
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

An Architecture Conformance Process for Software
Ecosystems with Heterogeneous Languages

Sigfredo Farias Rocha

Dissertação apresentada como requisito parcial para conclusão do
Mestrado Profissional em Computação Aplicada

Orientadora
Profa. Dra. Genaína Nunes Rodrigues

Brasília
2017

Ficha catalográfica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

Ra
Rocha, Sigfredo Farias
 An Architecture Conformance Process for Software
Ecosystems with Heterogeneous Languages / Sigfredo Farias
Rocha; orientador Genaína Nunes Rodrigues. -- Brasília, 2017.
 61 p.

 Dissertação (Mestrado - Mestrado Profissional em
Computação Aplicada) -- Universidade de Brasília, 2017.

 1. Conformidade Arquitetural. 2. Modelos de Reflexão. I.
Rodrigues, Genaína Nunes, orient. II. Título.

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

An Architecture Conformance Process for Software
Ecosystems with Heterogeneous Languages

Sigfredo Farias Rocha

Dissertação apresentada como requisito parcial para conclusão do
Mestrado Profissional em Computação Aplicada

Profa. Dra. Genaína Nunes Rodrigues (Orientadora)
CIC/UnB

Prof. Dr. Ricardo Terra Nunes Bueno Villela Prof. Dr. Rodrigo Bonifácio de Almeida
DCC/UFLA CIC/UnB

Prof. Dr. Marcelo Ladeira
Coordenador do Programa de Pós-graduação em Computação Aplicada

Brasília, 26 de setembro de 2017

Dedicatória

Dedico esse trabalho aos meus pais, à minha amada esposa Jeissi e aos meus cachorros
Scott e Lucy.

iv

Agradecimentos

À UnB pela oportunidade.

Aos meus superiores do Centro de Informática (antigos e atuais): Jacir Bordim,
Marcelo Ladeira, Jorge Fernandes, Consuelo Martins e Riane Torres por todo apoio dado.

À minha orientadora Genaína Rodrigues que guiou com paciência e incentivo o meu
crescimento nessa jornada.

Aos professores Rodrigo Bonifácio e Ricardo Terra cujas críticas possibilitaram a mel-
horia do meu trabalho.

Ao colega Renato Edésio pela contribuição em vários momentos. Pelo apoio, dicas e
feedback.

Aos meus colegas do PPCA que se alegraram e sofreram junto comigo nessa jornada:
Renan, Fábio, Alan, Alysson e Reinaldo.

v

Resumo

Os custos de manutenção de software são fortemente influenciados pela sua conformidade
com a arquitetura idealizada e boas práticas de desenvolvimento. A falta de conformi-
dade gera gastos desnecessários. Ambientes heterogêneos com diferentes plataformas de
desenvolvimento são ainda mais difíceis de manter conformidade devido à necessidade de
lidar com diferentes técnicas e ferramentas. Este trabalho procura aliviar esse problema
propondo um processo de conformidade arquitetural independente de plataforma. Téc-
nicas de conformidade arquitetural são comparadas e uma avaliação é feita nos sistemas
da Universidade de Brasília (UnB). Seis software foram avaliados, três deles implemen-
tados em Java e os outros três implementados em Visual Basic. O processo foi capaz de
identificar com sucesso, violações arquiteturais em todos os diferentes sistemas usando a
mesma técnica e ferramenta.

Palavras-chave: Conformidade arquitetural, DCL, Modelos de Reflexão, Conformidade
de software com Alloy

vi

Abstract

The software maintenance costs are strongly influenced for its conformance with the con-
ceptual architecture and the good development practices. The lack of such conformance
generates unnecessary expenses. Heterogeneous environments with different development
platforms are even more difficult to keep the conformance due to the need of dealing with
different techniques and tools. This work aims to overcome this problem by proposing
a platform independent software conformance process. Conformance checking techniques
are compared and an evaluation was carried out in the Data Center at the University of
Brasilia (UnB) systems. Six software systems were evaluated where 3 were implemented in
Java and other 3 implemented in Visual Basic. The process was able to successfully iden-
tify architectural constraints violations on all different systems using the same technique
and tool.

Keywords: Architectural conformance, DCL, Reflexion models, Alloy software confor-
mance

vii

Sumário

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Contributions . 2
1.4 Structure of the dissertation . 3

2 Background 4
2.1 Software Architecture . 4
2.2 Architecture Conformance . 5
2.3 Reflexion Models . 6
2.4 DSM . 7
2.5 Query Languages . 9
2.6 DCL . 9
2.7 Alloy . 11
2.8 Related Work . 12

3 Proposed Solution 16
3.1 Architecture Specification . 17

3.1.1 Architecture specification with Alloy 18
3.1.2 Architecture Constraints on Alloy . 20
3.1.3 Architecture Specification with DCL 21
3.1.4 Architecture Constraints on DCL . 21

3.2 Dependencies Extraction . 22
3.2.1 The Generic Language . 23

3.3 Conformance Analysis . 24
3.3.1 Alloy Conformance checking . 25
3.3.2 DCL Conformance Checking . 26

3.4 Result Output . 26
3.4.1 Alloy Output . 27

viii

3.4.2 DCL Output . 29
3.5 Final Remarks . 29

4 Evaluation 30
4.1 Experiment Setup . 31
4.2 Results . 33

4.2.1 Violations . 35
4.3 Research Questions Analysis . 38
4.4 Threats to Validity . 39
4.5 Critical Analysis . 39

5 Conclusion 40
5.1 Future Work . 41

Referências 42

Appendix 45

A Alloy Syntax 46
A.1 Alloy Grammar . 46

B CPD Architectural Documentation 50

C Dependencies Extraction Output 57
C.1 Javadepextractor . 57
C.2 Vbdepextractor . 58

D Conceptual Architecture Files 60
D.1 Siex Architecture DCL File . 60
D.2 Siex Architecture Alloy File . 61

ix

List of Figures

2.1 Conceptual and concrete architecture and its calls. 5
2.2 Reflexion model process [38]. 7
2.3 SAVE tool conformance checking results [14]. 8
2.4 Sigra system’s DSM obtained through the VBDepend Tool. 8
2.5 DCL syntax summary [3]. 10
2.6 Alloy 4.2 Tool. 11
2.7 Counterexample found shown on a graphic view. 12

3.1 Platform independent software architecture conformance process. 17
3.2 Architecture conformance analysis result example. 27
3.3 Console checking result of the Alloy model. 28
3.4 First Alloy counterexample found on the architectural conformance test of

the Alloy model. 28
3.5 Second Alloy counterexample found on the architectural conformance test

of the Alloy model. 28

4.1 CPD’s Java System Architecture Layer View. 31
4.2 CPD/UnB Visual Basic Systems Modular View. 32

D.1 CPD’s Java System Architecture Layer View. 61

x

List of Tables

2.1 Architectural conformance analysis approach comparative 14

4.1 Goals for the experiment in GQM format 30
4.2 CPD/UNB’s Layer Identifiers Nomenclature for Java Systems 31
4.3 CPD’s systems used on the experiment . 33
4.4 Single constraint conformance checking tests running time 33
4.5 CPD systems conformance checking result 34

xi

Chapter 1

Introduction

Software Architecture is an abstract entity formed by elements and its relations. Each
decision taken into its elaboration will affect the final product concerned to its depend-
ability. Well planned documented, informed and managed architecture enables a better
software quality because it allows a better action planning about its construction or evolu-
tion. When these aspects are ignored, architectural erosions arise and as its consequence,
technical debt from the perspective of architecture since the software will be modified
without any type of control [43] [17]. The control over the corrective or evolutive code
interventions on a software is not a trivial task. Not only it is hard to keep watching
all the incoming modifications, but it is also difficult to read all the code in a non auto-
mated way. A good awareness about the conceptual architecture and its supervision are
quite sensitive to the developer team education and training. As result, forms of archi-
tectural control, capable of identifying architectural problems and constraints violation
are highly required and may facilitate these tasks as well as reduce drastically the costs
of maintaining a software running.

1.1 Motivation

The Informatics Center (Centro de Informática - CPD) of University of Brasília (UnB)
is responsible for implementation and management of the software that take over the
academic tasks at UnB. Through the years, CPD has developed several systems and
today it has a vast catalog (over 30 software systems). However, CPD has suffered some
drawbacks common on government institutions: high turnover, lack of training, high
amount of demands with stringent deadlines, technology and software aging. In particular
dealing with software aging is a big challenge because it imposes increasing costs over
software evolution and maintenance [40].

1

Moreover CPD still has to deal with different software each one developed either in
Visual Basic, Java, VB.NET, C#, PHP, JavaScript and Erlang. In that context, it is very
hard to implement monitoring polices to supervise the software evolution and guarantee its
delivered quality. In particular with respect to architecture quality enforcement, a defined
conceptual architecture built over good software practices still lacks. Keeping the software
architecture conformance in such heterogeneous software development ecosystem [26] is
crucial to ensure its dependability. At the beginning of this dissertation, as far as we are
concerned, there was no implemented tool capable of doing software conformance analysis
regardless of the programming language used. To achieve architecture conformance on
the CPD systems, several tools and techniques should be used.

1.2 Objectives

This work proposes a solution capable of overcoming the necessity of using several tools
and techniques to achieve the conformance on software ecosystems with heterogeneous
languages. The objective is to create a software architecture conformance process able to
use the same technique to identify the software architectural constraints violations.

1.3 Contributions

The software architecture conformance process is innovative by proposing and evaluating
a technique capable of identifying architectural violations in different systems written in
different programming languages. The dissertation contributions comprises:

• A technique capable of making conformance analysis of legacy systems with different
languages.

• A process that permits the use of any conformance technique, where the most suit-
able one might be used on each context. The process is composed by the following
activities:

– Specification of the conceptual software architecture.

– Declaration of the architectural constraints.

– Specification the concrete architecture abstracted from the source code.

– Detection and report of the source code violations.

• An empiric evaluation of the platform independent conformance process using Alloy
and DCL as well as its comparison.

2

1.4 Structure of the dissertation

The remaining chapters of this dissertation are organized as follows:

• Chapter 2 reviews the key concepts of the background of the dissertation: software
architecture, architecture erosion and architectural conformance,

• Chapter 3 reviews the related work: Alloy language, DCL, DSM, Reflexion Models
and SCQL.

• Chapter 4 proposes a platform independent architecture conformance process to
support the heterogeneous environments management.

• Chapter 5 evaluates the conformance process in our implemented framework on 6
systems implemented at CPD.

• Chapter 6 presents the final remarks and future work.

3

Chapter 2

Background

2.1 Software Architecture

The software architecture is an abstract entity. It is formed by the software elements and
its relations. Two of the biggest factors to increase the software costs are its evolution
and customization [41]. Those factor are inevitable since the software modification is
part of its life cycle. That is why the shape of this entity should not be underestimated,
the requirements, architectural elements, design, security issues, algorithms and data
types must be taken into account when making the software architecture design decisions
to control its characteristics. Some already known and tested architecture styles like
Layered System, Pipes and Filters, Event-based and Implicit Invocation [20] might be
used as is or to build a customized new architecture. The software architecture is not
a created object, every software has one, good or bad, it exists. A better term to talk
about the decisions taking on its modifications is modeling. A good model of transmitting
architectural knowledge, which is a difficult task since the software is usually a big and
complex set of structures and relations, is the concept of views. A view is a vision of
part of the software architecture when divided into relevant elements being evaluated [31]
[11]. The concept of views is important because it groups only a part of the system’s
elements and relations: The ones of interest of a specific concern. It makes easier to
understand each specialized part. The combination of all architecture views, forms the
full architecture. When modeling a software architecture, all decisions must be deliberate
chosen, if not, there is a risk of imperceptible defects or performance issues arise. A well
documented and informed architecture will keep a higher conceptual integrity, enable
reuse more efficiently and better control [35].

