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1. Suspensões magnéticas. 2. Interações hidrodinâmicas.
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CESSÃO DE DIREITOS

NOME DO AUTOR: Gesse Arantes de Roure Neto.
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um exemplo de companheirismo e dedicação você é um experimentalista brilhante.
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também foram parte importante nesta caminhada do mestrado. Álvaro, obrigado
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Agradeço à toda minha famı́lia e aos meus amigos mais próximos por todo o
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ABSTRACT

In recent years, many applications of magnetic suspensions were found in en-

gineering, medical sciences, and other areas. These applications are mainly due to

the fact that the rheological properties of these suspensions change in the presence

of an external magnetic field. In this dissertation, we investigate the dynamics of

two identical spherical magnetic particles undergoing a simple shear flow in the

presence of magnetic and hydrodynamic interactions in order to analyze macro-

scopic quantities of magnetic suspensions in a regime out of equilibrium. Some

particularities of the dynamical problem are investigated, including the interplay

between aggregative and dispersive collisional trajectories. In addition, we per-

form a numerical computation of the hydrodynamic self-diffusivity, down-gradient

diffusivity and the rate of particle doublet formation resulting from aggregative

closed trajectories. The numerical computation of the diffusivities and aggrega-

tion rates is performed via a Monte-Carlo integration for different values of the

magnetic interaction parameter α, which represents the non-dimensional strength

of the dipole-dipole magnetic interactions. We compare the results found for the

diffusivities and doublet formation rates with theoretical predictions. Finally, we

explore the problem of magnetization of magnetic suspensions undergoing a simple

shear flow for large values of Péclet number in the presence of an external magnetic

field. Starting with the problem of an isolated magnetic particle in suspension, we

can obtain the first order of magnetization by analyzing the orientational dynam-

ics of the particle. Further, we use the numerical simulation of two particles for

obtaining numerical values for the second-order steady-state magnetization.

Keywords: Magnetic suspensions, dipole-dipole interaction, hydrodynamic

interactions, shear-induced diffusion, shear-induced aggregation, magnetization



RESUMO

Recentemente, têm-se encontrado várias aplicações de suspensões magnéticas

nas áreas de engenharia, ciências médicas, entre outras, devido ao fato destas

suspensões sofrerem alterações em seu comportamento na presença de campos

magnéticos externos. A presente dissertação tem como objetivo investigar a dinâ-

mica de duas part́ıculas magnéticas esféricas em um escoamento cisalhante na pre-

sença de interações hidrodinâmicas e magnéticas, a fim de analisar propriedades

macroscópicas de suspensões magnéticas dilúıdas em um regime fora do equiĺıbrio.

Algumas particularidades desta dinâmica são analisadas, incluindo as relações en-

tre trajetórias colisionais agregativas e dispersivas. Utilizando-se da simulação

computacional da dinâmica de part́ıculas juntamente a uma integração de Monte-

Carlo, é posśıvel se obter valores numéricos para os coeficientes de difusão hidrodi-

nâmica induzida por cisalhamento e para a taxa de formação de pares agregados

em suspensões dilúıdas para diferentes valores do parâmetro α, que representa a

intensidade adimensional das interações dipolares. Neste trabalho também é ex-

plorado o problema da magnetização de suspensões cisalhadas para altos números

de Péclet na presença de um campo magnético externo. Partindo do problema de

uma part́ıcula isolada em suspensão, é posśıvel obter a primeira ordem da magne-

tização em estado estacionário analisando a dinâmica orientacional da part́ıcula.

Utilizando-se da simulação de duas part́ıculas, é posśıvel também obter valores

numéricos para a segunda ordem da magnetização em estado estacionário em um

regime fora do equiĺıbrio.

Palavras-chave: Suspensões magnéricas, interação dipolo-dipolo, interações

hidrodinâmicas, difusão induzida por cisalhamento, agregação induzida por

cisalhamento, magnetização
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CHAPTER 1

INTRODUCTION

“ I wish I could shut up like a
telescope! I think I could, if I only
knew how to begin. ”

Lewis Carroll, Alice in
Wonderland

1.1 Motivation

Lately, a lot of the soft materials used in the industry are not pure liquids,

but suspensions. In our context, we define a suspension as being a mixed mate-

rial consisting of particles (e.g. drops, polymer macromolecules, solids) mixed in

a ambient fluid without chemical bonding. The presence of these particles can

influence severely the macroscopic behavior of the bulk material, which ceases to

behave like a purely viscous fluid and can show viscoelastic behavior [1, 2]. Parti-

cle suspensions have been known and studied for a long time. Several applications

of these suspensions in engineering are due to the unique characteristics present

in the macroscopic behavior of these suspensions.
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(a) (b)

Figure 1.1: (a): Representation of an ideal homogeneous monodisperse particle
suspension in an ambient fluid. (b): Microscopy of real ferromagnetic particles
utilized in the fabrication of a magnetorheological suspension. The diameter of
the particles is at the order of 100 µm. (Courtesy of the microhydrodynamics and
rheology laboratory at VORTEX-UnB)

Among many types of suspensions, one of particular interest, especially in the

past few years, is the kind of magnetic suspensions. These are suspensions of

ferromagnetic particles in an ambient fluid. The interest in those suspensions is

mainly due to the fact that the rheological properties1 of magnetic suspensions

can be altered by the presence of an external magnetic field and also the fact that

one can manipulate the fluid by using an external magnet. The most common

examples of magnetic suspensions are the ones known as ferrofluids. Ferrofluids

are colloidal suspensions of magnetic nanoparticles, typically with a size of 10 nm,

dispersed in a Newtonian liquid (e.g ester, mineral oil, water). These particles are

usually coated with a surfactant material, as shown in Figure 1.2. The presence

of the surfactant forms a thin layer near the surface of the particle with a typical

thickness of 2 nm.

In the past few years, several applications for ferrofluids and other types of

magnetic suspensions in multiple areas were discovered. Another widely explored

type of magnetic suspensions are the magnetorheological fluids. The main struc-

tural difference between magnetorheological fluids and ferrofluids is the size of

the particles. Namely, the colloidal particles in ferrofluids are much smaller than

1Rheology is the field which investigates the response of a material to an applied stress [3]
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δ

d

Figure 1.2: Anatomy of a ferrofluid nanoparticle with a cover of surfactant
molecules. A typical value for the diameter of the particle is 10 nm with a typical
surfactant layer of 2 nm. The hydrodynamic diameter is given by dH = d+ 2δ.

the ones in magnetorheological suspensions. This contrast in size of the particles

causes significant differences between the rheological and mechanical behavior of

these two suspensions [4].

1.2 Magnetic suspensions

Magnetic suspensions are hydrodynamic suspensions of ferromagnetic particles

dispersed in a Newtonian liquid. Depending on the size of the particles, the suspen-

sion is called a ferrofluid, in the case of colloidal particles, or a magnetorheological

suspension, in the case of non-colloidal particles. These magnetic particles can be

composed of different materials, such as magnetite (Fe3O4) and Mn-Zn ferrites,

which have ferromagnetic properties. Table 1.1 shows the typical particle sizes for

both ferrofluids and magnetorheological suspensions.
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Table 1.1: Typical particle size for different magnetic suspensions

Suspension Typical size of
particles

Ferrofluids ∼ 10 nm

Magneto-
Rheological

∼ 100 µm

The magnetic suspensions exhibit unusual characteristics, such as the depen-

dence of their transport properties on the presence of an external magnetic field.

At small volume fractions, magnetic suspensions of rigid spherical particles usu-

ally behave like Newtonian fluids in the absence of an external magnetic field.

Actually, the suspension can be seen as a homogeneous Newtonian liquid with

Einstein viscosity [5] µeff = µ(1 + 2.5φ), where φ is the particle volume fraction.

Nevertheless, these suspensions can also exhibit a non-linear viscoelastic behavior

at moderate particle volume fractions, as a direct consequence of the restoration

effect produced by the magnetic dipole-dipole interactions between the particles

and the formation of induced aggregate structures due to the magnetic field.

Another characteristic of the magnetic suspensions is the anisotropic behavior

of the material. For instance, the shear resistance in the direction of the magnetic

field has a different value from the shear resistance perpendicular to it. Due to

the unique properties of these materials, they have a vast range of applications,

ranging from hard drive disk seals to liquid body armor, cancer treatment via

magnetic hyperthermia and magnetorheological dampers [6].

The study of ferrofluids and ferrohydrodynamics, in general, started around

the middle of the 1960s, with names such as Rosensweig, which provided the first

treatise on the subject in 1985 [7]. Other significant contributions were made in

the field by names such as Felderhof [8, 9, 10], Shliomis [11, 12], Odenbach [13],

Ivanov [14], and others. These contributions include models for the magnetization

in and out of equilibrium and alterations of the original constitutive equation for

the stress tensor proposed by Rosensweig.
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Still, ferrohydrodynamics continues to be a current subject, with a lot of room

for further contributions in the field. In this work, we investigate the influence

of hydrodynamic and magnetic interaction between particles on hydrodynamic

diffusion, aggregation rate and magnetization in monodisperse dilute non-colloidal

magnetic suspensions of spherical rigid particles.

1.2.1 Hydrodynamic diffusion

The so-called hydrodynamic diffusion effect has appeared for the first time in

the paper by Eckstein, Bailey and Shapiro [15]. In this paper, the authors have

shown experimentally the existence of a shear-induced self-diffusion in a suspension

of spherical rigid particles as a direct consequence of irreversible hydrodynamic

interactions between the particles. These irreversible interactions are caused by

the breaking of Stokes’ symmetry and can be caused by different factors such as

particle roughness [16], non-sphericity of the particles [17, 18], deformability [19],

field interactions between particles [20, 21], and the presence of a third particle

[22].

The symmetry breaking by irreversible particle interactions together with the

randomness of collisions between particles produce a random walk along and across

the streamlines. This random walk effect causes a hydrodynamic self-diffusion of

the particles [23, 24]. Unlike molecular Brownian diffusion, the hydrodynamic

diffusion depends on the interaction between particles and, consequently, on the

particle volume fraction. More recently, shear-induced hydrodynamic diffusion has

been a topic of interest due to a wide range of applications in numerous practical

problems occurring in the microhydrodynamical scale of suspension flows instead

of the molecular scale. For instance, this includes from aggregation-flocculation

of suspended particles to mixing-diffusion and migration of cells in blood flows

[25]. Several experimental and theoretical works have been carried out in order to

compute the values of the shear-induced hydrodynamic diffusivities in the shear

plane and vorticity plane [15, 26, 27, 16, 22, 28, 29, 30, 31].

In particular, Cunha & Hinch [16] calculated the hydrodynamic shear-induced
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self and down-gradient diffusivities for dilute suspensions of rough spheres by exam-

ining the dynamics of two interacting particles. In addition, the authors proposed

a theory which establishes a relationship between the hydrodynamic self-diffusivity

induced by shear and the roughness of the particles for small values of roughness.

This theory was later shown to be valid for other parameters which break the

Stokes’ symmetry of the relative motion of two particles, such as the viscosity

ratio of drops [19]. In the work of Lopez et al. [18], the self-diffusivity is calcu-

lated by considering the case of anisotropic agglomerates of particles. The work

of Cunha & Couto [20] computes the down-gradient diffusivity for a polydisperse

suspension of sedimenting magnetic particles.

1.2.2 Aggregation rate

Even in the absence of Van der Waals attractive forces, as a result of the

attractive dipolar forces between particles, magnetic particles in a suspension tend

to form aggregates (dimers, trimers, so on). Particle aggregation and aggregation

kinetics are topics widely studied in order to control the stability of colloidal and

non-colloidal suspensions [32, 33, 34]. The present work deals with the aggregation

of pairs of interacting non-colloidal particles. When two particles are brought

close together by the flow, the magnetic dipole-dipole interactions being attractive

may result in the formation of a doublet. The rate of doublet formation was

studied before by Davis [35] for the case of non-Brownian sedimenting particles

with aggregation due to short-range van der Waals interactions in the absence of

any magnetic effect.

More recently, the phenomenon of aggregation in non-Brownian magnetic sus-

pensions was investigated by Cunha & Couto [36] in the case of a polydisperse

suspension of sedimenting particles interacting hydrodynamically and magneti-

cally. However, as well as in the authors’ paper on diffusion [20], the authors have

not considered the rotation of the particles in order to compute the rate of doublet

formation. In this work, we propose a more robust formulation by considering

the full motion of the particles (i.e. translation and rotation) in the presence of
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hydrodynamic and dipole-dipole particle interaction.

1.3 Magnetization

Magnetism in materials manifests itself in numerous forms, with a wide range of

classifications such as ferromagnetism, antiferromagnetism, paramagnetism, dia-

magnetism, superparamagnetism, mictomagnetism and others [37]. In the context

of the present dissertation, it is important to clarify the definitions of ferromag-

netism, paramagnetism, and superparamagnetism.

Ferromagnetism is a cooperative type of magnetic behavior (i.e. where the

interactions between the magnetic moments of the constituent atoms are intrin-

sically important) which presents a long-range correlation in which the magnetic

moments tend to align in the same direction, even in the absence of an external

magnetic field, forming permanent magnets. Figure 1.3 shows a typical configu-

ration of ferromagnetic spin alignment in a body-centered cubic lattice found in

simple metals.

Figure 1.3: Ferromagnetic spin alignment in a body-centered cubic lattice
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In contrast to ferromagnetism, paramagnetism is a non-cooperative type of

magnetic behavior (i.e. where the magnetic moments of the constituent atoms or

molecules are weakly correlated) in which the orientation of each magnetic moment

is randomized by its thermal energy KBT while trying to align with an external

applied magnetic field. This randomization results in a zero magnetization in the

absence of an external magnetic field. On the other hand, paramagnetic materials

exhibit a non-zero magnetization in the presence of an applied magnetic field.

Several materials exhibit paramagnetic behavior. For instance, ferromagnetic

materials can transition into paramagnetic when heated above what is called the

Curie temperature. In general, the dependence of the magnetization M on the

applied field H can be non-linear [38, 39]. However, the magnetization of param-

agnetic materials is often described in the limit of small H, which yields the linear

relation

M = χ(T )H. (1.1)

The constant χ is called the magnetic susceptibility2 defined by the relation

χ = lim
H→0

M

H
=

(
∂M

∂H

)

H=0

. (1.2)

In the case of ideal paramagnetic materials (in the total absence of interparticle

correlation), the property χ(T ) increases linearly with the inverse of the temper-

ature. Namely, χ = C/T . This dependence is called the Curie law. The constant

C is called the Curie constant. Curie’s law is a special case of the more general

Curie-Weiss law, where χ = C/(T − θ) and θ is a parameter related to the in-

terparticle coupling. This parameter arises naturally in Weiss’ mean-field theory

[40].

Without considering the limit H → 0, one can express the relationship be-

tween the magnetization of the paramagnetic material and the applied field in

terms of a generalized susceptibility χ(H,T ) defined such as M = χ(H,T )H. In

2In general, for anisotropic materials, where the magnetization M does not have the same
direction of the field H, the susceptibility is a tensor with components χij .
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this case, the generalized susceptibility χ(H,T ) yields the susceptibility χ(T ) the

limit H → 0. However, such nomenclature is not used often in the context of

paramagnetic materials and it is more commonly used for the so-called superpara-

magnetic materials.

Superparamagnetism is a phenomenon similar to paramagnetism, but with its

origins in small ferromagnetic single domains in contrast with atomic spins. A

superparamagnetic material contains several ferromagnetic single domains. In the

case where the size of single-domain ferromagnetic particles is very small, the par-

ticles can experience relaxation processes (e.g. Néel relaxation [41] and Brownian

relaxation), which tends to randomize the direction of the magnetization of the

domain in the absence of an external magnetic field. These relaxation phenomena

result in a global behavior a similar to the one of a paramagnetic material. Thus,

a superparamagnetic material only exhibits magnetization when subjected to an

externally applied field.

H

Figure 1.4: Illustration of the behavior of a superparamagnetic material in the
presence of an external magnetic field.

The susceptibility of a superparamagnetic material is much larger than the

one of a paramagnetic material. This contrast happens because the fluctuating

moments in superparamagnetic materials are the magnetic moments of an entire

ferromagnetic domain. These domains contain several microscopically ordered

atoms in their composition. A ferrofluid is a typical example of a material that

exhibits superparamagnetic behavior. In this context, the ferromagnetic domains
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are the nanoparticles on suspension.

The investigation of magnetic properties of materials is a very recurrent topic

in physics and engineering [40]. Equilibrium statistical mechanical models for

magnetic materials date from the early 20th century. Among these models, a well-

known one is the Ising model [42] for ferromagnetism, which can be thought a

simplification of the Heisenberg model [39]. This model is one of the simplest

models to exhibit a phase transition at finite temperatures. In fact, for dimensions

greater or equal two the model shows a transition from paramagnetic to ferromag-

netic3. Variations of the Ising model are widely used for modeling several kinds of

systems.

In the context of paramagnetism, one of the first attempts to describe the phe-

nomenon was performed by Langevin in 1905 [44]. Langevin’s model considers

non-interacting 3−dimensional classical magnetic dipoles interacting with an ex-

ternal applied magnetic field. Later, with the discovery of the Bohr-van Leeuwen

theorem [45], which implies that paramagnetic phenomena cannot be described

correctly by classical mechanics, the Langevin model was overthrown in favor of

quantum mechanical models [40]. However, Langevin’s model was later shown to

be suitable for modeling superparamagnetic materials, due to the fact that their

ferromagnetic single domains are macroscopic objects. In particular, this model

can be applied for extracting the magnetic properties of very dilute ferrofluids in

equilibrium, as ferrofluids exhibit superparamagnetic behavior. A second-order

correction for the equilibrium magnetization was calculated analytically by Ivanov

& Kuznetsova [14].

The study of a magnetic suspension out of equilibrium, in the presence of a

flow, requires the investigation of magnetization dynamics. To this end, Shliomis

[11, 12] has proposed a kinetic equation which describes the evolution of the mag-

netization of a dilute ferrofluid. His model takes into consideration the fluid flow

and the magnetic relaxation. Felderhof [10] proposed a similar, but slightly dif-

ferent, kinetic model for describing the magnetization in the case of concentrated

3The first analytical solution for the two-dimensional Ising model was found by Lars Onsager
in 1944 [43]
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suspensions. Relaxation phenomena in dipolar suspensions have been also inves-

tigated by other works [9, 46].

Although magnetization in ferrofluids is an extensively explored subject, very

little is known on the magnetization properties of non-colloidal magnetic suspen-

sions, as the orientational relaxation effects are very weak. In addition, the effect

of the hydrodynamic interaction between particles on the magnetization has not

been explored yet.

In this dissertation we perform a computation of the magnetization O(φ2) at

high Péclet numbers (non-equilibrium steady-state produced by a simple shear

flow). Therefore, we consider both effects of hydrodynamic particle interactions

and dipole-dipole magnetic interactions.

1.4 Dimensional analysis of the problem

In order to justify our treatment for investigating the properties of magne-

torheological suspensions, such as the creeping flow hypothesis and the absence

of Brownian motion, we need to analyze the dimensional scales of the physical

quantities of the problem.

In the case of magneto-rheological suspensions, we consider the diameters of

the particles to be a ≈ 10−4 m. We consider the ambient fluid to be a kind of

mineral oil, with viscosity given approximately by µ ≈ 1 Pa · s. The density of the

fluid is of the order ρ ≈ 900 kg/m3. We also consider a range of typical values for

the shear rate γ̇ of the order 50 s−1 up to 103 s−1.

With these considerations in mind, a typical particle Reynolds number is given

by Re = ργ̇a2

µ
and ranges from 4.5 × 10−4, for smaller values of γ̇, to 10−2, in the

case of γ̇ = 103s−1. These small values for the Reynolds number enables us to

consider the creeping flow hypothesis.

The Péclet number of the particle is given by Pe = γ̇6πµa3

KBT
, where T is the tem-

perature, which we consider to be 298 K, and KB is the Boltzmann constant, which
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is given by approximately 1.38 × 10−23 J/K. Hence, by considering γ̇ = 50 s−1,

we have Pe ≈ 1.14 × 1013. This high value for the Péclet number suggests that

Brownian effects are almost negligible in the case of magneto-rheological suspen-

sions.

