

CONTROL SYSTEM DESIGN FOR EXOSKELETON OF THE RIGHT LOWER

LIMB

PROJETO DO SISTEMA DE CONTROLE DE UM EXOESQUELETO DO

MEMBRO INFERIOR DIREITO

MARLON WINSTON KOENDJBIHARIE

DISSERTAÇÃO DE MESTRADO EM SISTEMAS MECATRÔNICOS

DEPARTAMENTO DE ENGENHARIA MECÂNICA

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

ii

UNIVERSIDADE DE BRASÍLIA - UnB

FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA MECÂNICA

PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS MECATRÔNICOS

CONTROL SYSTEM DESIGN FOR EXOSKELETON OF THE RIGHT LOWER

LIMB

PROJETO DO SISTEMA DE CONTROLE DE UM EXOESQUELETO DO

MEMBRO INFERIOR DIREITO

MARLON WINSTON KOENDJBIHARIE

Dissertação apresentada ao Departamento de

Engenharia Mecânica da Faculdade de

Tecnologia da Universidade de Brasília como

parte dos requisitos necessários para obtenção

do grau de Mestre em Sistemas Mecatrônicos

APROVADA POR:

Prof. Dr. Daniel Maurício Muñoz Arboleda, (UnB/ENM)

Prof. Dr. Gilmar Silva Beserra, (FGA/UnB)

Prof. Dr. Daniel Chaves Café (UnB/ENE)

iii

The fear of the LORD is the beginning of wisdom,

and knowledge of the Holy One is understanding.

Proverbs 9:10

iv

ACKNOWLEDGEMENTS

I thank the Holy One for this achievement and for always being present, in times of joy

and in times of sorrow.

I thank my sweet and lovely wife Josmela for her unconditional support. I thank my

children Roberta, Lyoni and Miguel for the privilege of being their father and the many nice

memories.

I thank my parents Johanes and Marlene for being there for me when necessary and for

the opportunity given to me to get an education.

I thank my brothers and sisters, Dennis, Elaine, Eurdice, Desmond, Earl and Melvin for

a nice childhood spent together.

I thank my Advisor Dr. Daniel Muñoz for his guidance and support during the entire

Graduate Programme and for giving me the opportunity to be part of the LEIA lab team at

GRACO at the Universidade de Brasília.

I greatly appreciate the critical comments of the examining board, Dr Daniel Muñoz,

Dr. Gilmar Beserra and Dr. Daniel Café. It has turned me into a more critical person regarding

my work.

I would like to also thank Dr. Rudi van Els for the advice and support to me and my

wife before and during my stay in Brazil.

I also thank Dr. Carlos Llanos for involving me in the activities of the LEIA lab and I

also send “um grande abraço” to my colleagues Renato, Sérgio, Oscar and Joao of the LEIA

lab. I really appreciated their presence and valuable tips during my time spent in the lab.

Last but not least I would like to thank Ambassador Marlon Mohamed Hoesein and

Minister Counsellor Natasha Halfhuid of the Embassy of Suriname in Brazil, former Minister

of Foreign Affairs of Suriname Winston Lackin for the opportunity given to support my family

during my stay in Brazil.

v

RESUMO

Nesta pesquisa o modelo de um exoesqueleto do membro inferior direita para melhorar

a mobilidade do usuário e seu sistema de controle foram desenvolvidos. O projeto físico do

modelo do exoesqueleto consiste em três partes principais: um quadril e a parte superior e

inferior da perna conectados um com o outro por juntas revolutas. Cada uma das juntas é atuado

por um motor Brushless DC (BLDC) com caixa de redução para aumentar torque. Os motores

a serem usados na construção possuem sensores de velocidade e de posição para fornecer os

dados necessários para o sistema de controle. Solidworks Computer Aided Design (CAD)

software é usado para desenvolver o modelo do exoesqueleto, que é salvo em formato extensible

markup language (XML) para depois ser importado em Simmechanics, permitindo a integração

de modelos de corpos físicos com componentes de Simulink.

A cinemática inversa do exoesqueleto é desenvolvido e projetado em Very high speed

integrated circuit Hardware Description Language (VHDL) usando aritmética em ponto

flutuante para ser executado a partir de um dispositivo Field Programmable Gate Array

(FPGA). Quatro representações diferentes do projeto de hardware do modelo cinematico do

exoesqueleto foram desenvolvidos fazendo análise de erro com Mean Square Error (MSE) e

Average Relative Error (ARE). Análise de trade-off de desempenho e área em FPGA é feito.

 A estratégia de controle Proportional-Integrative-Derivative (PID) é escolhido para

desenvolver o sistema de controle do exoesqueleto por ser relativamente simples e eficiente

para desenvolver e por ser amplamente usado em muitas áreas de aplicação. Duas estratégias

de sistemas de controle combinado de posiçaõ e velocidade são desenvolvidos e comparados

um com o outro. Cada sistema de controle consiste em dois controladores de velocidade e dois

de posição. Os parâmetros PID são calculados usando os métodos de sintonização Ziegler-

Nichols e Particle Swarm Optimization (PSO).

 PSO é um método de sintonização relativamente simples porém eficiente que é aplicado

em muitos problemas de otimização. PSO é baseado no comportamento supostamente

inteligente de cardumes de peixes e bandos de aves em procura de alimento. O algoritmo, junto

com o método Ziegler-Nichols, é usado para achar parâmetros PID apropriados para os blocos

de controle nas duas estratégias te controle desenvolvidos. A resposta do sistema de controle é

avaliada, analisando a resposta a um step input.

vi

 Simulação da marcha humana é também feito nos dois modelos de sistema de controle

do exoesqueleto fornecendo dados de marcha humana ao modelo e analisando visualmente os

movimentos do exoesqueleto em Simulink. Os dados para simulação da marcha humana são

extraídos de uma base de dados existente e adaptados para fazer simulações nos modelos de

sistema de controle do exoesqueleto.

Palavras-chave: ARE, controle de posição, controle de velocidade, controle PID, FPGA, FSM,

modelo cinematico, MSE, PSO.

vii

ABSTRACT

 In this research a model of an exoskeleton of the right lower limb for user mobility

enhancement and its control system are designed. The exoskeleton design consists of three

major parts: a hip, an upper leg and a lower leg part, connected to one another with revolute

joints. The joints will each be actuated by Brushless DC (BLDC) Motors equipped with

gearboxes to increase torque. The motors are also equipped with velocity and position sensors

which provide the necessary data for the designed control systems. Solidworks Computer Aided

Design (CAD) software is used to develop a model of the exoskeleton which is then exported

in extensible markup language (XML) format to be imported in Simmechanics, enabling the

integration of physical body components with Simulink components.

 The inverse kinematics of the exoskeleton model is calculated and designed in Very

high speed integrated circuit Hardware Description Language (VHDL) using floating-point

numbers, to be executed from a Field Programmable Gate Array (FPGA) Device. Four different

bit width representations of the hardware design of the kinematics model of the exoskeleton are

developed, performing error analysis with the Mean Square Error (MSE) and the Average

Relative Error (ARE) approaches. Trade-off analysis is then performed against performance

and area on FPGA.

 The Proportional-Integrative-Derivative (PID) control strategy is chosen to develop the

control system for the exoskeleton for its relatively simple design and proven efficient

implementation in a very broad range of real life application areas. Two control system

strategies are developed and compared to one another. Each control system design is comprised

of two velocity- and two position controllers. PID parameters are calculated using the Ziegler-

Nichols method and Particle Swarm Optimization (PSO).

 PSO is a relatively simple yet powerful optimization method that is applied in many

optimization problem areas. It is based on the seemingly intelligent behaviour of fish schools

and bird flocks in search of food. The algorithm, alongside the Ziegler-Nichols method, is used

to find suitable PID parameters for control system blocks in the two designs. The system

response of the control systems is evaluated analyzing step response.

 Human gait simulation is also performed on the developed exoskeleton control systems

by observing the exoskeleton model movements in Simulink. The gait simulation data is

viii

extracted from a human gait database and adapted to be fed as input to the exoskeleton control

system models.

Keywords: ARE, FPGA, FSM, kinematics model, MSE, PSO, PID control, position control,

velocity control.

ix

LIST OF FIGURES

Figure 1.1 Exoskeleton SoC Implementation proposal .. 2

Figure 2.1 BLEEX exoskeleton (year 2006) [10]... 11

Figure 2.2 LOPES exoskeleton (year 2007) [12] ... 12

Figure 2.3 ALEX II exoskeleton (year 2011) [13] ... 12

Figure 2.4 WSE exoskeleton (year 2014) [14] ... 13

Figure 2.5 HAL exoskeleton (year 2003) [15] ... 13

Figure 2.6 HAL exoskeleton with instrumented cane (year 2014) [17] 14

Figure 2.7 KNEXO exoskeleton (year 2010) [18] ... 15

Figure 2.8 Mina exoskeleton (year 2011) [19] ... 15

Figure 2.9 Yonsei University exoskeleton (year 2013) [20] .. 16

Figure 2.10 Coordinate system assignments with Denavit-Hartenberg convention [28] 20

Figure 2.11 Parameters for Ziegler-Nichols step response method [34] 23

Figure 2.12 Parameters for Ziegler-Nichols self-oscillation method 24

Figure 2.13 Basic PSO algorithm in pseudocode ... 26

Figure 3.1 Solidworks Design of Exoskeleton ... 29

Figure 3.2 Exoskeleton Model imported visible in Mechanics Explorer 30

Figure 3.3 Simplified Exoskeleton Structure ... 31

Figure 4.1 Optimized hardware model for atan2 function ... 36

Figure 4.2 HDL co-simulation model in Simulink ... 40

Figure 5.1 Simmechanics Model generated from Solidworks Exoskeleton Model 43

Figure 5.2 Simplified Simmechanics Model with Actuator Inputs and Sensor Outputs 44

Figure 5.3 Maxon EC 90, brushless, 90 Watt motor with GP62 planetary gear 45

Figure 5.4 Simulink Model of the Exoskeleton Motor with Gear .. 45

Figure 5.5 Maxon EC 90 BLDC Motor data sheet ... 46

Figure 5.6 DC Motor block settings for Maxon EC 90 BLDC motor 46

Figure 5.7 First approach to control system design for exoskeleton [52] 47

Figure 5.8 Control system design according to first approach ... 47

Figure 5.9 Exoskeleton leg straight down position .. 48

Figure 5.10 Step response with Ziegler-Nichols step response method for velocity controller

motor1 ... 50

Figure 5.11 Step response with Ziegler-Nichols step response method for velocity controller

motor2 ... 50

Figure 5.12 Convergence graph for PD controller tuning with PSO.. 52

x

Figure 5.13 Step response for motor1 with PD parameters obtained with PSO 52

Figure 5.14 Step response for motor2 with PD parameters obtained with PSO 53

Figure 5.15 Step response for motor1 with PD parameters obtained with PID tuner 53

Figure 5.16 Step response for motor2 with PD parameters obtained with PID tuner 54

Figure 5.17 First approach to control system design for exoskeleton (source: [47]) 55

Figure 5.18 Control system design according to second approach .. 55

Figure 5.19 Step response with Ziegler-Nichols step response method for position controller

motor1 ... 56

Figure 5.20 Step response with Ziegler-Nichols self-oscillation method for position controller

motor 2 .. 57

Figure 5.21 Manually tuned step response after Ziegler-Nichols step response method for

position ... 58

Figure 5.22 Manually tuned step response after Ziegler-Nichols step response method for

position controller motor2 .. 59

Figure 5.23 Step response for motor1 velocity controller obtained with Ziegler-Nichols self-

oscillation method... 59

xi

LIST OF TABLES

Table 2.1 Description of existing lower limb exoskeleton ... 10

Table 2.3 P, PI and PID parameter values for Ziegler-Nichols step response method 23

Table 2.4 P, PI and PID parameter values for Ziegler-Nichols self-oscillation method 24

Table 3.1 Denavit-Hartenberg parameters of the Exoskeleton ... 32

Table 4.1 Number of Composing Operators for atan2 Operator .. 36

Table 4.2 Number of Composing Operators for calculating the Inverse Kinematics 38

Table 4.3 Bit Widths of Hardware Design Representations Used ... 38

Table 4.4 MSE and ARE values for 15 CORDIC Iterations (Error unit: radians) 40

Table 4.5 MSE and ARE values for 20 CORDIC Iterations (Error unit: radians) 41

Table 4.6 FPGA area, Performance and Power Consumption trade-offs 41

Table 5.1 Exoskeleton basic measurements ... 48

Table 5.2 Results with Ziegler-Nichols step response method for velocity controller motor 1

 .. 49

Table 5.3 Results with Ziegler-Nichols step response method for velocity controller motor2 50

Table 5.4.a PSO variables used in algorithm.. 51

Table 5.4.b PSO tuning results for the controller parameters of motor1 and motor2 52

Table 5.5 PSO and PID tuner results for the controller parameters of motor1 and motor2 54

Table 5.6 Results with Ziegler-Nichols step response method for position controller motor 1

 .. 56

Table 5.7 Results with Ziegler-Nichols self-oscillation method for position controller motor2

