

Universidade de Brasília Instituto de Química

PREPARAÇÃO E CARACTERIZAÇÃO DE CATALISADORES BASEADOS EM PENTÓXIDO DE NIÓBIO E ÓXIDO DE COBRE(II) APLICADOS EM REAÇÕES DE ESTERIFICAÇÃO E TRANSESTERIFICAÇÃO

VALDEILSON SOUZA BRAGA

Brasília 2007

Universidade de Brasília Instituto de Química - Laboratório de Catálise

VALDEILSON SOUZA BRAGA

PREPARAÇÃO E CARACTERIZAÇÃO DE CATALISADORES BASEADOS EM PENTÓXIDO DE NIÓBIO E ÓXIDO DE COBRE(II) APLICADOS EM REAÇÕES DE ESTERIFICAÇÃO E TRANSESTERIFICAÇÃO

Tese apresentada ao Instituto de Química da Universidade de Brasília como parte dos requisitos necessários à obtenção do grau de Doutor em Química

Orientador: Prof. Dr. José Alves Dias

Brasília 2007

AOS FAMILIARES E AMIGOS

AGRADECIMENTOS

- Ao Prof. Dr. José Alves Dias, pela orientação, paciência e experiência transmitida;
- > À Prof.^a Dr^a. Sílvia C. L. Dias, pela força passada;
- Aos amigos do Laboratório (Julio Lemos, Ivoneide Barros, Fillipe Garcia, Mônica Paulo, Kayne Suzanne) pelo conhecimento compartilhado;
- > A Prof^a Dr^a Inês S. Resck, pelos espectros de RMN de ¹H;
- > A Prof^a Dr^a. Edi Mendes Guimarães, pelos difratogramas de raios-X;
- > Ao Prof. Dr. Geraldo Luzes pelas boas dicas;
- Ao Reginaldo pelo compartilhamento do Laboratório de Ensino de Química Inorgânica;
- Ao Wilson pelas pastilhas de KBr;
- À Companhia Brasileira de Metalurgia e Mineração (CBMM), pelo apoio, em especial pelo fornecimento das amostras do pentacloreto, pentóxido e oxalato amoniacal de nióbio.
- Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pela bolsa de pesquisa.

À Vida, pelos desafios passados e animo;

Aos familiares e amigos que de algum modo foram importantes nesta conquista.

ÍNDICE

Dedicatória	. 111
Agradecimentos	. IV
Índice	VI
Abreviaturas e acrônimos	. IX
Lista de tabelas	. X
Lista de figuras	XI
Resumo	XV
Abstract	۲VI
CAPÍTULO I: Introdução	
1.1. Ocorrência do nióbio	2
1.2. Importância do nióbio em catálise	2
1.3. Polimorfismo do pentóxido de nióbio	4
1.4. Catalisadores contendo pentóxido de nióbio: preparação e caracterizaçã	io
	7
1.5. Catalisadores contendo óxido de cobre	10
1.6. Cinzas de casca de arroz em catálise	10
1.7. Esterificação de Ácidos Carboxílicos e Ácidos Graxos com Álcoois	11
1.8. Transesterificação de Óleos Vegetais com Álcoois – Biodiesel	.12
1.8.1. Algumas vantagens do biodiesel	14
1.8.2. Processo de transesterificação	14
1.9. Objetivos	.17
1.10. Justificativas	17
,	
CAPITULO II: Metodologia	
2.1. Síntese dos catalisadores	20
2.1.1. Sintese dos catalisadores estudados no capítulo 3	.20
2.1.1.1. Catalisadores de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ em meio aquoso	20
2.1.2. Síntese dos catalisadores estudados no capítulo 4	20
2.1.2.1. Catalisadores de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ preparados em solvente orgânico	0.
	20
2.1.2.2. Catalisadores preparados em meio aquoso	.20
2.1.3. Síntese dos catalisadores estudados no capítulo 5	21
2.1.3.1. Catalisadores de CuO/Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ preparados em meio aquos	0
pelo método de co-impregnação	.21
2.1.3.2. Catalisadores de CuO/Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ preparados em meio aquos	0
pelo método de impregnação seqüencial	22
2.1.4. Síntese dos catalisadores estudados no capítulo 5	23
2.1.4.1. Os catalisadores contendo Nb_2O_5 suportado em cinza de casca de	
arroz (CCA) cristalina	23
2.1.4.2. Os catalisadores contendo Nb_2O_5 suportado em cinza de casca de	
arroz (CCA) amorfa	24
2.1.5. Síntese do catalisador estudado no capítulo 6 : catalisador de CuO/CC	CA
amorfa	24
2.2. Técnicas de caracterização	24
221 Análises térmicas (TG-DTA)	^
	24

2.2.3. Infravermelho médio (FTIR)252.2.4. Espectroscopia por reflectância difusa (DRIFTS)252.2.5. FTRaman252.2.6. Medidas calorimétricas252.2.8. Medidas de RMN de ¹ H252.3.Testes catalíticos262.3.1. Reações de esterificação de ácido acético com álcoois262.3.2. Reações de esterificação de ácido oléico com etanol262.3.3. Reações de transesterificação de óleo de soja com etanol26
CAPÍTULO III: Transição de Fase nos Sistemas de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ 3. Discussão dos resultados
CAPÍTULO IV: Esterificação de ácido acético com álcoois usando catalisadores de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ 4. Discussão dos resultados
CAPÍTULO V: Síntese e Caracterização de CuO/Nb2O5/SiO2-Al2O35. Discussão dos resultados
 CAPÍTULO VI Catalisadores Contendo Pentóxido de Nióbio Suportado em Cinza de Casca de Arroz e suas Aplicações em Reações de Esterificação de Ácido Oléico e Transesterificação de Óleo de Soja com Etanol 6. Discussão dos resultados

VII

Arroz
86
86
86
87
91
92
93
97
97
100

LISTA DE ABREVIATURAS E ACRÔNIMOS

Cat. Catalisador

CCA = Cinza de casca de arroz

DRX = Difração de Raios -X

DTA = Análise térmica diferencial

DTG= Termogravimetria derivada

DRIFTS = Espectroscopia na região do infravermelho com refletância difusa

FTIR = Espectroscopia na região do infravermelho com transformada de Fourier

NbSiAI-DM = Catalisadores contendo $Nb_2O_5/SiO_2-Al_2O_3$ preparados em diclorometano.

NbSiAI-ET = Catalisadores contendo Nb₂O₅/SiO₂-Al₂O₃ preparados em solução etanólica de ácido acético (5%).

NbSiAl-AQ = Catalisadores contendo Nb₂O₅/SiO₂-Al₂O₃ preparados em meio aquoso.

TG = Termogravimetria.

LISTA DE TABELAS

abela 1. Principais polimorfos do Nb ₂ O ₅	4
abela 2. Fases e estruturas cristalinas do Nb ₂ O ₅ nH ₂ O formadas a part	ir de
diferentes tratamentos térmicos	5
abela 3. Principais condições de síntese dos catalisadores preparados	s em
meio aquoso e orgânico	21
abela 4. Proporções em massa do óxido de cobre(II), pentóxido de niól	oio e
sílica-alumina contendo razão em massa de 1:10 em CuO:Nb;	₂ O ₅ ,
preparados por impregnação seqüencial e co-impregnação	22
abela 5. Proporções em massa do óxido de cobre(II), pentóxido de niól	oio e
sílica-alumina contendo razão em massa de 1:1 em CuO:Na	o₂O₅,
preparados por co-impregnação	23
abela 6. Principais absorções nos espectros de FTIR presentes nas amo	stras
dos catalisadores de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ calcinados em 800 °C/3h	43
abela 7. Média dos valores estimados de entalpia para os catalisac	lores
contendo NbSiAl titulados com piridina	46
abela 8. Temperatura de refluxo, conversão e seletividade nas reaçõe	s de
esterificação, utilizando os catalisadores de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃	3, no
período de 8h	47

LISTA DE FIGURAS

Figura 1. DRX do Nb ₂ O ₅ ·nH ₂ O em diferentes condições de calcinação: (a)
450°C/ 6h; (b) 500°C/3h; (c) 600°C/3h e (d) 800°C/ 3h
Figura 2. Arranjos bidimensionais do catalisador de óxido de nióbio
Figura 3. NbO ₆ altamente distorcido (A). NbO ₆ moderadamente distorcido (B)
e coexistência de NbO ₆ moderadamente distorcido (esquerda e à
direita) e NbO ₆ altamente distorcido (no centro) (c)
Figura 4 . Esquema de esterificação via catálise ácida
Figura 5 Amostra de biodiesel
Figura 6 Produção de biodiesel via transesterificação 13
Figura 7 Esquema de transesterificação via catálise ácida
Figura 8 Esquema de transesterificação via catálise básica
Figura 9. Reator de aco (autoclave)
Figura 10 Estufa utilizada pas reações
Figure 11 Curves do DTC dos emostros do Nb O (SiO ALO: 2 (a) 5 (b) 10
Figura 11. Curvas de DTG das amostras de $Nb_2O_5/SIO_2-Ai_2O_3$. 2 (a), 3 (b), 10 (c) 15 (d) 20 (c) $a_2SP($ om magaza da Nb $O_2(f)$ 20
(c), 15 (d), 20 (e) e 25% em massa de $Nb_2O_5(1)$
Figura 12. Curvas de DTA das amostras de ND_2O_5/SIO_2 -Al $_2O_3$. 2 (a), 5 (b), 10
(C), 15 (d), 20 (e) e 25% em massa de $Nb_2O_5(I)$
Figura 13. DRX das amostras de Nb_2O_5/SIO_2 -Al $_2O_3$: 2 (a), 5 (b), 10 (c), 15
(d), 20 (e) e 25% em massa de ND_2O_5 (f), depois dos experimentos de
IG/DIA
Figura 14. Espectros FTIR das amostras de $Nb_2O_5/SIO_2-Al_2O_3$: 2 (a), 5 (b), 10
(c), 15 (d), 20 (e) e 25% em massa de Nb_2O_5 (f), depois dos
A = A = A = A = A = A = A = A = A = A =
f
Figura 15. Espectros FTRaman das amostras de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ : 2 (a), 5
Figura 15. Espectros FTRaman das amostras de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ : 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb ₂ O ₅ (f), depois dos
Figura 15. Espectros FTRaman das amostras de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ : 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb ₂ O ₅ (f), depois dos experimentos de TG/DTA
Figura 15. Espectros FTRaman das amostras de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ : 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb ₂ O ₅ (f), depois dos experimentos de TG/DTA
Figura 15. Espectros FTRaman das amostras de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ : 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb ₂ O ₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
Figura 15. Espectros FTRaman das amostras de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ : 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb ₂ O ₅ (f), depois dos experimentos de TG/DTA 33 Figura 16. DRX de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ (NbSiAl-DM) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10% (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10% (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10% (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10% (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10% (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10% (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10% (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 37 Figura 19. Curvas de DTA de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ : NbSiAl-DM contendo (a)
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
Figura 15. Espectros FTRaman das amostras de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ : 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb ₂ O ₅ (f), depois dos experimentos de TG/DTA 33 Figura 16. DRX de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ (NbSiAl-DM) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (b) 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (b) 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 10%, (g) 15% e (h) 25% em massa de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ 10%, (g) 15% e (h) 25% em massa de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ 10%, (g) 15% e (h) 25% em massa de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ 10%, (b) 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 37 Figura 20. Curvas de DTA de Nb ₂ O ₅ /SiO ₂ -Al ₂ O ₃ 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb ₂ O ₅ 5%, (b) 10%
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA
 Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA

Figura 24. Espectros de DRIFTS de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.. 41 **Figura 25.** Espectros de DRIFTS de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-ET) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅. 42 **Figura 26.** Espectros de DRIFTS de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-AQ) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb_2O_5 42 Figura 27. Espectros de FTRaman de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.. 43 **Figura 28.** Espectros de FTRaman de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-ET) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅. 44 Figura 29. Espectros de FTRaman de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-AQ) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅. 44 Figura 30. Espectros FTIR de 25%CuO/Nb₂O₅/SiO₂-Al₂O₃ co-impregnadas na razão de 1:1 em CuO:Nb₂O₅: (a) ambiente, (b) 100 °C/2h, (c) 300 °C/6h; (d) 500 °C/6h e (e) 800 °C/6h 50 **Figura 31.** DRX de: (a) SiO₂-Al₂O₃, a 25 °C; (b) Nb₂O₅: 600 °C, (c) Nb₂O₅ 800 °C/3h; e (d) CuO a 300 °C/6h 51 Figura 32. DRX de: (a) Cu(NO₃)₂.3H₂O, a 300 °C/6h; (b) 10%Nb₂O₅/SiO₂- Al_2O_3 a 300 °C/6h, (c) 10%CuO/Nb₂O₅ /SiO₂-Al₂O₃ a 300 °C/6h; e (d) Figura 33. DRX do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, co-impregnados na razão em massa de 1:10 de CuO: Nb₂O₅ e calcinados em 800 /6h53 Figura 34. DRX do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO: Nb₂O₅ e calcinados a 800°C/6h54 Figura 35. DRX do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 10% e (b) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO:Nb₂O₅ e Figura 36. DRX de CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5% e (c) 10% em massa de CuO, co-impregnados na razão em massa de 1:1 em Figura 37. DRX de CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, impregnados següencialmente na razão em massa de Figura 38. Curvas de DTA de: (a) oxalato amoniacal de nióbio, (b) nitrato de cobre trihidratado, (c) sílica-alumina e (d) pentóxido de nióbio 57 Figura 39. Curvas de DTA do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, co-impregnados na razão em massa de 1:10 de CuO:Nb₂O₅ e pré-tratados a 120°C58 Figura 40. Curvas de DTG do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, co-impregnados na razão em massa de **Figura 41**. Curvas de DTA do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO: Nb₂O₅ e pré-tratados a 120°C 59 Figura 42. Curvas de DTG do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO: Nb₂O₅ e pré-tratados a 120°C60

Figura 47. Espectros de FTIR do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO:Nb₂O₅ e calcinados a 300 °C /6h 64

Figura 48. Espectros de FTIR do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO:Nb₂O₅ e calcinados a 800 °C /6h 64

Figura 50. Espectros de DRIFTS de: SiO₂-Al₂O₃ calcinada a 550°C /12h66 **Figura 51**. Espectros de DRIFTS de: (a) CuO 300 °C /6h (b), Nb₂O₅ 300 °C

/6h (c), Nb₂O₅ 600 °C /6h (d), Nb₂O₅ 800 °C /6h66
Figura 52. Espectros de DRIFTS do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 25, (b) 15%, (c) 10%, (d) 5% e (e) 2% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO:Nb₂O₅ e calcinados a 300 °C /6h67

Figura 54. Espectros de FTRaman do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (d) 1,5% em massa de CuO, co-impregnados na razão em massa de 1:10 de CuO:Nb₂O₅ e calcinados a 800 °C /3h 68

- Figura 66. Conversão do óleo de soja em função do catalisador calcinado a 300 °C, utilizando razão em massa de 1:10 em catalisador:óleo de soja e razão molar de óleo:etanol de 1:30 e 1:10, no período de 22h 81

- Figura 72. Conversão do óleo de soja em função da razão molar óleo:etanol, utilizando CuO/CCA amorfa calcinado a 300 °C e razão molar de 1:6; 1:10 e 1:30 (óleo:etanol), em autoclave a 200°C, no período de 22h
- Figura 73. Conversão do óleo de soja em função da razão molar óleo:metanol, utilizando CuO/CCA amorfa calcinado a 300 °C e razão molar de 1:10 e 1:30 (óleo:metanol), em autoclave a 200°C, no período de 22h.

RESUMO

Os catalisadores contendo Nb₂O₅/SiO₂-Al₂O₃, CuO/Nb₂O₅/SiO₂-Al₂O₃, Nb₂O₅/CCA (CCA=cinza de casca de arroz) cristalina ou amorfa e CuO/CCA investigados neste estudo, foram preparados via diferentes rotas (impregnação em meio aquoso (incipiente ou evaporação) ou grafitização em meio orgânico, em variadas proporções (2, 5, 10, 15, 20 e 25 % em massa). Estes materiais foram aplicados em reações de esterificação de ácido acético com álcoois (etanol, n-butanol e iso-pentanol), esterificação de ácido oléico ou transesterificação de óleo de soja com etanol ou metanol, mostrando ótima conversão e seletividade na maioria dos processos. As caracterizações utilizadas foram: DRX, TG/DTA, FTRaman, FTIR, DRIFTS, Calorimetria, BET, RMN e CG/FID e CG/MS. Os catalisadores de Nb₂O₅/SiO₂-Al₂O₃ foram avaliados quanto à transição de fase que ocorre a cerca de 1350 °C, confirmando a formação das fases ortorrômbica (T) e monoclínica (M e H), em contraste com o Nb₂O₅ puro que forma somente a fase H nas mesmas condições. O estudo destes catalisadores calcinados mostrou a forte dependência da temperatura na acidez e na estrutura. O material suportado mais ácido é amorfo, contém 10% em massa do Nb₂O₅ (~ o limite da monocamada) e deve ser calcinado a 300 °C. Os catalisadores de CuO/Nb₂O₅/SiO₂-Al₂O₃ mostraram um alto grau de influência do CuO sobre o Nb₂O₅, sendo que a estabilidade térmica é dependente do método de preparação. Os materiais calcinados a 800 °C e com alto teor de Cu e Nb mostraram a formação de óxidos mistos (CuNb₂O₆) e possuem a monocamada em torno de 5-10 % em massa dos óxidos de CuO e Nb2O5. Já os calcinados a 300 °C, somente é observado o CuO cristalino, quando esse possui teores acima de 10 % em massa. Os sistemas de Nb2O5/CCA amorfa ou cristalina mostraram uma forte interação das espécies superficiais de óxido de nióbio, evidenciado pela formação das fases TT e T-Nb₂O₅, nas amostras contendo 10-25 % em massa e calcinadas a 800 °C. Além disso, não mostraram a transição de fase nas curvas de TG/DTA. O catalisador mais ativo no processo de esterificação do ácido oléico contém 10 % em massa e foi calcinado a 300 °C. O catalisador contendo 10 % de CuO/CCA amorfa, calcinado a 300 °C, mostrou alta dispersão das espécies de cobre na superfície.