In the context of the present dissertation, in which we investigate effects due to

particle interactions, a parameter of interest is the dipolar strength α = µ0m0/(8π
2µa6γ̇).

This parameter is a ratio between dipolar magnetic forces and viscous forces

due to the flow. Considering the particles to be of the same density as the

fluid and using tabulated values for the saturation magnetization of magnetite

(Ms ≈ 8.1× 104A/m), we can estimate the parameter α. By our estimations, we

have α ranging from 0.1 to 1.8.

Table 1.2: Typical values of the main nondimensional parameters of the problem

Nondimensional
parameter

Physical
Meaning

Magnitude

Reynolds Number
Re = ργ̇a2

µ

Ratio between
the vorticity

diffusion time
and the

characteristic
flow time

≈ 4.5× 10−4 − 10−2 (M.R.)

≈ 10−11 − 10−7 (F.F.)

Péclet Number
Pe = γ̇6πµa3

KBT

Ratio between
the Brownian

relaxation time
and the

characteristic
flow time

≈ 1.14× 1013 (M.R.)

≈ 0.5 (F.F.)

Dipolar intensity

α =
µ0m2

0

8π2µa6γ̇

Intensity of
dipolar

interaction
between
particles

≈ 0.1 − 1.8 (Independent
of particle size)
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1.5 Objectives

The primary focus of the present dissertation is to calculate transport prop-

erties such as hydrodynamic diffusivity and aggregation rate of a non-Brownian

magnetic suspension from a numerical simulation of the dynamics of two parti-

cles undergoing a simple shear flow in the presence of dipolar and hydrodynamic

interactions. We also investigate the effects of these hydrodynamic and magnetic

interactions between particles on the magnetization of magnetic suspensions very

far from equilibrium (i.e. Pe� 1).

The more specific goals of this work are listed below:

1. To carry out numerical simulations concerning the dynamics of two particles in

a dilute suspension undergoing a simple shear flow and an external magnetic field

with hydrodynamic and magnetic particle interactions.

2. To implement far-field and near-field expressions for hydrodynamic mobilities

under creeping flow. In addition, to test the behavior of the asymptotic expressions

of the mobility functions for intermediate values of the relative distance between

the particles.

3. To implement dipole-dipole magnetic force and torque interactions between

particles.

4. To verify the numerical code comparing it with the asymptotic solution proposed

by Cunha and Hinch [16] in the absence of magnetic interactions.

5. To investigate the interplay between aggregative and dispersive trajectories

during particle encounters resulting in irreversible trajectories.

6. To derive a more general representation of Cunha and Hinch’s theory in a

tensorial form for the down-gradient diffusivity.
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7. To perform a numerical simulation for computing the hydrodynamic self-

diffusivities as a function of the magnetic interaction physical parameter using

a Monte-Carlo integration algorithm developed in this dissertation. Based on

the numerical simulation results, to propose a theoretical correlation between the

hydrodynamic self-diffusivities as a function of the magnetic parameter and the

dependence on the irreversibility parameter given in the work of Cunha and Hinch.

[16]

8. To perform a numerical simulation for computing the down-gradient diffusivi-

ties, associated with a flux term contribution.

9. To propose a theoretical prediction by a simple scaling argument of the doublet

formation rate as a function of the dipole interaction parameter.

10. To perform a numerical simulation for computing the doublet formation rate

by using the Monte-Carlo integration algorithm developed in this work.

11. To develop a dynamical analysis of a single magnetic particle response includ-

ing a stability analysis for the particle dipole orientation and the determination of

an analytical expression for the orientational orbits.

12. To develop and validate a theoretical model in order to compute the order φ2 of

the non-equilibrium magnetization by using the two-particle problem. Therefore,

the effect of particle magnetic and hydrodynamic interactions on the magnetization

is also examined.
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1.6 Scope of the work

Figure 1.5 shows a schematic representation of the distribution of the seven

chapters in this dissertation.

Chapter 7

Chapter 2

Chapter 3

Chapter 4 Chapter 5 Chapter 6

Figure 1.5: Schematic representation of the structure of the work

Chapter 2 presents the basic theoretical fundamentals of suspension mechanics.

The main equations and principles used throughout this work are discussed in this

chapter. Chapter 3 is concerned with the theory and numerical computation of

the dynamical problem of two magnetic spherical particles undergoing a simple

shear flow in the presence of hydrodynamic and dipolar interactions. These simu-

lations are used in order to compute the diffusivity and aggregation rate. Chapter

4 describes the theory and numerical procedure for computing the shear-induced

hydrodynamic diffusivities of a dilute non-Brownian magnetic suspension of spher-

ical polarized particles. This chapter also includes a more general representation

of the Cunha & Hinch theory for computing the full down-gradient diffusivity ten-

sor, taking into account the influence of particle orientation. Chapter 5 presents
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the theory and numerical procedure for the computation of the doublet formation

rate as a function of the magnetic (dipolar) interaction parameter. Later in the

same chapter, we compute numerical values for the doublet formation rate, show-

ing that the numerical results are described very well by a power law predicted

by scaling argument. Chapter 6 starts by examining the rotational dynamics of a

single magnetic particle in creeping flow in the presence of an external magnetic

field under the condition of high Péclet number. With this analysis, we are able

to obtain a steady-state magnetization out of equilibrium for high values of the

magnetic field parameter. Later in the chapter, we apply the two-particle problem

to investigate the effects of particle interaction on the steady-state magnetization

far from equilibrium. Chapter 7 presents a summary of the general discussions

and results of the work, including suggestions for future works.
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CHAPTER 2

THEORETICAL FUNDAMENTALS

The purpose of this chapter is to pro-
vide an overview of the essential theo-
retical fundamentals in which this work
is grounded. The chapter begins by
stating the basic principles of contin-
uum mechanics and hydrodynamics at
low Reynolds’ numbers, such as the gov-
erning equations, Green’s functions for
Stokes’ flows and Faxèn’s laws. Then we
introduce Maxwell’s equations of classical
electrodynamics, which we use in order
to derive expressions for the forces and
torques in the context of magnetic dipo-
lar interactions, which are used exten-
sively throughout the present work. Most
of the derivations contained in this chap-
ter can be found in textbooks such as
[47, 48, 49, 50].
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2.1 The continuum hypothesis

The continuum hypothesis in the physical context1 states that it is possible

to describe the physical properties of a material as continuous functions of points

in a continuum, overlooking the molecular nature of matter. This hypothesis is

grounded in the concept of a material point.

A material point is a point x in the continuum (e.g. x ∈ V ⊆ R3) associ-

ated with a very small neighborhood δVx containing a sufficiently large number

of molecules in order to obtain a reliable volume average of a given local property

(density). Thus, we can define the local properties of the continuum by using

volume averages of microscopic densities. For instance, we can define the local

density of a continuous material as being2:

ρ(x) = lim
δVx→δV ∗x

1

V (δVx)

∫

δVx

∑

k

mkδ(y − xk)dy, (2.1)

where δV ∗x is the smallest neighborhood of x which contains a sufficiently large

number of molecules to obtain a reliable volume average. This continuum hypoth-

esis is the fundamental assumption behind the classical theories concerning the

dynamics of fluids and solids.

2.2 Balance equations

In this section, we present some of the physical laws concerning the mechanics of

continuous media. These laws yield the governing equations that are used directly

or indirectly on this work.

1This physical continuum hypothesis is also known as the local thermodynamic equilibrium
(LTE) hypothesis, usually with a slightly different statement.

2When convenient, we adopt the notation dx to indicate volume integration, following the
notation used in many statistical mechanics textbooks and papers.
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2.2.1 Localization theorem

The localization theorem is essential when formulating the differential equa-

tions for continuous media. The theorem states the following: Let G : Ω → R
be a continuous measurable function, with Ω being a measurable metric space. If∫
B
G(x)dx = 0 ∀B ⊆ Ω, then G(x) = 0 for all x ∈ Ω. This theorem allows the

crossing between an integral (global) formulation and a differential (local) formu-

lation of the equations of motion for a continuum in the case where the function

G(x) is continuous.

The theorem is a direct consequence of Chebychev’s inequality, which is shown

and derived in Appendix I, and the continuity of G. In fact, let G be a measurable

function, then:

∫

Ω

G(x)dx =

∫

Ω0

G(x)dx+

∫

Ω+

G(x)dx+

∫

Ω−
G(x)dx = 0, (2.2)

where Ω0 = {x ∈ Ω ; G(x) = 0}, Ω+ = {x ∈ Ω ; G(x) > 0} and Ω− = {x ∈
Ω ; G(x) < 0}. As Ω+,Ω− ⊆ Ω, then

∫
Ω+ G(x)dx and

∫
Ω−
G(x)dx vanish. Thus,

as a Corollary of Chebyshev’s inequality, µ(Ω+ ∪ Ω−) = 0. As the space Ω is

Hausdorff and G is a continuous function, the set Ω+ ∪Ω− = {x ∈ Ω|G(x) 6= 0} is

open. Now, supposing by contradiction that the set Ω+∪Ω− is not empty, then for

x ∈ Ω+ ∪Ω− there exists an open ball Bδ(x) in Ω+ ∪Ω− which contains x. Then,

we have 0 < µ(Bδ(x)) ≤ 0, which leads to a contradiction. Therefore, Ω+ ∪ Ω− is

the empty set. So G(x) = 0 for all x ∈ Ω and the theorem is proven.

2.2.2 Reynolds’ transport theorem

We now introduce the Reynolds’ transport theorem. This theorem is used in

order to differentiate under the sign of integration in the case in which the domain

depends on the differentiation parameter.

The Reynolds’ transport theorem states that if an arbitrary field G(x, t) is

continuous and differentiable with respect to x and t, as well as the material
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volume V (t) moving with the flow given by the velocity field u(x, t), we have:

d

dt

∫

V (t)

G(x, t) dV =

∫

V (t)

[
∂G

∂t
+∇ · (Gu)

]
dV. (2.3)

In order to prove the theorem, we use the fact that the derivative of the integral

of G(x, t) is given by definition as:

d

dt

∫

V (t)

G(x, t) dV = lim
ε→0

1

ε

[∫

V (t+ε)

G(x′, t+ ε)dV ′ −
∫

V (t)

G(x, t)dV

]
(2.4)

As x(t) is continuous at every time, we can expand it in a Taylor series as

x′ = x+ εu+O(ε2), (2.5)

where u(x, t) is the velocity field. Hence, the Jacobian of the transformation

x→ x′ is given by:

J = 1 + ε∇ · u+O(ε2). (2.6)

Similarly, we can expand G(x, t) in a Taylor series, resulting in:

G(x′, t+ ε) = G(x, t) + εu · ∇G+ ε
∂G

∂t
+O(ε2). (2.7)

Substituting in equation (2.4), we have:

d

dt

∫

V (t)

G(x, t) dV =

∫

V (t)

[
∂G

∂t
+ u · ∇G+G∇ · u

]
dV. (2.8)

By using the product rule at the result, we find:

d

dt

∫

V (t)

G(x, t) dV =

∫

V (t)

[
∂G

∂t
+∇ · (Gu)

]
dV. (2.9)

This result is the well known Reynolds’ transport theorem. This theorem is nec-

essary to derive the balance equations. It also links the Lagrangian and Eulerian
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descriptions of continuum mechanics, as
∫
V (t)

G(x, t)dx can be thought as a prop-

erty of a moving body. This theorem, coupled with the localization theorem, allows

us to obtain differential equations for the fields (in Eulerian description) by using

the conservation laws postulated in a Lagrangian description.

2.2.3 Conservation of mass

Let us consider a moving material volume. If the continuum hypothesis holds,

there is no creation nor destruction of mass in the volume. Therefore, the mass

m(t) of the material volume is conserved thoughout its motion. Mathematically,

this means that

dm

dt
= 0. (2.10)

By the definition of mass density, the mass of the material volume is given by:

m =

∫

V (t)

ρ(x, t)dV. (2.11)

Therefore, by applying the Reynolds’ transport theorem and the localization the-

orem, we obtain the differential concerning mass conservation, or the continuity

equation, in a Eulerian description as being

∂ρ

∂t
+∇ · (ρu) = 0, (2.12)

or, alternatively,

Dρ

Dt
+ ρ∇ · u = 0. (2.13)

The operator D
Dt

= ∂
∂t

+ u · ∇ is called the material or total derivative3. Physi-

cally, the material derivative is a time derivative seen through the perspective of

a referential frame of a material particle travelling with the velocity of the flow.

3In the context of continuum mechanics, the material derivative is defined as being
(

∂
∂t

)
X

,
with X being the initial position of a material particle in the Lagrangian description.
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In the case of incompressible media, whereas Dρ/Dt = 0, the continuity equation

takes the form of:

∇ · u = 0, (2.14)

which is the form used throughout this work.

2.2.4 Balance of linear momentum

The balance of linear momentum is governed by Newton’s second law, namely:

dL

dt
=
∑

F , (2.15)

where L is the total linear momentum of the material volume, given by:

L =

∫

V (t)

ρ(x, t)u(x, t) dV. (2.16)

The resulting force
∑
F can be written as the sum of volume field forces F V

togheter with the forces F S acting on the surface of the material volume, therefore

∑
F = F S + F V , (2.17)

Now, the field force term can be written in terms of a force density in the

following form:

F V =

∫

V (t)

f(x, t) dV. (2.18)

On the other hand, the surface force term can be represented by the integral of

the traction distributed over the body surface. As the traction vector is given by

t = n̂ · σ, where σ is the Cauchy stress tensor, we have:

F S =

∫

∂V (t)

n̂ · σ(x, t)dS =

∫

V (t)

∇ · σ dV (2.19)
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Applying the Reynolds transport theorem togheter with the localization theorem,

we find that the general differential equation governing the motion of continuum

media is given by

ρ
Du

Dt
= f +∇ · σ. (2.20)

This equation is the so-called Cauchy momentum equation and describes the

dynamics of any continuum, such as fluids and solids. In order to close the set of

equations governing the motion of a continuum medium, a constitutive equation

for σ is required. In general, for fluids, σ can be a functional of the velocity

gradient, with dependence on the memory of the fluid for times τ ≤ t, considering

the full history of deformation. Namely,

σ(x, t) = F{∇u}τ≤t. (2.21)

In the case of an incompressible Newtonian fluid with instantaneous relaxation,

the stress tensor is given by:

σ = F{E}t = −p1 + 2µE, (2.22)

where E is the symmetric part of the velocity gradient, namely:

E =
1

2

[
∇u+ (∇u)T

]
. (2.23)

Thus, the equation of motion for a Newtonian incompressible fluid is given by:

ρ

(
∂u

∂t
+ u · ∇u

)
= f −∇p+ µ∇2u. (2.24)

This equation togheter with the equation of continuity form the set of equations

known as Navier-Stokes equations for an incompressible fluid.
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2.3 Stokes equation

When studying the motion of microscopic particles dispersed in a Newtonian

viscous fluid, we are mainly interested in a specific regime of Navier-Stokes equa-

tion known as creeping flow. Creeping flows are solutions of an asymptotic regime

of the Navier-Stokes equations in the case where the Reynolds number is very

small.

Let us start with the incompressible Navier-Stokes equation in the absence of

body forces. Thus,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ µ∇2u. (2.25)

Now, we choose appropriate scales for velocity and spatial dimensions as follows:

u ∼ U (2.26)

x ∼ L (2.27)

The chosen scale for time is based on a characteristic frequency ω, so that t ∼
ω−1. Instead of choosing the appropriate scale for the pressure as ρU2, as the

viscous effects are more important than inertial effects, the scale for pressure in

the creeping flow regime is determined directly by a simple balance between the

terms ∇p and µ∇2u, which yields:

p ∼ µ U

L
. (2.28)

Hence, the Navier-Stokes equation can be written in terms of nondimensional

quantities as:

Re

(
Sh

∂u′

∂t′
+ u′ · ∇′u′

)
= −∇′p′ +∇′2u′, (2.29)

where Re = ρUL/µ is the Reynolds number, which can be regarded as a ratio

between inertial and viscous forces, and Sh = ωL/U is the Strouhal number, which
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is the ratio between convective time and the characteristic time ω−1. Considering

the asymptotic regime as Re � 1 and Re Sh � 1, we have the homogeneous

Stokes equation, given by:

µ∇2u = ∇p, (2.30)

which together with the continuity equation for incompressible fluids, given by

∇ · u = 0, governs the hydrodynamics of small Reynolds number flows. This

equation can also be written as:

∇ · σ = 0, (2.31)

with σ = −p1 + 2µE being the stress tensor for an incompressible Newtonian

fluid.

2.4 Reciprocal identity

We consider the non-homogeneous Stokes equation, given by:

∇ · σ = f(x). (2.32)

Let the pairs [σ1,u1] and [σ2,u2] be two different solutions of (2.32) with non-

homogeneities f 1 and f 2, respectively. Thus, we have the following vector identi-

ties:

∇ · (σ1 · u2) = (∇ · σ1) · u2 + 2µE1 : E2 (2.33)

and

∇ · (σ2 · u1) = (∇ · σ2) · u1 + 2µE1 : E2. (2.34)

Subtracting (2.34) from (2.33), we find the reciprocal identity, given by:
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∇ · (σ1 · u2)−∇ · (σ2 · u1) = f 1 · u2 − f 2 · u1 (2.35)

Equation (2.35) has a large number of applications when dealing with creeping

flows. Among these applications, the reciprocal identity can be used to prove of

the uniqueness of solutions of creeping flows [51]. The reciprocal identity also

yields the boundary integral representation of the flow, which is used extensively

throughout this work.

2.5 Formal solution of Stokes equation in terms

of generalized functions

In this section we discuss the formal solution for Stokes equation and the bound-

ary integral representation for the velocity field of the flow due to the movement

of a rigid particle. This will enable us to find the multipole expansion for the ve-

locity field, which will be used in later chapters. In the case of a non-homogeneous

Stokes equation in a free R3 space with vanishing boundary conditions at infinity,

we have:

µ∇4u =
(
1∇2 −∇∇

)
· f(x). (2.36)

Using the fact that f(x) =
∫
f(x′)δ(x − x′)dx′ and using the uniqueness of

the solution for the Laplace operator, we have:

u(x) =
1

µ

∫

R3

[
(1∇2 −∇∇)H(x− x′)

]
· f(x′)dx′ (2.37)

with the integration ranging througout the whole space R3 and H being the solu-

tion for equation:

∇4H = δ(x− x′). (2.38)
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This bi-harmonic equation has solution H = −r/8π, satisfying the condition

that both ∇2H and ∇∇H vanish at infinity. Thus, the formal solution of Stokes

equation in R3 without external flow or internal boundaries is given by:

u(x) = − 1

8πµ

∫

R3

G(x− x′) · f(x′)dx′, (2.39)

where

G(r) =
1

r
+
rr

r3
(2.40)

is the Green’s function for the Stokes equation also known as the Oseen tensor.

2.5.1 Fundamental solution for Stokes equation

One special application of interest for the formal solution of Stokes equation is

to study the disturbance in the flow caused by a single point-force. This kind of

disturbance is often called in literature by the name of stokeslet [52]. Considering

the force distribution f(x) as the force exerted by the fluid on the single point

particle located at x0, we have f(x) = F δ(x−x0). Hence, by substituting f(x)

in equation (2.39), we find that the disturbance in the velocity field due to a single

stokeslet is given by:

u∗(x− x0) = − 1

8πµ
G(x− x0) · F (2.41)

The pressure and stress fields of this flow can also be easily evaluated, resulting

in [53]

p∗(x− x0) =
1

8π
P (x− x0) · F (2.42)

σ∗(x− x0) =
1

8π
T (x− x0) · F , (2.43)
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where

P (r) = 2
r

r3
(2.44)

T (r) = 6
rrr

r5
(2.45)

are the Green’s functions for the pressure and stress fields, respectively. The

solution for a single stokeslet is also called the fundamental solution for the Stokes

equation.

2.5.2 Boundary integral representation for the flow in the
presence of rigid particles

Considering now the solution for the creeping flow governed by the homoge-

neous Stokes equation with the possible presence of particles. The domain Ω of

the fluid in the presence of a single particle is illustrated by Figure 2.1.