4

2.2 Architecture Conformance

Architecture conformance is the name given to the syncronized association between the
intended architecture for a software and its real architecture [29]. The lack of confor-
mance happens for several factors like time pressure, the lack of technical knowledge
and conflicting requirements. Some times these factors make the developer ignore the
architectural rules and good software practices creating or increasing as consequence, ar-
chitectural erosion [41]. In that way, the conceptual architecture documented and the
concrete architecture existing as the source code structure does not relate anymore or has
deviations between them. As an example Figure 2.1 shows a conflict between the soft-
ware conceptual and concrete architecture. On the conceptual architecture the relation
constrains are:

• A must call B

• A must call C

• C must call D

Figure 2.1: Conceptual and concrete architecture and its calls.

But as seen on the concrete architecture, module A might have needed some of the
module D features and decided to call it directly creating a software erosion without even
knowing. The conformance analysis will compare both models and identify the constraints
defined by the conceptual model that were not satisfied by the concrete model. On a
constraint checking over the example given, result is the following:

5

• A must call B (absent)

• A must call C (absent)

• C must call D (satisfied)

• A call D (Not intended)

The hypothetical software has at this stage a software with a source code that will
probably be harder to read and costly to evolve, it might also have worse performance.

There are basically two ways of checking for architecture conformance: statically and
dynamically. Static approaches are non invasive, they are able to read the source code
through a syntax searching for character sequences of interest or searching in the abstract
syntax tree (AST) for specific elements. On the dynamic approach, the object of interest
is the software instantiated objects and its relations whose behavior is lesser predictable
and non measurable through source code analysis.

2.3 Reflexion Models

The reflexion model technique seeks to help the understanding and conformance analysis
efforts in an iterative and empiric way [38]. A view of the process is shown on Figure 2.2,
the technique uses a high level architecture model, a source code abstraction and a map-
ping between these models. In possession of these artifacts, it is possible to compute a
resulting reflexion model that exposes the absences, divergences and convergences found
[37]. The technique might be applied through the steps below:

1. High level model definition: All the available information is used to create the
architectural documentation with one or more architectural views.

2. Source code model extraction: Here, source code model extracting tools are used to
build a lower level model.

3. Models Mapping: The architect declares the corresponding structures and relations
between the high and low level models.

4. Reflexion Model computing: The reflexion model is then computed bringing as
result the convergences, divergences and absences found in the low level model
when compared to the high level model.

5. Refinement and investigation: The result is analyzed to verify if possible errors on
the high or low level models definition had happened. After that, the source code
problems are informed to the developer team.

6

Figure 2.2: Reflexion model process [38].

Some tools have been used to evaluate the technique [14] [37]. Figure 2.3 shows an
example of conformance checking made by the SAVE tool [28]. The convergences are
marked as a check mark in green background, the absenses are marked as a "X" red mark,
the divergences are marked as a black exclamation point on an yellow background and
finally unexpected relations are marked as a black question mark in a blue background.

2.4 DSM

The Dependency Structure Matrix (DSM) is a technique that helps analyze complex
structures through a Matrix containing elements and its relations [9] [45]. It was first
intended to be used on engineering design problems but it was found to be capable of
helping to resolve several different problems, as it is the software analysis [43] [32] [44].
It has a simple structure composed by a matrix where the elements are disposed in a
vertical line with a perpendicular horizontal line where the same elements are replicated.
The Figure 2.4 shows a DSM taken from the Sigra system through the VBDepend Tool1.

7

Figure 2.3: SAVE tool conformance checking results [14].

The intersection cells are highlighted and numbered to indicate a dependency and its
dependecy weight (how many calls were made).

The DSM Tools have the capacity of defining structural constraints which are indenti-
fied in the congruent cells of the involved classes of a violation. The kinds of conformance
check that the DSM is capable of doing are restricted to can-use and cannot-use types.

Figure 2.4: Sigra system’s DSM obtained through the VBDepend Tool.

8

2.5 Query Languages

The Query Language (QL) is a language based on SQL and Database Theory [18] [13]. It
is able to to make search queries over source code . It is intentionally similar to the SQL
because it is a simple syntax and also on the effort to facilitate its learning since SQL is
a well known language. An example is shown below where a query searches the entire
project for the methods and then counts its lines of codes. The CQLinq [2] language was
used.

1 JustMyCode . Methods
2 .Max(m => m. NbLinesOfCode)
3 . ToEnumerable ().Sum(loc => loc)

The next example searches for a constraint violation (Fields name should start with
lower case):

1 warnif count > 0 (from f in Fields where
2 !f. NameLike (@"^[a-z]")
3 && !f. IsEnumValue && !f. IsThirdParty
4 select new { f }).Take (10)

SCQL [21] is one of its implementation, it is a domain specific language focused on using
the relational queries to get version history information. The query languages were also
used to query graphs that model hypertext [8].

2.6 DCL

The DCL (Dependency Constraint Language) [46] [47] [48], is a specific domain language
that supports the system’s module definition in a declarative way. It is able to analyze
architectural constraints through static analysis on the source code. It is inspired on the
ideas of reflexion models [47]. The constraints are defined by a software architect and
the conformance checking is made by the dclcheck tool [46] which is able to identify and
exhibit the violations as absences and divergences in the source code. The violations
are searched by comparing the source code model to the previously defined conceptual
architecture with its software modules and constraints definitions.

The first thing on declaring the software’s architecture is its modules. In the DCL
language this is done by the syntax:

module module_name: class_name1, class_name2, ... , class_nameN

The declaration supports several classes on one module, also the * character denotes
that all classes on the given package belongs to the module being declared. These are
some examples:

9

1 module vision : br.unb.web.siex. vision .*
2 module action : br.unb.web.siex. vision .Action , br.unb.web.siex. business

. ActionBusiness

The next step is the constraints declaration, the Figure 2.5 shows a DCL’s syntax
summary. The relation between two modules is declared with some types and modifiers.
The "only" keyword is optional.

Figure 2.5: DCL syntax summary [3].

An possible example is:
1 only Vision can access Business

This declaration restricts the access to module "Business" exclusively from module
"Vision". In that way, for example if the "Persistence" or "Pojo" modules have a depen-
dency call of the kind "access", the technique will classify it as a divergence. The "can"
keyword indicates that module "Vision" can access "Business" but is not obliged to. If
that was the case, then the "must" keyword should be used. The language is very simple
and easy understandable, some other examples are given below:

1 Visao must - extend BaseVisao
2 Negocio must - implement NegocioI
3 Visao cannot - access Persistencia
4 Persistencia cannot - declare Visao
5 only Visao , Negocio , Persistencia can - access Vo

The technique’s evaluation was done by case study on the Brazil’s Federal Data pro-
cessing Service Organization (SERPRO) [47] where the personal management system were
used to check for the approach validity. The authors evaluated 3 versions of the system
and were able to successfully identify several architectural violations.

10

2.7 Alloy

Alloy is a declarative language based on first order logic capable of modeling and analyzing
structure abstractions [24] [23] [1]. It is essentially a model finder because it uses the
structure abstractions through declaration of formulas to build a model with the elements
and relations satisfying the given formulas.

Alloy works as a simulator where it generates a sequence of states or transitions to
satisfy a formula or as a checker where a counterexample that invalidates the formula
being checked is searched. It is based and strongly influenced by the Z language and the
Tiny Kernel language [24]. The Figure 2.6 shows the graphical mode of the tool being
executed. The graphical view of the instance models found to invalidate a predicate or
assertion is shown in Figure 2.7.

Figure 2.6: Alloy 4.2 Tool.

Alloy models are analyzable, the language has a formal semantics which makes it
possible to be automatically analyzed. Its declarative syntax also helps to easily build
complex specifications. The Alloy analyzer cannot guarantee a sound and complete anal-
ysis, it works through the generation of possible instances within a scope. The numbers

11

Figure 2.7: Counterexample found shown on a graphic view.

of cases to consider has an exponential growth related to the scope size, so a scope lim-
itation is necessary because if there is not one, the counterexample searching would be
infinite. A relation in a scope of k has 2k∗k possible values [25]. The Alloy language
mainly uses signatures declarations, facts, predicates and assertions to define and analyze
models or simulate a model transitioning states. It reduces those elements and formulas
into a boolean satisfiability problem (SAT) which is solved by the built-in SAT solver.
The Alloy syntax is shown in Appendix A.

2.8 Related Work

Architecture description languages (ADLs) have been used as a form of specifying the
software structures to support the reasoning about it. ACME [19] is an ADL capable of
defining elements of component-based architectures, its efforts goes on the objective to in-
tegrate architecture analysis tools. Darwin [34] is used to specify hierarchically structured
architectures, it is possible to use primitive components to composite component types.
Darwin deals with the components with what services they provide and what services they
require. Related to our problem, the ADLs are not very suited because their goal is the

12

specifications of architectures to support the reasoning about its structures. Checkstyle
has been used to recover and maintain architectural conformance, a software architecture
supervision technique through custom checks on commit time was proposed by [36]. The
approach was tested on the Tribunal de Contas da União (TCU). It uses static source
code analysis, visitor pattern and Checkstyle2 tool custom checks to prevent architectural
violations on their software. This approach is not suited to our context because it uses
a specific tool to a specific programming language, it is a good option to homogeneous
environments.

CQLinq [2] is a query language based technique that is used to obtain software metrics
and conformance rules checking through customized queries. To our context, the CQLinq
is not very suited since, there is no architecture abstraction and each constraint definition
is more complex then other approaches.

The SAVE tool [28] is a reflexion model technique capable of comparing high level
models to identify deviation between them. It has been used to the conformance analysis,
the tool is also used on a proposal of continuous monitoring [29]. The tool might have
difficulty on working with several languages simultaneously, it is also less expressive than
other approaches such as DCL.

A comparison between three conformance analysis approaches (Reflexion Model, Re-
lation Conformance Rules and Component Access Rules) are done by [30]. They use an
implementation of the SAVE tool to evaluate its characteristics. The downside of this work
is the strong bonding to the SAVE tool, there is too low possibilities of customization.

ISO/IEC 42010 [15] is a normative guidance that standardize the notion of archi-
tecture framework. It define requirements like viewpoint models, relation expressing and
correspondence between models to be used by architecture frameworks. This normative is
a good basis to influence software conformance checking frameworks, but it is too generic,
further exploration is needed to access its importance.

The Alloy language has been used to several conformance analysis, the two more
related to the problem studied are the works by Garlan and Kim where they use the
Alloy to analyze architectural styles properties [27] and Crane and Dingel where they
make dynamic runtime conformance checking of objects [12]. Alloy has also been used to
analyze UML runtime models [49] and system acess control testing [22]. As far as we are
concerned, Alloy has never been used to check software conformance on a static fashion
like DCL, SCQL and DSM approaches.

