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Resumo

O objetivo desta dissertação é contribuir para a literatura que utiliza modelos

de oligopólio dinâmicos, baseados no artigo seminal de Ericsson e Pakes (1995),

para analisar questões relevantes de organização industrial. A relevância desses

modelos está na capacidade de gerar resultados mais próximos dos dados ob-

servados na realidade, com firmas se tornando heterogêneas endogenamente,

como resultado das ações tomadas por elas em resposta a choques idiossin-

cráticos e comuns à indústria. A dissertação primeiramente expõe o framework

criado por Ericsson e Pakes (1995) e algoritmos desenvolvidos pela literatura

para encontrar um equilíbrio de modelos dinâmicos baseados nesse framework.

Em seguida, modifica-se o modelo dinâmico de Chen (2009) para possibilitar

entrada e saída de firmas. Chen analisa o impacto de fusões com produtos

quase homogêneos, mas não considera entrada e saída; ele também encontra

sinais de corridas de capacidade, que levam a indústria para estados assimétri-

cos. Ao possibilitar entrada e saída, encontro resultados distintos. No capítulo

seguinte, desenvolvo um modelo dinâmico capaz de analisar integração verti-

cal, pois modela explicitamente os segmentos upstream e downstream de uma

indústria. Então simulo a evolução de uma indústria com parâmetros inspi-

rados na literatura do mercado de gasolina, onde a integração entre refino e

revenda foi bastante analisada, e obtenho resultados compatíveis com a lit-

eratura empírica. Em particular, identifico que integração vertical pode, em

determinadas circunstâncias, dificultar entradas, ao impedir entradas não in-

tegradas. Por fim, identifico possíveis extensões para os modelos analisados

na dissertação.

Palavras-chave: oligopólio dinâmico, entrada, saída, integração vertical, gasolina.
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Abstract

The goal of this dissertation is to contribute to the literature that uses dy-

namic oligopoly models, based on the seminal paper by Ericsson and Pakes

(1995), to analyze relevant questions in industrial organization. The relevance

of these models is in the capacity to generate results closer to data observed

in reality, with firms becoming heterogeneous endogenously, as a result of ac-

tions taken by them in response to idiosyncratic and common industry shocks.

The dissertation first exposes the framework created by Ericsson and Pakes

(1995) and algorithms developed by the literature to find an equilibrium of

dynamic models based on this framework. Following, we modify the dynamic

model of Chen (2009) to allow for entry and exit of firms. Chen analyzes the

impact of mergers with near-homogeneous products, but does not consider

entry and exit; he also finds signs of preemption races in capacity, which take

the industry to asymmetric states. When we allow for entry and exit, we find

different results. In the next chapter, we develop a dynamic model capable of

analyzing vertical integration, because it explicitly models the upstream and

downstream segments of an industry. Then we simulate the evolution of an

industry with parameters inspired in the literature on the gasoline market, in

which vertical integration between refine and retail was often analyzed, and

obtain results compatible with the empirical literature. In particular, we find

that vertical integration might, under some circumstances, make entry more

difficult, by preventing nonintegrated entries. In the end, we identify possible

extensions to the models analyzed in the dissertation.

Keywords: dynamic oligopoly, entry, exit, vertical integration, gasoline.
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Chapter 1

Introduction

These essays relate to the literature started by Ericsson and Pakes[10] on applied dynamic

analysis of imperfectly competitive markets. The authors created a general framework

for a dynamic stochastic game, with a discrete state space. The framework was able to

simulate industry evolution paths closer to what was observed in real world data. Firms

faced both idiosyncratic and common industry shocks, leading to reversals of fortunes and

simultaneous entry and exit, both phenomena observed in real data but, until that date,

rarely replicated by theoretical models. Simultaneously, Pakes and McGuire[24] created

an algorithm to solve for an equilibrium of this game. These two developments led to

several papers that, building their models on this framework, were able to bring insights

to important questions on the dynamics of imperfectly competitive markets, and often

showed results that were much more compatible with patterns observed in real world data

than the results obtained from other more elegant theoretical models.1

For instance, Besanko and Doraszelski[3] used the framework to analyze the is-

sue of how industries have persistent asymmetric structures over time. Doraszelski and

Markovich[7] analyzed the effects of advertising on the evolution of the industry struc-

ture. Gowrisankaran[16] analyzes an industry in which mergers may appear endogenously.
1Furthermore, although they are not the focus of these essays, it is worth noting that this framework

was used to develop methods to estimate the industry parameters needed for simulations from real world

data. In Chapter 5 we provide a brief overview of a possible estimation strategy and how it could be

used in the models object of these essays. For a more detailed survey, see Ackerberg et al.[11].
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Benkard[2] analyzes competition in the wide bodied commercial aircraft industry and in-

cludes learning-by-doing as a dynamic feature. Besanko et al.[12] then shows that when

organizational forgetting is added to a learning-by-doing model, results might be different.

Finally, Fershtman and Pakes[14] develop a model of collusion. And these are only a few

examples, but that already show the potential of the dynamic framework.

The purpose of the essays here is to contribute to this literature. First, in

Chapter 3, we have a simple goal. Chen[4] analyzed the dynamic effects of mergers in

triopolies with near-homogeneous products and found results opposite to those of often

used static models. In sum, price increases after the merger, and keep increasing with

time, as the industry adjusts to the new structure and reduces installed capacity. In

addition, Chen found evidence of preemption races, in that firms invest in capacity over

time to become the industry leader, until one of them pulls ahead; then the others stop

investing and become smaller firms, leading to industries with asymmetric structures.

But the model of Chen does not consider entry and exit. In fact, previous models which

analyzed the issue of preemption races and persistent asymmetric industry structures also

did not consider entry and exit (Besanko and Doraszelski[3] and Besanko et al.[13]).

In view of that, we simulate a model similar to Chen’s, but including the possi-

bility of entry and exit - with random, but exogenous, entry costs and scrap values. We

find that the possibility of entry and exit attenuates the effects of mergers with time,

bringing prices back to the long-run level eventually (the length of time taken depending

on the range of entry costs), and that preemption races are less likely, and the industry

is more often symmetric, contrary to what Chen had found.

These results are important for two reasons. First, they show that we might

mimic real world entry patterns and their effect on mergers, since our model brings prices

back to the long run level, but not immediately, and the time taken depends on the

primitives of the model. Second they demand caution when interpreting the asymmetric

structures observed in the real world as the result of the dynamic competitive interaction

of firms and preemption races, as the previous literature suggested. Once entry and

exit are allowed, as we did here, industries appear more likely to be symmetric. Thus

real world asymmetries, absent any other factors that facilitate preemption races (e.g.,

learning-by-doing), may be a sign of high barriers to entry and/or exit.
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In Chapter 4, we have two goals. First we develop a dynamic model that is

capable of analyzing vertically integrated industries. To the best of our knowledge, no

one adapted the Ericsson and Pakes framework to explicitly model two segments of an

industry: upstream and downstream. And several important issues appear in this con-

text, such as vertical mergers, exclusive contracts between suppliers and clients, refusals

to deal, among other business practices often adopted between manufacturers and retail-

ers. Furthermore, these issues often have an important dynamic side. For instance, as

indicated by the Federal Trade Commission of the United States in 2005[23], in a report

on the gasoline industry, a possible harm of vertical integration is that it might increase

barriers to entry in an industry by forcing potential entrants to enter both upstream and

downstream segments. Since entry is an inherently dynamic issue, it cannot be assessed

with a static model.

Since the issue of vertical integration was an important issue in the gasoline in-

dustry, our second goal is to simulate the model for parameters plausible to this industry

and compare the results with the empirical literature on this market. This literature (see

references in Chapter 4) found increases in wholesale (upstream) prices of gasoline to

independent retailers following vertical mergers, and could link those to an incentive to

raise rivals’ costs (exclusionary incentives) on the part of integrated firms. But, nonethe-

less, the empirical literature could not establish increases in retail prices (and thus harm

to consumers) as a result of these exclusionary incentives and wholesale price increases.

Moreover, although the increase in entry barriers was an issue explicitly acknowledged, the

empirical literature did not assess. We find, in our simulations, that there are instances

in which our model predicts that retail prices would increase as a result of exclusionary

incentives and, also, that these incentives may prevent non integrated entry. But, in the

long-run, eventually integrated firms enter the industry and bring prices down.

This dissertation is divided as follows: (i) in Chapter 2 we provide a description

of the basic Ericsson and Pakes framework and of two algorithms to compute its solution;

(ii) in Chapter 3 we analyze a modified version of the model used in Chen[4], with the

possibility of entry and exit; (iii) in Chapter 4 we develop a dynamic model capable

of assisting in the analysis of vertically integrated industries and test it on the gasoline

industry; and finally (iv) in Chapter 5 we indicate possible extensions.
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Chapter 2

The Framework for Applied Dynamic

Analysis in Industrial Organization

This chapter will explain the basic framework created in Ericsson and Pakes[10] and

revised by Doraszelski and Satterthwaite[9], and then describe two algorithms used for

computing an equilibrium of the dynamic game. The models analyzed in Chapters 3 and

4 were based on the framework exposed in this chapter and follow its structure closely.

2.1 The model

This section is mainly based on Doraszelski and Pakes[8], instead of the seminal article

by Ericsson and Pakes[10]. This is because the original model could not guarantee the

existence of an equilibrium in pure strategies (i.e., a computable equilibrium). Later

Doraszelski and Satterthwaite [9] proved that by inserting random entry costs and random

scrap values it was possible to guarantee the existence of an equilibrium in pure strategies.1

1Although this equilibrium cannot be calculated exactly, but only approximated, it may still be impor-

tant to know that the solution we are trying to compute is an approximation to something that actually

exists. For instance, as indicated by Doraszelski and Satterthwaite, if the model is correctly specified,

but we still cannot obtain convergence, we will know there is a problem with the algorithm, not existence

of equilibrium.
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2.1.1 Overview

The players in the game are the incumbent firms in an industry and potential entrants.

All players seek to maximize the expected sum of profits in all periods. These profits are

obtained through static competition in "spot markets" every period. The outcome of this

competition in each period depends on the states of the firms in that period, which can

be affected by the firms’ dynamic decisions (e.g., investments) in past periods.

