysis in this thesis is divided in two stages. The first stage consider
the deterministic model of the wind turbine and TLCD. An optimization approach is
used to search for optimized parameters considering different wind spectrums. Then, a
numerical example with a simplified wind turbine model is given to illustrate the efficacy of
TLCD and it is shown that different wind spectra can significantly affect the optimization
results, i.e. the TLCD parameters. Time and frequency domain results from the random
vibration analysis are shown with satisfactory reduction of the response vibration levels.

In the second stage, nondeterministic model is studied with goal to quantify
uncertainties in the damper and structure parameters. The frequency response function is
investigated considering two cases of parameter uncertainty. The results showed that, for
the former, the uncertainty is only predominant near the resonance and anti-resonance
region and can indeed interfere in the optimum condition of the absorber. For the latter,
the uncertainties are presented in frequency range.

Finally, an experimental characterization of the TLCD and structure is carried out.
The characterization of the modal parameters of the TLCD and the structure is performed
and the numerical and theoretical results that show good agreement. Then, the response
of the coupled system is investigated. Results showed that the effect of added mass is
predominant. While the effects of TLCD were minimal, it showed a vibration reduction
which validated the correctly tuned TLCD near its natural frequency.

Key-words: random vibration, stochastic analysis, optimization, uncertainty quantifica-
tion
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1 Introduction

The current Brazilian energy scenario is undergoing impactful changes. There
is a clear need to adjust the current energy sector that presents an imbalance. Brazil
depends almost exclusively on hydroelectric power. According to data released by PNE
2030 (National Energy Plan), most of the energy produced in the country comes from
hydroelectric plants. By the year 2030, it is expected that hydroelectric plants will have a
share of 77.4 % of the energy matrix (Pottmaier et al., 2013).

Despite all the benefits of the hydroelectric plants, there are uncertainties about
their future supply. Major projects such as S. Luiz do Tapajós and Belo Monte have
faced serious socio-environmental conflicts such as the transposition of rivers, impacts on
the fauna and conflicts with local communities. Another critical aspect of hydroelectric
plants is the existence of a great dependence on the climatic conditions and the location
of this energy, found primarily in the Amazon region. Moreover, recent examples of poor
management of water levels in reservoirs led to the reactivation of thermoelectric plants
that generate environmental and economic damages.

Since there is a need to diversify the Brazilian energy matrix, other energy sources
that are efficient and renewable are sought. Among the possible options that stand out,
wind and solar energy are becoming good options due to good geographical and economic
conditions (Jong et al., 2013).

The increasing height of wind turbine increases the need of new methods to ensure
structural reliability. Wind turbines are structures that convert the mechanical movement
generated by the force of the winds into electric energy. The wind reaches the rotor blades
that transfer the rotational motion to an electric generator responsible for producing
electricity.

During the design phase, wind turbines must meet a wind speed that produces the
maximum output power. Occasionally, the wind forces can be dangerously high which
forces the control system to limit the movement of the blades in order to avoid overloading
of the rotor, the gearbox and the generator. Usually, wind turbines have angular control
systems in the turbines and brakes that maintain integrity and prevent excessive vibration
of the towers. These systems are useful because they regulate rotor speed based on wind
speed under certain operating conditions. Generally, wind turbines have small damping
values compared to other structures. The damping ratio resulting from aerodynamic
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damping corresponds to 1-2 % (Altay et al., 2014).

Concerns over the integrity of wind turbines throughout the years have become
a key point during design phase. The advance of the technology in wind turbines have
caused an increase in its size and efficiency. In this way, challenges arise to avoid excessive
vibration of both propellers and towers. Higher and more slender structures also raise
concerns over their integrity and longevity.

The dynamic behavior of wind turbines has led to several technical studies in recent
years. The reduction of vibration, with the purpose of increasing its lifespan, motivates
the use of several passive or semi-active vibration control techniques. Among the various
vibration control proposals, tuned liquid column dampers (TLCDs) have been considered
in several publications in recent years and have become a feasible option with relative low
cost and good efficiency.

Analyzing the dynamic response in the frequency domain has proven to be a
feasible initial approach of understanding the wind turbine behavior. Design optimization
can be carried out rapidly in the frequency domain to increase the damper efficiency.
A more rigorous analysis can be carried out after the initial parameter optimization in
the frequency domain is completed. This approach increase qualitative and quantitative
understanding and can lead to reduced design costs and better optimized schemes.

Some of the questions we hope to address in this thesis are:

∙ To what extent will the vibration suppression take place with the added damper?

∙ Is the simplified model of wind turbine acceptable? Why?

∙ How much can the vibration suppression be improved from optimized parameters?

∙ How much variability the TLCD’s parameters have? How does it influence the turbine
performance?

∙ How the model and dynamic response of the structure compare with experimental
data?

1.1 The objectives of the study

The main objective of the study is to develop numerical and experimental techniques
to investigate the behavior of a liquid column damper subjected to random wind loads with
particular application in wind turbines. For this reason, we have the following secondary
objectives:

∙ a numerical analysis considering the deterministic model of the wind turbine and
TLCD with goal of controlling the structure for small displacement without consi-
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dering the rotational inertia from the blades. An optimization approach is adopted
which allows the search of optimized parameter considering different wind spectrums.

∙ a numerical analysis considering the nondeterministic model with goal of quantifying
uncertainties in the TLCD’s damper and structure stiffness.

∙ an experimental phase is carried out with goal of characterization of the TLCD and
structure and then compare it with numerical result.

1.2 Organization of the Thesis

This thesis is organized as follows.

Chapter 1 presents the introduction and objectives.

Chapter 2 presents some of the main structural control techniques in suppressing
vibration of structures. First, the state of the art of structural control is presented. Then,
the relevant types of control systems are discussed. Emphasis will be given to passive
controls and more specifically on the tuned liquid absorbers and their use in wind turbines
which is the subject of this work. A literature review is presented considering the use of
absorbers in several applications and their development in recent years.

Chapter 3 presents a review on fundamental concepts of random vibration and
probability theory. The aim is to review the key principles of the probability theory and
thus facilitate its application to solve problems in random vibration.

Chapter 4 deals with the effects of the probabilistic aspect of wind in low atmospheric
layers on flexible structures. The problems is confined to along-wind response of structures.
Moreover, cross-wind response or aero-elastic coupled problems are left out of discussion.
The idea is to discuss some general notions, which should cast some light on the complexity
of the phenomenon.

Chapter 5 discusses how winds influence the dynamic behavior of the structure
and how to optimize the TLCD with respect to different wind spectrums. It is therefore of
interest to study how a simplified dynamic model could estimate the structural response.
The simplified model has to be reduced to the elementary coordinates but still have to
describe the relevant physical process under consideration with good accuracy. Such a
simplified model can be used as an early design of new wind turbines. This work focus on
the structural dynamic aspect of structures such as lattice towers with concentrated mass
at the top, hence, the model does not include the gyroscopic effects due to turbine blade
rotation.

In Chapter 6 we propose the use of a optimization algorithm for the TLCD’s
parameters subjected to an arbitrary wind spectra, given by its power spectral density
(PSD). A simple verification is made considering the analytical solution of undamped
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primary structure under white noise excitation. Finally, a numerical example with a
simplified wind turbine model is given to illustrate the efficacy of TLCD. Time and
frequency domain results from the random vibration analysis are also shown.

In Chapter 7, parametric uncertainties in a TLCD applied in wind turbines are
investigated. The assumption that uncertainties in structures have negligible response can
be unacceptable in real situations and, beside that, uncertainties in the performance-related
cannot be included in the damper parameter optimization. For this reason, to increase
the credibility of the model, these uncertainties are included to help describe the range
of potential outputs of the system at some probability level and estimate the relative
impacts of input variable uncertainties. Two different cases are studied, the first one we
only consider uncertainties in the absorber damping ratio and, in the second case, we
consider both uncertainties in the absorber damping ratio and the structural stiffness.

Finally, in Chapter 8, an experimental setup built in the Vibration Laboratory of
the Dynamic Systems Group (GDS) is proposed. An experimental procedure is carried out
to characterize the modal parameters of the TLCD and structure. Finally, the response of
the coupled system is investigated.
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2 Structural Control

Structural control can be an important part of designing new structure and retrofit-
ting existing ones. Design for strength alone does not necessarily ensure that the structure
will respond well dynamically. It was during the Second World War that concepts such as
vibration isolation, vibration absorption and vibration damping were developed and effec-
tively applied to aircraft structures. The technology quickly moved into civil engineering.
Similar to the general controls literature, the structure control tends to represent diverse
interests and viewpoints, though all share common goal: the protection of buildings and
the people around them.

This chapter presents some of the main structural control techniques in suppressing
vibration of structures. First, a brief introduction is presented. Then, the relevant types
of control systems are discussed. Emphasis will be given to passive controls and more
specifically on the tuned liquid absorbers and their use in wind turbines, which is the
subject of this work. A brief bibliographic review is made about the use of absorbers in
several applications and their development in recent years.

2.1 Introduction

The need to build larger and more complex structures has created challenges for
engineers who have to deal with unwanted vibrations and at the same time maintain
safe constructions. For this reason, vibration absorption methods are used extensively.
Engineers from various parts of the world have been using vibration control methods in
recent decades mainly in the following areas:

∙ tall and slender structures (bridges, chimneys, towers) that tend to be dangerously
excited by the wind in one or more of its natural modes;

∙ stairs and walkways subject to the resonance due to the movement of pedestrians.
These vibrations are generally not dangerous to the structure itself, but can become
very unpleasant to people;

∙ metal structures that vibrate at a harmonic frequencies by the action of machines,
such as sieves, centrifuges, fans, etc;
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∙ decks and boats excited in one of their natural modes by the main engines, equipment
embarked or even by the rhythm of the waves.

In recent years, innovations that enhance the functionality and security of structures
against natural and human disasters are at various stages of research and development.
Globally, they can be grouped into three areas, passive control, active control, and semi-
active or hybrid control.

Due to economic reasons, it is acceptable that structures suffer damage as long as
there is no collapse and its useful life is preserved. However, when the structure function
is compromised no damage is allowed. In this case, over large or continuous loads the
structures should be able to absorb and dissipate energy in a stable manner for several
cycles without damage being caused to it and being sufficiently strong to avoid or minimize
inelastic actions.

For instance, during a seismic event or in the presence of strong winds, a finite
amount of energy is added to the structure. This energy is transformed into both kinetic
and potential energy (deformation) that must be absorbed or dissipated by heat. If there
is no damping, the structure will vibrate indefinitely. However, there is always a level of
damping inherent in the structure that dissipates part of the energy and therefore reduces
the amplitude of vibration until the motion ceases. The performance of the structure is
improved if part of the energy can be absorbed, not only by the structure, but by some
type of complementary device (Constantinou et al., 1998).

Structural control is a technique commonly used by civil and mechanical engineers
that involves a dissipation or energy absorption device. Among the types of structural
control, the dynamic absorbers have applications restricted to elastic structures. Dynamic
absorbers are oscillatory systems that when attached to the structure and properly tuned
in frequency close to a vibration mode or a harmonic excitation, a transfer of kinetic
energy from the primary structure to the absorber occurs. Dynamic absorbers can have
various forms, namely, tuned mass dampers (TMD), tuned liquid damper (TLD), tuned
liquid column dampers (TLCD), or any combination of these devices each tuned to a
specific frequency (Hartog, 1985).

A passive control strategy consist of motion control forces at the system fixation
points. It does not require an external power source, the energy required to generate these
forces comes from the movements of the attachment points during dynamic excitation. The
relative displacement of these attachment points determines the amplitude and direction
of the control forces.

Active control also develops motion control forces. However, the magnitude and
direction of these forces is determined by a controller based on sensor information and a
control strategy (algorithm) as shown in Figure 2.1. The active control uses some kind of
external power source proportional to the magnitude of the vibrating body excitation to
perform its function. A command produced by the signal processor informs the actuator
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of the amount of displacement or force proportional to the signal to be executed in order
to control the displacement and keep the system in a constant and controlled state. The
feedback signal can be obtained in a number of ways based on distance, displacement,
speed, acceleration, force, among others. An active control system, in principle, has a
better and more versatile control response.

Excitation ResponseStructure

Active control

sensor

power source

control algorithm

actuator

Figure 2.1 – Diagram of an active control system (Constantinou et al., 1998).

A hybrid control originates from passive controls that have undergone modification
to allow adjustments in their mechanical properties. Hence, it implies the combination
of an active and passive control in which it provides the reliability of passive devices,
yet maintaining the versatility of fully active systems without requiring the large power
source (Saaed et al., 2015). The mechanical properties of semi-active control systems can
be represented similarly to the elements depicted in Figure 2.1. However, the control forces
are developed through the movements of the attachment points of the semi-active device.
Semi-active control systems require power source to adjust the mechanical properties of the
system. In general, energy demand is low compared to active control systems. For instance,
a system can be equipped with distributed viscoelastic damping and supplemented with
an active mass damper near the top of the structure.

This work focus on passive control techniques. For this reason a more detail
description of this approach, the reason why it was chosen and examples of application
are given next.

2.2 Passive control

Passive structural control covers a range of materials and devices to increase
damping and can be used for both natural disaster mitigation and rehabilitation of old or
damaged structures. These devices are characterized by their ability to increase energy
dissipation of the structure. This effect can be obtained by converting kinetic energy
to heat, or by transferring energy between vibration modes (Soong & Dargush, 1997).
Structural control includes equipment that operates based on the principles of friction,
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yielding of metals, phase transformation, deformation of viscoelastic solids or fluids and
fluid orificing that acts as an absorber or supplementary dynamic vibration absorber.
Table 2.1 summarizes the classification of these devices.

Passive control is the simplest type of control system since it does not require any
external power source or a control algorithm in form of actuators. The energy in passively
controlled structural systems are developed in response to the displacement of the main
structure in dynamic excitation as shown in Figure 2.2. They are optimally tuned to
protect the structure from a specific dynamic loading, but their efficiency will not be
the optimal for other types of dynamic loading. Next, we focus our discussion solely on
dynamic vibration absorber, which are the main subject of this thesis.

Excitation ResponseStructure

Passive control

Figure 2.2 – Diagram of a passive control system (Constantinou et al., 1998).

2.2.1 Tuned mass damper (TMD)

Tuned mass damper had its first appearance in patents of Frahm (1911), and was
extensively studied by Hartog (1985). The scheme shown in Figure 2.3 is known as Frahm’s
Absorber. The device consists of a small mass 𝑚 and a spring with rigidity 𝑘 fixed to the
main mass 𝑀 that has rigidity 𝐾. Considering the simplest case of harmonic loading it is
possible to keep the main mass 𝑀 completely stationary when the natural frequency of
the absorber

√︁
𝑘/𝑚 is chosen (tuned) as the excitation frequency.

The first structures to use TMDs were aimed at absorbing wind-induced excitation.
TMDs were installed at the Centerpoint Tower in Sydney, Australia, and at Citicorp in
New York. The building can be represented by a simple modal mass of approximately 20
tons so that the TMD forms the system of two degrees of freedom. Tests performed on
Citicorp showed that TMD produces 4 % more damping than the 1 % damping of the
original structure which can reduce the acceleration levels of the structure by about 50 %
(Soong & Dargush, 1997).

In recent years, numerical and experimental studies have been carried out to
evaluate the efficiency of TMDs. It is worth noting that passive TMD can only be tuned
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Table 2.1 – Summary of classification of passive control systems and common passive
control devices

Passive con-
trol classifica-
tion

Description Common devices

Seismic isola-
tion devices

Part of the energy
is absorbed by the
isolation system. Ef-
ficient against vibra-
tions transmitted th-
rough ground, such as
traffic and seismic vi-
bration. It can be im-
plemented at different
locations within struc-
tures.

elastomeric-based systems: low-
damping natural, synthetic rubber
bearings (LDRBs), lead-plug bea-
rings (LRBs), high-damping natu-
ral rubber (HDNR) systems; Iso-
lation systems based on sliding:
Teflon Articulated Stainless Steel
(TASS) systems, friction pendu-
lum systems (FPSs), and sleeved-
pile isolation systems (SPISs).

Energy dissi-
pation devices

Relatively small ele-
ments located between
the main structure and
the bracing system.
The main role is to ab-
sorb or divert part of
the input energy.

Hysteretic devices: Metallic dam-
pers and friction dampers; Vis-
coelastic devices (VE): viscoe-
lastic solid dampers, viscoelastic
fluid dampers; Recentering de-
vices: pressurized fluid dampers
(PFD), preloaded spring-friction
dampers (PSFD); Phase transfor-
mation dampers; Dynamic vibra-
tion absorber: tuned mass dam-
pers (TMD), tuned liquid damper
(TLD)

at a specific frequency. For cases of n-degrees of freedom structures that have TMD, the
response to the first mode of vibration (first degree of freedom) can be reduced considerably,
although the other responses show an increase in vibration. For seismic type excitations,
considering a 12-story building, the response to the first mode of vibration corresponds to
more than 80 % of the total motion. However, for larger structures the response to the
other modes of vibration becomes more significant (Soong & Dargush, 1997).

2.2.2 Tuned liquid damper (TLD)

TLD is a class of TMD where the mass is replaced by a liquid (usually water)
to act as a dynamic vibration absorber. Its basic principle involves installing a TLD to
reduce the dynamic response of the structure in a similar way to a TMD. However, the
system response is nonlinear due to the effect of sloshing (movement of irregular fluid in
the reservoir near the surface) or the presence of reservoir interior holes that generate
turbulent effects. Compared to TMDs, the advantages associated with TLDs include low
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𝑚

𝑘

𝐾

𝑦1

𝑦2

𝐹

Figure 2.3 – Example of a TMD, undamped system with main mass subjected to harmonic
excitation (Soong & Dargush, 1997).

cost, virtually zero maintenance and tuning depending only on the chosen geometry of the
reservoir.

Applications of TLDs were first carried out in Japan, among them, Nagasaki
Airport in 1987, Yokohoma Marine Tower also in 1987, Higashi-Kobe cable-stayed bridge
constructed in 1992 and Tokyo International Airport in 1993. The TLD installed at
Tokyo International Airport consist of 1400 water containers, where floating particles and
preservatives that serve to optimize energy dissipation through an increase in surface area
and through contact between the particles are included. The containers are stacked in six
layers on metal shelves. The total mass of the TLD is approximately 3.5 % of the mass of
the first generalized mode of the tower. The frequency of sloshing is optimized at 0.743
Hz. Other works have been proposed and are in the design phase such as the Millennium
Tower in Tokyo, Japan and Shanghai Financial Trade Center in Shanghai, China. In all
cases, efficiency, economicity, adaptability to fit in different physical spaces and the fact
that they are against failures when well designed are proven. For winds with instantaneous
velocity of 25 m/s, the observed results show that TLD reduces the response to 60 %
crosswind acceleration from the value without the damper (Soong & Dargush, 1997).

The TLDs have several ramifications, among them are tuned oscillatory dampers
(TOD), tuned liquid column dampers (TLCD), circular tuned liquid dampers (CTLD),
among others. The functioning of the TODs is due to the “sloshing” phenomenon of the
liquid present in the container. A small part of the liquid in the TODs participates in the
sloshing motion and therefore, to increase the liquid’s share, the TLCDs are proposed
(Min et al., 2014).

The TLCDs are the focus of this work because it is still a fairly new solution for
application in wind turbines. They have its operation due to the movement of the liquid
in the liquid column. The column can have several geometries, in this work, the type
of TLCD chosen has the shape of tube in “U”. Unlike TCDs, damping is dependent on
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the amplitude of the liquid, and therefore the TLCD dynamics is nonlinear. The main
advantages of TLCDs are its low cost, low maintenance frequency and multi use of the
device for e.g. water tank. Besides that, the TLCD does not require any bearings, special
floor type for installation, activation of the mechanism, springs, and other mechanical
elements that only increase the price of vibration absorber expenses. Consequently, their
geometry varies according to design needs making them quite versatile devices. Some
recent applications of TLCDs are stabilization of ships, satellites, buildings and towers.

TLCDs can be controlled through a hole located in a horizontal section tube.
According to the opening of that orifice, it is possible to control the coefficient of head loss
associated with turbulent dissipation of kinetic energy of the liquid in its passage through
the orifice section, consequently, affecting the damping of the structure. Although this is a
possible solution, the adopted solution does not involve active control, but passive. The
size of the orifice opening is decided in the tuning phase of the design.

