UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

ANÁLISE COMPARATIVA DA ESTABILIDADE INTERNA DE CORTINAS ATIRANTADAS UTILIZANDO MÉTODOS ANALÍTICOS E SIMULAÇÕES NUMÉRICAS 2D.

LUIS ALONSO GONZÁLES CORRALES

ORIENTADOR: GREGÓRIO LUÍS SILVA ARAÚJO, D.Sc. CO-ORIENTADOR: RENATO PINTO DA CUNHA, Ph.D.

DISSERTAÇÃO DE MESTRADO EM GEOTECNIA

PUBLICAÇÃO: G.MD-303/18

BRASÍLIA/DF: MARÇO/ 2018

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL

ANÁLISE COMPARATIVA DA ESTABILIDADE INTERNA DE CORTINAS ATIRANTADAS UTILIZANDO MÉTODOS ANALÍTICOS E SIMULAÇÕES NUMÉRICAS 2D.

LUIS ALONSO GONZÁLES CORRALES

DISSERTAÇÃO DE MESTRADO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL DA UNIVERSIDADE DE BRASÍLIA COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA OBTENÇÃO DO GRAU DE MESTRE.

APROVADA POR:

GREGÓRIO LUÍS SILVA ARAÚJO, D.Sc.(UnB) (ORIENTADOR)

RENATO PINTO DA CUNHA, Ph.D.(UnB) (CO-ORIENTADOR)

MARCIO MUNIZ FARIAS, Ph.D.(UnB) (EXAMINADOR INTERNO)

DENISE MARIA SOARES GERSCOVICH, DSc.(UERJ) (EXAMINADOR EXTERNO)

DATA: BRASÍLIA/DF, 22 de MARÇO de 2018.

FICHA CATALOGRÁFICA

CORRALES, LUIS ALONS	SO GONZÁLEZ	
Análise comparativa da estabilidade interna de cortinas atirantadas utilizando métodos analíticos e simulações numéricas 2D. [Distrito Federal] 2018.		
xxv, 149 p., 210x297 mm (E Dissertação de Mestrado-Ur	ENC/FT/UnB, Mestre, Geotecnia, 2018) niversidade de Brasília, Faculdade de Tecnologia	
Departamento de Engenhari	a Civil e Ambiental	
 Cortinas atirantadas Simulação numérica ENC/FT/UnB 	 Solos residuais de gnaisse Hardening Soil Model Título (série) 	

REFERÊNCIA BIBLIOGRÁFICA

GONZÁLEZ, L.A (2018). Análise comparativa da estabilidade interna de cortinas atirantadas utilizando métodos analíticos e simulações numéricas 2D. Dissertação de Mestrado, Departamento de Engenharia Civil e Ambiental, Universidade de Brasília, Brasília, DF, 149 p.

CESSÃO DE CRÉDITOS

NOME DO AUTOR: Luis Alonso González Corrales

TÍTULO DA DISSERTAÇÃO DE MESTRADO: Análise comparativa da estabilidade interna de

cortinas atirantadas utilizando métodos analíticos e simulações numéricas 2D.

GRAU/ANO: Mestre/2018.

É concedida à Universidade de Brasília a permissão para reproduzir cópias desta dissertação de mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação de mestrado pode ser reproduzida sem a autorização por escrito do autor.

Luis Alonso González Corrales (e-mail: lalongc@gmail.com) SQN 406, Bloco A, Apto 301,Asa Norte. Brasília, Brasil.

AGRADECIMENTOS

Agradeço ao Programa de Pós-graduação em Geotecnia da Universidade de Brasília e todos os seus professores, pela oportunidade de participar deste programa e por compartilharem seus conhecimentos.

Ao meu orientador o professor Gregório Luís Silva Araújo e ao meu co-orientador o professor Renato Pinto da Cunha, pelos ensinamentos, pelo constante apoio e por me incentivar e me ajudar na realização desta pesquisa.

Aos professores da banca examinadora a professora Denise Maria Soares Gerscovich e o professor Marcio Muniz Farias, pelas sugestões e comentários para melhorar o trabalho realizado.

Ao professor Juan Félix Rodríguez pela vontade de me ajudar no desenvolvimento das simulações numéricas.

Ao meu colega e grande amigo Michael Barrantes pelos conselhos e apoio ao longo deste tempo.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pelo apoio financeiro nos primeiros três semestres do mestrado.

À *Escuela Centroamericana de Geologia* da *Universidad de Costa Rica* (ECG-UCR) por me apoiar na realização do estudo de pós-graduação no estrangeiro e a *Oficina de Asuntos Internacionales y Cooperación Externa* da *Universidad de Costa Rica* (OAICE-UCR) pelo apoio financeiro no último semestre do mestrado.

À empresa privada SOLOTESTE, pelas informações fornecidas.

Em especial a Diana Carolina Cardenas. Obrigado por tudo, pela ajuda na dissertação e por todas as horas comigo.

DEDICATÓRIA

A minha mãe, irmãos e sobrinhos. A Diana Carolina (Gato).

RESUMO

Na norma Brasileira encargada de fixar as condições exigíveis para a execução de tirantes, a NBR-5629 (1996), apenas as especificações sobre a análise de estabilidade interna são tratadas, ficando ao critério e experiência do engenheiro projetista da obra o método de cálculo a utilizar. Neste contexto, com o fim de avaliar e comparar as metodologias que atualmente são utilizadas para determinar a estabilidade interna de cortinas atirantadas, neste trabalho foram empregados os métodos analíticos de equilíbrio limite das cunhas: Nunes & Velloso (1963), Ranke & Ostermayer (1968) e Hoek & Bray (1981), além do Método dos Elementos Finitos (MEF), por meio de um estudo de caso no Rio de Janeiro. Complementarmente, foi avaliada a influência do modelo estratigráfico adotado no comportamento mecânico do solo e das estruturas.

A partir da implementação dos métodos para a previsão da estabilidade interna, pode-se concluir que o método de Ranke & Ostermayer (1968) foi o método mais conservador no cálculo do fator de segurança global. Para cortinas ancoradas por uma ou duas linhas de tirantes, os maiores fatores de segurança por tirante foram fornecidos pelo MEF e os menores foram obtidos pelo método de Ranke & Ostermayer (1968). Em comparação ao MEF, os métodos de Nunes & Velloso (1963) e Hoek & Bray (1981) fornecem fatores de segurança muito menores.

Os resultados da simulação numérica do modelo geotécnico desenvolvido nesta pesquisa mostraram a importância de considerar-se uma estratigrafia mais realista. Neste sentido, foram observados nas análises uma diminuição significativa dos deslocamentos horizontais e totais na cortina e dos recalques na superfície do terreno, além de uma melhoria dos fatores de segurança.

ABSTRACT

The Brazilian standard, NBR-5629 (1996), in charge in stablish the condition requires for the execution of anchored walls, only the specifications on the internal stability analysis are treated, being a criterion and experience of the engineer the method of calculation to use. In this context, in order to evaluate and compare the methodologies currently used to determine the internal stability of anchored wall, in this work, the analytical methods of wedge limit equilibrium were used; Nunes & Velloso (1963), Ranke & Ostermayer (1968) and Hoek & Bray (1981), in addition to the Finite Element Method (MEF), through a case study in Rio de Janeiro. The influence of the stratigraphic model adopted on the mechanical behavior of soil and structures was evaluated.

From the implementation of the methods for predicting internal stability, it can be conclude that the method of Ranke & Ostermayer (1968) was the most conservative method for the global safety factor estimation. For curtains anchored by one or two rows, the major safety factors per tie are provided by the MEF and the smaller ones were obtained by the method of Ranke & Ostermayer (1968). Since these are simple methods with many simplifications, the Nunes & Velloso (1963) and Hoek & Bray (1981) methods provide much lower safety factors than those calculated by MEF.

The results of the numerical simulation of the geotechnical model developed in this research show the importance of considering a more realistic stratigraphy. In this sense, a significant decrease in horizontal and total displacements in the curtain and vertical displacement at the surface was observed, as well as an improvement in safety factors.

ÍNDICE

1.	INTR	RODUÇÃO	1
1.1.	OB	BJETIVOS	2
	1.1.1.	OBJETIVO GERAL	2
	1.1.2.	OBJETIVOS ESPECÍFICOS	2
1.2.	ES	COPO DA DISSERTAÇÃO	3
2.	REV	ISÃO BIBLIOGRÁFICA	5
2.1.	AS	PECTOS GERAIS DAS CORTINAS ATIRANTADAS	5
	2.1.1.	ASPECTOS DE DIMENSIONAMENTO	6
	2.1.2.	CRITÉRIOS DE PROJETO NAS NORMAS TÉCNICAS	8
2.2.	MÉ	ÉTODOS ANALÍTICOS DE DIMENSIONAMENTO	9
	2.2.1.	CAPACIDADE DE CARGA DAS ANCORAGENS	9
	2.2.2.	DIMENSIONAMENTO DO TRECHO ANCORADO	9
2.3.	AN	VÁLISE DE ESTABILIDADE	12
	2.3.1.	MÉTODOS DE ANÁLISE DA ESTABILIDADE INTERNA	13
2.4.	MO	ODELAGEM NUMÉRICA UTILIZANDO OS MÉTODOS	DOS
ELEME	NTOS I	FINITOS (MEF)	23
2.5.	SO	DLOS RESIDUAIS	36
	2.5.1.	OUTRAS CARACTERÍSTICAS DOS SOLOS RESIDUAIS	
	2.5.2.	PERFIL TÍPICO DE UM SOLO RESIDUAL DE GNAISSE	
	2.5.3.	COMPORTAMENTO MECÂNICO DOS SOLOS RESIDUAIS	40
3.	ASPI	ECTOS GERAIS	42
3.1.	MI	ETODOLOGIA	42
	3.1.1.	REVISÃO BIBLIOGRÁFICA	43

	3.1.2.	VALIDAÇÃO DOS MODELOS CONSTITUTIVOS	44
	3.1.3.	IMPLEMENTAÇÃO DOS MÉTODOS ANALÍTICOS	45
	3.1.4.	SIMULAÇÃO NUMÉRICA	45
3.2.	ES	TUDO TOMADO COMO BASE	46
	3.2.1.	DESCRIÇÃO GERAL	46
	3.2.2.	EXPLORAÇÃO GEOTÉCNICA	57
	3.2.3.	MODELO GEOLÓGICO-GEOTÉCNICO	61
3.3.	MO	ODELOS CONSTITUTIVOS	68
	3.3.1.	FUNDAMENTOS TEÓRICOS	68
	3.3.2.	VALIDAÇÃO DOS MODELOS CONSTITUTIVOS	73
4.	SIMU	JLAÇÃO NUMÉRICA E ANÁLISE DE RESULTADOS	85
4.1.	AS	PECTOS DA SIMULAÇÃO NUMÉRICA	85
	4.1.1.	SIMPLIFICAÇÃO DO PROBLEMA GEOTÉCNICO	85
	4.1.2.	ESTRATIGRAFIA UTILIZADA	90
	4.1.3.	MALHA DE ELEMENTOS FINITOS	93
	4.1.4.	ELEMENTOS ESTRUTURAIS	94
	4.1.5.	ELEMENTOS DE INTERFACE	98
4.2.	RE	ESULTADOS	.101
	4.2.1.	ANÁLISE DE ESTABILIDADE	.101
	4.2.2.	INFLUÊNCIA DA ESTRATIGRAFIA NAS ANÁLISES NUMÉRICAS	117
5.	CON	CLUSÕES E SUGESTÕES PARA PESQUISAS FUTURAS	.142
5.1.	CC	DNCLUSÕES	.142
5.2.	SU	IGESTÕES PARA PESQUISAS FUTURAS	.144
REFER	ÊNCIAS	S BIBLIOGRÁFICAS	.145

APÊNDICE

APÊNDICE I. DESCRIÇÃO DAS PERFURAÇÕES DOS TIRANTES APÊNDICE II. SONDAGENS A PERCUSSÃO SPT APÊNDICE III. SONDAGENS MISTAS APÊNDICE IV. ENSAIOS DE RECEBIMENTO

LISTA DE FIGURAS

Figura 2.1. Constitução básica de um tirante (GeoRio, 2000)5
Figura 2.2. Recomendações para o projeto de cortina atirantada (a) seção transversal e (b) vista superior (Pinelo, 1980)
Figura 2.3. (a) Preparação do ensaio e (b) medição dos deslocamentos da barra. Štefaňák <i>et al.</i> (2016)
Figura 2.4. Superfícies de ruptura em cortinas atirantadas (Ranke & Ostermayer, 1968)12
Figura 2.5. Diagrama e poligono de forças para a análise de estabilidade do método de Kranz (1953)
Figura 2.6. Métodos das cunhas nas análises de estabilidade de cortinas atirantadas (a) Brasileiro E (b) Alemão (GeoRio, 2000)16
Figura 2.7. Diagrama e polígono de forças para o método de Kranz generalizado (modificado - de Ranke & Ostermayer,1968)
Figura 2.8. Relações geométricas no polígono de forças (modificado - Ranke & Ostermayer ,1968).
Figura 2.9. Polígono de forças do método de Kranz (1953), com coesão (modificado - Pacheco & Danziger, 2001)
Figura 2.10. Superfície potencial de ruptura considerada no método Brasileiro, baseada no método de Culmann (a) diagrama e (b) polígono de forças atuantes na cunha, sem ancoragem19
Figura 2.11. Detalhe dos ângulos β , θ e do plano de ancoragem, método Brasileiro20
Figura 2.12. Diagrama de forças definido pelo método de Hoek & Bray (1981) (Ortigão & Sayao, 2004)
Figura 2.13. Comparação das forças e momentos ao longo da parede, medidos e calculados utilizando vários modelos constitutivos (a) deformações horizontais, (b) momentos fletores, (c) forças de cisalhamento e (d) Empuxos de terra. (Han <i>et al.</i> , 2017)

Figura 2.14. Comparação dos deslocamentos horizontais medidos e calculados utilizando vários modelos constitutivos (Han <i>et al.</i> , 2017)25
Figura 2.15. Variação do comportamento mecânico das estruturas com a rigidez da ancoragem; (a) variação dos deslocamentos ao longo da parede e (b) variação da força de ancoragem (Alan & Siddiquee, 2014)
Figura 2.16. Variação dos deslocamentos verticais na superfície do terreno com a rigidez do reforço (Alan & Siddiquee, 2014)
Figura 2.17. Variação do coeficiente de empuxo em repouso com a rigidez do reforço (Alan & Siddiquee, 2014)
Figura 2.18. Comparação dos deslocamentos horizontais na parede com uma linha de ancoragens colocada a diferentes profundidades (Yajnheswaran <i>et al.</i> , 2015)
Figura 2.19. Compração do comportamento mecânico da parede com uma linha de ancoragens colocada a diferentes profundidades; (a) forças de cisalhamento e (b) momentos fletores. (Yajnheswaran <i>et al.</i> , 2015)
Figura 2.20. Comparação dos deslocamentos horizontais obtidos (a) modelagem 2D e (b) modelagem 3D (Mollahasani, 2014)
Figura 2.21. Comparação dos deslocamentos horizontais em diferentes profundidades (a) espaçamento entre ancoragens de 2 m e (b) espaçamento entre ancoragens de 4 m (Hosseinian & Seifabad, 2013)
Figura 2.22. Espaçamento horizontal mínimo requerido entre ancoragens: (a) Pinelo (1980) e (b) Sananiti <i>et al.</i> (1999)
Figura 2.23. Vista superior (planta) da malha diferencialmente deformada devido ao efeito de arqueamento (FE= Fator de escala); (a) estágio 1, escavação até 1,6 m de profundidade, (b) estágio 3, escavação até 4,1 m de profundidade e (c) estágio 5, escavação até 6,5 m de profundidade. (Magalhães, 2015)
Figura 2.24. Recalques e flexão da estrutura de contenção na seção crítica (centro da escavação); (a) estágio 1, (b) estágio 3 e (c) estágio 5. (Magalhães, 2015)
Figura 2.25. Perfil típico de alteração de um gnaisse (modificado de Oliveira & Brito, 1998)39

Figura 2.26. Comportamento mecânico de um solo residual jovem de gnaisse (a) curva σ_d - ϵ_1 e (b)
curva $\boldsymbol{\varepsilon}_{v}$ - $\boldsymbol{\varepsilon}_{1}$ (Oliveira, 2011)40
Figura 3.1. Metodologia geral da pesquisa
Figura 3.2. Localização do terreno de estudo (Google Earth, 2018)
Figura 3.3. Configuração final do projeto residencial Contemporâneo II
Figura 3.4. Características morfométricas do terreno (a) elevações, (b) declividade das encostas em
graus e (c) declividade das encostas em percentagens
Figura 3.5. Localização das estruturas de contenção
Figura 3.6. Vista frontal da cortina
Figura 3.7. Detalhe dos painéis A e B51
Figura 3.8. Detalhe dos painéis C e D51
Figura 3.9. Detalhe dos painéis E e F51
Figura 3.10. Detalhe dos painéis G, H e I
Figura 3.11.Vista da forma não reta da cortina (a) vista em perspectiva, (b) vista lateral esquerda e
(c) vista lateral direita
Figura 3.12.Disposição dos tirantes na cortina (a) vista em perspectiva esquerda, (b) vistas em
perspectiva direita e (c) vista superior
Figura 3.13.Corte da cortina A-A54
Figura 3.14.Corte da cortina B-B55
Figura 3.15.Corte da cortina C-C55
Figura 3.16. Processo construtivo geral da cortina 2. Google Earth (2018)
Figura 3.17. Localização das sondagens do subsolo59
Figura 3.18. Detalhe da localização das sondagens mais próximas à cortina de interesse60
Figura 3.19. Perfil estratigráfico da zona de estudo

Figura 3.20. Modelagem do contato maciço de solo-rocha alterada (a) perfis das sondagens SPT, (b) modelo 3D
Figura 3.21. Modelagem dos ensaios SPT (a) perfis das sondagens e (b) modelo 3D64
Figura 3.22. Modelagem da estratigrafia da zona de estudo (a) perfis das sondagens mistas e (b) modelo 3D
Figura 3.23. Modelo 2D da água subterrânea (a) localização dos ensaios utilizados e (b) linhas equipotenciais ou isofréaticas
Figura 3.24. Superfícies de plastificação do HSM, no espaço de tensões principais (Brinkgreve <i>et al.</i> , 2015)
Figura 3.25. Relação hiperbólica entre a tensão de desvio e a deformação axial, carregamento primário, no ensaio triaxial drenado (Brinkgreve <i>et al.</i> , 2015)70
Figura 3.26. Superfície de plástificação tipo"Cap" (a) no plano p' - q, (b) no espaço de tensões principais (Brinkgreve <i>et al.</i> , 2015)
Figura 3.27. Relação tensão-deformação, do modelo elástico perfeitamente plástico de Mohr- Coulomb (Brinkgreve <i>etal.</i> , 2015)
Figura 3.28. Superfície de plastificação do modelo Mohr-Coulomb no espaço de tensões principais (Brinkgrevem <i>et al.</i> , 2015)
Figura 3.29. Ensaios para a calibração do modelo constitutivo HSM (a) ensaio triaxial de compressão axial tipo CD e (b) ensaio oedométrico. (Oliveira, 2000)
Figura 3.30. Envoltória de resistência no plano p´- q, solo residual jovem. A partir dos ensaios feitos por Oliveira (2000)
Figura 3.31. Módulos expoentes de rigidez do solo dependente do nível de tensões (a) m _{oed} . (b) m _{ur} e (c) m ₅₀
Figura 3.32. Comparação entre as curvas de laboratório e os resultados das simulações com os valores dos parâmetros calculados (a) ensaio de compressão triaxial drenado, (b) ensaios oedométrico, solo residual jovem

Figura 3.33. Comparação entre as curvas de laboratório e os resultados das simulações com os
valores dos parâmetros ajustados (a) ensaio de compressão triaxial drenado e (b) ensaios
oedométrico, solo residual jovem80
Figura 3.34. Comparação entre as curvas de laboratório do CTC e os resultado das simulações
ajustadas, utilizando os valores da resistência residual, solo residual jovem
Figura 3.35. Comparação entre as curvas dos ensaios de arrancamento e os resultados das
simulações numéricas (a) tirante T-58, (b) tirante T-55, (c) tirante T-62 e (d) tirante T-4484
Figura 4.1. Distribuição das sete seções na cortina
Figura 4.2. Localização do perfil-1
Figura 4.3. Localização do perfil-2
Figura 4.4. Localização dos perfis-3 e 4
Figura 4.5. Localização dos perfis-5, 6 e 787
Figura 4.6. Localização das seções no terreno
Figura 4.7. Detalhe do perfil 1(P-1)88
Figura 4.8. Detalhe do perfil 2(P-2)88
Figura 4.9. Detalhe do perfil 3(P-3)88
Figura 4.10. Detalhe do perfil 4(P-4)
Figura 4.11. Detalhe do perfil 5(P-5)
Figura 4.12. Detalhe do perfil 6(P-6)
Figura 4.13. Detalhe do perfil 7(P-7)
Figura 4.14. Perfis estratigráficos empregados nas análises da seção 1 (a) Caso I (talude
homogêneo) e (b) Caso II (talude estratificado)91
Figura 4.15. Modelos estratigráficos empregados nas análises (a) perfil 2 (b) perfil 3, (c) perfil 4
(d) perfil 5, (e) perfil 6 e (f) perfil 792
Figura 4.16. Tipos de elementos finitos na simulação 2D (a) triangular de 6 nós e (b) triangular de
15 nós (Brinkgreve et al., 2015)

Figura 4.17. Exemplo da malha de elementos finitos gerados (P-1) e suas condições de contorno.
Figura 4.18. Constituição dos elementos tipo <i>"Plate"</i> (a) em elementos de solo de 6 nós e (b) em elemento de solo de 15 nós (Brinkgreve <i>et al.</i> , 2015)
Figura 4.19. Atrito lateral desenvolvido ao longo do bulbo de ancoragem (a) diagrama de carga ao longo do tirante, (b) seção transversal da cortina (Mecsi, 1995)
Figura 4.20. Tipos de elementos de interface na simulação 2D (a) em elementos de solo de 6 nós, (b) em elemento de solo de 15 nós (Brinkgreve <i>et al.</i> , 2015)
Figura 4.21. Análise de tensões nos cantos de estruturas rígidas (a) sem elementos de interface, (b) com elementos de interface (Brinkgreve <i>et al.</i> , 2015)
Figura 4.22. Diagrama de forças obtido do perfil 1, utilizando o método Brasileiro
Figura 4.24. Superfícies de ruptura definidas pelo método alemão, perfil 1
Figura 4.25. Diagramas e polígonos de forças obtidos do perfil 1, utilizando o método Alemão (a) tirante superior, (b) tirante médio e (c) tirante inferior, perfil 1106
Figura 4.26. Polígonos de forças obtidos para o cálculo do fator de segurança global do perfil 1, utilizando o método Alemão
Figura 4.27. Etapas de análise do perfil 1 (a) escavação superior, (b) tirante superior, (c) escavação média, (d) tirante médio, (e) escavação inferior e (f) tirante inferior109
Figura 4.28. Comparação dos fatores de segurança obtidos da simulação numérica dos Casos I e II (a) perfil 6 e (b) perfil 7110
Figura 4.29. Comparação dos fatores de segurança obtidos da simulação numérica dos Casos I e II, perfil 1 (a) caso I e (b) caso II
Figura 4.30. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o Perfil 1

Figura 4.31. Comparação dos deslocamentos verticais no terreno após final da construção para o perfil 1
Figura 4.32. Comparação da carga axial ao longo do trecho ancorado (a) tirante superior (b) tirante médio e (c) tirante inferior para o perfil 1
Figura 4.33. Comparação do comportamento mecânico ao longo da cortina (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 1
Figura 4.34. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 2
Figura 4.35. Comparação dos recalques da superfície do terreno após final da construção para o perfil 2
Figura 4.36. Comparação da carga axial ao longo do trecho ancorado: (a) tirante superior, (b) tirante médio e (c) tirante inferior para o perfil 2
Figura 4.37. Comparação do comportamento mecânico ao longo da cortina: (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 2
Figura 4.38. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 3
Figura 4.39. Comparação do comportamento mecânico ao longo da cortina: (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 3
Figura 4.40. Comparação dos deslocamentos verticais do terreno após final da construção para o perfil 3
Figura 4.41. Comparação da carga axial ao longo do trecho ancorado: (a) tirante superior e (b) tirante inferior para o perfil 3
Figura 4.42. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 4
Figura 4.43. Comparação dos deslocamentos verticais do terreno após final da construção para o perfil 4

Figura 4.44. Comparação da carga axial ao longo do trecho ancorado (a) tirante superior e (b)
tirante inferior para o perfil 4
Figura 4.45. Comparação do comportamento mecânico ao longo da cortina no perfil 4: (a) força
axial, (b) força de cisalhamento e (c) momento fletor para o perfil 4126
Figura 4.46. Comparação dos deslocamentos na cortina após final da construção (a) deslocamentos
horizontais e (b) deslocamentos totais para o perfil 5127
Figura 4.47. Comparação dos deslocamentos verticais do terreno após final da construção para o
perfil 5
Figura 4.48. Comparação da carga axial ao longo do trecho ancorado (a) tirante superior e (b)
tirante inferior para o Perfil 5
Figura 4.49. Comparação do comportamento mecânico ao longo da cortina no perfil 5 (a) forca
avial (h) force de cisalhamento e (c) momento flator para o Parfil 5
axiai, (b) força de cisamamento e (c) momento fietor para o rerm 5
Figura 4.50. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos
horizontais e (b) deslocamentos totais para o perfil 6129
Figura 4.51. Comparação dos deslocamentos verticais do terreno após final da construção para o
perfil 6
Figura 4.52. Comparação da carga axial ao longo do trecho ancorado para o perfil 6130
Figura 4.53. Comparação do comportamento mecânico ao longo da cortina no perfil 6 (a) força
axial, (b) força de cisalhamento e (c) momento fletor para o perfil 6130
Figura 4.54. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos
horizontais e (b) deslocamentos totais para o perfil 7131
Figura 4.55. Comparação dos deslocamentos verticais do terreno após final da construção para o
perfil 7
Figura 4.56. Comparação da carga axial ao longo do trecho ancorado para o perfil 7132
Figura 4.57. Comparação do comportamento mecânico ao longo da cortina (a) força axial, (b) força
de cisalhamento e (c) momento fletor para o perfil 7

Figura 4.58. Comportamento mecânico do maciço de solo ao final da construção (a) tensões de
cisalhamento e (b) superfície de ruptura potencial. Caso I
Figura 4.59. Comportamento mecânico do maciço de solo ao final da construção (a) tensões de
cisalhamento e (b) superfície de ruptura potencial. Caso I
Figura 4.60. Convenção de sinais adotada pelo PLAXIS para tensões (Brinkgreve et al., 2015).
Figura 4.61. Comportamento mecânico do maciço de solo ao final da construção (a) tensões de
cisalhamento e (b) superfície de ruptura potencial. Caso II
Figura 4.62. Comportamento mecânico do maciço de solo ao final da construção (a) tensões de
cisalhamento e (b) superfície de ruptura potencial. Caso II141

LISTA DE TABELAS

Tabela 2.1. Divergências em critérios de projeto, nas normas mais reconhecidas
Tabela 3.1.Comprimento das cortinas atitantadas
Tabela 3.2. Características geometria dos painéis que compõem a cortina C-250
Tabela 3.3.Comprimento dos tirantes. 54
Tabela 3.4.Características do tirante empregado. 55
Tabela 3.5.Ensaios realizados nas campanhas de investigação geotécnica
Tabela 3.6. Distância dos ensaios mais próximos à cortina de interesse. 60
Tabela 3.7. Profundidade do lençol freático nos ensaios SPT. 66
Tabela 3.8. Parâmetros de resistência do solo residual jovem. 75
Tabela 3.9. Valores calculados dos parâmetros do modelo constitutivo Hardening Soil79
Tabela 3.10. Valores obtidos da retroanálise dos parâmetros do modelo constitutivo Hardening Soil, solo residual jovem. 81
Tabela 3.11. Principais características dos tirantes utilizados para a simulação de ensaios de arrancamento.
Tabela 3.12. Valores obtidos da retroanálise dos parâmetros do modelo constitutivo MC, rocha alterada. 83
Tabela 4.1. Valores dos parâmetros do modelo constitutivo MC, rocha sã
Tabela 4.2. Propriedades utilizadas para a simulação da cortina. A partir dos valores típicos de cortinas de concreto armado
Tabela 4.3. Propriedades do trecho livre
Tabela 4.4. Propriedades do trecho ancorado utilizando elementos tipo "Geogrelha"
Tabela 4.5. Propriedades do trecho ancorado utilizando elementos tipo "Embedded pile"
Tabela 4.6. Valores sugeridos do fator de redução da resistência na interface (Brinkgreve <i>et al.</i> , 2015)

Tabela 4.7. Resumo dos valores utilizados e calculados, necessários para o cálculo da estabilidade
dos sete perfis, mediante o método Brasileiro102
Tabela 4.8. Força de protensão dos tirantes necessária para o equilíbrio, método Brasileiro102
Tabela 4.9. Comparação percentual das cargas de trabalho adotadas no projeto e as cargascalculadas pelo método Brasileiro
Tabela 4.10. Resumo dos valores utilizados e calculados, necessários para o cálculo de estabilidadedos sete perfis, mediante o método de Hoek & Bray (1981).104
Tabela 4.11. Resumo dos valores utilizados e calculados, necessários para o cálculo de estabilidadedos 7 perfis, mediante o método alemão107
Tabela 4.12. Valores dos fatores de segurança calculados pelos métodos analíticos das cunhas. 108
Tabela 4.13. Valores dos fatores de segurança calculados pelo Método dos Elementos Finitos.110
Tabela 4.14. Resumo dos valores do fator do segurança calculado pelos métodos empregados e asua diferença percentual em relação ao valor de referência.112
Tabela 4.15. Comparação dos deslocamentos calculados na simulação numérica dos casos I e II.
Tabela 4.16. Comparação das cargas aplicadas dos tirantes e as cargas mobilizadas ao longo do trecho ancorado. 134
Tabela 4.17. Comparação das cargas de trabalho calculadas pelo método Brasileiro e as mobilizadas ao longo do bulbo ecalculadas pelo MEF a partir da carga de rojeto aplicada no tirante.

LISTA DE NOMENCLATURAS, SÍMBOLOS E ABREVIAÇÕES

2D	Duas dimensões		
3D	Três dimensões		
a.n.m	Acima do nível do mar		
ABGE	Associação Brasileira de Geologia de Engenharia		
ABNT	Associação Brasileira de Normas Técnicas		
CEN	European Committee for Standardization		
CHILE	Material contínuo, homogêneo, isotrópico e linearmente elástico		
COBRAE	Conferência Brasileira sobre Estabilidade de Encostas		
COPPE	Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia		
CTC	Ensaio triaxial de compressão axial		
EDO	Ensaio edométrico		
FHWA	Federal Highway Administration		
HSM	Modelo constitutivo Hardening Soil		
IGU Ancoragens com um estágio de injeção da calda			
IRS	Ancoragens com múltiplo estágio de injeção da calda		
MC	Mohr-Coulomb		
MEF	Método dos Elementos Finitos		
Ν	Número de golpes do ensaio SPT		
NBR	Norma Brasileira		
PUC-Rio	Pontifícia Universidade Católica do Rio de Janeiro		
RTE	Ensaio triaxial de extensão axial		
SPT	Standar Penetration Test		
UFOP	Universidade Federal de Ouro Preto		
UFRJ	Universidade Federal do Rio de Janeiro		
UnB	Universidade de Brasília		
As	Área da seção transversal efetiva do tirante		
c´	Coesão do solo		
c ^{red.}	Coesão do solo reducida		
D	Diâmetro do bulbo de ancoragem		
Fa	Força de ancoragem, método Kranz (1953)		

Fa ^{ult}	Força última da ancoragem, método Kranz (1953)			
Fa ^{trab.}	Força de trabalho da ancoragem, método Kranz (1953)			
$\mathbf{f}_{\mathbf{c}}$	Função de plástificação "Cap", modelo Hardening Soil			
FS	Fator de segurança			
FS _{mín} .	Fator de segurança mínimo			
$FS_{desejado}$	Fator de segurança desejado			
Н	Altura da cortina			
h	Altura média do solo sobre o ponto médio do bulbo			
i	Ângulo de inclinação do talude com a horizontal, Método Brasileiro			
L	Comprimento da superfície potencial de ruptura, método Brasileiro			
L _b	Comprimento do bulbo de ancoragem			
М	Parâmetro que reduz a resistência do modelo Elástico Linear			
М	Parâmetro auxiliar "Cap" indireto do modelo Hardening Soil			
m	Potência que mede a dependência da rigidez com o nível de tensões			
р	Tensão isotrópica			
p _p	Tensão de pré-adensamento			
p ^{ref.}	Tensão de referência no modelo Hardening Soil			
q	Valor especial de tensão desviatória, modelo Hardening Soil			
q	Sobrecarregamento na superfície			
q; q _d	Tensão desviadora			
q _a	Valor da assíntota de resistência ao cisalhamento			
q_{f}	Tensão desviadora máxima			
q_s	Atrito lateral unitário no contato bulbo-solo			
S	Espaçamento emtre tirantes			
$\mathbf{S}_{\mathbf{h}}$	Espaçamento horizontalmente tirantes			
$\mathbf{S}_{\mathbf{v}}$	Espaçamento vertical entre tirantes			
$\mathbf{S}_{\mathbf{u}}$	Resistência não drenado do solo			
$S_u^{red.}$	Resistência não drenado do solo reducida			
Т	Força na ancoragem por metro linear			
Т	Capacidade limite da ancoragem			

T _{ens} .	Carga máxima de ensaio do tirante
T _{trab.}	Carga máxima de trabalho do tirante
U	Perímetro médio da secção transversal do bulbo
U	Força de submersão da água por metro linear
α	Inclinação do tirante com a horizontal
α	Coeficiente de aceleração sísmica horizontal, método Hoek & Bray (1981)
β	Constante do modelo Hardening Soil
β	Ângulo emtre a direção do tirante e a superfície de deslizamento, método Brasileiro
δ	Ângulo de atrito entre a parede e o solo
$\mathbf{\epsilon}_1^e$	Deformação axial elástica
$\boldsymbol{\epsilon}_1^p$	Deformação axial plástica
$\boldsymbol{\varepsilon}_a$ ou $\boldsymbol{\varepsilon}_1$	Deformação axial
$\boldsymbol{\epsilon}_{v}$	Deformação volumétrica
${\boldsymbol{\epsilon}_v}^{pc}$	Deformação volumétrica plástica
ø´	Ângulo de atrito efetivo do solo
ø′ ^{red.}	Ângulo de atrito efetivo do solo reducido
γ	Peso específico do solo
γc	Peso específico da cortina
γ_d	Peso específico seco do solo
γ_s	Peso específico do solo
γsat.	Peso específico saturado do solo
ν	Coeficiente de Poisson
ν_{ur}	Coeficiente de Poisson para carregamento/descarregamento
θ	Inclinação da ancoragem em relação à normal à superfície de ruptura
θ	Inclinação da superfície de ruptura crítica
θ	Ângulo de inclinação do plano de ancoragem
$\sigma'_{vou}\;\sigma'_z$	Tensão vertical efetiva
σ_1	Tensão principal maior efetivo
σ_2	Tensão principal intermediária efetivo
σ3΄	Tensão principal menor efetivo

σ_d	Tensão de desvio
σ_{e}	Tensão de escoamento do aço
σ _R	Tensão de ruptura do aço
τ	Resistência ao cisalhamento do solo
λ	Fator de reforço
μ_i	Coeficiente de Poisson do concreto
ψ	Ângulo de dilatação do solo
$\psi_{\rm f}$	Inclinação da face do talude
ψs	Inclinação da superfície do terreno
ψpcr	Inclinação da superfície de ruptura crítica
W	Peso da cortina

1. INTRODUÇÃO

A partir da aplicação do método simplificado de equilíbrio limite das cunhas (equilíbrio de forças), nas análises de estabilidade interna de cortinas atirantadas em 1955, foram desenvolvidas várias metodologias analíticas para o dimensionamento destas estruturas complexas. Esses métodos de cálculo foram desenvolvidos para situações simples, com solo homogêneo, ou seja, admite-se que toda cunha se encontra em um único material e topo de talude horizontal ou pequena inclinação $\Psi_s \leq 30^{\circ}$.

Apesar dessas e muitas outras simplificações, as mesmas têm a grande vantagem da simplicidade, o que possivelmente incentivou sua incorporação nas normas técnicas de diversos países, tais como a norma estadunidense (FHWA-IF-99-015, 1999), a norma europeia (BS EN 1537, 2000) e a norma brasileira (ABN NBR-5629, 1996), por exemplo. Por conseguinte, elas atualmente são amplamente utilizadas. No entanto, sabe-se que na realidade nesse tipo de obra de contenção as situações de obra e as condições do maciço de solo são mais complexas e requerem análises com um maior grau de dificuldade.

Neste trabalho pretende-se utilizar o Método de Elementos Finitos (MEF), por meio de ferramentas computacionais em 2D para estabelecer uma modelagem numérica que considere as diversas condições de projeto de um problema real, e assim poder quantificar a influência, os efeitos e as diferenças com os cálculos dentre os métodos convencionais visando proporcionar um conhecimento mais realista do comportamento destas obras. Para isso, foi analisado o caso de uma cortina atirantada localizada em Campo Grande, Rio de Janeiro, com dados e informações necessárias fornecidos por uma empresa privada.

Esta obra envolve dois problemas geotécnicos de interesse particular nesta pesquisa. O primeiro é o grau de complexidade da estrutura, por trata-se de uma cortina de forma irregular e altura decrescente, composta por um trecho reto e outro curvo, com localização e comprimento dos tirantes variáveis, assim como etapas de escavação múltiplas e variáveis. O segundo aspecto a ser considerado é a execução do projeto em solos residuais de gnaisse os quais, por serem solos muito

heterogêneos, com uma distribuição e espessura de camadas variáveis, dificultam a obtenção dos parâmetros geotécnicos representativos a partir de ensaios de laboratório.

É por isso que a utilização de ferramentas numéricas baseadas no método dos elementos finitos neste tipo de obras geotécnicas complexas representa um avanço considerável, já que possibilitam uma abordagem mais amplia e realista dos problemas de engenharia, devido a sua capacidade de modelar estratigrafias e elementos estruturais complexos, simular condições de contorno variadas, processos construtivos por etapas do mesmo modo que é feito na obra, escavações sequências, considerar a influência das estruturas vizinhas, incorporar diferentes modelos constitutivos e um número grande de outros aspectos relevantes.

1.1. OBJETIVOS

1.1.1. OBJETIVO GERAL

Esta pesquisa tem como objetivo geral avaliar os diferentes métodos que consideram uma condição bidimensional, na análise de estabilidade interna de cortinas atirantadas.

1.1.2. OBJETIVOS ESPECÍFICOS

Almejando o objetivo geral deste trabalho, têm-se como objetivos específicos:

- Revisão dos métodos analíticos mais conhecidos e consagrados na prática da engenharia, para a análise de estabilidade interna de cortinas atirantadas.
- Analisar de forma comparativa as diferentes metodologias e critérios de projeto empregados nas normas técnicas de diferentes países.
- Definir um modelo geológico-geotécnico simplificado para os solos residuais de gnaisse da zona de estudo.
- Desenvolver uma modelagem numérica 2D, utilizando um programa comercial de cálculo baseado no método dos elementos finitos.
- Avaliar a influência dos esforços tanto dos tirantes como da estrutura de concreto, quando são considerados nas análises numéricas diferentes modelos estratigráficos.

1.2. ESCOPO DA DISSERTAÇÃO

Esta dissertação está dividida em 5 capítulos. Uma breve descrição dos conteúdos abordados em cada capítulo é tratada a seguir.

No primeiro capítulo apresenta-se a introdução, subdividida em: motivação ou justificativa da escolha do tema de estudo, a qual aborda a importância de comparar os métodos analíticos devido a sua amplia difusão e o método de elementos finitos devido a sua versatilidade. Também são apresentados o objetivo geral e os objetivos específicos, assim como a estrutura ou escopo do trabalho por capítulos.

No capítulo 02 aborda-se a revisão bibliográfica feita neste trabalho, a qual basicamente pode ser dividida em definição dos conceitos teóricos relacionados com cortinas atirantadas e a revisão do estado atual do conhecimento em modelagem numéricas utilizando o método dos elementos finitos envolvendo esse tipo de problema. Inicialmente, foram estudados os conceitos básicos para o desenho de cortinas atirantadas e os critérios de projeto nas normas técnicas de vários países. Posteriormente, formam descritos os métodos para o cálculo de estabilidade interna. Também foram tratados os tópicos referentes á modelagem numérica, tais como: o método dos elementos finitos, modelagem 2D e 3D e efeito de arqueamento de tensões. Por último, apresenta-se algumas definições referentes a solos residuais, especificamente aos solos residuais de gnaisse (de interesse nesta dissertação), assim como uma breve revisão dos trabalhos desenvolvidos no Brasil, nesta linha de pesquisa.

O terceiro capítulo pode ser dividido em 3 partes. Inicialmente, é apresentada a metodologia empregada desta pesquisa, na qual são apresentasas as etapas de trabalho, mencionadas a seguir na ordem cronológica que foram desenvolvidas; revisão bibliográfica, estudo de caso e definição do modelo geotécnico, validação dos modelos constitutivos para solos e rocha, implementação dos métodos analíticos e simulações numéricas 2D. Além disso, são especificados os programas computacionais que foram utilizados para o desenvolvimento desta pesquisa, entre os quais é importante mencionar o pacote de elementos finitos PLAXIS 2D e os softwares ROCKWORKS e SURFER, usados para a modelagem da estratigrafia e da água subterrânea, respectivamente.

Posteriormente, é apresenta-se uma descrição detalhada da obra utilizada para definir a geometria do problema para análisar, especificamente das questões relacionadas com a localização, aspectos relevantes do terreno, descrição geral do projeto de estabilização, processo construtivo, geologia e geomorfologia local e a exploração geotécnica do subsolo. O modelo geológico-geotécnico básico desenvolvido neste trabalho a partir das sondagens realizadas e fornecidas pela empresa executora também foi apresentado, modelo que será utilizado nas etapas seguintes. Por ultimo são mostrados os fundamentos teóricos dos modelos constitutivos Hardening Soil e Mohr-Coulomb, utilizado para simular o comportamento mecânico da camada de solo residual e da rocha, respectivamente, além da metodologia para a obtenção dos parâmetros dos modelos e a validação de ambos modelos constitutivos, a partir da simulação de ensaios, triaxias de compressão e oedometricos, para o caso dos solos residuais e a simulação de ensaios de recebimento, para o caso do material rochoso.

No capítulo quatro, são apresentados inicialmente os aspectos correspondentes à concepção geral do processo de modelagem, utilizando o programa PLAXIS 2D para o caso de cortinas atirantadas, tais como: simplificação do problema geotécnico, definição das condições de contorno, escolha do tipo de elemento finito, densidade da malha e refinamentos locais, assim como o modelagem dos elementos estruturais e aplicação de interfases. Depois mostra os resultados dos fatores de segurança obtidos pelos métodos analíticos e das simulações numéricas 2D, assim como uma análise comparativa crítica entre os valores obtidos nestas metodologias. Também são comparados os deslocamentos, a força axial, a força cisalhante e os momentos ao longo da cortina, os esforços nos tirantes e os recalques na superfície do terreno, quando são utilizados nas análises numéricas o modelo estratigráfico desenvolvido.

Por fim, o capítulo cinco destaca as conclusões obtidas das análises realizadas, com enfoque na validação dos modelos constitutivos, no desenvolvimento do modelo geológico-geotécnico, na implementação dos métodos analíticos e na análises numérica 2D, além são propostas varias sugestões para pesquisas futuras. Adicionalmente, nos apêndices, apresenta-se um detalhe das perfurações do subsolo feitas para a colocação de cada tirante, os perfis das sondagens exploratórias SPT e Mistas e os ensaios de recebimento utilizados nesta pesquisa. Executados e fornecidos pela empresa SOLOTESTE ENGENHARIA LTDA.

2. REVISÃO BIBLIOGRÁFICA

2.1. ASPECTOS GERAIS DAS CORTINAS ATIRANTADAS

De acordo com a GeoRio (2000), uma cortina ancorada compreende uma parede de concreto armado fixada no terreno através das ancoragens pré-tensionadas (tirantes). Com isso obtém-se uma estrutura com rigidez suficiente para minimizar deslocamentos do terreno. O tirante é um elemento semi-rígido instalado no solo (podem ser de barras de aço, fios e cordoalhas), capaz de transmitir esforços de tração entre as suas extremidades (EUROCODE 7, 2004). O tirante é constituído basicamente por três componentes: a cabeça, a qual suporta a estrutura e permite a aplicação da carga; o trecho livre, que é a ligação entre a cabeça e o trecho ancorado; e o trecho ancorado, o qual transmite os esforços para o terreno, por meio do envolvimento da barra de aço por uma calda de cimento com diâmetro maior que o furo, formando então o bulbo de ancoragem (Figura 2.1).

Figura 2.1. Constitução básica de um tirante (GeoRio, 2000).

A parede de concreto armado tem espessura entre 20 e 40 cm, de acordo com as cargas dos tirantes e os espaçamentos das ancoragens. Essa espessura é definida na elaboração do projeto estrutural em função do puncionamento e dos momentos ao longo da cortina.

2.1.1. ASPECTOS DE DIMENSIONAMENTO

A cortina é composta por painéis unidos por juntas de dilatação. Em geral, cada painel tem comprimento entre 5 m e 15 m, espessura da ordem de 30 cm em tirantes com carga de trabalho em torno de 390 kPa, e da ordem de 23 cm a 25 cm em tirantes com carga de trabalho de 200 kPa (Gerscovich *et al.*, 2013).

Na execução dos tirantes, o diâmetro da perfuração deve ser tal que no trecho ancorado o recobrimento da calda de cimento sobre o elemento resistente à tração seja suficiente para garantir uma proteção contra corrosão e/ou desagregação. Segundo a NBR-5629 (1996), no caso de tirantes com fios, cordoalhas ou barras de aço recobertos por calda de cimento, este recobrimento mínimo necessário é de 2 cm.