 .. 57

Table 5.8 Effect of increasing PID parameters with closed loop step response 57

Table 5.9 Ziegler-Nichols tuning results for the position controller parameters of motor1 and

motor2 ... 58

Table 5.10 Ziegler-Nichols tuning results for the velocity controller parameters of motor1 and

motor2 ... 60

xii

LIST OF SYMBOLS AND ABBREVIATIONS

ALEX Active Leg EXoskeleton

ALU Arithmetic Logic Unit

ARE Average Relative Error

BFO Bacterial Foraging Optimization

BLDC Brushless Direct Current

BLEEX Berkeley Lower Extremity Exoskeleton

CAD Computer Aided Design

CoP Center of Pressure

CORDIC COordinate Rotation DIgital Computer

D Derivative

DC Direct Current

DH Denavit-Hartenberg

DOF Degree of Freedom

DUT Device Under Test

EDK Embedded software Development Kit

ENE Departamento de Engenharia Elétrica

ENM Departamento de Engenharia Mecânica

FPGA Field Programmable Gate Array

FSM Finite State Machine

GA Genetic Algorithm

GRACO Grupo de Automação e Controle

HAL Hybrid Assistive Limb

HC Homogeneous Coordinates

HDL Hardware Description Language

I Integrative

IMU Inertial Measurement Unit

IP Intellectual Property

ISE Integrated Software Environment

KNEXO KNee EXOskeleton

LE Logical Element

LEIA Laboratory of Embedded Systems and Integrated Circuits Applications

Li-Po Lithium Polymer

LOPES LOwer-extremity PoweredExoSkeleton

LQR Linear–Quadratic Regulator

MHz Megahertz

MSE Mean Square Error

P Proportional

PC Personal Computer

PD Proportional-Derivative

PI Proportional-Integrative

PID Proportional-Integrative-Derivative

PSO Particle Swarm Optimization

PWM Pulse-Width Modulation

SoC System on Chip

xiii

UnB Universidade de Brasília

VHDL Very High Speed Integrated Circuit Hardware Description Language

WSE Walking Supporting Exoskeleton

XML Extinsible Markup Language

xiv

CONTENTS

LIST OF FIGURES ... ix

LIST OF TABLES... xi

CONTENTS .. xiv

1. INTRODUCTION .. 1

1.1. PROBLEM DISCRIPTION ... 1

1.2. JUSTIFICATION ... 2

1.3. OBJECTIVE ... 3

1.4. SPECIFIC OBJECTIVES... 3

1.5. METHODOLOGY ... 4

1.6. CONTRIBUTIONS OF THIS WORK ... 5

1.7. DOCUMENT ORGANIZATION .. 7

2. THEORETICAL REVIEW .. 8

2.1. EXOSKELETONS ... 8

2.2. APPLICATION OF FPGA’S IN EXOSKELETON DESIGN 17

2.3. KINEMATIC MODEL... 18

2.4. ZIEGLER NICHOLS TUNING METHODS FOR PID CONTROL 22

2.5. PSO ALGORITHM .. 24

2.6. PSO FOR PID PARAMETER OPTIMIZATION .. 26

2.7. CONCLUSION .. 28

3. EXOSKELETON DESIGN .. 29

3.1. PHYSICAL DESIGN ... 29

3.2. THE INVERSE KINEMATICS MODEL .. 31

3.3. CONCLUSION .. 34

4. KINEMATICS MODEL ACCELERATED IN HARDWARE 35

4.1. HARDWARE IMPLEMENTATION OF THE ATAN2 FUNCTION 36

xv

4.2. HARDWARE IMPLEMENTATION OF INVERSE KINEMATICS 36

4.3. CO-SIMULATION WITH QUESTA SIM .. 38

4.4. RESOURCES CONSUMPTION ANALYSIS FOR THE INVERSE

KINEMATICS ON FPGA.. 41

4.5. CONCLUSION .. 41

5. CONTROL SYSTEM MODEL ... 43

5.1. SIMMECHANICS MODEL .. 43

5.2. BLDC MOTOR MODEL IN MATLAB .. 44

5.3. FIRST APPROACH FOR INTEGRATED VELOCITY AND POSITION

CONTROL ... 46

5.3.1. Control System Tuning for first approach .. 49

5.4. SECOND APPROACH FOR INTEGRATED VELOCITY AND POSITION

CONTROL ... 54

5.4.1. Control System Tuning for second approach ... 56

5.5. COMPARISON MODEL1 AND MODEL2 .. 62

5.6. HUMAN GAIT SIMULATION DATA FOR THE EXOSKELETON 63

5.7. CONCLUSION .. 67

6. CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORKS 68

6.1. CONCLUSIONS .. 68

6.2. RECOMMENDATIONS AND FUTURE WORK 69

REFERENCES ... 70

APPENDIX .. 74

1

1. INTRODUCTION

In this research a model of an exoskeleton of the right lower limb and its control system

are designed. The exoskeleton is designed for user mobility enhancement. Two approaches to

the design of the control system are developed and compared to one another. The control system

designs are then tested with human gait data in a simulated environment. In this section, the

context of this research is presented.

1.1.PROBLEM DISCRIPTION

The designed exoskeleton model is developed for user mobility enhancement in persons

that suffer from hemiplegia, the permanent paralysis of one side of the body. According to [1]

the most common cause of hemiplegia is Cardiovascular Accident (CVA), popularly known as

stroke. Stroke continues to be the leading cause of death and disability in the Brazil. Studies

have indicated an annual incidence of 108 cases per 100.000 inhabitants [2].

This research is part of a project that is being developed in the LEIA lab (GRACO -

Universidade de Brasilia) with the objective to create a low cost exoskeleton that will, among

others, be adaptable to the user anatomy, host complex control algorithms and execute

movements using PID control for the actuators of the exoskeleton. The control system will

ultimately be developed as a System on Chip (SoC), taking advantage of the robustness of

hardware design and the flexibility of implementation in software.

In particular, this research involves the design of an exoskeleton of the right lower limb

and its control system. The exoskeleton design was developed to improve mobility to its wearer

and, besides the skeleton structure, consist of a number of sensors and actuators. Among the

components purchased for the construction of the exoskeleton are MAXTRON motors [3] and

gears [4] with its respective driver for velocity control. However, when the exoskeleton is

applied for mobility improvement, position control is necessary in order to maintain control of

the gait. This fact shows the need to develop hybrid control of position and velocity for the

exoskeleton motors, alongside the need to accelerate the calculation of direct and inverse

kinematics in hardware.

To design the control system of the exoskeleton two models for combined position and

velocity control were developed and tested in Simulink and compared to one another.

2

Other important aspects of this exoskeleton will be its low computational cost, while

offering robustness, performance and flexibility for implementation of complex algorithms,

attributes that can be met by a SoC. Implementation in hardware inherently offers robust design.

Robustness is essential to prevent failure which may result in serious injuries or even worse.

Another important aspect of the design is the possibility to parameterize the kinematics and

dynamics control algorithms according to each individual user.

1.2.JUSTIFICATION

This research is primarily concerned with the control system design of a right lower

limb exoskeleton. Essential parts of this exoskeleton are actuators, sensors and the control

system. The control system will gather the necessary sensor data, such as motor axes angle and

velocity for position and velocity control. This data is used by the control system of the

exoskeleton to calculate error values for position control.

Figure 1.1 Exoskeleton SoC Implementation proposal

The exoskeleton is being developed by a team of research professors, graduate- and

undergraduate students and will ultimately integrate the control system of the exoskeleton on a

SoC on a Field Programmable Gate Array (FPGA). This choice allows exploration of parallel

architectures for processing sensor data simultaneously, enhancing exoskeleton control. It also

3

takes advantage of the parallelism of kinematics algorithms. Parallel implementation of the PID

controllers is hereby also facilitated. Model Predictive Control (MPC) offers the ability to

anticipate future events to take control actions accordingly. The exoskeleton system will consist

of two BLDC motors equipped with gears, position and velocity sensors and left forearm crutch

with activation buttons. To estimate gait phase the crutch will be equipped with an IMU and

pressure sensor. For this purpose there will be an additional IMU for the left leg. An FPGA

device with ARM processor will be used to host the PID controllers, inverse kinematics,

dedicated IMU filter, PWM’s and encoder reading module.

SoC’s also have some other advantages. Besides the performance benefits, SoC’s offer

portability and low energy consumption. PC’s, though capable of offering great performance

and flexibility for implementation of complex algorithms, consume far more energy than

microcontrollers and SoC’s and are not portable. Microcontrollers on the other hand, are very

energy efficient but have limited resources compared to PC’s and SoC’s. They also offer the

possibility to prototype electronic circuits and can be programmed and reprogrammed as

desired. An entire hardware design can be modified by only modifying the hardware design

code making them very suitable to prototype complex systems. Equipped with processor they

also enable hardware/software co-design.

1.3.OBJECTIVE

The general objective of this research is to design the control system of an exoskeleton

of the right lower limb using FPGAs to accelerate the execution of the involved algorithms.

1.4.SPECIFIC OBJECTIVES

The specific objectives of this research are:

 Develop the kinematics model of the exoskeleton in Very High Speed Hardware

Description Language (VHDL) analyzing the trade-off between bit-width, performance,

precision and resource consumption on FPGA.

 The development of a model of the exoskeleton in Solidworks representing the exoskeleton

as much as possible taking into account its measurements and degrees of freedom.

 Development of the control system in Simulink, comparing different strategies for

integrated position and velocity control of the exoskeleton.

4

 Validation of the control system models by evaluating of the performance of the control

system and simulation of the human gait movement.

1.5.METHODOLOGY

In this research the state-of-the-art in the design of existing lower limb exoskeletons is

investigated, reviewing publications about exoskeletons that have already been developed. The

focus is on lower limb exoskeletons that enhance autonomy for their users. This review gives

valuable insight in the construction of exoskeletons from their early conception to

implementation, testing and evaluation.

A Computer Aided Design (CAD) model of the exoskeleton is then developed in

Solidworks. The kinematic model of the exoskeleton is then set up. The developed kinematic

model is then imported in Simulink for the development of the control system of the

exoskeleton and for human gait simulation.

Figure 1.2 Bottom-up approach for inverse kinematics design

The synthesis of hardware components follows a bottom-up approach where the

designer may develop custom components using VHDL. VHDL also allows the integration of

IP’s. Both floating and fixed point arithmetic can be customized for the SoC by using either IP

cores or custom developed libraries offering a range of possibilities to optimize for performance

and accuracy. In the case of the exoskeleton kinematics the operators used are floating-point IP

components developed at the LEIA lab. The development of the inverse kinematics follows a

bottom-up approach where parts of the system, such as the arctan2 and arithmetic operators

using floating-point arithmetic are first developed to be integrated into the inverse kinematics

design using a Finite State Machine (FSM) (Figure 1.1)

5

The kinematics model developed in VHDL can be validated using the output values of

an automatic testbench. For the validation of the kinematics model of the exoskeleton designed

in VHDL, the output results of the automatic testbench is compared and validated against the

output of a kinematics model designed in Matlab, generating the Mean Square Error (MSE) and

Average Relative Error (ARE) values. For this purpose the kinematics model is developed using

four different bit widths which are then compared to one another.

The control system of the exoskeleton was designed in Simulink allowing efficient

testing. For the control system Proportional–Integral–Derivative (PID) controllers are chosen

for their relatively simple design the fact that they are used in most automatic process control

applications in industry today to regulate flow, temperature, pressure, level, and many other

industrial process variables. To adjust the PID parameters several approaches were used

including Ziegler-Nichols and Particle Swarm Optimization (PSO). The performance of the

control system design is validated using Simulink. To further validate the control system an

existing human gait database was adapted to the exoskeleton design. This data is then fed as

input to the exoskeleton design in Simulink enabling to observe the movements of the

exoskeleton if it resembles the human gait.

1.6.CONTRIBUTIONS OF THIS WORK

Exoskeleton Inverse kinematics developed in VHDL for implementation on FPGA

Several research papers have proven that implementation of the inverse kinematics on

FPGA yield good acceleration results in hardware. In this research the inverse kinematics for

an exoskeleton was designed in VHDL to be implemented on an FPGA device using floating-

point IP cores that were developed by the LEIA lab. Additionally the atan2 function, necessary

for implementation of the inverse kinematics was also designed with these IP cores. Both atan2

and the inverse kinematics were designed using FSM’s to efficiently reduce hardware area

usage.

Exoskeleton model human gait simulation using human gait database

The human gait database from Winter [5] was used to generate gait data suitable to be

used for gait simulation for the exoskeleton. The data used from the aforementioned database

was the temporal angle position data of the upper and the lower legs to be used for position

6

control of the exoskeleton leg. The human leg structure is considerably more complex than the

proposed exoskeleton leg especially at the joints, and more specifically at the knee joint, making

it impossible to directly map the human joint data onto the exoskeleton for gait simulation.

Moreover, the reference frame data for the human gait model from Winter is completely

different from that of the exoskeleton structure. The joint angle data from the Winter database

was first mapped onto the joint angle data of the exoskeleton. The joint angle data was then

converted from degrees into radians, and the reference frame of the Winter model was then

mapped onto the reference frame of the exoskeleton. Using the direct kinematics of the

exoskeleton the angular data was then converted into end-effector data. The generated data was

suitable to be used to simulate human gait movement.

Development of object function for exoskeleton control system for tuning with PSO

Two control system models of the exoskeleton were developed. The models are based

on combined position and velocity control models presented in academic literature. PSO and

the classic Ziegler-Nichols approach were used to find the PID parameters in the first model.

For the second model Ziegler-Nichols and manual fine tuning were used.

For tuning of the control system of the exoskeleton with PSO an object function that

seeks to minimize the error value between the reference and the output signal, minimize the

overshoot and the rise time was developed for each motor. The general object function used

was the sum of the aforementioned object functions.

Conference Paper

With respect to this research a first paper entitled "Control System Design for an

Exoskeleton of the Right Lower Limb" was submitted and accepted for the (Brazilian Congress

of Mechanical Engineering) COBEM 2017 event of the 24th (Brazilian Association of

Engineering and Mechanical Sciences) ABCM International Congress of Mechanical

Engineering to be held in Curitiba, at the Pontifícia Universidade Católica do Paraná

(PUCPR) in December 2017. COBEM is the ABCM International Congress of Mechanical

Engineering which takes place every two years in a Brazilian city. The extended paper extract

is included in the appendix.

7

1.7.DOCUMENT ORGANIZATION

This document is organized as follows. Chapter 1, the introductory chapter presents the

scope of the research.

In chapter 2, Theoretical Review, the most important theoretical topics related to this

work is out, presenting background information to the reader that may elicit the concepts,

methods and other material that is exposed in the next chapters.

Chapter 3 presents the various design aspects of the exoskeleton and the design process

that was used.

In the fourth chapter hardware design of the kinematics model of the exoskeleton and

the hardware simulation results are presented, such as error and performance analysis.

Chapter 5 exposes the development of two control system strategies where the

Simmechanics model of the exoskeleton is integrated with Simulink components in order to

build the two control systems with combined position- and velocity control. The two strategies

are compared to one another.

Chapter 6 is dedicated to conclusions and recommendations and Appendix A presents

program code that was used during this research.

8

2. THEORETICAL REVIEW

In this chapter several exoskeletons involving lower limbs that have been developed

will be highlighted. Design characteristics such as actuation, control system, hardware

platforms and sensor usage are gathered into a comprehensive table that characterizes the

exoskeleton being developed with respect to exoskeletons that have already been developed.

A short but extensive review about kinematic modelling is then presented, followed by

a brief description of applications of implementation of kinematic models in FPGA from

academic literature for acceleration in hardware.

In the final part of this chapter the applied tuning methods in this research PSO and

Ziegler-Nichols are presented.

2.1.EXOSKELETONS

Exoskeletons, sometimes referred to as wearable robots, are devices that can be worn

by its users to enhance physical performance, improve user autonomy, or aid in rehabilitation.

Though dozens of exoskeletons and prototypes of exoskeletons have been developed since the

1960’s, it is only in the beginning of the early 1990’s that considerable advances have been

made in this area [6]. But still, research in this area is in its early development stage [7].

Dozens of efforts have been made to develop exoskeletons and prototypes of

exoskeletons. Papers [8] and [9] have made reviews of several exoskeletons, each of them

highlighting different aspects, the first reference focusing on detailed mechanical properties and

the second reference focusing on a wider range of properties.

The number of exoskeleton and exoskeleton prototypes is very extensive. For this

review exoskeletons that have been described in scientific resources have been chosen.

Furthermore the resources were also chosen to be relatively recent, of year 2000 and above.

The results are summarized in table 2.1 not following any particular order. Table 2.1 shows

general information about each exoskeleton giving insight in the overall context of each

exoskeleton including where it was developed, what it is used for and its overall structure. Most

of the exoskeletons are adjustable and are made of lightweight material. The exoskeletons for

9

gait rehabilitation are normally fixed structures on a treadmill requiring no special limitations

on energy consumption.

Not all characteristics of the exoskeletons are available in the reviewed documents. This

is caused by the difference in focus between the papers that were reviewed. This is why a

number of the fields in table 2.1 are empty, which does not mean that the feature is not present.

The actuators and sensors present on an exoskeleton are a measure for the complexity of its

control system. Of the reviewed exoskeletons the BLEEX and the HAL exoskeleton are among

the most technologically advanced. In the last row of table 2.1 the exoskeleton to be build is

also presented in red.