The use of TLCDs as a mechanism of vibration absorption is quite interesting
because the mechanism naturally has low frequencies and is relatively easy to tune to the
structure. There are basically two types of energy absorption involved in this configuration,
the absorption due to the TLCDs and the sloshing damping type where there is oscillation
in the free surface of the liquid. Sloshing type absorption, although simple to apply, requires
some considerations to be made in the optimization scheme, because the frequency of the
absorber increases with the amplitude of excitation.

2.3 Previous works

Structural control gained significant space in applications in wind turbines with
the emergence of offshore harvest of wind energy. Offshore wind turbines are prone to
fatigue-driven failure due to the nature of the environment, propitious to high stresses
caused by loads such as sea waves and winds. These structures need to be very resilient
to this harsh environment, which makes them more expensive in pricing and complex
structurally. They possess challenges concerning the lack of easy access which also increase
maintenance costs.

TMD are relative well established in the literature of vibration absorbers. The
basic design concept of the TMD is quite simple, however, the parameters (mass, damping,
and stiffness) of the TMD system must be obtained through optimal design procedures to
attain a better control performance. The search for optimized parameters began in the
classical work of Hartog (1985) on vibration absorber dynamics. In his work, Hartog derived
optimized expressions for the damping ratio and natural frequencies ratio optimized for a
non-damping system subject to harmonic excitations. It was observed that the parameters
that minimize the response of the main system are only a function of the ratio of the
masses.
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McNamara (1977) published and developed TMDs in buildings taking into account
experimental analysis and wind loads with successful implementation, for example, in the
John Hancock tower in Boston and the Citicorp Building in New York City.

Several studies have investigated the behavior of the offshore wind turbine using
TMD type vibration mitigation systems and TLCD. In the study of Stewart (2012), several
models of turbines were analyzed in order to observe the behavior of the system affected
by the use of absorbers using passive and active techniques. The models were tested
by two methods, the first by initial disturbance where the tower is displaced and the
second method where the system is subjected to wind and wave modeling. The TMD’s
parameters determined by the optimization were integrated into a series of wind turbine
design code simulations using the FAST-SC suit. From his simulations, tower fatigue
damage reductions of between 5 and 20% are achieved for the various TMD configurations.
These load reductions for all of the platforms could have a beneficial effect on the cost of
an offshore wind turbine as long as the TMD could be constructed at a reasonable cost.

The work of Guimaraes et al., (2014), analyzes the dynamic behavior of an offshore
wind turbine with the use of an AMS pendulum type absorber attached to the main system
in order to reduce the excessive vibrations. Numerical simulations were performed to define
TMD parameters for two cases of wind load: harmonic and white noise. Guimaraes et
al. concluded that passive devices work properly only for the designed frequency range.
However, wind forces consist of random type of excitations. Hence, better results would
be achieved if a different control were developed.

Initial applications of TLCD in building were proposed by Sakai et al. (1989) and
describing the application of the absorbers in buildings and in cable-stayed bridges (Sakai
et al., 1991) In Sakai et al. experiment, the relationship between the coefficient of liquid
head loss (as well as its dependence on the orifice opening ratio) and the liquid damping
were first defined. Hence, validating the proposed equation of motion describing liquid
column relative motion under moderate excitation.

TLCDs were first studied for excitation of structures that underwent wind actions
by Xu et al. (1992). The structure was modeled as a lumped mass multi-degree-of-freedom
system taking into account both bending and shear and the wind turbulence is modeled as
a stochastic process that is stationary in time and non-homogeneous in space. A random
vibration analysis utilizing transfer matrix formulation is carried out to obtain response
statistics. The nonlinear damping term in the fundamental equation of the tuned liquid
damper is treated by an equivalent linearization technique. Xu et al. concluded that excess
liquid motion in a tuned liquid column might reduce the effectiveness of this damper.
Furthermore, the wind-induced force and acceleration responses of the structure with a
damper, which is usually tuned to the fundamental frequency of the structure, should
involve more than one vibration mode as higher-mode responses may become as large or
even larger than the controlled-mode response
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Since then, new research on the subject emerge out every year. Enevoldsen & Mørk
(1996) investigated the performance of a wind turbine using structural optimization with
and without mass absorber. In his article, the effects of the mass damper were determined
using structural optimization of the tower, which allows the various damping contributions
to be examined consistently. A sensitivity analysis of the optimal designs was presented
and the structural response was determined from linear stochastic vibration analysis. The
stochastic load consists of aerodynamic forces due to turbulence components of the wind.
The comparison results of optimal designs showed that the mass damper was efficient
for reducing the volume of the tower design, especially when the uncertain aerodynamic
damping from the rotor motion was not taken into account. The sensitivity analysis
and evaluation of the optimal designs showed that the sensitivity due to the damping
contributions was significantly reduced when the mass damper was introduced.

Chang & Qu (1998) established unified formulas for five types of passive dynamic
absorbers, among them, TMDs, TLCDs, and other geometric shapes for tuned liquid
damper such as circular and rectangular. Optimal properties and the equivalent damping
ratios for these five dynamic absorbers were derived analytically. His work was important
because it provided a comparison for different types of absorbers.

More recently, Colwell & Basu (2009) took advantage of increased interest in
offshore wind turbines and performed a realistic simulation of the TLCD-type absorber
structure subject to wind and sea forces. Colwell & Basu used the Kaimal wind spectrum
with the JONSWAP wave spectrum that combines the loading of wind and waves to excite
the offshore wind turbine model as a multiple degrees of freedom system. Cases for turbine
blades lumped at the nacelle and rotating blades were simulated, to investigate the effects
of the rotation of blades. It was shown that implementing TLCDs decreased the structural
costs, and prolong the life of the tower. The fatigue life calculation for the tower is carried
out using the rain-flow counting technique for cases with and without TLCD.

Lackner & Rotea (2011) applied passive and active structural control techniques
in floating offshore wind turbines. Lackner & Rotea determined by means of parametric
investigation, optimized passive parameters. A model with limited degrees of freedom
was identified and then time domain simulations were made. The results obtained were
compared with the base system and a 10% passive fatigue reduction was observed and for
the active control a 30% reduction was observed. Lackner & Rotea concluded that the
active structural control model is an effective way to reduce structural load.

Farshidianfar (2011) investigated the application of a bi-directional TLCD-type
vibration system with periodic adjustment equipment used to reduce the vibration of
skyscrapers suffering from earthquake oscillations. The system consists of two TLCD in
the form of a U and a pendulum. This study helped to gain a better understanding of
TLCD for application in buildings and to lead the quest of designers to obtain absorbers
that are more efficient.
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Li et al. (2012) performed experiments on a 1/13 scale of a wind turbine using a ball
vibration absorber (BVA). Li et al. examined the reduction of displacement, acceleration,
stresses for different loads. Their results show an improvement of the structure with the
spherical absorber compared to the base structure.

Altay et al. (2014) presented an optimization approach for a TLCD considering
the mathematical description of the damper geometry within the tuning procedure. The
TLCD was chosen because it has very low fundamental frequencies. In addition, it is not
easy to find a suitable spring element, which can be tuned to the fundamental frequencies
of wind turbines, as they are generally lower than 0.4 Hz. The numerical verification was
demonstrated by means of a three-bladed 5 MW reference wind turbine, periodically and
stochastically excited by non-uniform steady state and turbulent wind flow. Altay et al.
results showed that TLCD can effectively mitigate wind induced resonant tower vibrations
and improve the fatigue life of wind turbines. Figure 2.4 shows a wind turbine with a
TLCD attached to the nacelle.

Figure 2.4 – Example of a TLCD in a wind turbine (Altay et al., 2014).

In the next chapter, fundamental concepts for random vibrations and probability
theory are presented.
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3 Fundamentals of random
vibration

A system with nondeterministic motion is exposed to random vibrations. For
instance, if we analyze the movement of a leaf floating on the wind, an unpredictable
behavior in its trajectory can be seen. The leaf is subject to random excitations from
constantly changing force and direction of the wind. However, the rate and amount of
movement to which the sheet is subjected depends not only on the severity of the wind
excitation, but also on its inherent mass, stiffness and damping (Newland, 2012). The
concept of random vibrations is concerned with determining the characteristics of the
movement of a randomly excited system, such as the leaf, which depend on the statistics of
the excitation, in this case the wind, and the dynamic properties of the vibrating system,
in this case the mass, the stiffness and damping of the sheet.

Cases in which the vibrational responses of a system are known for a given time t,
are called deterministic vibrations. Deterministic vibration exists only when you have a
perfect control of all the variables that influence the structure and loads of the system.
There are several processes and phenomena that cannot be precisely determined, for
any given moment, processes of this type are known by random variable or random
processes. Examples of random vibrations can be found in simulations that deal with
natural phenomena such as wind, fluid and seismic events.

This chapter consist of a first exposition of the fundamental concepts of random
vibration and probability theory. The aim is to review the key principles of the probability
theory and thus facilitate its application to solve problems in the random vibration. The
reader interested in this theory is referred to (Newland, 2012) for a introduction and (Krée
& Soize, 2012) for a mathematical exposition.

3.1 Random vibration

A deterministic system, usually a vibration structure, such as a machine, or a
building, has input parameter 𝑥(𝑡), which constitute the excitation of the system, and
output parameters 𝑦(𝑡), representing the system response. Two simplifications are proposed,
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first, it is assumed that the systems are linear, so that each input excitation corresponds to
an output response of the system, also taking into account the principle of superposition,
and therefore, it is possible to treat each input and output parameter, which simplifies the
analysis. The linearity hypothesis is accepted because the vibration in the system usually
involves only small displacements. It is possible to represent the relationship between the
input and output parameters of the system by means of a linear differential equation,
however, more convenient alternative methods for the analysis of dynamic systems are
used, such as frequency response and impulse response. The concepts of frequency response
and impulse response are also important when it is desired to represent random vibration
and will be briefly presented below.

The frequency response method requires an input parameter with constant ampli-
tude and fixed frequency so that by the linearity relation the system response will have a
fixed amplitude with the same frequency as the input but lagged by a phase. Thus, by
knowing the relation between the input and output amplitudes and the phase angle for
each frequency, it is possible to define the transmission characteristics of the system.

The impulse response method is another way of representing the dynamic characte-
ristic of the system. From an initial impulse, the transient response is measured for all
times until the static equilibrium is established.

It is possible to relate frequency response and impulse response using the concepts
of Fourier analysis. The relation between the two methods by means of a Fourier transform
that can be understood by the following argument, when the linear system is subjected to
a permanent harmonic excitation at a frequency 𝜔, it responds with an output harmonic
response of the same frequency. It is therefore reasonable to expect that for an aperiodic
signal, the frequency band of the input signal correspond to the same frequency band of
the output signal. The following relationship is valid

𝑌 (𝜔) = 𝐻(𝜔)𝑋(𝜔), (3.1)

and the relation between the frequency response and the impulse response is given by,

𝐻(𝜔) =
∫︁ ∞

−∞
ℎ(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡. (3.2)

A common way to analyze the behavior of a dynamical system is to investigate
its responses to harmonic excitations at different frequencies. For linear systems, the
information on responses to harmonic excitations, which is contained in frequency response
functions, allows to identify the system and analyze it. The lack of such methods for
nonlinear systems is one of the reasons why nonlinear systems and controllers are more
challenging to tackle.

A signal is non-deterministic when it cannot be predicted exactly. Figure 3.1 shows
a sample of a non-deterministic signal.

A random excitation can be generate digitally, or capture in an experiment. In the
latter case, an analog-digital converter is used to convert analogical signal into digital.
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Figure 3.1 – A sample of a non-deterministic signal

From the digital signal, a discrete temporal series is obtained and a variety of statistical
analysis tools can be used to characterize the excitation. More commonly when dealing with
random excitation, we can use the Fourier transform to extract the frequency components
of the temporal series.

A method utilized to estimate the spectral components is to calculate the correlation
function based on the temporal data and then apply the Fourier transform. This method
was well known since the 1960 and it indeed followed the mathematical formalities although
very time consuming. Since the rise of computation algorithms, a very popular algorithm
called Fast Fourier Transform (FFT) manage to decrease the computation time in a very
efficient manner to calculate a Fourier transform of a signal. A more detail explanation of
FFT is given in sections 3.5.

In the following sections, the discrete Fourier transform is further explore to develop
the fast Fourier transform algorithm. Nevertheless, the basic concepts of probability and
power spectral density is introduced.

3.2 Probability density function

The probability density function of a random process is defined as a function
representing the probability distribution of a random function.

Consider a random variable 𝑋 that can assume any value 𝑥1, 𝑥2, ..., 𝑥𝑛 with proba-
bility 𝑝1, 𝑝2, ..., 𝑝𝑛

𝑥̄ = 1
𝑁

∑︁
𝑖

𝑝𝑖𝑥𝑖. (3.3)

In a continuous process we can obtain a probability distribution function 𝑃 (𝑥).
The probability distribution function is interpreted as the area on the probability density
curve. That is,

𝑃 (𝑥) =
∫︁ 𝑥

−∞
𝑝(𝑥)𝑑𝑥, (3.4)
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in which the derivative of 𝑃 (𝑥) with respect to 𝑥 is called the probability density function.
That is,

𝑝(𝑥) = 𝑑𝑃 (𝑥)
𝑑𝑥

= lim
Δ𝑥→∞

𝑃 (𝑥+ Δ𝑥)− 𝑃 (𝑥)
Δ𝑥 , (3.5)

we can interpret the expression 𝑃 (𝑥+ Δ𝑥)−𝑃 (𝑥) as the probability of 𝑥(𝑡) to be between
the interval [𝑥, 𝑥+ Δ𝑥]. The probability density function 𝑝(𝑥) can be interpreted with the
distribution density of 𝑥. By definition,

𝑃𝑟𝑜𝑏(−∞ 6 𝑥 6∞) = 𝑃 (𝑥 =∞) =
∫︁ ∞

−∞
𝑝(𝑥)𝑑𝑥 = 1. (3.6)

A commonly used probability density function is the Gaussian distribution shown
in Figure 3.2 and expressed in Equation (3.7) where 𝜎𝑥 is the standard deviation and 𝑚 an
average. The Gaussian process, also called the normal process, has a bell-shaped format.
Many natural processes of random vibration have a Gaussian-like form and, therefore, the
importance of this probability density function.

𝑝(𝑥) = 1√
2𝜋𝜎2

𝑥

𝑒−(𝑥−𝑚)2/2𝜎2
𝑥 . (3.7)

𝑥*

𝑝(𝑥)

Figure 3.2 – Normal, or Gaussian probability density function

3.3 Stochastic process

In many cases, when dealing with random variables the results obtained for a
sample are not sufficient. For example, the measurement of winds obtained would most
likely not recur in the following year. The solution to this problem is to perform infinite
measurements and thus analyze the sample set. It is obvious that it is not possible to
carry out infinite measurements, but assuming a considerable value, the approximation
becomes acceptable.
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Figure 3.3 illustrates samples of a random process. Instead of calculating the
probability distribution of only one sample, it is now possible to calculate the probability
distribution of the sample set. With this, the stationary concept can be defined for the
case of a random process in which the probability distribution of the sample set does
not depend on the absolute time. A process is said to be stationary if when divided into
time intervals the various sections of the process exhibit essentially the same statistical
properties. Otherwise, it is said non-stationary. The term stationary refers to the probability
distribution rather than the samples themselves. This implies that all means, squared
means and standard deviation of the samples are independent of the absolute time.

𝑡

𝑥1(𝑡)

𝑥2(𝑡)

𝑥3(𝑡)

𝑥4(𝑡)

Figure 3.3 – Random samples of a process

A stationary process is ergodic if, in addition to the stationarity condition in
absolute time, the average of each sample must be equal to the average of the set of
samples. In practical terms, this implies that each sample is a complete representation of
the set of samples representing the random process. Note that every ergodic process is
stationary, but the reverse is not valid.

3.4 Correlation and autocorrelation

The definition of correlation and autocorrelation is based on the statistical concepts
of expected value. The expected value is defined as the average of a random process as
follows: for a function of a random process, 𝑥(𝑡) with period 𝑇 and probability density
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function 𝑝(𝑡),

𝐸[𝑥] =
∫︁ 𝑇

0
𝑥(𝑡)𝑑𝑡

𝑇
=
∫︁ ∞

−∞
𝑥𝑝(𝑡)𝑑𝑥, (3.8)

hence, it is possible to determine the average of a random process when the probability
density function is known.

From the definition of mean, it is possible to derive other relevant quantities such as
the mean squared, 𝐸[𝑥2], and the square of the standard deviation, 𝜎2 = 𝐸[𝑥2]− (𝐸[𝑥])2,
also known as variance. The concept of squared mean gives us the tool to compare
(correlate) two functions or the same function at different intervals (autocorrelation).

The autocorrelation function of a random process, 𝑥(𝑡) is defined as the average
of the product where 𝜏 is a time interval that separates the two samples. For stationary
processes, the value of 𝐸[𝑥(𝑡)𝑥(𝑡+ 𝜏)] is determined independently of the absolute value
of time 𝑡, so we can rewrite the product of the expected value 𝑥(𝑡)(𝑡+ 𝜏) as follows

𝐸[𝑥(𝑡)𝑥(𝑡+ 𝜏)] = 𝑅𝑥(𝜏), (3.9)

Where 𝑅𝑥(𝜏) is the autocorrelation function of 𝑥(𝑡) in the time interval 𝜏 .

3.5 Fourier series and the Fourier transform pair

Fourier analysis is a powerful tool used to express periodic signals by adding
together sinusoidal functions of various amplitudes, frequencies and phases. Signals in
time domain represent how the system behaves in real life. When we represent the signal
in the frequency domain using Fourier analysis, we require very few information such as
amplitude, frequencies and phases to characterize de signal. The reason for using sinusoidal
functions is that they are a fundamental signal in nature. For instance, they might occur
in electromagnetic waves and in oscillatory motion.

Consider a function 𝑥(𝑡) with period 𝑇𝑝, we can represent this function as

𝑥(𝑡) = 𝑎0

2 +
∞∑︁

𝑛=1

(︃
𝑎𝑛 cos 2𝜋𝑛𝑡

𝑇𝑝

+ 𝑏𝑛 sin 2𝜋𝑛𝑡
𝑇𝑝

)︃
, (3.10)

where 𝑎0, 𝑎𝑛𝑘 and 𝑏𝑛 are constants terms given by

𝑎0

2 = 1
𝑇𝑝

∫︁ 𝑇/2

−𝑇/2
𝑥(𝑡)𝑑𝑡, (3.11)

𝑎𝑘 = 2
𝑇𝑝

∫︁ 𝑇𝑝/2

−𝑇𝑝/2
𝑥(𝑡) cos 2𝜋𝑛𝑡

𝑇𝑝

𝑑𝑡, 𝑛 > 1, (3.12)

𝑏𝑘 = 2
𝑇𝑝

∫︁ 𝑇𝑝/2

−𝑇𝑝/2
𝑥(𝑡) sin 2𝜋𝑛𝑡

𝑇𝑝

𝑑𝑡, 𝑛 > 1, (3.13)

where 𝑇𝑝 is the period and 𝜔𝑛 = 2𝜋𝑛/𝑇𝑝 is the n-th fundamental frequency.
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The terms 𝑎0, 𝑎𝑛 and 𝑏𝑛 are the Fourier coefficients which provide information on
the frequency domain. The term 𝑎0 represents the mean of the time history, while the
therms 𝑎𝑛 and 𝑏𝑛 represents the amplitude of various cosine and sine waves which added
together comprise the time history.

Figure 3.4 shows the Fourier expansion for a particular square wave time history.
By the third summation, the expansion is seen to give a reasonable representation of
the original time history although the corners never reach full convergence due to Gibbs’
phenomenon as seen by the twentieths terms summation.

1st term 20th term3rd term

Original time history
Pe

rio
di

c
sig

na
l

Time (s)

Pe
rio

di
c

sig
na

l

Time (s)

...

Figure 3.4 – Fourier expansion of a square wave periodic signal with partial sums of the
𝑛 = 1, 𝑛 = 3 and 𝑛 = 20 terms of the expansion.