Ω

Figure 2.1: Domain of fluid in the presence of a particle. The dashed line indicates
that the flow extends to infinity.

Now, we consider two different creeping flows on Ω. The pair [u,σ] is the

solution for the problem of the flow due to the presence of rigid particles. The pair

[u∗(x− x′),σ∗(x− x′)] is the fundamental solution for the Stokes equation for a

source at x′.
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If both flows satisfy Stokes equation, the reciprocal relation holds. Thus, inte-

grating equation (2.35), one finds the velocity field to be given by

u(x) =
1

8πµ

∫

∂Ω

G(x− x′) · t(x′)dS ′ + 1

8π

∫

∂Ω

u(x′) · T (x− x′) · n̂ dS ′, (2.46)

where ∂Ω is the boundary of the fluid domain Ω and t = n̂ · σ is the traction

on a surface. We can decompose the fluid domain for the unbounded fluid as

Ω = R3 − ⋃k Vk, where Vk is the volume of a particle labeled k. Considering

a boundary condition at infinity in which the flow is given by u∞(x), and the

particles to be rigid, we have:

u(x) = u∞(x)−
∑

k

1

8πµ

∫

∂Vk

G(x− x′) · t(x′) dS ′. (2.47)

This is the boundary integral representation of the flow. The minus sign is due to

the orientation of the normal vector. In the case of a single particle, the boundary

integral representation reduces to:

u(x) = u∞(x)− 1

8πµ

∫

∂V

G(x− x′) · t(x′) dS ′. (2.48)

This equation expresses the contribution on the velocity field due to the pres-

ence of a single particle as a convolution integral involving the traction vector and

the Green’s function G(x).

2.5.3 Multipole expansion

Now we consider the case of the disturbance of a single particle on a steady

flow at low Reynolds number. By the integral representation (2.48), we find the

flow external to the particle to be given by

u(x) = − 1

8πµ

∫

∂V

G(x− x′) · t(x′) dS ′. (2.49)
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Expanding G(x− x′) in a Taylor series over a point x0 ∈ V , we have:

G(x− x′) = G(r)− r′ · ∇G(r) +
1

2!
r′r′ : ∇∇G(r) + . . . (2.50)

where

r = x− x0 (2.51)

r′ = x′ − x0. (2.52)

Therefore, the velocity field can be written as:

u(x) = − 1

8πµ
[F ·G(r)−D : ∇G(r) +Q�∇∇G(r) + . . . ] , (2.53)

where � indicates contraction over the larger number of indices as possible. The

terms F , D, Q and so on are called multipole moments. The expressions for the

monopole F , dipole D, quadrupole Q and the other multipole moments are given

by:

F =

∫

∂V

t dS (2.54)

D =

∫

∂V

rt dS (2.55)

Q =
1

2!

∫

∂V

rrt dS (2.56)

and so on. The monopole F is clearly the force exerted on the particle by the

fluid. The dipole D can be decomposed in symmetric and skew-symmetric parts,

respectivelly called S and T . The tensor T is called the torque tensor and is

related to the torque exerted on a particle by the flow, while the S, called the

stresslet tensor, is related to the stress contribution by the particle on the flow.
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Using the multipole expansion, we can write the flow due to a particle as the

solution of a non-homogeneous Stokes equation on the whole R3 as:

∇ · σ = F δ(x− x0) +D · ∇δ(x− x0) + . . . (2.57)

2.6 Faxén’s laws

Faxén’s laws provide a way to calculate the multipole moments of an isolated

rigid spherical particle without prior knowledge on the solution of the flow. In this

section, we derive Faxén’s laws for monopole and dipole moments.

2.6.1 Faxén’s first law

Starting from the boundary integral representation of the flow due to a moving

rigid spherical particle:

u(x) = u∞(x)− 1

8πµ

∫

S

t ·G(x− ξ)dS(ξ). (2.58)

Integration of equation (2.58) along the surface of the particle results in:

∫

S

[u∞(x)− u(x)] dS(x) =
1

8πµ

∫

S′
t ·
[∫

S

G(x− ξ) dS(x)

]
dS(ξ). (2.59)

Performing a Taylor series expansion of G centered in x0, we find:

G(x− ξ) = G(x0 − ξ) + (x− x0) · ∇G|x0−ξ + . . . . (2.60)

Using the fact that G is a bi-harmonic function with divergent zero, by direct

integration we have:
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∫

S

G(x− ζ) dS(x) = 4πa2

[
G+

a2

6
∇2G

]

x0−ξ
(2.61)

= 4πa2

[
1

r
+
rr

r3
+
a2

6

(
2

1

r3
− 6

rr

r5

)]
, (2.62)

where r = x0 = ξ and a is the radius of the rigid sphere. At the surface of the

sphere, r = a and therefore:

∫

S

G(x− ζ) dS(x) =
16πa

3
1. (2.63)

Hence:

F =
3µ

2a

∫

S

[u∞(x)− u(x)] dS(x). (2.64)

As the particle is rigid, the boundary condition imposes that u(x) = U + Ω×
(x − x0) on the surface of the particle. Moreover, u∞(x) can be written as a

Taylor series around the particle center x0

u∞(x) = u∞(x0) + (x− x0) · ∇u∞(x0) +
1

2
(x− x0)(x− x0) : ∇∇u∞(x0) + . . . .

(2.65)

Thus, the integral in equation (2.64) results in:

F = 6πµa

[
u∞(x0) +

a2

6
∇2u∞(x0)−U

]
. (2.66)

This means that for a rigid spherical particle, one can determine the force exerted

by the fluid on the particle only by knowing the external flow at infinity u∞(x),

the position and the velocity of the particle. Note that for a force-free neutrally

buoyant particle in a linear field u∞(x) = Γ · x, in the absence of any magnetic

effect, the particle translates with velocity U = u∞(x0) = Γ · x0.
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2.6.2 Faxén’s second and third laws

In this subsection, we shall use a procedure similar to the one explored in 2.6.1

in order to derive the expressions for the second and third Faxén’s laws. Faxén’s

second and third laws can be used to find the dipole moments of a single spherical

particle as a function of the externally applied flow. By the integral representation,

we have:

u(x)x = u∞(x)x− 1

8πµ

∫

S

G(ξ − x) · txdS(ξ). (2.67)

Integration on x over the surface gives the terms:

∫

S

Gik(ξ − x)xjdS(x) = −4

3
πa4

[
Gik,j +

a2

10
∇2Gik,j

]

x=x0

(2.68)

and

∫

S

u∞i xjdS =
4

3
πa4

[
Γij +

a2

10
∇2Γij

]

x=x0

. (2.69)

Thus, we have:

[
Γij +

a2

10
∇2Γij

]

x=x0

= − 1

8πµ

∫

S

(
Gik,j +

a2

10
∇2Gik,j

)
fkdS. (2.70)

At the surface of the sphere with radius a:

Gik,j +
a2

10
∇2Gik,j =

2

5a3
[δkjxi + δijxk − 4δikxj] (2.71)

Therefore, by collecting the symmetrical and anti-symmetrical parts of the dipole

(2.55), we find the expression for the torque and stresslet for an isolated rigid

spherical particle of radius a subject to an external flow. Namely, the expression

for the torque is given by:

T = 8πµa3 [Ω∞|x0 − ω] , (2.72)
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which is Faxén’s second law. Again, as an isolated particle free of inertia is under-

going a simple-shear motion without an applied magnetic field (i.e. the particle

is torque-free), it rotates with angular velocity ω = 1
2
∇× u∞|x0 . So, the particle

rotates with the local angular velocity of the external flow evaluated in its cen-

ter. On the other hand, in the presence of a magnetic torque TM acting on the

particle4,

ω = Ω∞
∣∣
x0

+
TM

8πµa3
. (2.73)

This result already indicates that in the case of a magnetic particle, the particle

is not necessarily free to rotate with the vorticity of the flow. There is an ap-

parent competition between the vorticity and the effect of the magnetic torque.

Analogously, the expression for the stresslet is given by:

S =
20

3
πµa3

[
1 +

a2

10
∇2

]
E∞|x0 . (2.74)

which is Faxén’s third law.

2.7 Maxwell’s equations

The Maxwell’s equations are a Lorentz-invariant set of equations which gov-

erns the dynamics of the electromagnetic field. Since the focus of this work is to

study the movement of slow-moving particles in creeping flow, we can ignore any

relativity discussion here. Considering the electric field Ef (x, t) and the magnetic

fieldB(x, t), the macroscopic Maxwell equations can be written in standard vector

differential notation as5:

4The change of sign in the expression happens because the torque calculated by Faxén’s law
is the hydrodynamical torque.

5In order to avoid any confusion with previous notation for the shear rate tensor and the hy-
drodynamic dipole we use the nomenclature Ef and Df for the electric and electric displacement
fields.
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∇ ·Ef =
ρe
ε0

, (2.75)

∇ ·B = 0, (2.76)

∇×E = −∂B
∂t

(2.77)

and ∇×B = µ0j + µ0ε0
∂E

∂t
, (2.78)

where ρe is the electric charge density, which can be broken into a monopole

contribution ρme and a dipole contribution ρde, ε0 is the vacuum dielectric constant,

µ0 is the vacuum magnetic permeability and j is the current density.

The electric field Ef can be decomposed in the form of:

Ef =
1

ε0

(Df − P ) , (2.79)

where Df is the so-called electric displacement field. The field P , which represents

the electric dipole density, is called the polarization field. In a similar way, the

magnetic field B can be decomposed in two parts, as

B = µ0 (H +M ) , (2.80)

where H is called the auxiliary magnetic field and M is the magnetization, which

is the density of magnetic dipoles. Considering that the magnetic field can be

generated by an electric current or by magnetic dipoles, we can also write the

current density term as:

j = jF + jM , (2.81)

where jF is the electrical current density due to the motion of free charges and the

term jM is related to the presence of magnetic dipoles and the motion of polarized

charges, such that:

jM = ∇×M +
∂P

∂t
(2.82)
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These assumptions result in the form of Maxwell’s equations suitable for ma-

terial media. Namely:

∇ ·Df = ρme , (2.83)

∇ ·B = 0, (2.84)

∇×Ef = −∂B
∂t

(2.85)

and ∇×H = jF +
∂Df

∂t
. (2.86)

In the present dissertation, all of our considerations focus on the magnetostatic

regime. At this regime, there is no free electric charge distribution nor electric

current densities. We also consider variations in the magnetic field B to be very

slow. Thus, the governing equations take the form of:

∇ ·B = 0 (2.87)

∇×H = 0. (2.88)

As the curl of the vector field H is null, we can write H in terms of a potential φ

as H = −∇φ. Hence, the potential φ is governed by the Poisson equation:

∇2φ = ∇ ·M , (2.89)

where the field M is given.

2.8 Magnetic interaction between two dipoles

In this section, we examine the force and torque interactions between two point

dipoles. The expressions found in this section will be very relevant in subsequent

chapters for the dynamical simulation of two magnetic particles interacting mag-

netically and hydrodynamically in a simple shear flow.
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m1 = m0p̂1

m2 = m0p̂2

r21 = r21r̂21

Figure 2.2: Sketch of two magnetic dipoles interacting magnetically.

Since the magnetization of a single dipole located at x1 is given by M(x) =

mδ(x − x1), considering that the magnetic field produced by the dipole can be

written as HD = −∇φD, the equation for φD is given by:

∇2φD = ∇ ·M = m1 · ∇δ(x− x1) (2.90)

Solving the equation in free space, we find φD to be given by

φD = − 1

4π
m1 · ∇

(
1

|x− x1|

)
. (2.91)

Hence, the magnetic field due to a single dipole can be written as:

HD(x) = − 1

4π
m1 · J(x− x1), (2.92)

where J is the Green’s function for the magnetic field H , given by:

J(r) =
1

r3
(1− 3 r̂r̂) . (2.93)

Here, r = |r| and r̂ = r/r. The magnetic force exerted on the dipole located at

the point x2 due to the magnetic field generated by the dipole at x1 is given by:

F 2 = µ0 m2 · ∇HD(x2). (2.94)

Using the expression for HD(x), we find:
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F 2 = −µ0

4π
∇ (m1m2 : J(x− x1))x2

, (2.95)

or more explicitly:

F 2 =
3µ0m

2
0

4πr4
21

[(p̂1 · p̂2) r̂21 + (p̂1 · r̂21) p̂2+

+ (p̂2 · r̂21) p̂1 − 5 (p̂1 · r̂21) (p̂2 · r̂21) r̂21] . (2.96)

The expression for the magnetic torque on the dipole located at x2 is given by:

T 2 = µ0 m2 ∧HD(x2). (2.97)

Now, substituting the expression (2.92) for HD(x) into (2.97), we find the torque

exerted on the dipole at x2 by the dipole at x1 to be given by:

T 2 =
3µ0m

2
0

4πr3
21

[
−1

3
p̂2 ∧ p̂1 + (p̂2 ∧ r̂21) (p̂1 · r̂21)

]
. (2.98)

These expressions for the force and torque interactions between two dipoles,

given respectivelly by equations (2.96) and (2.98), will be used later in the following

chapters concerning the investigation of the dynamics of two particles interacting

hydrodynamically and magnetically in creeping flow.

2.9 Conservation of probability

Now, we use the generalized Reynolds’ transport theorem in order to derive a

differential equation concerning the probability density for a general phase space.

In the context of the present dissertation, the probability densities used in order

to compute the transport coefficients involve variables such as orientations of the

dipolar moment of the magnetic particles. Considering the dynamics of a system

as a measure-invariant transformation, the probability measure P of a set Ωt has

the same values for all times, so that:
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dP(Ωt)

dt
= 0 (2.99)

In terms of the probability density P (X), with X ∈ Ωt being a possible state,

we have

d

dt

∫

Ωt

P (X)dX = 0. (2.100)

Direct application of Reynolds’ Transport Theorem leads to

∫

Ωt

[
∂P

∂t
+

∂

∂X
· (V P )

]
dX = 0, (2.101)

where V is the generalized velocity of an element of the phase space, which is given

by the dynamics of the system. Therefore, by using the localization theorem, we

have the equation for conservation of probability, namely:

∂P

∂t
+

∂

∂X
· (V P ) = 0. (2.102)

For conservative classical systems, Liouville’s theorem states that ∂V
∂X

= 0,

which means that the flow on phase space is incompressible. In this case, the

conservation of probability takes the form of

∂P

∂t
+ V · ∂P

∂X
= 0. (2.103)

This is known as Liouville’s equation and it is the main equation in classical

statistical mechanics [50].
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CHAPTER 3

TWO-PARTICLE DYNAMICS IN
CREEPING FLOW

In this chapter, we investigate the dy-
namics of two magnetic non-Brownian
particles free of inertia moving in a vis-
cous fluid. This dynamical problem is the
base for most of the results presented in
this dissertation. Here, we perform nu-
merical simulations taking into account
hydrodynamic and magnetic interactions
between the particles. The first sections
of this chapter present the general for-
mulation of the particle motion and the
mobility formulation of hydrodynamic in-
teractions between the particles, introduce
the magnetic forces and torques used in
this work and also present the most rel-
evant nondimensional physical parame-
ters. Then, we examine some the results
from the numerical simulations concern-
ing the dynamics of the particles and the
interplay between diffusive and aggrega-
tive mechanisms.
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3.1 Formulation of the mobility problem

In this section, we formulate the general governing equations for the motion of

two rigid spherical particles moving in a Stokes flow free of inertia in the presence

of an external flow.

γ̇ , µ

a

a

U1

x1

U2

x2

ω2

ω1

Figure 3.1: Sketch of the problem of two interacting rigid spheres of radius a
moving in a fluid with viscosity µ in the presence of an external simple shear flow
with shear rate γ̇. The particles have translational velocity U and angular velocity
ω .

Considering the problem of a spherical rigid particle moving in a fluid, the

governing equation for the translational motion of the particle is given by Newton’s

second law, reading:

m
dU

dt
= FH + FNH , (3.1)

where FH accounts for the hydrodynamic forces and FNH accounts for the non-

hydrodynamic forces, such as external fields or field interactions between particles.

We introduce the following characteristic scales of the flow problem:
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x ∼ a, (3.2)

U ∼ γ̇ a, (3.3)

F ∼ 6πµa2γ̇, (3.4)

t ∼ 1

γ̇
, (3.5)

where a is the radius of the particle, ρs is the density of the particle and γ̇ is the

shear rate. Writing equation (3.1) in nondimensional form, we have:

St
dU ′

dt′
= F ′H + F ′NH , (3.6)

where St is the Stokes’ number, defined as

St =
2

9

ρsγ̇a
2

µ
. (3.7)

In addition, the particle Reynolds number is given by Re = ργ̇a2

µ
. In the case

of creeping flow regime, Re� 1. Since

St ∼ Re
ρs
ρ

(3.8)

and ρs/ρ ∼ 1 (i.e. Neutrally buoyant condition), we have St ∼ Re� 1. When the

Stokes’ number is small, we can neglect the inertia term on the l.h.s. of equation

(3.1)1, resulting in:

0 = FH + FNH , (3.9)

This result gives us an apparent contradiction if we look at the principles of clas-

sical mechanics. Originally, we had a second-order differential equation for x(t),

which needs two initial conditions in order to have a unique solution: position and

1The same procedure can be used to show the negligibility of the rotational inertia by the
analysis of a rotational Stokes number
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velocity. When we neglect particle inertia, the governing equation for the position

x(t) of the particles reduces to a first order differential equation, given by:

dx

dt
= U , (3.10)

which is uniquely satisfied given the initial condition. Actually, there is no con-

tradiction in this problem. In this case, we have a quasi-stationary motion. This

phenomenon occurs due to the strong effect of vorticity diffusion on Stokes flow.

In fact, the vorticity diffusion time τµ = ρa2

µ
is much smaller than the flow time

γ̇−1, which results in an almost instantaneous relaxation of the flow. Thus, we

consider the velocity of the particle to be defined in every time step by just giving

the position of the particle, its forces, torques, and external flow by equation (3.9)

together with the solution of the flow.

Now, we consider the motion of two particles free of inertia in a quasi-stationary

condition. The governing equations for the relative position x = x2 − x1 and

orientation p̂ of the particles are given by the first-order evolution equations:

dx

dt
= U = U 2 −U 1 (3.11)

and
dp̂i
dt

= ωi ∧ p̂i. (3.12)

By the linearity of the Stokes equation, the velocities and angular velocities

of the particles are linear functions of the forces, torques and external flow. The

most general form of this linear relation is given by [48, 54]:




u∞(x1)−U 1

u∞(x2)−U 2

Ω∞(x1)− ω1

Ω∞(x1)− ω2

S1/µ
S2/µ




=




a11 a12 b̃11 b̃12 g̃1

a21 a22 b̃21 b̃22 g̃2

b11 b12 c11 c12 h̃1

b21 b22 c21 c22 h̃2

g11 g12 h11 h12 m1

g21 g22 h21 h22 m2



�




F 1/µ
F 2/µ
T 1/µ
T 2/µ
E∞/µ



, (3.13)
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where the external strain rate E∞ is a parameter of the problem and a, b, b̃ and c

are second-order tensors; g, h, g̃ and h̃ are third-order tensors and the quantities

labeled by m are fourth-order tensors. These are called mobility tensors. The

symbol � indicates contraction over the larger number of indices as possible.

For the closure of the problem, one must determine the expressions for the mo-

bility tensors. The mobility tensors are given by the solution of the hydrodynamic

problem. Although Stokes’ equations are linear, the geometry of the problem can

turn the process of finding an analytic solution very hard or almost impossible.

3.2 Exact solution for the problem of two spher-

ical particles in creeping flow

The problem of two rigid spherical particles moving in creeping flow has an

exact solution given in terms of bi-spherical harmonics. An outline for this solution

can be found in the classical paper of Lin et al. [55]. The authors were able

to calculate the exact expressions for the mobilities of two interacting force and

torque-free particles.

Although exact solutions are always wanted, there are a few disadvantages of

using these expressions for numerical computation, as they are given in terms of

infinite series involving Legendre polynomials. As shown by Batchelor & Green

[56], these solutions have some convergence problems as the particles are brought

close together. In fact, for the regimes when particles are nearby or far apart from

each other, it is more advantageous to use asymptotic solutions of the problem.