10

Table 2.1 Description of existing lower limb exoskeleton

Application Bodypart External

support

Adjustable DOF’s Control Actuators Sensors

Gait

rehabilitation

Lower limbs Yes: actuated

support located

at pelvis height

Yes 8:4 per leg External PC Elastic and bowden

cable for all rotary joints;

open-loop force

controllable linear

actuator; Linmot POI-

37X240; Berger Lahr

SER3910; Kollmorgery

Danaher AKM22C

servomotors

Force sensor;

electromyography (EMG)

measurements of the

actication patters of eight

major leg muscles; PIT-

VZ4000; tracking motion

with camaras

Gait

rehabilitation

One leg, right

or left

Yes: back

support

Yes: left, right,

user

measurements

4 DSPACE

11034 control

system

Cables and pulleys; two

Kollmorgen ACM22C2

rotary motors

Encoder or ankle (joint

angle); three interlink

electronics FSR 4065

pressure sensors (offline

processing)

Force

augmentation

Lower limbs No 14: 7 per leg PC104

compliant

computer;

Network of

RIOMs with

ADCs and

FPGA’s; Three

FPGA control

units

Servo valves; linear

hydraulic actuators

Encoders;

eccelerometer; joint

angle, angular velocity

and angular acceleration;

load distribution sensor

(operator weight

distribution); indinometer

(overall orientation in

relation to gravity); single

axis force sensor; foot

switches

Autonomy Lower limbs Yes: underarm

crutches

Yes 4: 2 per leg ATHM800 (VIA

Mark

processor at

800MHz)

PCI104;

Adaptive

network based

fuzzy logic

control

(ANFLC);

preprogramme

d motion

control (PMC)

DC servomotors; Vexta

AHX5100KC servomotor

24V; Limit switches

Tekscan A201 model

flexifore (force sensors in

footsole); Hall effect

sensors pre-integrated in

the DC motors (angle)

Autonomy Lower limbs No 4: 2 per leg PC Celeron

566MHz RT

Linux; PD

controllers in

hip and knee

joints; Phase

sequence

control

DC servomotors; gear Rotary encoder; EMG

sensor; Floor reaction

force sensor

Gait

rehabilitation

One leg Yes: supportive

arm

Yes 2 National

Instruments PCI-

6229 data

acquisition

board;

impedance

control; PID

control

Pleated pneumatical

artificial muscles

(PPMA’s); Kolvenbach

KPS3/400 pressure

regulating valves

Avagotech AEDEA 3300-

TE1 hihg resolution

incremental encoder;

gauge pressure sensor;

force-sensitive resistors

(footsole)

Autonomy One leg Yes:

instrumented

cane

2 PC Celeron

566MHz RT

Linux; synergy

based control

Floor reaction force

sensor in foot and cane;

Inertial motion sensor

Autonomy Lower limbs Yes: forearm

crutches

(optional)

Yes 6: 3 per leg Embedded

computer

system (running

Solaris);

Control

software in real-

time java; PD

control

BLDC motor (MoogBN

34-25EU)

Encoder (Avago HEDL-

5640#A13); Renishaw

RGH-24 linear encoder

Autonomy Lower limbs No No 14: 7 per leg BLDC motor

controller

BLDC motors Force sensors;

Inclinometer; angle

sensors; potentiometers

Force

augmentation;

user mobility

enhancement

Upper and

lower limbs

No DC Motors EMG signals; floor

reaction force sensors

User mobility

enhancement

Right/left lower

limb

Yes: cane with

activation

button

Yes 2 PD/PID control

system on

FPGA

BLDC motors Inertial Measurement Unit

(IMU); encoders; FRS

KNEXO Knee

exoskeleton Vrije

Universiteit

Brussel/2010

HAL with

instrumented cane

Hybrid assistive limb

University of

Tsukuba/2014

Mina Institute for

Human and Machine

Cognition

(IHMC)/2011

[No Name] Yonsei

University/2013

HAL-5 Hybrid

assistive limb fifth

generation University

of Tsukuba/2006

LEIA Exo (yet to be

build) Universidade

de Brasília

Exoskeleton/Year

publication

LOPES Lower

extrimity powered

exoskeleton

University of

Twente/2007

ALEX II Active leg

exoskeleton

University of

Delaware/2011

BLEEX Berkeley

Lower extremity

exoskeleton

University of

California,

Berkeley/2006

WSE Walking

supporting

exoskeleton/2014

HAL-3 Hybrid

assistive limb third

generation University

of Tsukuba/2003

11

The BLEEX exoskeleton (Figure 2.1) is a lower limb exoskeleton that was developed

for strength, endurance and weight carrying augmentation. It uses a PC104 compliant computer

and has seven DOF’s on each leg [10], [11]. Of the reviewed exoskeletons it is the only one

that has two different energy sources. Its hydraulic actuators are powered by a combustion

engine, while the electronics are powered by a battery. The control system consists of an

exoBrain that manages the exoskeleton’s communication network, Remote IO Modules

(RIOM’s) are interconnected by Supervisory IO Module (SIOM) boards and there is also an

external Graphical User Interface present for monitoring and configuration of the exoskeleton.

The complex custom designed network infrastructure is designed for speed of communication

and reduction of wiring. There is also one transceiver and one FPGA control unit for every

RIOM and SIOM. The BLEEX exoskeleton was developed by the University of California

Berkely.

Figure 2.1 BLEEX exoskeleton (year 2006) [10]

The LOPES exoskeleton (Figure 2.2) is a lower limb exoskeleton with eight DOF’s that

are electrically powered, designed for rehabilitation. The exoskeleton is fixed on a structure

while the user walks on a treadmill [12]. It is driven by Bowden and elastic cables and

servomotors, and is controlled by an external PC. It can be operated in patient-in-charge and

robot-in-charge mode. The exoskeleton was developed by the University of Twente in the

Netherlands.

12

Figure 2.2 LOPES exoskeleton (year 2007) [12]

The ALEX II exoskeleton (Figure 2.3) was designed for gait rehabilitation and can be

worn on either the right or left leg while being adjustable to the user’s size. It is suspended on

a back support structure bearing the weight of the user while walking on a treadmill [13]. It is

powered by the electricity network and controlled by a dSPACE 1103 [14] control system.

dSPACE is a company specialized in the development of control systems for automotive, aero

spatial and industrial control. The exoskeleton was developed by the University of Delaware.

Figure 2.3 ALEX II exoskeleton (year 2011) [13]

The WSE (Figure 2.4) is a lower limb exoskeleton to aid in autonomy, designed with

the idea of using lightweight material for user comfort and energy efficiency. It is used with

underarm crutches and actuated by servomotors. The processing is performed by a VIA Mark

13

Processor at 800MHz. It uses two 23.5 V10 Ah Li-Po battery packs [15]. The device was

developed by the Necmettin Erbakan University in Turkey.

Figure 2.4 WSE exoskeleton (year 2014) [14]

The HAL exoskeleton (Figure 2.5) is among the most versatile ones. There are several

versions of this exoskeleton available, ranging from complete exoskeletons of the upper and

lower limbs to exoskeletons of only one lower limb, some for strength augmentation and others

to promote autonomy. The authors provide a detailed description of the tools and methods in

the design of the device [16].

Figure 2.5 HAL exoskeleton (year 2003) [15]

14

The HAL-3 [17] is a lower limb version of the HAL exoskeleton, designed for patients

with hemiplegia. It aids the user in standing up, walking and climbing stairs. These tasks are

divided in a number of phases allowing phase sequenced control. The device is powered by

battery and has a PC Celeron 566 MHz RT Linux based processing system. The HAL

exoskeleton was developed by Japan's Tsukuba University and the robotics company

Cyberdyne.

The HAL version with instrumented cane (Figure 2.6) was designed to promote

autonomy for hemiplegic patients. The cane is equipped with force sensors on the bottom [18],

and senses angle and velocity. It is equipped with a command button to start or stop the gait

cycle. The cane is also equipped with the main unit and an Inertial Measurement Unit (IMU).

The main unit receives the aforementioned sensor data from the cane, the sensor data from the

IMU’s on the thigh and shank, and from the force sensor data from the bottom of the shoes by

Bluetooth. The data is then processed on the IMU, and the control commands are communicated

through Bluetooth to the Wi-Fi unit on the back of the exoskeleton for its control.

Figure 2.6 HAL exoskeleton with instrumented cane (year 2014) [17]

The KNEXO exoskeleton (Figure 2.7) is a single leg exoskeleton designed for gait

rehabilitation. It is suspended by a supported arm while the user walks on a treadmill. What is

particular about this exoskeleton is the actuator system composed of pleated pneumatic artificial

muscles connected to a pressurized air supply system [19]. The exoskeleton was developed by

the Vrije Universiteit Brussel in Belgium.

15

Mina (Figure 2.8) is a lower limb exoskeleton designed to aid autonomy in paraplegia

and paraparesis, optionally supported by forearm crutches [20]. The processing in this device

is performed by an embedded computer system running Solaris, and the control software is

written in real-time java. The actuators are brushless DC motors (BLDC) type Moog BN 34-

25EU. Position and torque control are achieved with PD control. Mina was developed by the

NASA Johnson Space Center and IHMC Robotics.

An assistive exoskeleton for the lower limbs was also designed by the Yonsei University

in South-Korea (Figure 2.9). The Center of Pressure (CoP) is used in the operation of this device

to detect the human intention to walk and to verify stability [21]. The exoskeleton is driven by

Figure 2.7 KNEXO exoskeleton (year 2010) [18]

Figure 2.8 Mina exoskeleton (year 2011) [19]

16

Brushless Direct Current (BLDC) electric motors and a BLDC controller. The authors provide

a detailed description of the tools and methods in the design of the device.

Figure 2.9 Yonsei University exoskeleton (year 2013) [20]

The design of exoskeletons is still in its early stages. Lots of research still needs to be

done in this field. This is due in part to the many possible uses and design and implementation

possibilities. Developments in technology, in the field of energy, mechanics, electronics,

computer science, biomechanics, robotics and other related fields will also influence the

developments in the field of exoskeletons.

In most of the designs of exoskeletons it is stated that it is possible to add devices to the

exoskeleton if it is necessary from a therapeutic point of view. Care is also taken in most cases

that the designs be adjustable to the user’s anatomy.

17

2.2.APPLICATION OF FPGA’S IN EXOSKELETON DESIGN

Rahman, et al. [22] the control architecture for a seven DOF upper limb robot is

developed on a FPGA in conjunction with real-time PC (RT-PC). The control strategy used was

to implement in FPGA the part that requires a higher sampling rate while the other part was

implemented in RT. RT is a real time embedded controller developed by National Instruments

(NI) [23]. The authors state that experiments have shown excellent tracking performance of the

controller. The for the control architecture furthermore sliding mode control with exponential

reaching law (ERL), a non-linear control strategy, was used.

Kumar et al. [24] presented the control architecture for GaExoD exoskeleton prototype

that was developed using NI Lab VIEW, Robotics, FPGA and a RT (NI Real time embedded

controller) module to promote shorter development time. Other important consideration is the

real time and parallel processing of the control architecture, which, in this research is supported

by a FPGA device. The main task of the FPGA device is to process the input information and

update the actuator's position connected to the RT module by a high speed bus.

The BLEEX exoskeleton [25] is a very complex lower limb exoskeleton for force

augmentation with autonomous energy supply. It uses a multivariable nonlinear algorithm for

robust control behavior. The exoskeleton electronics system was designed to simplify and

reduce cabling to sensors and actuators while a built-in FPGA manages data transaction and

filtering.

In [26] the authors tend to prove the concept of designing a controller that is stand-alone,

portable, programmable and easily maintainable using a prototype of a robotic arm. To meet

these requirements a FPGA device is used and design is carried out using Verilog. The control

system design is very simple using relays to activate actuators. Exoskeleton joint movements

are provided using sensors near the joints of the human arm which are then transformed to

digital signals. Based on the magnitude of these signals the FPGA provides the appropriate

output signals to activate the relays that drive the actuators (DC motors). A commercially

available robotic arm with five DOF's was used to build the prototype.

In [27] the hardware implementation of the control and interface between a master and

a slave robot is designed using two FPGA's, one for collecting data from the master robot,

basically a motion capture device, and the second one on the slave robot for controlling its

18

motions. A total of twelve PID controllers were used, having each PID controller a total of 5

multipliers and 5 adders. Communication modules between the two robots using RS232 serial

communication protocol, encoder counters for sensor data and PWM generators are also

implemented on FPGA. The authors furthermore argue that FPGA's do not allow floating-point

arithmetic and to overcome this, the smallest integer approximations were used for setting PID

gains.

2.3.KINEMATIC MODEL

Kinematics is the branch of classical mechanics that describes the motion of points,

bodies (objects) and systems of bodies (groups of objects) without consideration of the causes

of motion [28]. In kinematics robots are modeled as chains of rigid bodies, connected to each

other by joints that provide pure rotation and translation. The purpose of kinematics is to

promote computer control, calculating forces and torques.

2.3.1.Forward kinematics basic concepts

Forward kinematics is concerned with determining the position of the end-effector of a

robot, given the orientation of each of the consecutive links of the robot.

Robot location can be expressed in any coordinate system, e.g. Cartesian, Cylindrical or

Spherical. Orientation can be represented by a rotation matrix R (equation 2.1).

 𝑅 = [

𝑛𝑥 𝑜𝑥 𝑎𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧

] (2.1)

The vectors n, o and a, are the unit vectors of the rotated system in the original reference

frame. A rotation matrix, when multiplied by a vector, changes only the direction of this vector

leaving the length of the vector unchanged.

In robotics practice, the movement m of a robot can be described in terms of a translation

t and a rotation R (equation 2.2).

 m=t+R (2.2)

19

 m=[

𝑛𝑥 𝑜𝑥 𝑎𝑥 𝑡𝑥

𝑛𝑦 𝑜𝑦 𝑎𝑦 𝑡𝑦

𝑛𝑧 𝑜𝑧 𝑎𝑧 𝑡𝑧

0 0 0 1

] (2.3)

A more compact form to represent this movement can be achieved by the use of

homogeneous coordinates, also called HC’s (equation 2.3).

More complex movements (translations and rotations) can be expressed as a series of

movements, i.e. several combined movements can be achieved by multiplying their HC’s. HC’s

can only be applied to single joints. To express the movement of multiple joints, expressed as

the succession of transformations, the Denavit-Hartenberg (DH) convention can be used.

Table 2.2 Example Denavit-Hartenberg representation

Link Parameters θ d a α

1 θ1 θ1 d1 0 -pi/2

2 θ2 θ2 0 L2 0

3 θ3 θ3 0 L3 -pi/2

4 θ4 θ4 d4 0 pi/2

5 θ5 θ5 d5 0 -pi/2

6 θ6 θ6 d6 0 pi/2

The DH transformation between two successive joints i-1 and i can be expressed by the

following matrix:

 𝑇𝑖−1
𝑖 = [

𝑐𝑜𝑠𝜃𝑖 −𝑐𝑜𝑠𝛼𝑖𝑠𝑖𝑛𝜃𝑖 𝑠𝑖𝑛𝛼𝑖𝑠𝑖𝑛𝜃𝑖 𝑎𝑖𝑐𝑜𝑠𝜃𝑖

𝑠𝑖𝑛𝜃𝑖 𝑐𝑜𝑠𝛼𝑖𝑐𝑜𝑠𝜃𝑖 −𝑠𝑖𝑛𝛼𝑖𝑐𝑜𝑠𝜃𝑖 𝑎𝑖𝑠𝑖𝑛𝜃𝑖

0 𝑠𝑖𝑛𝛼𝑖 𝑠𝑖𝑛𝛼𝑖 𝑑𝑖

0 0 0 1

] (2.4)

Where,𝜃𝑖 is the angle of rotation from Xi-1 to Xi about the axis Zi-1,𝛼𝑖 is the angle of

rotation from the Zi−1 axis to the Zi axis about the Xi axis. Note that in figure 2.10 this angle is

zero, 𝑎𝑖 is the distance from the intersection of the Zi−1 axis and the Xi axis to the origin of the

ith coordinate system along the Xi axis, and 𝑑𝑖 is the distance from the origin of the i−1th

coordinate system to the intersection of the Zi−1 axis and the Xi axis along the Zi−1 axis and is

the i joint variable for prismatic joints.