Deste modo, considerando que para tirantes com elementos de aço, a seção individual de cada barra, fio ou cordoalha não deve ser inferior a 50 mm² e o recobrimento mínimo de argamassa é de 2 cm. GeoRio (2000), sugere que para tirantes com diâmetro da barra de aço < 38 mm, o diâmetro mínimo da perfuração pode ser de 100 mm e no caso de tirantes com diâmetros maiores, de 125 mm.

Com o intuito de evitar a interação entre os bulbos de ancoragens, a norma NBR-5629, baseada nos resultados obtidos por Pinelo (1980), recomenda utilizar o menor dos valores obtidos entre os seguintes dois critérios; $S_h > 6D$ ou $S_h > 1$ m, onde D é o diâmetro do bulbo de ancoragem e S_h o espaçamento horizontal entre os tirantes.

O inicio do bulbo deve distar pelo menos 3 m da parede, a fim de evitar que as cargas de protensão atuem na parede de concreto armado, e a uma distância da superfície de deslizamento não menor a 1,5 m ou 0,15 da altura da cortina (0,15H), deixando um trecho de segurança entre o bulbo e a região ativa (Pinelo, 1980).

Pelas suas próprias características, em muitas situações os tirantes são executados invadindo propriedades de terceiros, típico em cavas de fundação em regiões urbanas, portanto as obras

ancoradas devem evitar deformações nos terrenos vizinhos e/ou prejudicar o comportamento das estruturas existentes, devido ao volume e à pressão de injeção da calda de cimento (Hachich, 1998). Segundo Aliciuc & Muşat (2013), em tirantes muito próximos à fundações rasas, a protensão da ancoragem pode gerar grandes deformação do solo e recalque da fundação, devido à sobreposição de tensões no maciço circundante, dadas pelo tirante e pela fundação, principalmente na zona de ligação entre o trecho livre e o bulbo, já que as tensões máximas transferidas ao solo pela ancoragem estão nessa região. Estes autores também propõem que a distância que devem ser colocadas as ancoragens de modo a não influenciar as fundações vizinhas varia em função de uma multiplicidade de fatores, tais como: a largura da fundação, a carga aplicada na fundação, a força de protensão nos tirantes, os parâmetros geotécnicos do solo, etc.

Com isso, a NBR-5629 (1996), recomenda um recobrimento de terra mínimo de 5 m sobre o centro do trecho ancorado á superfície do terreno, e de 3m da base de fundações rasas, ver Figura 2.2.

Figura 2.2. Recomendações para o projeto de cortina atirantada (a) seção transversal e (b) vista superior (Pinelo, 1980).

Além das recomendações geotécnicas e estruturais mencionadas, existem muitas outras que devem ser considerar num projeto geotécnico de cortinas atirantadas, as quais são empregadas nas normas técnicas, como critérios básicos e obrigatórios de desenho.

2.1.2. CRITÉRIOS DE PROJETO NAS NORMAS TÉCNICAS

No Brasil, a norma que fixa as condições exigíveis para a execução de tirantes ancorados em solo e rocha, tanto para fins próvisorios ou permanentes é a norma NBR-5629 (1996). Nesta norma, apresenta-se o procedimento de desenho e execução destas estruturas, os aspectos de dimencionamento apresentados acima e sugere-se vários outros critérios de projeto sendo a maioria deles empíricos, bem como alguns métodos de cálculo e um número grande de correlações. De modo geral, estes critérios de projeto são os mesmos adotados por outros países. No entanto, alguns deles têm pequenas diferenças. Um resumo das diferenças nos critérios mais relevantes de projeto empregados nas normas brasileira ABNT NBR-5629 (1996), americana FHWA-IF-99-015 (1999) e europeia BS EN 1537 (2000) é apresentado na Tabela 2.1.

Critério de projeto	Norma			
enterio de projeto	Americana	Brasileira	Europeia	
Espaçamento dos tirantes (m)	> 1,2	> 1,0 ou > 6D	> 1,5	
Distância do trecho ancorado à superfície potencial de ruptura (m)	1,5 ou 0,2 H	0,15 H	-	
Cobertura mínima de terra no ponto médio do trecho ancorado (m)	> 4,5	> 5,0	-	
Comprimento do trecho livre (m)	> 3,0 (fios ou cordoalhas) > 4,5 (monobarra)	>3,0	> 3,0	
Comprimento do trecho ancorado (m)	> 4,5	> 5,0	> 3,0	
Fator água/cimento da calda	0,4-0,55	< 0,5	0,4-0,45	
Resistência da calda aos 28 dias (MPa)	≥21	≥ 25	≥ 35	

Tabela 2.1. Divergências em critérios de projeto, nas normas mais reconhecidas.

2.2. MÉTODOS ANALÍTICOS DE DIMENSIONAMENTO

Existem na literatura diversos métodos analíticos para o dimensionamento das cortinas atirantadas, de modo a atender à condição de estabilidade geral do sistema (parede-tirante-maciço de solo) e alguns dos mais utilizados serão apresentados a seguir.

2.2.1. CAPACIDADE DE CARGA DAS ANCORAGENS

Devido à impossibilidade de considerar todos os aspetos que durante a execução de um tirante influenciam na capacidade de carga, tais como: experiência da mão de obra, qualidade dos equipamentos, processo de perfuração, limpeza do furo, injeção da calda de cimento e entre outros, pode-se considerar a capacidade de carga do tirante apenas em função da resistência ao cisalhamento desenvolvida na interface solo-bulbo. Segundo GeoRio (2000), as cargas máximas de ensaio ($T_{ens.}$) e de trabalho ($T_{trab.}$) podem ser calculadas utilizando as Equações 2.1 e 2.2, respectivamente.

$$T_{ens.} = 0.9 f_y A_s$$
 (2.1)

$$T_{trab.} = \frac{T_{ens.}}{FS}$$
(2.2)

Onde a carga de ensaio (esforço máximo a que o tirante é submetido), é equivale a 90% da resistência característica do aço à tração (tensão de escoamento) (f_y), por a área da seção transversal útil de aço (A_s). O fator de segurança (FS) de 1,5 ou 1,75 aplica-se para tirantes provisórios e permanentes, respectivamente. Este superdimensionamento da barra de aço empregado consiste em provocar a ruptura do trecho ancorado durante a execução do ensaio de arrancamento e evitar um acidente, devido à possível ruptura brusca do aço.

2.2.2. DIMENSIONAMENTO DO TRECHO ANCORADO

Segundo a NBR-5629 (1996), a determinação do comprimento do bulbo deve ser feita experimentalmente por meio de ensaios prévios em tirantes construídos no lugar onde a obra vai ser executada, com as mesmas características e processo executivo, para eliminar a influência da mão de obra e a tecnologia, entre outros fatores que poderiam aumentar a incerteza dos resultados. No entanto, para estimativas preliminares, na fase de pré-dimensionamento, o comprimento do bulbo pode ser calculado a partir da resistência à tração, considerando apenas as características

geométricas do trecho ancorado e o tipo de solo e grão de compacidade no caso de solos arenosos e a resistência ao cisalhamento não drenada no caso de solos argilosos.

Para o caso de ancoragens em rocha o atrito unitário no contato bulbo-rocha, pode ser estimado como o menor dos dois seguintes valores:

- 1/30 da resistência à compressão simples da rocha;
- 1/30 da resistência à compressão simples da argamassa. Sendo que a norma considera que no caso da argamassa; com um fator água/cimento máximo de 0,5 a resistência mínima à compressão simples deve ser de 25 MPa, na data do ensaio.

Além do método descrito, muitos outros métodos foram desenvolvidos, principalmente na Europa, os quais sugerem correlações para o dimensionamento do bulbo, baseados na análises de um número limitado de provas de carga, entre os quais podem ser citados os seguintes trabalhos: Bustamante & Doix (1985), Nunes (1987) e Mecsi (1997).

No método de Bustamante & Doix (1985), são considerados além, das características geométricas do trecho ancorado, o efeito da técnica de injeção da calda de cimento, a pressão de injeção e o volume injetado. Sendo o comprimento do trecho ancorado calculado mediante correlações empíricas do atrito lateral no bulbo com a pressão limite obtida em ensaios com o pressiômetro Ménard e os valores de índice do ensaio SPT. Tanto para ancoragens com somente um estágio de injeção e as de múltiplo estágio.

No método de Nunes (1987), no calculo do comprimento do bulbo, é considerado além da resistência ao cisalhamento na interface solo-bulbo, a resistência ao arrancamento do tirante com a calda de cimento. E é definido como o maior dos comprimentos fornecidos pelos dois casos.

De acordo com GeoRio (2000), por se tratar de métodos desenvolvido em condições especificas com um número limitado de ensaios de arrancamento, utilizando correlações com ensaios cujo procedimento de execução varia em cada país, com uma dispersão dos resultados grandes, e por muitas outras razões, essas correlações só devem ser vistas como uma primeira aproximação, a experiência local torna-se essencial.

Neste sentido, poucos trabalhos têm sido desenvolvidos em tirantes reais, para determinar o comprimento do bulbo de ancoragem e a sua capacidade de carga. Portanto é importante mencionar os trabalhos feitos por Shih *et al.*, (2012) e Štefaňák *et al.*, (2016), no estudo de provas de carga em tirantes verticais e inclinados a escala real.

Shih *et al.*, (2012) estudaram o comportamento da pressão de injeção de tirantes em formações de cascalho, mediante provas de arrancamento em escala real para 12 ancoragens; três ancoragens inclinadas 25° com trechos livres de 1, 2 e 3 m e trechos ancorados de 3, 2 e 1 m; e nove ancoragens verticais com trechos livres de 0, 1, 2 e 3 m, trechos ancorados de 1, 2 e 3 m. Segundo estes autores:

- Uma ancoragem pode ser considerada como profunda quando o comprimento livre é maior que oito vezes o diâmetro do bulbo (8D);
- A carga última do tirante aumenta com o comprimento do trecho livre e o comprimento do trecho ancorado;
- Um comprimento ancorado de só 3 m é capaz de gerar uma carga última maior a 1100 kN;
- O coeficiente de atrito K para ancoragens verticais e inclinadas é de 29 e 17,7 respetivamente.

Por sua parte, Štefaňák *et al.* (2016) estudaram 6 ensaios de ancoragens verticais (Figura 2.3a) em solos argilosos, com trechos livres de 5 m e trechos ancorados de 6, 8 e 10 m. Os ensaios foram instrumentados para obter os deslocamentos e as cargas aplicadas na cabeça, as deformações na barra e no bulbo de ancoragem (Figura 2.3b) e as tensões na barra; observou-se:

- Uma forte diminuição da força de protensão, após de atingir o valor crítico da resistência lateral mobilizada.
- O valor da força de protensão residual encontra-se na faixa de 50% 55% de seu valor máximo.
- A diferença considerável entre a força final e a força residual provocou uma diminuição progressiva da tensão ao cisalhamento ao longo do trecho ancorado.

Figura 2.3. (a) Preparação do ensaio e (b) medição dos deslocamentos da barra. Štefaňák *et al.* (2016).

2.3. ANÁLISE DE ESTABILIDADE

No caso das cortinas atirantadas é necessário analisar a estabilidade do conjunto (cortina-tirantesmaciço de solo), nas duas situações apresentadas na Figura 2.4:

Figura 2.4. Superfícies de ruptura em cortinas atirantadas (Ranke & Ostermayer, 1968).

Inicialmente, deve-se analisar a estabilidade externa (ruptura global generalizada), utilizando os métodos convencionais de estabilidade de taludes aplicados na mecânica de solos (Bishop, Jambu, Fellenius, Taylor, etc.), para determinar os casos onde o bulbo se encontra completamente dentro da superfície de deslizamento e por tanto o tirante não possui nenhuma influência na estabilidade

do maciço, ou seja, o mecanismo de ruptura pouco ou nada tem a ver com a execução da obra. Segundo a NBR-5629 (1996), para este caso o fator de segurança deverá ser maior que 1,5.

Na determinação da superfície de deslizamento, devem ser levadas em conta todas as peculiaridades geológicas, climáticas e sobrecargas atuantes, tanto nas fases de execução quanto na de utilização (NBR-5629, 1996).

Depois, deve-se analisar a estabilidade interna e os mecanismos de ruptura formados como consequência direta da construção da obra de contenção, utilizando para as análises de estabilidade, os métodos de equilíbrio limite das cunhas desenvolvidas especificamente para este tipo de obra de contenção, tais como; Ranke & Ostermayer (1968), Nunes & Velloso (1963) e Ranke & Osternayer (1981), assegurando que o trecho livre tenha o comprimento necessário para evitar que a ruptura do maciço de ancoragem ocorra ao longo de qualquer plano que passa pelo pé da cortina e o bulbo, para isso nenhuma superfície de escorregamento pode apresentar um fator de segurança menor que 1,5.

Devido ao grande número de trabalhos que têm sido desenvolvidos no Brasil e no mundo, utilizando os métodos para o cálculo da estabilidade de taludes e encostas, nesta pesquisa só serão discutidos os métodos específicos para a análise de estabilidade interna de cortinas atirantadas, principal objeto de estudo desta dissertação.

2.3.1. MÉTODOS DE ANÁLISE DA ESTABILIDADE INTERNA

Também conhecidos como métodos das cunhas, são uma abordagem simplificada para casos simples, que consideram superfícies potenciais de ruptura planas, desde o pé da cortina até a superfície do terreno, formando cunhas instáveis ou deslizantes. A seguir, serão apresentados os principais métodos que consideram esta abordagem.

2.3.1.1. MÉTODO DE KRANZ (1953)

Este método foi proposto para cortinas de estacas-prancha em solos granulares, suportadas por uma linha de ancoragem do tipo placa (Figura 2.5), no qual o fator de segurança é definido como a razão entre a força máxima compatível com o equilíbrio global dos blocos; ABC (cunha ativa) e BCDE

(bloco de ancoragem) e a força de trabalho requerida (ou prevista) nas ancoragens (Equação 2.3). O valor da força de ancoragem última ($F_a^{últ.}$) é determinada de maneira gráfica mediante o polígono de forças. O valor do fator de segurança deve ser no mínimo igual a 1,5 para tirantes provisórios e 1,75 para tirantes permanentes, de acordo com a NBR-5629.

Figura 2.5. Diagrama e poligono de forças para a análise de estabilidade do método de Kranz (1953)

Onde:

P_a: Peso próprio da cunha mais a componente devida ao carregamento distribuído na superfície, por metro linear;

P₁: Peso próprio do bloco de ancoragem mais a componente devida ao carregamento distribuído na superfície, por metro linear;

E_a: Empuxo ativo atuante na parede de contenção;

E1: Empuxo ativo atuante na parede equivalente;

R: Reação aplicada sobre o plano potencial de ruptura BC;

R1: Reação aplicada sobre o plano potencial de ruptura BE;

ø´: Ângulo de atrito do solo;

 δ : Ângulo de atrito entre a parede e o solo.

O componente devido ao carregamento distribuído na superfície deve ser considerado unicamente no caso que o ângulo do plano deslizante BE com a horizontal for superior ao ângulo de atrito do solo ($\theta \ge \varphi'$), pois caso contrário a sobrecarga seria favorável. Neste caso o bloco de ancoragem é considerado a massa de solo que deve se estabilizar para assegurar a estabilidade ou equilíbrio do sistema.

$$FS = \frac{F_a^{\ \text{\acute{o}lt.}}}{F_a^{\ trab.}} \tag{2.3}$$

Onde:

 $F_a^{\text{últ.}}$: Força de ancoragem última (carga máxima do tirante); $F_a^{\text{trab.}}$: Carga de trabalho requerida no tirante.

Segundo Janke & Ostermayer (1968), o processo de cálculo do método de Kranz (1953) possui varias objeções teóricas básicas, tais como:

- A consideração de uma superfície de deslizamento curva (espiral logarítmica) conduz a condições mais desfavoráveis que uma superfície de ruptura plana;
- Não podem ocorrer, simultaneamente, uma cunha de deslizamento ativa e uma superfície de deslizamento profunda;
- No momento da ruptura, aparece devida á protensão dos tirantes entre a ancoragem e a cortina, uma pressão superior á ativa;
- Para ancoragens muito próximas, que podem ser consideradas tecnicamente como paredes contínuas, a superfície curva parte do pé da cortina.

A partir dessa primeira aplicação do método simplificado de equilíbrio limite das cunhas à análise das de cortinas ancoradas por Kranz (1953), foram desenvolvidas duas maneiras distintas de aplicação deste método: a metodologia alemã e a brasileira. As duas metodologias foram desenvolvidas para situações simples, com solo homogêneo e topo de talude horizontal ou pequena inclinação $\Psi_s \leq 30^\circ$.

No caso do método Brasileiro, o equilibrio de forças horizontais e verticais ocorre em apenas uma cunha deslizante ABC (cunha ativa), enquanto que no método alemão, emprega duas cunhas, sendo que no método alemão o plano de ruptura corta o bulbo de ancoragem no seu ponto médio, conforme indicado na Figura 2.6.

Figura 2.6. Métodos das cunhas nas análises de estabilidade de cortinas atirantadas (a) Brasileiro E (b) Alemão (GeoRio, 2000).

2.3.1.2. MÉTODO DE KRANZ GENERALIZADO

A generalização do método de Kranz, mais conhecida no Brasil como método alemão, foi desenvolvida por Ranke & Ostermayer (1968) tanto para o caso de cortinas com uma linha de tirantes como para múltiplas linhas de ancoragens protendidas.

Para tirantes isolados, a diferença em relação ao método original de Kranz é que a primeira cunha (bloco de ancoragem) se inicia no pé da cortina e vai até o ponto médio do bulbo (Figura 2.7), sendo o processo de cálculo do fator de segurança análogo ao método original. Um detalhe nas relações geométricas das forças está apresentado no polígono da Figura 2.8.

Figura 2.7. Diagrama e polígono de forças para o método de Kranz generalizado (modificado - de Ranke & Ostermayer,1968).

Figura 2.8. Relações geométricas no polígono de forças (modificado - Ranke & Ostermayer, 1968).

O fato da superfície de ruptura a passar pelo ponto médio do bulbo e não pela sua extremidade justifica-se como medida de segurança para atender a eventuais diferenças entre o comprimento real da ancoragem e o comprimento de projeto, sendo por isso que outros autores não consideram todo o bulbo de ancoragem como parte do bloco de ancoragem.

No caso de cortinas com dupla ancoragem existem três distribuições possíveis; 1) O tirante do nível superior possui o comprimento menor que o do nível inferior, de modo que seu bulbo fica dentro da cunha do tirante inferior, 2) O tirante do nível superior tem um comprimento maior que do tirante do nível inferior e o trecho ancorado do tirante superior se situa dentro da cunha de deslizamento da ancoragem inferior e 3) O tirante do nível superior tem um comprimento maior que do tirante do nível inferior e o trecho ancorado do tirante superior tem um comprimento maior que do tirante do nível inferior e o trecho ancorado do tirante superior se situa dentro da cunha de deslizamento da ancoragem inferior. Maiores detalhe dos diagramas e polígonos de forças para o calculo do fator segurança individual e global para cada um dos casos mencionados, são apresentados por Ranke & Ostermayer (1968). Sendo o processo de cálculo do coeficiente de segurança análogo para cortinas com maior número de níveis de tirantes.

Para o caso de solos com coesão não nula (com parâmetros $c e \phi$), Pacheco & Danziger (2001) incluíram na análise do polígono de forças as componentes tangenciais geradas pela coesão do

material de módulo igual à coesão multiplicada pelo comprimento da superfície de ruptura, nas direções dos planos de ruptura onde essas forças atuam (Figura 2.9).

Figura 2.9. Polígono de forças do método de Kranz (1953), com coesão (modificado - Pacheco & Danziger, 2001).

2.3.1.3. MÉTODO BRASILEIRO

Neste método desenvolvido por Nunes & Velloso (1963) é considerado o equilibrio de forças atuantes na superfície potencial de ruptura BC (Figura 2.10). Esta superfície pode ser considerada como o plano mais favorável para o deslizamento e é definida pelo ângulo crítico (θ_{cr}), segundo a teoria de Culmann. Este ângulo pode ser calculado utilizando a Equação 2.4.

$$_{\theta cr} = \frac{i + \varphi'}{2} \tag{2.4}$$

Onde, *i* é o ângulo de inclinação do talude com a horizontal e ø´o ângulo de atrito efetivo do solo.

O fator de segurança mínimo (FS_{mín.}) ou fator de segurança do plano crítico sem ancoragens é calculado pela Equação 2.5:

$$FS_{min.} = \frac{c'L\cos\phi'}{W\sin(\theta_{cr} - \phi')}$$
(2.5)

Onde:

c': Coesão do solo;

ø': Ângulo de resistência ao cisalhamento do solo;

L: Comprimento da superfície potencial de ruptura;

 θ_{cr} : Inclinação da superfície potencial de ruptura;

W: Peso da cunha mais a componente devida ao carregamento distribuído na superfície, por metro linear.

Figura 2.10. Superfície potencial de ruptura considerada no método Brasileiro, baseada no método de Culmann (a) diagrama e (b) polígono de forças atuantes na cunha, sem ancoragem.

Basicamente, o método Brasileiro consiste em achar a força de protensão (F) que devera ser aplicada nos tirantes para aumentar o fator de segurança mínimo até um valor satisfatório (FS_{desejado}), de 1,5 segundo as especificações da NBR-5629, com o fim de conseguir o equilíbrio da cunha deslizante (Equação 2.6).

$$F = \frac{\lambda - 1}{\lambda} \times W \times \frac{sen \left(\theta_{cr} - \boldsymbol{\varphi}'\right)}{cos \left(\beta - \boldsymbol{\varphi}'\right)}$$
(2.6)

Onde, β é o ângulo emtre a direção do tirante e a superfície de deslizamento, em quanto que λ é o fator de reforço, o qual pode ser calculado mediante a Equação 2.7.

$$\lambda = \frac{FS_{desejado}}{FS_{min.}}$$
(2.7)

Finalmente, pode-se calcular por tentativa o ângulo de inclinação do plano de ancoragem (θ), ou seja, o plano além do qual podem ser colocados os bulbos de ancoragens (Figura 2.11), de modo de obter um fator de segurança maior a 1,5 (Equação 2.8).

$$FS = \frac{2 \frac{c}{\gamma H} \text{ sen } i \cos \varphi'}{\text{sen}(i - \theta) \text{ sen}(\theta - \varphi')}$$
(2.8)

Figura 2.11. Detalhe dos ângulos β , θ e do plano de ancoragem, método Brasileiro.

2.3.1.4. MÉTODO HOEK & BRAY (1981)

Este método faz uso do fator de segurança global e é calculado como a razão entre as forças tangenciais resistentes e a forças tangenciais atuantes ao longo da superfície potencial de ruptura BC, definida ao igual que no método Brasileiro, segundo a teoria de Culmann (Figura 2.12).

Figura 2.12. Diagrama de forças definido pelo método de Hoek & Bray (1981) (Ortigão & Sayao, 2004).

No caso de um talude sem água e aceleração sísmica nula o fator de seguranca global é calculado pela Equação 2.9.

$$FS = \frac{(c A + (W \cos \Psi_{pcr} + T \cos \theta) \tan \phi)}{W sen \Psi_{pcr} - T sen \theta}$$
(2.9)

Onde:

c: Coesão do solo;

ø: Ângulo de resistência ao cisalhamento do solo;

T: Força na ancoragem por metro linear;

θ: Ângulo de inclinação da ancoragem em relação à normal à superfície de ruptura;

 Ψ_{pcr} : Inclinação da superfície potencial de ruptura;

A: Área da superfície potencial de ruptura por metro linear;

W: Peso da cunha mais a componente devida ao carregamento distribuído na superfície, por metro linear.

E para o caso de um talude com água considera-se o efeito da aceleração sísmica, o fator de segurança global é calculado pela Equação 2.10:

$$FS = \frac{(c A + (W (\cos \Psi_{Pcr} - \alpha \operatorname{sen} \Psi_{Pcr}) - U + T \cos \theta) \tan \phi)}{W (\operatorname{sen} \Psi_{Pcr} + \alpha \cos \Psi_{Pcr}) - T \operatorname{sen} \theta}$$
(2.10)

Onde:

U: Força de submersão da água por metro linear;

α: Coeficiente de aceleração sísmica horizontal, dado em relação aceleração da gravidade.

2.3.1.5. MÉTODO DOS ELEMENTOS FINITOS

A GeoRio (2000) recomenda que, em casos onde as superfícies de ruptura planares podem eventualmente não ser consideradas uma alternativa, é requerido o emprego de métodos de equilíbrio limite através de superfícies circulares ou poligonais, para o qual recomenda-se o uso de programas de computador que utilizem os métodos de análise de equilíbrio limite de fatias. No entanto, para casos de projetos geotécnicos ainda mais complexos onde as estruturas e/ou a interação solo-estrutura sejam complexas, existem atualmente um número grande de programas computacionais em 2D ou 3D que permitem a aplicação do método dos elementos finitos, levando a simulações mais realistas onde são considerados os efeitos do processo construtivo sequencial e a variação no estado de tensões devido às escavações. Esses aspectos por sua vez não são considerados pelos métodos analíticos de equilíbrio limite das cunhas ou pelos métodos de equilíbrio limite em fatias.

Algumas dessas situações da obra ou das condições do maciço de solo, que representam um maior grão de dificuldade e/ou complexidade na análise são (GeoRio, 2000):

- Topo do talude inclinado com mais de 30 graus;
- Geometria do talude complexa;
- Carregamentos diversos e/ou complexos aplicados sobre o talude;
- Ocorrência de água;
- Solo estratificado com a ocorrência de camadas mais fracas.

Na análise de estabilidade utilizando o software de elementos finitos PLAXIS 2D, o fator de segurança é obtido mediante a redução sucessiva dos parâmetros de resistência tan ϕ' , c' ou S_u de forma incremental até atingir a ruptura do maciço de solo (Brinkgreve & Bakker, 2016) (Equações 2.11 e 2.12):

$$M = \frac{\tan \emptyset'}{\tan \emptyset'^{red.}} = \frac{c'}{c'^{red.}} = \frac{S_u}{S_u^{red.}}$$
(2.11)

$$FS = \frac{Resistência do solo}{Resistência na ruptura} = M, \text{ na ruptura}$$
(2.12)

Onde, *M* é o parâmetro que reduz os valores de tan ϕ , *c* ou *S_u*, nas sucessivas análises até a ruptura do maciço, desde um valor de 0,1 até *M* = FS (fator de segurança).

Segundo Brinkgreve & Bakker (2016), os fatores de segurança obtidos mediante a aplicação do método de redução da resistência são muito parecidos aos obtidos pelos métodos de análise convencional que consideram uma superfície de ruptura circular, quando são consideradas as mesmas condições de projeto. No entanto, Han *et al.* (2017), na simulação 2D de uma escavação profunda em solos arenosos, na China, para a construção de um edifício, observou que a superfície crítica ou superfície potencial de deslizamento predefinida pelos métodos equilíbrio limite, mostram um desvio relativamente significativo aos resultados obtidos pelo MEF.

Alguns aspectos que devem ser considerados na análise de estabilidade pelo Método dos Elementos Finitos são:

- Em princípio, o ângulo de dilatância não é afetado pelo procedimento, embora não pode ser igual ou maior que o ângulo de atrito reduzido, sendo necessária a sua redução quando o valor do ângulo de atrito reduz tanto que se tornam iguais, aplicando o mesmo crítico de redução;
- As análises não podem ser feitas no caso particular do modelo constitutivo Cam-Clay modificado, já que o ângulo de atrito e a coesão não são parâmetros do modelo.

2.4. MODELAGEM NUMÉRICA UTILIZANDO OS MÉTODOS DOS ELEMENTOS FINITOS (MEF)

Com a implementação dos métodos numéricos em sistemas computacionais durante a década de 1980, o uso complementar dos métodos tradicionais, bem como do Método dos Elementos Finitos (MEF) para o dimensionamento de cortinas atirantadas, permitem uma melhor avaliação. Levando a projetos com melhor dimensionamento e mais consistentes (Mendes, 2010).

De acordo com Santos (2003), o MEF é atualmente a ferramenta numérica mais versátil para análise de problemas de interação solo-estrutura, pois permite modelar de forma realista o comportamento mecânico da superestrutura, das fundações e do solo, preservando a geometria da estrutura e superfície do terreno. Além de possibilitar a ocorrência de deslocamentos relativos entre os diferentes componentes do sistema, as condições de contorno complexas, os carregamentos estáticos ou dinâmicos, os procedimentos de escavação ou aterros incrementais, etc.

Brinkgreve *et al.* (2016) afirmam que os modelos numéricos de elementos finitos apresentam vantagens relevantes quando comparadas com os métodos de análises convencionais. Isso porque é possível levar em conta os efeitos da escavação em diversas outras seções, além de ter em conta a topografia real da superfície do terreno, a estratigrafia da zona de estudo, a variação das condições piezométricas, a influência de estruturas vizinhas, entre outras. Neste sentido, vários trabalhos têm sido desenvolvidos no Brasil, visando uma melhor compreensão do comportamento do tipo de estrutura de contenção objeto de estudo desta dissertação utilizando o software PLAXIS 2D (More, 2003; Bezerra, 2012; Santos, 2013) e o programa GeoStudio 2007, módulo SIGMA/W (Mendes, 2010).

Com o fim de analisar o comportamento mecânico do solo e das estruturas, utilizando simulações numéricas, Han *et al.* (2013) desenvolveram um estudo de caso na China, utilizando o programa PLAXIS 2D. A obra consistiu na estabilização de uma escavação de 22 m, feita para a construção de um edifício, mediante a execução de uma parede de 0,6 m de espessura, ancorada por 7 linhas de ancoragens, onde os tirantes possuíam um comprimento dos trechos livres de 13,5, 12, 10,5, 9, 7,5, 6 e 6 m e comprimentos dos trechos ancorados de 4,5, 6, 6,5, 8, 8 10 e 9 m, espaçamento horizontal de 3 m e uma sobrecarga na superfície do terreno de 20 kPa. A seção estratigráfica de acima para baixo é composta por uma camada de areias médias e grossas, areia com pedregulho, areia média e grossa e pedregulhos. Da simulação destes materiais arenosos utilizado os modelos constitutivos MC e HSM, estes autores que ambos modelos constitutivos apresentam bons resultados na análise das deformações da parede e dos recalques do solo, em comparação com os valores medidos na obra (Figura 2.13 e 2.14).

Figura 2.13. Comparação das forças e momentos ao longo da parede, medidos e calculados utilizando vários modelos constitutivos (a) deformações horizontais, (b) momentos fletores, (c) forças de cisalhamento e (d) Empuxos de terra. (Han *et al.*, 2017).

Figura 2.14. Comparação dos deslocamentos horizontais medidos e calculados utilizando vários modelos constitutivos (Han *et al.*, 2017).

Em concordância com esses resultados, Aliciuc & Muşat (2013) na simulação numérica 3D de ensaios de carga-descarga em ancoragens, utilizando vários modelos estratigráficos de solo e

diferentes modelos constitutivos (HSM, MC, linear elástico e HS de pequenas deformações), tanto para condição drenada como não drenada, achou que os valores mais próximos aos obtidos pela instrumentação foram empregados pelo modelo constitutivos Hardening Soil na condição não drenada, quando os tirantes foram ancorados em argilas e pelo modelo Hardening Soil com pequenas deformações na condição não drenada, quando o tirante é ancorado numa camada de solo arenoso.

Com o intuito de analisar o efeito da rigidez no comportamento mecânico de uma cortina ancorada, Alan & Siddiquee (2014), desenvolveram um estudo paramétrico utilizando o programa de elementos finitos DIANA. Foi considerada na análise uma escavação de 5 m de altura, ancorada por 5 linhas de tirantes, espaçadas 0,5 m na direção vertical. Foram utilizadas argilas como matérias de aterro e como solo a estabilizar.

Da variação da rigidez do reforço utilizando valores de: 1,0E6, 2,0E6, 5,0E6, 1,0E7, 1,0E8, 1,0E9, 1,0E11 Mpa e da variação da rigidez do solo e do material de aterro, utilizando nos dois caos valores de 5, 10, 20, 30 40 e 50 MPa. Estes autores concluíram que:

- A deformação da parede diminui com o aumento da rigidez do reforço e, acima de certo valor de rigidez, não tem efeito sobre a deformação (Figura 2.15a).
- A força de ancoragem aumenta com o aumento da rigidez do reforço e, acima de certo valor de rigidez, não afeta a força de ancoragem (Figura 2.15b).
- A deformação na superfície do terreno diminui com o aumento da rigidez do aterro e do solo retido (Figura 2.16).
- O coeficiente de empuxo em repouso aumenta com o aumento da rigidez do reforço, tanto para solos arenosos como argilosos (Figura 2.17).

Figura 2.15. Variação do comportamento mecânico das estruturas com a rigidez da ancoragem; (a) variação dos deslocamentos ao longo da parede e (b) variação da força de ancoragem (Alan & Siddiquee, 2014).

Figura 2.16. Variação dos deslocamentos verticais na superfície do terreno com a rigidez do reforço (Alan & Siddiquee, 2014).

Figura 2.17. Variação do coeficiente de empuxo em repouso com a rigidez do reforço (Alan & Siddiquee, 2014).

Simulações numéricas tridimensionais utilizando o Método dos Elementos Finitos foram desenvolvidos recentemente por Yajnheswaran *et al.*, (2015) e Tan *et al.*, (2018), usando os programas PLAXIS 3D e ABACUS, respectivamente. Uma breve descrição de ambos trabalhos é a presentada a seguir.

Yajnheswaran *et al.*, (2015), estudaram o efeito da ancoragem no comportamento de paredes diagrama ancoradas num perfil estratigráfico composto por em argilas marinhas, areias finas, médias e grossas, na simulação destes materiais foi utilizado o modelo linear elástico. A altura da parede é 29,5 m, composta por uma única linha de ancoragens, espaçados 2,5 m. As análises foram feitas sem ancoragem e com ancoragens localizados a 2,5 m, 4,5 m, 0 m, -6 m e -10 m de profundidade; concluindo que:

- A redução percentual devido à presença de ancoragens a 2,5 m é de 93,56% dos deslocamentos, 18,53% da força de cisalhamento e de 63,06% dos momentos fletores, atuantes na parede diafragma (Figura 2.18 e 2.19);
- Aumento da estabilidade da estrutura devido à localização correta da ancoragem;
- Sabendo qual é a redução das forças e momentos atuantes na parede, podem-se utilizar ancoragens e paredes diafragma de menor tamanho, diminuindo os custos da obra.

Figura 2.18. Comparação dos deslocamentos horizontais na parede com uma linha de ancoragens colocada a diferentes profundidades (Yajnheswaran *et al.*, 2015).

Figura 2.19. Compração do comportamento mecânico da parede com uma linha de ancoragens colocada a diferentes profundidades; (a) forças de cisalhamento e (b) momentos fletores. (Yajnheswaran *et al.*, 2015).

Por sua parte, Tan *et al.*, (2018), estudaram o desempenho de uma cortina de estaca prancha, com um muro-cais, apoiada em estacas, executada em solos arenosos e argilosos, na modelagem destes materiais foi utilizado o modelo constitutivo Hardening Soil. Comparando os valores obtidos dos ensaios de campo e das análises numéricas feitas, estes autores concluem que:

- Os deslocamentos laterais das paredes diminuem ao longo da profundidade;
- Os momentos fletores atuantes na estaca-prancha e nas estacas de suporte têm uma distribuição em forma de S ao longo da sua altura;

 Comparando os resultados obtidos dos MEF, os resultados da teoria de empuxo de terras de Coulomb superestimam o empuxo que atua na parede da estaca-prancha em alturas maiores e subestima os valores em alturas menores.

Outros trabalhos, desenvolvidos por Mollahsani (2014) e Magalhães (2015) utilizando o PLAXIS, foram desenvolvidos com o fim de comparar os resultados obtidos mediante simulações numéricas 2D e 3D, uma breve descrição é apresentada a seguir.

Mollahasani (2014) desenvolveu um estudo de caso feito na Itália para a construção de um porto, utilizando como estrutura de contenção uma cortina de estacas pranchas ancoradas. A obra consistiu na execução de uma cortina de 18,5 m de altura e 60 cm de espessura, ancorada por uma única de linha de tirantes, colocada a uma profundidade de 8,5 m, onde os tirantes possuíam um comprimento de 18 m, espaçamento horizontal de 2 m e carga de trabalho de 300 kN. A estratigrafia é composta de uma camada superficial de areias, de 15 m de espessura e uma camada inferior de siltes argilosos. Na simulação dos dois materiais foi utilizado o modelo elástico perfeitamente plástico de Mohr-Coulomb. A Figura 2.20 mostra um exemplo das análises bidimensionais e tridimensionais que foram realizados com os softwares PIAXIS 2D e PLAXIS 3D, respectivamente.

A Figura 2.20 mostra um exemplo das análises bidimensionais e tridimensionais que foram realizados com os softwares PIAXIS 2D e PLAXIS 3D, respectivamente.

Figura 2.20. Comparação dos deslocamentos horizontais obtidos (a) modelagem 2D e (b) modelagem 3D (Mollahasani, 2014).

No trabalho o autor concluiu que no caso da modelagem 3D em comparação com os resultados obtidos pela simulação 2D:

- Os deslocamentos horizontais máximos foram reduzidos em 30%;
- Os deslocamentos verticais máximos diminuíram 60%;
- O fator de segurança foi aumentado em 24%;

Segundo Abraham (2007), uma das grandes vantagens das análises numéricas é a possibilidade da realização dos cálculos de tensão-deformação no programa em estágios, do mesmo jeito que na prática um projeto é dividido em fases durante a execução da obra, permitindo simular melhor o comportamento não linear do solo em diferentes períodos. Esta abordagem foi considerada no estudo de caso de uma cortina de estacas pranchas ancoradas, executada para estabilização de um talude no rio Columbia, Porland, Estados Unidos, com o fim de proteger uma ferrovia localizada a 15 m da crista. A análise 3D foi aplicada no caso de uma cortina de 134 m de comprimento e uma altura que variou entre 20 m e 33,5 m, ancorada por varias linhas de tirantes espaçadas 3,66 m na direção vertical e 3,35 m na horizontal. Os tirantes possuem comprimentos muito variáveis (20,3 até 33,3 m) e um ângulo de inclinação de 20° com respeito à horizontal. A estratigrafia da zona é composta de uma mistura heterogênea de blocos de rocha métricos numa matriz de areias finas e siltes e trata-se de um antigo deslizamento tipo "debris" depositado acima de um maciço rochoso diabásico. Na simulação do comportamento tanto dos solos como da rocha foi utilizado o modelo constitutivo de enriquecimento plástico Hardening Soil. Com as análises, a comparação dos resultados obtidos do programa PLAXIS 3D com as simulações numéricas 2D e os métodos convencionais foi possível concluir que:

• Os momentos fletores e os deslocamentos na parede são menores nas simulações 2D, em comparação com os valores obtidos pela simulação 2D;

 Durante o processo executivo descendente das cortinas, os maiores deslocamentos e momentos fletores na estrutura ocorreram em um estágio intermediário de escavação e não ao final da escavação;

• Os métodos convencionais e as simulações 2D subestimam a capacidade de carga dos tirantes. Levando a projetos mais caros em alguns casos. Outra vantagem da simulação numérica mediante o método de elementos finitos em análises bi e tridimensionais é a possibilidade de considerar o efeito de arqueamento das tensões no maciço de solo, fenômeno muito comum na geotecnia, que produz a redistribuição e transferência das tensões dos lugares reforçados ao solo adjacente não reforçado. Segundo Hosseinian & Seifabad (2013), no caso particular das estruturas ancoradas este fenômeno provoca a redução da tensão horizontal a uma distância entre os tirantes. Assim, à medida que a distância entre os tirantes aumenta, as forças transferidas para eles são reduzidas, resultando em aumento do deslocamento do solo e uma concentração de tensão horizontal perto deles. No estudo desenvolvido por esses autores, foi analisado o efeito de arqueamento das tensões utilizando o programa Plaxis 3D Túnel, variando o espaçamento horizontal entre os tirantes de uma cortina de concreto armado atirantada de 10 m de altura (Figura 2.21). Foram estudados tirantes de 7 m e 8 m de comprimento do trecho livre e ancorado, respectivamente, com uma inclinação de 10° e uma carga de trabalho de 200 kN. Na análise, foi adotado o modelo constitutivo Hardening Soil na simulação dos solos arenosos finos que compõem a estratigrafia da zona.

Figura 2.21. Comparação dos deslocamentos horizontais em diferentes profundidades (a) espaçamento entre ancoragens de 2 m e (b) espaçamento entre ancoragens de 4 m (Hosseinian & Seifabad, 2013).

De acordo com os autores, um valor de $S_h = 4D$, onde: S_h é o espaçamento horizontal e D é a largura do bulbo de ancoragem, pode ser considerado como o arranjo mais adequado (custo/eficiência), já que ele tem o maior espaçamento para gerar o efeito de arqueamento. Isto não é consistente com os resultados obtidos por Pinelo (1980) e pelos critérios de projeto propostos

pela norma técnica brasileira NBR-5629, ambos aplicados na prática da engenharia comum (Figura 2.22).

Figura 2.22. Espaçamento horizontal mínimo requerido entre ancoragens: (a) Pinelo (1980) e (b) Sananiti *et al.* (1999).

Segundo esses autores, o efeito de arqueamento também é influenciado pela profundidade e pela distância do tirante aos cantos. Esses fatores foram estudados minuciosamente por Magalhães (2015), utilizando o programa Plaxis 3D, numa cortina de estaca prancha de 6,5 m de altura, ancorada por duas linhas de ancoragens, inclinados 15° com a horizontal, e colocados a uma profundidade de 1,5 e 4,0 m, respectivamente. Na simulação das camadas de argilas arenosas, argilas siltosas e siltes arenosos, que compõem a estratigrafia da zona, foi adotado o modelo Hardening Soil de pequenas deformações.

A obra em questão trata-se de uma escavação para a implantação do subsolo de um edifício residencial. Para a construção do edifício foi necessário escavar uma área de 40 x 40 m. A estrutura de contenção foi feita com o fim de proteger as fundações rasas, tipo sapata, de um edifício já existente, localizado ao lado (2,5 m de distância), as quais transmitem individualmente uma carga de 30 kN/m² ao solo.

A Figura 2.23 mostra a malha deformada em diferentes estágios do processo de execução da cortina, onde é possível observar os deslocamentos diferenciais devidos ao fenômeno de arqueamento ou efeito de canto. Como esperado, os deslocamentos são maiores no centro da

escavação e menores nas bordas, portanto a região crítica fica no centro da escavação. Este efeito aumenta com a profundidade de escavação durante a execução da obra.

Figura 2.23. Vista superior (planta) da malha diferencialmente deformada devido ao efeito de arqueamento (FE= Fator de escala); (a) estágio 1, escavação até 1,6 m de profundidade, (b) estágio 3, escavação até 4,1 m de profundidade e (c) estágio 5, escavação até 6,5 m de profundidade. (Magalhães, 2015).

A Figura 2.24 mostra a deflexão da estrutura e os recalques ao nível das fundações do prédio vizinho (na cota -1,0 m), na seção crítica (centro da escavação), nos estágios 1, 3 e 5. Nota-se o aumento tanto da deflexão da parede como dos deslocamentos no terreno com a profundidade de escavação.

Figura 2.24. Recalques e flexão da estrutura de contenção na seção crítica (centro da escavação); (a) estágio 1, (b) estágio 3 e (c) estágio 5. (Magalhães, 2015).

Além dos trabalhos citados durante a revisão, outros artigos vêm sendo desenvolvidos nesta linha de pesquisa, entre os quais cabe mencionar as pesquisas feitas por Chalmovsky & Miča (2013) para a análise na pressão de injeção em solos granulares finos, Vukotić *et al.*, (2013) no estudo da influencia da distribuição das tensões no dimensionamento do trecho ancorado, Kaloop *et al.* (2017) na previsão da capacidade de carga de pequenos ancoragens usando técnicas computacionais e SikPark & KyuKim (2007) no estudo o mecanismo de transferência de carga em âncoras de terra.

2.5. SOLOS RESIDUAIS

Na engenharia o termo solo inclui todo tipo de material orgânico o inorgânico inconsolidado ou parcialmente cimentado encontrado na superfície da terra (Chiossi, 2013). Sendo os assuntos e os conceitos em relação ao solo, objeto de estudo da Geologia de Engenharia, quando ele é de importância nas atividades do homem e principalmente em obras de engenharia. Pela origem os solos podem ser classificados em dois grandes grupos: solos residuais e solos transportados.

Os solos residuais, também são conhecidos como solos "in situ", tratam-se dos solos formados pela desintegração e decomposição da rocha pelo intemperismo, seja químico, físico ou combinação de ambos, e que permanecem no local onde foram formados, sem sofrer qualquer tipo de transporte. Para que eles ocorram, é necessário que a velocidade de decomposição da rocha seja maior do que a velocidade de remoção por agentes externos. Caso contrário, os produtos de alteração vão ser transportados por um agente qualquer (água, ar, vento, gelo, etc.) formando solos transportados (Oliveira & Brito, 1998).

Praticamente todos os tipos de rocha formam solo residual. Sendo a sua composição mineralógica e granulométrica dependente do tipo e da composição mineralógica da rocha original que lhe deu origem, entanto que outras caraterísticas relevantes dos solos residuais, tais como; a estrutura e espessura, dependem de fatores como o clima da região, da posição no relevo e do tempo de exposição da rocha aos agentes externos. Em regiões de clima tropical (quente e úmido), onde existe um predomínio de intemperismo químico, é comum a decomposição profunda da rocha, com a formação de mantos de solos residuais com espessura da ordem de dezenas de metros, com textura argilosa (maior parte do Brasil), enquanto que, em regiões de clima temperado, onde existe um

predomínio de intemperismo físico, a espessura é da ordem de 1 metro e a textura predominante é arenosa (Dos Santos & Alves, 1998).