The sequence of moves in the game is as follows. At the beginning of each period:

(i) incumbents evaluate whether it is better to stay in the industry or exit, based on the

exogenous scrap value they could obtain, and, if they stay, decide how much investment

will maximize the present value of the sum of their expected future profits; (ii) potential

entrants compare the exogenous costs of entry with the present value of the expected

profits and decide whether or not to enter. These decisions are all simultaneous.

Entry and exit take one period to be completed: that is, firms leaving the indus-

try still gain profits in the period they decide to exit, and entrants will only gain profits

in the next period. After these decisions are made, spot market competition happens,

idiosyncratic and common industry shocks to the firms’ states are realized and the states

of the firms evolve.

2.1.2 State space and evolution of the industry

Firms are described by their states. The possible states are integer values which are

bounded above and below if some conditions on the primitives of the model are satis-

fied.2 Therefore, the possible states of each firm can be represented by Ω = {1, 2, ..., ω}.

The states can be interpreted as indexes of productive efficiency, quality, capacity of

production, among others (formally the state of a firm includes also the "states" of its

competitors; but until the last paragraph of this section, we refer to the firm’s state as

solely its index).

The evolution of the states depends on stochastic processes that determine the
2They are listed below in the section 2.2, about the characterization of the equilibrium.
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idiosyncratic and industry shocks firms suffer each period. By the end of a period, the

state of each incumbent firm is defined by ω′i = ωi + vi − ζ, in which v takes the values

{0, 1} and represents a shock idiosyncratic to firm i, and ζ ∈ {0, 1} represents a shock

affecting the whole industry. The presence of both shocks is an important feature. If all

shocks were common to the industry, we would not see firms with different fortunes under

the same economic environment, and if all shocks were idiosyncratic, we would not see

positive correlation between the performances of the firms in the same industry.

The distribution of the idiosyncratic shocks depends on the amount of investment

done by the firm. In most models used in the literature, and in the models of Chapters 3

and 4 as well, the distribution below is adopted:

p(v = 1|x) =
αx

1 + αx

p(v = 0|x) =
1

1 + αx
,

(2.1)

in which x is the amount invested and α is a common investment multiplier representing

its effectiveness. This probability is stochastically increasing in x.

The common shock affecting the whole industry is usually given by an exogenous

probability:

p(ζ = 1) = δ

p(ζ = 0) = 1− δ.
(2.2)

It can be interpreted, for instance, as developments in the products not analyzed in this

industry, but that compete, to some extent, with those analyzed.

The state of an entrant by the end of the period it decided to enter is usually

similarly defined: ωe′ = ωe + ve− ζ, with ve and ζ following the same distributions above,

and ωe an exogenously determined initial state.

The exit and investment decisions of all incumbents, and entry and investment

decisions by the entrant determine the probabilities of transiting from an industry struc-

ture to another.

As mentioned above, the state of a firm includes both its index and the indexes

of its competitors. In this paragraph we define a firm’s state in this way. The states of the

13



incumbent firms completely characterize the industry structure in any period. There are

several ways to represent the state of a firm. For instance, because Doraszelski and Pakes

assume symmetric and anonymous primitives and focus on symmetric and anonymous

equilibrium3, they can represent the state of a firm i as a tuple (ωi, s), s = (s1, ..., sω), in

which sj is the number of firms in state j, and ωi is the state of firm i. The industry state

space is then (in which n is the maximum of firms allowed in the industry):

S =
{

(ωi, s) : ωi ∈ Ω, s = (s1, ..., sω), sω ∈ Z+,
∑
ω∈Ω

sω ≤ n
}
. (2.3)

2.1.3 Spot market competition

The model we will use here treats the outcome of spot market competition, the per period

profit function π(ωi, ω−i), as a primitive. That is because, once a demand system, a cost

function and an equilibrium assumption are assumed for the static per period competition,

the profits of the firms in each period are a function of their states. The profits resulting

from every state can then be calculated beforehand and stored to be used in calculating

expected value functions and optimal policies in the dynamic game.4

2.1.4 Incumbent firms

At the beginning of each period, each incumbent draws a scrap value φ from a random

distribution F (.). The scrap values are independently and identically distributed across

firms and periods - usually an uniform distribution on a bounded interval is used. In view

of that, in principle, we should consider the scrap value as an additional state variable

when writing the problem of an incumbent. However, to make computation easier, the

model considers the problem before the scrap value is realized, using an expected value
3A set of functions {fi(.)}ni=1 is symmetric if fi(ωi, ω−i) = fj(ωi, ω−i),∀i, j; and a function f(.)

is anonymous if f(ωi, ω−i) = f(ωi, ωπ(−i)) for all permutations π(−i). Although I also make these

assumptions in the models analyzed in chapters 3 and 4, I use a different representation of the state

space, as explained in the Appendix.
4But that does not need to be the case. It is possible to include decisions with dynamic impact in

the per period competition, which would prevent calculating profits beforehand and using them as a

primitive. For instance, Besanko et al.[12] does this to analyze learning-by-doing.
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function:

V (ωi, ω−i) = π(ωi, ω−i) + r(ωi, ω−i)φ̃

+ (1− r(ωi, ω−i))
{

max
xi

(−xi + βE[V (ω′i, ω
′
−i)|ωi, ω−i])

}
, (2.4)

in which r(.) is the probability that the firm exits (i.e., that it draws a scrap value above

its continuation value), φ̃ is the expected scrap value, conditional on the firm exiting,

and E is the expectation operator over the probability distribution of possible states next

period.

A useful notation for the continuation value is used by Doraszelski and Pakes:

E[V (ω′i, ω
′
−i)|ωi, ω−i] =

∑
v

W (v|ωi, ω−i)p(v|xi)

W (v|ωi, ω−i) =
∑
ω′−i,ζ

V (ωi + v − ζ, ω′−i)q(ω′−i|ωi, ω−i, ζ)p(ζ),
(2.5)

in which W (.|.) represents a firm’s expected continuation value, conditional on its invest-

ment resulting in outcome v, and using q(.) as the perception about the probability of

next period’s state of its competitors, ω′−i. In equilibrium, this perception matches the

actual probabilities governing the evolution of the industry.

2.1.5 Entrants

At the beginning of each period, each potential entrant draws an entry cost φe from a

random distribution F e(.) - again, usually an uniform distribution on a bounded interval.

Entrants cannot delay entry: if an entrant does not enter, it disappears, and new potential

entrants appear next period. For simplicity, here and in Chapters 3 and 4, we will assume

that only one entry can happen each period (as in Ericsson and Pakes and most of

literature). The entry cost is independently and identically distributed across periods.

The entrant may also invest some amount to improve the distribution of the

states in which it enters. Similarly to the incumbents, we consider the expected value

function of an entrant to reduce the state space.

V e(ω) = re(ω)
{

max
xei

(−φ̃e − xei + β
∑
v

W e(v|ω)p(v|xei ))
}
, (2.6)
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in which W e is defined analogously to the W defined above for the incumbents, φ̃e is

the expected cost of entry, conditional on having entered, and re() is the probability of

entering (i.e., of drawing an entry cost lower than the continuation value).

2.2 Equilibrium characterization and existence

Doraszelski and Pakes, as do most of the literature, work with a Markov perfect equi-

librium as the solution to the game.5 In this equilibrium, for every state ω ∈ S, each

incumbent and the potential entrant: (i) chooses optimal investments, and entry and exit

decisions based only on the current state of the industry and on their perceptions about

the distribution of the future states, and (ii) these perceptions are consistent with the

objective evolution of the industry resulting from their actions. In order to check that

an equilibrium was found, one can check whether the value and policy functions found

satisfy the Bellman equations described above.

In order to guarantee the existence of an equilibrium in pure strategies to the

game described here, in addition to random entry costs and scrap values (which are

required to obtain continuous best-reply correspondences, standard in existence proofs in

game theory), finite players and a finite state space are also required.6 These conditions

will be observed in Chapters 3 and 4. Moreover, they make the state space finite, which

allows us to compute value and policy functions. Also, because of the finite state space,
5This concept was developed by the theoretical industrial organization literature, namely the seminal

articles by Maskin and Tirole [22], and later used by the applied literature. As explained by Doraszelski

and Pakes, the equilibrium is Markov because value and policy functions are functions only of the current

state, and is perfect because it is subgame perfect: since any influence of past behavior, regardless of

what it was, is already captured by the current state, each state is a subgame and vice-versa, and the

equilibrium definition ensures optimal behavior at each state, thus at each subgame.
6If certain conditions, provided in Ericsson and Pakes[10], are satisfied, then, in equilibrium, there

is a maximum number of firms that the industry will ever support, and a maximum state above which

no firm will ever go. The main condition is that the profit function is bounded from above and tends

to zero as the number of firms increase. This makes the return from investment become smaller than

the additional profit at some point, therefore imposing a maximum state above which firms will not go,

and also makes the profits go below the positive scrap value for a finite large enough number of firms,

therefore imposing a maximum number of firms.
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the evolution of the industry is a finite state Markov chain, which guarantees that there

exists at least one recurrent class - that is, a group of states such that, once the industry

enters this group, it will remain there with probability one. This will be important for

the stochastic algorithm described in the next section.

2.3 Algorithms to Solve for an Equilibrium

2.3.1 Deterministic

A deterministic algorithm was developed by Pakes and McGuire[24] to calculate a Markov

perfect equilibrium7. The algorithm tries to find a fixed point for the Bellman equations

2.4 and 2.6 above. It starts with an initial guess for the value function for each state

and for the entry, exit, and investment policies. Then, having these values, the algorithm

updates them by the following procedure.

For each state, we treat the values from the previous iteration as the true ex-

pected values and policies as optimal policies. These are then used to calculate the con-

ditional continuation values {W (.|.)} according to the formula given above in equation

2.5.