ABSTRACT

Catalysts comprising of Nb₂O₅/SiO₂-Al₂O₃, CuO/Nb₂O₅/SiO₂-Al₂O₃, Nb₂O₅/CCA (CCA=rice husk ash) crystalline or amorphous and CuO/CCA investigated in this study were prepared by different routes (impregnation in aqueous solution (incipient or evaporation) or graftization in organic medium) under different proportions (2, 5, 10, 15, 20 e 25 mass%). These materials were applied in esterification reactions of acetic acid with alcohols (ethanol, n-butanol and isopentanol), esterification of oleic acid or transesterification of soybean oil with ethanol or methanol, showing excellent conversion and selectivities in the majority of the processes. The catalyst characterizations used were: XRD, TG/DTA, FTRAMAN, FTIR, DRIFTS, Calorimetry, BET, NMR, GC/FID and GC/MS. The catalysts of Nb₂O₅/SiO₂-Al₂O₃ were tested to the transition phase, which occurs at about 1350 °C, confirming formation of the orthorhombic (T) and monoclinic (M and H) phases. This is in contrast to pure Nb₂O₅ that forms only the H phase under the same conditions. The study of the calcined catalysts showed the strong dependence of the temperature on the acidity and structure. The most acidic material is amorphous, have 10 mass% of Nb₂o₅ (~the limit of the monolayer), and must be calcined at 300 °C. The catalysts of CuO/Nb₂O₅/SiO₂-Al₂O₃ showed a high degree influence of CuO over Nb₂O₅, and the thermal stability is dependent on the preparation method. The materials calcined at 800 °C and higher Cu and Nb loadings showed the formation of mixed-oxides (CuNb₂O₆), and have the monolayer around 5-10 mass% of CuO and Nb₂O₅. When loadings are over 10 mass% and calcination is at 300 °C, only crystalline CuO is observed. The Nb₂O₅/CCA amorphous or crystalline showed a strong interaction of the niobium oxide surface species, evidenced by the formation of TT and T-Nb₂O₅ phases in the samples with 10-25 mass% and calcined at 800 °C. Moreover, they have not displayed the transition phase in the TG/DTA curves. The most active catalyst for the esterification of oleic acid process has 10 mass% and was calcined at 300 °C. The catalyst with 10 mass% of CuO/CCA amorphous, calcined at 300 °C showed high dispersion of copper species on the surface.

Capítulo I

INTRODUÇÃO

1.1. Ocorrência do nióbio

O nióbio é encontrado na natureza quase sempre associado ao tântalo, sendo o primeiro numa proporção em média de 20,0 ppm e o segundo 1,7 ppm, sendo considerados elementos relativamente raros.¹ Dentre os minerais de nióbio, pode-se destacar os seguintes:²

- Columbita: Fe(NbO₃)₂;
- Eeuxenita: mistura de niobatos, tantalatos e titaniatos de terras raras;
- Pirocloro: Ca(NbO₃)₂. NaF;
- Samarksita: mistura de niobatos e tantalatos de terras raras com presença traços de urânio.

Apesar de ser pouco abundante na crosta terrestre, o Brasil comporta as maiores reservas minerais de nióbio, precisamente em Araxá-MG, sendo que no ano de 2004, de toda a produção mundial de nióbio (43 481 toneladas), cerca de 91,4%, são provenientes das reservas brasileiras.³ Das reservas mundiais, estipulam-se que aproximadamente 4,3 milhões de toneladas de Nb₂O₅ se concentram no Brasil (cerca de 96,9%), liderando a produção de compostos de nióbio com a taxa de 93,3%.³

Os principais óxidos formados pelo nióbio são: Nb₂O₅ (branco), NbO₂ (pretoazulado) e NbO (cinza) onde o nióbio apresenta estados de oxidação +V, +IV e +II, respectivamente, porém, o Nb₂O₅ é o mais estável. Nos estados de oxidação mais baixos, o nióbio forma um grande número de retículos, com grupos de átomos metálicos ligados entre si.^{3,4} Existe uma série de óxidos de diferentes estequiometrias que pode ser descrita pela fórmula geral de Nb_{3n+1}O_{8n-2} (n = 5, 6, 7 e 8).^{3,4}

1.2. Importância do nióbio em catálise

Nas últimas décadas, compostos de nióbio têm sido amplamente utilizados.⁵ Os óxidos de nióbio, em especial o Nb₂O₅, constitui uma excelente opção em catálise ácida,⁶ podendo ser utilizado como fase suportada e também, associado a outros metais, e. g., vanádio, cobalto, níquel, platina, rênio, ferro e molibdênio com objetivo de melhorar a seletividade em diversas reações.^{7,8} Os sistemas contendo nióbio são efetivamente aplicados em vários processos catalíticos,⁹⁻¹¹ devido à elevada atividade catalítica, seletividade e estabilidade destes materiais. Compostos e sistemas suportados contendo nióbio (e.g., Rh, Pd, Ni, Co em Nb₂O₅) são destacados em várias reações,¹¹ e.g., despoluição, reações de oxidação seletiva, conversão de hidrocarbonetos, hidrogenação, desidrogenação, hidrotratamento, polimerização, isomerização, fotoquímica, eletroquímica, hidrólise, craqueamento, dimerização, trimerização, alquilação, metátese de olefinas, condensação, esterificação de ácido acético e ácido acrílico com álcoois.¹²⁻²³ No entanto, a maior aplicação dos sistemas baseados em nióbio recai em catálise de oxidação.¹⁰

Segundo Ziolek,²⁴ as propriedades especiais exibidas pelos compostos de nióbio não são apresentadas pelos demais elementos do mesmo grupo da Tabela Periódica. Com o nióbio, destaca-se uma forte interação metal-suporte, interação esta necessária para se ter um catalisador ativo e estável. A atividade, seletividade e estabilidade dos sistemas contendo nióbio, em diferentes reações catalíticas, são resultantes das variações nas ligações Nb-O, das espécies superficiais e das interações do nióbio com outros óxidos.²⁴ Além disso, as propriedades ácida e redox destes sistemas, provavelmente, são decorrentes das interações Nb–O–Suporte.⁸

Do ponto de vista tanto da performance catalítica quanto das propriedades superficiais e estruturais, na área da catálise heterogênea, as características atribuídas aos sistemas contendo nióbio (e.g., os compostos e materiais contendo pentóxido de nióbio (ácido nióbico ou pentóxido de nióbio hidratado); fosfato de nióbio; camadas de óxidos de nióbio, e misturas de óxidos contendo pentóxido de nióbio)¹¹ são demonstradas pelas suas variadas funções como: promotor ou fase ativa, suporte, catalisador sólido ácido e catalisador de oxidação seletiva.⁴⁻¹¹

Promotor ou fase ativa: diversas reações químicas são ativadas por materiais contendo Nb₂O₅ suportado e/ou pelo Nb₂O₅ puro. Nos sistemas baseados em óxido de nióbio, as espécies superficiais de óxido de nióbio são as responsáveis por promover a reação química. Geralmente um melhor efeito promotor é obtido calcinando estes materiais em temperatura entre 300 e 500 °C.⁷ As interações entre óxido de nióbio com o suporte ou com outros metais possibilita uma interação simultânea dos reagentes com o metal e o suporte, atribuindo ao sítios ácidos de Lewis e de Brönsted os responsáveis por promover os processos catalíticos.⁷

- Suporte: o Nb₂O₅ tem sido extensivamente usado como suporte na preparação de catalisadores contendo óxido metálico suportado,^{3,21} melhorando ainda mais as suas propriedades catalíticas, assim como mantendo a sua alta seletividade.⁷ Além disso, enquanto suporte, o Nb₂O₅ possui forte interação com o metal utilizado na síntese de catalisadores suportados.⁷
- Sólido ácido: o pentóxido de nióbio hidratado (Nb₂O₅·nH₂O), também chamado de ácido nióbico, apresenta uma forte acidez em sua superfície.²⁶ Quando calcinado em temperaturas moderadas (100-300 °C), apresenta um caráter ácido com Ho ≤ 5,6, que correspondente a 70% da acidez do ácido sulfúrico, embora seja quase neutro quando calcinado a 600 °C.⁷
- Material redox: uma das maiores aplicações de catalisadores de nióbio é na área de oxidação. Os sítios redox, são encontrados em Nb₂O₅ mássico e nos suportados em sólidos ácidos (e.g., Nb₂O₅/SiO₂), quando calcinados em baixa temperatura.⁷

1.3. Polimorfismo do pentóxido de nióbio

Investigações remotas sugerem que o pentóxido de nióbio pode apresentar uma estrutura amorfa ou cristalina e que, quando cristalino, ele pode formar onze possíveis fases cristalinas. Tais fases podem ser compostas por mais de uma forma cristalina, tais como: α , β , γ , δ , δ (γ "), γ ", α difusa, ξ , I, II, III, $\beta(\alpha$ "), β ", η , ε , I-high. ^{27,28} Na Tabela 1 estão representadas as principais fases do pentóxido de nióbio.

Fases	Amorfa	TT	Т	М	Н
		δ(γ ")	γ	β(α ")	α
Formas		δ	γ	β	α
cristalinas			α	β	β
		α difusa	α	β	β"
			III	II	Ι

Tabela 1: Principais polimorfos do Nb₂O₅.²⁸

O Nb₂O₅·nH₂O amorfo sofre modificações originando uma estrutura cristalina. Em temperatura de ~450 °C apresenta baixa cristalinidade denominado de δ e γ -Nb₂O₅, sendo a forma δ -Nb₂O₅ a de menor cristalinidade.^{27,29} A estabilidade destas formas cristalinas tem sido condicionada a presença de impurezas como o íon cloreto ou pelo surgimento de vacâncias na própria estrutura.^{7,15,29} A Tabela 2 mostra as principais fases cristalinas do pentóxido de nióbio, formadas quando amostras amorfas são submetidas a um tratamento térmico. A fase TT refere-se a uma estrutura hexagonal, T ortorrômbica e M e H-Nb₂O₅ apresentam estrutura semelhantes (formadas quando calcinadas em ~ 800 °C), a fase B é estabilizada em menor temperatura e, a fase M constitui-se intermediária da fase H que é formada em ~ 1000 °C.^{7,15,29}

Tabela	2:	Fases	е	estruturas	cristalinas	do	$Nb_2O_5 \cdot nH_2O$	formadas	а	partir	de
diferent	es t	ratamer	nto	s térmicos.7	,15,29						

Tratamento térmico ([°] C)	Fase formada	Estrutura
500	TT	Hexagonal
600	т	Ortorrômbica
800	M ou B	Monoclínica
1000	Н	Monoclínica

As fases cristalinas do Nb₂O₅ têm as seguintes denominações: ^{7,15,29}

- Fase TT refere-se à fase cristalina formada em temperatura muito baixa, sendo constituída por octaedros distorcidos e bipirâmides pentagonais, sendo que estudos variados apontam que esta forma cristalina é simplesmente uma fase menos cristalina da fase T;
- Fase T refere-se à fase cristalina formada em baixa temperatura, onde a cela unitária contém quarenta e dois átomos de oxigênio, oito átomos de Nb presentes em octaedros destorcidos e oito átomos de Nb formando bipiramides pentagonais. Uma proporção de 0,8 átomos de Nb por célula unitária são localizados em sítios nonacoordenados intersticiais na célula unitária;

- Fase B consiste em uma estrutura de fitas do tipo rutílo compartilhando os octaedros de NbO₆ pelas arestas.
- Fase M refere-se à fase cristalina formada em temperatura média (M de medium). É uma fase similar a fase H, porém de menor cristalinidade;
- Fase H refere-se à fase cristalina formada em alta temperatura (H de high). Trata-se de uma estrutura de lâminas consistindo em blocos de octaedros (3x4 e 3x5), compartilhados pelos vértices no próprio bloco e pelas arestas com octaedros de outros blocos. Um átomo de Nb, do total de vinte e oito átomos presentes em cada célula unitária, está presente em um sítio tetraédrico fazendo as junções de alguns blocos.

Estudos recentes por DRX realizados pelo nosso Grupo de Pesquisa do Laboratório de Catálise da Universidade de Brasília, que dá ênfase nas transições de fases do Nb₂O₅·nH₂O em diferentes condições de temperatura (450, 500, 600 e 800 °C), confirmam o aparecimento de novas reflexões do Nb₂O₅ com o aumento da temperatura de calcinação (Figura 1). Foi observado que as amostras de pentóxido de nióbio calcinadas em 450 e 500 °C, apresentam reflexões bem semelhantes, provavelmente em decorrência da pequena variação na temperatura de calcinação da amostra, associando a estas estruturas a existência da fase TT-Nb₂O₅. Em torno de 600 °C, observou-se o indício do surgimento de novos picos e um pequeno desdobramento dos picos em 2 θ ~ 28,5 e 36,7°, sugerindo, portanto, a esta amostra, a existência da fase T-Nb₂O₅. Do mesmo modo, como conseqüência da elevação da temperatura para 800 °C, observou-se o surgimento de vários picos, os quais se mostraram similares àqueles apresentados em diferentes fases do Nb₂O₅, sendo atribuído, então, a co-existência das fases T, M e H-Nb₂O₅.

Em sistemas suportados, tanto o Nb₂O₅ como o suporte, podem adquirir propriedades físicas e químicas diferentes daquelas apresentadas para o Nb₂O₅ mássico e o suporte, podendo o sistema ganhar estabilidade térmica a altas temperaturas. Tem-se como exemplos catalisadores de Nb₂O₅-SiO₂ que são ativos em várias reações catalíticas em que diferentes fases cristalinas são formadas (constatadas por DRX), quando submetidos a uma temperatura de ~1000 °C.^{12,15,29}

Figura 1. DRX do Nb₂O₅·nH₂O em diferentes condições de calcinação: (a) 450°C/ 6h; (b) 500°C/3h; (c) 600°C/3h e (d) 800°C/3h.

1.4. Catalisadores contendo pentóxido de nióbio: preparação e caracterização

Rotas sintéticas variadas têm sido propostas, utilizando diferentes precursores, na preparação de catalisadores contendo nióbio. A impregnação constitui um método de preparação bastante utilizado em diversos estudos. Sob a forma de impregnação convencional, o método requer uma grande quantidade de solvente e, na forma de impregnação incipiente, requer uma pequena quantidade de solvente que esta próxima ao volume total de poros do suporte utilizado no processo.^{12,30} Nos sistemas preparados via incipiente tem sido apontada uma maior dispersão das espécies superficiais de óxido de nióbio, porém, estima-se uma menor estabilidade térmica para as espécies superficiais formadas via esta rota sintética.

Diversos óxidos são utilizados como suporte para o Nb₂O₅, tais como, sílica ³¹⁻ ³³ e alumina.^{6,34-37} Quando é utilizado um suporte de alta área superficial (e.g., Al₂O₃, SiO₂, TiO₂, ZrO₂ e SiO₂-Al₂O₃), conforme o teor de óxido, surgem camadas superficiais de óxido de nióbio, co-existindo diferentes fases ou espécies superficiais do óxido.^{20,29,31} Estas espécies superficiais se formam através da reação do precursor de nióbio (e.g., oxalato, cloreto, alcóxido, complexo amoniacal ou etóxido) com as hidroxilas presentes no suporte.^{20,29,31}

Figura 2. Arranjos bidimensionais do catalisador de óxido de nióbio.¹⁰

Segundo Wachs e Ziolek, utilizando-se suporte ácido na preparação de catalisadores contendo nióbio, tem-se a formação de grupos moderadamente distorcidos apresentando espécies contendo NbO₆, NbO₇ e NbO₈. Com o uso de suporte básico formam-se octaedros altamente distorcidos, NbO₆ (Figura 3).^{12,24}

Figura 3. NbO₆ altamente distorcido (A), NbO₆ moderadamente distorcido (B) e coexistência de NbO₆ moderadamente distorcido (esquerda e à direita) e NbO₆ altamente distorcido (no centro) (c).^{10,39}

Diversas técnicas têm sido utilizadas na caracterização dos sistemas contendo nióbio, e.g., DRX, TEM, XPS, UV-Vis – refletância difusa, IR, DRIFTS e Raman.¹⁰ Conforme afirma Wachs,³¹ a maior informação sobre a estrutura das diferentes espécies superficiais das fases de nióbio tem sido fornecida pela espectroscopia Raman, sendo complementada por informações adicionais mediante o estudo de absorção de raios-X (EXAFS/XANES).⁸

Pentóxido de nióbio suportado em sílica apresenta espécies com estrutura tetraédrica dos íons de nióbio (NbO₄) na superfície da sílica, em sistemas com baixo teor de Nb₂O₅ (~1% em massa), sendo ainda sugerido por espectroscopia Raman *in situ,* a presença de microcristais de Nb₂O₅ (com teor de ~ 4% em massa).³⁸

A quantidade de água adsorvida na superfície de catalisadores baseados em óxido de nióbio pode influenciar na estrutura molecular das formas superficiais de nióbio, porém não causam uma mudança significativa no estado de coordenação dos íons de nióbio.^{10,38} No caso dos íons de nióbio dispersos em alumina, as espécies de nióbio são muito sensíveis à água adsorvida.³⁸ Já as espécies iônicas de óxido de nióbio em solução aquosa possuem estrutura formada por octaedros altamente distorcidos (NbO₆), refletindo uma forte banda Raman entre 860-901 cm⁻¹.¹⁰

Utilizando espectroscopia Raman *in situ* em sistemas contendo Nb₂O₅/SiO₂ desidratados (calcinados a 500°C), Wachs³⁹ detectou a cobertura da monocamada com o teor de 4% em massa de Nb₂O₅, determinada pelo surgimento de uma banda em 680 cm⁻¹ a qual foi associada à fase T-Nb₂O₅. Quando o sistema apresentava o teor de apenas 2% em massa de Nb₂O₅, foi detectado apenas um intenso pico em 980 cm⁻¹, referente aos octaedros (NbO₆) altamente distorcidos.

Nos sistemas contendo Nb₂O₅/Al₂O₃ desidratados (calcinados a 500°C), Wachs³⁵ detectou o limite da monocamada com o teor de ~8% em massa de Nb₂O₅, apontado pelo surgimento das bandas em torno de 950 e 630 cm⁻¹, referentes respectivamente, aos octaedros (NbO₆) altamente e moderadamente distorcidos. Além disso, observou o deslocamento da banda de 980 para 988 cm⁻¹. Com teores de 3 –5% em massa de Nb₂O₅ foram observadas bandas em ~ 980 e 883 cm⁻¹, referentes a octaedros altamente distorcidos similares aos formados nas sobrecamadas de óxidos de nióbio e, octaedros altamente distorcidos similares aos presentes nos hexaniobatos (Nb₆O₁₉⁻⁸).³⁹

As propriedades ácidas dos catalisadores suportados são semelhantes às do Nb₂O₅ mássico. Contudo, os sítios de Brönsted, que são responsáveis pela propriedade redox, são limitados aos sistemas suportados em alumina e sílica.^{7,10} Os octaedros NbO₆ altamente distorcidos com ligações Nb=O são atribuídos como os responsáveis pela acidez de Lewis.²⁴ Às espécies moderadamente distorcidas (NbO₆, NbO₇ e NbO₈), com ligações Nb-O, associam-se os sítios ácidos de Brönsted.²⁴

9

Estes sítios ácidos (sítios de Lewis e de Brönsted) podem ser comprovados através das análises de espectroscopia na região do infravermelho, via experimento de adsorção de piridina como molécula prova.⁴⁰ Os sítios ácidos de Lewis e de Brönsted são caracterizados pelos picos de adsorção de piridina em ~ 1450 e 1540 cm⁻¹, respectivamente, observados em tratamentos de ~200 °C. Observa-se um decréscimo dos sítios ácidos de Brönsted com o aumento da temperatura de pré-evacuação da piridina adsorvida no sólido, desaparecendo acima de 400 °C nos materiais contendo Nb₂O₅.^{41,42}

1.5. Catalisadores contendo óxido de cobre

Óxido de cobre tem sido suportado em diferentes matrizes, sendo aplicado em muitas áreas envolvendo catálise ambiental,^{43,44} particularmente para remoção de espécie de óxido de nitrogênio (por exemplo, NO e N₂O) ou produção de hidrogênio via reforma de álcoois.⁴⁵

Estudos envolvendo CuO suportado em sílica-alumina tem sido reportados, ⁴⁵⁻ ⁴⁹ mostrando que a dispersão de CuO em diferentes suportes depende do teor de cobre, natureza do suporte, método de preparação, e interação do precursor com os locais ácidos do suporte. Usando o método de adsorção a partir de Cu(H₃CCOO)₂, a cobertura da monocamada é alcançado com cerca de 7-9% em massa de Cu em sílica-alumina comercial. Também, dados de DRX de amostras contendo 0.2 – 12% em massa de Cu (preparado por hidrólise, usando Cu(NO₃)₂ como precursor) não mostrou nenhuma fase de CuO em amostras calcinadas em 350 °C,⁴⁹ sugerindo que a maioria dos íons de cobre encontravam-se altamente dispersos na superfície da sílica-alumina, nos sistemas contendo teor baixo de CuO.⁴⁶⁻⁴⁹

1.6. Cinzas de casca de arroz em catálise

Cinza de casca de arroz (CCA) é um subproduto da moenda de arroz, constituindo-se um grande resíduo da indústria agrícola. A CCA amorfa comumente é extraída por lixiviação ácida, pirólise e processo de remoção de carbono⁵⁰. Uma variedade de CCA pode ser obtida apresentando um teor de 90–99% em sílica, constituindo uma fonte barata de sílica que pode ser interessante para a síntese de catalisadores em especial os zeolíticos.⁵⁰ Sílica proveniente de cinzas de casca de arroz apresenta uma área superficial alta, ponto de fusão elevado e porosidade alta.