No perfil de alteração de uma rocha a um solo residual, não existe um contato ou limite direto e brusco entre o solo e a rocha que o originou, a passagem entre eles é gradativa, e permite a separação de pelo menos cinco camadas com diferentes propriedades físicas, assim, em geral um perfil de solo residual consiste na seguinte sequência, de cima para baixo: solo residual maduro, solo residual jovem, rocha alterada, alteração de rocha e rocha sã (Chiossi, 2013).

I) Solo residual maduro: Em geral esse material já não mostra nenhuma estrutura típica da rocha de origem e praticamente não possuem minerais primários, a exceção de alguns resistentes ao intemperismo. É comum encontrar na parte superior um solo fortemente lixiviado, muitas vezes contendo matéria orgânica.

II) Solo residual jovem: também conhecido como solo de alteração de rocha ou solo saprolítico, é o solo que ainda se consegue observar nele restos incipientes de seus minerais e da estrutura da rocha, além das descontinuidades do maciço tais como; falhas, fraturas e juntas. Pode conter alguns blocos de rocha (até 10%). As granulometrias mais comuns são areias siltosas pouco argilosas e siltes arenosos pouco argilosos. São materiais complexos e heterogêneos, especialmente quando são desenvolvidos de rochas metamórficas.

III) Rocha alterada: material rochoso moderadamente intemperizado, com aspecto quase de rocha, onde a alteração progrediu ao longo de fraturas e zonas de menor resistência, deixando intactos grandes blocos de rocha mãe, preservando a grande parte da sua estrutura e de seus minerais (exibem sinais evidentes de alteração), no entanto, apresenta uma dureza e resistência menor que uma rocha. Pode ter entre 50% e 90% de blocos de rocha com dimensões variáveis, envolvidos por solo de alteração arenoso. É na realidade uma transição entre o maciço de solo e o maciço de rocha.

Segundo Oliveira & Brito (1998), este horizonte tem sido a causa de muitos problemas em obras civis, devido a vários fatores, entre os quais são importantes mencionar: á dificuldade para identificá-lo com a necessária precisão, nas etapas de investigação, a uma espessura bastante

irregular, sendo comum grandes variações e mesmo ausência da camada em certos trechos do maciço e por apresentar um comportamento geotécnico extremadamente variável.

IV) Alteração de rocha: camada composta por rocha levemente intemperizada, ainda com a maior parte da estrutura da rocha e minerais não descompostos (sem perda de cor e brilho).

V)Rocha sã ou rocha inalterada: maciço rochoso ainda não atingido pelo intemperismo.

Á somatório dos horizontes I e II é conhecido como Rigolíto ou pedológico (devido ao interesse diferenciado desta ciência na parte mais superficial), e a somatória dos horizontes II, III, III e IV, como Saprolito.

2.5.1. OUTRAS CARACTERÍSTICAS DOS SOLOS RESIDUAIS

Segundo Gusmão (2002), três características adicionais podem ser mencionadas com respeito aos solos residuais:

• O conceito tradicional de tamanho de partícula não é inaplicável a muitos solos residuais, já que muitas vezes estas partículas consistem de agregados ou cristais de matéria mineral intemperizada, que se quebram quando o solo é manipulado;

• Devido ao controle da topografia no teor de erosão do material intemperizado a partir da superfície e ás precipitações que correm pelos morros e se acumula nos vales, os perfis de solo residual com maior espessura são geralmente encontrados em vales e em taludes suaves do que em terrenos altos e em taludes íngremes;

• Os processos químicos tendem a predominar no intemperismo de rochas ígneas, enquanto os processos físicos no intemperismo de rochas sedimentares e metamórficas.

2.5.2. PERFIL TÍPICO DE UM SOLO RESIDUAL DE GNAISSE

Em regiões com condições tropicais, o gnaisse é especialmente suscetível de desintegração química, de tal forma que as rochas se decompõem rapidamente pelo gás carbônico do ar, pelos ácidos húmicos originados pela vegetação (intemperização biológica), e em menor grão pelos processos físicos. Segundo Chiossi (2013), na sequencia de alteração de um gnaisse num solo residual, distinguem-se três zonas de material decomposto: 1) um horizonte superior composto por

solos residuais de argilas, argilas siltosas, siltes argilosos e siltes arenosos, plásticos, com placas ocasionais de micas, as cores predominantemente são tonalidades amareladas; 2) um horizonte intermédio composto por solos residuais de material arenoso (siltes arenosos, arenas siltosas e arenas), micacéos, de baixa plasticidade, de moles até compacidade média, geralmente com tonalidades brancas, cinzas e amareladas; 3) e uma zona inferior composta por rocha intemperizada até a rocha mãe.

No perfil de típico de alteração de um gnaisse da Figura 2.25, são apresentados além de um detalhe dos horizontes mencionados, a correlação como as camadas descritas para solos residuais em geral.

Figura 2.25. Perfil típico de alteração de um gnaisse (modificado de Oliveira & Brito, 1998).

2.5.3. COMPORTAMENTO MECÂNICO DOS SOLOS RESIDUAIS

Baseado nos resultados de ensaios de compressão axial em solos residuais jovens de Rio de Janeiro, Oliveira (2011) observou que para baixos níveis de tensão confinante (25 e 70 kPa) a ruptura ocorreu com pico de resistência para uma deformação axial na ruptura de 2%, enquanto para níveis de tensão confinante maiores (150 e 300 kPa) ocorreu uma ruptura sem pico de resistência, para deformação axial na ruptura em torno de 7% (Figura 2.26).

Figura 2.26. Comportamento mecânico de um solo residual jovem de gnaisse (a) curva $\sigma_d - \epsilon_1 e$ (b) curva $\epsilon_v - \epsilon_1$ (Oliveira, 2011).

Oliveira (2011) destaca que o pico de resistência seguido de amolecimento para tensões de confinamento baixas (< 70 kPa), não é explicado pelo efeito da dilatância (sobreposição dos grãos durante o cisalhamento), típico de areias densas ou argilas pré-adensadas, já que para solos

residuais a história de tensões em geral não é importante, devido à pouca variabilidade do estados de tensões na evolução do solo residual até o estado atual. No caso particular dos solos residuais de gnaisse, como consequência do processo de intemperismo, ocorre uma cimentação significativa dos grãos, que confere uma resistência coesiva adicional à massa de solo. É devido ao início de quebra desta cimentação, ao ser atingida a tensão de escoamento do solo, que ocorre o pico de resistência.

Além do trabalho mencionado, muitos outros trabalhos foram desenvolvidos no Brasil, em solos residuais jovens de gnaisse, principalmente na cidade de Rio de Janeiro, como parte do programa de pesquisa da Pós-Graduação em Geotecnia da PUC-Rio e da COPPE/UFRJ. Aplicados a obras de solo grampeado, visando uma melhor compreensão da resistência ao arrancamento; em grampos convencionais (ProtoSilva, 2005), em grampos reforçados com fibras (Magalhães, 2005 e Leite 2007), da resistência em função do tipo de solo (Gomes Silva, 2006), em função do método de instalação (Springer, 2006), do processo executivo (Lima, 2007) e mediante simulações numéricas (Henrique, 2007 e Saré, 2007).

Neste contexto, os estudos mencionados mostram um avanço significativo na compressão do comportamento dos solos residuais de gnaisse da cidade de Rio de Janeiro em projetos de solo grampeado. Embora, não existem na literatura, estudos desenvolvidos nestes materiais complexos para cortinas de concreto atirantadas.

3. ASPECTOS GERAIS

Neste capítulo é apresentada a metodologia geral da pesquisa, o caso histórico tomado como base para definir a geometria do problema e o processo de validação dos modelos constitutivos adotados para a simulação dos materiais que compõem a estratigrafia do terreno.

3.1. METODOLOGIA

Para atender o objetivo geral e os objetivos específicos desta pesquisa, a metodologia foi dividida basicamente em cinco etapas de trabalho: 1) revisão bibliográfica, 2) estudo de caso e definição do modelo geotécnico, 3) validação dos modelos constitutivos 4) implementação dos métodos analíticos para a análise de estabilidade e 5) simulações numéricas 2D utilizando o Método dos Elementos Finitos. No fluxograma apresentado na Figura 3.1 são apresentadas graficamente as etapas e as subetapas, na ordem cronológica que formam desenvolvidas. Uma descrição de cada uma é apresentada a seguir:

Figura 3.1. Metodologia geral da pesquisa.

3.1.1. REVISÃO BIBLIOGRÁFICA

A revisão bibliográfica inicialmente consistiu na recopilação, seleção de dados, informações de dissertações, teses de doutorado, artigos de periódicos, livros, relatórios de projeto, manuais de programas, normas técnicas, congressos, palestras e apresentações de aulas, relacionadas com cortinas atirantadas, simulações numéricas, modelos constitutivos e solos residuais de gnaisse. Posteriormente, foram abordados e aprofundados os conhecimentos nos tópicos de maior interesse desta pesquisa, tais como, conceitos básicos para o desenho de cortinas atirantadas, critérios de projetos empregados nas normas técnicas, métodos analíticos de dimensionamento, métodos analíticos para o cálculo da análise da estabilidade interna, modelagem numérica utilizando o método dos elementos finitos mediante ferramentas numéricas (com ênfase no programa Plaxis 2D). Além disso, realizou-se uma revisão dos trabalhos que já foram desenvolvidos no Brasil no exterior na linha de pesquisa.

As informações necessárias para definir as características gerais do projeto de estudo, foram fornecidas pela empresa privada SOLOTESTE ENGENHARIA LTDA (encarregada da execução das obras de estabilização), tais como: localização e geometria da cortina, quantidade, inclinação, distribuição e localização dos tirantes, tipo de tirante, comprimento dos trechos livres e dos trechos ancorados.

Com o intuito de facilitar a visualização, manipulação e a análise das informações fornecidas, os dados foram espacialmente georeferenciados utilizando o sistema de informação geográfica ArcGIS 10.2.2. Este processamento digital de imagens permitiu gerar os mapas de localização das construções do projeto residencial, das obras de estabilização, dos ensaios SPT, das perfurações mistas e das seções transversais na cortina de interesse. Assim, foram feitos os modelos do terreno, de relevo, elevações e declividade das encostas em graus e percentagens. Foi utilizado o sistema geodésico de referência brasileiro SAD69, empregando projeção geográfica, Elipsoide South América 1969 e Datum SAD69.

O modelo geológico-geotécnico do terreno foi desenvolvido a partir de uma breve revisão bibliográfica da geologia e geomorfologia local da zona, da reinterpretação dos perfis de 52 ensaios a percussão SPT e 33 perfurações mistas (percussão e rotativa). Todos os perfis executados e

fornecidos pela empresa privada e a interpretação também foram baseadas na sequência de camadas ou perfil típico de alteração de um gnaisse numa região tropical.

Com o intuito de esclarecer o modelo geotécnico proposto, utilizou-se o programa computacional RockWorks®17.0 para a realização de modelos 3D da distribuição espacial das sondagens utilizadas e da estratigrafia no terreno. Este software realiza uma correlação das diferentes camadas de solo e/ou rocha que compõem o subsolo, permitindo representar graficamente a distribuição e espessura de cada camada e os contatos entre os diferentes materiais.

Mediante a interpolação dos níveis de água subterrânea relatados em 22 das sondagens SPT, utilizando o software SURFER®10.0 (Golden Software, Inc.), foi confeccionado um mapa de contorno do nível estático do lençol freático e um modelo tridimensional da parte oeste do terreno, permitindo uma melhor visualização da profundidade e direção do fluxo da água subterrânea.

3.1.2. VALIDAÇÃO DOS MODELOS CONSTITUTIVOS

Baseados nos trabalhos que já foram desenvolvidos na PUC-Rio, na linha de pesquisa de implementação de modelos constitutivos nos solos residuais de gnaisse, nesta pesquisa foi utilizado o modelo de enrijecimento plástico, conhecido como Hardening Soil (HSM), para simular a camada de solo residual e o modelo elastoplástico de Mohr-Coulomb (MC) para simular o comportamento dos materiais rochosos.

Outros aspectos que foram considerados na escolha dos modelos constitutivos são a complexidade do problema geotécnico, a disponibilidade de ensaios de laboratório para a obtenção dos parâmetros do modelo e a disponibilidade do modelo constitutivo num programa de cálculo comercial disponível atualmente tanto no mercado, como no programa da Pós-Graduação em Geotecnia da Universidade de Brasília.

No entanto, antes da realização das simulações numéricas, foram feitas as validações dos dois modelos constitutivos. O processo de validação do HSM consistiu na obtenção dos parâmetros do modelo a partir de ensaios triaxiais de compressão axial, adensados-drenados (CD), considerando tensões de confinamento de 25, 40, 70 e 150 kPa e do ensaio oedométrico, em amostras

indeformadas, ambos tomados da literatura, já que não foram encontrados valores para a obra estudada, para comparação das curvas experimentais com os resultados obtidos da simulações feitas com o módulo do Plaxis "SoilTest", o qual permite simular diferentes ensaios de laboratório.

No caso da rocha de transição, por trata-se de um material heterogêneo e anisotrópico, composto por blocos de rocha envolvidos numa matriz arenosa, onde a previsão de comportamento é mais incerta, foi feita uma retroanálise mediante a simulação numérica de quatro ensaios de recebimento executados na obra, utilizando o PLAXIS 2D. A partir dos dados obtidos nos ensaios executados na obra e fornecidos pela empresa privada, obtiveram-se os parâmetros do modelo Mohr-Coulomb que melhor ajustam as curvas tensão-deformação do campo. No entanto, é importante mencionar que os mesmos pretendem ser apenas uma primeira e simplificada aproximação dos valores reais. No caso da rocha sã ou rocha mãe que constitui o maciço rochoso regional, os valores do modelo MC foram tomados da literatura.

3.1.3. IMPLEMENTAÇÃO DOS MÉTODOS ANALÍTICOS

A partir do modelo geotécnico proposto e considerando como válidos os valores dos parâmetros de resistência $c e \phi'$, obtidos na validação numérica do modelo constitutivo Hardening Soil para os solos residuais de gnaisse, foram aplicados os métodos analíticos de equilíbrio limite das cunhas mais utilizados para o cálculo da estabilidade interna do sistema solo-cortina-tirantes: método brasileiro, proposto por Nunes & Velloso (1963), o método de alemão ou método de Kranz Generalizado, proposto por Ranke & Ostermayer (1968) e o método de Hoek & Bray (1981) em sete seções ou perfis transversais representativos escolhidos ao longo da cortina de interesse.

3.1.4. SIMULAÇÃO NUMÉRICA

A simulação numérica consistiu na modelagem das sete seções transversais escolhidas ao longo da cortina de interesse, utilizando o pacote de elementos finitos PLAXIS 2D (Finite Element Code for Soil and Rocks Analyses, Versão 9). As análises foram feitas em termos de tensões efetivas com parâmetros drenados, sem desenvolvimento da poropressão e considerado um estado plano de deformação. Na determinação da estabilidade interna, para cada seção foi calculado o fator de segurança por tirante, com o objetivo de comparar os valores obtidos com os resultados fornecidos pelos métodos convencionais.

Além disso, objetivando-se quantificar a influência da estratigrafia nas simulações numéricas, foram comparados duas configurações ou modelos estratigráficos diferentes do terreno, um modelo simples composto por uma única camada de solo residual jovem (semelhante ao utilizado pelos métodos analíticos) e um modelo completo da estratigrafia da zona, composto por o perfil típico de alteração de gnaisse desenvolvido nesta pesquisa, constituído por uma camada de solo residual superior, uma camada de rocha alterada e o maciço de rocha sã.

3.2. ESTUDO TOMADO COMO BASE

Este capítulo apresenta a descrição geral do caso histórico tomado como base, os detalhes do projeto de contenção e o processo de execução da obra, além dos aspectos geológico-geotécnicos da área de estudo.

3.2.1. DESCRIÇÃO GERAL

A obra de estabilização, tomada como base desta pesquisa, faz parte do projeto residencial Contemporâneo II executado pela empresa construtora CALPER-*Design que inspira*. Localizada na região Sudeste do Brasil, no município de Rio de Janeiro, capital do estado homônimo, mais especificamente na Estrada da Cachamorra, 2.011, Campo Grande, 36 km ao nordeste da cidade de Rio de Janeiro (Figura 3.2).

Figura 3.2. Localização do terreno de estudo (Google Earth, 2018).

Trata-se do maior e mais completo condomínio clube de Campo Grande, composto por casas e prédios de cinco andares. Na Figura 3.3, é apresentada a configuração final da obra, que deu início às etapas de construção desde o ano 2013, encontrando-se atualmente nas etapas finais de acabamentos e revestimentos.

1- Entrada ao residencial, 2 - Setor de prédios norte A, 3- Setor de prédios norte B, 4- Setor de prédios sul, 5- Área de diversão, 6- Setor de casas.
Figura 3.3. Configuração final do projeto residencial Contemporâneo II.

De acordo como o zoneamento geomorfológico, o terreno se localiza numa região de relevos de degradação, com predominância de processos erosivos (denudacionais), representados pelos domínios de colinas isoladas, morrotese morros baixos isolados, bem como maciços costeiros e
interiores (Dantas, 2000). Trata-se de um terreno de 7,0 km², localizado ao pé da encosta noroeste do morro do Cabuçu (pertencente ao Maciço da Pedra Branca), com elevações mínimas e máximas de 18 e 78 a.n.m, respectivamente (Figura 3.4a), e declividades maioritariamente entre 0 e 15° (Figura 3.4b), isto é, de 0 e 25% (Figura 3.4c).

Figura 3.4. Características morfométricas do terreno (a) elevações, (b) declividade das encostas em graus e (c) declividade das encostas em percentagens.

As obras de contenção foram realizadas na região do terreno conhecida como Setor de Prédios Norte B, com o intuito de estabilizar os cortes realizados para a fundação de prédios e a construção da estrada principal. O projeto consistiu na execução de oito cortinas atirantadas, permanentes, com comprimento total de 525,95 m. Nesta pesquisa é analisada a cortina 2 (C-2), a partir das informações fornecidas pela empresa privada SOLOTESTE ENGENHARIA Ltda., encarregada da concepção e execução de todas as obras de estabilização (Figura 3.5). Na Tabela 3.1, são apresentados o comprimento de cada cortina a ser executada no projeto.

Figura 3.5. Localização das estruturas de contenção.

Cortina	Comprimento (m)
C-1	110,8
C-2	90,15
C-3	63,0
C-3A	12,2
C-4	89,5
C-6	82,5
C-7	23,8
C-9	54,0

Tabela 3.1.Comprimento das cortinas atitantadas.

3.2.1.1. DESCRIÇÃO DA CORTINA DE INTERESSE

A cortina 2 (C-2), é uma cortina de concreto armado de 90,2 m de comprimento e 23 cm de espessura, com profundidade de embutimento de 0,5 m em forma de L, composta de nove painéis de formas e tamanhos variados (Tabela 3.2), a sua altura máxima é de 5,73 m e diminuiu até 1,7 m no sentido nordeste-sudoeste. Na Figura 3.6 é apresentada uma vista frontal da cortina completa. Alguns detalhes dos painéis são mostrados nas Figuras 3.7, 3.8, 3.9 e 3.10.

Painel	Comprimento	Altura máxima (m)	Altura mínima (m)
А	11,30	5,73	5,73
В	11,20	5,73	5,73
С	11,15	5,73	5,73
D	4,40	5,73	5,43
E	10,00	5,43	4,65
F	10,07	4,65	3,85
G	14,00	3,85	3,85
Н	8,65	3,85	2,70
Ι	9,43	2,70	1,70

Tabela 3.2. Características geometria dos painéis que compõem a cortina C-2.

Figura 3.6. Vista frontal da cortina.

Figura 3.7. Detalhe dos painéis A e B.

Figura 3.8. Detalhe dos painéis C e D.

Figura 3.9. Detalhe dos painéis E e F.

Figura 3.10. Detalhe dos painéis G, H e I.

A maior parte da cortina é curvada, podendo ser dividida em duas seções; um trecho reto de 38,05 m, composto pelos painéis A, B, C e D, e um trecho curvo de 52,15 m composto pelos painéis E, F, G, H e I (Figura 3.11).

Figura 3.11.Vista da forma não reta da cortina (a) vista em perspectiva, (b) vista lateral esquerda e (c) vista lateral direita.

Deste modo, foram empregados um total 74 tirantes, sendo 42 deles no trecho reto, dispostos num padrão de malha retangular de três linhas de tirantes. No trecho curvo, devido a sua irregularidade geométrica, os 32 tirantes estão dispostos de maneira desigual, em duas ou uma única linha de tirantes (Figura 3.12). A inclinação dos tirantes com a horizontal é de 15°.

Figura 3.12.Disposição dos tirantes na cortina (a) vista em perspectiva esquerda, (b) vistas em perspectiva direita e (c) vista superior.

Com o objetivo de ancorar o bulbo de cada tirante no material rochoso, foram executados tirantes com comprimentos de 7, 9, 10, 12, 13 e 14 m (Tabela 3.3). Um comprimento de 6,0 m foi adotado para os trechos ancorados. Para a implantação dos tirantes foi necessário perfurar 498,5 m de camada de solo e 313,5 m de rocha. O detalhe da perfuração do subsolo para a colocação de cada tirante é apresentado no Apêndice I.

Tirante	Comprimento (m)	Quantidade	Comprimento total (m)	
T-42 e T-43	7,0	2	14,0	
T-44 a T-63	9,0	20	180,0	
T-15 a T-23	10.0	20	200.0	
T-64 a T-74	10,0	20	200,0	
T-24 a T-29				
T-33 a T-39	12,0	14	168,0	
T-31				
T-30 e T-32	13,0	2	26,0	
T-1 a T-14	14.0	16	224.0	
T-40 e T-41	17,0	10	227,0	
1	Total:	74	812,0	

Tabela 3.3.Comprimento dos tirantes.

Nas Figuras 3.13, 3.14 e 3,15 são apresentadas três seções transversais típicas da cortina, nos trechos onde foram executadas três linhas, duas linhas e uma única linha de tirantes, respectivamente. A localização das seções na cortina pode ser vista nas figuras que mostram os detalhes dos painéis, expostas no presente capitulo.

Figura 3.13.Corte da cortina A-A.

Figura 3.14.Corte da cortina B-B.

Figura 3.15.Corte da cortina C-C.

Foram empregados tirantes do tipo monobarra, GEWI 55/75, com barras de aço de 32 mm de diâmetro, e cargas de trabalho e ensaio máximas de 210 kN e 367,5 kN, respectivamente (Tabela 3.4).

Tipo de tirante	Monobarra		
Aço	GEWI 55/75		
Armação	1 ø 32 mm		
Carga de trabalho	(kN)	210	
Carga de ensaio	(kN)	367,5	
Tensão de ruptura	MPa	735	
Tensão de escoamento	MPa	539	
Diâmetro da barra	mm	32	
Área da seção	mm ²	804	

Tabela 3.4.Características do tirante empregado.

3.2.1.2. PROCESSO EXECUTIVO DA CORTINA

As informações com respeito ao processo construtivo da cortina não foram fornecidas pela empresa responsável. Portanto, sendo conhecida a influência que o processo construtivo tem nas simulações numéricas, foi necessário estabelecer uma sequência construtiva lógica para a obra, a partir de imagens de satélites do Google Earth e da sequência construtiva típica de cortinas atirantadas no Brasil, utilizando o método de construção descendente.

Na sequência cronológica de imagens de satélite apresentadas na Figura 3.16 (Google Earth, 2018), podem ser vistos alguns aspectos gerais do processo construtivo da cortina. É possível notar que a construção na estrutura foi feita no sentido sudoeste-nordeste, desde a parte de menor altura (trecho curvo) á de maior altura (trecho reto).

(c)

(d)

Figura 3.16. Processo construtivo geral da cortina 2. Google Earth (2018).

Além disso, considerando o grau de complexidade da estrutura e as grandes diferenças no que diz respeito à distribuição e localização dos tirantes em cada painel, é válido assumir que no trecho curvo cada painel foi construído de maneira individual, enquanto que o trecho reto foi construído em seção completa.

A seguir, são apresentadas as etapas básicas de execução de um painel bi-ancorado, utilizando o método de construção descendente. Sendo o processo análogo para painéis com múltiplas linhas de tirantes.

Etapa I: Escavação do terreno até atingir a profundidade desejada, para a colocação da primeira linha de tirantes.

Etapa II: Perfuração e instalação da primeira linha de tirantes.

Etapa III: Colocação das placas de reação e concretagem da cortina na faixa relativa à primeira fileira.

Etapa IV: Aplicação da protensão nos tirantes, com a carga de trabalho ou incorporação.

Etapa V: Escavação do terreno até a profundidade máxima desejada.

Etapa VI: Repetição das operações das fases II, III e IV, com relação à segunda linha de tirantes.

Com o fim de atingir-se a segurança da obra, durante as escavações provisórias (Etapas $I \in V$), quando são executadas em materiais de baixa resistência, na prática é comum substituir as escavações de faixas completas por escavações em nichos alternados ou pela incorporação parcial de carga nos tirantes. Sendo, do ponto de vista da simulação numérica a segunda alternativa considerada mais conveniente, devido ao grau de dificuldade geométrico e custo computacional que a escavação em nichos apresenta.

3.2.2. EXPLORAÇÃO GEOTÉCNICA

O programa de exploração do subsolo foi realizado entre os anos 2013 e 2014, pela empresa SOLOTESTE ENGENHARIA LTDA. Com o objetivo de reconhecer as características estratigráficas e propriedades tanto do solo como da rocha, tais como: espessura e distribuição das camadas, posição do nível de água, resistência à penetração (no solo) e porcentagem de recuperação (na rocha).

No total os ensaios foram executados em duas campanhas de investigação, sendo 105 sondagens exploratórias, empregando tanto ensaios percussivos SPT, como rotativos, totalizando 886,21 m do subsolo perfurados, 720,31 m em solo e 165,9 m em rocha.

Na primeira campanha de investigação, realizada entre os meses de fevereiro e dezembro de 2013, na etapa de projeto, foram executadas 69 sondagens à percussão e 24 perfurações mistas (SOLOTESTE, 2013b). Na segunda campanha, como parte dos estudos complementares, foram 12 perfurações mistas (SOLOTESTE, 2014a), realizadas entre abril e maio de 2014. A Figura 3.17 mostra a localização das sondagens realizadas na extensa investigação geotécnica.

Na Tabela 3.5 são apresentadas as principais características das sondagens executas durante a exploração geotécnica. Os perfis de todas as sondagens SPT e Mistos são apresentados de maneira completa nos Apêndices II e III, respectivamente. Neles estão indicados os números de golpes para a penetração de 30 cm iniciais e os 30 cm finais, as mudanças de camada bem como a descrição dos solos que compõem tais camadas, a recuperação e características do material rochoso e o nível de água subtêrranea, conforme as descrições apresentadas nos relatórios técnicos SOLOTESTE, 2013a, 2013b e 2014a.

Tipo de ensaio	Campanha de exploração	Quantidade	Perfuração (m)	Avanço em solo (m)	Avanço em rocha (m)
SPT	Etapa I	69	446,76	446,76	
Misto	Etapa I	24	267,7	161,1	106,6
(solo e rocha)	Etapa II	12	171,8	112,45	59,3
Total:		105	886,26	720,31	165,9

Tabela 3.5.Ensaios realizados nas campanhas de investigação geotécnica.

Figura 3.17. Localização das sondagens do subsolo.

O método de percussão é utilizado para o corte de material terroso e/ou alterado, englobando os ensaios de SPT metro a metro, com o auxílio do trado (concha e helicoidal), antes de se atingir o nível de água e com a circulação de água, com o auxílio do trépano de lavagem, após esse nível atingido, segundo a NBR-6484.

O método rotativo é utilizado para o corte de material rochoso, sendo a perfuração do material feita com o auxilio de composições de hastes, revestimento, barrilete e coroas diamantadas cortantes, acopladas a bombas de circulação de água.

A Figura 3.18 mostra a localização das sondagens mais próximas á cortina de interesse. Um resumo das distâncias de cada sondagem à cortina é apresentado sa Tabela 3.6.

Ensaio	Distância (m)	Ensaio	Distância (m)	Ensaio	Distância (m)
SP-60	0,0	SP-64	24,4	SP-48	50,8
SP-61	0,0	SP-51	26,0	SP-73	53,3
SP-62	9,8	SP-49	28,7	SP-70	54,0
SP-59	10,6	SP-69	29,8	SP-11	57,1
SP-53	10,8	SP-21	33,0	SP-07	62,1
SP-57	12,4	SP-52	33,3	SP-06	77,6
SP-54	12,6	SP-46	37,8	SM-02	13,6
SP-66	13,0	SP-68	38,2	SM-11	38,4
SP-55	14,3	SP-67	38,6	SM-05	43,5
SP-58	17,0	SP-28	43,5	SM-107	44,2
SP-63	19,1	SP-47	44,5	SM-102	46,0
SP-65	19,3	SP-12	44,8	SM-101	48,5
SP-50	23,5	SP-72	45,2		

Tabela 3.6. Distância dos ensaios mais próximos à cortina de interesse.

Figura 3.18. Detalhe da localização das sondagens mais próximas à cortina de interesse.

3.2.3. MODELO GEOLÓGICO-GEOTÉCNICO

3.2.3.1. ESTRATIGRAFIA

A partir da interpretação das descrições das propriedades físicas e mecânicas (valores N do ensaio SPT), de cada uma das sondagens realizadas nas duas campanhas de exploração e baseado no perfil de alteração típico em áreas de gnaisse, foi passível estabelecer os diversos horizontes ou camadas que conformam a estratigrafia da zona de estudo. É importante lembrar que um horizonte pode ser composto de um conjunto de diversos estratos, agrupados de acordo com os critérios já mencionados.

A sequência estratigráfica adotada está composta por quatro camadas (Figura 3.19), descritas a seguir, de acima para abaixo:

Argila siltosa com areia: Formada por argilas silto arenosas, argilas siltosas, siltes argilosos e siltes arenosos, de medianamente compactas a compactas (valores de N_{spt} entre 8 e 30), de cores cinzas, brancas, amareladas e avermelhadas.

Silte argiloso com areia: Composta por siltes argilosos com areias finas e médias, siltes arenosos, areias finas a médias siltosas, areias médias e areias grossas, micáceas, de compactas a muito compactas (valores de N entre 30 e 50), contento alguns pedregulhos, a suas cores são de tons cinzentos e amarelados.

Rocha alterada: Composta por rochas pouco a muito fraturadas, até friáveis, micáceas. Os blocos de rocha são envoltos numa matriz de areias finas e médias siltosas. As suas cores predominantes são cinzentas, brancas e amareladas. A percentagem de recuperação no ensaio rotativo varia de 0 a 10%.

Rocha sã: Formada pelo maciço de rocha sã, pouco fraturada e de boa qualidade. A rocha é classificada como um gnaisse micáceo, com cores branca e cinza escuro. A percentagem de recuperação varia muito de 65 a 85%.

Segundo Dantas (2000), na região, todos os maciços rochosos que estão alinhados conforme a estrutura regional NE-SW, são compostos dessas rochas, de alto grau metamórfico e idade Neoproterozóica. Tratam-se de rochas gnáissicas com acentuado bandeamento, que variam em bandas de menos de 2 centímetros até mais de 50 cm, com uma alternância de cores claras e escuras sucessivas e sem padrão no tamanho. O bandeamento de cor clara (branca) é constituído principalmente por minerais félsicos (quartzo, plagioclásio e moscovita) e o bandeamento de cor escura é formado de minerais máficos (biotita, piroxênio e anfibólio).

Figura 3.19. Perfil estratigráfico da zona de estudo.

Visando obter uma melhor compreensão das relações estratigráficas, assim como da distribuição e espessura das camadas que compõem o terreno, foram desenvolvidos vários modelos tridimensionais, a partir da correlação entre os diversos horizontes encontrados nos ensaios SPT e mistos, utilizando o software RockWorks. Estes modelos apresentam valores médios das camadas para um modelo estratigráfico simplificado, portanto as variações devido à natureza própria dos solos residuais, assim como variações locais e valores anômalos, foram considerandos mediante o desenho manual dos perfis de análise das simulações numéricas.

Devido à limitação das sondagens a percussão SPT com respeito à energia de cravação, os resultados destas foram utilizados apenas para determinar o contato entre o maciço de solo e a rocha alterada (Figura 3.20), e na identificação das camadas que compõem o maciço de solo (Figura 3.21).

Figura 3.20. Modelagem do contato maciço de solo-rocha alterada (a) perfis das sondagens SPT, (b) modelo 3D.

Figura 3.21. Modelagem dos ensaios SPT (a) perfis das sondagens e (b) modelo 3D.

Para a identificação e delimitação dos materiais de maior resistência foram utilizados os dados das sondagens mistas. Na Figura 3.22 é possível observar os contatos entre o maciço de solo, a rocha alterada e o maciço de rocha.

Figura 3.22. Modelagem da estratigrafia da zona de estudo (a) perfis das sondagens mistas e (b) modelo 3D.

Dos modelos gerados, com respeito à estratigrafia do terreno é possível concluir que:

• A camada de solo superficial ou solo residual maduro, composta de argilas siltosas, possui uma espessura relativamente constante ao longo do terreno de 3,75 m;

• A espessura da camada de solo residual jovem, composta de siltes argilosos, aumenta gradualmente em sentido SE-NW, de uma espessura mínima de 1,5 m nas partes altas do terreno a 4,0 m nas partes baixas;

• Os trechos ancorados com tirantes foram executados na camada de transição entre o maciço de solo e o maciço de rocha, conhecida como rocha alterada. A espessura média nesta camada é de 3,5 m;

3.2.3.2. ÁGUA SUBTERRÂNEA

O nível do lençol freático, na época da execução das sondagens, se encontrava a uma profundidade mínima de 0,1 m de profundidade nas regiões de menor inclinação e máxima de 7,21 m nas partes altas. Na Tabela 3.7 são apresentados os valores de profundidade da água subterrânea nos 22 ensaios SPT utilizados.

Sondagem	Profundidade da água (m)	Sondagem	Profundidade da água (m)
SP-41	1,00	SP-07	0,30
SP-51	2,39	SP-11	0,30
SP-43	0,50	SP-12	0,33
SP-48	0,62	SP-14	7,21
SP-45	0,22	SP-16	3,70
SP-50	3,50	SP-13	6,25
SP-01	1,68	SP-18	6,86
SP-44	0,40	SP-20	3,50
SP-04	0,10	SP-27	3,54
SP-02	0,38	SP-36	1,00
SP-06	0,59	SP-37	1,95

Tabela 3.7. Profundidade do lençol freático nos ensaios SPT.

A partir da interpolação dos dados, utilizando o software SURFER, foi possível desenvolver uma modelagem bidimensional da posição do lençol freático no terreno (Figura 3.23).

Figura 3.23. Modelo 2D da água subterrânea (a) localização dos ensaios utilizados e (b) linhas equipotenciais ou isofréaticas.

Do modelo gerado, com respeito às águas subterrâneas é possível concluir que:

- O terreno encontra-se acima de um aquífero livre ou freático, com recarga direta pela infiltração das chuvas, principalmente nas partes altas dos morros;
- Devido à posição do terreno no relevo, a direção do fluxo de água subterrânea possui uma concordância com a drenagem superficial. Sendo constante ao longo do terreno, no sentido SE-NW;
- A profundidade do lençol freático diminui ao longo do terreno. Localizado a grandes profundidades nas partes altas do terreno, no material rochoso, onde a circulação da água se faz nas fissuras e outras descontinuidades do maciço fraturado, até poucos centímetros da superfície do terreno, nas partes de menor elevação e inclinações, onde a circulação da água ocorre no contato entre os grãos de solo que compõem o material terroso;

• No setor do terreno onde foi construída a cortina 2 o lençol freático localiza-se na rocha sã, a uma profundidade maior a 6 m, portanto os cortes e escavações foram executados sem a ocorrência de água na obra. Portanto nas simulações numéricas foram consideradas análises com paramêtros drenadas, sem a geração de poropresão.

3.3. MODELOS CONSTITUTIVOS

Os modelos constitutivos têm a função de reproduzir o comportamento de um material quando é submetido a um carregamento externo, ou seja, representam matematicamente a relação tensãodeformação, permitindo fazer previsões de seu comportamento quando são utilizados em projetos de engenharia. No entanto, o grau de precisão depende do modelo constitutivo adotado, já que existe uma ampla gama de modelos constitutivos de acordo com o grau de complexidade do problema geotécnico, assim como da seleção adequada de seus parâmetros. Portanto, neste trabalho, para a representação do comportamento do maciço de solo, foi escolhido o modelo constitutivo de endurecimento plástico Hardening Soil (HSM). Por sua vez, para a modelagem tanto da rocha alterada como da rocha sã, devido à falta de ensaios de laboratório que permitam a obtenção dos parâmetros de modelos constitutivos avançados, decidiu-se empregar o modelo elástico perfeitamente plástico de Mohr-Coulomb (MC). A seguir apresenta-se uma breve descrição dos fundamentos teóricos de ambos modelos constitutivos, maiores detalhes podem ser observados no "Material Model Manual " do PLAXIS 2D (Brinkgreve *et al.*, 2015).

3.3.1. FUNDAMENTOS TEÓRICOS

3.3.1.1. MODELO HARDENING SOIL

O HSM com endurecimento isotrópico pode ser considerado um modelo constitutivo avançado, aplicável para solos arenosos, solos coesivos, areias compactas e argilas muito pre-adensadas. Neste modelo é considerado tanto a teoria da elasticidade não-linear como a teoria da plasticidade, representando um avanço significativo em comparação com os modelos básicos de solo Linear Elástico (LE) e elástico perfeitamente plástico de Mohr-Coulomb, uma vez que considera a variação da rigidez em função do estado de tensões, mediante a definição de três módulos de rigidez dependentes do nível de tensões: o módulo de carregamento de referência ($E_{50}^{ref.}$), o módulo de descarregamento/recarregamento de referência ($E_{ur}^{ref.}$) e o módulo confinado de referencia ($E_{oed}^{ref.}$).

Basicamente, o modelo constitui numa variação e melhoria do modelo hiperbólico clássico num modelo elasto-plástico, onde a superfície de plastificação não é fixa no espaço de tensões principais, podendo ser expandida devido à ocorrência de deformações plásticas. Esta expansão da superfície de fluência, mais conhecida como endurecimento, pode ser de dois tipos sendo que ambos usados para modelar deformações plásticas irreversíveis: o endurecimento devido ao cisalhamento, ocasionado por um carregamento primário desviatório e o endurecimento devido à compressão primária em um carregamento edométrico e isotrópico.

Na Figura 3.24 são apresentadas as duas superfícies de fluência: endurecimento por cisalhamento e endurecimento por compressão ou superfície tipo "Cap" no espaço de tensões principais. A incorporação na matriz constitutiva da superfície "Cap" e do fenômeno de dilatância são duas grandes avanços do HSM em relação ao modelo elástico hiperbólico clássico de Duncan & Chang (1970).

Figura 3.24. Superfícies de plastificação do HSM, no espaço de tensões principais (Brinkgreve *et al.*, 2015).

No caso da superfície de plastificação por cisalhamento, a ideia básica para a formulação é baseada na relação hiperbólica típica obtida dos ensaios triaxiais drenados, entre a deformação axial (ϵ_1) e a tensão de desvio (q) devida ao carregamento primário (Figura 3.25). Deste modo, quando o solo está sendo submetido ao acréscimo do carregamento primário desviatório ocorrem, ao mesmo tempo, deformações plásticas irreversíveis (endurecimento por cisalhamento) e a redução no seu módulo de rigidez.

Tensão desviadora

Figura 3.25. Relação hiperbólica entre a tensão de desvio e a deformação axial, carregamento primário, no ensaio triaxial drenado (Brinkgreve *et al.*, 2015).

As curvas de plastificação obtidas desta relação tensão-deformação, podem ser descritas a partir das deformações axiais, em função do estado de tensões principais, conforma a Equação 3.1:

$$\varepsilon_1 = \frac{1}{2E_{50}} \frac{q}{1 - \frac{q}{q_a}}, \quad para \ q < q_f$$
 (3.1)

Onde, q_f é a tensão de desvio máxima, q_a o valor da assíntota da resistência ao cisalhamento e E_{50} o módulo de Young (correspondente a uma tensão confinante).

A segunda função de plastificação do HSM, permite fechar a região elástica na direção do eixo p´. Esta função do tipo "Cap" é controlada pelo módulo edométrico, do mesmo modo que o módulo de Young controla a superfície de plastificação devido ao cisalhamento, e pode ser estimada pela Equação 3.2:

$$f_c = \frac{q^2}{M^2} + (p')^2 - p_p^2$$
(3.2)

Onde *M* é um parâmetro auxiliar indireto do modelo que está relacionado com K_o^{NC} , p_p é a tensão de pré-adensamento, a qual determina o tamanho da superfície "Cap", p' é a tensão isotrópica e *q* é um valor especial de tensão para tensões desviatórias.

A Figura 3.26a apresenta a forma elíptica da superfície "Cap" (quando, $f_c=0$) no plano p′ - q′, com centro na origem. A sua forma hexagonal no espaço de tensões principais, em solos não coesivos, é mostrada na Figura 3.26b.

Figura 3.26. Superfície de plástificação tipo"Cap" (a) no plano p′ - q, (b) no espaço de tensões principais (Brinkgreve *et al.*, 2015).

A lei de endurecimento que relaciona a tensão de pré-adensamento com as deformações volumétricas plásticas na superfície "Cap" (ε_{ν}^{pc}), durante a compressão isotropica é dada pela Equação 3.3:

$$\varepsilon_{\nu}^{pc} = \frac{\beta}{1-m} \left(\frac{p_p}{P^{ref.}}\right)^{1-m} \tag{3.3}$$

Onde, β é uma constante do modelo, ambas $M \in \beta$ são parâmetros auxiliares "Cap". Na prática são usados valores de $\beta = E_{oed}^{ref.}$, e $M = K_o^{NC} = 1 - \sin \phi'$.

3.3.1.2. MODELO MOHR-COULOMB

O modelo Mohr-Coulomb (MC) pode ser considerado um modelo constitutivo simple, elástico perfeitamente plástico (Figura 3.27). Além disso, é considerado um comportamento elástico até atingir a ruptura, baseado na lei de Hooke de elasticidade isotrópica que é controlada pelo módulo

de elasticidade ou de Young (E') e pelo coeficiente de Poisson (v'). Desde modo, o comportamento plástico pós ruptura é baseado no critério de ruptura de Mohr-Coulomb, e, portanto, função dos parâmetros de resistência; coesão (c), ângulo de atrito interno (ϕ) e o ângulo de dilatância (ψ).

Figura 3.27. Relação tensão-deformação, do modelo elástico perfeitamente plástico de Mohr-Coulomb (Brinkgreve *etal.*, 2015).

No espaço das tensões principais, o limite entre o comportamento elástico e plástico é estabelecido mediante a definição de 6 funções de plastificação f, sendo a definição de cada uma de elas semelhante à apresentada na Equações 3.4 para a função 1. Na Figura 3.28 ilustra-se a forma hexagonal da superfície de plastificação em solos não coesivos, a qual é definida pelas funções de plastificação quando f = 0. Para um estado de tensão dentro da superfície de plastificação o comportamento é elástico, enquanto que para estados de tensões na superfície, o comportamento é plástico e as deformações irreversíveis ocorrem. Estados de tensões fora da superfície de plastificação não são possíveis.

$$f_1 = \frac{1}{2} \left[\sigma_2' - \sigma_3' \right] + \frac{1}{2} \left(\sigma_2' + \sigma_3' \right) \sec \phi' - c' \cos \phi'$$
(3.4)

Além disso, é considerada uma lei de fluxo não associada, sendo necessária a definição de 6 funções de potencial plástico g, no espaço das tensões principais, sendo a definição de cada uma de elas semelhante à apresentada na Equação 3.5 para a função 1. Esta lei permite modelar incrementos positivos de deformação volumétrica plástica (dilatância).

$$g_1 = \frac{1}{2} \left[\sigma_2^{'} - \sigma_3^{'} \right] + \frac{1}{2} \left(\sigma_2^{'} + \sigma_3^{'} \right) \operatorname{sen} \psi$$
(3.5)

Figura 3.28. Superfície de plastificação do modelo Mohr-Coulomb no espaço de tensões principais (Brinkgrevem *et al.*, 2015).

3.3.2. VALIDAÇÃO DOS MODELOS CONSTITUTIVOS

Uma metodologia para a obtenção de parâmetros e validações do modelo constitutivo Hardening Soil a partir de ensaios de compressão triaxial não drenados, utilizando o Programa dos Elementos Finitos PLAXIS, foi desenvolvida por Nieto *et al.* (2009), para um solo argiloso reconstruído no laboratório. Segundo os autores, o HSM conseguiu representar de forma satisfatória o comportamento mecânico destes materiais, além de obter um ajuste mais preciso do que foi obtido com modelo Mohr-Coulomb. Um estudo semelhante foi realizado por Surarak *et al.* (2012), para avaliar o comportamento de uma camada superficial de argila mole, e uma camada inferior de argilas rígidas da cidade de Bangkok, conseguindo representar com sucesso o comportamento das argilas moles, mas com resultados pouco aceitáveis no caso das argilas rígidas. Recentemente Pérez (2017), a partir de retroanálise das curvas dos ensaios disponíveis na literatura, avaliou a capacidade do modelo constitutivo Hardening Soil para representar o comportamento dos solos colapsáveis do Distrito Federal do Brasil, em condições saturadas e de unidade natural.

3.3.2.1. SOLO RESIDUAL JOVEM ESTUDADO

Os ensaios de laboratório e/ou de campo feitos na obra para obter os parâmetros de resistência e deformabilidade dos solos residuais, não foram fornecidas pela empresa. Portanto, decidiu-se para a obtenção dos parâmetros do modelo constitutivo HS, utilizar da literatura, os ensaios triaxias de compressão e o ensaio oedométrico feitos por Oliveira (2000), para um solo residual jovem de gnaisse de Rio de Janeiro.