In the next few sections, we describe, concisely, two distinct procedures for ob-

taining asymptotic expressions for the examined flow problem at the two distinct

asymptotic regimes.

3.3 Far-field asymptotics

For the study of particles interacting far away from each other, in far-field
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regime (r � 2a), we apply an asymptotic method known as the method of reflec-

tions. This method was first introduced by Smoluchowski [57] and has been used

since then in microhydrodynamic simulations. In this section we explain the basic

principles the method, which is used in our simulations.

3.3.1 Resistance problem

Consider two particles moving in an infinite fluid which is initially steady. The

movement of a single particle with label A produces a disturbance in the fluid flow,

with a velocity field uA1 (x) satisfying the following boundary conditions:

{
UA at ∂DA

U∞(x) for r →∞
(3.14)

with the same applying for the second particle, labeled B. However, considering

the two particles problem, the mere sum of the velocity fields uA1 (x) and uB1 (x)

does not satisfy the boundary conditions for any of the two particles.

In order to fix this problem, we introduce the following perturbation scheme

in the region next to the particle A:

u(x) = uA1 (x) + uA2 (x) + . . . . (3.15)

In a similar way, in the region next to particle B we have:

u(x) = uB1 (x) + uB2 (x) + . . . , (3.16)

where uAn for n 6= 1 are velocity fields satisfying the following boundary conditions:

{
0 at ∂DA

uBn−1 for r →∞
(3.17)

Thus, the boundary condition for particle A is satisfied. The force, torque, stresslet

and higher order multipoles are given by:
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F A
H = F A

1 + F A
2 + . . .

T A
H = T A

1 + T A
2 + . . .

SA = SA1 + SA2 + . . .

. . .

(3.18)

These poles can be calculated by using Faxén’s laws. The recursive nature of

this method can be noticed by the boundary conditions. The velocity field uA1

generates a boundary condition at the infinity for the velocity field uB2 . On the

other hand, uB2 gives the boundary condition for the velocity field uA3 and so on.

Thus, the odd pertubations of the force of particle A are the ones which depend

on the velocity of the particle itself. The even perturbations are the ones due to

the velocity of particle B. The steps to obtain the perturbation terms of the forces

are the following:

• Calculate uA1 (x)

• Calculate (FB
2 ,T

B
2 ,S

B
2 , . . . ) using Faxén’s laws

• Calculate uB2 (x) by the multipole expansion

• Repeat the procedure

3.3.2 Mobility problem

In contrast with the resistance problem, the boundary conditions for the ve-

locity of the particles in the mobility problem are unknown. This is due to the

fact that the governing equation for the particle position is a first order differential

equation and has only the position as initial condition. In the case of the mobility

problem, we have:

FH = −FNH (3.19)

TH = −TNH (3.20)
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Now, we introduce a perturbation in the force of the particle A, where:

F A
H = F A

1 + F A
2 + . . . , (3.21)

so that:

{
F A

1 = −FNH

F A
2 = F A

3 = · · · = 0
(3.22)

The same is done for the torques and its valid for particles A and B. Here the

recursive method to obtain the velocities of the particles is slightly different. We

introduce a perturbation scheme in the velocity, given in the case of particle A by:

UA = UA
1 +UA

2 + . . . (3.23)

In this case, UA
1 and the field uA1 are determined by the single particle problem

with the constraints of the force, torque and uniform velocity at the surface of the

particle. The subsequent terms UA
k and uAk are determined by a single particle

problem with force and torque free conditions and the flow at infinity given by

uBk−1.

3.4 Near-field asymptotics

For the investigation of the hydrodynamic interaction between two spherical

particles when they are close to each other, the lubrication theory provides the

leading order and the further corrections for the mobility functions due to the in-

teraction between them. The whole method of solution, including the calculations,

is explained step by step in [48].

The approach to find the near-field mobilities is to consider the general move-

ment of two close particles as a superposition of three types of motion: Shear,

squeezing and rotating. Every other configuration can be written as a superposi-

tion of these. Each of these problems can be solved asymptotically in the region
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with small values of separation, considering the value ξ = (r−a− b)/a of the min-

imal gap between the spheres to be very small. The main idea of the method is to

expand the velocities and pressure fields in an asymptotic series on ξ, simplifying

the problem.

Details of the solution can be found in the book by Kim & Karrila’s book [48].

The compilation of all the expressions for the different types of mobilities in the

case of two spheres of the same size can be found on the Appendix II of this work.

These were extracted from the tables found in the book by Kim & Karrila [48],

with results originally due to Jeffrey and Onishi [54], and were modified in order

to fit this work.

3.5 Nondimensionalization of the equations of

motion

When dealing with the simulation of physical problems, it is often more apro-

priate to use nondimensional quantities. For the nondimensionalization of the

set of equations representing the two-particle model here, we use the following

appropriated scales:

|x| ∼ a (3.24)

t ∼ γ̇−1 (3.25)

|F | ∼ 6πµγ̇a2 (3.26)

|T | ∼ 8πµγ̇a3 (3.27)

For the investigation of the magnetic interaction between two particles, we con-

sider the approximation of dipole-dipole interaction. In this case, the forces and

torques between two-particles are given by the expressions presented in section

2.8. Substituting the dimensional variables by the nondimensional ones, the ex-

pressions for the magnetic forces and torques written in terms of non-dimensional

quantities result, respectively, in
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FM
2 =

α

r4
[(p̂1 · p̂2) r̂ + (p̂1 · r̂) p̂2 + (p̂2 · r̂) p̂1 − 5 (p̂1 · r̂) (p̂2 · r̂) r̂] (3.28)

TM
2 =

3α

4r3

[
−1

3
p̂2 ∧ p̂1 + (p̂2 ∧ r̂) (p̂1 · r̂)

]
, (3.29)

where

α =
µ0m

2
0

8π2µa6γ̇
. (3.30)

The nondimensional parameter α represents the intensity of the dipolar interac-

tion between particles in the homogeneous suspension. Therefore, by substituting

equations (3.28) and (3.29) in equation (3.13), we obtain the equations of motion

governing the dynamics of the two-particle problem.

3.6 Numerical simulation

For the numerical simulation of the motion of the two particles, we have used

a 4th order Runge-Kutta method with an adaptive time step. The algorithm of

the FORTRAN code used for performing the dynamical simulation of two spheres

undergoing a simple shear flow in the presence of hydrodynamic and magnetic

interactions is presented in Figure 3.2.

The implementation of an adaptative time step is made necessary when the par-

ticles get very close to each other during the motion. In order to implement that

feature we first chose a value greater than unity for the variable AMP and a value

for a reference time step H0 so the time step H is equal to MIN(GAP/AMP,H0),

where GAP is the gap between the two particles. This method by itself has a

clear disadvantage, due to the fact that some trajectories require greater values for

AMP than others. Thus, the simulation of many different trajectories using the

single value of AMP required for the simulation of the closest trajectories would

demand a large computational time.
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Initial Conditions Parameters

Runge−Kutta

Results

Equation of Motion

Mobilities

Forces and Torques

Figure 3.2: Sketch of the algotithm used for the numerical simulation of two
particles interacting magnetically and hydrodynamically in creeping flow.

In order to reduce the computational time, we set an inicial value for AMP

before the Runge-Kutta loop. Before the calculation of the (i+1)th step, we verify

the possibility of overlap during the process of the next time step. If an overlap

is detected, the value of AMP is doubled and the procedure for the current time

step is redone.

For the simulation, we have broke the problem into three different regions, in

which we use different expressions for mobilities. These regions are the far-field,

near field and matching regions as shown in figure 3.3.

Near−field asymptotics

Far−field asymptotics

Matching region

Figure 3.3: Different mobility regimes

For the far-field and near-field regions we used the mobility expressions in Kim

& Karrila [48]. These expressions can be found on Appendix II. For the matching
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region we used a polynomial fit of the analytical solution by Lin [55].

3.7 Validation of the code

One of the consequences of the linearity of Stokes equations is the kinematic re-

versibility in the movement of an isolated rigid particle. This kinematic reversibil-

ity holds for the relative trajectory in the interaction of two spherical particles

without field interactions between them. Figure 3.4 shows the simulation for two

perfect spheres, illustrating this symmetry.

y

x

20151050-5-10-15-20

2

1.5

1

0.5

0

Figure 3.4: Symmetry in the relative motion of a spherical rigid particle undergoing
a simple shear flow in the absence of magnetic interactions. The dashed line
indicates the position and size of the reference particle. The initial relative position
of the test particle is x−∞ = (−20, 0.1, 0).

One of the ways to test the validation of the numerical simulation of the motion

of two non-magnetic spheres undergoing a simple shear flow is to verify if the code

maintains this trajectory symmetry after a large number of collisions. For this

test, we imposed a periodic boundary condition at x = ±20. The result is shown

in Figure 3.5. The same results were obtained by Cunha and Hinch [16].

We have also validated the code for the case of force-free and torque-free parti-

cles by using the asymptotic solution developed in the paper by Cunha and Hinch

[16]. Here, we describe some details of this asymptotic solution.

The governing equation of the motion of a test particle relative to a reference

particle in a simple shear flow is given in coordinates by [56]:
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Figure 3.5: Test of the kinematical reversibility in periodic trajectories for a large
number of colisions. The initial relative position of the test particle is x−∞ =
(−20, 0.1, 0).

ẋ = y + ex− 1

2
By,

ẏ = ey − 1

2
Bx,

ż = ez,

where e = xy(B − A)/r2 and A and B are the shear mobilities. For the regime

when x � 1, where the particles are far apart from each other, we can obtain an

asymptotic expression for the trajectories. At leading order we have x ∼ x0 + y0t,

y ∼ y0 and z ∼ z0. By recursion, collecting the next order terms and using the

fact that A ∼ 5
r3

and B ∼ 16
3r5

, we obtain for the next order:

ẏ ∼ − (x0 + y0t)(5y
2
0 + 8

3
)

[(x0 + y0t)2 + y2
0 + z2

0 ]
5/2

(3.31)

ż ∼ − 5y0z0(x0 + y0t)

[(x0 + y0t)2 + y2
0 + z2

0 ]
5/2
. (3.32)

By performing a simple integration in t, we find the following expressions for
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the extrapolation of positions:

y∞ ∼ y +
r2ẏ

3xẋ
(3.33)

z∞ ∼ z +
r2ż

3xẋ
(3.34)

These approximations are valid for x � 1, y ∼ O(1) and z ∼ O(1). We can

also derive an asymptotic expression for positions for the case where y � 1. In

this case, the velocities take the form of:

ẏ ∼ −8

3
x
(
x2 + z2

)−5/2
, (3.35)

ż ∼ 0. (3.36)

Hence, by simple integration, we find the following expressions for y∞ and z∞:

y2 ∼ (y∞)2 +
16

9

(
x2 + z2

)−3/2
(3.37)

z ∼ z∞ (3.38)

We can use these asymptotic expressions for extrapolate the trajectories in

order to obtain the end positions of the particles. They, however, cannot be used

even for magnetic interacting particles, due to the fact that the velocity term due

to the magnetic dipole interaction is of order O(r−4), which is of the same order

or bigger than the shear terms.

Figure 3.6 shows a comparison between the numerical simulation of a particle

starting at x = −500 with the asymptotic expression for small y, at an interval

[−500,−100] and a time step of h = 0.01, the deviation between the two tra-

jectories is of order O(10−5). The very good agreement between numerical and

asymptotic solutions reinforces the validity of the numerical simulation for the case

of force and torque free particles.
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Figure 3.6: Comparison of the numerical simulation results (solid line) with the
asymptotic prediction (dashed line) for a particle coming from x = −500, y = 0.1
and z = 0. The insert in the plot shows details of the region where the asymptotic
solution works.

3.8 Symmetry breaking and scatter sections

The kinematic revesibility in the creeping flow motion of two sperical inter-

acting particles can be broken by the introduction of some extra effect during

particle collision such as particle roughness [16], the presence of a third particle

[28], deformability of the particles [19], non-sphericity of the particles [17] or a

field interaction between the particles [20, 21]. In this dissertation, we investigate

the symmetry breaking in the case of two magnetic particles interacting hydrody-

namically and magnetically in the presence of a simple shear flow.

In the case of symmetry breaking, the particle undergoes a displacement from

its original trajectory. In order to visualize the displacement from the original

trajectories due to the dipolar interaction between particles, we plot a scatter

section, which shows the deviation from the reversible trajectories for multiple

particles with the same initial orientations and different initial positions. The

main idea of this scatter sections is illustrated by Fig 3.7.
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2

1

Figure 3.7: Concept of a scatter section: Given an initial pair of orientations,
we consider the flux of all possible relative particle trajectories which start in the
plane 1 at x = x−∞. The scatter section displays the transverse endpoints of
the trajectories as they cross the plane 2 at x = x∞ after the collision with the
reference particle at the origin. As we consider the domain to be periodic on x,
the plot may also display the transverse endpoints of trajectories which cross the
plane 1 after the collision with the reference particle.

These scatter sections provide a qualitative view for dispersive open trajecto-

ries. Scatter sections have already appeared in the works of Cunha & Hinch [16],

Loewenberg & Hinch [19], Cunha & Couto [20, 36], and Cunha, Gontijo & Sobral

[21].

In the present context of magnetic particles, the dynamics depend strongly on

the orientation of the particles. Thus, in a simple shear flow, as the flow tries to

rotate the particles at every time, the scatter sections are quite different from the

ones found previously by Cunha & Couto [20, 36] and Cunha & Gontijo & Sobral

[21] in the context of sedimenting magnetic particles.

Figure 3.8 shows the scatter section obtained by numerical simulation for α =

0.5, p̂1 = (1, 0, 0) and p̂2 = (1/
√

2, 1/
√

2, 0) for particles starting at the first and

second quadrants. By examining the results displayed on Figure 3.8, one can

observe three different kinds of behavior for the open trajectories. Namely, there

are particles with both positive and negative y and z−displacements. In particular,

some of the particles have their end trajectories on the third or fourth quadrants.
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For values of y greater than 2.5, there is almost no observable displacement of the

particles.

Furthermore, Figure 3.9 depicts another scatter section for α = 0.5, p̂1 =

(1, 0, 0) and p̂2 = (1/
√

3, 1/
√

3, 1/
√

3). The result displayed in Figure 3.9 shows

the symmetry breaking between quadrants 1 and 2 due to the asymmetry of the

initial orientations.

z

y

3210-1-2-3

3

2

1

0

-1

-2

-3

Figure 3.8: Scatter diagram for α = 0.5 with initial relative position x−∞ = −20
and symmetrical initial orientations p̂1 = (1, 0, 0) and p̂2 = (1/

√
2, 1/
√

2, 0).

Both scatter sections displayed in Figures 3.8 and 3.9, obtained by the simula-

tion of a pair of magnetic particles undergoing a simple shear flow, show multiple

trajectories ending at the third and fourth quadrants of the zy plane. At a first

glimpse this does not seem to make much sense, since the negative y quadrants
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Figure 3.9: Scatter diagram for α = 0.5 with initial relative position x−∞ = −20
and symmetrical initial orientations p̂1 = (1, 0, 0) and p̂2 = (1/

√
3, 1/
√

3, 1/
√

3).
It can be noticed that the image is not symmetric due to asymmetric initial con-
ditions.

constitute the region where the shear velocity is negative. However, by further

inspection, we observe that those negative end positions appear in the form of

orbital trajectories on the relative motion due to the magnetic interaction between

the particles. These interactions may cause the test particle to cross the plane 1

at x−∞ instead of the plane 2. Figure 3.10 shows some examples of trajectories

with end positions at the third or fourth quadrants (i.e. negative y).

Trajectories such as these are very common in the context of non-linear dynam-

ical systems. Although the relative trajectories in the context of smooth spherical
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Figure 3.10: Examples of irreversible open trajectories with negative end positions
in the y direction (i.e. third and fourth quadrants).
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rigid particles undergoing a simple shear flow are symmetric [56], the particle

collision in our context is perturbed by the presence of the magnetic interaction

between the particles. Consequently, it originates these orbital and sometimes

seemingly chaotic2 trajectories.

Another test performed in order to characterize these trajectories was tracking

the evolution of particle displacement after several collisions. This concept is very

similar to the one of a Poincaré section in the context of dynamical systems [58].

With this end, we incorporate a periodic condition on the x axis. By using this

condition, we have ploted the end points of successive collisions in the yz plane.

Figures 3.11 and 3.12 show these plots for the cases of y = 1.01, z = 1.0

and y = 2.01, z = 1.0 respectively with the initial orientations p̂1 = (1, 0, 0) and

p̂2 = (1/
√

2, 1/
√

2, 0) for the first 105 collisions and given values of α. For α = 0,

the graph displays only a single point, as expected from periodic trajectories due

to the Stokes’ reversibility.

Although the two figures show results for different initial conditions and mag-

netic interaction intensity α, there are similarities in the patterns found by the

simulations. In the results shown on Figures 3.11(a), 3.11(b) and 3.12(a), no ag-

gregation occurred before 106 collisions. An exception was the case illustrated on

Figure 3.12(b), where the particles aggregated after 5703 collisions.

3.9 Aggregative trajectories

Due to the magnetic dipole interaction between the spheres, some initial con-

ditions may result in particle aggregation, forming a doublet. In this work, we also

compute the rate at which these doublets are formed. In chapter 5, we show that

this rate depends on an integral over all closed irreversible aggregative trajectories.

In order to visualize qualitatively the region containing all the aggregative

trajectories for different initial conditions on phase space, we present the plot of

2In this work, we have not performed any type of test to measure the chaotic behavior of the
system, such as the computation of Lyapunov exponents or a value for the system’s entropy.
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a typical aggregative section of the examined system. This concept is very similar

to the one of a basin of attraction, which appears very frequently in the context

of dynamical systems and it is usually defined as the region on the phase space

which will be attracted to some attractor [58]. In fact, the particle centered at

the origin can be thought of as an attractor. In this case, where the phase space

is 7-dimensional, only two-dimensional sections of the basin of attraction can be

plotted. Therefore, the aggregative section is a two-dimensional section of the

basin of attraction for a fixed pair of orientations and an initial x−position.

In these plots, the area in black represents the starting positions in the plane in

which particles aggregate and the white area of the plane represents the starting

positions in the plane in which the particles do not aggregate. We denote the area

in black by the name of aggregative region, or the region of closed trajectories,

and the area in white as the dispersive region, or the region of open trajectories.

Figure 3.13 shows multiple sections of the basin of attraction at x−∞ = −20 for

different pairs of initial orientations.

It is interesting to note that the aggregative collisional area is not simply con-

nected, like in the relative trajectories of a two-particle system in sedimentation

[36]. This remarkable difference is a direct consequence of the vorticity of the

external shear flow acting on the particles together with the high sensibility of the

system on particle orientation. In particular, the observed aggregative regions are

very irregular, appearing to present some fractal structure at the interface with

the dispersive region, as seen in Figure 3.15. This non-linear response character-

ized by the observed non-regular geometry is related to the strong sensibility of

the problem on its initial conditions. This kind of behavior is quite typical in the

context of non-linear dynamical systems.

A mirror symmetry on the y−axis can be observed on the patterns shown in

Fig 3.13 due to symmetric initial orientations with respect to the y−axis. This

picture is a bitmap in which every pixel corresponds to a different trajectory.

The dark-colored points represent a region containing starting positions resulting

in aggregative trajectories, whereas, the white points represent a region which

contains the starting positions which lead to dispersive trajectories. In the same
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way that the symmetry of the scatter section is broken by asymmetric initial

conditions, the same is valid for these sections of the basin of attraction. Actually,

by giving asymmetric initial orientations with respect to the y−axis, the reflection

symmetry no longer holds. Figure 3.14 shows the asymmetric patterns that arise

from non-symmetrical initial conditions for orientation.

