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RESUMO 
 

Esta tese de doutorado apresenta resultados de pesquisa em seleção genômica 

ampla (GS) e estudos de associação genômica ampla (GWAS) em seis 

populações de melhoramento de Eucalyptus, com o objetivo de avaliar o potencial 

destas abordagens em explicar a herdabilidade, detectar associações 

significativas e predizer fenótipos de características de crescimento. No primeiro 

capítulo foram comparadas as abordagens de predição genômica e associação 

genômica ampla para características de crescimento em populações de 

melhoramento de Eucalyptus benthamii (!	= 505) e Eucalyptus pellita (!	= 732). 

Ambas as espécies são de crescente interesse comercial para o desenvolvimento 

de germoplasma adaptado a estresses ambientais. A capacidade preditiva atingiu 

0,16 em E. benthamii e 0,44 em E. pellita para crescimento em diâmetro. As 

capacidades preditivas usando BLUP genômico ou diferentes métodos 

Bayesianos atingiram resultados semelhantes, indicando que as características 

de crescimento se ajustam adequadamente ao modelo infinitesimal. Nenhuma 

diferença foi detectada na capacidade preditiva quando diferentes conjuntos de 

SNPs foram utilizados, com base na posição (equidistantes no genoma, dentro de 

genes, podados considerando o desequilíbrio de ligação ou em cromossomos 

individuais), desde que o número total de SNPs utilizados fosse superior a 5.000. 

As capacidades preditivas obtidas pela remoção de parentesco entre as 

populações de treinamento e validação caíram para quase zero em E. benthamii 

e foram reduzidas pela metade em E. pellita. Esses resultados corroboram a visão 

atual de que o parentesco é o principal motor da predição genômica, embora 

algum desequilíbrio de ligação histórico provavelmente tenha sido capturado para 

E. pellita. Um estudo de associação genômica identificou apenas uma associação 

significativa para volume em E. pellita, ilustrando o fato de que, embora a predição 

genômica seja capaz de explicar grandes proporções da herdabilidade, muito 

pouco ou quase nada é capturado em associações significativas usando a 

abordagem de GWAS nas populações de melhoramento do tamanho avaliado 

neste estudo. Este estudo forneceu dados experimentais adicionais que indicam 
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perspectivas positivas de usar dados genômicos para capturar grandes 

proporções de herdabilidade e predizer características de crescimento em 

espécies florestais com acurácias iguais ou melhores do que aquelas capturadas 

pela seleção fenotípica convencional. Adicionalmente, esses resultados 

documentaram a superioridade da abordagem de GS na capacidade de capturar 

grandes proporções da variância genética para crescimento, em comparação com 

o valor limitado da abordagem de GWAS ao se considerar aplicações no 

melhoramento operacional. A maioria dos estudos de GWAS em plantas, no 

entanto, assim como este descrito acima, tem sofrido com um poder estatístico 

limitado, especialmente para características complexas. Tamanhos amostrais 

maiores são necessários no sentido de aumentar a capacidade de detecção de 

variantes, especialmente aquelas de baixa frequência e de pequeno efeito. Devido 

aos desafios logísticos e altos custos para aumentar o tamanho das populações 

em estudos de associação, uma alternativa tem sido a implementação de Joint-

GWAS, utilizando informações combinadas de populações independentes. Joint-

GWAS utiliza diferentes abordagens estatísticas para combinar os resultados de 

múltiplos estudos em um esforço para aumentar o poder de detecção em relação 

a estudos individuais, melhorar as estimativas do tamanho dos efeitos e/ou 

resolver a incerteza quando resultados dos estudos individuais não concordam. 

No segundo capítulo desta tese de doutorado foi realizado um estudo de 

associação genômica ampla utilizando dados de quatro populações 

independentes para características de crescimento, montando assim uma 

população de associação consideravelmente maior do que estudos anteriores em 

espécies florestais. Dados de um total de 3.373 árvores de quatro populações 

híbridas de Eucalyptus grandis x Eucalyptus urophylla não relacionadas, cada 

uma delas com 758 a 979 indivíduos, foram utilizados. Estas populações haviam 

sido genotipadas com uma plataforma de SNP comum desenvolvida para 

Eucalyptus permitindo assim a implementação de Joint-GWAS. O impacto da 

correção para estrutura de população e/ou parentesco sobre a capacidade de 

detecção de associações significativas foi explorado utilizando seis modelos 

estatísticos com base na análise de SNPs individuais. Uma redução drástica no 
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número de associações significativas foi observada ao se adotar correções mais 

rigorosas. Foi avaliado ainda o desempenho de diferentes abordagens de 

mapeamento de associação utilizando segmentos genômicos contendo vários 

SNPs em contrates com SNPs individuais. A abordagem de mapeamento de 

herdabilidades regionais, nas quatro populações analisadas de forma 

independente, identificou regiões genômicas que explicaram individualmente 3-

13% da herdabilidade genômica. Variantes raras foram detectadas usando 

abordagens de Joint-GWAS baseadas em conjuntos de SNPs dentro de genes e 

em segmentos específicos. Associações foram detectadas em genes 

relacionados à biossíntese da parede celular e resistência à doença, sugerindo 

potenciais efeitos pleiotrópicos no crescimento da árvore. De maneira geral, o 

aumento do tamanho amostral e a aplicação de diferentes abordagens de análise 

combinada de populações ainda revelaram um número limitado de associações, 

corroborando a complexidade de características de crescimento e a provável 

participação de um grande número de variantes de pequeno efeito de difícil 

detecção no controle de crescimento. Entretanto, estes resultados indicam ainda 

que à medida que mais programas de melhoramento de Eucalyptus adotarem 

genômica para predizer fenótipos com base em uma plataforma SNP comum, 

conjuntos de dados cada vez maiores ficarão disponíveis e Joint-GWAS como 

descrito neste estudo de forma inédita em espécies florestais, será capaz de 

contribuir para a identificação de SNPs ou segmentos genômicos que controlam 

proporções relevantes da herdabilidade. 

 

Palavras-chave: Predição genômica, análise de associação, genotipagem de alto 

desempenho, parentesco, melhoramento florestal, eucalipto. 
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ABSTRACT 
 

This doctoral thesis presents results of research in genomic selection (GS) and 

genome-wide associations studies (GWAS) in six Eucalyptus breeding 

populations, with the objective of evaluating the potential of these approaches in 

explaining heritability, detecting significant associations and predicting phenotypes 

of growth traits. In the first chapter, genomic prediction approaches and 

association studies for growth traits in Eucalyptus benthamii (!	= 505) and 

Eucalyptus pellita (!	= 732) breeding populations were compared. Both species 

are of increasing commercial interest for the development of germplasm adapted 

to environmental stresses. Predictive ability reached 0.16 in E. benthamii and 0.44 

in E. pellita for diameter growth. Predictive abilities using either Genomic BLUP or 

different Bayesian methods reached similar results, indicating that growth 

adequately fits the infinitesimal model. No difference was detected in predictive 

ability when different sets of SNPs were utilized, based on position (equidistantly 

genome-wide, inside genes, linkage disequilibrium pruned or on single 

chromosomes), as long as the total number of SNPs used was above ~5,000. 

Predictive abilities obtained by removing relatedness between training and 

validation sets fell near zero for E. benthamii and were halved for E. pellita. These 

results corroborate the current view that relatedness is the main driver of genomic 

prediction, although some historical linkage disequilibrium was likely captured for 

E. pellita. A genome-wide association study identified only one significant 

association for volume growth in E. pellita, illustrating the fact that while genome-

wide regression is able to account for large proportions of the heritability, very little 

or none is captured into significant associations using GWAS in breeding 

populations of the size evaluated in this study. This study provided further 

experimental data supporting positive prospects of using genome-wide information 

to capture large proportions of trait heritability and predict growth traits in trees with 

accuracies equal or better than those attainable by phenotypic selection. 

Additionally, our results documented the superiority of the whole-genome 

regression approach in accounting for large proportions of the heritability of 



 xx 

complex traits, such as growth, in contrast to the limited value of the local GWAS 

approach toward breeding applications. Most GWAS in plants, like the one 

described above, have suffered from limited statistical power especially for 

complex traits. Larger sample sizes are needed to enhance the ability to identify 

variants, especially those of low-frequency and small effect. Due to the challenges 

and high costs of increasing sample size in GWAS, an alternative has been to 

implement Joint-GWAS, using the combined information from independent 

populations. Joint-GWAS use different statistical approaches to combine the 

results from multiple studies in an effort to increase detection power over individual 

studies, improve estimates of the size of the effect and/or to resolve uncertainty 

when reports from individual studies disagree. In the second chapter of this 

doctoral thesis, a GWAS for growth traits was performed by assembling a 

considerably larger association population than any previous GWAS in forest 

trees. Data for a total of 3,373 trees across four unrelated Eucalyptus grandis x 

Eucalyptus urophylla hybrid breeding populations, with samples sizes varying 

between 758 and 979 individuals, were used. These populations had been 

genotyped with a common SNP platform for Eucalyptus species, thus allowing a 

Joint-GWAS implementation. The impact of correcting for population structure 

and/or relatedness on the detection of significant associations was explored using 

six single-SNP GWAS models. A drastic reduction in the number of significant 

associations detected was observed when more stringent correction was adopted. 

We also evaluated the performance of different segment-based GWAS 

approaches involving several SNPs simultaneously in comparison to single-SNP 

analyses. Regional heritability mapping, in these four populations independently, 

pinpointed genomic regions that individually explained 3-13% of the genomic 

heritability. Rare variants were detected using gene and region-based Joint-GWAS 

approaches. Associations were detected into genes related to cell wall 

biosynthesis and disease resistance, suggesting potential pleiotropic effects on 

tree growth. In general, the increase in sample size and the application of different 

approaches of Joint-GWAS still revealed a limited number of associations, 

corroborating the complexity of growth traits and the likely participation of a large 
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number of variants of small effect of difficult detection in the control of growth traits. 

However, these results further indicate that as more Eucalyptus breeding 

programs adopt genomics to predict phenotypes based on a common SNP 

platform, increasing datasets will be available and Joint-GWAS as described in this 

study for the first time in forest trees, will be able to contribute to the identification 

of SNPs or genomic segments controlling relevant portions of trait heritability. 

 

Keywords: Genomic prediction, association analysis, high-throughput 

genotyping, relatedness, tree breeding, eucalypts. 
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LITERATURE REVIEW 
 
Eucalyptus genus 
 
The Eucalyptus L’Hér. genus belongs to the Myrtaceae family and includes more 

than 800 species native to Australia and adjacent islands in Oceania (Brooker, 

2000; Doughty, 2000). Eucalyptus has a total of ten subgenera described, being 

Symphyomyrtus the most important one with more than 470 species (Grattapaglia 

et al. 2012). This main subgenus has different sections, being the Latoangulatae 

section represented by species widely planted in tropical areas, such as E. grandis, 

E. urophylla and E. pellita. On the other hand, the Maidenaria section is 

represented by species adapted to temperate regions, such as E. globulus, E. 

nitens and E. benthamii (Brooker 2000). Eucalyptus is the genus including the 

most widely planted hardwood trees in the world, mainly due to their versatile 

applications (windbreak, landscape, bioenergy, pulp, paper and solid wood), 

superior adaptability and wood quality (Myburg et al. 2007; Grattapaglia and Kirst 

2008). 

 

Species of the Eucalyptus genus were quickly used for forest plantations, after 

their discovery by the Europeans in the XXVIII century (Eldridge et al. 1993). These 

species were introduced initially in several countries, such as India, France, Chile, 

Brazil, South Africa and Portugal, mainly due to their fast growth and high 

adaptability under different environmental conditions (Doughty 2000; Myburg et al. 

2007; Grattapaglia and Kirst 2008). Currently, many countries have extensive 

germplasm collections of Eucalyptus selected for forest tree plantation 

(Grattapaglia and Kirst 2008). The species of Eucalyptus planted in Brazil are 

characterized by excellent adaptation and fast growth (Eldridge et al. 1993). E. 

grandis and E. urophylla are the most commercially important and broadly planted 

species, and together with their hybrids, are highly preferred for pulp and solid 

wood production in tropical areas (Henry 2011). The interspecific hybrids between 

E. grandis and E. urophylla have been grown in large operational scale in Brazil 
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due to their combination of desirable traits (e.g. superior wood properties and 

disease resistance), and represent most of the genetic background present in the 

breeding programs (Myburg et al. 2007). 

 
Eucalyptus benthamii Maiden & Cambage (Camden white gum) is a rare species 

known for its restricted occurrence in its natural range, southwest of Sydney 

(Australia), and is now considered vulnerable to extinction (Benson 1985; 

Jovanovic and Booth 2002; Butcher et al. 2005). Agricultural activities and the 

expansion of the Sydney metropolitan area are the main factors reducing the E. 

benthamii natural population (Butcher et al., 2005). However, E. benthamii is a 

species of growing commercial interest due to its cold tolerance combined with its 

rapid growth and high-quality pulpwood (Harwood 2011; Döll-Boscardin et al. 

2012; Baccarin et al. 2015). Breeding programs in subtropical regions, such as 

southern Brazil, southeastern USA, Uruguay, Argentina, Chile and China, 

generally use E. benthamii as a pure species or in combinations with other species, 

such as E. dunnii (Butcher et al. 2005; Brondani et al. 2011; Booth 2012; Brondani 

et al. 2012a; Pirraglia et al. 2012; Brondani et al. 2012b; Arnold et al. 2015; 

Baccarin et al. 2015; Yu and Gallagher 2015). Several studies are currently 

underway to identify frost tolerant Eucalyptus germplasm adapted to temperate 

regions (Arnold et al. 2015; dos Santos et al. 2015; Yu and Gallagher 2015). The 

identification of these cold tolerant species and their use as pure species or in 

hybrids are strategies used to expand the production of Eucalyptus in previously 

unexplored areas, such as the extreme south of Brazil, the USA and China 

(Martins et al. 2013; Stanturf et al. 2013; Arnold et al. 2015; Baccarin et al. 2015; 

Yu and Gallagher 2015). E. benthamii is a species with great potential for this 

purpose, because the trees can survive in absolute minimum temperatures of -6º 

to -10º C (Lin et al. 2003; Ebling et al. 2012; Yu and Gallagher 2015). 

 
Eucalyptus pellita F. Muell. (large-fruited red mahogany) occurs in tropical regions, 

more precisely in two disjointed natural forests, one in southern New Guinea (on 

the Papua island between Papua New Guinea and Indonesia) and the other in 
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northern Australia in the state of Queensland (House and Bell 1996; Harwood et 

al. 1997; Harwood 1998; Jovanovic and Booth 2002; Le et al. 2009; Hung et al. 

2015). E. pellita has moderate to high levels of genetic diversity when compared 

to taxonomically related species, such as E. urophylla and E. grandis (House and 

Bell 1996; Le et al. 2009). E. pellita belongs to the group of the nine species of 

Eucalyptus most planted in the world, known as the “big nine”. This group is 

represented by E. camaldulensis, E. grandis, E. tereticornis, E. globulus, E. nitens, 

E. urophylla, E. saligna, E. dunnii and E. pellita, which together with their hybrids 

represent 95% of the world's planted eucalypts (Harwood 2011; Stanturf et al. 

2013). E. pellita has been recognized as a promising species, in relation to other 

Eucalyptus species for operational industrial plantation in tropical regions, because 

of fast growth and resistance to diseases and pests (Harwood 1998; Jovanovic 

and Booth 2002; Leksono et al. 2006; Leksono et al. 2008; Brawner et al. 2010; 

Mauro et al. 2010; Zauza et al. 2010; Agustini et al. 2014; Yuskianti et al. 2014). 

E. pellita displays high wood density being used for the production of charcoal, 

paper, pulp and solid wood for construction in general (bridges, poles, flooring, 

panels, etc.) and for furniture production (Harwood et al. 1997; Leksono et al. 2006; 

Oliveira et al. 2010; Redman and Mcgavin 2010; Sun et al. 2013; Hung et al. 2015). 

This species has been planted extensively in the last two decades in countries 

such as Brazil, India, Congo, Vietnam, southern China and many other tropical 

and subtropical countries (Harwood et al. 1997; Bernardo et al. 1998; Le et al. 

2009; Brawner et al. 2010; Harwood 2011; Sun et al. 2013; Hung et al. 2015). More 

recently, E. pellita is being grown on an industrial scale in Indonesia, where there 

is a growing demand for genetically improved seeds to maximize plant productivity 

(Leksono et al. 2006; Leksono et al. 2008; Harwood 2011; Agustini et al. 2014; 

Sulichantini et al. 2014; Yuskianti et al. 2014). 
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Genomic and molecular tools applied to forest tree breeding 
 
Brazilian transgenic Eucalyptus tree 
 
Before discussing the main genomic technologies and approaches used towards 

the integration of genomic analysis into breeding, a very brief detour is made to 

mention the recent development of the first Eucalyptus transgenic tree developed 

by FuturaGene, a company of the Suzano Celulose group. This transgenic event 

was approved for commercial use in Brazil from the biosafety point of view by 

CTNBio (Brazilian National Technical Commission on Biosafety), although it is still 

subject to appeals at the level of the CNBS (Brazilian National Biosafety Council). 

The company claims that this transgenic eucalypts named H421, containing the 

overexpressed CEL1 gene (endo-1,4-β-glucanase) of Arabidopsis thaliana, shows 

a gain of about 20% in growth over the same non-transgenic genotype, clone 

SP530, which could reduce the harvest time to only five and a half years (Ledford 

2014). 

 

Experimental results following the company's first trials, reported in the application 

submitted to CTNBio, have indicated that this gain was considerably lower 

(between 4.0 to 8.5%) when the transgenic clone was planted in different 

environments and in larger scale plantations. In addition, even if the claimed 

growth gain occurs, the particular eucalypt wild type clone SP530, even transgenic 

(H421), has a productivity below the majority of public clones used commercially 

for large-scale plantation in Brazil. It will be interesting, therefore, to verify if there 

will be potential productivity gain by inserting this transgenic construction into the 

best current public clones, as well as those derived from breeding programs (D. 

Grattapaglia personal communication). The advantage of transgenic eucalypt in 

Brazil is that it is an exotic species (Ledford 2014; da Silva et al. 2017), such that 

the environmental risk of gene flow to wild relatives does not apply (Fort et al. 2004; 

Strauss et al. 2004; Brunner et al. 2007; da Silva et al. 2017). Unfortunately, 

however, the ultimate commercial plantation of this transgenic tree in Brazil is still 
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controversial, due to the commercial risk of compromising the large industry of 

organic honey production based on eucalypt plantation by the flow of transgenic 

pollen into honey. It is expected that transgenic technologies in Eucalyptus in Brazil 

will likely have a key role to solve the growing problems of pests. 

 

Molecular markers and genotyping technologies 
 
The increase in forest productivity and the refinement of physical and chemical 

wood traits through the application of genomic and molecular tools in genetic 

improvement is seen today as an important step to maintain the competitiveness 

and growth of the forest-based industry (Grattapaglia and Kirst 2008; Grattapaglia 

and Resende 2011; Ledford 2014). SNPs (Single Nucleotide Polymorphisms) are 

the molecular markers most used in genetic analysis because they are the most 

abundant genetic variation, occurring throughout the genome (Ching et al. 2002). 

These markers are based on the detection of polymorphisms resulting from the 

alteration of a single nucleotide and are the genetic basis of most allelic variations. 

Due to its abundance in the genome, its low mutation rate, and the possibility of 

automated detection, SNPs are increasingly being used as molecular markers 

(Mccouch et al. 2010; Yu et al. 2011; Gupta and Jr 2013). SNP markers, analyzed 

on a large scale, have been increasingly used for various genetic studies and in 

plant breeding, such as Genome-Wide Association Studies (GWAS) and Genomic 

Selection (GS) (Mammadov et al. 2012; Poland and Rife 2012; Thomson 2014), 

with the aim of identifying the complex relationships between genotypic and 

phenotypic variation. These markers have been widely used in a number of other 

areas, such as ecology and evolution, assisting in molecular phylogeny, population 

genetics, and conservation studies of natural populations (Allendorf et al. 2010; 

Narum et al. 2013). 

 

Over the years, the costs of SNP genotyping technologies using arrays have 

become more accessible and the Illumina Infinium® and Affymetrix Axiom® chips 

were developed allowing the fast genotyping of thousands of previously identified 
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SNPs via re-sequencing on various tree species. The species of Picea (Pavy et al. 

2008), Pinus (Eckert et al. 2010) and Eucalyptus (Grattapaglia et al. 2011) genus 

were the first to have SNP genotyping chips developed. Similar and larger scale 

resources were then developed for Malus domestica (apple) (Crowhurst et al. 

2012; Bianco et al. 2016), Prunus persica (peach) (Verde et al. 2012), Populus 

trichocarpa (poplar) (Geraldes et al. 2013), Prunus avium and P. cerasus (cherry) 

(Peace et al. 2012), Picea glauca (white spruce) (Pavy et al. 2013), Eucalyptus 

(eucalypts) (Silva-Junior et al. 2015), Populus nigra (black poplar) (Faivre-

Rampant et al. 2016) and Pinus pinaster (maritime pine) (Plomion et al. 2016). 

However, the initial cost (set up cost) of chip development is still relatively high, 

unless a couple of thousands of samples are genotyped, which may not be feasible 

for studies of species of limited commercial interest. In such cases, genomic 

strategies capable of reducing the complexity of the genome, discovering and 

genotyping SNPs at the same time, such as Genotyping by Sequencing (GbS, 

Elshire et al. 2011), RADseq (Davey et al. 2011; Davey et al. 2013) or selective 

sequence capture on arrays or in solution (Mamanova et al. 2010), have proven 

useful. In forest trees, genotyping by sequencing methods such as DArTseq were 

initially used in Eucalyptus (Sansaloni et al. 2011) and sequence capture methods 

have been used in Populus (Zhou and Holliday 2012) and Pinus (Neves et al. 2013; 

Neves et al. 2014). A number of studies then followed using different methods of 

genome complexity reduction in different forest tree species (Lu et al. 2016; Pavy 

et al. 2016; Plomion et al. 2016; Suren et al. 2016; Fitz-Gibbon et al. 2017). 

 
Quantitative trait locus (QTL) mapping 
 
Molecular tools that allow the identification of polymorphisms in DNA hold the 

promise to provide new opportunities for selection of growth traits, adaptability to 

climatic conditions and wood properties of cultivated trees (Grattapaglia et al. 

2009). The development of elite trees via genetic improvement deals with the 

challenge of simultaneously advancing, through selection and recombination, 

several quantitative traits of silvicultural and industrial relevance (Grattapaglia et 
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al. 2009; Grattapaglia 2014). In addition, these phenotypic traits typically present 

complex genetic control, low heritability, strong environment interaction, low 

juvenile-adult correlation, and late expression (Grattapaglia 2014). Significant 

progress has been made in the last two decades in the development of genetic 

maps in trees with highlight to Pinus and Eucalyptus (Neale 2007; Grattapaglia 

and Kirst 2008). Hundreds of RFLPs, RAPDs, AFLPs, DArTs, SSRs and SNPs 

markers are available today for genetic analysis in forest tree species. Several 

papers have described the success in identifying QTLs (Quantitative Trait Loci). 

The QTL mapping has been important in dissecting complex traits, revealing from 

the phenotype the positions of genomic regions that affect the target traits 

(Grattapaglia et al. 2009). Different QTLs for components of productivity, wood 

quality, resistance to abiotic and biotic stresses have been reported in the forest 

trees literature (Kirst et al. 2004; Marques et al. 2005; Bundock et al. 2008; 

Freeman et al. 2008; Neale and Ingvarsson 2008; Grattapaglia et al. 2009; Alves 

et al. 2012; Bartholomé et al. 2013; Zarpelon et al. 2014; Butler et al. 2016). 

 

Despite dozens or even hundreds of QTLs have been mapped to date, the 

information generated has not been immediately useful for Marker-Assisted 

Selection (MAS) in breeding with some exceptions (Bernardo 2008; Grattapaglia 

2014). The MAS approach based on the standard logic of first identifying and 

validating the genes and/or QTLs that control the trait has been shown to be 

inefficient for the advancement of the breeding of multifactorial traits by a series of 

issues, for example: (i) only few QTLs are detected capturing limited fraction of 

variation given the allelic variation from biparental populations; (ii) the populations 

used are typically small, leading to overestimation of the magnitude of the QTL 

effects; and (iii) the unpredictable performance of the interaction between 

favorable QTL alleles and different genetic backgrounds, different locations and 

different ages (Bernardo 2008; Grattapaglia and Kirst 2008; Grattapaglia et al. 

2009; Grattapaglia and Resende 2011; Korte and Farlow 2013; Grattapaglia 

2014). 
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Genome-Wide Association Studies (GWAS) 
 
Principles and applications of GWAS 
 
Over the years, Genome-Wide Association Studies (GWAS) have been conducted 

for the detection and characterization of QTLs/genes that control different traits, 

promising their potential application in medicine and breeding (Korte et al. 2012; 

Korte and Farlow 2013; Morris et al. 2013; Fan et al. 2015; Spindel et al. 2015; 

Henrique et al. 2016; Zhu et al. 2016). Despite recent advances, association 

studies are a consolidated approach whose first empirical results were published 

more than a decade ago (Visscher et al. 2017) for human diseases (Klein et al. 

2005; DeWan et al. 2006; Burton et al. 2007). The principle of association analysis 

is to explore the historical recombination events and the linkage disequilibrium (LD) 

structure resulting in the genome of natural populations or germplasm banks (Zhu 

et al. 2008; Khan and Korban 2012; Visscher et al. 2012; Korte and Farlow 2013). 

From the founders of these populations, it is expected that the recombination 

events in successive meiosis have randomized the LD blocks, generating a low 

LD structure, which allows better resolution in the detection of associations 

between markers and genes/QTLs of interest (Zhu et al. 2008). As a consequence 

of this high number of meiosis occurring in the population history, it is expected 

that a marker stated to be significantly associated with a phenotype will be 

physically close to the causal variant. This situation contrasts with what is observed 

in a biparental population used in the QTL mapping via linkage, which has only 

one recent recombination event and therefore presents a large extension of LD, 

which facilitates the detection of associations, but prevents a better resolution 

(Hamblin et al. 2011). 

 

The success of GWAS, from the standpoint of resolution, depends on the ability to 

detect associations in a genome with low extension of LD between genotyped 

SNPs and causal variants, requiring a high-density of markers consistent with the 

extent of LD in the genome. At the same time, a large number of individuals, 
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usually hundreds, thousands or tens of thousands are needed to provide sufficient 

statistical power for the detection of small effects, often contributed by rare variants 

in the population (Zhu et al. 2008; Robinson et al. 2014). When compared to QTL 

mapping analysis with only hundreds of markers in more limited biparental 

populations in terms of sampling population variation, the GWAS analysis involves 

tens or hundreds of thousands of markers throughout the genome in a more 

diverse population, being potentially more powerful for gene discovery (Visscher 

et al. 2012; Korte and Farlow 2013; Visscher et al. 2014). In addition, GWAS does 

not require the generation of segregating (biparental) populations, but rather allows 

the direct use of natural populations, germplasm banks, landraces or breeding 

populations (Zhu et al. 2008; Khan and Korban 2012). As practical benefits, it is 

commonly proposed that markers found with a significant association with target 

traits may potentially be used in breeding programs via MAS (Gowda et al. 2014; 

Zhang et al. 2015). 

 

The statistical robustness of the association found between alleles at two loci in 

the genome strongly depends on the allelic frequencies at these loci, such that a 

rare variant (e.g. with a frequency <0.01) will be at low LD with another common 

nearby variant, even if both variants are mapped to the same recombination 

interval (Wray 2005). On the other hand, from the practical point of view, the SNPs 

present in a genotyping chip in general are selected to be common (Yang et al. 

2010; Yang et al. 2011b; Lee et al. 2012), that is, the majority having a Minor Allele 

Frequency (MAF) greater than 5%. Therefore, GWAS analyses are, for the most 

part, limited to detecting associations with relatively common causal variants in the 

population (Visscher et al. 2012; Korte and Farlow 2013). In recent years, by 

reducing the costs of sequencing and genotyping by sequencing, association 

studies that include low-frequency alleles have become possible for the 

identification of rare variants that contribute to the complex phenotypic traits 

variation (Brachi et al. 2011; Morris et al. 2013; Huang and Han 2014). 
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GWAS analyses have also been widely applied in human genetics studies to 

identify loci that influence complex diseases and traits, such as diabetes, 

schizophrenia, height, and body mass index (Klein et al. 2005; DeWan et al. 2006; 

Burton et al. 2007; Yang et al. 2010; Yang et al. 2011b; Wray et al. 2013; Yang et 

al. 2015; Gusev et al. 2016; Marouli et al. 2017). Association studies have been 

increasingly applied in animal breeding to discover loci related to economically 

important complex traits, which mainly influence beef and dairy cattle productivity 

(Goddard and Hayes 2009; Bolormaa et al. 2010; Fortes et al. 2010; Jiang et al. 

2010; Bolormaa et al. 2011; Jiang et al. 2014; Raven et al. 2014; Fan et al. 2015; 

Henrique et al. 2016; Xia et al. 2016). In forest tree species, GWAS were carried 

out starting from an optimistic concept that praised forest tree populations as ideal 

for association studies, being proposed as a solution to the dilemma of QTL 

mapping (Neale and Savolainen 2004). The initial association studies, mainly in 

the Pinus and Populus species, were mostly focused on variants present in 

candidate genes, as there was a lack of genome-wide genotyping platforms and 

the assumption that individual genes would have a seminal role in the control of 

complex traits such as drought tolerance, growth and wood properties (Neale and 

Savolainen 2004; Thumma et al. 2005; Neale 2007; Wegrzyn et al. 2010; Khan 

and Korban 2012; Guerra et al. 2013; Thavamanikumar et al. 2014; Jaramillo-

Correa et al. 2015). Despite these efforts, the results in general were limited with 

the few associations found explaining only a small proportion of the genetic 

variation (Grattapaglia et al. 2009). More recently, association studies were 

performed with genome-wide markers, although still with very limited statistical 

power due to the low number of individuals (<750) (Porth et al. 2013; Evans et al. 

2014; Mckown et al. 2014; Allwright et al. 2016; Du et al. 2016; Fahrenkrog et al. 