The architecture enforcement with the Checkstyle API is used on a slightly different
context, it is used strictly on software written in Java and it is a complex technique
when compared to the other ones being analyzed. The ArchLint is a tool capable of

2Checkstyle: http://checkstyle.sourceforge.net/

13

extracting a software’s architectural knowledge through the static analysis of source code
history in the software repository. It is able to understand deeply the architecture but
it is complex and lacks abstraction. The SCQL also lacks abstraction. It is less complex
to use then ArchLint for example but compared to the others approaches like DCL it is
more complex. Its strength is the capability of searching structures on the source code
through queries which are high customizable. DSM is language-independent, some tools
already use them to abstract software architecture [5] [6]. It is very simple to use and
understand. Its downside is the low expressiveness. The DCL language uses Reflexion
Models concepts, that is why both has several common characteristics, their concepts
are easily portable, they are capable of modeling structures on a high level abstraction
and checking architectural constraints on the source code. The differential is that DCL
language is more expressive, it allows declaration of more type of relations like for example
implement, create, throw and extend. Alloy is a model checker that is able to define and
analyze structure and its relations. It have never been used to make software conformance
analysis through static source code analysis so an investigation about this possibility is
done through the evaluation. We summarized the result of our study on Table 2.1

Table 2.1: Architectural conformance analysis approach comparative
Multi Language
Implementation Dependency Abstraction Simple

SAVE [28] No Yes Yes Yes
CQLinq [2], SCQL [21] No Yes No Yes

DSM [43] No Yes Yes Yes
Checkstyle [10] No Yes No No
ArchLint [33] No Yes No No

DCL Suite[46] [48] No Yes Yes Yes
Alloy Analyzer[23] No Possibly Possibly No

The Multi Language Implementation column answers if the technique has a concrete
implementation able to work on different developing platforms with its different program-
ming languages. Most techniques are able to make the conformance analysis on different
languages but using different implementations. The column is related to if there is an
implemented version capable of dealing with any language, the answer "no" is given to the
technique which have no tools or scientific work proving the concrete application of the
technique implementation on different platforms. In the Dependency column it is analyzed
if the technique is able to check dependency constraints between modules. The "Possi-
bly" answer is given to the technique potentially able but not used for this objective yet.
Abstraction Is related to the technique’s ability to promote higher levels of abstraction
of the architecture components. The abstraction allows lowers the architectural confor-
mance process effort by facilitating the understanding of the structures and relationships

14

of the software. The last column (Simple) is related to if it is easy is to understand and
use the technique or not.

15

Chapter 3

Proposed Solution

In this chapter we present the core of our work towards an architecture conformance pro-
cess for software ecosystems with heterogeneous development languages. The proposed
process is capable of identifying deviations of the software source code from the specified
conceptual architecture. It uses the same technique to analyze the architectural confor-
mance of software with different programming languages. The process relies on source
code documentation patterns as well as architecture specification, constraints defined by
the architect and the source code extracted architecture. The violations revealed by our
reflexion based process are informed to the practitioner.

The reflexion process proposed starts by the specification of the architectural elements,
then acquiring the source code elements, making the conformance analysis and finally
showing the results. It comprises 5 steps:

• Architecture Specification: The architect must define the conceptual architecture
rules, its modules, constraints and requirements.

• Dependence Extraction: The source code dependency extraction provides the con-
crete architecture view. The dependency file must be written on a single language
independent of the programming language used to build the software.

• Conformance Checking: The translated model is checked over the conceptual archi-
tecture defined. All deviations between the models are captured.

• Result Output: The architecture conformance result must informe through the tex-
tual or visual exhibition, the deviations found and what are its kind (absence or
divergence).

Figure 3.1 shows the process view, each process step is further explained in the next
subsections and evaluated in Chapter 4.

16

Figure 3.1: Platform independent software architecture conformance process.

3.1 Architecture Specification

This is the first step of the process. It is responsible for the "System Modules Specifica-
tion" and "Architecture Constraints Specification" boxes of Figure 3.1. It takes as input
the definition of an architect and all the documentation and knowledge existent. The ar-
chitect is important because he is the responsible for defining the conceptual architecture
documentation. If there is no architect, an experienced developer might assume the role.
An architecture documentation is composed by several different views so, the architect
must be able to define what kind of view will have its constraints checked. For exam-
ple the layering view has the definition of the layers and how they communicate to each
other, which ones are allowed or forbidden to make a dependence call to a specific layer.
This modeling of an architectural view is important to allow a higher level of abstraction
about the software, it is easier to understand and verify the architectural aspects that
way. To fit on the proposed process, the conceptual architecture of all software present
on the ecosystem must be specified on a singular language. Any language might be used
as long as it is able to specify the architectural elements definition and their mapping to
the source code artifacts. Also all architecture constraints must be specified.

With the software documentation in hands, the architect must specify on the chosen
specification language, the software division (modules or layers) and its relation con-
straints. Those information compose the output of this step, the specified conceptual

17

architecture.

3.1.1 Architecture specification with Alloy

The Alloy model must be capable of defining the modules, the relations between them and
its constraints. A Java project1 was created to test several Alloy models with different
formats. The most efficient modeling was the one structured in the following format:

1 module project_name
2

3 sig Class {}
4 sig Layer_name_A , Layer_name_B { classes : set Class}
5 sig Class_name_A , Class_name_B extends Class {}
6 sig Relation_type_1 , Relation_type_2 {r: set Class -> Class}
7

8 fact { Layer_name_A . classes = Class_name_A + Class_name_X }
9 fact { Layer_name_B . classes = Class_name_B + Class_name_Y }

10

11 fact { Relation_type_1 .r = Class_name_A -> Class_name_B }
12 fact { Relation_type_2 .r = Class_name_X -> Class_name_Y }

The first line has the Alloy module definition, the syntax might be confusing when the
dependencies between modules are being analyzed. This kind of module is a higher Alloy
project division, like a package in the Java syntax. On the tests made, since it is used
a simple layering architecture, the lower level modules are called "layer". The module
declaring has the following syntax:

1 module system_name

Example:
1 module sisru

Or
1 module siex

On the line 3, the Class model type is declared as a signature, it was named "Class",
it will be inherited by all the Classes. It might be seen as a super Class of all the Classes
declared on the model.

On line 4, all the modules (the layers in this particular case) are declared, each one
has a set of classes inside it. They will later be populated with the relevant classes. The
layer declaration is done like the example below:

1 sig vision , business , persistence , pojo { classes : set Class}

1GitHub project of the Alloy testing tool: https://github.com/Sigfredo/AlloyTesting

18

The classes are declared on line 5 on a straightforward way: the class qualified name
followed by the higher set (the super class) extension:

1 br_unb_web_siex_visao_ManterPropostaListagemVisao extends Class {}

The full syntax is seen on the example below:
1 sig br_unb_web_siex_visao_ManterPropostaListagemVisao ,

br_unb_web_siex_negocio_AlocaMembroExtensaoNegocio extends Class {}

On Line 6 the relations types are declared, each one of them has a set of of relations
between classes. This is how the dependency type will be identified. Example:

1 sig Access , Declare , Create {r: set Class -> Class}

The layers are then populated on lines 8 and 9 through Alloy facts. The nomenclature
pattern and packages used on the university’s systems help to identify from where each
class comes from. The pattern is shown in Table 4.2 of Section 4.1. This knowledge helps
the testing tool to obtain automatically the classes layer. Binary relations are used on
the form "A: B" or "A: B + C + D" when declaring several relations. Concrete examples
on the layer populating are:

1 fact vison{ Layer.vison = InscricoesConfirmadasVisao +
2 ReplicarPropostaVisao }

or
1 fact business { Layer. business = ManterProgramaTopicoNegocio +
2 ManterEditalNegocioImpl }

Lines 11 and 12 show the dependencies declaration form. The relations are declared
through ternary relations on the form "A: B -> C ". Where A is the variable holding all
dependencies and B and C are respectively the classes making a method call and receiving
the method call. A variable was declared before to identify each kind of relation. The
appropriate one is used on this step. Below, an example is given:

1 fact { Access .r = br_unb_web_siex_visao_ManterPropostaListagemVisao ->
br_unb_web_siex_negocio_AlocaMembroExtensaoNegocio +
br_unb_web_siex_persistencia_CertificadoDAOImpl }

2

3 fact { Implement .r = br_unb_web_siex_persistencia_ManterAvaliacaoDAOImpl
-> br_unb_web_siex_persistencia_ManterAvaliacaoDAO +
br_unb_web_siex_pojo_Parecere -> java_io_Serializable }

The Alloy architecture specification, must be manually defined by the architect. The
Alloy architecture model is very extensive and verbose, for this reason, the modules and
classes information were inserted on the Alloy testing tool so it could extract some of
the information automatically. The file generated is in fact very extensive (35 lines and

19

187333 columns of characters), part of it may be seen on Appendix D. The declarations
types used are: access, declare, create, extend, implement, throw and useannotation.

3.1.2 Architecture Constraints on Alloy

An Alloy fact is an affirmation that always holds a true value. The Alloy assertive is
different, it holds an affirmation that will be checked. The architectural constraints fits
well in this definition, the architect must be capable of transforming the documentation’s
information into Alloy assertive. An Alloy assertive has the following syntax:

1 assert Assert_name {
2 all x: class_A , y: class_B | y in x. variables }

Where assert is the Alloy identifier for the assertive and inside the brackets there is a
formula to be checked by the analyzer. For example, the Java layering view (Appendix B)
specifies that no vision class can access directly a persistence class. One possible example
is: "No class from vision can create a class from persistence". On Alloy syntax we have:

1 no x: Layer.vision , y: Layer. persistence | x->y in Create . relations

Being "relations" the variable holding all the dependency calls between the software classes
of that type of relation.

Another example: "no class from persistence can implement a class from business":
1 no p: Layer. persistence , b: Layer. business | p->b in Implement . relations

The full assertion declaration uses the assertion syntax with the constraint formula
inside it. It will be later checked by the check command. The concrete example is given
below:

1 assert negocio_visao {
2 no x: Layer.vision , y: Layer. persistence | x->y in Create . relations
3 }

To effect of the evaluation, the constraint "No vision class may access the persistence
layer classes" was used. This assertive was included on the Alloy architecture file and it
was translated to the following syntax:

1 assert no_visao_persistencia {
2 no x: visao.classes , y: persistencia . classes | x->y in Access .r
3 }

Part of the file is disposed on the Appendix D, the full file is generated by the class
"GenericToAlloy.java" available on the Alloy testing tool.

20

3.1.3 Architecture Specification with DCL

The DCL Architecture file is a .dcl extension file containing the architecture written in
the dcl language informing the software’s modules and its constraints. It is important
to note that the modules cited here are different from Alloy modules. DCL modules are
parts of the software grouped by affinity, like layers as the examples seen so far. The DCL
architecture file is shaped in the way showed below:

1 module Module_A_name : Class_A_name
2 module Module_B_name : Class_B_name

Line 1 and 2 contain the module declaration. Each class name belonging to a module
or the whole package must be declared as components of a module. The declaration is
very straightforward. An example containing both cases is show below:

1 module vision : br.unb.web.siex.visao. InscricoesConfirmadasVisao
2 module business : br.unb.web.siex. negocio .*

It is also possible to use regular expressions to get the right classes through its nomen-
clature pattern, like this:

1 module visao: "br.unb.web.siex.visao .[a-zA -Z0 -9/.]* Visao"

To exemplify the software architecture specification on dcl, the created documentation
of the Java systems (using Siex as the test case) was used. The file is transcribed next 2:

1 module $sql: java.sql
2 module visao: "br.unb.web.siex.visao .[a-zA -Z0 -9/.]* Visao"
3 module basevisao : br.unb.fast.core. camada .visao. BaseVisao
4 module negocio : "br.unb.web.siex. negocio .[a-zA -Z0 -9/.]* NegocioImpl "
5 module basenegocio : "br.unb.web.siex. negocio .[a-zA -Z0 -9/.]* Negocio "
6 module icrudnegocio : br.unb.fast.core. camada . negocio . ICrudNegocio
7 module basepersistencia : "br.unb.web.siex. persistencia .[a-zA -Z0 -9/.]* DAO

"
8 module persistencia : "br.unb.web.siex. persistencia .[a-zA -Z0 -9/.]* DAOImpl

"
9 module daofactory : br.unb.web.siex. persistencia . DAOFactory

10 module pojo: br.unb.web.siex.pojo .*
11 module vo: br.unb.web.siex.vo.*

3.1.4 Architecture Constraints on DCL

The constraint declaration follows the model shown below:
1 (modifier) Module_A_name (verb)(relation_type) Module_B_name

2The transcription has only the modules definition, the constraints were taken out to be more clear

21

Or:
1 Class_B_name cannot - access Class_A_name
2 only Class_A_name can - create Class_B_name

Where the modifier is optional, the verb is one of the DCL’s operators verbs like can,
cannot and must and the relation_type is the kind of relation between the classes, for
example access, throw, extend and depend. Some examples are:

1 Vision can access Business
2 Vision cannot access Persistency
3 Vision must extend BaseVision
4 Pojo cannot depend Vo
5 only Business can throw BusinessException

The Siex constraints specified for the evaluation is shown next on a transcription of
the DCL architecture file 3:

1 visao must - extend basevisao
2 negocio must - implement basenegocio
3 only negocio , daofactory can - create persistencia
4 basenegocio must - extend icrudnegocio
5 only persistencia can - access $sql
6 negocio cannot - access visao
7 only negocio , daofactory can - access persistencia
8 only negocio , daofactory can - access basepersistencia
9 persistencia must - implement basepersistencia

10 persistencia cannot - access visao , negocio
11 pojo cannot - access visao , negocio , persistencia , vo
12 vo cannot - access visao , negocio , persistencia

3.2 Dependencies Extraction

The source code dependency extraction provides the view of how the concrete software
architecture is structured. This step is related to the "Dependence Extractor" boxes
in Figure 3.1, its inputs are the software source codes. Each software programming
language has its own structuring characteristics and operation, anyhow a single language
must be used in a sense that the extraction output have the same syntax independent of
the software’s language. The information of interest to the evaluation are the software
dependencies which will be a view of the concrete architecture of the source code. The
dependence file must contain the information about the class calling, the class called and

3The transcription has only the constraints, the part with the modules were already shown in subsec-
tion 3.1.3

22

what kind of dependence is that. It might be access, implementation or creation for
example.