20

Figure 2.10 Coordinate system assignments with Denavit-Hartenberg convention [28]

For joints that allow only one degree of freedom such as the revolute and the prismatic

joint can be represented directly by the transformation of equation 2.4. When there are multiple

degrees of freedom single transformation matrices are combined as in equation 2.5.

 𝑇0
𝑛=𝑇0

1𝑇1
2 … … . 𝑇𝑛−1

𝑛 (2.5)

Rotation and translation can be extracted for any of the sub-transformations of 𝑇0
𝑛.

2.3.2.Inverse kinematics basic concepts

Inverse kinematics is concerned with resolving the position of the consecutive joints of

a robot, given a desired end-effector position. This process is more difficult than forward

kinematics and can have an infinite number of solutions, depending on the number of joints. To

calculate inverse kinematics there are two approaches, the algebraic and the geometric approach

[29]. End-effector position must thus be calculated departing from Cartesian space into joint

position and orientation space.

In the geometric approach the end-effector position and orientation is calculated by

trigonometry in terms of joint angles and lengths. This approach works well for simple robotic

structures of up to two degrees of freedom (DOF’s) with revolute joints in two dimensions.

21

For more complex structures the algebraic approach is applied. In this solution equation

2.5 is successively multiplied with the inverse transformation matrices [𝑇𝑛−1
𝑛]-1. Some equations

that are used in the trigonometric approach are also used in this approach. The solution of the

inverse kinematics equation thus depends upon the robotic structure.

2.3.3.Kinematic model simplification

Equation 2.5 is the basis for the forward and inverse kinematic model. The above

mentioned kinematic models are very complex in computational terms since they can involve

a significant number of variables, depending on the structure of the robot. A robot with more

than two revolute joint links is considered a complex structure. The addition, multiplication,

sine and cosine operations add up to the computational complexity of these structures.

Nevertheless, these kinematic models can all be dramatically simplified because in real-life

applications some of the variables become constants.

The kinematic models are well susceptible to parallelism, allowing them to be efficiently

implemented in FPGA’s, providing high computational performance, and portability, which are

basic requirements of the exoskeleton control system.

2.3.4.Kinematics in FPGA

In [30] the inverse kinematics for a ten DOF biped robot with angle equations that

include the arctangent function by implementing the CORDIC algorithm in FPGA, offering a

simplified method for reducing computational time and power consumption. The design of the

inverse kinematics was spread over functional modules. Accuracy is tested comparing the

FPGA results with a software based implementation. Best accuracy was found to be in the

magnitude of 10e-4 for the angles.

In [31] the authors develop the inverse kinematics and the servo controller for a

manipulator robot on FPGA. To reduce the usage of the logic elements (LE’s) in FPGA, a finite

state machine (FSM) was used in order to share the operators that implement the inverse

kinematics. Simulations have also shown considerably faster performance in implementation

in hardware than on a Nios II soft-processor.

22

In [32] a FPGA board with an Altera Cyclone IV FPGA chip was used to accelerate the

position control of a parallel robot for milling. The kinematics equations were implemented in

C using a Nios II soft-processor. The square root and the square root of the sum of squares

operations were chosen to accelerate in hardware due to their high execution time. These

custom designed operations became part of the Nios II Arithmetic Logic Unit (ALU) executing

in the same way as the native microprocessor instructions. The calculation speed increased

almost five times whereas the number of used logical elements increased by 11% and 65% for

a first and a second set of accelerated hardware instructions.

2.4.ZIEGLER NICHOLS TUNING METHODS FOR PID CONTROL

The Ziegler-Nichols tuning method for PID controllers is the most widely used tuning

method for PID controllers and was developed by John G. Ziegler and Nathaniel B. Nichols

[33]. PID controllers are relatively simple controllers having only three parameters to be tuned

and are widely used in many industrial applications. The method relies solely on the step

response of the plant having no need to develop a model of the plant, thus making it relatively

easy to apply. On the other hand it is only suitable for systems with monotonic step response

[34]. The equation for the control signal of the PID controller is as follows:

 𝑢(𝑡) = 𝐾𝑝 [𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒(𝜏)𝑑𝜏 + 𝑇𝑑

𝑑

𝑑𝑡

𝑡

0
𝑒(𝑡)] (2.6)

Equation 2.6 presents the PID control model where u(t) is the control signal, e(t) is the

error signal and 𝐾𝑝, 𝑇𝑖 and 𝑇𝑑 are the parameters to be tuned. From equation 2.6 it can be

observed that the control signal is proportional to the error signal, the integral of the error signal

to its derivative. The PID controller is able to eliminate the steady state error of the step response

signal because of its integral action and it also has the ability to anticipate changes in the output

(derivative action) [35].

The procedure for calculating the PID parameters using Ziegler-Nichols step response

method is as follows [34]:

1. Obtain the step response of the plant

2. Draw the steepest straight line tangent to the response

3. Measure a and L as shown in figure 2.11

23

4. Calculate the parameters according to table 2.3

Figure 2.11 Parameters for Ziegler-Nichols step response method [34]

Table 2.3 P, PI and PID parameter values for Ziegler-Nichols step response method

Controller type 𝑲𝒑 𝑻𝒊 𝑻𝒅

P 1/a

PI 0.9/a 3L

PID 1.2/a 2L L/2

The procedure for calculating the PID parameters using Ziegler-Nichols self-oscillation

method is as follows [36]:

1. Use PID P component only

2. Crank up P until oscillation

3. Determine the ultimate gain Ku and the ultimate period Tu (figure 2.12)

4. Calculate parameters according to table 2.4

24

Figure 2.12 Parameters for Ziegler-Nichols self-oscillation method

Table 2.4 P, PI and PID parameter values for Ziegler-Nichols self-oscillation method

Controller type 𝑲𝒑 𝑻𝒊 𝑻𝒅

P 0.5 Ku

PI 0.4 Ku 0.8 Tu

PID 0.6 Ku 0.5 Tu 0.125 Tu

2.5.PSO ALGORITHM

Particle Swarm Optimization is an optimization method based on the apparently

intelligent social behavior of swarms such as schools of fish and flocks of birds. This method

was proposed by Kennedy J. and Eberhart R. [37], [38]. In this algorithm, particles represent

the individuals of the swarm as points in a multidimensional space, having no weight or volume.

The particles are randomly initialized in a multidimensional space updating their velocity and

position in each new iteration of the algorithm based on their own experience and the experience

of the swarm. The position of a particle represents a potential solution to the optimization

problem. Each particle evaluates its fitness based on an object function and has an individual

memory by means of which it conserves its best position based on this function. Also, the swarm

conserves the best global position of all individuals in every iteration. Based on these values

each individual updates its position and velocity.

25

In the basic PSO algorithm with an N-dimensional search space and a number of S

individuals, the ith individual updates its jth dimensional parameter according to the following

two equations for velocity and position respectively:

vij
t+1 = vij

t + c1 U1j[0,1](yij
t – xij

t) + c2 U2j[0,1] (ysj
t - xij

t)

xij
t+1 = xij

t + vij
t+1

In these equations xij represents the current position of particle in the jth dimension, yi

represents the best position of particle i and ys the best overall position of all the individuals of

the swarm. The constants c1 and c2 are the cognitive and social coefficients, representing the

degree in which a particle relies on its own knowledge and the degree in which it relies on the

collective knowledge of the swarm respectively. The constants c1 and c2 pull the particles

towards the personal best and the global best positions respectively. Very low values cause the

particles to roam further away of yi and ys while too high values will cause abrupt movements

passing these regions. Based on past experience these values are often set to 2.0 [39], [40]. U1

and U2 are randomly distributed numbers between 0 and 1.

The basic PSO pseudocode is presented in figure 2.13. The particles are first randomly

distributed across the boundaries of the N-dimensional space in which they exist, taking care

that the position and velocity of each individual do not exceed xmax and vmax. If vmax is too small

convergence may take longer and if it is too large the particles may fly too fast moving away

from possibly good solutions. The values for f(y) are also initially set to a vector of very high

values that will be minimized during the optimization process. For the initial position and

velocity values of each individual the object function value is then calculated and stored and ys

is then determined. In the nested for loops the velocities and positions of the individuals are

updated for each dimension. The new fitness values are thus repeatedly calculated until they

have reached a certain threshold value for the fitness function or the maximum number of

iterations (Maxiter) has been reached. Every time the velocity and position of every particle is

modified towards the personal best (yi) and the global best position (ys).

26

Inputs: S, N, c1, c2, xmax, vmax, Maxiter, threshold

Output: position of best individual x and its fitness f(x)

Begin

 Initialize Swarm

 repeat

 for k=1:S

 if f(xk) ≤ f(yik) then

 yik = xk

 endif

 endfor

 Calculate ys from the S fitness values f(yik)

 for k=1:S

 for j=1:N

 vkj = vkj + c1 U1[0,1] (ykj - xkj) + c2 U2 [0,1] (ysj – xkj)

 xkj = xkj + vkj

 endfor

 endfor

 until f(ys) < threshold

End

Figure 2.13 Basic PSO algorithm in pseudocode

2.6.PSO FOR PID PARAMETER OPTIMIZATION

PSO has been used in a number of PID parameter tuning applications. In [41] PSO is

used for determining the PID parameters for velocity control of a BLDC motor designed in

Matlab/Simulink. To determine the PID parameters of the controller PSO and Bacterial

Foraging Optimization BFO techniques were applied to the BLDC motor design. For PSO,

three dimensions, one for each PID parameter were used. Furthermore a swarm size of 50

individuals was used with a total of 100 iterations for performing PID parameter optimization.

Simulation results have shown that both PSO and BFO can be used to determine PID parameters

that perform efficiently for the controller, but with the parameters obtained through PSO the

system presented better dynamic performance.

27

In [39] PID controller parameter optimization is performed using GA and PSO for

industrial models. PSO has shown superior performance compared to GA. This paper among

others presents the object function for PID parameter tuning with PSO.

In [42] Fractional Order PID controllers (FOPID), PID controllers and Fuzzy Logic

Controllers (FLC) were optimized for trajectory control of a 2 DOF planar robot using PSO. In

FOPID there are five parameters to be tuned, these are the usual PID controller parameters (Kp,

Ki and Kd) and two additional ones λ and µ. The FOPID controller with its additional parameters

adds flexibility to the controller design in achieving specified control objectives allowing real

processes to be controlled more accurately. Since each FOPID controller has five parameters

to be optimized, there are a total of ten dimensions in the case of the two DOF planar

manipulator. The authors use three different cost functions to tune the FOPID controller, Mean

of Root of Squared Error (MRSE), Mean of Absolute Magnitude of the Error (MAE) and Mean

Minimum Fuel and Absolute Error (MMFAE).

In [43] the PID controller parameters for velocity control of a DC motor modelled in

Matlab are tuned using PSO and compared with Fuzzy Logic Control (FLC). The authors argue

that the frequency domain performance criteria IAE and ISE can result in relatively small

overshoot but a long settling time because in these the error values are equally weighted

independent of time. On the other hand Integral Time-weighted Square Error (ITSE) can

overcome this problem but the formula is more complex and computationally more expensive.

The authors instead use a time domain criteria that include the overshoot, the rise time, settling

time and steady-state-error.

Nasri et al. [44] also presents a PSO-based approach to optimizing PID parameters for

a BLDC motor simulated in Simulink. Compared to other control methods such as optimal

control, variable structure control and adaptive control PID control offers the most simple and

efficient form of control in many real world applications. Other methods for PID parameter

optimization have been developed such as the LQR methods and GA-based optimization

methods, the first one being computationally expensive and the second one presenting some

deficiencies in object functions with highly correlated parameters. The authors argue in favor

of PSO for its simple concept, easy implementation and computational efficiency. It was also

found to solve optimization problems involving nonlinearity and non-differentiability, multiple

optima and high dimensionality. A swarm size of 20 individuals and 20 iterations were used to

execute the PSO algorithm. Comparison with the LQR and GA algorithms have shown that

28

optimization with PSO presents superior dynamic performance over the two other optimization

methods.

2.7.CONCLUSION

A wide range of exoskeletons have already been developed applying a very broad range

of technologies for actuation, sensing and power. The emergence of new technologies has an

impact on the development of exoskeletons. In the case of exoskeletons used for autonomy and

force augmentation power supply and portability are very important issues. The field is

relatively new and research is still in an early stage of development. Except from the

exoskeletons presented in the review a considerable number of initiatives are under

development for the construction of new exoskeletons.

The exoskeleton that is being developed at the LEIA laboratory will be specifically used

for user mobility enhancement for persons who suffer from hemiplegia. For the control system

PID control will be used. To host the control system, sensor data processing and motor drive a

FPGA device will be used.

In the next chapter the exoskeleton physical design and kinematics model will be

presented.

29

3. EXOSKELETON DESIGN

To enable simulation of the exoskeleton control system in Matlab, a design was created

in Solidworks 2016. This Computer-aided Design (CAD) software package designed by

Dassault Systèmes in 1995, utilizes a parametric feature-based approach to designing solid

material models. The possibility to parameterize part measurements makes it relatively quick

and easy to automatically adjust a design. In the case of the exoskeleton the lengths of the upper

and lower leg are parameterized, allowing them to easily adjust the model measurements to the

anatomy of a specific individual.

A Solidworks model is essentially a hierarchy of parts and assemblies of parts. The

exoskeleton parts were designed with fictitious values which more or less resemble the

measurements of a real individual. The parts were then mated together in such a way that they

were able to move like a human leg with revolute joints in the hip and the knee. The exoskeleton

leg model thus only moves in a plane.

3.1.PHYSICAL DESIGN

Figure 3.1 presents the proposed design for the exoskeleton. The model is comprised of

an adjustable wearable hip with three parts that slide into each other. The hip and knee joints

are each actuated by a motor with gear. For smoothness of movement bearings were added to

the hip and the knee joints.

Figure 3.1 Solidworks Design of Exoskeleton

30

The Solidworks model was exported as an XML file, using the Simscape Multibody

Link Add-in available from MathWorks [45]. The XML file was then imported in Matlab as a

Simmechanics model (Figure 3.2). With Simmechanics physical systems can be designed from

components, allowing them to integrate with Simulink blocks. The integration of Simmechanics

components with Simulink blocks in this research has proven to be very useful to build and

integrate the control system for the exoskeleton into the generated model.

The generated Simmechanics model can be visualized with Matlab’s Mechanics

Explorer. Mechanics Explorer offers a 3D visualization pane to view the model and a tree view

pane to explore the model hierarchy. It also consist of a properties pane, presenting the

parameters of each component of the design such as their weights and dimensions. The model

can be visualized from any angle and can also be zoomed in or out.