O processo de validação consistiu inicialmente na obtenção dos parâmetros do modelo a partir dos ensaios triaxiais de compressão axial, adensados-drenados (CD), considerando tensões de confinamento de 25, 70 e 150 kPa e do ensaio oedométrico, feitos por Oliveira (2000) em amostras indeformadas (Figura 3.29), posteriormente foi feita a simulação de ambos ensaios utilizando o módulo do PLAXIS "SoilTest", o qual permite simular diferentes ensaios de laboratório, até ajustar as curvas obtidas das simulações com as as curvas experimentais.

Figura 3.29. Ensaios para a calibração do modelo constitutivo HSM (a) ensaio triaxial de compressão axial tipo CD e (b) ensaio oedométrico. (Oliveira, 2000).

Os parâmetros de resistência ao cisalhamento efetivos c'e ϕ' , foram obtidos do diagrama p'- q (Figura 3.30), com as curvas dos ensaios triaxiais CD, considerando as tensões de confinamento de 25, 70 e 150 kPa.

Figura 3.30. Envoltória de resistência no plano p⁻ q, solo residual jovem. A partir dos ensaios feitos por Oliveira (2000).

Nota-se que nas envoltórias das resistências pico e residual, ambas retas apresentam o mesmo valor para do ângulo α (inclinação da reta) de 28° e valores do intercepto *a* pico e residual de 25,4 e 8,5 kPa, respectivamente. O ângulo de atrito efetivo e a coesão efetiva foram calculados utilizando as Equações 3.6 e 3.7, respectivamente. A Tabela 3.8 mostra um resumo dos valores obtidos.

$$\tan \alpha = \sin \phi \tag{3.6}$$

$$a = c' \times \cos \phi \tag{3.7}$$

Tabela 3.8. Parâmetros de resistência do solo residual jovem.

	Resistência Pico	Resistência Residual
Coesão (kPa)	30	10
Ângulo de atrito (°)	32	32

O ângulo de dilatância (ψ) foi avaliado na condição imediatamente após o pico, utilizando a Equação 3.8, a partir das curvas tensão-deformação dos ensaios triaxiais de compressão axial, tipo (CD), considerando tensões de confinamento de 25, 70 e 150 kPa (Ibañez, 2003). O valor médio encontrado foi de 14°.

$$\psi = \sin^{-1} \left(\frac{\Delta \varepsilon_1^{\mathrm{P}} + \Delta \varepsilon_3^{\mathrm{P}}}{\Delta \varepsilon_1^{\mathrm{P}} - \Delta \varepsilon_3^{\mathrm{P}}} \right)$$
(3.8)

A partir do ângulo de atrito do solo, pode ser calculado o coeficiente de empuxo em repouso K_0^{NC} , utilizando a Equação 3.9. Proposta por Jaky (1945) para solos normalmente adensados:

$$\mathbf{K}_{0}^{NC} = 1 - \sin \phi \tag{3.9}$$

O valor de $K_0^{NC} = 0,47$, obtido, encontra-se dentro da faixa de 0,40 - 0,50 recomendada na prática para solos arenosos e/ou solos finos com areias, já que a camada de solo residual jovem simulada é composta por siltes argilosos com areias finas e médias, siltes arenosos, areias finas a médias siltosas, areias médias e areias grossas, de compactas a muito compactas. Sabendo da importância do K_0^{NC} nas análises numéricas e que a correlação acima, assim como outras correlações (Simpson, 1992, Federico, 2008, etc.) podem não ser as mais precisas para solos tropicais residuais, mas, infelizmente representam a única alternativa por falta de ensaios disponíveis que poderiam indicar com mais precisão o K_0 , essa valor foi modificado posteriormente, devido aos ajustes feitos com o fim de obter uma melhor aproximação entre os resultados experimentais (curvas de laboratório) e os resultados das simulações numéricas.

Os módulos de rigidez do solo dependentes do nível de tensões; módulo de carregamento de referência $E_{oed}^{ref.}$ e o módulo de descarregamento/recarregamento de referência $E_{ur}^{ref.}$, para uma tensão vertical de referência p^{ref}, foram obtidos a partir do ensaio de compressão unidimensional ou oedomérico. Enquanto que para tensões de confinamento, o módulo de rigidez durante o carregamento primário de referência $E_{50}^{ref.}$, foi obtido apartir dos ensaios triaxiais de compressão (CD). A tensão de referência p^{ref.} foi adotada igual a 100 kPa.

Esta relação de dependência dos módulos de rigidez com o estado de tensões pode ser ajustada linearmente, como é possível observar nos gráficos $E_{oed.}$, E_{ur} e E_{50} , normalizados pela tensão de referência versus a tensão vertical ou de confinamento normaliza pela tensão de referência, ambos eixos em escala logarítmica (Figura 3.31).

Figura 3.31. Módulos expoentes de rigidez do solo dependente do nível de tensões (a) m_{oed} . (b) m_{ur} e (c) m_{50} .

A inclinação da reta (m) é o parâmetro que define a quantidade de dependência das tensões. Os valores de $m_{\text{oed.}}$, m_{ur} e m_{50} , obtidos foram de 0,562, 0,581 e 0,701, respectivamente. Sendo adotado um valor de $m_{\text{méd.}} = 0,6$ próximo ao valor de 0,5 recomendado na prática, para solos arenosos. Na Tabela 3.9, são apresentados os valores obtidos para cada um dos 11 parâmetros do modelo constitutivo Hardening Soil.

A Figura 3.32 mostra a comparação das curvas experimentais dos ensaios de compressão triaxial e eodométrico, com os resultados obtidos da simulação feita no Plaxis 2D, utilizando na simulação os valores dos parâmetros do HSM calculados.

(b)

Figura 3.32. Comparação entre as curvas de laboratório e os resultados das simulações com os valores dos parâmetros calculados (a) ensaio de compressão triaxial drenado, (b) ensaios oedométrico, solo residual jovem.

Parâmetro	Símbolo	Unidade	Valor
Módulo de Young de referência	E_{50}^{ref}	[kPa]	28139
Módulo oedométrico de referência	$E_{oed}{}^{ref}$	[kPa]	8445
Módulo na descarga-recarga de	E_{ur}^{ref}	[kPa]	27762
referencia			
Coesãoefetiva	c´	[kPa]	30
Ángulo de atrito efetivo	ø´	0	32
Ângulo de dilatância	Ψ	0	14
Coeficiente de Poisson	v	-	0,2
Módulo expoente para a rigidez	т	-	0,6
Coeficiente de empuxo em repouso	$K_o{}^{NC}$	-	0,47
Tensão de referência	p ^{ref.}	[kPa]	100
Relação de falha	R_{f}	-	0,9

Tabela 3.9. Valores calculados dos parâmetros do modelo constitutivo Hardening Soil.

Devido ao fato de observarem-se grandes diferenças entre os resultados experimentais e os resultados das simulações no caso do ensaio oedométrico, quando são utilizados nas análises os valores adotados e calculados, foi realizada uma retroanálise de forma a obter uma melhor aproximação. O ajuste obtido é ilustrado na Figura 3.33 e os valores utilizados são apresentados na Tabela 3.10. Os parâmetros que foram ajustados são apresentados em negrito.

(b)

Figura 3.33. Comparação entre as curvas de laboratório e os resultados das simulações com os valores dos parâmetros ajustados (a) ensaio de compressão triaxial drenado e (b) ensaios oedométrico, solo residual jovem.

Os valores da resistência pico no caso dos ensaios com tensões confinantes de 25, 40 e 70 kPa, são devidos à resistência coesiva adicional que a cimentação dos grãos confere à massa de solo, enquanto que o ângulo de atrito interno não sofre mudanças significativas. Para a tensão confinante de 150 kPa a ruptura ocorre sem pico de resistência devido ao fato de que a quebra da cimentação

já foi atingida. Na Figura 3.34 são apresentadas a curvas ajustadas, utilizando os valores da resistência residual.

Parâmetro	Simbolo	Unidade	Valor
Módulo de Young de referência	E50 ^{ref}	[kPa]	20000
Módulo oedométrico de referência	$E_{oed}{}^{ref}$	[kPa]	6450
Módulo na descarga-recarga de referência	E_{ur}^{ref}	[kPa]	53300
Coesão efetiva	c´	[kPa]	30
Ángulo de atrito efetivo	ø´	0	30
Ângulo de dilatância	Ψ	0	14
Coeficiente de Poisson	ν	-	0,2
Módulo expoente para a rigidez	т	-	0,6
Coeficiente de empuxo em repouso	$K_o{}^{NC}$	-	0,35
Tensão de referência	$p^{ref.}$	[kPa]	100
Relação de falha	R_{f}	-	0,9

Tabela 3.10. Valores obtidos da retroanálise dos parâmetros do modelo constitutivo Hardening Soil, solo residual jovem.

Figura 3.34. Comparação entre as curvas de laboratório do CTC e os resultado das simulações ajustadas, utilizando os valores da resistência residual, solo residual jovem.

Nos resultados da variação da deformação axial em função da tensão de desvio, pode-se concluir que apesar que o HSM não consegue representar o fenômeno de amolecimento plástico ou perda da resistência pós pico, devido ao fato de ser baseado numa função hiperbólica sempre crescente, conseguiu representar de forma satisfatória o comportamento mecânico de um solo residual jovem de gnaisse. Pois para fins práticos, nesta pesquisa são considerados apenas os valores de resistência ao cisalhamento residuais, já que os valores pico dependem do grão de cimentação, o qual é variável em função da posição da amostra na camada.

3.3.2.2. ROCHA ALTERADA

Os parâmetros do modelo constitutivo MC foram obtidos da comparação e ajuste (retroanálise) das curvas carga-deslocamento obtidas da simulação numérica de 4 ensaios de recebimento, utilizando o programa de Elementos Finitos PLAXIS 2D, e as curvas experimentais dos ensaios de arrancamento que foram executados e fornecidos pela empresa privada, que seguiram os procedimentos de ensaio descritos pela NBR-5629. Segundo as prescrições da norma, para ensaios de arrancamento tipo B, como os utilizados neste trabalho, os carregamentos devem partir de uma carga inicial (F_0), ir até a carga máxima prevista (F_{ens}), retomar à carga inicial e recarregar até a carga de trabalho (F_t), com medições de deslocamentos da cabeça do tirante, tanto nas fases de carga como na de descarga. A norma também estabelece os seguintes estágios de carga e descarga para ensaios tipo B: F_0 e 0,3 F_t ; 0,6 F_t ; 0,8 F_t ; 1,0 F_t ; 1,2 F_t ; e 1,4 F_t . Para todos os ensaios executados foram usados valores de carga inicial de 3,81 tf (37,4 kN), carga de trabalho de 20 tf (196 kN), carga de ensaio de 28 tf (274,7 kN) e carga de incorporação igual a 0,8 F_t = 16 tf (157 kN) (SOLOTESTE, 2014b).

Na Tabela 3.11 são apresentadas as principais características dos tirantes utilizados para a simulação dos ensaios de recebimento. A localização dos tirantes na cortina e nos painéis correspondentes é apresentada mediante quadrados vermelhos na vista geral (Figura 3.6) e detalhes da cortina (Figuras 3.7, 3.8 e 3.9), expostos no subitem 3.2.1.1.

Os resultados completos dos ensaios *in situ* de recebimento das ancoragens analisadas, são mostrados no Apêndice IV. Neles estão indicados detalhadamente os deslocamentos resultantes na

cabeça do tirante para cada estágio de carga aplicada, conforme as descrições apresentadas nos relatórios técnicos SOLOTESTE, 2014b.

Tabela 3.11. Principais características dos tirantes utilizados para a simulação de ensaios de arrancamento.

Tirante	T-44	T-55	T-58	T-62
Painel	А	D	E	F
Linha de tirante	3	3	2	2
Profundidade (m)	5,11	4,60	3,80	3,160
Distância do inicio da cortina (m)	83,04	53,12	45,87	35,86
Comprimento total (m)	9,0	9,0	9,0	9,0
Comprimento no solo (m)	1,0	4,0	4,0	3,0
Comprimento na rocha (m)	8,0	5,0	5,0	6,0

A Figura 3.35 mostra os ajustes obtidos da retroanálise dos ensaios de arrancamento dos tirantes T-58, T-55, T-62 e T-44. Os valores dos parâmetros do modelo MC obtidos estão apresentados na Tabela 3.12.

Tabela 3.12. Valores obtidos da retroanálise dos parâmetros do modelo constitutivo MC, rocha alterada.

Parâmetro	Simbolo	Unidade	Valor
Massa específica	γ	$[kN/m^3]$	27
Módulo oedométrico de referência	E	[kPa]	40000
Coesão	С	[kPa]	5000
Ángulo de atrito	ø	0	35
Coeficiente de Poisson	v	-	0,25

Figura 3.35. Comparação entre as curvas dos ensaios de arrancamento e os resultados das simulações numéricas (a) tirante T-58, (b) tirante T-55, (c) tirante T-62 e (d) tirante T-44.

Pode-se concluir que para o caso da rocha alterada, o modelo constitutivo Hardening Soil permitiu simular de forma próxima e aceitável o comportamento nestes materiais. No entanto, cabe ressaltar que os valores obtidos apenas pretendem ser uma primeira e simplificada aproximação dos valores reais, devido ao grau de dificuldade de representar mediante um único valor "valor representativo" a estes materiais heterogêneos e anisotrópicos.

4. SIMULAÇÃO NUMÉRICA E ANÁLISE DE RESULTADOS

Neste capítulo tem-se por objetivo discutir os aspectos correspondentes ao processo de simulação numérica bidimensional de uma cortina atirantada mediante o Método dos Elementos Finitos (MEF), utilizando como ferramenta computacional o programa PLAXIS 2D. Também são apresentados os resultados dos métodos analíticos e das simulações numéricas desenvolvidas para determinar a estabilidade interna da cortina, considerando as informações apresentadas nos capítulos anteriores. Finalmente, foi feita a interpretação e a análise comparativa crítica dos resultados obtidos.

4.1. ASPECTOS DA SIMULAÇÃO NUMÉRICA

Nesta seção, além de apresentarem-se a concepção teórica, sugestões e limitações das ferramentas do programa, são mostrados os valores utilizados para a modelagem do problema de interesse.

4.1.1. SIMPLIFICAÇÃO DO PROBLEMA GEOTÉCNICO

Como dito anteriormente, devido ao grau de complexidade do problema geotécnico a resolver, e, portanto, à impossibilidade de definir uma única seção típica ou representativa da cortina, para as análises que serão apresentadas a seguir, foram escolhidas sete seções transversais (perfis) à cortina de interesse, considerando as variações ao longo da mesma de fatores relevantes, tais como:

- A topografia não plana e irregular do terreno;
- A variabilidade na espessura das camadas de solo e rocha;
- A composição da cortina em painéis de diferentes tamanhos;
- A distribuição e localização irregular dos tirantes;
- Etapas de escavação e construção das obras múltiplas e variáveis.

A Figura 4.1 apresenta a distribuição das sete seções transversais na cortina. A localização de cada seção nos painéis é mostrada nas Figuras 4.2, 4.3, 4.4 e 4.5. Por último, na Figura 4.6 pode-se observar a localização no terreno.

Figura 4.2. Localização do perfil-1.

Figura 4.3. Localização do perfil-2.

Figura 4.4. Localização dos perfis-3 e 4.

Figura 4.5. Localização dos perfis-5, 6 e 7.

Figura 4.6. Localização das seções no terreno.

Nas Figuras 4.7, 4.8, 4.9, 4.10, 4.11, 4.12 e 4.13 são apresentadas as seções transversais escolhidas da cortina.

Figura 4.7. Detalhe do perfil 1(P-1).

Figura 4.8. Detalhe do perfil 2(P-2).

Figura 4.9. Detalhe do perfil 3(P-3).

Figura 4.10. Detalhe do perfil 4(P-4).

Figura 4.12. Detalhe do perfil 6(P-6).

Figura 4.13. Detalhe do perfil 7(P-7).

4.1.2. ESTRATIGRAFIA UTILIZADA

Nesta pesquisa foram utilizadas duas configurações ou modelos estratigráficos diferentes, os quais são apresentados a seguir.

Caso I: Sabendo que os métodos analíticos foram desenvolvidos para solo homogêneo, ou seja, que toda cunha instável se encontra em um único material, decidiu-se nu primeiro caso considerar uma estratigrafia simples, composta por uma única camada de solo residual jovem.

Caso II: foi considerada uma estratigrafia mais completa e real, baseada no modelo geológicogeotécnico desenvolvido nesta pesquisa, assim, o perfil adotado é composto por uma camada superficial de solo residual jovem, uma camada de transição ou rocha alterada e o maciço de rocha sã.

Tanto para a camada de solo residual como para a rocha alterada, os parâmetros geotécnicos foram tomados da validação dos modelos constitutivos, feita no subitem 3.3.2. No caso da rocha sã, na Tabela 4.1 são apresentados os valores utilizados na literatura por outros autores, para os maciços de gnaisses de pouco a sem fraturas de Rio de Janeiro.

Parâmetro	Símbolo	Unidade	Valor
Peso específico	γ	[kN/m ³]	28
Módulo oedométrico	Ε	[kPa]	200E3
Coesão	С	[kPa]	20000
Ángulo de atrito	ø	0	50
Coeficiente de Poisson	v	-	0,25

Tabela 4.1. Valores dos parâmetros do modelo constitutivo MC, rocha sã.

É apresentado na Figura 4.14 um detalhe dos perfis estratigráficos utilizados para a análise da seção 1. Pode-se observar no Caso II, que 75, 70 e 100% do comprimento do bulbo nos tirantes superior, médio e inferior, respectivamente, fica ancorado na rocha alterada.

(b)

1-Solo residual jovem, 2- Rocha alterada, 3- Rocha sã.

Figura 4.14. Perfis estratigráficos empregados nas análises da seção 1 (a) Caso I (talude homogêneo) e (b) Caso II (talude estratificado).

Os perfis estratigráficos dos Casos I e II, utilizados nas análises das seções P-2, P-3, P-4, P-5, P-6 e P-7, são apresentados na

Figura 4.15. Pode-se observar no Caso II, que mais de um 75% do comprimento do bulbo fica ancorado na camada de rocha alterada, com exceção dos tirantes superiores das seções 3 e 5 (tirante ancorados 100% no solo). A descrição completa das perfurações de cada um dos tirantes executados na obra é apresentada no Apêndice I. Neles estão indicados o comprimento dos trechos livres e do bulbo executados no solo e na rocha, conforme as descrições apresentadas no relatório técnico SOLOTESTE, 2014c.

Figura 4.15. Modelos estratigráficos empregados nas análises (a) perfil 2 (b) perfil 3, (c) perfil 4, (d) perfil 5, (e) perfil 6 e (f) perfil 7.

4.1.3. MALHA DE ELEMENTOS FINITOS

A divisão do problema em elementos finitos isoparamétricos constituindo uma malha é gerada de forma automática pelo programa em função: da geometria do problema, da estratigrafia, da posição do nível de água; da variedade, tamanho e complexidade dos elementos estruturais, dos sobrecarregamentos e das condições de contorno. Além, pode ser aplicado um refinamento local, nas regiões consideradas de maior interesse. Nos modelos bidimensionais (2D), a malha pode ser formada por elementos finitos triangulares de 6 ou 15 nós (dependendo do grão de precisão requerido), com 3 e 12 pontos de Gauss, respectivamente (Figura 4.16).

Figura 4.16. Tipos de elementos finitos na simulação 2D (a) triangular de 6 nós e (b) triangular de 15 nós (Brinkgreve *et al.*, 2015).

É importante mencionar que, devido às particularidades que cada projeto tem, não existe uma metodologia definida para escolher o tamanho de malha a usar, portanto torna-se necessária uma experimentação exaustiva de todas as possíveis interações entre malhas globais e refinamentos locais até conseguir uma discretização o suficientemente fina para obter resultados precisos, mais não tão finos, para que o programa demore excessivo tempo nos cálculos. Deste modo, foi selecionada uma malha global composta por elementos triangulares de 15 nós, muito fina, com fator de malha de 1,0 e refinamentos nas bordas das escavações, no contato entre os elementos estruturais e o solo e nas áreas com grandes concentrações de tensão ou importantes gradientes de deformação. Em média, as malhas geradas nas sete seções simuladas são compostas de 19500 elementos finitos e 156000 nós.

De modo geral, as condições de contorno para cada perfil foram definidas conforme os critérios apresentados na Figura 4.17, a partir da profundidade alcançada nas sondagens exploratórias do

subsolo e da distribuição das tensões em análises preliminares. Na figura, H é a altura máxima da cortina e L, o comprimento do tirante mais longo empregado na obra.

Figura 4.17. Exemplo da malha de elementos finitos gerados (P-1) e suas condições de contorno.

4.1.4. ELEMENTOS ESTRUTURAIS

Os materiais que compõem a cortina, o trecho livre e o trecho ancorado, foram considerados contínuos, homogêneos, isotrópicos e linearmente elásticos (CHILE), simulados utilizando o modelo constitutivo Linear-Elástico.

4.1.4.1. MODELAGEM DA CORTINA

Quanto à cortina de concreto armado, por tratar-se de uma parede esbelta (cuja espessura é significativamente pequena, quando comparada com a altura), que se estendem na direção z, é utilizado na modelagem um elemento plano tipo "*Plate*". No caso de um solo formado por elementos finitos de 6 nós, o elemento "*Plate*" é definido por três nós, enquanto que para elementos de solo de 15 nós, o elemento "*Plate*" correspondente é definido por cinco nós. A Figura 4.18 apresenta a disposição dos nós nos elementos tipo "*Plate*".

Figura 4.18. Constituição dos elementos tipo *"Plate"* (a) em elementos de solo de 6 nós e (b) em elemento de solo de 15 nós (Brinkgreve *et al.*, 2015).

Os parâmetros utilizados para a definição destes materiais são a rigidez a flexão (*EI*), a rigidez axial (*EA*), o peso da cortina (*w*) e o coeficiente de Poisson (ν), sendo o primeiro o mais relevante devido à influência da forma no comportamento destas estruturas. *EA*, *EI* e *w*, podem ser determinados por meio das Equações 4.1, 4.2 e 4.3, respectivamente.

$$EI = \frac{E \ e^3}{12} \tag{4.1}$$

$$EA = E \ e \tag{4.2}$$

$$w = (\gamma_c - \gamma_s) e \tag{4.3}$$

Onde, *E* é o modulo de elasticidade, *e* é a espessura da cortina, $\gamma_c e \gamma_s$ são os pesos específicos da cortina de concreto armado e do solo, respectivamente. É possível observar que *A* e *I*, representam a área e o momento de inércia da seção transversal da cortina, respectivamente, por metro de comprimento.

Na Tabela 4.2 são apresentados os valores utilizados para a simulação numérica da cortina, considerando valores típicos para cortinas de concreto armado de E = 24 GPa e $\gamma_c = 24$ kN/m³.

Parâmetro	Símbolo	Unidade	Valor
Tipo de material			Elástico, isotrópico
Rigidez a flexão	EI	kNm ² /m	2,43E4
Rigidez axial	EA	kN/m	5,52E6
Peso	W	kN/m/m	1,61
Coeficiente de Poisson	v		0,2

Tabela 4.2. Propriedades utilizadas para a simulação da cortina. A partir dos valores típicos de cortinas de concreto armado.

4.1.4.2. MODELAGEM DO TIRANTE

Devido às diferenças estruturais e funcionais entre os trechos livres e ancorados que compõem um tirante, ambos foram modelados através de diferentes elementos. Considerando que não existe transmissão de carga (atrito) no trecho livre com o solo e que toda a carga aplicada no tirante deve ser suportada pelo trecho ancorado (Gerscovich, 2016), o trecho livre é simulado através de um elemento simples tipo mola, cuja única função é conectar a cortina com o trecho ancorado. No programa é inserido mediante a opção "*Anchor*", sendo necessária apenas a rigidez axial da barra de aço (resistência à deformação elástica) e o espaçamento no plano normal à seção (isto com o fim de considerar o efeito 3D).

Na Tabela 4.3, são apresentados os valores utilizados para a simulação do trecho livre, considerando um módulo de elasticidade da barra de aço $E_{aço} = 21000 \text{ kg/mm}^2$ (205 GPa), segundo as especificações do fabricante dos tirantes GEWI 55/75 empregados.

Parâmetro	Símbolo	Unidade	Valor
Tipo de material			Elástico
Rigidez axial	EA	kN	1,65E5
Espaçamento horizontal	L_s	m	Variável

Tabela 4.3. Propriedades do trecho livre.

No caso do trecho ancorado, nas versões recentes do PLAXIS 2D, a simulação pode ser feita de duas maneiras. Mediante elementos planos, conhecidos como "*Geogrelhas*" considerando a rigidez axial do bulbo, ou mediante um elemento mais complexo e representativo, tipo viga, conhecido como "*Embedded pile*". Em ambos os casos estes elementos são definidos por uma linha de três nós, independentemente do tipo de elemento finito do solo. Na Tabela 4.4 são apresentados os valores utilizados para a simulação do trecho ancorado utilizando elementos tipo "*Geogrelha*", considerando um módulo de elasticidade da barra de aço $E_{aço} = 205$ GPa, segundo as especificações do fabricante dos tirantes GEWI 55/75 empregados, um módulo de elasticidade da calda de cimento $E_{calda} = 21,6$ GPa (valor mínimo estabelecido pela NBR-5629) e um diâmetro do bulbo de ancoragem igual ao diâmetro da perfuração, D = 10 cm. Esses valores são consistentes com os valores empregados por More (2003), Mendes (2010) e Magalhães (2015) e recomendados pela GeoRio (2000).

Parâmetro	Símbolo	Unidade	Valor
Tipo de material	-	-	Elástico
Rigidez axial equivalente	EA_{eq} .	kN/m	3,17E5

Tabela 4.4. Propriedades do trecho ancorado utilizando elementos tipo "Geogrelha".

Na utilização de elementos tipo "*Embedded pile*", são tomados em conta, além, a resistência na base do bulbo e o atrito lateral desenvolvido ao longo do trecho ancorado. Segundo Mecsi (1995), a resistência na base e no topo do bulbo de ancoragem é desprezível e a capacidade de carga da ancoragem é considerada função apenas da sua resistência lateral a qual diminui exponencialmente ao longo do bulbo, segundo o diagrama da Figura 4.19.

Diferente ao proposto por Mecsi (1995) o atrito lateral é simulado no programa PLAXIS mediante uma função linear, com um valor máximo no topo e mínimo (zero) na base. No entanto, pode ser considerada uma boa aproximação. Na Tabela 4.5, são apresentados os valores utilizados para a simulação do trecho ancorado utilizando elementos tipo "*Embedded pile*".

Figura 4.19. Atrito lateral desenvolvido ao longo do bulbo de ancoragem (a) diagrama de carga ao longo do tirante, (b) seção transversal da cortina (Mecsi, 1995).

Parâmetro	Símbolo	Unidade	Valor
Tipo de elemento	-	-	Circular, maciça
Diâmetro	D	m	0,1
Peso especifico	r	kN/m ³	24
Módulo de elasticidade equivalente	E _{eq.}	kPa	4,04E7
Espaçamento	S	m	variável
Atrito lateral na base	T _{Inic} .	kN/m	variável
Atrito lateral no topo	T _{Final}	kN/m	variável
Resistência na base	F _{máx.}	kN/m	0

Tabela 4.5. Propriedades do trecho ancorado utilizando elementos tipo "Embedded pile".

4.1.5. ELEMENTOS DE INTERFACE

São utilizados para análise de problemas de interação solo-estrutura, por exemplo, no contato do bulbo e da cortina com o solo adjacente, permitindo simular de forma mais realista o comportamento mecânico nestas regiões. No caso de um solo formado por elementos finitos de solo de 6 nós, os elementos da interface correspondente são definidos por três pares de nós e três pontos de tensão. Os elementos de solo de 15 nós, por sua vez, os elementos da interface

correspondente são definidos por cinco pares de nós e cinco pontos de tensão. Na Figura 4.20 mostra como os elementos de interface estão conectados aos elementos do solo.

Figura 4.20. Tipos de elementos de interface na simulação 2D (a) em elementos de solo de 6 nós,(b) em elemento de solo de 15 nós (Brinkgreve *et al.*, 2015).

É importante mencionar que os elementos de interface possuem uma espessura zero, ou seja, as coordenadas de cada par de nós são idênticas, sendo necessária na formulação do método definir uma espessura "virtual" ou dimensão imaginaria para poder atribuir às propriedades dos materiais na interface. Estes elementos são comumente utilizados nas duas situações: na redução dos parâmetros de resistência $c e tan \varphi$ do solo adjacente ao bulbo de ancoragem; à cortina de concreto (o solo na interface), devido á rugosidade (atrito e aderência) no contato solo-estrutura, sendo aplicado nestes casos um fator de redução $R_{int.}$, de acordo com o tipo de interface (Tabela 4.6).

Tabela 4.6.	Valores	sugeridos	do fator	de	redução	da	resistência	na	interface ((Brinkgrev	e et	al.,
2015).												

Tipo de interface	Fator de redução (<i>R</i> _{int} .)
Contato Areia - Aço	~0,67
Contato Argila - Aço	0,5
Contato Areia - Concreto	0,8 - 1,0
Contato Argila - Concreto	0,7 - 1,0
Contato Solo - Geogrelha	0,8 -1,0

E nas proximidades dos cantos em estruturas rígidas, onde ocorre uma redistribuição e maior concentração de tensões, produzindo variações abruptas nos valores de tensão e deformação. A implementação de elementos de interface nessas regiões diminui os erros e valores picos, melhorando a qualidade dos resultados (Figura 4.21).

Figura 4.21. Análise de tensões nos cantos de estruturas rígidas (a) sem elementos de interface, (b) com elementos de interface (Brinkgreve *et al.*, 2015).

Nesta pesquisa foram utilizados de forma satisfatória elementos de interface com um fator de espessura virtual de 0,1 (valor padrão no programa), ou seja, elementos com uma espessura imaginária de 0,1 vezes o tamanho dos elementos finitos. Além disso, tendo em conta as possíveis alterações ocasionadas pelas escavações, pela perturbação causada durante a perfuração dos furos para a colocação dos tirantes e à injeção sob pressão da calda de cimento, nos solos circundantes, foi assumido um valor de redução de resistência nas interfaces solo-cortina e solo-bulbo de 0,8.

4.2. RESULTADOS

4.2.1. ANÁLISE DE ESTABILIDADE

Na análise da estabilidade interna da cortina foram empregados os métodos analíticos de equilíbrio das cunhas: Brasileiro, desenvolvido por Nunes & Velloso (1963), o método de Hoek & Bray (1981), e o método Alemão, desenvolvido por Ranke & Ostermayer (1968), além do método de redução da resistência utilizado nas análises de elementos finitos, de acordo as metodologias descritas no capítulo 2.

4.2.1.1. MÉTODOS ANALÍTICOS

Para essa análise, foi considerado um talude homogêneo, composto por solos residuais jovens de gnaisse, sem água e sem aceleração sísmica, utilizando os valores de resistência ao cisalhamento residuais $c' e \phi'$ calculados na validação do modelo constitutivo HS (subitem 3.3.2.1), um peso especifico natural $\gamma_{nat.} = 18 \text{ kN/m}^3$ (valor calculado e utilizado por Lima (2007) e Saré (2007), para os solos residuais jovens de gnaisse de Rio de Janeiro) e uma carga de protensão aplicada nos tirantes de 157 kN (Carga real aplicada na obra).

Sendo que no Capítulo 2 do presente trabalho foi apresentada uma descrição detalhada das metodologías para o cálculos dos quatro métodos, decidiu-se, portanto, apenas para efeitos de exemplificar os cálculos executados, mostrar o diagrama de forças obtido do perfil 1, correspondente à análise da estabilidade utilizando o método Brasileiro (Figura 4.22). Na Tabela 4.7 é apresentado o resumo dos valores utilizados e calculados no metodo Brasileiro.

Figura 4.22. Diagrama de forças obtido do perfil 1, utilizando o método Brasileiro.

Parâmetros			P-1	P-2	P-3	P-4	P-5	P-6	P-7
Altura do talude:	Н	m	5,73	5,50	4,94	4,03	3,82	3,28	2,22
Espaçamento horizontal entre tirantes:	\mathbf{S}_{H}	m	2,965	2,19	2,65	2,67	2,94	3,06	3,42
Ângulo crítico:	θ_{cr}	o	61	61	61	61	61	61	61
Peso da cunha deslizante por metro linear:	W	kN/m	192,37	177,23	142,98	95,16	85,50	63,03	27,2 5
Fator de segurança mínimo	FS _{mín}	-	0,70	0,73	0,81	0,99	1,05	1,05	1,81
Ângulo entre a direção do tirante e a superfície deslizante:	β	0	76	76	76	76	76	76	76
Fator de reforço:	λ	-	2,14	2,06	1,85	1,51	1,43	1,23	0,83
Ângulo de inclinação do plano de ancoragem:	θ	o	40	40	41	44	45	49	64
Fator de segurança da cunha deslizante:	FS	-	1,54	1,61	1,62	1,56	1,55	1,50	1,83

Tabela 4.7. Resumo dos valores utilizados e calculados, necessários para o cálculo da estabilidade dos sete perfis, mediante o método Brasileiro.

São apresentados na Tabela 4.8 os valores da força de protensão nos tirantes, necessárias para aumentar o fator de segurança mínimo até o valor de 1,5 estabelecido pela NBR-5629.

Tabela 4.8. Força de protensão dos tirantes necessária para o equilíbrio, método Brasileiro.

Parâmetros		P-1	P-2	P-3	P-4	P-5	P-6	P-7	
Força de ancoragem necessária (carga de trabalho):	F	kN/m	69,18	61,40	44,23	21,60	17,31	7,87	0
Carga admissível de cada tirante (carga de trabalho):	Ft	kN	68,37	44,83	58,49	28,84	25,44	24,07	0
Carga de ruptura do tirante (carga de ensaio):	Fa	kN	119,65	78,44	102,36	50,46	44,52	42,12	0

Note-se que no perfil 7 o fator de segurança mínimo é maior ao valor 1,5 exigido pela norma, por ende a força de ancoragem necessaria é zero, em vista de isso quaquer força de protensão aplicada no tirante vai produzir um superdimencionamento nessa região da cortina.

A Tabela 4.9, apresenta uma comparação percentual das cargas de trabalho adotadas no projeto em relação às cargas de trabalho necessárias, calculadas pelo método Brasileiro. Observe-se que em relação aos valores fornecido pelo método Brasileiro, na obra foram aplicadas cargas de protensão nos tirantes de 1,3 até 5,5 vezes as cargas necessárias. Isso no caso que sejam considerados os mesmos paramêtros que foram usados nesta pesquisa, já que a utilização de outros parâmetros dos modelos constitutivos empregados na simulação do comportamento mecânico das camadas de solo e rocha irão gerar resultados diferentes.

		Carga de trabalho (kN/m)						
Perfil	Tirante	Calculada pelo	Aplicada no projeto					
		método Brasileiro						
	Superior (T-3)							
P-1	Médio (T-17)	23,06	52,95	130%				
	Inferior (T-44)							
	Superior (T-14)							
P-2	Médio (T-28)	20,47	71,69	250%				
	Inferior (T-55)							
P-3	Superior (T-31)	22.11	59.36	168%				
10	Inferior (T-58)	,	0,00	10070				
P-4	Superior (T-35)	10.80	58.80	444%				
	Inferior (T-62)	10,00	20,00	111/0				
P-5	Superior (T-39)	8 65	53 40	517%				
1.5	Inferior (T-66)	0,05	55,10	51770				
P-6	Único (T-70)	7,87	51,31	552%				
P-7	Único (T-73)	0,00	45,97	-				

Tabela 4.9	. Comparação	percentual	das	cargas	de	trabalho	adotadas	no	projeto	e	as	cargas
calculadas	pelo método Bi	rasileiro.										

Da mesma maneira, é apresentado apenas para efeitos de exemplificar os cálculos executados o diagrama de forças obtido do perfil 1 correspondente à análise da estabilidade utilizando o método

Hoek & Bray (1981) (Figura 4.23). Os valores utilizados e calculados, necessários para determinar o fator de segurança dos 7 perfis, utilizando a carga de trabalho adotada no projeto estão apresentados na Tabela 4.10.

Figura 4.23. Diagrama de forças obtido do perfil 1, utilizando o método de Hoek & Bray (1981).

dos sete perfis, mediante o método de Hoek & Bray (1981).										
Parâmetros			P-1	P-2	P-3	P-4	P-5	P-6	P-7	
Altura do talude:	Н	m	5,73	5,50	4,94	4,03	3,82	3,28	2,22	
Volume da cunha:	s	m ³	10.687	9.85	7.94	5.29	4.75	3.50	1.51	

192,368 177,23

2,19

215,07

2,50

2,965

158,85

1,78

142,98

2,65

118,71

1,89

95.16

2,67

117,60

2,82

85,50

2,94

106,80

2,90

63.03 27.25

47,87 45,97

3,42

5,06

3,28

2,12

W

Sh

Т

KN

m

kN

FS

Força da cunha deslizante por

Espaçamento horizontal entre

Força de ancoragem por metro

Fator de segurança:

metro linear:

os tirantes:

por metro linear:

Tabela 4.10. Resumo dos valores utilizados e calculados, necessários para o cálculo de estabilidade

Pode-se observar que a aplicação das cargas de protensão adotadas no projeto fornecem fatores de segurança muito maiores ao valor de 1,5 requerido, principalmente no perfil 7. Isto é congruente com o observado no método Brasileiro.

Finalmente, com o intuito de exemplificar os cálculos feitos para determinar a estabilidade interna utilizando o método alemão, são apresentados também para o perfil 1 as superfícies de ruptura definidas pelo método (Figura 4.24) e os diagramas e polígonos de forças obtidos no cálculo do fator de segurança de cada tirante (Figura 4.25), assim como os polígonos de forças para o calculo do fator de segurança global (Figura 4.26). Os valores necessários para calcular o fator de segurança dos 7 perfis considerando a carga de trabalho adotada no projeto, estão apresentados na Tabela 4.11. Por sua vez, na Tabela 4.12 é apresentado um resumo dos fatores de segurança calculados pelos métodos analíticos nos sete perfis analisados.

Figura 4.24. Superfícies de ruptura definidas pelo método alemão, perfil 1.

105

Figura 4.25. Diagramas e polígonos de forças obtidos do perfil 1, utilizando o método Alemão (a) tirante superior, (b) tirante médio e (c) tirante inferior, perfil 1.

Figura 4.26. Polígonos de forças obtidos para o cálculo do fator de segurança global do perfil 1, utilizando o método Alemão.

Doufil		Н	S_{H}	E_1	С	Е	W	R	T _{máx.H}	EC
Perm		(m)	(m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	гэ
P-1	Superior		2,97	113,05	107,90	64,22	1189,58	1141,02	487,95	3,22
	Médio	5,73		108,75	68,30	64,22	749,06	732,85	323,12	2,13
	Inferior			175,76	58,70	64,22	727,82	848,80	511,17	3,37
P-2	Superior		2,19	113,05	107,50	57,59	1166,63	1127,75	494,39	3,26
	Médio	5,50		142,81	87,00	57,59	1013,95	1039,76	526,37	3,47
	Inferior			153,30	58,32	57,59	689,35	778,38	443,79	2,93
P-3	Superior	4.94	2,67	91,44	87,73	43,49	862,80	838,83	381,82	2,52
	Inferior			120,95	58,10	43,49	618,36	680,55	381,20	2,51
P-4	Superior	4,03	2,94	84,52	87,10	24,28	784,54	809,90	405,19	2,67
	Inferior	, ,		97,63	58,36	24,28	537,08	609,43	368,53	2,43
P-5	Superior	3,82	2,94	77,82	87,10	20,68	742,47	749,65	391,61	2,58
	Inferior			111,31	68,38	20,68	637,33	740,87	462,76	3,05
P-6	-	3,28	3,06	65,51	67,64	12,44	519,89	511,36	346,13	2,28
P-7	-	2,22	3,42	35,40	68,00	2,54	383,00	391,65	306,86	2,02

Tabela 4.11. Resumo dos valores utilizados e calculados, necessários para o cálculo de estabilidade dos 7 perfis, mediante o método alemão.

Onde: H- Altura do talude, S_H. Espaçamento horizontal entre os tirantes, E₁-Empuxo ativo, Força tangencial pela coesão do solo, W- Peso da cunha, R- Reação, T_{máx.H} -Resistência à tração máxima do tirante horizontal, FS - Fator de segurança.

		Método						
Perfil	Tirante	Hoek &	Alemão	Alemão Generalizados				
		Bray	Generalizado	(FS global)				
	Superior (T-3)		3,22					
P-1	Médio (T-17)	1,78	2,13	1,56				
	Inferior (T-44)		3,37					
P-2	Superior (T-14)		3,26					
	Médio (T-28)	2,50	3,47	1,33				
	Inferior (T-55)		2,93					
P-3	Superior (T-31)	1.80	2,52	1.50				
	Inferior (T-58)	1,09	2,51	1,50				
P-4	Superior (T-35)	282	2,67	1 51				
	Inferior (T-62)	ferior (T-62)		1,51				
P-5	Superior (T-39)	2.00	2,58	1,63				
	Inferior (T-66)	2,90	3,05					
P-6	Único (T-70)	2,21	2,28	2,28				
P-7	Único (T-73)	5,06	2,02	2,02				

Tabela 4.12. Valores dos fatores de segurança calculados pelos métodos analíticos das cunhas.

4.2.1.2. MODELAGEM NUMÉRICA

A seguir, são apresentadas as sete etapas de análises utilizadas na simulação numérica do processo de construção da cortina no perfil 1 (Figura 4.27). Sendo o processo análogo para os outros seis perfis analisados.

Etapa I: Análise das tensões iniciais in situ;

Etapa II: Escavação do terreno até 1,5 m de profundidade;

Etapa III: Colocação da cortina no trecho correspondente, instalação do tirante superior à profundidade de 1,0 m e aplicação da carga de protensão de 52,95 kN.

Etapa IV: Escavação do terreno até 3,5 m de profundidade;

Etapa V: Colocação da cortina no trecho correspondente, instalação do tirante médio à profundidade de 2,9 m e aplicação da carga de protensão de 52,95 kN.

Etapa VI: Escavação do terreno até 5,7 m (profundidade máxima da cortina).

Etapa VII: Colocação da cortina no trecho restante e do embutimento, instalação do tirante inferior à profundidade de 5,1 m e aplicação da carga de protensão de 52,95 kN.

Figura 4.27. Etapas de análise do perfil 1 (a) escavação superior, (b) tirante superior, (c) escavação média, (d) tirante médio, (e) escavação inferior e (f) tirante inferior.

O cálculo do fator de segurança para o tirante superior, médio é inferior é feito pelo programa nas etapas III, IV e VII, respectivamente. Na Tabela 4.13 é apresentado um resumo dos fatores de segurança calculados pelas análises numéricas dos sete perfis analisados.

Por último, é apresentada na Figura 4.28 e Figura 4.29 a comparação dos fatores de segurança obtidos da simulação numérica dos casos I (solo homogêneo) e o caso II (solo estratificado), nos perfis 6, 7 e 1.

Perfil	Tirante	Fator de segurança				
	Superior (T-3)	2,72				
P-1	Médio (T-17)	2,50				
	Inferior (T-44)	2,24				
	Superior (T-14)	2,76				
P-2	Médio (T-28)	2,53				
	Inferior (T-55)	2,24				
P_3	Superior (T-31)	2,35				
1-5	Inferior (T-58)	2,44				
P_/	Superior (T-35)	3,19				
1 -4	Inferior (T-62)	2,75				
P_5	Superior (T-39)	3,36				
1-5	Inferior (T-66)	2,95				
P-6	Único (T-70)	3,52				
P-7	Único (T-73)	4,97				

Tabela 4.13. Valores dos fatores de segurança calculados pelo Método dos Elementos Finitos.

Figura 4.28. Comparação dos fatores de segurança obtidos da simulação numérica dos Casos I e II (a) perfil 6 e (b) perfil 7.

Figura 4.29. Comparação dos fatores de segurança obtidos da simulação numérica dos Casos I e II, perfil 1 (a) caso I e (b) caso II.

Em geral, os fatores de segurança aumentam quando se considera nas análises numéricas a estratigrafia do caso II em relação aos resultados obtidos na simulação do caso I. Esta melhoria pode ser atribuída ao fato de os bulbos estarem ancorados na rocha alterada, com maior resistência e rigidez que a camada de solo residual. Além disso, foi assumido para este material rochoso um valor de redução da resistência nas interfaces rocha-bulbo de 0,9, maior ao valor de 0,8 adotado nas interfaces solo-bulbo, já que as alterações produzidas pela perfuração dos furos na camada de rocha alterada influenciam em menor grau o estado do maciço circunvizinho.

4.2.1.3. ANÁLISE DOS RESULTADOS DE ESTABILIDADE

Com respeito à estabilidade das cortinas atirantadas, a NBR-5629 estabelece nos subitens 4.5.1 e 4.5.3 que: 1) o centro das ancoragens em solo deve ser colocado sobre ou além da superfície de deslizamento, a qual deve ser determinada por um processo consagrado na mecânica de solos, que ofereça um fator de segurança pelo menos igual a 1,5 sem levar em conta as forças de protensão por elas introduzidas no maciço; 2) com a introdução das forças dos tirantes, nenhuma superfície de escoamento pode apresentar um fator de segurança menor que 1,5. Assim, as especificações sobre a análise de estabilidade de ancoragens em rocha não são tratadas pela norma e no caso de tirantes executados em solo não existe uma metodologia definida para escolher o método de cálculo empregado, ficando a critério e experiência do engenheiro projetista da obra.

É evidente que uma comparação direta dos valores obtidos dos três métodos não é possível, certamente por procedimentos de cálculo e definição dos fatores de segurança diferentes. No entanto, dentro de suas próprias e distintas características são apresentadas na Tabela 4.14 as diferenças dos valores obtidos, percentualmente, em relação ao valor de referência ou valor mínimo estabelecido pela norma NBR-5629 (1,5 no caso dos métodos de Hoek & Bray (1981) e MEF, e 1,75 no caso do método Alemão Generalizado).