As suggested by Doraszelski and Pakes, one can first calculate the probabilities

of each future state of each agent, conditional on the current states of other agents, the

information in memory and the industry shock. The probabilities of a future state ω′i for

a firm i are given by:

pl−1(ω′i|ωi, ω−i, ζ) =


rl−1(ωi, ω−i), if ω′i = exit

(1− rl−1(ωi, ω−i))p(vi = 1|xl−1(ωi, ω−i)), if ω′i = ωi + 1− ζ

(1− rl−1(ωi, ω−i))(1− p(vi = 1|xl−1(ωi, ω−i))), if ω′i = ωi − ζ
(2.7)

in which l − 1 indicates the iteration, and r(.) is the probability of exiting the industry.
7As indicated by Doraszelski and Pakes, we notice that there may be multiple equilibria, and often

there are. How to deal with this issue is still an open question in the literature.
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Having calculated these probabilities for each firm, and also the probability that a

new firm enters the industry (re,l−1(ω)), for each state, it is possible to calculate, again for

each firm and each state, the perceived probability of the future states of the competitors

of the firm. Based on information from the last iteration, l − 1, the current iteration’s

expression for the perception of a firm i about the probability of the future states of its

competitors being ω′−i (with an entry occurring) is:

ql(ω′−i|ωi, ω−i, ζ) =
∏
j 6=i

pl−1(ω′j|ωj, ω−j, ζ)re,l−1(ω). (2.8)

Then one can substitute this perception in the expression for W (.|.) in equation 2.5, and

use the expected values in memory from the previous iteration and the probability of the

industry shock to calculate {W (.|.)} for each possible investment outcome of each firm.

Because the {W (.|.)} are the expected future values conditional on the outcome

of the agents’ investment, it is possible then, for each agent, to obtain its optimal invest-

ment decision as the result of a single agent optimization process. That is, the investment

decision determines the probability that the agent obtains each outcome (therefore, each

{W (.|.)}), and the firm can calculate the expected value of its investment decisions based

on these probabilities - the problem is then to choose investment so as to maximize this

expected value.

Given the optimal investment, we can use the expression on the right hand side

of the value function and the distribution of scrap values to determine the optimal exit

policy. That is, the probability that the firm will draw a scrap value above the continuation

value and then exit the industry. Note that exit policies are probabilities because we are

using expected value functions.

Having obtained the new value function and policies, we begin the process again

(the process for entry values and policies is similar, but using the entry expressions). This

iteration will continue until the distance between two consecutive iterations is below a

chosen limit.
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2.3.2 Stochastic

The burden of computing equilibrium using the deterministic algorithm above is very

large. That is because the algorithm goes through all the states in each iteration (it is

synchronous), and the number of states grows polynomially in the maximum number of

firms allowed and in the bounds on the possible states8. Moreover, when there is more

than one state per firm, the state space grows exponentially in the number of states per

firm. Also, at each state, the algorithm has to calculate continuation values for each firm,

which involves summing over all possible future states of the industry for each firm. The

number of possible future states grows exponentially in the number of firms and states

per firm.

To address this issue, Pakes and McGuire[25] developed a stochastic algorithm.

This algorithm is asynchronous, in that it does not update all the states in each iteration.

Instead it acts as if it were an agent learning optimal values and policies.

It works as follows: given an initial state and an initial guess for expected val-

ues and policies, we can calculate new optimal policies and values for this initial state,

following a single agent optimization procedure similar to the one used by the determin-

istic algorithm; then we take a draw from the transition distribution generated by these

policies, in order to simulate what would be the next state, and use this simulated next

state to calculate the continuation value, based on the expected value functions held in

memory. After a significant number of iterations, we will have passed through each state

several times and obtained different continuation values, over which we take an average,

resulting in accurate value and policy functions (the more often a state was visited, the

more accurate the value and policies for that state will be). Therefore, the algorithm simu-

lates a learning procedure and eliminates the burden of calculating continuation values by

summing over all possible future states, as it takes draws of the future state each iteration

and calculates the continuation value only for that draw, averaging over all draws in the

end. This eliminates the curse of dimensionality affecting this part of the deterministic

algorithm.
8In fact, it grows polynomially because of the symmetry and anonymity assumptions. Otherwise it

would grow exponentially.
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Also, the algorithm only attempts to calculate accurate policies and value func-

tions on a recurrent class. That is because after a finite number of iterations, the algorithm

will enter a recurrent class and stay there forever. Thus, because the number of states in

a recurrent class may be much smaller than the state space and does not need to grow in

any way when the state space grows, the algorithm may eliminate the burden of solving

large state space problems entirely.

A downside of the algorithm is that it increases the number of iterations needed.

Because the algorithm works as if an agent is learning its value function and optimal

policies through time, it takes a lot of iterations to obtain accurate policies and values for

every state in the recurrent class, specially those visited less often. Thus the algorithm

is more efficient only for large scale problems, with more than one state variable per firm

and/or a large number of firms, to which a deterministic algorithm could not be applied.

Pakes and McGuire stopped every million iterations and calculated the value

functions exactly over the states visited in these latter million iterations. Then they

compared these value functions with the ones obtained through the learning algorithm.

If their correlation (weighted by the number of times each state was visited) is above

0.995 and the difference between their weighted means is less than one percent, then the

algorithm stopped.

The testing part is still subject to the curse of dimensionality, as they have to

sum over all possible future states, for each state in the recurrent class, in order to obtain

exact continuation values. But because the recurrent class may be significantly smaller

than the state space, this burden may be smaller as well.9

9At last, it is worth mentioning that, more recently, Fershtman and Pakes[15] developed a test by

simulation that is not subject to the curse of dimensionality and can be applied to the stochastic algorithm.
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Chapter 3

Entry and Preemption Races

3.1 Introduction

Chen[4] analyzed the dynamic effects of a merger in an industry with three firms, and in

which firms produce almost homogeneous goods, but have different capacity constraints.

The objective of the author was to compare the effects of a merger in this scenario to

the predicted effects that would be obtained if one fitted the data generated by such an

industry to an asymmetric costs static competition model - as antitrust agencies often do.

The result was that the asymmetric static model underestimates the price in-

crease and reduction in welfare created by the merger, while the dynamic model shows

that prices get higher and the welfare losses get worse over time. That is because it takes

some time for the industry to adjust its capacity to the new scenario. But the static

model did not capture that.

Moreover, Chen finds that the industry dynamics is characterized by a preemp-

tion race. Firms race each other to become the market leader, investing to increase their

capacity, until one of them reaches a capacity of 25. Then the others retreat and stop in-

vesting, resulting in their capacity shrinking to 5 (the lowest level admitted in the model)

eventually, due to stochastic depreciation. This state (one dominant and two small firms)

was the most likely state in the industry.
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But the model used by Chen does not allow for entry and exit. In view of that,

the goal of this chapter is to test if these results are affected by the possibility of entry and

exit in the industry. We will modify his model to allow for entry and exit, and simulate

the evolution of the industry using the same parameters. As we will see, we find that the

results with entry and exit do differ from the results obtained by Chen.

The next sections describe the model analyzed in this chapter and report the

results of the simulations.

3.2 The spot market

Chen used a model of price competition with symmetrically differentiated products and

a demand derived from a representative consumer with quadratic utility function. The

demand and inverse demand systems are:

pj(qj, q−j) = a− bqj − θ
∑

q−j, j = 1, ..., n.

qj(pj, p−j) =
1

b(1 + θ + 2θ2)
[a(1− θ)− (1 + θ)pj + θ

∑
p−j], j = 1, ..., n,

(3.1)

in which a and b are parameters, θ indicates the degree of product differentiation (with 0

being the highest degree, and 1 being totally homogeneous), q is quantity and p is price.

The firms have a cost function with soft capacity constraints, in that they can

produce any quantity, but, depending on the parameter η, costs can get prohibitively high

if the firm is producing above its capacity k.

C(q|k) =
1

1 + η

( q
k

)η
q. (3.2)

Also, notice that firms have the same cost functions, differing only in their

production capacities. That is, they are considered ex-ante identical, since the capacity

is endogenously determined by the investment decisions in the model.

Firms compete each period by setting price and producing to demand. They set

price to maximize profit given the prices of the other firms and the demand function. These
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prices solve the following system of first order conditions, which we solve numerically:

−(1 + θ)

b(1 + θ + 2θ2)
∗ pj + qj −

( qj
kj

)η ∗ −(1 + θ)

b(1 + θ + 2θ2)
= 0, j = 1, ..., n. (3.3)

3.3 The Dynamic Game

Differently from Chen’s original model, an incumbent here must choose whether to exit

or continue in the market, by comparing the scrap value φ with the expected present

value of future profits. Also, as seen in Chapter 2, to guarantee that the model has an

equilibrium in pure strategies, we will consider random entry costs and scrap values, and

will also consider expected value functions. Therefore, entry and exit policies will not be

zero/one functions, but rather probabilities.

In order to obtain the continuation value and compare to the scrap value, the

incumbent must choose an optimal level of investment because it influences the level of

profits in the future. The incumbent then solves the following Bellman equation:

V (kj, k−j) = π(kj, k−j) + r(kj, k−j)φ̃+ (1− r(kj, k−j))
{

max
xj≥0

(
− xj + βE[V (k′j, k

′
−j)]
)}
,

(3.4)

in which r(.) is the probability that the firm exits, φ̃ is the expected scrap value conditional

on the firm exiting the industry, k is capacity, and x is investment in capacity. Firms

do not exit immediately. If a firm decides to exit on period t it will still obtain the spot

market profits in that period, completing its exit only on period t+ 1.

Similarly, entry takes one period to occur and entry decisions are simultaneous

to exit decisions, occurring at the beginning of a period. Entrants must compare the costs

of entry, φe, with the expected value of future profits. Entrants also cannot invest for the

first period and, thus, enter with a pre-determined level of capacity - ke. But the common

industry shock of the period they enter (see below) affects their capacity.

Again, we consider random entry costs and expected values. The entrants solve:

V (ke, k) = re(k)
{
− φ̃e + βE[V (k′e, k′)]

}
, (3.5)
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in which re(.) is the probability of entry and φ̃e the entry cost conditional on entering.

Following Doraszelski and Pakes[8], we can represent the continuation value as

follows:

E[V (k′j, k
′
−j)] =

∑
v

W (v|k)p(v|xj)

W (v|k) =
∑
k′−j ,ζ

V (kj + v − ζ, k′−j|W )q(k′−j, k, ζ)p(ζ),
(3.6)

in which v is the idiosyncratic shock affecting the firm and p(.|x) is its probability condi-

tional on the investment of the firm (see more below). Thus W (.) is the expected value

of future profits for the firm, conditional on the investment result being v and current

industry structure being k. ζ is an industry-wide shock affecting all firms and p(.) its

probability. Finally q(.) is the perception of the firm about the distribution of the future

states of its competitors.

Both idiosyncratic and common shocks take only one or zero values. The prob-

ability that an investment will result in a one-unit increase in capacity is given by the

same formula used in Chen and in most of the literature:

p(v = 1|x) =
αx

1 + αx

p(v = 0|x) =
1

1 + αx

(3.7)

in which α is an investment multiplier.