2016). To date, only three GWA studies have been conducted in Eucalyptus 

species (Cappa et al. 2013; Resende R.T. et al. 2016; Müller et al. 2017). These 

studies also detected few associations that combined explain small fractions of the 

genetic variation, with estimations inflated due to the “winner’s curse” (Goddard et 

al. 2009), and revealing the complexity of the target traits, especially growth traits, 

which are the pillars of forest tree breeding programs. 
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Population structure and relatedness, main factors that affect GWAS results 
 

The assembly of individuals in a population for an association study should be 

done with caution, as the results can be strongly influenced by the population 

structure or stratification, relatedness and genetic drift (McCarthy et al. 2008; Wray 

et al. 2013; Jaramillo-Correa et al. 2015). Population structure is the presence of 

a difference of allelic frequencies between subpopulations, subgroups or families 

present in a population due to ancestry. Among other factors, it originates from 

founding events, processes of genetic drift and inbreeding. Relatedness 

represents the familial relationships between pairs of individuals, and the relative 

kinship matrix generated from this coefficient of relationship has an enormous 

impact on GWAS results when breeding populations are used (Müller et al. 2017). 

It is expected that most of these differences of genomic ancestry between 

subgroups present in the association population are not related to phenotypic 

variations and, therefore, if not controlled in the analytical model can be detected 

as false associations. Population structure and relatedness are the two main 

factors that can result in the detection of false positives (Yu et al. 2006). In addition, 

associations may be found to be specific to certain families or subpopulations, and 

will not be confirmed in other populations, thereby reducing the potential 

usefulness of their discovery (Korte et al. 2012; Bragg et al. 2015). 

 

The presence of population structure, whether previously known or not, must be 

corrected using several statistical methods to avoid the detection of false positives 

(Huang and Han 2014). Generally, mixed linear models are employed for this 

purpose, dealing with population structure through the use of markers that 

measure the amount of phenotypic covariance that is due to the genetic 

relationship (Yu et al. 2006; Korte et al. 2012; Cappa et al. 2013; Eu-

ahsunthornwattana et al. 2014; Evans et al. 2014; Huang and Han 2014; 

Thavamanikumar et al. 2014; Jaramillo-Correa et al. 2015; Du et al. 2016). To 

reduce these effects, therefore, the genetic relationship due to the population 

structure is included in the model (e.g. Qmatrix from STRUCTURE software and 
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significant principal components from Principal Component Analysis, PCA) as a 

fixed term and/or kinship (Genomic Relationship Matrix, GRM) as a random term 

(Korte et al. 2012; Korte and Farlow 2013). For example, Cappa et al. (2013) 

performed a GWA study in E. globulus and showed a considerable reduction in the 

number of associations for growth traits and wood properties after making such 

corrections to population structure and relatedness using a Unified Mixed Model 

(UMM). A multi-gene association mapping using 435 unrelated individuals in 

Populus detected more than 400 significant associations for growth traits without 

any correction for population structure (Du et al. 2016). Despite the fact that this 

latter study used a natural population, effects of population structure can still be 

present and need to be accounted to minimize bias due to past relatedness in the 

evolutionary history of the species. Most likely the vast majority of the 400 

associations found are therefore spurious. In fact, another GWA study performed 

in a natural population with 714 individuals of Populus nigra showed a strong 

decrease of associations declared, especially for growth trait, when population 

structure and/or family-based correction were incorporated in the model (Allwright 

et al. 2016). 

 

Challenges and limitations of GWAS 
 

A major limitation of GWA studies carried out to date from the applied standpoint 

is that only a small number of associations are identified, typically characterized 

by common alleles in the population (Yang et al. 2010). This is a major limitation 

for the application of GWAS results in plant and animal breeding in general. 

Furthermore, generating large association populations to increase power of 

detection is technically challenging and expensive. In forest trees since the 

majority of the traits of interest are multifactorial and expected to be controlled by 

a large number of variants of small effect, considerably larger populations will have 

to be employed to identify a significant fraction of the relevant alleles (Robinson et 

al. 2014). As population size increases in association analysis, the power of 

detection increases and more QTLs/genes with small effects are detected, 
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however the inconsistency of these effects across different genetic backgrounds 

and environments can become a problem. In addition, even when rare variants are 

found associated with quantitative traits in natural populations, it is not directly 

clear how this information will be used in breeding programs via marker-assisted 

selection in advanced breeding populations (Collard et al. 2008; Desta and Ortiz 

2014). These variants may, for example, already be fixed in these populations or 

have reduced allelic substitution effects than the segregating variants in the 

breeding populations and thus are irrelevant from the practical point of view. 

Finally, even if all loci and respective alleles, each controlling small fractions of the 

variation in the traits of interest, are found in association studies with high statistical 

power and well conducted experimental, the ability to use this information via MAS 

for several traits simultaneously will be difficult. 

 

The major challenge of association studies arises essentially from the underlying 

hypothesis, now well supported by several studies in plants, animals and humans 

that complex traits are controlled by a large number of variants, possibly hundreds 

or thousands, of small effects distributed throughout the genome (Boyle et al. 

2017). Thus, since association studies are typically very limited in terms of 

statistical power and genomic coverage, GWAS will capture only a small proportion 

of these variants, those with the greatest effect. This leaves much of the variation 

to be explained; which has been referred to as “missing heritability” (Maher 2008). 

The “missing heritability” can be comprehended as a proportion of the genetic 

variance not explained by the QTLs that the association study was able to detect 

(Manolio et al. 2009). The paradox of “missing heritability” is now a topic that has 

been extensively investigated in the area of quantitative genomics, both for 

complex diseases in humans, as well as for many economically important traits in 

cultivated plants (Eichler et al. 2010; Yang et al. 2010; Brachi et al. 2011; Visscher 

et al. 2014; Yang et al. 2015). There are numerous possible explanations for the 

“missing heritability”. One of them is that to fully explain the genetic variance of 

complex traits, it will be necessary to combine GWAS with other large-scale 

approaches (e.g. gene expression, methylation, Copy Number Variations (CNVs), 
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organellar DNA (cpDNA or mtDNA)), with the goal of identifying all the remaining 

genetic variants that affect the phenotype (Edwards et al. 2013; Robinson et al. 

2014). Another possibility is the simple fact that most GWA studies focus on 

common variants, such that to access rare variants a major increase in the sample 

size of association studies is required (Agarwala et al. 2013; Cheng and Chen 

2013; Robinson et al. 2014). Generally, rare variants are less likely to be in strong 

LD with the common variants present in the SNP genotyping chips (Robinson et 

al. 2014). In addition, the phenotypic data used may be imprecise, which reduces 

the ability to identify associations. 

 

Among the several factors that have been cited in the literature, which include 

effects of interactions between genes (epistasis), epigenetic variation, de novo 

mutations and others, the increase in sample size of the experimental populations 

should have the greatest effect on detection power of a GWAS (Robinson et al. 

2014). Even if high density SNP chips are replaced by Whole-Genome Sequencing 

(WGS) to detect low-frequency loci, this alone will not be enough to capture the 

effects of rare variants, unless a larger number of individuals are employed for its 

detection (Robinson et al. 2014). Therefore, instead of “missing heritability”, the 

most appropriate term appears to be “hidden heritability” (Vinkhuyzen 2013). 

Recently it has been proposed that complex traits are more likely under an 

“omnigenic” model in contrast to a polygenic model, where the association signals 

tend to be spread across the genome, including a large number of genes with no 

direct relevance to the trait (Boyle et al. 2017). As these limitations become more 

evident, the main change between the past and current GWA studies has been the 

increased number of individuals employed, usually thousands or hundreds of 

thousands, which seem to be needed to provide sufficient statistical power to 

detect the common and low-frequent variants in the population that contribute to 

the genetic variance (Marouli et al. 2017; Visscher et al. 2017). 

 

A few approaches can be used to increase the power of association studies, 

namely increasing the number of samples using Meta-GWAS and Joint-GWAS 
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(Mägi and Morris 2010; Yang et al. 2012; Bernal Rubio et al. 2016) or exploiting 

multiples SNPs in a segment using region or gene-based GWAS to account for 

rare and low-frequency variants (Wu et al. 2011; Nagamine et al. 2012; Bakshi et 

al. 2016). Progress in identifying associated loci with complex traits has been 

accelerated by large-scale Meta and Joint-analyses through the combination of 

information coming from multiple populations. Meta-GWAS combines the p-values 

from independent studies to increase the power to detect variants with small effect 

sizes and is a popular method for discovering new genetic risk variant in human 

datasets (Evangelou and Ioannidis 2013). Joint-GWAS combine the populations 

prior to the association analysis, leading to more resolution and the detection of 

more associations for complex traits (Lin and Zeng 2009). As each experiment is 

independently designed, both methods have to account for the heterogeneity 

created by population structure and phenotype measurements among other 

potential sources of variability (Magosi et al. 2017). Although sharing individual-

level datasets is logistically difficult and for human studies might have ethical 

restrictions, Joint-GWAS has become more common in plant research due to the 

ability to replicate genotypes (Li et al. 2016; Wallace et al. 2016; Wu et al. 2016). 

In some cases, even with medium to large sample size the statistical power to 

detect associations is usually very small for complex traits, because of their 

polygenic architecture characterized by the small effect sizes of each individual 

genetic variant (Visscher et al. 2012). The regional heritability mapping (RHM, 

Nagamine et al., 2012) is an alternative approach for region-based GWAS with 

good potential for these cases, as it captures more of these underlying small 

genetic effects. This method provides heritability estimates for short-genomic 

regions, using the genomic relationship matrix between individuals, and it has the 

power to detect regions containing common and rare SNP variants that individually 

contribute too little variance to be detected by single-SNP GWAS. As many trait-

associated genetic variants identified from GWAS tend to be in enriched genic 

regions (Schork et al. 2013), it is more powerful to test the aggregated effect of a 

set of SNPs using a set-based association approach for the detection of 

associations in genes controlling complex trait (Bakshi et al. 2016). 
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In the case of association studies for forest tree species, although they have 

resulted in some progress in the identification of causal variants, they are far from 

providing sufficient information for the practical application in breeding. The 

proportions of variation explained are too small to impact forest tree breeding of 

complex traits and unless large fractions of the variation are captured by multiple 

associated markers, they will hardly have any impact on directional selection 

(Grattapaglia et al. 2009). The proportion of variation explained by each individual 

association has generally reached 1-6% (Neale 2007; Grattapaglia and Resende 

2011; Korte et al. 2012; Korte and Farlow 2013; Mckown et al. 2014; Du et al. 

2016; Nicolas et al. 2016; Resende R.T. et al. 2016), with a small increase of 5-

15% when considering the RHM approach in Eucalyptus (Resende R.T. et al. 

2016). Therefore, it is clear that there is a large number of additional variants of 

small effects that cannot be detected with the limited dimensions of the 

experiments and with the application of stringent significance tests (Visscher et al. 

2012). GWAS analyses have been limited in explaining genetic variation, even for 

high heritability traits (Grattapaglia et al. 2009). In humans, a GWA study of 

approximately 250,000 individuals identified nearly 700 associations in 423 loci, 

which together accounted for about 20% of heritability for height, a trait that 

presents high heritability, estimated between 60 to 80% (Wood et al. 2014). For 

another GWA study for adult height, despite using more than 700,000 individuals, 

only 83 height-associated variants were detected with lower minor-allele 

frequencies (0.1-4.8%) (Marouli et al. 2017). Interestingly, the contribution to the 

phenotype of these rare variants were up to ten times those of the average 

common variants, representing up to 2 centimeters per allele. In this line, a recent 

study estimated that more than 100,000 SNPs influence height in human (Boyle et 

al. 2017), each one with a tiny impact (Callaway 2017). Robinson et al. (2014) 

when discussing the challenge of how to explain a greater amount of the genetic 

variation of complex traits propose that this challenge will be fulfilled with the 

technologies currently available by using much larger sample sizes, better 
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phenotyping, more focused designs on specific traits, and the integration of 

multiple sources of genetic and phenotypic information. 

 
Genomic Selection (GS) 
 
Principles and applications of genomic prediction 
 
The use of methodologies involving the development of predictive models of 

complex phenotypes based on genome-wide genotyping has revolutionized the 

perspective of the application of genomic information in breeding practice. This 

methodology dispenses the necessity for prior identification of individual 

QTLs/genes, focusing exclusively on aspects of operational efficiency and genetic 

gain. This type of approach, called Genomic Selection (GS) or Genome-Wide 

Selection (GWS), was proposed almost two decades ago (Meuwissen et al. 2001) 

and has gained increasing interest and application as a new approach for breeding 

annual crops (Morrell et al. 2011; Poland et al. 2012; Massman et al. 2013; Crossa 

et al. 2014; Annicchiarico et al. 2015; Yabe et al. 2016; Acosta-Pech et al. 2017; 

Bernal-Vasquez et al. 2017), forest trees (Grattapaglia and Resende 2011; Iwata 

et al. 2011; Resende Jr et al. 2012a; Resende et al. 2012; Zapata-Valenzuela et 

al. 2012; Resende Jr et al. 2012b; Zapata-Valenzuela et al. 2013; Beaulieu et al. 

2014a; Beaulieu et al. 2014b; de Almeida Filho et al. 2016; Lenz et al. 2017; Müller 

et al. 2017; Resende R.T. et al. 2017; Tan et al. 2017) and fruit plants (Kumar et 

al. 2012a; Kumar et al. 2012b; Kumar et al. 2015; Muranty et al. 2015; Duangjit et 

al. 2016; Iwata et al. 2016; Gezan et al. 2017; Migault et al. 2017). GS can be 

defined as being the simultaneous selection for hundreds or thousands of markers, 

depending on the organism and extent of linkage disequilibrium, covering the 

whole-genome. Consequently, it is anticipated that all alleles of interest will be in 

LD with at least one or more genotyped markers and, therefore, properly captured 

in predictive models. 
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Genomic selection, similar to GWAS, uses genotyping with large numbers of 

markers covering the whole-genome, but differs in that it is not based on the 

application of significance tests. Therefore, GS estimates simultaneously the effect 

of all markers on the phenotype of individuals from a representative population. 

Thus, unlike GWAS that focuses on the detection of individual associations, GS 

uses all or a large proportion of the markers to predict the phenotype through 

predictive models. Consequently, GS works on the principle that the LD provided 

by dense genotyping is sufficient to capture most of the QTLs relevant to the target 

trait. Avoiding the selection of markers and estimating the effects of markers in a 

broad and representative training population, GS tends to capture a greater 

genetic variance for the assessed trait. Therefore, GS mitigates the dilemma of 

how to capture the “missing heritability” of complex traits, explained by a large 

number of QTLs of small effects (Manolio et al. 2009; Makowsky et al. 2011). 

 

Genomic selection opens a concrete perspective of significantly accelerating the 

progress of forest tree species breeding due to the long life cycle and traits that 

present complex genetic control and late expression (Grattapaglia 2014). The 

predictive methodologies of GS, dispensing the need to map and locate 

QTLs/genes, focusing exclusively on increasing efficiency with reduced breeding 

cycle and increased genetic gain, may have a greater probability of success 

(Grattapaglia et al. 2009; Grattapaglia and Resende 2011). Only in the last decade 

that large-scale genotyping technologies have enabled high-marker densities and 

whole-genome coverage to be achieved at very affordable costs, which rapidly 

renewed interest in “black box” methodologies for phenotype prediction based on 

genotype (Goddard and Hayes 2009; Habier et al. 2013). Recent results in the 

literature, mainly on genetics and animal breeding, are extremely encouraging 

(Goddard and Hayes 2009; Hayes et al. 2009a; Luan et al. 2009; Hayes et al. 

2009b; Hayes and Goddard 2010; Thomasen et al. 2014; Casellas and Piedrafita 

2015; Porto-Neto et al. 2015; van Binsbergen et al. 2015; Forneris et al. 2016; 

Hayes et al. 2016a; Meuwissen et al. 2016; Hayes et al. 2016b), since these 

studies indicate that this approach is particularly interesting for traits of low 
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heritability and for organisms of long life cycle (Schaeffer 2006; Lee et al. 2008; 

Legarra et al. 2008; Luan et al. 2009; Thomasen et al. 2014; Hayes et al. 2016a; 

Hayes et al. 2016b). 

 

Genomic selection is now a reality for animal breeding, with several studies 

showing the genetic gains achieved by early selection and advantages over 

conventional breeding (Hayes et al. 2009a; Habier et al. 2010; Hayes and Goddard 

2010; Legarra et al. 2014; Su et al. 2014; Thomasen et al. 2014; Casellas and 

Piedrafita 2015; Porto-Neto et al. 2015; van Binsbergen et al. 2015; Meuwissen et 

al. 2016; Hayes et al. 2016b; VanRaden et al. 2017; Wallén et al. 2017). Empirical 

studies have proven the excellent prospect of GS application in the breeding of 

annual plants, such as: maize (Crossa et al. 2010; Crossa et al. 2013; Massman 

et al. 2013; Crossa et al. 2014; Liu et al. 2015; Pace et al. 2015; Acosta-Pech et 

al. 2017; Bernardo 2017), wheat (Crossa et al. 2010; Poland et al. 2012; Crossa 

et al. 2014; Bassi et al. 2015; Thavamanikumar et al. 2015; Fiedler et al. 2017; 

Jarquín et al. 2017; Juliana et al. 2017), barley (Shengqiang et al. 2009; Schmidt 

et al. 2015; Li et al. 2017), rice (Grenier et al. 2015; Spindel et al. 2015; Onogi et 

al. 2016; Spindel et al. 2016), pea (Burstin et al. 2015; Tayeh et al. 2015; 

Annicchiarico et al. 2017) and soybean (Zhang et al. 2015; Chang et al. 2016; 

Duhnen et al. 2017). In forest tree species, GS began to be approached through 

some simulation studies (Grattapaglia and Resende 2011; Iwata et al. 2011) and 

soon afterwards in two pioneering empirical studies in Pinus (Resende Jr et al. 

2012a) and Eucalyptus (Resende et al. 2012). Subsequently, a simulation study 

to test the GS efficiency, including dominance effect in the model, was published 

in Eucalyptus (Denis and Bouvet 2013). Afterwards, several other papers were 

published in forest tree species of different genus of conifers, such as: Pinus 

(Zapata-Valenzuela et al. 2012; Resende Jr et al. 2012b; Zapata-Valenzuela et al. 

2013; Isik et al. 2015; de Almeida Filho et al. 2016), Larix (Klápště et al. 2014) and 

Picea (Beaulieu et al. 2014a; Beaulieu et al. 2014b; Gamal El-Dien et al. 2015; 

Ratcliffe et al. 2015; El-Dien et al. 2016; Fuentes-Utrilla et al. 2017; Lenz et al. 

2017). More recently, several studies of GS in Eucalyptus were published (Cappa 
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et al. 2017; Durán et al. 2017; Müller et al. 2017; Resende R.T. et al. 2017; Tan et 

al. 2017). GS could represent a radical paradigm shift in forest tree breeding by 

allowing the ultra-early selection of elite trees still in the nursery stage for late 

expression traits, such as growth, wood quality and tolerance to abiotic and biotic 

stresses (Grattapaglia 2014). Individuals can be selected for the installation of 

clonal tests or their use as parents for the next-generation of breeding or both, as 

has been done in several companies today. This approach seeks to explore the 

combination of favorable traits and to identify exceptional individuals that 

consolidate several desirable traits. Breeding programs with this configuration are 

fully adequate for the implementation of GS. 

 

Training and validation populations, and accuracy of the model 
 

For GS implementation, a training population, also known as discovery population 

or estimation population, is genotyped with thousands of markers and phenotyped 

for the traits of interest (Jannink et al. 2010). From these datasets, predictive 

models are developed to estimate the Genomic Estimated Breeding Values 

(GEBV) for each trait individually. These models associate for each marker their 

predicted effect on the target trait. Thus, in the training population, the markers 

associated with the loci that control the traits are discovered through genotyping, 

as well as their effects are estimated (Grattapaglia 2014). Through the cross-

validation, the predictive models of the GEBVs are tested to verify their prediction 

accuracy in a subset of individuals sampled randomly from the training population. 

These individuals of random sampling make up the validation population, being a 

subset of individuals, usually 10%, of the training population who did not participate 

in estimating the effects of the marker. 

 

The GEBVs are predicted using the estimated effects in the training population 

and subjected to correlation analysis with observed phenotypic values to obtain 

the prediction accuracy. As the validation population was not involved in the 

prediction accuracy of the marker effects, the errors associated with the GEBVs 



21 
 

and the phenotypic values are independent. Therefore, the correlation between 

these values is predominantly of a genetic nature, equivalent to predictive ability 

(rgy) of the GS in estimating the phenotypes. In general, the predictive ability is 

defined as the correlation between observed (#) and the genomic-estimated 

breeding values ($%&') computed through cross-validation ()(#, $%&')-. The 

accuracy (rgĝ) could be obtained by dividing the predictive ability by the square root 

of the individual heritability (h) (Legarra et al. 2008). In broad-spectrum, the 

narrow-sense heritability (ℎ/) is calculated as the ratio of the additive variance (01/) 

to the phenotypic variance (02/). In other words, narrow-sense heritability (ℎ/ =

	01/ 02/	4 ) captures only that proportion of genetic variation that is due to additive 

genetic values. Currently, to apply GS in forest tree species it is more common to 

report the predictive ability (Beaulieu et al. 2014a; Beaulieu et al. 2014b; 

Bartholomé et al. 2016b; Müller et al. 2017; Resende R.T. et al. 2017) rather than 

the accuracy, due to the potential bias in estimating genomic heritability as 

discussed in de los Campos et al. (2015). The GEBV is calculated by multiplying 

the number of alleles in each of the markers by their estimated effect through Ridge 

Regression Best Linear Unbiased Prediction (RR-BLUP) or other Bayesian 

statistical method (LASSO, BayesA, BayesB, etc.). All these statistical methods 

aim to mitigate the problem of a small n and a large p, that is, the estimation of a 

large number of effects p (number of markers) from a limited number of 

observations n (sample size). The shrinkage estimators in regression coefficients 

avoid this problem by treating the effects of the markers as random variables and 

estimating them simultaneously (Crossa et al. 2010; Lorenz et al. 2011). 

 

Factors affecting the prediction accuracy of GS 
 

Initially, to estimate the prediction accuracy of the GS models, the correlation 

between the GEBV and the genetic value estimated by the observed phenotype is 

evaluated. There are several parameters that can affect the predictive ability of the 

model and generally these are dependent on each other. The main parameters 

are: (i) the distribution of QTL effects (number of loci and size of effects controlling 
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the trait); (ii) the heritability of the assessed trait; (iii) the number of genotyped and 

phenotyped individuals that compose the training population used to estimate the 

effect of markers; (iv) the effective population size (Ne); (v) the density of markers; 

(vi) the extent of LD between markers and QTLs; and the (vii) relatedness between 

the individuals in the training and validation populations (Habier et al. 2007; 

Legarra et al. 2008; Hayes et al. 2009b; Grattapaglia and Resende 2011; Lenz et 

al. 2017). The QTLs effects (i) and heritability (ii) are parameters dependent on the 

genetic architecture of the trait of interest in a specific environment and also on the 

genetic background of the study population. On the other hand, the number of 

individuals in the training population (iii), the Ne (iv); the density of markers (v); the 

extension of LD (vi) and the relatedness (vii) can be controlled experimentally by 

the breeder (Hayes et al. 2009b; Grattapaglia and Resende 2011; Grattapaglia 

2014; Beaulieu et al. 2014b; Wallén et al. 2017). 

 

Genetic architecture of the target trait 
 

The number of QTLs that control traits of interest has an impact on the GS 

prediction accuracy. If there are few loci controlling large fractions of phenotypic 

variation, they are easily captured compared to a more complex genetic 

architecture involving a greater number of loci (Daetwyler et al. 2010). As 

expected, the reduction in the GS prediction accuracy with an increasing number 

of QTLs involved in the trait tends to be more pronounced in low-density marker 

panels or with a higher Ne (Habier et al. 2009; Grattapaglia and Resende 2011). 

Therefore, to achieve satisfactory prediction accuracy in the GS model (e.g. 

greater than 0.60) it would be necessary to use density panels with ≥ 5 markers/cM 

assuming a simpler genetic architecture, while 20 markers/cM would be required 

with a greater number of QTLs controlling the trait (Grattapaglia and Resende 

2011). Heritability is a factor underlying the genetic architecture of a trait, being 

proportional to the accuracy reached in GS, that is, the greater the heritability, the 

greater will be the prediction accuracy. The study of Grattapaglia and Resende 

(2011) showed by simulation that a considerable increase in heritability (0.2 to 0.6) 
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results in a small increase in prediction accuracy (0.71 to 0.83). Empirical studies 

however show that heritability and prediction accuracy have a strong correlation 

(Resende Jr et al. 2012b; Muranty et al. 2015). Traits of lower heritability have less 

informative phenotypes from the genetic point of view and are therefore expected 

to be less predictable through GS (Resende Jr et al. 2012b). On the other hand, 

simulation studies have shown that the reduction of prediction accuracy with the 

reduction of heritability can be easily compensated by using a greater number of 

individuals in the training population (Meuwissen et al. 2001; Nielsen et al. 2009). 

 

Number of individuals in the training population 
 

The selection of a large number of individuals in a training population to accurately 

estimate the effects of markers is generally not a limitation on forest tree species 

(Grattapaglia 2014). The selection of a training population depends on the 

breeding strategy to be adopted and also on the structure and number of 

populations involved. The training population can be established by sampling trees 

in preexisting progeny tests. Generally, these progeny tests are derived from 

interbreeding (with free or controlled pollination) of a set of few elite parents, 

representative of the desired genetic variation with adequate size of Ne, to provide 

genetic gains that will be sustained by some future generations (Beaulieu et al. 

2014b; Bartholomé et al. 2016b). In the study by Grattapaglia and Resende (2011), 

it was demonstrated by simulation that by increasing the number of individuals (n) 

up to 1,000, the prediction accuracy of the GS model increased rapidly, reaching 

satisfactory levels depending on the used Ne. On the other hand, using 2,000 

individuals in the training population showed a small improvement of 6-10% of the 

estimated accuracy in relation to n = 1,000. In this same study, adopting a number 

of individuals above 2,000, the prediction accuracy reached a plateau, regardless 

of the density of markers in the genotyping and the Ne. Consequently, the number 

of individuals generally used to compose a training population for forest tree 

species has been 1,000 to 1,500. However, if the distribution of QTL violates the 

infinitesimal model of equal effects with common variance, not all genetic variation 
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would be explained and the GS prediction accuracy could decrease depending on 

the method used to estimate GEBV (Coster et al. 2010). Therefore, using a training 

population around n = 2,000 would be justified to protect against such model 

violations or in cases where several hundred QTLs control the trait variation 

(Grattapaglia and Resende 2011). In addition, larger training populations may 

mitigate the likelihood of losing favorable rare alleles as selection generations 

advance, although inevitably some of these alleles will be lost because they may 

be at low LD with any marker. The use of higher density of markers on genotyping, 

also will help in this regard by preserving rare alleles in these breeding populations, 

allowing greater long-term gains in selection (Grattapaglia 2014; Bartholomé et al. 

2016b). 

 

Effective population size (Ne) and marker density 
 
For the GS application in plant breeding some requirements are necessary. In 

addition to having large-scale and low-cost genotyping platforms, appropriate 

populations for GS application should have properties that result in longer 

extensions of LD. In the case of Eucalyptus this situation is fully satisfied in most 

populations that tend to have an effective size between 10 and 100 parents who 

through cross-breeding generates large progenies in which individual selection is 

practiced (Grattapaglia et al. 2009; Grattapaglia and Resende 2011). The Ne 

corresponds to the number of individuals in an idealized population that would 

generate offspring, presenting the same amount of allele frequency dispersion 

under genetic drift or the same amount of inbreeding as the actual population 

under consideration (Wright 1931). The higher the Ne, a larger number of markers 

will be needed covering the genome to capture the LD between markers and QTLs 

in order to achieve and maintain a high GS prediction accuracy. Grattapaglia and 

Resende (2011) evaluated the impact of increasing effective population size on 

predictive accuracy. For a reduced Ne (Ne = 10 to 30), it would take between 2 to 

5 markers per cM (centiMorgan) to achieve adequate accuracy. In contrast, for a 

higher value of Ne (Ne = 100 to 200), a density in the order of 10 to 30 markers per 
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cM would be required. For a total recombination rate of the Eucalyptus genome 

from 1,100 to 1,500 cM (Brondani et al. 2006; Hudson et al. 2012), 22,000 to 

30,000 informative markers for GS practice would therefore be required. Currently, 

reaching this number of markers is no longer a limitation for GS application in forest 

tree. Silva-Junior et al. (2015) developed an Infinium Eucalyptus chip with 60,000 

SNPs (EUChip60K). It is clear that the number of polymorphic SNPs will vary 

according to the species diversity and the specific population under analysis. In 

the work of Silva-Junior et al. (2015), 75% of the 60,000 SNPs were polymorphic 

in 42 individuals of E. camaldulensis, the most widely distributed Eucalyptus 

species in Australia (Butcher et al. 2009). On the other hand, despite genotyping 

558 individuals of E. benthamii, only 23.5% of the SNPs were polymorphic in this 

species, revealing its restricted genetic base and suggesting a high genetic 

vulnerability (Butcher et al. 2005). 

 
The density of markers in the genotyping is an important factor in maintaining GS 

predictive capacity with the advancement of selection in the next generations 

(Bartholomé et al. 2016b). Higher marker densities allow accuracy to persist over 

time due to slower LD decay between markers and loci (Grattapaglia 2014). High 

density genotyping is essential to support the accuracy of the model considering 

that selection together with recombination may alter the pattern of LD between 

markers and QTLs in the next generations (Long et al. 2011). The reduction in GS 

prediction accuracy over time can be mitigated by re-estimating the effects of the 

markers (Iwata et al. 2011). Due to the fast LD decay of the genomes of forest tree 

species, attempts to use low-density panels as an option to reduce the costs of 

genotyping, as proposed for domestic animals and annual crops (Habier et al. 