3.5.1 The complex form of the Fourier series

In practice, the Fourier coefficients can be cumbersome to manipulate algebraically.
An alternative approach is to represent the Fourier series using its complex form by noting
that 𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃 and

cos 𝜃 = 1
2(𝑒𝑗𝜃 + 𝑒−𝑗𝜃), (3.14)

sin 𝜃 = 1
2𝑗 (𝑒𝑗𝜃 + 𝑒−𝑗𝜃), (3.15)
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which gives, after some manipulations of Equation (3.10)

𝑥(𝑡) =
∞∑︁

𝑛=−∞
𝑐𝑛𝑒

𝑗2𝜋𝑛𝑡/𝑇𝑝 , (3.16)

𝑐𝑛 = 1
𝑇𝑝

∫︁ 𝑇𝑝/2

−𝑇𝑝/2
𝑥(𝑡)𝑒−𝑗2𝜋𝑛𝑡/𝑇𝑝 , (3.17)

where we can notice the component 𝑐𝑛 now contain both amplitude and phase information
of the Fourier decomposition.

3.5.2 Fourier integrals

In general, random vibrations are not periodic. Hence, the concepts of signal
representation by Fourier analysis can be extended to non-periodic signal using Fourier
integrals. The basic difference in the representation is that the discrete summation of the
Fourier series becomes a continuous summation, i.e. an integral form.

Consider the Fourier representation of a periodic signal from Equations (3.16)
and (3.17). By letting 𝑇𝑝 become larger 𝑇𝑝 →∞, the fundamental frequency 𝑓1 = 1/𝑇𝑝

becomes smaller, consequently, the multiples of the fundamental frequency (𝑓𝑛 = 𝑛𝑓1)
becomes densely packed on the frequency axis. We define the separation of frequencies as
Δ𝑓 = 1/𝑇𝑝. Hence, Equation (3.17) becomes

𝑐𝑛 = lim
𝑇𝑝→∞

(Δ𝑓→0)

Δ𝑓
∫︁ 𝑇𝑝/2

−𝑇𝑝/2
𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑛𝑡𝑑𝑡, (3.18)

where each Fourier coefficient 𝑐𝑛 is obtained for a frequency 𝑛/𝑇𝑝 Hz. The frequency
interval between each coefficient Δ𝑓 is therefore 1/𝑇𝑝 Hz. This cause problems as the
frequency at which the coefficients are calculated is dependent on the period 𝑇𝑝 chosen. It
is common practice to normalize the coefficients to eliminate de dependence on 𝑇𝑝. Hence,
the ratio 𝑐𝑛/Δ𝑓 is desirable in order to avoid 𝑐𝑛 → 0 as Δ𝑓 → 0. Equation (3.18) can be
rewritten as

lim
Δ𝑓→0

𝑐𝑛

Δ𝑓 = lim
𝑇𝑝→∞

∫︁ 𝑇𝑝/2

−𝑇𝑝/2
𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑛𝑡𝑑𝑡, (3.19)

assuming the limits exist, we get

𝑋(𝑓𝑛) =
∫︁ ∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑛𝑡𝑑𝑡, (3.20)

since Δ𝑓 → 0, the frequencies 𝑓𝑛 become a continuum and we can write 𝑓 instead as
follows

𝑋(𝑓) =
∫︁ ∞

−∞
𝑥(𝑡)𝑒−𝑗2𝜋𝑓𝑡𝑑𝑡. (3.21)

Now, with analogous arguments, we can represent the continuous form of Equations
(3.16) as

𝑥(𝑡) =
∫︁ ∞

−∞
𝑋(𝑓)𝑒𝑗2𝜋𝑓𝑡𝑑𝑓. (3.22)
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Equations (3.21) and (3.22) are known as Fourier integral pair. The function 𝑋(𝑓)
is the complex Fourier transform of 𝑥(𝑡). These results are relevant for random vibration
since it can relate a temporal series with its frequency components in a random process.
The Fourier pair can be written using 𝜔 = 2𝜋𝑓 as an alternative form

𝑋(𝜔) =
∫︁ ∞

−∞
𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡, (3.23)

𝑥(𝑡) = 1
2𝜋

∫︁ ∞

−∞
𝑋(𝑓)𝑒𝑗𝜔𝑡𝑑𝑓. (3.24)

The sufficient condition for existence of a Fourier integral is∫︁ ∞

−∞
|𝑥(𝑡)|𝑑𝑡 <∞ (3.25)

where a function can be written as a Fourier integral if, and only if, the function decay to
zero 𝑡→ 0. Usually this condition can be avoided using the Dirac delta function properties.

3.5.3 Discrete Fourier transform

When dealing with digital signal, the function defining the signal is discrete. The
discrete signal can occur naturally such as stock exchange market or occur due to sampling
such as collecting data at Δ seconds interval. A sequence is denoted as 𝑥[𝑛], where 𝑛 is a
finite number of elements in the sequence.

The discrete Fourier transform (DFT) is a Fourier representation of a finite length
sequence and in fact, the DFT itself is a sequence rather than a continuous function of
frequency.

Consider first the Fourier transform of a sample sequence 𝑥(𝑛Δ) given by

𝑋(𝑒𝑗2𝜋𝑓Δ) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛Δ)𝑒−𝑗2𝜋𝑓𝑛Δ (3.26)

this result can be obtained from discretized a signal using delta functions. Besides that, this
representation is still continuous in frequency. If we want to evaluate this at frequencies
𝑓 = 𝑘/𝑁Δ, then the right side of Equation (3.26) becomes

𝑋(𝑘) =
𝑁−1∑︁
𝑛=0

𝑥(𝑛Δ)𝑒−𝑗(2𝜋/𝑁)𝑛𝑘 (3.27)

where we can simplify the notation 𝑋(𝑘) ≡ 𝑋𝑘 and 𝑥(𝑛Δ) ≡ 𝑥𝑛. Equation (3.27) has an
inverse relationship called the inverse discrete Fourier transform (IDFT)

𝑥𝑛 = 1
𝑁

𝑁−1∑︁
𝑘=0

𝑋𝑘𝑒
𝑗(2𝜋/𝑁)𝑛𝑘. (3.28)

While the values of the continuous time series 𝑥(𝑡) cannot be obtained from 𝑋𝑘, it
does permit to regain exactly the values of the discrete time series 𝑥𝑛. Both 𝑋𝑘 and 𝑥𝑛

are periodic with period 𝑁 .
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The Fourier representation depends on the type of signal. They can be continuous
or discrete time signal and periodic or non-periodic. Signals that are continuous in time end
up being non-periodic in frequency, and signals, which are discrete in time, become periodic
in frequency. Similarly, signals non-periodic in time become continuous in frequency, and
signals periodic in time become discrete in frequency. These conditions are summarized in
Figure 3.5.
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Figure 3.5 – Four Fourier representation of signals

3.5.4 Fast Fourier transform

As discussed, the concepts of discrete Fourier transform can be used to estimate
the power spectral density of a random process and consequently to develop an algorithm
that allows us to obtain the time series from the spectral density and vice versa with low
computational cost.

Starting from the definition of correlation and spectral density of the discrete time
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series 𝑥𝑟 and 𝑦𝑟

𝑅𝑟 = 1
𝑁

𝑁−1∑︁
𝑠=0

𝑥𝑠𝑦𝑠+𝑟 𝑟 = 0, 1, 2, . . . , (𝑁 − 1) (3.29)

𝑆𝑘 = 1
𝑁

𝑁−1∑︁
𝑟=0

𝑅𝑟𝑒
−𝑖(2𝜋𝑘𝑟/𝑁) (3.30)

combining Equations (3.29) and (3.30), we have

𝑆𝑘 = 1
𝑁

𝑁−1∑︁
𝑟=0

{︃
1
𝑁

𝑁−1∑︁
𝑠=0

𝑥𝑠𝑦𝑠+𝑟

}︃
𝑒−𝑖(2𝜋𝑘𝑟/𝑁) (3.31)

rearranging the terms,

𝑆𝑘 = 1
𝑁2

𝑁−1∑︁
𝑟=0

𝑁−1∑︁
𝑠=0

𝑥𝑠𝑒
−𝑖(2𝜋𝑘𝑠/𝑁)𝑦𝑠+𝑟𝑒

−𝑖(2𝜋𝑘(𝑠+𝑟)/𝑁) (3.32)

the terms with the variable 𝑟 can be grouped together

𝑆𝑘 = 1
𝑁

𝑁−1∑︁
𝑠=0

𝑥𝑠𝑒
−𝑖(2𝜋𝑘𝑠/𝑁)

{︃
1
𝑁

𝑁−1∑︁
𝑟=0

𝑦𝑠+𝑟𝑒
−𝑖(2𝜋𝑘(𝑠+𝑟)/𝑁)

}︃
(3.33)

defining a new variable 𝑡 = (𝑠+ 𝑟), we have

1
𝑁

(𝑁−1)+𝑠∑︁
𝑡=𝑠

𝑦𝑡𝑒
−𝑖(2𝜋𝑘𝑡/𝑁) (3.34)

comparing both side of Equation (3.33) with Equation (3.26), it follows

𝑆𝑘 = 𝑋*
𝑘𝑌𝑘 (3.35)

This result is important because it is the basis of the FFT algorithm. An estimate
of the spectrum only by knowing the discrete time series and vice versa without requiring
the correlation calculation can be found. By knowing the value of the discretized spectral
density 𝑆𝑘, one can obtain its real value.

The FFT works by partitioning the sequence 𝑥𝑟 into a number of small sequences.
Instead of calculating the DFT of the original sequence, only the DFT of the minor
sequences are calculated. The FFT then combines these results to generate the total PDT
of 𝑥𝑟.

Consider a sequence 𝑥𝑟 with 𝑁 numbers of events that is partitioned into two
sequences 𝑦𝑟 and 𝑧𝑟

𝑦𝑟 = 𝑥2𝑟; 𝑧𝑟 = 𝑥2𝑟+1 (3.36)

the DFT of these two sequences are given by 𝑌𝑘 e 𝑍𝑘

𝑌𝑘 = 1
𝑁/2

𝑁/2−1∑︁
𝑟=0

𝑦𝑟𝑒
−𝑖 2𝜋𝑘𝑟

(𝑁/2) , 𝑘 = 0, 1, 2, . . . , (𝑁/2− 1) (3.37)

𝑍𝑘 = 1
𝑁/2

𝑁/2−1∑︁
𝑟=0

𝑧𝑟𝑒
−𝑖 2𝜋𝑘𝑟

(𝑁/2) (3.38)
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returning to the DFT of the original sequence 𝑥𝑟 and rearranging the sum into two sums,
even and odd

𝑋𝑘 = 1
𝑁

𝑁−1∑︁
𝑟=0

𝑥𝑟𝑒
−𝑖 2𝜋𝑘𝑟

(𝑁) (3.39)

𝑋𝑘 = 1
𝑁

⎧⎨⎩
𝑁/2−1∑︁

𝑟=0
𝑥2𝑟𝑒

−𝑖
2𝜋𝑘(2𝑟)

𝑁 +
𝑁/2−1∑︁

𝑟=0
𝑥2𝑟+1𝑒

−𝑖
2𝜋𝑘(2𝑟+1)

𝑁

⎫⎬⎭ (3.40)

using the sequences of Equation (3.36) into Equation (3.40), we obtain

𝑋𝑘 = 1
𝑁

⎧⎨⎩
𝑁/2−1∑︁

𝑟=0
𝑦𝑟𝑒

−𝑖 2𝜋𝑘𝑟
(𝑁/2) + 𝑒−𝑖 2𝜋𝑘

𝑁

𝑁/2−1∑︁
𝑟=0

𝑧𝑟𝑒
−𝑖 2𝜋𝑘𝑟

(𝑁/2)

⎫⎬⎭ (3.41)

otherwise

𝑋𝑘 = 1
2{𝑌𝑘 + 𝑒−𝑖 2𝜋𝑘

𝑁 𝑍𝑘} (3.42)

for 𝑘 = 0, 1, 2, . . . , (𝑁/2− 1).

The DFT of the original sequence can be obtained directly from the DFT of the
two sequences 𝑌𝑘 and 𝑍𝑘 according to Equation (3.42). This equation is the basis of the
FFT method. For the case of number of samples 𝑁 of the sequence 𝑥𝑟 the computational
cost and of the order of 𝑁2. If you use the FFT method, the computational cost decreases
to the order of 𝑁 log2 𝑁 which represents a considerable reduction, as 𝑁 increases.

We now introduce the basic concepts of power spectral density.

3.6 Spectral analysis

The use of frequency spectra to view periodic functions is a very useful method
to understanding the behavior of the process by analyzing the frequency domain. A
spectrum-shaped graph is described by a amplitude for each harmonic component as a
function of frequency.

In this cases, the frequency composition in a random process 𝑥(𝑡) is not periodic
and therefore cannot be expressed by the Fourier series since we do not know for sure
the behavior of the function that can change from sample to sample. This difficulty in
describing the process can be solved by looking at the autocorrelation function 𝑅𝑥(𝜏)
instead of the random function. The reason is that the autocorrelation function provides
information about the frequency in a random process, that is, in a correlation analysis it
is possible to obtain the frequencies present in a random sample.

The power spectral density function of a random stationary process remains
invariant when under time variation. Hence, it can be defined by the Fourier transform of
the autocorrelation function as follows

𝑆𝑥𝑥(𝜔) = 1
2𝜋

∫︁ ∞

−∞
𝑅𝑥𝑥(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏, (3.43)
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so that

𝑅𝑥𝑥(𝜏) =
∫︁ ∞

−∞
𝑆𝑥𝑥(𝜔)𝑒𝑖𝜔𝜏𝑑𝜔, (3.44)

the autocorrelation function 𝑅𝑥𝑥(𝜏) makes statistical connections between values of the
variable function 𝑥(𝑡) in different time intervals 𝜏 , but does not depend on the instant
t. Stochastic processes with this characteristic are called ergodic. Equations (3.43) and
(3.44) are known by Wiener-Khintchine expressions (Ghanem & Spanos, 2003).

One of the most important properties of 𝑆𝑥𝑥(𝜔) becomes apparent when 𝜏 = 0 in
Equation (3.44), in this case,

𝐸[𝑥2] = 𝑅𝑥𝑥(𝜏 = 0) =
∫︁ ∞

−∞
𝑆𝑥𝑥(𝜔)𝑑𝜔 (3.45)

this result can be interpreted graphically where the squared mean of the random process
is equal to the area of the spectral density graph.

The relation between the spectral density function of the response and the excitation
can be extracted from the input and output ratios of a deterministic linear system. Let
the elements 𝑥(𝑡) and 𝑦(𝑡) be the input and output of the system. Now consider these
functions in the frequency domain, 𝑋(𝜔) and 𝑌 (𝜔), the relation between them can be
obtained as

𝑦(𝑡) =
∫︁ ∞

0
ℎ(𝜈)𝑥(𝑡− 𝜈)𝑑𝜈, (3.46)

𝑌 (𝜔) = 𝐻(𝜔)𝑋(𝜔). (3.47)

Now, consider that 𝑥(𝑡) e 𝑦(𝑡) represent stochastic processes. The relations between
input and output are still valid, but now they have a stochastic nature and need to be
interpreted considering probabilistic theory.

The output correlation function relates to the input correlation function as

𝑅𝑦𝑦(𝑡1, 𝑡2) =
∫︁ ∞

−∞

∫︁ ∞

−∞
ℎ(𝑡1 − 𝜈1)𝑅𝑥𝑥(𝜈1, 𝜈2)ℎ𝑇 (𝑡2 − 𝜈2)𝑑𝜈1𝑑𝜈2 (3.48)

where the variables 𝜈1 and 𝜈2 can be interpreted as a time delay. For the case where 𝑥(𝑡) is
stationary, 𝑅𝑥𝑥(𝑡1, 𝑡2) depends only on the difference 𝜏 = 𝑡2 − 𝑡1, and therefore 𝑅𝑦𝑦(𝑡1, 𝑡2)
also depends only on 𝜏 . Thus, by rewriting Equation (3.48), with a change of variables

𝑅𝑦𝑦(𝜏) =
∫︁ ∞

−∞

∫︁ ∞

−∞
ℎ(𝜈1)𝑅𝑥𝑥(𝜏 + 𝜈1 − 𝜈2)ℎ𝑇 (𝜈)𝑑𝜈1𝑑𝜈2 (3.49)

The Fourier transform of Equation (3.49) is performed using the concepts of power
spectral density, we have

𝑆𝑦𝑦(𝜔) = 1
2𝜋

∫︁ ∞

−∞
𝑑𝜏𝑒𝑖𝜔𝑡

{︂∫︁ ∞

−∞
𝑑𝜈1

∫︁ ∞

−∞
𝑑𝜈2ℎ(𝜈1)ℎ𝑇 (𝜈2)𝑅𝑥𝑥(𝜏 + 𝜈1 − 𝜈2)

}︂
, (3.50)

𝑆𝑦𝑦(𝜔) = 1
2𝜋

∫︁ ∞

−∞
𝑑𝜈1ℎ(𝜈1)

∫︁ ∞

−∞
𝑑𝜈2ℎ

𝑇 (𝜈2)
∫︁ ∞

−∞
𝑑𝜏𝑒𝑖𝜔𝑡𝑅𝑥𝑥(𝜏 + 𝜈1 − 𝜈2), (3.51)
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we can show that
∫︀∞

−∞ 𝑒𝑖𝜔𝑡𝑅𝑥𝑥(𝜏 + 𝜈1 − 𝜈2)𝑑𝜏 = 2𝜋𝑆𝑥𝑥(𝜔)𝑒𝑖𝜔(𝜈1−𝜈2). Hence,

𝑆𝑦𝑦(𝜔) = 𝑆𝑥𝑥(𝜔)
∫︁ ∞

−∞
ℎ(𝜈1)𝑒𝑖𝜔𝜈1𝑑𝜈1

∫︁ ∞

−∞
ℎ𝑇 (𝜈2)𝑒−𝑖𝜔𝜈2𝑑𝜈2, (3.52)

by the definition of the impulse function,

𝑆𝑦𝑦(𝜔) = 𝐻*(𝜔)𝐻(𝜔)𝑆𝑥𝑥(𝜔), (3.53)

in which 𝐻*(𝜔) is the conjugate transfer function. Since the complex product of a number
by its conjugate equals its square magnitude, we conclude that

𝑆𝑦𝑦(𝜔) = |𝐻(𝜔)|2𝑆𝑥𝑥(𝜔). (3.54)

Equation 3.54 Is the most important random vibration equation since it provides a
direct and simple relation between the input and output power spectral density.
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4 Probabilist description of wind
loads

This chapter deals with the effects of the probabilistic aspect of wind in low
atmospheric layers on flexible structures. The problems is confined to along-wind response
of structures. Moreover, cross-wind response or aero-elastic coupled problems are left out
of discussion. The idea is discuss some general notions, which should cast some light on
the complexity of the phenomenon.

4.1 The wind behavior near ground

The wind flow near a body is perturbed because it should bypass the body. This
perturbation generate the aerodynamic forces acting on the body. The aerodynamic forces
exerted on the body are the sum of the pressure field acting on the body and the forces
of friction. For structures situated in the atmospheric turbulent boundary layer, the flow
around it separates and cannot adhere back. This leads to high difference of pressure
between downstream and upstream and generates in this way a pressure drag, which is
considerably larger than viscous drag.

Air is a viscous fluid and in high altitudes, the ideal fluid approximation is valid.
The velocity of wind results from a balance between the Coriolis force produced by Earth
rotation and the force exerted by the atmospheric pressure field. The wind direction is
approximately parallel to the isobar. At low altitudes, near Earth’s surface, turbulent
boundary layer is form due to forces of friction from its roughness. Consequently, the
Coriolis forces are negligible with respect to the forces of friction and the direction of the
mean wind varies only with altitude.

The wind velocity fluctuates with time near the ground. In fact, the spectral
analysis of this velocity over a long time interval revels several scales of fluctuation. Figure
4.1 shows a typical power spectrum of the horizontal velocity of wind at 100 meters above
ground. Furthermore, Figure 4.1 shows that the low frequency energy is concentrated over
a period of four days, which is associated to geostrophic motions (Krée & Soize, 2012).
Another peak is commonly placed at 12 or 24 hours and is due thermal phenomena of
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night and day alternation. For last, part of the energy is concentrated over a period of one
minute and correspond to the time scale of turbulent motion. This micro-meteorological
effects can be attribute to turbulent gust caused by eddies in the wind load over obstacles
in the vicinity of the turbine i.e. towns, trees, hills and valleys. If the surface is relatively
flat such as in the sea, there will be less turbulence then in the field.

The average wind velocity varies along the structure; hence, the wind load is non-
homogeneous in space. Although the wind load depends on the response of the structure,
such an interaction effect can usually be neglected, and the wind load can be computed
from the wind velocity. Consequently, the wind load consists of a static load due to the
average wind velocity and a dynamic load due to wind fluctuations. For the reduction
of acceleration responses in structural control, only the fluctuating wind load should be
considered. Due to the uncoupled motion of the structure, the wind loads in both directions
the along-wind and across-wind (Wu & Yang, 1998).