To extract the software dependencies, the project’s source code must be walked check-
ing each line if there is a dependence call to another class. All the dependencies found
must be included on the output file. To convergence of several languages on a single one,
a simple generic language is used. It is further explained on the next section.

3.2.1 The Generic Language

To use the same kind of conformance analysis, it is necessary a language conversion step.
It might happen either inside the analysis tool or on the dependence extracting task. To
converge inside the analyzer, it is necessary to deal and translate a huge number of possible
tools output. We develop an extractor able to export the dependencies extraction on the
desired format for each different programming language. The output proposed for the
dependency extraction step is the one given by a simple generic language. This language
has the most simple and objective information required:

• The class making the call

• The class receiving the call

• The type of the call

The required information is separated by comma and the dependencies types used on
this dissertation are: Declare, Access, Create, Extend, Implement, Throw and Useanno-
tation. The language has the following format:

1 Module_A , dependency_type , Module_B

A practical example is given by the following AbrirCaixaVisao4 class source code:
1 @Named
2 @SessionScoped
3

4 public class AbrirCaixaVisao extends BaseVisao {
5

6 @EJB private CaixaNegocio caixaNegocio ;
7 public String getDisplayAbrirCaixa (){
8 Caixa ultimoCaixaAberto =
9 caixaNegocio . buscarCaixaAindaAberto (

10 codigoPessoaLogado);
11 }
12 }

4To a better exhibition, the class was edited to keep only the necessary elements. It was taken from
the University of Brasília’s restaurant system (Sisru)

23

The class segment above holds the following dependency on the generic language
syntax:

1 AbrirCaixaVisao ,access , CaixaNegocio

The complete version of the dependency must contain the qualified class name informing
its package hierarchy, this is important to identify and divide the software modules. The
qualified version is:

1 br.unb.web.sisru.visao. AbrirCaixaVisao ,access ,br.unb.web.
2 sisru. negocio . CaixaNegocio

The conformance analysis tool must be able to deal with this language to compare the
concrete architecture with the conceptual architecture specified on its the tool’s descrip-
tion language.

CPD has mainly Java and Visual Basic systems. As far as we are concerned there was
no Visual Basic dependency extracting tool able to output the dependencies on a textual
format close to the one used by the generic language. A Visual Basic dependency extractor
was then implemented 5 specifically to evaluate this work. The extractor was build using
the university systems characteristics to get the dependencies and export them to a textual
file written on the generic language. To better understanding the output and its format,
the first page of the file generated by the vbdepextractor when getting the University of
Brasília Academic system (Sigra) is shown in Appendix C. To extract the Java software
dependencies, a third party tool6 was already implemented which gives the result output
on the generic language. javadepextractor was used to acquire the dependencies of Java
source code. The tool has as input the project directory path, the output is given in a text
file (.txt) containing the dependencies written in the generic language. The Appendix C
contains the first page of a file generated by the tool when it extracted the dependencies
of the University’s academic extension system (Siex). On its evaluation, no problem was
identified in its output.

On both tools, the output is given on a text file called dependencies.txt which is written
on the generic language syntax. The Appendix C has more information about the files
extracted. All the original files may also be found on the Git repository7.

3.3 Conformance Analysis

On this stage the conceptual architecture model with the modules definitions and its
restrictions are used to guide the searching for the source code violations. The "Confor-

5https://github.com/Sigfredo/vbdepextractor
6https://github.com/rterrabh/javadepextractor
7https://github.com/Sigfredo/Unbconformancefiles

24

mance Checking" box on Figure 3.1 is related to this step. As was presented, the inputs
to this step are the outputs of the previous steps: The file containing the system mod-
ules and architecture constraints specification as well as the file containing the source
code dependencies on the generic language. Several conformance techniques exist using
different operations and each context might demands a different one. Aspects like the
capability of analyzing dependencies between modules, if it is platform independent, the
level of source code modification, easiness of use and results intelligibility are aspects
that might be taken into account when choosing a technique. The way the techniques
check for constraints violation vary, for instance DCLcheck uses static code analysis to
search for string patterns that are compared to previous defined modules. Alloy Analyzer
transform the specified constraint formulas into a SAT problem, it is ran by a built-in
SAT Solver to generate models using the module signatures and facts together with the
constraint assertive. It searches for a counterexample model, if it finds, the constraint
being analyzed is invalidated.

The process does not imposes a restriction related to what technique will be used but
might be necessary on some cases, adapting the chosen one to deal with the dependencies
file written on the generic language syntax. There is no need of adapting the conceptual
architecture definition since when choosing a technique, the conceptual architecture spec-
ification will be already defined on its syntax. An Alloy testing tool8 was constructed to
test the Alloy models and conformance checking. It is also capable of transforming the
generic language into Alloy syntax. The pi-dclcheck is a DCL tool that already deals with
the generic language so, there is no need of adaptation when using it.

The output given by this step is the result of the conformance checking, which con-
straints were violated and by what dependencies defined on the source code extraction
file.

3.3.1 Alloy Conformance checking

The proposed process uses the Reflexion Model concepts to verify the software architec-
ture conformance, identifying its constraints violations. Since only the divergences and
absences are of interest, an Alloy assertive must be declared as a restriction or absence
check returning true or false to each assertive declared, it is important to note that the Al-
loy Analyzer is not capable of checking multiple assertive with one command. The check
command analyze a single assertive given reducing it and all the signature declaration
and facts to a SAT problem. It returns true or false depending on if it was able to find
a counterexample or not in the scope given. The case being tested has 2 variables being
related to each other so, a scope of 2 is used. The checking command, after executed will
bring the result in two ways:

25

1 Counterexample found. Assertion is invalid .

Meaning that the assertive is certainly invalid, or the affirmation phrase given is false.
1 No counterexample found. Assertion may be valid .

As no counterexample was found, the assertive probably is valid. It is not possible to
claim that the assertion is always true. But it is true inside the limit given (the scope).
That is way Alloy is a scope complete analyzer. In the case given, the scope 2 was chosen
so, it is possible to claim that the assertive is certainly true in the scope of 2.

The constraint checking command below was used to verify the conformance:
1 check no_visao_persistencia for 2

3.3.2 DCL Conformance Checking

The DCL’s conformance checking uses 2 files, one containing the module declaration and
one containing the dependency calls. The tool pi-dclcheck 9 has the feature of reading the
files written in the generic language syntax so that is the one used on this work.

The pi-dclcheck tool populate the modules and dependencies. After that, it checks for
the constraints rules in the dependencies set. Its output is given in a textual file called
violations.txt created in the folder path given as input.

With the generated files on the previous process steps ready (architecture.dcl and
dependencies.txt), the tool’s execution command was used:

1 java -jar pi - dclcheck architecture .dcl dependencies .txt

After the execution a text file is generated containing the information of the violations
found.

3.4 Result Output

The result output is given with the information about what deviations were found on
the concrete architecture when compared to the conceptual architecture. The relations of
interest are the ones given by any reflexion model inspired approach: the convergences,
divergences and absences found in the extracted architecture from the source code when
compared to the conceptual architecture defined by the architect. Figure 3.2 shows the
information of interest. Although all these information are important to understand the
software, on our context, the convergences where not relevant so they are ignored by the
results.

9pi-dclcheck GitHub project: https://github.com/rterrabh/pi-dclcheck

26

There are basically two forms of exhibiting the conformance checking results: Through
visual exhibition and through textual information. DSM and Alloy inform the constraints
violations through a visualization of models generated by the concrete architecture and
the conceptual constraints on the Alloy case and on a Matrix with converging cells on the
DSM case. DCL and Reflexion Models output is simple, straightforward and also very
informative. It tells through a textual form, which kind of violation was found, the caller
and the called class and also what type of call was the one that violated the analyzed
constraint. With this information, the developer team is capable of doing a guided source
code adjustments.

Figure 3.2: Architecture conformance analysis result example.

3.4.1 Alloy Output

The information given by the Alloy Analyzer console can be seen in Figure 3.3. The
analyzer information shows the time taken to prepare the variables and searching for
counterexamples that invalidate the constraint specified on the assertive. Figures 3.4 and
3.5 show counterexamples found, it is possible to see that the "EmitirHistoricoMembro-
Visao" is the dependence that violates the constraint on both cases. The Alloy analyzer
does not show all the relations violating the constraint, it might show but as its operation
mode works, it stops if finds a counterexample instance breaks the assertion. As so, it
might show only one violation, which were all the cases we found. Its objective is to tell if
an assertion holds or not. Chances are that the result show all the violations on a single
counterexample, but it is impossible to predict, if enough counterexamples are generated,
different violations might appear.

27

Figure 3.3: Console checking result of the Alloy model.

Figure 3.4: First Alloy counterexample found on the architectural conformance test of
the Alloy model.

Figure 3.5: Second Alloy counterexample found on the architectural conformance test of
the Alloy model.

28

3.4.2 DCL Output

The resulting violations file gotten from the execution of pi-dclcheck over the dependency
file and the architecture file containing the architecture modules and constraints. The
output has the following model:

1 [violation_type] , [dependency] , [constraint_violated]

Where the violation_type might be divergence or absence, the dependency is the de-
pendency given on the generic syntax format that violated the constraint and the con-
straint_violated is the textual constraint rule violated. The output file is transcripted
below:

1 [divergence],[br.unb.web.siex.visao. EmitirHistoricoMembroVisao ,access ,br
.unb.web.siex. persistencia . AlocaMembroExtensaoDAO],[visao cannot -
access persistencia]

2 [divergence],[br.unb.web.siex.visao. EmitirHistoricoMembroVisao ,access ,br
.unb.web.siex. persistencia . MembroExtensaoDAO],[visao cannot - access
persistencia]

3 [divergence],[br.unb.web.siex.visao. ManterPropostaFormularioVisao ,access
,br.unb.web.siex. persistencia . OrgaoExternoParceriaDAO],[visao cannot -
access persistencia]

3.5 Final Remarks

The process is based on the reflexion approach, it must be used on iterative runs to refine
the artifacts acquired. It was created to be independent of programming language and
support tools. On the next Chapter, an evaluation takes place to investigate if the process
is really capable of identifying violations on heterogeneous environments.

29

Chapter 4

Evaluation

The process was evaluated through an experiment on the CPD’s released software being
used by the university. CPD context has a software ecosystem environment which is
heterogeneous and has serious technical debt. There was no well defined documentation
neither the architect role but these problems were solved through the application of the
process. The Goal Question Metric was used to plan the evaluation experiment, Table
4.1 brings its information.