2009; Vazquez et al. 2010; Zhao et al. 2012; Weller et al. 2014; Liu et al. 2015), 

should be viewed with caution. A lower marker density would make GS more 

susceptible to LD decay with recombination and selection. In addition, 

simultaneous selection for several traits would likely result in different sets of 

markers more informative to each trait. In such scenario, a useful high-density 

panel of markers among various breeding populations and with the aim of selecting 
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for several traits simultaneously will possibly be the best option (Grattapaglia 

2014). 

 

Linkage disequilibrium (LD) extension 
 

The extent of Linkage Disequilibrium (LD) is one of the most determinant 

parameters in the GS prediction accuracy. Linkage disequilibrium is a measure of 

non-random association between alleles of different loci (Slatkin 2008), for 

example between marker alleles and QTLs. As Ne becomes smaller, the effect of 

genetic drift becomes stronger and more LD is generated because combinations 

between marker alleles and QTL alleles are unlikely to be sampled at a frequency 

corresponding to the product of their individual frequencies. Therefore, the 

resulting non-random association between alleles of marker loci and QTLs alleles 

allows the marker to predict the allelic status of nearby QTLs, and thus predict the 

phenotypes controlled by them. In equilibrium, the LD generated by genetic drift is 

balanced by recombination that occurs with advancement in breeding population 

generations. This causes LD dissipation in such a way that for the closest loci from 

the recombination point of view it is expected to have higher LD than the more 

distant ones. As a consequence, the relationship between Ne and LD impacts the 

marker density required to achieve and maintain the predictive ability in the GS 

model over generations. Therefore, the marker density required for GS practice 

depends on the LD level between markers and QTLs, which in turn is a function of 

Ne. The breeder can control both the effective size of the population using a greater 

or lesser number of parents and the density of markers depending on the financial 

resources available for genotyping (Grattapaglia 2014). 

 

Relatedness between individuals in the training and validation populations 
 

Generally, the forest tree breeder controls the Ne in order to reduce it aiming to 

increase the LD between the markers and QTL, being an efficient method to 

increase the GS predictions accuracy (Grattapaglia and Resende 2011). On the 
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other hand, when Ne is reduced in addition to increasing LD, it also increases the 

relatedness between individuals in the population. Recently, several experimental 

studies have shown that the relatedness between the training population and the 

selection candidates is mainly responsible for the GS predictions accuracy 

(Auinger et al. 2016; Michel et al. 2016; Müller et al. 2017). And these studies have 

evaluated the effect of relatedness on predictive ability by removing relatedness 

between training and validation populations using different approaches, either by 

removing relatedness between individuals belonging to the same families (Legarra 

et al. 2008; Albrecht et al. 2011; Makowsky et al. 2011; de los Campos et al. 2013a; 

Riedelsheimer et al. 2013; de los Campos et al. 2013b; Beaulieu et al. 2014a; 

Spiliopoulou et al. 2015; Spindel et al. 2015; Spindel et al. 2016; Lenz et al. 2017; 

Resende R.T. et al. 2017), populations (Hayes et al. 2009a; Habier et al. 2010; 

Clark et al. 2012; Riedelsheimer et al. 2013; Cros et al. 2015) and subpopulations 

(Saatchi et al. 2011; Windhausen et al. 2012; Ly et al. 2013; Beaulieu et al. 2014b; 

Arruda et al. 2015; Spindel et al. 2015; Spindel et al. 2016; Müller et al. 2017). GS 

predictions decreased markedly when unrelated individuals were used in the 

training population and in the validation population. With the dissipation of LD with 

recombination, it is expected, therefore, that in subsequent generations a lower 

predictive ability will be observed. The question of relatedness should therefore be 

carefully considered in the prospects of using a prediction model. The individuals 

on whom the models will be applied are candidates for selection, but the prediction 

accuracy of their phenotypes cannot be estimated because their phenotypes are 

not available. The models are tested by cross-validation, typically using a 

subsample of the training population. Since relatedness is an important component 

of predictive accuracy, the most important principle of selecting and assembling a 

training population is that it adequately mirrors the relationship between future 

candidates for selection and the training population (Daetwyler et al. 2013). If the 

validation population is more or less related to the training population than the 

candidates for selection, then the predictive accuracy will be overestimated or 

underestimated, respectively. The results shown in studies with Eucalyptus 

(Resende et al. 2012; Müller et al. 2017; Resende R.T. et al. 2017) and with Picea 
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(Beaulieu et al. 2014a; Beaulieu et al. 2014b; Lenz et al. 2017) corroborate to this 

point, that GS depends on the existence of relatedness between training 

population and candidates for selection. 

 

Perspectives of the GS application in forest tree breeding 
 

The first empirical study with GS in Eucalyptus was a proof of concept, showing 

that this approach reached similar and even higher accuracy than those obtained 

by conventional phenotypic selection (Resende et al. 2012). In addition, the GS 

methodology was important to capture large fractions of the heritabilities (75-97%) 

of the evaluated growth and wood quality traits. Recent experimental data 

presented promising perspectives of the GS application to increase the efficiency 

of Eucalyptus breeding programs (Cappa et al. 2017; Durán et al. 2017; Müller et 

al. 2017; Resende R.T. et al. 2017; Tan et al. 2017). This would be accomplished, 

fundamentally, by shortening the duration of the breeding cycle, excluding the 

stage of progeny testing and implementing the ultra-early selection of the 

phenotypes yet to be observed in the seedling stage in the greenhouse. In 

Eucalyptus, GS could not only eliminate progeny testing but also reduce the time 

and costs involved in the clonal testing phase by reducing the number of selected 

trees that are tested as large-scale clones. Thus, GS compared to conventional 

breeding can reduce the cycle from 18-10 to 9-5 years (Resende et al. 2012; 

Grattapaglia 2014). Currently, GS is a subject of great relevance in plant breeding 

(Morrell et al. 2011; Hickey et al. 2017) and forest tree species breeding programs 

have been conducting several experiments aimed at the operational 

implementation. How to incorporate GS into a forest genetic improvement program 

will vary from case to case after a detailed cost-benefit analysis. The gain in time 

reduction by replacing the progeny tests by GS clonal test will be unavoidable 

(Durán et al. 2017). In addition, the genetic gain achieved by allowing the 

simultaneous evaluation of all target traits in all progeny individuals at one time will 

be an additional great operational advantage of GS in forest trees (Grattapaglia 

2014). Recently, genomic prediction models were evaluated across generations in 
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maritime pine (Pinus pinaster) (Isik et al. 2015; Bartholomé et al. 2016b), 

demonstrating even more encouraging perspectives of this novel approach to 

accelerate forest tree breeding programs. 

 

Contribution to the field 
 

This thesis makes contributions to the advancement in the understanding of the 

potential application of GS and GWAS for complex growth traits in breeding 

populations of Eucalyptus. The genomic prediction study described in chapter one 

provides experimental data supporting positive prospects of using genome-wide 

data to capture large proportions of trait heritability and predict growth traits, in 

species of Eucalyptus not contemplated before, with accuracies equal or better 

than those attainable by phenotypic selection. The study described in chapter two 

goes a step further in GWAS experiments, applying for the first time different 

approaches of Joint-GWAS in forest trees by assembling data for 3,373 individuals 

across four unrelated Eucalyptus breeding populations. Although large proportions 

of the heritability were explained by the genome-wide data in all populations, few 

associations were found, corroborating the high polygenic nature of growth traits. 

Still, interesting putative associations were detected in a range of candidate genes 

involved in cell wall biosynthesis processes and disease resistance. The studies 

described below suggest that it will be necessary to considerably increase the 

sample size by orders of magnitude to achieve sufficient power to detect a larger 

part of the variants segregating in the target Eucalyptus breeding populations. On 

the other hand, the results of genomic prediction further support that whole-

genome regression should prove a useful approach to incorporate genomics into 

tree breeding. 
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CHAPTER 1: Genomic prediction and GWAS for growth traits in breeding 
populations of Eucalyptus benthamii and E. pellita 
 
Published as: 

 

Müller BSF, Neves LG, de Almeida Filho JE, Resende MFR, Muñoz PR, dos 

Santos PET, Filho EP, Kirst M, Grattapaglia D, 2017. Genomic prediction in 

contrast to a genome-wide association study in explaining heritable variation of 

complex growth traits in breeding populations of Eucalyptus. BMC Genomics 

18(1):524. doi: 10.1186/s12864-017-3920-2 

 

INTRODUCTION 
 

Species of Eucalyptus are the most planted hardwood trees worldwide due to their 

multipurpose applications (e.g. pulp, paper, solid wood and bioenergy), superior 

growth, high adaptability and wood quality (Myburg et al. 2007). Amongst the 800 

catalogued species of Eucalyptus L’Hér. (Myrtaceae), the "big nine" species within 

subgenus Symphyomyrtus account for over 95% of the world's eucalypt 

plantations (Harwood 2011). Within this group, Eucalyptus grandis Hill ex Maiden, 

E. urophylla S.T. Blake, and E. camaldulensis Dehnh are the most economically 

prominent ones in tropical regions, whereas E. globulus Labill and E. nitens 

H.Deane & Maiden are notable in temperate regions (Myburg et al. 2007). The 

extensive intra- and interspecific diversity and sexual compatibility across species 

of Symphyomyrtus has been a major advantage to breeders, as it allows rapid 

blending of gene pools that evolved separately under contrasting environmental 

pressures (Grattapaglia and Kirst 2008). Nevertheless, there is still ample 

opportunities for expanding the use of some secondary species of Symphyomyrtus 

not included among the “big nine”, to develop uniquely adapted genetic material 

that combine rapid growth, good wood quality and adaptation to environmental 

stresses such as frost, heat and drought. 
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Eucalyptus benthamii Maiden & Cambage (Camden white gum), a species of 

restricted occurrence in its natural range in Australia (Butcher et al. 2005), has 

showed great potential to expand eucalypt commercial plantations into subtropical 

regions subject to periodic frosts (Arnold et al. 2015). Eucalyptus benthamii planted 

as pure species or in hybrid combinations has received increasing attention in 

subtropical regions of southern Brazil and southeastern USA (Pirraglia et al. 2012; 

Costa et al. 2016). Another species of marginal importance until recently, 

Eucalyptus pellita F. Mueller (large-fruited red mahogany), is highly suitable for 

growth in year-round humid lowland equatorial climates under high temperatures, 

showing a particularly high resistance to pathogens. Eucalyptus pellita is endemic 

to tropical regions in two disjoint natural forests, in southern New Guinea and in 

northern Australia (Harwood et al. 1997). It has shown fast growth in hybrid 

combination with E. grandis providing resistance to a number of fungal diseases 

(Agustini et al. 2014). 

 

Genomic selection (GS) was proposed by Meuwissen et al. 2001, and has gained 

increasing interest among forest tree breeders. This predictive methodology 

provides an alternative approach to using marker-assisted selection (MAS) that 

relies on previously detected discrete quantitative trait loci (QTL) in bi-parental 

mapping and association genetics experiments. In forest trees, genomic prediction 

began to be addressed by simulation studies (Grattapaglia and Resende 2011; 

Iwata et al. 2011) followed by experimental reports in Pinus (Resende Jr et al. 

2012a) and Eucalyptus (Resende et al. 2012) demonstrating the positive prospects 

of this breeding method. Since then, a number of experimental genomic prediction 

studies have confirmed the potential of GS in conifer species, including Pinus 

(Resende Jr et al. 2012b; Zapata-Valenzuela et al. 2013; de Almeida Filho et al. 

2016) and Picea (Beaulieu et al. 2014a; Beaulieu et al. 2014b; Gamal El-Dien et 

al. 2015; Ratcliffe et al. 2015). Recently, genomic prediction models were 

evaluated across generations in maritime pine (Pinus pinaster) (Isik et al. 2015; 

Bartholomé et al. 2016b), demonstrating even more encouraging perspectives of 

this novel approach to accelerate breeding of forest trees. 
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Several parameters were shown to affect GS prediction accuracy in simulation 

studies, such as the number of QTLs controlling the trait, trait heritability, the size 

of the training population, number of markers and the effective population size (Ne) 

of the target population (Grattapaglia and Resende 2011). If an adequate density 

of markers is provided for a given Ne, it is expected that most QTL will be in LD 

with at least one marker and will be captured in predictive models. Consequently, 

high-throughput and low-cost genotyping platforms constitute an essential tool to 

apply GS. The reduction of the effective population size leads to increased 

relatedness between individuals and more extensive LD in the population. Markers 

fitted in a GS model will capture not only LD but also relatedness between 

individuals in the training and validation sets. An increase in prediction ability with 

enhanced relatedness among the training and validation sets was shown early on 

from simulation studies (Habier et al. 2007), and underscored in all recent reviews 

on the perspectives GS in plant and domestic animals breeding (Van Eenennaam 

et al. 2014; Heslot et al. 2015). Phenotypes of individuals closely related to the 

training population will be better predicted over distantly related individuals. 

 

In this study, we report the development of genomic prediction models for growth 

traits in two breeding populations of E. benthamii (! = 505) and E. pellita (! = 732) 

using SNP data generated with the multi-species Eucalyptus 60kSNP chip. Using 

a genomic relationship matrix (GRM) we compared the pedigree and genome-

estimated breeding values and narrow-sense heritabilities in the two populations. 

Different Bayesian methods for predicting growth traits were compared. The 

impact of variable numbers of SNPs, different SNP sampling methods based on 

their position in the genome, and the impact of relatedness on genomic prediction 

were also evaluated. Finally, a genome-wide association analysis was carried out 

on the same datasets to evaluate what would be the ability to capture heritability 

and detect discrete associations for complex growth traits in operational breeding 

populations under selection. 
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MATERIAL AND METHODS 
 
Populations and phenotypic data 
 

This study was carried out on progeny trials of populations of E. benthamii and E. 

pellita that are part of the breeding program of EMBRAPA (Brazilian Agricultural 

Research Corporation). The E. benthamii progeny trial was composed of 40 seed 

sources, being 36 open-pollinated (OP) half-sib families from wild Australian 

populations and four bulked seed sources (two from Australian populations, one 

from a first generation breeding population established in Colombo, PR, Brazil and 

one from a second-generation breeding population planted in Candói, PR, Brazil). 

The complete E. benthamii trial involved 2000 trees planted in May 2007 in Candói, 

in a randomized complete block design with 50 blocks in single-tree plots (one 

progeny individual per block for each one of the 40 seed sources). The experiment 

was thinned three times (removing 600 trees in March 2009, 700 in March 2010 

and approximately 200 in December 2010) to eliminate trees with poor growth, 

malformed stems and damaged plants. The population underwent 25 heavy frosts 

recorded (temperature varying from −3.4 to −12.6 °C) in 58 months, between 

planting (May 2007) and field evaluation (February 2012) that killed or affected the 

growth of many trees which were therefore culled. For E. benthamii 508 trees were 

ultimately phenotyped at age 56 months for the following growth traits: Diameter 

at Breast Height (DBH, cm), Total Height (HT, m) and Wood Volume (WV, m3) 

(Table 1-1). The E. pellita breeding trial was composed of 24 OP maternal families 

derived from a second-generation clonal seed orchard located in Mareeba, 

Queensland, Australia, established with selections from four provenances in the 

areas of Kiriwo, Serisa and Keru in the Morehead district of the Western Province 

of Papua New Guinea. The experimental design was a randomized complete block 

design with 24 families and 40 blocks in single-tree plots (960 trees total) planted 

in February 2010 in Rio Verde, GO, Brazil. For E. pellita phenotypic evaluations 

were made at age 42 months (September 2013) for DBH, HT and WV (Table 1-1). 
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Genotyping and filtering 
 

A total of 552 E. benthamii trees and 771 E. pellita trees were genotyped using the 

Eucalyptus Illumina Infinium EUChip60K (Silva-Junior et al. 2015). The genotypic 

data were filtered to remove SNPs with call rate (CR) ≤ 90% and monomorphic 

SNPs, therefore keeping all SNPs with Minimum Allele Frequency (MAF) > 0 in 

the analysis. Because trees were genotyped before the final field measurements, 

some genotyped trees died, so that ultimately 505 individuals of E. benthamii and 

732 of E. pellita had full genotypic and phenotypic data for further analyses. An 

alternative SNP dataset was also generated by keeping only SNPs MAF ≥0.05. 

With the objective of evaluating the effect of LD-pruning on predictions, 

polymorphic SNPs (CR ≥ 90% and MAF> 0 or MAF≥ 0.05) were pruned based on 

pairwise linkage disequilibrium (LD) estimates using PLINK v1.9 (Purcell et al. 

2007), to generate a pruned subset of SNPs that are in approximate linkage 

equilibrium (LE). The LD based SNP pruning method was applied with a window 

size of 100 Kbp, shifting the window by one SNP at the end of each step and 

removing one SNP from a pair of SNPs if LD was greater than 0.2 (plink command: 

--indep-pairwise 100 kb 1 0.2). 

 

Effective population size estimation, population structure and LD analyses 
 

Effective population size (Ne) was estimated based on the linkage disequilibrium 

(LDNe) method implemented in NeEstimator v2.01 (Do et al. 2014) or each 

species. A random mating model and MAF ≤ 0.05 was used for excluding rare 

alleles in LDNe. Confidence intervals for these estimates were obtained using the 

parametric method in NeEstimator, where the number of independent alleles is 

used as the degree of freedom in a chi-square distribution. The genetic structure 

for both eucalypt populations estimated based on a Bayesian clustering method 

was determined with STRUCTURE v2.2.4 (Pritchard et al. 2000) using only the 

LD-pruned SNPs set. The individual structures were classified in K clusters 

according to genetic similarity. The admixture model was applied, with correlated 
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allelic frequencies, using no previous population information. The number of tested 

clusters (K) ranged from 1 to 10, and each K was replicated 10 times. The burn-in 

period and the number of Markov Chain Monte Carlo (MCMC) replications were 

100,000 and 200,000, respectively. The number of genetic groups was determined 

based on the criteria proposed by Evanno et al. (2005) using the program 

STRUCTURE HARVESTER v0.6.93 (Earl and vonHoldt 2012). The software 

CLUMPP v1.1.2 (Jakobsson and Rosenberg 2007) was used to find consensus 

among the 10 most probable K interactions. Principal component analysis (PCA) 

was performed using SNPRelate R package (Zheng et al. 2012), with only the LD-

pruned SNPs set. Analyses of linkage disequilibrium were performed using 

LDcorSV (Mangin et al. 2012). Pairwise estimates of LD were calculated by the 

classical measure of the squared correlation of allele frequencies at diallelic loci 

(r2), as well as correcting for bias due to relatedness and population structure 

(r2VS), and adjusting it independently for relatedness (r2V) and for population 

structure (r2S). To estimate the adjusted LD, the genomic relationship matrix 

(GRM) was computed using the Powell method (Powell et al. 2010) implemented 

in R. The population structure results were based on the most probable value of K 

(K = 2). The drift-recombination model (Hill and Weir 1988) was used for nonlinear 

regression to fit the expectation of r2, using the R script by Marroni et al. (2011) 

and the following equation based on Remington et al. (2001): 

 

 

%()/) = 5
10 + 9:

(2 + 9)(11 + 9)
<	51 +

(3 + 9)(12 + 129 + 9/)

!(2 + 9)(11 + 9)
<														(1) 

 

 

where ! is the sample size, and 9 is the population recombination parameter (9 =

4?@A; ?@  is the effective population size and A is the recombination fraction between 

the pairwise SNPs). To visualize patterns of LD decay in the two eucalypts species, 

all the LD estimates (r2, r2V, r2S, r2VS) were plotted up to a 100 Kbp distance. 
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Genomic and pedigree-based breeding value predictions 
 
Prediction of breeding values by best linear unbiased prediction (BLUP) 

(Henderson 1975) based on pedigree information (ABLUP) was calculated using 

the expected genetic relationship between individuals. For the genomic estimated 

breeding values the individual SNPs had their effects estimated by adjusting all the 

allelic effects simultaneously using Genomic BLUP (GBLUP) frequentist 

(VanRaden 2008). A 10-fold cross-validation approach was used, defined as a 

random subsampling partitioning of the data for each trait into two subsets. The 

first subset with 90% of the individuals was used as a training population to 

estimate the marker effects. The second subset with the remaining 10% was used 

as validation population, and had their phenotypes predicted based on the marker 

effects estimated in the training population. This process was repeated 10 times, 

randomly selecting in each fold a different set of samples as the validation 

population, until all individuals had their phenotypes predicted and validated. 

Analyses of each trait were carried out using the package rrBLUP (Endelman 

2011) with the following mixed linear model: 

 

# = BC + DE + F   (2) 

 

where # is the phenotypic measure of the trait being analyzed; B and D are 

incidence matrices for the vectors for parameters C and E, respectively; C is a 

vector of fixed block effects; a is a vector of random additive effects and F is the 

random residual effect. The variance structure of the model for pedigree-estimated 

breeding values or simply estimated breeding values (EBVs) was calculated with 

E	~	?(0, H01/) and the genomic-estimated breeding values (GEBVs) with 

E	~	?(0, $01/); where H is a matrix of additive genetic relationships among 

individuals and $ is a GRM estimated using the method proposed by VanRaden 

(2008). The predictive ability (rgy) was estimated as the correlation between the 

observed and the genomic-estimated breeding values ()(#, $%&')-. The narrow-
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sense heritability (ℎ/) was calculated as the ratio of the additive variance 01/ to the 

phenotypic variance 02/ (ℎ/ = 	01/ 02/	4 ). 

 

Bayesian methods 
 
The SNP effects were estimated using six different Bayesian genome-wide 

regression models, being five additive genetic models: Bayesian Ridge-

Regression (BRR), Bayes A, Bayes B, Bayes Cπ and Bayesian Lasso (BL); and 

one additive and non-additive genetic model: Bayesian Reproducing Kernel Hilbert 

Spaces Regressions (RKHS). These models were implemented in the BGLR 

package (Pérez and de los Campos 2014). For these methods, the genotypic 

information was fitted using the following base model: 

 

# = BC + I + F   (3) 

 

where # is the vector of observations representing the trait of interest; C is a vector 

with intercept and fixed block effects; I is a vector of random individual genetic 

merit (that change with the fitted model); B is incidence matrix for the vector for 

parameter C; F is a vector of the random error effects. In all Bayesian models, it 

was assumed that: 

 

#|C, I, 0@/~?(BC + I, K0@/) 

C~?(0,10LK) 

F|0@/~?(0, K0@/) 

0@/|M@, N@~OP/(N@, M@) 

 

The models BRR, Bayes A, Bayes B, Bayes Cπ and BL, predict the genetic merit 

(I) in the equation 3 as an average effect of the nucleotide substitution, thus these 

models consider: 

 

I = DQ 
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Q is a vector of random marker effects (Q = [Q: … QT]V) and D is the 

incidence matrix for the vector Q. This matrix takes values 2, 1 or 0 if the genotype 

of the ith marker is AA, Aa and aa, respectively, where a is the least frequent allele. 

Missing genotypes were replaced by the mean of the genotype for the given SNP. 

The assumptions of the Q vector depend on the prior adopted and the respective 

priors used in the linear regression coefficients for each model are described 

below. 

 

The Bayesian Ridge-Regression (BRR) is the Bayesian version of RR-BLUP 

(Meuwissen et al. 2001) and assumes that all marker effects have the same 

variance component. Consequently, markers with the same allele frequency 

contribute equally to the genetic variance. For the BRR model it is assumed that: 

 

QY|0Z/ ~?(0, 0Z/ ) 

0Z/ |MZ, NZ~OP/(MZ, NZ) 

 

The Bayes A method was proposed by Meuwissen et al. (2001) and later modified 

by Pérez and de los Campos (2014) to reduce the influence of the 

hyperparameters and achieve better Bayesian learning. The Bayes A model is 

opposite to BRR, in that it assumes that all marker effects have heterogeneous 

variances. In the Bayes A model, it is assumed that: 

 

QY|0Z[
/ ~?(0, 0Z[

/ ) 

0Z[
/ |MZ, NZ~OP/(MZ, NZ) 

MZ|), \~$(), \) 

 

The Bayes B method was also proposed by Meuwissen et al. (2001) and modified 

in Pérez and de los Campos (2014) to achieve better Bayesian learning and to 

estimate the proportion of markers with null effect. This model is similar to Bayes 

A, and assumes that the markers have heterogeneous variance component. 
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Additionally, it considers that a proportion of markers have non-null effects. This is 

in contrast to Bayes A, because the approach includes the selection of covariates 

(SNPs markers) that do not contribute to genetic variance. In the Bayes B model 

it is assumed that: 

 

QY|0Z[
/ ]

^
^
^
 
~?(0, 0Z[

/ )  with probability equal 1-π 

=0  with probability equal π 

 

0Z[
/ |MZ, NZ~OP/(MZ, NZ) 

MZ|), \~$(), \) 

_~&F`E(ab, _b) 

 

The Bayes Cπ method proposed by Habier et al. (2011) is derived from the Bayes 

C method and is similar to BRR. In this approach, it is assumed that the marker 

effects have a common variance. However, Bayes Cπ includes marker selection 

with parameter π, which is defined as the probability of a SNP marker having a 

null effect. For the Bayes Cπ method it is assumed that: 

 

QY|0Z/ c
^
^
^
 
~?(0, 0Z/ )  with	probability	equal	1-π	

=0  with	probability	equal	π	

 

0Z/ |MZ, NZ~OP/(MZ, NZ) 

_~&F`E(ab, _b) 

 
The Bayesian Lasso (BL) method was proposed by Park and Casella (2008) and 

was adapted for genomic prediction by de los Campos et al. (2009). Similar to 

Bayes A and Bayes B, the BL method assumes covariates with heterogeneous 

variance. The BL method does indirect marker selection, since the marginal 

distribution of the markers follows a double exponential distribution, providing 

strong shrinkage of the marker effects to close to zero for large number of markers. 

In the BL method, it is assumed that: 
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QY|0@/, sY

/~?(0, 0@/ × sY
/) 

sY
/|u~%va(0.5u/) 

u|), \~$(), \) 

 

The Bayesian Semiparametric Reproducing Kernel Hilbert Spaces Regressions 

(RKHS) applied in genomic prediction was proposed by Gianola et al. 2006 and 

modified in Gianola and de los Campos 2008. This method inputs markers in the 

relationship matrix (y) and predicts individual genetic merit directly, without 

prediction of markers effects. The relationship in RKHS is controlled by a constant 

called “bandwidth” (z). With small positive bandwidth values, the relationship 

between two individuals tend to 1 and this relationship tend to 0 with large positives 

bandwidth values. To better control this constant bandwidth, the RKHS used here 

considered three kernels (González-Camacho et al. 2012), following the kernel 

averaging approach proposed by de los Campos et al. 2010: 

 

I = ∑ I|}
| ; 

I||y|0~�
/ ~?(0,y|0~�

/ ); 

0~�
/ |N, M~~OP/(N, M~); 

y| = exp	(−z|Ç/) 

 

The matrix Ç/ is a squared Euclidean distance computed from SNP covariates (D 

matrix), and bandwidth values are 0.2/q, 1/q and 5/q respectively, where q is 5th 

percentile of Ç/ leading to global, intermediate and local kernels, respectively 

(González-Camacho et al. 2012; Tusell et al. 2014). 

 

To estimate the parameters of the models, a total 200,000 iterations of MCMC 

were used with a burn-in period of 50,000 cycles and every fifth sample was kept. 

For all these models, a 10-fold cross-validation approach was applied as described 

previously. 
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Genomic predictions using selected SNPs subsets 
 
The Bayesian Ridge-Regression (BRR) model was fitted using different subsets of 

SNPs of various sizes and selected using different criteria as described below. 

Initially a random sampling of SNPs stratified by chromosome was tested using (i) 

a cumulative approach, such that from the smallest subset of SNPs tested, 

additional ones were added to the previous set and (ii) a non-cumulative fashion, 

where different final sets of SNPs were randomly selected from all available SNPs. 

Next, variable positions of SNPs were tested, including: (iii) evenly spaced SNPs 

across the genome; (iv) only SNPs within gene models annotated in the 

Eucalyptus reference genome (Myburg et al. 2014); (v) SNPs based on LD-pruning 

and (vi) SNPs from individual chromosomes. For each subset, we estimated the 

predictive ability and genomic heritability. First, we evaluated models using 

different SNP subsets (from all 13,787 and 19,506 SNPs available for E. benthamii 

and E. pellita respectively, down to 2000 in smaller increments of 1000 SNPs, 

1500, 1250, 1000, 750, 500, 300, 250, 200, 150 and 100 SNPs) with either a 

cumulative (i) or non-cumulative (ii) sampling of SNPs. For each number of SNPs 

and sampling strategy, ten replicates were performed. The evenly spaced SNPs 

subsets (iii) were created using different target windows sizes, with 1 SNPs every 

10, 50, 100, 250, 500 Kbp and 1 Mbp, resulting in variable average distances 

between SNPs (Table SM1-1). For the within-gene SNP subset (iv), all SNPs 

located within annotated gene models (genic regions) and SNPs located outside 

of annotated gene models (intergenic regions) in the Eucalyptus genome were 

evaluated. To create the subsets of SNPs selected based on LD pruning (v), SNPs 

in approximate LE (r2 ≤0.2) with each other were chosen using PLINK v1.9 (Purcell 

et al. 2007). Finally, in the chromosome-specific SNP subsets (vi) the prediction 

models were fitted independently using only SNPs on each chromosome 

separately. 
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Genomic prediction controlling for relatedness between training and 
validation sets 
 
To assess the relative impact of relatedness versus historical LD on the predictive 

ability, BRR prediction models were fitted minimizing relatedness between training 

and validation populations. Individuals were split into training and validation sets 

based on a Principal Component Analysis (PCA) or STRUCTURE analysis (K = 

2). In E. benthamii, 21 outlier individuals were removed and the remaining 

individuals were split into two subpopulations based on maximum genetic distance, 

one with 310 trees and the other with 174. For E. pellita, 26 outliers were excluded 

and the remaining 706 individuals were split into two subpopulations with 192 and 

514 trees. As a control, a 10-fold cross-validation in each direction, with the same 

numbers of individuals used in the split populations, was carried out by random 

allocation of the individuals to training and validation sets. 