61



z

y

2.221.81.61.41.210.80.6

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

(a) α = 0.005
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(b) α = 0.010

Figure 3.11: Transverse positions at the end of each cycle of the trajectory of
particle 2 starting at y = 1.01 and z = 1.0 with the pair of initial orientations
p̂1 = (1, 0, 0) and p̂2 = (1/

√
2, 1/
√

2, 0) after 105 collisions. Figure (a) is the case
where α = 0.005. In Figure (b), α = 0.010.
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(a) α = 0.010
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(b) α = 0.050

Figure 3.12: Transverse positions at the end of each cycle of the trajectory of
particle 2 starting at y = 2.01 and z = 1.0 with the pair of initial orientations
p̂1 = (1, 0, 0) and p̂2 = (1/

√
2, 1/
√

2, 0) after 105 collisions. Figure (a) is the case
where α = 0.010. In Figure (b), α = 0.050.

62



(a) (b)

(c) (d)

Figure 3.13: Sections from the basin of attraction showing different paterns for
aggregation area. All figures consider initial orientations p̂1 = (1, 0, 0) and p̂2 =
(1/
√

2, 1/
√

2, 0) for different magnetic interaction parameters. (a) α = 0.25, (b)
α = 0.5, (c) α = 1.0, (d) α = 2.0.
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(a) (b)

Figure 3.14: Symmetry breaking of aggregative sections due to asymmetric ini-
tial conditions. All figures consider initial orientations p̂1 = (1, 0, 0) and p̂2 =
(1/
√

3, 1/
√

3, 1/
√

3) for different magnetic interaction parameters. (a) α = 0.5
and (b) α = 1.0, .

(a) (b)

Figure 3.15: Detail of the aggregative section for α = 0.5. The black region rep-
resents the aggregative area on the collisional plane for a given pair of initial ori-
entations. Figure (a) shows the region in which z ∈ [−2.6, 2.6] and y ∈ [10−3, 0.3].
(b) shows the detailed zoom of the region in which z ∈ [1.2, 2.4] and y ∈ [0.2, 0.25]
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CHAPTER 4

HYDRODYNAMIC DIFFUSION

In this chapter we discuss the main
points concerning diffusive phenomena.
We introduce the phenomenon of shear-
induced hydrodynamic diffusion, deriv-
ing the expressions for calculating the
shear-induced self-diffusivity and down-
gradient diffusivity in the context of a
dilute non-Brownian monodisperse sus-
pension. The expressions are given in
terms of integrals over all dispersive (i.e.
open) trajectories. In addition, we use
our numerical simulation of two parti-
cles in order to obtain numerical values
for the shear-induced hydrodynamic self-
diffusivities and down-gradient diffusiv-
ities for a dilute non-Brownian suspen-
sion of spherical rigid particles undergo-
ing a simple shear flow in the presence
of dipole-dipole magnetic interactions be-
tween the particles.
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4.1 General diffusive phenomena

Diffusion is a macroscopic phenomenon that comes from statistical averages

of random phenomena at smaller scales, causing the dispersion of some property.

Examples of diffusive processes are the conduction of heat and molecular diffusion,

where particles tends to spontaneously spread out through the space.

Unlike “ordinary” diffusive phenomena, which have their origins on the molec-

ular level, hydrodynamic diffusion arises in the same scale of the particles as a

consequence of the symmetry breaking on particle-particle interactions. The dis-

placement across the streamlines due to irreversible particle collisions creates a

random walk across the streamlines, due to the randomness of particle collisions.

This random walk yields a self-diffusion of the particle [23].

In this section, we discuss the formulation of diffusive phenomena in a general

context. Later, in subsequent sections, we apply the ideas developed here in or-

der to investigate hydrodynamic diffusive phenomena in the context of a dilute

magnetic suspension of non-Brownian spherical particles.

We start by the the equation of balance of a component φ in a material volume

V (t). The equation reads:

d

dt

∫

V (t)

φ(x, t)dV = −
∫

S(t)

n̂ · FdS +

∫

V (t)

h dV, (4.1)

where F is the flux of particles going inside the volume V (t) and h is the source

volumetric distribution. The source or sink term can represent, for example, the

formation of aggregates or chemical reactions. For the case where the diffusive

phenomenon is generated by a random process which does not depend on particle

volume fraction, considering the linear dependence between the flux and ∇φ, the

net flux of particles going inside V (t) can be formally written as:

F = −
∫ t

0

dt′
∫
dx′D(x− x′, t− t′) · ∇φ(x′, t′) (4.2)

In the case where the flux is determined only by the instantaneous concentra-
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tion gradient at the point, we have the integration kernel tensor D(x− x′, t− t′)
given by:

D(x− x′, t− t′) = δ(t− t′)δ(x− x′)D(x′, t′). (4.3)

Thus, the net flux of particles is given by:

F = −D(x, t) · ∇φ, (4.4)

where the tensor D is called the gradient diffusivity tensor. This linear dependence

between the flux and the volume concentration gradient is the general form of

Fick’s law. The material is not necessarily homogeneous nor isotropic, since D is

a second-order tensor which can have explicit dependence on the space. This law is

a specific case of more general linear relations between thermodynamic forces and

fluxes. Hence, by applying the Reynolds’ transport theorem and the localization

theorem, the governing differential equation for φ is given by:

∂φ

∂t
+∇ · (φu) = ∇ · (D(x, t) · ∇φ) + h(x, t). (4.5)

As we shall see, the terms D and h can be generalized in order to consider

dependences on the concentration φ.

4.1.1 Diffusive phenomena with spatial and temporal ho-
mogeneity

We start this section by performing a simple derivation of the well-known

Fokker-Planck equation for the probability density P (X, t) considering temporal

and spatial homogeneity1. By the definition of conditional probability density, we

have

1A more general alternative derivation using a stochastic differential equation for the evolution
of the stochastic process Xt and the equation of conservation of probability (2.102) can be found
in Zwanzig’s book [50].
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P (X, t+ h) =

∫
dY P (X, t+ h|Y , t)P (Y , t), (4.6)

where the integral is performed over all the phase space. By the time homogeneity

of the process, we have:

P (X, t+ h|Y , t) = P (X, h|Y ). (4.7)

Considering also space homogeneity, we have:

P (X, h|Y , 0) = P (W , h), (4.8)

where W = X − Y . Thus, by substituting equations (4.7) and (4.8) at equation

(4.6), we obtain:

P (X, t+ h) =

∫
dW P (W , h)P (X −W , t). (4.9)

By performing a Taylor expansion at the neighborhood of X, P (X −W , t) can

be expressed as:

P (X −W , t) = P (X, t)−W · ∇P +
1

2
WW : ∇∇P + . . . (4.10)

Therefore, by ignoring terms greater than second order, substituting equation

(4.10) on (4.9), dividing the equation by h, taking the limit as h → 0 and using

the definition of a time derivative, we have

∂P

∂t
+ V · ∇P = D : ∇∇P. (4.11)

where the terms V and D are given respectively by:

V ≡ ∂

∂t
〈W 〉 (4.12)

and
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D ≡ 1

2

∂

∂t
〈WW 〉. (4.13)

The terms in equations (4.12) and (4.13) are respectivelly the drift velocity and

the diffusivity tensor. This expression for the diffusivity tensor is known as the

self-diffusivity, which is the diffusion coeficient for a single particle. In the cases

in which the diffusion mechanism does not depend on the particle interaction, the

self-diffusivity is equal to the gradient diffusivity, which is the D tensor on Fick’s

law.

4.2 Hydrodynamic diffusion

As seen in chapter 3, the reversibility of Stokes flow results in a kinematic

reversibility for the relative motion of two rigid spheres free of inertia. Some

factors can break this symmetry, thus causing the particles to depart from their

original trajectories. Figure 4.1 shows this displacement of a particle from its

original (reversible) trajectory.

irreversible collision

reversible collision

γ̇ ∆X

Figure 4.1: Net displacement of a particle from its original trajectory.

Let us consider a test particle in a suspension of particles. This symmetry

breaking togheter with the randomness of the collisions between particles causes

the particle to random walk across the streamlines, as shown in Figure 4.2, pro-

ducing a self-diffusive phenomenon on the test particle.

In the case of hydrodynamic diffusion, the gradient diffusivity is different from

the self-diffusivity. This is due to the fact that the hydrodynamic self-diffusion

of a particle is not independent from the other particles. Figure 4.3 shows the
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Figure 4.2: Series of displacements of a particle due to random interactions with
other particles.

gradient diffusion effect, in which particles tend to migrate from a region with a

high concentration to another region with low concentration.

21

φ1 > φ2

F

Figure 4.3: Flux of particles from a region with larger concentration to a region
with smaller concentration.

Cunha & Hinch [16] have made a very important finding in the field of shear-

induced hydrodynamic diffusion from their theoretical calculations for a monodis-

perse dilute suspension of non-Brownian rigid rough particles under shear flow.

The authors discovered the exact relationship between self-diffusivity and down-

gradient diffusivity to be given by

DGk = 2DSk +DFk , (4.14)

where DFk is a flux contribution and k represents one of the principal directions of
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diffusion. Equation (4.14) means that the total gradient diffusivity has a contri-

bution of the self-diffusivity on each side of a test sphere like Figure 4.3 and a flux

contribution due to the small gradient of concentration. Cunha and Hinch show

that DG ∼ 10DS, in agreement with several experimental results in the context of

shearing and sedimenting suspensions [23].

Due to the presence of the flow (non-equilibrium) and particle fluctuations

governed by particle irreversible interactions, the hydrodynamic diffusivity is also

anisotropic and always dependent on particle concentration and their orientation,

so that Dhydro = D01 + DG(φ,C ), where D0 is the ordinary molecular diffusiv-

ity. It is instructive to mention that in a paper of Leighton and Acrivos [26] the

authors had already proposed a relation between DG and DS in the context of

hydrodynamic diffusion but without the correct factor of 2, found theoretically by

Cunha and Hinch [16]. In subsection 4.2.3, we derive a more general tensorial form

of the expression for down-gradient diffusivity given by Cunha & Hinch [16].

4.2.1 Dimensional analysis

In this section, we perform a dimensional analysis in order to determine the

general form of an expression for the shear-induced hydrodynamic diffusivity.

Considering that the diffusivity can be written as a function of the shear rate

γ̇, the size of the particles a, the fluid viscosity µ, the volume fraction of particles

φ, and the parameters which break the symmetry of the particle motion, we have

the diffusivity tensor given by the following fundamental relation:

D(φ) = F (γ̇, a, µ, φ, . . . ). (4.15)

Thus, by applying Buckingham Pi theorem and performing a regular asymp-

totic expansion on φ , we can write the diffusivity as:

D(φ) = γ̇a2f(φ, . . . ) = γ̇a2
[
φf 1(. . . ) +O(φ2)

]
. (4.16)
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In the case of a dilute suspension, we can neglect terms of order O(φ2). There-

fore, we have an expression for the diffusivity tensor given by:

D(φ) = γ̇a2f(φ, . . . ) = γ̇a2φf [s], (4.17)

where f [s] is a functional of the relative trajectory between the particles, and a

function of the nondimensional parameters related to the symmetry breaking of

the problem. These parameters can be a roughness parameter, a capilary number

Ca, a viscosity ratio or, as in our case, a magnetic interaction parameter.

4.2.2 Self-diffusion

In this section, we derive an expression for the self-diffusivity in the case of hy-

drodynamic shear-induced diffusion. Starting from the definition of self-diffusivity,

we have:

DS =
1

2

∂

∂t
〈WW 〉 , (4.18)

where W is the total displacement of a test particle, as shown in Figure 4.2,

due to collisions with other particles. This W can be written as the sum of the

contributions of displacement due to each particle, namely:

W =
N∑

k=1

W k. (4.19)

In this context, we consider the particles to be identical and the collisions

between the particles, as well as the displacements W k, to be independent. Thus,

we have:
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〈WW 〉 = N 〈W 1W 1〉

= N
∑

Ω

∆X∆X Pcol(X; t|X1). (4.20)

The term Pcol(X; t|X1) is the conditional probability of the collision between

the test particle at X given that the particle 1 is at X1. An expression for this

probability distribution is given by:

Pcol(X; t|X1) = P (X)dVcol

= P (X)γ̇|y−∞| t dΩ, (4.21)

where dΩ in this case is equal to the “infinitesimal area” dA−∞ of the collisional

plane2. Therefore, we find the expression for the self-diffusivity to be given by:

DS =
n(X)γ̇

2

∫

Ω

∆X∆X|y−∞|dΩ (4.22)

Alternativelly, expressing the integral in terms of nondimensional quantities:

DS = γ̇a2φ

(
3

8π

∫

Ω

∆X ′∆X ′|y′−∞|dΩ′
)
, (4.23)

which agrees with the scaling argument presented in equation (4.17). The expres-

sion (4.23) was proposed before by Cunha and Hinch [16].

Although this derivation was made by considering that no other parameter of

the particles, such as orientation, interferes with the total displacement, this can

be made more general with the arguments presented in the following subsection.

2In this derivation, we use an argument similar to the one in kinetic theory. Namely, dVcol is
the infinitesimal collisional volume, given by dVcol = t|V 2 − V 1|dA−∞, where |V 2 − V 1| is the
relative velocity between the particles.
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4.2.3 Gradient diffusion

In this section, we perform a simple derivation of an invariant tensor form of

Cunha & Hinch’s theoretical expression for the shear-induced down-gradient dif-

fusivity. This derivation takes into consideration “extra variables” of the particles,

such as dipole orientation.

Considering now the collision of a particle starting in X with another particle

with starting position Y = X − x. The state space of each particle is given by

the product between the position space and a space Ωi with elements ωi (where

i is the label of the particle), which is related to other possible properties of the

particle, such as particle orientation. For future convenience and agreement with

the previous notation for the self-diffusivity, we define the set Ω ≡ R2 × Ω1 × Ω2.

Considering a volume V0, invariant under flow transformations, with all possible

initial conditions forX. For a given (x, ω1, ω2) ∈ Ω, the initial volume is translated

by a displacement of ∆X, as shown in Figure 4.4.

collision

V0

V

Figure 4.4: Displacement of the volume V0 after undergoing a displacement of ∆X
for each point on the volume.

Thus, the net number of particles going inside the volume V is given by the

difference between the particles entering the volume and the particles leaving the

volume. This can be expressed explicitly by:
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∆Nin

N(N − 1)
=

∫

Ω

(∫

X∈V0
−
∫

X∈V

)
dPcol(X ,Y ; t) (4.24)

≡
∫

Ω

∫

R

dPcol(Y ; t|X )dP(X ), (4.25)

where Pcol(X ,Y ; t) is the probability of two particles initially at X = (X, ω1) and

Y = (Y , ω2) collide after a given time t. The integral over R is just a notation for:

∫

R

≡
∫

X∈V0
−
∫

X∈V
. (4.26)

For large separations between the particles, we consider the position and the vari-

able ωi of each particle to be statistically independent from one another. Thus,

considering a large number of particles, the rate of change of the number of par-

ticles in the volume V is given by:

dN

dt
= γ̇

∫

Ω

∫

R

n(X)n(Y )|y−∞|dXdΩ. (4.27)

where n is the number density and dΩ is an abuse of notation for dA−∞dPω1dPω2 .

Defining

f(X) ≡ n(X)n(X − x) (4.28)

and using the fact that

∫

V0

f(X)dX =

∫

V

f(X −∆X)dX, (4.29)

we have:

∫

R

n(X)n(X − x)dX =

∫

V

[f(X −∆X)− f(X)] dX. (4.30)

Expanding f(X −∆X) in a Taylor series at the neighborhood of X, we have:

f(X −∆X)− f(X) ≈ −∇ · (∆Xf) +
1

2
∇ · (∆X∆X · ∇f) + . . . (4.31)
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Performing another Taylor series expansion, we find that f(X) can be written as:

f(X) ≈ n(X)2 − n(X)x · ∇n+ . . . (4.32)

Hence, by applying the divergence theorem, we find the integral in equation (4.30)

to be:

∫

R

n(X)n(Y )dX =

∫

∂V

n̂ ·
(
−n2∆X + n∆X x · ∇n +

+ n∆X∆X · ∇n+O((∇n)2,∇∇n)
)
dS (4.33)

Assuming small gradients of n, we can neglect terms of orderO(∇n2) andO (∇∇n).

Thus, we find that the down-gradient diffusivity is given by:

DG = 2DS + nγ̇

∫

Ω

∆X x|y−∞|dΩ. (4.34)

This result is the exact tensorial representation of the theoretical expression

proposed by Cunha & Hinch [16] for the shear-induced hydrodynamic down-

gradient diffusivity.

4.3 Numerical computation of the hydrodynamic

diffusivity

For the numerical integration used to compute the self-diffusivity and down-

gradient diffusivity, a Monte-Carlo integration scheme has been used. In particular,

this method is used due to the fact that performing the numerical integration in

six dimensions using a trapezoidal rule would require a large number of points,

resulting in impracticable computational times. The Monte-Carlo integration,

although requiring a large number of points for convergence in a small number of

dimensions, is much more suitable for integration in a greater number of dimensions

[59].
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The method consists in a statistical interpretation of the integral as an average

of a random variable. Let us suppose one has to evaluate the following integral:

∫

Ω

f(x)dΩ, (4.35)

where x ∈ Ω. If the measure µ(Ω) ≡
∫

Ω
dΩ is equal to 1, this integral can be

interpreted as the average of the random variable f with an uniform distribution

for the random variable x. If the measure is not equal to 1, we can normalize the

integral by the factor of µ(Ω) and therefore keeping the definition of a statistical

average. Hence:

∫

Ω

f(x)dΩ = µ(Ω) 〈f〉 . (4.36)

Now, by the law of large numbers (see details in Appendix I), the average 〈f〉 for

an uniform distribution of the variable x can be approximated by the sum of a

large number N of randomly generated values of f divided by N . Namely:

〈f〉 = lim
N→∞

f1 + · · ·+ fN
N

= lim
N→∞

1

N

N∑

k=1

f(xk), (4.37)

where xk ∈ Ω are numbers randomly generated in Ω with uniform distribution by

a random number generator. Therefore, the approximation for the integral of f is

given by:

∫

Ω

f dΩ ≈ µ(Ω)
1

N

N∑

k=1

f(xk), (4.38)

This approximation method for integrals is the so-called Monte-Carlo integra-

tion method. As N gets bigger, the precision of the method increases, as the error

associated with the method is of order O(1/
√
N) (by the law of large numbers)

and does not depend on the number of dimensions. Meanwhile, methods such as

the trapezoidal or Simpson’s rule have explicit dependence on the number of di-

mensions d, with an error of order O(1/Nk/d), where k is an integer which depends
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on the order of the method. For the trapezoidal method k = 3, for Simpson’s rule

k = 4.

4.4 Numerical computation of the shear-induced

hydrodynamic self-diffusivity

Now we present the procedure used for calculating the numerical values for the

hydrodynamic self-diffusivity in a suspension of non-Brownian magnetic particles.

The expression for the nondimensional self-diffusivity is given by:

fS(α) ≡ DS

γ̇a2φ
=

3

8π

∫

Ω

∆X∆X|y−∞|dΩ. (4.39)

For the case of magnetic particles with dipole moments, we have dΩ given by:

dΩ = dPp̂1dPp̂2dA−∞, (4.40)

where Pp̂k is the probability for the particle to have its dipole moment orientation

given by p̂k. Therefore, we have the expression for dPp̂k in terms of the probability

density Pp̂k as follows:

dPp̂k = Pp̂kdp̂k = Pk(θk, ϕk) sin(θk)dθkdϕk, (4.41)

where we adopted a spherical coordinate parametrization for a sphere with unit

radius. For large separations between the particles, we have a simple uniform

probability density for the orientations, given by:

Pk(θk, ϕk) =
1

4π
(4.42)

The uniformity of the probability density is due to the isotropic shape of the

particles and the absence of an external magnetic field. With these considerations

in mind, equation (4.39) becomes
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fS(α) =
3

8π

1

16π2

∫

Adisp

dA−∞
∫

S2

dp̂1

∫

S2

dp̂2∆X∆X|y−∞|, (4.43)

where S2 is the surface of a unit sphere and Adisp is the area for which, given

an initial pair of orientations, an initial configuration leads to a dispersive (i.e.

non-aggregative) trajectory. In order to compute the numerical values of the in-

tegral in (4.43), we use the method of Monte-Carlo integration, in which (4.43) is

approximated as follows:

fS(α) ≈ 3

8π

A−∞π2

4N

N∑

k=1

∆Xk∆Xk|y−∞k | sin(θk1) sin(θk2)IAdisp
, (4.44)

where I is the indicator function, defined as:

IA =

{
1 if x ∈ A
0 otherwise

(4.45)

The results for the self-diffusivities obtained by the Monte-Carlo integration

are shown in Figure 4.5. For small values of the parameter α we were able to

compare our numerical results with the theory of Cunha & Hinch [16]. In the

present case, a perfect numerical fitting of our computational resuls is obtained as

ε = α5/4. Under this condition, we observe a linear behavior of the self-diffusivity

with δ4 = ε0.4374 (log(1/ε) + 1.347)−0.7012, as shown in the insert of Figure 4.5 and

predicted by Cunha and Hinch3.