		Método								
Perfil	Tirante	Hoek & Bray (1981)		Alemão Generalizado		Alemão Generalizado (FS global)		MEF		
P-1	Superior (T-3)		18,9%	3,22	84,0%	1,56	-10,9%	2,72	81,3%	
	Médio (T-17)	1,78		2,13	21,7%			2,50	66,7%	
	Inferior (T-44)			3,37	92,6%			2,24	49,3%	
P-2	Superior (T-14)	2,51	67,0%	3,26	86,3%	1,33	-24,0%	2,76	84,0%	
	Médio (T-28)			3,47	98,3%			2,53	68,7%	
	Inferior (T-55)			2,93	67,4%			2,24	49,3%	
P-3	Superior (T-31)	1.90	25,7%	2,52	44,0%	1,50	-14,3%	2,35	56,7%	
	Inferior (T-58)	1,09		2,51	43,4%			2,44	62,7%	
P-4	Superior (T-35)	282	87,7%	2,67	52,6%	1,51	-13,7%	3,19	112,7%	
	Inferior (T-62)	2,02		2,43	38,9%			2,75	83,3%	
P-5	Superior (T-39)	2.00	93,4%	2,58	47,4%	1,63	-6,9%	3,36	124,0%	
	Inferior (T-66)	2,90		3,05	74,3%			2,95	96,7%	
P-6	Único (T-70)	2,21	47,1%	2,28	30,3%	2,28	30,4%	3,52	134,7%	
P-7	Único (T-73)	5,06	237,0%	2,02	15,4%	2,02	15,4%	4,97	231,3%	

Tabela 4.14. Resumo dos valores do fator do segurança calculado pelos métodos empregados e a sua diferença percentual em relação ao valor de referência.

Na análise da estabilidade individual para cada nível de tirante, pode-se observar que no caso de cortinas ancoradas por uma ou duas linhas de ancoragens, os maiores fatores de segurança são fornecidos pelo Método dos Elementos Finitos e os menores fatores de segurança são obtidos pelo

método Alemão. Quando a cortina apresenta três níveis de tirantes, o comportamento observado é o inverso.

Dos métodos para avaliação da segurança global, conforme pode ser observado no presente trabalho, o método mais conservador observado é o método Alemão, e isto pode ser atribuído ao fato de que a superfície potencial de ruptura considerada define uma cunha deslizante muito grande, ou seja, a massa de solo que se deve estabilizar para assegurar a estabilidade ou equilíbrio é muito maior em comparação aos outros métodos.

Com respeito ao método de Hoek & Bray (1981), pode-se observar que é um método bastante conservador.

Em relação aos resultados obtidos pelo Método dos Elementos Finitos, de forma geral, o maior fator de segurança é obtido no tirante superior e diminui para cada nível de ancoragem inferior, devido ao efeito das escavações sequenciais, do processo executivo por etapas e em menor grau à diminuição do comprimento dos tirantes.

De acordo com a experiência adquirida neste trabalho, a melhor estimativa da estabilidade interna de cortinas atirantadas é aquela determinada pelo método mais representativo das particularidades que cada projeto apresenta, em decorrência das limitações que cada método possui. A seguir, é apresentada uma análise crítica de cada método empregado.

O método de Hoek & Bray (1981) possui a formulação mais simples e de aplicação rápida, baseando no equilíbrio de forças simples de calcular utilizando apenas uma única equação. No entanto, na definição do modelo podem ser citadas as seguintes limitações: (i) para cortinas com várias linhas de tirantes a determinação de um fator de segurança global não leva em conta as possíveis diferenças entre os tirantes de cada linha, assim como a distribuição e/ou espaçamento dos tirantes na direção vertical e (ii) sendo a superfície potencial de ruptura pré-definida pelo método, segundo a teoria de Culmann não é considerado o efeito do comprimento do tirante na estabilidade.

Com respeito ao método Alemão, pode-se considerar um método analítico-gráfico medianamente complexo que requer para a sua aplicação um maior conhecimento técnico. Apesar de que também é considerada uma superfície potencial de ruptura plana, ela é pré-definida pelo método em função da inclinação, localização e distribuição dos tirantes no plano analisado e do comprimento dos trechos livres e ancorados. A determinação dos fatores de segurança por tirante permite levar em conta as diferenças geométricas de cada linha de tirantes.

Apesar de que o Método dos Elementos Finitos pode ser considerado o melhor método para a análise de estabilidade de cortinas complexas uma vez que: (i) permite considerar o efeito da espessura e rigidez da cortina de concreto, a diminuição dos parâmetros de resistência no contato solo-estrutura, o aumento das propriedades do solo localizado entre o bulbo e a parede devido à aplicação da carga de protensão nos tirantes, (ii) permite simular o processo executivo por etapas e as escavações sequenciais e (iii) permite utilizar o modelo constitutivo de solo que melhor ajusta o comportamento mecânico dos solos, entre muitos outros aspectos relevantes, ou sejá permite simular de forma mais completa e realista o problema das cortinas atirantadas, cuidados devem ser tomados na interpretação dos resultados. A seguir são apresentados alguns aspectos relevantes das simulações numéricas bidimensionais:

- Quanto à cortina de concreto, tendo em vista que a mesma é armada *in situ* após a escavação do trecho de solo correspondente a cada estágio, a influência da sua construção no estado de tensões do maciço não representa sérios problemas de modelagem, ao contrário do processo executivo de cortinas cravadas e escavadas. No entanto, aspectos da simulação da cortina simulada nesta pesquisa, considerados como fonte de erro são aqueles relacionados ao estado plano de deformação, tais como: a altura da cortina é diferente em ambos os lados da seção (com exceção do perfil 1), a posição e o espaçamento dos tirantes é variada, principalmente nas regiões perto das juntas entre os painéis.
- No que diz respeito aos tirantes, é evidente que não pode ser levado em consideração o verdadeiro estado de tensões (tridimensional), assim como a influência dos tirantes vizinhos na direção normal ao plano do problema. Segundo Brinkgreve *et al.* (2015), embora o estado preciso de tensões e a interação com o solo não possam ser simulados nos modelos 2D, é

possível estimar a distribuição das tensões, as deformações e a estabilidade da estrutura em um nível global.

Para casos complexos, a implementação conjunta dos métodos analíticos bem como o método numérico torna-se necessária para facilitar a tomada de decisões. A seguir é apresentado um roteiro de cálculo sugestivo e aproximado para a análise da estabilidade interna de uma cortina atirantada utilizando os quatro métodos empregados nesta dissertação.

- 1. Considerações iniciais:
- Definir a geometria do talude: Altura e inclinação da face e da parte superior;
- Identificar a presença de cargas externas, devido a estruturas vizinhas;
- Determinar os parâmetros de resistência ao cisalhamento coesão $c \in \emptyset$ e o peso específico;
- Identificar a profundidade do lençol freático.
- 2. Determinação da força de protensão utilizando o método Brasileiro
- Calcular o ângulo do plano crítico utilizando a equação de Culmann;
- Adotar um ângulo de inclinação dos tirantes com a horizontal (comumente entre 15 a 20°);
- Calcular o fator de segurança mínimo para a superfície crítica;
- Estimar as força de ancoragem;
- Determinar o comprimento do trecho livre mediante o calculo do ângulo de inclinação do plano de ancoragem;
- Calcular o comprimento do trecho ancorado;
- Definir a distribuição vertical e horizontal dos tirantes (espaçamentos);
- Definir a configuração final do projeto de acordo aos valores obtidos e as condições exigíveis pela norma, em relação aos aspectos de dimensionamento;
- Calcular a forças de protensão dos tirantes (carga de trabalho);
- Considerar os fatores segurança mínimos estabelecidos pela norma, segundo as solicitações do projeto (tirantes permanentes ou provisórios);
- Obter a carga de ruptura do tirante (carga de ensaio).

- 3. Determinação da força de protensão utilizando o método de Hoek & Bray (1981)
- Adotar o coeficiente de aceleração sísmica horizontal correspondente à região de estudo;
- Calcular a forças de protensão dos tirantes (carga de trabalho);
- Estimar a carga de ruptura do tirante (carga de ensaio).
- 4. Determinação da força de protensão utilizando o método Alemão
- Assumir um valor para o ângulo de atrito entre o solo e a cortina;
- Definir a disposição dos tirantes na cortina;
- Traçar a superfície de ruptura para cada nível de tirante, passando pelo centro do bulbo de ancoragem;
- Estimar os componentes da cunha ativa e do bloco de ancoragem;
- Calcular a reação ao empuxo de terra atuante na cortina;
- Determinar o peso do bloco deslizante;
- Calcular a pressão ativa sobre a parede equivalente de ancoragem;
- Estimar a contribuição da coesão na superfície de deslizamento;
- Desenhar o polígono de forças atuantes no bloco de ancoragem;
- Estimar graficamente a reação do solo sobre o plano de ruptura;
- Determinar graficamente a carga máxima do tirante (carga de ensaio);
- Calcular a força de protensão necessária no tirante (carga de trabalho);
- Calcular o fator de segurança global.
- 5. Análise mediante o Método dos Elementos Finitos
- Definir a estratigrafia da região de estudo;
- Definir o tipo de análise a realizar (em termos de tensões efetivas ou totais);
- Adotar um modelo constitutivo para cada uma das camadas de solo e/ou rocha;
- Obter mediante ensaios de campo, laboratório, correlações empíricas os parâmetros de cada modelo constitutivo;
- Validar os modelos constitutivos adotados (no caso que seja possível);
- Estabelecer as condições de contorno;
- Inserir os elementos estruturais;

- Aplicar elementos de interface na cortina e nos bulbos de ancoragem;
- Definir a malha de elementos finitos;
- Verificar as pressões hidrostáticas inicias;
- Calcular o estado de tensões iniciais;
- Definir as etapas de escavação e construção, de acordo ao processo executivo real da obra: construção da cortina de concreto, colocação do tirante e aplicação da carga de protensão;
- Realizar o cálculo das tensões e deformações em cada etapa de análise;
- Calcular o fator de segurança para cada nível de ancoragem.

4.2.2. INFLUÊNCIA DA ESTRATIGRAFIA NAS ANÁLISES NUMÉRICAS

Com o intuito de verificar a influência da estratigrafia no comportamento mecânico do solo e da cortina, foi feita a simulação numérica do perfil 1 utilizando os modelos estratigráficos dos Casos I e II comentados anteriormente. A comparação dos resultados dos deslocamentos horizontais e totais na cortina, assim como dos deslocamentos verticais na superfície do terreno (recalques) após final da construção, são apresentados na Figura 4.30 e Figura 4.31, respectivamente. Além disso, foram comparadas as cargas axiais ao longo dos trechos ancorados dos tirantes superior, médio e inferior (Figura 4.32).

Figura 4.30. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o Perfil 1.

Figura 4.31. Comparação dos deslocamentos verticais no terreno após final da construção para o perfil 1.

Figura 4.32. Comparação da carga axial ao longo do trecho ancorado (a) tirante superior (b) tirante médio e (c) tirante inferior para o perfil 1.

Nota-se que a ancoragem dos bulbos na camada de rocha alterada diminuiu os deslocamentos horizontais e totais previstos na cortina em cerca de 60% e os recalques do terreno em 65%. Apesar de tais diferenças, os valores previstos foram pequenos. Com relação à comparação das cargas

axiais ao longo dos trechos ancorados, duas diferenças podem ser observadas: uma diminuição significativa no tirante que se encontra completamente ancorado na rocha alterada (tirante inferior) e uma diminuição abrupta e mudança da carga axial no tirante superior e médio a partir do contato solo-rocha alterada (setas vermelhas).

Por último, foram comparadas as forças e momentos fletores atuantes ao longo da cortina após final da construção (Figura 4.33), onde é possível observar que não existem diferenças significativas nas forças cisalhantes e nos momentos fletores. Apenas uma pequena diferença nas forças axiais. Isto pode ser atribuído essencialmente ao fato de que, em ambos casos, a altura total da cortina foi executada na camada de solo residual.

Figura 4.33. Comparação do comportamento mecânico ao longo da cortina (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 1.
As diferenças observadas nos resultados da simulação numérica dos casos I e II para perfil 1 são congruentes com os resultados obtidos das análises dos perfis 2, 4, 5, 6 e 7. Por exemplo, para o perfil 2, foi produzida uma diminuição de 53% e 48% nos deslocamentos horizontais e totais na cortina, respectivamente (Figura 4.34) e de 47% no recalques na superfície do terreno, após final da construção (Figura 4.35).

Figura 4.34. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 2.

Figura 4.35. Comparação dos recalques da superfície do terreno após final da construção para o perfil 2.

Pode-se observar na Figura 4.36 a quebra abrupta na carga mobilizada ao solo pelo bulbo de ancoragem, bem no contato solo-rocha. Por sua vez, as pequenas diferenças obtidas na comparação das forças axiais, cisalhantes e momentos fletores atuantes ao longo da cortina são apresentadas na Figura 4.37.

Figura 4.36. Comparação da carga axial ao longo do trecho ancorado: (a) tirante superior, (b) tirante médio e (c) tirante inferior para o perfil 2.

Figura 4.37. Comparação do comportamento mecânico ao longo da cortina: (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 2.

A maior influência do modelo estratigráfico adotado no comportamento mecânico da parede, foi observada nos valores atípicos do perfil 3, devido ao fato de que é a única seção onde o bulbo do tirante superior (T-3), encontra-se completamente ancorado na camada de solo residual e o bulbo do tirante inferior (T-58), encontra-se ancorado completamente na camada de rocha alterada, além de isso o trecho ancorado do tirantes infeiror está localizado a uma distância muito próxima da parede (o comprimento do trecho livre é menor ao valor recomendado), de modo que uma parte da carga de trabalho aplicada neste tirante atua na parede de concreto. Como consequência, é produzida uma variação importante na distribuição e magnitude dos deslocamentos horizontais e totais ao longo da cortina (Figura 4.38). Também é produzida na região de influência do tirante inferior, uma diminuição considerável da força axial (Figura 4.39a), assim como um aumento das forças cisalhantes (Figura 4.39b) e dos momentos fletores ao longo da parede (Figura 4.39c). Por

sua vez, os deslocamentos verticais na superfície do terreno após final da construção, foram reduzidos 42% (Figura 4.40).

Figura 4.38. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 3.

Figura 4.39. Comparação do comportamento mecânico ao longo da cortina: (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 3.

Figura 4.40. Comparação dos deslocamentos verticais do terreno após final da construção para o perfil 3.

Com respeito à comparação das cargas axiais mobilizadas ao longo do bulbo de ancoragem, podese observar uma diferença maior no tirante que está ancorado completamente na camada de rocha alterada (tirante inferior), o que está de acordo com os resultados obtidos das análises dos outros perfis. Nota-se que tanto no tirante superior como no tirante inferior, em ambos casos (caso I e II), o bulbo está ancorado num único material, portanto não é apresentada uma quebra na componente mobilizada (Figura 4.41).

Figura 4.41. Comparação da carga axial ao longo do trecho ancorado: (a) tirante superior e (b) tirante inferior para o perfil 3.

De acordo com os resultados, a maior diferença nos deslocamentos horizontais na cortina devido à consideração da estatigrafia foi obtida na simulação do perfil 4 (82%), enquanto que os deslocamentos totais, assim como os recalques do terreno foram reduzidos em 60% e 57%, respectivamente (Figura 4.42 e 4.43).

Figura 4.42. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 4.

Figura 4.43. Comparação dos deslocamentos verticais do terreno após final da construção para o perfil 4.

Pode-se observar na Figura 4.44 uma diminuição da carga mobilizada ao longo do bulbo de ancoragem, para o tirante que fica completamente ancorado na rocha alterada (tirante inferior) e uma mudança da carga axial no tirante superior a partir do contato solo-rocha alterada (num terço do comprimento total do bulbo). A comparação das forças axiais, cisalhantes e momentos fletores atuantes ao longo da cortina, para os Casos I e II, são apresentados na Figura 4.45.

Figura 4.44. Comparação da carga axial ao longo do trecho ancorado (a) tirante superior e (b) tirante inferior para o perfil 4.

Figura 4.45. Comparação do comportamento mecânico ao longo da cortina no perfil 4: (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 4.

Para o perfil 5, a comparação dos resultados dos deslocamentos horizontais e totais na cortina e dos deslocamentos verticais na superfície do terreno (recalques) após final da construção, são apresentados nas Figura 4.46 e Figura 4.47, respectivamente. Complementarmente, são também mostradas as cargas axiais de cada tirante ao longo dos trechos ancorados (Figura 4.48) e as forças axiais, cisalhantes e momentos fletores atuantes ao longo da cortina (Figura 4.49). Pode-se observar que os deslocamentos horizontais e totais máximos foram reduzidos em 52% e 31%, respectivamente e os recalques na superfície do terreno diminuem 26%. Com respeito as forças e momentos atuantes ao longo da cortina é possível observar que houve uma tendência semelhante e pouca diferença entre os valores apresentados com diferentes estratigrafias assim como nas outras seções simuladas.

Figura 4.46. Comparação dos deslocamentos na cortina após final da construção (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 5.

Figura 4.47. Comparação dos deslocamentos verticais do terreno após final da construção para o perfil 5.

Figura 4.48. Comparação da carga axial ao longo do trecho ancorado (a) tirante superior e (b) tirante inferior para o Perfil 5.

Figura 4.49. Comparação do comportamento mecânico ao longo da cortina no perfil 5 (a) força axial, (b) força de cisalhamento e (c) momento fletor para o Perfil 5.

As menores diferenças nos deslocamentos horizontais e os deslocamentos totais ao longo da parede, assim como dos deslocamentos verticais na superfície do terreno foram obtidos nas seções ancoradas por uma única linha de ancoragens, ancoradas 70 % (perfil 6) e 85% (perfil 7) na rocha alterada. Para o perfil 6, a ancoragem dos bulbos na camada de rocha alterada diminuiu os deslocamentos horizontais, totais e os recalques do terreno em 16%, 11% e 42%, respectivamente (Figura 4.50 e Figura 4.51). Também são apresentados para o perfil 6 as cargas axiais de cada tirante ao longo dos trechos ancorados (Figura 4.52) e as forças axiais, cisalhantes e momentos fletores atuantes ao longo da cortina (Figura 4.53).

Figura 4.50. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 6.

Figura 4.51. Comparação dos deslocamentos verticais do terreno após final da construção para o perfil 6.

Figura 4.52. Comparação da carga axial ao longo do trecho ancorado para o perfil 6.

Figura 4.53. Comparação do comportamento mecânico ao longo da cortina no perfil 6 (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 6.

Para o perfil 7, a ancoragem dos bulbos na camada de rocha alterada diminuiu os deslocamentos horizontais, totais na cortina e os deslocamentos verticais na superfície do terreno (recalques) após final da construção em 6%, 13% e 43%, respectivamente (Figura 4.54 e Figura 4.55).

Figura 4.54. Comparação dos deslocamentos na cortina após final da construção: (a) deslocamentos horizontais e (b) deslocamentos totais para o perfil 7.

Figura 4.55. Comparação dos deslocamentos verticais do terreno após final da construção para o perfil 7.

Também são apresentados para o perfil 7 as cargas mobilizadas em cada tirante, ao longo dos trechos ancorados (Figura 4.56) e as forças axiais, cisalhantes e momentos fletores atuantes ao longo da cortina (Figura 4.57). É importante mencionar que nos perfis 6 e 7, além de apresentarem uma única de ancoragem e menor comprimento total de bulbo ancorado na rocha alterada (no caso

II), possuem as menores alturas de cortina dente as analisadas e portanto as menores diferenças entre os valores observados.

Figura 4.56. Comparação da carga axial ao longo do trecho ancorado para o perfil 7.

Figura 4.57. Comparação do comportamento mecânico ao longo da cortina (a) força axial, (b) força de cisalhamento e (c) momento fletor para o perfil 7.

Na Tabela 4.15 é apresentado o resumo dos deslocamentos calculados na simulação numérica dos casos I e II. Observa-se que os deslocamentos horizontais e totais medidos no topo da cortina, assim como os deslocamentos na superfície do terreno, diminuem quando os trechos ancorados dos tirantes são ancorados na camada de rocha alterada (Caso II). De maneira quantitativa foi observado que:

- Os deslocamentos horizontais máximos foram reduzidos entre 6 e 82%, apresentando um valor médio de 50%;
- Os deslocamentos totais diminuíram entre 13 e 64%, com valor médio de 38%;
- Os recalques na superfície do terreno diminuem entre 26 e 82%, mostrando um valor médio de 50%.

		Deslocamentos														
Perfil	Horizo	ontais na co	ortina	Tot	ais na corti	na	Recalque do terreno									
	Caso I	Caso II	%	Caso I	Caso II	%	Caso I	Caso II	%							
P-1	-0,28	-0,11	61%	0,47	0,17	64%	-0,377	-0,138	63%							
P-2	-0,36	-0,36 -0,17 53		0,64	0,33	48%	-0,53	-0,28	47%							
P-3	-0,40),40 -0,60 -50%		0,68	1,03	-51%	-0,55	-0,10	82%							
P-4	-0,28	-0,28 -0,05 82		0,63	0,25	60%	-0,56	-0,24	57%							
P-5	-0,21 -0,10 52%		52%	0,58	0,40	31%	-0,53	-0,39	26%							
P-6	0,44	0,51	-16%	0,66	0,66 0,59		-0,46	-0,27	42%							
P-7	0,80	0,75	6%	0,91	0,79	13%	-0,42	-0,24	43%							

Tabela 4.15. Comparação dos deslocamentos calculados na simulação numérica dos casos I e II.

É importante ressaltar que estes valores percentuais são válidos apenas para a comparação desenvolvida nesta pesquisa, já que a utilização de outros parâmetros dos modelos constitutivos empregados na simulação do comportamento mecânico das camadas de solo e rocha irão gerar resultados diferentes.

Com respeito às cargas de trabalho, é apresentada na Tabela 4.16 uma comparação percentual dos valores da somatória ao longo do trecho ancorado das forças mobilizadas, em cada nível de

ancoragem para cada seção analisada, em relação à carga de trabalho adotada no projeto (carga aplicada no tirante). Nota-se que, em média, o 63% e 65% da carga de protensão aplicada nos tirantes, foi mobilizada ao longo do trecho ancorado para os casos I e II, respectivamente. Em relação aos resultados obtidos por tirante, pode-se observar um acréscimo da carga mobilizada de 1 até 5%. É evidente que, no caso II, a carga mobilizada ao longo do bulbo de ancoragem depende do comprimento do bulbo ancorado na camada de rocha alterada, no entanto, em geral em relação à carga de trabalho aplicada as forças mobilizadas nas cortinas ancoradas por uma única linha de tirantes (P-6 e P-7) apresentaram valores menores.

Tabela 4.16. Comparação das cargas aplicadas dos tirantes e as cargas mobilizadas ao longo do trecho ancorado.

Perfil	Tirante	Carga aplicada	MEF (kN/m)							
1 cmm	Thunte	(kN/m)	CAS	SO I	CAS	II OS				
	Superior (T-3)		33,87	64%	34,93	66%				
P-1	Médio (T-17)	52,95	34,04	64%	34,56	65%				
	Inferior (T-44)		31,55	60%	30,29	57%				
	Superior (T-14)		44,30	62%	44,91	63%				
P-2	Médio (T-28)	71,69	45,70	64%	47,43	66%				
	Inferior (T-55)		45,82	64%	47,30	66%				
P-3	Superior (T-31)	59.36	39,33	66%	40,69	69%				
15	Inferior (T-58)	57,50	39,07	66%	40,98	69%				
P-4	Superior (T-35)	58.80	39,48	67%	41,55	71%				
1 7	Inferior (T-62)	50,00	42,97	73%	43,41	74%				
P-5	Superior (T-39)	53.40	34,30	64%	34,57	65%				
	Inferior (T-66)	55,40	31,55	59%	34,28	64%				
P-6	Único (T-70)	51,31	27,12	53%	27,51	54%				
P-7	Único (T-73)	45,97	26,36	57%	26,50	58%				

Na Tabela 4.17 é apresentada a comparação entre as cargas de trabalho calculadas pelo método Brasileiro e as cargas mobilizadas ao longo do bulbo e calculadas pelo MEF a partir da carga de

projeto aplicada no tirante (157kPa). Conforme pode ser observado, de um modo geral as diferenças entre as cargas calculadas pelo método Brasileiro e as fornecidas pelo MEF aumentam para cortinas com múltiplas linhas de ancoragens. Já que a hipótese de considerar uma carga de trabalho global numa seção, ou sejá um valor da carga de trabalho igual em todas as linhas de ancoragens na seção analisada é menos atingida nas simulações numéricas entre maior seja o número de linhas de ancoragens. As cargas de trabalho mobilizadas ao longo do bulbo de ancoragens são maiores, devido ao fato de que na obra foram aplicadas cargas de protensão nos tirantes maiores as cargas calculadas pelo método Brasileiro.

Tabela 4.17. Comparação das cargas de trabalho calculadas pelo método Brasileiro e as mobilizadas ao longo do bulbo ecalculadas pelo MEF a partir da carga de rojeto aplicada no tirante.

Perfil	Tirante	Brasileiro		MEF (l	kN/m)			
	Thulle	(kN/m)	CAS	I OI	CAS	SO II		
	Superior (T-3)		33,87	68%	34,93	66%		
P-1	Médio (T-17)	23,06	34,04	68%	34,56	67%		
	Inferior (T-44)		31,55	73%	30,29	76%		
	Superior (T-14)		44,30	46%	44,91	46%		
P-2	Médio (T-28)	20,47	45,70	45%	47,43	43%		
	Inferior (T-55)		45,82	45%	47,30	43%		
P_3	Superior (T-31)	22.11	39,33	56%	40,69	54%		
1 5	Inferior (T-58)	22,11	39,07	57%	40,98	54%		
P-4	Superior (T-35)	10.80	39,48	27%	41,55	26%		
1	Inferior (T-62)	10,00	42,97	25%	43,41	25%		
P-5	Superior (T-39)	8 65	34,30	25%	34,57	25%		
1 5	Inferior (T-66)	0,05	31,55	27%	34,28	25%		
P-6	Único (T-70)	7,87	27,12	29%	27,51	29%		
P-7	Único (T-73)	0,00	26,36		26,50			

Pode-se observar também que as diferenças entre os valores obtidos na simulação dos casos I e II são da ordem de 1%, 2%, até um máximo 3%, denotando pouca influência do modelo estratigráfico adotado.

Devido ao fato deo fator de segurança mínimo cálculado para o perfil 7 sem a cortina é maior ao valor de 1,5 exigido pela norma, a força de ancoragem necessaria no tirante é zero, e qualquer força de protensão aplicada no projeto matematicamente vai produzir uma diferença percentual muito grande. Por isso decidiu-se não comparar as cargas neste perfil.

É importante mencionar que no método Brasileiro a carga de trabalho global é calculada apenas em função da altura da cortina, da inclinação da face do talude e da declividade da superfície do terreno, portanto seu valor diminui sucessivamente do perfil 1 ao perfil 7 pois as alturas da cortina diminuem nessa ordem. Por sua vez, na simulação numérica, são consideradas, além da distribuição e localização dos tirantes na parede, os comprimentos dos trechos livres e ancorados, assim como o grau de ancoragem do bulbo na camada de rocha alterada (no caso II), dentre outros aspectos relevantes.

As tensões cisalhantes atuantes no maciço de solo, assim como a superfície de ruptura potencial ao final da construção, são apresentadas na Figura 4.58. e Figura 4.59 para o caso I e na Figura 4.61 e Figura 4.62 para o caso II.

40,00 20,00

60,00 20,00 80,00

Figura 4.58. Comportamento mecânico do maciço de solo ao final da construção (a) tensões de cisalhamento e (b) superfície de ruptura potencial. Caso I.

P-7 (a)

P-7 (b)

Para os perfis analisados, nota-se que, com a colocação e protensão dos tirantes é desenvolvida uma extensa zona de plastificação do maciço na iminência do colapso (com a aproximação da condição de colapso). Em comparação com as superfícies de ruptura pré-definidas pelos métodos analíticos, a superfície calculada pelo MEF é localizada a uma profundidade maior do que o pé da cortina, passando além do comprimento total dos bulbos de ancoragens até a superfície do terreno. O fato de que os bulbos de ancoragens se encontram completamente dentro da superfície de deslizamento é congruente com a hipótese de que, com a colocação da carga nos tirantes, nenhuma superfície de escorregamento ocorre ao longo de qualquer plano que passa pelo pé da cortina e o bulbo para um fator de segurança maior que 1,5.

Pode-se observar que a superfície de ruptura circular resultante do próprio processo de cálculo no Método Dos Elementos Finitos é desenvolvida no caso I, só em função das propriedades do solo (homogêneo) e da localização dos tirantes. No caso II, o desenvolvimento da superfície potencial de ruptura é influenciado pela distância entre os elementos estruturais (parede e bulbos de ancoragens) e a camada de rocha alterada, e portanto pelo nível de ancoragem do tirante (maior ou menor) nessa camada, já que a ruptura não vai acontecer na rocha alterada, devido a suas boas propriedades mecânicas. Nota-se que nos perfis 5, 6 e 7 os deslocamentos são distribuídos apenas próximos ao pé da cortina, na base da escavação e da face da cortina. Assim, a superfície de ruptura muda se a estratigrafia é considerada de forma mais adequada com a presença da rocha. E isso implicou nas mudanças observadas nos fatores de segurança.

Com relação às tensões de cisalhamento, estas são desenvolvidas principalmente embaixo da parede e na região localizada entre os bulbos de ancoragens, onde atuam as forças de protensão aplicadas nos tirantes. Cabe salientar que, segundo a convenção de sinais adotada pelo programa, a compressão é considerada negativa, ou seja, o vetor de tensão σ'_{xx} é negativo no sentido oposto à normal ao plano x e a tensão de cisalhamento σ'_{xy} é positivo em direção oposta ao eixo y (Figura 4.60).

Figura 4.60. Convenção de sinais adotada pelo PLAXIS para tensões (Brinkgreve et al., 2015).

Nota-se que as tensões de cisalhamento desenvolvidas ao final da construção da obra, no maciço de solo composto por uma única camada de solo residual para os perfis 1, 2 e 3 tem valores entre 30 e -50 kN/m² e entre 5 e 30 kN/m² no caso dos perfis 4, 5, 6 e 7. Na simulação do caso II é produzida uma leve diminuição das tensões cisalhantes, assim como uma redistribução e maior

concentração das mesmas no contato solo-camada de rocha alterda e no contato rocha alteradarocha sã.

Figura 4.61. Comportamento mecânico do maciço de solo ao final da construção (a) tensões de cisalhamento e (b) superfície de ruptura potencial. Caso II.

Figura 4.62. Comportamento mecânico do maciço de solo ao final da construção (a) tensões de cisalhamento e (b) superfície de ruptura potencial. Caso II.

A superfície de ruptura desenvolvida no perfil 6 corresponde com uma superfície de deslizamento do maciço que não se encontra na região reforçada com os tirantes, sendo o mecanismo de ruptura formado como consequência da declividade da superfície do terreno na porção superior à cortina, tendo em vista que a região onde encontram-se os tirantes está com fator de segurança maior.

5. CONCLUSÕES E SUGESTÕES PARA PESQUISAS FUTURAS

5.1. CONCLUSÕES

Esta dissertação de mestrado procurou avaliar os métodos que consideram o estado plano de deformação na análise de estabilidade interna de cortinas atirantadas, assim como a influência do modelo estratigráfico adotado nas simulações numéricas. A seguir são apresentadas as principais conclusões obtidas:

As especificações sobre a análise de estabilidade interna de cortinas executadas em rocha não são tratadas pela norma Brasileira, NBR-5629 e para cortinas em solo não existe uma metodologia definida para escolher o método de cálculo empregado, ficando a critério e experiência do engenheiro projetista da obra.

O método mais fácil e rápido de aplicar é o método de Hoek & Bray (1981), já que o fator de segurança pode ser calculo com apenas uma equação, mas devido às muitas simplificações adotadas na sua formulação os valores obtidos são bastantes conservadores.

O método de Ranke & Ostermayer (1968) ou método Alemão é o método mais conservador na análise da estabilidade global, já que a superfície de ruptura considerada pelo método, define uma cunha deslizante ou bloco a estabilizar muito grande em relação aos outros métodos.

Em cortinas ancoradas por uma ou duas linhas de tirantes, os maiores fatores de segurança individuais são fornecidos pelo Método dos Elementos Finitos e os menores fatores de segurança são obtidos pelo método Alemão. Em cortinas com três níveis de tirantes, é apresentado um comportamento inverso.

Para casos complexos, a análise da estabilidade interna de cortinas atirantadas deve ser desenvolvida implementando conjuntamente os métodos analíticos, bem como o método numérico. Por isso foi desenvolvido e apresentado nesta dissertação um roteiro de cálculo sugestivo e aproximado, para que os engenheiros possam a partir do método convencional Brasileiro dimensionar satisfatoriamente o projeto de contenção.

Determinou-se que as forças de trabalho adotadas no projeto, são muito maiores às forças necessárias para alcançar o fator de segurança mínimo de projeto de 1,5, segundo o método Brasileiro, o qual é consequente com os valores dos fatores de segurança altos, obtidos pelos métodos analíticos e as análises numéricas.

As diferenças observadas no comportamento mecânico do solo e das estruturas mostram a importância de se considerar nas análises um modelo estratigráfico mais realista do terreno, baseado numa extensa investigação geotécnica do subsolo.

Com respeito ao comportamento mecânico do solo, a ancoragem dos bulbos na camada de rocha alterada diminuiu os deslocamentos horizontais e totais na cortina em cerca de 50 e 38%, respectivamente e os recalques do terreno em 50%. Também foi obtida uma melhoria dos fatores de segurança cerca de 20%.

Com respeito ao comportamento mecânico das estruturas, não foram observadas diferenças significativas nas forças cisalhantes e nos momentos fletores atuantes ao longo da parede de concreto armado e apenas uma pequena diferença nas forças axiais. Devido essencialmente a dois fatores; nos dois casos a cortina de concreto armado foi executada e embutida na camada de solo residual e a distância correta dos trechos ancorados à parede evita que as cargas de protensaõ atuem na parede de concreto. Com exceção do perfil 3, onde a ancoragem do bulbo do tirante inferior na camada de rocha alterada produz na parte média e inferior da cortina uma diminuição considerável da força axial, um aumento das forças cisalhantes e dos momentos fletores e uma variação na distribuição e magnitude dos deslocamentos horizontais e totais ao longo da cortina. Sendo necessário neste tirante (T-58) aumentar o comprimento do trecho livre de maneira que as cargas de protensão aplicadas não atuem na parede.

Em cortinas que representam um problema geotécnico complexo, em virtude da sua irregularidade geométrica e à complexidade na disposição dos elementos estruturais, a simplificação em seções "representativas" e a análise considerando o estado de deformação plana mediante o MEF, permitem resolver o problema de forma pratica e satisfatória, mas deve-se ter em conta que são excluídos das análises alguns aspectos importantes do carácter tridimensional da obra, tais como,

o efeito de curvatura da cortina, o efeito de canto nas regiões próximas às bordas, o efeito de arqueamento das tensões entre os tirantes, além das interações entre todos os elementos estruturais.

5.2. SUGESTÕES PARA PESQUISAS FUTURAS

Para pesquisas futuras que desejam melhorar, aprofundar ou continuar com a linha de pesquisa desenvolvida nesta dissertação, a seguir são apresentadas as principais sugestões:

Por tratarem-se de solos que a maior parte do ano se encontram não saturados, seria importante considerar o efeito da sucção nos parâmetros de resistência e rigidez, para o qual se devem realizar ensaios de laboratórios triaxiais e oedométricos para diferentes graus de saturação do solo.

Efetuar uma modelagem numérica 3D utilizando o software PLAXIS 3D ou qualquer outro programa de elementos finitos, que permita considerar o carácter tridimensional da obra, e seja uma aproximação mais real do problema.

Com o objetivo de validar as simulações numéricas desenvolvidas, os valores obtidos devem ser comparados com os valores experimentais medidos como parte do monitoramento da obra no campo, durante as etapas de execução e serviço da obra.

REFERÊNCIAS BIBLIOGRÁFICAS

ABRAHAM, K. (2007). Three dimensional behavior or retaining wall system. Dissertation of doctor degree, Department of Civil and Environmental, Engineering Louisiana State University and Agricultural and Mechanical College, Louisiana, 241 p.

Alam, M. J. & Siddiquee, Md. S. (2014). A parametric study of anchored earth wall by finite element method. KSCE Journal of Civil Engineering, 18 (7): 2034-2042.

ALICIUC, C-L & MUŞAT, V. (2013). Ground anchors impact analysis on adjacent buildings. Buletinul Institutului Politehnic Din Iaşi, 4: 65-74.

ALICIUC, C.L & MUSAT, V. (2013). Identification of soil models by simulation of ground anchor test, using FEM. Buletinul Institutului Politehnic Din Iași, 59: 145-154.

ABNT NBR-5629 (1996). Execução de tirantes ancorados no terreno. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, 24 p.

ABNT NBR-6484 (2001). Solo-Sondagen de simples reconhecimento com SPT- Método de ensaio:. Associação Brasileira de Normas Técnicas, Rio de Janeiro, RJ, 17 p.

BEZERRA, G.J.G. (2012). Modelagem numérica de estruturas de contenção. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, 142 p.

BRINKGREVE, B.J., KUMARSWAMY, S & SWOLFS. V.M. (2016a). PLAXIS 3D, reference manual, Plaxis v.8.0. A. A. Balkema Publishers, 437 p.

BRINKGREVE, B.J., KUMARSWAMY, S. & SWOLFS. V.M. (2016b). PLAXIS 3D, anniversary edition. Tutorial manual. Plaxis v.8.0. A. A. Balkema Publishers, 130 p.

BS EN-1537 (2000). European standard–execution of special geotechnical work – ground anchors, European Committee for Standardization (CEN), Brussels, Belgium, 63 p.

BUSTAMANTE, M. & DOIX, B. (1985) Une méhode pour le calcul des tirants et micropieux injectées. Bulletin des Liaison des Laboratoires des Ponts et Chaussées, França. Vol. 140.

CHIOSSI, N.J. (2013). Geología de Engenharia. Oficina de Textos. Sáo Paulo, Brasil, 424 p.

DANTAS, M. E. (2000). Estudo Geoambiental do estado de Rio de Janeiro. Ministério de Minas e Energia-Serviço Geológico do Brasil (CPRM), Brasília, 63 p.

EUROCODE 7 (2004). Geotechnical design - Part 1: General rules. European Committee for Standardization (CEN), London, England, 169 p.

GEORIO (2000). Manual técnico de encostas. Fundação Instituto de Geotécnica do Município do Rio de Janeiro, Rio de Janeiro, Brasil. Vol. 4, 2ed.

GERSCOVICH, D.M.S., DANZIGER, B, R. & SARAMAGO, R. (2016). Contenções: Téoria e aplicações em obras. Oficina de Textos. Sáo Paulo, Brasil, 319 p.

GOOGLE EARTH (2012), Disponível em: https://maps.

GOMES SILVA, A.M.B. (2005) Condicionantes geológico-geotécnicos de escavação grampeada em solo residual de gnaisse. Dissertação de Mestrado, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia é a unidade da Universidade Federal do Rio de Janeiro (COPPE-UFRJ), Rio de Janeiro, 105 p.

HAN, J-Y., ZHAO, W., CHEN, Y., JIA., P-J & GUAN, Y-P. (2017). Design analysis and observed performance of a tieback anchored pile wall in sand. Mathematical Problems in Engineering, 1-23.

HOSSEINIAN, S & SEIFABAD, C.M. (2013). Optimization the distance between piles in supporting structure using soil arching effect. Journal of Civil Engineering and Urbanism, 3 (6): 386-391.

HENRIQUES JUNIOR, P.R.D. (2007). Simulação numérica de ensaios de arrancamento de grampo. Dissertação de Mestrado, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia é a unidade da Universidade Federal do Rio de Janeiro (COPPE-UFRJ), Rio de Janeiro, 125 p.

HSU, S.T. (2012). Behavior of pressure-grouted anchors in gravel. Canadian Geotechnical Journal, 49: 719-728.

IBAÑEZ, J.P. (2003). Modelagem constitutiva para solos com ênfase em solos não saturados. Dissertação de Mestrado. Programa de Pós-Graduação em Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 230 p.

KRANZ, E. (1953). Über verankerung von spundwänden (Acerca da ancoragens de cortinas de estacas-prancha). Verlag von Wilhelm Ernst & Sohn, Berlin, Alemanha.

LEITE, R. A. (2007) Estudo do comportamento de grampos com fibras de polipropileno, Dissertação de Mestrado, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia é a unidade da Universidade Federal do Rio de Janeiro (COPPE-UFRJ), Rio de Janeiro, 150 p.

LIMA, A. P. (2007). Comportamento de uma escavação grampeada em solo residual de gnaisse. Tese de Doutorado, Programa de Pós-Graduação em Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 431 p. MAGALHÃES, M. A. (2005). Resistência ao arrancamento de grampos com fibras de polipropileno, Dissertação de Mestrado, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia é a unidade da Universidade Federal do Rio de Janeiro (COPPE-UFRJ), Rio de Janeiro, 124p.

MAGALHÃES, S.M. (2015). Dimensionamento de estruturas de contenção atirantadas utilizando os métodos de equilíbrio limite e de elementos finitos. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro da PUC-Rio, Rio de Janeiro, 192 p.

MECSI, J. (1997). Analysis of grouted soil anchors. Proc. International Symposium Anchor in theory and Practice, Salzburg, Germany: 77-87.

MENDES, B.F. (2010). O uso de ferramenta computacional na avaliação e dimensionamento de cortina atirantada. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia Civil da UFOP, Escola de Minas da Universidade Federal de Ouro Preto, Ouro Preto, 148 p.

MOLLAHASANI, A. (2014). Application of submerged grouted anchors in sheet pile quay walls. Esame finale de Dottorato, Dipartimento di Ingegneria Civile, Ambientale e dei Materiali, Universita di Bologna, Bologna, Itália, 125 p.

MORE, P.J.Z. (2003). Análise numérica do comportamento de cortinas atirantadas em solos. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia Civil da PUC-Rio, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 120 p.

NIETO, L.A., CAMACHO, T.J.F. & RUIZ, B.E.F. (2009). Determinación de Parámetros para los modelos elastoplásticos Mohr-Coulomb e Hardening Soil en suelos arcillosos. Revista Ingenierías Universidad de Medellín, 8 (15): 75-91.

NUNES, A.J.C. (1987) Ground pré-stressing, first casagrande lecture. 8th PanAmerican Conference on Soil Mechanics and Foundation Engineering, Cartagena, Colômbia.

NUNES, A.J.C. & VELLOSO, D.A. (1963) Estabilização de taludes em capas residuais de origem granito-gnáissica. 2nd PanAmerican Conference on Soil Mechanics and Foundation Engineering, Brasil, pp. 383-394.

OLIVEIRA, C.P. (2000). Estudo do comportamento tensão-deformação-resistência de um solo residual de biotita gnaisse saturado. Programa de Pós-Graduação em Engenharia Civil da Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 140 p.

OLIVEIRA, C.P. (2011). Comportamento mecânico de um solo residual naturalmente cimentado. Tese de doutorado, Programa de Pós-Graduação em Engenharia Civil da Universidade Federal de Viçosa, Minas Gerias, 220 p.

OLIVEIRA, A.M.S. & BRITO, S.N.A. (1998) Geología de Engenharia. São Paulo: Asociação Brasileira de Geología de Engenharia-ABGE, São Paulo, 586 p.

ORTIGAO, A.R & BRITO, H. (2004). Tieback Walls. Handbook of slope stabilization, A.R. Ortigao & F.J Sayao (eds.) Springer-Verlag, Berlin, Germany, pp. 311-353.

PACHECO, M. P. & DANZINGER, F.A.B. (2001). O método de Ranke & Ostermayer para o dimencionamento de cortinas atirantadas: una extensão ao caso de solos com coesão. III Conferência Brasileira sobre Estabilidade de Encostas (COBRAE), Rio de Janeiro.

PINELO, A. M. S. (1980). Dimensionamento de ancoragens e cortinas ancoradas. Laboratório Nacional de Engenharia Civil-LNEC. Lisboa, Portugal, 170 p.

PEREZ, L.R.F. (2017). Inclusões rígidas para o controle de recalques nos solos colapsáveis do Distrito Federal. Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia Civil, Universidade de Brasília (UnB), Brasília, 156 p.

PROTO SILVA, T. (2005). Resistência ao arrancamento de grampos em solo residual de gnaisse, Dissertação de Mestrado, Programa de Pós-Graduação em Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 140 p.

RANKE, A. & OSTERMAYER, H. (1968) Beitrag zur stabilitatsuntersuchung mehrfach verankerter baugrubemumschlie (Contribuição para o estudo da estabilidade de taludes de materiais de construção com cortinas multiancoradas). Die Bautechnik, Alemanha, 45 (10): 341-350.

REIS, R. M. (2004). Comportamento tensão-Deformação de dois horizontes de um solo residual de gnaisse. Tese de Doutorado, Programa de Pós-Graduação em Engenharia Civil, Escola de Engenharia de São Carlos da Universidade de São Paulo, São Paulo, 198 p.

SANTOS, A.F. (2013). Avaliação do desempenho de uma cortina de estacas espaçadas, atirantadas, em areias. Dissertação de mestrado, Programa de Pós-Graduação em Engenharia Civil, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, 144 p.

SABATINI, P.J., PASS, D.G. & BACHUS, R.C. (1999). Ground Anchors and Anchored Systems, Geotechnical engineering circular No. 4-Technical manual. FHWA-IF-99-015. U.S Department of Transportation, Office of Bridge Technology, Federal Highway Administration, Washington, D.C, 304 p.

SARÉ, A. R. (2007). Monitoramento e análise de escavação grampeada em solo residual, Tese de Doutorado, Programa de Pós-Graduação em Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 336 p.

SOLOTESTEENGENHARIA LTDA. (2013a). Relatório de projeto para a obra situada na estrada da Cachamorra, Campo Grande, Rio de Janeiro, RJ - Calper.Relatório de sondagens à percussão. Relatório Técnico, Rio de Janeiro.

SOLOTESTE ENGENHARIA LTDA. (2013b). Relatório de projeto para a obra situada na estrada da Cachamorra, Campo Grande, Rio de Janeiro, RJ - Calper.Relatório de sondagens mistas I. Técnico, Rio de Janeiro.