Table 4.1: Goals for the experiment in GQM format
Object of study Architecture conformance
Purpose Evaluate
Focus Identification of violations
Stakeholder Software architect
Context factors UnB software ecosystem, heterogeneous languages

The research questions raised through the development of the dissertation which will
help to evaluate and understand the proposed process and its characteristics are:

RQ1 Is the proposed process capable of identifying architecture violations on different
software languages?

RQ2 Which tool is more suited to identify violations on software ecosystems with different
programming languages?

The next sections explain how the experiment was made, using the proposed process to
support the conceptual architecture specification, dependencies extraction, conformance
checking and result exhibition.

30

4.1 Experiment Setup

Although there was no architect neither a well defined documentation on the CPD’s
legacy systems, there was some spread knowledge between experienced developers. One
of them received the architect responsibility for the evaluation of the process. As there
was no documentation, the architect was asked to create one, he analyzed old related
documentation, the software source code and interviews with the developer team to create
a layering view of the biggest CPD systems which are written in Java and Visual Basic.
There is on CPD a nomenclature pattern for classes and projects, it is well known but
not documented. Anyway, it was very helpful to identify and divide the modules. Table
4.2 shows the CPD’s Java projects nomenclature. The resulting Java view is shown in
Figure 4.1. The full generated document of the view is in Appendix B.

Figure 4.1: CPD’s Java System Architecture Layer View.

Table 4.2: CPD/UNB’s Layer Identifiers Nomenclature for Java Systems
Layer Package Identifier
View br.unb.web.project_name.visao Visao
Business br.unb.web.project_name.negocio Negocio

NegocioImpl
Persistence br.unb.web.project_name.persistencia DAO

DAOImpl
Pojo br.unb.web.project_name.pojo None
Vo br.unb.web.project_name.vo VO

31

The Visual Basic projects intrinsically lacks a refined module division form, although
it still has some module division and specialization which permits a module architecture
specification. It will be the one used to evaluate the process. Figure 4.2 shows the modular
view of such Programs. The full documentation of the Visual Basic system view is also
in the Appendix B.

Figure 4.2: CPD/UnB Visual Basic Systems Modular View.

There is no specific layering pattern but to keep a good level of cohesion and facilitate
maintenance, some modules were specialized in some tasks. So there is in fact architecture
rules, Figure 4.2 shows how the modules relate to each other and also the allowed and
forbidden dependencies. It was not possible to get the exact well defined and detailed
architecture of the Visual Basic systems but a simple version of it was obtained. That is
good enough as we need to validate if the process is able to make architecture conformance
analysis platform independent not restricted to documentation quality.

To carry out the experiment, the top six largest software found on the CPD environ-
ment were used. Three of them were written on the Java language and the other three on
the Visual Basic language. Table 4.3 shows the details of such software. Alloy and DCL
were chosen to make a preliminary evaluation, an comparison is made and the the most
fitted is used to identify the violations on all systems chosen. The characteristics of the
experiment comprises:

• Six industrial systems released by the CPD (Table 4.3).

• Layer Architecture View for the Java software and Modular View for Visual Basic
software.

32

• Dependencies file written on the generic language.

• Output file informing only the absences and divergences.

Table 4.3: CPD’s systems used on the experiment
System Language LOC Methods Files
SIEX Java 38665 4189 265
SIPES Visual Basic 32887 2211 188
SIGRA Visual Basic 29316 3184 246
SIPAT Visual Basic 26652 2272 201
SISRU Java 18378 1820 187
SCA Java 8509 909 73

4.2 Results

Using the model explained on Section 3.1, the architecture files were created using the
constraint "No vision class may depend on a persistence class" on both models to evaluated
the approaches. To standardize the comparison, the conformance checking on both lan-
guages used the same dependencies file (Appendix C), the Siex’s dependencies extracted
by the javadepextractor tool. The file has 5599 Java dependencies written on the generic
language.

Through the evaluation, both Alloy and DCL were able to specify the architecture
and identify a violation of constraint. Table 4.4 shows the running time found on the
tests when one constraint was checked.

Table 4.4: Single constraint conformance checking tests running time

Model Run Execution time (ms) Average (ms)Modeling Checking Total

Alloy
1st 248 327 575

5092nd 162 319 481
3rd 127 344 471

DCL
1st - - 83

84,332nd - - 81
3rd - - 89

Although both are capable of identifying the same constraint violation, Alloy only
identified one dependence that violates the constraint. On DCL case, it was able to
identify all dependences violating the constraint on a single command execution. DCL
was also much faster on the task. The detailed architecture files are in Appendix D

33

Alloy conformance checking took on average 509 milliseconds to identify an architec-
tural violation. On other hand DCL took on average 84,33 milliseconds to identify the
same violation. Therefore, DCL was six times faster then Alloy. DCL has advantage on
this task since it searches for textual elements, Alloy uses much of its time preparing the
variables and building models to only then, analyze the properties. Other downside of
Alloy is that it is not capable to identify all the violations of a constraint on a single check
command.

The process was then evaluated on six industrial systems where the DCL approach
was used to make the conformance analysis since it had a better performance on the
preliminary evaluation. Java and Visual Basic software were checked, each system had
several checking runs and the results were consistent returning the same violations every
time. The architecture files of all software evaluated may be found on a Git repository1.
Table 4.5 shows the compiled result.

Table 4.5: CPD systems conformance checking result
System Language Dependencies Time Violations

Siex Java 5599
109 8
96 8
112 8

Sisru Java 3367
85 1
86 1
86 1

Sca Java 1318
70 5
69 5
71 5

Sigra Visual Basic 3768
71 3
68 3
77 3

Sipat Visual Basic 2317
68 5
64 5
65 5

Sipes Visual Basic 1833
61 5
61 5
62 5

Libs (VB) Visual Basic -
- 3
- 3
- 3

The table shows the system name, its language, the number of dependencies on the
source code extracted file and the running time of three runs for each system. When
analyzing the result files, we realized that the Visual Basic systems shared some features

1https://github.com/Sigfredo/Unbconformancefiles

34

which were called in external projects and libraries, for that reason there were some
intersected violations. An extra row was inserted in the table specifically to identify these
violations, it was named Libs (VB).

4.2.1 Violations

All the experiment violations were informed by the violations.txt file generated by the
pi-dclcheck tool. The resulting files are transcribed below.

Siex violation file

1 [absence],[br.unb.web.siex. negocio . PessoaGenericaNegocio ,extend ,
icrudnegocio],[basenegocio must - extend icrudnegocio]

2 [divergence],[br.unb.web.siex.visao. EmitirHistoricoMembroVisao ,access ,br
.unb.web.siex. persistencia . AlocaMembroExtensaoDAO],[only negocio ,
daofactory can - access persistencia]

3 [divergence],[br.unb.web.siex.visao. EmitirHistoricoMembroVisao ,access ,br
.unb.web.siex. persistencia . MembroExtensaoDAO],[only negocio ,
daofactory can - access persistencia]

4 [divergence],[br.unb.web.siex.visao. ManterPropostaFormularioVisao ,access
,br.unb.web.siex. persistencia . OrgaoExternoParceriaDAO],[only negocio ,

daofactory can - access persistencia]
5 [divergence],[br.unb.web.siex. endpoint . SignBatchResponseService ,access ,

br.unb.web.siex. persistencia . AssinaturaDigitalDAO],[only negocio ,
daofactory can - access persistencia]

6 [absence],[br.unb.web.siex.visao. ImportarAlunoMencaoVisao ,extend ,
basevisao],[visao must - extend basevisao]

7 [absence],[br.unb.web.siex.visao.LoginVisao ,extend , basevisao],[visao
must - extend basevisao]

8 [absence],[br.unb.web.siex. negocio . CadastrarUsuarioNegocio ,extend ,
icrudnegocio],[basenegocio must - extend icrudnegocio]

Of all violations, four of them were absences, the classes did not extended the required
superclass (basenegocio to icrudnegocio module and visao to basevisao module). Three
divergences were found where classes from the visao module were accessing the persistencia
module. This violates the constraint "only negocio, daofactory can-access persistencia".
The last violation is given by a class from the endpoint package, how the package would
fit on the architecture was to be defined by the architect and the development team.

35

Sisru violation file

1 [absence],[br.unb.web.sisru. negocio . UsuarioSisruNegocio ,extend ,
icrudnegocio],[basenegocio must - extend icrudnegocio]

Only one violation found. It was the absence of a extend requirement for the negocio
module. It must extend a class from the icrudnegocio module.

Sca violation file

1 [absence],[br.unb.web.sca.visao. SistemaVisao ,extend , basevisao],[visao
must - extend basevisao]

2 [absence],[br.unb.web.sca. negocio . DadosLogNegocioImpl ,implement ,
basenegocio],[negocio must - implement basenegocio]

3 [absence],[br.unb.web.sca.visao.MenuVisao ,extend , basevisao],[visao must -
extend basevisao]

4 [absence],[br.unb.web.sca.visao. AcessoVisao ,extend , basevisao],[visao
must - extend basevisao]

5 [absence],[br.unb.web.sca.visao. UsuarioVisao ,extend , basevisao],[visao
must - extend basevisao]

Three of the four violations were absences that occurred because the vision classes did
not extend the required basevisao module. The last violation was also an absence caused
because the DadosLogNegocioImpl class did not extended a class from the basenegocio
module.

Sigra violation file

1 [divergence],[fublib . frmMensagem ,access , MSMask . MaskEdBox],[only siac can
- access msMask]

2 [divergence],[fublibs .Biblioteca ,access , Screen . MousePointer],[biblioteca
cannot - access screen]

3 [divergence],[Siac.frmALUDIP ,access ,App.Path],[siac cannot - access app]
4 [divergence],[fublibs . frmMensagem ,access , MSMask . MaskEdBox],[only siac

can - access msMask]
5 [divergence],[Siac.frmALUCMP ,access , Printer . ScaleTop],[only biblioteca

can - access printer]
6 [divergence],[Siac.frmALUCMP ,access , Printer . ScaleLeft],[only biblioteca

can - access printer]
7 [divergence],[fublib .Biblioteca ,access , Screen . MousePointer],[biblioteca

cannot - access screen]

Four violations were identified where biblioteca classes (fublib and fulibs) were access-
ing the msMask and screen modules, that was forbidden by the declared architecture.
The other three violations occurred because the siac module were accessing directly the

36

printer and app modules, what was also forbidden, they should access biblioteca first.

Sipes violation file

1 [divergence],[sipes. frmIngresso ,access ,App.Path],[sipes cannot - access
app]

2 [divergence],[fublib . frmMensagem ,access , MSMask . MaskEdBox],[only sipes
can - access msMask]

3 [divergence],[fublibs .Biblioteca ,access , Screen . MousePointer],[biblioteca
cannot - access screen]

4 [divergence],[fublib .Biblioteca ,access , Screen . MousePointer],[biblioteca
cannot - access screen]

5 [divergence],[sipes. frmExportaDadosGFIP ,access ,App.Path],[sipes cannot -
access app]

6 [divergence],[sipes. relConstrutor ,access ,App.Path],[sipes cannot - access
app]

7 [divergence],[sipes. frmGenerico ,access , Printer . FontCount],[only
biblioteca can - access printer]

8 [divergence],[fublibs . frmMensagem ,access , MSMask . MaskEdBox],[only sipes
can - access msMask]

9 [divergence],[sipes. frmRelBeneficios ,access ,App.Path],[sipes cannot -
access app]

The same four violations given by fublib and fublibs happend. We then realized they
must be analyzed separately. The other five violations occurred because the sipes module
were accessing directly the printer and app modules.