Figure 3.2 Exoskeleton Model imported visible in Mechanics Explorer

The Solidworks model (Figure 3.1) presents relatively significant detail including all

mechanical components such as bearings, motors, gears, joints etc. For the purpose of designing

and simulating the control system model less mechanical detail than present in the Solidworks

model was necessary, and therefore the model was simplified, adding together and mating some

components such as prismatic joints which were present due to the presence of bearings. On

the other hand sensor outputs and actuator inputs from the motors were added to the two

revolute joints of the model.

31

3.2.THE INVERSE KINEMATICS MODEL

Kinematics is the branch of classical mechanics that describes the motion of points,

bodies (objects) and systems of bodies (groups of objects) without considering the causes of

the motion [4]. In kinematics robots are modeled as chains of rigid bodies, connected to each

other by joints that provide pure rotation and translation. The purpose of kinematics is to

promote computer control, calculating forces and torques. The inverse kinematics calculates

the joint positions and orientations given the end-effector position and orientation. To calculate

the inverse kinematics there are two approaches, the algebraic and the geometric approach [29].

In the geometric approach the end-effector position and orientation is calculated by

trigonometry in terms of joint angles and lengths. This approach works well for simple robot

structures of up to two DOF’s with revolute joints in two dimensions. To facilitate the

calculation of the inverse kinematics a mathematical model of the exoskeleton is depicted in

figure 3.3.

Figure 3.3 Simplified Exoskeleton Structure

The proposed exoskeleton consists of two links, one from hip to knee and the other from

knee to foot, and two rotational joints, one at the hip and the other at the knee, each operating

in the plane, therefore the trigonometric approach is used.

32

For better visualization the leg is positioned upside down (Figure 3.3) with reference

frame (x0, y0). The links l1 and l2, the upper and lower leg respectively, are connected by the

knee joint. The hip joint is at the origin of the reference frame. Given the joint angles 𝜃1and

𝜃2of the hip and the knee joint, the end effector position (x, y) can be determined given the

restriction that 𝜃2is greater than 0o and no more than 180o in accordance with human leg

anatomy. The Denavit-Hartenberg parameters of the exoskeleton are given in table 3.1.

Table 3.1 Denavit-Hartenberg parameters of the Exoskeleton

Link α a d θ

1 0 l1 0 θ1

2 0 l2 0 θ2

The inverse kinematics calculates the joint configuration (𝜃1 and 𝜃2) given the end-

effector configuration, i.e. the values of x and y which can be calculated by:

 𝑥 = 𝑙1𝑐1 + 𝑙2𝑐12 (3.1.a)

 𝑦 = 𝑙1𝑠1 + 𝑙2𝑠12 (3.1.b)

where c1 and s1 represent cos(𝜃1) and sin(𝜃1), and c12 and s12 represent 𝑐𝑜𝑠(𝜃1 + 𝜃2) and

𝑠𝑖𝑛(𝜃1 + 𝜃2).

From equations 3.1.a and 3.1.b follows that

 𝑥2 + 𝑦2 = (𝑙1𝑐1 + 𝑙2𝑐12)2 + (𝑙1𝑠1 + 𝑙2𝑠12)2 (3.2)

 = 𝑙1
2. 𝑐1

2 + 𝑙2
2. 𝑐12

2 + 2𝑙1𝑐1𝑙2𝑐12 + 𝑙1
2. 𝑠1

2 + 𝑙2
2. 𝑠12

2 + 2𝑙1𝑠1𝑙2𝑠12 (3.3)

 = 𝑙1
2(𝑐1

2 + 𝑠1
2) + 𝑙2

2(𝑐12
2 +𝑠12)

2 + 2𝑙1𝑙2(𝑐1𝑐12 + 𝑠1𝑠12) (3.4)

 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2𝑐2 (3.5)

Applying the trigonometric identity 𝑐𝑜𝑠(𝑎 − 𝑏) = 𝑐𝑜𝑠(𝑎) 𝑐𝑜𝑠(𝑏) + 𝑠𝑖𝑛(𝑎) 𝑠𝑖𝑛 (𝑏),

equation 3.5 can be derived from equation 3.4, finally yielding:

 𝑥2 + 𝑦2 = 𝑙1
2 + 𝑙2

2 + 2𝑙1𝑙2𝑐2 (3.6)

33

To calculate the inverse kinematics our goal is to calculate 𝜃1 and 𝜃2. From equation 3.6

isolate

 cos(𝜃2) =
𝑥2+𝑦2−𝑙1

2−𝑙2
2

2.𝑙1𝑙2
 (3.7)

from which 𝜃2 can be directly derived by applying the inverse cosine function. For small angles

however, this function is not very accurate.

 𝑠𝑖𝑛(𝜃2)2 + 𝑐𝑜𝑠(𝜃2)2 = 1 (3.8)

 sin(𝜃2) = ±√1 − cos(𝜃2)2 (3.9)

Equation 3.9 corresponds to the two possible configurations for the planar manipulator,

the elbow-up and the elbow-down configuration. In case of the exoskeleton leg only the elbow

up configuration (Figure 3.3), where 𝜃2 > 0 is relevant caused by the restrictions in the human

knee joint. Thus the equation for sin(𝜃2) will be:

 sin(𝜃2) = √1 − cos(𝜃2)2 (3.10)

 sin(𝜃2) = √1 − (
𝑥2+𝑦2−𝑙1

2−𝑙2
2

2.𝑙1𝑙2
)2 (3.11)

 𝜃2 = 𝑎𝑡𝑎𝑛2(sin(𝜃2), cos(𝜃2)) (3.12)

 𝜃2 = 𝑎𝑡𝑎𝑛2 (√1 − (
𝑥2+𝑦2−𝑙1

2−𝑙2
2

2.𝑙1𝑙2
)

2

 ,
𝑥2+𝑦2−𝑙1

2−𝑙2
2

2.𝑙1𝑙2
) (3.13)

where 𝑎𝑡𝑎𝑛2 is the inverse tangent function. The 𝑎𝑡𝑎𝑛2 function is different from the

conventional arctangent function. 2. 𝑙1𝑙2The major difference is that the 𝑎𝑡𝑎𝑛2 function also

determines the quadrant of an angle, which is not the case of the arctangent function. To

calculate 𝜃1the angle γ and the lengths 𝑘1and 𝑘2 are introduced in figure 3.3.

 𝛾 = 𝑎𝑡𝑎𝑛2(𝑘1, 𝑘2) (3.14)

 𝑘1 = 𝑟. 𝑐𝛾 = 𝑙1 + 𝑙2𝑐2 (3.15)

 𝑘2 = 𝑟. 𝑠𝛾 = 𝑙2𝑠2 (3.16)

 𝜃1 = 𝛿 − 𝛾 = 𝑎𝑡𝑎𝑛2(𝑦, 𝑥) − 𝑎𝑡𝑎𝑛2(𝑙2𝑠2, 𝑙1 + 𝑙2𝑐2) (3.17)

34

3.3.CONCLUSION

The physical 3D Solidworks design of the exoskeleton offers a range of possibilities for

simulation and ongoing development purposes. An XML model of the Solidworks design was

generated using the Simmechanics add-in available at MathWorks. Simmechanics components

generated by importing the XML file can be integrated with Simulink components making it

possible to build control system models that can be used to perform simulations.

The exoskeleton being developed has a relatively simple structure with two DOF’s.

Nevertheless the calculation of the inverse kinematic involves some complex calculations

involving the square root and atan2 functions.

35

4. KINEMATICS MODEL ACCELERATED IN HARDWARE

The kinematics model, the control system, sensory data processing and actuation system

of the exoskeleton will be implemented as a SoC on a FPGA. An important advantage of FPGA

devices is portability in terms of weight and size. FPGA SoC’s also present flexibility in system

design integrating hardware components with software components, offering a number of

support tools such as software/hardware co-design tools and interconnectivity with other tools

such as Simulink.

Besides the performance benefits, SoC’s offer portability and low energy consumption

compared to PC’s. PC’s, though capable of offering great performance and flexibility for

implementation of complex algorithms, consume far more energy than microcontrollers and

SoC’s and are not portable. Microcontrollers on the other hand, are very energy efficient but

have very limited resources leading to a lack of computational performance for implementing

complex algorithms as offered by PC’s and SoC’s.

The inverse kinematics of the exoskeleton presents a considerable amount of arithmetic

and trigonometric calculations that need to be performed at a very high rate while the

exoskeleton is in operation. Here, advantage can be taken of the parallelism capabilities of the

FPGA while at the same time maximizing operator reuse as a trade-off. Thus the number of

operators should be kept as low as possible to reduce FPGA resource usage.

In this research the floating-point precision of 27-, 32-, 45- and 64 bit VHDL hardware

designs of the inverse kinematics of the exoskeleton are compared to one another. A 64 bit

model of the inverse kinematics model in Simulink is therefore used as a reference model. Every

VHDL hardware design is co-simulated with the Simulink model to calculate the Mean Square

Error (MSE) [46] and the Average Relative Error (ARE) [47].

The precision analysis is performed by comparing hardware based inverse kinematics

implementations in VHDL with a software based implementation in Simulink. For the

kinematics implementation of the exoskeleton, the four bit-width representations were

simulated and analyzed not only in terms of performance, but also in terms of FPGA resource

consumption and power consumption.

36

4.1.HARDWARE IMPLEMENTATION OF THE ATAN2 FUNCTION

The atan2 function is not readily available so it was implemented using the units

illustrated in table 4.1. The operators used for the design of atan2 are IP floating-point operators

developed at the LEIA lab. The atan2 is a computationally expensive operator in terms of

hardware area and machine cycles, thus a good candidate for design in hardware. For the

implementation of the floating-point trigonometric functions the Coordinate Rotation Digital

Computer (CORDIC) approach is used for its suitability and performance [48]. The CORDIC

algorithm is a simple and efficient algorithm to calculate hyperbolic and trigonometric

functions.

Without entering into further details, it is worth mentioning that the atan2 function is

implemented as a Finite State Machine (FSM) with six states including the waiting state,

reducing considerably the area in hardware. As can be seen in the table 4.1 it consists of only

three operators. The optimized hardware model of the arctan2 function is given in figure 4.1.

Table 4.1 Number of Composing Operators for atan2 Operator

Floating-point Operator Number of units

Arctangent 1

Divisor 1

Addition/Subtraction 1

Figure 4.1 Optimized hardware model for atan2 function

4.2.HARDWARE IMPLEMENTATION OF INVERSE KINEMATICS

The hardware design of the inverse kinematics model has been carried out in VHDL

using the Xilinx Integrated Software Environment (ISE) 14.7 development tool. The design

consists of the several floating-point operators that were also designed in VHDL.

37

As stated by equation 3.17, the rigth-hand side of 𝜃1 is dependent on the value of

sin(𝜃2) and cos(𝜃2) and can only be calculated after 𝜃2 is known. The calculation of the inverse

kinematics can be drastically optimized by introducing constants stored in memory as

illustrated by the input rectangles in figure 4.2. To save space on the SoC the least possible

number of operators is used while maximizing their use in every cycle.

For the same reason as the atan2 function the inverse kinematics is implemented in

hardware as a FSM with twelve states including the waiting state, as illustrated in figure 4.3.

The waiting state is a start and also an end state.

Figure 4.2 Optimized hardware model for calculating the Inverse Kinematics

Figure 4.3 Finite State Machine for calculating the Inverse Kinematics

38

The inverse kinematic unit has two inputs, x and y, and two outputs, 𝜃1 and 𝜃2 (t1 and

t2 in figure 4.2). All other input constants such as 𝑙1 and 𝑙2 are previously calculated and stored

in the system, where 𝑙1 and 𝑙2 are the lengths of the links of the exoskeleton leg. This design

decision reduces the number of states for the FSM and the number of operations to be

performed. Table 4.2 presents the number of floating-point operators used for the inverse

kinematics.

Table 4.2 Number of Composing Operators for calculating the Inverse Kinematics

Operator Number of units

Addition/subtraction 1

Multiplier 2

Square root 1

Arctan2 1

Numerical design simulations were performed to verify the correctness of the design.

Questa Sim 10.1 was used for this purpose. Three different hardware designs with different bit

widths were developed and tested for the inverse kinematics model as illustrated in table 4.3.

4.3.CO-SIMULATION WITH QUESTA SIM

For the error analysis a 64 bit software model in Matlab is used. This model is created

using Matlab/Simulink’s CosimWizard tool and the Mentor Graphics Questa Sim 10.1

hardware simulator tool. Questa Sim is a hardware design and simulation tool for Hardware

Description Language.

Table 4.3 Bit Widths of Hardware Design Representations Used

Bit width exponent mantissa

27 8 18

32 8 23

45 8 36

64 11 52

The four different bit width configurations were integrated into a Device Under Test

(DUT) with a 64 bit software model developed in Matlab. A wrapper designed in VHDL was

used to map the 27, 32 and 45 bit width representations onto the 64 bit inverse kinematics

Matlab model. For each bit width representation an error analysis was performed using the co-

simulation model depicted in figure 4.4.

39

Matlab’s uses the IEEE standard double precision format defined by the ANSI/IEEE

Standard 754-1985 for Binary Floating-Point Arithmetic [49]. This standard was adopted by

the IEEE Standards Board and the American National Standards Institute in 1985. Nowadays

this standard is used by all computers being designed. Since the standard offers some flexibility,

computers will not always get exactly the same results.

For numerical conversions the ieee.float_pkg package, that is based on the IEEE 754

double precision floating-point standard was used [50].

The wrapper does the following transformations in VHDL using IEEE.float_pkg.ALL

(in the example below for 27 bits):

std_logic (64) -> real -> float (27)

float (27) -> real -> std_logic (64)

Figure 4.5 illustrates the error analysis procedure. First the inputs x and y are generated

in Matlab. The inputs are fed to the Hardware design and the Matlab functions, which represent

the reference model for the DUT, generating outputs 𝜃1and 𝜃2 (t1 and t2 in Figure 4.2). If the

Hardware design is correct, its outputs should approximate that of the Matlab model. The

generated Matlab inputs are 64 bit floating-point numbers. The MSE and the ARE values

between the DUT and the Matlab model can then be calculated using the Matlab model as a

statitical reference. The co-simulation model developed in Simulink is depicted in figure 4.4.

Figure 4.4 64 bit wrapper for HDL co-simulation

40

Figure 4.2 HDL co-simulation model in Simulink

The MSE and the ARE of 100 different input pairs between the Matlab model and the

Hardware model were calculated for the outputs 𝜃1 and 𝜃2. The errors were calculated for 15

and 20 CORDIC iterations of the floating-point IP core of the atan2 function.

The test data used was generated by letting 𝜃1 vary between 10 and 120 degrees and 𝜃2

between 10 and 179 degrees, incrementing 𝜃1 and 𝜃2 by three degrees for the next iteration,

thus generating a total of 2016 input/output samples. The values for 𝜃1 and 𝜃2 for the error

calculations were chosen to attend the possible values for the application domain. The generated

MSE and ARE values are presented table 4.4 and 4.5.