 

Genome-wide association analysis 
 
A mixed linear model association (MLMA) analysis was performed using the GCTA 

software (Yang et al. 2011a). This association analysis was fitted using the 

following base model: 

 

# = BC + I + F   (4) 

 

where # is the phenotype; C is a vector of fixed effects including intercept, block, 

population structure and SNPs to be tested for association;	B is the incidence 

matrix for the vectors for the parameters C; I is the polygenic effect (random effect) 

captured by the GRM calculated using all SNPs and F is the random residual effect. 

The covariate computed for population structure was based on the fact that the 

population had two subpopulations (K = 2). The variance structure of the MLMA 

model were I	~?(0, $0~/); F	~?(0, K0@/); AÉÑ(I, F′) = 0, where $ is the GRM 

between individuals calculated as described earlier (Yang et al. 2010) and K is the 
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identity matrix. For comparisons with the MLMA model, we also performed a linear 

model based association (LMA) analysis fitting each SNP independently. This 

single-SNP association analysis was carried out using PLINK (Purcell et al. 2007) 

with a similar model as MLMA described in the equation 4, except for the exclusion 

of the polygenic effect (I). The Bonferroni procedure was implemented to control 

for type I error at α = 0.05 and the Benjamini and Hochberg (1995) procedure was 

used to control for false discovery at a rate FDR = 5%. The quantile-quantile (Q-

Q) and Manhattan plots were generated using the qqman R package (Turner 

2014). 

 

RESULTS 
 
SNP genotyping 
 
Of the 60,904 SNPs in the EUChip60K, 50,303 (82.6%) and 49,518 (81.3%) were 

genotyped for E. benthamii and E. pellita respectively (Fig. SM1-1A), by using the 

phylogenetically appropriate SNP clustering file for SNP calling (Silva-Junior et al. 

2015) , and filtering for SNPs with CR ≥ 90%. After selecting polymorphic SNPs 

(MAF> 0) 13,787 and 19,506 SNPs were retained for further analyses with a final 

rate of missing data of 1.4% and 0.8% for E. benthamii and E. pellita, respectively. 

An alternative SNP dataset was also used by filtering out SNPs with MAF ≤ 0.05 

to investigate whether removing lower frequency SNPs had an impact on genomic 

predictions. A total of 7,563 SNPs for E. benthamii and 12,483 SNPs for E. pellita 

were retained for this alternative set. 

 
Linkage disequilibrium and estimated effective population sizes 
 

Linkage disequilibrium (r2) was calculated for all pairwise physical distances 

among all the polymorphic SNPs (MAF > 0) on each chromosome separately. The 

average, genome-wide LD for pair of SNPs within a 100 Kbp distance from each 

other was 0.141 and 0.271 for E. benthamii and E. pellita, respectively. When 
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correcting the LD for bias due to relatedness and population structure (r2VS), the 

average estimates were reduced to 0.096 and 0.178 (Table SM1-2). The genome-

wide LD decayed to an r2 below 0.2 within 15.6 Kb and 70.6 Kb (red line), while 

r2VS showed a slightly faster decay within 7.7 and 25.5 Kb (pink dots) for E. 

benthamii and E. pellita, respectively (Fig. 1-1A and 1-1C). Linkage disequilibrium 

decayed to <0.2 for r2S within 14.7 and 66.2 Kb (green line), while r2V showed a 

slightly faster decay within 7.7 and 25.6 Kb (blue line), very similar to r2VS for E. 

benthamii and E. pellita, respectively (Fig. 1-1A and 1-1C, Table SM1-2). The 

faster LD decay for r2V or r2VS confirms the strong effect of genetic relationship in 

these breeding populations. Slightly different patterns of LD decay were observed 

when including the SNPs with MAF<0.05 (Fig. 1-1A and 1-1C, MAF > 0) or 

excluding those (Fig. 1-1B and 1-1D). Datasets without the SNPs with MAF ≥ 0.05 

showed a slightly higher pairwise r2, with LD corrected (r2VS) decaying to r2 = 0.2 

at 14.5 Kb in E. benthamii and 35.8 Kb in E. pellita (Fig. 1-1B and 1-1D, Table 

SM1-2). Estimated effective populations sizes based on LD data were Ne = 50 and 

Ne = 35 for E. benthamii and E. pellita, respectively (Table 1-1). 

 

Genomic and pedigree-estimated heritabilities 
 
For E. benthamii the pedigree-based narrow-sense heritabilities (h2) estimated for 

DBH and WV were 0.326 and 0.297, and considerably lower for HT (0.088). 

Estimates of genomic heritabilities varied depending on the method used, with 

GBLUP and BL yielding considerably lower heritabilities than the pedigree-based 

ones and those obtained using other Bayesian methods (Table 1-2). When using 

Bayes B and BRR, heritabilities were higher (0.155 and 0.190). Estimates of 

variance components are reported in Table SM1-3. In E. benthamii, the variance 

components had similar estimates with all methods used. The pedigree-based 

narrow-sense heritabilities estimated for E. pellita were zero for DBH and WV, and 

nearly zero for HT (0.019), while the genomic estimated heritabilities based on 

SNP data were considerably higher (e.g. 0.414 -0.527 for DBH using the different 

methods) (Table 1-2). This unexpected result strongly suggests that the informed 
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pedigrees for the E. pellita population do not match the true relationships that the 

SNP data correctly recovered. Differently from E. benthamii, for E. pellita the 

genomic heritabilities had similar estimates for all methods used. Average 

heritabilities for E. pellita considering all genomic methods (~0.47 for DBH; ~0.29 

for HT; ~0.44 for WV) were higher for all traits, compared to those estimated for E. 

benthamii (~0.23 for DBH; ~0.09 for HT; ~0.20 for WV). Heritabilities estimated 

including or not lower frequency SNPs (MAF ≤ 0.05) in the genomic relationship 

matrix were equivalent for both species, varying within the standard error of the 

estimates (Table 1-2). Genomic heritabilites captured large proportions of the 

pedigree-based heritability in E. benthamii. The Bayesian methods on average 

captured 73% and 69% of the pedigree-heritability for DBH and WV, respectively. 

No assessment was possible for E. pellita due to the inconsistency of the pedigree 

data that provided no valid estimate of pedigree-based heritability. 

 

Genomic predictions 
 
Consistent with expectations, predictive abilities (rgy) followed the same trend as 

the estimated genomic heritabilities (Table 1-2). Predictive abilities inferred by an 

additive model using Bayesian methods (BRR, BayesB, BayesA, BayesCπ, BL) 

produced very similar estimates to those obtained using GBLUP and pedigree-

based (Fig. 1-2). For the E. benthamii population both pedigree and genomic 

predictive abilities were generally low, averaging 0.16 for DBH, 0.14 for WV and 

close to zero for HT across all methods. For E. pellita, genomic predictive abilities 

were considerably higher, averaging 0.44 for DBH, 0.34 for HT and 0.42 for WV, 

suggesting the presence of a larger amount of additive genetic variation for these 

traits in this breeding population (Table 1-2). No difference was observed in the 

predictive abilities when using SNP sets including or not lower frequency SNPs. 

An additive and non-additive model (RKHS, machine learning method) improved 

predictions by 9-18% for E. pellita, but no improvement was observed for E. 

benthamii (Fig. 1-2). During cross-validation of genomic predictions a considerable 

variation was observed in the predictive abilities estimated across the different 
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folds (Table SM1-4). This variation was larger for E. benthamii, where the 

predictive ability across folds ranged from a low -0.058 to 0.415 using BRR for 

DBH, with an average of 0.162 with a standard error (SE) of ±0.044. In E. pellita, 

the variation was smaller, with estimates ranging from 0.358 to 0.550 for DBH, with 

the ten-fold average equal to 0.441 ± 0.019 (Table SM1-4). 

 

Impact of variable numbers of SNPs on genomic predictions 
 

Based on results of the different prediction methods, we chose to use only BRR to 

evaluate the impact of different SNPs sampling schemes on the predictive abilities. 

Subsets with progressively increasing randomly selected numbers of SNPs 

stratified by chromosome were used to estimate genomic predictions. Estimates 

of predictive ability and heritability increased rapidly up to ~3,000 SNPs for all traits 

and in both populations, (Table 1-3, Fig. 1-3). Predictive abilities plateaued at 

approximately 5,000 SNPs although heritabilities and predictive abilities still 

increased by 5 to 10% after that. Additionally, when less than 5,000 SNPs were 

used, a much larger variation in predictive ability was seen across the validation 

folds. These results indicate that at least in these populations for cross-validation 

within the same generation, models with ~5,000 to 10,000 SNPs will provide 

predictive abilities equivalent to those obtainable by using all the available SNPs. 

The non-cumulative sampling approach yielded essentially the same results with 

a plateau at ~5,000 SNPs, but showed a more spiky pattern of increasing 

predictive ability as more SNPs were fit into the model (Fig. SM1-2). 

 

Impact of variable position-based SNP sampling methods 
 

Overall, no difference was seen in the estimates of heritabilities and predictive 

abilities when different position-based SNP sampling schemes were used, as long 

as the total number of SNPs was close to 5,000 (Table 1-3, Fig. 1-3). The predictive 

abilities estimated with a subset of SNPs evenly spaced every 1 Mbp windows 

(610 SNPs in E. benthamii and 609 SNPs in E. pellita), were slightly higher than 
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those using 500 randomly sampled SNPs (Table 1-3). Although these results 

indicate that the number, and not the position of SNPs, determines the accuracy 

of predictions, they also suggest that even distribution might provide a small-added 

advantage when compared to random sampling. No significant differences in 

predictions were seen for any trait in both species when SNPs located in genic 

versus intergenic regions were used, and the predictions were equivalent to those 

obtained by random sampling of equivalent numbers of SNPs. The same result 

was observed with the LD-pruning approach, where estimates of predictive ability 

were similar either using LD-pruned SNPs in LE or all polymorphic SNPs (Table 1-

3). There was no difference observed in the estimates of variance components 

when different sets of SNPs sampled based on position in the genome were used 

(Table SM1-3). 
 
When only SNPs located on single chromosomes were used, heritabilities dropped 

on average by 30-45% when compared to using all SNPs (e.g. for WV from 0.243 

to 0.177 in E. benthamii; from 0.418 to 0.244 in E. pellita), indicating that genome-

wide marker coverage is critical for capturing the additive genetic variance (Table 

1-4). The predictive abilities using SNPs on single chromosomes were similar 

across chromosomes and also dropped on average by 15-30% when compared to 

using all SNPs (Table 1-4). However, when the heritabilities and predictive abilities 

provided by single chromosomes were compared to those obtained using 

equivalent numbers of randomly sampled SNPs subsets, no appreciable 

differences were seen. This result indicates that the drop in predictive ability is 

most likely due to the small number of SNPs per chromosome (average of 1,253 

for E. benthamii and 1,773 for E. pellita) and not to the fact that they are located 

on a single chromosome. We did not have sufficient numbers of SNPs on a single 

chromosome to compare to the larger random subsets of 3,000 or 5,000 to see the 

effect on predictions.  

 

Impact of relatedness between training and validation sets 
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To assess the relative contribution of relatedness to the predictive ability (as 

opposed to historical LD between SNPs and QTL), GS models were fitted trying to 

minimize relatedness between training and validation sets based on genetic 

differentiation determined by a PCA (Fig. SM1-3). Predictive ability obtained when 

minimizing relatedness was null for E. benthamii (Fig. 1-4A) (e.g. from 0.108 to -

0.032 for DBH) and reduced approximately by half for E. pellita (e.g. from 0.348 to 

0.154 for DBH) compared to the predictive abilities achieved when the same 

number of individuals were used to build the model without controlling for 

relatedness (Fig. 1-4B). These results suggest that predictions in the E. benthamii 

population were fully dependent on relatedness, while in E. pellita marker-QTL LD 

might be contributing to predictions, although relatedness also seems to be the 

main driver. 

 

Association genetics models comparison 
 

GWAS under an LMA model, i.e. without the introduction of a GRM, resulted in a 

large number of associations, most or all of them likely spurious. For example, with 

only block as a covariate in the model, the number of SNPs associated with wood 

volume (WV) in E. pellita was 249. When the population structure was included as 

covariate, the number of associated SNPs was reduced to 120 (Fig. 1-5A, red line). 

The quantile-quantile (Q-Q) plot exhibited in Figure 1-5B shows the 

inappropriateness of the LMA model without the GRM, as the observed and 

expected P-values differed considerably for a large number of SNPs. When the 

genomic relationship matrix, block and structure effects were included in the MLMA 

model, five significant associations (Fig. 1-5C, blue line) were detected using a 

FDR of 0.05 (Table SM1-5). All these five significant SNPs have low allele 

frequency (MAF < 0.005). Nevertheless, when a more stringent adjustment for 

multiple testing was used (Bonferroni 5%), only one significant association 

persisted for volume in E. pellita (Fig. 1-5C, red line). In the MLMA model adjusted 

for the GRM, population structure and block covariates, most P-values were 

consistent with the expected ones along the diagonal in the Q-Q plot, indicating 
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suitability of this GWAS model (Fig. 1-5D). Furthermore, the model built with GRM 

considerably reduced the number of significant associations, likely removing 

spurious associations. The single SNP associated with volume in E. pellita on 

chromosome 6 (Fig. 1-5C, red line) is located in an exonic region of a gene whose 

function is involved in a plant-type cell wall cellulose biosynthetic process (Table 

SM1-5). In E. benthamii, no significant associations were found when the GRM 

was included in the model. 

 

DISCUSSION 
 

This study makes a further step toward the experimental assessment of whole-

genomic prediction of complex traits in species of Eucalyptus. Our results 

corroborate previous reports in major Eucalyptus species showing encouraging 

perspectives of using genome-wide SNP data to capture large proportions of trait 

heritability and predict traits such as height and diameter growth with accuracies 

as good as or better than those attainable by conventional phenotypic selection. 

 

Patterns of LD in Eucalyptus natural and breeding populations 
 

The extent of LD detected in these populations reflect their differences in 

evolutionary and breeding history. A faster genome-wide LD decay was observed 

in E. benthamii (7.7 Kb, Fig. 1-1A) than in E. pellita (25.6 Kbp, Fig. 1-1C), in 

agreement with expectations. The E. benthamii breeding population is largely 

derived from seeds collected in wild stands, but confined to a few remnant 

populations with a history of bottlenecks displaying limited genetic diversity in 

previous studies with microsatellites (Butcher et al. 2005). Therefore, although 

composing a selected breeding group, it resembles a sample of a wild population. 

In fact, the extent of LD was similar to that found for natural populations of E. 

grandis (≈4-6 Kb) (Silva-Junior and Grattapaglia 2015). On the other hand, the E. 

pellita population comes from a clonal seed orchard established with relatively 

advanced selections such that a smaller effective population size and more 
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extensive LD were expected. Our results for E. benthamii provide additional 

genome-wide estimates supporting a slower decay of LD in Eucalyptus (Silva-

Junior and Grattapaglia 2015). However, differently from what was found earlier, 

a shorter genome-wide extent of LD decay was detected when lower frequency 

SNPs were included in the analysis (Fig. 1-1) in agreement with the observation 

that rarer SNPs tend to generate lower pairwise r2 estimates (Pritchard and 

Przeworski 2001). 

 
Genomic heritabilities estimated from SNP data 
 
Genomic and pedigree heritabilities could be compared for E. benthamii. Genomic 

heritabilities, irrespective of the method used, were generally lower than the 

pedigree-based estimate. For example, for DBH, GBLUP captured 55% 

(0.181/0.326) of the pedigree heritability, while Bayes B captured a larger 

proportion (88%; 0.287/0.326) (Table 1-2). Similar results were reported when 

estimating genomic heritability based on open-pollinated progenies of spruce 

(Beaulieu et al. 2014a; Gamal El-Dien et al. 2015). These studies argued that 

genomic heritabilities better reflect the true genetic relationships among individuals 

such that more realistic estimates of breeding values and genetic gain are 

obtained. Pedigree-based heritability estimates from open-pollinated families 

could be inflated due to the presence of full-sibs or selfs and the inability of these 

estimates to disentangle the non-additive from the additive genetic components. 

In fact, in a study in Pinus taeda the use of genomic relationships in marker-based 

models yielded substantially more precise separation of additive and non-additive 

components of genetic variance when compared to pedigree-based estimates, 

improving breeding value prediction (Muñoz et al. 2014). For E. pellita, pedigree-

based heritability and accuracies of breeding values could not be estimated due to 

errors found in the recorded pedigree for these families. However, this fortuitous 

episode prompted the use of the SNP data to ascertain the pedigree of this 

breeding trial and provided estimates of heritability that breeders would not 

otherwise have had access to. Genomic heritability averages for the three growth 
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traits in E. pellita varied between 0.29 and 0.47, within the same range of the only 

available estimate for DBH (0.32) for this species in a trial in Vietnam (Hung et al. 

2015). 

 

Genomic heritability corresponds to the proportion of phenotypic variance that can 

be explained by regression on molecular markers. A study from de los Campos et 

al. (2015) showed that genomic heritability and trait heritability are equal only when 

all causal variants are typed, and as such, caution is required when interpreting 

heritability estimates from genomic data. Nevertheless, that same study also 

concluded that when close relatives sharing long chromosome segments are 

analyzed, high prediction accuracy and very small bias in genomic heritability 

estimates are expected. Given the relatively long range LD and relatedness 

present in our populations and the genome-wide SNP coverage adopted, our 

estimates of genomic heritability for the two species should therefore closely reflect 

the amount of additive genetic variance for the traits in these breeding populations.  

 

Genomic predictions: methods 
 
Predictive abilities of growth traits using GBLUP and different Bayesian methods, 

which have inherently different assumptions, reached similar results for all traits, 

in line with previous reports that assessed similar traits in forest trees (Resende Jr 

et al. 2012b; Isik et al. 2015; Ratcliffe et al. 2015). These results provide further 

evidence that growth traits in Eucalyptus, and likely for all forest trees for that 

matter, are complex in architecture, controlled by a large number of small effect 

loci and fit adequately the infinitesimal model. The predictive ability estimates 

obtained for growth traits in E. pellita (0.34-0.44) using GBLUP were slightly lower 

than those reported for E. grandis x E. urophylla (0.46-0.55) (Resende et al. 2012). 

On the other hand, higher values of predictive abilities for E. pellita (0.37-0.52) 

were obtained using a non-additive (additive + dominance + epistatic effects) 

model, which may be explained by the more advanced selections that this 

population has been subjected to (more extensive LD = 25.6 Kbp). For E. 



52 
 

benthamii, predictive abilities were lower (~0.16), possibly the result of (i) the larger 

effective population size, (ii) the relatively limited number of individuals used for 

model training (only ~500), and (iii) the narrow genetic diversity available in this 

species and particularly so in this introduced population in Brazil. Still, what really 

matters from the applied breeding standpoint is that the predictive ability reached 

with genomic data was as good as or better than the predictive ability based on 

phenotypic data. Therefore, irrespective of the absolute estimates of genomic 

prediction ability intrinsic to each population, this result satisfactorily fulfills the 

promising perspective of adopting GS to accelerate breeding cycles by predicting 

breeding values of yet-to-be-phenotyped trees at early age. 

 

Genomic predictions: number and positions of SNPs 
 

Prediction models using ~5,000 SNPs provided predictive abilities almost 

equivalent to using all available SNPs for all traits with only a slight gain when 

moving to 10,000 SNPs. No difference was observed in predictive abilities when 

different sets of SNPs sampled based on genomic position were used, as long as 

the total number of SNPs reached such numbers. These results suggest that 

genomic prediction is largely driven by relatedness between training and validation 

and, once a certain number of randomly sampled SNPs across the genome are 

used, suitable predictive ability is reached. From a practical standpoint, this 

outcome indicates that low-density SNP chips could be contemplated as a way to 

reduce cost of GS and broaden its application to a larger number of breeding 

programs that operate on small budgets. Low-density SNP panels have been a 

standar practice in domestic animals, providing predictive abilities equivalent to 

those observed using the full set of SNPs, depending on the extent of LD, trait and 

other population parameters (Habier et al. 2009; Van Eenennaam et al. 2014). 

Despite the potential advantage of using smaller SNPs subsets to reduce costs, it 

is expected however that genomic predictions will decay over generations due to 

the combined effect of recombination and selection on the patterns of LD (Solberg 

et al. 2008) Habier et al. (2009) showed that GS predictions using low-density 
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panel decreased over generations, but it remained constant when high-density 

SNP panel was used to genotype the few individuals selected in each breeding 

generation. Nevertheless, if prediction accuracies are mainly driven by 

relationship, low-density marker panels could be suitable, provided that continuous 

model retraining strategies are adopted (Iwata et al. 2011). At this point, therefore, 

it is not clear whether the use of smaller SNP subsets is warranted for the long-

term implementation of GS in Eucalyptus. A better assessment will be possible 

when predictions are carried out across breeding generations testing variable SNP 

densities. On the positive side, however, a recent study showed consistent 

prediction accuracies over two generations (parents and grandparents as training 

set and descendants as validation set) with a relatively modest panel of only 4,436 

SNPs in Pinus pinaster (Bartholomé et al. 2016b). 

 

Impact of relatedness on genomic prediction 
 

We observed a major impact of relatedness on predictions, more so in E. benthamii 

than E. pellita (Fig. 1-4) consistent with theoretical expectations (Habier et al. 

2007) and previous experimental results in forest trees (Resende et al. 2012; 

Beaulieu et al. 2014a; Beaulieu et al. 2014b). The relative contributions of historical 

LD and relatedness are however difficult to disentangle. Predictive ability can be 

high even in the absence of LD when markers capture genetic relationships, but it 

will be even greater if markers are in LD with causal loci (Habier et al. 2007). The 

presence of some level of historical LD could in part explain why predictions were 

still reasonable in E. pellita even after attempting to minimize relatedness between 

training and validation sets (Fig. 1-4B). However, another possibility is that our 

attempt to decrease relatedness was not completely efficient. A way to test this 

would be to compare the predictive abilities obtained using the same number of 

markers concentrated on a single chromosome (capturing largely the effect of 

relatedness), versus distributed genome-wide (capturing relatedness and LD). 

Assuming an infinitesimal model in which growth traits are controlled by many 

QTLs with small effects distributed genome-wide, the difference between these 
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two sets could be tentatively taken as the contribution of historical LD to 

predictions. In E. pellita, such a test was done when predictions carried out with 

2,583 SNPs mapped only to chromosome 8 (Table 1-4) were compared to using 

a set of 2,297 evenly-spaced SNPs across the genome (Table 1-3). An increase 

of 22 to 35% in predictive ability was seen (e.g. 0.306 versus 0.414 for DBH) when 

genome-wide SNPs were used, suggesting that some LD between markers and 

causal loci could be accounted for in this population. Overall, however, our results 

corroborate previous reports on the major impact of relatedness on genomic 

prediction and further highlight the importance of properly planning the populations 

on which GS models will be trained and those where the models will be applied. If 

the training population is more or less related to the validation population than the 

future selection candidates, then the expected outcome of implementing genomic 

selection will be over- or underestimated, respectively. 

 

GWAS versus GS in breeding populations 
 
The genome-wide association studies carried out on the same datasets allowed 

us to assess the value of this approach in closed breeding populations under 

selection and compare it to genomic prediction from the standpoint of practical 

breeding for growth, the most important trait in all tree breeding programs 

irrespective of species. After controlling for population structure and experimental 

fixed effects, and applying experiment wise corrections for multiple tests, GWA 

identified only one significant association for volume growth in E. pellita (Fig. 1-

5C). Clearly our populations had limited power to detect loci controlling complex 

traits such as growth, despite the relatively larger size of the E. pellita population 

(!	= 732) when compared to populations used in published GWAS for growth 

related traits in forest trees, usually between 300 and 500 individuals (Cappa et al. 

2013; Evans et al. 2014; Mckown et al. 2014; Fahrenkrog et al. 2016). Our results 

are in line with a recent GWAS study using a natural population of 714 Populus 

nigra trees, where, despite using over 10,000 SNPs specifically targeting genes 

and previously mapped QTL, only three significant associations for stem height 
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were detected (Allwright et al. 2016). The comparison between GS and GWAS 

corroborated the fact that while genome-wide regression is able to account for 

large proportions of the pedigree-heritability (e.g. 73% for DBH in E. benthamii) 

and provide useful phenotype predictions, very little or none of the heritability is 

captured into significant associations using the GWAS approach. Reasons for this 

major discrepancy have by now been widely discussed in the plant, animal and 

human literature (Lorenz et al. 2011; Robinson et al. 2014; Meuwissen et al. 2016). 

They derive essentially from the fact that GWAS by principle, relies on the 

application of stringent significance tests to declare an association. These very 

stringent tests typically result in only the largest effect QTLs being found, while the 

vast majority have too small an effect to be detectable in the limited power GWAS 

populations used and so are ignored. If no major effect exists, then no associations 

are found, which is most likely the case of our disappointing results for the growth 

traits targeted in our study. 

 

A potential criticism to our GWAS assessment is that it was carried out in a 

breeding population with a relatively limited effective population size and limited 

diversity and not in a canonical GWAS population sampled from the wild where 

possibly more associations could be found. GWAS studies for growth traits in 

forest trees have mostly targeted collections of trees derived from natural 

populations in Populus (Evans et al. 2014; Mckown et al. 2014; Allwright et al. 

2016; Fahrenkrog et al. 2016), Eucalyptus (Cappa et al. 2013) and Pinus (Cumbie 

et al. 2011). The driving goal of such studies has been to detect associations that 

would potentially allow gene discovery or even the identification of the elusive QTN 

(quantitative trait nucleotide) (Rockman 2012). However, notwithstanding the fact 

that very few associations were found for growth traits in these studies as well (e.g. 

Cumbie et al. 2011; Allwright et al. 2016), and that they explained overall negligible 

fractions of trait heritability, it still remains to be seen how such SNP-trait 

associations found in natural populations, far removed from selected breeding 

material, will be translated into useful information to breeding. Furthermore, 

targeted alleles found by GWAS in natural populations might already be fixed or 
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simply not be sampled in breeding populations (Hamblin et al. 2011). In our study, 

we were otherwise interested in assessing the value of genome-wide association 

in detecting discrete associations for complex growth traits in operational breeding 

populations under selection. Although less genetic variation is available in such 

closed breeding populations, associations found in such selected material should 

be considerably more useful to inform practical breeding decisions. Despite the 

disappointing, although not unexpected, results of our GWAS for growth traits in 

Eucalyptus, the availability of GWAS data could be valuable to improve genomic 

predictions accuracies. GWAS might provide information on traits’ genetic 

architectures that can be used to assign locus- or trait-specific priors to genomic 

prediction models (Daetwyler et al. 2010). A recent study in rice showed that 

association mapping in breeding populations provided useful information for 

breeding decisions (Begum et al. 2015), which, integrated as fixed effects into 

genomic predictions, increased the accuracy (Spindel et al. 2016). Results of our 

study suggest, however, that such an approach in undomesticated outcrossed 

forest trees will require an increase of several order of magnitude in sample size, 

such that at least a portion of the larger effects segregating in the population may 

be uncovered by GWAS. 

 

CONCLUSIONS 
 
This study contributes further experimental data supporting the positive prospects 

of whole-genome regression methods to account for large proportions of trait 

heritability and predict traits such as height and diameter growth in forest trees with 

accuracies equivalent or superior to those achievable by phenotypic selection. We 

show that genetic relatedness captured by the SNP data between training and 

validation populations and, by extension, to future selection candidates, is what 

will most likely determine the successful use of genomic selection in Eucalyptus 

breeding. Finally, by evaluating different SNP sampling schemes across the 

genome we conclude that more important to GS than the number and position of 

the SNPs fitted in the model, is the extensive LD created in closed breeding 
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populations with small effective population sizes. Lower density SNP panels with 

~5,000 to 10,000 SNPs, distributed across the genome, should provide a good 

compromise between genotyping costs and predictive ability in such standard 

breeding populations advanced by open pollinated breeding. Still, further 

experiments are needed to evaluate the performance of such SNP densities 

across generations of breeding. Finally, our results illustrate the superiority of the 

whole-genome regression approach in accounting for large proportions of the 

heritability in contrast to the limited value of the local GWAS approach for breeding 

applications. To provide useful GWAS data toward breeding for growth traits in 

Eucalyptus and likely in all forest trees, it will be necessary first to massively 

increase the sample size, such that sufficient power is reached to detect at least 

part of the slightly larger effects segregating in the target breeding population. In 

the meantime, the encouraging results of genomic prediction that we, and others, 

have shown in this and other studies should probably receive greater attention if 

the objective is to impact breeding practice. 
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TABLES 
 
Table 1-1: General attributes of the trials studied for E. benthamii and E. pellita. 

Phenotypic data E. benthamii E. pellita 

Total number of trees in trial 2,000 960 

Total number of open pollinated (OP) families 40 24 

Number of blocks 50 40 

Number of individuals/OP family 10 32 

Number of trees measured 508 747 

Number of trees used for analyses 505 732 

Effective population size (Ne) 50 35 

Age at phenotyping (yr) 4.6 3.5 

Site Candói, PR Rio Verde, GO 

Coordinates 25o43’0”S/52o11’0”W 17o44´42”S/50o55’00”W 

Number of traits 3 3 
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Table 1-2: Estimates of narrow-sense heritabilities (h2) and predictive abilities (rgy), pedigree (ABLUP) and genome based 

(several methods), for the E. benthamii and E. pellita breeding populations. 