Wind turbulence is an important consideration if the first natural period of a
structure is around 0.5 seconds and it is mostly likely the cause of fatigue damage in lattice
towers (Halfpenny, 1998). The power spectrum from Figure 4.1 also shows that there
is an energy hole for periods between 10 minutes and 2 hours. Therefore, if an average
wind velocity is desirable over a period T corresponding to the energy hole, i.e. in the 10
minutes up to 2 hours range, the mean velocity will be almost stable (Krée & Soize, 2012)
and over a time T the wind velocity can be modeled by a locally stationary stochastic
process.
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Figure 4.1 – Typical power spectrum of the horizontal velocity of wind at 100 m above
the ground.

Two approaches can follow, a short-term and a long-term modeling. The short-term
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modeling describes the fast fluctuations due to turbulence and is modeled by a stochastic
process. If we take into account the slow variations of the mean velocity over a long period,
we obtain a long-term modeling. However, due to lack of meteorological deterministic
forecast over a long period, one has to resorts to probabilistic modeling. Hence, the mean
velocity and other parameters are modeled by random variables where the probabilistic
models are the outcome of statistical processing of meteorological measurements.

The following analysis focus on short-term model of the wind flow.

4.2 Short-term wind model

We are interested in discuss the short-term modeling of wind, which permits
a description of the fast fluctuations caused by turbulence in the 0-300 meters layer.
The short-term parameters are the mean wind velocity v, containing its magnitude and
direction, and a global roughness parameter r. We set

𝑞 = (v, r) ∈𝑅3. (4.1)

The mean velocity is defined as the absolute magnitude of the mean velocity of
the horizontal component of the wind velocity over a time period measure at a reference
altitude (say, 10 meters). The mean velocity is completely specified by its direction and
its absolute magnitude. The short-term modeling aim is to be able to describe for a fixed
position, the profile of the mean velocity v(x) at a certain point x and the fluctuation
v′(x, 𝑡) modeled by a stochastic field. Hence,

v(x, 𝑡) = v(x) + v′(x, 𝑡). (4.2)

Considering the orthonormal frame 𝑂𝑥𝑦𝑧 such as the origin is at ground level, 𝑂𝑧
is the positive vertical axis and 𝑂𝑥 is the axis parallel to the direction of the reference
mean wind. Assuming the following notation

v(x) = (𝑣1(x), 𝑣2(x), 𝑣3(x)), (4.3)

assuming (𝑣1(x), 0, 0), the mean longitudinal component velocity 𝑣1(x) with respect to
height is known as wind shear. The law governing the variation of 𝑣1(x) at a point x with
respect to the z-axis is a purely empirical power law worked out by Davenport (1961)

𝑣1(x) = 𝑣1(𝑧0)
(︂
𝑧

𝑧0

)︂𝛽

, (4.4)

where 𝑣1(𝑧0) is the friction velocity at the site, 𝑧0 is the hub height and 𝛽 is the coefficient
of roughness due the viscosity stress. The viscosity stress decelerate the airflow near earths
boundary layer up to the gradient height which is imposed by the terrain roughness.
Considering that the roughness classes are assumed to be homogeneous over a sufficiently
large distance, they can be classify into five types of site according to Table 4.1.
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Table 4.1 – Roughness class of different site types

Site type Roughness class r
Sea and large water surface I
Flat terrain with some isolated obstacles II
Rural areas with low builds and trees III
Urban, industrial, or forest areas IV
Center of large cities V

Once the complete description of the wind velocity field have been established,
the resulting aerodynamic forces acting on the structure can be derived. Considering a
dimensionless aerodynamic drag coefficient 𝐶𝐷 and neglecting the relative velocity of the
structure, the force is given by

𝑑𝐹 (𝑧, 𝑡) = 1
2𝜌𝑎𝑖𝑟𝐶𝐷𝑑𝐴[𝑣1(𝑧) + 𝑣′

1(𝑧, 𝑡)]2 (4.5)

since the only variable not constant is the wind velocity we can use it as our measure of
force.

The short-term probabilistic model of the fluctuation v′(x, 𝑡) is defined by a
stochastic process, in 𝑅3, time-stationary, second-order, mean square continuous and
Gaussian. It follows from our assumptions that v′(x, 𝑡) = 𝑣′

1(x, 𝑡). The process 𝑣′
1(x, 𝑡) can

be described by its transverse auto-correlation function

𝑅(𝜏) = 𝐸[𝑣′
1(x, 𝑡)𝑣′

1(x, 𝑡+ 𝜏)]. (4.6)

the mean speed also varies with time. In a storm, for instance, it is expected a higher mean
wind speed than during a calm weather. This variation can be expressed using probability
density function. Many distributions have been proposed. Davenport considered the wind
speed as a resultant of two independent Gaussian variable assuming that wind is isotropic
and uniformly distributed which approximate to a Rayleigh distribution.

Mayne (1979) proposed a Weibull distribution described as

𝑝(𝑢) = 𝑘

𝑐

(︂
𝑣1

𝑐

)︂𝑘−1
𝑒−(𝑣1/𝑐)𝑡 (4.7)

where 𝑘 is the Weibull slop parameter and 𝑐 is the Weibull mode parameter.

The Weibull distribution tends to the Rayleigh as 𝑘 = 2. The Weibull parameters
can be found in different meteorological station and in standard references. They can also
be estimated from the annual mean wind speed record.

From an engineering standpoint, the structure design must withstand the most
severe wind loads. Although the statistics may be obtained from a Weibull distribution,
this practice can lead to erroneous results because the tail of the distribution does not
provide a good fit for extreme events.
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Turbulence is responsible for the fluctuations in the velocity. This phenomena is
best described stochastically as a process with zero mean velocity value and its standard
deviation 𝜎𝑣. The standard deviation of the turbulence is defined as

𝜎𝑣1 = 𝜓𝑣ℎ𝑢𝑏 (4.8)

where 𝜓 is the wind speed coefficient of variation, also called turbulence intensity, and
𝑣ℎ𝑢𝑏 = 𝑣1(𝑧0) is the short term mean value of the hub height velocity.

The velocity variance spectra of the turbulence wind field is defined as

𝜎𝑣1 =
∫︁ ∞

0
𝑆𝑣1(𝑓)𝑑𝑓 (4.9)

where 𝑆𝑣1(𝑓) is the power spectral density.

Next, different wind profile power spectral density models are discussed and compa-
red. It will be shown that lower frequency band proves most important when considering
wind turbine dynamics.

4.3 Wind profile power spectral density

Wind excitations are highly dynamic, irregular external loads. Therefore, they are
better represented by mean of the power spectral density (PSD). This section discusses
how these could be simulated through the different PSDs models such as white noise,
Kanai-Tajime, Kaimal and Davenport.

White noise is a signal idealization where its PSD covers all frequency band with a
constant value. Other PSD models can be physically more meaningful to represent wind
profiles by taking into account aspects of relevance to the real problem such as roughness,
heights, wind forces and general changes in dynamic properties. Kaimal and Davenport
spectrum models are first order filter that can be used to approximate wind-induced
positive pressures along wind loading. Kanai-Tajimi is a representation of a second order
filter, which is typically used in earthquake profiles, but will be used in this work for
sake of comparison. Table 4.2 summarizes each respective power spectral density function
expressions.

For Kaimal PSD, 𝐿𝑘 = 340.2 𝑚 is a scale parameter that involves the wind turbine
height and 𝑣ℎ𝑢𝑏 = 16 𝑚/𝑠 is the mean wind velocity. According to Burton et al. (2001),
Kaimal spectrum provides a good fit to empirical observation of atmospheric turbulence.
For Davenport PSD, 𝜅 is the drag coefficient referred to the mean velocity and 𝐿 in the
hub height (Davenport, 1961). For Kanai-Tajimi PSD, 𝜔𝑔 = 10.5 𝑟𝑎𝑑/𝑠 and 𝜉𝑔 = 0.317 can
be interpreted as characteristic frequency and characteristic damping ratio respectively
(Kareem, 1984). Kanai-Tajimi spectrum amplifies the frequency around 𝜔𝑔 and it attenuates
high frequencies (Thráinsson et al., 2000).
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Table 4.2 – Common power spectral density functions models.

Filter Power Spectral Density Functions
White Noise 𝑆𝑊 𝑁(𝜔) = 𝑆0

Kanai-Tajimi 𝑆𝐾𝑇 (𝜔) = (1+4𝜉2
𝑔(𝜔/𝜔𝑔)𝑆0)

1+(𝜔/𝜔𝑔)2+4𝜉2
𝑔(𝜔/𝜔𝑔)2

Kaimal 𝑆𝐾𝑎𝑖(𝜔) =
[︁ 4𝑆2

0 [𝐿𝑘/𝑣ℎ𝑢𝑏))
1+(6𝜔(𝐿𝑘/𝑣ℎ𝑢𝑏))

]︁5/3

Davenport 𝑆𝐷𝑎𝑣(𝜔) = 4𝜅𝐿𝑣2
ℎ𝑢𝑏𝜒

(1+𝜒2)4/3 , 𝜒 = 𝜔𝐿/𝑣ℎ𝑢𝑏

Figure 4.2 shows the spectral and time history characteristics of different wind
models with added Gaussian noise.
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Figure 4.2 – (a) Power spectral density and (b) zero mean time history wind velocity for
white noise, Davenport, Kaimal and Kanai-Tajimi models.

From Figure 4.2(a), it can be noticed that both Kaimal and Davenport spectra
show more dominant low frequency components. Since Kanai-Tajimi is a second order
filter, the formation of a peak near its characteristic frequency can be clearly noticed.
In addition, Figure 4.2(b) shows the velocity of the wind in the time domain. This time
history is numerically generated by a FFT based algorithm. Taking the inverse discrete
Fourier transform (IDFT) of the discretized signal in the frequency domain where its
amplitude is estimated as the square root of the discretized PSD,

√
𝑆𝑘. Then, the random

phase is generated from a uniform distribution within the interval [0, 2𝜋] (Newland, 2012).

34



It can be noticed that the white noise velocity profile is the least smooth of all,
because the velocity at one point in time is independent from the velocity at any other
instant. Moreover, it has the largest dispersion around the mean, which is proportional to
the area under the PSD curve. This spectrum is not physically meaningful, but it is usually
applied because it is easier to manipulate analytically than other model. The Kanai-Tajimi
spectrum also shows a large dispersion, due to its large area under the PSD curve, but it
presents smoother time domain history than the white noise spectrum. Finally, Kaimal
and Davenport spectra present a more physically meaningful wind velocity profile with
good autocorrelation (Murtagh et al., 2004).
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5 Mathematical description of
dynamic system

In this chapter, how the wind excitation influence the dynamic behavior of the
structure is considered. First, some comments on why a simplified model of wind turbine
is used are presented.

A complete model of wind turbine needs to consider the structural model, the
aerodynamics (i.e. lift, drag, momentum) and the interface effects. In the structural model,
both the blades and the tower have an impact in the overall performance. Figure 5.1
shows a diagram of a complete model of forces and their interaction acting on a wind
turbine. Moreover, nonlinearities and coupling effects can affect the structure response.
Time domain simulations provide a reasonable assessment of this response. However, such
analysis is computationally expensive, in particular when fatigue analysis is desired. FEA
is more computationally complex and not recommended for a preliminary stage. Besides
that, performance analysis such as optimization techniques can be carried out using the
simplified model.

From previous works (Baumgart et al., 2002) it is known that an efficient, systematic
stability analysis cannot be performed for large systems of differential equations (i.e. the
order of differential equations higher than 100) because some numerical effects in the
solution of the equations of motion as initial value problem or eigenvalue problem become
predominant. It is therefore of interest study how a simplified dynamic model could estimate
the structural response. The simplified model is reduced to the elementary coordinates
but still needs to describe the relevant physical process under consideration with good
accuracy. Such a simplified model can be used as an early design of new wind turbines.

This work focus on the structural dynamic aspect of wind turbines considering
a lattice towers with concentrated mass at the top, hence, the model does not include
the gyroscopic effects due to turbine blade rotation. In flexible tower structures, more
than 90% of the total energy dissipation usually occurs due to the fundamental mode
in flexure (Murtagh et al., 2004). However, the vibrating frequency and shape mode of
the tower are indeed effected by not only the shear force but also the moment force,
generated by the motion of the additional mass attached at the free end. Auciello (1996)
developed an exact analysis of free vibration of tapered cantilever beams with tip mass.
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Figure 5.1 – Diagram of a completed model of forces acting on a wind turbine (Ageze et
al., 2017).

Auciello considered the rotary inertia of the concentrated mass with its eccentricity. The
solutions were given in terms of Bessel Functions and his model was proven a good
alternative to the classical Rayleigh-Ritz approach. Murtagh et al. (2004) demonstrated
two simple approximate methods for obtaining the natural frequencies. This simplification
is acceptable for low frequency analysis (Kang et al., 2016). The first method employs the
lumped mass technique, which reduces the order of the model, ultimately discretizing the
tower-top mass system into several convenient degrees-of-freedom. The second method
involves approximating the tower and utility by a cantilever beam with a concentrated
mass at its free end. Then, the generic form of the fundamental mode shape is assumed,
and the exponent, which is the unknown parameter of the mode shape expression, is
determined. This method, which is more simplified compared to the former, concentrates
on the fundamental mode of a structural system along with the corresponding mode
shapes.

The mathematical model of the structure using a similar methodology of the
Murtagh et al.’s second method is considered. The aim of this chapter is to discuss in
what conditions the structural system consisting of distributed mass and elasticity can be
modeled as a one-degree of freedom system using the principle of virtual work. Next, a
brief introduction to the governing equation of a TLCD the coupled system equation in
matrix form.
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5.1 Equivalent parameters of a cantilever beam

The wind turbine structure is modeled as a cantilever beam with a mass at the free
end. Gyroscopic effects due the turbine blade rotation are not considered. A simplification
to a one degree of freedom equivalent system is considered. The usually employed equivalent
stiffness, 𝑘𝑒𝑞 = 3𝐸𝐼/𝐿3, which is obtained for a concentrated tip mass with negligible
distributed mass, does not always seem reasonable. An alternative approach consist of
applying the principle of virtual work, which has been widely used in studies of elastic
structural analysis. The principle of virtual work is perhaps one of the most fundamental
principles in mechanics, and it can be stated as follow (Paz, 2012):

"For a system that is in equilibrium, the work done by all the forces during an
assumed displacement (virtual displacement) that is compatible with the system constraints
is equal to zero."

In other words, the principle of virtual work can be use to describe an equivalent
systems where the kinetic and potential energies are the same as the original system. A
system with multiple degree of freedom can be analyzed using the virtual work principle
provided that only a single mode shape can be developed during motion, that is, if prior
knowledge of the displacement of a single point in the system is known, the displacement
of the entire system can be determined.

First, a description of the general model for a distributed mass cantilever beam
with tip mass. Then, the required assumptions to describe the system as a single degree of
freedom equivalent system are considered.

The wind turbine can be modeled as a cantilever beam with tip mass because
the majority of its weight is concentrated at the top. Consider an elastic Euler-Bernoulli
beam, viscously damped and fixed at the bottom as shown in Figure (5.2). The tower has
a concentrated mass at the tip and the tip is subjected to a load per unit length 𝐹 (𝑧, 𝑡)
(not shown).

The motion of a Euler-Bernoulli beam is describe as

𝜕2

𝜕𝑧2

(︃
𝐸𝐼

𝜕2𝑤(𝑧, 𝑡)
𝜕𝑧2

)︃
+𝑚

𝜕2𝑤(𝑧, 𝑡)
𝜕𝑡2

= 𝐹 (𝑧, 𝑡) (5.1)

where 𝑤(𝑧, 𝑡) is the transverse displacement response, 𝐸 is the elastic modulus, 𝐼 is
the moment of inertia averaged over the tower length 𝐿. The solution of a homogeneous
(𝐹 (𝑧, 𝑡) = 0) fourth order differential equation has an infinite number of natural frequencies
(eigenvalues) and associated modes (eigenvectors). Considering the variable separation
method where displacement can be described as 𝑤(𝑧, 𝑡) = 𝜑(𝑧)𝑌 (𝑡), the equation of motion
solely in the spatial variable is given by

𝑑2

𝑑𝑧2

(︃
𝐸𝐼

𝑑2𝜑(𝑧)
𝑑𝑧2

)︃
+𝑚

𝑑2𝜑(𝑧)
𝑑𝑡2

= 0. (5.2)
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Figure 5.2 – Schematic model of the structure and equivalent simplified model.

To solve Equation (5.2), the four spatial form of the boundary conditions need to be
satisfied:

fixed end at 𝑧 = 0

𝜑(0) = 0, 𝑑𝜑(0)
𝑑𝑧

= 0, (5.3)

free end with tip mass 𝑀 at 𝑧 = 𝐿

𝐸𝐼
𝑑2𝜑(𝐿)
𝑑𝑧2 = 𝜔2

𝑛

𝑑𝜑(𝐿)
𝑑𝑧

𝐽, (5.4)

𝐸𝐼
𝑑3𝜑(𝐿)
𝑑𝑧3 = 𝜔2

𝑛𝜑(𝐿)𝑀, (5.5)

where 𝐽 is the rotary mass moment of inertia, 𝑀 is the tip mass and 𝜔𝑛 the natural
frequencies of vibration. The solution of Equation (5.2) has the following form

𝜑(𝑧) = 𝐴1 cos(𝜆𝑧) + 𝐴2 sin(𝜆𝑧) + 𝐴3 cosh(𝜆𝑧) + 𝐴4 sinh(𝜆𝑧), (5.6)

where 𝐴𝑖, 𝑖 = 1, 2, 3, 4 are the four constants to be found using the boundary conditions,
and 𝜆 is the root of the eigenvalue problem given by

𝜆 =
(︃
𝜔2

𝑛𝑀

𝐸𝐼

)︃1/4

, (5.7)

the spatial form of the boundary condition can be combined with Equation (5.6) to find
the values of 𝜆 which give non-trivial values for the modal shapes 𝜑(𝑧). By writing the
system of equations in matrix form, we notice that

𝐴1 + 𝐴3 = 0 (5.8)

𝐴2 + 𝐴4 = 0 (5.9)
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hence, ⎡⎣𝜆2(cos𝜆𝐿+ ch𝜆𝐿) + 𝜔2
𝑛𝐽

𝐸𝐼
𝜆(sin 𝜆𝐿+ sh𝜆𝐿) 𝜆2(sin 𝜆𝐿+ sh𝜆𝐿)

𝜆3(sin 𝜆𝐿− sh𝜆𝐿) + 𝜔2
𝑛𝑀
𝐸𝐼

(cos𝜆𝐿− ch𝜆𝐿) −𝜆3(cos𝜆𝐿− ch𝜆𝐿)

−𝜔2
𝑛𝐽

𝐸𝐼
𝜆(cos𝜆𝐿− ch𝜆𝐿)

+𝜔2
𝑛𝑀
𝐸𝐼

(sin 𝜆𝐿− sh𝜆𝐿)

⎤⎦⎧⎨⎩𝐴1

𝐴3

⎫⎬⎭ =

⎧⎨⎩0
0

⎫⎬⎭ . (5.10)

The coefficients of Equation (5.10) have to be singular in order to obtain non-trivial
values of 𝐴1 and 𝐴3. Setting the determinant of the square matrix equals to zero to obtain

1 + cos𝜆𝐿ch𝜆𝐿+ 𝜆
𝜔2

𝑛𝑀

𝐸𝐼
(cos𝜆𝐿sh𝜆𝐿− sin 𝜆𝐿ch𝜆𝐿)− 𝜔2

𝑛𝐽

𝐸𝐼
𝜆3(ch𝜆𝐿 sin 𝜆𝐿+ sh𝜆𝐿 cos𝜆𝐿)

+𝜔
4
𝑛𝑀𝐽

(𝐸𝐼)2 (1− cos𝜆𝐿ch𝜆𝐿) = 0
.