SOLOTESTE ENGENHARIA LTDA. (2014a). Relatório de projeto para a obra situada na estrada da Cachamorra, Campo Grande, Rio de Janeiro, RJ - Calper.Relatório de sondagens mistas II. Relatório Técnico, Rio de Janeiro.

SOLOTESTE ENGENHARIA LTDA. (2014b). Relatório de projeto para a obra situada na estrada da Cachamorra, Campo Grande, Rio de Janeiro, RJ - Calper.Relatório de ensaios de recebimento. Relatório Técnico, Rio de Janeiro.

SOLOTESTE ENGENHARIA LTDA. (2014c). Relatório de projeto para a obra situada na estrada da Cachamorra, Campo Grande, Rio de Janeiro, RJ - Calper. Relatório das perfurações para colocação dos tirantes. Relatório Técnico, Rio de Janeiro.

SPRINGER, F. O. (2006). Ensaios de arrancamento de grampos em solo residual de gnaisse, Tese de Doutorado, Programa de Pós-Graduação em Engenharia Civil, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, 310 p.

ŠTEFANAK, J., MICA, L., CHALMOVSKÝ, J., LEITER, A. & TICHÝ, P. (2016). Full-scale Testing of Ground Anchors in Neogene Clay. Modern Building Materials, Structures and Techniques, MBMST, República Checa, 172: 1129-1136.

SURARAK, C., LIKITLERSUANG, S., WANATOWSKI, D., BALASUBRAMANIAM, A., OH, E & GUAN, H. (2012). Stiffness and strength parameters for hardening soil model of soft and stiff Bangkok clays. Journal Soil and Fundation, 52 (4): 682-697.

TAN, H. B., JIAO, Z & CHEN, J. (2018). Field testing and numerical analysis on performance of anchored sheet pile quay wall with separate pile-supported platform. Marine Structures, 58: 382-398.

YAJNHESWARAN., RANJAN, H. S. & SUBBA RAO. (2015). Analysis of the effect of anchor rod on the behavior of diaphragm wall using Plaxis 3d. International Conference on Water Resources, Coastal and Ocean Engineering (ICWRCOE 2015), 4:240-247.

APÊNDICE I. DESCRIÇÃO DAS PERFURAÇÕES DOS TIRANTES

	The second secon										
		TuA nino	LIN UNITARIA	STHUR II	Comprimento fotal (m)	Solo (m)	Roche (m)	Tirantes	Comprimento total (m)	Solo (m)	Rocha (m
	14,0	10,0	4,0	17	10,0	6.0	40	33	12.0	100	00
	14,0	0,01	0,4	18	10.0	4 M	U V	NC.	0.01	D'91	n'n
	14,0	10.0	4.0	10	00	~~~	21	10	12,0	12,0	0'0
	14.0	10.01	OV.	21	0,01	0'9	4,0	35	12,0	12,0	0'0
	14.0	0.01	0,4	5U	10,0	6,0	4,0	36 '	12,0	12.0	00
	n'L1	10,01	4,0	21	10,0	6,0	4.0	37	12.0	12.0	00
	14,0	10,0	4,0	22	10.0	60	4.0	38	150	15,0	200
	14,0	10,0	4.0	23	10.0	V 7	01	00	0'91	14,0	0'0
	14,0	10.01	40	VC	0.01	0,0	4,0	39	12,0	12,0	0'0
	14.0	10.0	01	11	0(21	8,0	4,0	40	14,0	11,0	3,0
	14.0	0.01	N'#	C2	12,0	8,0	4,0	41	14,0	11,0	3.0
	0'11	2.0	0'6	26	12,0	8,0	4,0	42	10	00	01
	D' #1	2,0	5,0	27	12.0	80	40	42	0.4	00	2 0
	14,0	9,0	5.0	28	12.0	00		2	D''	0'0	0.7
	14.0	10.0	40	00	0,11	0'0	0,4	44	0'6	1,0	8,0
	14.0	10.0	N.	63	1/21	12,0	0,0	45	0,6	1,0	8,0
	10.0	~~~~	N'4	20	13,0	10,0	3,0	46	0.6	1.0	08
	D'01	0'0	4,0	31	12,0	12,0	0.0	47	0.0	1 5	t
-	10,0	6,0	4,0	32	13,0	10,0	3.0	48	000	1,1	C' 1
	216,0	149,0	67,0		180,0	126,0	54,0		171.0	0.01	1009

	Rocho (m)	full minore	0'0	3,0	3.0	30	000	0'0	3,0	3,0	5.0	0	201	0,6						39,0		
te D1	Solo (m)	40	27	0'/	7.0	70	10	0.4	N'N	1,0	5.0	C u	2.0	n'c						61,0		
Cortina 02, lo	Comprimento total (m)	0.01	0.01	n'or	10,0	10.0	10.0	000	0'01	10,0	10,0	10.0	0.01	0,01						100,0		
Cortina 02, lote 01	Tirontes	65	44	00	67	68	69	70	1	1/	72	73	74								_	
	Rocha (m)	7.5	0 2	21	0'/	7,0	7.0	50	E O	0.0	5,0	5,0	50	50	50	60	6.0	6,0	6,0	94,5	Rocha (m)	313,5
	50lo (m)	1,5	20	c c	C'N	2,0	2,0	4.0	4.0	A.1	4,0	4,0	4.0	4.0	4.0	3,0	3,0	3,0	4,0	50,5	Solo (m)	498,5
	Comprimento totol (m)	0'6	9,0	00	200	9,0	0'6	0.6	0.6	00	0'6	9,0	0'6	0,9	0'6	0'6	0'6	0'6	10,0	145,0	Comprimento total (m)	812,0
and the second s	Tirantes	49	50	53	80	20	53	54	55	R4	00	10	58	59	60	61	62	63	64		Total	

APÊNDICE II. SONDAGENS A PERCUSSÃO SPT

PENETRAÇÃO No. de quedas dos 30 cm finais	(Nspt) PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO		Diagr Pen 30 cn 30 cn	ama das etrações n finais n iniciais	3	
			+	- 30.00 (boca	do furo)				№ de golpes 10	/ % de R 20	ecuperação 30	
25/30		-1.80	28.20		COBERTURA VEGE ARGILA SILTOSA D	TAL (0,00M A -0,11 URA AMARELA (-0,	M) 11M A -1,80M)			20		
9/30	_	-3 20	26.80		SILTE ARGILOSO M	ÉDIO CINZA E AM.	ARELO			8		
29/30 50/30				3 	SILTE COM AREIA I CINZENTO AMAREI	FINA COMPACTO A ADO MICÁCEO (S	MUITO COMPACTO OLO RESIDUAL)					
30/15	_	-5 98	24.02	5								
		0.00		<u></u>	Limite da perfura	ção (Impenetráv	vel à percussão)					
	Cota	ι topográ	fica form	lecida pelo	cliente.		Ensaio de La Tempo 10 minutos 10 minutos 10 minutos	vagem/Tem La 0. 0.	po: avagem 02m 01m 00m			
Diân Amo	Son Netro do reve strador padr	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostras Altura de Peso do	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	ca	COTA DO N	I.A. +26.50)		
	50I	O T	ESI	r E	DATA INICIA DATA FINAI	AL: 1/3/2013	PERFIL SP 20			FSC		00
	NGENI	iària		DĀ	DESENHO		LOCAL			_00		
			\checkmark	\checkmark	Gustavo		Estrada da Cacha	morra				
_			\Box		SONDADOF	} 0	Campo Grande - F	Rio de Janei	ro - RJ			
	AV. RIO BRA TELS. : FAX: 2	NCO, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 25 IO DE JANE	1817-1820 24.3326 IRO - RJ	ENG. RESP	•	CALPER					

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE NÍVEL D'ÁGUA DO SOLO (m) DO SOLO (m) DO SOLO (m) DO SOLO (m) DO SOLO (m) DO SOLO (m)							Diagrama das Penetrações 30 cm finais				
+		l	• • • •	· 37.50 (boca	do furo)			Nº de golpe 10	s / % de Recuperação 20 30				
24/30 _					ARGILA SILTOSA I	DURA A RIJA CINZA	E AMARELA	12 /	18				
13/30 _		-2.50	35.00	2 = =	ARGILA SILTO ARI	ENOSA RIJA A DUR	A CINZA E AMARELA	121					
15/30 _								1					
17/30 _				4 									
16/30 _				5 ≠ ≠									
19/30 _													
17/30 _				≠, =/,= 7 ≠_=/,= ≠_=/,=									
17/30 _				8 *					`				
31/30 _				$\frac{f}{9}$									
22/30 _				≠ 10 ∠				1					
30/10 _				≠ ≠ ≠									
30/8		-12.40	25.10	12	Limite da perfur:	ação (Impenetrá)							
	Cota	topográ	fica forn	lecida pelo	cliente.	, , , , , , , , , , , , , , , , , , ,	Ensaio de La Tempo 10 minutos 10 minutos 10 minutos	avagem/Tempo: Lavagem 0.01m 0.01m 0.00m					
Diâmetr	Sor o do reve	ndagem co stimento: 2	m retirada	s de amostra Altura de	s queda=75cm montolo 05 1/5	RN: Cota topográfi	са	COTA DO N.A.					
Amostra						IAL: 4/3/2013	PERFIL		F00414 / / / / /				
JEN	AV. RIO BRA TELS. ::	NCO, 156 - 18°. 2262.1117 - 22	L T L T L T L T L T L T L T L T L T L T	1817-1820 24.3326	DATA FINA DESENHO Gustavi SONDADC Francis ENG. RESI	AL : 4/3/2013 0 DR CO P.	SP 26 LOCAL Estrada da Cacha Campo Grande - CALPER	amorra Rio de Janeiro - RJ	ESCALA 1:100				

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLASSIFICAÇÃO			Diag Per 30 ci 30 ci	rama das netrações m finais m iniciais
			+	38.00 (boca	do furo)			Nº de golpe 10	s / % de Recuperação 20 30
25/30 14/30					COBERTURA VEG ARGILA SILTOSA (-0,10M A -2,63M)	ietal (0,00M A -0,10 POUCO ARENOSA Ι)M) DURA A RIJA AMARELA	11 /	19
14/30		-2.63	35.37		SILTE COM AREIA A COMPACTO CIN	A FINA ARGILOSO M IZENTO AMARELAD	EDIANAMENTE COMPACT O MICÁCEO (SOLO	-0 13i	
18/30				<i>f f f f f f f f f f</i>	RESIDUAL)			131	$\mathbf{n} = \mathbf{n}$
21/30				±_/=/_/= ±= 5					18
23/30				r / - / / = - / - / - = - 6					21
22/30				/=/=/= /=/=/ =/=/= 7					18/
20/30 _								16	
30/15 _		-9.00	29.00	¥ = / = ¥ - / = 9	SILTE ARENOSO		CINZENTO AMARELADO		
30/10 _				10		neoidore)			
30/8 _		-11.68	26.32	11					
		-11.00	20.32	-···-··-·	Limite da perfur	ação (Impenetráv	vel à percussão)		
	Cota	topográ	fica forn	ecida pelo	cliente.		Ensaio de Lavag Tempo 10 minutos 10 minutos	gem/Tempo: Lavagem 0.01m	
							10 minutos	0.00m	
Diâmetr	Sor ro do reve	ndagem co stimento: 2	m retirada $\frac{21}{2}$ "	s de amostra: Altura de	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	CC	OTA DO N.A.	
SEN					DATA INIC DATA FIN/ DESENHO Gustav SONDADC Francis	AL: 4/3/2013 AL: 4/3/2013 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PERFIL SP 31 LOCAL Estrada da Cachamo Campo Grande - Rio	orra de Janeiro - RJ	ESCALA 1:100
	TELS. :: FAX: 22	2262.1117 . 22 262.5633 R	262.3738 . 25	1017-1820 24.3326 IRO - RJ	ENG. RES	P			

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	Profundidade Nível d'Água	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	\ÇÃO	Diagraı Penet 30 cm 30 cm	na das rações iinais niciais
5/30	-1.00		+	31.00 (bocz	a do furo) COBERTURA VEG ARGILA POUCO AI	ETAL (0,00M A -0,10 RENOSA MÉDIA CIN	M) ZA (-0,10M A -2,70M)	Nº de golpes / 10 3	% de Recuperação 20 30
		-2.70	28.30		Limite da perfura	ação (Impenetráv	el à percussão)		
	Cota	topográ	fica forn	ecida pelo	o cliente.				
Diâmetr	Son o do reves	dagem cor stimento: 2	m retirada ½ "	s de amostra Altura de	s queda=75cm	RN: Cota topográfi		DTA DO N.A. +30.00	
SEN	OL (GENH	CCO, 156 - 18 ⁹ .	E SI LTI	1817-1820	DATA INICI DATA FINA DESENHO Gustavo SONDADO Francis	AL: 1/3/2013 L : 1/3/2013 D R CO	PERFIL SP 36 LOCAL Estrada da Cachamo Campo Grande - Rio CALPER	orra de Janeiro - RJ	ESCALA 1:100
	AV. RIO BRAN TELS. : 2 FAX: 22	ICO, 156 - 18º. 262.1117 . 22 62.5633 R	Andar - Grupo 262.3738 . 253 IO DE JANE	1817-1820 24.3326 IRO - RJ	ENG. RESP	D.	CALPER		

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLASSIFICAÇÃO			Diag Per 30 ci	rama das letrações n finais n iniciais	
I			+	47.00 (boca	a do furo)			Nº de golpes	/ % de Recuperação	
10/30 _		-0.90	46.10		ARGILA SILTOSA SILTE ARENOSO N MICÁCEO (SOLO E	MEDIANAMENTE CO	OMPACTO CINZENTO AMAREI	6		
Cota topográfica fornecida pelo cliente.							Ensaio de Lavagen Tempo 10 minutos 10 minutos 10 minutos	n/Tempo: Lavagem 0.02m 0.01m 0.00m		
Diâmetr Amostra	Sor o do reve: ador padrá	idagem co stimento: 2	m retirada 1½ " 0: 2"	s de amostra Altura de Peso do	s • queda=75cm martelo= 65 Kg	RN: Cota topográf	ica COT <i>I</i>	A DO N.A.		
S	OL GENH			1817-1820	DATA INICI DATA FINA DESENHO Gustavo SONDADO Vânio	INICIAL: 5/3/2013 PERFIL FINAL : 5/3/2013 PERFIL SP 39 ESCALA 1:100 NHO LOCAL stavo Estrada da Cachamorra OADOR Campo Grande - Rio de Janeiro - RJ				
	TELS. : 2 FAX: 22	262.1117 . 22	262.3738 . 25	24.3326 IBO - B I	ENG. RESI					

ETRAÇÃO le quedas 80 cm finais	⁼UNDIDADE EL D'ÁGUA	-UNDIDADE SOLO (m)	JTA (m)	IOSTRA	CLA	CLASSIFICAÇÃO			Diagrama das Penetrações 			
PENE No. d dos 3 (Nspt	PROF NÍVI	PROF DO	8	AM					30 cm	iniciais		
			+	20.60 (boca	do furo)				Nº de golpes / 10	% de Recuperação 20 30		
12/30 13/30	-2.39	-3.00	17.60		ARGILA SILTOSA N	∕IÉDIA A RIJA AMA	RELADA	-	9			
16/30				3	SILTE ARENOSO N CINZENTO AMARE	/EDIANAMENTE C LADO MICÁCEO (\$	OMPACTO A MUITO COI SOLO RESIDUAL)	MPACTO				
30/10		-4.25	16.35	4	Limite da perfura	ação (Impenetrá	vel à percussão)					
	Cata	topográ	fine form	aaida nala	alianta			io go m/Ta	mnou			
	Cota	topogra	lica iorn	ecida pelo	cliente.		Tempo	vagem/ re	Lavagem			
							10 minutos		0.03m			
							10 minutos		0.02m			
Diâmeti Amostra	Sor ro do reve ador padrá	ndagem con stimento: 2 ăo Diâmetr	m retiradas 2½ " 0: 2"	s de amostras Altura de Peso do i	s queda=75cm martelo= 65 Kg	RN: Cota topográt	fica	COTA DO) N.A. +18.21			
2	01	0 T I	EST	' E	DATA INIC DATA FINA	IAL: 7/3/2013	PERFIL SP 51			ESCALA 1.100		
EN EN	IGENH	IAR<u>I</u>A			DESENHO		LOCAL					
			\checkmark	\checkmark	Gustave)	Estrada da Cachai	morra				
		T			SONDADO Vânio	K	Campo Grande - F	Rio de Jar	neiro - RJ			
	AV. RIO BRAI TELS. : 2 FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 B	Andar - Grupo 262.3738 . 252 IO DE JANEI	1817-1820 24.3326 IBO - B.I	ENG. RESI	<u>.</u>						

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLAS	SIFICA	ÇÃO	Diagı Pen 30 cr	rama das etrações n finais n iniciais		
			•	25.40 (boca	do furo)				Nº de golpes 10	/ % de Rec 20	uperação 30
			•		ARGILA SILTOSA MÉ	dia vermelha			4		
5/30 _		-1.65	23.75	1 	SILTE ABENIOSO ME			ОМРАСТО			
11/30 _				2		JO MICÁCEO (SO	DLO RESIDUAL)				
8/30 _				3							
		-4.01	21.39	4	Limite da perfuração	ão (Impenetráv	el à percussão)				
	Cota	topográ	fica forn	necida pelo	o cliente.		Ensaio de La Tempo 10 minutos 10 minutos	ivagem/T	empo: Lavagem 0.00m 0.00m		
							10 minutos		0.00m		
Diâmetr Amostra	Sor o do reve ador padrá	ndagem con stimento: 2 ăo Diâmetr	n retirada ½ " o: 2"	is de amostra: Altura de Peso do	s queda=75cm martelo= 65 Kg	RN: Cota topográfic	a	COTA D	O N.A.		
S	0 L	0 T	E S 1	T E	DATA INICIAL DATA FINAL	: 8/3/2013 : 8/3/2013	PERFIL SP 53	I		ESCA	LA 1:100
EN	GENH	IARIA I	LTI	DA	DESENHO Gustavo						
			1	\sim	SONDADOR		Estrada da Cacha Campo Grande -	amorra Rio de Ja	aneiro - R.I		
	AV. RIO BRAI TELS. : 2	NCO, 156 - 18º. 2262.1117 . 22	Andar - Grupo 262.3738 . 25	1817-1820 24.3326	Manuel ENG. RESP.		CALPER				

	TRAÇÃO e quedas 0 cm finais	UNDIDADE EL D'ÁGUA	:UNDIDADE SOLO (m)	TA (m)	OSTRA	CLA	SSIFIC	٩ÇÃO		Diag Per 30 c	ırama das netrações m finais	3	
	PENE No. d dos 3 (Nspt	PROF NÍVI	PROF	8	AM					30 c	m iniciais		
				+	- 23.00 (boca	do furo)	,			Nº de golpe: 10	s / % de R 20	ecupera 30	ção
	10/20					ARGILA SILTOSA N	IEDIA VERMELHA		_	8			
	12/20								_	10			
	0/20									7 /			
	32/30		-3.54	19.46		SILTE ARENOSO C (SOLO RESIDUAL)	OMPACTO CINZE	NTO AMARELADO MICÁ	ÁCEO		× 22		
-	52/50 _		-4.64	18.36	==. ==.	Limite da perfura	cão (Impenetrá	vel à percussão)					
							çao (imponotia						
		Cota	topográ	fica forn	iecida pelo	cliente.		Ensaio de La Tempo	vagem/Te	mpo:			
								10 minutos		0.01m			
								10 minutos		0.01m			
								TO MINULOS		0.0011			
	Diâmetr	Sor o do reve	ndagem co stimento: 2	m retirada	s de amostras Altura de	s queda=75cm	RN:		COTA DO) N.A.			
	Amostra	dor padrá	ão Diâmetr	0: 2"	Peso do	martelo= 65 Kg	Cota topográf			T			
	S	0 L	o t	E S 1	ΓΕ	DATA INICI DATA FINA	AL: 6/3/2013 L : 6/3/2013	SP 55			ESC	CALA	1:100
	EN	GENH	IARIA I	LTI	DA	DESENHO		LOCAL					
			i	1	\bigwedge	SONDADOF	3	Estrada da Cacha Campo Grande - F	morra Rio de Jar	ieiro - R.I			
		AV. RIO BRAI	NCO, 156 - 18º. 2262.1117 2'	Andar - Grupo	1817-1820	Manuel ENG. RESP		CALPER					
		FAX: 22	262.5633 R	IO DE JANE	IBO - BJ								

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	AÇÃO	Diag Per 30 ci 30 ci	rama das netrações m finais m iniciais
			• •	25.20 (boca	do furo)			Nº de golpe: 10	s / % de Recuperação 20 30
18/30 _		-1.96	23.24		ARGILA SILTOSA R	IJA VERMELHA E	AMARELA		
21/30 _				2	SILTE ARENOSO C AMARELADO MICÁ	OMPACTO A MUI CEO (SOLO RESII	TO COMPACTO CINZENT DUAL)	0	
30/5		-3.13	22.07	3	Limite da perfura	cão (Impenetrá	avel à percussão)		
	Cota	topográ	fica form	lecida pelo	cliente.		Ensaio de Lav Tempo 10 minutos 10 minutos 10 minutos	agem/Tempo: Lavagem 0.02m 0.02m 0.00m	
	Sor	ndagem co	m retirada	s de amostra	S	RN:		COTA DO N.A.	
Diâmetr Amostra	o do reve ador padrá	stimento: 2 ăo Diâmetr	2½" o: 2"	Altura de Peso do	queda=75cm martelo= 65 Kg	Cota topográf	fica		
SEN	O L genh	O T IARIA I			DATA INICIA DATA FINAL DESENHO Gustavo SONDADOF Vânio	AL: 7/3/2013 - : 7/3/2013	PERFIL SP 59 LOCAL Estrada da Cachan Campo Grande - R	norra io de Janeiro - RJ	ESCALA 1:100
	AV. RIO BRAN TELS. : 2 FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 25 RIO DE JANE	1817-1820 24.3326 IRO - RJ	ENG. RESP				

NETRAÇÃO . de quedas s 30 cm finais spt)	ofundidade Iível d'Água	OFUNDIDADE O SOLO (m)	CTA (m)	MOSTRA	CLA	SSIFICA	ĄÇÃO		Diag Pen 30 cr	rama das .etrações n finais	
E N N N	ά Ζ d				de fure)						uporação
				- <u>28.80 (boca</u>					10	20	30
15/30				= = = = 1	ARGILA SITLOSA I	AIJA AMARELADA			12		
		-1.89	26.91						1 1 131		
16/30				2	SILTE ARENOSO N CINZENTO AMARE	IEDIANAMENTE CO ELADO MICÁCEO (S	MPACTO A COMPACT OLO RESIDUAL)	ſO		\square	
21/30 _				3					141	\sim	
28/30 _		-4.65	24 15	4						20	
		-4.00	24.10		Limite da perfura	ação (Impenetráv	vel à percussão)				
	Cota	topográ	fica forn	lecida nelo	cliente.		Ensaio de La	vagem/T	empo:		
	0010	topog.a					Tempo		Lavagem		
							10 minutos		0.03m		
							10 minutos		0.00m		
Diâmetr Amostra	Sor o do reve ador padrá	ndagem con stimento: 2 ăo Diâmetr	m retirada 1½ " 0: 2"	s de amostras Altura de Peso do r	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	ca	COTA D	O N.A.		
C			F C 1	.		IAL: 7/3/2013	PERFIL			ESCA	1 1 1.100
EN EN	GENH	V II IARIA		D A	DESENHO	NL . 1/0/2010	LOCAL			EBUA	
			\checkmark	\checkmark	Gustavo	0	Estrada da Cacha	morra			
		- I	\square		SONDADO Vânio	R	Campo Grande -	Rio de Ja	neiro - RJ		
	AV. RIO BRAI TELS. : 2 FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 B	Andar - Grupo 262.3738 . 25 10 DE .IANE	1817-1820 24.3326 IRO - BJ	ENG. RESI	D.	CALPER				

Nº de golpes /% de Recu 30/10 -0.90 31.10 ARGILA SILTOSA CINZA 30/2 -2.02 29.98 2 Limite da perfuração (Impenetrável à percussão) Cota topográfica fornecida pelo cliente.	
30/10 -0.90 31.10 1 ARGILA SILTOSA CINZA Image: Constraint of the second s	oeração 30
30/10 -0.90 31.10 1 1 Image: Constraint of the second sec	
30/2 -2.02 29.98 -2 -2.02 Limite da perfuração (Impenetrável à percussão) Cota topográfica fornecida pelo cliente.	
Cota topográfica fornecida pelo cliente.	
Sondagem com retiradas de amostras RN: COTA DO N.A. Diâmetro do revestimento: 2½ " Altura de queda=75cm Cota topográfica	
COLOTECTE DATA INICIAL: 22/3/2013 PERFIL	
AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820 TELS. : 2262.3738 . 2524.3326 DATA FINAL : 22/3/2013 SP 64 ESCAL DATA FINAL : 22/3/2013 LOCAL Estrada da Cachamorra Campo Grande - Rio de Janeiro - RJ CALPER	

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt) PROFUNDIDADE	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	\ÇÃО	Diag Per 30 c 30 c	rama das netrações m finais m iniciais
22/30 41/30	-0.90	+ 34.10 32.27	35.00 (boca	ARGILA SILTOSA V SILTE ARENOSO C AMARELADO MICÁ	VERMELHA COMPACTO A MUITO ÁCEO (SOLO RESID) COMPACTO CINZENTO UAL)	N ^e de golpe 10 10 10	7 % de Hecuperação 20 30 7
Co	ta topográ	áfica forn	ecida pelo	o cliente.		Ensaio de Lava Tempo 10 minutos 10 minutos	gem/Tempo: Lavagem 0.02m 0.01m 0.00m	
Diâmetro do re Amostrador pa	Sondagem co vestimento: : drão Diâmet	om retirada 2½ " ro: 2"	s de amostras Altura de Peso do l	s queda=75cm martelo= 65 Kg	RN: Cota topográfic	Ca	OTA DO N.A.	
S O L ENGER	BRANCO, 156 - 18%	Andar - Grupo 2262.3738 - 252 RIO DE JANE	1817-1820 24.3326 IRO - RJ	DATA INICI DATA FINA DESENHO Gustavo SONDADO Vânio ENG. RESF	AL: 7/3/2013 L : 7/3/2013 D R P.	PERFIL SP 65 LOCAL Estrada da Cachamo Campo Grande - Ric CALPER	orra o de Janeiro - RJ	ESCALA 1:100

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	NÇÃO	Diag Per 30 c 30 c	rama das ietrações m finais m iniciais		
			•	37.70 (boca	do furo)			Nº de golpe 10	s / % de Recuperação 20 30		
		-0.98	36.72		ARGILA SILTOSA /	AMARELADA		9			
12/30 _					SILTE ARENOSO N CINZENTO AMARE	MEDIANAMENTE CC ELADO MICÁCEO (S	MPACTO A COMPAC ⁻ OLO RESIDUAL)				
15/30				2				16			
23/30				3					20		
31/30		-4.71	32.99	4							
					Limite da perfura	ação (Impenetráv	el à percussão)				
	Cota	topográ	fica forn	ecida pelo	cliente.		Ensaio de La Tempo	avagem/Tempo:			
							10 minutos	0.02m			
							10 minutos	0.00m			
Diâmetr	Sor o do reve ador padrá	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostra: Altura de Peso do	s queda=75cm martelo= 65 Kg	RN: Cota topográfi		COTA DO N.A.			
C			F C 1			IAL: 7/3/2013	PERFIL SP 60				
J En	U L Genh	IARIA		D A	DATA FINA DESENHO	al : 7/3/2013	LOCAL		ESUALA 1:100		
			\checkmark	\checkmark	Gustavo	0	Estrada da Cacha	amorra			
		- T	\square		SONDADO Vânio	R	Campo Grande -	Rio de Janeiro - RJ			
	AV. RIO BRAI TELS. : 2 FAX: 22	NCO, 156 - 18º. 2262.1117 . 2 262.5633 R	Andar - Grupo 262.3738 . 25 RIO DE JANE	1817-1820 24.3326 IRO - RJ	ENG. RESI	P.	CALPER				

IETRAÇÃO de quedas 30 cm finais pt)	JFUNDIDADE VEL D'ÁGUA)FUNDIDADE D SOLO (m)	OTA (m)	MOSTRA	CLA	SSIFICA	ĄÇÃO				Diagra Pene 30 cm	ama c etraçõ n finai	das Jes S		
PEN dos.	PRC	DRG	Ō	₹ 37.00 (boca	do furo)					–– Nº de o	30 cm	1 inicia	ais Becup	eração	
					ARGILA SILTOSA I	MÉDIA VERMELHA				10)	20		30	
										8					
10/30		-1.66	35.34	$\frac{1}{\frac{2}{2}} = \frac{1}{2}$							1	1			
38/30				2	SILTE ARENOSO (AMARELADO MICA	COMPACTO A MUITO ÁCEO (SOLO RESID	D COMPACTO CINZEN UAL)	ITO			_	+	-30		
															40
48/30 _				3											
30/11				4							_	-	_		
		5.00													
30/3		-5.06	31.94	5	Limite da perfura	ação (Impenetráv	vel à percussão)								
	Cotat	opográ	fica forn	ocida polo	clianta		Ensaio do La	waqom/	Tomr	<u>.</u>					
	Cola	opogra		eciua peiu	cilente.		Tempo	lvagem/	La	ivage	m				
							10 minutos		0.0	01m 01m	_				
							10 minutos		0.0	00m					
Diâmetr	Sonc o do revesi ador padrão	lagem col timento: 2 Diâmetr	m retiradas $\frac{1}{2}$ "	s de amostras Altura de Peso do r	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	ca	COTAI	DO N	.A.					
C			F			IAL: 22/3/2013	PERFIL SP 70					E	SCAL	Δ 1.1	00
EN	GENH	ARIA		DA	DESENHO	L . 22/0/2010	LOCAL					E	JUAL	<u>, i.i</u>	00
			\checkmark	\checkmark	Gustav	0	Estrada da Cacha	amorra							
		T			SONDADC Manoel	iκ	Campo Grande -	Rio de J	aneir	ю - F	۱J				
	AV. RIO BRANG TELS. : 22 FAX: 226	CO, 156 - 18º. 62.1117 . 22 2.5633 R	Andar - Grupo 262.3738 . 252 IO DE JANEI	1817-1820 24.3326 IRO - RJ	ENG. RESI	Ρ.	CALPER								

	PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLAS	SSIFICA	ĄÇÃO	Diag Per 30 ci 30 ci	rama das netrações m finais m iniciais	
					- 39.80 (boca	do furo)			Nº de golpes 10	s / % de Recuperação 20 30	D
						ARGILA SILTOSA MÉ	ÉDIA VERMELHA				
									4		
	5/30 _		-1.53	38.27	1						
						SILTE ARENOSO ME	DIANAMENTE CO		асто 91		
	12/30				2	CINZENTO AMAREL		OLO RESIDUAL)			
	30/12				3						
	30/10				4						
	20/0 -										
	30/8		-5.55	34.25	C						
						Limite da perfuraç	ao (Impenetrá)	el à percussão)			
		Cota	topográ	fica forr	iecida nelo	cliente		Ensaio de Lavao	em/Tempo		
			topogia			0.001001		Tempo	Lavagem		
								10 minutos	0.04m		
					10 minutos	0.01m					
									0.0011		
		Sor	ndagem cor	m retirada	s de amostras	S	BN:				
	Diâmetr	o do reve	stimento: 2	2½" 0:2"	Altura de	queda=75cm	Cota topográfi	ca			
	,iostie					DATA INICIA	L: 8/3/2013	PERFIL			
	<u> </u>	U L		C)		DATA FINAL	: 8/3/2013	SP 72		ESCALA 1:1	00
	EN	vent	iakia I		U A	DESENHO		LOCAL			
			j	1	\sim	SONDADOD		Estrada da Cachamo	rra		
	_					Vânio		Campo Grande - Rio	de Janeiro - RJ		
		AV. RIO BRAI	NCO, 156 - 18º. 2262.1117 20	Andar - Grupo 262.3738 25	1817-1820 24.3326	ENG. RESP.		CALPER			
ГÍ		FAX: 22	262 5633 B		IBO - B I						

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	AÇÃO			Diag Per 30 c 30 c	ırama o netraçõ m finai m inici	das ões is ais		
			+	- 41.20 (boca	do furo)				Nº de	golpe	s / % d	e Recup	eração)
				Z=,	ARGILA SILTOSA	MÉDIA VERMELHA	4			0	20		30	
								5						
7/30				<u>= _ = / _=</u> 1				5						
		-1.86	39.34											- 15
55/30				2	SILTE ARENOSO		O CINZENTO AMARELADO	_				_		~ 490
						RESIDUAL)								
30/9				3								_		
40/1											-+	_		
40/1		-4.68	36.52	4										
					Limite da perfura	ação (Impenetr	ável à percussão)							
	Cota	topográ	fica forn	iecida pelo	cliente.		Ensaio de Lavagen	1/Tem	po:		1			
							l empo		avage	em	I			
							10 minutos	0.	01m 01m		I			
							10 minutos	0.	00m		I			
	Sondarem com retiradas de amostras													
Diâmetr	Sor o do reve	ndagem co stimento: 2	m retirada $\frac{21}{2}$ "	s de amostras Altura de	s queda=75cm	RN:		DO N	I.A.					
Amostra	ador padra	ăo Diâmetr	o: 2"	Peso do i	martelo= 65 Kg	Cota topogra	áfica							
C		ΛΤ	F C 1	r F	DATA INIC	IAL: 21/3/2013	PERFIL				F		۰. ۱	00
J En	U L Genl		⊾ J I I T I			NL . 21/0/2013						JUAL	n I.I	00
	- Al	I I			Gustavi	0								
		J.	1	$\boldsymbol{\lambda}$		- IR	Estrada da Cachamorra							
		-4			SUNDADO Manoel	/11	Campo Grande - Rio de	Janei	ro - F	RJ				
	AV. RIO BRA	NCO, 156 - 18º.	Andar - Grupo	1817-1820	ENG. RESI	P.								
	FAX: 22	202.1117 . 2 262.5633 B	202.3738 . 25	24.3320 IBO - B.I										

APÊNDICE III. SONDAGENS MISTAS

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	Profundidade Nível d'Água	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	AÇÃO	Dia Pe 30 (30 (grama das enetrações cm finais cm iniciais
			+	18.59 (boca	a do furo)			Nº de golp 10	es / % de Recuperação 20 30
				1 2 3 4	MATERIAL TERRC	ISO PERFURADO (COM SONDA ROTATIVA		
		-6.50	12.09	5	AREIA FINA E MÉI (SOLO RESIDUAL) - RECUPERAÇÃO	DIA SILTOSA CINZE ROCHA MUITO AL 0%	ENTA AMARELADA MIC TERADA).	Ó.00% - REC 0.00% - REC 0.00% - REC	UPERAÇÃO UPERAÇÃO UPERAÇÃO
		14.10	4.40				0.00% - REC 0.00% - REC 0.00% - REC 0.00% - REC 0.00% - REC	UPERAÇÃO UPERAÇÃO UPERAÇÃO UPERAÇÃO	
				14 • • • • • • • • • • • • • • •	ROCHA ALTERAD CINZENTA E AMAI	A A POUCO ALTEF RELA MICÁCEA F	ADA (GNAISSE), FRATI RECUPERAÇÃO 5%	URADA, 5.00% - REC	UPERAÇÃO
		-15.60	2.99	• • • • • • • • • • • • • • • • • • •	ROCHA SÃ (GNAIS CINZENTA E AMAI	SSE), POUCO FRA RELA MICÁCEA F	TURADA A SEM FRATU RECUPERAÇÃO 50%	RA, 50.00% - REC	UPERAÇÃO
	Cota topográfica fornecida pelo clie					ação			
Diâmetr Amostra	Sor o do reve dor padrá	ndagem con stimento: 2 ão Diâmetro	m retirada ½ " o: 2"	s de amostra Altura de Peso do	s • queda=75cm martelo= 65 Kg	RN: Cota topográ	fica	COTA DO N.A.	
AV. RIO BRANCO, 156 - 18º. Andar - Grupo 1817-1820 TELS.: 2262:1117 . 2262:3738 . 2524:3326					DATA INIC DATA FINA DESENHO Gustav SONDADC Washir ENG. RES	De 65 Kg Cota topográfica DATA INICIAL: 18/06/2013 PERFIL DATA FINAL : 20/06/2013 SM 01 DESENHO LOCAL Gustavo Estrada da Cachamorra SONDADOR Campo Grande - Rio de ENG. RESP. CALPER			ESCALA 1:100

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	Profundidade Nível d'água	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO			Diagran Penet 30 cm i 30 cm i	na das rações linais niciais		
		Į	+	24.93 (boca	a do furo)				Nº de 1	golpes /	% de Re	ecuperaçã	ăo
				1	MATERIAL TERRO	SO PERFURADO C	OM SONDA ROTATIVA	-					
				3 4 5 6				-					
		-7.00	17.93	7 °°°°°° 8	ROCHA SÃ (GNAIS MICÁCEA RECU	SSE), SEM FRATUR. PERAÇÃO 100%	A, CINZENTA E BRANC/	A	100.0% -	RECUF	'ERAÇ	ÃO	
Diâmeti Amostr	Sor ro do reve ador padr	ndagem con stimento: 2 ão Diâmetr	m retirada 1½ " o: 2"	s de amostra Altura de Peso do	s e queda=75cm martelo= 65 Kg	RN: Cota topográfi	ca	COTA DO) N.A.				
	AV. RIO BRA TELS. :	OT IARIA I NC0, 156 - 18°. 2262.1117 - 22	Andar - Grupo 262.3738 - 252	1817-1820 24.3326 180 - R I	DATA INIC DATA FINA DESENHO Gustavi SONDADC Washin ENG. RESI	IAL: 24/06/2013 AL : 26/06/2013 DR gton P.	PERFIL SM 02 LOCAL Estrada da Cachar Campo Grande - F CALPER X: 648329 52m - Y	morra Rio de Jai	neiro - 8.52m	RJ	ESC	<u>ALA 1:</u>	100

,ÃO das finais	DADE ÁGUA	DADE (m)	Ê	RA				Diag Per	rama das netrações
PENETRAG No. de que dos 30 cm (Nspt)	PROFUND	PO SOLC	COTA (AMOST		331FICF	AÇAU	30 c	m finais m iniciais
	ш	ш	+	59.74 (boca	a do furo)			Nº de golpe 10	s / % de Recuperação 20 30
		-1.00 -1.50 -2.10 -3.60	58.74 58.24 57.64 56.14		SILTE ARGILOSO PEDREGULHOS AREIA FINA E MÉI ROCHA SÃ (GNAIS MICÁCEA RECU ROCHA SÃ (GNAIS E BRANCA MICÁC	DIA SILTOSA COM M SSE), POUCO FRAT PERAÇÃO 65% SSE GRANITICO), S EA RECUPERAÇÃ	MICA (SOLO RESIDUAL) URADA, CINZENTA EM FRATURA, CINZENTA AO 100%	65.00% - REC 65.00% - REC 100.0% - REC	UPERAÇÃO UPERAÇÃO UPERAÇÃO
		-5.10	54.64	5	Limite da perfura	ação			
Diâmetr Amostra	Sor o do reve ador padrá	idagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostra Altura de Peso do	s e queda=75cm martelo= 65 Kg	RN: Cota topográfi	cotA	do N.A.	
SEN	OL GENH	OT IARIA I VCO, 156 - 18º. 2262.1117 - 22	E S 1	1817-1820 24.3326	DATA INIC DATA FINA DESENHO Gustavo SONDADC Washin ENG. RESI	IAL: 08/08/2013 AL: 09/08/2013 0 DR Igton P.	PERFIL SM 03 LOCAL Estrada da Cachamorra Campo Grande - Rio de CALPER	Janeiro - RJ	ESCALA 1:100

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	AÇÃO			Diagr Pen 30 cr 30 cr	rama da etraçõe n finais n inicia	as es is	
	ļ	I	+	- 23.97 (boca	do furo)			1	Nº de (10	golpes	/ % de 20	Recupe	eração
					SILTE ARGILOSO					,			
	-			1									
	-			2									
_				3									
		4.00	10 77										
_		-4.20	19.77	4	BOCHA SÃ (GNAIS	SE GRANITO) PO	UCO FRATUBADA A SEM						
				0000	FRATURA, CINZEN	ITA E AMARELA M 85%	ICÁCEA.						
_		F 70	10.07	5		/ -							
		-5.70	18.27	0 0 0	Limite da perfura	acão							
					1	-							
	Cota	topográ	fica forn	necida pelo	cliente,								
	Sec.	ndauem co	m retirada	is de amostro	s		007		^				
Diâmet	ro do reve	stimento: 2	21/2 "	Altura de	queda=75cm	KIN: Cota topográ	fica		.A.				
Amosti	ador padra	ao Diämetr	0:2"	Peso do	martelo= 65 Kg	AI · 21/08/2012	PEREIL						
S	0 L	o t	E S 1	Γ Ε	DATA INICI DATA FINA	L : 21/08/2013	SM 04				ES	CAL/	A 1:100
EN	IGENH	IARIA	LT	DA	DESENHO		LOCAL						
			\checkmark	\checkmark	Gustavo)	Estrada da Cachamorra						
					SONDADO	R aton	Campo Grande - Rio de	Janeir	ю - F	۲J			
	AV. RIO BRA	NCO, 156 - 18º.	Andar - Grupo	1817-1820	FNG RESE	y.011 D.	CALPER						
	FAX: 2	2262.1117 . 2 262.5633 R	202.3738 . 25	24.3326 IRO - RJ			X: 648355,81m - Y: 746	3541,4	6m				

PENETRAÇAO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO				Diag Per 30 c 30 c	grama netraç em fina em inic	i das ções ais ciais			
			+	40.67 (boca	l do furo)				1	Vº de 1	golpe	s/%	de Re າ	cupera	ação	
					SILTE ARGILOSO											
-																
_																
-				<u> </u>												
_		0.50	07.17	<u></u>									_		_	
		-3.50	37.17		SOLO RESIDUAL											
_				4												
				= = = =												
_				5	-											
				= = = =												
_				6												
_		-7.00	33.67	= = = = = = = = = = = = = = = = = = = =												
_					FINA SILTOSA CIN	BLOCOS DE ROCH ZENTA AMARELAD	A ALTERADA COM AF A MICÁCEA	REIA								
_				8												
_		0.00	01.07	0000												
_		-9.00	31.07	9	ROCHA POUCO AL	_TERADA (GNAISSE	GRANITO), FRATURA	ADA,		ΠΠ						Ш
					CINZENTA E AMAF	RELA MICÂCRA RI	ECUPERAÇÃO 100%		100.	0% -	REC	UPE	RAÇA	0		
		-10.50	30.17	10								1111				ш
Diâmetr Amostra S EN	Sor o do reve ador padrá O L GENH	ndagem co stimento: 2 ão Diâmetr O T IARIA	m retirada 2½ " o: 2" ESI	s de amostra: Altura de Peso do LE DA	s queda=75cm martelo= 65 Kg DATA INICI DATA FINA DESENHO Gustavo	RN: Cota topográfi IAL: 12/08/2013 IL : 18/08/2013	ca PERFIL SM 05 LOCAL Estrada da Cacha	COTA D	0 N.	A.		1	ESC	ALA.	1:1(
~	_				SONDADO Washin	R aton	Campo Grande -	Rio de Ja	aneir	o - F	RJ					
	AV. RIO BRA TELS. : 2	NCO, 156 - 18º. 2262.1117 . 22	Andar - Grupo 262.3738 . 25	1817-1820 24.3326	ENG. RESP	0 - D.	CALPER									
	FAX: 22	262.5633 R	NO DE JANE	IRO - RJ			X: 648407,92m -	Y: 74635	14,8	1m						

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	NÇÃO			Diagra Pene - 30 cm - 30 cm	ama das etrações i finais i iniciais	
ļ		<u> </u>	+	20.04 (boca	i do furo)				Nº c	le golpes	/ % de Re	ecuperação
					MATERIAL TERRO	SO PERFURADO C	OM SONDA ROTATIVA					
_				1								
_				2								
_				3								
_				4								
				5								
_				6								
_		-6.80	13.24	· · · ·								
_		-7 70	12.34	7° °°°		A (GNAISSE) NEC	JFERAÇÃO 0 %		0.00%	- RECUF	PERAÇÃ	0
		1.10	12.04		ROCHA SÃ (GNAIS	SSE), SEM FRATUR	A, CINZENTA E BRANC	CA	-			
				8	MICACEA RECU	PERAÇAO 75%			75.00%	RECU	PERAÇ	ÃO
		-9.20	10.84									
		0.20	10.01	5	Limite da perfura	ação						
Diâmetr Amostra	Sor o do reve ador padra	ndagem col stimento: 2 ão Diâmetr	m retirada 1½ " o: 2"	s de amostra: Altura de Peso do	s queda=75cm martelo= 65 Kg	RN: Cota topográfi IAL: 08/06/2013	ca PERFIL SM 06	COTA D	00 N.A.		ESC	·ALA 1·100
J	U L GENI	V II IARIA	L J L T	DA	DESENHO	NL . 11/00/2013	LOCAL				ESU	MLA 1.100
			_	\checkmark	Gustav	0	Estrada da Cacha	morra				
			1		SONDADC	R	Campo Grande - I	Rio de Ja	aneiro ·	- RJ		
	AV. RIO BRA	NCO, 156 - 18º.	Andar - Grupo	1817-1820	Washin	gton	CALPER					
	TELS. ::	2262.1117 . 22	262.3738 . 25	24.3326	ENG. RES	г.	X· 648245 13m - \	Y∙74633	83 05n	n		