The common shock affecting the capacities in the industry is given by an exoge-

nous probability:

p(ζ = 1) = δ

p(ζ = 0) = 1− δ.
(3.8)

Below we analyze simulations based on a Markov perfect equilibrium for this

game, which was obtained using the deterministic algorithm described in Chapter 2.1

1We used a modified version of the code made available by Ariel Pakes in his website. The original

code did not have random exit and the profit function we use here, and did not compute some of the

statistics we analyze, and was modified accordingly.
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3.4 Results

As indicated in the introduction, Chen analyzes a model similar to the one described in

the previous sections, but without entry and exit. His results were obtained with the

following parameters: a = 4, b = 0.1, α = 0.0625, β = 1/1.05, η = 10, θ = 0.9, and 9

possible states, ranging from 5 of capacity (state 1) to 45 of capacity (state 9). We will

use these same parameters here since our goal is to assess the impacts of entry and exit

on his results.

As explained, entry costs are treated as random variables. Each period that

entry is feasible, the potential entrant draws the entry cost from a uniform distribution

between 20 and 100 and can enter the industry with capacity 5 (state 1). The range for

entry costs was based on the fact that the mean expected value function for the smallest

firm is 34.9, with a standard deviation of 27.8. Therefore, entry costs can be considered

relatively high compared to the expected value an ordinary entrant would obtain after

entering. Entry takes one period to be completed, as explained above. Also, we inserted

a range of scrap values from 8 to 15, which a firm draws each period to evaluate whether

or not it exits the industry. Thus, we might consider the costs of entering this industry

partially sunk.

Simulating such an industry, we find that although price does increase imme-

diately after the merger, it starts decreasing after that due to entry. But, with these

parameters, the decrease is not fast. In fact, it takes more than 25 periods before the

industry returns to its old price level. And since the discount rate is based on an annual

interest rate of approximately 5%, each period can be compared to a year, resulting in

a very long period with higher prices. Figure 3.1 below shows this result. The industry

structure in period 0 is (1,1,1) and a merger between the two smallest firms occurs in

period 100.2

2Consumer and total surplus were calculated using the same expressions used by Chen[4].
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Figure 3.1: θ = 0.9 - Entry costs: 20-100 - Scrap value: 8-15

The lag between the merger and the date when the level of prices returns to the

pre-merger level is due to the fact that entry is uncertain. In some of the simulations it

occurred right after the merger, and in others it may have taken longer. This uncertainty

captured by working with random entry costs could then plausibly match entry patterns

in real world industries through the choice of an appropriate range of entry costs. For

instance, by reducing the upper bound of the range of entry costs, the industry reaches

the original level of prices faster. This can be seen in Figure 3.2 below.
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Figure 3.2: θ = 0.9 - Entry costs: 20-35 - Scrap value: 8-15

Also, it is interesting that with more differentiated products (θ = 0.5) - and

a range of entry costs comparable with the first specification simulated above (Figure

3.1), that is, relatively high (between 100 and 4003) - prices appear to decrease somewhat

faster to their level before the merger - see Figure 3.3. This might be explained by the

fact that, all else equal, firms earn higher profits with differentiated products and, thus,

entrants expect higher profits, accepting higher entry costs. In fact, the mean of the entry

probabilities (considering only non-zero probability scenarios) in the specifications below

with θ = 0.1 and 0.5 is 25%, whereas with θ = 0.9 this mean is less than 10%.
3They are in line with the mean (188.5) and standard deviation (115.8) of the value function of the

smallest firm.
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Figure 3.3: θ = 0.5 - Entry costs: 100-400 - Scrap value: 8-15

A similar picture appears with even more differentiated products: θ = 0.1 and

entry costs in the range between 300 and 600, again to keep entry costs relatively high,

comparable to the first scenario with θ = 0.9. See Figure 3.4 below.
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Figure 3.4: θ = 0.1 - Entry costs: 300-600 - Scrap value: 8-15

Furthermore, regarding the preemption race that Chen found with the parame-

ters described, when entry and exit were inserted in the model (with the same parameters

as in Figure 3.1) there was no clear sign of it. As can be seen in Figure 3.5 below, a

firm invests a positive amount only until it reaches capacity 15 (state 3), no matter the

capacity of its rivals. If its rivals have a lower capacity, then the firm might invest more.

But it does not stop investing, for instance, when one of its rivals reaches a capacity of 15.

Moreover, the most likely state, as measured by its frequency, was (3,3,3), a symmetric

state.
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Figure 3.5: Investment function (si is the state of the firm i). θ = 0.9 - Entry costs:

20-100 - Scrap value: 8-15

This result suggests that entry and exit might make a preemption race less likely

- at least using the model and parameters of Chen. A possible explanation is that no firm

is guaranteed to stay at the state 1, with zero investments. If a firm reaches 1 and stops

investing, it will exit the industry due to stochastic depreciation. Therefore, it has to

invest some amount to stay alive and, with this investment, it has a positive chance of

increasing capacity above the state 1. When reaching a higher state, it might be better

to continue investing rather than stop investing (since this again would increase the risk

of depreciation and future exit). Therefore, contrary to the model of Chen, with the

possibility of exit, a firm might find it profitable to invest and eventually reach the same

capacity of the others. This is corroborated by what we see in the value function. Figure

3.6 below shows that the value function of a firm is increasing in its investment at lower

states, even when competitors already have a somewhat high capacity.
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Figure 3.6: Value function. θ = 0.9 - Entry costs: 20-100 - Scrap value: 8-15

But that does not mean that preemption races are impossible with entry and

exit. In fact, Besanko et al.[13] relate preemption races to product differentiation. If

products are sufficiently homogeneous so that firms do not expect the industry to support

more than one firm, they might race to become the leader. Otherwise, they might avoid

the excess capacity built in such a race and the outcome would be a symmetric industry.

For instance, in the model simulated here, if we increase the θ from 0.9 to 0.99,

that is, decrease product differentiation, we obtain signs of a preemption race. As can be

seen in Figure 3.7, investment is higher in the regions of the graphs in which the firms

have similar capacities.
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Figure 3.7: Investment. θ = 0.99 - Entry costs: 20-100 - Scrap value: 8-15

Also, Figure 3.8 below, depicting value functions for this specification, shows that

when the asymmetry between a firm and its competitors is large enough, its incentives

to invest diminish. The value function becomes flatter in these regions, showing that the

benefit from increasing capacity is smaller than for the specification shown in Figure 3.6.
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Figure 3.8: Value function. θ = 0.99 - Entry costs: 20-100 - Scrap value: 8-15

3.5 Conclusion and possible extensions

The results obtained above indicate that, by choosing appropriate ranges for entry costs,

the model could plausibly replicate the uncertainty in entry in the real world. That

is, when we chose a relatively high upper bound on the entry range, the averaging over

various simulations produced a pattern in which prices increase immediately after a merger

occurs but may take a long time to reduce after that. In real markets this can happen

because entry often takes a long time to be completed, with the length being uncertain,

and entrants take some time to establish their reputation and capture consumers from

competitors, among other factors. Similarly, by choosing a lower upper bound, entry was

able to bring prices down faster. Therefore, it should be possible to calibrate this range

to match entry patterns found in the real world.
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Another interesting feature is that, in this model, only actual entry, and not

threat of entry, can constraint prices after the merger. This result is partly due to the

fact that we used a static profit function every period. This does not allow incumbent

firms to take into account future states of the industry when pricing. In other words,

they cannot choose lower prices in order to discourage entry. On the other hand, lower

prices alone would not be able to prevent entry because the entrant is forward-looking

and takes into account not the price today, but the prices that will realize when it enters

the industry. Thus, for an incumbent to be able to price strategically in order to prevent

entry, it would have to price below the optimal price level for an industry structure in

which the entrant is already in. And this non-optimal price might lead to profits below

what would be obtained with optimal pricing with an entrant. To analyze what would

actually happen under some specific parameters, we would have to adapt the model in

order to make the pricing decision dynamic.4 Furthermore, we would have model the

expectations of entrants and how they are affected by incumbents’ behavior.

Also, we saw that, all else equal, entry appears to occur more often with more

product differentiation, which might be explained by the industry being more profitable.

But it would be interesting to build a model with two state variables for each firm:

capacity and quality, for instance. The latter would be an index indicating in which part

of the quality spectrum a firm’s product are. If two firms produce in closer parts of the

spectrum, they are stronger constraints on each other. A potential entrant, then, could

choose to enter in any part of the spectrum, and the costs of entry and expected revenues

would differ according to that.

Regarding preemption races, the results show that entry and exit might make it

less likely to occur. Using the same parameters as Chen, but with the addition of entry

and exit, we were not able to obtain signs of a preemption race. But by making products

even more homogeneous, we could obtain some signs.

4For instance, Besanko, Doraszelski, and Kryukov[6] analyze predatory pricing by making pricing a

dynamic decision. They also insert learning-by-doing, which can turn even below-cost prices into an

optimal strategy, for a firm to achieve a better position on its cost curve in the future and earn more

profits in the long-run.
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Chapter 4

A Dynamic Model to Assess Vertical

Integration

4.1 Introduction

The goals of this chapter are two. First, we will suggest a dynamic model, based on the

Ericsson and Pakes[10] framework, capable of analyzing vertically integrated industries

by explicitly modelling the upstream and downstream segments. It may assist researchers

in analyzing important issues such as vertical integration, exclusive contracts, and other

common business practices between manufacturers and retailers. The construction of

such a model becomes even more important when one notices that these issues often

have important dynamic consequences, which so far have not been analyzed through a

structural dynamic model such as the one built here.

A particular example of an industry in which vertical integration is a relevant

issue, but in which, to our knowledge, this issue was not analyzed dynamically so far, is the

gasoline industry. The second goal is then to test the model by simulating the evolution of

an industry with parameters similar to the characteristics of real world gasoline markets.

The market for gasoline was the focus of several studies and debates on the effects

of vertical integration, more specifically the vertical relations between the segments of

refining (wholesale) and retail of gasoline. The main concern was that vertically integrated
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firms would be able to raise the wholesale price of gasoline sold to independent retailers,

thereby raising their costs and increasing the retail price to the final consumer. Also,

these exclusionary incentives might raise barriers to non integrated players, making entry

more difficult, as a potential entrant would have to enter both segments - an example of

a dynamic issue.