It is important to note that the non-diagonal terms of the self-diffusivity tensor

vanish due to inherent symmetries of the problem. Namely, we can perform a

partition on the integral of the area on the four quadrants. For each pair of

starting orientations in the first or fourth quadrants, there is a relative pair of

orientations which results in a mirrored configuration in the second and third

quadrants, respectively. This argument results in the nullity of the non-diagonal

terms of the diffusivity.

3In the paper of Cunha and Hinch [16], δ is defined as being the net displacement of a test
particle produced by small values of the irreversibility parameter ε. δ4 is used by the fact that
the self-diffusivity is related with a double integral of δ2

79



0.10

0.02

0

α

f
S

1.51.2510.750.50.250

0.2

0.15

0.1

0.05

0

Figure 4.5: Nondimensional self-diffusivities as functions of the interaction param-
eter α. The � points represent fSyy and × points are fSzz. The insert shows the
comparison of the self diffusivities for small values of α with the theory of Cunha
& Hinch. The dashed line is the function 0.1564 δ4(α).

In addition, the paper of Cunha & Hinch also shows that for small values of

ε, the self-diffusivities in the z−direction are linear with ε. Using our equivalent

intrinsic parameter ε = α5/4 for small values of α, the diffusivity in the z−direction

fSzz is also quite linear with α5/4, as shown in Figure 4.6. While we can see an

excellent agreement between our numerical simulation results and the theory of

Cunha and Hinch [16] for small values of α, we have no experimental data to

compare our results.
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Figure 4.6: Numerical values for the self-diffusivity in the z−direction fSzz as a
function of α. The dashed curve is the function 0.0333 α5/4.

4.5 Aggregative effects on the flux contribution

of the down-gradient diffusivity

In our investigation of the diffusive phenomena in non-Brownian magnetic sus-

pensions, the existence of attractive forces between the particles results in some

problems in the computation of the gradient diffusivity. In the paper by [16], it

was found that the gradient diffusivity for small concentration gradients was given

by:

DG = 2DS + DF , (4.46)

where DS is the self diffusivity tensor and
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DF = nγ̇

∫

Ω

∆Xx|y−∞| dΩ (4.47)

is a flux contribution. Writing this flux contribution in the form DF = γ̇a2φfF (α),

we have the explicit form of the integral for fF (α) given by:

fF (α) =
3

8π

1

16π2

∫

Adisp

dA−∞
∫

S2

dp̂1

∫

S2

dp̂2 ∆Xx|y−∞|. (4.48)

It should be important to note that despite the asymmetry on the integrand tensor

∆Xx, which indicates the possibility of the tensor D to be asymmetric, due to

the symmetry of the problem, the diagonal terms cancel out by the same argument

as the one for self-diffusivity. Results for the computation of fG = 2fS + fF by

the Monte-Carlo method are presented for some values of α in Table 4.1.

Table 4.1: Numerical values for the down gradient diffusivity computed by the
Monte-Carlo method.

α 0.02 0.05 0.09

fSyy 5, 292× 10−3 9, 743× 10−3 1, 447× 10−2

fGyy 1, 543× 10−3 1, 067× 10−3 −4, 440×10−2

fSzz 2, 276× 10−4 7, 556× 10−4 1, 663× 10−3

fGzz −8, 025×10−3 −1, 691×10−2 −0, 808× 100

The results shown in table 4.1 show the flux contributions are all negative for

the cartesian components of the diffusivity tensor. This occurs due to the fact that

trajectories with negative final displacements outnumber trajectories with positive

ones, which is caused by the attractive nature of the dipole interaction.

Thus, the down-gradient diffusion coefficients in the z directions are negative,

indicating a probable dominance of the aggregative effects over dispersive ones. On

the other hand, the down-gradient diffusivity in the y direction is positive for small

values of α. Even so, these values are smaller than the ones of DS, indicating that

the dispersive effect is drastically reduced due to the attractiveness of the magnetic
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interactions, which are not taken into account by the self-diffusivity term. In fact,

as the magnetic interaction parameter α increases, the magnetic dipolar attraction

between the particles tends to grow, leading to higher values of the negative particle

flux contribution. For future works, we propose the addition of a surfactant effect

in our model, such as a short-range repulsive force [7], avoiding aggregative closed

trajectories during particle collision. With these forces, we expect to obtain the

correct values for the down-gradient diffusivities.
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CHAPTER 5

AGGREGATION RATE

This chapter presents a basic discussion
about particle aggregation and the rate of
formation of particle aggregates. Then,
we discuss the problem of aggregation in
the context of a suspension of magnetic
particles. In this case, the dipolar in-
teraction between the particles influences
the aggregation rate. By using our two-
particle problem, we have computed the
rate of particle doublet formation.

5.1 Particle aggregation mechanisms

Particle aggregation or coagulation is an intrinsic phenomenon in suspension

dynamics. This phenomenon can be caused by several factors, such as Van der

Waals colloidal attractive force, and magnetic dipole-dipole interactions [36]. In

the latter, as the particles are brought close together, the magnetic forces between

them may cause the particles to aggregate. Aggregation is usually an irreversible

process and can make the suspension unstable.

Early mathematical description of the kinetics of aggregation was given by

Smoluchowski [60], who provided an equation for the evolution of the number of
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aggregates of different sizes. While some studies on coagulation focus on Brownian

particles and diffusion limited aggregation, there are important studies on the

coagulation of non-Brownian particles [35]. In particular, the work of Cunha &

Couto [36] has investigated the aggregation of sedimenting non-Brownian magnetic

particles in polydisperse dilute suspensions.

In this dissertation, we examine the aggregation phenomenon induced by shear

flows in a dilute suspension of non-Brownian particles with dipole-dipole interac-

tions. We shall perform a calculation of the aggregation rate for this dilute solution

of magnetic particles interacting magnetically and hydrodynamically.

5.2 General remarks

In a particle suspension, as particles are brought close to each other, some

short-range interaction effects may cause these particles to aggregate. Figure 5.1

illustrates the formation of a doublet due to short-range interactions.

+ →

Figure 5.1: Schematic of a doublet structure formation by the aggregation of two
particles.

As a real suspension evolves in time, different structures of larger agglomer-

ates start to form due to interactions between other types of agglomerates. The

formation of large clusters can increase the sedimentation velocity of larger ag-

glomerates due to its dependence on the equivalent radius R of the agglomerate.

Namely, as illustrated in Figure 5.2, the ratio between the sedimentation velocity

UA of an agglomerate and the sedimentation velocity US of a single particle is

φa(R/a)2, where φa is the volume ratio of particles inside the agglomerate. Under

this condition, the suspension becomes unstable.
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Figure 5.2: Schematic illustration of the formation of aggregates as the suspension
evolves in time.

5.3 Rate of growth of an ith-type agglomerate

The rate of aggregation for a ith-type agglomerate is given by the rate at which

particles of k and ith-types aggregate to form a ith-type subtracted from the rate at

which i−type agglomerates aggregate with another particle forming another type

of aggregate. Mathematically, the expression for dNi/dt can be writen as:

dNi

dt
= A→i − Ai→ (5.1)

The rate A→i can be expressed as
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A→i =
N(N − 1)

2

i−1∑

k=1

Jk,i−kPkPi−k ≈
1

2

i−1∑

k=1

Jk,i−kNkNi−k, (5.2)

where Jij is the rate at which a ith-type agglomerate aggregates with a jth-type

agglomerate. The expression for Ai→ is given by

Ai→ = N(N − 1)
∞∑

k=1

JikPiPk ≈
∞∑

k=1

JikNiNk. (5.3)

Thus, the rate of change of i−type agglomerates is given by:

dNi

dt
=

1

2

i−1∑

k=1

Jk,i−kNkNi−k −
∞∑

k=1

JikNiNk. (5.4)

Equation (5.4) is known as Smoluchowski coagulation equation [60] and represents

the rate of increase of a kth-type agglomerate as a function of the number of

aggregates of other species and the rate of agglomerate formation between them.

5.4 Rate of formation of doublets due to the col-

lision of two particles

An expression for the aggregation rate J11 can be found in a straightfoward

way with some level of approximation. Let’s consider the problem of two particles:

a particle 1 initially at Y and a particle 2 initially at X. Considering the fact

that two particles aggregate as they collide in a certain region of aggregation, we

can write

J11 =
∂

∂t

∑

Ωagg

∑

Y

Pcol(X,Y ; t). (5.5)

Now, we use the same expression for the collisional probability, given by Pcol(X; t|Y ) =

P (X)|V 2 −V 1| t dΩ, where dΩ is an increment of the collisional area. Thus, the

aggregation rate J11 is given by:
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J11 = P (X)

∫

Ωagg

|V 2 − V 1|dΩ, (5.6)

where Ωagg is the aggregative region of the collisional area.

5.5 Shear-induced aggregation in magnetic sus-

pensions

Now we consider a homogeneous magnetic suspension of spherical non-Brownian

particles undergoing an external simple shear flow. The relative velocity between

the particles is given by γ̇yê1. In this case, for a suspension with a small number

of agglomerates, the doublet formation rate is given by:

dN2

dt
= n1N1γ̇

∫

Ωagg

|y−∞|dΩ. (5.7)

It should be important to note that equation (5.7) neglects agglomerate struc-

tures of order higher than two because these higher order structures have a very

lower probability to occur compared to the doublets and isolated particles. As

the suspension evolves and the number of higher order aggregates increases, this

expression is no longer valid.

Expanding the integral in expression (5.7), the rate of doublet formation is

given by:

dN2

dt
=
n1N1γ̇

16π2

∫

A−∞
dA−∞

∫

S2

dp̂1

∫

S2

dp̂2|y−∞|IΩagg , (5.8)

where S2 is the unity sphere and I is the indicator function given by:

IA(x) =

{
1 if x ∈ A
0 otherwise

(5.9)

Therefore, the integration performed on equation 5.8 is equivalent to integrating

over each aggregative region for all possible initial orientations. The integral can

be written in terms of nondimensional quantities as:
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dN2

dt
= n1N1γ̇a

3

[
1

16π2

∫

A−∞
dA−∞

∫

S2

dp̂1

∫

S2

dp̂2|y−∞|IΩagg

]
, (5.10)

or:

dN2

dt
≡ n1N1γ̇a

3J11, (5.11)

where J11 is given by the integral:

J11 =
1

16π2

∫

A−∞
dA−∞

∫

S2

dp̂1

∫

S2

dp̂2|y−∞|IΩagg . (5.12)

Writing the integral for J11 as an integral over the 6−dimensional space considering

a spherical coordinate parametrization for the initial orientations of the particles:

J11 =
1

16π2

∫

A−∞
dA−∞

∫ π

0

dθ1 sin θ1

∫ 2π

0

dϕ1

∫ π

0

dθ2 sin θ2

∫ 2π

0

dϕ2|y−∞|IΩagg .

(5.13)

Now, we can use the Monte-Carlo method in order to approximate the integral

for J11. This approximation can be written as:

J11 ≈
π2Ã−∞

4 N

∑

k

sin(θk1) sin(θk2)|y−∞k |IΩagg , (5.14)

where the variables labeled with k are randomly generated with an uniform dis-

tribution. The function IΩagg , which depends on the initial parameters of the

particles, has the value 1 for aggregative trajectories and 0 for non-aggregative

ones.

5.6 Scaling argument

We now use a simple scaling argument in order to predict the type of depen-

dence of J11 with respect to α. By equation 5.13, it is straightfoward to see that
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J11 is linear with the nondimensional area Ãagg, which is a “standard” nondimen-

sional aggregative area. This area depends on the characteristic length ` in a way

that

Aagg ∝ `2. (5.15)

The length scale ` is related to the strength of dipolar interactions between the

particles. In this context, we define ` as being the scale on which the hydrodynamic

forces balance the magnetic dipolar forces. When this balance occurs, we have

FH ∼ FM , where FH ∼ 6πµaU and FM ∼ 3µ0m2
0

4π`4
. Balancing both effects, we find `

to be given by:

` ∼ aα1/4. (5.16)

Therefore, we have:

J11 ∝ α1/2. (5.17)

Thus, this simple scaling argument suggests a square root dependence of J11

on α.

5.7 Numerical results

The numerical integration for J11 was performed numerically by using the

Monte-Carlo method for the distinct values of α. The simulations for each point

lasted for about 10 hours without parallelization and resulted in a relative numer-

ical variance of approximately 10−2.

We compare our numerical results with the predicted power law by fitting the

numerical values for the aggregation rate with a curve obeying the power-law. The

numerical results together with the power law curve are shown in Figure 5.3

By examining the graph in Figure 5.3, we can observe a good agreement be-

tween the numerical results and the scaling argument prediction. Comparing the
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Figure 5.3: The doublet formation rate parameter J11 as a function of the dipolar
interaction strength parameter α. The dots are the numerical results computed by
the Monte-Carlo integration, while the dashed line is the fit function Aα1/2, where
the parameter A = 2.43896 was obtained by a numerical fit.

obtained result with the results found by Cunha & Couto [36], we can perceive

substantial differences between the two results. Namely, the result found by Cunha

& Couto does not appear to obey a simple power law, as predicted by the present

work. This disagreement might be due to different factors, such as the presence

of a short-range electrostatic repulsive force, avoiding particle aggregation, or the

consideration of polydispersity.
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CHAPTER 6

ROTATIONAL DYNAMICS AND
MAGNETIZATION

In previous chapters, we have obtained
numerical values for the shear-induced
hydrodynamic diffusivity and aggregation
rate of dilute magnetic suspensions. In
this chapter, we investigate the magne-
tization of a sheared suspension of non-
Brownian magnetic particles. First, we
analyze the problem of a single isolated
particle at low Reynolds number. With
this problem, we are able to extract some
information concerning non-equilibrium
effects, due to the presence of the shear
flow and an external magnetic field, on
the magnetization of very dilute suspen-
sions at high Péclet number, including
properties such as the spinning behavior
of the particles for high values of γ̇. In
the last part of this chapter, we perform
a simple non-renormalized cluster expan-
sion in order to obtain a second-order
contribution for the magnetization using
the dynamical simulation of two magnetic
particles in creeping flow.
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6.1 Single particle dynamics and the first order

magnetization

In this chapter, we discuss the magnetization of a magnetic suspension of non-

Brownian particles undergoing a simple shear flow with a uniform external mag-

netic field. Although simple, the problem of a single particle shall give some

insight on the physical mechanisms of the problem for understanding the particle

interaction with the flow and an external magnetic field.

Let’s consider a very dilute suspension of spherical magnetic particles under-

going a simple shear flow and subjected to an applied external magnetic field H

as sketched in figure 6.1. In the case on which the particles are separated far away

from each other, the dynamics of each particle can be modeled as a single particle

problem.

H

Figure 6.1: Sketch of the problem. A very dilute magnetic suspension undergoing
an external simple shear flow with an external uniform magnetic field in the y
direction.

The nondimensional equation for the rotational velocity of a single spherical

magnetic particle moving in creeping flow free of inertia is given by (2.73). Namely,

ω = Ω + TM , (6.1)

where TM is the nondimensional magnetic torque exerted on the particle. The

expression for this torque is given in a similar way as (2.97) by:
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TM =
µ0m0H

8πµγ̇a3
p̂ ∧ ĥ, (6.2)

where ĥ = H/H is the direction of the uniform magnetic field H . In this context,

we introduce the nondimensional parameter β defined as:

β ≡ µ0m0H

8πµγ̇a3
. (6.3)

This parameter represents a ratio between the intensities of the external magnetic

torque and the hydrodynamic torque. This parameter can also be interpreted as

being a nondimensional magnetic field intensity. Thus, the equation for ω takes

the form

ω = Ω + β p̂ ∧ ĥ. (6.4)

With the angular velocity in hands, we can write the equation for the evolution of

the position unit vector p̂ as:

dp̂

dt
= ω ∧ p̂ = Ω ∧ p̂+ β ĥ− β (p̂ · ĥ)p̂, (6.5)

or in component form:

dp1

dt
= Ω2p3 − Ω3p2 − βp1(p̂ · ĥ) + β h1 (6.6)

dp2

dt
= Ω3p1 − Ω1p3 − βp2(p̂ · ĥ) + β h2 (6.7)

dp3

dt
= Ω1p2 − Ω2p1 − βp3(p̂ · ĥ) + β h3. (6.8)

Thus, we have a system of equations which governs the rotational motion of a

single magnetic rigid sphere in creeping flow in the presence of a uniform magnetic

field. It is easy to verify that the system in question has the property of preserving

the norm of the vector |p̂| (which is equal to the unity in the context). There-

fore, the manifold S2 together with the family of solutions for (6.6) constitute a

dynamical system on the surface S2.
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Now, we focus on the problem where the external flow is a simple shear flow in

the plane xy. We also consider the magnetic field to be a uniform field pointing in

the y direction. In this case, we have Ω = −1
2
e3 and ĥ = ê2, the set of equations

take the form of:

dp1

dt
=

1

2
p2 − βp1p2 (6.9)

dp2

dt
= −1

2
p1 − β(p2)2 + β (6.10)

dp3

dt
= −βp3p2. (6.11)

This set of equations governs the evolution of the magnetic dipole orientation.

6.1.1 Stability analysis

We now investigate the fixed points of the dynamical system. In order to

determine whether these fixed points are stable or unstable, we need to perform a

stability analysis of the system.

The surface S2 is an integral surface of the system of equations in (6.9). This

set of differential equations, together with the restriction |p̂| = 1, describes a vector

field f : S2 → TS2, where TS2 is the tangent bundle of S2.

In order to perform the stability analysis, we shall work in the coordinate

charts. Thus, we parametrize the surface in spherical coordinates as follows:

p1 = cosϕ sin θ (6.12)

p2 = sinϕ sin θ (6.13)

p3 = cos θ (6.14)

with θ ∈ (0, π) and ϕ assuming different intervals with length 2π for the different

patches. These parametrizations constitute a set of charts contained in an atlas

for the surface S2. It is important to note that these charts do not include the two
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poles related to θ ∈ {0, π}. Using the fact that dp̂/dt = θ̇eθ + sin θϕ̇eϕ, we can

write the set of differential equations in terms of the spherical coordinates as:




θ̇ = β cos θ sinϕ

ϕ̇ = −1

2
+ β

cosϕ

sin θ

(6.15)

With this set of equations, we can perform the stability analysis of the system

on the coordinate chart description. First, we have to identify the fixed points of

the system. For the system in question, it is clear that for β > 1/2 we have two

fixed points given by θ = π/2 and ϕ = ± arccos 1
2β

. Similarly, for β < 1/2, we

have two fixed points given by φ = 0 and the two points where sin θ = 2β.

The Jacobian matrix of the system is given by:

J =



−β sin θ sinϕ β cos θ cosϕ

−β cosϕ cos θ

sin2 θ
−β sinϕ

sin θ


 (6.16)

Thus, for the case in which β > 1/2, we have all the eigenvalues given by the same

value. Namely,

λ = −β sinϕ. (6.17)

Thus, we have the folowing classification for the critical points for the different

possible values of sinϕ:

sinϕ = +

√
1−

(
1

2β

)2

(stable) (6.18)

and sinϕ = −
√

1−
(

1

2β

)2

(unstable). (6.19)

This result is easily seen in the plot of the vector field over S2, as shown in figure

6.2. A physical interpretation of the result is that any possible initial configuration
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for the direction (except from the point of unstable equilibrium, which has measure

zero) will eventually end at the stable orientation.
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Figure 6.2: Representation of the vector field corresponding to the set of equations
(6.9) on the imbedding of the unitary sphere S2 in R3 for β = 1.0.