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	ĄÇÃO		Diag Pe 30 c	grama da netrações cm finais cm iniciais	S	
			+	31.79 (boca	do furo)				Nº de golpe 10	es / % de F 20	lecuperação 30	.0
			*	31.79 (boca	do furo) MATERIAL TERRO	SO PERFURADO C	OM SONDA ROTATIVA	Α		s / % de F 20		
		-12.00	19.79		ROCHA ALTERAD. - RECUPERAÇÃO	A (AREIA FINA SILT 0%	OSA CINZENTA AMAR	ELADA).				
		-16.50	15.29		ROCHA POUCO AI E BRANCA MICÁC ROCHA POUCO AI CINZENTA E BRAN	LTERADA (GNAISS) EA RECUPERAÇ/ LTERADA A SÃ (GN ICA MICÁCEA RE	E), FRAGMENTADA, CI ÃO 30% IAISSE), SEM FRATUR, CUPERAÇÃO 65%	NZENTA	30.00% - REC _ 65.00% - REC 65.00% - REC	UPERAC	,ãо ;ãо ;ãо	
Diâmetr Amostra S EN	Cota Sor o do reve ador padra O L GENH	topográ ndagem con stimento: 2 ão Diâmetri OTI IARIA	COTA E amorra Rio de Ja	DO N.A.	ES	<u>CALA 1:1</u>	100					

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	ASSIFICA	ŅÇÃO	Di P 30	agrama das 'enetrações) cm finais) cm iniciais	
			+	40.08 (boca c	do furo)			Nº de golj 10	pes / % de Recu 20	uperação 30
			•		MATERIAL TERRO	DSO PERFURADO CO	OM SONDA ROTATIVA			
_				1						
_										
_				2						
				3						
_				4						
				5						
_				6						
_		-7.00	33.08	7						
					AMARELADA MIC	ÁCEA) RECUPERA	ÇÃO 0%	0.00% - REC	CUPERAÇÃO	
		-8.50	31.58	8				0.00% PE(
					ROCHA ALTERAD	A (GNAISSE), FRAG	MENTADA, CINZENTA E	0.00 % - NEC	JUFENAÇÃO	
				9 °				0.00% - REC	CUPERAÇÃO	
		-10.00	30.08	<u> </u>						
					BRANCA MICÁCE	A RECUPERAÇÃO	0%	0.00% - REC	CUPERAÇÃO	
		-11.50	28.58	11				0.00% - BE(
					ROCHA ALTERAD	A (GNAISSE), FRAG	MENTADA, CINZENTA E	0.0078 1120		
								0.00% - REC	CUPERAÇÃO	
		-13.00	27.08	° <u>°</u> ° <u>°</u> 13		A (GNAISSE), FRAG	MENTADA, CINZENTA E			_
					BRANCA MICÁCE	A RECUPERAÇÃO	5%	5.00% - REC	CUPERAÇÃO	
		-14.50	25.58	<u> </u>				5.00% - BEC		
					ROCHA ALTERAD BRANCA MICÁCE	A (GNAISSE), FRAG A RECUPERAÇÃO	MENTADA, CINZENTA E 2%			
						5		2.00% - REC	CUPERAÇÃO	
		-16.00	24.08	<u> </u>			DA (GNAISSE), FRAGMENTA	DA		
					CINZENTA E BRA	NCA MICÁCEA RE	CUPERAÇÃO 5%	5.00% - REC	CUPERAÇÃO	
		-17.50	22.58	17				10.00% - BE		2
					ROCHA POUCO A CINZENTA E BRA	LTERADA (GNAISSE NCA MICÁCEA REG), MUITO FRATURADA, CUPERAÇÃO 10%			-
								10.00% - RE	CUPERAÇÃO	o c
		-19.00	21.08	<u> </u>	ROCHA SÃ (GNAI	SSE), SEM FRATURA	A, CINZENTA E BRANCA			
					MICÁCEA RECL	JPEŔÁÇÃO 100%		100.0% - RE	CUPERAÇAC	2
		-20.45	19.63	20						
	Sor	ndagem cor	n retirada	s de amostras	(continua na fol	ha 2) RN:	A DO N.A.			
Diâmetr Amostra	o do reve ador padrá	stimento: 2 ão Diâmetro	½ " c: 2"	Altura de c Peso do m	ueda=75cm artelo= 65 Kg	Cota topográfi	ca			
C	01	O T	F S 1	F	DATA INIC	CIAL: 22/05/2013	PERFIL SM 08 (1/2)		ESCA	I A 1·100
EN	GENH			DA	DESENHO)	LOCAL			_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
			\checkmark	\checkmark	Gusta	/0	Estrada da Cachamorra	l		
		A			Washi	nton	Campo Grande - Rio de	Janeiro - RJ		
	AV. RIO BRA TELS. : 2	NCO, 156 - 18º. 2262.1117 . 22	Andar - Grupo 62.3738 . 25	1817-1820 24.3326	ENG. RES	SP.	CALPER	0057 10		
	FAX: 22	262.5633 R	O DE JANE	IRO - RJ			A. 648319,4/m - Y: /46	3357,13M		

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO		Diag Pen 30 cr	rama das etrações n finais n iniciais
		-20.50	20.08 19.58	(continuaçã	no da folha 1) ROCHA SÃ (GNAIS MICÁCEA RECU Limite da perfura	SSE), SEM FRATUR PERAÇÃO 100% ƏÇÃO	A, CINZENTA E BRANC	A	№ de golpes 10	/ %de Récuperação 20 30
	Cota	topográ	fica forn	ecida pelo	o cliente,					
Diâmetr	Sor ro do reve	ndagem co stimento: 2	m retiradas	s de amostra Altura de	s e queda=75cm	RN: Cota topográfi	ca	COTA D	O N.A.	
S			E <u>S</u> T		DATA INIC DATA FINA	IAL: 22/05/2013 AL : 24/05/2013	PERFIL SM 08 (2/2)			ESCALA 1:100
ÉN	ENGENHARIA LT DA				DESENHO Gustavo SONDADO	0)R	LOCAL Estrada da Cacha	imorra		
~	AV. RIO BRA TELS. : 2 FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 252 RIO DE JANEI	1817-1820 24.3326 RO - RJ	Washin ENG. RESI	ton P.	Campo Grande - I CALPER X: 648319,47m - `	Hio de Ja Y: 746335	neiro - RJ 57,13m	

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO		Di F 30	agrama da enetraçõe cm finais cm inicia	as es is	
· · · ·			+	40.72 (boca	do furo)				Nº de gol 10	oes / % de 20	Recuper 30	ação)
				1 2 3	MATERIAL TERRC	DSO PERFURADO C	OM SONDA ROTATIVA					
		-8.10	32.62		ROCHA POUCO A	LTERADĄ (GNAISSE	e), muito <u>f</u> raturad <i>i</i>	- - - -	15 00% - BE	CUPERA	CÃO	
		-9.60	31.12	9 0 0 0 0 0 0 0 0 0	CINZENTA E BRAN	NCA MICACEA RE	CUPERAÇAO 15%		15.00% - RE		ļção	
		-11.10	29.62		ROCHA POUCO A CINZENTA E BRAN ROCHA POUCO A CINZENTA E BRAN	LTERADA (GNAISSE NCA MICÁCEA RE LTERADA (GNAISSE NCA MICÁCEA RE	E), EM FRAGMENTOS, CUPERAÇÃO 5% E), EM FRAGMENTOS, CUPERAÇÃO 3%		5.00% - RE(3.00% - RE(CUPERAG	ção ção	
		-12.60	28.12	12 0 13 0 0 0 0 0 0 0 0 0 0 0 0 0	ROCHA SÃ (GNAIS MICÁCEA RECU	SSE), SEM FRATUR, PERAÇÃO 95%	A, CINZENTA E BRANC	CA	3.00% - RE(95.00% - RE		ção	
		-14.10	26.62	<u>14</u>	l imite da perfur	acão						
	Cota	topográ	fica forn	ecida pelo	cliente.							
Diâmetr Amostra	Sor o do reve ador padra	ndagem con stimento: 2 ão Diâmetro	n retirada ½ " p: 2"	s de amostras Altura de Peso do r	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	ca	COTA DO) N.A.			
	AV. RIO BRA TELS. : 22	UI IARIA NCO, 156 - 18º. 2262.1117 - 222 262.5633 R	Andar - Grupo 162:3738 - 252	1817-1820 24.3326 IRO - RJ	DATA FINA DESENHO Gustav SONDADC Sergio ENG. RES	0 P.	SM 09 LOCAL Estrada da Cacha Campo Grande - CALPER X: 648372,74m -	amorra Rio de Jar Y: 746338	neiro - RJ ,60m	ES	CALA	1:100

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC/	ĄÇÃO			Diagran Penetr 30 cm f 30 cm i	na das ações inais niciais		
			+	20.38 (boca	l do furo)				Nº de 1	golpes / s	6 de Re	cuperaç 30	ão
_			•	1	MATERIAL TERRC	DSO PERFURADO C	OM SONDA ROTATIV	A					
_				2									
_				3									
_				4									
_				5 6									
		-7.00	13.38	7	ROCHA ALTERAD	A (AREIA FINA E MI	ÉDIA SILTOSA CINZEN	JTA	0.00% - 6	BECIJIPE	BACÃ		_
				8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-∪ <i>⊑αj.</i> - ne∪Urek/	ny/1∪ υ /₀		0.00% - 1	RECUPE	RAÇÃ	2 2	
		-9.20	11.18	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ROCHA SÃ (GNAI: MICÁCEA RECU	SSE), SEM FRATUR PERAÇÃO 85%	A, CINZENTA E BRAN	CA	85.00% -	RECUP	ERAÇ	io	
		-10.70	9.68	<u> </u>	. ROCHA SÃ (GNAI: MICÁCEA RECU	SSE), SEM FRATUR PERAÇÃO 65%	A, CINZENTA E BRAN	CA	85.00% - 65.00% -	RECUP	ERAÇ <i>î</i> Eraç <i>î</i>		
		-12.20	8.18	<u> </u>		~							
	Cota	topográ	fica forn	ecida pelo	o cliente,								
Diâmetr	Sor o do reve ador padrá	ndagem con stimento: 2 ăo Diâmetr	m retirada ½ " o: 2"	s de amostra Altura de Peso do	s queda=75cm martelo= 65 Kg	RN: Cota topográf	ica	COTA D	O N.A.				
S	O L genh	O T IARIA			DATA INIC DATA FIN DESENHC Gustav SONDADC	IAL: 04/06/2013 AL: 04/06/2013 0	PERFIL SM 10 LOCAL Estrada da Cacha Campo Grande -	amorra Rio de Ja	neiro - I		ESC	ALA 1	:100
	AV. RIO BRAI TELS. : 2 FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 253	1817-1820 24.3326 IRO - RJ	Washir ENG. RES	ngton P.	CALPER X: 648274,85m -	Y: 74634	49,42m	-			

ais ais	ADE iUA	ADE n)		A			~	Dia	grama das
ETRAÇÃ le queda to cm fin	-UNDID, EL D'ÁG	I) OTOS	TA (m	OSTR	CLA	SSIFICA	AÇÃO	30 c	rm finais
PENE No. d dos 3 (Nspt	PROF NÍVI	PROF DO	8	AM				30 c	m iniciais
				24.50 (boca	do furo)			Nº de golpe 10	es / % de Recuperação 20 30
_					SILTE ARGILO ARE	ENOSO			
_		0.50	01.00						
		-3.50	21.00		ROCHA POUCO AL CINZENTA E BRAN	_TERADA A SÃ (GN	AISSE), SEM FRATURA,	100.0% - REC	UPERAÇÃO
				4 • • • • • • • • •				100.0% - REC	UPERAÇÃO
		-5.00	19.50	5	Limite da perfura				
					Linne da pendra	içao			
	Cota	topográ	fica forn	necida pelo	cliente,				
Diâmat	Sor	ndagem co	m retirada	is de amostras	s	RN:	C	COTA DO N.A.	
Amostr	ador padra	ao Diâmetr	: /2 :0: 2"	Altura de Peso do I	queda=750m martelo= 65 Kg	Cota topográfi	ca		
C	01	ΛΤ	F C 1	F	DATA INICI	IAL: 09/05/2013	PERFIL SM 11		ESCALA 1:100
	IGENI	iaria		D A	DESENHO		LOCAL		
			1	\checkmark	Gustavo	C	Estrada da Cacham	iorra	
			1		SONDADO	R	Campo Grande - Ri	o de Janeiro - RJ	
	AV. RIO BRA	NCO, 156 - 18º.	Andar - Grupo	1817-1820	Sergio		CALPER		
	TELS. :: FAX: 22	2262.1117 . 2 262.5633 R	262.3738 . 25 IO DE JANE	24.3326 IRO - RJ	ENG. RESP		X: 648323,15m - Y:	7463437,28m	

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	4ÇÃO			Diagra Pene 30 cm 30 cm	ama das etrações 1 finais 1 iniciais	3	
	ш.	ш. 	+	26.86 (boca	l do furo)				Nº de 1	golpes	/ % de R 20	ecuperaçi 30	ão
					ATERRO ARENO S	SILTO ARGILOSO			, , , , , , , , , , , , , , , , , , ,				
_				<u></u>									-
_		-1.50	25.36		SILTE ARGILOSO	POUCO ARENOSO	VERMELHO						
_				2									
_		-3.00	23.86										
_					ROCHA MUITO AL AMARELA COM M	TERADA (AREIA ME ICA) RECUPERAÇ	ÉDIA A GROSSA CINZA ÇÃO 0%	E	0.00% - I	RECUF	PERAÇÂ	io	
		-4 50	22.36	4								~	
		-4.50	22.30			LTERADA (GNAISSI	E), MUITO FRATURADA	١,	. 10.00% -	RECU	IPERAÇ	AO	
				<u>5</u>		NCA MICACEA RE	CUPERAÇAU 10%		10.00% -	RECU	IPERAÇ	ÃO	
		-6.20	20.66	°°°°°									
					ROCHA POUCO A SEM FRATURA, C	LTERADA (GNAISSI NZENTA E BRANC/	E), POUCO FRATURAD. A MICÁCEA.	A A	65.00% -	RECU	IPERAÇ	ÂO	
				7	- RECUPERAÇÃO	65%				DEOL			
		-7.70	19.16		ROCHA SÃ (GNAIS	SSE), SEM FRATUR	A, CINZENTA E BRANC	A	03.00%	nEUU	IF EMAY	AU	
				8	MICÁCEA RECU	PERAÇÃO 95%			95.00% -	RECU	IPERAÇ	ÃO	
		-9.20	17.66	9									
					Limite da perfura	ação							
	Cota	topográ	fica forn	iecida pelo	cliente.								
Diâmetr	Sor o do reve	ndagem co stimento: 2	m retirada $\frac{21}{2}$ "	s de amostras Altura de	s queda=75cm	RN:	ioo	COTA D	00 N.A.				
Amostra	ador padra	ao Diâmetr	"0:2" F /	Peso do I	martelo= 65 Kg DATA INIC	IAL: 13/05/2013	PERFIL						
5	UL		t <u>)</u>		DATA FINA	AL : 14/05/2013	SM 12				ESC	CALA 1	:100
EN	yeni	iaria İ		~ ~ ~	Gustav	0	Estrada da Caoba	morro					
			1		SONDADC	R	Campo Grande - F	Rio de Ja	aneiro - I	RJ			
~	AV. RIO BRA	NCO, 156 - 18º.	Andar - Grupo	1817-1820	Sergio	P	CALPER						
	AV. RIO BRANCO, 156 - 18º. Andar - Grupo 1817-1820 TELS. : 2262.1117 . 2262.3738 . 2524.3326 FAX: 2262.5633 RIO DE JANEIRO - RJ			24.3326 IRO - RJ			X: 648375,64m - Y	Y: 74634	26,50m				

Г

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO				Diaç Pe 30 c 30 c	ırama netraç :m fina :m inic	das :ões ais ziais			
I			+	19.66 (boca	do furo)					Nº de 1	golpe	s/%c	Je Red	upera	ção	
16/30	-1 40				SILTE ARGILOSO	RIJO CINZA E AMAF	RELO			1	2					
19/30		-1.60	18.06	 2	ARGILA ARENOSA	A RIJA A DURA CINZ	A				16			_	_	
24/30				3				-				20	\mathcal{A}		_	
26/30 _				4				-				22		\downarrow	_	
37/30 _		-4.90	14.76	5	AREIA MÉDIA SILT E AMARELA COM	TOSA COMPACTA A MICA (SOLO RESID	MUITO COMPACTA CINZA	4					-	30		
56/30 _				6		- (- ,	-					_		+	44
30/15 _		-7.40	12.26	7		TERADA (AREIA MÉ	DIA SII TOSA CINZENTA		0.00)% - I	RECI	JPER,	AÇÃ(+	50
				8 0 0 0 0 0 0 0	AMARELADA MICA	ACEA) RECUPERA	ÇÃO 0%	·	0.00)% - 1	RECI	JPER,	AÇÃ(+	
		-9.70	9.96	0 0 0 0 9 0 0 0 0 0 0 0 0 0		LTERADA A SÃ (GN	AISSE GRANITO), FRATUF	RADA,	10.0	0% -	REC	UPEF	RAÇÃ	10	+	
		-10.30	9.36	10 0 0 0	- RECUPERAÇÃO ROCHA SÃ (GNAIS BRANCA E AMARE	SSE GRANITO), POL ELA COM MICA RE	JA. JCO FRATURADA, CINZA, CUPERAÇÃO 65%		65.0	00% -	REC	UPEF	RAÇ₽́	0		
		-11.80	7.86	11				-								
	Cota	topográ	fica forn	ecida pelo	cliente.											
Diâmetr Amostra	Sor o do reve ador padra	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostras Altura de Peso do I	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	ca	DTA D	O N	.A. +	18.2	:6				
SEN	Sondagem com retiradas de amostras âmetro do revestimento: 2½ " Altura de nostrador padrão Diâmetro: 2" Peso do I SOLOTESTESTE ENGENHARIA L T DA AV. RIO BRANCO, 156 - 18º. Andar - Grupo 1817-1820				DATA INIC DATA FINA DESENHO Gustavi SONDADC Washin	IAL: 03/12/2013 AL: 04/12/2013 O PR gton	PERFIL SM 101 LOCAL Estrada da Cachamo Campo Grande - Rio CALPER	orra de Ja	neii	ro - I	RJ	E	ESC	ALA 1	1:10	0
	AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820 TELS. : 2262.1117 . 2262.3738 . 2524.3326 FAX: 2262.5633 RIO DE JANEIRO - RJ				ENG. RESI	г.	X(m): 648306,8749 -	Y(m):	746	6352	24,8	40				

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO			Dia Pe 30 (30 (grama d netraçõe cm finais cm inicia	as es ; is		
-				19.57 (boca	do furo)				Nº de	golpe	es / % de 20	Recup	eração 30)
12/30 _					ARGILA POUCO AI	RENOSA MÉDIA A I	DURA CINZA		9					
16/30 _				2							\mathbb{N}^{+}			
20/30 _				3						10		$\overline{\mathbf{x}}$		
34/30 _		-3.90	15.67	4	ARGILA MUITO AR	ENOSA DURA CINZ	ΖA					30		/,
30/15				5								_		46
30/15				6										50
30/15		-6.70	12.87	7	AREIA FINA E MÉE E BRANCA COM M	DIA SILTOSA MUITO IICA (SOLO RESIDU	COMPACTA CINZENT	A				_		52
		-8.00	11.57											
				8 • • • • • • • • • •	ROCHA MUITO AL CINZENTA E BRAN	TERADA (AREIA FIN NCA MICÁCEA) RE	IA E MÉDIA SILTOSA ECUPERAÇÃO 0%		0.00% -	RECI	UPERA	ÇÃO		
				9					0.00% -	REC	UPERA	ÇÃO		
									0.00% -	RECI	UPERA	ÇÃO		
		-11.60	7.97	<u> </u>					0.00% -	BECI	IPERA	CÃO		
		11.00	1.01		ROCHA POUCO AI E BRANCA MICÁC	LTERADA (GNAISSE EA RECUPERACA	E), FRATURADA, CINZE	INTA						
		-12.60	6.97		ROCHA SÃ (GNAIS	SSE), SEM FRATUR	A, CINZENTA E BRANC	A	10.00%	REC	UPER/	٩ÇÃO		
					MICACEA RECU	PERAÇAU 95%			95.00%	REC	UPERA	\ÇÃO		
		-14.10	5.47	<u>14</u>	Limite da perfura	acão								
	Limite da perfuração Cota topográfica fornecida pelo cliente.													
Diâmetr	Sor o do reve	ndagem con stimento: 2	m retirada 11/2 "	s de amostras Altura de	s queda=75cm	RN:		COTA D	0 N.A.					
Amostra	ndor padra		0: 2" C C 1	Peso do i	DATA INIC	IAL: 30/11/2013	PERFIL							
	U L GENÞ	U İ İ Iaria		L Da	DATA FINA DESENHO	AL : 02/12/2013	SM 102				E\$	3CAL	A 1:1	00
		 			Gustave	0	Estrada da Cacha	morra						
			$\mathbf{\Lambda}$		SONDADO	R	Campo Grande - I	Rio de Ja	aneiro -	RJ				
	AV. RIO BRA TELS. : 2	NCO, 156 - 18º. 2262.1117 . 22	Andar - Grupo 262.3738 . 25	1817-1820 24.3326	ENG. RESI	9.000 P.	CALPER							
	FAX: 22			IBO - B.I			X(m): 648304.293	6 - Y(m)	: 74635	13.9	52			

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLASSIFICAÇÃO	Diagrama das Penetrações ————————————————————————————————————
			•	20.15 (boca	do furo)	Nº de golpes / % de Recuperação 10 20 30
9/30 12/30	-1.20				ARGILA POUCO ARENOSA MÉDIA A DURA CINZA E AMARELA	
15/30		-4.00	16.15	3		11,120
36/30 30/15 30/5					AREIA FINA E MÉDIA SILTOSA COMPACTA A MUITO COMPACTA CINZENTA E AMARELA COM MICA (SOLO RESIDUAL)	
		-6.70	13.45		ROCHA MUITO ALTERADA (AREIA FINA E MÉDIA SILTOSA CINZENTA E AMARELA COM MICA) RECUPERAÇÃO 0%	
				9 9 0 10		0.00% - RECUPERAÇÃO 0.00% - RECUPERAÇÃO
		-11.20	7.25	11 	ROCHA POUCO ALTERADA A SÃ (GNAISSE), FRATURADA, CINZENTA E BRANCA MICÁCEA RECUPERAÇÃO 45%	45.00% - RECUPERAÇÃO 45.00% - RECUPERAÇÃO
		-14 40	5 75	13 °°°°°° 14	ROCHA SA (GNAISSE), SEM FRATURA, CINZENTA E BRANCA MICÁCEA RECUPERAÇÃO 85%	85.00% - RECUPERAÇÃO
		14.40	0.70		Limite da perfuração	
	Cota	topográ	fica forr	ecida pelo	cliente.	
Diâmetr Amostra	Sor ro do reve ador padra	ndagem con stimento: 2 ão Diâmetro	m retirada 2½ " o: 2"	s de amostras Altura de Peso do r	queda=75cm RN: CO nartelo= 65 Kg Cota topográfica CO	TA DO N.A. +18.95
Sen	OL IGENH AV. RIO BRA TELS. : 2	OT JARJA J NCO, 156 - 18 ⁸ . 2262.1117 - 22	E S 1	1817-1820 24.3326	DATA INICIAL: 27/11/2013 DATA FINAL : 27/11/2013PERFIL SM 103DESENHO GustavoLOCALGustavoEstrada da CachamoreSONDADOR WashingtonCampo Grande - Rio c CALPER	ra de Janeiro - RJ

ENETRAÇÃO lo. de quedas os 30 cm finais Vspt)	rofundidade Nível d'Água	ROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLASSIF	ICAÇÃO	Diagra Pene 30 cm	ama das etrações n finais n iniciais
EZƏE	Ē	Ē	+	20.19 (boca	do furo)		Nº de golpes	/ % de Recuperação
9/30 _	-1.00				SILTE ARGILOSO MÉDIO A RI	JO CINZA E AMARELO		
18/30				<u>= / 7 / =</u> <u>2</u> = / 7 / = _ = / 7 / =				
19/30		-3.90	16.29	3 -/= 7 /= - -/= 7 /= -				
30/3 _		-5.00	15.19	4	AREIA FINA E MÉDIA SILTOSA E AMARELA COM MICA (SOLC	MUITO COMPACTA CINZENTA RESIDUAL)		
				5	ROCHA MUITO ALTERADA (AF CINZENTA E AMARELA COM N	REIA FINA E MÉDIA SILTOSA MICA) RECUPERAÇÃO 0%	0.00% - RECUF	PERAÇÃO
		-6.50 -7.70	13.69		ROCHA ALTERADA A POUCO CINZENTA E BRANCA MICÁCE	ALTERADA (GNAISSE), FRATURADA, FA RECUPERAÇÃO 30% A 60%	30.00% - RECL 60.00% - RECL	IPERAÇÃO
		-9.20	10.99	8	ROCHA POUCO ALTERADA (C E BRANCA MICÁCEA RECUI	NAISSE), FRATURADA, CINZENTA PERAÇÃO 30%	30.00% - RECL	IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
				9 000000000000000000000000000000000000	ROCHA SÃ (GNAISSE), SEM F MICÁCEA RECUPERAÇÃO 1	RATURA, CINZENTA E BRANCA 00%		IPERAÇÃO
		-10.90	9.29		Limite da perfuração			
	Cota	topográ	fica forr	ecida pelo	cliente.			
Diâmetr Amostra	Sor o do reve ador padra	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostra Altura de Peso do	queda=75cm martelo= 65 Kg Cota to	pográfica	DO N.A. +19.19	I
SEN	O L IGENH				DATA INICIAL: 20/11/20 DATA FINAL : 26/11/20 DESENHO Gustavo SONDADOR Washington	PERFIL SM 104 LOCAL Estrada da Cachamorra Campo Grande - Rio de	Janeiro - RJ	ESCALA 1:100
	AV. HIU BRA TELS. :: FAX: 2	1960, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 25 IO DE JANE	1817-1820 24.3326 IRO - B.I	ENG. RESP.	CALPER X(m): 648271.7192 - Y(i	n): 7463428.12	06

PENETRAÇÃO No: de quedas dos 30 cm finais (Nspt)	Profundidade Nível d'Água	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO	Dia Pe 	Diagrama das Penetrações 30 cm finais		
			• •	- 74.65 (boca	a do furo)			Nº de golpe 10	es / % de Recuperação 20 30	С	
					MATERIAL TERRC	ISO PERFURADO C	OM SONDA ROTATIVA				
				2							
		-3.00	71.65	<u>3</u>	AREIA FINA E MÉL	DIA SILTOSA CINZE	NTA AMARELADA MICÁCEA	A 0.00% - REC			
		-4.20	70.45		ROCHA POUCO A	TERADA A SÃ (GNA	ISSE), POUCO FRATURADA	A 75.00% - REC	UPERAÇÃO		
		-5.70	68.95		A SEM FRATURA, - RECUPERAÇÃO	CINZENTA E AMAR 75%	ELA MICACEA.	75.00% - REC	UPERAÇÃO		
				6	ROCHA SÃ (GNAIS MICÁCEA. RECUP	SSE), SEM FRATUR ERAÇÃO 100%	A, CINZENTA E AMARELA	100.0% - REC	UPERAÇÃO		
		-7.20	67.45	7] Limite da perfur	acão					
Diâmeti Amostra	Sor o do reve ador padrá	ndagem co stimento: 2 ăo Diâmetr	m retirada 2½ " o: 2"	s de amostra Altura de Peso do	s e queda=75cm martelo= 65 Kg	RN: Cota topográfi	ca	TA DO N.A.			
	OL GENH	OT JARIA J NCO, 156 - 18°. 2262, 1117 22	Andar - Grupo	1817-1820 24.3326	DATA INIC DATA FINA DESENHO Gustav SONDADC Washin ENG. RES	IAL: 28/06/2013 AL: 29/06/2013 0 0R gton P.	PERFIL SM A LOCAL Estrada da Cachamor Campo Grande - Rio o CALPER	ra de Janeiro - RJ	ESCALA 1:1	00	
	FAX: 22	262.5633 R	NO DE JANE	IRO - RJ			X (UTM): 648493,85m	n - Y (UTM): 746	3281,95m		

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	4ÇÃO	Diag Pen 30 cr 30 cr	rama das letrações m finais m iniciais
I			+	77.35 (boca	i do furo)			Nº de golpes 10	s / % de Recuperação 20 30
					MATERIAL TERRO	SO PERFURADO C	OM SONDA ROTATIVA		
_									
_				1					
_				2					
_									
_				3					
				4					
_				5					
_				6					
_		-6.80	70 55	0				0.00% - RECU	PERAÇÃO
		-7.00	70.35	~ 7 ~	ROCHA MUITO AL	TERADA RECUPE	ERAÇÃO 0%		
					Á SEM FRATURA,	CINZENTA E AMAR	ELA MICÁCEA.	75.00% - REC	UPERAÇÃO
		-8 50	68 85	8					
		0.00	00.00		ROCHA SÃ (GNAI	SSE), SEM FRATUR	A, CINZENTA E AMARELA	10010% - REG	UPERAÇAO
				9	MICACEA RECU	PERAÇAO 100%			UPERAÇÃO
				00000					
		-10.00	67.35	10	Limite da perfura	acão			
Diâmetr Amostra S EN	Sor o do reve ador padra O L GENH	ndagem coo stimento: 2 ão Diâmetr OTI	m retirada 1½ " o: 2" E S I	s de amostra Altura de Peso do	s queda=75cm martelo= 65 Kg DATA INIC DATA FIN/ DESENHO Gustav	RN: Cota topográfi IAL: 28/06/2013 AL : 29/06/2013 0	ica PERFIL SM B LOCAL Estrada da Cachamo	OTA DO N.A.	ESCALA 1:100
			1	\bigwedge	SONDADO)R	Campo Grande - Rio	de Janeiro - R.I	
_	AV. RIO BRA	NCO, 156 - 18º.	Andar - Grupo	1817-1820	Washir	ngton P.	CALPER		
	TELS. : 2 FAX: 22	262.5633 R	02.3/38 . 25 10 DE JANE	24.3326 IRO - RJ	2.10.1120		X (UTM): 648506,44	m - Y (UTM): 7463	366,73m

ÃO las	nais	DADE GUA	DADE (m)	(L	AF.					Diagrama das Penetrações
ENETRAÇ	os 30 cm f Vspt)	Rofundig Nível ďá	JOFUNDI	COTA (r	AMOSTI		SSIFICA	AÇAO		30 cm finais 30 cm iniciais
E Z	55	Ē	ā	+	71.44 (boca	do furo)			Nº de	golpes / % de Recuperação
	_					ARGILA SILTOSA	VERMELHA			
	-		-1.50	69.94		ARGILA SILTOSA (CINZA AMARELADA		_	
	_					-				
	_		-3.10	68.34		ROCHA ALTERAD, CINZENTA E BRAN	A A POUÇO ALTER/ NCA MICÁCEA RE	DA (GNAISSE), FRATURADA, CUPERAÇÃO 60%	60.00% -	RECUPERAÇÃO
			-4.80	66 64	4				60.00% -	RECUPERAÇÃO
			4.00	00.04	5	ROCHA SÃ (GNAIS MICÁCEA RECU	SE), SEM FRATUR/ PERAÇÃO 90%	A, CINZENTA E BRANCA	90.00% -	RECUPERAÇÃO
			-6.30	65.14	6 6	Limite da perfura				
		Cota	topográ	fica forn	iecida pelo	cliente.	, yuu			
					-					
Di	iâmetro mostra	Sor do reve dor padrá	idagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostra Altura de Peso do	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	са	DO N.A.	
	S (0 L	<u>o t</u>	E S T	T E	DATA INIC DATA FINA	IAL: 17/07/2013 AL : 18/07/2013	PERFIL SM C		ESCALA 1:100
	EN	GENH	IAR IA <u>I</u>	LTI	DA	DESENHO Gustav	0	LOCAL Estrada da Cashamarra		
				1	\bigwedge	SONDADC	R	Campo Grande - Rio de J	laneiro - I	RJ
		V. RIO BRAI	VCO, 156 - 18º.	Andar - Grupo	1817-1820	Washin	gton P.	CALPER		
		TELS. : 2 FAX: 22	262.1117 . 22 262.5633 R	262.3738 . 25 10 DE JANE	24.3326 IRO - RJ			X (UTM): 648514,85m - እ	′ (UTM): ˈ	7463423,33m

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	Profundidade Nível d'água	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	ĄÇÃO		Diagrama das Penetrações 						
	_		+	66.20 (boca	a do furo)				Ν	l⁰ de 1	golpe	s / % d 20	e Reci	upera 30	ção
					SILTE ARGILO AR	ENOSO AMARELAD	0				0				
-		-3.00	63.20	3	AREIA MÉDIA SILT	FOSA CINZA AMARE	ELADA					_			
_		-4.10	62.10	4										Шт	
		-5.10	61.10	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	BRANCA MICÁCE/	A RECUPERAÇÃO			85.0	0% -	REC	UPEF	AÇA(ך 	
		-6.60	59.60		MICÁCEA RECU	PERAÇÃO 100%	A, UINZENTA E DRANGA		100.	0% -	REC	UPEF	AÇA(<u> </u>	
					Limite da perfura	açao									
	Cota	topográ	fica forn	iecida pelo	o cliente.										
Diâmetr	Sor o do reve	ndagem co stimento: 2	m retirada $\frac{21}{2}$ "	s de amostra: Altura de	s e queda=75cm	RN: Cota topográfi	Ca	COTA D	O N.	A.					
Ainostra					DATA INIC	IAL: 29/07/2013	PERFIL								
	U L Genh	u i Iaria		L E D A	DATA FINA DESENHO	AL : 18/07/2013	SM D					E	SCA	LA 1	1:100
				\checkmark	Gustav	0	Estrada da Cachamorra								
			$\mathbf{\Lambda}$		SONDADO)R	Campo Grande - Ri	o de Ja	neir	o - F	٦J				
	AV. RIO BRAI TELS. : 2	NCO, 156 - 18º. 2262.1117 . 22	. Andar - Grupo 262.3738 . 25	1817-1820 24.3326	ENG. RES	P.	CALPER								
	FAX: 22	262.5633 R	RIO DE JANE	IRO - RJ			X (UTM): 648524,70	0m - Y (UTN)	M): 7	7463	3489,	61m	í –	

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	ASSIFIC	ĄÇÃO			Diagrama das Penetrações ——— 30 cm finais – – – – 30 cm iniciais			
			+	58.40 (boca	l do furo)				Nº de	golpes /	% de Re	ecuperaçã	0
PENE	Cota	-7.50 -8.20 -9.70 topográ	8 50.90 50.20 48.70 47.20	₹ 58.40 (boca 1 2 3 4 5 6 6 7 0 0 0 0 0 0 0 0 0 0 0 0 0	MATERIAL TERRO MATERIAL TERRO ROCHA MUITO AL ROCHA POUCO A CINZENTA E AMA ROCHA SÃ (GNAI MICÁCEA RECL Limite da perfur o cliente.	DSO PERFURADO C ITERADA RECUPE ILTERADA A SÃ (GN RELA MICÁCEA R SSE), SEM FRATUR IPERAÇÃO 80% ação	OM SONDA ROTATIVA	URADA, ELA	N° de 1	30 cm golpes / golpes / golpes / golpes / golpes /			
Diâmetra Amostra S	Sor o do reve dor padrá O L	ndagem coi stimento: 2 ão Diâmetro O T	m retirada ^{1/2} " p: 2" EST	s de amostra Altura de Peso do	s queda=75cm martelo= 65 Kg DATA INIC DATA FIN	RN: Cota topográf DAL: 02/07/2013 AL : 04/07/2013	ica PERFIL SM E	COTA D	DO N.A.		ESC		100
ĔN	GENH AV. RIO BRAI TELS. : 2 FAX: 22	NCO, 156 - 18°. 2262.1117 - 22 262.5633 R	Andar - Grupo 262.3738 . 252 IO DE JANE	D A 1817-1820 24.3326 IRO - RJ	DESENHO Gustav SONDADO Washin ENG. RES) ro DR ngton IP.	LOCAL Estrada da Cacha Campo Grande - CALPER X (UTM): 648469	amorra Rio de Ja ,30m - Y	aneiro - I (UTM): 1	RJ 74632	253,52	m	

,ÃO das finais	DADE ÁGUA	DADE) (m)	Ê	RA				Dia Pe	grama das metrações				
ENETRAG lo. de que os 30 cm Vspt)	ROFUND	DIOS OD	COTA (AMOST		13317107	ĄÇAO	30 0	om finais om iniciais				
8292	4 -	14	+	79.34 (boca	do furo)			Nº de golpr	es / % de Recuperação				
					MATERIAL TERRC	SO PERFURADO C	OM SONDA ROTATIVA	10	20 30				
_	_	-1.50	77.84	1	-			65.00% - RE(CUPERAÇÃO				
				<u> </u>	ROCHA POUCO A CINZENTA E AMAI	LTERADA (GNAISSE RELA MICÁCEA R	E), POUCO FRATURADA, ECUPERAÇÃO 65%						
		2 00	76.24		-			65.00% - REC)UPERAÇÃO				
	_	-3.00	70.34	<u> </u>	ROCHA POUCO A	LTERADA (GNAISSI	E), POUCO FRATURADA,						
						NELA MICACEA N	ECUPERAÇÃO 65%						
	-	-4.50	74.84	4				65.00% - REC	SUPERAÇÃO				
				5		RELA MICÁCEA R	ECUPERAÇÃO 30%						
	_	-5.60	73.74		ROCHA SÃ (GNAIS	SSE), SEM FRATUR	A, CINZENTA E AMARELA	30.00% - REC	UPERAÇAO				
				6	MICACEA RECU	PERAÇAO 100%		100.0% - RE(UPERAÇÃO				
		-7.10	72.24	7	-								
				,	Limite da perfura	ação							
	Cota	tonoará	fica forn	lecida nelc	cliente								
	oolu	lopogia											
Diâmetr	Son Son	dagem co	m retirada	s de amostra	S	RN:	COTA	DO N.A.					
Amostra	ador padrã	o Diâmetr	o: 2"	Peso do	martelo= 65 Kg	Cota topográfi	ica						
S	O L (0 T	E S 1	T E	DATA INIC DATA FINA	IAL: 08/07/2013 AL : 09/07/2013	PERFIL SM F		ESCALA 1:100				
ĒN	GENH	ARÍA	LT	DA	DESENHO		LOCAL						
			1	\bigwedge	SONDADO	0)R	Estrada da Cachamorra						
				1917 1000	Wasing	iton	Campo Grande - Rio de	Janeiro - RJ					
	AV. HIO BRAN TELS. : 22	00, 156 - 18º. 262.1117 . 22	Andar - Grupo 262.3738 . 25	1817-1820 24.3326	ENG. RES	Ρ.	∪ALYEK X (TM): 648463 84m - \	(TM)+7/A	3331 ()9m				
	FAX: 220	u∠.0033 H	UC DE JAINE	inu - Hj				(0110).740	5551,0011				
Stridgen om vertade de ander-tres de alteriorite de alteriorite de alteriorite de alteriorite de alteriorite de alteriorite de alteriorite de alteriorite de alteriorite de alteriorite de alte	ÃO das inais	DADE GUA	DADE (m)) (L	RA					Diag Pei	jrama das netrações		
---	--	--------------------------	----------------------------------	--------------------------------	-----------------------------------	---------------------------------	------------------------------------	---------------------	-----------	-------------------	------------------------	----------------	-----
Sondgen con reliada de anostras Nice ander 7 cm	ENETRAÇ Vo. de quec los 30 cm f Nspt)	'ROFUNDI	ROFUNDI DO SOLO	COTA (r	AMOST		551F1C7	AÇAO		30 c	m finais m iniciais		
Sondgam con velocida de demotion. Alexa de velocita-rismo Conta de velocita-rismo Conta de velocita-rismo Unite da perfuração Cota topográfica formecida pelo cliente. Difference do performance : 2:11 Alexa de velocita-rismo PROJEKS M. Cota de topográfica Cota topográfica formecida pelo cliente. Difference do performance : 2:11 Alexa de velocita-rismo PROJEKS M. Cota de topográfica Cota topográfica formecida pelo cliente. Difference do performance : 2:11 Alexa de velocita-rismo PROJEKS M. Cota de topográfica Cota topográfica formecida pelo cliente. Difference do performance : 2:11 Alexa de velocita-rismo PROJEKS M. Cota de topográfica Cota topográfica formecida pelo cliente. Difference : 2:12 Alexa de velocita-rismo PROJEKS M. Cota de topográfica Cota topográfica formecida pelo cliente. Societaria : 2:12 Alexa de velocita-rismo Projeks de topográfica Cota de topográfica Difference : 2:12 Alexa de velocita-rismo Projeks de topográfica Cota de topográfica Difference : 2:12 Alexa de velocita-rismo Cota de topográfica Escala 1:100 Dista Minical : 1:100/2013 Det	6200	۵.	۵.	↓	76.44 (boca	a do furo)				Nº de golpe 10	s / % de Rec 20	uperação 30	
Image: Sector in the sector						MATERIAL TERRO	SO PERFURADO C	OM SONDA ROTATIVA					
Sordgen con velocite de anotine Au de quede-75m RN: COTA DO N.A. Dimetro do revelidador paíso Dimetro: 2************************************	_		-1.50	74.94	1					0.00% - RECU	JPERAÇÃO	,	
3.20 70.22 70.24					2	ROCHA MUITO AL	TERADA RECUPE	ERAÇÃO 0%	F				
Image: Sordagen com retindad de amoline PROCEA - RECUPERIÇÃO 1007 Image: Sordagen com retindad de amoline ROCAS - RECUPERIÇÃO 985 Image: Sordagen com retindad de amoline Limite da perfuração Cota tepográfica fornecida pelo cliente: Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de amoline Image: Sordagen com retindad de acehamorra			-3.20	73.24	0 0 0 0 0 0 0 0 0	-			_	0.00% - RECU			TTT
Image: Sordigen com retradad de anochras ROCHA SA GNAISSE, SEM FRATURA, CINZENTA E AMARELA BROM - REQUESINCAD Image: Back of the second se						ROCHA SÃ (GNAIS MICÁCEA RECU	SSE), SEM FRATUR PERAÇÃO 100%	A, CINZENTA E AMARE	LA	100.0% - REC	UPERAÇÃ	D	
Sordogen con refinede de anodra: RN: Cota topográfica Cota topográfi			-4.70	71.74	4					100.0% - REC	UPERAÇÃ	þ	
Sordagen com reliedade do amotival Dimetio do recetitionerio do recetitionerio de amotival Dimetio do recetitionerio do recetitionerio de amotival Dimetio do recetitionerio do recetiti do recetitino do recetiti do recetitioneri do recetiti					5	ROCHA SÃ (GNAIS MICÁCEA RECU	SSE), SEM FRATUR PERAÇÃO 95%	A, CINZENTA E AMARE	LA	95.00% - REC	UPERAÇÃ	p	
Sordagen con relindas de anostras Diametro do revestimiento 2014 Diametro do revestimiento 2014 Mantestado Parte do Linente Sordagen con relindas de anostras Diametro do revestimiento 2014 Diametro do revestimiento 2014 Reve do marine do Sing Sonciando Damine: Sonciando: Sonciando: <td></td> <td></td> <td>-6.20</td> <td>70.24</td> <td>6 6</td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td>			-6.20	70.24	6 6	-			-				
Sondagem com retiradas de amostras Diametro do revestimiento: 2% Amostador paño Diámetro: 2% Poso do queda =75cm RN: Cota topográfica DATA INICIAL: 100/2013 PERFIL DATA INICIAL: 1100/2013 DESENHO Gustaro SONDADOR Washington Chappe Grande - Rio de Janeiro - RJ CALPER						Limite da perfura	ação						
Sordagen nom reliradas de amostras RN: COTA DO N.A. Diamoto do revestimento: 21 ^k - Mura de quada=75cm RN: Cota lopográfica Sordagen nom reliradas de amostras Aura de quada=75cm Rost Cota lopográfica Sordagen nom reliradas de amostras Aura de quada=75cm Rost Cota lopográfica Cota lopográfica Sordagen nom reliradas de amostras Mara de quada=75cm Rost Cota lopográfica Cota lopográfica Sordagen nom reliradas de amostras Mara de quada=75cm Rost Cota lopográfica Cota lopográfica Sordagen nom reliradas de amostras Mara Nariele- 65 kg Data NixCola::100/2013 PERFIL Escala 1:100 Local Guada do Cachamorra Compo Grande - Rio de Janeiro - RJ CalpEg Ar NortAND, KG: % Kara - Gore NIT/180 Nashington CalpEg CalpEg		Cota	topográ	fica forn	iecida pelo	o cliente.							
Sociagen con relinatas de amostras RN: COTA DO N.A. Diametro do revestimento: 2!!** Atura de queda-75cm CAta topográfica Sociagen con relinatas do amostras Peso do martelo- 65 kg Cota topográfica Diametro do revestimento: 2!** Peso do martelo- 65 kg Datra INICIAL: 1007/2013 PERFIL Data pográfica Datra INICIAL: 1007/2013 PERFIL Escalua 1:100 Data Pográfica Datra INICIAL: 1007/2013 SMI G Escalua 1:100 Sondanora Sondanora Gompo Grande - Rio de Janeiro - RJ CALPER													
Sordagem com retiradas do amostras RN: COTA DO N.A. Diametro do revestimento: 2%* Atura de queda=75cm Cota topográfica Social do Diametro: 2* Peso do martelo- 65 Kg Cota topográfica DATA INICIAL: 1007/2013 DERFIL SM G ESCALA 1:100 DATA FINAL: 11007/2013 DESM G LOCAL ESCALA 1:100 Usustavo SONDADOR SONDADOR Cota de Cachamorra Campo Grande - Rio de Janeiro - RJ CALPER CALPER													
Sondagen con retiradas de anostras RN: COTA DO N.A. Diâmetro do revestimento: 21* Altura de queda=75cm RN: Cota topográfica Anostrador padrão Diâmetro: 21* Peso do martelo- 65 kg Cota topográfica Cota topográfica SOLOTESTES DATA NICIAL: 10072013 PERFIL SM G ESCALA 1:100 Usustavo Usustavo DESENHO LOCAL Estada da Cachamorra Vinderendo 16: v. v. Ande: deste NUMER SNDADOR Campo Grande - Rio de Janeiro - RJ CALPER													
Sordagen com reliadas de anostras RN: COTA DO N.A. Diametro do revestimento: 21/2 Atura de queda-75cm Cota topográfica Zonastrador padrão Diametro: 2 Peso do martelo= 65 (g) Cota topográfica SOLDENHARTA LTDA Peso do martelo= 65 (g) DATA. NICIAL: 11/07/2013 PERFIL DATA. FINAL: 11/07/2013 DATA. FINAL: 11/07/2013 SM (g) ESCALA 1:100 UNAL SULVENCIO: 16: 16: Anote Gaugiaria DONADOR LOCAL Estrada da Cachamorra Castado SondaDOR SONDADOR Campo Grande - Rio de Janeiro - RJ CALPER													
Sondagen com reliradas de anostras RN: COTA DO N.A. Diàmetro do revestimento: 21% * Altura de queda=75cm Cota topográfica Amostrador padrão Diàmetro: 21 Peso do martelo= 65 Kg Cota topográfica SOLOCIE STER DATA INICIAL: 1007/2013 PERFIL LINGENHARIA LITOR DATA FINAL: 1107/2013 PERFIL VIENCENHARIA CUEVE STATE SONDADOR LOCAL SONDADOR SONDADOR Campo Grande - Rio de Janeiro - RJ VIENCENHARIA CUEVE STATE FOR RESP CALPER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diàmetro do revestimento: 23/4 Atura de queda=75cm Cota topográfica COTA DO N.A. Manostrador padrão Diametro: 28 Peso do matelo- 65 Kg Cota topográfica Cota topográfica SOLOTESSTE DATA INICIAL: 1007/2013 PERFIL SM G ESCALA 1:100 DESENHO Gustavo SONDADOR LOCAL Estada da Cachamorra SONDADOR SONDADOR Campo Grande - Rio de Janeiro - RJ CALPER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diàmetro do revestimento: 2½ * Altura de queda-75cm RN: Cota topográfica Amostrador padria Diàmetro: 2' Peso do martelo- 65 kg Peso do martelo- 65 kg PERFIL SOLOTESSTE Data NICIAL: 1007/2013 PERFIL ESCALA 1:100 Data FINAL: 11/07/2013 DESENHO LOCAL ESCALA 1:100 Gustavo SONDADOR Campo Grande - Rio de Janeiro - RJ CALPER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diámetro do revesimento: 2½** Altura de queda=75cm Cota topográfica Amostrador padrão Diâmetro: 2* Peso do martelo= 65 Kg Cota topográfica SOLOSTESSTE DATA INICIAL: 1007/2013 PERFIL ESCALA 1:100 DATA INICIAL: 1007/2013 DESENHO LOCAL ESCALA 1:100 DESENHO LOCAL Estrada da Cachamorra Campo Grande - Rio de Janeiro - RJ Av. Reservoiro is 18* Adar: reges 187/180 SNDADOR CALPER CALPER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diâmetro do revestimento: 2½* Altura de queda-75cm Cota topográfica COTA DO N.A. Mostrador padrão Diâmetro: 2* Peso do martelo- 65 kg DATA INICIAL: 10/07/2013 PERFIL SM G ESCALA 1:100 ENGENMARIA LIT DA DATA INICIAL: 10/07/2013 DATA INICIAL: 10/07/2013 SM G ESCALA 1:100 LOCAL Gustavo SONDADOR UCCAL Estrada da Cachamorra Campo Grande - Rio de Janeiro - RJ Alturo Use: 189. Antar- Report 117 180 FING EFSP CAL PER CAL PER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diâmetro do revestimento: 2½* Attura de queda=75cm Cota topográfica Amostrador padrão Diâmetro: 2" Peso do martelo= 65 kg Cota topográfica Socia construitor do revestimento: 2" Peso do martelo= 65 kg DATA INICIAL: 10/07/2013 PERFIL Socia construitor do revestimento: 2" DATA INICIAL: 10/07/2013 PERFIL SM G ESCALA 1:100 Local Gustavo SONDADOR Local Estrada da Cachamorra Campo Grande - Rio de Janeiro - RJ Avindo BANNO, 151: 18" Ander - Gapta 187:80 FRSP FRSP CALPER CALPER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diâmetro do revestimento: 2½* Altura de queda=75cm Cota topográfica Cota topográfica Sondagem com retiradas de amostras Peso do martelo= 65 Kg Data topográfica DATA INICIAL: 10/07/2013 PERFIL Sondagem com retiradas de amostras Data INICIAL: 10/07/2013 DESENHO LOCAL ESCALA 1:100 Muedator padrão Diâmetro: 2" Data INICIAL: 10/07/2013 DESENHO LOCAL ESCALA 1:100 Dessenho retorizado SONDADOR SONDADOR Campo Grande - Rio de Janeiro - RJ CALPER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diàmetro do revestimento: 2½* Altura de queda=75cm Cota topográfica Cota topográfica Amostrador padrão Diàmetro: 2" Peso do martelo= 65 kg DATA INICIAL: 10/07/2013 PERFIL ENGENHARIA LT DA DATA FINAL : 11/07/2013 DATA INICIAL: 10/07/2013 PERFIL SM G ESCALA 1:100 DATA FINAL : 11/07/2013 DATA FINAL : 11/07/2013 DESENHO LOCAL Estrada da Cachamorra ONDADOR SONDADOR SONDADOR CALPER CALPER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diâmetro do revestimento: 2½" Altura de queda=75cm Cota topográfica Cota topográfica Amostrador padrão Diâmetro: 2" Peso do martelo= 65 kg DATA INICIAL: 10/07/2013 PERFIL SM G ESCALA 1:100 DATA FINAL : 11/07/2013 DATA FINAL : 11/07/2013 DESENHO LOCAL Estrada da Cachamorra ONDADOR Washington SONDADOR Campo Grande - Rio de Janeiro - RJ CALPER													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diâmetro do revestimento: 2½" Altura de queda=75cm Cota topográfica Cota topográfica Sondagem com retiradas de amostras Peso do martelo= 65 Kg Data topográfica Data topográfica Sondagem com retiradas de amostras Data INICIAL: 10/07/2013 PERFIL ESCALA 1:100 Data FINAL : 11/07/2013 DATA FINAL : 11/07/2013 DESENHO LOCAL Gustavo SONDADOR SONDADOR Bathington AV. RIO BRANCO, 156 - 188 - Adar: - Grupo 1817-1820 FING, BESP FING, BESP													
Sondagem com retiradas de amostras Diâmetro do revestimento: 2½ " RN: Altura de queda=75cm Peso do martelo= 65 Kg COTA DO N.A. SOLOTESTES ENGENHARIA LIT DA AV. RIO BRANCO, 156 - 18º Andar: Grupo 1817-1820 DATA INICIAL: 10/07/2013 DATA FINAL : 11/07/2013 PERFIL SM G ESCALA 1:100 V. RIO BRANCO, 156 - 18º Andar: Grupo 1817-1820 SONDADOR Washington LOCAL Estrada da Cachamorra Campo Grande - Rio de Janeiro - RJ													
Sondagem com retiradas de amostras RN: COTA DO N.A. Diâmetro do revestimento: 2½" Altura de queda=75cm Cota topográfica COTA DO N.A. Mostrador padrão Diâmetro: 2" Peso do martelo= 65 Kg DATA INICIAL: 10/07/2013 PERFIL SM G ESCALA 1:100 Sondagem com retiradas de amostras DATA INICIAL: 10/07/2013 DATA INICIAL: 10/07/2013 DESENHO LOCAL Muerto BRANCO, 156 - 18°. Andar: - Grupo 1917-1820 SONDADOR SonDADOR LocAL Estrada da Cachamorra AV. RIO BRANCO, 156 - 18°. Andar: - Grupo 1917-1820 FNG. BESP. FNG. BESP. CALPER													
Diâmetro do revestimento: 21/2 " Altura de queda=75cm Amostrador padrão Diâmetro: 2" Peso do martelo= 65 Kg DATA INICIAL: 10/07/2013 BATA INICIAL: 10/07/2013 DESENHO Gustavo AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820 AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820		Sor	ndagem co	m retirada	s de amostra	\$	DN						
SOLOTESTE DATA INICIAL: 10/07/2013 PERFIL SM G ESCALA 1:100 DATA FINAL : 11/07/2013 DESENHO LOCAL Gustavo LOCAL AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820 SONDADOR Washington Campo Grande - Rio de Janeiro - RJ CALPER ENG. BESP. ENG. BESP. CALPER	Diâmetr Amostra	o do reve ador padrá	stimento: 2 ão Diâmetr	2½ " :0: 2"	Altura de Peso do	e queda=75cm martelo= 65 Kg	Cota topográfi	ica	COTA D	U N.A.			
ENGENHARIA LTDA DESENHO LOCAL Gustavo Gustavo Estrada da Cachamorra AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820 Non the control of the contr	S	0 L	0 T	E S 1	ΓE	DATA INIC DATA FINA	IAL: 10/07/2013 AL : 11/07/2013	PERFIL SM G			ESCA	LA 1:10	0
AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820 AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820 FNG. BESP. FNG. BESP. CALPER	EN	GENH	iaria !		DA	DESENHO Gustavo	0	LOCAL	morra				
AV. RIO BRANCO, 156 - 18°. Andar - Grupo 1817-1820	_			1	\bigcap	SONDADO	PR	Campo Grande - F	Rio de Ja	neiro - RJ			
IELS.: 2262.3/38 .2524.3326	~	AV. RIO BRA TELS. : 2	NCO, 156 - 18º. 2262.1117 . 2	Andar - Grupo 262.3738 . 25	1817-1820 24.3326	ENG. RESI	P.	CALPER	04				