Estas propriedades fazem da cinza uma matéria prima valiosa para muitas indústrias. Além disso, exibe propriedades atrativas no que diz respeito ao preparo de novos catalisadores.

Em comparação aos catalisadores suportados em sílica gel, investigações sobre os sistemas contendo níquel suportado em cinza de casca de arroz,⁵¹ detectou alta atividade catalítica no processo de hidrogenação de CO₂ e desidrogenação de etanol, associado à eficiência catalítica a dispersão dos cristais na superfície da matriz.⁵⁰ Catalisadores contendo cobre suportado em CCA recentemente tem recebido atenção, em especial na desidrogenação de álcool e/ ou desidratação.⁵⁰

1.7. Esterificação de ácidos carboxílicos e ácidos graxos com álcoois

Os ésteres de ácidos e álcoois de cadeia curta são industrialmente importantes, por exemplo, temos o acetato de n-butila que é utilizado em grande escala como solvente nas indústrias de vernizes, plásticos e na manufatura de filmes.^{52,53} Eles normalmente são sintetizados em fase líquida na presença de catalisadores ácidos fortes (e.g., H₂SO₄, HCl, HF e ácido sulfônico), que apesar de exibirem alta atividade, são corrosivos e geram resíduos.⁵²⁻⁵⁶

Nos últimos anos, o uso de sólidos ácidos como catalisadores, tem recebido bastante atenção. Alguns exemplos disso são as resinas de troca iônica (*amberlyst* 15, *smopex*-101 e *purolite* CT-175), zeólitas (Y, X, H-Beta, H-MOR, H-USY, H-ZSM-5 e MCM-41), óxidos sulfatados e ácido nióbico (Nb₂O₅.nH₂O), que são eficientes em reação de esterificação e podem ser utilizados em reator.⁵³⁻⁵⁸, além de serem aceitáveis a nível ambiental. O uso de heteropoliácidos (HPAs), encontra-se em destaque, embora apresentem baixa área superficial, porém, quando suportados, tornam-se eficientes, sendo comparáveis até mesmo ao H₂SO₄.⁵⁴⁻⁵⁶

As reações de esterificação são reversíveis e, comumente é feita a remoção de água no decorrer do processo, deslocando o equilíbrio no sentido da formação do éster, conforme indicado na equação:⁵³

 $R-OH + R'-COOH \approx R-COO-R' + H_2O$

Oleato de etila tem larga aplicação em cosméticos, aditivos de alimentos, aditivos de diesel, etc. Para sua obtenção, catalisadores baseados em enzimas imobilizadas,⁵⁹ sólidos ácidos (e.g., zeólitas, HPW), anfóteros ou alcalinos (e.g.,

KOH, NaOH) ou ácido p-toluenosulfônico são os mais utilizados, operando em temperaturas de ~45 a 250°C.⁶⁰

Reação de esterificação de ácido oléico com etanol processada sob catalisadores de lípase imobilizada, exibem boa atividade catalítica a 45°C, em um período de 8h.⁶¹ Estudo com diferentes catalisadores em reação de esterificação do ácido oléico com etanol, utilizando polietileno glicol (PEG) como solvente (razão de 1:1 ácido:PEG), na temperatura de ~130°C, mostrou uma maior conversão do ácido com o uso de ácido p-toluenosulfônico (~99%), resina *nafion* (~95%), e ZSM-5 (~90%), mantendo constante após o período de 7h. Porém, a seletividade para o oleato de etila foi de 67% para o ácido p-toluenosulfônico e de ~90% com o uso de resina *nafion* e ZSM-5.⁶²

Nas reações de esterificação, envolvendo catalisador ácido, na primeira etapa ocorre a protonação do ácido carboxílico ou graxo, dando origem a um carbocátion que é atacado por uma molécula de álcool, após interação, há liberação do próton do grupo OH do álcool, ligando-se a um grupo OH ligado ao carbono do ácido carboxílico ou graxo. Em seguida ocorre a liberação de água e, um próton originado na etapa de protonação do ácido (H pertencente ao catalisador ácido) é liberado, produzindo uma molécula do éster, mantendo o sítio ativo do catalisador (Figura 4).

Figura 4. Esquema de esterificação via catálise ácida

1.8. Transesterificação de óleos vegetais com álcoois - biodiesel

O biodiesel (Figura 5) é um combustível biodegradável derivado de fontes renováveis, que pode ser obtido por diferentes processos, tais como, craqueamento, esterificação ou transesterificação (Figura 6). O biodiesel pode ser produzido a partir de gorduras animais ou de óleos vegetais, tais como: soja, mamona, dendê, girassol, babaçu, pinhão manso, milho, etc. que são obtidos nas diferentes regiões agrícolas do Brasil.⁶³⁻⁶⁶

Figura 5. Amostra de biodiesel

 Image: series of the series

Sementes

Figura 6. Produção de biodiesel via transesterificação. 63-66

O biodiesel pode substituir total ou parcialmente o diesel de petróleo em motores movidos a diesel (por exemplo: motores de caminhões, tratores, camionetas, automóveis, geradores de eletricidade, etc), podendo ser usado puro ou misturado ao diesel em diversas proporções. A Lei nº 11.097 de 13 de janeiro de 2005 estabelece a obrigatoriedade da adição de um percentual mínimo de biodiesel ao óleo diesel comercializado ao consumidor em qualquer parte do território nacional. Esse percentual obrigatório foi estipulado em 2% após três anos da publicação da referida Lei e 5% até o ano de 2013.⁶³⁻⁶⁵

1.8.1. Algumas vantagens do uso de biodiesel

Podemos citar algumas vantagens mais citadas na utilização do biodiesel63-66:

- Constitui uma fonte de energia renovável, pois as terras cultiváveis podem produzir uma enorme variedade de oleaginosas (por exemplo: soja, dendê e mamona) como fonte de matéria prima para a produção do biodiesel.
- Reduz a emissão de poluentes gasosos à atmosfera, tais como óxidos de enxofre, metano, etc. Além disso, mantém o ciclo de carbono, pois as plantas capturam o CO₂ emitido pela queima do biodiesel.
- O biodiesel é um produto biodegradável.

1.8.2. Processo de transesterificação

Os catalisadores utilizados na transesterificação de triglicerídeos podem ser ácidos, alcalinos, enzimáticos ou sistemas heterogêneos. Entre os alcalinos temos carbonatos, hidróxidos (NaOH ou KOH), metóxido de sódio ou potássio, os quais se mostram eficientes na produção de biodiesel via rota metílica, exibindo elevada atividade em curto tempo, mesmo operando em baixas condições de temperatura. Entre os catalisadores ácidos, temos o ácido sulfônico, sulfúrico, clorídrico, etc. os quais são mais ativos em condições de temperatura mais elevada e em períodos mais longos de reação. Comumente as reações são processadas com razão alta de álcool/óleo (e.g., com o uso de ácido sulfúrico na reação de etanólise, a 78°C, observa-se a completa conversão num período de 18h, utilizando razão de 30:1 (etanol:óleo).⁶³⁻⁶⁸ A transesterificação é o processo mais utilizado atualmente para a produção de biodiesel. Consiste em uma reação química entre os óleos vegetais ou gorduras animais com o etanol ou metanol, que é ativada por um catalisador. Esta reação gera como produto secundário a glicerina, que possui diversas aplicações na indústria química. Ainda podem ser gerados co-produtos (e.g., torta, farelo etc.), que podem agregar valor e constituir em fonte de renda para o produtor. Com o uso de catalisadores básicos como por exemplo o NaOH pode formar sabão, via reação de saponificação.⁶³⁻⁶⁸

Atualmente, a vantagem da rota etílica no Brasil é devido a oferta de etanol em todo o seu território. Ainda sob o ponto de vista ambiental, o uso do etanol é vantajoso com relação ao metanol que é obtido de derivados do petróleo (embora seja possível obtê-lo a partir da biomassa) e ao o fato do metanol ser bastante tóxico.⁶³

A reação de transesterificação envolve três etapas para a completa conversão do óleo, tendo como produtos intermediários, tanto os diglicerídios, quanto os monoglicerídios.⁶³⁻⁶⁷

Etapa 1: triglicerideo + álcool ≓ diglicerídeo + biodiesel Etapa 2: diglicerideo + álcool ≓ monoglicerídeo + biodiesel Etapa 3: monoglicerideo + álcool ≓ glicerina + biodiesel

A reação pode também ser representada pelo esquema global⁶³⁻⁶⁸

podendo ser catalisada por ácido ou base.

Na catálise ácida, a primeira etapa da reação envolve a protonação da carboxila do éster, formando o carbocátion na etapa 2. O etanol ataca o carbocátion dando origem a um intermediário terciário na etapa 3. Finalmente, na etapa 4, ocorre

um rearranjo do intermediário terciário, formando o éster e a glicerina e regenerando o catalisador (Figura 7). No processo envolvendo catálise básica, a primeira etapa envolve a reação da base com o etanol, desidrogenando o álcool e protonando o catalisador. Em seguida, na segunda etapa, o etóxido ataca o cabono térciário do triglicerídio, formando um intermediário terciário. Na terceira etapa, o intermediário rearranja, formando o éster; depois, o catalisador é regenerado (Figura 8).^{64,65,67}

Figura 7. Esquema de transesterificação via catálise ácida ^{64,65,67}

Figura 8. Esquema de transesterificação via catálise básica. 64,65,67

Os objetivos deste trabalho foram preparar e caracterizar sistemas contendo:

- Pentóxido de nióbio suportado em sílica-alumina;
- Óxido de cobre e pentóxido de nióbio suportado em sílica-alumina;
- Pentóxido de nióbio suportado em cinza de casca de arroz (CCA) cristalina ou amorfa;
- Óxido de cobre suportado em cinza de casca de arroz amorfa.

Além das preparações e caracterização, teve como objetivo investigar as transições de fases nos sistemas de pentóxido de nióbio suportado em sílicaalumina e avaliar o potencial catalítico de alguns dos sistemas em reações de esterificação de ácidos graxos e carboxílico com álcoois e/ou transesterificação de óleo de soja com etanol.

1.10. Justificativas

O interesse no estudo dos sistemas contendo nióbio decorre da sua importância em catálise, os quais são utilizados em várias reações. A associação do pentóxido de nióbio ao óxido de cobre em sílica-alumina se deu no intuito de fazer um estudo das possíveis influências do óxido de cobre sobre as espécies de pentóxido de nióbio, visando obter um catalisador com melhor potencial catalítico, para processos de oxidação-redução e catálise ácida.

A impregnação do pentóxido de nióbio ou óxido de cobre(II) em cinza de casca de arroz foi realizada em função da disponibilidade enorme de casca de arroz como subproduto do cultivo do arroz, nas regiões agrícolas do Brasil. Além disso, cinza de casca de arroz após calcinação dá origem a um material com alto teor em sílica, podendo ser utilizada na síntese de catalisadores suportados, obtendo materiais com boa dispersão das espécies superficiais, e atividade catalítica elevada em determinados processos catalíticos.

Os diferentes teores em massa de óxido suportado (2-25%) teve como intuito avaliar a formação da monocamada, investigar as diferentes espécies formadas na superfície dos sólidos e possivelmente fazer uma correlação com a atividade catalítica do sistema. Após investigação preliminar da formação da monocamada, alguns sistemas foram preparados apenas com o teor de 10% em massa, justamente por ser esta uma quantia que possibilita este limite.

O complexo amoniacal de nióbio (NH₄[NbO(C₂O₄)₂(H₂O)₂] n·H₂O), disponível no laboratório de catálise (doado pela Companhia Brasileira de Metalurgia e Mineração - CBMM), foi utilizado como precursor de nióbio por ser solúvel em água (solvente ecologicamente correto), decompor termicamente em baixa temperatura e ainda por ser muito utilizado em estudos realizados por vários grupos de pesquisas. O NbCl₅ foi utilizado como precursor de nióbio com o intuito de poder fazer uma comparação com os catalisadores preparados utilizando o oxalato amoniacal de nióbio.

Na caracterização dos sistemas, foram utilizadas as seguintes técnicas: difração de raios-X (DRX), espectroscopia na região do infravermelho (MIR e DRIFTS), espectroscopia Raman, ressonância magnética nuclear (RMN) e análises térmicas (TG-DTA e calorimetria em fase líquida de adsorção com piridina). O uso destas técnicas teve como objetivo investigar as possíveis interações existentes entre as espécies de cobre, nióbio e o suporte, como os tipos de estruturas formadas na superfície dos catalisadores baseados em Nb₂O₅/SiO₂-Al₂O₃, CuO/Nb₂O₅/SiO₂-Al₂O₃, Nb₂O₅/CCA e CuO/CCA, além de poderem apontar uma possível aplicação catalítica dos sistemas em estudo.

Os testes catalíticos realizados: (i) esterificação de ácido acético com diferentes álcoois, (ii) esterificação de ácido oléico com etanol e (iii) transesterificação de óleo de soja com etanol ou metanol, objetivaram fazer uma complementação do potencial catalítico de aplicação destes sistemas em estudo.

CAPÍTULO II

METODOLOGIA

2. METODOLOGIA

2.1. Síntese dos catalisadores

2.1.1. Síntese dos catalisadores estudados no capítulo 3

2.1.1.1. Catalisadores de Nb₂O₅/SiO₂-Al₂O₃ em meio aquoso

Os catalisadores de Nb₂O₅/SiO₂-Al₂O₃ com teores de 2, 5, 10, 15 e 25% em massa de Nb₂O₅ foram preparados via impregnação aquosa com razão em massa de 1:10 (sólido:água), utilizando como precursor de nióbio, NH₄[NbO(C₂O₄)₂(H₂O)₂]nH₂O (CBMM). Foi adicionado água destilada em um balão contendo oxalato amoniacal de nióbio e sílica-alumina (Aldrich, tratada a 550 °C por 12h), mantendo o sistema sob agitação a 80 °C até completa evaporação da água. Os sólidos resultantes foram pulverizados e secos em estufa a 150 °C/2h.

2.1.2. Síntese dos catalisadores estudados no capítulo 4

2.1.2.1. Catalisadores de Nb₂O₅/SiO₂-Al₂O₃ preparados em solvente orgânico

Os catalisadores de Nb₂O₅/SiO₂-Al₂O₃ contendo teores de 5, 10, 15 e 25% em massa do Nb₂O₅ foram sintetizados adicionando solvente (diclorometano ou solução alcoólica de ácido acético 0,5 mol/L, na razão de 1:10 sólido:solvente) em um balão contendo pentacloreto de nióbio (CBMM) e sílica-alumina (Aldrich) previamente tratada a 550°C. O sistema foi mantido em refluxo por 19h sob atmosfera de N₂ a 70°C (diclorometano) ou a 80°C (em solução alcoólica de ácido acético 0,5mol/L). Após refluxo, os sólidos foram filtrados e lavados com solução de HNO₃ 1mol/L e água destilada. Em seguida foram tratados a 100°C por 4h em estufa e, posteriormente, calcinados nas temperaturas de 300 e 800°C.

2.1.2.2. Catalisadores preparados em meio aquoso

Os catalisadores de Nb₂O₅/SiO₂-Al₂O₃ com teores de 5, 10, 15 e 25% em massa de Nb₂O₅ foram preparados via impregnação aquosa, utilizando como precursor de nióbio o NH₄[NbO(C₂O₄)₂(H₂O)₂]nH₂O (CBMM). Foi adicionado água em um balão contendo oxalato amoniacal de nióbio e sílica-alumina (razão de 1:10
sólido:solvente), sendo o sistema submetido a 80 °C. Os sólidos resultantes foram pulverizados, lavados com solução de HNO₃ 1mol/L e água destilada, e então secos em estufa a 100 °C/4h, para posteriormente serem calcinados.

A Tabela 3 resume as condições de síntese para cada catalisador, individualmente.

Tabela 3. Principais condições de síntese dos catalisadores preparados em meio aquoso e orgânico.

Denominação	Método	Solvente/precursor
*NbSiAl-DM	grafitização	diclorometano/pentacloreto de nióbio
* NbSiAI-ET	grafitização	solução alcoólica de ácido acético (0,5mol/L)/pentacloreto de nióbio
* NbSiAI-AQ	impregnação	água/oxalato amoniacal de nióbio

*composição: 5%Nb₂O₅/95%SiO₂-Al₂O₃; 10%Nb₂O₅/90%SiO₂-Al₂O₃; 15%Nb₂O₅/85%SiO₂-Al₂O₃ e 25%Nb₂O₅/75%SiO₂-Al₂O₃.

As amostras de sílica-alumina (Aldrich, 12% Al_2O_3) foram calcinadas a 550°C/5h em ar (estático) em um forno elétrico da Sybron Thermolyne (modelo FA 1630) com taxa de aquecimento de ~13 °C/min.

Os catalisadores de pentóxido de nióbio suportado em sílica-alumina foram tratados a 100°C/2h em estufa, e calcinados a 300°C/6h e 800°C/3h em forno mufla (Thermolyne) com taxa de aquecimento de ~13 °C/min sob atmosfera de ar (estático).