Table 4.4 MSE and ARE values for 15 CORDIC Iterations (Error unit: radians)

Bit width MSE t1 MSE t2 ARE t1 ARE t2

27 2,28E-05 6,48E-05 4,21E-01 5,85E-01

32 1,77E-05 1,85E-05 3,79E-01 3,96E-01

45 1,77E-05 1,85E-05 3,78E-01 3,97E-01

64 1,77E-05 1,85E-05 3,78E-01 3,97E-01

41

Table 4.5 MSE and ARE values for 20 CORDIC Iterations (Error unit: radians)

Bit width MSE t1 MSE t2 ARE t1 ARE t2

27 1,50E-05 5,47E-05 1,77E-01 3,39E-01

32 1,77E-05 1,85E-05 3,79E-01 3,96E-01

45 7,16E-09 1,54E-08 6,60E-03 1,18E-02

64 7,16E-09 1,54E-08 6,60E-03 1,18E-02

4.4.RESOURCES CONSUMPTION ANALYSIS FOR THE INVERSE KINEMATICS

ON FPGA

This section presents a hardware resources consumption analysis for the inverse

kinematics mapped on a Artix7 XC7A100T FPGA device (Nexys4 Development Board). The

resources consumption was estimated after logic synthesis (no physical implementation was

performed).

In table 4.6 the trade-off between area on FPGA and performance can be observed. As

the bit width increases, also the FPGA resource usage increases while the frequency decreases.

The 64 bit representation presents far greater resource consumption than the three previous

ones. There is a slight difference in resource consumption between the 27 and 32 bit

representation while the former seems to have greater performance.

Table 4.6 FPGA area, Performance and Power Consumption trade-offs

 FF’s LUT’s DSP’s Max.freq.(MHz)

27 1224 1% 2647 4% 5 2% 112.16

32 1427 1% 3156 4% 8 3% 96.86

45 2011 1% 4789 7% 32 13% 64.07

64 2879 2% 7381 11% 57 23% 52.57

4.5.CONCLUSION

Tables 4.4 and 4.5 present the difference between errors when using 15 and 20 CORDIC

iterations respectively for every bit width representation. The smaller bit widths present no

significant difference when 15 or 20 CORDIC iterations are used. Analyzing table 4.4 (15

42

CORDIC iterations), one can observe that for the 32, 45 and 64 bit width representations the

error values remain the same. Only the 27 bit width representation is slightly larger. In table 4.5

(20 CORDIC iterations) the error for the two smaller bit width representations (27 and 32) are

significantly larger than that of the larger bit width representations, but nevertheless they are

still negligible for their purpose. The two larger bit width representations show no error

differences between one another.

Table 4.6 presents the resource consumption and performance of the four bit width

representations. According to the trade-off analysis the 27 bit representation would be a good

candidate for implementing the inverse kinematics of the exoskeleton, offering the highest

performance of all, and far smaller resource usage than the 45 and 64 bit representations.

Though, according to the error analysis the 27 bit representation presents the greatest error

values, they are still very small and negligible for the purpose of calculating the inverse

kinematics.

In the wrapper some numeric conversions are made. This, along with possible

differences in implementation of the ANSI/IEEE Standard 754-1985 may introduce differences

in numeric outcome.

43

5. CONTROL SYSTEM MODEL

Two control system models with integrated position and velocity control were

developed for the exoskeleton. This chapter describes a system level implementation of both

control system models and tuning, using the Ziegler-Nichols and PSO techniques. A human

gait database was used to simulate and validate the exoskeleton control system models.

5.1.SIMMECHANICS MODEL

The Simmechanics model of the exoskeleton was generated using the Simmechanics

import tool from Matlab (see Figure 5.1).

Figure 5.1 Simmechanics Model generated from Solidworks Exoskeleton Model

44

The initial Simmechanics model contained a great deal of detail caused by the presence

of parts that slide into each other such as the bearings, links and joints generating a number of

prismatic joints and other additional components. For the purpose of building the control system

model in Simulink these details are not relevant, so the exoskeleton model was revised in

Solidworks, mating parts that generated unnecessary prismatic and revolute joints together. The

Simmechanics model was simplified removing the planar joints on the one hand, but on the

other hand complexity was added by introducing actuator inputs and position- and velocity

sensors outputs to the joints, generating the model in figure 5.2.

Figure 5.2 Simplified Simmechanics Model with Actuator Inputs and Sensor Outputs

To the model presented in figure 5.2 the necessary components and algorithms were

then added to build and integrate the exoskeleton control system.

5.2.BLDC MOTOR MODEL IN MATLAB

The LEIA exoskeleton will consists of two motors [3], one in each joint for its actuation.

Each motor will be controlled by an ESCON 70/10 [51] motor driver. This is a 4-quadrant

pulse-width modulation (PWM) servo speed controller featuring open- and closed loop speed

control and current control. Two approaches to the design of the combined velocity and position

control of the exoskeleton were developed.

The exoskeleton motors are modeled as direct current (DC) Motor Simulink blocks. The

values of the properties for these blocks are extracted from the datasheet of the motor. The

45

motors used are Maxon EC 90 flat ∅90 mm, brushless 90 Watt motors equipped with Hall

sensors. To generate the necessary torque a Maxon GP62 planetary gears with reduction ratio

of 100 are also attached to each motor (figure 5.3).

Figure 5.3 Maxon EC 90, brushless, 90 Watt motor with GP62 planetary gear

The DC Motor model is presented in figure 5.4 showing the low and high voltage inputs,

and a number of sensor outputs. The outputs Q1 and W1 represent the motor angular position

and angular velocity respectively.

Figure 5.4 Simulink Model of the Exoskeleton Motor with Gear

Part of the data sheet of the motor is presented in figure 5.5 presenting the required

parameters. These values were read into the DC Motor block of figure 5.6.

46

Figure 5.5 Maxon EC 90 BLDC Motor data sheet

Figure 5.6 DC Motor block settings for Maxon EC 90 BLDC motor

5.3.FIRST APPROACH FOR INTEGRATED VELOCITY AND POSITION CONTROL

In this approach the control system of the exoskeleton uses integrated speed and position

control, with a separate control loop for each motor. Each control loop is comprised of a position

controller and a speed controller within the position controller loop as stated in [52].

47

Figure 5.7 First approach to control system design for exoskeleton (adapted from [52])

The position controllers are both PD controllers while the velocity controllers are PID

controllers. Figure 5.7 presents the control system model of the exoskeleton for the first

approach. In this figure it can be observed that the Simmechanics model depicted in figure 5.8

is integrated into a subsystem called EXOSKELETON, around which the control system is

built.

Figure 5.8 Control system design according to first approach

The exoskeleton motors each have one input to the exoskeleton, V1in and V2in, by

which the two motors are powered, and a number of sensor outputs. The following outputs are

used to calculate the error values for motor velocity (rad/s) and position (rad):

Q1_M1_out: angular position of the hip joint motor

Q2_M2_out: angular position of the knee joint motor

W1_M1_out: angular velocity of the hip joint motor

W2_M2_out: angular velocity of the knee joint motor

The control system of the exoskeleton receives the end-effector position as its input (x

and y). The end-effector position is then calculated using the inverse kinematics in software

(INV.KIN module). To evaluate the control system single input value pair (x,y) for the end-

effector position are introduced to the input.

48

The PS Simulink converter blocks in figure 5.8 are unit conversion blocks which convert

physical signal units from the exoskeleton block into the specified units from in these blocks.

In this case the angular position is converted into radians.

The CONV.Q1 and CONV.Q2 blocks are used to set the initial angles of the hip and

knee joints to a straight down position as presented in figure 5.9. The reference frame for the

exoskeleton is located in the center of the hip joint, with the positive x axis pointing to the right

and the positive y axis pointing upwards.

Figure 5.9 Exoskeleton leg straight down position

Table 5.1 presents the basic measurements of the upper and lower leg of the exoskeleton

which are fictitious but nevertheless are more or less proportional to a real human anatomy,

corresponding to an end-effector position of (0, -1.05) in the straight down position.

Table 5.1 Exoskeleton basic measurements

Part Length(m)

Upper leg 0.5

Lower leg 0.55

The inverse kinematics then delivers the corresponding joint angles q1 and q2 for each

motor. The angles q1 and q2 are thus the set points for each exoskeleton joint. The error signal

is calculated by subtracting the desired end-effector position from the actual joint angle

measured by the sensors at the exoskeleton.

49

The exoskeleton has a total of two PID controllers and two PD controllers (figure 5.8)

as follows:

PD.Q1: PD controller for position control of the hip joint motor

PD.Q2: PD controller for position control of the knee joint motor

PID.W1: PID controller for the angular velocity of the hip joint motor

PID.W2: PID controller for the angular velocity of the knee joint motor

5.3.1.Control System Tuning for first approach

In this approach the velocity controllers are both first tuned separately using the Ziegler-

Nichols method. To calculate the PID parameters for the velocity controllers in the first

approach a unitary step input with step time of 0 seconds and simulation time of 2 seconds was

presented to the plant according to the Ziegler-Nichols step response method yielding the

following results:

Table 5.2 Results with Ziegler-Nichols step response method for velocity controller motor 1

a = 0.2564 P I D

L = 0.0036 0.30768 42.73333 0.000554

The results for the PID parameter tuning of both velocity controllers of model 1 appear

to be essentially the same.

The PD position controllers of motor 1 and motor 2 were tuned using PSO since Ziegler-

Nichols since this method does not define a procedure for the calculation of PD controller

parameters. A swarm size of 10 individuals and 50 iterations were used. In this case c1 and c2

were chosen 2.05 which are the most common values encountered in literature [53] [54]. These

values are commonly used to restrain velocities from attaining unacceptable levels.

50

Figure 5.10 Step response with Ziegler-Nichols step response method for velocity controller motor1

Table 5.3 Results with Ziegler-Nichols step response method for velocity controller motor2

a = 0.2335 P I D

L = 0.0033 0.2802 42.45455 0.000462

Figure 5.11 Step response with Ziegler-Nichols step response method for velocity controller motor2

51

The fitness function used was developed to minimize the error between the set-point

and the output signal, to minimize the overshoot and minimize the rising time for each motor

separately. Thus, the final fitness function is the sum of the two fitness functions.

 𝐹𝑞1 = 𝑏𝑒𝑡𝑎 ∗ 𝑒𝑞1 + 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡𝑞1 + 𝑔𝑎𝑚𝑚𝑎 ∗ 𝑟𝑖𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑞1 (5.1)

 𝐹𝑞2 = 𝑏𝑒𝑡𝑎 ∗ 𝑒𝑞2 + 𝑎𝑙𝑝ℎ𝑎 ∗ 𝑜𝑣𝑒𝑟𝑠ℎ𝑜𝑜𝑡𝑞2 + 𝑔𝑎𝑚𝑚𝑎 ∗ 𝑟𝑖𝑠𝑖𝑛𝑔_𝑡𝑖𝑚𝑒𝑞2 (5.2)

 𝐹 = 𝐹𝑞1 + 𝐹𝑞2 (5.3)

Table 5.4.a PSO variables used in algorithm

Variable Identifier Value

Swarm size n 10

Dimensions dim 4

Search space (x,y) ([0..100],[0..100])

Cognitive scaling parameter c1 2.05

Social scaling parameter c2 2.05

Momentum of Inertia w 0.9

Iterations bird_steps 50

Weighting factor overshoot alpha 2

Weighting factor error beta 1

Weighting factor rising time gamma 1

The values of the variables in the PSO algorithm are presented in table 5.4.a and the

tuning results for the PD parameters of motor1 and motor2 are presented in table 5.4.b. The

convergence graph for the tuning the controller parameters with PSO is presented in figure 5.12

and the step responses with the obtained controller parameter values are presented in figure

5.13 and 5.14. From figure 5.12 it is clear that the fitness value decreases to a value of

approximately 1.3 after 40 iterations. The step response of figure 5.13 presents a high settling

time for the position controller of motor1 and figure 5.14 shows high overshoot for the position

controller of motor2. From table 5.4.b it can be observed that the P value for the position

controller of motor2 is a border value (See table 5.4.a).

52

Figure 5.12 Convergence graph for PD controller tuning with PSO

Table 5.4.b PSO tuning results for the controller parameters of motor1 and motor2

 P D

Motor1 76.3825 4.7374

Motor2 100 7.2391

Figure 5.13 Step response for motor1 with PD parameters obtained with PSO

53

Considering the above, to improve control system performance the PID tuner tool

available in Matlab was used to fine-tune the PD controllers. The step responses were greatly

improved (figure 5.14 and 5.15). The fine-tuned PD controller parameters are presented in table

5.5.

Figure 5.15 Step response for motor1 with PD parameters obtained with PID tuner

Figure 5.14 Step response for motor2 with PD parameters obtained with PSO

54

Figure 5.16 Step response for motor2 with PD parameters obtained with PID tuner

Table 5.5 PSO and PID tuner results for the controller parameters of motor1 and motor2

 PSO PID tuner

 P D P D

Motor1 76.3825 4.7374 16.95962 1.640908

Motor2 100 7.2391 17.54065 1.571683

5.4.SECOND APPROACH FOR INTEGRATED VELOCITY AND POSITION

CONTROL

In the second approach adapted from [55] another strategy to integrated position and

velocity control is developed. The control system design of this approach is presented in figure

5.16. In this case two PID controllers are used for position control and two for velocity control,

one for each motor. The top PID controller is for position control, receiving the angular position

as its reference signal. The derivative block passes the derivative of the angular position, i.e.

the angular velocity, as a reference signal to the second PID controller for velocity control.

There is also a low pass filter present after the derivative block to attenuate frequencies higher

than the cutoff frequency.

55

Figure 5.17 First approach to control system design for exoskeleton (source: [47])

The system setup for the exoskeleton control system is depicted in figure 5.17.

Figure 5.18 Control system design according to second approach

In this approach the contribution of the velocity controller imposes additional control

on the system as a whole. Since the velocity controllers impose additional control the position

controllers were first tuned and the velocity controllers afterwards.

As in the previous approach the exoskeleton inputs, outputs and other remaining blocks,

except the control system blocks remain the same. In this approach the exoskeleton has a total

of four PID controllers:

PID.Q1: PID controller for position control of the hip joint motor

PID.Q2: PID controller for position control of the knee joint motor

PID.W1: PID controller for the angular velocity of the hip joint motor

PID.W2: PID controller for the angular velocity of the knee joint motor

56

5.4.1.Control System Tuning for second approach

The position controllers are both first tuned separately using the Ziegler-Nichols

method. To calculate the PID parameters a unitary step input with step time of 0 seconds and

simulation time of 3 seconds was presented to the plant according to the Ziegler-Nichols step

response method yielding the results of table 5.6. The I component is far higher than the P and

D components.

Table 5.6 Results with Ziegler-Nichols step response method for position controller motor 1

a = 0.01129 P I D

L = 0.0115 106.2888 4621.25 0.61116

Figure 5.19 Step response with Ziegler-Nichols step response method for position controller motor1

For tuning the controller parameters for motor2 the Ziegler-Nichols self-oscillation

method was used because of difficulties to determine the parameters a and L that are used in

the step response method. The results are presented in table 5.7. The I component in this case

is also very high compared to the P and D components.

57

Table 5.7 Results with Ziegler-Nichols self-oscillation method for position controller motor2

Ku = 2370 P I D

Tu = 0.052 1422 54692.31 9.243

Figure 5.20 Step response with Ziegler-Nichols self-oscillation method for position controller motor 2

To obtain better system response the parameters are manually adjusted according to the

closed loop step response properties of the PID controller parameters presented in table 5.8

[56].