Hastings and Gilbert[18], for instance, empirically analyzes whether vertical in-

tegration between refiners and retailers of gasoline increases wholesale prices due to an

incentive to raise rivals’ costs. The authors mention three instances that, according to the

theoretical literature, should increase incentives to raise rivals’ costs: integrated and inde-

pendent gas stations are close to each other, refiners sell a large portion of their production

to integrated retailers, and refiners have significant market power. They use wholesale

price data on the West Coast of the United States from before and after the acquisition of

Unocal’s refining and marketing assets by Tosco Corporation. This was a transaction that

increased the level of vertical integration of the latter firm in some locations. Controlling

for confounding factors, the authors found that the degree of competition with indepen-

dent retailers has a significant and positive effect on wholesale prices, which consistent

with the theoretical incentives to raise rivals’ costs.

However, Taylor and Hosken[29] criticizes these results, pointing that the authors

should have looked at retail prices in order to assess whether there was impact on welfare.

They analyzed the effects of a joint venture between two integrated players in the gasoline

industry, Marathon and Ashland, and also found evidence of increase in wholesale prices.

In fact, in some locations, independent retailers faced increases, while integrated ones

faced lower wholesale prices. Nonetheless, the authors could not find evidence of these

wholesale price increases being passed on to retail prices, and, therefore, there was no

consumer harm - at least in the short run, since the authors themselves pointed that the

margin squeeze found, if persistent, could result in the exit of independent retailers.

Hastings[17] did analyze and found evidence of retail price increase following the

conversion of several independent gas stations to stations with the ARCO brand, a firm

vertically integrated in refining and retailing in the West Coast of the United States. But,

although there was a change in the level of vertical integration following the merger, the

author concludes that the cause was likely the fact that independent gas stations compete
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more on price and, thus, their elimination would decrease price pressure on the remaining

competitors. This would also be evidence in favor of a brand-loyalty model of competition

in the gasoline retail. Nonetheless, these results were questioned later by Taylor, Kreisle,

and Zimmerman[5], who could not replicate the results, and, in fact, although using a

different a data set, found results opposing the conclusions of Hastings.

Also, a report by the Federal Trade Commission of the United States in 2005[23],

after analyzing several papers on the issue of vertical integration, concluded that retail

prices of companies active in both refining and retailing tend to be lower. Nonetheless,

they acknowledge that vertical integration may be harmful, for instance, due to the in-

centive to raise rivals’ costs and because they may make entry more difficult by forcing

potential entrants to enter both segments (refining and retailing), and mention the results

of Hastings[17] and Hastings and Gilbert [18]. And they point that vertical integration

between refining and retailing may have been decreasing in the United States as a whole

(although it was still high in the West Coast, object of the studies of Hastings and Hastings

and Gilbert), and non integrated retailers have entered in some locations.

In sum, some studies found that vertical integration may cause high wholesale

prices, but no connection with higher retail prices could be made. In fact, several papers

found connection between vertical integration and lower retail gasoline prices. Moreover,

although this was suggested by Taylor and Hosken[29], no study assessed the impact of

vertical integration on entry and exit of independent competitors and a possible long-run

reduction in competition.

To analyze these issues, we propose a dynamic model based on the Ericsson

and Pakes framework. The static "per-period" competition follows the model proposed

in Hendricks and McAfee [19]. This is an homogeneous product model, plausible for

the gasoline market. But one could experiment with different models, such as bargaining

models, for instance, as we intend to do in the future, in the case of differentiated products.

On the dynamic side, firms can invest in capacity upstream and/or downstream every

period, in order to improve their outcomes from the competition in future periods. Also

firms can exit and enter the industry. In order to be able assess the impacts of vertical

integration on entry, we allow entry to happen either as an integrated firm, or only

upstream/downstream, with different costs for each option.
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This analysis is similar to the one carried by Carranza, Clark, and Houde[20],

who analyze the impacts of price floors in the retail of gasoline through a dynamic model

and conclude that it may prevent efficient firms from entering, although competition be-

tween the less efficient firms may become more intensive. And the final result on welfare

can vary. But the authors consider only the retailing segment. Here we explicitly model

both refining and retailing segments and obtain results consistent with the empirical liter-

ature mentioned above: we see evidence of incentives to raise rivals’ costs and, depending

on the market structure, we see this resulting in higher retail prices. But, on average,

prices tend to be lower with integration, due to the reduction of the double margin prob-

lem. Furthermore, we found evidence of vertical integration preventing non integrated

entry in some instances, resulting in lower accumulated welfare over time - but not much

lower because integrated entry eventually happened in the long-run. This novel feature

was only hinted at by the empirical literature, but was not assessed yet. The next sections

describe our model in more detail and the results from the simulations.

4.2 Spot market competition

We chose a simpler static model for the per-period market competition, involving an

homogeneous goods industry, developed by Hendricks and McAfee [19]. Nonetheless, this

choice is reasonable for the assessment of the gasoline market, an almost homogeneous

product.1 The model is a bilateral oligopoly, in that the upstream firms have some

market power and also the downstream firms have some buyer power. Hendricks and

McAfee develop a game in which suppliers of an intermediate homogeneous good submit

their cost functions and buyers (sellers of the final good) submit value functions, and a

market mechanism selects prices that equate supply and demand. In the model, sellers

can exercise market power by exaggerating their costs and buyers by understating their

valuation. Hendricks and McAfee developed several variations of this basic framework.

In this essay we use the "wholesale market" model. The buyers are retailers that sell the

intermediate good in an imperfectly competitive downstream market, incurring some cost
1As mentioned in the introduction, the conclusions of Hastings[17] that the gasoline retail market was

characterized by brand loyalty were questioned later by Taylor, Kreisle, and Zimmerman[5].

38



(e.g., costs of distribution).

The model is as follows. In the upstream market, each firm i produces and sells

an intermediate output, with constant returns to scale and fixed capacity, having cost

functions in the form below:

C(xi) = γic
(xi
γi

)
, (4.1)

in which γi is capacity, xi is the quantity produced and c(.) is a convex and strictly

increasing function.2

The general form of the valuation function for the buyer is as follows:

V (qj) = kjv
( qj
kj

)
, (4.2)

in which V is homogeneous of degree one, v(.) is concave and strictly increasing3, qj is

the volume of intermediate output consumed by the buyer, and kj is its capacity for

processing the good.

For this essay, because the buyers are retailers, the valuation function V takes a

more specific form:

V (qj) = r(Q)qj − kjw
( qj
kj

)
, (4.3)

in which w(.) represents selling costs, Q is the total quantity of good sold downstream, and

r(Q) is the downstream inverse demand curve (i.e., the price of the good sold downstream).

In view of this, the profit function for a vertically integrated firms is:

πi(γ, k) = r(Q)qi − kiw
( qi
ki

)
− γic

(xi
γi

)
− p(qi − xi), (4.4)

in which p is the price of the intermediate good. The profit functions of non-integrated

firms are analogous.

In the game, firms report their cost and valuation functions, i.e., their capacities

(since the functions must follow the form specified above, differing only in the capacity
2Hendricks and McAfee also assume that c′(z)→∞ as z →∞.
3Hendricks and McAfee also assume that v′(z)→ 0 as z →∞.
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parameter). The reported production capacity is γ̂ and the reported retailing capacity is

k̂, which may or may not be their true capacities. Then the market mechanism chooses

the prices to equate reported supply and reported demand - a Nash equilibrium to this

game.4 As indicated by Hendricks and McAfee, this equilibrium is characterized by the

balance condition:

Q =
n∑
i=1

qi =
n∑
i=1

xi = X, (4.5)

and the marginal conditions:

v′
( qj
k̂j

)
= p = c′

(xi
γ̂i

)
, i, j = 1, ...n. (4.6)

In words, supply of the intermediate output equals its demand and the marginal

valuation and marginal costs of production of the intermediate output (based on the re-

ported, not true, capacities) equal the price of this good. Because larger firms upstream,

for instance, may be able to report higher costs (less capacity) than they have, without

the other firms being able to fully supply the demand left unattended, they can inflate

the price p, obtaining positive profits; and similarly for buyers that can report a valuation

lower than the true one. Thus, as pointed by the authors, if the agents do not misre-

port their capacities, the outcome can be efficient, but also inefficiencies may arise from

the "rational exercise of market power by firms with significant market presence". The

structure of the market, not the model, is responsible for the outcome in each case.

In order to make the equilibrium amenable to computation, Hendricks and

McAfee adopt functional forms with constant elasticities. The upstream cost function

is:

C(xi) = γi
( η

η + 1

)(xi
γi

)(η+1)/η
, (4.7)

in which η is the elasticity of supply upstream and the valuation function downstream is:

V (qi) = kj
( β

β + 1

)(qj
ki

)(β+1)/β
, (4.8)

4But notice that Hendricks and McAfee state that "The firms’ actual types are common knowledge

to the firms. Thus, in choosing their reports, firms know the true types of other firms." In other words,

it is a complete information game.
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in which β is the elasticity of supply downstream.

Finally, Hendricks and McAfee define an inverse demand function downstream

with constant elasticity of demand α:

r = Q−1/α. (4.9)

Given the elasticities and true capacities (i.e., the structure of the market), an

equilibrium to the game comprises reports of capacities by each firm, their market shares,

and prices and quantities for both segments (which enables us to calculate profits for each

firm). Hendricks and McAfee then developed an algorithm that is able to take vectors of

true capacities of firms, in both segments, and outputting the equilibrium solution. This

is the algorithm used in this essay.5

4.3 The dynamic model

The dynamic decisions in this model are entry, exit and investment in productive capacity

(both upstream and downstream).

First, each period, an incumbent firm must determine whether it continues active

in the industry, or exits. If it exits, it receives a one-time payment of φ, the scrap value

of its assets. And, as in the framework exposed in Chapter 2, we use random scrap values

distributed uniformly on a bounded interval, and identically and independently over firms

and time, and expected value functions. If the firm continues, it will receive the profits

of the current and future periods in which it is still active.

In order to make its decision, the firm must calculate the expected present value

of the future profits and compare this to the scrap value drawn. And, as seen above, spot

market profits are a function of capacities of the firms upstream, γ, and downstream, k:

π(γi, ki, γ−i, k−i). Therefore, each incumbent firm must determine each period an amount

of investment that maximizes its future profits and then compare this continuation value
5The algorithm can be obtained in the website of McAfee: http://vita.mcafee.cc/Bin/Vertical/.
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to the scrap value.