2.1.3. Síntese dos catalisadores estudados no capítulo 5

2.1.3.1. Catalisadores de CuO/Nb₂O₅/SiO₂-Al₂O₃ preparados em meio aquoso pelo método de co-impregnação

Os sistemas suportados contendo pentóxido de nióbio, óxido de cobre(II) e sílica-alumina foram obtidos via co-impregnação, com razão em massa de 1:1 e 1:10

em CuO:Nb₂O₅. Ambos foram preparados adicionando-se a um balão de 100 mL sílica-alumina (Aldrich 12% de Al₂O₃, calcinada a 550 °C/12h), oxalato amoniacal de nióbio (CBMM) e nitrato de cobre(II) trihidratado (Vetec). Em seguida, adicionou-se água destilada (razão sólido:solvente de 1:10), mantendo-se o sistema sob agitação a ~ 80 °C, até evaporação da água. Posteriormente, os sólidos foram tratados a 120 °C/ 24h sob vácuo e calcinados em 300 e 800 °C/ 6h em ar.

2.1.3.2. Catalisadores de CuO/Nb₂O₅/SiO₂-Al₂O₃ preparados em meio aquoso pelo método de impregnação seqüencial

Os sistemas suportados contendo pentóxido de nióbio e óxido de cobre(II) em sílica-alumina, obtidos via impregnação seqüencial, contendo razão em massa de 1:10 em CuO:Nb₂O₅ foram preparados impregnando-se primeiramente o pentóxido de nióbio, utilizando razão sólido:solvente de 1:10. Após o sólido resultante ser tratado a 600 °C/ 2h, impregnou-se o óxido de cobre, mantendo-se os sistemas sob agitação a ~80 °C, até secagem da água; posteriormente, os sólidos foram tratados a 120 °C/ 24h sob vácuo e calcinados em ar a 300 ou 800 °C/ 6h.

Foram utilizados como material de partida sílica-alumina (Aldrich 12% de AI_2O_3 , calcinada a 550 °C/12h), oxalato amoniacal de nióbio (CBMM) e nitrato de cobre(II) trihidratado (Vetec).

As Tabelas 4 e 5 mostram as proporções dos precursores utilizados nas sínteses e também, as composições químicas dos óxidos de cobre(II), pentóxido de nióbio e sílica-alumina nos catalisadores.

Tabela 4. Proporções em massa do óxido de cobre(II), pentóxido de nióbio e sílicaalumina contendo razão em massa de 1:10 em CuO:Nb₂O₅, preparados por impregnação seqüencial e co-impregnação.

Amostras	CuO(% em massa)	Nb ₂ O ₅ (% em massa)	SiAl (% em massa)
0,5Cu5Nb94,5SiAl	0,5	5	94,5
1,0Cu10Nb89SiA1	1,0	10	89,0
1,5Cu15Nb83,5SiA1	1,5	15	83,5

Tabela 5. Proporções em massa do óxido de cobre(II), pentóxido de nióbio e sílicaalumina contendo razão em massa de 1:1 em CuO:Nb₂O₅, preparados por coimpregnação.

Amostras	CuO(% em massa)	Nb ₂ O ₅ (% em massa)	SiAl (% em massa)
2Cu2Nb96SiAl	2	2	96,0
5Cu5Nb90SiAl	5	5	90,0
10Cu10Nb80SiAl	10	10	80,0
15Cu15Nb70SiAl	15	15	70,0

Amostras de sílica-alumina (Aldrich, 12% Al_2O_3) foram tratadas a 550°C/12h, em ar, utilizado um forno elétrico da EDG3PS (modelo EDG 3000), com rampa de aquecimento de 14°C/min. Esse processo serve para converter a sílica-alumina amoniacal para a forma protônica.

Os catalisadores preparados foram tratados a 120°C/ 24h sob vácuo, num forno da National Appliance Company (modelo 5830-4), com rampa de aquecimento de 5°C/min. Posteriormente, eles foram calcinados em 300 ou 800°C/ 6h, em ar, em um forno EDG3PS (modelo EDG 3000), com rampa de aquecimento de 14°C/ min.

2.1.4. Síntese dos catalisadores estudados no capítulo 5

2.1.4.1. Os catalisadores contendo Nb₂O₅ suportado em cinza de casca de arroz (CCA) cristalina

Os catalisadores contendo Nb₂O₅ suportado em cinza de casca de arroz (CCA) cristalina com teores de 5, 10, 15 e 25% em massa de Nb₂O₅, preparados via impregnação incipiente, tiveram como precursor o oxalato amoniacal de nióbio (CBMM). Na síntese, foram adicionados a um béquer: CCA cristalina tratada a 1000°C/3h, oxalato amoniacal de nióbio, macerando-os, em seguida teve a adição de água (quantidade aproximadamente igual ao volume dos poros do suporte). Os sistemas foram mantidos em um dessecador/48h. Depois, os sólidos foram tratados a 100°C/2h e calcinados em 300 ou 800°C/6h (taxa de aquecimento: 14°C/min) em um forno EDG3PS (modelo EDG 3000).

2.1.4.2. Os catalisadores contendo Nb₂O₅ suportado em cinza de casca de arroz (CCA) amorfa

O catalisador contendo Nb₂O₅ suportado em cinza de casca de arroz (CCA) amorfa com teor de 10% em massa de Nb₂O₅, preparado via impregnação incipiente, teve como precursor o oxalato amoniacal de nióbio. O sistema foi mantido em um dessecador/48h e depois foi feita a calcinação a 300°C por 6h com uma taxa de aquecimento de 14°C/min em um forno (EDG3P-S, modelo EDG 3000).

2.1.5. Síntese do catalisador estudado no capítulo 6 : catalisador de CuO/CCA amorfa

O catalisador contendo CuO suportado em cinza de casca de arroz (CCA) amorfa com teor de 10% em massa de CuO, preparado via impregnação, teve como precursor o sulfato de cobre(II) pentahidratado (Vetec). Na síntese, foram adicionados a um béquer: CCA amorfa e sulfato de cobre(II), pulverizando-os. Em seguida, adicionou-se água (20 mL). O sistema foi mantido a 80 °C por 30 min. Então, foi adicionado 20 mL de uma solução aquosa de NaOH (0,3 mol/L), mantendo o sistema na mesma temperatura. Após evaporação da água, o sólido foi macerado e calcinado a 300°C (14°C/min) em um forno (EDG3P-S, modelo EDG 3000).

2.2. Técnicas de caracterização

2.2.1. Análises térmicas (TG-DTA)

As curvas de TG-DTA foram feitas sob atmosfera de nitrogênio (99,999%), com um fluxo de 110 mL/min, em um termoanalisador simultâneo TG-DSC modelo SDT 2960 da TA Instruments, com rampa de aquecimento de 10° C/min, da temperatura ambiente até 1400°C, utilizando 20mg de amostra em um cadinho de platina e α -alumina como referência.

2.2.2. Difração de raios-X (DRX)

As análises de DRX das amostras foram realizadas em um difratômetro de raios-X, Rigaku D/Max-2A/C, com radiação CuK α = 1,5418 Å, ângulo 2 θ variando de 2 a 60° e varredura de 1,8°/min. As fases cristalinas foram identificadas por comparação com os dados da literatura e com os padrões de DRX do banco de

dados PDF do ICDD software JADE 3.0. Fase TT-Nb₂O₅ (PDF 20-0217); T-Nb₂O₅ (PDF 30-0873), M-Nb₂O₅ (PDF 30-0872) e H-Nb₂O₅(PDF 431042); CuO (PDF 05-0661) e, CuNb₂O₆(PDF 45-0561).

2.2.3. Infravermelho médio (FTIR)

Os espectros das amostras foram obtidos com 128 varreduras e resolução de 4cm⁻¹ em pastilhas de KBr contendo 1% em massa das amostras. As análises foram realizadas sob condições ambientes, utilizando um espectrômetro Bruker Equinox 55.

2.2.4. Espectroscopia por reflectância difusa (DRIFTS)

Os espectros de DRIFTS das amostras foram obtidos após as amostras serem aquecidas a 450° C/30min em uma célula de aquecimento (Harrick) sob atmosfera de N₂, com 256 varreduras e resolução de 4cm⁻¹ na temperatura de 450° C, utilizado um espectrômetro Bruker Equinox 55.

2.2.5. FTRaman

Os espectros das amostras foram obtidos sob condições ambientes, com 128 varreduras, resolução de 4cm⁻¹, comprimento de onda e potência do laser (Nd-YAG) de 1064 nm e 126 mW, respectivamente, utilizando um espectrômetro Bruker Equinox 55.

2.2.6. Medidas calorimétricas

Os dados de calorimetria foram obtidos utilizando um calorímetro ISC modelo 4300 da Calorimetry Science Coorporation, usando o procedimento seguinte: dentro de uma câmara inerte com nitrogênio seco, 0,5 g de amostras foram transferidas para uma célula de um calorímetro isoperibol, seguida pela adição de 50 mL de ciclo-hexano anidro. Usando uma seringa calibrada (Hamilton, 5 mL) contendo uma solução de concentração conhecida de piridina (por exemplo, 0,1 mol/L), a titulação do sólido com piridina foi efetuada. As condições do banho termostático era regulado em 26,000 °C. O calorímetro era conectado a um computador e, os calores de reação foram medidos pelo uso de uma curva de calibração gerada antes ou depois de cada titulação. Os calores medidos eram calculados baseados no programa de aquisição e análise dos dados fornecidos pelo fabricante do equipamento.

2.2.8. Medidas de RMN de ¹H

As medidas de RMN de ¹H foram obtidas a 7,05 T em um espectrômetro Mercury Plus da Varian usando CDCl₃ como solvente. Os espectros foram coletados em um pobre de 5mm da Varian com duração de pulso de $\pi/4$, tempo de repetição de 1,4 s e 16 varreduras. Foi utilizado TMS (δ 0,0) como padrão interno.

2.3.Testes catalíticos

2.3.1. Reações de esterificação de ácido acético com álcoois

As reações de esterificação de ácido acético com etanol, n-butanol e isopentanol, foram processadas em fase líquida, sob refluxo, utilizando razão molar de 2:1 (ácido:álcool) e 0,2g de catalisador previamente calcinado em 300°C/6h. Os produtos coletados, após 8h de reação, foram analisados em um cromatógrafo a gás da Shimadzu modelo 17A, contendo uma coluna capilar de sílica fundida de 50m e, detector de ionização por chama (FID).

2.3.2. Reações de esterificação de ácido oléico com etanol

As reações de esterificação de ácido oléico com etanol foram processadas no período de 4 e 24h em autoclave (reator de aço com copo de teflon) a ~185°C, com razão molar de 1:6 (ácido:álcool) e 10% em massa do catalisador em relação à massa do ácido oléico, utilizando catalisador calcinado em 300°C ou 800°C. Após a reação, o produto foi lavado com solução 5% de NaCl, seco com MgSO₄, identificado por CG/MS (Shimadzu modelo QP5050A) e quantificado por RMN de ¹H.

2.3.3. Reações de transesterificação de óleo de soja com etanol

As reações de transesterificação de óleo de soja com etanol foram processadas no período de 22h em reator de aço com copo de teflon (autoclave) (Figura 9), em uma estufa a ~200°C (Figura 10), sem agitação, utilizando razão molar de 1:4; 1:6 e 1:30 (óleo de soja:álcool) e 10% em massa do catalisador (calcinado em 300°C) em relação à massa do óleo utilizado no processo. Após a reação, o produto foi filtrado, lavado com solução 5% de NaCl, seco com MgSO₄, identificado por CG/MS (Shimadzu modelo QP5050A) e quantificado por RMN de ¹H.

Figura 9. Reator de aço (autoclave).

Figura 10. Estufa utilizada nas reações.

CAPÍTULO III

TRANSIÇÃO DE FASE NOS SISTEMAS DE Nb₂O₅/SiO₂-Al₂O₃

3. DISCUSSÃO DOS RESULTADOS

3.1. Análise preliminar

A monocamada teórica de Nb₂O₅ em sílica-alumina (475 m²g⁻¹) é aproximadamente 39.6 % em massa de óxido, que pode ser calculada com base na dimensão da unidade de cristal do Nb₂O₅ divulgado na literatura (0.32 nm²).⁶⁹ Todavia, com base experimental estabelecida pelas análises de DRX e Raman a monocamada real é obtida com teores em torno de 10 a 15% de Nb₂O₅ suportado.¹² Deste modo, os materiais com 2 e 5% em massa de Nb₂O₅ estão abaixo da monocamada, enquanto aqueles com 15-25% estão acima da monocamada.

A fim de observar a decomposição do precursor no suporte, estudos prévios revelaram que o oxalato amoniacal de nióbio puro apresenta-se cristalino e apresenta-se amorfo em temperaturas de aquecimento de 300-400 °C por 6h. A ausência de cristalinidade também foi observada para o Nb₂O₅/SiO₂-Al₂O₃ quando aquecido a 300 °C por 6h. Deste modo, a decomposição de grupos oxalato é esperada acontecer até 300°C e é altamente dependente do grau de interação com o suporte durante o tratamento térmico.

3.2. Análise térmica simultânea (TG-DTA)

As curvas de DTG de Nb₂O₅/SiO₂-Al₂O₃ são apresentados na Figura 11 e exibem um perfil que depende do teor inicial do precursor de nióbio. Para as amostras com baixo teor 2-10 % em massa de Nb₂O₅ existe um pico de perda de massa centrado em ~62°C associado à remoção de água adsorvida fisicamente e um outro pico em ~300°C associado à remoção de água de coordenação e decomposição do oxalato, respectivamente. Por outro lado, as amostras com 15-25% em massa mostram um deslocamento no máximo de temperatura para valores mais altos em torno de 200-400 °C (com picos em 202, 280 e 353 °C), associando a todos estes eventos à decomposição do oxalato amoniacal de nióbio, além de remoção de água de coordenação, conforme análises de FTIR das amostras calcinadas até 400 °C.¹²

As curvas de DTA (Figura 12) exibem para as amostras com 15-25 %, um grande pico endotérmico com máximo em torno de 70 °C (30-150 °C) relativo à remoção de água adsorvida fisicamente. Além disso, exibe um pico endotérmico em

aproximadamente 206 °C e outros exotérmicos em 319, 356 e ~ 1364 °C, atribuídos à desorção de amônia, decomposição de oxalato e uma transição de fase do Nb₂O₅ (por não apresentar perda de massa na curva de DTG), respectivamente. Para as amostras de 2-10%, o perfil das curvas de DTA não exibe picos referentes à decomposição de precursor, provavelmente por causa do baixo teor inicial de oxalato. Além disso, nenhuma transição de fase foi observada para a amostra contendo 2 %.

Para o Nb₂O₅/SiO₂-Al₂O₃ em amostras pré-calcinadas a 800°C o pico de transição de fase foi observado em torno de 1356 °C,¹² indicando que a prévia calcinação facilita a formação dos cristalitos de Nb₂O₅. Esta transição de fase é atribuída para o Nb₂O₅, pois o SiO₂-Al₂O₃ puro não mostrou qualquer evento térmico na faixa de temperatura estudada. A caracterização da fase cristalina formada no experimento de TG/DTA foi analisada pelas técnicas de DRX, FTIR e Raman.

Figura 11. Curvas de DTG das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f).

Figura 12. Curvas de DTA das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f).

3.3.Difração de raios-X

As amostras contendo 15-25% de Nb₂O₅ exibiram reflexões que tiveram contribuições predominantemente de estrutura cristalina monoclinica (H e M-Nb₂O₅) junto com ortorrômbica (T-Nb₂O₅) (Figura 13d-f). O suporte proporciona menor mobilidade para o Nb₂O₅ por causa de sua interação com a sílica-alumina. Deste modo, a mobilidade do Nb₂O₅ suportado, relativo a transições de fase, diminui quando comparado ao Nb₂O₅ puro, o qual pode formar uma fase cristalina (T-Nb₂O₅) que é obtida em uma temperatura mais baixa de calcinação. Esta reatividade é dependente do grau de cobertura¹² e, a exibição de fases que se formam em temperaturas mais altas (H e M-Nb₂O₅) é atribuída a uma interação mais fraca com o suporte. ¹² Isto é demonstrado pelo comportamento das amostras suportadas com 2-10 % de Nb₂O₅, as quais formam uma estrutura predominantemente ortorrômbica (fase T) enquanto que a presença de estrutura monoclinica (fases M e H) predomina nas amostras suportadas com 15-25 % de Nb₂O₅, Figura 13a-c.

Figura 13. DRX das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA.

3.4. Espectroscopia FTIR e FTRaman

As mudanças nos espectros de IR dos sistemas de Nb₂O₅ em sílica-alumina obtidos depois de calcinação as 800°C são mais sutis,¹² mas a exibição de absorções novas foram observadas após o experimento de TG/DTA. A sílica-alumina tem picos intensos em ~ 1096 cm⁻¹ (v_{as} Si-O), com um ombro ~ 1200 cm⁻¹, ~ 930 cm-1 (v Si-O⁻), ~ 805 cm⁻¹ (v_s Si-O), e picos com baixas intensidades em ~ 720 cm⁻¹ (v Al-O), ~ 576 cm⁻¹ (δ Si-O⁻), e ~ 467 cm⁻¹ (δ Si-O-Si).⁷⁰. As amostras contendo Nb₂O₅ suportado (15-25 %) depois das análises térmicas mostraram absorções adicionais (Figura 14). Estas absorções em ~ 950 e 850 cm⁻¹ (v Nb=O, referentes aos octaedros altamente distorcidos NbO₆), ~ 714 cm⁻¹ (Nb-O-Nb), e ~ 620 cm⁻¹ (v Nb-O, referentes aos octaedros moderadamente distorcidos NbO₆).⁷¹ Estas absorções são associadas ao Nb₂O₅ puro.

Para as amostras suportadas com mais baixo teor (2-10 %) algumas destas absorções mostram-se presentes. As principais são em 990, 790, 620 e 490 cm⁻¹ (exceto a amostra de 10 %, que tem uma banda adicional em 850 cm⁻¹). Estas amostras estão com teor abaixo da cobertura da monocamada, e deste modo estas faixas são referentes à presença de espécies isoladas ou polimerizadas de Nb₂O_x na superfície da sílica-alumina.¹²

Figura 14. Espectros FTIR das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA.

Evidência adicional de interações das espécies de óxido de nióbio com a sílica-alumina foi observada nos espectros Raman (Figura 15). A sílica-alumina tem bandas Raman fracas¹² na faixa de 400-1000 cm⁻¹. As amostras contendo Nb₂O₅ suportado (15-25%), depois dos experimentos de análises térmicas, mostraram bandas em 933 cm⁻¹ (com ombros em 955 995 cm⁻¹), e bandas com baixas intensidades em 795, 729, 605 cm⁻¹. Estas bandas são atribuídas às ligações terminais Nb=O, existentes em octaedros altamente distorcidos NbO₆, espécies, Nb-O em octaedros moderadamente distorcidos NbO₆, espécies poliédricas de NbO₇ e NbO₈ e deformações angulares Nb-O-Nb, respectivamente.^{26,31,72}

O espectro Raman do Nb₂O₅ sugere a formação da fase H, após experimento de TG/DTA evidenciada pela presença de uma banda em 995 cm⁻¹.^{73,74} Deste modo, a junção da espectroscopia Raman com a análise de DRX fortalece a atribuição da fase H-Nb₂O₅ ser a predominante depois de experimentos de análise térmica. As amostras com teor mais baixo (2-10%) as bandas são consistentes com a presença de espécies superficiais isoladas e polimerizadas (bandas principais em 940 e 630 cm⁻¹), exceto a amostra com 2 % que apresenta bandas muito largas, consistente para materiais com espécies altamente dispersas de Nb₂O_x.¹²

Figura 15. Espectros FTRaman das amostras de Nb₂O₅/SiO₂-Al₂O₃: 2 (a), 5 (b), 10 (c), 15 (d), 20 (e) e 25% em massa de Nb₂O₅ (f), depois dos experimentos de TG/DTA.