Method Filter 

E. benthamii  E. pellita 

DBH  HT  WV  DBH  HT  WV 

h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE) 

ABLUP  0.326 (NA) 
0.148 

(0.045) 
 0.088 (NA) 

0.090 

(0.033) 
 0.297 (NA) 

0.142 

(0.039) 
 0.000 (NA) 

- 0.030 

(0.028) 
 0.019 (NA) 

0.040 

(0.028) 
 0.000 (NA) 

- 0.009 

(0.026) 

RR-BLUP 

MAF > 0 

0.181 (NA) 
0.157 

(0.044) 
 0.000 (NA) 

0.006 

(0.044) 
 0.147 (NA) 

0.141 

(0.041) 
 0.466 (NA) 

0.439 

(0.019) 
 0.260 (NA) 

0.342 

(0.042) 
 0.424 (NA) 

0.424 

(0.028) 

Bayes A 
0.202 

(0.017) 

0.160 

(0.045) 
 

0.058 

(0.016) 

0.010 

(0.040) 
 

0.165 

(0.020) 

0.141 

(0.041) 
 

0.465 

(0.008) 

0.440 

(0.019) 
 

0.280 

(0.011) 

0.342 

(0.042) 
 

0.428 

(0.008) 

0.424 

(0.028) 

Bayes B 
0.287 

(0.032) 

0.166 

(0.045) 
 

0.155 

(0.052) 

0.003 

(0.041) 
 

0.284 

(0.028) 

0.146 

(0.038) 
 

0.527 

(0.020) 

0.439 

(0.019) 
 

0.341 

(0.017) 

0.342 

(0.042) 
 

0.517 

(0.025) 

0.425 

(0.028) 

Bayes Cπ 
0.267 

(0.017) 

0.158 

(0.044) 
 

0.109 

(0.007) 

0.016 

(0.039) 
 

0.237 

(0.014) 

0.148 

(0.039) 
 

0.480 

(0.007) 

0.439 

(0.019) 
 

0.303 

(0.009) 

0.342 

(0.042) 
 

0.453 

(0.007) 

0.423 

(0.028) 

BL 
0.133 

(0.019) 

0.155 

(0.045) 
 

0.044 

(0.004) 

0.010 

(0.042) 
 

0.103 

(0.011) 

0.140 

(0.041) 
 

0.414 

(0.021) 

0.434 

(0.021) 
 

0.242 

(0.014) 

0.338 

(0.043) 
 

0.406 

(0.007) 

0.424 

(0.028) 

BRR 
0.267 

(0.008) 

0.162 

(0.044) 
 

0.190 

(0.005) 

0.022 

(0.036) 
 

0.243 

(0.008) 

0.146 

(0.039) 
 

0.455 

(0.005) 

0.441 

(0.019) 
 

0.283 

(0.008) 

0.342 

(0.042) 
 

0.418 

(0.005) 

0.425 

(0.028) 

RR-BLUP 

MAF ≥ 5% 

0.179 (NA) 
0.153 

(0.044) 
 0.000 (NA) 

0.009 

(0.044) 
 0.144 (NA) 

0.138 

(0.041) 
 0.457 (NA) 

0.437 

(0.020) 
 0.254 (NA) 

0.340 

(0.042) 
 0.419 (NA) 

0.422 

(0.028) 

Bayes A 
0.214 

(0.013) 

0.158 

(0.045) 
 

0.073 

(0.008) 

0.020 

(0.040) 
 

0.190 

(0.017) 

0.144 

(0.041) 
 

0.463 

(0.007) 

0.438 

(0.020) 
 

0.279 

(0.008) 

0.340 

(0.042) 
 

0.437 

(0.005) 

0.422 

(0.028) 

Bayes B 
0.354 

(0.041) 

0.162 

(0.045) 
 

0.110 

(0.016) 

0.019 

(0.040) 
 

0.269 

(0.029) 

0.146 

(0.040) 
 

0.551 

(0.020) 

0.438 

(0.019) 
 

0.393 

(0.036) 

0.339 

(0.042) 
 

0.501 

(0.010) 

0.423 

(0.028) 

Bayes Cπ 
0.259 

(0.011) 

0.157 

(0.046) 
 

0.116 

(0.006) 

0.020 

(0.039) 
 

0.232 

(0.008) 

0.143 

(0.040) 
 

0.485 

(0.005) 

0.437 

(0.020) 
 

0.300 

(0.008) 

0.340 

(0.042) 
 

0.449 

(0.007) 

0.423 

(0.028) 

BL 
0.143 

(0.023) 

0.153 

(0.043) 
 

0.045 

(0.003) 

0.020 

(0.041) 
 

0.101 

(0.009) 

0.134 

(0.041) 
 

0.408 

(0.009) 

0.427 

(0.023) 
 

0.244 

(0.010) 

0.339 

(0.041) 
 

0.403 

(0.006) 

0.422 

(0.029) 

BRR 
0.260 

(0.007) 

0.158 

(0.044) 
 

0.184 

(0.004) 

0.025 

(0.036) 
 

0.239 

(0.006) 

0.143 

(0.040) 
 

0.443 

(0.005) 

0.437 

(0.020) 
 

0.280 

(0.008) 

0.341 

(0.042) 
 

0.415 

(0.006) 

0.422 

(0.028) 

Pedigree BLUP (ABLUP, Pedigree Best Linear Unbiased Predictor), Ridge Regression BLUP (RR-BLUP, Genomic Best Linear Unbiased Predictor), 

BL (Bayesian Lasso), BRR (Bayesian Ridge-Regression), Minimum Allele Frequency (MAF), Diameter at Breast Height (DBH, cm), Total Height 

(HT, m) and Wood Volume (WV, m3). NA - The standard error of the heritability could not be estimated using rrBLUP (Endelman 2011). 

  



60 
 

Table 1-3: Genomic estimates of narrow-sense heritabilities (h2) and predictive abilities (rgy) for the E. benthamii and E. 

pellita breeding populations using different SNP sampling methods. 

SNP sampling 

method 

E. benthamii  E. pellita 

Number of 

SNPs 

DBH  WV  
Number of 

SNPs 

DBH  HT  WV 

h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE) 

All SNPs 13,787 0.267 (0.008) 
0.162 

(0.044) 
 

0.243 

(0.008) 

0.146 

(0.039) 
 19,506 

0.455 

(0.005) 

0.441 

(0.019) 
 

0.283 

(0.008) 

0.342 

(0.042) 
 

0.418 

(0.005) 

0.425 

(0.028) 

Randomly selected 5,000 
0.250 

(0.003) 

0.163 

(0.004) 
 

0.234 

(0.003) 

0.148 

(0.004) 
 5,000 

0.410 

(0.006) 

0.427 

(0.003) 
 

0.269 

(0.003) 

0.336 

(0.002) 
 

0.390 

(0.004) 

0.416 

(0.003) 

Randomly selected 3,000 
0.239 

(0.005) 

0.153 

(0.008) 
 

0.226 

(0.004) 

0.137 

(0.008) 
 3,000 

0.385 

(0.006) 

0.417 

(0.003) 
 

0.254 

(0.005) 

0.328 

(0.003) 
 

0.363 

(0.006) 

0.406 

(0.003) 

Randomly selected 1,500 
0.229 

(0.005) 

0.153 

(0.008) 
 

0.217 

(0.005) 

0.137 

(0.008) 
 1,500 

0.334 

(0.005) 

0.397 

(0.003) 
 

0.232 

(0.004) 

0.313 

(0.003) 
 

0.322 

(0.004) 

0.389 

(0.003) 

Randomly selected 500 
0.181 

(0.006) 

0.104 

(0.017) 
 

0.174 

(0.005) 

0.091 

(0.015) 
 500 

0.270 

(0.008) 

0.364 

(0.006) 
 

0.203 

(0.003) 

0.291 

(0.006) 
 

0.264 

(0.008) 

0.361 

(0.006) 

Evenly spaced 10 

Kbp 
10,837 

0.264 

(0.007) 

0.159 

(0.046) 
 

0.235 

(0.007) 

0.141 

(0.041) 
 13,946 

0.452 

(0.004) 

0.436 

(0.019) 
 

0.272 

(0.009) 

0.340 

(0.042) 
 

0.415 

(0.010) 

0.421 

(0.028) 

Evenly spaced 50 

Kbp 
6,867 

0.253 

(0.007) 

0.153 

(0.041) 
 

0.242 

(0.006) 

0.135 

(0.035) 
 7,619 

0.472 

(0.008) 

0.440 

(0.021) 
 

0.286 

(0.008) 

0.339 

(0.043) 
 

0.439 

(0.008) 

0.421 

(0.031) 

Evenly spaced 100 

Kbp 
4,634 

0.252 

(0.004) 

0.146 

(0.044) 
 

0.241 

(0.006) 

0.141 

(0.036) 
 4,846 

0.460 

(0.006) 

0.442 

(0.024) 
 

0.287 

(0.007) 

0.339 

(0.041) 
 

0.452 

(0.008) 

0.432 

(0.031) 

Evenly spaced 250 

Kbp 
2,281 

0.261 

(0.004) 

0.166 

(0.039) 
 

0.258 

(0.005) 

0.160 

(0.029) 
 2,297 

0.374 

(0.007) 

0.414 

(0.026) 
 

0.271 

(0.005) 

0.328 

(0.042) 
 

0.360 

(0.004) 

0.400 

(0.030) 

Evenly spaced 500 

Kbp 
1,203 

0.212 

(0.006) 

0.131 

(0.053) 
 

0.199 

(0.004) 

0.116 

(0.050) 
 1,204 

0.326 

(0.004) 

0.388 

(0.026) 
 

0.226 

(0.004) 

0.306 

(0.043) 
 

0.307 

(0.005) 

0.378 

(0.033) 

Evenly spaced 1 Mbp 610 
0.196 

(0.002) 

0.111 

(0.031) 
 

0.178 

(0.003) 

0.097 

(0.022) 
 609 

0.256 

(0.004) 

0.364 

(0.027) 
 

0.203 

(0.004) 

0.307 

(0.041) 
 

0.260 

(0.004) 

0.365 

(0.029) 

Genic regions 7,254 
0.251 

(0.008) 

0.163 

(0.045) 
 

0.240 

(0.006) 

0.148 

(0.037) 
 11,212 

0.421 

(0.007) 

0.433 

(0.020) 
 

0.269 

(0.008) 

0.340 

(0.042) 
 

0.394 

(0.005) 

0.426 

(0.028) 

Intergenic regions 6,533 
0.253 

(0.008) 

0.152 

(0.046) 
 

0.232 

(0.005) 

0.131 

(0.046) 
 8,294 

0.449 

(0.007) 

0.432 

(0.021) 
 

0.289 

(0.009) 

0.340 

(0.041) 
 

0.414 

(0.006) 

0.410 

(0.030) 

SNPs in LE 

(LD-pruning) 
10,460 

0.274 

(0.011) 

0.174 

(0.043) 
 

0.256 

(0.010) 

0.161 

(0.039) 
 10,984 

0.425 

(0.010) 

0.426 

(0.024) 
 

0.275 

(0.007) 

0.339 

(0.041) 
 

0.404 

(0.006) 

0.413 

(0.031) 

Pedigree BLUP (ABLUP, Pedigree Best Linear Unbiased Predictor), Ridge Regression BLUP (RR-BLUP, Genomic Best Linear Unbiased Predictor), 

BL (Bayesian Lasso), BRR (Bayesian Ridge-Regression), Minimum Allele Frequency (MAF), Diameter at Breast Height (DBH, cm), Total Height 

(HT, m) and Wood Volume (WV, m3).  
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Table 1-4: Genomic estimates of narrow-sense heritabilities (h2) and predictive abilities (rgy) for the E. benthamii and E. 

pellita breeding populations using chromosome-specific SNP sets. 
 E. benthamii  E. pellita 

Chr. 
Number 

of SNPs 

DBH  WV  
Number of 

SNPs 

DBH  HT  WV 

h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE)  h2 (SE) rgy (SE) 

1 848 0.162 (0.004) 
0.070 

(0.048) 
 

0.161 

(0.003) 

0.071 

(0.037) 
 1,329 

0.240 

(0.004) 

0.336 

(0.034) 
 0.223 (0.006) 

0.327 

(0.042) 
 0.241 (0.004) 0.337 (0.031) 

2 1,672 0.186 (0.003) 
0.085 

(0.036) 
 

0.183 

(0.004) 

0.071 

(0.034) 
 2,245 

0.228 

(0.004) 

0.313 

(0.033) 
 0.188 (0.004) 

0.272 

(0.040) 
 0.218 (0.004) 0.303 (0.036) 

3 1,544 0.195 (0.004) 
0.170 

(0.036) 
 

0.207 

(0.004) 

0.185 

(0.040) 
 2,026 

0.282 

(0.007) 

0.363 

(0.042) 
 0.172 (0.003) 

0.282 

(0.046) 
 0.267 (0.006) 0.355 (0.043) 

4 886 0.180 (0.004) 
0.134 

(0.036) 
 

0.171 

(0.004) 

0.104 

(0.027) 
 1,303 

0.256 

(0.008) 

0.315 

(0.045) 
 0.203 (0.003) 

0.271 

(0.044) 
 0.251 (0.009) 0.294 (0.049) 

5 1,356 0.195 (0.004) 
0.123 

(0.051) 
 

0.190 

(0.004) 

0.123 

(0.052) 
 1,872 

0.303 

(0.006) 

0.379 

(0.037) 
 0.227 (0.007) 

0.325 

(0.044) 
 0.277 (0.006) 0.353 (0.040) 

6 1,440 0.166 (0.004) 
0.090 

(0.040) 
 

0.157 

(0.002) 

0.063 

(0.033) 
 2,012 

0.277 

(0.007) 

0.375 

(0.031) 
 0.197 (0.004) 

0.294 

(0.040) 
 0.274 (0.008) 0.369 (0.037) 

7 1,207 0.219 (0.006) 
0.187 

(0.051) 
 

0.210 

(0.006) 

0.158 

(0.046) 
 1,594 

0.226 

(0.003) 

0.337 

(0.031) 
 0.168 (0.003) 

0.241 

(0.047) 
 0.217 (0.003) 0.323 (0.038) 

8 1,771 0.183 (0.005) 
0.082 

(0.063) 
 

0.168 

(0.004) 

0.059 

(0.050) 
 2,583 

0.212 

(0.006) 

0.306 

(0.038) 
 0.185 (0.003) 

0.267 

(0.040) 
 0.222 (0.004) 0.316 (0.037) 

9 940 0.170 (0.003) 
0.121 

(0.035) 
 

0.164 

(0.004) 

0.100 

(0.033) 
 1,381 

0.228 

(0.004) 

0.330 

(0.020) 
 0.182 (0.004) 

0.285 

(0.034) 
 0.233 (0.006) 0.332 (0.027) 

10 1,034 0.152 (0.002) 
0.059 

(0.037) 
 

0.150 

(0.002) 

0.047 

(0.041) 
 1,448 

0.218 

(0.003) 

0.339 

(0.037) 
 0.184 (0.004) 

0.292 

(0.050) 
 0.224 (0.004) 0.353 (0.041) 

11 1,089 0.195 (0.004) 
0.138 

(0.040) 
 

0.193 

(0.006) 

0.143 

(0.041) 
 1,713 

0.250 

(0.005) 

0.338 

(0.024) 
 0.201 (0.005) 

0.304 

(0.042) 
 0.258 (0.006) 0.350 (0.026) 

All 13,787 0.267 (0.008) 
0.162 

(0.044) 
 

0.243 

(0.008) 

0.146 

(0.039) 
 19,506 

0.455 

(0.005) 

0.441 

(0.019) 
 0.283 (0.008) 

0.342 

(0.042) 
 0.418 (0.005) 0.425 (0.028) 

Diameter at Breast Height (DBH, cm), Total Height (HT, m) and Wood Volume (WV, m3). 
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FIGURES 

 

 

Figure 1-1: Genome-wide pattern of Linkage Disequilibrium (LD) decay up to 100 

Kbp pairwise SNP distances. Decay curves of the classical measure of the 

squared correlation of allele frequencies at diallelic loci (r2), adjusted for population 

structure (r2S) and relatedness (r2V), and adjusted for both (r2VS). (A) Plot with 

SNPs filtered using MAF > 0 and (B) MAF ≥ 5% in E. benthamii. (C) Plot with SNPs 

filtered using MAF > 0 and (D) MAF ≥ 5% in E. pellita.  

A B 

C D 
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Figure 1-2: Estimates of predictive ability (rgy) by ABLUP, GBLUP, Bayesian 

methods and RKHS. Estimates of rgy for the E. benthamii and E. pellita breeding 

populations. 
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Figure 1-3: Estimates of heritability (h2) and of predictive ability (rgy) with 

increasing numbers of SNPs for different traits using a cumulative approach to 

SNP sampling. (A) and (B) estimates of h2 and rgy for E. benthamii, respectively. 

(C) and (D) estimates of h2 and rgy for E. pellita, respectively. 

  

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.10

0.15

0.20

0.25

100 3000 5000 7500 10000 13000
Number of SNPs

h2

Trait
●

●

DBH
WV

Heritability in Eucalyptus benthamii (Cumulative)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.050

0.075

0.100

0.125

0.150

0.175

100 3000 5000 7500 10000 13000
Number of SNPs

r gy

Trait
●

●

DBH
WV

Predictive Ability in Eucalyptus benthamii (Cumulative)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.1

0.2

0.3

0.4

100 3000 5000 7500 10000 15000 19000
Number of SNPs

h2

Trait
●

●

●

DBH
HT
WV

Heritability in Eucalyptus pellita (Cumulative)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.2

0.3

0.4

100 3000 5000 7500 10000 15000 19000
Number of SNPs

r gy

Trait
●

●

●

DBH
HT
WV

Predictive Ability in Eucalyptus pellita (Cumulative)

A B 

C D 



65 

 

 

Figure 1-4: Estimates of predictive ability (rgy) with different levels of relatedness 

between training and validation sets. Related: random allocation of individuals to 

training and validation sets; Unrelated: individuals were split into training and 

validation sets by minimizing relatedness between sets based on a principal 

component analysis. (A) E. benthamii and (B) E. pellita. 
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Figure 1-5: Manhattan and Quantile-quantile (Q-Q) plots for wood volume (WV) in 

E. pellita. (A) and (B) represent the Manhattan and the Q-Q plots, respectively, for 

LMA model adjusted for block and population structure covariates. (C) and (D) 

represent the Manhattan and the Q-Q plots, respectively, for MLMA model 

adjusted for block and population structure covariates, and also for the genomic 

relationship matrix. Red line indicates Bonferroni-corrected threshold with an 

experimental type I error rate at α = 0.05 and blue line indicates false discovery 

rate (FDR) at 5%.  
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SUPPLEMENTARY MATERIAL (SM1) 

 

Table SM1-1: Numbers of SNPs and average distances between SNPs for the 

variable window sizes used to select evenly spaced SNP subsets for E. benthamii 

and E. pellita. 

Selected 

window 

(Kbp) 

  E. benthamii  E. pellita 

  
Average distance 

between markers (Kbp) 

Number 

of SNPs 
  

Average distance 

between markers (Kbp) 

Number 

of SNPs 

10 
 

55.7 10,837 
 

43.2 13,946 

50 
 

87.4 6,867 
 

78.6 7,619 

100 
 

130 4,634 
 

124 4,846 

250 
 

265 2,281 
 

263 2,297 

500 
 

504 1,203 
 

503 1,204 

1,000   1,000 610   1,002 609 
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Table SM1-2: Linkage Disequilibrium (LD) estimates and genome-wide pattern of 

decay of LD up to pairwise SNP distance of 100 Kbp including rare alleles (MAF > 

0) or not (MAF ≥ 5%) for the E. benthamii and E. pellita populations. 

LD measurement 

E. benthamii  E. pellita 

MAF > 0 
MAF ≥ 

5% 
 MAF > 0 

MAF ≥ 

5% 

Number of SNPs 13,787 7,563 
 

19,506 12,483 

Number of SNPs pairwise 9,157,068 

2,817,21

0 
 

18,146,36

6 

7,494,37

9 

Mean r2 all data 0.0169 0.0164 
 

0.0167 0.0187 

Mean r2S all data 0.0161 0.0149 
 

0.0158 0.0176 

Mean r2V all data 0.0117 0.0063 
 

0.0067 0.0063 

Mean r2VS all data 0.0117 0.0063 
 

0.0067 0.0063 

Mean r2 in 100 Kbp 0.1413 0.2284  0.2713 0.3173 

Mean r2S in 100 Kbp 0.1372 0.2225  0.2654 0.3123 

Mean r2V in 100 Kbp 0.0966 0.1443  0.1790 0.2142 

Mean r2VS in 100 Kbp 0.0966 0.1444  0.1788 0.2142 

Mean r2 in 50 Kbp 0.2015 0.2955 
 

0.3331 0.3697 

Mean r2S in 50 Kbp 0.1966 0.2897 
 

0.3280 0.3659 

Mean r2V in 50 Kbp 0.1451 0.2050 
 

0.2437 0.2795 

Mean r2VS in 50 Kbp 0.1451 0.2051 
 

0.2435 0.2794 

r2 <0.2 within (Kbp) 15.622 40.693 
 

70.595 112.678 

r2S <0.2 within (Kbp)  14.755 38.096 
 

66.237 106.198 

r2V <0.2 within (Kbp)  7.708 14.515 
 

25.614 35.888 

r2VS <0.2 within (Kbp)  7.708 14.526 
 

25.556 35.862 

Half-decay distance (Kbp) r2 12.217 31.729 
 

55.106 87.923 

Half-decay distance (Kbp) r2S 11.543 29.701 
 

51.706 82.865 

Half-decay distance (Kbp) r2V 6.059 11.348 
 

20.033 28.042 

Half-decay distance (Kbp) r2VS 6.059 11.365 
 

19.987 28.022 

Average of SNPs by Chr. 1,253.4 687.5 
 

1,773.3 1,134.8 

LD estimates with classical measure of the squared correlation of allele frequencies at diallelic loci 

(r2), adjusted for population structure (r2S) and relatedness (r2V), and adjusted for both (r2VS). 
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Table SM1-3. Estimates of additive genetic variance (σ2a) and residual variance (σ2e) obtained with different prediction 

methods, different position-based SNP sampling methods and sampling related or unrelated individuals in the E. benthamii 

and E. pellita breeding populations. 

Method 

E. benthamii E. pellita 

# 
SNP

s 

DBH WV # 
SNP

s 

DBH HT WV 

σ2a  SE 
(σ2a) σ2e SE 

(σ2e) σ2a  SE 
(σ2a) σ2e SE 

(σ2e) σ2a  SE 
(σ2a) σ2e SE 

(σ2e) σ2a  SE 
(σ2a) σ2e SE 

(σ2e) σ2a  SE (σ2a) σ2e SE (σ2e) 

ABLUP  
1378

7 
2.49
43 NA 

5.14
83 NA 

0.02
57 NA 

0.06
08 NA 

1950
6 

8.79E
-09 NA 

8.79
30 NA 

0.21
14 NA 

10.78
07 NA 

0.00
00 NA 

0.00
45 NA 

GBLUP  
1378

7 
1.39
37 NA 

6.31
36 NA 

0.01
28 NA 

0.07
41 NA 

1950
6 

4.223
6 NA 

4.84
06 NA 

2.82
75 NA 

8.051
4 NA 

0.00
19 NA 

0.00
26 NA 

Bayes A 
1378

7 
1.59
42 

0.141
8 

6.25
25 

0.117
7 

0.01
47 

0.001
9 

0.07
37 

0.001
5 

1950
6 

4.269
7 

0.105
6 

4.89
43 

0.041
9 

3.10
44 

0.128
5 

7.979
2 

0.124
0 

0.00
20 4.62E-05 

0.00
26 

2.50E-
05 

Bayes B 
1378

7 
2.65
76 

0.447
3 

6.21
46 

0.125
1 

0.02
94 

0.003
8 

0.07
14 

0.001
3 

1950
6 

5.613
4 

0.485
3 

4.88
23 

0.040
3 

4.18
62 

0.314
6 

7.975
4 

0.096
3 

0.00
30 

0.00042
3952 

0.00
26 

2.64E-
05 

Bayes Cπ 
1378

7 
2.23
75 

0.156
5 

6.11
38 

0.112
5 

0.02
21 

0.001
5 

0.07
10 

0.001
1 

1950
6 

4.574
4 

0.105
1 

4.95
00 

0.029
3 

3.49
67 

0.103
9 

8.029
4 

0.109
6 

0.00
22 4.23E-05 

0.00
26 

2.43E-
05 

BL 
1378

7 
1.01
56 

0.149
1 

6.65
08 

0.161
4 

0.00
90 

0.001
0 

0.07
79 

0.001
3 

1950
6 

3.686
6 

0.234
4 

5.17
61 

0.123
6 

2.62
84 

0.169
6 

8.211
9 

0.129
5 

0.00
18 3.84E-05 

0.00
27 

2.62E-
05 

BRR 
1378

7 
2.15
56 

0.072
2 

5.91
68 

0.080
3 

0.02
22 

0.000
8 

0.06
88 

0.000
8 

1950
6 

4.128
1 

0.064
6 

4.93
78 

0.027
9 

3.14
23 

0.090
8 

7.952
0 

0.101
4 

0.00
19 2.99E-05 

0.00
26 

1.52E-
05 

SNP sampling method   
σ2a  SE 

(σ2a) σ2e SE 
(σ2e) σ2a  SE 

(σ2a) σ2e SE 
(σ2e)   σ2a  SE 

(σ2a) σ2e SE 
(σ2e) σ2a  SE 

(σ2a) σ2e SE 
(σ2e) σ2a  SE (σ2a) σ2e SE (σ2e) 

Randomly selected 
SNPs (10 rep) 5000 

2.02
54 

0.056
0 

6.03
64 

0.084
2 

0.02
15 

0.000
6 

0.06
95 

0.000
9 5000 

3.578
0 

0.063
7 

5.28
92 

0.030
6 

2.97
28 

0.071
5 

8.081
2 

0.090
2 

0.00
17 

3.2469E-
05 

0.00
28 

2.06256
E-05 

Randomly selected 
SNPs (10 rep) 3000 

1.89
09 

0.048
9 

6.15
65 

0.079
1 

0.02
03 

0.000
6 

0.07
07 

0.000
9 3000 

3.463
2 

0.061
7 

5.42
79 

0.027
6 

2.83
53 

0.059
3 

8.195
5 

0.089
0 

0.00
16 

2.39674
E-05 

0.00
29 

2.07694
E-05 

Randomly selected 
SNPs (10 rep) 1500 

1.80
66 

0.046
4 

6.25
28 

0.077
5 

0.01
95 

0.000
5 

0.07
19 

0.000
9 1500 

2.947
9 

0.054
1 

5.83
54 

0.028
6 

2.56
00 

0.054
6 

8.484
6 

0.078
1 

0.00
14 

1.90164
E-05 

0.00
30 

1.91402
E-05 

Randomly selected 
SNPs (10 rep) 500 

1.44
20 

0.031
3 

6.69
96 

0.077
1 

0.01
60 

0.000
4 

0.07
58 

0.000
9 500 

2.353
6 

0.038
6 

6.46
51 

0.028
5 

2.21
74 

0.040
9 

8.874
1 

0.069
8 

0.00
12 

1.9618E-
05 

0.00
33 

1.95043
E-05 

Evenly spaced 10 Kb 
window 

1083
7 

2.13
16 

0.062
3 

5.94
09 

0.082
6 

0.02
13 

0.000
7 

0.06
95 

0.000
9 

1394
6 

4.094
2 

0.051
7 

4.96
81 

0.027
8 

2.99
99 

0.101
3 

8.031
1 

0.102
9 

0.00
19 5.91E-05 

0.00
27 

3.16E-
05 

Evenly spaced 50 Kb 
window 6867 

2.03
88 

0.061
0 

6.03
09 

0.083
0 

0.02
22 

0.000
6 

0.06
96 

0.000
9 7619 

4.359
4 

0.106
8 

4.87
33 

0.048
2 

3.19
23 

0.092
2 

7.983
2 

0.095
6 

0.00
20 4.76E-05 

0.00
26 

2.61E-
05 

Evenly spaced 100 Kb 
window 4634 

2.03
73 

0.038
3 

6.03
13 

0.067
7 

0.02
20 

0.000
6 

0.06
94 

0.000
9 4846 

4.205
6 

0.072
9 

4.93
22 

0.036
1 

3.20
86 

0.076
1 

7.965
8 

0.093
4 

0.00
21 5.09E-05 

0.00
26 

2.43E-
05 

Evenly spaced 250 Kb 
window 2281 

2.11
90 

0.033
2 

6.00
96 

0.071
1 

0.02
38 

0.000
6 

0.06
83 

0.000
7 2297 

3.337
3 

0.074
8 

5.58
42 

0.037
4 

3.03
33 

0.064
4 

8.162
2 

0.076
7 

0.00
16 2.36E-05 

0.00
29 

1.37E-
05 

Evenly spaced 500 Kb 
window 1203 

1.71
30 

0.053
1 

6.38
25 

0.075
2 

0.01
82 

0.000
4 

0.07
33 

0.000
8 1204 

2.904
4 

0.046
3 

6.01
04 

0.035
5 

2.52
94 

0.044
1 

8.655
2 

0.068
9 

0.00
14 2.57E-05 

0.00
31 

2.31E-
05 

Evenly spaced 1000 Kb 
window 610 

1.58
49 

0.022
0 

6.48
43 

0.056
2 

0.01
63 

0.000
4 

0.07
51 

0.000
6 609 

2.228
0 

0.038
8 

6.45
98 

0.029
1 

2.25
12 

0.044
3 

8.832
6 

0.074
1 

0.00
12 1.99E-05 

0.00
33 

1.62E-
05 

Genic 7254 
2.00
11 

0.065
9 

5.98
37 

0.081
9 

0.02
18 

0.000
6 

0.06
89 

0.000
8 

1121
2 

3.749
2 

0.089
1 

5.14
70 

0.032
0 

2.96
64 

0.082
7 

8.069
2 

0.097
3 

0.00
18 2.66E-05 

0.00
27 

1.74E-
05 
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Intergenic 6533 
2.05
32 

0.067
7 

6.06
05 

0.087
9 

0.02
12 

0.000
5 

0.07
04 

0.000
9 8294 

4.098
1 

0.090
1 

5.02
89 

0.041
0 

3.22
37 

0.096
9 

7.949
0 

0.106
7 

0.00
19 3.67E-05 

0.00
27 

2.23E-
05 

SNPs in LE (LD-
pruning) 