V (γi, ki, γ−i, k−i) = π(γi, ki, γ−i, k−i) + r(γi, ki, γ−i, k−i)φ̃

+ (1− r(γi, ki, γ−i, k−i))
{

max
xui ,x

d
i

(
− xui − xdi + βE[V (γ′i, k

′
i, γ
′
−i, k

′
−i)]
)}
, (4.10)

in which r(.) is the probability of the firm exiting, φ̃ is the expected scrap value conditional

on the firm exiting, xui is investment upstream and xdi investment downstream. It can be

seen in the expression that a firm cannot exit the industry immediately. If a firm decides

to exit in period t, it will still receive the profits of that period and will cease to be active

only in period t+ 1.

Similarly, it takes one period to establish a new firm. A potential entrant that

decides to enter on period t must compare the entry costs, φe (also a random draw

distributed uniformly in a limited range, and identically and independently over time), to

the expected present value of future profits, considering that it will start receiving profits

only from period t + 1 on. Also, an entrant will enter with fixed capacities upstream γe

and downstream ke, in which he cannot invest for t + 1, but which can be degraded due

to the common industry shock at the end of t (see below for explanations on the shocks).

The entrant’s problem is then:

V e(γe, ke, γ, k) = re(γ, k)
{
− φ̃e + βE[V (γ′e, k′e, γ′, k′)]

}
, (4.11)

in which re(.) is the probability of entering the industry and φ̃e is the expected entry cost

conditional on the entrant actually entering.

Specifically to this model, we also inserted the possibility that the entrant enters

as an integrated firm, or only one of the segments. The choice is made by comparing

the expected value of each option before starting the efforts to enter. The entrant then

chooses the type of entry with the highest expected value and takes the draw of entry costs

to see if it is worth entering. We choose this sequence of decisions, to mimic uncertainties

in the real world, in which the agents often have to decide on a course of action based

only on expectations about what may happen as a result of each action.

More importantly for the purposes of this essay, we also allowed the possibility

of integrated entry being disproportionally more expensive than the entry in any one
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segment alone. For instance, if the range of entry costs in a single segment is between

1 and 3, we multiply these bounds by 4 to obtain the range of costs of integrated entry.

This could reflect additional costs of coordinating the entry efforts in both segments of

the industry, for instance.

As seen in the expressions above, the continuation value depends on the future

capacities of the industry, which in turn are stochasticaly determined by the investments

of the firms. Therefore, following Doraszelski and Pakes[8], we can write the continuation

value as follows:

E[V (γ′i, k
′
i, γ
′
−i, k

′
−i)] =

∑
vu,vd

W (vu, vd|γ, k)p(vu, vd|xui , xdi ), (4.12)

in which

W (vu, vd|γ, k) =∑
γ′−i,k

′
−i,ζ

u,ζd

V (γ′i + vu − ζu, k′i + vd − ζd, γ′−i, k′−i|W )q(γ′−i, k
′
−i, ζ

u, ζd)p(ζu, ζd). (4.13)

In words, W (.|.) is the continuation value conditional on the result of the firm’s

investment being vu, vd, and p(.|.) is the probability of obtaining this result, conditional

on the investment done. Notice that W (.|.) is already integrated over the probabilities

of all possible future states of the competitors and of the common industry shocks ζu, ζd.

Below we explain the distribution of the idiosyncratic and industry shocks.

As in most of the literature, the probability that a given investment will result

in an increase of 1 unit of capacity is given by the expressions below, in which au and ad

are investment multipliers upstream and downstream respectively:

p(vu = 1, vd = 1|xu, xd) =
( auxu

1 + auxu
)
∗
( adxd

1 + adxd
)

p(vu = 0, vd = 0|xu, xd) =
( 1

1 + auxu
)
∗
( 1

1 + adxd
)

p(vu = 1, vd = 0|xu, xd) =
( auxu

1 + auxu
)
∗
( 1

1 + adxd
)

p(vu = 0, vd = 1|xu, xd) =
( 1

1 + auxu
)
∗
( adxd

1 + adxd
)

(4.14)

Also, the probability that an industry will suffer an adverse shock affecting
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equally all firms is given exogenously, according to the expressions below:

p(ζu = 1, ζd = 1) = δ ∗ δ

p(ζu = 0, ζd = 0) = (1− δ) ∗ (1− δ)

p(ζu = 1, ζd = 0) = δ ∗ (1− δ)

p(ζu = 0, ζd = 1) = (1− δ) ∗ δ

(4.15)

As seen in the expressions above, both the idiosyncratic and common shocks

upstream are assumed independent of the shocks downstream, and independent over time

as well.

For more than two firms, this model is very burdensome to solve using the

deterministic algorithm described in Chapter 2 and used in Chapter 3, because it has

two state variables for each firm (upstream and downstream capacity), and also there

is no closed form solution to the maximization problem solved by the firm to determine

its investment decisions upstream and downstream. Therefore, in order to be able to

analyze the dynamics of an industry with up to 4 firms, a code that applies the stochastic

algorithm, also described in Chapter 2, is used (some details of the code particular to this

application are explained in the Appendix).

4.4 Results

In this section we report results6 from a model with up to four firms, using the stochastic

algorithm. For all the results below, the spot market static profit function carried the

following specifications. The cost elasticity downstream was β = 1 and the cost elasticity

upstream was η = 1/10, to reflect the fact that refining capacity (upstream) is more

difficult to expand relative to retailing capacity, due to being more technology intensive,

and thus requires a lower, inelastic, supply elasticity. Also, the supply elasticity in retailing

was not chosen high, to reflect possible regulatory restrictions on where to build and
6We iterated the stochastic algorithm until the weighted (by the number of visits to each state)

correlation between the exact continuation values and the continuation values obtained through the

learning process of the algorithm was above 0.995 and the difference between the weighted means was

below 1%.
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expand gas stations. The demand elasticity downstream was chosen at a relatively low

value, α = 2, to reflect the known fact that demand for gasoline is not very elastic - but

was nonetheless chosen above unitary elasticity, because we will test monopoly industry

structures, which cannot theoretically happen with inelastic demand. The states range

from 1 to 5 upstream, corresponding to the same levels of capacity, and 1 to 5 downstream,

corresponding to s ∗ 3 of capacity (s is the state). These values, as well as the maximum

number of firms, were chosen due to computational constraints. Also, the depreciation

rate δ is 0.01, since refining and retailing assets in the gasoline market last decades, and

the discount rate is 0.925, reflecting an annual interest rate of approx. 8% .

The range of entry costs was between 1 and 3 (and these bounds being multiplied

by 4 for the case of integrated entry to reflect the additional cost of coordinating entries

up and downstream), which were relatively high entry costs. A firm enters in state 2 on

the segments it chose to enter. The range of scrap values was between 0.1 and 0.5, to

reflect relatively high sunk costs as, in the model, firms do not exit the industry by selling

assets to another entrant and, thus, their assets would not have the same value for other

uses. Also, the investment multiplier was 0.0625 upstream and downstream, to reflect

regulatory difficulties in increasing capacity through investment.

Figure 4.1 below shows the evolution of retail prices, quantity, and accumulated

consumer and total welfare7 of such an industry for a 100 periods (again, averages over

1,000 runs), starting with two non-integrated firms in states 2, one upstream and the

other downstream. The first thing we notice is that the price falls fast in the beginning,

and that is due to entry. In this specification, we had approx. 3,000 integrated entries,

500 only upstream and 500 only downstream, over all simulations.
7The consumer surplus was calculated by integrating the demand function downstream presented in

the section 3.1 and subtracting the revenues of the firms. Total surplus was obtained by summing profits

to consumer surplus.

45



Figure 4.1: Initial state: non-integrated firms [(2,0,0,0),(0,0,0,2)] - Higher integrated entry

costs (multiplier 4) and investment multipliers (0.0625)

When we start with an integrated industry, with a firm in state 2 in both seg-

ments, as shown in Figure 4.2, we again reach a similar level of prices in the long-run as

in Figure 4.1, but prices begin already much lower, which corroborates the results in the

literature that integrated firms have lower retail prices, due to the reduction of the double

margin problem. But the welfare accumulated over time is almost the same in the two

initial states: integrated and non-integrated industry. That appears to be because entry

occurs in both scenarios and prevents the double margin problem from persisting when

the industry starts with a non-integrated structure. But, somewhat unexpectedly, the

number of entries of each type was much more similar starting with an integrated firm:

approx. 2,000 integrated, 1,500 upstream, and 1,500 downstream; when intuition would

suggest that non integrated entries should have been much less frequent than when we

started with a non integrated industry, reported above.
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Figure 4.2: Initial state: integrated firm [(2,0,0,0),(2,0,0,0)] - Higher integrated entry costs

(multiplier 4) and investment multipliers (0.0625)

But this unexpected result might be due to a pattern that often emerged in

the simulations with integrated initial state. First we would have an integrated entry

and then two consecutive non-integrated entries, one upstream and one downstream, and

the industry would remain in this configuration, with two integrated firms and two non-

integrated firms, for long periods. Thus, non integrated entries often happened once there

was already two integrated firms competing in the market, therefore reducing the market

power of each, a requisite the theoretical literature had identified for the incentives to

raise rivals’ costs to appear.

Also, very often we had industry configurations with integrated and non-integrated

firms. And these often appeared with the non integrated initial state as well. One possi-

ble explanation for the appearance of non integrated entries and the often found industry

structure with integrated and non integrated firms is that low investment multipliers make

it more difficult for integrated firms to expand their own capacity, and thus they find it
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profitable to use the capacity of a non integrated firm.

Indeed, when we run the simulation starting from an integrated monopoly with

state 2 upstream and 1 downstream, we found some runs in which the retail price in-

creased initially, after a non integrated entry, indicating exclusionary incentives. Those

were the runs in which capacity upstream was depreciated to 1, and there was entry

downstream with capacity 2, resulting in a capacity of 1 upstream and 3 downstream (1

of the integrated firm and 2 of the non integrated entrant). Because the integrated firm

had much lower capacity upstream than the available downstream capacity (recall that

downstream capacity is multiplied by 3), it may have been able to sell it all through its

own capacity downstream, but since markets had to clear, in order for the incumbent to

sell to the independent downstream firm, price had to increase. But this was a rare event,

due to the low depreciation rate, δ = 0.01, and thus was not sufficient to prevent entry in

the first place.