3.5. CONCLUSÕES

As análises simultâneas de TG-DTA de Nb₂O₅/SiO₂-Al₂O₃ mostraram uma transição de fase em 1364 °C (valor médio), que com base em estudos de DRX, FTIR e Raman foi atribuída a uma mistura de estruturas ortorrômbica (T) e monoclinica (H e M). Em contraste com a formação de uma estrutura monoclinica (fase H) quando Nb₂O₅ puro é aquecido nas mesmas condições. A fase T predomina nas amostras com baixo teor (2-10 %) enquanto que a fase H é dominante nas amostras contendo alta cobertura do suporte (15-25 %).

Capítulo IV

ESTERIFICAÇÃO DE ÁCIDO ACÉTICO COM ÁLCOOIS USANDO CATALISADORES DE Nb₂O₅/SiO₂-Al₂O₃.

4. DISCUSSÃO DOS RESULTADOS

4.1. Difração de raios-X

Preparação de catalisadores de Nb₂O₅/SiO₂-Al₂O₃ baseados em impregnação com oxalato amoniacal de nióbio foi divulgado recentemente.¹² Neste caso, a estabilidade dos novos catalisadores foi comparada a do Nb₂O₅ puro que é amorfo até ~450 °C. O Nb₂O₅ suportado em SiO₂-Al₂O₃ mostrou muito mais resistência para formar uma fase cristalina. Quando calcinado a 800° C/3h, o Nb₂O₅ exibiu uma mistura das fases T, M e H. Além disso, foi possível descobrir formas cristalinas para o Nb₂O₅ que poderia indicar que o limite da monocamada foi atingido.

Dados de DRX das amostras de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM e NbSiAl-ET) contendo teor de 5, 10, 15 e 25% em massa de Nb₂O₅ e calcinadas a 800°C, são mostrados nas Figuras 16 e 17. Pode-se observar nos catalisadores de NbSiAl-DM, Figura 16 (a-d), reflexões características da fase T-Nb₂O₅, com crescente aumento na intensidade dos picos ($2\theta = 22,6$; 28,4; 28,9; 36,6 e 46,3°) à medida que aumenta o teor de Nb₂O₅. A formação da fase T-Nb₂O₅ evidencia uma considerável estabilidade dos cristais de Nb₂O₅ na superfície da sílica-alumina, embora tenha se formado uma estrutura cristalina já com baixo teor de Nb₂O₅ (5% em massa). Nas amostras de NbSiAl-ET, Figura 17 (a-d) pode-se observar a existência de picos ($2\theta \sim 22,8$; 22,6, 28,4; 28,9 e 36,6°) característicos de reflexões da fase T-Nb₂O₅. Isso leva a propor que nos catalisadores NbSiAl-ET, as partículas de óxido de nióbio se encontram com menor estabilidade na superfície da sílica-alumina do que os catalisadores de NbSiAl-DM.

Nas amostras de NbSiAl-AQ (Figura 18), foram observadas a existência de fases cristalinas somente naquelas contendo 15 e 25 % em massa de Nb₂O₅, cujas reflexões são características de uma mistura das fases T, M e H-Nb₂O₅. Os resultados sugerem que uma interação mais forte entre o pentóxido de nióbio e a sílica-alumina acontece pelo processo de grafitização, comparada à impregnação aquosa. Isto baseado principalmente na mobilidade mais baixa dos cristais de Nb₂O₅ na superfície da sílica-alumina via método de grafitização. Como a estrutura ortorrômbica (fase T) foi a predominante nestas preparações, pode sugerir uma interação mais forte entre Nb₂O₅ e a sílica-alumina no processo de grafitização do

que na impregnação em meio aquoso, que teve a formação de uma mistura de estruturas ortorrômbica (T) e monoclínica (M e H). Isto porque a estrutura monoclínica é formada em temperatura mais alta do que a ortorrômbica, evidenciando que a fase formada em temperatura mais alta exibe interação mais fraca das espécies superficiais de óxido de nióbio com o suporte¹⁶. Pode-se sugerir uma maior dispersão das espécies de óxido de nióbio na superfície da sílica-alumina nas preparações em meio aquoso, por haver formação de fases cristalinas com teor mais alto (acima de 10% em massa). Estas fases foram identificadas comparando os arquivos PDF do ICDD com os diferentes padrões de difração do Nb₂O₅.

Figura 16. DRX de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

Figura 17. DRX de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-ET) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

Figura 18. DRX de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-AQ) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

4.2. Análises térmicas (TG/DTA)

As curvas de DTA das amostras de pré-calcinadas de $Nb_2O_5/SiO_2-Al_2O_3$ (NbSiAl-DM e NbSiAl-ET) contendo teores de 5, 10, 15 e 25% em massa de Nb_2O_5 são mostradas na Figura 19.

Figura 19. Curvas de DTA de Nb₂O₅/SiO₂-Al₂O₃: NbSiAl-DM contendo (a) 5%, (b) 10%, (c) 15% e (d) 25% e NbSiAl-ET contendo: (e) 5%, (f) 10%, (g) 15% e (h) 25% em massa de Nb₂O₅/SiO₂-Al₂O₃.

As amostras de NbSiAI-DM (Figura 19c-d), contendo 15 e 25% do óxido apresentam pequenos picos exotérmicos em 1360°C (15%) e em 1363°C (25%), possivelmente associados à formação da fase H-Nb₂O₅.^{29,75} A ausência dos referidos picos nas amostras contendo 5 e 10% evidencia maior estabilidade térmica das espécies de óxido de nióbio em NbSiAI-DM. As curvas de DTA das amostras de NbSiAI-ET, (Figura 19e-f), mostraram os mesmos picos exotérmicos, nas amostras contendo 5 e 10% (~1343 °C), 15% (~1353°C) e de 25% (~1306°C), indicando que a transição de fase do Nb₂O₅ nestes catalisadores ocorre em temperaturas moderadamente mais baixas.

Nas amostras de NbSiAl-AQ (Figura 20), as curvas de DTA mostram, do mesmo modo, a existência do pico referente à transição de fase, sendo o mesmo destacado em ~1349°C para a amostra de 5%, em 1353°C na de 10%, 1354°C para 15% e em 1362 °C no caso da amostra de 25%. Isto leva a sugerir que nos catalisadores preparados em solução alcoólica de ácido acético ocorre uma fraca interação das espécies de óxido de nióbio com o suporte e uma interação ligeiramente superior naquelas preparadas em meio aquoso. Por outro lado, foi evidenciado que quando os catalisadores são preparados em diclorometano, ocorre uma maior interação das espécies de óxido de nióbio com o suporte, isto evidenciado pela formação de fase cristalina T-Nb₂O₅ (fase estável em baixa temperatura (~600°C)) nas análises de DRX das amostras calcinadas a 800°C.

Figura 20. Curvas de DTA de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-AQ) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

As curvas de DTG, Figura 21 (a-h), das amostras de NbSiAl-DM, NbSiAl-ET e NbSiAL-AQ, Figura 22 (a-d), contendo 5-25% em massa de Nb₂O₅, exibem picos relacionados à remoção de água adsorvida fisicamente (em ~ 100° C), mostrando a ausência de perda de massa entre ~1300-1400°C, confirmando, portanto, que os picos entre ~1300-1400°C, exibidos anteriormente nas curvas de DTA, correspondem a uma transição de fase do Nb₂O₅.

Figura 21. Curvas de DTG de Nb₂O₅/SiO₂-Al₂O₃: NbSiAl-DM contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% e NbSiAl-ET contendo: (e) 5%, (f) 10%, (g) 15% e (h) 25% em massa de Nb₂O₅/SiO₂-Al₂O₃.

Figura 22. Curvas de DTG de Nb₂O₅/SiO₂-Al₂O₃: NbSiAl-AQ contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

4.3. Espectroscopia FTIR, DRIFTS e FTRaman

Na Figura 23 são mostrados os espectros de FTIR das amostras de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM e NbSiAl-ET) contendo 5%, 10%, 15% e 25% em massa de Nb₂O₅ e calcinadas em 800°C/3h. São observadas absorções em ~ 1200, 1094, 803, 567 e 467 cm⁻¹. As vibrações em ~1200 e 1094 cm⁻¹ são atribuídas às ligações Si-O; em 803 cm⁻¹, às ligações O-Si-O e em ~463 cm⁻¹, às ligações Si-O-Si. Os pequenos ombros com absorções em ~903 e 567 cm⁻¹ foram associados às vibrações Si-O⁻, as quais, provavelmente, estão interagindo com as espécies superficiais de óxido de nióbio. Os espectros de FTIR das amostras de NbSiAl-AQ apresentam as mesmas absorções apresentadas pelas amostras preparadas em solvente orgânico (NbSiAl-DM e NbSiAl-ET).²⁹

Figura 23. Espectros de FTIR de Nb₂O₅/SiO₂-Al₂O₃: NbSiAl-DM contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% e NbSiAl-ET contendo: (e) 5%, (f) 10%, (g) 15% e (h) 25% em massa de Nb₂O₅.

Em todos os espectros observa-se a ausência de absorções das espécies de óxido de nióbio, isto pelo fato da sílica-alumina exibir forte absorção. Porém, uma mudança mais proeminente acontece nas absorções da sílica-alumina em relação aos sistemas de Nb₂O₅/SiO₂-Al₂O₃ onde em 930 cm⁻¹ (deslocado para 903 cm⁻¹) e 576 cm⁻¹ (deslocado para 567 cm⁻¹). Estes deslocamentos podem ser explicados pela reação do precursor de nióbio com os grupos Si-O⁻ (quando hidratado gera grupos Si-OH), formando as ligações Si-O-Nb. Estas novas ligações proporcionam uma vibração com energia mais baixa por causa da maior eletronegatividade do Nb

em relação ao H. A Tabela 6 apresenta as principais bandas de absorção e os modos vibracionais associados a elas.

Tabela 6. Principais absorções nos espectros de FTIR presentes nas amostras dos catalisadores de Nb₂O₅/SiO₂-Al₂O₃ calcinados em 800 $^{\circ}$ C/3h.

Número de onda (cm ⁻¹)	Vibração
1200, 1094, 803	v (Si-O)
467	δ (Si-O-Si)
903 e 567	ν (Si-O ⁻)

Os espectros de DRIFTS das amostras de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM e NbSiAl-ET) contendo 5%, 10%, 15% e 25% em massa de Nb₂O₅ e calcinadas a 800° C, são mostrados nas Figuras 24, 25 e 26. Observam-se nas amostras de NbSiAl-DM e NbSiAl-ET, um consumo gradativo dos grupos OH pertencentes aos grupos silanóis isolados (Si-OH) do suporte, evidenciado pela redução na intensidade da banda em ~3738-3740 cm⁻¹, à medida que aumenta o teor de óxido de nióbio impregnado.

A sílica-alumina na forma protônica tem duas absorções importantes: ~3740 cm⁻¹ (grupos silanóis isolados), e ~3580 (grupos silanóis com ligações de hidrogênio). Por outro lado, o pentóxido de nióbio mostra um espectro que é muito dependente nas condições de calcinação. Quando Nb₂O₅ é calcinado a 800 °C/6 h, algumas bandas eram observadas na região das hidroxilas,¹⁶ porém as vibrações mais intensas são 3748 (larga), 3525, e 3420 cm⁻¹.

Figura 24. Espectros de DRIFTS de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

Figura 25. Espectros de DRIFTS de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-ET) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

Nos espectros de DRIFTS das amostras de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-AQ) contendo 10 e 15% em massa de Nb₂O₅,¹⁶ as hidroxilas do suporte foram consumidas quase que por completo, sendo que no catalisador contendo maior teor de Nb₂O₅ (amostra contendo 25% em massa), estas hidroxilas, praticamente, foram extintas, indicando maior reatividade das hidroxilas nos sistemas preparados em meio aquoso, Figura 26.¹⁶

Figura 26. Espectros de DRIFTS de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-AQ) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

A reatividade total das hidroxilas do suporte com o precursor de Nb₂O₅, demonstra que a interação do precursor com o suporte não é completa para as amostras preparadas em diclorometano ou etanol. Esta evidencia está de acordo com os padrões de DRX que mostraram mesmo com baixo teor de Nb₂O₅ a formação de fases cristalinas nestes sistemas. Estes dados indicam que provavelmente ocorre a formação de aglomerados maiores na superfície da sílicaalumina durante o processo de grafitização do que no de impregnação em meio aquoso.

As Figuras 27 e 28 mostram, respectivamente, os espectros Raman das amostras de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM e NbSiAl-ET), calcinadas a 800°C, contendo 5, 10, 15 e 25% em massa de Nb₂O₅. Nos espectros das amostras de NbSiAl-DM (Figura 25(a-d)) pode-se observar a predominância dos octaedros moderadamente distorcidos (bandas em ~690cm⁻¹), além de duas bandas em 840 e 930cm⁻¹ associadas, respectivamente, aos poliedros de Nb₂O₅ e aos octaedros NbO₆ moderadamente distorcidos.

Nos espectros Raman das amostras de NbSiAI-ET, Figura 28(a-d) foram observadas bandas em torno de 980, 935 e 690 cm⁻¹ nas amostras de 15 e 25% do pentóxido, referentes às espécies superficiais de Nb₂O₅. As bandas FTRaman em 980 e 935cm⁻¹, referem-se às ligações Nb=O, relativas aos octaedros altamente distorcidos e a banda em 690cm⁻¹, refere-se às ligações Nb-O dos octaedros moderadamente distorcidos.

Figura 27. Espectros de FTRaman de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-DM) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

Figura 28. Espectros de FTRaman de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-ET) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

Nos espectros Raman das amostras de NbSiAl-AQ (Figura 29), foram observadas bandas em torno de 930 e 688 cm⁻¹, presentes nas amostras de 15 e 25%, que são referentes às espécies superficiais de Nb₂O₅ com ligações Nb=O (octaedros altamente distorcidos) e Nb-O (octaedros moderadamente distorcidos), respectivamente.

Figura 29. Espectros de FTRaman de Nb₂O₅/SiO₂-Al₂O₃ (NbSiAl-AQ) contendo: (a) 5%, (b) 10%, (c) 15% e (d) 25% em massa de Nb₂O₅.

Pode-se, portanto, atribuir que em impregnações aquosa com alto teor de óxido de nióbio, isto é, acima de 15%, as espécies superficiais de Nb_2O_5 se assemelham à estrutura do Nb_2O_5 mássico. Este fato indica, juntamente com os dados de DRX, que os sistemas contendo 10-15% em massa de Nb_2O_5 possuem espécies do óxido de nióbio próximo ao limite da cobertura da monocamada.

Estes resultados confirmam a formação de fases do pentóxido de nióbio na superfície da sílica-alumina, conforme os outros dados experimentais. Isto está em contraste com a formação de uma sobrecamada bidimensional na superfície da sílica-alumina via método de impregnação aquoso para as amostras com 10-15% de Nb₂O₅.¹⁶ Então, foi sugerido que uma melhor dispersão das espécies de óxido de nióbio pode ser obtida com o processo de impregnação aquosa.

4.4. Análise calorimétrica

Testes preliminares de titulação do Nb₂O₅ com piridina em nosso laboratório, mostraram que em temperatura de calcinação mais alta ocorre a desidroxilação da superfície reduzindo os sítios ácidos de Brönsted, porém aumentando a acidez de Lewis, como descrita na literatura usando outras técnicas.⁷ Em calcinação a 300 °C, a interação de Nb₂O₅ com a piridina exibe um valor médio de entalpia (ΔH_{av}) de cerca de -17 kcal mol⁻¹, quando calcinado a 800°C, as interação liberam ~ -11 kcal mol⁻¹. Por outro lado, SiO₂-Al₂O₃, na forma protônica e calcinada em ~ 300 °C, apresentou uma entalpia de reação com piridina de ~-22 kcal mol⁻¹. Estes valores deveriam ser tomados como estimativas dos sítios mais fortes para cada sólido.

Baseado no pentóxido de nióbio, isto é, que exibe maior ΔH_{av} em temperaturas de calcinação mais baixas, os sistemas de Nb₂O₅/SiO₂-Al₂O₃ foram tratados a 300 °C a fim de manter os sítios mais fortes de Brönsted. Nos materiais titulados com piridina, os valores médios para todos os catalisadores, independente do método de preparação foram: -25; -27; -23; -20 kcal mol⁻¹ para 5; 10; 15; 25% em massa de Nb₂O₅, respectivamente (Tabela 7). Esta tendência mostra que o material mais ácido é que contém 10% de Nb₂O₅ suportado em SiO₂-Al₂O₃. Com este resultado, estes catalisadores com 10% de Nb₂O₅ foram utilizados nas reações de esterificação.

Tabela 7. Média dos valores estimados de entalpia para os catalisadores contendo

 NbSiAl titulados com piridina.

Cat	Teor em massa de Nb ₂ O ₅ (%)	-ΔH (kcal mol ⁻¹)
	5	25
	_	
*NbSiAl	10	27
	15	23
	25	20

*NbSiAI = NbSiAI-DM; *NbSiAI-ET e *NbSiAI-AQ

4.5. Testes catalíticos

A Tabela 8 mostra os resultados da conversão dos álcoois (etanol, n-butanol e iso-pentanol) e seletividade do éster em função do catalisador (teor de 10% Nb₂O₅) utilizado nas reações de esterificação do ácido acético. Todos os catalisadores (NbSiAI-DM, NbSiAI-ET e NbSiAI-AQ) exibem comportamento similar na conversão dos álcoois (etanol ~ 83%; n-butanol ~ 87% e iso-pentanol ~ 91%), além de demonstrarem maior atividade com relação à sílica-alumina (conversão de etanol ~ 74%; n-butanol ~ 82% e iso-pentanol ~ 81%). Além disso, a seletividade observada foi de 100%, em todos os ensaios.

Normalmente, o rendimento do éster pode ser aumentado por uso em excesso do álcool ou do ácido. Como o ácido acético é o regente de menor custo, foi usado em ligeiro excesso neste estudo. Os aumentos de reatividade que ocorre do etanol ao iso-pentanol, segue a tendência conhecida que álcoois terciários reagem mais rápido que primário ou secundário. Nenhum subproduto foi formado, de forma que se obteve seletividade de 100 % para os respectivos ésteres obtidos. Como em qualquer reação de esterificação tem um resultado sem adicionar catalisador, os testes sem catalisadores exibiram um rendimento de: 40, 63, e 78 % para etanol, n-butanol e iso-pentanol, respectivamente. Testes utilizando sílica-alumina ou niobia na esterificação de ácido acético com etanol apresentaram 74 e 59 % de conversão, respectivamente, demonstrando que os catalisadores contendo Nb₂O₅ suportado são mais ativos que os óxidos isolados.