(5.11)

The roots of Equation (5.11) give the eigenvalues of the system. Since the boundary-
value problem is positive definite, the system has infinitely many positives eigenvalues for
infinitely many natural modes of vibration. Hence, the eigenvalue of the 𝑟th vibration
mode is 𝜆𝑟, and it is associated with the 𝑟th eigenfunction (Erturk & Inman, 2011)

𝜑𝑟(𝑧) = 𝐴𝑟

[︃
sin 𝜆𝑟𝑧 − sh𝜆𝑟𝑧 +

(︃
sin 𝜆𝑧 + sh𝜆𝑧
cos𝜆𝑧 + ch𝜆𝑧

)︃
(− cos𝜆𝑟𝑧 + ch𝜆𝑟𝑧)

]︃
, (5.12)

where 𝐴𝑟 is the 𝑟th eigenfunction. Figure 5.3 shows the two first mode shapes of a cantilever
beam with tip mass.
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Figure 5.3 – The (a) first and (b) second modes of vibration of a cantilever beam with tip
mass (Hatch, 2000).

Most commonly, tower vibration is approximated to the first term of Equation
(5.12) which produces the first mode response of the tower. Kim (2017) proposed an
equivalent mass and stiffness of a beam. The first bending mode was proposed by combining
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polynomials representing the respective deflection shapes of a beam under a concentrated
force at the tip and a uniformly distributed force.

An alternative approach was proposed by Avila et al. (2016) where for the first
modal shape of a cantilever beam with tip mass was given by assuming the following
modal shape (Paz, 2012)

𝜑(𝑧) = 1− cos 𝜋𝑧
2𝐿 (5.13)

this form is the one utilize thought out the rest of the analysis.

From the virtual work principle, assuming the modal shape 𝜑 given by Equation
(5.13), the generalized mass and kinetic energy 𝑇 are given by

𝑇 =
∫︁ 𝐿

0

1
2𝑚(𝑧)𝑤2(𝑧, 𝑡)𝑑𝑧 = 1

2𝑀
*𝑌 2(𝑡), (5.14)

𝑇 =
∫︁ 𝐿

0

1
2𝑚(𝑧){𝜑(𝑧)𝑌 (𝑡)}2𝑑𝑧 = 1

2𝑀
*𝑌 2(𝑡), (5.15)

hence,

𝑀* =
∫︁ 𝐿

0
𝑚(𝑧)𝜑2(𝑧)𝑑𝑧, (5.16)

and for the generalized stiffness, using the potential (strain) energy 𝑉 , we obtain

𝑉 =
∫︁ 𝐿

0

1
2𝐸𝐼

(︃
𝑑2𝑤

𝑑𝑧2

)︃2

𝑑𝑧 = 1
2𝐾

*𝑌 2(𝑡), (5.17)

𝑉 =
∫︁ 𝐿

0

1
2𝐸𝐼{𝜑

′′(𝑧)𝑌 (𝑡)}2𝑑𝑧 = 1
2𝐾

*𝑌 2(𝑡), (5.18)

hence,

𝐾* =
∫︁ 𝐿

0
𝐸𝐼𝜑′′(𝑧)𝑑𝑧. (5.19)

substituting the modal shape of Equation 5.13 in Equations (5.16) and (5.19), the genera-
lized mass ans stiffness can be computed as

𝐾* = 𝜋4

32𝐿3𝐸𝐼, (5.20)

𝑀* = 𝑚𝐿

2𝜋

[︂
𝜋
(︂

3 + 2𝐿𝑒

𝐿

)︂
− 8

]︂
, (5.21)

where 𝑚 is the mass for unit length of the beam, 𝑀 is the tip mass, 𝐿𝑒 is the equivalent
length defined as 𝐿𝑒 = 𝑀/𝑚.

5.2 TLCD model and system equation of motion

TLCDs were originally created to mitigate rolling motion of ships and became
popular through patents applications by Sakai et al., (1989). The oscillating liquid works as

41



a damping device transferring energy from the primary structure to the liquid. Furthermore,
the energy of the oscillating liquid can be dissipated through friction and turbulence effects.
Considering the TLCD rigidly connected on the primary structure as sketched in Figure
5.4. The TLCD consist of a “U” shaped reservoir filled with a Newtonian fluid such as
water. From the previous section, the primary structure is a tower structure modeled as a
one degree of freedom system with equivalent mass, stiffness and viscously damping.

𝑢(𝑡)

𝐷

𝑏

𝐴

𝑙

𝑘𝑒

𝑐𝑒

𝑚𝑒

𝜉

𝑚𝑎

𝑥(𝑡)

𝐹 (𝑡)

Figure 5.4 – Schematic model of the TLCD.

The liquid motion and oscillation can be derive from the Bernoulli equation. A
more detail description of the TLCD mathematical model can be found in Streeter et al.,
(1998). The equation describing the motion of the fluid is given by

𝜌𝐴𝑙𝑢̈(𝑡) + 1
2𝜌𝐴𝜉|𝑢̇(𝑡)|𝑢̇(𝑡) + 2𝜌𝐴𝑔𝑢(𝑡) = −𝜌𝐴𝑏𝑥̈(𝑡), (5.22)

where 𝑢(𝑡) is the displacement of fluid, 𝑥(𝑡) is the displacement of the primary system, 𝜌
is the fluid density, 𝜉 is the head loss coefficient, 𝐴 is the cross section area of the column,
𝑏 and 𝑙 are the horizontal and total length of the column respectively and 𝑔 is the gravity
constant. The TLCD equivalent mass, damping and stiffness are given respectively by
𝑚𝑎 = 𝜌𝐴𝑙, 𝑐𝑎 = 1

2𝜌𝐴𝜉|𝑢̇(𝑡)| and 𝑘𝑎 = 2𝜌𝐴𝑔. Therefore, the linearized column’s natural
frequency is given by 𝜔𝑎 =

√︁
2𝑔/𝑙. The term on the right side of the Eq. (5.22) is the

coupling term with the primary structure.

The equation of motion of the primary structure can be written as

(𝑚𝑒 +𝑚𝑎)𝑥̈(𝑡) + 𝜌𝐴𝑏𝑢̈(𝑡) + 𝑐𝑒𝑥̇(𝑡) + 𝑘𝑒𝑥(𝑡) = 𝐹 (𝑡), (5.23)

where the parameter 𝑚𝑒 is the structure mass, 𝑘𝑒 the structure stiffness, 𝑐𝑒 the structure
damping and 𝐹 (𝑡) the excitation force. From the previous section, we have 𝑚𝑒 = 𝑀* and
𝑘𝑒 = 𝐾* from now on. The term 𝜌𝐴𝑏𝑢̈(𝑡) is a reaction force that occurs due to the motion
of the liquid column induced by the structure. Thus, combining Equations (5.22) and
(5.23), the equation of motion in matrix form is given by⎡⎣𝑚𝑒 +𝑚𝑎 𝛼𝑚𝑎

𝛼𝑚𝑎 𝑚𝑎

⎤⎦⎧⎨⎩𝑥̈𝑢̈
⎫⎬⎭+

⎡⎣𝑐𝑒 0
0 𝑐𝑎

⎤⎦⎧⎨⎩𝑥̇𝑢̇
⎫⎬⎭+

⎡⎣𝑘𝑒 0
0 𝑘𝑎

⎤⎦⎧⎨⎩𝑥𝑢
⎫⎬⎭ =

⎧⎨⎩𝐹 (𝑡)
0

⎫⎬⎭ , (5.24)
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|𝑢| 6 𝑙 − 𝑏
2 , (5.25)

where 𝛼 = 𝑏/𝑙 is the dimensionless length ratio. The condition presented by Equation
(5.25) is needed to ensure the liquid in the column do not spill water and consequently
change its mass and damping characteristics. Equation (5.24) can also be written with the
mass matrix in its dimensionless form⎡⎣1 + 𝜇 𝛼𝜇

𝛼 1

⎤⎦⎧⎨⎩𝑥̈𝑢̈
⎫⎬⎭+

⎡⎣2𝜔𝑒𝜁𝑒 0
0 𝜉|𝑢̇|

2𝑙

⎤⎦⎧⎨⎩𝑥̇𝑢̇
⎫⎬⎭+

⎡⎣𝜔2
𝑒 0

0 𝜔2
𝑎

⎤⎦⎧⎨⎩𝑥𝑢
⎫⎬⎭ =

⎧⎨⎩
𝐹 (𝑡)
𝑚𝑒

0

⎫⎬⎭ , (5.26)

where

𝜁𝑒 = 𝑐

2𝑚𝑒𝜔𝑒

(5.27)

𝜔𝑒 =
√︃
𝑘𝑒

𝑚𝑒

(5.28)

are the damping ratio and natural frequency of the linearized structure alone, respectively.
The dimensionless parameters mass ratio 𝜇 and tuning ratio 𝛾 are defined as 𝜇 = 𝑚𝑎/𝑚𝑒

and 𝛾 = 𝜔𝑎/𝜔𝑒. It can be noted that the nonlinear term is included in the TLCD damping
matrix.

In the next chapter, two numerical analysis are considered, a parameter optimization
and a sensitivity analysis.
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6 Optimization

This Chapter proposes a global direct search optimization algorithm for the TLCD’s
parameters subjected to an arbitrary wind spectrum, given by its power spectral density
(PSD). A simple verification is made considering the analytical solution of undamped
primary structure under white noise excitation. Finally, a numerical example with a
simplified wind turbine model is given to illustrate the efficacy of TLCD. Time and
frequency domain results from the random vibration analysis are also shown.

To avoid solving nonlinear equations simultaneously, solutions such as statistical
linearization (Roberts & Spanos, 2003) and parameter optimization (Vanderplaats, 1984)
have been proposed in previous works. Yalla & Kareem (2000) derived a closed-form
solution for optimized TLCD damping ratio and head loss coefficient. Although the
method does not rely on an iterative procedure, in order to solve the minimum variance
integrals, a formula is derived indirectly considering some properties of the spectrum of
the stationary output of a linear time-invariant system to white noise input. Altay et al.
(2014) presented an expanded optimization approach which considers the geometric layout
of the damper. Numerical verification was carried out by stochastic inflow turbulence
simulator TurbSim and the aero-elastic dynamic horizontal axis wind turbine simulator
FAST which are well known wind turbine simulation tools.

Optimization procedures have also been proposed for structures with mounted
TLCD under harmonic load. By maximizing the reduction of peak structural response
under harmonic excitation, Gao et al. (1997) designed the optimum tuning parameters
for a TLCD for a wide frequency range. Shum (2009) proposed a close-form optimal
solution by optimizing the response of primary structure at two invariant points using the
fixed-point method with a perturbation technique.

Some interesting optimization approaches can also be found for tuned mass damper
(TMD). To avoid the limitations of the close-form optimal solutions, Lee et al. (2006)
proposed an optimal design theory with a systematic and efficient procedure for searching
optimal design parameters of a TMD. Zuo & Nayfeh (2004) proposed a numerical approach
based on the descent subgradient method to maximize the minimal damping of modes in
a prescribed frequency range for general multi-degree-of-freedom TMD, then followed by a
performance comparison between the minmax, 𝐻2 and 𝐻∞ methods.

This Chapter objective is to propose an optimization approach, based on a global
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direct search optimization algorithm, in order to find the optimum TLCD parameters
for reducing vibration levels in slender structures such as wind turbines, when subject
to an arbitrary stationary random wind excitation. The mathematical description of the
slender structure and TLCD were discussed in Chapter 5. Four different wind models
are investigated given by a power spectral density (PSD) profile and their effects on the
optimum parameters are discussed. The wind profile model used were discussed in Chapter
4. Then, a numerical example with a simplified wind turbine model is used to illustrate
the efficacy of TLCD.

This Chapter is organized as follow. Section 6.1 presents the optimization approach
as well as a numerical verification. Section 6.2 presents a random vibration analysis through
a numerical example using a simplified wind turbine model. Finally, Section 6.3 presents
some concluding remarks.

6.1 Parameter optimization criteria

The nonlinear nature of TLCD damping in Equation (5.26) requires the determi-
nation of its equivalent form in order to perform random vibration analysis. Statistical
linearization is the classical approach but other methods can also be used. In this section,
the linearization is firstly introduced followed by the parameter optimization.

Roberts & Spanos (2003) proposed a procedure to estimate the linearized equivalent
damping using statistical linearization. From this approach, the error between the nonlinear
term with its equivalent linearized can be expressed as 𝜖 = 𝜉|𝑢̇|/2𝑙 − 𝑐𝑒𝑞𝑢̇, where the value
of the equivalent damping 𝑐𝑒𝑞 can be obtained by minimizing the standard deviation of the
error value, namely 𝐸{𝜖2}. Assuming a probability density function with Gaussian form,
it is possible to obtain an expression for the equivalent linearized damping as a function of
the standard deviation of the fluid velocity 𝜎𝑢̇ and the head loss coefficient 𝜉. An iterative
method is then carried out to find the optimized head loss coefficient.

Another linearization strategy is described in Yalla & Kareem (2000). By writing
the TLCD’s nonlinear damping in its linear form, 2𝜔𝑎𝜁𝑎, where 𝜔𝑎 and 𝜁𝑎 are the TLCD’s
natural frequency and damping ratio respectively, Yalla & Kareem minimized the primary
structure variance response with respect to the damping ratio and the tuning ratio to
find their optimal conditions when both equations were solved simultaneously. Although
this method does not rely on iterative procedure, it involves a rather large computation
(Roberts & Spanos, 2003). Furthermore, the minimization solution changes if different
wind models are used.

In this work, the proposed method considers the linearization as described in Yalla
& Kareem (2000) but instead of solving the optimization problem analytically, a numerical
approach is considered, extending the methodology to an arbitrary spectrum. We can
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write Equation (5.26) in its linearized form as follows⎡⎣1 + 𝜇 𝛼𝜇

𝛼 1

⎤⎦⎧⎨⎩𝑥̈𝑢̈
⎫⎬⎭+

⎡⎣2𝜔𝑒𝜁𝑒 0
0 2𝜔𝑎𝜁𝑎

⎤⎦⎧⎨⎩𝑥̇𝑢̇
⎫⎬⎭+

⎡⎣𝜔2
𝑒 0

0 𝜔2
𝑎

⎤⎦⎧⎨⎩𝑥𝑢
⎫⎬⎭ =

⎧⎨⎩
𝐹 (𝑡)
𝑚𝑒

0

⎫⎬⎭ . (6.1)

From the linearized system, a frequency response function (FRF) is defined which
will be used in the random vibration analysis. The frequency response functions are
obtained by assuming the system in Equation (6.1) oscillates under harmonic motion. The
system response vector is then given by

X(𝜔) = [−𝜔2M + 𝑗𝜔C + K]−1F(𝜔)

= H(𝑗𝜔)F(𝜔)
(6.2)

where 𝜔 stands for the driving frequency, F(𝜔) is the vector of the exciting force, H(𝑗𝜔) =
[−𝜔2M + 𝑗𝜔C + K]−1 is the frequency response function, 𝑗 is the imaginary unit, and
M, C and K are the mass, damping and stiffness matrix respectively. For both degrees of
freedom, the explicit expressions of the diagonal terms of the FRF matrix are given by

𝐻11 = (𝑗𝜔)2 + 𝜁𝑎𝜔𝑎(𝑗𝜔) + 𝜔2
𝑎

[(𝑗𝜔)2(1 + 𝜇) + 2𝜁𝑒𝜔𝑒(𝑗𝜔) + 𝜔2
𝑒 ][(𝑗𝜔)2 + 2𝜁𝑎𝜔𝑎(𝑗𝜔) + 𝜔𝑎]2 − (𝑗𝜔)4𝛼2𝜇

, (6.3)

𝐻22 = −𝛼(𝑗𝜔)2

[(𝑗𝜔)2(1 + 𝜇) + 2𝜁𝑒𝜔𝑒(𝑗𝜔) + 𝜔2
𝑒 ][(𝑗𝜔)2 + 2𝜁𝑎𝜔𝑎(𝑗𝜔) + 𝜔𝑎)2]− (𝑗𝜔)4𝛼2𝜇

. (6.4)

Equation (6.3) and (6.4) depend on the system parameters such as the absorber damping
ratio and the natural frequencies.

If the excitation force F(𝑡) is a stationary random signal with power spectral
density (PSD) 𝑆𝑓𝑓(𝜔), the structural response is also random and with PSD given by
𝑆𝑦𝑦 = H𝑆𝑓𝑓H𝑇 , where the superscript 𝑇 denotes the matrix transpose. Note that 𝑆𝑓𝑓 (𝜔) is
proportional to the power spectral density of the wind velocity and it can assume different
models depending on the wind profile.

The desired performance index (cost function) Ξ will be defined by the mean square
response. If the exciting force is zero mean then the response also has zero mean, therefore
the mean square response equals the variance, thus

Ξ(𝜁𝑎, 𝛾) =
∫︁ ∞

−∞
𝑆𝑦𝑦(𝜔)𝑑𝜔

=
∫︁ ∞

−∞
H(𝑗𝜔)𝑆𝑓𝑓 (𝜔)H(𝑗𝜔)𝑇𝑑𝜔

(6.5)

where the response PSD 𝑆𝑦𝑦(𝜔) is real positive and, therefore, the sufficient and necessary
conditions for the optimization are met (Lee et al., 2006). For the prescribed frequency
range [𝜔𝑙, 𝜔𝑢] the optimization problem consists of looking for the parameters that minimize
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the variance of response PSD, i.e.

min
𝜁𝑎,𝛾∈Ω

Ξ𝑖(𝜁𝑎, 𝛾)

𝑠.𝑡. 𝜁𝑎, 𝛾 ≥ 0

𝐼 = {𝑖 | 𝜔𝑙 ≤ 𝜔𝑖 ≤ 𝜔𝑢}

(6.6)

where Ω is the set of design parameters 𝜁𝑎 and 𝛾 satisfying the constraint. To solve the
optimization problem we introduce the optimization algorithm in the next subsection.

6.1.1 Generalized patter search

The Generalized Patter Search (GPS) is a class of direct search methods, originally
proposed for unconstrained minimization problems (Hooke & Jeeves, 1961), and then
extended in its generalized form for problems with bound and linear constraints (Torczon,
1997). GPS is a non-gradient-based algorithm therefore, it is not as strongly affected by
random noise in the cost function. However, it requires more function evaluations than
gradient-based algorithms to find the true minimum. A more detailed description of the
method can be found in Kolda et al. (2003). The MATLAB environment is used to perform
the GPS algorithm with its included solver patternsearch as showing in Algorithm 1 bellow.

Algorithm 1 patternsearch algorithm
X0 = [zeta gamma]; # Starting point
LB = [0 0]; # Lower bound
UB = [inf inf]; # Upper bound
Objfcn = @objfun;
PSoptions = optimoptions(’patternsearch’,...

’ConstraintTolerance’,1e-14,
’FunctionTolerance’,1e-14,
’StepTolerance’,1e-14);

[xopt,Fps] = patternsearch(Objfcn,X0,[ ],[ ],[ ],[ ],LB,UB,PSoptions);

6.1.2 Verification procedure

In order to verify if the algorithm and cost function are adequate for solving
the optimization problem, a simple case where the closed-form solution is available is
investigated.

Considering the case of undamped primary structure (𝜁𝑒 = 0) and white noise
excitation, Yalla & Kareem (2000) solved the mean variance problem to obtain the following
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expression for optimal parameters

𝜁𝑜𝑝𝑡 = 𝛼

2

⎯⎸⎸⎷ 2𝜇
(︁
𝛼2 𝜇

4 − 𝜇− 1
)︁

(𝛼2𝜇2 + 𝛼2𝜇− 4𝜇− 2𝜇2 − 2) , (6.7)

𝛾𝑜𝑝𝑡 =

√︁
1 + 𝜇(1− 𝛼2

2 )
1 + 𝜇

, (6.8)

which are function of the length ratio 𝛼 and mass ratio 𝜇.

Figure 6.1 shows the optimized parameters from Yalla & Kareem (2000) and the
proposed algorithm as a function of the mass ratio for different length ratio 𝛼. It can be
noticed a very good agreement in Figure 6.1(a) for the tuning ratio. A slight difference in
Figure 6.1(b) can be seen between the two methods in the optimum damping ratio for
large values of mass ratio which can be attributed to tolerance error in the optimization
algorithm and the chosen cost function’s interval of integration that, in this case, were
chosen between 2 and 5 rad/s with resolution of 0.01 rad/s. An increase in the interval or
resolution would result in a small change in the optimized values but increase considerably
the computation time. Additionally, the optimized damping ratio sensibility does not
seems to influence the characteristics of the system.
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Figure 6.1 – Comparing optimized (a) tunning ratio and (b) damping ratio subject to
White Noise spectrum as a function of the mass ratio 𝜇 for different length
ratio 𝛼.
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The wind excitation PSDs considered are detailed in Chapter 4. The next section
describes a numerical example of a simplified wind turbine using random vibration analysis,
wind profiles and the optimized parameters.