Table 5.8 Effect of increasing PID parameters with closed loop step response

 Rise time Overshoot Settling time Steady-state-error Stability

Kp Decrease Increase Small increase Decrease Degrade

Ki Small decrease Increase Increase Large decrease Degrade

Kd Small decrease Decrease Decrease Minor change Improve

Starting with the position controller of motor1 I was decreased to zero. This yielded the

result finally adopted for the position controller of motor1. For the position controller of motor2

the I component was also first decreased to zero. Some finer tuning based on table 5.8 was

58

applied. The final values are given in table 5.9 and the step responses for the controllers are

given in figures 5.21 and 5.22.

Table 5.9 Ziegler-Nichols tuning results for the position controller parameters of motor1 and motor2

 Ziegler-Nichols After Manual adjustment

 P I D P I D

Motor1 106.2888 4621.25 0.61116 106.2888 0 0.61116

Motor2 1422 54692.31 9.243 500 0 10

Figure 5.21 Manually tuned step response after Ziegler-Nichols step response method for position

controller motor1

59

Figure 5.22 Manually tuned step response after Ziegler-Nichols step response method for position

controller motor2

The velocity controllers were both tuned using the Ziegler-Nichols self-oscillation

method. Figures 5.22 and 5.23 present the step responses for velocity control of motor1 and

motor2 respectively.

Figure 5.23 Step response for motor1 velocity controller obtained with Ziegler-Nichols self-oscillation

method

60

Figure 5.24 Step response for motor2 velocity controller obtained with Ziegler-Nichols self-oscillation

method

The results of manual fine-tuning applying the properties in table 5.8 are given in table

5.10. Figures 5.25 and 526 present the final results of manually fine tuning the velocity

controllers of motor1 and motor2 after using Ziegler-Nichols.

Table 5.10 Ziegler-Nichols tuning results for the velocity controller parameters of motor1 and motor2

 Ziegler-Nichols After Manual adjustment

 P I D P I D

Motor1 16.2 1620 0.0405 0.7 100 0.03

Motor2 34.2 2280 0.12825 12 400 0.001

61

Figure 5.25 Step response for motor1 velocity controller obtained after manually fine-tuning Ziegler-

Nichols obtained results

Figure 5.26 Step response for motor2 velocity controller obtained after manually fine-tuning Ziegler-

Nichols obtained results

62

5.5.COMPARISON MODEL1 AND MODEL2

The step responses for the two combined position and velocity controller models were

compared to one another for both motors. The Simulink setup to achieve this is depicted in

figure 5.27. A step input of 2 radians is introduced to the inputs of both models. This value is

beyond the human movement limits but is used here for test purposes for better visualization.

Figure 5.27 Step response setup in Simulink for control system model1 and control system model2

The step responses for both motors of model1 and model2 is presented in figures 5.28

and 5.29.

63

Figure 5.28 Step response for motor 1 of model1 and model 2

From the above results no efficient results are expected for model2 using the human gait

database, because in this model the control system for both motor1 and motor2 underperform.

5.6.HUMAN GAIT SIMULATION DATA FOR THE EXOSKELETON

For the exoskeleton to simulate human gait, real human gait data was used. This data

was extracted from Winter’s human gait database available in [57]. It holds, among others,

temporal angular position data for human gait movement. This data was extracted and adapted

Step response Motor 2

Eixo horizontal: tempo(seg)

Eixo vertical: ângula(rad)

Step response Motor 2

Eixo horizontal: tempo(seg)

Eixo vertical: ângula(rad)

Step response Motor 1

Eixo horizontal: tempo(seg)

Eixo vertical: ângula(rad)

Figure 5.29 Step response for motor 2 of model1 and model 2

64

to the measurements of the exoskeleton, generating temporal angular position data for the

exoskeleton leg. With this data the gait movement of the exoskeleton leg could then be

observed.

Figure 5.30 Limb joint angle conventions for human gait data (source: [43])

Figure 5.30 presents the model used by Winter to collect the gait movement data. This

model is different from the exoskeleton model, more specifically the exoskeleton kinematic

model. Figure 5.31 depicts a portion of the Winter's data set used to simulate human gait

movement.

Figure 5.31 Human gait data that was adapted to exoskeleton measures (source: [43])

65

From the temporal joint angles in the Winter data the end-effector position of the

exoskeleton was calculated using a spreadsheet (figure 5.32). First the joint angles for θ21 and

θ43 were projected onto θ1 and θ2 of the exoskeleton and then transformed from degrees to

radians. The reference frame of the Winter model was then projected onto the reference frame

of the exoskeleton and finally, using the equations for the forward kinematics (see equations

3.1.a and 3.1.b) the temporal end-effector positions of the exoskeleton were calculated.

66

Figure 5.32 Adapted human gait data for exoskeleton

Ref:(0,0) Ref:(0,0) 0.5 0.55

Thigh Leg Thigh Leg

TIME THETA1 THETA2 THETA1 THETA2 THETA1 THETA2 X Y

S DEG DEG DEG DEG RAD RAD m m

TOR 1 0 82.7 39.8 97.3 42.9 1.698205 0.748746 -0.48609 0.848008

2 0.014 85.5 38 94.5 47.5 1.649336 0.829031 -0.47264 0.837072

3 0.029 88.6 37 91.4 51.6 1.595231 0.90059 -0.45147 0.830849

4 0.043 91.8 36.7 88.2 55.1 1.53938 0.961676 -0.42527 0.828447

5 0.057 95.1 37.3 84.9 57.8 1.481785 1.0088 -0.39306 0.831314

6 0.072 98.3 38.8 81.7 59.5 1.425934 1.038471 -0.35646 0.839395

7 0.086 101.4 41 78.6 60.4 1.371829 1.054179 -0.31626 0.850968

8 0.1 104.3 43.8 75.7 60.5 1.321214 1.055924 -0.27347 0.865187

9 0.114 106.9 47.2 73.1 59.7 1.275836 1.041962 -0.22834 0.881958

10 0.129 109.2 51 70.8 58.2 1.235693 1.015782 -0.18169 0.899618

11 0.143 111.2 55.2 68.8 56 1.200787 0.977384 -0.13308 0.917794

12 0.157 112.8 59.7 67.2 53.1 1.172861 0.92677 -0.08373 0.935799

13 0.172 114 64.3 66 49.7 1.151917 0.867429 -0.03514 0.952365

14 0.186 114.9 69.1 65.1 45.8 1.136209 0.799361 0.014312 0.967334

15 0.2 115.6 74 64.4 41.6 1.123992 0.726057 0.064442 0.97961

16 0.215 115.9 78.8 64.1 37.1 1.118756 0.647517 0.111572 0.989304

17 0.229 115.9 83.6 64.1 32.3 1.118756 0.563741 0.157093 0.996351

18 0.243 115.7 88.4 64.3 27.3 1.122247 0.476475 0.201473 1.000324

19 0.257 115.2 93 64.8 22.2 1.130973 0.387463 0.241674 1.00166

20 0.272 114.6 97.4 65.4 17.2 1.141445 0.300197 0.278978 1.000037

21 0.286 113.7 101.5 66.3 12.2 1.157153 0.21293 0.310626 0.99679

22 0.3 112.9 105 67.1 7.9 1.171116 0.137881 0.336912 0.991852

23 0.315 112.1 107.8 67.9 4.3 1.185079 0.075049 0.356245 0.986935

24 0.329 111.3 109.7 68.7 1.6 1.199041 0.027925 0.367028 0.983654

25 0.343 110.8 110.7 69.2 0.1 1.207768 0.001745 0.371965 0.981907

26 0.357 110.3 110.7 69.7 -0.4 1.216494 -0.00698 0.367879 0.983439

27 0.372 110 109.8 70 0.2 1.22173 0.003491 0.357316 0.987331

HCR 28 0.386 109.6 108.4 70.4 1.2 1.228712 0.020944 0.341333 0.992911

29 0.4 109.3 106.6 70.7 2.7 1.233948 0.047124 0.322386 0.998978

30 0.415 109 104.6 71 4.4 1.239184 0.076794 0.301422 1.004999

31 0.429 108.6 102.5 71.4 6.1 1.246165 0.106465 0.278521 1.010847

32 0.443 108.4 100.3 71.6 8.1 1.249656 0.141372 0.256166 1.015575

33 0.458 108.2 98.1 71.8 10.1 1.253146 0.176278 0.233663 1.019499

34 0.472 107.9 95.9 72.1 12 1.258382 0.20944 0.210214 1.022884

35 0.486 107.6 93.8 72.4 13.8 1.263618 0.240855 0.187636 1.025386

36 0.5 106.9 91.9 73.1 15 1.275836 0.261799 0.163586 1.028104

37 0.515 105.9 90.3 74.1 15.6 1.293289 0.272271 0.139859 1.030863

38 0.529 104.5 88.9 75.5 15.6 1.317724 0.272271 0.114631 1.033972

39 0.543 102.9 87.6 77.1 15.3 1.345649 0.267035 0.088593 1.036898

40 0.558 101.2 86.5 78.8 14.7 1.375319 0.256563 0.06354 1.039452

41 0.572 99.3 85.4 80.7 13.9 1.408481 0.242601 0.036693 1.041656

42 0.586 97.6 84.4 82.4 13.2 1.438151 0.230383 0.012458 1.042983

43 0.601 95.9 83.5 84.1 12.4 1.467822 0.216421 -0.01087 1.043816

44 0.615 94.3 82.5 85.7 11.8 1.495747 0.205949 -0.0343 1.043887

45 0.629 92.8 81.6 87.2 11.2 1.521927 0.195477 -0.05592 1.043503

46 0.643 91.4 80.6 88.6 10.8 1.546362 0.188496 -0.07761 1.042465

47 0.658 90 79.7 90 10.3 1.570796 0.179769 -0.09834 1.041137

48 0.672 88.7 78.7 91.3 10 1.593486 0.174533 -0.11911 1.039209

49 0.686 87.4 77.8 92.6 9.6 1.616175 0.167552 -0.13891 1.037064

50 0.701 86 76.8 94 9.2 1.640609 0.16057 -0.16047 1.03425

51 0.715 84.6 75.9 95.4 8.7 1.665044 0.151844 -0.18104 1.031211

52 0.729 83.1 74.9 96.9 8.2 1.691224 0.143117 -0.20335 1.027389

53 0.744 81.7 73.8 98.3 7.9 1.715659 0.137881 -0.22562 1.022924

54 0.758 80.2 72.7 99.8 7.5 1.741839 0.1309 -0.24866 1.017822

55 0.772 78.8 71.6 101.2 7.2 1.766273 0.125664 -0.27072 1.012359

56 0.786 77.5 70.2 102.5 7.3 1.788962 0.127409 -0.29453 1.005632

57 0.801 76.3 68.7 103.7 7.6 1.809906 0.132645 -0.31821 0.998205

58 0.815 75.3 67.1 104.7 8.2 1.82736 0.143117 -0.3409 0.990286

59 0.829 74.5 65.2 105.5 9.3 1.841322 0.162316 -0.36432 0.981093

60 0.844 73.8 63.2 106.2 10.6 1.85354 0.185005 -0.38748 0.971069

61 0.858 73.4 61.1 106.6 12.3 1.860521 0.214675 -0.40865 0.960667

62 0.872 73.1 58.7 106.9 14.4 1.865757 0.251327 -0.43109 0.948359

63 0.887 73.1 56.2 106.9 16.9 1.865757 0.294961 -0.45131 0.935448

64 0.901 73.4 53.6 106.6 19.8 1.860521 0.345575 -0.46922 0.921853

65 0.915 74.1 50.9 105.9 23.2 1.848304 0.404916 -0.48385 0.907696

66 0.929 75 48.1 105 26.9 1.832596 0.469494 -0.49672 0.892334

67 0.944 76.4 45.4 103.6 31 1.808161 0.541052 -0.50376 0.877595

68 0.958 78.1 42.9 101.9 35.2 1.778491 0.614356 -0.506 0.863651

69 0.972 80.2 40.7 99.8 39.5 1.741839 0.689405 -0.50208 0.851358

TOR 70 0.987 82.5 38.9 97.5 43.6 1.701696 0.760964 -0.4933 0.841102

STATE FRAME

67

The temporal data of figure 5.32 was introduced to the two developed control system

models. In this way the gait pattern of the models could be observed in Simulink. Figure 5.33

presents four frames of the gait movement recorded during the gait simulation of model1.

Figure 5.33 Human gait simulation for model1

5.7.CONCLUSION

The first control system model, model1, shows good step response for both motor1 and

motor2. In model2 the step response for both motors is well beneath the reference value. The

gait pattern observed by introducing the generated gait data showed that model1, in this test

also performs far better than model2 as was expected by the step responses. The gait simulation

of model1 resembles normal human gait pattern but model2 presented short stiff movements.

Model1 therefore is a better candidate was further developed to build the control system

of the exoskeleton.

68

6. CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORKS

This sections presents the conclusions and recommendations.

6.1.CONCLUSIONS

In this research the step-by-step development of the exoskeleton of the right lower limb

and its control system with combined position and velocity control were designed. The design

of the physical model of the exoskeleton was developed in Solidworks solid modeling CAD

software. This tool has the ability to export models in XML format which can be imported in

Matlab/Simulink as a Simmechanics model. The Simmechanics model can then be integrated

with Simulink components giving a whole new dimension of possibilities to system design and

simulation.

A hardware design model of the inverse kinematics model of the exoskeleton was

developed. The inverse kinematics model was developed in VHDL using four different bit

widths in floating-point arithmetics. To reduce hardware area maximizing hardware reuse a

FSM was developed. For error analysis of the four bit width representations a co-simulation

model with Questa Sim was developed in Matlab. The co-simulation has proven to be a valuable

tool to perform error analysis. The four bit width representations (27, 32, 45 and 64) were

evaluated in numeric precision, area on FPGA and performance. The 27 bit width representation

presents the best overall advantages, achieving an error of MSE’s of 2,28E-05 and 6,48E-05

for θ1 and θ2 respectively, a estiamted consumption of 2647 LUTs, 1224 FFs and 5 DSP blocks.

Two approaches to the exoskeleton control system for combined position and velocity

control were developed. The controllers were tuned using a variety of methods such as Ziegler-

Nichols, PSO and manual fine-tuning. The parameter values yielded with PSO presented results

that eventually converge but needed fine-tuning. Since the PSO was implemented in Matlab,

its execution is very expensive in computational time and can take very long (from a few hours

to days) depending on the complexity of the object function, the swarm size and the number of

iterations.

The Winter human gait dataset has proven to be very useful for gait simulation after

being adapted to the configuration, reference system and units of the exoskeleton. Simulation

69

of the human gait with the two combined position and velocity control models presented good

resemblance in the first model as was expected by the results of step response analysis.

6.2.RECOMMENDATIONS AND FUTURE WORK

The exoskeleton will be a portable device so careful choices should be made in the

choice of the composing components taking into consideration its weight, energy consumption

and control system performance. System performance is an important aspect for smooth

exoskeleton movements taking into consideration the complex kinematic and control system

algorithms. For this purpose they will be designed in HDL and integrated in an FPGA device.

The PSO algorithms and especially the object functions used must be evaluated for their

effectiveness. Multivariable optimization, though more complex can also be used to optimize

the controller parameters. Root Mean Squared Error (MRSE), Mean Absolute Error (MAE) and

other error functions can also be evaluated for use as optimization functions to tune the PID

controllers for the exoskeleton.