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO				Dia Pe 30 c 30 c	grama netraç cm fina cm inic	i das ções ais ciais			
			+	65.09 (boca	a do furo)				1	ü de 1	golpe 0	es / % (20	de Re)	cupera 30	ação)	_
		1.50	00.50		SILTE ARGILOSO								-			_
		-1.50	63.59	2	AREIA MÉDIA SILT	TOSA CINZA AMARE	ELADA									
				3	-											_
				4	-											
		-5.50	59.59	5	AREIA FINA E MÉI	DIA SILTOSA CINZA	AMARELADA									
		-7.00	58.09		FRAGMENTOS DE	ROCHA ALTERADA	4									_
-		-8.50	56.59	8	AREIA FINA SILTO	DSA CINZENTA AMA	RELADA MICÁCEA									
		-10.00	55.09	9 	PEDREGULHOS E	BLOCOS DE ROCH	IA ALTERADA COM AR	EIA								
		-13.00	52.09	13	ROCHA SÃ (GNAIS E BRANCA MICÁC	SSE GRANÍTICO), S EA RECUPERAÇ <i>Á</i>	EM FRATURA, CINZEN AO 100%	ITA	100	.0% -	REC	UPE	RAÇ	ă0		
		-14.60	50.49	14 0°0°0	Limite da perfura	ação										
	Cota	topográ	fica forn	ecida pelo	o cliente.											
Diâmeti Amostra	Sor o do reve ador padra	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostra Altura de Peso do	s • queda=75cm martelo= 65 Kg	RN: Cota topográfi	ica	COTA D	O N	.A.						
SEN	O L Igenf				DATA INIC DATA FINA DESENHO Gustav SONDADC Washin	IAL: 02/08/2013 AL : 06/08/2013 o OR ngton	PERFIL SM H LOCAL Estrada da Cacha Campo Grande -	amorra Rio de Ja	aneir	·o - I	RJ		ESC	ALA	1:100	
	AV. RIO BRA TELS. : 2 FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 25 IO DE JANE	1817-1820 24.3326 IRO - RJ	ENG. RES	Ρ.	CALPER X (UTM): 648488,	,19m - Y	(UTI	M): ⁻	746	3463	8,82r	n		

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	ĄÇÃO	Diag Per 30 c 30 c	rama das netrações m finais m iniciais
		Į		18.96 (boca	i do furo)			Nº de golpe 10	s / % de Recuperação 20 30
40/00					SILTE ARGILO AR	ENOSO MÉDIO A DI	URO AMARELADO	8	
12/30 _								9	
11/30 _				2 = 				12	
15/30 _				3 [= 7 = = = 7 = =	-			15	$\mathbf{n} = \mathbf{n}$
18/30 _									
23/30 _									
28/30 _		-6.80	12 16						25
30/30 _		0.00	12.10	7	AREIA FINA E MÉI AMARELADA (SOL	DIA SILTOSA MUITC _O RESIDUAL)	COMPACTA CINZEN	ТА	
30/15 _				8					
30/5 _				9					
30/5 _		-10.50	8.46	10					
				<u> </u>	ROCHA SÃ (DIABA ESCURA RECUR	ÁSIO), POUCO FRAT PERAÇÃO 80%	TURADA, CINZENTA		
		-12.00	6.96	12					
				1	Limite da perfura	ação			
		, opogra							
Diâmetr Amostra	Sor So do reve ador padr	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostra: Altura de Peso do	s queda=75cm martelo= 65 Kg	RN: Cota topográf	ca	COTA DO N.A.	
S	O L IGENI				DATA INIC DATA FINA DESENHO Gustav SONDADC Washir	IAL: 01/04/2014 IAL: 02/04/2014 '0 DR ngton	PERFIL SM 107 LOCAL Estrada da Cacha Campo Grande -	amorra Rio de Janeiro - RJ	ESCALA 1:100
	AV. RIO BRA TELS. : FAX: 2	NCO, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 25 10 DE JANE	1817-1820 24.3326 IRO - RJ	ENG. RES	Ρ.	CALPER N: 7463487,639 -	- E: 648298,374	

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLASSIF	ICAÇÃO	Diag Per 30 c 30 c	rama das netrações m finais m iniciais
			· • •	- 19.89 (boca	do furo)		Nº de golpe 10	s / % de Recuperação 20 30
11/30 _					ARGILA SILTOSA MÉDIA AMAR	ELADA	9	
7/30 _		-3.00	16.89					48
17/30					ARGILA SILTOSA RIJA CINZA A	MARELADA		Ň.
20/30 _		-3.90	15.99		AREIA MÉDIA POUCO ARGILOS COMPACTA CINZA	SA COMPACTA A MEDIANAMEI	NTE	20
21/30 _				5				
17/30 _				6			1	
28/30		-7.00	12.89	7	AREIA MÉDIA COMPACTA CINZ	ZENTA AMARELADA		
30/30 _		-8 80	11 09	8				281
30/4 _		-9.70	10.19	-/_ / _ = 9 = / _ =	SILTE ARGILOSO DURO COM A MICACEO (SOLO RESIDUAL)	AREIA FINA CINZENTO AMAREI	LADO	
		11.00	0.00		ROCHA ALTERADA (GNAISSE), CINZENTA, BRANCA E AMAREI - RECUPERAÇÃO 10%	MUITO FRATURADA, FRIÁVEL A MICÁCEA.	-, 10.00% - REC	UPERAÇÃO
		-11.20	0.09	11 °°°°°°° 12°	ROCHA ALTERADA (GNAISSE), CINZENTA, BRANCA E AMAREI - RECUPERAÇÃO 10%	FRAGMENTADA, FRIÁVEL, A MICÁCEA.	10.00% - REC	UPERAÇÃO
		-12.70	7.19	00000 00000 13	ROCHA SÃ (DIABÁSIO), POUCO ESCURA RECUPERAÇÃO 80%) FRATURADA, CINZENTA %	10.00% - REC	
		-14.20	5.69	<u> </u>				
	Cota	topográ	fica forr	lecida pelo	cliente,			
Diâmetr Amostra	Sor o do reve ador padra	ndagem co stimento: 2 ăo Diâmetr	m retirada 2½ " o: 2"	s de amostras Altura de Peso do i	queda=75cm nartelo= 65 Kg RN = 0.0	00 (ográfica	COTA DO N.A.	
S	OL	<u>0</u> T	E S 1	Γ Ε	DATA INICIAL: 04/04/201 DATA FINAL : 07/04/201	4 PERFIL 4 SM 108		ESCALA 1:100
EN	GENH	IARIA <u>I</u>		D A	DESENHO Gustavo	LOCAL	20110	
			1	\bigwedge	SONDADOR	Campo Grande - Ri	io de Janeiro - RJ	
	AV. RIO BRA TELS. : 1 FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 B	Andar - Grupo 262.3738 . 25	1817-1820 24.3326 IBO - BJ	ENG. RESP.	CALPER N: 7463491,139 - E	: 648283,594	

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA		CLA	SSIFIC	ĄÇÃO				Diagi Pen 30 cr 30 ci	rama letraçã m fina m inici	das ões is iais			
		<u> </u>	+	39.45 (boca	do furo)					N	l⁰ de g 1(golpes	s/%d 20	e Rec	uper 30	ação)	
			•		ARGILA	A SILTOSA [DURA VERMELHA										
21/30				= / = / = = / = /= 1								15	.	+	\dashv	_	
21/00																	
22/30				<u></u> 2 								-		V.	+		
27/20 -												\square	2	3/	\downarrow		
27/30 _														1			
26/30				<u> </u>								+	-	201		+	
20/20		-5.00	34.45	= = 								\square		2	<u>*</u>	_	
23/30 _				$\overrightarrow{x} = \overrightarrow{x} = $	ARGILA	A SILTOSA L	JUKA AMARELA						22		$^{\prime}\parallel$		
29/30				≠ =/ = 6 ≠ _ 7 _								-		+	\uparrow	-	
21/30				$\begin{array}{c} \neq & = / = \\ \neq & = / = \\ \neq & = / = \\ \neq & = / = \\ \hline & 7 \end{array}$								15 ,		4	$ \rightarrow $		
21/00				≠ =/ = ≠ =/=										•	\mathbf{k}	\sim	
38/30 _		-8.30	31.15	<i>≠ </i>						-				+			7
34/30				9	AMARE	LADA COM	MICA (SOLO RESI	DUAL)				-	_	27	./	_4	
04/00 _															Í		44
56/30				10								+		+	+		
30/10		-11.00	28.45	11								\square		_	\square		
30/10 _		-11.80	27.65		COM M	ICA E PEDF	ROSSA MUITO CON REGULHOS (SOLO	RESIDUAL)	IARELADA								
				12°		MUITO AL	TERADA (AREIA FIN ICA MICÁCEA), FRA 0≪	NA E MÉDIA SILTOSA AGMENTADA.		0.00	% - F	εcψ	PERA	4ÇÃC	5	1	
				°°°°° 13	TILOU	I LIIAÇAO I	0 /8					-	_		\dashv	\square	
										0.00	% - F	₹ECψ	PERA	١ÇÃC	>		
				<u>14</u>						0.00	% - F	εcψ	PERA	AÇÃC	5	1	
				م 15								\dashv	_		\dashv	-	
										0.00	% - F	₹ECψ	PERA	١ÇÃC	>		
				16						0.00	% - F	εcψ	PERA	4ÇÃC	5	1	
				<u> </u>								-	_		\dashv	_	
										0.00	% - F	≀ECψ	PERA	١ÇÃC	>		
				<u>18</u>						0.00	% - F	،EC	PERA	4ÇÃC	5	+	
				° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °								-	_	-	-+	\square	
										0.00	% - F	ŧεcψ	PERA	١ÇÃC)		
		-20.45	19.00	°°°° 20 °°°	,												
D 'A	Sor	ndagem cor	n retirada	s de amostras	(contin	<u>ua na folh</u> -	na 2) RN:		COTA D	0 N.	A.						
Diämetr Amostra	o do reve ador padra	stimento: 2 ão Diâmetro	^{1/2} " D: 2"	Altura de Peso do i	queda=75 nartelo= 6	ocm 65 Kg	Cota topográfi	ca									
S	0 L	O T	E S 1	T E		data inici data fina	IAL: 29/04/2014 L : 06/05/2014	PERFIL SM 109 (1/2)					E	SC/	٩LA	1:1()0
EN	GENH	iaria I	LTI			DESENHO Gustavo	0	LOCAL									
			1	\bigwedge	-	SONDADO	R	L ⊏strada da Cacha Campo Grande -	amorra Rio de Ja	aneiro	0 - F	٦J					
	AV. RIO BRA	NCO, 156 - 18º. 2262 1117 - 27	Andar - Grupo	1817-1820	-	Washin ENG. RESP	gton P.	CALPER				-					
	FAX: 22	262.5633 R	0 DE JANE	IRO - RJ				N: 7463370.993 -	E: 64831	19.52	29						

PENETRACÃO	No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO		Diagr. Pene 30 cm 30 cm	ama das etrações n finais n iniciais
	·			19.45	(continuaçã	io da folha 1)				Nº de golpes 10	/ % de Recuperação 20 30
			-20.80 -22.30	18.65 17.15	21 22	ROCHA MUITO AL CINZENTA E BRAI - RECUPERAÇÃO ROCHA SÃ (GNAIS MICÁCEA RECU	TERADA (AREIA FIN NCA MICÁCEA), FRA 0% SSE), SEM FRATURA PERAÇÃO 75%	IA E MÉDIA SILTOSA GMENTADA. A, CINZENTA E BRANC	CA 7	0.00% - RECUF 75.00% - RECU	PERAÇÃO
						Linite da pendia	açau				
		Cota	topográ	fica forn	ecida pelo	cliente					
	Diâmetr Amostra	Sor o do reve dor padrá	ndagem con stimento: 2 ăo Diâmetr	m retirada 1½ " 0: 2"	s de amostra Altura de Peso do	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	са	COTA DC) N.A.	
	S	O L genh	OT Iaria			DATA INIC DATA FINA DESENHO Gustav	IAL: 29/04/2014 AL : 06/05/2014 O	PERFIL SM 109 (2/2) LOCAL Estrada da Cacha	amorra		ESCALA 1:100
				Λ		SONDADO)R	Campo Grande -	Rio de Jan	ieiro - RJ	
	~	AV. RIO BRAI TELS. : 2 FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 252 IO DE JANE	1817-1820 24.3326 IRO - RJ	ENG. RES	P.	CALPER N: 7463370.993 -	E: 648319	9.529	

ENETRAÇÃO lo. de quedas os 30 cm finais Vspt)	rofundidade Nível d'água	ROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFIC	4ÇÃO		Dia P 30	agrama das enetrações cm finais cm iniciais		
EZđE	Ē	Ē	+	40.88 (boca	a do furo)				Nº de golp	bes / % de Rec	Jperação	0
					ARGILA SILTO ARE	ENOSA DURA AMA	RELA			20	30	
31/30 _					-						/	
31/30 _				2 2 2 2 2	-					23 /	 `\	
25/2 _		-3.15	37.73				JZENTA AMARELADA (СОМ				<u>`41</u>
30/6 _		-4.50	36.38	4	MICA (SOLO RESIL	JUAL)			2.00% - REC	UPERAÇÃO		
				5	ROCHA ALTERADA BRANCA MICÁCEA	4 (GNAISSE), FRAG 4 RECUPERAÇÃO	GMENTADA, CINZENTA D 2%	Ε	2.00% PEC			
		-6.00	34.88	6	BOCHA ALTEBADA	A (GNAISSE), FRAG	GMENTADA CINZENTA	F			_	-
					BRANCA MICÁCEA	A RECUPERAÇÃO	0.5%	_	5.00% - REC	CUPERAÇÃO	_	_
		-7.50	33.38		ROCHA POUCO AL CINZENTA E BRAN	LTERADA (GNAISS	E), MUITO FRATURAD/ ECUPERAÇÃO 10%	A,	5.00% - REC	CUPERAÇÃO		
		-9.00	31.88	8					10.00% - RE	CUPERAÇÃ	S	
				9	ROCHA SÃ (GNAIS CINZENTA E BRAN	SE), POUCO FRAT ICA MICÁCEA RE	URADA A SEM FRATU CUPERAÇÃO 75%	IRA,	75.00% - RE	CUPERAÇÃ		
		-10.50	30.38	<u>10</u>	limite de perfure							
					Linne da peridia	içau						
Diâmetr Amostra	Sor o do reve ador padra	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostra Altura de Peso do	s e queda=75cm martelo= 65 Kg	RN: Cota topográf	ïca	COTA D	O N.A.			
S	O L Igeni	O T			DATA INICI DATA FINA DESENHO Gustavo	AL: 17/04/2014 L : 28/04/2014	PERFIL SM 111 LOCAL Estrada da Cacha	amorra		ESCA	LA 1:1	100
	AV. RIO BRA TELS. : : FAX: 21	NCO, 156 - 18°. 2262.1117 . 22	Andar - Grupo 262.3738 . 252	1817-1820 24.3326	Washin ENG. RESP	к gton P.	Campo Grande - CALPER N: 7463329 213 -	Rio de Ja	aneiro - RJ			

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO	Diag Per 30 ci 30 ci	rama das letrações n finais n iniciais
I			+	37.86 (boca	do furo)			Nº de golpes	/ % de Recuperação
0.4/00					ARGILA SILTO AR	ENOSA DURA AMAF	RELADA		36
34/30									31 /
25/30		-3.30	34.56						21
33/30					AREIA FINA E MÉL COM POUCA MICA	DIA SILTOSA COMPA A E PEDREGULHOS	ACTA CINZENTA AMARELA (SOLO RESIDUAL)	DA	28
30/5		-5.00	32.86	5	AREIA MÉDIA SILI	OSA MUITO COMP	ACTA CINZENTA AMARELA	DA	
30/5		0.70		6	COM MICA E PEDI ALTERADA)	REGULHOS (SOLO I	RESIDUAL / ROCHA MUITO		
		-6.70	31.16		ROCHA ALTERAD BRANCA MICÁCE/	A (GNAISSE), FRAG A RECUPERAÇÃO	MENTADA, CINZENTA E 5%	5.00% - RECU	PERAÇÃO
		-8.20	29.66	8 0 0 9	ROCHA ALTERAD. BRANCA MICÁCE/	A (GNAISSE), FRAG A RECUPERAÇÃO	MENTADA, CINZENTA E 5%	5.00% - RECU	PERAÇÃO
		-9.70	28.16	• • • • • • • • • • • • • • • • • • •	ROCHA POUCO A E BRANCA MICÁC	LTERADA (GNAISSE EA RECUPERAÇÃ), FRATURADA, CINZENTA O 10%	5.00% - RECU 10.00% - REC	PERAÇÃO
		-11.20	26.66		ROCHA SÃ (GNAIS MICÁCEA RECU	SSE), SEM FRATUR/ PERAÇÃO 85%	A, CINZENTA E BRANCA	85.00% - REC	UPERAÇÃO
		-12.70	25.16	12°	Limite de porfum	2000			
	Cota	topográ	fica forn	ecida pelo	cliente,				
Diâmetr Amostra	Sor o do reve ador padra	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostras Altura de Peso do i	s queda=75cm martelo= 65 Kg	RN: Cota topográfi	ca	DTA DO N.A.	
SEN	<u>GENP</u>				DATA INIC DATA FINA DESENHO Gustav SONDADC Washin	IAL: 15/05/2014 AL : 19/05/2014 O PR Igton	PERFIL SM 112 LOCAL Estrada da Cachamor Campo Grande - Rio	rra de Janeiro - RJ	ESCALA 1:100
	TELS. :: FAX: 22	2262.1117 . 22 262.5633 R	262.3738 . 25 10 DE JANE	1317-1820 24.3326 IRO - RJ	ENG. RES	P	N: 7463316.083 - E: 6	648350.286	

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLASSIFICAÇ	ÂO	Diagr Pene 30 cn	rama das etrações n finais n iniciais
			+	49.24 (boca	do furo)		Nº de golpes 10	/ % de Recuperação 20 30
29/30 _					ARGILA SILTOSA DURA VERMELHA			27
26/30 _								25
31/30 _		-3.65	45.59					32
40/30 _				4	AREIA MEDIA SILTOSA COMPACTA A CO AMARELADA COM POUCA MICA (SOLO R	MPACTA CINZENTA ESIDUAL)		31
30/30				5				30
35/30 _				6 				
38/30				8				34
30/10 _		-8.80	40.44	9	AREIA MÉDIA SILTOSA MUITO COMPACT COM MICA (SOLO RESIDUAL / ROCHA MU	A CINZENTA AMARELADA ITO ALTERADA)	-	
		-10.00	39.24	10 0 0 0 0	ROCHA ALTERADA (GNAISSE), FRAGMEN BRANCA MICÁCEA RECUPERAÇÃO 5%	ITADA, CINZENTA E	5.00% - RECUI	PERAÇÃO
		-11.50	37.74		ROCHA POUCO ALTERADA A SÃ (GNAISS CINZENTA E BANCA MICÁCEA RECUPE	E), FRATURADA, RAÇÃO 10%	_ 10.00% - RECL	JPERAÇÃO
		-13.00	36.24	12	BOCHA SÃ (GNAISSE) POUCO FRATURA	DA A SEM FRATURA	10.00% - RECL	JPERAÇÃO
		-14 50	34 74	00000000000000000000000000000000000000	CINZENTA E BRANCA MICÁCEA RECUP	ERAÇÃO 75%	75.00% - RECL	JPERAÇÃO
		-14.50	34.74	0 0	Limite da perfuração			
	Cota	topográ	fica forr	lecida pelo	cliente,			
Diâmetr Amostra	Sor o do reve ador padra	ndagem co stimento: 2 ão Diâmetr	m retirada 2½ " o: 2"	s de amostras Altura de Peso do	s RN: queda=75cm martelo= 65 Kg Cota topográfica	COTA E	DO N.A.	
S	O L geni				DATA INICIAL: 11/04/2014 PI DATA FINAL : 15/04/2014 DESENHO LC Gustavo Es SONDADOR Ca	RFIL SM 113 CAL trada da Cachamorra mpo Grande - Rio de Ja	aneiro - RJ	ESCALA 1:100
	AV. RIO BRA TELS. : : FAX: 22	NCO, 156 - 18º. 2262.1117 . 22 262.5633 R	Andar - Grupo 262.3738 . 25 IO DE JANE	1817-1820 24.3326 IRO - RJ	ENG. RESP. CA	LPER 7463343.830 - E: 6483	68.739	

AÇÃO Jedas m finais	DIDADE D'ÁGUA	DIDADE LO (m)	(m)	3TRA	CLASSIFICACÃO	Diagrama das Penetrações
ENETR/ Vo. de qu dos 30 cr (Nspt)	ROFUN NÍVEL [ROFUN DO SOI	COTA	AMOS		30 cm finais
	ш	ш		boca do	furo)	Nº de golpes / % de Recuperação 10 20 30
					SILTE ARENOSO COMPACTO AMARELADO	24
22/30				1		35
31/30				2		25
28/30 _				3		
31/30				4		27 /
25/3		-4.90	-	5	AREIA FINA E MÉDIA CINZA AMARELADA	
		-6.00	_			
_				6	ROCHA MUITO ALTERADA, FRAGMENTADA. - RECUPERAÇÃO 2%	2.00% - RECUPERAÇÃO
		-7.50	_	<u> </u>		2.00% - RECUPERAÇÃO
				8	ROCHA MUITO ALTERADA, FRAGMENTADA. - RECUPERAÇÃO 0%	
		-9.00	-	9		
					- RECUPERAÇÃO 0%	0.00% - RECUPERAÇÃO
		-10.50	_		ROCHA POUCO ALTERADA (DIABÁSIO - PROVÁVEL DIQUE),	65.00% - RECUPERAÇÃO
				<u>11</u>	MUITO FRATURADA, CINZENTA RECUPERAÇÃO 65%	65.00% - RECUPERAÇÃO
		-12.00		°°°°° 12		
					Limite da perfuração	
	Sor	idagem co	m retirada	s de amostra	s RN·	
Diâmetr Amostra	o do reve ador padra	stimento: 2 ao Diâmetr	2½ " o: 2"	Altura de Peso do	queda=75cm artelo= 65 Kg	
S	OL	<u>o t</u>	ES1	Γ Ε	DATA INICIAL: 22/05/2014 PERFIL DATA FINAL: 24/05/2014 SM 115	ESCALA 1:100
EN	GENH	IARIA I		DA	DESENHO LOCAL Guistavo	
		j	1	7	SONDADOR Campo Grande - Rio	rra de Janeiro - R.I
	AV. RIO BRA	NCO, 156 - 18º. 2262.1117 - 22	Andar - Grupo	1817-1820 24.3326	Washington CALPER	
	FAX: 22	.62.5633 R	NO DE JANE	IRO - RJ		

PENETRAÇÃO No. de quedas dos 30 cm finais (Nspt)	PROFUNDIDADE NÍVEL D'ÁGUA	PROFUNDIDADE DO SOLO (m)	COTA (m)	AMOSTRA	CLA	SSIFICA	ĄÇÃO				Dia Pe 30 30	grama enetra cm fir cm ini	a das ções nais iciais			
			-	(boca do	furo)					Nº d	e golp 10	es / % 2	de Re 20	cuper 30	ação)	
					SILTE ARGILOSO	DURO VERMELHO										
00/00 -											13					
20/30 _												` `	$\boldsymbol{\mathcal{N}}$			
25/30													Ŷ	7		
		-3.00											26	\mathbb{N}		
32/30		0.00	-	<u>/=//-</u> <u>3</u> =/:	SILTE ARGILOSO	POUCO ARENOSO	DURO AMARELADO							ί,	\setminus	
														31		\mathbf{i}
40/30 _				4 										ĺ	'	
30/30		E 40								-				28/	$\langle $	
		-3.40	-	<u></u>	AREIA FINA E MÉI	DIA SILTOSA COMP	ACTA CINZENTA AMAR	RELADA						1	\mathcal{N}	
37/30				6	COM MICA (SOLO	RESIDUAL)			-					300		
		-7.00														45
30/5				7	AREIA MÉDIA E G COM MICA E PEDI	ROSSA MUITO CON REGULHOS ALTERA	IPACTA CINZENTA AM ADOS (SOLO RESIDUA	ARELADA L)								
_		-7.90	_	<u> </u>	BOCHA ALTERAD	A (GNAISSE) FRAG	MENTADA CINZENTA	F								
_					BRANCA MICÁCE	A RECUPERAÇÃO	5%	-	5.0	0% -	REC	UPEF	RAÇÃ	0		
		-9.40		<u> </u>										_		
					ROCHA ALTERAD	A (GNAISSE), FRAG A RECUPERAÇÃO	MENTADA, CINZENTA	E	5.0	0% -	REC	UPER	łaça	0		
				10		3 -			5.0	0% -	REC	VPEF	RAÇÃ	0		
		-10.90	-		ROCHA SÃ (GNAIS	SSE), POUCO FRAT	URADA A SEM FRATU	RA,								
		-11.40			CINZENTA BRANC	<u>CA MICÁCEA REC</u> ação	UPERAÇÃO 75%									
Diâmetr Amostra	Sor ro do reve ador padrá	ndagem con stimento: 2 ăo Diâmetr	m retirada 2½ " o: 2"	s de amostras Altura de Peso do i	s queda=75cm martelo= 65 Kg	RN:		COTA D	ΟN	I.A.						
S	OL	<u>o</u> T	E <u>S</u> 1	E	DATA INIC DATA FINA	IAL: 27/05/2014 AL : 29/05/2014	SM 116						ESC	ALA	1:1()0
EN	IGENH	IARIA I	LTI	DA	DESENHO Gustav	0										
	_	Í	\checkmark	\sim	SONDADC	- DR	Estrada da Cacha	imorra Dio do la	ne:	rc	ים					
	AV. RIO BRAI	NCO, 156 - 18º.	Andar - Grupo	1817-1820	Washin	igton	CALPER	nio de Ja	uiel	10 -	ηJ					
	TELS. : 2 FAX: 22	2262.1117 . 22 262.5633 R	262.3738 . 25 10 DE JANE	24.3326 IRO - RJ	ENG. RES	۲.										

APÊNDICE IV. ENSAIOS DE RECEBIMENTO

SOLOT Fucernania	ESTE	Evo	curão do one-	aioe	ŬIJŁ	100	Folha núm	ero:	Data:	
A V	LL I		cuçao ue ens	aius		8	1 d	e 2	3/12	E113
Cliente:	Calper		10 24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				Proposta:		1	
		and the second	「「「「「」」	Ensaio	s de tirante:	5		The state of the s	「「「「「「」」	
Cortina nún	nero 🖉			ш	Endereço: Es	trada da Cá	achamorra,	2011, Cam	po Grande.	
Tirante	Tipo	σ	Cinc	Censaio	Ense	aios realiza	dos	Aprovado	(A), Repro	vado (R)
número	G/D	(tt)	(tf)	(tf)	Tipo A	Tipo B	Fluência	Tipo A	Tipo B	Fluência
	Gewi	20,00	16,00	28,00		×			(A)	

	amento	gio (mm)							
(na carga)	Along	no está							
(B)	o êmbolo	Final	42 20	43,04	45,23	46,62	48 02	49 42	51, 0b
	Leitura do	Inicial	29.95 W						
ipo	Pressão	(kgf/cm ²)	80,00	100,00	170,00	220,00	270,00	320,00	370,00
Ē	arga	(tt)	4,64	6,26	11,90	15,93	19,97	24,00	28,03
cebimento	0								

TO

Estágio Carga Pressão Leitura do émbolo Alongamento Alongamento (tf) (tgf/cm ²) Inicial Final no estágio (mm) acumulado (mm) 1,400 28,03 370,00 mo 57,06 mo acumulado (mm) 1,200 24,00 320,00 mo 57,06 mo mo acumulado (mm) 1,200 19,97 270,000 mo 57,06 mo mo mo mulado (mm) 0,800 15,93 220,000 mo 57,06 mo mo mo mulado (mm) 0,800 115,93 220,000 mo 57,06 mo mo mo mo 0,800 115,93 220,000 mo 57,06 mo	Estágio Carga (tf) (tf) 1,40 28,03 1,20 24,00 1,00 19,97 0,80 15,93 0,60 11,90 0,60 11,90 0,30 6,26 F0 4,64					
(tf) (kgf/cm ²) Inicial Final no estágio (mm) acumulado (mm) 1,40 28,03 370,00 1 51,06 1	(tf) 1,40 28,03 1,20 24,00 1,00 19,97 0,80 15,93 0,80 15,93 0,60 11,90 0,30 6,26 F0 4,64	Pressão	Leitura c	lo êmbolo	Alongamento	Alongamento
1,40 28,03 370,00 51,06 0 1 1,20 24,00 320,00 56,14 1 1 1 1,00 19,97 270,00 94,36 1 1 1 1 0,80 15,93 220,00 94,36 1	1,40 28,03 1,20 24,00 1,00 19,97 0,80 15,93 0,60 11,90 0,60 11,90 0,30 6,26 F0 4,64	(kgf/cm ²)	Inicial	Final	no estágio (mm)	acumulado (mm)
1,20 24,00 320,00 56,4 10 <th10< th=""> <th10< th=""> 10</th10<></th10<>	1,20 24,00 1,00 19,97 0,80 15,93 0,60 11,90 0,30 6,26 F0 4,64	370,00		3015		
1,00 19,97 270,00 11,30 170,00 11,30 170,00 11,90 170,00 11,90 170,00 11,90 170,00 11,90 170,00 11,90 170,00 11,90 170,00 11,90 170,00 11,90 170,00 11,90 170,00 11,90 <td>1,00 19,97 0,80 15,93 0,60 11,90 0,30 6,26 F0 4,64</td> <td>320,00</td> <td></td> <td>50 14</td> <td></td> <td></td>	1,00 19,97 0,80 15,93 0,60 11,90 0,30 6,26 F0 4,64	320,00		50 14		
0,80 15,93 220,00 0,66 11,90 170,00 0,66 11,90 70 0	0,80 15,93 0,60 11,90 0,30 6,26 F0 4,64	270,00		94,20		
0,60 11,90 170,00 41,50 41,50 100,00	0,60 11,90 0,30 6,26 F0 4.64	220,00		29 121		
0,30 6,26 100,00 0.60 <	0,30 6,26 F0 4.64	170,00		06 247		
F0 4,64 80,00 66,10 220,00 kgf/cm2. Tirante incorporado na leitura de manômetro de 220,00 kgf/cm2.	F0 4.64	100,00		46,69		
Tirante incorporado na leitura de manômetró de 220,00 kgf/cm2.		80,00		46,10		
9101	Tirante incorpo	orado na leiti	ura de man	ômetro de	220,00	kgf/cm2.
anah					110 117	
					ahah	

9

4

S O L O T E	STE				TEC	0	Folha núme	ero:	Data:	
A	R	EXe	cuçao de ensi	alos	Ĩ	3	1 d	e 2	3112	13
Cliente: (alper						Proposta:			
Salar Salar		日本の日本	「「「「「「」」」	Ensaio	s de tirante:		States and the			La sector lite
Cortina núm	iero Z			ш	indereço: Es	trada da Cé	achamorra,	2011, Cam	po Grande.	
Tirante	Tipo	σ	Cinc	Censaio	Ense	aios realiza	dos	Aprovado	o (A), Repro	vado (R)
número	G/D	(ff)	(tf)	(ff)	Tipo A	Tipo B	Fluência	Tipo A	Tipo B	Fluência
	Gewi	20,00	16,00	28,00		×			(A)	

(na carga)	Alongamento Alongamento	no estágio (mm) acumulado (mm)					23	6	0
(B)	o êmbolo	Final	41 27	47 EC	68, 14	Ch/th	ty ha	R 19	53/61
	Leitura d	Inicial	30 68						
ipo	Pressão	(kgf/cm ²)	80,00	100,00	170,00	220,00	270,00	320,00	370,00
cebimento ti	Carga	(ff)	4,64	6,26	11,90	15,93	19,97	24,00	28,03
Ensaio de rec	Estágio		FO	0,30	09'0	0,80	1,00	1,20	1,40

	Alongamento	acumulado (mm)								kgf/cm2. Ø
(na descarga)	Alongamento	no estágio (mm)								220,00 2017
(B)	o êmbolo	Final	40/95	53, 12	53'06	47; KS	28. 6h	48,06	4234	ômetro de
0	Leitura d	Inicial								ura de man
ecebimento tip	Pressão	(kgf/cm ²)	370,00	320,00	270,00	220,00	170,00	100,00	80,00	porado na leit
Ensaio de re	Carga	(ff)	28,03	24,00	19,97	15,93	11,90	6,26	4,64	Tirante incor
	Estágio		1,40	1,20	1,00	0,80	0,60	0,30	FO	

(-

Er

T				2010	1					
	AC .			2010		20	1 d	e 2	21/62	0/13
:ente:	Calper						Proposta:	and the second	Assessment of the	1
				Ensaid	os de tirantes	(2)				
tina núr	mero Q	L L			Endereço: Es	trada da Ca	achamorra,	2011, Cam	Ipo Grande	
rante	Tipo	σ	Cinc	Censaio	Ensé	nios realiza	dos	Aprovado	o (A), Repr	ovado (R
mero	G/D	(tt)	(tf)	(tt)	Tipo A	Tipo B	Fluência	Tipo A	Tipo B	Fluênci
	Gewi	20,00	16,00	28,00		×			(A)	
	Ensaio de re	cebimento ti	od		(B)	(na carga)				
	Estágio	Carga	Pressão	Leitura o	to êmbolo	Alonge	amento	Alonge	amento	_
		(ff)	(kgf/cm ²)	Inicial	Final	no estác	(mm) oit	acumula	(mm) opi	
	FO	3,81	80,00	3977	41.32					_
	0,30	6,21	110,00	-	42.18					
	0,60	11,81	180,00		44 58					
	0,80	15,81	230,00		45.2R					
_	1,00	19,81	280,00		48,60					
4	1,20	23,81	330,00		50,54					
_	1,40	27,81	380,00		53,75					_
		Ensaio de re	ecebimento tip	Q	(B)	(na descar	ga)			
	Estágio	Carga	Pressão	Leitura o	to êmbolo	Alonge	amento	Alonge	amento	
/		(tf)	(kgf/cm ²)	Inicial	Final	no estác	jio (mm)	acumula	(mm) opt	
	1,40	27,81	380,00	53,23	53.73				~	Q
	1,20	23,81	330,00		53, 60					_
	1,00	19,81	280,00		62.70					~
	0,80	15,81	230,00		51, 20					
	0,60	11,81	180,00		50,26					1
	0,30	6,21	110,00		46,34					7.
	FO	3,81	80,00		414-06					
		Tiranta incor	norado na lait	ura de man	ômetro de		220.00	Curling		

TO 2107

7)

3

puierconna2. interdro

SULUI ENGENHARIA	ESTE	Ever	ureão de ene	aioe	LED	100	Folha núme	ero:	Data:	
A	VV		urgao ue ens	allos	2	3	1 d	e 2	5/2	0/13
Cliente:	Calper						Proposta:			
				Ensaio	s de tirante	0				
Cortina núr	mero Q	3-4		-	indereço: Es	trada da Ci	achamorra,	2011, Cam	po Grande	
Tirante	Tipo	σ	Cinc	Censaio	Ens	aios realiza	dos	Aprovado	o (A), Repro	vado (R)
número	G/D	(tf)	(tf)	(tf)	Tipo A	Tipo B	Fluência	Tipo A	Tipo B	Fluência
	Gewi	20,00	16,00	28,00		×			(A)	

Ensaio de recebimento tipo

α

mento Alongamento	o (mm) acumulado (mm)							
êmbolo Alongan	Final no estágio	4239	43,61	19:91	26,24	40/ 34	51 th	3,20
Leitura do	Inicial	39,20	1					2
Pressão	(kgf/cm ²)	80,00	110,00	180,00	230,00	280,00	330,00	380,00
Carga	(tt)	3,81	6,21	11,81	15,81	19,81	23,81	27,81
Estágio		FO	0,30	0,60	0,80	1,00	1,20	1,40

	Ensaio de r	ecebimento tip	00	(B)	(na descarga)	
Estágio	Carga	Pressão	Leitura c	to êmbolo	Alongamento	Alongamento
	(tf)	(kgf/cm ²)	Inicial	Final	no estágio (mm)	acumulado (mm)
1,40	27,81	380,00	53,20	SSVB		
1,20	23,81	330,00	_	03, KG		
1,00	19,81	280,00		SU 48		
0,80	15,81	230,00		53,09		
0,60	11,81	180,00		52124		
0,30	6,21	110,00		50/26		
FO	3,81	80,00		49,63		
	Tirante inco	rporado na leit	tura de man	ômetro de	230,00	kgf/cm2.
					52 53	
					CUL	

•