1046
0 

2.20
81 

0.085
3 

5.85
99 

0.101
8 

0.02
34 

0.001
0 

0.06
78 

0.001
0 

1098
4 

3.813
5 

0.115
3 

5.15
19 

0.050
5 

3.04
85 

0.082
7 

8.030
5 

0.088
8 

0.00
18 3.19E-05 

0.00
27 

2.05E-
05 

Chr1 
848 1.33

02 
0.028

2 
6.89
07 

0.076
9 

0.01
49 

0.000
2 

0.07
81 

0.000
8 

1329 2.169
4 

0.041
1 

6.85
99 

0.027
6 

2.54
36 

0.072
3 

8.858
5 

0.082
1 

0.00
11 1.90E-05 

0.00
35 

1.94E-
05 

Chr2 
1672 1.54

57 
0.028

6 
6.75
10 

0.060
7 

0.01
71 

0.000
5 

0.07
65 

0.000
7 

2245 2.059
9 

0.043
7 

6.97
58 

0.037
0 

2.12
44 

0.051
8 

9.158
6 

0.073
6 

0.00
10 1.82E-05 

0.00
36 

1.85E-
05 

Chr3 
1544 1.60

15 
0.038

1 
6.60
48 

0.054
6 

0.01
93 

0.000
5 

0.07
38 

0.000
7 

2026 2.560
3 

0.072
9 

6.50
60 

0.053
7 

1.93
07 

0.035
8 

9.326
9 

0.084
2 

0.00
12 2.81E-05 

0.00
34 

2.75E-
05 

Chr4 
886 1.49

08 
0.030

7 
6.79
58 

0.081
3 

0.01
61 

0.000
3 

0.07
77 

0.000
9 

1303 2.399
0 

0.082
5 

6.94
70 

0.057
6 

2.35
23 

0.031
7 

9.217
9 

0.075
9 

0.00
12 5.09E-05 

0.00
36 

3.07E-
05 

Chr5 
1356 1.60

43 
0.037

2 
6.63
33 

0.076
0 

0.01
76 

0.000
4 

0.07
53 

0.000
8 

1872 2.837
0 

0.062
4 

6.52
23 

0.047
4 

2.59
83 

0.075
7 

8.829
2 

0.092
5 

0.00
13 3.38E-05 

0.00
34 

1.91E-
05 

Chr6 
1440 1.35

69 
0.036

8 
6.80
14 

0.057
8 

0.01
45 

0.000
2 

0.07
78 

0.000
7 

2012 2.481
2 

0.072
6 

6.47
31 

0.056
0 

2.22
79 

0.040
9 

9.061
6 

0.076
4 

0.00
13 4.01E-05 

0.00
33 

3.06E-
05 

Chr7 
1207 1.80

93 
0.052

8 
6.43
44 

0.068
3 

0.01
96 

0.000
6 

0.07
37 

0.000
8 

1594 2.034
2 

0.027
2 

6.97
27 

0.030
4 

1.91
46 

0.034
2 

9.478
4 

0.078
5 

0.00
10 1.27E-05 

0.00
36 

2.06E-
05 

Chr8 
1771 1.49

47 
0.042

5 
6.67
55 

0.077
2 

0.01
56 

0.000
3 

0.07
71 

0.000
9 

2583 1.897
2 

0.054
9 

7.02
79 

0.047
7 

2.08
75 

0.036
8 

9.212
7 

0.076
8 

0.00
10 2.25E-05 

0.00
35 

2.00E-
05 

Chr9 
940 1.41

00 
0.033

0 
6.90
16 

0.069
8 

0.01
54 

0.000
3 

0.07
87 

0.000
9 

1381 2.062
0 

0.047
1 

6.99
44 

0.026
5 

2.05
67 

0.040
4 

9.258
4 

0.075
8 

0.00
11 2.96E-05 

0.00
35 

1.76E-
05 

Chr10 
1034 1.25

04 
0.021

9 
6.95
11 

0.065
8 

0.01
40 

0.000
2 

0.07
90 

0.000
8 

1448 1.906
8 

0.029
9 

6.85
70 

0.032
2 

2.06
79 

0.042
8 

9.161
0 

0.079
3 

0.00
10 1.73E-05 

0.00
35 

1.94E-
05 

Chr11 
1089 1.60

34 
0.032

3 
6.64
13 

0.076
5 

0.01
79 

0.000
5 

0.07
52 

0.000
9 

1713 2.280
4 

0.058
3 

6.81
53 

0.019
9 

2.29
02 

0.055
6 

9.092
5 

0.084
0 

0.00
12 2.98E-05 

0.00
35 

2.53E-
05 

Diameter at Breast Height (DBH, cm), Total Height (HT, m) and Wood Volume (WV, m3), SE (Standard Error). NA - The standard error of the 

variance components could not be estimated. 
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Table SM1-4: Predictive ability of growth traits of different 10-fold cross-validation 

using Bayesian Ridge-Regression (BRR) models in E. benthamii and E. pellita 

populations. 
BRR rgy E. benthamii   E. pellita 

Fold DBH WV   DBH HT WV 

fold1 0.044 -0.015  0.482 0.356 0.506 

fold2 0.251 0.294  0.431 0.448 0.444 

fold3 0.415 0.335  0.550 0.540 0.536 

fold4 0.180 0.195  0.358 0.236 0.309 

fold5 0.205 0.142  0.416 0.421 0.395 

fold6 0.199 0.196  0.502 0.355 0.493 

fold7 0.012 0.046  0.373 0.070 0.263 

fold8 0.268 0.156  0.397 0.302 0.382 

fold9 0.104 0.164  0.459 0.427 0.432 

fold10 -0.058 -0.056  0.439 0.261 0.488 

Mean 0.162 0.146   0.441 0.342 0.425 

SE 0.044 0.039   0.019 0.042 0.028 
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Table SM1-5: Significant SNP associations with wood volume trait in E. pellita using MLMA model adjusted for block, 

population structure covariates and genomic relationship matrix. 
SNP* MAF P-value Bonferronia FDRb Annotationc Descriptionc Functiond 

EuBR06s46273728 0.00410 1.91E-06 0.0373 0.0303 
Eucgr.F03806.1 / 

AT1G77460.1 

Armadillo/beta-catenin-like repeat; 

C2 calcium/lipid-binding domain 

(CaLB) protein. 

Plant-type cell wall cellulose 

biosynthetic process 

and unidimensional cell growth.  

EuBR06s47094282 0.00274 3.11E-06 0.0606 0.0303 
Orysa|LOC_Os06g43

560.1_GX6P 

Phox domain-containing protein, 

putative, expressed 

LOC_Os06g43560.1. 

Phosphatidylinositol binding.  

EuBR05s10629849 0.00478 7.07E-06 0.1379 0.0430 
Eucgr.E01008.1 / 

AT1G11050.1 

Non-specific serine/threonine protein 

kinase / Threonine-specific protein 

kinase or Protein kinase superfamily 

protein. 

Catalytic activity (ATP + a protein = 

ADP + a phosphoprotein). 

EuBR09s37575166 0.00342 1.10E-05 0.2149 0.0430 
Eucgr.I02627.1 / 

AT1G32750.1 

Transcription initiation factor TFIID | 

HAC13 protein (HAC13). 

Chromatin modification, DNA 

mediated transformation, 

regulation of transcription, DNA-

templated. 

EuBR09s38076481 0.00342 1.10E-05 0.2149 0.0430 
Eucgr.I02694.1 / 

AT3G19720.1 

Dynamin-like protein ARC5 | P-loop 

containing nucleoside triphosphate 

hydrolases superfamily protein. 

Catalytic activity (GTP + H2O = 

GDP + phosphate). 

*SNP name: e.g. EuBR06s46273728, SNP on chromosome 6 at position 46,273,728 bp 
aBonferroni-corrected threshold with an experimental type I error rate at α = 0.05. 
bFalse Discovery Rate (FDR) threshold at 5%. 
cAnnotation information based on BLASTx in Phytozome for the Eucalyptus grandis genome (Myburg et al. 2014). 
dFunction information based on UniProt database. 
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Figure SM1-1: Distribution of the numbers of SNPs for variable filtering criteria and MAFs 

classes. (A) Distribution of the number of SNPs retained in variable filtering criteria, and 

(B) Distribution of the number of SNPs into MAF classes for E. benthamii and E. pellita 

for CR ≥ 90% and MAF > 0 (CR, Call Rate; MAF, Minimum Allele Frequency; LE, Linkage 

Equilibrium). 

  

A 

B 
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Figure SM1-2: Estimates of heritability (h2) and of predictive ability (rgy) with increasing 

numbers of SNPs for different traits using a non-cumulative approach to SNP sampling. 

(A) and (B) estimates of h2 and rgy for E. benthamii, respectively. (C) and (D) estimates of 

h2 and rgy for E. pellita, respectively. 
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Figure SM1-3: Principal component analysis (PCA) of the 484 trees of E. benthamii and 

706 trees of E. pellita used to split training and validation sets. (A) For E. benthamii 310 

(red) and 174 (pink) individuals were used as training and validation sets. (B) In E. pellita, 

the number of individuals used in each set were 192 (dark blue) and 514 (light blue).  
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CHAPTER 2: A GWAS for growth traits in Eucalyptus by assembling genome-wide 

data for 3,373 individuals across four breeding populations 
 

To be published with the following authors: 

 

Bárbara S. F. Müller, Janeo E. de Almeida Filho, Bruno M. Lima, Carla C. Garcia, 

Alexandre Missiaggia, Aurelio M. Aguiar, Elizabete Takahashi, Matias Kirst, Salvador A. 

Gezan, Orzenil B. Silva-Junior, Leandro G. Neves, Dario Grattapaglia. 

 

INTRODUCTION 

 

Eucalyptus are the most widely planted species of hardwood trees in the world mainly 

due to its high adaptability to different environments, fast growth and superior wood 

quality for multiple applications (Myburg et al. 2007; Grattapaglia and Kirst 2008). The 

Eucalyptus L’Hér. (Myrtaceae) genus has over 800 species native to Australia and 

adjacent islands in Oceania. This genus has a total of ten subgenera described, being 

Symphyomyrtus the most important one with more than 470 species (Grattapaglia et al. 

2012). Eucalyptus grandis and Eucalyptus urophylla are the most commercially important 

and broadly planted species, which belong to this subgenus in the Latoangulatae section 

and, together with their hybrids, are widely used for pulp and solid wood production in the 

tropics (Henry 2011). Interspecific hybrids between E. grandis x E. urophylla make up 

almost the totality of large scale operational plantations and are the main target of 

breeding programs in Brazil due to their combination of desirable traits, most notably fast 

growth from E. grandis and disease resistance from E. urophylla (Myburg et al. 2007). 

 

In forest trees, following the disappointing translation of results coming from QTL mapping 

in biparental populations to breeding programs, genetic association studies were 

proposed based on an optimistic view that praised forest tree populations as ideal for 

such undertakings given their low extent of linkage disequilibrium (LD), lack of structure 

and high diversity (Neale and Savolainen 2004). Initial association studies, largely in 

species of Populus and Pinus, focused on variation in candidate genes, mainly due to a 
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lack of genome-wide genotyping platforms, but also motivated by the assumption that 

complex traits would be driven by some moderate-effect loci (Neale and Savolainen 2004; 

Thumma et al. 2005; Neale 2007; Wegrzyn et al. 2010; Khan and Korban 2012; Guerra 

et al. 2013; Thavamanikumar et al. 2014; Jaramillo-Correa et al. 2015). Besides the 

limited scope of candidate-gene association studies, results in general were limited to the 

detection of a few associations explaining small proportions of the genetic variation. In 

the last few years, however, with the development of accessible high-density SNP 

genotyping platforms, actual genome-wide association studies (GWAS) have been 

performed using marker densities in the range of several thousand SNPs, in collections 

of a few hundred individuals (Cappa et al., 2013; Porth et al., 2013; Evans et al., 2014; 

Mckown et al., 2014; Allwright et al., 2016; Du et al., 2016; Fahrenkrog et al., 2016). 

Although several traits have been targeted by these studies, a common trend is that while 

better success in terms of the number of associations detected has been obtained for 

phenology and wood properties, very few associations have been found for complex 

growth traits. Still, the proportion of genetic variation explained has been quite limited. 

 

A common feature of GWAS in forest trees has been the use of collections of trees directly 

sampled from the wild with the understanding that the rapid decay of LD would provide 

the necessary resolution to discover causal variants. Such variants, it is believed, could 

in turn be used in breeding programs via marker-assisted selection (MAS). Although such 

a rationale could pinpoint loci underlying complex traits, such loci or specific alleles 

detected in wild populations could perform differently or have relatively little or no value 

in an elite background. These loci could simply not be segregating or alleles could have 

negligible effect in comparison to existing allelic variation in selected breeding 

populations. In fact, GWAS can be carried out with natural populations, germplasm banks, 

landraces or breeding populations (Zhu et al. 2008; Khan and Korban 2012), as long as 

there is segregation for the relevant phenotypes under study. This issue has motivated 

for example the development of GWAS in nested association mapping (NAM) populations 

in maize (Li et al. 2016; Wu et al. 2016). This strategy in effect puts the population through 

a one-generation bottleneck, raising some alleles to high and detectable frequency while 

eliminating many others (Hamblin et al. 2011). Although at least in principle less genetic 
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variation is available in such structured populations, and the longer extent of LD limits 

resolution to pinpoint causal variants, associations detected in genetically improved 

material should be considerably more relevant to further breeding as they would be 

detected in an already elite background. Moreover, different from crop breeding where 

introgression of wild alleles into elite lines is commonplace, such a route is not an option 

in highly heterozygous forest trees. 

 

Based on the reasoning that associations detected in breeding populations could be more 

useful to tree breeding, we have recently reported results from GWAS studies in breeding 

populations of Eucalyptus (Resende R.T. et al., 2016; Müller et al., 2017). These studies 

became possible with the development of a high-density SNP platform for species of 

Eucalyptus (Silva-Junior et al., 2015) providing genome-wide coverage of one marker per 

12-20 Kbp, and 47,069 SNPs located inside or within 10 Kbp of 30,444 out of the 36,349 

predicted genes in the E. grandis genome (Myburg et al. 2014). Interestingly, such GWAS 

carried out in breeding populations reported essentially equivalent results to those 

described in natural populations for growth traits, when only a few associations were 

detected explaining small fractions of the genetic variation. 

 

The statistical power to detect associations between DNA variants and a trait depends on 

the experimental sample size, the unknown distribution of effect sizes, the frequency of 

causal genetic variants segregating in the population, and the LD between genotyped 

DNA variants and the unknown causal variants (Visscher et al., 2017). A clear movement 

in the direction of increasing sample sizes has taken place with GWAS for human traits 

to provide sufficient statistical power to detect the common and low-frequent variants 

(Marouli et al. 2017; Visscher et al. 2017). In plants, however, still rare are GWAS carried 

out in populations larger than a few hundred individuals with the exception of studies 

using the structured maize NAM populations where around 5,000 individuals have been 

used (reviewed by Xiao et al., 2017). No such large experiments have yet been described 

in any forest tree. Besides increasing the specific sample size of a single GWAS 

experiment, statistical power can be increased by combining information coming from 

multiple populations using Meta-GWAS and Joint-GWAS (Mägi and Morris 2010; Yang 
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et al. 2012; Bernal Rubio et al. 2016). Meta-GWAS combines the p-values from 

independent studies to increase the power to detect variants with small effect sizes and 

is a popular method for discovering new genetic risk variant in human datasets 

(Evangelou and Ioannidis 2013). Joint-GWAS combine the populations prior to the 

association analysis, leading to more resolution and the detection of more associations 

for complex traits (Lin and Zeng 2009). As each experiment is independently designed, 

both methods have to account for the heterogeneity created by population structure, 

phenotype measurements among other potential sources of variability (Magosi et al. 

2017). Although sharing individual-level datasets is logistically difficult and for human 

studies might have ethical restrictions, Joint-GWAS have become more common in plant 

research due to the ability to replicate genotypes (Li et al. 2016; Wallace et al. 2016; Wu 

et al. 2016). 

 

A second way to increase the power of a GWAS is to capture a wider frequency spectrum 

of variants. Methods to exploit the combined effect of multiple SNPs in genomic segments 

using region or gene-based GWAS have been developed to account for rare and low-

frequency variants (Wu et al. 2011; Nagamine et al. 2012; Bakshi et al. 2016). The 

regional heritability mapping (RHM, Nagamine et al., 2012) is a region-based GWAS 

approach with good potential for these cases, as it captures more of these underlying 

small genetic effects. This method provides heritability estimates for short-genomic 

regions, using the genomic relationship matrix (GRM) between individuals, and it has the 

power to detect regions containing common and rare SNP variants that individually 

contribute too little variance to be detected by single-SNP GWAS. As many trait-

associated genetic variants identified from GWAS tend to be in enriched genic regions 

(Schork et al. 2013), it would be more powerful to test the aggregated effect of a set of 

SNPs using a set-based association approach for the detection of complex trait genes 

(Bakshi et al. 2016). 

 

In this study, we performed a Joint-GWAS for growth traits by assembling a considerably 

larger association population from individual Eucalyptus breeding populations. We 

leveraged the portability and power of the multi-species SNP genotyping platform for 
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Eucalyptus to assemble genome-wide SNP and growth trait data for 3,373 trees across 

four unrelated E. grandis x E. urophylla breeding populations. We evaluated different 

GWAS models to correct for population stratification and relatedness, to detect 

associations within and across these different breeding populations. We also evaluated 

the performance of regional heritability mapping in the four populations independently to 

pinpoint regions that would capture larger fractions of the additive genetic variance by 

considering common and rare variants at the same time. Association analyses by genes 

and regions were performed from summary data from Joint-GWAS to increase the power 

to detect trait associations. Several associations were detected for the same SNPs across 

the unrelated populations providing some initial validation. Associations were also 

detected into genes related to cell wall growth and disease resistance suggesting 

potential pleiotropic effects. To the best of our knowledge, this is the first study to apply 

Joint-GWAS in a forest tree. 

 

MATERIAL AND METHODS 

 

Populations and phenotypic data 

 

This study was carried out using progeny trials established in four unrelated E. grandis x 

E. urophylla hybrid breeding populations (Pop1-IPB, Pop2-ARAB, Pop3-ARAC and Pop4-

CNB), belonging to three different Brazilian paper and pulp companies, International 

Paper of Brazil, Fibria Celulose and Cenibra Celulose. Details of the size of the trial, 

experimental design, number of families, age of measurement, location and sample sizes 

used in the GWAS are listed in the Table 2-1. Three of the four populations were used in 

previously published genomic prediction studies Pop1-IPB (Lima 2014), and Pop3-ARAC 

and Pop4-CNB (Resende et al. 2012). While populations Pop1-IPB, Pop2-ARAB and 

Pop3-ARAC were largely composed of first generation hybrids, Pop4-CNB went through 

one more selection cycle being equivalent to an outbred F2, as the parents were 

themselves hybrids (F1) between E. grandis x E. urophylla. All trees were ultimately 

phenotyped at age two to five years for diameter at breast height (DBH, cm) and total 

height (HT, m) (Supplementary Material: Fig. SM2-1). 
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SNP genotyping and quality control 

 

A total of 3,417 trees were genotyped using the Eucalyptus Illumina Infinium EUChip60K 

(Silva-Junior et al. 2015) and 44 individuals were removed with more than 10% missing 

data, remaining 3,373 samples for the further analyses. A combined dataset was 

generated by merging the genotyping datasets of each population. The genotypic data 

for each population and for the combined data were filtered to remove SNPs with call rate 

(CR) < 90% and monomorphic SNPs, therefore keeping rare SNPs with minor allele 

frequency (MAF) > 0 in the analyses (full marker dataset). Two alternative SNP datasets 

were also generated by keeping only SNPs with MAF ≥ 0.01 and MAF ≥ 0.05 (Table 2-

2). For the population stratification analyses, SNPs in intergenic regions (putatively 

neutral) were selected based on their localization outside of annotated gene models in 

the Eucalyptus genome (Myburg et al. 2014). SNPs were then filtered, using PLINK v1.9 

(Turner 2014), for linkage disequilibrium to generate a pruned subset of SNPs in 

approximate linkage equilibrium (LE), subsequently used in the population stratification 

analyses. The LD-based SNP pruning method was applied with a window size of 100 

Kbp, shifting the window by one SNP at the end of each step and removing one SNP from 

a pair of SNPs if LD was greater than 0.2 (plink command: --indep-pairwise 100 kb 1 0.2). 

 

Population stratification analyses 

 

The genetic structure for the four populations and combined data was estimated based 

on a Bayesian clustering method implemented by STRUCTURE v2.2.4 (Pritchard et al. 

2000), using the intergenic SNPs of the full marker dataset in approximate LE. The 

individual structures were classified in K clusters according to their genetic similarity. The 

admixture model was applied, with correlated allelic frequencies, using no previous 

population information. The number of tested clusters (K) ranged from 1 to 10, with 10 

replications per K. The burn-in period and the number of MCMC (Markov chain Monte 

Carlo) iterations were 50,000 and 150,000, respectively. The number of genetic groups 

was determined based on the criteria proposed by Evanno et al., (2005) using the 

program STRUCTURE HARVESTER v0.6.93 (Earl and vonHoldt 2012). The software 
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CLUMPP v1.1.2 (Jakobsson and Rosenberg 2007) was used to find consensus among 

the 10 most probable K interactions. The POPHELPER R package (Francis 2016) was 

used to generate the population structure barplots by individuals. Principal component 

analysis (PCA) was performed using SNPRelate R package (Zheng et al. 2012) to plot 

all individuals for the combined dataset. For the population stratification correction in the 

GWAS models, we performed the PCA using GCTA v1.26.0 (Yang et al. 2011a) in each 

population independently and for the combined dataset. The number of significant 

principal components for each population and combined data was determined by a 

broken stick model (Jackson 1993) using evplot function (Borcard et al. 2011). The 

pairwise genetic distances (FST) were estimated between populations (Weir and 

Cockerham 1984) using SNPRelate (Zheng et al. 2012). 

 

Linkage disequilibrium and effective population size estimation 

 

Genome-wide pairwise estimates of linkage disequilibrium were calculated by the 

classical measure of the squared correlation of allele frequencies at diallelic loci (r2) for 

each chromosome separately and for all four populations independently, using PLINK 

v1.9 (Turner 2014). The LD decay of r2 with distance in Kbp was fitted by a nonlinear 

regression model between adjacent sites. The drift-recombination model (Hill and Weir 

1988) was used to fit a nonlinear regression of the expectation of r2, using the R script by 

Marroni et al. (2011) and the equation based on Remington et al. (2001). Finally, to 

visualize patterns of LD decay in the four Eucalyptus breeding populations, the LD 

estimated (r2) were plotted in a 1 Mbp window. Effective population size (Ne) was 

estimated based on an updated version of the heterozygote excess method (Zhdanova 

and Pudovkin 2008) implemented in NeEstimator software v2.01 (Do et al. 2014) for each 

population using datasets including rare alleles (CR> 90% and MAF>0). Confidence 

intervals for these estimates were obtained using the parametric method in NeEstimator, 

where the number of independent alleles is used as the degree of freedom in a chi-square 

distribution. 
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Statistical analysis of phenotypic data 

 

Growth data for height (HT) and diameter at breast height (DBH) for each individual 

genotyped were used in the analysis. The following mixed linear models were 

implemented in the “lmer” function of the R package lme4 v1.1-13 (Bates et al. 2015) to 

obtain an accurate trait estimate for each individual, while accounting for experimental 

effects, by population: 

 

1. Pop1-IPB - Randomized complete block design (RCBD) with eight blocks using six 

trees per plot: 

!"# = µ + '" + (#(") + +"#   (1) 

 

where !"#  is the phenotypic measure of the trait of the tree in the ,-.plot within the /-. 

block; µ is the intercept; '" is the fixed effect of blocks; (#(") is the random effect of plot 

within block and +"# is the random residual effect. 

 

2. Pop2-ARAB - Alpha lattice design using incomplete block (ALD-IB) with 30 blocks in 

single-tree plots; and Pop3-ARAC - ALD-IB with 40 blocks in single-tree plots: 

 

!"# = µ + 0" + 1#(") + +"#   (2) 

 

where !"#  is the phenotypic measure of the trait of the tree in the ,-.block within the /-. 

repetition; µ is the intercept; 0" is the random effect of repetition; 1#(") is the random effect 

of blocks nested within repetition and +"# is the random residual effect. 

 

3. Pop4-CNB - Randomized complete block design (RCBD) with 36 blocks in single-tree 

plots: 

 

!" = µ + '" + +"   (3) 
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where !" is the phenotypic measure of the trait of the tree in the /-. block; µ is the intercept; 

'" is the fixed effect of blocks and +" is the random residual effect. 

 

4. Combined data - For the combined dataset, we used the phenotype adjusted for each 

population independently (as estimated above) and included a source of variation for 

population and for age of phenotyping directly in the GWAS models as covariates with 

the following mixed linear model: 

 

!"# = µ + 23(" + 4# + +"#   (4) 

 

where !"#  is the phenotypic measure of the trait of the tree over the ,-.  age of 

measurement within the /-. each population; µ is the intercept; 23(" is the fixed effect of 

population (discrete covariate); 4# is the fixed effect of age of phenotyping (quantitative 

covariate) within population and +"# is the random residual effect. 

 

Heritability estimation 

 

The variances components, genomic and pedigree-based heritabilities for each trait were 

estimated using the adjusted phenotype data for each population separately using the 

BGLR v1.0.5 R package (Pérez and de los Campos 2014) with the following mixed linear 

model: 

 

! = µ + 5 + +	   (5) 

 

where ! is the vector of adjusted phenotypic values of the trait being analyzed; µ is the 

intercept; 5 is a vector of random additive effects and + is the random residual effect; 

+	~	8(0, ;<=
>); ?3@(5, +′) = B. The variance structure of the pedigree-based model was 

calculated with 5	~8(0, 4<C>) and genomic-based model with 5	~8(0, D<C>); where 4 is a 

matrix of additive genetic relationships among the individuals calculated with SYNBREED 

v0.12-6 R package (Wimmer et al. 2012) and D is a genomic relationship matrix (GRM) 

estimated using Yang’s method (Yang et al. 2010) with GCTA v1.26.0 (Yang et al. 2011a). 
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The narrow-sense heritability (ℎ>) estimates were calculated as the ratio of the additive 

variance <C> to the phenotypic variance <F> (ℎ> = 	<C> <F
>	G ). 

 

GWAS models 

 

For the following GWAS analyses, we used the adjusted phenotypic data for each 

population separately and for the combined data we corrected these adjusted phenotypes 

for age and population as described above. Three different GWAS approaches were 

tested to detect associations: single SNP-based models, regional heritability mapping 

(RHM) and SNP set-based models. 

 

Single SNP-based models. Six distinct GWAS models were implemented using the 

EMMAX software (Kang et al. 2010) with the full marker dataset (CR> 90% and MAF>0): 

(1) A linear model based association (LMA) analysis was fitted independently for each 

SNP, without any correction for population stratification and relatedness: 

 

! = H1 + +   (6) 

 

where ! is the phenotype; 1 is a vector of fixed effects including intercept and the SNP 

candidate to be tested for association;	H is incidence matrix for the vectors for the 

parameters 1 and + is the random residual effect. 

(2) A LMA with the Q-matrix from STRUCTURE was fitted using the number of genetic 

groups determined based on the criteria proposed by Evanno et al., (2005). In equation 

6, the parameter 1 is a vector of fixed effects with addition of population structure 

corrected by STRUCTURE. Since each population had different subpopulations (K = 2 to 

5, Table 2-2), the covariate was computed in the model. 

(3) A LMA with significant principal components (PCs) determined by a broken stick 

model (Jackson 1993). In equation 6, the parameter 1 is a vector of fixed effects with 

addition of population stratification corrected by these significant PCs (PC = 1-3, Table 2-

2). 

(4) For comparisons with the LMA models, we also tested a mixed linear model based 
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association (MLMA) analysis. This association analysis was fitted using the following 

base model that uses a similar model as LMA (equation 6), except for the inclusion of the 

polygenic effect (I): 

 

! = H1 + I + +   (7) 

 

where I is the polygenic effect (random effect) captured by the genomic relationship 

matrix (GRM) calculated using all SNPs. The covariate associated with the SNP take the 

values of the number of copies of the alternative allele (2, 1 or 0). The variance structure 

of the MLMA model were I	~8(0, D<J>); +	~8(0, ;<=>); ?3@(I, +′) = B, where D is the GRM 

between individuals calculated using Balding-Nichols (BN) matrix (Kang et al. 2010) and 

; is the identity matrix. 

 

(5) A MLMA including the GRM and Q-matrix. In the equation 7, the parameter 1 is a 

vector of fixed effects with addition of population structure corrected by STRUCTURE. 

 

(6) A MLMA with GRM and significant PCs. In the equation 7, the parameter 1 is a vector 

of fixed effects with addition of the significant PCs. 

 

All these GWAS models were performed for each population independently and for the 

combined data (Joint-GWAS). For the Joint-GWAS analysis, the fixed effects for the 

combined data were age of measurements (2-5 years) and population of origin (Pop1, 

Pop2, Pop3, Pop4) included as covariates, as described in equation 4. 

 

Regional heritability mapping (RHM). The RHM method was applied to each population 

independently. This method divides the genome into windows of pre-determined numbers 

of SNPs (regions) for each chromosome, and the variance for each window is estimated. 

As described in the original methodology (Nagamine et al. 2012), we used a window size 

of 100 adjacent SNPs to build a regional relationship matrix and the window was shifted 

every 50 SNPs. At the end of the chromosome, a minimum of 100 SNPs encompasses 

the last window. The mixed linear model was fitted using GCTA (Yang et al. 2011a), that 
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uses an analogous model as MLMA (equation 7), except for the inclusion of the regional 

genomic additive effects (0): 

 

! = H1 + I + 	0 + +    (8) 

 

where 1 is a vector of fixed effects including intercept and population structure (from 

STRUCTURE); 0 is the vector of regional genomic additive effects (random effect) 

captured by the GRMs calculated using SNPs within each region (window). The variance 

structure of the RHM model were I	~8(0, D<J>); 0	~8(0, DK<K>); +	~8(0, ;<=>); ?3@(I, 0′) =

B; ?3@(I, +′) = B; ?3@(0, +′) = B, where D is the whole-genome relationship matrix 

between individuals calculated as described by Yang et al., (2010) algorithm;	DK  is the 

regional relationship matrix using the same algorithm for each window and ; is the identity 

matrix. The whole-genomic and regional heritabilies were estimated as ℎJ
> = 	<J

> <F
>	G and 

ℎK
> = 	<K

> <F
>	G , respectively. To test for the presence of regional variance (<K>) using the 

RHM method, a likelihood ratio test (LMN = 	−2ln(LS/LU)) was used to compare a model 

fitting variance in a specific window (fitting both whole-genome and regional additive 

variance) against the null hypothesis of no variance in that window (whole-genome 

additive variance only); where LS and LU are the likelihood values for the hypothesis of 

the absence (VS: <K> = 0) or presence (VU: <K> > 0) of regional variance. 