Temperatura (°C)	Conversão (%)	Seletividade (%)
~ 85	(DM) 82,8	100
	(AC) 83,0	100
	(AQ) 83,0	100
~115-120	(DM) 86,6	100
	(AC) 87,6	100
	(AQ) 87,0	100
~125-128	(DM) 91,5	100
	(AC) 90,0	100
	(AQ) 90,0	100
	Temperatura (°C) ~ 85 ~115-120 ~125-128	Temperatura (°C) Conversão (%) ~ 85 (DM) 82,8 (AC) 83,0 (AQ) 83,0 ~115-120 (DM) 86,6 (AC) 87,6 (AQ) 87,0 ~125-128 (DM) 91,5 (AQ) 90,0 (AQ) 90,0

4.6. CONCLUSÕES

Comparando os catalisadores baseados em Nb₂O₅/SiO₂-Al₂O₃ preparados por diferentes métodos (grafitização com CH₂Cl₂ ou etanol, e impregnação aquosa), considerando o critério de estabilidade, baseado na formação de fase cristalina do pentóxido de nióbio na superfície da sílica-alumina, os materiais preparados por grafitização foram os mais estáveis, em decorrência de exibir a formação apenas da fase T (estrutura ortorrômbica). Análise térmica destes materiais também evidenciou interações mais fortes entre o suporte e as espécies de óxido de nióbio, nos sistemas preparados em diclorometano. Por outro lado, resultados de DRIFTS indicaram que nem todas as hidroxilas da superfície da sílica-alumina reagiram com os materiais preparados via grafitização, fenômeno oposto observado com alto teor de Nb₂O₅ nos materiais preparados via impregnação aquosa.

Os catalisadores preparados por impregnação aquosa evidenciaram uma dispersão melhor das espécies de óxido de nióbio na superfície da sílica-alumina conforme exibe os dados de Raman e DRX. As medidas de calorimetria dos materiais com piridina mostraram valores semelhantes de calor de reação, independente do método de preparação. Porém, pode-se atribuir que os catalisadores com 10% em massa de Nb₂O₅ são os mais ácidos. Estes catalisadores aplicados em reação de esterificação de ácido acético com álcoois (etanol, n-

butanol, e iso-pentanol) exibiram boa conversão em 8 horas (83, 87, e 91 %, respectivamente) com 100% de seletividade em todos os casos.

Capítulo V

SÍNTESE E CARACTERIZAÇÃO DE CuO/Nb₂O₅/SiO₂-Al₂O₃

5.1. Análise preliminar

A investigação da degradação térmica dos precursores de nióbio e de cobre, nos catalisadores de CuO/Nb₂O₅/SiO₂-Al₂O₃, co-impregnados na razão em massa de 1:1 em CuO:Nb₂O₅, também, foi verificada por análise de IR (Figura 30) Pode-se observar a existência do oxalato de nióbio e do nitrato de cobre nos sistemas sem tratamento térmico e tratados a 100 °C, isto pelas presença das bandas em aproximadamente 1718, 1689, 1450, 1400, 1298 e 950 cm⁻¹. As absorções em 1450, 1298 e 950 cm⁻¹ são atribuídos às vibrações de N-O no precursor de Cu,⁷⁷ e as absorções em 1718, 1689 e 1400 cm⁻¹ são atribuídas a dois modos de vibração de (C=O), combinação de um estiramento de v(C-O) e v(C-C), e v(N-H), respectivamente, no precursor de nióbio. Após tratamento em 100 °C observa-se um decréscimo na intensidade destas bandas e o seu completo desaparecimento depois de um tratamento a partir de 300 °C/6h. As novas bandas que surgem em 800 °C, serão analisadas no tópico referente aos dados de FTIR de CuO/Nb₂O₅/SiO₂-Al₂O₃.⁷⁷

Figura 30. Espectros FTIR de 25%CuO/Nb₂O₅/SiO₂-Al₂O₃ co-impregnadas na razão de 1:1 em CuO:Nb₂O₅: (a) ambiente, (b) 100 °C/2h, (c) 300 °C/6h; (d) 500 °C/6h e (e) 800 °C/6h.

5.2. Difração de raios-X

A Figura 31 mostra os difratogramas das amostras de sílica-alumina, óxido de cobre(II) e pentóxido de nióbio, observado a ausência de cristalinidade para a amostra de sílica-alumina. As amostras de pentóxido de nióbio calcinadas em 600° C e em 800° C, exibem a formação da fase T-Nb₂O₅ e uma mistura de fases (T, M e H-Nb₂O₅), respectivamente.^{16,29} Estas transformações são dependentes da temperatura, tempo de aquecimento e quantidade deste óxido suportado. Porém, o Nb₂O₅ puro transforma-se em uma estrutura cristalina (fase TT) em ~ 450 °C^{.16}

A amostra de CuO apresenta picos bem definidos os quais apresentam reflexões distintas (ângulo $2\theta \cong 32,50$; 35,51; 38,71; 46,25; 48,75; 53,45 e $58,30^{\circ}$) em relação aos picos apresentados pelas fases T, M e H-Nb₂O₅. Isto é, as reflexões verificadas nas fases de Nb₂O₅ são exibidas em ângulo 2θ com valores diferentes da fase de CuO (PDF 05-0661). Já a sílica-alumina é amorfa.

Figura 31. DRX de: (a) SiO₂-Al₂O₃, a 25 °C; (b) Nb₂O₅: 600 °C, (c) Nb₂O₅ 800 °C/3h; e (d) CuO a 300 °C/6h.

Na Figura 32 são mostrados os difratogramas das amostras de nitrato de cobre, óxido de cobre e pentóxido de nióbio suportado em sílica-alumina todos a 300 °C e oxalato amoniacal de nióbio a 700 °C. Pode-se observar que o nitrato de cobre degrada-se em 300 °C, formando óxido de cobre, mostrando as reflexões típicas em $2\theta = 35,5 \ e \ 38,7^\circ$ (PDF 05-0661). Nota-se também, que a amostra contendo

 $10\%Nb_2O_5/SiO_2-Al_2O_3$ exibe a ausência de cristalinidade, evidenciando a degradação do precursor de nióbio (o oxalato amoniacal). No sistema contendo 10% CuO/Nb_2O_5/SiO_2-Al_2O_3 também calcinado a 300 °C, co-impregnada na razão em massa de 1:1 em CuO:Nb_2O_5, observa-se a degradação do oxalato amoniacal e do nitrato de cobre, exibindo apenas duas reflexões do CuO ($2\theta = 35,5 \ e 38,7^\circ$), demonstrando ser esta a única fase cristalina neste sistema em temperaturas baixas.

Para o oxalato amoniacal de nióbio, observa-se uma estrutura cristalina similar aquela formada em calcinações do Nb₂O₅ a 600 °C. Embora o oxalato seja cristalino em baixas temperaturas, amorfo em condições de tratamento térmico entre 300 e 400 °C, adquirindo forma cristalina do Nb₂O₅ acima de 450 °C.⁷⁷

Figura 32. DRX de: (a) Cu(NO₃)₂.3H₂O, a 300 °C/6h; (b) 10%Nb₂O₅/SiO₂-Al₂O₃ a 300 °C/6h, (c) 10%CuO/Nb₂O₅ /SiO₂-Al₂O₃ a 300 °C/6h; e (d) NH₄[NbO(C₂O₄)₂(H₂O)₂] (H₂O)_n a 700 °C/3h.

Dados de DRX das amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃ com razão em massa de 1:10 em CuO:Nb₂O₅ (com teores em CuO de 0,5, 1,0 e 1,5%), preparadas pelo método de co-impregnação e calcinadas a 800°C/6h, são mostrados na Figura 33, Pode-se observar na amostra de 1,5% em massa de CuO os picos principais ($2\theta \cong$

23,3; 24,5 e 28,3°) que são característicos de reflexões de fases T e H do Nb₂O₅. Já as amostras com teores de 0,5 e 1,0% em massa de CuO se mostram amorfas.

Figura 33. DRX do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, co-impregnados na razão em massa de 1:10 de CuO: Nb₂O₅ e calcinados em 800 /6h.

Dados de DRX das amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃ preparadas via coimpregnação na razão em massa de 1:1 em CuO:Nb₂O₅ (com teores em CuO de 2, 5, 10 e 15%) e calcinadas a 800°C/6h, são mostrados na Figura 34. Os materiais com teores de 2 e 5% exibem uma estrutura amorfa, mas as amostras contendo teor alto de CuO (10 e 15% em massa) apresentam diferentes fases cristalinas. Pode-se observar reflexões características do Nb₂O₅ (por exemplo: $2\theta \cong 24,3$ e 25,05°), notando também duas reflexões em $2\theta \cong 35,5$ e 38,7°, que são características do CuO. Já as duas novas reflexões que surgem em $2\theta \cong 29,9$ e 30,5°, não se encontram presentes nos difratogramas do Nb₂O₅ e nem do CuO, levando a deduzir que seu surgimento é devido à formação de novas formas cristalinas decorrentes de interações entre as espécies de óxidos de nióbio e de cobre.

Na Figura 35 nos padrões de DRX dos materiais co-impregnadas na razão de 1:1 em CuO:Nb₂O₅ contendo 10 e 15% em massa de CuO, calcinados a 800 °C/6h, pode observar reflexões em 2 θ ~ 29,94; 30,03; 30,60; 35,40; 35,50; 35,8, 36,0; 36,50; 36,60 e 38,73°, atribuindo às reflexões em torno de 29,9 – 30,60°, a possíveis

interações entre CuO e Nb₂O₅ originando o niobato de cobre (CuNb₂O₆) de acordo com o PDF 45-0561. Os picos em 35,5 e $38,73^{\circ}$, foram atribuídos à fase do CuO.

Figura 34. DRX do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO: Nb₂O₅ e calcinados a 800[°]C/6h.

Figura 35. DRX do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 10% e (b) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO:Nb₂O₅ e calcinados a 800 $^{\circ}$ C/6h.

Na Figura 36 são apresentados difratogramas das amostras de $CuO/Nb_2O_5/SiO_2-Al_2O_3$ preparadas via co-impregnação na razão em massa de 1:1 em $CuO:Nb_2O_5$ (com teores em CuO de 2, 5 e 10%) e calcinadas a 300°C/6h. Pode

observar nas amostras de 5 e 10% reflexões em $2\theta \cong 35,5$ e $38,7^{\circ}$, que são características da fase de CuO e, a amostra de 2% exibiu uma estrutura amorfa. Nesta condição de tratamento térmico (300 °C), não há formação de cristais do pentóxido de nióbio, nem do niobato de cobre.^{12,25} Outras reflexões características da fase do CuO não foram observadas em decorrência do suporte e do pentóxido de nióbio ou a condição de temperatura de calcinação não possibilitarem o crescimento desses cristais. Como o Nb₂O₅ mássico apresenta-se cristalino após calcinação em torno de 450 °C, ^{16,29} não se observou a formação de nenhuma de suas fases cristalinas.

Nas amostras contendo 2 e 5% em massa de CuO, calcinadas a 800°C/ 6h, (Figura 34), os picos em $2\theta \cong 35,5$ e 38,7° não foram observados provavelmente, em função da temperatura alta de calcinação favorecer interações entre os óxidos de cobre e de nióbio, inibindo a formação destas reflexões, possibilitando observá-las somente com o aumento do teor de CuO, conforme se observa nas amostras contendo 10 e 15% em massa de CuO (Figura 34).

Figura 36. DRX de CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5% e (c) 10% em massa de CuO, co-impregnados na razão em massa de 1:1 em CuO:Nb₂O₅ e calcinados a 300 $^{\circ}$ C/6h.

As amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃ preparadas via impregnação seqüencial, com razão em massa de 1:10 em CuO:Nb₂O₅ (com teores em CuO de 0,5, 1,0 e 1,5%) e calcinadas a 800°C/2h, tem os seus dados de DRX, mostrados na Figura 37. Somente na amostra de 1,5% são observados picos característicos das reflexões do Nb₂O₅ (e,g., $2\theta \cong 23,80 \ e 25,09^{\circ}$) os quais se referem, provavelmente às fases T e H-Nb₂O₅. Nessa amostra não são observadas reflexões da fase de CuO. As amostras de 1,0% e 0,5% em massa de CuO mostram-se essencialmente amorfas. Então, considerando os resultados experimentais dos óxidos puros e das amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃ obtidas por co-precipitação, pode-se atribuir que a monocamada para estes materiais está entre 5-10% em massa de cada óxido.⁷⁷

Figura 37. DRX de CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, impregnados seqüencialmente na razão em massa de 1:10 em CuO:Nb₂O₅ e calcinados a 800°C/6h.

5.3. Análises térmicas (TG-DTA)

As curvas de DTA das amostras de oxalato amoniacal de nióbio, nitrato de cobre, pentóxido de nióbio e sílica-alumina, todas sem calcinar, obtidas de ~25 até 1400 °C sob aquecimento de 10 °C/ min em atmosfera de nitrogênio, são apresentadas na Figura 38. Na amostra de oxalato amoniacal de nióbio são observados picos endotérmicos em ~113 °C, associados à remoção de água adsorvida fisicamente; picos em ~176 °C, associados à remoção de água de
cristalização; em ~243-279 °C, associado à remoção da amônia e um pico exotérmico em ~ 585 °C, referente à decomposição do íon oxalato.^{16,29,75} Na amostra de nitrato de cobre(II) observam-se picos endotérmicos em ~70 °C, referente à remoção de água adsorvida fisicamente; em ~155-170 °C, associado à remoção de água de cristalização e em ~300 °C, associado à completa decomposição do nitrato. Já o pico em ~920 °C, possivelmente, refere-se à sinterização do óxido de cobre.⁷⁸

Na amostra de sílica-alumina, o pico largo em ~400 °C, associa-se à remoção de água de coordenação e amônia e em 1050 °C, à liberação de grupos orgânicos ainda ocluídos, provenientes do processo da síntese desse material. Na amostra de Nb₂O₅, o intenso pico exotérmico que surge (em ~568 °C) foi atribuído a uma transição de fase do Nb₂O₅, isto em função das curvas de DTG exibirem perda desprezível de massa em torno deste valor de temperatura. Baseando nos dados de DRX, esta transição de fase evidencia a formação de uma estrutura cristalina mais definida que se forma em temperaturas baixas (fase T-Nb₂O₅).^{16,29}

Figura 38. Curvas de DTA de: (a) oxalato amoniacal de nióbio, (b) nitrato de cobre trihidratado, (c) sílica-alumina e (d) pentóxido de nióbio.

Nas Figuras 39 e 40 são mostradas as curvas de DTA e de DTG das amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃, co-impregnadas na razão em massa de 1:10 em CuO:Nb₂O₅ (com teores em CuO de 0,5, 1,0 e 1,5%), tratadas a 120 °C, obtidas de ~25 até 1400 °C, a 10 °C/ min, em atmosfera de nitrogênio.

Figura 39. Curvas de DTA do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, co-impregnados na razão em massa de 1:10 de CuO:Nb₂O₅ e pré-tratados a 120° C.

Figura 40. Curvas de DTG do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, co-impregnados na razão em massa de 1:10 de CuO:Nb₂O₅ e pré-tratados a 120° C.

Observa-se nas curvas de DTA (Figura 39) um pico em ~1337 °C, associado à formação da fase H-Nb₂O₅, isto em analogia aos sistemas contendo Nb₂O₅/SiO₂- Al₂O₃, preparados em meio aquoso, que apresentam uma transição de fase em ~1355 °C.⁷⁵ Os picos com máximo em ~ 80 °C e 304 °C, observados nas curvas de DTG (Figura 39), são associados à remoção de água adsorvida fisicamente (~80 °C)

e à completa decomposição dos precursores de cobre e de nióbio, além da remoção de água de coordenação (~304 °C).

Nas Figuras 41 e 42 são mostradas as curvas de DTA e de DTG das amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃ com razão em massa de 1:1 em CuO:Nb₂O₅ (com teores em CuO de 2, 5, 10 e 1,5%), pré-tratadas a 120°C, obtidas de ~25 até 1400 °C, a 10 °C/ min, sob atmosfera de ar sintético. Nas curvas de DTA (Figura 41) observa-se a ausência da transição de fase H-Nb₂O₅, provavelmente em função das ligações das espécies de óxido de nióbio com o suporte e, além disso, das prováveis interações com as espécies de óxido de cobre, evidenciando influências do CuO sobre as espécies cristalinas de Nb₂O₅. Os picos mostrados nas curvas de DTG (Figura 42) apresentam valor médio de ~316 °C (amostras de 5-15%), referente à completa decomposição dos precursores de cobre e de nióbio, além da remoção da água de coordenação.⁷⁵

Figura 41. Curvas de DTA do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO: Nb₂O₅ e pré-tratados a 120° C.

Figura 42. Curvas de DTG do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO: Nb₂O₅ e pré-tratados a 120° C.

As Figuras 43 e 44 apresentam as curvas de DTA e de DTG dos catalisadores impregnados na forma seqüencial, na razão em massa de 1:10 em CuO:Nb₂O₅ (com teores em CuO de 0,5, 1,0 e 1,5%), tratados a 600°C, obtidas de ~25 até 1400 °C, a 10 °C/ min, sob atmosfera de nitrogênio. Nas curvas de DTA (Figura 43), picos da transição de fase H-Nb₂O₅, foram somente observados nas amostras com teores de 0,5 e 1,0% em massa de CuO (~1295 °C), evidenciando maior influência do CuO sobre o Nb₂O₅ com o aumento do teor de CuO nos sistemas preparados seqüencialmente em relação àqueles co-impregnados com razão em massa de 1:10 em CuO:Nb₂O₅.⁷⁷

As curvas de DTG (Figura 44) mostram que com a prévia calcinação dos sólidos impregnados, os picos associados à decomposição do precursor de nióbio foram praticamente extintos, restando um pequeno e largo pico abaixo de 400 °C, associado à completa decomposição da pouca quantidade do precursor de cobre. Os picos abaixo de 100 °C, foram associados à remoção de água adsorvida fisicamente.

Figura 43. Curvas de DTA do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0.5%, (b) 1,0% e (c) 1,5% em massa de CuO, impregnados seqüencialmente na razão em massa de 1:10 de CuO:Nb₂O₅ e pré-tratados a 120° C.

Figura 44. Curvas de DTG do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (c) 1,5% em massa de CuO, impregnados seqüencialmente na razão em massa de 1:10 de CuO:Nb₂O₅ e pré-tratados a 120° C.