Sipat violation file

1 [divergence],[sipat. relConstrutor ,access ,App.Path],[sipat cannot - access
app]

2 [divergence],[fublib . frmMensagem ,access , MSMask . MaskEdBox],[only sipat
can - access msMask]

3 [divergence],[fublibs .Biblioteca ,access , Screen . MousePointer],[biblioteca
cannot - access screen]

4 [divergence],[fublib .Biblioteca ,access , Screen . MousePointer],[biblioteca
cannot - access screen]

5 [divergence],[sipat. frmRelHistoricoOS ,access , Printer . PaperSize],[only
biblioteca can - access printer]

6 [divergence],[fublibs . frmMensagem ,access , MSMask . MaskEdBox],[only sipat
can - access msMask]

7 [divergence],[sipat. frmGenerico ,access , Printer . FontCount],[only
biblioteca can - access printer]

37

Taking aside the four library violations, the three remaining where given by the sipat
module accessing app and printer, this kind of violation was recurring on the visual basic
systems.

4.3 Research Questions Analysis

RQ1 - Is the proposed process capable of identifying architecture violations
on different software languages?

Through the experiment it was possible to identify several architecture violations using
different techniques (Alloy and DCL) on software with different programming languages.
The results are shown on Section 4.2 and the results are summarized by Table 4.5.

RQ2 - Which tool is more suited to identify violations on software ecosystems
with different programming languages?

In Chapter 2, several approaches characteristics were analyzed and compared. DCL and
Alloy seemed the best options, an empiric evaluation took place through the process
execution. Alloy is able to work with huge size models but the complexity of such models
increase accordingly with the number of signatures. The main negative point of the
use of Alloy to make software architecture conformance is its inability of identifying the
relations who violated the constraints in a textual way, instead it shows a model which
can be analyzed, the counterexample model generated contain some useless elements what
might difficult its analysis and also if two or more dependencies violate a constraint, the
alloy model is unable to show them all, it shows one at a time. It takes much more time
to fix the code defects in that way. Other negative point of Alloy is its running time. It
takes long to prepare the variables and looking for a counterexample, the DCL approach
is specialized on the software architecture conformance analysis through static textual
checking, for that reason it is much faster. DCL is much simpler, its declarative syntax
is easy to learn and understand and has a better way of exhibiting the result.

Alloy is a powerful tool with much more uses and structure checking possibilities then
DCL but the transformation of a simple textual searching into a SAT problem adds a
layer of complexity to Alloy’s approach.

Finally the answer is: DCL. It is a better choice to software architecture conformance
analysis on software ecosystems with different programming languages because:

• Its syntax is simpler;

• It is faster;

• Shows all the violations at the same time;

38

4.4 Threats to Validity

This dissertation proposed a process capable of identifying software architectural con-
straints violation on ecosystems with different programming language. Although the
evaluation showed that the process reaches its objectives, our evaluation was made over
only two different languages, Java and Visual Basic. We investigated if the process was
capable of identifying violations regardless of its quantity and as we found out the number
was very low. The impact of the violations found were not well studied, we still need to
gather information about the software code history to understand how critical are the
violations found. It is also important to check how the maintenance on the evaluated
systems are affected by the removal of the violations.

4.5 Critical Analysis

On the efforts of decreasing the costs of software maintenance, this dissertation brought
a considered return to the Informatics Center. Not only because the violations identified
provides the development team with information to fix the code increasing its quality and
lowering its complexity, but also because through the development of the dissertation,
a healthy discussion arouse on the Informatics Center. How the architecture should be
modeled, the importance of the documentation, the development of architecture views
and documentation update. The awareness given by the discussion is an unquestionable
increase of value. We also analyzed and used several tools related to code analysis and
conformance checking, that made us expand our understanding of the techniques and
important points to look on the source code. Programs were created to automatize the
process of conformance checking and also to extract dependencies on the systems source
code. We were able to identify several code violations and warn the development team
about it. That allows the team to decrease the architecture erosion existent. The number
of violations were not very worrisome but as we found out, the process performance has
a strict relation with the architect expertise and the documentation quality. Neverthe-
less, the technique brought here is still very relevant and might after the initial run, be
automatized to keep an architecture enforcement policy.

39

Chapter 5

Conclusion

The costs of keeping a software alive increase as it ages. It is possible that is reaches over
85% of information services costs [16]. It is crucial to the information service provider
to keep the engineering process well defined and supervised as it is capable of minimize
those costs. That is not always the case, for several reasons the software gets diverted
from its intended concept. Techniques capable of finding the software’s source code flaws
are important to keep the costs lower. If they are also capable of automatic identify these
flaws, the supervision task gets easier and more efficient. The problem gets harder to
attack when the software environment is heterogeneous, where there is several developing
platforms and/or programming languages.

In this work it is proposed a software architecture conformance analysis process to over-
come this problem. The conceptual architecture and its constraints are used to search for
codes violations in the software. The process is independent of the software programming
language and is capable of finding the architectural divergences and absences in different
software using the same technique.

An investigation on how the Alloy language is capable of analyze the software archi-
tecture conformance was made. As it was found out, the Alloy is capable of doing this
task but on the context used to evaluate the process, the DCL language seemed more
suitable, mostly because it is a specialized conformance checking technique. It is simpler
and faster then Alloy. The Alloy language might be more useful on different cases like dy-
namic conformance checking or to evaluate software metrics which DCL is not capable of
doing. Nevertheless, the proposed process framework enables the use of any conformance
language and tool chosen for the specific context being analyzed.

The process evaluation was made over 6 CPD’s systems which had 2 different develop-
ing platforms, Visual Basic and Java. The DCL constraint language and the pi-dclcheck
were used to define and analyze the software architecture conformance. The fact that
there was no architect role on CPD, filling by an experienced developer but not a special-

40

ist, arouse an understanding: the process violation recognition is strongly attached to the
architect’s capacity of defining the architectural constraints. Anyhow, this is a problem
inherent to the software engineering field and is shared to most of the software archi-
tecture conformance approaches like DCL, DSM, SCQL and Checkstyle custom checks.
Nevertheless the process was able to use different conformance checking tools to capture
architectural violation and also it was able to identify them on all systems analyzed (31
different violations on 6 systems). An interest finding was that the violation number were
proportional to how well the system was documented. The Sisru system which had the
lowest number of violations found (only 1) had the most extensive and up to date doc-
umentation. On the opposed side, the Siex had the highest number of violations found
and it was the system which documentation were more diverted from the actual features
found in the source code. The Visual Basic codes were not so well understood and for
that, the architectural erosion might be larger then what the process output shows.

5.1 Future Work

Software architecture recovering techniques like the use of data clustering and software
visualization [39] might increase the quality of the conceptual architecture modeling de-
creasing that way, the number of the output false negatives. To improve the architectural
conformance quality, some improvements might be investigated. For instance, the DCL
2.0 has some improvements over DCL related to specification, verification, reuse and more
[42]. Some of the software architecture of the systems studied were poorly defined and
known. As so, the use of conformance techniques that are able to dig for architectural
information like Archlint is able to do on repository history, might improve the archi-
tecture and constraints definition. The Alloy models are powerful but still complex. To
make them more competitive, new forms of modeling the software architecture might be
investigated on the intent of lowering its complexity and increasing the kind of constraints
checked. Alloy might also be used when other kind of analysis are necessary, for example
it is able to check for software metrics, code quality and dynamic constraints.

41

Referências

[1] Alloy a language & tool for relational models. http://alloy.mit.edu/alloy/
index.html. Accessed: 2017-03-01. 11

[2] CQLinq Syntax cqling documentation. http://www.ndepend.com/docs/
cqlinq-syntax. Accessed: 2017-08-01. 9, 13, 14

[3] DCL Suite dependency constraint language suite manual. http://aserg.labsoft.
dcc.ufmg.br/dclsuite/. Accessed: 2017-04-10. x, 10

[4] javadepextractor github project. https://github.com/rterrabh/
javadepextractor. Accessed: 2017-07-20. 57

[5] LDM lattix dependency manager. http://lattix.com/. Accessed: 2017-08-01. 14

[6] Vbdepend vb6/vba static analysis and code quality tool. http://www.vbdepend.
com/. Accessed: 2017-08-01. 14

[7] vbdepextractor github project. https://github.com/Sigfredo/vbdepextractor.
Accessed: 2017-08-01. 58

[8] Bernd Amann and Michel Scholl. Gram: a graph data model and query languages.
In Proceedings of the ACM conference on Hypertext, pages 201–211. ACM. 9

[9] Simon Austin, Andrew Baldwin, Baizhan Li, and Paul Waskett. Analytical de-
sign planning technique (adept): a dependency structure matrix tool to schedule
the building design process. In Construction Management & Economics. Taylor &
Francis. 7

[10] Oliver Burn. Checkstyle homepage. URL http://checkstyle. sourceforge. net/. last
accessed in March, 2005. 14

[11] Paul Clements, David Garlan, Len Bass, Judith Stafford, Robert Nord, James Ivers,
and Reed Little. Documenting software architectures: views and beyond. Pearson
Education. 4

[12] Michelle L Crane and Juergen Dingel. Runtime conformance checking of objects
using alloy. In Electronic Notes in Theoretical Computer Science. Elsevier. 13

[13] Oege De Moor, Mathieu Verbaere, and Elnar Hajiyev. Keynote address:. ql for
source code analysis. In Source Code Analysis and Manipulation, 2007. SCAM 2007.
Seventh IEEE International Working Conference on, pages 3–16. IEEE. 9

42

http://alloy.mit.edu/alloy/index.html
http://alloy.mit.edu/alloy/index.html
http://www.ndepend.com/docs/cqlinq-syntax
http://www.ndepend.com/docs/cqlinq-syntax
http://aserg.labsoft.dcc.ufmg.br/dclsuite/
http://aserg.labsoft.dcc.ufmg.br/dclsuite/
https://github.com/rterrabh/javadepextractor
https://github.com/rterrabh/javadepextractor
http://lattix.com/
http://www.vbdepend.com/
http://www.vbdepend.com/
https://github.com/Sigfredo/vbdepextractor

[14] Slawomir Duszynski, Jens Knodel, and Mikael Lindvall. Save: Software architecture
visualization and evaluation. In Software Maintenance and Reengineering, 2009.
CSMR’09. 13th European Conference on, pages 323–324. IEEE. x, 7, 8

[15] David Emery and Rich Hilliard. Every architecture description needs a framework:
Expressing architecture frameworks using iso/iec 42010. In Software Architecture,
2009 & European Conference on Software Architecture. WICSA/ECSA 2009. Joint
Working IEEE/IFIP Conference on, pages 31–40. IEEE. 13

[16] Len Erlikh. Leveraging legacy system dollars for e-business. In IT professional. IEEE.
40

[17] Martin Fowler. Technical debt. https://martinfowler.com/bliki/
TechnicalDebt.html, 2003. 1

[18] Herve Gallaire, Jack Minker, and Jean-Marie Nicolas. Logic and databases: A de-
ductive approach. In ACM Computing Surveys (CSUR). ACM. 9

[19] David Garlan, Robert T Monroe, and David Wile. Acme: Architectural description
of component-based systems. In Foundations of component-based systems. 12

[20] David Garlan and Mary Shaw. An introduction to software architecture. In Advances
in software engineering and knowledge engineering. Singapore. 4

[21] Abram Hindle and Daniel M German. SCQL: A formal model and a query language
for source control repositories, volume 30. ACM. 9, 14

[22] Hongxin Hu and GailJoon Ahn. Enabling verification and conformance testing for
access control model. In Proceedings of the 13th ACM symposium on Access control
models and technologies, pages 195–204. ACM. 13

[23] Daniel Jackson. Alloy: a lightweight object modelling notation. In ACM Transactions
on Software Engineering and Methodology (TOSEM). ACM. 11, 14, 46

[24] Daniel Jackson. Automating first-order relational logic. In ACM SIGSOFT Software
Engineering Notes, volume 25, pages 130–139. ACM. 11

[25] Daniel Jackson, Ian Schechter, and Hya Shlyahter. Alcoa: the alloy constraint ana-
lyzer. In Proceedings of the 22nd international conference on Software engineering,
pages 730–733. ACM. 12

[26] JV Joshua, DO Alao, SO Okolie, and O Awodele. Software ecosystem: Features,
benefits and challenges. In International Journal of Advanced Computer Science and
Applications. 2