But when we started with a monopolist with state 1 both upstream and down-

stream (thus lower capacity upstream relative to the downstream capacity, that is multi-

plied by 3), we do not see non integrated entry at period two, and, most of the time, we

do not see entry at all, due to the higher integrated entry costs. Thus, despite the high

number of non integrated entries found above in the scenario of Figure 4.2, this might

be due to the higher capacity upstream of the integrated firm in that scenario and low

investment multiplier, creating a need to use the downstream capacity of independent

firms in the market. When we reduced the capacity upstream of the integrated incum-

bent, the exclusionary incentives appeared and they lowered incentives to non integrated

entry, preventing them altogether and, thus, making entry overall more difficult, due to

the higher costs of integrated entry. In the end, though, as can be seen in Figures 4.3

and 4.4 below, we observed levels of accumulated welfare smaller, but not much different,

because eventually integrated entry would happen and lead the industry to states in which

exclusionary incentives were not present and non-integrated entry could happen. Again,

often leading the industry to states with integrated and non-integrated firms.
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Figure 4.3: Initial state: integrated firm [(2,0,0,0),(1,0,0,0)] - Higher integrated entry costs

(multiplier 4) and investment multipliers (0.0625)
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Figure 4.4: Initial state: integrated firm [(1,0,0,0),(1,0,0,0)] - Higher integrated entry costs

(multiplier 4) and investment multipliers (0.0625)

4.4.1 Conclusion and Extensions

Through the model constructed in this section, we were able to simulate the evolution

of the industry under specifications inspired in the gasoline industry, namely refining

and retailing, starting both from integrated and non-integrated industry structures. The

motivating issue, as indicated in the introduction, was to assess whether the dynamic

model developed here showed signs of exclusionary incentives as reported by the empirical

literature reviewed in the introduction and, more importantly, whether this could increase

barriers to entry, reducing welfare in the long run, a dynamic issue that was not analyzed

by the empirical literature yet.

First, our results showed that the level of prices may be lower with integrated

firms, as claimed in part of the empirical literature - as seen in the scenario in which we
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started with an integrated firm; but entry rapidly brought prices down and accumulated

welfare did not differ much in the long run between the two initial states. Nonetheless, we

also found that there were indeed incentives to raise rivals’ costs evidenced by instances in

which retail prices increased right after entry of a non integrated firm. But these appeared

only when the capacities of the integrated firms were low and asymmetric, and therefore

they did not need the capacity of independent firms. In general, though, the industry

tended to configurations with both integrated and non integrated firms in the long run -

as we indeed see in the real world gasoline markets.

More importantly, we found evidence that, in the instances in which capacity

of the integrated firm was low and asymmetric, the exclusionary incentives did indeed

prevent non integrated entry, therefore making entry less likely, due to the higher costs

of integrated entry. Moreover, we obtained lower accumulated welfare over time when

we started with integrated monopolies with lower and asymmetric capacities upstream

and downstream, but not much lower, because in the long run, integrated entry would

eventually happen and bring the industry to states in which exclusionary incentives were

no longer present, and there were both integrated and non integrated firms present.

These results, however, may be related to the particular model we chose for

the per period competition. Continuing this line of research, it might be interesting to

experiment with other models of competition, such as bargaining models, often used in

static analysis of vertical integration. For instance, Sheu and Taragin[28] develop an

interesting and simple model, in which firms compete downstream according to a logit

model and prices for the intermediate input are the result of a bargaining game between

suppliers upstream and buyers downstream, in which each player’s payoff function depends

on its level of vertical integration and market position in both segments. This model could

handle differentiated products as well.
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Chapter 5

Future research

5.1 Asymmetric information

The essays here analyzed dynamic issues under two different industry configurations, but

always using a Markov perfect equilibrium as the solution to a game without asymmetric

information. Although practical, the assumption that firms observe the actions and states

of each other perfectly might be unrealistic.

To address this issue, Fershtman and Pakes[14] extends the framework developed

in Ericsson and Pakes [10] to allow for asymmetric information in dynamic oligopoly

games and also develop a new concept of equilibrium that can be computed for these

games, the Experience-Based Equilibrium (EBE). A future line of research, thus, would

be to follow their approach and adjust the complete information model described above in

Chapter 4 so that firms have access only to their own state and decisions and the public

information available to all players (which would be only the total number of firms active

in the market). Below we describe some of the adjustments that we might be needed to

construct this model.

52



5.1.1 Overview

Again, it is assumed that there is a maximum number of firms every period, and the possi-

ble values of the state variables are also finite. To accommodate asymmetric information,

the authors distinguish between observed and non-observed variables and, within the ob-

served variables, between payoff relevant variables and informationally relevant variables.

They define payoff relevant variables as variables that are not controls and affect current

period profits of at least one firm, and informationally relevant variables as those that

may improve the outcomes of the agent’s actions by conditioning on its value or there is

at least one player whose strategy depends on it. Each agent has a different information

set, called J , which contains his observed payoff and informationally relevant variables,

and the player conditions its actions on this information set. The state of the game is

the set of all information sets of the players. The assumption of finite values for the

state variables requires some restrictions on informationally relevant variables1 to avoid

actions depending on the whole history of the game. In the game we propose, the only

informationally relevant variable is the number of firms in the market, which is assumed

limited as well.

In our version of the game, firms have two controls each period: mu,md, which

represent discrete reports of capacity (upstream and downstream) by the firm for the

current period market competition (which is also based on the Hendricks and McAfee[19]

model described above), which can take any of the possible values in the discrete spaces

of capacities, Mu,Md; and xu, xd, which are investments to improve capacity for the

future and can take any non-negative real value.2 None of these controls are observed by

competitors. The strategy of a player is a function of its current period information set,

and includes decisions on reports of capacities and investments.

The problem of an incumbent firm can then be described similarly to the com-
1As indicated by the authors, the assumption on payoff relevant variables can be derived from the

primitives of the game.
2Although the framework presented in Fershtman and Pakes[14] has only discrete controls, they men-

tion the possibility of continuous controls, which were in fact used in the original version of their article.
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plete information model, by the following equation:

max
mu,md,xu,xd

[∑
η

W (mu,md, η|Ji)pη(η|xu, xd)
]

W (mu,md, η|J) = πE(mu(J),md(J)|J) + r(J)φ̃+

(1− r(J))β
∑
J ′

{∑
η

W (η′,mu∗(J ′),md∗(J ′)|J ′)p′η(η′|xu∗(J ′), xd∗(J ′))
}
p(J ′|J, η)

(5.1)

in which πE(.) is the expected profit, as a function of the information set, given that the

firm does not know the capacities of the competitors and thus cannot know the exact

profits ex-ante; W (|) is the value function of the agent, and is a function of the reports

of capacity and η, which is the result of the investment decision, stochastically increasing

on the investment amount, and the variables with ∗ represent optimal decisions, that

is, decisions that maximize the value function. In words, then, the agent chooses its

control to maximize its value function, which itself takes a recursive form, such that its

value today from adopting certain decisions is the sum of current expected profits and the

expected value from future periods, assuming optimal decisions are taken in the future.

Moreover, as indicated by the exit probability r(J), we also consider the possibil-

ity of the agent exiting the industry, and exit takes one period. Similarly to the complete

information model, firms compare the expected continuation value (i.e., the value function

above excluding the profits of the period) to the scrap value, and decide to exit if the

scrap value is greater. The scrap value is a random variable uniformly distributed on a

bounded interval and we consider expected value functions, based on the probability of

the firm drawing a scrap value greater than the expected continuation value and on the

expected scrap value, conditional on exiting, φ̃.

The problem for the entrant would be defined analogously. There can be only

one entrant per period, and it takes one period to enter. The potential entrant compares

the expected continuation value to the entry cost, which is also random, and enters if the

former is greater. Also, as indicated in the complete information model, the potential

entrant compares the expected values of entering as an integrated firm, only upstream or

only downstream, and chooses the one with the highest expected value.

For this problem, we would use the EBE concept. As defined by Fershtman
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and Pakes[14], an EBE includes (i) a subset R ⊂ S of the state space; (ii) strategy

functions, m∗(J) and x∗(J), indicating control decisions for every information set (and

every player)3; and (iii) expected discounted value functions for every decision on controls

and information sets, W (m|J); such that:

1. (R is a recurrent class). Starting from any s0 ∈ R the Markov process generated

by the strategy functions stays within R with probability 1.

2. (Optimality of strategies on R). Given W (|), for every J component of an s in R,

the decisions given by the stragey functions maximize W (|).

3. (Consistency of values on R). For every J component of an s in R, and for the

decisions given by m∗(J) and x∗(J), W (|) satisfies the following recursive equation:

W (mu∗(J),md∗(J), η|J) = πE(mu(J),md(J)|J) + r(J)φ̃+

(1− r(J))β
∑
J ′

{∑
η

W (η′,mu∗(J ′),md∗(J ′)|J ′)p′η(η′|xu∗(J ′), xd∗(J ′))
}
p(J ′|J, η)

(5.2)

As noted by the authors, the consistency requirement applies only to optimal

actions within the recurrent class R, thus the name "experience-based", as the firms

"learn" accurate values solely for states they visit repeatedly.4

Finally, the authors use a reinforcement learning algorithm to compute the EBE,

based on the Stochastic algorithm describe above in Chapter 2. In summary, the algorithm

mimics the learning process of agents. It starts with an initial state and initial guesses

for πE and W (|). Then each agent chooses optimal actions based on these initial guesses,

which allows us to calculate the probabilities of investment success and of transiting to
3Note that the function is the same, and players can take different actions only if they have different

information sets
4Fershtman and Pakes[14] also develop a more restrictive version, called Restricted Experience-Based

Equilibrium, which imposes consistency for all feasible actions (instead of only optimal actions) from

states in the recurrent class. But the restriction may also require adjustments to be able to access the

information needed to compute this new equilibrium (which restricts actions outside the equilibrium

path).
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any other state. Then we take a draw from these probabilities and obtain the state. Also,

we update the initial guess of πE by taking an average of the actual profit obtained after

the uncertainties were solved with the value in memory, and similarly update W (|) by

averaging with the expected value held in memory for the state that was drawn from

the probabilities derived from the actions of the agents. Having updated the values, we

begin the process again, from the drawn state. After a significant number of iterations

the agents will have passed through the states in a recurrent class several times and will

eventually learn the correct values on the recurrent class and for optimal actions within

these states. And since the values are functions solely of the players own information sets,

this would be an EBE for an asymmetric information game.