6.2 Random vibration analysis

In this section, the random vibration analysis to find the system response in the
frequency domain is introduced. Statistics of the response, e.g. mean value, standard
deviation and autocorrelation, of a linear systems under random stationary excitation
can be calculated straightforwardly. However, non-linear systems require the direct time
domain solution of the differential equations in order to calculate the response statistics or
some linearization approach. These difference can be summarized in the diagram shown in
Figure 6.2.

𝐻(𝜔)

ℎ(𝑡)𝑓(𝑡) y(t)

𝑆𝑦𝑦(𝜔)𝑆𝑓𝑓 (𝜔)

Figure 6.2 – Response PSD 𝑆𝑦𝑦(𝜔) obtained from frequency response function for the
linearized case (upper path), and from numerical integration for the nonlinear
case (lower path).

The upper path of the diagram indicates the first approach. In this case, to obtain
the frequency response function we first apply the proposed linearization procedure to the
system and then calculate the optimized parameters. From the excitation PSD 𝑆𝑓𝑓 , the
response PSD 𝑆𝑦𝑦 can be calculated directly by (Newland, 2012)

𝑆𝑦𝑦(𝜔) = H(𝜔)𝑆𝑓𝑓 (𝜔)H(𝜔)𝑇 . (6.9)

where this expression is equivalent to the expression presented in Equation 3.54. Moreover,
Equation 6.9 is computationally cheaper than the direct integration approach. The later,
typically requires the use a 4𝑡ℎ order Runge Kutta Felberg (𝑜𝑑𝑒45) solver. The wind profile
time history can be calculated from the procedure described in Section 4.3. Finally, the
response PSD 𝑆𝑦𝑦(𝜔) can be estimated via a periodogram approach (Newland, 2012). This
approach can lead to the solution of the structure response. However, it would still be
necessary to find the optimized parameters that would require several evaluations of this
nonlinear system, which could be computationally prohibitive.

A comparison between the two approaches was carried out in Alkmim et al. (2016).
The main result is presented in Figure 6.3, which illustrates the response PSD of the two
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cases and the system without the TLCD using a first order filter PSD excitation. A good
approximation between the two methods is shown as well as a good vibration dissipation
comparing to the case without TLCD. In addition, there is a slightly difference between
equivalent and nonlinear models near the resonance peak where the nonlinear case shows
a slightly smaller amplitude PSD compared to the linearized case. This difference might
be attributed by the numerical approximations such as the frequency range chosen for the
optimization.
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Figure 6.3 – PSD response of main system to a first order filter random excitation without
and with TLCD, obtained via statistical linearization and via numerical
integration of nonlinear system

6.2.1 Numerical example

In this section a numerical example is carried out using the wind turbine parameters,
summarized in Table 6.1, same as proposed by Murtagh et al., (2005). First, optimized
parameters are obtained for a fixed length ratio and different mass ratios and wind spectra
cases. Then, comparisons of the system response PSD with and without TLCD are shown.

Table 6.2 presents the obtained optimized TLCD damping ratio 𝜁𝑜𝑝𝑡 and tunning
ratio 𝛾𝑜𝑝𝑡 for a fixed length ratio 𝛼 = 0.8 and different mass ratio and wind spectra. Fixed
length ratio configuration is chosen because both mass and length ratios are inversely
proportional and related to the physical constraint horizontal length of the liquid column,
𝑏, as follows

𝜇 =
(︂
𝜌𝐴

𝑚𝑒

)︂
𝑏

𝛼
. (6.10)
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Table 6.1 – Wind turbine parameters

Parameter Symbol Equation Value Unit
Modulus of elasticity 𝐸 2.1× 1011 Pa
Width 𝐷 3 m
Thickness 𝑡ℎ 0.015 m
Cross section area 𝐴ℎ 𝜋𝐷𝑡ℎ 0.14 m2

Steel density 𝜌𝑠 7850 kg/m3

Tip mass 𝑀 19876 kg
Beam mass per length 𝑚 𝜌𝑠𝐴 1110 kg/L
Total length 𝐿 60 m
Equivalent length 𝐿𝑒 𝑀/𝑚 17.91
Second moment of area 𝐼 𝜋𝑡𝐷3/8 0.16 m4

Structure stiffness 𝑘𝑒 Eq.(5.20) 470685 N/m
Structure mass 𝑚𝑒 Eq.(5.21) 34975 kg
Structure natural frequency 𝜔𝑒

√︁
𝑘𝑒/𝑚𝑒 3.67 rad/s

Structure damping ratio 𝜁𝑒 𝑐𝑒/2𝑚𝑒𝜔𝑒 1.83 %

where a fixed length ratio can have different horizontal lengths for each mass ratio.

From Table 6.2, it can be seen that the optimum TLCD damping ratio 𝜁𝑜𝑝𝑡 increases
when increasing mass ratio 𝜇, and it is only slightly affected by the choice of wind spectrum.
This can be clearly noticed from Figure 6.4(b). On the other hand, the optimum tunning
ratio 𝛾𝑜𝑝𝑡 decreases for increasing mass ratio 𝜇 and it is significantly affected by the choice
of wind spectrum, as can be clearly seen from Figure 6.4(a). Kaimal and Davenport
spectra present almost the same values of tunning ratio, which are overall increasingly
smaller for increasing mass ratio 𝜇, when compared to the white noise spectrum. This
is expected, since both Kaimal and Davenport spectra are very similar to each other
and with significantly more energy content in lower frequencies, when compared to the
white noise spectrum. Moreover, Kanai-Tajimi spectrum shows overall larger values of
optimized tunning ratio. Furthermore, the choice of wind spectrum can influence the
response magnitude and therefore it is relevant for the appropriate choice of optimum
TLCD parameters. One suitable strategy one might take is to use white noise spectrum
as an initial dynamic analysis. If we consider the system is undergoing magnitude higher
than it would be expected of other spectrums such as Kaimal and Davenport were utilized,
it means we are in favor of safety. The opposite can be said for Kanai-Tajimi spectrum.

Figure 6.5 shows the system response in frequency and time domain, under Kaimal
spectrum excitation and optimized parameters for 𝜇 = 0.06. A significant reduction of
the response is obtained in both PSD 𝑆𝑦𝑦 and time domain response, when compared to
the case without TLCD, as expected. Moreover, results are shown for two other cases in
which non-optimum parameters are chosen for 𝜇 = 0.02 and 𝜇 = 0.15, to illustrate the
effect of optimized parameters. While the optimized response PSD shows two peaks with
same magnitude, the latter presents two peaks, one slightly bigger than the other and the
former has only one peak, which is bigger than the optimized one.
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Table 6.2 – Optimized LCD damping ratio 𝜁𝑜𝑝𝑡 and tunning ratio 𝛾𝑜𝑝𝑡 for a fixed length
ratio 𝛼 = 0.8 and 1% primary structural damping

White Noise Davenport Kaimal Kanai-Tajimi
𝜇 𝜁𝑜𝑝𝑡 𝛾𝑜𝑝𝑡 𝜁𝑜𝑝𝑡 𝛾𝑜𝑝𝑡 𝜁𝑜𝑝𝑡 𝛾𝑜𝑝𝑡 𝜁𝑜𝑝𝑡 𝛾𝑜𝑝𝑡

0.02 0.0561 0.9861 0.0559 0.9815 0.0559 0.9815 0.0563 0.9874
0.04 0.0787 0.9732 0.0783 0.9655 0.0783 0.9656 0.0790 0.9754
0.06 0.0955 0.9609 0.0950 0.9504 0.0950 0.9505 0.0961 0.9638
0.08 0.1094 0.9491 0.1086 0.9360 0.1086 0.9360 0.1102 0.9527
0.10 0.1213 0.9377 0.1203 0.9222 0.1203 0.9222 0.1224 0.9419
0.12 0.1317 0.9267 0.1305 0.9088 0.1305 0.9089 0.1331 0.9315
0.14 0.1411 0.9161 0.1396 0.8960 0.1396 0.8961 0.1427 0.9213
0.16 0.1497 0.9058 0.1479 0.8836 0.1479 0.8837 0.1515 0.9115
0.18 0.1575 0.8959 0.1555 0.8717 0.1555 0.8717 0.1595 0.9019
0.20 0.1647 0.8862 0.1625 0.8601 0.1625 0.8602 0.1669 0.8927
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Figure 6.4 – Optimum (a) tunning ratio 𝛾𝑜𝑝𝑡 and (b) damping ratio 𝜁𝑜𝑝𝑡 subject to different
wind spectra as a function of the mass ratio 𝜇 for a fixed length ratio 𝛼 = 0.8
and 1% primary structural damping.

6.3 Concluding remarks

In this Chapter, it was proposed an optimization approach to find the optimum
TLCD parameters for reducing vibration levels in slender structures such as wind turbines,
when subject to an arbitrary stationary random wind excitation.

The TLCD model presented a nonlinear damping term, which is then approximated
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Figure 6.5 – Response of main system under Kaimal spectrum for 𝜇 = 0.06 and 𝛼 = 0.8
(a) without TLCD (dashed), optimized (solid black) and two different mass
ratio (solid grey scale) in the frequency domain and (b) without TLCD (solid
grey scale) and optimized (solid black) in the time domain.

by a linear coefficient utilizing a statistical linearization approach. Then an optimization
criteria was chosen such that it minimizes the area under the response PSD 𝑆𝑦𝑦 and a
global direct search optimization algorithm was used to find optimum TLCD parameters
as it can provide the optimized parameters for a more general case and for any wind
spectral model. Four different wind models, given by a PSD profile, were investigated,
namely Davenport, Kaimal, Kanai-Tajimi and a white noise, and it was shown that they
can significantly affect the choice of the optimum parameters. White noise is commonly
used in the literature, hence care should be taken since it might give misleading results.

A verification of the proposed approach is made considering the case of undamped
primary structure under white noise excitation, which has an analytical solution available.
The TLCD design parameters are obtained from damping ratio 𝜁 and tunning ratio 𝛾. It
is shown that the optimum TLCD damping ratio 𝜁𝑜𝑝𝑡 increases for increasing mass ratio
𝜇, and it is only slightly affected by the choice of wind spectrum. Besides, the optimum

53



tunning ratio 𝛾𝑜𝑝𝑡 decreases for increasing mass ratio 𝜇 and it is significantly affected by
the choice of wind spectrum.

A numerical example considering a simplified 1 DoF wind turbine as a slender
structure and results in time and frequency domain showed better vibration attenuation
performance when compared non-optimum parameters.
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7 Uncertainty analysis

The aim of this Chapter is to investigate the behavior of the structure response
and TLCD considering parameter variability. Computational models have proven to be a
reliable source of information of the behavior of physical problems. However, every finite
element analysis contains some degree of uncertainty. As simulation analysis increases
over complex problems, uncertainty can play bigger roles since it can grows with size and
complexity.

To the casual eye, uncertainty quantification seems a contradictory statement.
Nevertheless, uncertainty quantification has become a scientific and engineer approach
with a structured methodology much like the verification and validation method (V&V).

Uncertainties can arise from many sources. For instance, inadequate modeling of
boundary conditions, fabrication process, effect of nonstructural elements, degradation
due to aging and temperature, fluctuations in structural mass, member capacities, yield
strength, inertial moment, elasticity module, etc (Marano et al., 2010).

Another major limitation of the deterministic approach is that uncertainties in the
performance cannot be included in the damper parameter optimization since the damper
efficiency can drastically reduce if the parameters are off-tuned to the vibration mode
(Chakraborty & Roy, 2011). For this reason, the probabilistic approach offers a rational
basis of accounting for both load and structural uncertainties in the design process.

In order to increase the credibility of the model, these uncertainties need to be
modeled appropriately. The study of randomness associated with mechanical systems was
introduced in the early 20th century. However, only the external loading was considered
random leaving uncertainties related to the model unconsidered (Newland, 2012).

To quantify uncertainties in dynamic structures, random variables need to be
associated with the system parameters along with their probability density function.
Building the probability density function that best represents the physical problem is not
trivial and requires experimental data to assist in its construction (Soize, 2001). One way
around this problem is to associate to the random variable a Gaussian probability density
function. However, this procedure is not always advisable as it may lead to physically
incoherent results.

Many strategies can be used to construct the probability density function such as
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the hypothesis test, a Bayesian approach and the Maximum Entropy Principle (MEP). In
the hypothesis test, the probabilistic model is propose as the null hypothesis and then
confronted with observed data. The Bayesian approach is utilized by supposing a initial
probabilistic model. The model is then update using new information from experimental
or numerical data.

Alternatively, the Maximum Entropy Principle can be used to construct the
probability density function of the random variable uncertainties of the model. The
principle consist of using only the information available to build possible probability
density functions (PDF) and from there, search for the function with maximum entropy
(or uncertainty). This method avoids using misinformation in the construction of model
ranging from the physics of the problem (Sampaio & Ritto, 2008). After defining the
proper PDF’s, a Monte Carlo simulation is made to describe the implications of this
variability in the system.

Two paths can be followed in modeling uncertainties: random scalar variable, when
scalar parameters are modeled with uncertainty and random matrix variable when model
uncertainty is included by random matrices. The first case is indicated for uncertain
data model while the latter is suitable for uncertainties in the model also known as
nonparametric approach (Soize, 2005). The scope of this Chapter will be limited to the
random scalar variable method.

The outline of the Chapter is as follows. After a brief description of the proposed
uncertainty model, Section 7.2 describes how the structural uncertainties are modeled
using Monte Carlo simulation. Section 7.3 presents the case study and the results of the
application of the proposed procedure. Finally, some concluding remarks are given in
Section 7.3.

7.1 Uncertainty model

Uncertainty analysis is taken into account in order to describe how the system
parameters may impact the device performance and improve design reliability considering
the optimum damping developed in previous sections and its inherent variability. Hence,
for this analysis, the probabilistic parameters are assumed to be the viscous damping
coefficient 𝜁𝑎 and the stiffness of the structure 𝑘𝑒. The masses and the other parameters
are assumed deterministic.

First, the probability distribution function (PDF) will be constructed using the
Maximum Entropy principle (Soize, 2005). By relying only on the information available,
it is possible to obtain the optimum probabilistic model using the one with maximum
entropy (uncertainty).

The equation of motion can be written in the frequency domain using the Fourier
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transform. One can obtain the the frequency response function (FRF) for the two degree
of freedom

𝐻11(𝑖𝜔) = 𝑥̂

𝐹
; (7.1)

𝐻22(𝑖𝜔) = 𝑢̂

𝐹
, (7.2)

Equations (7.1) and (7.2) are functions of frequency and they depends on the parameters
of the system such as the absorber damping ratio 𝜁𝑎 and the structure natural frequency,
hence the structure stiffness 𝑘𝑒. The parameters considered as uncertain are the TLCD
damping ratio 𝜁𝑎 and the structure stiffness 𝑘𝑒. The random variable 𝑍 is associated to
the damping ratio and 𝐾 for the structure stiffness. A underline bar is used to represent
the mean value of these parameters. The procedure to find the PDF is similar for both
parameters, for this reason, the following analysis will show only the PDF construction of
the 𝑍 parameter.

The basic available information are the mean reduced model, the positive-definiteness
of the random variable and the existence of second-order moments, in other words:

(1) the support of the probability density function is ]0,+∞[,

(2) the mean value is assumed to be known, 𝐸{𝑍} = 𝑍 and

(3) the condition 𝐸{ln(𝑍)} < +∞, which implies that zero is a repulsive value
(Cataldo et al., 2010).

The probability density function 𝑝𝑍 has to verify the following constraint equations
(Kapur & Kesavan, 1992) ∫︁ +∞

−∞
𝑝𝑍(𝑧)𝑑𝑧 = 1, (7.3)∫︁ +∞

−∞
𝑧𝑝𝑍(𝑧)𝑑𝑧 = 𝑍, (7.4)∫︁ +∞

−∞
ln(𝑍)𝑝𝑍(𝑧)𝑑𝑧 < +∞, (7.5)

applying the Maximum Entropy Principle yields the probability density function given by
the gamma distribution (Cataldo et al., 2010)

𝑝𝑍(𝑧) = 1]0,+∞[(𝑧)
1
𝑍

(︃
1
𝛿2

𝑍

)︃ 1
𝛿2

𝑍
1

Γ(1/𝛿2
𝑍)

(︂ 1
𝑍

)︂ 1
𝛿2

𝑍

−1
𝑒

−𝑧
𝛿2

𝑍𝑍 , (7.6)

where 𝛿𝑍 = 𝜎𝑍/𝑍 is the coefficient of dispersion of the random variable 𝑍 and 𝜎𝑍 is the
standard deviation of 𝑍 such that 0 ≤ 𝛿𝑍 ≤ 1/

√
2. It can be verified that 𝑍 is a second-

order random variable and that 𝐸{1/𝑍2} < +∞ (Soize, 2001). The gamma function Γ is
defined as

Γ(1/𝛿2
𝑍) =

∫︁ +∞

0
𝑡1/𝛿2

𝑍−1𝑒−𝑡𝑑𝑡, 1/𝛿2
𝑍 > 0. (7.7)
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The PDF for the structural stiffness follow the same procedure and is given by

𝑝𝐾(𝑘) = 1]0,+∞[(𝑘) 1
𝐾

(︃
1
𝛿2

𝐾

)︃ 1
𝛿2

𝐾
1

Γ(1/𝛿2
𝐾)

(︂ 1
𝐾

)︂ 1
𝛿2

𝐾

−1
𝑒

−𝑘
𝛿2

𝐾𝐾 , (7.8)

since the values of coefficient of dispersion are not known for both parameters, the following
sections will show results for a variation of this parameter. From the constructed PDF’s,
we can now perform a Monte Carlo simulation.

7.2 Monte Carlo sampling

The Monte Carlo method is a class of computational techniques based on synthetic
generation of random (pseudo-random) variables in order to deduce the implications for
the probability distribution (Rubinstein & Kroese, 2016). In other words, since only one
sample would not be a good representation of a uncertain variable, we need a significant
amount of samples to be able to calculate the relevant statics of the variable. The samples
are generated from the PDF previously found using the inverse transform method. As
already stated, in probabilistic simulations, we must ensure that the probability density
function of the random variable has significant physical meaning.

The simulation convergence criterion is given by (Sampaio & Ritto, 2008)

𝑐𝑜𝑛𝑣(𝑛𝑠) = 1
𝑛𝑠

𝑛𝑠∑︁
𝑗=1

∫︁
𝐵
‖𝐻𝑗(𝜃, 𝜔)− 𝐻̂(𝜔)‖2𝑑𝜔, (7.9)

where ‖𝐻𝑗(𝜃, 𝜔)‖ is the stochastic system response in the frequency domain calculated for
the 𝜃 realization, ‖𝐻̂(𝜔)‖ is the mean stochastic system response.

The deterministic model is obtained by using the mean value of damping ratio 𝑍.
The value of 𝑍 is determined by a optimization method developed by Yalla & Kareem
which, for a white-noise excitation and considering undamped primary system, it can be
expressed as

𝑍 = 𝛼

2

⎯⎸⎸⎸⎷ 2𝜇
(︂
𝛼2𝜇

4 − 𝜇− 1
)︂

(𝛼2𝜇2 + 𝛼2𝜇− 4𝜇− 2𝜇2 − 2) , (7.10)

where for 𝛼 = 0.9 and 𝜇 = 0.05 it follows that 𝑍 = 0.0965.

The mean values of the structure stiffness 𝐾 is obtained by a simplified model of
cantilever beam from Chapter 7.

𝐾 = 𝜋4

32𝐿𝐸𝐼 (7.11)

where 𝐿 is the beam length and 𝐸𝐼 is the flexural stiffness. Using 𝐿 = 60 𝑚, 3 𝑚 width and
0.015 𝑚 thickness, 𝐸 = 2.1 x 1011 𝑁/𝑚2, density of the steel 𝜌 = 7, 850 𝑘𝑔/𝑚3 one can find
𝐾 = 463, 671 𝑁/𝑚. The rotor mass is 𝑀 = 19, 876 𝑘𝑔. Using the dimensionless parameter
length ratio 𝛼 = 0.9 and 𝜈 = 0.1, it follows that 𝜔𝑒 = 3.6450 𝑟𝑎𝑑/𝑠 and 𝜁𝑒 = 0.0018.
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7.3 Results for parameter uncertainty

Two cases are studied in this section, in the first case, uncertainties are considered
only in the TLCD damping ratio parameter. In the second case, uncertainties are included
in both the TLCD damping ratio and the structural stiffness. In both cases, we are
interested in construct the frequency response function of structure 𝐻11(𝜔) from Equation
(7.1) for different coefficients of dispersion using Monte Carlo (MC) simulation.