 

SNP Set-based models. Knowing that the effect sizes of individual genetic variants 

potentially detected by single SNP-based models are very small we tested the aggregated 

effect of a set of SNPs using a set-based association approach by gene or by segment 

with the goal to increase the power of the GWAS. Two set-based methods were used: (1) 

a gene-based model with fastBAT (Bakshi et al. 2016) in GCTA (Yang et al. 2011a) using 

summary data from the previous GWAS (SNP-based models) for the combined dataset 

(Joint-GWAS). The gene-based model was fitted using SNPs within 50 Kbp from the 

UTRs of an annotated gene in the Eucalyptus genome (Myburg et al. 2014); and (2) a 

second set-based GWAS model for the combined dataset (Joint-GWAS), called segment-

based model (or region-based model). This segment-based model was implemented 

using the same list of association P-values (summary data) used in the gene-based 
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models, but was performed using fastBAT analysis (Yang et al. 2011a; Bakshi et al. 2016) 

based on segments of 100 Kbp. 

 

To select significant associations, different multiple test corrections were applied to the p-

values obtained. The Bonferroni procedure was implemented to control for type I error at 

α = 0.05 and the Benjamini & Hochberg (1995) procedure was used to control for false 

discovery rate (FDR) at 5% on SNP-based GWAS models. A third less stringent ad hoc 

threshold of −Log10 (P) ≥ 4, was also used to declare additional significant associations 

that did not survive using Bonferroni and FDR corrections. This ad hoc threshold was 

defined based on the threshold value established in a previous study in population Pop4-

CNB, using a permutation test with Bonferroni correction for multiple tests (Resende R.T. 

et al. 2016). This threshold value is more stringent than the one (−Log10 P ≥ 3.5) reported 

in a recent soybean study (Kaler et al. 2017) using a comparable number of SNPs 

(31,260) and similar to the ad hoc threshold (α = 1/effective marker number) considered 

in a Populus nigra study (Allwright et al. 2016). For the RHM approach, to account for the 

overlapping windows half of the total number of windows tested were used in the 

Bonferroni and FDR at 5% multiple testing corrections. Additionally, an ad hoc threshold 

(−Log10 P ≥ 2) was tested to declare significant RHM windows associated with growth 

traits. The thresholds considered for the set-based GWAS were the same as those used 

for the single SNP-based GWAS models, but instead of the number of SNPs tested, the 

number of genes was used for the gene-based GWAS and the number of regions created 

by the segment-based GWAS. The Manhattan plots were generated using the qqman 

(Turner 2014) and the ggplot2 R packages (Wickham 2009). 

 

RESULTS 

 

SNP genotyping and population stratification 

 

A total of 59,222 SNPs originally converted in the EUChip60K chip (Silva-Junior et al. 

2015) were targeted for genotyping. More than 46,000 SNPs were retained for all 

populations following a filter for call rate (CR) ≥ 90%, and 51,274 SNPs for the combined 
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dataset. After removing monomorphic markers (MAF > 0), around 30,000 SNPs were 

retained for the four populations and 41,320 for the combined set with an overall final rate 

of missing data of only 1%. After filtering for call rate and MAF, the distribution of the 

number of SNPs into MAF classes showed enrichment for low frequency alleles (MAF 0–

0.1, Fig. SM2-2). Two alternative SNP datasets with different MAF thresholds were also 

used to investigate whether removing lower frequency SNPs had an impact on GWAS 

results. Finally, sets of 7,000 to 14,000 SNPs in intergenic regions and in approximate 

linkage equilibrium were generated for the population structure analyses (Table 2-2). 

Population structure analyses with these SNP sets revealed that the most likely numbers 

of subpopulations varied between K = 2 for Pop1-IPB and Pop2-ARAB to K = 5 for Pop4-

CNB (Table 2-2). When all four populations were combined the most likely number of 

subpopulations was K = 2 (Fig. 2-1A), using no previous population information in the 

admixture model. The ancestry coefficient barplots from STRUCTURE showed K ranging 

from two to four subpopulations in the combined dataset (Fig. 2-1A). For K = 2 only Pop4-

CNB was clearly different from the other three populations, consistent with the highest 

FST estimates observed between Pop4-CNB and the others (FST range from 0.0712 to 

0.0937). For K = 3, Pop2-ARAB and Pop3-ARAC were grouped together, showing that 

individuals from these two populations are more closely related (FST = 0.0370) than the 

others, in agreement with the origin of these two populations that belong to the same 

breeding company (Fibria) and have therefore some parents in common. When K = 4 the 

combined dataset was subdivided in four populations, although some proportion of 

admixture was present. The numbers of significant principal components according to a 

broken stick model were used in the GWAS analyses to correct for population 

stratification based on the PCA results. The significant PCs defined in the four populations 

and the combined population (Table 2-2) cumulatively explained 8.6%, 3.3%, 6.6%, 

11.2% and 7.6% of the variation for each data respectively. The PCA for the combined 

dataset showed that all four populations have a similar genetic background, with the first 

two principal components explaining only 3.2% of the genetic variance (Fig. 2-1B and 2-

1C). 
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Linkage disequilibrium, effective population size, genomic and pedigree-estimated 

heritabilities 

 

The pairwise estimates of LD (r2) were calculated for all pairwise distances among the 

high-quality polymorphic SNPs (MAF > 0) on each chromosome separately for the four 

populations independently. The genome-wide LD average for pairs of SNPs within a 1 

Mbp distance from each other ranged from 0.052 (Pop1-IPB) to 0.256 (Pop4-CNB). The 

genome-wide decay of LD to an r2 below 0.2 were considerably faster for Pop1-IPB (34.8 

Kbp), Pop3-ARAC (42 Kbp) and Pop2-ARAB (75.1Kbp) compared to that of Pop4-CNB 

(637.7 Kbp) (Fig. 2-2). The more extensive LD on Pop4-CNB may be explained by the 

more advanced selection state of this population when compared with the others. 

Estimated effective populations sizes based on the heterozygote excess method (Ne) 

were 6.2 for Pop1-IPB, 19.3 for Pop2-ARAB, 11 for Pop3-ARAC and 12 for Pop4-CNB 

(Table 2-1), suggesting that although a larger number of parents originated the individuals 

of these Eucalyptus breeding groups some more ancestral level of relatedness between 

such parents exists. The estimated pedigree-based narrow-sense heritabilities (h2) were 

moderate (0.374 for Pop4-CNB) to high (0.683 for Pop3-ARAC), with the lowest and 

highest values observed for DBH. Estimates of genomic heritabilities varied from 0.296 

for HT in Pop4-CNB to 0.528 for DBH in Pop3-ARAC, accounting for a large proportion 

(64–89%) of the pedigree-based heritabilities (Table SM2-1). Estimates of variance 

components are also reported in Table SM2-1. 

 

Single-SNP GWAS 

 

The LMA models 1, 2 and 3 without the introduction of a GRM (K of kinship) resulted in 

the detection of a large number of associations, most of them likely spurious given the 

structured nature of these breeding populations (Table 2-3). For instance, in Model 1 (no 

correction) there were hundreds to thousands of SNPs associated with growth traits for 

all comparisons. When the population stratification covariate obtained either by 

STRUCTURE or PCA was included in the LMA model (Models 2 and 3), the number of 

associations for each population reduced drastically, except for Pop1-IPB that showed a 
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slight increase. The quantile-quantile (QQ) plots show the likely inappropriateness of the 

LMA model without the kinship matrix for GWAS analyses, since the observed and 

expected p-values differed considerably for a large number of SNPs (Fig. SM2-3). 

 

When the random effects captured by the kinship matrix (GRM) and the fixed effects 

captured by population stratification (STRUCTURE or PCA) were included in the MLMA 

models, no associations were detected for DBH in each population separately following 

the correction for multiple testing (Table 2-3 and Fig. SM2-4). The same was observed 

for total height, except for Pop4-CNB where several significant associations (Fig. 2-3 and 

Fig. SM2-4D: B/D) were detected using a FDR (p <0.05) threshold (Table 2-3). All these 

significant associations detected by single-SNP GWAS for Pop4-CNB are common 

SNPs, with allele frequencies ranging from 0.27 to 0.47, suggesting that this approach is 

suitable for the detection of common variants. Nevertheless, when a more stringent 

adjustment for multiple testing was used (Bonferroni at 5%), no significant association 

remained (Table 2-3). Most p-values were similar to the expected diagonal in the QQ 

plots in the MLMA models adjusted for GRM, which indicates better appropriateness of 

these GWAS models (Fig. SM2-3). Furthermore, the models built with GRM produced a 

drastic reduction in the number of significant markers, showing the impact of relatedness 

on GWAS in these breeding populations. The two alternative marker datasets (MAF ≥ 

0.01 and MAF ≥ 0.05) did not show any difference as far as results for the single-SNP 

GWAS because all SNPs found associated were common. 

 

To increase the power of detection, a Joint-GWAS was performed combining the data for 

all populations. Using this approach, three associations were detected for DBH when the 

kinship matrix was included after multiple-test correction (Bonferroni at 5%) (Table 2-3). 

For HT, no significant association was found after inclusion of the GRM in the model 

(Table 2-3 and Fig. SM2-4E: B/D). Although traditional multiple testing thresholds (FDR 

and Bonferroni) are important to control for type I error (false positive), they tend to be 

moderate to excessively stringent for GWAS, where several thousand markers are used, 

and a minority are expected to be associated with phenotype. To address this potential 

problem, a less stringent ad hoc threshold (−Log10 P ≥ 4) was used to declare additional 
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significant associations not detected before. With this threshold, eight variants putatively 

associated (p-value ≤ 0.00008) with DBH were found in the Joint-GWAS analysis (Fig. 2-

4, green dashed line). Collectively, of these 11 SNPs associated with DBH using Joint-

GWAS (three associations and eight putative associations) six are located into genes, 

including the three most significant ones. Six of the 11 associations are common SNPs 

(MAF = 0.058-0.422) and the remaining five SNPs are rare (MAF = 0.001-0.015). When 

the ad hoc threshold was considered for HT, four associations were detected, where the 

most significant SNP (p-value 0.000006) is also the most significant one detected for DBH 

(EuBR07s38098526, Table 2-5) and located on chromosome 7. The third SNP 

(EuBR08s48262720) associated with DBH (FDR at 5%) was also detected for HT on 

chromosome 8. These results are not unexpected given the high phenotypic correlation 

between these two growth traits (r = 0.82). For the four SNPs putatively associated with 

HT, three are rare (MAF = 0.015-0.017) and one is common (MAF = 0.429). 

 

When the ad hoc threshold was considered for the single-SNP GWAS corrected by 

kinship matrix and STRUCTURE (Model 5), putatively associated SNPs were detected 

for both traits in all populations (Table 2-3 and Fig. 2-3, red line). However, significant 

GWAS hits found in each population after correcting for both family and population 

structure were generally not shared across populations. To investigate further the sharing 

of associations across populations as a way to provide some independent validation for 

the associations found, results from Model 2 (Q-matrix from STRUCTURE) were used to 

create a comparison dataset. When the results for all populations were compared, four 

and six shared associations were detected for DBH and HT, respectively (Fig. 2-5). These 

results are comparable to those obtained using Model 3 (significant PCs), where the 

number of shared associations were three for DBH and seven for HT (data not shown). 

Amongst the shared associations from Model 2 and 3 for DBH, one association 

(EuBR10s19747657) was common between these two methods of correction for 

population stratification. For HT, four associations were found in common between Model 

2 and 3 for all populations, one located on chromosome 1 (EuBR01s5300169) and the 

others on chromosome 2 within an interval of 13 Kbp (EuBR02s42875938, 

EuBR02s42876352 and EuBR02s42888917). The small number of common associations 
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found among all populations, increases considerably, however, when Pop4-CNB is 

excluded from the analysis and comparisons are made only among Pop1-IPB, Pop2-

ARAB and Pop3-ARAC. Under this scenario, 157 and 40 significant associations are 

shared for DBH and HT, respectively (Fig. 2-5). This considerable difference in results 

likely reflects the significant genetic differentiation found between Pop4-CNB and the 

other three populations in the structure analysis (Fig. 2-1A). 

 

Regional heritability mapping (RHM) 

 

RHM was performed for all populations to evaluate whether additional variants associated 

with the growth traits could be detected. For Pop1-IPB, Pop2-ARAB and Pop3-ARAC, no 

significant regions were declared significant with this approach using multiple testing 

correction. On the other hand, for Pop4-CNB, eight regions (each with 100 SNPs) were 

significantly associated with total height on chromosome 2 (Fig. 2-3 and Table 2-4) at the 

suggestive level (FDR at 5%), with one of those reaching the genome-wide level 

(Bonferroni at 5%). This result is consistent with the single SNP-based GWAS, which 

detected 78 significant common variants clustered on chromosome 2 using the correction 

for multiple testing (FDR at 5%) for Model 5 (Fig. 2-3). The most significant window (hr2 = 

0.07) detected by RHM for HT in Pop4-CNB captured 24% of the genomic heritability (hg2 

= 0.29). Altogether, each of the eight significant windows declared by RHM explained 5-

10% of the total genomic heritability captured by the whole-genome relationship matrix. 

In addition to these eight associations, twelve more are putatively associated considering 

the lower ad hoc threshold for RHM adopted (−Log10 P ≥ 2), where two windows are 

located on chromosome 1 and the remaining 10 on chromosome 2. For DBH in Pop4-

CNB, no significant regions were detected. Still under a lower ad hoc threshold in Pop1-

IPB, 12 widows were putatively associated with DBH on chromosome 7, with the most 

significant one showing a regional heritability of 0.13, which alone captures 25% of the 

total genomic heritability (hg2 = 0.52). Still under this more liberal threshold, one 

association was declared for DBH on Pop2-ARAB (chromosome 6) and two for Pop3-

ARAC (chromosome 6 and 9). For HT, two windows were putatively associated for Pop1-

IPB, one on chromosome 2 and one on 7 (Table 2-4). 
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Joint-GWAS from summary datasets 

 

To assess further the power of combining all populations into a single analysis, we 

analyzed the summary data from Joint-GWAS into genic and segment-based SNP sets. 

Of the 36,349 total genes in the E. grandis genome v.2.0 (Myburg et al. 2014), 31,770 

genes were considered as gene sets as they contain SNPs located in their sequence or 

vicinity (50 Kbp). For the gene-based Joint-GWAS, nine genes with six contiguous SNPs 

were significantly associated with HT at the genome-wide level (Bonferroni at 5%) on 

chromosome 10, after adjusting for kinship and population structure (Fig. 2-6B). When 

considering only the kinship matrix, without the correction for population structure, a peak 

on chromosome 9 was also considered significant, involving 15 genes. Other significant 

signals were detected at the suggestive level, with one gene associated with two close 

SNPs on chromosome 3 and another locus with five SNPs on chromosome 7 (Fig. 2-6A). 

The gain of power observed for this methodology is due to multiple small independent 

association signals at these loci analyzed, including rare and common alleles. For the 

segment-based Joint-GWAS (Fig. 2-6C-D), 4,766 segments of size 100 Kbp were tested, 

with four of those regions being associated with HT (Fig. 2-6C). The most significant 

region (Bonferroni at 5%) contains three SNPs, located on chromosome 2 and near two 

genes, that had not been detected in the previous GWAS analyses performed for the trait. 

The second most significant region considering a genome-wide level is the same as the 

most significant one detected by the gene-based approach. The remaining two 

associated segments were the same regions detected by the gene-based method, 

showing an agreement between region-based and gene-based Joint-GWAS. Despite the 

detection of three significant associations for DBH with single-SNPs Joint-GWAS, no 

association was detected using the summary datasets for this trait. 

 

DISCUSSION 

 

This study further advances the investigation of discrete genomic regions controlling 

growth traits in forest trees in general and of Eucalyptus in particular. Significant 
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associations were detected for height and diameter growth with the increased power of 

Joint-GWAS experiments, which leveraged genome-wide data for 3,373 individuals 

across four Eucalyptus breeding populations. Our study further corroborates the complex 

architecture of growth traits and suggests that combining data from multiple independent 

populations is a viable option to increase the sample size and increase the power to detect 

at least part of the slightly larger effects segregating in the target breeding populations. 

The single-SNP GWAS and RHM identified genomic regions associated with growth 

traits, especially for total height in Pop4-CNB, which was the population with more 

extensive LD (637.7 Kbp). Both approaches had a comparable profile identifying similar 

regions associated with growth traits (Fig. 2-3) and performed well when there was a 

strong evidence of association arising from alleles present at high frequency in the 

population. 

 

Impact of population structure, LD and relatedness on GWAS 

 

Over the years, different single-SNP MLMA models have been proposed for GWAS to 

account for population and family-based structure, involving stringent multiple 

comparisons, and using either population structure (Korte et al. 2012), PCA (Price et al. 

2006) or relatedness (Yu et al. 2006). Our results correcting for either population structure 

(Model 2) and PCA (Model 3) yielded different results and differed more when the kinship 

matrix was added to the models (Models 5 and 6) (Fig. SM2-3 and SM2-4). We compared 

five different kinship matrices to account for relatedness, using GRMs built by different 

methodologies: (i) VanRaden 2008; (ii) IBS (identity by state) and (iii) Balding-Nichols 

(BN) using Kang et al. 2010; (iv) Powell et al. 2010 and (v) Yang et al. 2010. We found 

strong concordance between all these methods with no differences detected for the 

single-SNP GWAS analysis (results not shown). Similar results were also obtained in a 

comparative study (Eu-ahsunthornwattana et al. 2014) using different kinship matrices 

and software, concluding that the choice of MLMA model implementation cannot be 

based on power/type I error considerations, but must instead be based on user-

friendliness and speed. The estimated effective population sizes of these breeding 

populations are much smaller than the number of parents used to generate the individuals 
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studied (Ne = 6.2-19.3). Notwithstanding the fact that such estimates of Ne might be 

downward biased, these results suggest the existence of considerable cryptic ancestral 

relatedness among the parent trees possibly due to the fact that they derive from common 

selected families and seed sources from the wild. This complex family-based structure 

present in these elite breeding populations is not surprising and it likely inflates the rate 

of false-positive associations, further challenging the detection of true associations. An 

order of magnitude higher extent of LD was observed for Pop4-CNB (637.7 Kbp, Fig. 2-

2) when compared to the other three populations. This was not unexpected as Pop4-CNB 

comes from a second-generation hybrid breeding. Consistent with expectations, Pop4-

CNB with a higher LD was the only population where associations were detected for HT 

at FDR = 5% (Table 2-3). In a recent GWAS performed in two breeding populations of 

different species of Eucalyptus (Müller et al. 2017), we also found more associations in 

the population displaying longer-range LD. Nevertheless, such an extent of LD at 637 

Kbp while favorable for detection power will not allow any resolution to arrive to single 

genes and much less to causal variants. 

 

Although the use of GRM to control for relatedness is important to remove false 

associations (Astle and Balding 2009; Speed and Balding 2014), it can also be considered 

a very stringent process that might exclude some bona fide associations (Table 2-3). 

Several studies can be found in the literature where naïve association models were 

employed that did not account for family-based or even for population structure factors. 

A multi-gene association mapping using 435 unrelated individuals of Populus detected 

more than 400 significant associations for growth traits without any correction for 

population structure (Du et al. 2016). Despite the fact that this latter study used a sample 

from the wild, effects of population structure can still be present and need to be accounted 

for to minimize bias due to past relatedness in the evolutionary history of the species or 

even more recent one due to family structure. A GWA study performed in Populus nigra 

showed a strong decrease in the number of associations declared, especially for growth 

trait, when population structure and/or family-based correction were incorporated in the 

model, even for a natural population of 714 individuals (Allwright et al. 2016). In our 

experiment, the large number of SNPs detected without correction of GRM suggests that 
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association signals are confounded with family-based structure (Table 2-3). However, it 

can be expected that some of the associations are indeed true and overcorrection of type 

I error may result in considerable type II errors. Since complex growth traits in Eucalyptus 

have been shown to most likely follow an infinitesimal model (Müller et al. 2017), it is 

expected that a large number of SNPs will be needed to explain a large proportion of trait 

heritability. In humans, a recent study estimated that more than 100,000 SNPs influence 

height (Boyle et al. 2017). We believe that total height in Eucalyptus will be no different. 

To apply some level of biological stringency over the thousands of associations obtained 

in Model 2 (controlling only for population structure) in each population, we carried out a 

comparative analysis and identified associations that are shared among multiple 

populations (Fig. 2-5). Despite the fact that these results were obtained with no control 

for relatedness with the GRM, we consider these results particularly important and novel 

as they constitute a form of independent validation of associations across populations. 

These four populations and their experimental settings are truly independent in time and 

space and moreover subject to genotype by environment interactions that could not be 

accounted for in the model as we had no common check trees across the experiments. 

Still we did find a large number of associations shared across populations, particularly 

when the distinct population Pop4-CNB was left out of the analysis. Following this 

validation approach, several interesting genes were identified with strong indication of 

underlying the phenotype (see below). 

 

Associations for growth traits in forest trees 

 

Various studies attempted a GWAS for growth traits in forest trees, mainly in Populus 

(Porth et al. 2013; Allwright et al. 2016; Du et al. 2016; Fahrenkrog et al. 2016), Pinus 

(Bartholomé et al. 2016a; Lu et al. 2017) and Eucalyptus (Cappa et al. 2013; Müller et al. 

2017). All of them, however, had low detection power due to the small numbers of 

individuals used. Despite the considerably larger number of individuals used in our study 

for each population independently (Y	= 758-979) and for the combined dataset (Y	= 

3,373), our results suggest that an even greater number of individuals will be necessary 

to identify regions that would capture larger fractions of the genetic effects for such 
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complex growth traits. Although the overall genomic heritabilities estimated using all 

markers (0.296-0.528) account for a large proportion (64–89%) of the pedigree-based 

heritabilities, the GWAS results contributed too little for genetic variance given the 

relatively low number of associations identified for these complex traits. Using the RHM 

approach, we identified a total of 37 windows, 15 for DBH and 22 for HT (Table 2-4), each 

one encompassing 100 SNPs and providing heritability estimations for genomic regions 

containing rare and common variants. This approach was more effective than single-SNP 

GWAS to capture rare variants that do not have large enough effect to be declared 

significant at the genome-wide level, as observed in other studies (Nagamine et al. 2012; 

Riggio et al. 2013; Resende R.T. et al. 2016). Some genomic windows identified by RHM 

individually explained 3 to 13% of the genomic heritability, similarly to what was obtained 

by Resende R.T. et al. 2016. Additional genomic regions were identified using a Joint-

GWAS approach with a large number of individuals (Fig. 2-4 and 2-6). We performed a 

region-based Joint-GWAS with a window of 100 Kbp, because the typical extent of LD 

was around 35-75 Kbp for three populations and larger (~600 Kbp) for Pop4-CNB, 

indicating that most 100 Kbp windows in the genome may include variants that affect 

growth traits. We also applied Joint-GWAS at a gene level, a powerful approach that 

detected important genes related to the growth traits analyzed (Fig. 2-6 and Table 2-5), 

being the first study in Eucalyptus to attempt gene-based GWAS. 

 

Considering the single-SNP GWAS analysis accounting for population structure and 

relatedness, 356 significant SNPs were detected for DBH and HT. These included 210 

(59%) associations within genes (184 unique genes) for all populations independently as 

well as for the combined dataset (50% within 60 unique genes). The Joint-GWAS from 

summary data identified another 30 genes, where 28 were detected using gene-based 

and two genes using region-based models. We performed functional annotation of these 

genes and altogether they encompass different functional categories related to cell wall 

construction of growing tissues, cell wall cellulose biosynthetic process, RNA/DNA-

binding and ion-binding, transporter activity, transcription factor activity, response to 

stimulus and others. Similar results were obtained for growth traits in Populus (Du et al. 

2016), suggesting that tree growth is controlled by multiple factors affecting cell division, 
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meristems expansion and requires regulation of complex metabolic pathways with indirect 

effects on wood formation (Grattapaglia et al. 2009). This view is in line with the 

“omnigenic” model proposed by Boyle et al., (2017), for human traits suggesting that 

association signals for complex traits tend to be spread across the genome, including 

core genes directly affecting the phenotype (common variants with large effects) vastly 

outnumbered by many peripheral genes without any obvious connection to the trait. Since 

these core genes only constitute a small fraction of all genes, most heritability comes from 

genes with indirect effects (Boyle et al. 2017), a view that also fits with Fisher’s 

infinitesimal model (Fisher 1918). For this attempted functional description of the 

associations found, SNPs associated using RHM were not included, because each 

significant region has at least 100 SNPs and the concept of this approach is to identify 

regions with common and low-frequent variants rather than specific-genes (Nagamine et 

al. 2012; Riggio et al. 2013). 

 

Genes underlying the most significant associations were classified using gene ontology 

(GO) enrichment analysis for E. grandis terms with agriGO v2.0 (Tian et al. 2017). 

Significant GO terms (FDR ≤ 0.05) were identified encompassing four significant terms 

for biological process (single-organisms process, signaling, localization and cellular 

component organization or biogenesis), four for cellular component (macromolecular 

complex, cell, organelle and membrane part) and two for molecular function (binding and 

transporter activity). The binding category, including DNA, RNA, protein and ion-binding, 

was the most represented (56%), which can better explain the growth trait heritability 

since it has more associations. This was also noted by Boyle et al., (2017), who showed 

a strong linear relationship between the sizes of the functional categories and the 

proportion of heritability that they contributed. Furthermore, this suggests that broad 

functional categories contribute more to total trait heritability than genes in apparently 

specific-relevant functional categories related to the complex trait evaluated, as the 

largest contributor to heritability was simply the largest category. Although GWAS peaks 

might be peripheral to complex traits (Callaway 2017), identifying more associations might 

enable the identification of the biological networks implicated in growth and understand 

their interactions. 
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Associations for growth pinpoint genes involved in cell wall biosynthesis 

 

Our study was limited to the most commonly measured growth traits, which together with 

wood specific gravity constitute the mainstay of tree breeding and forest productivity in 

Eucalyptus. No specific phenotype related to wood formation could be obtained in these 

populations. However, it is well known that growth is determined largely by cell wall 

biosynthesis, involving carbohydrate metabolism and lignification. Interestingly, a number 

of associations found are localized into genes related to cell wall biosynthesis. In our 

Joint-GWAS analysis, the most significant SNP (Bonferroni at 5%) associated with DBH 

and HT (EuBR07s38098526, MAF = 0.01468) was detected in the exon of gene model 

(Eucgr.G02075/AT1G14720) encoding for xyloglucan endotransglucosylase/hydrolase 

28 (XTH28) (Table 2-5). Another xyloglucan endotransglucosylase/hydrolase 5 (XTH5, 

Eucgr.G0190 / AT5G13870), also located on chromosome 7, was detected using gene-

based Joint-GWAS from summary data in HT with eight SNPs in the segment (Table 2-

5), where the top putatively associated SNP (lowest p-value) is a common variant 

(EuBR07s34941110, MAF = 0.123). Xyloglucan endotransglycosylase/hydrolase (XTH) 

enzymes act remodeling cell wall hemicelluloses, with various functions including wall 

strengthening and xylem formation (Bourquin 2002; Cosgrove 2005). Both XTH28 and 

XTH5 cleave and re-ligate xyloglucan polymers, a hemicellulose that is an essential 

constituent of the primary cell wall. Hence, they participate in cell wall construction of 

growing tissues (Van Sandt et al. 2007), with evident effect on root growth and cell wall 

extension (Maris et al. 2009). A genome-wide study in natural populations of P. 

trichocarpa (Mckown et al. 2014) also detected significant association for phenology traits 

in a gene encoding XTH28 (Potri.008G138400 / AT1G14720). 

 

The Joint-GWAS approach also detected a common SNP (EuBR06s6100971, MAF = 

0.4226) putatively associated with DBH located on chromosome 6 in gene model 

Eucgr.F00486 (AT5G42100) that encodes for a glucan endo-1,3-b-glucosidase (Table 2-

5), a type of glycosyl hydrolase (GHs) whose function is the hydrolysis of any O-glycosyl 

bond (Lopez-Casado et al. 2008). The hydrolysis of (1,3)-b-D-glucosidic linkages in (1,3)-
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b-D-glucans is important for carbohydrate metabolic process and cell wall organization 

(Lopez-Casado et al. 2008). A GWAS in Populus (Du et al. 2016) also detected an 

association in the glucan endo-1,3-b-glucosidase gene (Potri.018G000900). We also 

identified a significant SNP (EuBR04s17486529, FDR at 5%) in three of the four 

populations (Fig. 2-5) associated with DBH in the Eucgr.D00955 gene located on 

chromosome 4. This gene (Eucgr.D00955 / AT4G17180) encodes an O-glycosyl 

hydrolases family 17 protein, another type of GHs. An additional significant SNP 

(EuBR05s70210869, FDR at 5%) shared between three populations was associated with 

total height on chromosome 5. This common variant in gene Eucgr.E04103 

(AT1G61820), encoding a b-glucosidase 46 (BGLU46), which is also a type of GHs, may 

be involved in lignification by hydrolyzing monolignol glucosides (Escamilla-Treviño et al. 

2006). 

 

The analysis of the larger number of shared associations among three of the four 

populations also showed a significant SNP (EuBR04s17531959, FDR at 5%) associated 

with DBH on chromosome 4 in a galacturonosyltransferase 4 (GAUT4) gene 

(Eucgr.D00963 / AT5G47780). The GAUT4 is involved in pectin and xylans biosynthesis 

in cell walls with role in stretching cells and promoting growth (de Godoy et al. 2013; 

Bryan et al. 2016). Pectin is a structural heteropolysaccharide contained in the primary 

cell walls (Voragen et al. 2009) and xylan is a type of hemicellulose (Studer et al. 2011). 