For values of β < 1/2, the equilibrium configuration of the system changes

drastically. In this regime, the eigenvalues are given by:

λ = ±i β

| tan θ| (neutral) (6.20)

For these values of β, the rotation induced by the fluid flow on the particle causes

the particle to rotate around two possible axis.

Therefore, we can observe three main types of behavior for the system, illus-

trated by Figures 6.2, 6.3, and 6.4. These different behaviors are related to distinct

values of the parameter β. In Figure 6.2, for β > 1/2, the system has a pair of
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Figure 6.3: Representation of the vector field corresponding to the set of equations
(6.9) on the imbedding of the unitary sphere S2 in R3 for β = 0.5.

fixed points: a stable one and an unstable one. In this case, the effect of the ex-

ternal magnetic field surpasses the effect of the flow. As the value of β decreases,

in the case of β = 1/2, as shown in Figure 6.3, we have a dipole behavior on the

vector field, indicating the existence of a bifurcation on the system. At last, for

values of β < 1/2, as shown in Figure 6.4, we have a vector field which indicates

the existence of periodic orientational orbits. In fact, in the subsection 6.1.2, we

prove this last statement by obtaining analytical expressions for the orbits of the

system.
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Figure 6.4: Representation of the vector field corresponding to the set of equations
(6.9) on the imbedding of the unitary sphere S2 in R3 for β = 0.25.

6.1.2 Analytical solution for the orbits

Although the set of differential equations governing the rotational dynamics

of a magnetic particle in simple shear flow is non-linear, it is possible to find an

analytic expression for the orbits of this system.

Combining both equations of the system in (6.15), we find a differential equa-

tion for ϕ as a function of θ. Namely,

sinϕ
dϕ

dθ
= − 1

2β cos θ
+

cosϕ

sin θ cos θ
. (6.21)

Introducing the new variable a = − cosϕ, the differential equation for a in terms

of θ is given by
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da

dθ
+

2a

sin 2θ
= − 1

2β cos θ
, (6.22)

which is a linear ordinary differential equation and can be solved by introducing

an interating factor µ(θ) = csc 2θ − cot 2θ, which yields

a = − 1

csc 2θ − cot 2θ

∫
dθ

2β

sin θ

cos2 θ
. (6.23)

Thus, by substituting the expression for a = − cosϕ and making some simple

algebraic manipulations, one finds that

cosϕ =
1

2β

1

sin θ
+

A

tan θ
, (6.24)

where A is an integration constant. Thus, we have found an exact analytical

implicit expression for the orbits of the system.

Now, with this expression, we can plot the orbits of the system in order to

capture and explore the dynamical behavior of the system for different values of

the nondimensional magnetic field β. Figure 6.5 shows distinct configurations of

the orbits of the system for different values of β. The results shown in Figure 6.5

are in close agreement with the behavior of the vector fields observed in Figures 6.2,

6.3, and 6.4, including the transition at β = 0.5. For values of β < 1/2, we can see

that the orientational orbits are indeed closed and cyclic. As β = 1.0, in Figure 6.5

(a), the effects of the magnetic field dominate over the vorticity rotational effect,

thus creating a stable fixed point in the system. As β = 0.5, in Figure 6.5 (b),

both effects of shear vorticity and the external magnetic field balance each other.

As β < 0.25, as shown in Figure 6.5 (c), the vorticity effect dominates the particle

orientation. This dominance causes the arising of cyclic orbits.
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Figure 6.5: Orbits of the system in coordinate charts for different values of the
nondimensional magnetic field β.
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6.1.3 Magnetization

By examining the dynamical problem of a single particle, we can predict the

magnetization of a very dilute non-Brownian suspension in the context with no

interaction between the particles.

In chapter 2, the magnetization field was defined as being the spatial distri-

bution of dipole moments. In the case of point dipoles, this distribution is a

combination of Dirac’s delta generalized functions. In our context, the property

of interest is the averaged magnetization field.

For simplicity, we start by defining the average magnetization by a “volume

average” approach. Using a similar argument to the one on chapter 2, which was

used to introduce the notion of the continuum hypothesis, we define a small region

δVx at the neighborhood of the point x which contains a sufficiently large number

of magnetic particles. Thus, we define the average magnetization at a point x as

being:

M (x) =
1

V (δVx)

∫

δVx

N∑

k=1

mkδ(y − xk)dy =
1

V (δVx)

Nx∑

k=1

mk, (6.25)

where Nx is the number of particles contained in the region δVx. Alternativelly,

we can write the equation for M as

M(x) = n(x)m̄x, (6.26)

where

m̄x =
1

Nx

Nx∑

k=1

mk (6.27)

is the mean value of the dipole moment of the particles in the region δVx.

Now we go back to our problem where particles in suspension do not interact

with each other. In the case of very dilute suspensions, as illustrated in Figure 6.6,
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the dynamics of each particle is independent of the others, due to the negligibility

of their interactions. This independence enables us to treat each particle as an

isolated particle suspended in a fluid undergoing a shear flow in the presence of an

external magnetic field.

Figure 6.6: Illustration of a very dilute suspension (i.e. φ � 1), where particle-
particle interactions are neglected due to the fact that the particles are separated
far apart from each other.

However, by the previous examination of the problem of a single particle, for

β > 1/2, every trajectory starting from an initial orientation distinct from the

unstable equilibrium point will end up at the stable equilibrium point. Thus, for

the case of non-interacting particles, for values of β superior to 1/2, the steady-

state magnetization is known and is given by:

M = nm0


 1

2β
ê1 +

√
1−

(
1

2β

)2

ê2


+O(φ2, α) (6.28)

This result shown in equation (6.28) is the leading order for the magnetization

of the proposed problem of a very dilute suspension. As expected, at regimes of

103



strong fields (β � 1), the magnetization in the y−direction goes to Ms = nm0,

which indicates the alignment of all particles on the suspension with the magnetic

field. This saturation of the magnetization in the y−direction is shown in Figure

6.7.

β

M
y
/
(n
m

0
)

32.521.510.5

1.2

1

0.8

0.6

0.4

0.2

0

Figure 6.7: Saturation of the magnetization in the y−direction as a function of
the field parameter β.

Thus, for values of β greater than 1/2, we can see a behavior of the magnetiza-

tion in the y−directionMy in very dilute suspensions in the form ofMy = MsF (β),

with F (β) =
√

1− (2β)−2. There is a clear parallel between this form of the deter-

ministic expression for the magnetization out of equilibrium for high Péclet num-

bers and classical equilibrium expressions such as Langevin’s. Namely, Langevin’s

equation for a superparamagnetic material reads My = MsL
(
µ0m0H
KBT

)
, where

L (x) = coth(x)− 1
x

is the Langevin function.

It should be important to notice that the vorticity effect due to the external

simple shear flow results in a non-zero magnetization in the x−direction. As we

should discuss later, the component Mx of the magnetization is closely related to
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the rotational viscosity effect.

6.1.4 Precession and Shliomis’ equation

When studying the dynamics of a ferrofluid or another suspension of magnetic

particles, the magnetization arrises naturally in the equations of motion [7, 11, 10].

Thus, a macroscopic equation for the evolution of this magnetization is needed in

order to close the problem.

There are many equations describing the evolution of the magnetization field

for ferrofluids. For the case of very diluted ferrofluids, Shliomis derived one of the

first equations in [11].

∂M

∂t
+ u · ∇M =

1

2
ξ ×M +

1

8πµa3n
(M ×H)×M −M −M 0

τ
(6.29)

The derivation of this equation comes straight from differentiating and averag-

ing the magnetization field, considering very dilute suspensions (without particle

interactions), incompressible flow and making some considerations about the re-

laxation term, by using arguments from non-equilibrium thermodynamics.

Now, in order to write equation (6.29) in a nondimensional form, we have

||M || ∼ Ms, ||H|| ∼ H, ||u|| ∼ γ̇a, t ∼ γ̇−1 and ||x|| ∼ a. Therefore, in terms of

nondimensional variables, we have:

∂M

∂t
+ u · ∇M =

1

2
ξ ×M + β (M ×H)×M −M −M 0

Pe
, (6.30)

where Pe = τ γ̇. For suspensions without magnetic relexation (i.e. Pe→∞) and

considering spacial homogeneity, Shliomis’ equation yields the same structure of

equation (6.5). Namely:

∂M

∂t
=

1

2
ξ ×M + β (M ×H)×M . (6.31)
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For the case of a uniform external magnetic field, equation (6.31) is just the

average of (6.5) for a very dilute suspension (neglecting dipole correlations). In

fact, in this context we have H = ĥ and M = 〈p̂〉. Thus, the steady solutions

and stability analysis for equation (6.5) also yield some information concerning

Shliomis’ equation for a uniform magnetic field without relaxation.

By our analysis, in the regime of Pe → ∞, for β < 1/2, the problem of

Shliomis’ equation becames highly three-dimensional, as the orbits of the particles

are mostly out of the xy plane. Therefore, we argue that there is an intrinsic

three-dimensionality in the shliomis equation for high Péclet numbers, due to the

asymmetry of the center of the periodic orientation orbits in the x direction.

6.2 Extracting the second order of the magne-

tization from two-particle numerical simula-

tions

In the last section, we have obtained an analytical expression for the first order

of the stationary non-equilibrium magnetization field in the context of high Péclet

numbers through simple arguments over the problem of an isolated spherical rigid

particle undergoing a simple shear flow in the presence of an external magnetic

field. Now, we shall explore the effect of hydrodynamic and dipolar particle-particle

interactions on the steady-state magnetization.

For this purpose, we shall expand our previous arguments developed in subsec-

tion 6.1.3 in order to propose a numerical method to calculate the order O(λ, φ2)

of the magnetization by using the two-particle dynamics.

6.2.1 Cluster expansion for magnetization

In order to find an expression for the macroscopic magnetization field M , we

shall start from a microscopic point of view. As before, we consider the fixed

magnetic dipole of a particle to be located at the center of the particle. It should
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be important to note that although the dipole is a singularity, the particles have a

finite radius. The microscopic magnetization field for a classical system of dipoles

is given by:

M (x0, p̂0, . . .xN , p̂N ;x) =
N∑

k=0

m0p̂kδ(x− xk). (6.32)

In this problem, all the particles have the same size, same dipole moment intensity

and are, in a classical sense, identical, so that the probability distribution is not

affected by a change of the particle labels. Thus, the average magnetization is

given by:

〈M〉 (x) = n(x)

∫
m0p̂0P (p̂0,CN |x)dp̂0 dCN , (6.33)

where P (p̂0,CN |x) is the conditional probability distribution of the reference par-

ticle having orientation p̂0 and the other dipoles having configuration CN given

that the reference particle is centered at x. Now, we wish to break the complex

problem of averaging over the configuration of many particles in multiple simpler

problems involving fewer particles. Performing a cluster expansion on p̂0, we find:

p̂0 = d0 +
N∑

i

d1
i +

N∑

i<j=1

d2
ij + . . . (6.34)

where the term d0 represents the contribution of the dynamics of an isolated

particle, the terms d1 represent the contribution due to the interactions between

two particles, and so on. Therefore, the average magnetization takes the form of1:

〈M〉 (x) = n(x)m0

〈
d0
〉

+ n(x)2m0

∫
d1

1g(p̂0, p̂1, r)dp̂0 dp̂1 dr + . . . (6.35)

where g(p̂0, p̂1, r) = P (p̂0,x1, p̂1|x)/P (x) is the normalized conditional probabil-

ity distribution related to the two-particle problem. This function goes to 1 as

1At this point, it should be important to note that we had performed a slight change of
notation in comparison to Chapter 3. Namely, we have re-labeled our reference particle 0 and
the test particle (which collides with the reference particle) 1. Hence, the orientations p̂0 and p̂1
are related, respectively, to the reference and test particles
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r = x1−x goes to infinity. Looking at equation (6.35), we see that the calculation

of a order n2 of the magnetization consists in the computation of the integral in

equation (6.35), which is related to the two-particle trajectory problem. Truncat-

ing the cluster expansion in equation (6.34) at first and second orders, we find,

respectively:

d0 = p̂
(1)
0 , (6.36)

d1
1 = p̂

(2)
0 − p̂(1)

0 . (6.37)

The general expression for a higher order of the expansion is well known and

can be found with a high level of details in works such as [8]. In the present context,

it is not necessary to present such generalization. It should be important to note

that d1
1 vanishes as r →∞. Nevertheless, one has to be careful when dealing with

those integrals, as the magnetic torques are of order r−3, which indicates long-

range interactions, sometimes leading to non-converging integrals which require a

renormalization procedure.

6.2.2 Probability distribution

The general probability distribution P (X, t) satisfies the equation of continuity

already presented in Chapter 2. This equation can also be written in the form of:

∂P

∂t
= L P, (6.38)

where L = − ∂
∂X
· (V (∗)) is a linear time-independent operator and V = dX

dt
is

the “velocity” of the random variable X. In our problem, there is no random or

stochastic contributions in this velocity term. The formal solution for this equation

is, thus:

P (X, t) = etLP (X, 0), (6.39)
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where P (X, 0) is a given initial probability distribution. An important property

of this operator L is that it is the adjoint of the operator L † = V · ∂
∂X

. This

operator appears in the evolution of a function of the variable X:

f(X, t) ≡ f(X t) = etL
†
f(X) (6.40)

This expression means that we can compute the averages of a random variable

f(X) at a given time t by evolving the variable X using the dynamics of the

system and taking the average over the initial probability distribution instead of

finding an expression for the time-dependent probability distribution. Namely,

〈f ; t〉 =

∫
f(X)P (X, t)dX =

∫
f(X t)P (X, 0)dX. (6.41)

This result can be found in classical textbooks such as [50] and it is very important

to the numerical procedure, as it shows that once solved the dynamical problem,

there is no need to solve the evolution of the probability distribution in order to

perform the averages involving functions of the dynamical variables.

6.2.3 Numerical procedure

As it was seen in subsection 6.2.1, the second order of the magnetization would

depend, theoretically, on the dynamical problem of two particles interacting in an

infinite space. However, for our numerical computation, we make some changes to

the problem in order to avoid dealing with infinite spaces and probably divergent

integrals, which would force us to adopt a renormalization procedure, such as the

one presented in [61].

The first modification to the problem is to change the infinite space to a space

with bounded x length by imposing periodic conditions in the x direction. Then,

we shall introduce cutoff distances in y and z in which the integrand is very small,

meaning that beyond this region, the effects of interaction between the particles

are negligible. Figure 6.8 illustrates the topology of the modified problem of two
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particles2.

Figure 6.8: Modification on the topology of the problem of two particles

Now, we proceed to the explicit computation of the second order magnetization.

Writing the expression for the magnetization on the following form:

〈M〉 (x) = nM 1 + n2M 2 +O(n3), (6.42)

we can indentify the term M 2 on equation (6.35) as being:

M 2 = lim
t→∞

m0

∫ [
p̂

(2)
0 − p̂(1)

0

]
g(r, p̂

(2)
0 , p̂

(2)
1 ; t)dr dp̂

(2)
0 dp̂

(2)
1 , (6.43)

where the term p̂
(1)
0 comes from the single particle problem and the limit t→∞ is

taken because we are interested in the steady state of magnetization at high Péclet

numbers. Given that the expression for the distribution function g is unknown, we

make use of equation (6.41) to transfer the time-dependence from the probability

distribution to the dynamical variables. Thus, one can choose an initial uniform

distribution:

g(r, p̂
(2)
0 , p̂

(2)
1 ; 0)dr dp̂

(2)
0 dp̂

(2)
1 =

1

(4π)2
IΩdisp

sin(θ0) sin(θ1)dV dθ0 dϕ0 dθ1 dϕ1.

(6.44)

2We also define the distance between the particles to be the minimal distance, avoiding
problems in the computation of forces and torques.

110



The choice for this uniform initial distribution is related to the fact that the

integration domain is invariant to the transformations of the dynamical system.

We expect that the chosen initial distribution converges to the steady-state solution

at large times.

For the numerical evaluation of the integral, we use the Monte-Carlo integration

method. Thus, the approximate expression for the integal is given by:

M 2 ≈
m0Vsimπ

2

4N

N∑

k=1

[
p̂

(2)
0 (T )− p̂(1)

0 (T )
]

sin(θk0(T )) sin(θk1(T ))IΩdisp
, (6.45)

where Vsim is the volume of integration and T is a time large enough for the average

to converge to the steady state. This expression shares a lot of similarities with

the ones used to compute the diffusivities and doublet formation rate described

in Chapters 4 and 5, respectively. Now, as we only deal with nondimensional

quantities, we define a nondimensional magnetization:

M → m0

a3
M , (6.46)

where a os the radius of a single particle in the monodisperse suspension. Thus,

equation (6.42) transforms into:

M = φM 1(β) + φ2M 2(α, β) +O(φ3), (6.47)

with

M 2 ≈
9

64

Ṽsim
N

N∑

k=1

[
p̂

(2)
0 (T )− p̂(1)

0 (T )
]

sin(θk0(T )) sin(θk1(T ))IΩdisp
, (6.48)

With this expression, we are able to perform a numerical computation for the

second order M 2 of the magnetization.
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6.2.4 Numerical results

The numerical computation for the second order magnetization has been per-

formed for eight different values of α ranging from 0.05 to 0.4 and a fixed value for

β = 1. This value for β was chosen simply due to the fact that it is greater than

1/2, as discussed before.

For the Monte-Carlo integration, we used 1×106 points, obtaining an estimate

for the intrinscic error at order 1%. Figures 6.9 and 6.10 show the values obtained

by the Monte-Carlo integration for different times and α = 0.15, indicating the

convergence to a steady state, considering the estimated error for the Monte-

Carlo integration. In these figures, we can see a convergence of M2x and M2y for

t ∼ 300 tflow, with tflow = γ̇−1.

The time range for simulation was set from t = 0 to t = 500. As we used

β = 1, the time scale related to magnetic relaxation is at the same order of the

characteristic time γ̇−1. For this reason, we consider t = 500 to be a time large

enough in order to obtain a steady-state for the magnetization. Indeed, for values

of α less than 0.35, we obtained a behavior good enough to be considered a steady

state, such as the ones showed in Figures 6.9 and 6.10.

Considering that the magnetization has reached a steady state, we can plot

the second order magnetization for different values of α by taking the average of

the values that we considered to be inside the steady state, with an associated

error given by the standard deviation. This result allows us to better understand

how the hydrodynamic and magnetic interactions influence the magnetization for

dilute non-Brownian magnetic suspensions. The results of the simulations for the

x and y components of the second order magnetization are shown respectively by

Figures 6.11 and 6.12 at t = 300 for different values of α.

For small values of α, we were able to fit a straight line on the data, indicating

the existence of an expression for the magnetization of the form
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Figure 6.9: Nondimensional magnetization M2x as a function of the nondimen-
sional time for t ∈ [0, 300], β = 1.0 and α = 0.15. The errorbars indicate the
intrinsic error estimated for the Monte-Carlo method. The dashed line indicates
the average value which we consider to be the steady state.

Mx = M1xφ+M21xφ
2 +M22xα φ2 +O(α2, φ3) (6.49)

and My = M1yφ+M21yφ
2 +M22yα φ2 +O(α2, φ3), (6.50)

where M1x and M1y are determined by our first order analysis, from equation

(6.28). In the case where β = 1, M21x, M22x, M21y, and M22y are found by the

linear fitting of the results shown in Figures 6.11 and 6.12. Namely, for β = 1, we

have:

Mx ≈ 0.11936φ− 17.0701 φ2 + 5.12544 α φ2 +O(α2, φ3) (6.51)

and My ≈ 0.20674φ+ 6.75379 φ2 − 2.06662 α φ2 +O(α2, φ3) (6.52)
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Figure 6.10: Nondimensional magnetization M2y as a function of the nondimen-
sional time for t ∈ [0, 300], β = 1.0 and α = 0.15. The errorbars indicate the
intrinsic error estimated for the Monte-Carlo method. The dashed line indicates
the average value which we consider to be the steady state.