5.4. Espectroscopia FTIR

Na Figura 45 são mostrados os espectros de FTIR das amostras de CuO, Nb₂O₅ e SiO₂-Al₂O₃, onde se observa na amostra de SiO₂-Al₂O₃ uma banda em ~ 1096 cm⁻¹ e um ombro em ~1225 cm⁻¹, ambos associados às ligações Si-O. As bandas em 803 e 470 cm⁻¹, são associadas às ligações O-Si-O e Si-O-Si, respectivamente, e a banda larga em ~560 cm⁻¹ refere-se às ligações Si-O⁻ (originando ligações Si-OH em amostras hidratadas). Na amostra de CuO, calcinada a 300 °C, observam-se bandas em ~ 476, 537, 588 cm⁻¹, que são associadas às ligações Cu-O.⁷⁹ A amostra de Nb₂O₅, calcinada a 800 °C, exibe bandas entre ~500-850 cm⁻¹, à banda larga em 850 cm⁻¹ (que se estende de 875-815) associa-se aos octaedros de NbO₆ altamente distorcidos com ligações Nb=O; à banda em 725cm⁻¹, atribui-se às mudanças ocorridas nas ligações terminais de Nb=O (dos octaedros altamente distorcidos) e Nb-O (em octaedros moderadamente distorcidos), formando as ligações Nb-O-Nb; às bandas em ~ 635 (que se estende de 670-612 cm⁻¹), 560 e 500cm⁻¹ são associadas às ligações Nb-O em octaedros NbO₆ moderadamente distorcidos.^{16,29,77}

Figura 45. Espectros FTIR de: (a) CuO, 300 °C; (b) Nb₂O₅, 800 °C e, (c) SiO₂-Al₂O₃, 25 °C.

Na Figura 46 são mostrados os espectros de FTIR das amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃ preparadas via co-impregnação com razão em massa de 1:10 de CuO:Nb₂O₅ (com teores em CuO de 0,5, 1,0 e 1,5%) e calcinadas a 300 °C. Em analogia ao espectro da sílica alumina (Figura 45), as principais bandas apresentadas referem-se às fortes absorções do suporte (sílica-alumina). Pode-se observar também, um deslocamento da banda de 930 cm⁻¹ para ~900cm⁻¹, os quais são associados com as interações entre as espécies de óxido de cobre e/ou de nióbio com os grupos Si-O⁻ do suporte, originando ligações Si-O-Nb e/ ou Si-O-Cu.⁷⁷

Figura 46. Espectros FTIR do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 5%, (b) 10% e (c) 15% em massa de CuO, co-impregnados na razão em massa de 1:10 de CuO:Nb₂O₅ e calcinados a 300 °C /6h.

Nas Figuras 47 e 48 são mostrados os espectros de FTIR das amostras dos sistemas contendo CuO/Nb₂O₅/SiO₂-Al₂O₃ preparados via co-impregnação na razão em massa de 1:1 de CuO:Nb₂O₅ (com teores em CuO de 2, 5, 10 e 15%) e calcinadas a 300 e 800 °C/ 6h. Na temperatura de calcinação de 300 °C (Figura 47), as principais bandas são referentes às absorções do suporte. Além da banda em ~908 cm⁻¹, associada às ligações Si-O-Nb e/ ou Si-O-Cu. Com o aumento na temperatura de calcinação para 800 °C (Figura 48), surgem absorções novas em ~ 878, 692 e 625 cm⁻¹, possivelmente associadas às vibrações do Nb₂O₅ referentes às ligações Nb-O (625 cm⁻¹) e Nb=O (878 cm⁻¹), possivelmente influenciadas pelas espécies de CuO, que apresentam absorções em ~ 476, 537 e 588 cm⁻¹. A banda

em torno de 900 cm⁻¹ foi extinta e a banda em 578 cm⁻¹ foi deslocada para 548 cm⁻¹ evidenciando interações entre o grupo Si-O⁻ com as espécies de CuO e/ou Nb₂O₅, formado as ligações Si-O-Nb e/ ou Si-O-Cu.⁷⁷

Figura 47. Espectros de FTIR do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO:Nb₂O₅ e calcinados a 300 °C /6h.

Figura 48. Espectros de FTIR do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 2%, (b) 5%, (c) 10% e (d) 15% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO:Nb₂O₅ e calcinados a 800 °C /6h.

Na Figura 49 são mostrados os espectros de FTIR das amostras dos materiais contendo $CuO/Nb_2O_5/SiO_2-Al_2O_3$, calcinados a 300 °C. Nos sistemas preparados na razão em massa de 1:10 em $CuO:Nb_2O_5$, as principais bandas são referentes às fortes absorções do suporte com prováveis contribuições do CuO e do Nb_2O_5 .

Figura 49. Espectros de FTIR do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 5%, (b) 10% e (d) 15% em massa de CuO, impregnados seqüencialmente na razão em massa de 1:10 de CuO:Nb₂O₅ e calcinados a 300 °C /6h.

5.5. DRIFTS

Na Figura 50 são mostrados os espectros de DRIFTS das amostras de SiO₂-Al₂O₃ a 550 °C /12h. Observa-se no espectro da sílica-alumina um pico intenso em ~ 3740 cm⁻¹, associado às hidroxilas dos silanóis terminais (Si-OH); uma banda larga em ~ 3577 cm⁻¹, possivelmente relacionada a água adsorvida fisicamente.^{16,80}

Os espectros de DRIFTS das amostras de CuO a 300 °C /6h e do Nb₂O₅ a 300, 600 e 800 °C/6h são mostrados na Figura 51. No espectro de DRIFTS da espécie de CuO os grupos OH mostraram-se ausentes. Quanto ao pentóxido de nióbio (Figura 51) observa-se no sólido calcinado em 300 °C, uma banda larga com máximo em ~3430 cm⁻¹ e além disso, um pequeno ombro em ~ 3670 cm⁻¹. Porém, com o aumento da temperatura de calcinação para 600 °C ou 800 °C, observa-se o surgimento de um pico em 3430 cm⁻¹ e uma banda larga em ~3670 cm⁻¹, podendo

associar ao pico em 3430 cm⁻¹, a presença de OH terminais ligados através de pontes de hidrogênio, o qual geralmente se apresenta em região de baixa freqüência em outros sólidos.⁸⁰ O pico em 3670 cm⁻¹, foi atribuído aos grupos OH dos octaedros de óxido de nióbio.

Figura 50. Espectros de DRIFTS de: SiO₂-Al₂O₃ calcinada a 550°C /12h.

Figura 51. Espectros de DRIFTS de: (a) CuO 300 °C /6h (b), Nb₂O₅ 300 °C /6h (c), Nb₂O₅ 600 °C /6h (d), Nb₂O₅ 800 °C /6h.

Na Figura 52 são mostrados os espectros de DRIFTS das amostras de $CuO/Nb_2O_5/SiO_2-Al_2O_3$ preparadas via co-impregnação na razão em massa de 1:1 de $CuO:Nb_2O_5$ e calcinadas em 300 °C /6h. Observa-se um pico intenso em ~3734 cm⁻¹, associado aos OH dos silanóis terminais (Si-OH) existentes na sílica-alumina e, a banda larga com máximo em ~3600 cm⁻¹, é decorrente da presença de água adsorvida fisicamente.

Com o aumento do teor de CuO e Nb₂O₅ ocorre um decréscimo na intensidade do pico em ~3734 cm⁻¹ (Figura 52), evidenciando o consumo das hidroxilas terminais do suporte. Isto leva a supor que na preparação destes sistemas uma das interações ocorre entre as hidroxilas do suporte com os precursores de cobre e de nióbio. Uma outra suposição é que com alto teor de CuO e Nb₂O₅ (25% em massa) deveria ocorrer a consumação completa das hidroxilas do suporte, conforme apresentada nos sistemas contendo Nb₂O₅/SiO₂-Al₂O₃ com 25% em massa de Nb₂O₅,¹⁶ porém, este fato não foi observado, indicando a possibilidade do óxido de cobre interagir com o pentóxido de nióbio. Além disso, a indicação da formação das espécies de cobre e nióbio na superfície da sílica-alumina.

Figura 52. Espectros de DRIFTS do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 25, (b) 15%, (c) 10%, (d) 5% e (e) 2% em massa de CuO, co-impregnados na razão em massa de 1:1 de CuO:Nb₂O₅ e calcinados a $300 \,^{\circ}$ C /6h.

5.6 Espectroscopia FTRaman

Na Figura 53 são apresentados os espectros FTRaman das amostras de SiO₂-Al₂O₃, CuO e Nb₂O₅. Na amostra de Nb₂O₅ foram observadas bandas com máximos em torno de 993, 900, 842, 680, 630, 550 e 466 cm⁻¹, atribuído às bandas em ~ 993 e 900 cm⁻¹, as vibrações simétricas e assimétricas das ligações Nb=O presentes em octaedros de NbO₆ altamente distorcidos. A banda em 842 cm⁻¹ é associada com maior coerência às ligações Nb-O-Nb colineares entre dois grupos NbO₆ ligados através do vértice; à banda em 466 cm⁻¹ associam-se às vibrações Nb-O em tetraedros de NbO₄ e, as bandas em torno de 680, 630 e 550 cm⁻¹, são atribuídas às vibrações dos diferentes poliedros presentes no Nb₂O₅ (comumente atribuídas aos octaedros de NbO₆ moderadamente distorcidos, espécies de NbO₇ e NbO₈ existentes no pentóxido de nióbio hidratado).^{16,29} A amostra de sílica-alumina mostra a ausência de bandas Raman, mas o CuO apresenta banda Raman em ~290, 340 e 620 cm⁻¹, que são atribuídas, respectivamente, aos modos vibracionais A₉, B₁₉ e B₂₉ do *bulk* cristalino do CuO.⁸¹

Figura 53. Espectros de FTRaman de: (A) Nb₂O₅,800 °C /3h (B) SiO₂-Al₂O₃ 25 °C(a) e CuO 300 °C /6h (b)

Na Figura 54 são mostrados os espectros Raman das amostras de $CuO/Nb_2O_5/SiO_2-Al_2O_3$ preparadas pelo método de co-impregnação, com razão em massa de 1:10 em CuO:Nb₂O₅ (com teores em CuO de 0, 5, 1,0 e 1,5%) e calcinadas a 800 °C/ 6h. Pode-se observar o deslocamento das bandas em ~ 976 cm⁻¹ para ~992 cm⁻¹ com o aumento do teor de Nb₂O₅ (5-15%). Os picos em torno de 930 cm-¹ e 600-700 cm⁻¹, aumentam a intensidade mediante o aumento do teor de

 Nb_2O_5 e CuO co-impregnados. Aos picos em torno de 930-992 cm-¹, são associadas às ligações Nb=O (octaedros altamente distorcidos) e os picos em ~600-700 cm⁻¹, são relacionados às ligações Nb-O (octaedros levemente distorcidos).⁷

As amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃ preparadas com razão em massa de 1:1 em CuO:Nb₂O₅ (com teores de CuO em 2, 5, 10 e 15%) e calcinadas a 800 °C/ 6h, tiveram a ausência de bandas Raman. Isto se decorre, possivelmente, da grande influência do CuO sobre o Nb₂O₅ formado na superfície do suporte, ocasionando, portanto, uma inibição das vibrações Raman decorrente das interação entre estes dois óxidos.

Figura 54. Espectros de FTRaman do CuO/Nb₂O₅/SiO₂-Al₂O₃: (a) 0,5%, (b) 1,0% e (d) 1,5% em massa de CuO, co-impregnados na razão em massa de 1:10 de CuO:Nb₂O₅ e calcinados a 800 °C /3h.

As amostras de CuO/Nb₂O₅/SiO₂-Al₂O₃ preparadas pelo método de impregnação seqüencial, com razão em massa de 1:10 em CuO:Nb₂O₅ (com teores em CuO de 0,5, 1,0 e 1,5%) e calcinadas a 800 °C, não mostraram bandas de espalhamento Raman, decorrente da influência das espécies de CuO sobre as fases superficiais de do óxido de nióbio. Isto porque na ausência desse óxido os espectros de FTRaman das amostras e Nb₂O₅/SiO₂-Al₂O₃ com teores de 15% em massa de Nb₂O₅ mostravam duas bandas em 690 e 933 cm⁻¹, atribuídas à mistura das fases T e H- Nb₂O₅.^{16,75}

5.7. CONCLUSÕES

Os novos materiais catalíticos baseados em CuO/Nb₂O₅/SiO₂-Al₂O₃ preparados por diferentes métodos, teores de óxidos e condições de calcinação, indicam em sua caracterização que aqueles obtidos por co-impregnação na razão de 1:1 em relação à massa de CuO:Nb₂O₅, exibindo distintas fases ativas de acordo com o teor de óxido e temperatura de calcinação.

Em temperaturas mais baixas (300 °C) a partir de 5% em massa de CuO, há o predomínio de fase cristalina de CuO, enquanto que em temperaturas altas (800 °C) com teores acima de 10% existe uma mistura de fases cristalinas referentes às espécies de CuO, Nb₂O₅ e CuNb₂O₆.

CONCLUSÃO FINAL

A transição de fase em 1364 °C (valor médio), exibida pelas amostras de Nb₂O₅/SiO₂-Al₂O₃ são referentes a diferentes fases do Nb2O5 e depende do teor de Nb₂O₅ suportado. Com teores a partir de 15% predominam a fase H enquanto que com teores abaixo de 10% forma-se a fase T.

Comparando os catalisadores de Nb₂O₅/SiO₂-Al₂O₃ preparados por diferentes métodos (grafitização com CH₂Cl₂ ou etanol, e impregnação aquosa), aqueles preparados por grafitização foram os mais estáveis, em decorrência de exibir a formação apenas da fase T (estrutura ortorrômbica). Isso evidencia interações mais fortes das especiais superficiais com o suporte naqueles materiais preparados em diclorometano, embora nem todas as hidroxilas do suporte tenham sido consumidas nas interações, conforme foi evidente na amostras de 25% Nb₂O₅/SiO₂-Al₂O₃ preparada via impregnação aquosa.

Os catalisadores de Nb₂O₅/SiO₂-Al₂O₃ preparados por impregnação aquosa exibem partículas mais dispersas, o que foi comprovado pela apresentação de cristalinidade somente com teor a partir de 15%. Contudo, os catalisadores contendo 10% em massa de Nb₂O₅ mostraram valores semelhantes de calor de reação com piridina, independente do método de preparação, exibindo boa conversão de álcoois (etanol, n-butanol ou iso-pentanol) na reação de esterificação com ácido acético.

CuO/Nb₂O₅/SiO₂-Al₂O₃ preparados por diferentes métodos, teores de óxidos e condições de calcinação, indicam que aqueles obtidos por co-impregnação na razão de 1:1 em relação à massa de CuO:Nb₂O₅, exibiram distintas fases (CuO, Nb₂O₅ e CuNb₂O₆) de acordo com o teor de óxido e temperatura de calcinação (800°C). Em contraste, em temperaturas mais baixas (300 °C) a partir de 5% em massa de CuO, há o predomínio de fase cristalina de CuO, enquanto que em temperaturas altas (800 °C) com teores acima de 10% existe uma mistura de fases cristalinas referentes às espécies de óxidos.

Os Catalisadores contendo Nb₂O₅ suportado em CCA amorfa ou cristalina apresentam uma forte interação das espécies superficiais de óxido de nióbio, evidenciado pela formação das fases TT e T–Nb₂O₅ e pela ausência de transição de fases nas curvas de TG/DTA. Mostrando-se eficientes na conversão de ácido oléico com etanol, em especial na amostra contendo 10% em massa de Nb₂O₅, ao exibir 97% de conversão do ácido oléico com razão de 1:6 (ácido oléico:etanol), no

período de 4h. Pode-se também atribuir a viabilidade do uso do catalisador de 10% Nb₂O₅/CCA amorfa, no processo de transesterificação de óleo de soja com etanol, por apresentar 100% na conversão do óleo de soja, utilizando razão molar de 1:10 (óleo de soja:etanol).

O catalisador contendo 10% de CuO/CCA amorfa, calcinado a 300 °C, demonstrou apresentar espécies de CuO bem dispersas na superfície da CCA amorfa. A conversão total de óleo de soja na transesterificação utilizando razão de 1:30 ou 1:10 (óleo:etanol), a 200 °C, nos períodos de 4h a 22h, revelaram o potencial catalítico deste sistema.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. Greenwood N. M.; Earnshaw A. "Chemistry of the Elements," Pergamon Press, Oxford, **1994**.
- 2. http://www.sonaquimica.hpg.ig.com.br/sonaquimica/Familia%20B.htm acessado em **2006.**
- Departamento Nacional de Produção Mineral: http://www.dnpm.gov.br . acessado em 2006
- 4. Lee, J. D., "Química Inorgânica: não tão Concisa", tradução da 5^ª edição inglesa, Editora Edgard Blucher Ltda., São Paulo, **1999**.
- 5. http://www.cbmm.com.br acessado em 2006.
- 6. Ushikubo T., Catal. Today 2000, 57, 331.
- 7. Nowak I., Ziolek M., Chem Rev. 1999, 99, 3603.
- 8. Burcham L. J., Dtka, J., Wachs I. E, J. Phys. Chem. B 1999, 103, 6015.
- 9. Védrine, J.C., Coudurier, G., Ouqour, A., Oliveira P. P.G., Volta, J.C., *Catal. Today* **1996**, *28*, 3.
- 10. Wachs, I. E., Jehng, J.-M., Deo, G., Hu, H., Arora, N., *Catal. Today* **1996**, *28*, 199.
- 11. Tanabe, K., Okazaki, S., Appl. Catal. A. 1995, 133,191.
- 12. Jehng J.-M., Wachs I., E., Catal. Today 1990, 8, 37.
- 13. Guo, C., Qian, Z., Catal. Today 1993, 16, 379.
- 14. Ushikubo, T., Koike, Y., Wada, K., Xie, L., Wang, D., Guo, X., *Catal. Today* **1996**, *28*, 59.
- 15. Ko, E. I., Weissman, J. G., Catal. Today 1990, 8, 27.
- 16.Braga, V.S., Dias, J.A., Dias, S.C.L., Macedo, J.L., *Chem. Mater.* **2005**, *17*, 690.
- 17. Ushikubo, T., Lizuka, T., Hattori, H., Tanabe, K., Catal. Today 1993, 16, 291.
- 18. Hasegawa, S., Aritani, H., Kudo, M., Catal. Today 1993, 16, 371.
- 19. Ross, J. R. H., Smits, R. H. H., Seshan, K., Catal. Today 1993, 16, 503.
- 20. Jehng J.-M., Wachs I., E., J. Mol. Catal 1991, 67, 369.
- 21. Hanaoka, T.-A., Takeuchi, K., Matsuzaki, T., Sugi, Y., *Catal. Today* **1990**, *8,* 123.
- 22. Schmal, M., Aranda, D. A. G., Soares, R. R., Noronha, F. B., Frydman, A., *Catal. Today* **2000**, *57*, 169.
- 23. Noronha, F. B., Aranda, D. A. G., Ordine, A. P., Schmal, M., *Catal. Today* **2000**, *57*, 275.
- 24. Ziolek, M., Catal. Today 2003, 78, 47.
- 25. Cherian, M., Rao, M. S., Deo.G., Catal. Today 2003, 78, 379.
- 26. Okazaki, S., Wada, N., Catal. Today 1993, 16, 349.
- 27. Holtberg F., Reisman A., Berry M., Berkenblit M., *J. Am. Chem. Soc.* **1957**, *79*, 2039.
- 28. Meyer R. J., Gmelins Handbuch der Inorganichen Chemie Achte Auflage.
- 29. BRAGA V. S., dissertação de mestrado; Preparação e caracterização de catalisadores de Pentóxido de Nióbio Suportado em Sílica-Alumina UnB, **2003**.
- 30. Campanati, M.; Fornasari, G. e Vaccari, A. Catal. Today 2003, 77, 299.
- 31. Jehng J.-M., Wachs I. E., Catal. Today 1993, 16, 417.
- 32. Pereira, E. B., Pereira, M. M., Lam Y. L., Prez C. A. C., Schmal M., *Appl. Catal* A **2000**, *197*, 99.
- 33. Moggi, P., Albanesi, G., Appl. Catal. 1991, 68, 285.