Another common variant (EuBR10s8284185, FDR at 5%) identified in three populations 

was associated with DBH located on chromosome 10 in a xanthine dehydrogenase 1 

(XDH1) gene (Eucgr.J00782 / AT4G34890). The XDH1 is a key enzyme involved in 

purine catabolism and plays an important role during plant growth and development, 

senescence and response to stresses (Hesberg et al. 2004; Yesbergenova et al. 2005; 

Nakagawa et al. 2007). The simultaneous silencing of XDH1 and XDH2 showed reduced 

growth in Arabidopsis (Nakagawa et al. 2007). 

 

The significant association with DBH at 5% FDR threshold on chromosome 8 in the Joint-

GWAS analysis (Fig. 2-4, blue line) is located inside gene model Eucgr.H03281, a gene 

encoding for an armadillo/beta-catenin-like repeats-containing protein-related, whose 
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function is involved in the cellulose biosynthetic process. In a recent GWAS study in E. 

pellita we also found a significant association for growth inside Eucgr.F03806, a gene that 

codes for another armadillo/beta-catenin-like repeat positioned on a different 

chromosome (6) (Müller et al. 2017). This gene in Arabidopsis thaliana (AT1G77460) 

transcribes the protein cellulose synthase interactive 3 (CSI3), that regulates primary cell 

wall biosynthesis and cellulose microfibrils organization (Lei et al. 2013). A GWAS in 

Populus identified SNPs associated with biomass, ecophysiology and phenology traits in 

different cellulose synthase genes (Mckown et al. 2014): CESA2 (cellulose synthase A2: 

Potri.007G076500 / AT4G39350), CESA4 (cellulose synthase A4: Potri.002G257900 / 

AT5G44030) and CSLA9 (cellulose synthase like A9: Potri.006G116900 / AT5G03760). 

The dissection of cellulose synthase complexes (CSCs), including cellulose synthase 

interactive proteins (CSIs) and cellulose synthase genes (CESAs), is important to 

understand the molecular mechanism underlying the intimate relationship between 

cellulose microfibrils and microtubules (Lei et al. 2012; Lei et al. 2014). Although the 

different genes identified in our study will require further validation, consistency with 

GWAS results from studies in poplar provide valuable preliminary leads for further 

investigation. It is noteworthy that the first Eucalyptus transgenic approved in Brazil 

(Nature 2015) with a claimed potential to produce between 4 and 20% more wood than 

the wild type (Ledford 2014), was engineered for an endo-1,4-β-glucanase (CEL1) from 

Arabidopsis that affects plant growth (Shani et al. 2006), a gene related to the cellulose 

synthase-like C family that encodes a β-1,4 glucan synthase (Cocuron et al. 2007). 

 

Associations for growth pinpoint genes involved in disease resistance 

 

In addition to the associations detected for growth revealing genes involved in the 

regulation of cell wall biosynthesis, we also identified associations with SNPs into disease 

resistance genes (Table 2-5). In plants, most of the disease resistance genes encode 

nucleotide-binding site leucine-rich repeat (NBS-LRR) proteins, that are subdivided into 

two functionally different domains: TIR (toll/interleukin-1 receptor) and CC (coiled-coil) 

subfamilies (McHale et al. 2006). The single-SNP analysis in Pop4-CNB detected an 

association with HT at SNP EuBR02s18469492 (FDR at 5%) located into gene model 
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Eucgr.B01164 (AT3G14470, RPPL1, putative disease resistance RPP13-like protein 1), 

encoding for NB-ARC domain-containing disease resistance protein. The Joint-GWAS 

gene-based from the summary data for HT detected associations in four different genes 

encoding for NBS-LRR resistance genes, encompassing four to six SNPs spanning each 

gene. The most significant SNP (EuBR10s34334357, Bonferroni at 5%) belongs to the 

CC-NBS-LRR (Eucgr.J02727 / AT5G48620, RPP8L4, probable disease resistance 

RPP8-like protein 4) and the other three genes belong to the TIR-NBS-LRR subfamily 

(Eucgr.E02914, Eucgr.H01749 and Eucgr.H01750). These four genes are located on 

chromosomes 5, 8 and 10, in agreement with the localization of NBS-LRR cluster and 

supercluster of disease resistance genes in Eucalyptus (Christie et al. 2016) and also 

with the GWAS carried out using RHM analysis by Resende R.T. et al. (2016). For the 

latter example, although the authors did not find significance in those regions, in our study 

they reached significance using Joint-GWAS after combining this population with the 

other three, further highlighting the gain of power obtained when multiple populations are 

combined. 

 

CONCLUSIONS 

 

In this study, we carried out a GWAS for growth traits by gathering a considerably larger 

association population of 3,373 individuals across four breeding populations of 

Eucalyptus in an attempt to evaluate the impact of a larger sample size on the ability to 

detect discrete associations. Because these trees were genotyped with a common SNP 

platform we were able to carry out Joint-GWAS analyses, highlighting the value of such 

public SNP resources – Eucalyptus surprisingly still a unique case among forest trees – 

to advance the investigation of the complex relationships between sequence variation 

and complex phenotypes. In parallel, we tested several GWAS models with variable 

levels of correction for population structure and relatedness and different segment-based 

approaches in an attempt to capture a wider frequency spectrum of variants. Under the 

most stringent corrections for population structure and relatedness, significant 

associations were found for height only in one of the populations, where the extent of LD 

was on the order of ~600 Kbp. When the combined set of 3,373 trees was used, either 
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as a single-SNP GWAS panel or by Joint-GWAS methods only a few associations were 

found for diameter growth and none for height. Regional heritability mapping was not able 

to improve detection and essentially revealed the same associations found by the single-

SNP approach in the same population. At lower stringency thresholds or correcting only 

for population structure, several tens of associations were found, and more importantly, 

these associations were shared across three of the four populations. Although these 

associations could in principle be spurious given the no correction for relatedness, the 

fact that they were independently detected in three populations adds some credibility to 

them. Significant and putative associations were found in a number of genes related to 

cell wall biosynthesis and disease resistance, suggesting potential pleiotropic effect of 

these loci. 

 

Overall, however, our results do not differ substantially from most GWAS for growth traits 

carried out in forest trees to date. Despite the fact that they were obtained in breeding 

populations and not in collections of wild trees, this further corroborates that growth is 

controlled by many variants of relatively small effect such that the infinitesimal model fits 

the data well. Consistent with this hypothesis and with results of previous GWAS in 

Eucalyptus, we also observed that genomic heritabilities accounted for large proportions 

(64–89%) of the pedigree-based heritabilities, suggesting that considerably larger 

samples will be necessary if one intends to capture single variants that explain relevant 

portions of the genetic variation for growth. While some more encouraging GWAS results 

have been reported for wood properties and phenology traits mostly in tree species other 

than Eucalyptus, for growth our results point to the fact that genomic prediction 

approaches shall be more productive when it comes to tree breeding applications 

(Grattapaglia 2017). Still, as pointed out earlier (Resende R.T. et al. 2016), GWAS data 

should be useful to enhance the predictive ability of genomic selection, especially from 

segment or gene-based approaches capturing a combination of common and rare 

variants contributing comparatively larger portions of the heritability than single-SNP. As 

more Eucalyptus breeding programs adopt genomics to predict phenotypes based on a 

common SNP platform, increasingly larger datasets will become available and Joint-
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analyses, such as the one reported here for the first time in forest trees, should provide 

the necessary power to pinpoint such genomic segments. 
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TABLES 

 

Table 2-1: Main characteristics of the four association populations of Eucalyptus used in 

the study. 

Phenotypic data Pop1-IPB Pop2-ARAB Pop3-ARAC Pop4-CNB 

Company International 
Paper Brazil Fibria Fibria Cenibra 

Total number of parents 46 52 47 10 

Total number of full-sibs (FS) 
families 58 68 75 43 

Number of families remaining in the 
analyses 45 68 75 37 

Number of individuals/FS family 
remaining in the analyses 22 13 10 21 

Number of species involved in the 
population composition 
 

3 (E. grandis, 
E. urophylla, 

E. 
camaldulensi

s) 

5 (E. grandis, 
E. urophylla, 

E. 
camaldulensi
s, E. saligna, 
E. globulus) 

4 (E. grandis, 
E. urophylla, 
E. globulus, 
E. maidenii) 

2 (E. grandis, 
E. urophylla) 

Number of blocks 8 30 40 36 
Number of tree per plot 6 1 1 1 
Experimental Design RCBD* ALD-IB** ALD-IB** RCBD* 
Total number of trees in trial 2784 5280 9600 4900 

Number of trees used in the GWAS 
analyses 979 875 758 761 

Effective population size (Ne) 
estimated by heterozygote excess 
method (95% CIs)a 

6.2 
(6-6.3) 

19.3 
(17.9-20.8) 

11 
(10.6-11.5) 

12 
(11.3-12.7) 

Year when trees were planted 2006 2006 2006 2005 
Year when trees were phenotyped 2011 2008 2008 2008 
Age at phenotyping (yr) 5 2 2 3 

Site Brotas, SP Aracruz, ES Aracruz, ES 

Sabinópolis, 
Virginópolis, 
Antônio Dias, 

MG 
Coordinates 22°S; 48°W 19°S; 40°W 19°S; 40°W 18°S; 42°W 

*RCBD, Randomized complete block design. 

**ALD-IB, Alpha lattice design (incomplete block). 
a95% Confidence Intervals are shown in parentheses.
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Table 2-2: Genotypic data information and number of subpopulations determined using STRUCTURE and PCA for the four 

association populations. 
Attribute Pop1-IPB Pop2-ARAB Pop3-ARAC Pop4-CNB All 
Number of trees used in the GWAS analyses 979 875 758 761 3373 
Total number of SNPs genotyped 60904 60904 60904 60904 60904 

Number of SNPs retained with call rate > 90%  46436 47606 46368 46795 51274 

Number of SNPs retained with MAF>0* 32110 34859 33800 28795 41320 
Number of SNPs retained with MAF>0.01 27366 31819 30979 22728 33700 

Number of SNPs retained with MAF>0.05 24092 26484 26438 18075 25533 

Number of SNPs retained with MAF>0 in intergenic regions 13853 14918 14503 12813 19038 

Number of SNPs retained with MAF>0 in Intergenic Regions 
and in LE (STRUCTURE) 

10042 10105 10389 7790 14705 

Number of clusters (K) determined based on Evanno et al., 

(2005) 
2 2 3 5 2 

Number of significant principal components determined by a 

broken stick model (Jackson, 1993) 
2 1 2 2 3 

* This set of SNPs was used for GWAS analysis. 
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Table 2-3: Number of significant SNP associations for growth traits using LMA (Model 1 to 3) and MLMA (Model 4 to 6) 

models for the four breeding populations and for the Joint-GWAS (All) analyses. Also reported the number of SNPs 

putatively associated with growth traits using MLMA models (Model 4 to 6). 

Population Trait 
 Number of 

SNPs 
Model 1 Model 2  Model 3 Model 4  Model 5 Model 6  

None Q P K K + Q K + P 
Pop1-IPB 

DBH 

32110 3805(260*) 4212(315*) 4155(318*) 0 | 7 0 | 7 0 | 7 

Pop2-ARAB 34859 11147(1783*) 4373(212*) 2906(109*) 0 | 3 0 | 4 0 | 2 
Pop3-

ARAC 30979 17954(6729*) 9464(1668*) 3655(302*) 0 | 13 0 | 6 0 | 8 

Pop4-CNB 28795 12542(3411*) 1149(74*) 1396(34*) 0 | 4 0 | 3 0 | 2 

All 41320 24635(11871*) 18395(6291*) 18406(5693*) 3(3*) | 10 3(2*) | 11 2(2*) | 7 

Pop1-IPB 

HT 

32110 2731(119*) 3201(148*) 3237(163*) 0 | 7 0 | 6 0 | 7 

Pop2-ARAB 34859 5797(350*) 2854(167*) 2654(145*) 0 | 3 0 | 3 0 | 3 

Pop3-

ARAC 30979 13815(3338*) 4927(347*) 2201(80*) 0 | 6 0 | 9 0 | 9 

Pop4-CNB 28795 8303(959*) 1104(242*) 3263(472*) 27(0*) | 40 97(0*) | 78 12(0*) | 45 

All 41320 17383(4385*) 13560(2791*) 12259(2606*) 0 | 3 0 | 4 0 | 1 

False discovery rate (FDR) of 5%. 

*Bonferroni-correction with an experimental type I error rate of α = 0.05. 

After “|” is the number of SNPs putatively associated using an ad hoc threshold of −Log10 (P) ≥ 4. 
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Table 2-4: Regional heritability mapping for windows significantly (–log10> 3.0) and 

putatively (–log10> 2.0) associated with growth traits for the four breeding populations. 

Diameter at Breast Height (DBH), Total Height (HT), Likelihood Ratio Test (LRT), 

Regional heritability (hr2). 

Trait Population Ch
r. SNP Start Position 

Start (bp) SNP End Position 
End (bp) LRT hr

2 –log10 

DBH 

Pop1-IPB 
(626)* 

7 EuBR07s31328798 31328798 EuBR07s32568262 32568262 10.76 0.13 2.98 
7 EuBR07s33146968 33146968 EuBR07s35110610 35110610 10.34 0.07 2.89 
7 EuBR07s32581478 32581478 EuBR07s33957780 33957780 10.19 0.07 2.85 
7 EuBR07s25714206 25714206 EuBR07s30352510 30352510 10.18 0.06 2.85 
7 EuBR07s31961430 31961430 EuBR07s33145504 33145504 9.53 0.07 2.69 
7 EuBR07s20583725 20583725 EuBR07s22342031 22342031 8.67 0.06 2.49 
7 EuBR07s22342887 22342887 EuBR07s25713595 25713595 8.53 0.06 2.46 
7 EuBR07s36784209 36784209 EuBR07s38583112 38583112 8.15 0.04 2.36 
7 EuBR07s21332450 21332450 EuBR07s24532470 24532470 7.93 0.05 2.31 
7 EuBR07s16684296 16684296 EuBR07s19147010 19147010 7.91 0.05 2.31 
7 EuBR07s28499843 28499843 EuBR07s31328715 31328715 7.38 0.06 2.18 
7 EuBR07s24545298 24545298 EuBR07s28499722 28499722 7.18 0.05 2.13 

Pop2-ARAB 
(683)* 6 EuBR06s32562797 32562797 EuBR06s34328105 34328105 7.96 0.05 2.32 

Pop3-ARAC 
(660)* 

6 EuBR06s26699092 26699092 EuBR06s27751254 27751254 9.62 0.12 2.72 
9 EuBR09s31933985 31933985 EuBR09s33975533 33975533 8.02 0.07 2.33 

HT 

Pop1-IPB 
(626)* 

2 EuBR02s16102502 16102502 EuBR02s18417551 18417551 7.03 0.04 2.10 
7 EuBR07s14930135 14930135 EuBR07s18103200 18103200 6.65 0.04 2.00 

Pop4-CNB 
(560)* 

2 EuBR02s42263455 42263455 EuBR02s43397707 43397707 14.59 0.07 3.87b 

2 EuBR02s23849815 23849815 EuBR02s25008423 25008423 13.16 0.10 3.54f 

2 EuBR02s42780242 42780242 EuBR02s43864353 43864353 13.15 0.06 3.54f 

2 EuBR02s23213141 23213141 EuBR02s24367225 24367225 12.29 0.07 3.34f 

2 EuBR02s17118873 17118873 EuBR02s19701439 19701439 11.30 0.06 3.11f 

2 EuBR02s39648070 39648070 EuBR02s42778399 42778399 11.01 0.06 3.04f 

2 EuBR02s22594380 22594380 EuBR02s23832192 23832192 11.01 0.06 3.04f 

2 EuBR02s18112848 18112848 EuBR02s20898091 20898091 10.84 0.05 3.00f 

2 EuBR02s20898153 20898153 EuBR02s23179227 23179227 9.37 0.06 2.66 
2 EuBR02s36468959 36468959 EuBR02s39639880 39639880 9.16 0.07 2.61 
2 EuBR02s27662134 27662134 EuBR02s31703058 31703058 8.66 0.07 2.49 
2 EuBR02s29793530 29793530 EuBR02s32366267 32366267 8.54 0.06 2.46 

2 EuBR02s35689626 35689626 EuBR02s37602857 37602857 8.54 0.06 2.46 
2 EuBR02s24391700 24391700 EuBR02s25950796 25950796 8.33 0.06 2.41 
2 EuBR02s19809602 19809602 EuBR02s22590567 22590567 7.99 0.04 2.33 
2 EuBR02s15507347 15507347 EuBR02s18088025 18088025 7.65 0.04 2.25 
2 EuBR02s43397812 43397812 EuBR02s44360147 44360147 7.41 0.05 2.19 
2 EuBR02s31704444 31704444 EuBR02s33368834 33368834 7.13 0.05 2.12 
1 EuBR01s24700230 24700230 EuBR01s26451182 26451182 6.89 0.04 2.06 
1 EuBR01s17433597 17433597 EuBR01s19071730 19071730 6.74 0.03 2.03 

*Total number of windows, bBonferroni-correction with an experimental type I error rate 

of α = 0.05, fFalse discovery rate (FDR) of 5%.
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Table 2-5: Important associations for growth traits (DBH and HT) pinpoint genes involved in cell wall biosynthesis and in 

disease resistance. 

GWAS Data Trait SNP Chr. 
Position 

(bp) 
-log10 

REF/

ALT 
Eg - Gene At - Gene Annotation 

Joint-GWAS Single-SNP DBH EuBR07s38098526 7 38098526 8.21b G/A Eucgr.G02075 AT1G14720 
Xyloglucan 

endotransglucosylase/hydrolase 28 

Joint-GWAS Single-SNP DBH EuBR08s48262720 8 48262720 5.84f A/G Eucgr.H03281 AT3G06720 
Armadillo/beta-catenin-like repeats-

containing protein-related 

Joint-GWAS Single-SNP DBH EuBR06s6100971 6 6100971 4.10a A/G Eucgr.F00486 AT5G42100 Glucan 1,3-beta-glucosidase A 

Pop1-IPB/Pop2-ARAB/Pop3-

ARAC 
DBH EuBR04s17486529 4 17486529 - f C/T Eucgr.D00955 AT4G17180 O-Glycosyl hydrolases family 17 protein 

Pop1-IPB/Pop2-ARAB/Pop3-

ARAC 
DBH EuBR04s17531959 4 17531959 - f G/A Eucgr.D00963 AT5G47780 Galacturonosyltransferase 4 

Pop1-IPB/Pop2-ARAB/Pop3-

ARAC 
DBH EuBR10s8284185 10 8284185 - f G/A Eucgr.J00782 AT4G34890 Xanthine dehydrogenase 1 

Joint-GWAS Gene-based HT EuBR10s34334357 10 34334357 9.05b C/T Eucgr.J02727 AT5G48620 
Disease resistance protein (CC-NBS-

LRR class) family 

Joint-GWAS Gene-based HT EuBR05s48058595 5 48058595 7.45f A/G Eucgr.E02914 AT5G17680 
Disease resistance protein (TIR-NBS-

LRR class), putative 

Joint-GWAS Gene-based HT EuBR08s21538562 8 21538562 5.58a G/T Eucgr.H01749 AT5G36930 
Disease resistance protein (TIR-NBS-

LRR class) family 

Joint-GWAS Gene-based HT EuBR08s21538562 8 21538562 5.58a G/T Eucgr.H01750 AT5G36930 
Disease resistance protein (TIR-NBS-

LRR class) family 

Pop4-CNB HT EuBR02s18469492 2 18469492 4.87f T/G Eucgr.B01164 AT3G14470 
NB-ARC domain-containing disease 

resistance protein 

Joint-GWAS Gene-based HT EuBR07s34941110 7 34941110 4.36a G/A Eucgr.G01909 AT5G13870 
Xyloglucan 

endotransglucosylase/hydrolase 5 

Pop1-IPB/Pop2-ARAB/Pop3-

ARAC 
HT EuBR05s70210869 5 70210869 - f C/T Eucgr.E04103 AT1G61820 Beta glucosidase 46 

There are more than one value (-), bBonferroni-correction with an experimental type I error rate of α = 0.05, fFalse discovery 

rate (FDR) of 5%, aAd hoc threshold of −Log10 (P) ≥ 4. 
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FIGURES 
 
 

 

 

Figure 2-1: Population Structure and Principal Component Analysis (PCA) for the four 

unrelated E. grandis x E. urophylla hybrid breeding populations. (A) Barplots from 

STRUCTURE for number of cluster ranging from K=2 to K=4. (B) PCA with two 

eigenvectors (PC1 and PC2) and (C) PCA with PC1 to PC4. 
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Figure 2-2: Genome-wide pattern of Linkage Disequilibrium (LD) decay plotted up to 1 

Mbp pairwise SNP distances, considering rare alleles (MAF > 0). Decay curves of the 

classical measure of the squared correlation of allele frequencies at diallelic loci (r2) for 

each population individually and a dashed line at r2 = 0.2 indicates the frequently used 

threshold of usable LD. 
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Figure 2-3: Manhattan plots for growth traits (DBH and HT) using single-SNP GWAS 

(black points) and RHM (grey points), corrected for population structure and the kinship 

matrix, for the four unrelated E. grandis x E. urophylla hybrids breeding populations. Red 

and blue line indicate ad hoc thresholds adopted for the single-SNP GWAS and RHM 

analyses, respectively.  
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Figure 2-4: Manhattan plot of the associations for diameter at breast height (DBH) using 

single-SNP Joint-GWAS (41,320 SNPs), adjusted for STRUCTURE, the GRM, age of 

measurements and population of origin for the combined dataset. Red line indicates 

Bonferroni-corrected threshold with an experimental type I error rate at α =0.05, blue line 

indicates a false discovery rate (FDR) at 5% and green dashed line represents the ad hoc 

threshold. 
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Figure 2-5: Venn Diagram of the number of significant associations identified for growth 

traits using single-SNP GWAS for the four unrelated E. grandis x E. urophylla hybrids 

breeding populations. Comparison of the number of significant associations identified for 

DBH (black numbers) and HT (grey numbers) by false discovery rate (FDR) threshold at 

5%, using LMA model corrected for STRUCTURE (Model 2: Q). Diameter at Breast 

Height (DBH, cm), Total Height (HT, m). 
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Figure 2-6: Manhattan plots of the associations for HT using gene-based (31,770 genes) 

and region-based (4,766 windows) Joint-GWAS for the combined dataset. (A) Gene-

based Joint-GWAS adjusted for GRM, age of measurements and population of origin. (B) 

Gene-based Joint-GWAS adjusted for all covariates mentioned before with the inclusion 

of STRUCTURE. (C) Region-based Joint-GWAS adjusted for GRM, age of 

measurements and population of origin. (D) Region-based Joint-GWAS adjusted for all 

other covariates with the inclusion of STRUCTURE. Red line indicates Bonferroni-

corrected threshold with an experimental type I error rate at α =0.05, blue line indicates a 

false discovery rate (FDR) at 5% and green dashed line represents an ad hoc threshold 

of –log10= 4.0
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SUPPLEMENTARY MATERIAL (SM2) 
 

Table SM2-1: Estimates of additive genetic variances (σ2a), residual variances (σ2e), phenotypic variances (σ2p) and narrow-

sense heritabilities (h2) for the four unrelated E. grandis x E. urophylla hybrids breeding populations. Standard Deviation 

(SD); Standard Error (SE). 

Population Trait Method σ2
a  

SD  

(σ2
a) 

SE  

(σ2
a) 

σ2
e 

SD  

(σ2
e) 

SE  

(σ2
e) 

σ2
p 

SD  

(σ2
p) 

SE  

(σ2
p) 

h2 
SD  

(h2) 

SE  

(h2) 

Pop1-IPB 
DBH 

Pedigree-

based 

1.8621 0.4485 0.0026 1.6813 0.2536 0.0015 3.5434 0.2546 0.0015 0.5204 0.0927 0.0005 

HT 0.6466 0.1808 0.0010 0.9202 0.1080 0.0006 1.5669 0.1059 0.0006 0.4082 0.0895 0.0005 

Pop2-ARAB 
DBH 3.5663 0.8665 0.0050 3.2070 0.4999 0.0029 6.7733 0.4953 0.0029 0.5214 0.0942 0.0005 

HT 2.9137 0.8013 0.0046 4.1260 0.4990 0.0029 7.0398 0.4717 0.0027 0.4097 0.0897 0.0005 

Pop3-ARAC 
DBH 7.1232 1.2246 0.0071 3.2523 0.6525 0.0038 10.3756 0.7559 0.0044 0.6826 0.0774 0.0004 

HT 5.1810 1.1265 0.0065 3.0535 0.6159 0.0036 8.2345 0.6541 0.0038 0.6235 0.0944 0.0005 

Pop4-CNB 
DBH 1.6006 0.6966 0.0040 2.5747 0.3839 0.0022 4.1754 0.3936 0.0023 0.3735 0.1255 0.0007 

HT 2.3014 0.8963 0.0052 2.9436 0.4878 0.0028 5.2451 0.5020 0.0029 0.4286 0.1269 0.0007 

Pop1-IPB 
DBH 

Genomic-

based 

1.6183 0.2557 0.0015 1.9913 0.1295 0.0007 3.6096 0.2234 0.0013 0.4463 0.0486 0.0003 

HT 0.5492 0.1037 0.0006 1.0153 0.0627 0.0004 1.5645 0.0907 0.0005 0.3492 0.0509 0.0003 

Pop2-ARAB 
DBH 2.2276 0.3976 0.0023 3.9500 0.2626 0.0015 6.1775 0.3572 0.0021 0.3590 0.0497 0.0003 

HT 2.4659 0.4415 0.0025 4.2381 0.2859 0.0017 6.7039 0.3888 0.0022 0.3661 0.0507 0.0003 

Pop3-ARAC 
DBH 4.2881 0.6390 0.0037 3.8051 0.3231 0.0019 8.0932 0.5370 0.0031 0.5277 0.0513 0.0003 

HT 2.7555 0.4816 0.0028 4.1163 0.3055 0.0018 6.8717 0.4253 0.0025 0.3992 0.0524 0.0003 

Pop4-CNB 
DBH 1.1648 0.2199 0.0013 2.3316 0.1426 0.0008 3.4964 0.2238 0.0013 0.3313 0.0471 0.0003 

HT 1.3760 0.2654 0.0015 3.2499 0.1956 0.0011 4.6259 0.2841 0.0016 0.2960 0.0447 0.0003 
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Figure SM2-1: Phenotypic distributions with density line of the growth traits measured in 

the four Eucalyptus grandis x E. urophylla hybrids breeding populations. Diameter at 

Breast Height (DBH, cm), Total Height (HT, m). 
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Figure SM2-2: Distribution of the number of SNPs into MAF classes for each population 

and combined data (All) using CR ≥ 90% and MAF > 0. Call Rate (CR); Minimum Allele 

Frequency (MAF).  
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Figure SM2-3: Quantile-quantile (QQ) plots for SNP-based models for diameter at breast 

height (DBH) and total height (HT), respectively. (A) and (B) represent QQ plots for Pop1-

IPB. (C) and (D) for Pop2-ARAB. (E) and (F) for Pop3-ARAC. (G) and (H) for Pop4-CNB. 

(I) and (J) for the Joint-GWAS (combined dataset). 
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Figure SM2-4: Manhattan plots for SNP-based models for all four populations 

independently and combined dataset (Joint-GWAS). 
Pop1-IPB: K + Q 

 
Pop1-IPB: K + P 

 

  
Figure SM2-4A: Manhattan plots for SNP-based models in Pop1-IPB. A and B represent 

Manhattan plots for DBH and HT, respectively, using MLMA model adjusted for GRM and 

STRUCTURE. C and D represent Manhattan plots for DBH and HT, respectively, using 

MLMA model adjusted for GRM and PCA. Red line indicates Bonferroni-corrected 

threshold with an experimental type I error rate at α =0.05 and green dashed line 

represents the ad hoc threshold. Diameter at Breast Height (DBH), Total Height (HT).  
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C D 



123 
 

Pop2-ARAB: K + Q 

 

 
Pop2-ARAB: K + P 

 

 
Figure SM2-4B: Manhattan plots for SNP-based models in Pop2-ARAB. A and B 

represent Manhattan plots for DBH and HT, respectively, using MLMA model adjusted for 

GRM and STRUCTURE. C and D represent Manhattan plots for DBH and HT, 

respectively, using MLMA model adjusted for GRM and PCA. Green dashed line 

represents the ad hoc threshold. Diameter at Breast Height (DBH), Total Height (HT). 
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Pop3-ARAC: K + Q 

 

 
Pop3-ARAC: K + P 

 

 
Figure SM2-4C: Manhattan plots for SNP-based models in Pop3-ARAC. A and B 

represent Manhattan plots for DBH and HT, respectively, using MLMA model adjusted for 

GRM and STRUCTURE. C and D represent Manhattan plots for DBH and HT, 

respectively, using MLMA model adjusted for GRM and PCA. Red line indicates 

Bonferroni-corrected threshold with an experimental type I error rate at α =0.05 and green 

dashed line represents the ad hoc threshold. Diameter at Breast Height (DBH), Total 

Height (HT).  
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Pop4-CNB: K + Q 

 
Pop4-CNB: K + P 

 
Figure SM2-4D: Manhattan plots for SNP-based models in Pop4-CNB. A and B represent 

Manhattan plots for DBH and HT, respectively, using MLMA model adjusted for GRM and 

STRUCTURE. C and D represent Manhattan plots for DBH and HT, respectively, using 

MLMA model adjusted for GRM and PCA. Red line indicates Bonferroni-corrected 

threshold with an experimental type I error rate at α =0.05, blue line indicates false 

discovery rate (FDR) at 5% and green dashed line represents the ad hoc threshold. 

Diameter at Breast Height (DBH), Total Height (HT). 
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Joint-GWAS: K + Q 

 
Joint-GWAS: K + P 

 
Figure SM2-4E: Manhattan plots using SNP-based models for Joint-GWAS for the four 

populations combined dataset. A and B represent Manhattan plots for DBH and HT, 

respectively, using MLMA model adjusted for GRM and STRUCTURE. C and D represent 

Manhattan plots for DBH and HT, respectively, using MLMA model adjusted for GRM and 

PCA. Red line indicates Bonferroni-corrected threshold with an experimental type I error 

rate at α =0.05, blue line indicates false discovery rate (FDR) at 5% and green dashed 

line represents the ad hoc threshold. Diameter at Breast Height (DBH), Total Height (HT). 
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