[27] Jung Soo Kim and David Garlan. Analyzing architectural styles with alloy. In
Proceedings of the ISSTA 2006 workshop on Role of software architecture for testing
and analysis, pages 70–80. ACM. 13

43

https://martinfowler.com/bliki/TechnicalDebt.html
https://martinfowler.com/bliki/TechnicalDebt.html

[28] Jens Knodel, Dirk Muthig, Uwe Haury, and Gerald Meier. Architecture compliance
checking-experiences from successful technology transfer to industry. In Software
Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference on,
pages 43–52. IEEE. 7, 13, 14

[29] Jens Knodel, Dirk Muthig, and Dominik Rost. Constructive architecture compliance
checking—an experiment on support by live feedback. In Software Maintenance,
2008. ICSM 2008. IEEE International Conference on, pages 287–296. IEEE. 5, 13

[30] Jens Knodel and Daniel Popescu. A comparison of static architecture compliance
checking approaches. In Software Architecture, 2007. WICSA’07. The Working
IEEE/IFIP Conference on, pages 12–12. IEEE. 13

[31] Philippe B Kruchten. The 4+ 1 view model of architecture. In IEEE software,
volume 12, pages 42–50. IEEE. 4

[32] Alan MacCormack, John Rusnak, and Carliss Y Baldwin. Exploring the structure of
complex software designs: An empirical study of open source and proprietary code.
In Management Science. INFORMS. 7

[33] Cristiano Maffort, Marco Tulio Valente, Mariza AS Bigonha, Leonardo H Silva, and
Gladston Junio Aparecido. Archlint: Uma ferramenta para detecção de violações
arquiteturais usando histórico de versões. In Congresso Brasileiro de Software: Teoria
e Prática (CBSoft), Sessão de Ferramentas, 2013. 14

[34] Jeff Magee, Naranker Dulay, Susan Eisenbach, and Jeff Kramer. Specifying dis-
tributed software architectures. In Software Engineering—ESEC’95. Springer. 12

[35] Nenad Medvidovic and Richard N Taylor. Software architecture: foundations, theory,
and practice. In Proceedings of the 32nd ACM/IEEE International Conference on
Software Engineering-Volume 2, pages 471–472. ACM. 4

[36] Paulo Merson. Ultimate architecture enforcement: custom checks enforced at code-
commit time. In Proceedings of the 2013 companion publication for conference on
Systems, programming, & applications: software for humanity, pages 153–160. ACM.
13

[37] Gail C Murphy and David Notkin. Reengineering with reflexion models: A case
study. In Computer. IEEE. 6, 7

[38] Gail C Murphy, David Notkin, and Kevin Sullivan. Software reflexion models: Bridg-
ing the gap between source and high-level models. In ACM SIGSOFT Software
Engineering Notes. ACM. x, 6, 7

[39] Renato Paiva, Genaína N Rodrigues, Rodrigo Bonifácio, and Marcelo Ladeira. Ex-
ploring the combination of software visualization and data clustering in the software
architecture recovery process. In Proceedings of the 31st Annual ACM Symposium
on Applied Computing, pages 1309–1314. ACM. 41

[40] David Lorge Parnas. Software aging. In Proceedings of the 16th international con-
ference on Software engineering, pages 279–287. IEEE Computer Society Press. 1

44

[41] Dewayne E Perry and Alexander L Wolf. Foundations for the study of software
architecture. In ACM SIGSOFT Software engineering notes. ACM. 4, 5

[42] Henrique Rocha, Rafael Serapilha Durelli, Ricardo Terra, Sândalo Bessa, and
Marco Tulio Valente. Dcl 2.0: Modular and reusable specification of architectural
constraints. In Journal of the Brazilian Computer Society. 41

[43] Neeraj Sangal, Ev Jordan, Vineet Sinha, and Daniel Jackson. Using dependency mod-
els to manage complex software architecture. In ACM Sigplan Notices, volume 40,
pages 167–176. ACM. 1, 7, 14

[44] Donald V Steward. The design structure system: A method for managing the design
of complex systems. In IEEE transactions on Engineering Management. IEEE. 7

[45] Kevin J Sullivan, William G Griswold, Yuanfang Cai, and Ben Hallen. The structure
and value of modularity in software design. In ACM SIGSOFT Software Engineering
Notes, volume 26, pages 99–108. ACM. 7

[46] Ricardo Terra. Conformação arquitetural utilizando restrições de dependência entre
módulos. In XXIII Concurso de Teses e Dissertações (CTD). 9, 14

[47] Ricardo Terra and Marco Tulio de Oliveira Valente. Towards a dependency constraint
language to manage software architectures. In European Conference on Software
Architecture, pages 256–263. Springer. 9, 10

[48] Ricardo Terra and Marco Tulio Valente. A dependency constraint language to manage
object-oriented software architectures. In Software: Practice and Experience. Wiley
Online Library. 9, 14

[49] Christopher J Turner, TC Nicholas Graham, Christopher Wolfe, Julian Ball, David
Holman, Hugh D Stewart, and Arthur G Ryman. Visual constraint diagrams: Run-
time conformance checking of uml object models versus implementations. In Auto-
mated Software Engineering, 2003. Proceedings. 18th IEEE International Conference
on, pages 271–276. IEEE. 13

45

Appendix A

Alloy Syntax

The Alloy language mentioned on Chapter 2 is based on the Z formal language and uses
the concepts of the set theory, it is considered a lightweight formal language and is capable
of defining and analyzing automatically structures and its relations [23].

A.1 Alloy Grammar

The Alloy grammar 1 is seem below:
1 Core Alloy4 Syntax (minus some obscure compatibility syntax retained for

Alloy3)
2 ==
3

4 Precendence (from LOW to HIGH)
5

6 1) let all a:X|F no a:X|F some a:X|F lone a:X|F one a:x|F
sum a:x|F

7 2) ||
8 3) <=>
9 4) => => else

10 5) &&
11 6) !
12 7) in = < > <= >= !in != !<

!> !<= !>=
13 8) no X some X lone X one X set X seq X
14 9) << >> >>>
15 10) + -
16 11) #X
17 12) ++
18 13) &

1Alloy grammar documentation: http://alloy.mit.edu/alloy/documentation/alloy4-grammar.txt

46

19 14) ->
20 15) <:
21 16) :>
22 17) []
23 18) .
24 19) ~ * ^
25

26 All binary operators are left - associative , except the arrow operators
(->),

27 the implication (a=>b), and if -then -else (a=>b else c).
28

29 ==
30

31 specification ::= [module] open* paragraph *
32

33 module ::= " module " name ["[" [" exactly "] name ("," [" exactly "] num)
* "]"]

34

35 open ::= [" private "] "open" name ["[" ref ,+ "]"] ["as" name]
36

37 paragraph ::= factDecl | assertDecl | funDecl | cmdDecl | enumDecl |
sigDecl

38

39 factDecl ::= "fact" [name] block
40

41 assertDecl ::= " assert " [name] block
42

43 funDecl ::= [" private "] "fun" [ref "."] name "(" decl ,* ")" ":" expr
block

44 funDecl ::= [" private "] "fun" [ref "."] name "[" decl ,* "]" ":" expr
block

45 funDecl ::= [" private "] "fun" [ref "."] name ":" expr
block

46

47 funDecl ::= [" private "] "pred" [ref "."] name "(" decl ,* ")" block
48 funDecl ::= [" private "] "pred" [ref "."] name "[" decl ,* "]" block
49 funDecl ::= [" private "] "pred" [ref "."] name block
50

51 cmdDecl ::= [name ":"] (" run "|" check ") (name|block) scope
52

53 scope ::= "for" number [" expect " (0|1)]
54 scope ::= "for" number "but" typescope ,+ [" expect " (0|1)]
55 scope ::= "for" typescope ,+ [" expect " (0|1)]
56 scope ::= [" expect " (0|1)]
57

47

58 typescope ::= [" exactly "] number [name |" int "|" seq "]
59

60 sigDecl ::= sigQual * "sig" name ,+ [sigExt] "{" decl ,* "}" [block]
61

62 enumDecl ::= "enum" name "{" name ("," name)* "}"
63

64 sigQual ::= " abstract " | "lone" | "one" | "some" | " private "
65

66 sigExt ::= " extends " ref
67 sigExt ::= "in" ref ["+" ref]*
68

69 expr ::= "let" letDecl ,+ blockOrBar
70 | quant decl ,+ blockOrBar
71 | unOp expr
72 | expr binOp expr
73 | expr arrowOp expr
74 | expr ["!"|" not "] compareOp expr
75 | expr ("= >"|" implies ") expr "else" expr
76 | expr "[" expr ,* "]"
77 | number
78 | "-" number
79 | "none"
80 | "iden"
81 | "univ"
82 | "Int"
83 | "seq/Int"
84 | "(" expr ")"
85 | ["@"] name
86 | block
87 | "{" decl ,+ blockOrBar "}"
88

89 decl ::= [" private "] [" disj "] name ,+ ":" [" disj "] expr
90

91 letDecl ::= name "=" expr
92

93 quant ::= "all" | "no" | "some" | "lone" | "one" | "sum"
94

95 binOp ::= "||" | "or" | "&&" | "and" | "&" | "<=>" | "iff"
96 | "=>" | " implies " | "+" | "-" | "++" | "<:" | ":>" | "." | "<<"

| ">>" | ">>>"
97

98 arrowOp ::= [" some "|" one "|" lone "|" set "] "->" [" some "|" one "|" lone "|" set "]
99

100 compareOp ::= "=" | "in" | "<" | ">" | "=<" | ">="
101

48

102 unOp ::= "!" | "not" | "no" | "some" | "lone" | "one" | "set" | "seq" |
"#" | "~" | "*" | "^"

103

104 block ::= "{" expr* "}"
105

106 blockOrBar ::= block
107

108 blockOrBar ::= "|" expr
109

110 name ::= (" this" | ID) ["/" ID]*
111

112 ref ::= name | "univ" | "Int" | "seq/Int"

49

Appendix B

CPD Architectural Documentation

The evaluation on Chapter 4 used the CPD’s architectural documentation, there was no
Visual Basic and Java’s layer views, for that reason the software architect got support re-
lated to the content needed on the view and how to create it. The resulting documentation
is annexed below:

50

Architectural Documentation \ARQDES

Layer View 01

Architectural Documentation - Layer View - Layer Constraints

2017LayerView..CPD.UnB.doc
Development Team CDP/ UnB

Universidade de Brasília – UnB – Brasília – DF
Phone: (61) 3307 2383/e-mail: gtsistemas@unb.br

08/09/2017 Page
1

1. Java Layer Architecture View
This document contains the Layer architecture view of the Java systems using the Fast

Framework platform.

2. Modules and Constraints

Summary The Fast Framework Platform uses 3 main layers to control the data
flow: Visao, Negocio and Persistencia. Some other layers give
support and encapsulate common features. The communication
between layers are restriced as shown in the attached diagram.

System Layers Visao
Negocio
Persistencia
Pojo
Vo

System Module
Division

visao: br.unb.web.siex.visao.(all name ending with: “Visao")
basevisao: br.unb.fast.core.camada.visao.BaseVisao
negocio: br.unb.web.siex.negocio.(all name ending with:
“NegocioImpl")
basenegocio: br.unb.web.siex.negocio.(all name ending with:
“Negocio")
icrudnegocio: br.unb.fast.core.camada.negocio.ICrudNegocio
basepersistencia: br.unb.web.sca.(all name ending with: “DAO")
persistencia: br.unb.web.sca.persistencia.(all name ending with:
“DAOImpl")
daofactory: br.unb.web.siex.persistencia.DAOFactory
pojo: br.unb.web.siex.pojo.*
vo: br.unb.web.siex.vo.*
sql: java.sql.*

Contraints ● All visao classes must implement a basevisao class.
● All negocio classes must implement a basenegocio class.
● All basenegocio classes must implement a icrudnegocio

class.
● The persistencia module classes can only be instanciated by

classes from the modules: negocio and daofactory
● The sql module can only be accessed by the persistence

module.
● The module negocio cannot access visao but visao can

access negocio.
● the modules basepersistencia and persistencia can only be

accessed by classes from the modules: negocio and
daofactory

● All persistencia classes must implement a basepersistencia
class.