Figure 7.1 shows, for different values of coefficient of dispersion 𝛿𝑍 , the mean
model, the mean response of the stochastic model and the boundary lines representing
the confidence region of 95%, which means that the response is inside the envelope with
probability 95%. The statistics of the response were calculated using 3,000 MC samples.

It can be noticed from Figure 7.1 that the mean value of all realizations does not
coincide with the deterministic value except for the first case, 𝛿𝑍 = .2, in Figure 7.1 (a), in
which they are very similar. The uncertainty is only predominant near the resonance and
anti-resonance region. As the value of 𝛿𝑍 increases, the uncertainty also increases in the
two peaks and in the region in between the peaks. This shows that the uncertainty in the
damping parameter interfere in the amplitude of displacement of the primary structure not
changing the resonance frequencies, as expected, significantly affecting the performance of
the damper, by changing the amplitude values at design frequency.

Another interesting aspect of Figure 7.1 is the presence of invariant points. It is
known that for undamped TMD’s, there are two invariant points where the response is
independent of the attached absorber’s damping value (Hartog, 1985). For a TMD, the
invariant points are used to find the optimal vibration absorber parameters. For the case
of light damping levels as seen in TLCD’s, the invariant point method gives nearly optimal
values.

The convergence rate for all dispersion coefficients is shown in Fig. 7.3(a), occurring
way bellow the 3,000 Monte Carlo samples.

For the second case, the uncertainty in the structure stiffness parameter is included
in the model. The values of coefficients of dispersion have a small variation, which means
that the random variable associated to the structural stiffness has a small standard
deviation since the mean value is fixed.

Figure 7.2 shows, for different values of 𝛿𝑍 and 𝛿𝐾 , the mean model, the mean
response of the stochastic model and the boundary lines representing the confidence region
of 95%. The statistics of the response were calculated using 3,000 MC samples.

From Figure 7.2, it is clear that uncertainty in the primary-system stiffness is much
more significant than uncertainty in the damping ratio parameter, since the damping
ratio uncertainty only changes the FRF amplitudes around the resonance frequencies and
in this case we have uncertainties occurring in all frequencies. The uncertainties in the
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primary-system stiffness comes from, generally, the reduction in model to a 1 degree of
freedom model. When the value of the coefficients of dispersion increases, the response
limits becomes too wide to give any satisfactory insight in the dynamic of the system.
Furthermore, since the magnitude of the structural stiffness is big, a large variation would
result in unsatisfactory results and the simulation would not converge. For this reason, it
is important to keep the dispersion of this parameter as small as possible.

The convergence rate for all dispersion coefficients is shown in Figure 7.3(b),
occurring way below the 3,000 Monte Carlo samples.
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Figure 7.1 – FRFs amplitude with TLCD damping ratio uncertainties showing the deter-
ministic model response, mean response of the stochastic model, and 95%
confidence region for different values of 𝛿𝑍 ’s: (a) .2 (b) .4 (c) .6 (d) .7.
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Figure 7.2 – FRFs amplitude with TLCD damping ratio and structure stiffness uncer-
tainties showing the deterministic model response, mean response of the
stochastic model, and 95% confidence region for different values of 𝛿𝑍 and
𝛿𝐾 : (a) .2 & .05 (b) .4 & .15 (c) .6 & .25 (d) .7 & .35.
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Figure 7.3 – Mean square convergence for (a) variability in 𝛿𝑍 and (b) variability in both
𝛿𝑍 and 𝛿𝐾 .

7.4 Concluding remarks

In this Chapter, we investigated parameters uncertainties in a TLCD applied in
wind turbines. The assumption that uncertainties in structures have negligible response can
be unacceptable in real situations and beside that, the uncertainties in the performance-
related cannot be included in the damper parameter optimization. For this reason, to
increase the credibility of the model, these uncertainties were included to help describe
the range of potential outputs of the system at some probability level and estimating the
relative impacts of input variable uncertainties.

The method consisted of considering the uncertainties in the absorber damping
ratio and the structural stiffness element, constructed the probabilistic model from the
Maximum Entropy principle and then, performed a Monte Carlo simulation. Two cases
were studied in this thesis, the first only considering uncertainties in the absorber damping
ratio and the second case considering both uncertainties in the absorber damping ratio
and the structural stiffness. The results showed that the uncertainties can indeed interfere
in the TLCD performance since it changes the FRF amplitude considerably in both cases
and that uncertainty in the primary-system stiffness is relatively more significant than
uncertainty in the damping ratio parameter although the last one interferes in the design
performance.

Next chapter presents an experimental validation of the model.
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8 Experimental Analysis

In this Chapter, the vibration phenomena through experimental observation.is
investigated. Two major objectives are initially drawn: determining the nature and extent
of vibration response levels and verifying theoretical models. The technique evolved on
the advances made in digital signal processing, commonly called Modal test, provides the
means for studying real structural vibration problems (Ewins, 1984).

Modal test is the combination of three components, the theoretical basis of vibration,
accurate measurements of vibration and realistic data analysis. Free vibration analysis
yields the system’s FRF from an impact hammer test while a particular force response
analysis, assuming harmonic motion, leads to the modal parameters such as natural
frequency and damping factor.

Our great interest is to know how the structure vibrates under a given excitation.
This depends not only upon the structure’s inherent properties but also on the nature and
magnitude of the imposed excitation. It is, however, convenient to present an analysis with
a standard excitation from which the solution for any particular case can be constructed.
The standard excitation chosen consist of a sinusoidal force applied at several points of
the structure individually at every frequency.

The frequency range can be covered either by stepping from one frequency to
another, or by slowly sweeping the frequency continuously. Pseudo-random or random
excitation signals can replace the sine-wave approach by the existence of complex signal
processing analyses capable of resolving the frequency content using Fourier analysis.
Further extension can be apply to impulsive or transient excitation.

Efforts involving the matching or curve-fitting an expression and thereby finding
the appropriate modal parameters are discussed next.

8.1 Identification of modal data

This section provides the basis of fundamental analysis technique. The analysis
process of finding by curve fitting a set of modal properties which best match the response
characteristics of the tested structure is called modal analysis. A general curve fitting
approach is possible but inefficient. More details about different identification analysis can
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be found in Ewins (1984).

A general form of the frequency response function for a single degree-of-freedom
(SDoF) can take the form

𝐻(𝜔) =
𝑁∑︁

𝑟=1

𝐴𝑟

𝜆2
𝑟 − 𝜔2 (8.1)

and for a multi degree-of-freedom (MDoF)

H = 𝐻𝑗𝑘(𝜔) =
𝑁∑︁

𝑟=1

Φ𝑗𝑟Φ𝑘𝑟

𝜆2
𝑟 − 𝜔2 (8.2)

where 𝐴𝑟 are the modal constants, 𝜑𝑗𝑟 is the 𝑗𝑡ℎ element of the 𝑟𝑡ℎ eigenvector Φ𝑟, 𝜆𝑟 is
the eigenvalues of the 𝑟𝑡ℎ mode and 𝑁 is the number of degree of freedom (or modes).

A general curve-fitting approach is possible by considering a set of measured
values 𝐻𝑚(𝜔𝑟), 𝑟 = 1, 2, . . . , in order to obtain estimates for the coefficients 𝐴𝑟, and 𝜆2

𝑟,
𝑟 = 1, 2, . . . . The result found for theses coefficients are closely related to the modal
properties of the system. However, such approach can be made, it is inefficient in a sense
that it neither exploits the particular properties of resonant systems nor takes due account
of the unequal quality of the various measured points in the data set 𝐻𝑚(𝜔𝑟), 𝑟 = 1, 2, . . . ,
both of which can have a significant influence on the solution. A variety of modal analysis
method can be found in the literature and can be selected based on the appropriate
condition the system impose.

A well established method is known as single-degree-of-freedom curve fitting or,
more often, circle-fit procedure. The method, in essence, is based on the fact that at
frequencies close to natural frequency, the mobility can often be approximated to that of
a single degree-of-freedom system plus a constant offset term which accounts for the other
modes. The procedure works by curve-fitting a circle to few measured data points and
approximate the system’s phase polar plot of the frequency response function which has a
circular nature (Nyquist plot).

The circle-fit method has proven to be adequate in many practical cases, but care
should be taken when the structure has close modes which can be seen when the Nyquist
plot shows a lack of circular section (Ewins, 1984).

Turning to a response analysis, consider the case where a MDoF structure is excited
harmonically by a set of forces in the same frequency, 𝜔, with different amplitudes and
phases. The equation of motion becomes

(K− 𝜔2M)x𝑒𝑖𝜔𝑡 = f𝑒𝑖𝜔𝑡 (8.3)

rearranging to solve for the response

x = (K− 𝜔2M)−1f (8.4)

where the value (K− 𝜔2M)−1 is the response model also called receptance matrix.
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The mass normalization eigenvectors are written as Φ and have the following
properties

Φ𝑇 MΦ = I, (8.5)

Φ𝑇 KΦ = 𝑑𝑖𝑎𝑔(𝜔2
𝑟), (8.6)

the relation between the mass normalized mode shape and the general normalization
is simply

Φ = 1
√
𝑚𝑟

Ψ. (8.7)

The general element of the receptance FRF can be written

x = 𝐻𝑗𝑘(𝜔)f (8.8)

where

𝐻𝑗𝑘(𝜔) = 𝑥𝑗

𝑓𝑘

(8.9)

from this result, it is possible to determine the value of 𝐻𝑗𝑘(𝜔) at any frequency of interest,
although a matrix inversion is required at each frequency. An alternative way of derive
the various FRF parameters is using the modal properties. Writing the FRF as follow

(K− 𝜔2M) = 𝐻−1
𝑗𝑘 (8.10)

premultiply both side by Φ𝑇 and post multiply both sides by Φ to obtain

Φ𝑇 (K− 𝜔2M)Φ = Φ𝑇𝐻−1
𝑗𝑘 Φ (8.11)

or, using the normalization properties

𝑑𝑖𝑎𝑔(𝜔2
𝑟)− 𝜔2I = Φ𝑇𝐻−1

𝑗𝑘 Φ (8.12)

which gives

𝐻𝑗𝑘 = Φ(𝑑𝑖𝑎𝑔(𝜔2
𝑟)− 𝜔2I)−1Φ𝑇 (8.13)

which is symmetric and can be used to compute any individual FRF parameter as follows

𝐻𝑗𝑘(𝜔) =
𝑁∑︁

𝑟=1

Φ𝑗𝑟Φ𝑘𝑟

(𝜔2
𝑟 − 𝜔2) =

𝑁∑︁
𝑟=1

Ψ𝑗𝑟Ψ𝑘𝑟

𝑚𝑟(𝜔2
𝑟 − 𝜔2) (8.14)

which is the same expression found in Equation (8.1) if 𝐴𝑟 = Φ𝑗𝑟Φ𝑇
𝑗𝑟. This representation

is easier to solve than Equation (8.9).

The same analysis can be done for a system with structural damping. The propor-
tional damping has an advantage in the structure analysis because the mode shapes of
such structure are identical to those of the undamped version and the natural frequencies
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are very similar. The model properties of a proportionally damped system can be derive
by analyzing the full undamped version and then making a correction for the presence of
damping.

A more realistic and general damping can be considered called hysteretic damping.
A general equation of motion for harmonic excitation and therefore harmonic solution
takes the form

Mẍ + Kx + 𝑖Dx = f𝑒𝑗𝜔𝑡 (8.15)

where D is the hysteretic damping matrix. A direct solution is obtained as

x = (K + 𝑖D− 𝜔2M)−1f = 𝐻𝑗𝑘(𝜔)f (8.16)

applying the same procedure of pre and post multiply by the eigenvector, it follows that

𝐻𝑗𝑘(𝜔) =
𝑁∑︁

𝑟=1

Φ𝑗𝑟¶ℎ𝑖𝑘𝑟

(𝜔2
𝑟 − 𝜔2 + 𝑖𝜂𝑟𝜔2

𝑟

(8.17)

where 𝜔𝑟 is the natural frequency and 𝜂𝑟 is the damping loss factor for the 𝑟 mode. From
Equation 8.17, the FRF at any frequency can be found. Since, an system with hysteretic
damping is considered, the natural frequency 𝜔𝑟 is not necessarily equal to the natural
frequency of the undamped system (Ewins, 1984).

It assumed that at the vicinity of resonance the FRF is dominated by the contribu-
tion of that vibration mode and the contributions of other vibration modes are negligible
(Fu & He, 2001). If this assumptions holds, then the FRF from a MDoF system can be
treated as the FRF from a SDoF system at a certain bandwidth. The simplicity of the
mathematical model for an SDoF system can then be used in the curve fitting to derive
the modal parameters.

Circle fit method is based on the circularity of the Nyquist plot. Considering
structural damping, the receptance 𝛼(𝜔) FRF traces a perfect circle on the Nyquist plot

[𝑅𝑒(𝛼)]2 +
(︂
𝐼𝑚(𝛼) + 1

2ℎ

)︂2
=
(︂ 1

2ℎ

)︂2
(8.18)

where ℎ is the structural (or hysteretic) damping.

We can assume that at the vicinity of a mode, the contribution of all other modes
are negligible. This can be difficult to meet in reality. However, circle fit can rely on a
more relaxed assumption. The receptance FRF of a N-Dof system with structural damping
in modal form is given as

𝐻𝑗𝑘(𝜔) =
𝑁∑︁

𝑟=1

Φ𝑗𝑟Φ𝑘𝑟

(𝜔2
𝑟 − 𝜔2 + 𝑗𝜂𝑟𝜔2

𝑟) . (8.19)

If the 𝑟th mode is to be analyzed, we can single it out from the summation

𝐻𝑗𝑘(𝜔) = Φ𝑗𝑟Φ𝑘𝑟

(𝜔2
𝑟 − 𝜔2 + 𝑗𝜂𝑟𝜔2

𝑟) +
𝑁∑︁

𝑠=1
𝑠 ̸=𝑟

Φ𝑗𝑠Φ𝑘𝑠

(𝜔2
𝑠 − 𝜔2 + 𝑗𝜂𝑠𝜔2

𝑠) . (8.20)
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The summation term can be approximated by a complex constant, such that

𝐻𝑗𝑘(𝜔) = Φ𝑗𝑟Φ𝑘𝑟

𝜔2
𝑟 − 𝜔2 + 𝑗𝜂𝑟𝜔2

𝑟

+𝐵𝑗𝑘 (8.21)

thus, the circularity of the Nyquist plot shall not change except that the circle is shifted a
distance away from the origin of the complex plane by the complex constant 𝐵𝑗𝑘.

The procedure consists of first find the natural frequency then derive the damping
loss factor and finally the modal constant. The accuracy of this method is significantly
improved comparing to the peak-picking method (Fu & He, 2001). After the selection of
FRF points at the vicinity of the resonance peak, the natural frequency can be found at
the location where maximum arc change occurs on the Nyquist circle. Figure 8.1 shows
the a representations of a Nyquist circle.
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Figure 8.1 – Nyquist circle showing relevant angles for modal analysis.

From the relevant angles showing in Figure 8.1 and knowing that tan(ℑ/ℜ), hence

tan
(︃
𝜃

2

)︃
= tan(90𝑜 − 𝛾) = ℜ(𝛼)

ℑ(𝛼) = 𝜔2
𝑟 − 𝜔2

𝜔2
𝑟𝜂𝑟

, (8.22)

from which we obtain

𝜔2 = 𝜔2
𝑟

(︃
1− 𝜂𝑟 tan 𝜃2

)︃
. (8.23)

Differentiate Equation (8.23) with respect to 𝜃 we obtain a measure of the rate at
which the locus sweeps around the circular arc, i.e.

𝑑𝜔2

𝑑𝜃
= −𝜔

2
𝑟𝜂𝑟

2

⎡⎣1 +
(︃

1− (𝜔/𝜔𝑟)2

𝜂𝑟

)︃2
⎤⎦ , (8.24)

and it reaches a maximum value when 𝜔 = 𝜔𝑟, which can be shown by further differentiating
with respect to the frequency and equaling to zero

𝑑

𝑑𝜔

(︃
𝑑𝜔2

𝑑𝜃

)︃
= 0, 𝑤ℎ𝑒𝑛 (𝜔2

𝑟 − 𝜔2) = 0. (8.25)
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Other than natural frequency, the damping loss factor can also be estimated from
FRF data point (e.g. point 𝑎) using Equation (8.22)

𝜂𝑟 = 𝜔2
𝑟 − 𝜔2

𝑎

𝜔2
𝑟

1
tan(𝜃𝑎/2) . (8.26)

Theoretically, the damping loss factor should be constant. However, due to measu-
rement noise, nonlinearity and errors, the estimated damping loss factor varies for different
data points. This variation can be useful to indicate the accuracy of the analysis.

The last quantity that can be extract from Nyquist plot is the modal constant
which can be expressed using the mode shapes

𝐴𝑟𝑗𝑘
= Φ𝑗𝑟Φ𝑘𝑟 (8.27)

the modal constant can be obtained from the diameter 𝐷𝑟𝑗𝑘
which is conveniently quantified

at the location of natural frequency

𝐷𝑟𝑗𝑘
=
𝐴𝑟𝑗𝑘

𝜔2
𝑟𝜂𝑟

(8.28)

or

𝐴𝑟𝑗𝑘
= 𝐷𝑟𝑗𝑘

𝜔2
𝑟𝜂𝑟 (8.29)

the phase angle of the modal constant 𝐴𝑟𝑗𝑘
is given by the location of the natural frequency.

8.2 Experimental setup

In this section, the experimental setup built in the Dynamic Systems Group (GDS)
Vibration Laboratory is proposed. An experimental procedure is carried out to characterize
the system and a comparison with the numerical analysis is performed. First, we discuss
the methodology used to collect data of the two components of the systems, the structure
and the TLCD.

In the literature, some previous experimental setups have been proposed. Lee et al.
(2007) used a real-time hybrid testing method. The interacting or control force generated
by a TLCD, which is observed from a load-cell is feedbacked to the control computer.
With the feedback interacting force, the structural response of the story, where a TLCD is
incorporated, is calculated from the numerical part. The shaking table excites the upper
TLCD with this calculated response. While this methodology seems promising, it may
defy the purpose of knowing a priori the optimized tuning values. Matteo et al. (2012)
investigated the feasibility of a shear frame using a TLCD and a TMD for vibration
mitigation. However, Matteo et al. did not study the optimized configuration. Besides
that, he used sinusoidal waves as base excitation. In both works, base shaking excitation is
utilized. The proposed approach uses an alternative method where the excitation happens
at the top of the shear frame.
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8.2.1 Structure characterization

The wind turbine tower can be simplified by a shear frame as showing in Figure
8.2. The structure construction is made of 4 steel beams and a plate whose masses are
described in Table 8.1. Besides the element mass, an additional mass can be added on
top of the plate. The added mass purpose is to increase the overall mass of the system
since the plate mass is considerably small. The Beams and plate are connected by small
aluminum plates with four screws which allows easy modification of height in the vertical
axis.

𝐿

𝑚𝑎𝑑𝑑 plate

beams

Figure 8.2 – Experimental structure assembly showing the main structural components.

The equipments used for modal testing are:

∙ Modally tuned impulse hammer with force sensor: Model PCB 086C01 with sensitivity
11.2 𝑚𝑉/𝑁

∙ Accelerometer: Model PCB 353B03 with sensitivity 1.02 𝑚𝑉/(𝑚/𝑠2)

∙ Data Acquisition Software: Polytec VibSoft

69



Table 8.1 – Structure masses and moment of inertia

Symbol Value Quantity total
Beam mass [kg] 𝑚𝑏𝑒𝑎𝑚 1.00 4 4.00
Plate mass [kg] 𝑚𝑝𝑙𝑎𝑡𝑒 1.17 1 1.17∑︀ total 𝑚𝑒 4.17
Moment of inertia
Beams cross section width 𝑐1 [m] 0.0055
Beams cross section height 𝑐2 [m] 0.0256

Moment of inertia 𝐼 [m4] 0.35× 10−9 (𝑐1𝑐
3
2/12)

Modulus of elasticity 𝐸 [Pa] 210× 109

The experimental characterization follows the procedure summarized in Figure 8.3.
First, an impulse is applied to the structure near where the accelerometer is placed using
the impact hammer. The impact should be as close to a perfect impulse as possible with
infinitely short duration that results in a constant amplitude in the frequency domain. But
since such an impulse is not possible, we need to know the contact time which is linked to
the frequency band of the applied force.