Below we describe some further details on how profits and values would be

calculated and updated.

5.1.2 Spot market competition

As in the complete information model, firms also compete every period by submitting

supply and value functions for an homogeneous intermediate input, following the static

model of bilateral oligopoly competition by Hendricks and McAfee[19]. But now we cannot

compute the equilibrium of this game off-line and use it as an input to the dynamic game,

because we cannot assume that firms know each others types (capacities), as does the

solution of Hendricks and McAfee[19].

Instead, in computing the solution through the algorithm described above, we

start with an initial guess for the profit that would be obtained for every possible capacity

report. As suggested by Fershtman and Pakes[14], we use the value of profits a firm would

obtain had it submitted each capacity and its competitors submitted nothing. Then, once

the firms take their actions based on these initial values, we can calculate the actual profits

obtained by each, and use this value to update the profit function for the action chosen by

each firm. We can calculate both the initial and actual profit values using the marginal

conditions given in Hendricks and McAfee[19].
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5.1.3 Public information and update of W (|)

In order to update W (|), we would need the evaluation of the agent for the state drawn

from the transition probabilities. To do that, we search in memory to check if we have the

valueW (|) for this new state and, if not, we initiate its value by using a discounted infinite

sum of the initial profit for this state. But notice that the value of W (|) held in memory

contains the value of the profit function, as indicated by equation 5.1, which is being

updated as well. Therefore, in addition to knowing how many firms actually remained

in the industry after the uncertainties were realized, the agent also uses a expected value

function based, to some extent, on real obtained profits in the past to learn the correct

values of W (|). Therefore, although our game has very few public information, the agent

may be able to learn its values and optimal decisions through actual profits obtained for

each line of action.

In sum, by making these adjustments and using an algorithm very similar to the

one already used in Chapter 4, we might be able to assess the dynamic impacts of vertical

integration without assuming complete information, which might provide us with more

relevant results to some industries.

5.2 Estimation

As indicated in Ackerberg et al.[11], there is a growing literature using the dynamic

framework described in Chapter 2 to estimate the structural parameters of an industry

and, with those, be able to analyze more accurately dynamic issues, using the simulation

techniques used here in Chapters 3 and 4. In view of that, a natural extension to the

work done here would be to take the models to the data. For instance, with respect to

the model of Chapter 4, if we were able to estimate the parameters of the model for a

particular industry, we might be able to quantitatively compare the short-run efficiencies

from a vertical merger (e.g., the elimination of the double-margin) with possible dynamic

impacts on entry costs (e.g., a vertically integrated industry might require integrated

entry, which could be more difficult).

57



A possible strategy for doing that would be similar to what Ryan[27] did for

the cement industry. Ryan estimated the structural parameters of a dynamic model for

the cement industry based on the framework described in Chapter 2. He estimated the

parameters both before and after a change to the environmental legislation affected the

costs of the companies (e.g., sunk entry costs were affected). With both estimates, he

then simulated the evolution of the industry with and without the change in legislation,

being able to compute the difference in welfare brought by the change. He concluded that

sunk entry costs had increased, and this could not be captured by the static models used

by the authorities to assess the impacts of the new regulation.

In order to estimate the parameters of the dynamic model, Ryan adopts a two-

step strategy, developed by Bajari, Benkard and Levin[26]. In the first step, he obtains

estimates of the parameters of the static profit function and empirical probabilities of

investment5, entry and exit. Then, in the second step he recovers the value function and

estimates the distribution of entry probabilities.

Finally, in connection with the model and issues analyzed in Chapter 3, it is

worth mentioning that there is already work being done to estimate the relevant parame-

ters and analyze the dynamic effects of a merger, using the same strategy described above.

Benkard, Bodoh-Creed, and Lazarev[21] use the Bajari, Benkard, and Levin method to

estimate policy functions from pre-merger data in the airline industry, and then run simu-

lations to assess the medium and long-run effects of a merger. Based on that they are able

to identify important factors that influence the ability of potential entrants to constraint

prices of the merged firm. They apply the method to three airline mergers recently an-

alyzed by United States antitrust authorities. Their analysis show how dynamic models

based on the Ericsson and Pakes[10] framework can be brought to data (with some mod-

ifications) and provide relevant complementary information to the static analysis already

being done by antitrust authorities. In fact, only with dynamic models one could obtain

structural estimates of entry probabilities after the merger, as they do.

5Notice that the model in Chapter 4 has continuous investment, and Ryan’s model uses lumpy invest-

ment. This would have to be adjusted. For instance Ryan states that continuous investment is a limit

case of lumpy investment as the boundaries of the (S, s) strategy shrink.
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Appendix A

Algorithm used in Chapter 4

In order to carry the analysis in Chapter 4, we used the stochastic algorithm to solve

for the equilibrium of the model and simulated the evolution of the industry. In this

Appendix we explain how the code that uses the stochastic algorithm developed in Pakes

and McGuire[25], described in Chapter 2, was constructed.

A.1 State space

First, in order to go through the states in the learning procedure, we need a method to

access each state’s information in memory, similar to a code for each state that indicates to

the computer from which state it must get information or save information. For this essay,

we used a method based on the one developed in Pakes, Gowrisankaran, and McGuire[1].

In that paper, the authors represented the industry structure as a descending tuple, with

the firms having the highest indexes first, and an indication of the position that the

firms hold in the tuple. For instance, [(4, 2, 2, 1, 0), 2] would represent the state of a firm

with index 2 in an industry with three competitors, having indexes 4,2 and 1. Then,

the authors construct a bijective function that takes a descending tuple and converts it

into an integer, having an inverse function that does the opposite. This allows them to

represent the entire state space with a matrix, in which each line is a possible industry

configuration, and each column the information for the firm holding the position equivalent

to that column’s number.
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Similarly, we also use this bijection to code upstream and downstream industry

structures, separately, into integers. But, because we can have different ownership re-

lations between upstream and downstream positions (for instance, given two tuples, up

and downstream, the first firm upstream can own any of the other firms downstream),

we need another index for this ownership relation. The total number of possible owner-

ship relations for any two tuples up and downstream vary depending on the tuples, but

an upper bound is the number of possible permutations of the vector going from 1 to

the maximum number of firms allowed. Therefore, we number each such permutation

and consider an industry structure to be represented by the two tuples and this number

indicating the actual ownership relation in place. But this will result in the same indus-

try structure being represented by different codes (e.g., [(2,2,1,1),(3,2,2,1),(1,2,3,4)] is the

same as [(2,2,1,1),(3,2,2,1),(2,1,4,3)], as we have firms with capacity up and downstream,

respectively, (2,3), (2,2), (1,2), (1,1) in both). Therefore, we also reorganize the vector

indicating the ownership relation in several relevant moments within the code, so that

it is also ascending, thereby preventing duplication of states in the calculations. Finally,

the positions of the firms are indicated by two more dimensions, containing their position

upstream and downstream respectively.

In sum, the state of any firm is a five-dimension vector, such as (1,2,3,1,1), in

which the first element is the code for the industry structure upstream, the second for the

structure downstream, the third for the ownership relation, and the fourth and fifth for

the position of the firm up and downstream.

A.2 The main code

After constructing the bijection mentioned above and functions to code and decode states,

the main part of the code takes the relevant parameters, an initial state and initial guesses

for the conditional continuation value (W (.|.)) and policies, and start the learning proce-

dure by updating values and policies and transiting to the next states through simulation.

To do that it calls three types of subroutines: optimize (which updates values and poli-

cies and take the draw of the next state), calcprofit (which calculates the static profits

in the spot market for a given state), and initW (which calculates initial values for the
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conditional continuation values based on the static profit function).

The calcprofit subroutine is based on the algorithm developed by Hendricks and

McAfee1 and is called mainly the first time each state is visited, in order to calculate the

profits for each firm in that state and store those in memory. Similarly, initW uses the

profits to generate initial values for the W (.|.) - the infinite discounted sum of the profits

for the state. The most important subroutine is optimize. It takes a given state, updates

the conditional continuation valuesW (.|.) and value functions for all players for that state

and returns another state (the next state in the iteration).

The first step done in the subroutine is taking two draws from a uniform dis-

tribution between zero and one to assess whether the common industry shocks upstream

and downstream were zero or one, and save these values. Then we check if the state

given to the optimize function has been visited before. If yes, we retrieve the conditional

continuation values W (.|.) and use them to obtain optimal policies for each incumbent by

solving numerically the single agent optimization problem, calculate the value functions

and update these values in memory. If the state has never been visited, we first call the

initW routines to generate initial values for the conditional continuation values and then

similarly obtain optimal policies.

Given the policies of each incumbent, we can calculate the probability that its

investment in capacity will be successful. We then use these probabilities and generate

numbers from an uniform distribution between zero and one, for each agent separately,

to check whether they were successful or not in increasing capacity.

Similarly, for entrants, we retrieve the continuation values from memory, or

generate initial ones using initW, and calculate the expected value of entering upstream,

downstream and integrated. The entry type chosen is the one with the maximum expected

value. We then take a draw from an uniform distribution between zero and one again and,

based on the entry probability for the chosen type of entry, check whether entry occurred

or not.

Based on the draws taken before for the outcomes of investments, exit and entry

decisions, which were taken from the distribution of possible next states given the actions
1As already indicated above, it can be found in the website: vita.mcafee.cc/Bin/Vertical/.
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of the players, we can construct the next state, which will be one output of the function.

Then the next step is to update the values of W (.|.) for the current state. This

is done by calculating value functions for the state drawn before (from the distribution of

possible next states) through numerically solving the single agent optimization problem,

and then taking a simple average between the old value of W (.|.) and the value function

obtained.

Then, after calling optimize a sufficient number of times 2, the main code cal-

culates exact continuation values using the method of the deterministic algorithm for the

states visited in a certain large number of the latest iterations and value functions from

this continuation value. Then, it calculates a weighted correlation between the value func-

tions obtained through the exact continuation values and the ones in memory from the

learning part of the algorithm and the difference between their weighted means; if these

are above 0.995 and below 1%, respectively, the code stops. The weights are the number

of times each state was visited.

2Including an initial averaging procedure, by which old estimates of the value and policies are elimi-

nated and later estimates given more weight - see Pakes and McGuire[25].
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