Architectural Documentation \ARQDES

Layer View 01

Architectural Documentation - Layer View - Layer Constraints

2017LayerView..CPD.UnB.doc
Development Team CDP/ UnB

Universidade de Brasília – UnB – Brasília – DF
Phone: (61) 3307 2383/e-mail: gtsistemas@unb.br

08/09/2017 Page
2

● The module persistencia cannot access the visao and negocio
modules.

● The module pojo cannot access any other module but all the
modules can access pojo.

● The module vo can access only the module pojo but all other
modules except pojo can access vo

Last revision: 07/31/2017

Architectural Documentation \ARQDES

Layer View - Visual Basic 02

Architectural Documentation - Layer View - Layer Constraints - Visual Basic

2017LayerView-VisualBasic.CPD.UnB.doc
Development Team CDP/ UnB

Universidade de Brasília – UnB – Brasília – DF
Phone: (61) 3307 2383/e-mail: gtsistemas@unb.br

07/31/2017 Page
1

1. Visual Basic Layer Architecture View
This document contains the Layer architecture view of the Visual Basic systems using the

Fubcontrol Libraries.

2. Modules and Constraints

Summary The CPD’s Visual Basic systems uses several libraries to control an
encapsulate some funcionalities. Also some support systems are
used to some features reuse. The communication between the
project and these libraries and support systems is shown in the
attached diagram.

Observation Where it says [project_name], the name of the project system being
analyzed shall be used.

System Layers [project_name]
[project_name]Lib
[project_name]Rotinas (optional)
Fublib
Scalib
VB

System Module
Division

fubcontrol: prjCtrl.fubControl
fublib: Fublib.*
fublibs: fublibs.*
scalib: scalib.*
scalibs: scalibs.*
[project_name]: [project_name].*
[project_name]lib: [project_name]Lib.*
[project_name]rotinas: [project_name]Rotinas.*
sitablib: sitablib.*
vb: VB.*
screen: Screen.*, VB.Frame, VB.Form
msMask: MSMask.*
widowState: *.WindowState
app: App.Path
biblioteca: fublib.Biblioteca, fublibs.Biblioteca, fublib.Biblioteca,
fublibs.Biblioteca, [project_name]rotinas.Biblioteca
printer: Printer.*

Contraints ● The [project_name] module cannot access the scalib neither
the scalibs module.

● The msMask, windowState and fubControl modules can only
be accessed by the [project_name] module

● The [project_name]rotinas module can only be accessed by
the [project_name]lib module.

Architectural Documentation \ARQDES

Layer View - Visual Basic 02

Architectural Documentation - Layer View - Layer Constraints - Visual Basic

2017LayerView-VisualBasic.CPD.UnB.doc
Development Team CDP/ UnB

Universidade de Brasília – UnB – Brasília – DF
Phone: (61) 3307 2383/e-mail: gtsistemas@unb.br

07/31/2017 Page
2

● The app module cannot be accessed by the [project_name]
module.

● screen module can be accessed by any module except the
biblioteca module.

● The printer module can only be accessed by the biblioteca
module.

● The biblioteca module cannot access the [project_name]
module but the [project_name] module can access the
biblioteca module.

Last revision: 07/31/2017

Appendix C

Dependencies Extraction Output

On Section 3.2.1 it is mentioned how the dependencies extraction occurs and in Chapter 4
this task is executed. The code must be analyzed to extract the relations between classes,
the output must be given in the generic language. Some tools are used to that task,
javadepextractor are used on the Java systems and the vbdepextractor on the Visual Basic
systems.

C.1 Javadepextractor

The javadepextractor tool is capable of extracting the Java code dependencies on the
generic language syntax [4]. To better understanding about the tool, this appedix ex-
hibits part of the output file generated after the extraction of the Siex system. The full
file has 5599 lines each one containing a dependency between two of the software’s classes.

1 br.unb.web.siex.visao. ManterPropostaListagemVisao ,access ,br.unb.web.siex
. negocio . AlocaMembroExtensaoNegocio

2 br.unb.web.siex. persistencia . CertificadoTemaEquipeViewDAOImpl ,access ,
java.sql. Connection

3 br.unb.web.siex. negocio . PessoaNegocio ,declare ,int
4 br.unb.web.siex. negocio . CadastrarUsuarioNegocioImpl ,declare ,br.unb.web.

siex. persistencia . UsuarioDAO
5 br.unb.web.siex.visao. AbstractLoginPublicoVisao ,extend ,br.unb.fast.core.

camada .visao. BaseVisao
6 br.unb.web.siex.visao. ArquivosAnexosVisao ,create ,java.io.File
7 br.unb.web.siex. negocio . AcaoPossuiSituacaoNegocioImpl ,declare ,br.unb.

fast.core. pagina . Pagina
8 br.unb.web.siex.visao. AlocarMembroVisao ,create ,br.unb.web.siex.pojo.

AlocaMembroExtensao
9 br.unb.web.siex. negocio . PessoaGenericaNegocio ,declare ,int

57

10 br.unb.web.siex.visao. EnviarLoteAssinatura ,declare ,java.lang. String
11 br.unb.web.siex.visao. EmitirRelatorioColaboradoresVisao ,declare ,br.unb.

fast.core. pagina . Pagina
12 br.unb.web.siex.pojo.Acesso ,declare ,java.lang. Integer
13 br.unb.web.siex. negocio . PessoaNegocio ,declare ,long
14 br.unb.web.siex.visao. InscricoesConfirmadasVisao ,declare ,int
15 br.unb.web.siex.vo. RelatorioAlocaMembro ,access ,br.unb.web.siex.vo.

RelatorioAlocaMembro
16 br.unb.web.siex.visao. ManterMembrosExtensaoVisao ,declare ,br.unb.web.

sitab. negocio . ManterPaisNegocio
17 br.unb.web.siex.pojo. AcaoPossuiSituacao ,extend ,br.unb.fast.core. camada .

persistencia . AbstractPojo

C.2 Vbdepextractor

The vbdepextractor is capable of extrating the CPD’s Visual Basic systems dependencies
on the generic output [7]. The full file has 3768 lines each one containing one dependence
between two classes. The transcription of part of the file generated by the tool when
extracting the Sigra system dependencies is shown below.

1 Siac. frmSelecaoCurriculo ,access ,Me. Visible
2 fublib .Biblioteca ,access , objOption . TabIndex
3 Siac.frmOCOETF ,access , FubLib . FormatarParLog
4 Siac.frmDISEQV ,access , TabDlg .SSTab
5 Siac.frmHPEDNA ,access ,VB.Label
6 Siac. frmSelecaoPlanoEnsino ,access ,Me. Visible
7 Siac.frmCURIEC ,access ,VB. OptionButton
8 Siac.frmTRAALU ,access , prjCtrl . fubControl
9 Siac.frmOFEDLP ,access ,VB. OptionButton

10 Siac.frmDISPRQ ,access , Screen . MousePointer
11 Siac.frmALUFUN ,access , SiacLib . AbandonarALUFUN
12 Siac.frmALUDIS ,access ,VB.Form
13 Siac.frmDECPEC ,access , SiacLib . CriarAcompanhamentoAcademico
14 Siac.frmALUFUN ,access ,VB.Label
15 Siac.frmDESENC ,access , SiacLib . CriarExameNacionalCursos
16 Siac.frmPRECGP ,access , Screen . MousePointer
17 Siac.frmHPEDNA ,access , FubLib . IniciarRelatorio
18 Siac.frmPREOCO ,access , Screen . MousePointer
19 Siac.frmOCOEXT ,access , MSMask . MaskEdBox
20 Siac. frmSelecaoOrientador ,access ,VB.Form
21 Siac.frmTRAQAP ,access ,VB.Frame
22 Siac.frmFORATA ,access , Screen . MousePointer

58

23 Siac.frmCRRROD ,access , MSMask . MaskEdBox
24 Siac.frmCUREGP ,access ,VB.Frame
25 Siac.frmOFEANL ,access ,VB. TextBox
26 Siac.frmDECFPE ,access , FubLib . AtivarForm
27 Siac.frmMATBDC ,access ,Me.Top
28 Siac.frmCRRMAT ,access , FubLib . FormatarParLog
29 Siac.frmDADHOM ,access ,VB.Form
30 Siac.frmDECBEX ,access ,Me. txtAluNome

59

Appendix D

Conceptual Architecture Files

This appendix exhibits examples of the conceptual architecture files mentioned on Chap-
ter 3 and used on the evaluation on Chapter 4. The academic extension system (Siex)
developed by CPD is specified both on Alloy and DCL syntax to exemplify how is files
are formed. All the files used on the evaluation are disposed on the Git repository1.

D.1 Siex Architecture DCL File

architecture.dcl file containing the Siex system architecture on DCL syntax:

1 module $sql: java.sql
2 module visao: "br.unb.web.siex.visao .[a-zA -Z0 -9/.]* Visao"
3 module basevisao : br.unb.fast.core. camada .visao. BaseVisao
4 module negocio : "br.unb.web.siex. negocio .[a-zA -Z0 -9/.]* NegocioImpl "
5 module basenegocio : "br.unb.web.siex. negocio .[a-zA -Z0 -9/.]* Negocio "
6 module icrudnegocio : br.unb.fast.core. camada . negocio . ICrudNegocio
7 module basepersistencia : "br.unb.web.siex. persistencia .[a-zA -Z0 -9/.]* DAO

"
8 module persistencia : "br.unb.web.siex. persistencia .[a-zA -Z0 -9/.]* DAOImpl

"
9 module daofactory : br.unb.web.siex. persistencia . DAOFactory

10 module pojo: br.unb.web.siex.pojo .*
11 module vo: br.unb.web.siex.vo.*
12

13

14

15 visao must - extend basevisao
16 negocio must - implement basenegocio
17 only negocio , daofactory can - create persistencia

1https://github.com/Sigfredo/Unbconformancefiles

60

18 basenegocio must - extend icrudnegocio
19 only persistencia can - access $sql
20 negocio cannot - access visao
21 only negocio , daofactory can - access persistencia
22 only negocio , daofactory can - access basepersistencia
23 persistencia must - implement basepersistencia
24 persistencia cannot - access visao , negocio
25 pojo cannot - access visao , negocio , persistencia , vo
26 vo cannot - access visao , negocio , persistencia

D.2 Siex Architecture Alloy File

Screenshot taken from part of the architecture.als file containing the Siex system archi-
tecture on Alloy syntax:

Figure D.1: CPD’s Java System Architecture Layer View.

61

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introduction
	Motivation
	Objectives
	Contributions
	Structure of the dissertation

	Background
	Software Architecture
	Architecture Conformance
	Reflexion Models
	DSM
	Query Languages
	DCL
	Alloy
	Related Work

	Proposed Solution
	Architecture Specification
	Architecture specification with Alloy
	Architecture Constraints on Alloy
	Architecture Specification with DCL
	Architecture Constraints on DCL

	Dependencies Extraction
	The Generic Language

	Conformance Analysis
	Alloy Conformance checking
	DCL Conformance Checking

	Result Output
	Alloy Output
	DCL Output

	Final Remarks

	Evaluation
	Experiment Setup
	Results
	Violations

	Research Questions Analysis
	Threats to Validity
	Critical Analysis

	Conclusion
	Future Work

	Referências
	Appendix
	Alloy Syntax
	Alloy Grammar

	CPD Architectural Documentation
	Dependencies Extraction Output
	Javadepextractor
	Vbdepextractor

	Conceptual Architecture Files
	Siex Architecture DCL File
	Siex Architecture Alloy File