The data from the sensor (accelerometer) is acquired using a data acquisition
(DAQ) hardware from Polytec (Model VIB-E-220). The function of a DAQ is to measure
an electrical of physical signal such as voltage, current, temperature or pressure from a
sensor and then convert the signal through an analog-to-digital converter (ADC). Finally,
the converted signal is conditioned and transferred to a computer with a programmable
software. VibSoft is the chosen software for the application. The transferred data is treated
and can be processed for visualization and for the FRF estimation.

impact hammer

DAQ

accelerometer

structure

FFT
𝐻(𝜔)

𝜑(𝜔)𝐹 (𝑡)

𝑥̈(𝑡)

signal processing
signal conditioner

Figure 8.3 – Schematic representation of experimental procedure to characterize the struc-
ture.

Figure 8.4 shows the FRF of the structure for a specific height and for different
masses. As the added mass increases, the first natural frequency decreases which is expected.
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The first resonance peak occurs at about 3 to 4 Hz, the second one exhibit a similar
amplitude and it occurs at around 23 Hz. The first two peaks of resonance can be attributed
to translational modes of vibration. A third small peak that occur at frequencies around
47 Hz may be attributed to rotational mode of vibration. Even though the second mode
amplitude is reasonably high, the structure is designed for low frequency applications and
only the first mode is considered.
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Figure 8.4 – Estimated FRF 𝐻1 for different masses (black: 𝑚 = 0 kg, red: 𝑚 = 2 kg,
blue: 𝑚 = 5 kg, purple: 𝑚 = 7 kg).

Figure 8.5 shows the experimental and theoretical structure’s first mode natural
frequency 𝑓𝑛,𝑒 with respect to tower length 𝐿 for different masses. The natural frequencies
are estimated using the circle-fit method. The relation between the two parameter is not
linear and an increase in height, results in a decrease of the natural frequency as expected.
An increase in mass decreases the natural frequency for all heights shifting the curve in a
downward direction. Moreover, we notice a good agreement between the theoretical values
and the experimental values for the natural frequency. Some of the difference may be
attributed to the structure construction and the circle-fit identification.
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Figure 8.5 – Experimental and theoretical first mode natural frequency 𝑓𝑛,𝑒 with respect
to tower length 𝐿 for different masses.

8.2.2 TLCD characterization

The TLCD was constructed as a straight edges reservoir. Transparent acrylic sheets
with 2 mm thickness are used to build the reservoir and the chosen working fluid is water.
The technical drawing in the Appendix shows the TLCD dimensions.

The experimental procedure follow the schematic showing in Figure 8.6. A recording
camera was used to capture the liquid vertical displacement. In order to capture the
displacement movement of the liquid column, a floating fish bait showing in Figure 8.7 is
used as a reference point. After the initial disturbance, the displacement is captured and
it results in a plot showing at Figure 8.8 where a curve is fitted to the displacement data
and the modal parameter can be estimated. The displacement is fitted considering the
general expression for the solution of a damped system given by

𝑥(𝑡) = 𝐴𝑒−𝜁𝜔𝑛𝑡 sin(𝜔𝑑𝑡+ 𝜑) + 𝑐 (8.30)

where 𝐴 and 𝑐 are constants. The algorithm uses a Levenberg-Marquardt nonlinear Least
Squares method. The same procedure was repeated for different liquid column heights
ℎ𝑎 from 35 cm to 105 mm which consequently changes the TLCD aspect(length) ratio 𝛼.
The results are showing in Table 8.2 where the natural frequency can be found using the
relation 𝜔𝑑 = 𝜔𝑛

√
1− 𝜁2.
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Figure 8.6 – Schematic representation of TLCD experimental procedure.

Figure 8.7 – Float fish bait used for capture the vertical displacement of the liquid column.
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Figure 8.8 – Fitted curve of rectangular tlcd vertical displacement with respect to time
and fitted coefficients.
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Table 8.2 – TLCD experimental characterization parameters

Column height Aspect ratio TLCD mass Natural frequency Damping ratio
ℎ𝑎 [mm] 𝛼 𝑚𝑎 [kg] 𝜔𝑛,𝑎 [rad/s] 𝑓𝑛,𝑎 [Hz] 𝜁𝑎

35 0.52 1.10 8.65 1.38 0.030
45 0.35 1.15 8.35 1.33 0.035
55 0.27 1.20 8.01 1.27 0.031
65 0.22 1.26 7.74 1.23 0.030
75 0.18 1.31 7.52 1.20 0.031
85 0.15 1.36 7.33 1.17 0.026
95 0.14 1.41 7.22 1.15 0.030
105 0.12 1.47 7.02 1.12 0.048

8.3 Structural dynamic response with a TLCD

After the dynamic parameters have been characterized, an experimental study
is performed to identify the structure dynamic response with a TLCD, which is rigidly
connect to the structure upper plate.

The test procedure can follow two approaches. The first approach begins by first
tuning the TLCD to the structure first natural frequency. The tuning can be done by
varying the water column height following the data presented in Table 8.2. The exact
values for optimized tuning are obtained through the computer algorithm from Chapter 6.

The second and alternative approach follows an inverse procedure where the water
column is known a priori and the structures is tuned accordingly by changing its height.
This approach is chosen because the TLCD reservoir has a fixed construction, whereas the
experimental structure can have its height easily adjust. However, in a real word scenario
the opposite would be the case, the structure would have a fixed construction and the
TLCD would be tuned accordingly.

This approach starts by choosing the appropriate water column height. The column
height should be high enough so the effects of water displacement are relevant, but it
cannot be too high so there is water spill. From experimental observation, the best height
is around ℎ𝑎 = 65 mm. Then, the TLCD geometric parameters are used to obtain the
dimensionless parameters 𝛼 and 𝜇. Since the actual structure length in unknown, we
arbitrarily estimate it for the first iteration and calculate a theoretical value for the
stiffness 𝑘𝑡𝑒𝑜. Using 𝛼, 𝜇 and 𝑘𝑡𝑒𝑜 as input in the optimization algorithm we get as output
the optimized tuning ratio. Next, the structure and the TLCD natural frequency can be
calculated and from the structure’s natural frequency, its stiffness can be obtained. If the
obtained structure’s stiffness is not equal the theoretical stiffness, the structure’s length is
updated and the whole process is repeated, otherwise, the optimized length is obtained.
The iterative process is summarized in Figure 8.9.
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Figure 8.9 – Diagram for the inverse approach for the testing procedure. An iterative
process is used to determine the optimized structure length based on the
TLCD’s geometry.

For a TLCD column of ℎ𝑎 = 65 mm, we obtain the values for the length ratio
𝛼 = 0.63 and mass ratio 𝜇 = 0.14 considering an added mass of 𝑚𝑎𝑑𝑑 = 5𝑘𝑔. The results
from the parameter optimization gives 𝛾𝑜𝑝𝑡 = 0.92, then from the calculated TLCD’s natural
frequency of 𝜔𝑛,𝑎 = 1.23 Hz we obtain the structure’s natural frequency of 𝜔𝑛,𝑒 = 1.21 Hz.
Finally, the structures stiffness is calculated which gives a values of 𝑘𝑒 = 490 N/m and the
structure height is found to be 𝐿 = 79.3 cm (the subscript 𝑜𝑝𝑡 is omitted from now on).
This result is in accordance with the structure’s natural frequency from Figure 8.5 and
with the TLCD’s natural frequency from Table 8.2, both at about 1.3 Hz.

A procedure to allow a comparison between the system with and without absorber
are proposed through two experiments.

8.3.1 Experiment 1: root mean square method

This procedure consist of calculating the root mean square (RMS) ratio of the
amplitude between the output signal from the accelerometer and input signal from the
function generator for a range of frequencies. The RMS is a way of expressing its average
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(mean) power of a signal. The input and output signals are sinusoidal waves in the time
domain as shown in Figure 8.10.

Figure 8.11 shows the experimental data for the RMS ratio between the output
and input signal for three configurations, 𝑚𝑎𝑑𝑑 = 6 kg, 𝑚𝑎𝑑𝑑 = 5 kg with TLCD (1.1
kg), 𝑚𝑎𝑑𝑑 = 3 kg with TLCD for reference. It can be noticed the effect of added mass is
predominant when comparing the curve with 5 kg and 3 kg. The TLCD, however, does
not seem to be a major influence in the damping although its tuned frequency is correctly
showing a decrease in the amplitude value for the RMS ratio at about 1.3 Hz which is the
TLCD’s tuning frequency. From the plot trend, a second peak might exist at a frequency
bellow 1 Hz. Even so, due the accelerometer limitations which has minimum frequency
range of 1 Hz, the data for small frequencies could not be acquired.
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Figure 8.10 – Experimental input (gray) and output (black) normalized sinusoidal functi-
ons.

8.3.2 Experiment 2: structure free response

A second experiment is performed to investigate the transient free vibration response
of the structure with and without TLCD. A similar setup to calculate the TLCD natural
frequency using a recording camera is used. This methodology is chosen due to the low
natural frequency of the system and limitation of the accelerometer frequency resolution
observed in experiment 1. An initial condition is impose to the structure using a string.
Each experiment is done considering the same initial condition. The camera captures the
structure’s displacement for both cases, with and without TLCD as shown in Figure 8.12.
A 40 second video is recorded for both cases generating data with 1024 samples each.

In this case, the structure is tuned to the TLCD frequency using experimental
data only. The TLCD column height used is ℎ𝑎 = 65 mm, which from Table 8.2 has a
natural frequency of 𝑓𝑛,𝑎 = 1.23 Hz. The chosen length for the structure is 𝐿 = 0.98 m and
added mass at the top is 𝑚𝑎𝑑𝑑 = 8.4 kg which gives a natural frequency of 𝑓𝑛,𝑒 = 1.93 Hz.
The ratio between natural frequency is 𝛾 = 0.7 which is not ideal but is still considered
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Figure 8.11 – Experimental data for the RMS ratio between the output and input signal
from three configurations, 𝑚𝑎𝑑𝑑 = 6 kg, 𝑚𝑎𝑑𝑑 = 5 kg with TLCD, 𝑚𝑎𝑑𝑑 = 3
kg with TLCD.

Figure 8.12 – Experimental structure with and without TLCD for tracking the structure
displacement.

nonetheless given the structure and TLCD physical constraints (maximum length and
fixed construction, respectively).

Figure 8.13 (a) shows the structure displacement with and without TLCD. A
decrease in the structure displacement amplitude is seen at about 20%. Additionally, a
slight shift in phase is seen as the time increase. This can be attributed to the elements
off-tuning during design phase and nonlinearities present in the TLCD.

Figure 8.13 (b) shows the response PSD of the structure with and without TLCD.
The output PSD is constructed by performing the Discrete Fourier transform (DFT) of
the displacement and calculating the quantity |𝑋(𝑓)|2 which is an energy spectral density.
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A decrease in the PSD amplitude occurs at the structure resonance peak. A second peak
seems to occur at around 4 Hz and the presence of the TLCD shift the peak slightly and
decreases its amplitude. Moreover, Figure 8.13 (b) shows a decrease in amplitude near 1.3
Hz which is the proposed tuned frequency of the TLCD.
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Figure 8.13 – Experimental (a) displacement and (b) output PSD of structure with length
𝐿 = 0.98 m for the case without TLCD with added mass 𝑚𝑎𝑑𝑑 = 8.4 kg and
configuration using a TLCD (1.1 kg) with added mass 𝑚𝑎𝑑𝑑 = 7.3.

A second configuration is now investigated. In order to obtain a smaller structure
natural frequency, the added mass to the tip mass is increased to 𝑚𝑎𝑑𝑑 = 10 kg. Figure
8.14 shows the output PSD for different liquid column heights. The fundamental frequency
of the structure can be obtained from Figure 8.14 which is around 1.71 Hz. In this
configuration, the natural frequency shows a difference between the previous case with
2 kg less mass as expected. Moreover, a decrease in the PSD amplitude is seen both at
the structure resonance peak and near the TLCD natural frequency. Comparing the three
different liquid column height, an optimum height can be established. The liquid column
height cannot be neither too high not too low. A liquid column height of about 55 cm
showed overall better results.

In the case of small liquid column height, the sharp edges of the tube’s columns
create a region propitious for the appearance of air bubbles and turbulence effects, which
are not ideal and in most cases undesirable. Another observation about Figure 8.14 concerns
the region of decrease in amplitude around 1.3 Hz. As the liquid column increases, it can
be noticed the frequency in which there are a decrease in amplitude also decreases. This is
in agreement with the fact that the TLCD natural frequency decrease with an increase of
the liquid column.
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Figure 8.14 – Output PSD of structure with length 𝐿 = 0.98 m for the case without TLCD
with added mass 𝑚𝑎𝑑𝑑 = 10 kg and configuration using a TLCD (1.1 kg)
with different column heights.

8.4 Concluding remarks

In this Chapter, the structure and the TLCD were characterized through an
experimental procedures. We successfully characterized the structure and the TLCD and
the main modal parameters were found. A procedure with the TLCD attached to the
structure was done to investigated the effect of the damper in the structure.

Two methodology were then investigated, the RMS method and the structure free
response. In the RMS method, the RMS value for the excitation and the structure response
were calculated using an accelerometer and a function generator. For this case, results
showed that the effect of added mass were predominant. Even though the effects of TLCD
were minimal, it still showed a vibration reduction (RMS amplitude) which validated the
correctly tuned TLCD near its natural frequency. Even though this methodology indicates
correctly TLCD behavior, due the accelerometer limitations, the data for small frequencies
could not be acquired. A second methodology was then proposed using a recording camera.

In the second method, the structure free response is investigated using a recording
camera. This methodology was chosen due to the low natural frequency of the system and
limitation of the accelerometer frequency resolution observed in experiment 1. Results for
two configurations were shown, the first configuration consisting of a test to investigate the
efficacy of the TLCD even though the elements were not completely tuned and a second
configuration with more added mass to decrease the structure’s natural frequency in order
to investigate the effects of different liquid column height in the structure’s response.
A decrease in the structure displacement amplitude is seen at about 20% for the first
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configuration. The second configuration showed the impact of different heights to the
structure response, which cannot be neither too high nor too low. A liquid column height
of about 55 cm showed overall better results. Moreover, results showed a decrease in the
PSD amplitude at the structure resonance peak and near the TLCD natural frequency.

As suggestions for future works, a new TLCD model could be constructed with
higher operation frequency and with more construction modularity. Further tests with
more sensible equipment with lower frequency range can also be investigated.
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9 Final Remarks

The main objective of this thesis was to develop a numerical and experimental
analysis to study a tuned liquid column damper (TLCD) subjected to random wind
loads with particular application in wind turbines. The numerical analysis in this thesis
was divided in two stages. The first stage consider the deterministic model of the wind
turbine and TLCD. The wind turbine model was derived from a simplified one degree of
freedom wind turbine using the virtual work method. The goal was to control the structure
for small displacement without considering the rotational inertia from the blades. The
numerical study then followed the derivation of the TLCD model in accordance with the
fluid dynamics theory of a liquid oscillating in a tube, where the liquid’s motion can be
derived from the Bernoulli equation. An optimization approach was adopted which allows
the search of optimized parameter considering different wind spectrums. The second stage
concentrated in study the nondeterministic model aiming to quantify uncertainties in the
damper and structure parameters. An experimental phase was then carried out in the
Dynamic Systems Group (GDS) facilities. The characterization of the TLCD and structure
are carried out and the coupled problem is compared with the numerical results.

Chapter 2 presented some of the main structural control techniques in suppressing
vibration of structures. First, the state of the art of structural control was presented. Then,
the relevant types of control systems were discussed. Emphasis was given to passive controls
and more specifically on the tuned liquid absorbers and their use in wind turbines which is
the subject of this work. A brief bibliographic review was made about the use of absorbers
in several applications and their development in recent years. Chapter 3 consisted of a
first exposition of the fundamental concepts of random vibration and probability theory.
The aim was to review the key principles of the probability theory and thus facilitate its
application to solve problems in the random vibration.

Chapter 4 dealt with the effects of the probabilistic aspect of wind in low atmospheric
layers on flexible structures. The problems is confined to along-wind response of structures.
Moreover, cross-wind response or aero-elastic coupled problems were left out of discussion.
The idea was discuss some general notions, which should cast some light on the complexity
of the phenomenon. In Chapter 5, the influence of the wind in the structural dynamic
behavior was of interest. It was therefore of interest study how good a simplified dynamic
model could estimate the structural response. The simplified model had to be reduced to
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the elementary coordinates but still had to describe the relevant physical process under
consideration with good accuracy. Such a simplified model can be used as an early design
of new wind turbines. This work focused on the structural dynamic aspect of structures
such as lattice towers with concentrated mass at the top, hence, the model does not include
the gyroscopic effects due to turbine blade rotation.

In Chapter 6, it was proposed a global direct search optimization algorithm for the
TLCD’s parameters subjected to an arbitrary wind spectra, given by its power spectral
density (PSD). A simple verification was made considering the analytical solution of
undamped primary structure under white noise excitation. Finally, a numerical example
with a simplified wind turbine model was given to illustrate the efficacy of TLCD and it was
shown that different wind spectra can significantly affect the optimization results, i.e. the
TLCD parameters. Time and frequency domain results from the random vibration analysis
were shown. Satisfactory reduction of the response vibration levels is found and it is shown
that different wind profiles can significantly affect the optimum TLCD parameters.

Chapter 7 parametric uncertainties were investigated in a wind turbine with
TLCD. The assumption that uncertainties in structures have negligible response can be
unacceptable in real situations and, beside that, uncertainties in the performance-related
cannot be included in the damper parameter optimization. For this reason, to increase
the credibility of the model, these uncertainties were included to help describe the range
of potential outputs of the system at some probability level and estimating the relative
impacts of input variable uncertainties. Two different cases were studied, the first one only
considering uncertainties in the absorber damping ratio and the second case considering
both uncertainties in the absorber damping ratio and the structural stiffness. The results
showed that the uncertainties can indeed interfere in the TLCD performance since it change
the FRF amplitude considerably in both cases and that uncertainty in the primary-system
stiffness is relatively more significant than uncertainty in the damping ratio parameter
although the last one interferes in the design performance.

Finally, Chapter 8 focused on understand the vibration phenomena through ex-
perimental observation. The experimental setup built in the Dynamic Systems Group
(GDS) Vibrations Laboratory was proposed. An experimental procedure was carried out to
characterize the system and a comparison with the numerical analysis was then performed.
A procedure with the TLCD attached to the structure was done to investigated the effect
of the damper in the structure. In the RMS method, the RMS value for the excitation and
the structure response were calculated using an accelerometer and a function generator.
Results from Figure 8.11 showed that the effect of added mass was predominant. Even
though the effects of TLCD were minimal, it still showed a vibration reduction (RMS
amplitude) which validated the correctly tuned TLCD near its natural frequency. Even
though this methodology indicates correctly TLCD behavior, due the accelerometer limi-
tations, the data for small frequencies could not be acquired. A second methodology was
then proposed using a recording camera.
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In the second method, the structure free response is investigated using a recording
camera. This methodology was chosen due to the low natural frequency of the system and
limitation of the accelerometer frequency resolution observed in experiment 1. Results for
two configurations were shown, the first configuration consisting of a test to investigate the
efficacy of the TLCD even though the elements were not completely tuned and a second
configuration with more added mass to decrease the structure’s natural frequency in order
to investigate the effects of different liquid column height in the structure’s response.
A decrease in the structure displacement amplitude is seen at about 20% for the first
configuration. The second configuration showed the impact of different heights to the
structure response, which cannot be neither too high nor too low. A liquid column height
of about 55 cm showed overall better results.

9.1 Future works

Some future works that may contribute to the research.

∙ increase structure model complexity by

– including rotational effects from the blade,

– adding more degree of freedom

∙ compare the mathematical model with finite element analysis

∙ compare the mathematical model with FAST wind turbine simulator

∙ compare the TLCD with other damper strategies

∙ introduce different optimization solutions with multiple TLCDs

∙ introduce different stochastic wind models

∙ introduce different methodologies to quantify uncertainties in the system

∙ improvements to the experimental setup

9.2 List of publications

Work submitted to Journals

Alkmim, M. H., M. V. G. de Morais, and A. T. Fabro. Optimum Parameters of a
Tuned Liquid Column Damper in a Wind Turbine Subject to Stochastic Load. Submitted
to Engineering Structures, 2017.

Conference proceedings:
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