For faster execution of the PSO, the algorithm and object functions can be developed

for faster execution in programming languages such as C++ or java. This however will require

a corresponding model of the exoskeleton in the chosen language.

The Winter dataset includes a great variety of human gait data such as linear and angular

velocity and acceleration data that can be used in future research for more complex simulations.

In this research the exoskeleton gait simulations were visually evaluated for resemblance of the

human gait. MSE and other error analysis algorithms can be developed in future research to

evaluate the exoskeleton movements against the Winter dataset.

The tuning methods used in this research should be more closely evaluated for their

suitability in combined position and velocity control for each model.

70

REFERENCES

[1] “Hemiplegia : Defintion, Causes, Symptoms, Diagnosis And Treatment,” Rayur, 2012. .

[2] S. C. BOTELHO, T. S; NETO, C. D. M; ARAÚJO, F. L. C; ASSIS, “Epidemiologia do

acidente vascular cerebral no Brasil,” Temas em Saúde, vol. 16, no. 2, pp. 361–377, 2016.

[3] “EC 90 Flat motor Æ 90 mm , brushless , 90 Watt maxon EC motor,” no. August. p.

2003, 2003.

[4] “Planetary Gearhead GP 62 A,” no. July. pp. 2004–2004, 2004.

[5] D. A. Winter, Biomechanics and Motor Control of Human Movement. 2009.

[6] J. L. Pons, “Rehabilitation exoskeletal robotics. The promise of an emerging field.,”

IEEE Engineering in Medicine and Biology Magazine, no. June, pp. 57–63, 2010.

[7] E. Mikołajewska and D. Mikołajewski, “Exoskeletons in neurological diseases - Current

and potential future applications,” Adv. Clin. Exp. Med., vol. 20, no. 2, pp. 227–233,

2011.

[8] M. Cenciarini, M. Cenciarini, and A. M. Dollar, “Biomechanical considerations in the

design of lower limb exoskeletons Biomechanical Considerations in the Design of Lower

Limb Exoskeletons,” no. February, pp. 10–14, 2011.

[9] R. C. Sampaio, “Estado da arte na construção de exoesqueletos,” in 22nd International

Congress of Mechanical Engineering, 2013, no. Cobem.

[10] A. B. Zoss, H. Kazerooni, and A. Chu, “Biomechanical Design of the Berkeley Lower

Extremity Exoskeleton (BLEEX),” IEEE/ASME Trans. MECHATRONICS, vol. 11, no.

2, pp. 128–138, 2006.

[11] S. K. S. Kim, G. Anwar, and H. Kazerooni, “High-speed communication network for

controls with the application on the exoskeleton,” Proc. 2004 Am. Control Conf., vol. 1,

pp. 355–360, 2004.

[12] J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R. Ekkelenkamp, E. H. F. Van Asseldonk,

and H. van der Kooij, “Design and evaluation of the LOPES exoskeleton robot for

interactive gait rehabilitation.,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 3,

pp. 379–86, Sep. 2007.

[13] K. N. Winfree, P. Stegall, and S. K. Agrawal, “Design of a minimally constraining,

passively supported gait training exoskeleton: ALEX II,” IEEE Int. Conf. Rehabil.

Robot., pp. 0–5, 2011.

[14] dSPACE, “DS1103 PPC Controller Board RTI Reference,” pp. 1–8, 2010.

[15] U. Onen, F. M. Botsali, M. Kalyoncu, M. Tinkir, N. Yilmaz, and Y. Sahin, “Design and

Actuator Selection of a Lower Extremity Exoskeleton,” IEEE/ASME Trans.

Mechatronics, vol. 19, no. 2, pp. 623–632, Apr. 2014.

[16] Y. Sankai, “Leading edge of cybernics: Robot suit HAL,” 2006 SICE-ICASE Int. Jt.

Conf., vol. 10, pp. 1–2, 2006.

[17] H. Kawamoto, S. L. S. Lee, S. Kanbe, and Y. Sankai, “Power assist method for HAL-3

using EMG-based feedback controller,” SMC’03 Conf. Proceedings. 2003 IEEE Int.

Conf. Syst. Man Cybern. Conf. Theme - Syst. Secur. Assur. (Cat. No.03CH37483), vol.

2, pp. 1648–1653, 2003.

[18] M. Hassan, H. Kadone, K. Suzuki, and Y. Sankai, “Wearable gait measurement system

with an instrumented cane for exoskeleton control.,” Sensors (Basel)., vol. 14, no. 1, pp.

1705–1722, 2014.

71

[19] P. Beyl, “Design and control of a knee exoskeleton powered by pleated pneumatic

artificial muscles for robot-assisted gait rehabilitation Chair :,” p. 232, 2010.

[20] P. D. Neuhaus, J. H. Noorden, T. J. Craig, T. Torres, J. Kirschbaum, and J. E. Pratt,

“Design and evaluation of Mina: A robotic orthosis for paraplegics,” IEEE Int. Conf.

Rehabil. Robot., 2011.

[21] J. H. Kim, J. W. Han, D. Y. Kim, and Y. S. Baek, “Design of a walking assistance lower

limb exoskeleton for paraplegic patients and hardware validation using CoP,” Int. J. Adv.

Robot. Syst., vol. 10, 2013.

[22] M. H. Rahman, M. Saad, J. P. Kenné, and P. S. Archambault, “Control of an exoskeleton

robot arm with sliding mode exponential reaching law,” Int. J. Control. Autom. Syst.,

vol. 11, no. 1, pp. 92–104, 2013.

[23] “3 Steps for Building a Real-Time System With NI Hardware and Software,” National

Instruments, 2017. [Online]. Available: http://www.ni.com/white-paper/4040/en/.

[Accessed: 30-Jul-2017].

[24] J. Kumar, N. Kumar, D. Pankaj, and A. Kumar, “Implementation of Real Time Control

Algorithm for Gait Assistive Exoskeleton Devices for Stroke Survivors,” in 2014

International Conference on Electronic Systems, Signal Processing and Computing

Technologies Implementation, 2014, pp. 271–275.

[25] H. Kazerooni, “Exoskeletons for human power augmentation,” 2005 IEEE/RSJ Int. Conf.

Intell. Robot. Syst. IROS, pp. 3120–3125, 2005.

[26] R. Andrade, “Exoskeleton Control of a Programmable Robot Arm Using Field-

Programmable Gate Arrays,” Ohm.Ecce.Admu.Edu.Ph, no. August, 2014.

[27] W. K. Lee and S. Jung, “FPGA design for controlling humanoid robot arms by

exoskeleton motion capture system,” 2006 IEEE Int. Conf. Robot. Biomimetics, ROBIO

2006, pp. 1378–1383, 2006.

[28] M. V. Mark W. Spong, Seth Hutchinson, Robot Modeling and Control 1st ed, vol. 9.

2013.

[29] S. Kucuk and Z. Bingul, “Robot kinematics: forward and inverse kinematics,” in

Industrial Robotics: Theory, Modeling and Control, no. December, S. Cubero, Ed.

Verlag, Germany: Pro Literatur, 2006, p. 964.

[30] S.-L. Chen, Y.-Q. Zhang, and R.-L. Chung, “Fully pipelined CORDIC-based inverse

kinematic FPGA design for biped robots,” Electron. Lett., vol. 51, no. 16, pp. 1241–

1243, 2015.

[31] Y. S. Kung, K. H. Tseng, C. S. Chen, H. Z. Sze, and A. P. Wang, “FPGA-implementation

of inverse kinematics and servo controller for robot manipulator,” 2006 IEEE Int. Conf.

Robot. Biomimetics, ROBIO 2006, no. vi, pp. 1163–1168, 2006.

[32] K. Gac, G. Karpiel, and M. Petko, “FPGA based hardware accelerator for calculations

of the parallel robot inverse kinematics,” IEEE Int. Conf. Emerg. Technol. Fact. Autom.

ETFA, pp. 1–4, 2012.

[33] B. J. G. Ziegler and N. B. Nichols, “Optimum Settings for Automatic Controllers,”

Trans. ASME, vol. 64, pp. 759–768, 1942.

[34] J. C. Basilio and S. R. Matos, “Design of PI and PID controllers with transient

performance specification - Education, IEEE Transactions on - ieee-edu2002.pdf,” vol.

45, no. 4, pp. 364–370, 2002.

[35] K. Ogata, Modern Control Engineering, Fifth edit. Prentice Hall, 2009.

[36] C.-C. Yu, Autotuning of PID Controllers; A Relay Feedback Approach, Second edi.

72

Taipei: Springer, 2006.

[37] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE Int. Conf.

Neural Networks, pp. 39–43, 1995.

[38] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” MHS’95.

Proc. Sixth Int. Symp. Micro Mach. Hum. Sci., pp. 39–43, 1995.

[39] O. Chao and L. Weixing, “Comparison between PSO and GA for parameters

optimization of PID controller,” 2006 IEEE Int. Conf. Mechatronics Autom. ICMA 2006,

vol. 2006, pp. 2471–2475, 2006.

[40] F. Van Den Bergh and A. P. Engelbrecht, “A study of particle swarm optimization

particle trajectories,” Inf. Sci. (Ny)., vol. 176, no. 8, pp. 937–971, 2006.

[41] H. E. A. Ibrahim, F. N. Hassan, and A. O. Shomer, “Optimal PID control of a brushless

DC motor using PSO and BF techniques,” Ain Shams Eng. J., vol. 5, no. 2, pp. 391–398,

2014.

[42] Z. Bingul and O. Karahan, “Tuning of fractional PID controllers using PSO algorithm

for robot trajectory control,” 2011 IEEE Int. Conf. Mechatronics, ICM 2011 - Proc., pp.

955–960, 2011.

[43] B. Allaoua, B. Gasbaoui, and B. Mebarki, “Setting Up PID DC Motor Speed Control

Alteration Parameters Using Particle Swarm Optimization Strategy,” Leonardo

Electron. J. Pract. Technol., vol. 14, no. 14, pp. 19–32, 2009.

[44] M. Nasri, H. Nezamabadi-pour, and M. Maghfoori, “A PSO-Based Optimum Design of

PID Controller for a Linear Brushless DC Motor,” Int. J. Electr. Robot. Electron.

Commun. Eng., vol. 1, pp. 184–188, 2007.

[45] “Simscape Multibody Link Add-in.” [Online]. Available:

https://www.mathworks.com/products/simmechanics. [Accessed: 14-Jun-2017].

[46] T. Weise and T. Weise, “Global Optimization Algorithms – Theory and Application –,”

2009.

[47] C. R. Stanley and D. Lawie, “Average relative error in geochemical determinations:

Clarification, calculation, and a plea for consistency,” Explor. Min. Geol., vol. 16, no.

3–4, pp. 267–275, 2007.

[48] C. C. Wong and C. C. Liu, “FPGA realisation of inverse kinematics for biped robot based

on CORDIC,” Electron. Lett., vol. 49, no. 5, pp. 332–334, 2013.

[49] C. Moler, “F l oa ting poi n t s.” MathWorks, pp. 2–4, 1996.

[50] B. D. Bishop, “Floating point package user ’ s guide,” no. February, 2008.

[51] H. Reference, “Escon 70/10,” no. November. 2015.

[52] V. Mhase, K. R. Sudarshan, O. Pardeshi, and V. Prasheel, “Integrated Speed – Position

Tracking with Trajectory Generation and Synchronization for 2 – Axis DC Motion

Control,” vol. 1, no. 6, pp. 61–66, 2012.

[53] R. Poli, J. Kennedy, and T. Blackwell, “Particle swarm optimization,” An overview.

Swarm, vol. telligence, no. 1, p. 33–-57, 2007.

[54] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and convergence in

a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58–

73, 2002.

[55] I. Todić, M. Miloš, and M. Pavišić, “Position and Speed Control of Electromechanical

Actuator for Aerospace Applications,” Tech. Gaz., vol. 20, no. 5, pp. 853–860, 2013.

[56] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and technology,”

73

IEEE Trans. Control Syst. Technol., vol. 13, no. 4, pp. 559–576, 2005.

[57] D. A. Winter, Biomechanics and Motor Control of Human Movement. Hoboken, NJ,

USA: John Wiley & Sons, Inc., 2009.

74

APPENDIX

Title: Control System Design for an Exoskeleton of the

Right Lower Limb

Marlon W. Koendjbiharie1, Daniel M. Muñoz1, Carlos H. Llanos1

1Universidade de Brasília, Programa de Pós-graduação em Sistemas Mecatrônicos, Brasília,

Brazil

e-mail: m.koendjbiharie@gmail.com

Abstract: The control system design for position control of a wearable exoskeleton of

the right lower limb is proposed using a speed controller. A great variety of exoskeletons has

already been developed but research in this field is still under development because of the

variety of applications and ongoing introduction of innovative technology [1], [2]. The

proposed exoskeleton is designed for user mobility improvement for people with movement

deficiency in the right leg. The mechanical design of the exoskeleton consists of a model

developed in Solidworks, which was imported into MATLAB/Simmechanics, upon which the

design of the control system is based. The control system, which is responsible for the behaviour

of the exoskeleton is one of the most important aspects of this system. The control system uses

feedback loops to adjust the movements of the two exoskeleton motors, one in the hip- and one

in the knee joint. Each motor is equipped with a gear and the motor encoders deliver the actual

values of speed and position of each joint as feedback to the control system.

Keywords: exoskeleton, kinematics, position control, velocity control.

	LIST OF FIGURES
	LIST OF TABLES
	CONTENTS
	1. INTRODUCTION
	1.1. Problem discription
	1.2. Justification
	1.3. Objective
	1.4. Specific Objectives
	1.5. Methodology
	1.6. Contributions of this work
	Exoskeleton Inverse kinematics developed in VHDL for implementation on FPGA
	Exoskeleton model human gait simulation using human gait database
	Development of object function for exoskeleton control system for tuning with PSO
	Conference Paper

	1.7. Document organization

	2. THEORETICAL REVIEW
	2.1. Exoskeletons
	2.2. Application of FPGA’s in Exoskeleton Design
	2.3. Kinematic model
	2.3.1. Forward kinematics basic concepts
	2.3.2. Inverse kinematics basic concepts
	2.3.3. Kinematic model simplification
	2.3.4. Kinematics in FPGA

	2.4. Ziegler Nichols tuning methods for PID control
	2.5. PSO Algorithm
	2.6. PSO for PID parameter optimization
	2.7. Conclusion

	3. EXOSKELETON DESIGN
	3.1. Physical design
	3.2. The Inverse Kinematics Model
	3.3. Conclusion

	4. KINEMATICS MODEL ACCELERATED IN HARDWARE
	4.1. Hardware Implementation of the atan2 function
	4.2. Hardware Implementation of inverse kinematics
	4.3. Co-simulation with Questa Sim
	4.4. Resources consumption analysis for the inverse kinematics on FPGA
	4.5. Conclusion

	5. CONTROL SYSTEM MODEL
	5.1. Simmechanics model
	5.2. BLDC Motor Model in Matlab
	5.3. First approach for integrated velocity and position control
	5.3.1. Control System Tuning for first approach
	5.4. Second approach for integrated velocity and position control
	5.4.1. Control System Tuning for second approach
	5.5. Comparison model1 and model2
	5.6. Human gait simulation data for the exoskeleton
	5.7. Conclusion

	6. CONCLUSIONS, RECOMMENDATIONS AND FUTURE WORKS
	6.1. Conclusions
	6.2. Recommendations and Future Work

	References
	Appendix