By performing a simple asymptotic expansion, it is easy to see that for very

small values of the volume fraction φ, the y component of the magnetization is

much larger than the x component in the case of β = 1. Namely, we have My/Mx ∼
1.7320 + 304.2930 φ.

An interesting finding to emphasize is that the numerical results indicate the

existence of a second-order contribution to the magnetization due to hydrodynamic

interactions even in the absence of dipolar interactions between the particles. This

contribution acts increasing the magnetization in the field direction. The fact

that the hydrodynamic interactions help to increase the alignment of the particles

with the field is probably due to hydrodynamic reflections of the magnetic torque

induced by the field on a single particle. In fact, the hydrodynamic interactions

between the particles produce a randomization effect on the suspension. In the
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Figure 6.11: Simulation results of M2x as a function of the dipolar interaction
parameter α for β = 1. The insert shows a linear fit for small values of α.

absence of dipolar interactions between the particles, this effect tends to break the

anisotropy due to shear vorticity, causing the particles to align with the field and,

thus, increasing the magnetization component My. It should be interesting to note

that this result contrasts with the first-order hydrodynamic contribution. Namely,

while the shear viscosity effect tends to break the alignment of the particle with

the magnetic field, hydrodynamic interactions increases this alignment.

In contrast, dipolar interactions increase the correlation between the orienta-

tion of the particles. The higher correlation of particle orientation decreases the

randomization contribution of the hydrodynamic interactions. In real suspensions,

the dipolar interactions produce an irreversible effect which can cause the forma-

tion of clusters of particles. For high Péclet numbers and β ∼ 1, these particle

clusters try to align with the flow direction, thus decreasing the y component

of magnetization. This alignment may influence the rheology of the suspension,

giving rise to effects such as normal stress differences.

Both of the discussed behaviors can be seen in Figure 6.13, which shows the
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Figure 6.12: Simulation results of M2y as a function of the dipolar interaction
parameter α for β = 1. The insert shows a linear fit for small values of α.

y component of the nondimensional magnetization as a function of the volume

fraction φ for different values of alpha. In fact, the increase of the parameter alpha

results in a decrease the y component of the magnetization. For small values of the

volume fraction φ, it is hard to distinguish between the values of magnetization for

different values of α, as seen in the insert of Figure 6.13. In this context of small

concentrations the particles are distanced far apart from each other, thus the effect

of hydrodynamic interaction O(r−2) dominates over the dipole interaction effects

O(r−3). For higher values of volume fraction, the effect of dipole interaction starts

to appear more strongly.
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Figure 6.13: y component of the nondimensional magnetization as a function of
the volume fraction φ for different values of α.

6.3 A brief discussion on the rotational viscosity

With the calculations presented in the present chapter, we can also obtain

some results concerning the rotational viscosity of the suspension associated with

the magnetic torque and consequently non-symmetric effects on the fluid (i.e.

magnetoviscous effect) in the context of suspensions at high Péclet numbers. In

simple shear, for a uniform external magnetic field in the y direction, we have by

definition:

ηr = µ0
MxH

2γ̇
. (6.53)

Alternatively, in terms of the previously defined nondimensional quantities, we

have:
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ηr
µ

= 4πβMx. (6.54)

Therefore, by equation (6.28), we have the first order of rotational magnetiza-

tion given by ηr/µ = 3φ/2. It should be important to note that the leading order

of the rotational viscosity at a regime of high Péclet numbers in the presence of

a uniform magnetic field does not depend on the intensity of the field itself. This

result can be seen as an asymptotic limit of Shliomis’ expression [11] at the limit

of low temperatures. At second order, our numerical simulation results suggest

that the isolated effect of hydrodynamic interactions between particles may result

in a decrease on the rotational viscosity while the dipolar interactions between the

particles may increase the magnetoviscous effect.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Begin at the beginning, the King
said gravely, “and go on till you
come to the end: then stop.”

Lewis Carroll, Alice in
Wonderland

In this dissertation, we have explored the dynamics of a pair of magnetic par-

ticles undergoing a simple shear flow at low Reynolds numbers and high Péclet

numbers. By the use of numerical simulations, we were able to analyze the dynam-

ics of closed and open relative trajectories. We have also examined the interplay

between these trajectories. In fact, by examining the plots of two-dimensional sec-

tions of the aggregative region, which is a subset of the 7−dimensional dynamical

space, we were able to observe the complex behavior at the interface between the

aggregative and dispersive regions.

By using the results of the dynamical simulation of two rigid magnetic spheres

undergoing a simple shear flow, we were able to obtain values for transport prop-

erties of dilute magnetic suspensions, such as the shear-induced hydrodynamic
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diffusivity and doublet formation rate. Also, we were able to obtain an exact

expression for the first order magnetization for non-Brownian suspensions out of

equilibrium undergoing a simple shear flow in the presence of a uniform external

magnetic field. A numerical prediction for the second order of magnetization was

also found by the use of the two-particle dynamical simulation developed in this

work.

In the next sections of this chapter, we outline the main results of this work,

highlighting the more interesting points.

7.1 Two-particle dynamics

In the investigation of the dynamics of two particles, we have found an unusual

behavior on the relative trajectories of particles. Namely, some simulations yielded

trajectories in which the test particle looped around the center a number of times.

Some of these trajectories resulted in particles crossing the end plane with negative

y−positions.

We analyzed the symmetry breaking of the problem through scatter sections,

which represents the end positions of a uniform beam of particles after colliding

with the reference particle at the origin. In addition, we also investigated the

aggregative region of collisions in the starting plane for a given initial pair of

orientations.

The results of the simulation indicate that the aggregative region (i.e. the

starting points of closed trajectories) gets bigger with the increase of the attraction

parameter α. The boundary region between the aggregative region and the region

of open trajectories was found to be very irregular and appears to show some

self-similar structures at the interface with the dispersive region.
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7.2 Hydrodynamic diffusion and aggregation

Based on particle trajectory analysis we have computed self-diffusivities and

the rate of particle aggregation for a dilute magnetic suspension with particles

interacting hydrodynamically and magnetically. These macroscopic quantities are

displayed as functions of the strength of the dipole-dipole magnetic interaction,

which measures the relative importance between magnetic particle interaction in

comparison with viscous effects in the suspension, including hydrodynamic inter-

actions.

The self-diffusivities and the rate of particle aggregation were found to be

increasing functions of the magnetic parameter α. By comparing the O(φ) of

the self-diffusivity of magnetic particles for small values of α with those of non-

magnetic rough particles [16] for small values of roughness ε, we have seen that the

values for the self-diffusivities are slightly greater for the case of rough particles.

For instance, taking a value of roughness ε = 4 × 10−2, the dimensionless O(φ)

self-diffusivity is calculated as being approximately 0.015, while for the same value

of α, the self-diffusivity is given approximately by 0.008. The value of α which

gives the same value for the self-diffusivity as ε = 4 × 10−2 is α ≈ 9 × 10−2. In

the asymptotic limit for small α we determined that: DSyy = γ̇a2φfyy(α), with

fyy(α) ≈ 0.1564 α0.5467
(

5
4

log(1/α) + 1.347
)−0.7012

, according to a theoretical pre-

diction for a arbitrary small parameter breaking time-reversibility of particle tra-

jectories [16]. In addition, the rate of doublet formation is predicted as being

dN2/dt = n1N1γ̇a
3J11, with J11 ≈ 2.4389 α1/2.

In addition, some problems arose when trying to compute the down-gradient

diffusivity numerically. The computation yielded negative values for the compo-

nents of the diffusivity tensor, due to the magnetic attraction between the particles,

even after excluding aggregative trajectories. Unlike the case investigated in the

paper of [16], in which the flux contribution for the down-gradient diffusivity lead

to an increase of the self-diffusivity, the flux terms numerically computed in our

case were all negative and sometimes larger, in module, then the self-diffusion con-

tribution. With the results from the numerical integration, we observed that the
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order O(φ) of shear-induced diffusion in the directions of higher aggregation can

be dominated by the attraction between the particles even for small values of α.

7.3 Magnetization

In addition to the investigation of self-diffusivity and doublet formation rate, we

also explored in this work the magnetization of non-Brownian solutions in a non-

equilibrium regime. By investigating the problem of an isolated particle on shear

flow, we were able to extract the first-order approximation for the magnetization

of non-Brownian suspensions. In contrast with the problem for low or moderate

Péclet numbers, the first order of the magnetization investigated here is completely

deterministic, as the dynamics of the particles have a stable equilibrium point for

values of β > 1/2. We were also able to determine analytic expressions for the

orbits of the problem and to characterize the different behaviors for distinct values

of the parameter β, which is related to the intensity of the field.

Moreover, we have used a non-renormalized cluster expansion, coupled with

our numerical dynamical simulation of two particles, in order to find a numerical

value for a second order of the magnetization. Our simulations have shown that

the hydrodynamic interaction between the particles has significant contributions

at second order. This result is intriguing, as it shows that even in the absence of

dipolar interaction effects (i.e. α→ 0), the hydrodynamic interaction between the

particles alone can influence the second-order of magnetization.

7.4 Future work

The dynamical problem of two particles is a powerful tool for investigating

physical properties of very dilute suspensions which depend on particle interaction.

For future work, we suggest the implementation of polydispersity in the model,

which is a significant parameter in real suspensions. With the implementation

of polydispersity and the formulation presented in this work, one could obtain
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the results for hydrodynamic diffusivity and doublet formation rate in the case

of sedimentation considering the effects of particle rotation and averaging over all

possible initial orientations. We should also explore the effect of a magnetic field

over the doublet formation rate. We speculate that an increase in the magnetic

field intensity should also increase the aggregation rate.

Other suggestions for future work include a different compactification for space

of the dynamical system in order to compute the magnetization, comparing the re-

sults with the ones obtained in this work, and the implementation of the numerical

computation of the second order of particle stress, in order to extract the effective

viscosity of the suspension at order O(φ2). With this approach, we should be able

to explore the rheology associated with the normal stress differences N1 and N2.

With the present code, we can also obtain results for different kinds of external

flow, such as oscillatory shear and step-strain, as well as implement a repulsion

force (which physically would correspond to the introduction of a surfactant coat-

ing of the particle), in order to prevent the particles from aggregate. We speculate

that this interaction should avoid (or at least, reduce) the negative values in the

computation of the flux term of down-gradient diffusivity.
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I. LAW OF LARGE NUMBERS

In this appendix, we present a brief discussion on the law of large numbers.

This law is the principle behind the Monte-Carlo integration, used extensevely

in this work. For this purpose, first we present a derivation of the Chebychev’s

inequality and then use this inequality to derive the week law of large numbers.

I.1 Chebychev’s inequality

Chebychev’s inequality is an important relation which appears frequently in

the context of functional analysis, measure theory and probability theory. In the

context of probability theory, this inequality is closely related to the definition of

statistical variance.

Considering a measureble set Ω and a function ϕ : Ω→ R with ϕ(x) ≥ 0 ∀x ∈
Ω. For a given constant α ≥ 0, we define a set A with all the points x ∈ Ω in

which ϕ(x) > a. Namely:

A = {x ∈ Ω | ϕ(x) > α}. (I.1)

By integrating the function ϕ(x) over the domain Ω, we find:

∫

Ω

ϕdµ =

∫

A

ϕdµ+

∫

Ω\A
ϕdµ ≥

∫

A

ϕdµ ≥ αµ(A) (I.2)

Therefore, we have the following inequality:

µ({x ∈ Ω | ϕ(x) > α}) ≤ 1

α

∫

Ω

ϕdµ. (I.3)

This inequality is most known as Chebychev’s inequality. The inequality was

derived in a general form for a measure space (Ω,F , µ), with F being a σ−algebra
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of the subsets of Ω and µ : F → [0,+∞) is the measure. We now apply this

concept to a probability space (Ω,F ,P), where Ω is the state space, F is the set

of possible events and P is the probability measure, with the property P(Ω) = 1. In

this context, we define the expectation, or average, of a random variable ϕ : Ω→ R
as being:

E[ϕ] = 〈ϕ〉 =

∫

Ω

ϕ dP . (I.4)

Now, we want to determine the probability of the “distance” between the value

of a random variable ϕ exceeds a certain constant ε. It is clear that:

|ϕ− 〈ϕ〉| ≥ ε ⇐⇒ (ϕ− 〈ϕ〉)2 ≥ ε2. (I.5)

Thus, by applying Chebychev’s inequality, we have:

P({x ∈ Ω | (ϕ(x)− 〈ϕ〉)2 > ε2}) ≤ 1

ε2
〈(ϕ(x)− 〈ϕ〉)2〉. (I.6)

This probability goes to zero when the right handside of the equation goes to zero.

The term 〈(ϕ(x)− 〈ϕ〉)2〉 is related to the deviation of the random variable from

the average value. Hence, we can define the variance D[ϕ] of a random variable ϕ

as being:

D[ϕ] = 〈(ϕ(x)− 〈ϕ〉)2〉 = 〈ϕ2〉 − 〈ϕ〉2 (I.7)

I.2 Law of large numbers

Considering a random variable X given by:

X =
X1 + · · ·+XN

N
, (I.8)

where X1, . . . , XN are also random variables with the same average and variance,

so that
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〈X1〉 = 〈X2〉 = · · · = 〈XN〉 (I.9)

and

D[X1] = D[X2] = · · · = D[XN ] = σ2. (I.10)

The average and variance of the random variable X are given respectively by:

〈X〉 = E (I.11)

and

D[X] =
σ2

N
. (I.12)

By applying Chebychev’s inequality, we have the probability of the distance

between X and its average value being greater than a constant ε > 0 is

P({(X − 〈X〉)2 > ε2}) < σ2

ε2N
. (I.13)

Therefore, we have:

〈X〉 − ε ≤ X ≤ 〈X〉+ ε (I.14)

with probability greater then 1−σ2/(ε2N) for every ε > 0. By choosing N � σ2/ε2

for ε arbitrarily small, we have

X ≈ 〈X〉 (I.15)

with probability ≈ 1. This is known as the weak law of large numbers. This

law is very important because it links the practical concept of avereging to the

mathematical concept of expectation of a random variable.
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II. ASYMPTOTIC EXPRESSIONS FOR
MOBILITIES

In this appendix, we give details about the expressions for the mobility tensors

for the problem of two particles in the far-field and near-field regions, which are

used in the numerical simulations, as detailed in chapter 3. These results were

extracted from the tables found in the book by Kim & Karrila [48], with results

originally due to Jeffrey and Onishi [54], and were modified in order to fit this

work. The components i and j of the mobility tensors given in equation (3.13) can

be written in the most general form as follow:

a
(αβ)
ij = xaαβ

rirj
r2

+ yaαβ

(
δij −

rirj
r2

)
(II.1)

b
(αβ)
ij = ybαβεijk

rk
r

(II.2)

c
(αβ)
ij = xcαβ

rirj
r2

+ ycαβ

(
δij −

rirj
r2

)
(II.3)

g
(αβ)
ijk = xgαβ

(
rirj
r2
− 1

3
δij

)
rk
r

+ ygαβ

(
riδjk + rjδik

r
+
rirjrk
r3

)
(II.4)

h
(αβ)
ijk = yhαβ

(
εiklrlrj + εjklrlri

r2

)
(II.5)

II.1 Far-field mobilities

a tensor:

xa11 =
1

6πµa

[
1− 60

( a
2r

)4

+ 352
( a

2r

)6

+ 2688
( a

2r

)8

− 85504
( a

2r

)10
]

(II.6)
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xa12 = − 1

6πµa

[
−3
( a

2r

)
+ 8

( a
2r

)3

− 2400
( a

2r

)7

+ 3840
( a

2r

)9

+ 201216
( a

2r

)11
]

(II.7)

ya11 =
1

6πµa

[
1− 68

( a
2r

)6

− 320
( a

2r

)8

− 4416
( a

2r

)10
]

(II.8)

ya12 =
1

6πµa

[
3

2

( a
2r

)
+ 4

( a
2r

)3

+ 9072
( a

2r

)11
]

(II.9)

b tensor:

yb11 =
1

4πµa2

[
208

( a
2r

)7

+ 2432
( a

2r

)9

+ 22272
( a

2r

)11
]

(II.10)

yb12 =
1

4πµa2

[
−2
( a

2r

)2

− 7680
( a

2r

)10
]

(II.11)

c tensor:

xc11 =
1

8πµa3

[
1− 3

(a
r

)8

− 6
(a
r

)10
]

(II.12)

xc12 = − 1

8πµa3

(a
r

)3

(II.13)

yc11 =
1

8πµa3

[
1− 240

( a
2r

)6

− 2496
( a

2r

)8

− 18432
( a

2r

)10
]

(II.14)

yc12 =
1

8πµa3

[
−4
( a

2r

)3

+ 4800
( a

2r

)9

+ 61440
( a

2r

)11
]

(II.15)
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g tensor:

xg11 = 2a

[
200

( a
2r

)5

− 1120
( a

2r

)7

− 13056
( a

2r

)9

+ 220160
( a

2r

)11
]

(II.16)

xg12 = −(2a)

[
5
( a

2r

)2

− 32
( a

2r

)4

+ 8000
( a

2r

)8

+ 3200
( a

2r

)10
]

(II.17)

yg11 = 2a

[
−160

3

( a
2r

)7

− 768
( a

2r

)9

− 3072
( a

2r

)11
]

(II.18)

yg12 = −(2a)

[
32

3

( a
2r

)4

− 3200

3

( a
2r

)10
]

(II.19)

h tensor:

yh11 = −200
( a

2r

)6

+ 12800
( a

2r

)10

(II.20)

yh12 = 10
( a

2r

)3

+ 4000
( a

2r

)9

+ 64000
( a

2r

)11

(II.21)

II.2 Near-field mobilities

For the expressions for the near-field mobilities, we introduce the variables ξ

and L such that

ξ =
r − 2a

a
(II.22)

L = − log(ξ) (II.23)
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a tensor:

xa11 =
1

6πµa

[
0.7750 + 0.930ξ − 0.9ξ2L− 2.685ξ2

]
(II.24)

xa12 = − 1

6πµa

[
0.7750− 1.070ξ + 0.9ξ2L+ 2.697ξ2

]
(II.25)

ya11 =
1

6πµa

0.89056L2 + 5.77196L+ 7.06897

L2 + 6.04250L+ 6.32549
(II.26)

ya12 =
1

6πµa

0.48951L2 + 2.80545L+ 1.98174

L2 + 6.04250L+ 6.32549
(II.27)

b tensor:

yb11 =
1

4πµa2

0.13368L2 + 0.19945L− 0.79238

L2 + 6.04250L+ 6.32549
(II.28)

yb12 = − 1

4πµa2

0.13368L2 + 0.92720L+ 0.18805

L2 + 6.04250L+ 6.32549
(II.29)

c tensor:

xc11 =
1

8πµa3

2

3

7ζ(3)− ξL
ζ(3) [4ζ(3)− ξL]

(II.30)

xc12 = − 1

8πµa3

2

3

ζ(3)− ξL
ζ(3) [4ζ(3)− ξL]

(II.31)

yc11 =
1

8πµa3

0.26736L2 + 0.60896L+ 0.28111

L2 + 6.04250L+ 6.32549
(II.32)

yc12 =
1

8πµa3

0.26736L2 +−1.05770L+ 0.29981

L2 + 6.04250L+ 6.32549
(II.33)

Note: In these expressions, ζ(x) is the Riemann zeta function
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g tensor:

xg11 = 2a (0.1792− 0.8703ξ) (II.34)

xg12 = 2a (−0.3208 + 0.9184ξ) (II.35)

yg11 = 2a
0.0145L2 + 0.0786L− 0.3193

L2 + 6.04250L+ 6.32549
(II.36)

yg12 = −2a
0.0869L2 + 0.2956L− 0.1584

L2 + 6.04250L+ 6.32549
(II.37)

h tensor:

yh11 = −0.1014L2 − 0.0764L+ 0.7905

L2 + 6.04250L+ 6.32549
(II.38)

yh12 =
0.3986L2 + 1.0762L− 0.3510

L2 + 6.04250L+ 6.32549
(II.39)
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