- 34. Da Silva, C.L.T., Camorim V. L. V., Zotin J. J., Pereira M. L.R. D., Faro A D., *Catal. Today*, **2000**, *57*, 209.
- 35. Wang, C.-P., Yeh C.-T., J. Catal. 1999, 182, 48.
- 36. Mendes, F.M.T., Perez C.A., Noronha, F. B., Schmal, M., *Catal. Today* **2003**, *78,* 449.
- 37. Da Silva C. L. T., Camorim V. L. V. Zotin J. J., Faro, A. C., Rocco, M. L. M., *Química Nova* **1998**, *21*, 157.
- 38. Tanaka T., Yoshida T., Yoshida H., Aritani H., Funabiki t., Yoshida S., Jehg J-M., Wachs E.I., *Catal. Today* **1996**, *28*, 71.
- 39. Jehng J.-M., Wachs I. E., J. Phys. Chem. 1991, 95, 7373.
- 40. Francisco, M. S. P., Landers, R., Gushikem, Y., *J. Solid. Stat. Chem.* **2004**, *177*, 2432.
- 41. Shirai, M., Ichikuni, N., Asakura, K., Iwasawa, Y., Catal. Today 1990, 8, 57.
- 42. Burke, P. A., Ko, E. I., J. Catal. 1991, 129, 38.
- 43. Yahiro H., Iwamoto M., Appl. Catal. A 2001, 222, 163.
- 44. Yamada K., Pophal C., Segawa K., *Microporous Mesoporous Mater.* **1998**, *2*, 549.
- 45. Bennice S., Gervasini A., Appl. Catal. B 2006, 62, 336.
- 46. Gervasini A., Manzoli M., Marthra G., Ponti A., Ravasio N., Sordelli L., Zaccheria F., *J. Phys. Chem. B* **2006**, *110*, 7851.
- 47. Gervasini A., Bennici S., Appl. Catal. A 2005, 281, 199.
- 48. Bennici S., Carniti P., Gervasini A., Catal. Lett. 2004, 98, 187.
- 49. Bennici S., Gervasini A., Ravasio N., Zaccheria F. *J. Phys. Chem. B* **2003**, *107*, 5168.
- 50. Tsay M-T.; Chang F-W. Appl. Catal. A.2000, 203, 15.
- 51. Prasetyoko D.; Ramli Z.; Endud S.; Hamdan H.; Sulikowski B.; Wast. Management, **2006**, *26*, 1173.
- 52. Jermy B. R.; Pandurangan A. J. Mol. Catal. A: Chem. 2005, 146, 237,
- 53.Blagov S.; Parada S.; Bailer O.; Moritz P.; Lam D.; Weinand R; Hasse H. *Chem Eng Scienc* **2006**, *61*, 753.
- 54. Sepúlveda J. H.; Yori J. C.; Vera C. R. Appl Catal A 2005, 288, 18.
- 55. Peters T. A.; Benes N. E.; Holmen A.; Keurentjes J. T. F. *Appl Catal A* **2006**, 297, 182.
- 56. Jermy B. R.; Pandurangan A. Appl Catal A 2005, 288, 25.
- 57. A. Palani; Pandurangan A. J. Mol Catal A Chem 2005, 226, 129.
- 58. Kirumakki S. R., Nagaraju N.; Chary K. V. R. Appl Catal A 2006, 229, 185.
- 59. Guo; Z. Qian Catal. Today 1993, 16, 379.
- 60. Ushikubo T.; Koike Y.; Wada K.; Xie L.; Wang D.; Guo X. *Catal. Today* **1996**, *28*, 59.
- 61. Foresti M. L.; Ferreira M. L. Catal. Today 2005, 107-108, 23.
- 62. Hamid S. B. A.; Abdullah F. Z.; Ariyanchira S.; Mifsud M.; Iborra S.; Corma A. *Catal. Today* **2004**, *97*, 271.
- 63. http://:www.biodiesel.org.br acessado em 2006
- 64. Grace F. Ghesti, dissertação de mestrado; Estudo de Catalisadores par Obtenção de Biodiesel por Transesterificação e Determinação do Rendimento por Espectroscopia Raman - UnB, 2006.
- 65. Silva C.L. da Maia, dissertação de mestrado; Obtenção de Ésteres Etílicos a partir da Transesterificação de Óleo de Andiroba com Etanol Unicamp, 2005.

- 66. Ghesti G. F., Macedo J. L., Braga V. S., De Souza A. T. C. P., Parente V. C. I., Figueiredo E. S., Resck I. S., Dias J. A., Dias S. C. L. *J. Am. Oil Chem.* **2006**, *83*, 597
- 67. Meher L.C., Sagar D. V., Naik S.N. *Renewable and Sustainable Energy Reviews* **2006**, *10*, 248.
- 68. Yong Wang *, Shiyi Ou, Pengzhan Liu, *Zhisen Zhang Energy Conversion and Management* **2007**, *48*, 184.
- 69. Onfroy T., Clet G., Bukallah S.B., Hercules D.M., Houalla M., *Catal. Lett.* **2003**, 89, 15.
- 70. Corma A., Pérez-Pariente J., Appl. Catal. 1990, 63, 145.
- 71. Jehng J. M., Wachs I.E. Chem. Mater. 1991, 3, 100.
- 72. Wachs I.E., Jehng J.M., Deo G., Hu H., Arora N., Catal. Today 28, 1996, 199.
- 73. Ikeya T., Senna M., J. Non-Cryst. Solids 1988, 105, 243.
- 74. Huang B.X., Wang K., Church J.S., Li Y-S., Electrochimica Acta 1999, 44, 25
- 75. Braga V. S., Garcia F. A. C., Dias J. A., Dias S. C. L., Phase transition in niobium pentoxide supported on silica-alumina, *J. Thermal Analysis and Calorimetry*: article accepted in **2007**.
- 76. Nakamoto K., Infrared Spectra of Inorganic and Coordination Compounds, 2nd Edition, Wiley-Interscience, New York, **1970**, p. 244.
- 77. Braga V. S., Garcia F. A. C., Dias J. A., Dias S. C. L., Copper oxide and niobium pentoxide supported on silica-alumina: Synthesis, characterization and application on diesel soot oxidation, *J. Catal*: article accepted in **2007**.
- 78. Shaheen W.M. Thermochem Acta 2002, 385, 105.
- 79. Wang Z., Liu Q., Yu J., Wu T., Wang G., Appl. Catal. A 2003, 239, 87.
- 80. Tanabe K., Misono M., Ono Y., Hattori H., "New Solid Acids and Bases-their Catalitic Properties", Studies in Surface Science and Catalysis, Vol. 51, **1989**.
- 81. Yu T. Z., X., Shen Z.X., Wu Y., H., Su W.H., J. Cryst G. 2004, 268, 590.
- 82. Palermo A., Vazquez J. P. H., Lee A. F., Tikhov M S., Lambertz R. M., *J. Cartal* **1998**, *177*, 259.
- 83. Sitarz M., Handke M., Mozgawa W. Spectrochimica Acta A 2000, 56, 1819.
- 84. Kawano K.; Denofre S.; Gushokem Y. Vib. Spectrosc 1994, 7, 293.
- 85. Braga V. S., Garcia F. A. C., Dias J. A., Dias S. C. L., Esterification of Acetic Acid with Alcohols Using Supported Niobium Pentoxide on Silica-Alumina Catalysts, *Catal Today*: article accepted in **2007**.

ANEXOS

1. ESPECTROS DE RMN DE ¹H

1.1. Reações de esterificação de ácido oleico com etanol

100% de conversão do ácido oléico.

~60% de conversão do ácido oléico

1.2. Reações de transesterificação de óleo de soja com etanol

100% de conversão do óleo de soja

~60% de conversão do óleo de soja

Óleo de soja puro

1.3. Reações de transesterificação de óleo de soja com metanol

77% de conversão do óleo de soja

30% de conversão do óleo de soja

2. Picos obtidos nos difratogramas

2.1. Nb₂O₅ mássico

2.1.1. Calcinação: 450 °C/ 3h

```
FILE: NB205450.MDI
IDEN: Valdeilson
SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 02-18-02@19:25
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit
```

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
17.250	5.1363				25	27	1.7	3	0.3	0.079
22.454	3.9563				41	1563	100.0	577	74.1	0.295
28.400	3.1400				82	1388	88.8	779	100.0	0.449
36.598	2.4533				39	664	42.5	325	41.7	0.391
46.049	1.9694				47	279	17.9	122	15.6	0.347
50.452	1.8074				76	201	12.9	146	18.7	0.580
55.100	1.6654				42	293	18.7	216	27.6	0.587
55.998	1.6408				49	173	11.1	129	16.4	0.592
58.905	1.5665				48	73	4.7	36	4.6	0.390

2.1.2.Calcinação: 500 °C/ 3h

FILE: NB205500.MDI IDEN: nb500 antigo SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 02-05-02@19:36 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit 2-Theta d(A) h k 1 BG Peak P% Area% FWHM Area 22.506 3.9473 35 100.0 74.9 0.264 1821 600 28.445 70 801 100.0 0.433 3.1352 1479 81.2 36.646 2.4502 31 655 36.0 330 41.2 0.403 42.649 2.1182 25 26 1.4 9 1.1 0.269 46.101 1.9673 27 335 18.4 145 18.0 0.345 1.8056 50.504 72 195 10.7 146 18.2 0.598 39 İ 55.106 1.6652 311 17.1 201 25.1 0.517 50 56.000 1.6407 150 8.2 103 12.8 0.546 44 4.8| 0.500 58.802 1.5691 61 3.3 39

2.1.3.Calcinação: 600 °C/ 3h

FILE: NB205600.MDI
IDEN: nb600 antigo
SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 02-05-02@19:12
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
16.866	5.2525				19	61	2.6	18	2.6	0.233
22.498	3.9487				26	2324	100.0	621	92.1	0.214
25.451	3.4968				32	25	1.1	3	0.4	0.090
28.251	3.1563				49	1716	73.8	674	100.0	0.314
32.697	2.7365				25	57	2.5	15	2.2	0.204
34.354	2.6082				24	29	1.2	5	0.6	0.114
36.455	2.4626				30	709	30.5	285	42.2	0.320
42.455	2.1274				17	62	2.7	25	3.7	0.319
44.950	2.0150				33	87	3.7	31	4.6	0.285
46.056	1.9691				32	408	17.6	138	20.4	0.270
48.503	1.8754				26	30	1.3	17	2.4	0.435
49.755	1.8310				83	155	6.7	51	7.5	0.262
50.801	1.7958				32	302	13.0	175	25.9	0.461
55.004	1.6681				33	347	14.9	219	32.5	0.505
56.253	1.6339				38	170	7.3	83	12.2	0.388
58.594	1.5741				35	112	4.8	54	7.9	0.382

2.1.4. Calcinação: 800 °C/ 3h

IDEN: NB8003H forno pqueno SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 08-16-04@17:54 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit 2-Theta d(A) h k 1 BG Peak P% Area Area% FWHM 99 50 16.950 5.2266 3.1 6 1.3 0.083 22.543 100.0 3.9408 120 1601 320 82.7 0.160 25.549 3.4837 125 54 3.4 б 1.4 0.081 28.291 3.1519 141 1576 98.4 387 100.0 0.196 39.2 0.208 3.0880 138 628 164 42.4 28.889 2.7363 32.700 120 53 1.3 0.078 3.3 6 39.6 0.196 625 39.0 36.500 2.4597 127 153 42.553 2.1228 103 68 4.2 19 4.7 0.214 6.8 7.5| 0.213 45.004 2.0127 108 109 30 46.098 1.9674 112 363 22.7 93 23.9 0.204 49.755 1.8311 126 187 11.7 48 12.3 0.202 50.858 1.7939 121 254 15.9 88 22.5 0.274 55.252 1.6612 125 236 14.7 103 26.4 0.346 56.346 1.6315 122 157 9.8 44 11.2 0.221 58.555 1.5751 108 118 7.4 44 11.3 0.296

2.2. Sistemas contendo Nb2O5/SiO2-Al2O3

2.2.1. NbSiAL-DM (solvente: diclorometano)

2.2.1.2. 5% em massa de Nb2O5 a 800°C

FILE: DM5%800.MDI IDEN: dm5%800 lavado(c1) SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-27-03@20:19 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit 2-Theta d(A) h k 1 BG Peak P% Area Area% FWHM 22.656 3.9215 58 100.0 100.0 0.221 110 17 82.8 28.302 70 48 11 67.2 0.179 3.1507 2.4499 33 33 8 44.4 0.172 36.651 56.9

55.395

24.3 0.214

2.2.1.3. 10% em massa de Nb₂O₅ a 800°C

FILE: DM10%800.MDI IDEN: dm10%800 lavado(c1) SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-27-03@19:56 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit 2-Theta d(A) h k 1| BG Peak P% Area Area% FWHM 22.692 3.9154 104 83 100.0 79.2 0.193 21 28.350 62 73 88.0 26 100.0 0.277 3.1455

23

23

27.7

7

2.2.1.4. 15% em massa de Nb2O5 a 800°C

1.6572

FILE: DM15%800.MDI
IDEN: dm15%800 lavado(c1)
SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-27-03@19:24
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
22.696	3.9147			Í	98	101	100.0	36	94.7	0.278
28.441	3.1357				58	83	82.2	38	100.0	0.357
36.557	2.4560				36	32	31.7	8	20.9	0.194
46.301	1.9593				24	34	33.7	10	24.5	0.213
55.446	1.6558				26	26	25.7	9	23.5	0.268

2.2.1.5. 25% em massa de Nb2O5 a 800°C

FILE: VAL.MDI
IDEN: c1800 val ci
SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-17-03@13:10
FIND: Filter=15p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
2.188	40.3499				56	72	28.8	48	62.9	0.522
22.658	3.9212				75	250	100.0	74	98.3	0.235
28.397	3.1404				62	200	80.0	75	100.0	0.299
28.987	3.0778				54	114	45.6	43	56.7	0.298
36.647	2.4501				30	88	35.2	31	40.5	0.275
37.192	2.4155				24	34	13.6	12	14.9	0.262
46.295	1.9595				26	52	20.8	18	23.1	0.266
49.707	1.8327				28	33	13.2	4	4.7	0.086
50.951	1.7908				26	38	15.2	12	15.8	0.248
55.298	1.6599				32	41	16.4	18	23.1	0.337
58.559	1.5750				28	29	11.6	5	6.6	0.135

22.549

2.2.2. NbSiAI-ET (Solvente: ácido acético

2.2.2.1. 5% em massa de Nb2O5 a 800°C

```
FILE: AC5%800.MDI
IDEN: ac5%8003h
SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-31-03@15:47
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit
                                                   Area Area%| FWHM
 2-Theta
          d(A) | h k l|
                               BG
                                             P%
                                      Peak
                                      42 100.0
                                                    5 100.0 0.091
```

114

2.2.2.2. 10% em massa de Nb2O5 a 800°C

3.9399

FILE: AC10%800.MDI IDEN: ac10%8003h SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-31-03@16:16 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
12.148	7.2799			Í	31	25	43.1	3	18.1	0.066
22.662	3.9204			Í	109	58	100.0	11	90.3	0.141
28.399	3.1401			Í	66	55	94.8	12	100.0	0.165
33.550	2.6689			Í	37	31	53.4	3	23.3	0.068

2.2.2.3. 15% em massa de Nb2O5 a 800°C

FILE: AC15%.MDI IDEN: ac.15% 800oc 3h SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-29-03@19:29 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
22.795	3.8979				98	62	100.0	7	45.7	0.081
25.050	3.5519				82	52	83.9	б	38.4	0.082
28.449	3.1347				59	45	72.6	14	100.0	0.245
36.749	2.4436				32	26	41.9	3	19.2	0.082
55.202	1.6625				24	23	37.1	3	14.9	0.071

2.2.2.4. 25% em massa de Nb2O5 a 800°C

FILE: AC25%800.MDI IDEN: ac25%8003h SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-31-03@16:40 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit 2-Theta d(A) h k 1 BG Peak P% Area Area% FWHM 21.050 4.2169 90 38 43.7 10.4 0.061 3 22.694 100 87 100.0 28 3.9150 100.0 0.256 60 28.394 3.1407 62 69.0 21 75.0 0.278 36.648 2.4501 33 36 41.4 12 41.7 0.258

2.2.2.3. NbSiAI-AQ (em meio aquoso)

2.2.3.1. 10% em massa de Nb2O5 a 800°C

FILE: D4(10%).MDI
IDEN: d4(10%) 800 oC 3H
SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-24-03@19:03
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
25.051	3.5517			Í	91	40	100.0	4	100.0	0.076
28.901	3.0867			Í	58	36	90.0	4	100.0	0.084

2.2.3.2. 15% em massa de Nb2O5 a 800°C

FILE: D(15%)A.MDI
IDEN: d3 (15%) amoniacal 800 3h
SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-22-03@19:15
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit
2-Theta d(A) | b k || BC| Peak P%| Area Area%| EWHM

22.794 3.8980 83 75 100.0 22 84.9 25 051 3 5518 75 37 49 3 5 17 1	' WHM
).228
).093
28.541 3.1249 50 69 92.0 26 100.0).292
29.045 3.0718 53 36 48.0 10 37.6).210
36.654 2.4497 29 27 36.0 3 11.3).084
46.303 1.9592 22 25 33.3 3 9.5).077

2.2.3.3. 25% em massa de Nb2O5 a 800°C

FILE: D125%800.MDI
IDEN: Nb205- amoniacal 800 3h 25% d1
SCAN: Range=2.0-60.0/0.05, Dwell=1(sec), Anode=CU, 01-21-03@20:03
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
22.657	3.9214				89	82	100.0	19	55.1	0.184
25.008	3.5578				88	51	62.2	15	42.7	0.230
28.308	3.1501				59	77	93.9	35	100.0	0.356
36.551	2.4563				30	34	41.5	13	35.9	0.289
44.298	2.0431				27	27	32.9	3	7.1	0.073
48.845	1.8630				35	28	34.1	3	6.1	0.060

7.2.2.3. CuO

7.2.2.3.1. CuO 300/6H

IDEN: CUO300
SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 03-21-05@18:09
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%∣	Area	Area%	FWHM
32.500	2.7527				294	276	8.3	72	5.8	0.207
35.505	2.5263				316	3240	97.8	1041	85.3	0.257
38.710	2.3242				332	3313	100.0	1219	100.0	0.294
46.254	1.9612				291	79	2.4	15	1.2	0.150
48.750	1.8664				294	897	27.1	283	23.2	0.252
53.454	1.7127				282	258	7.8	94	7.6	0.289
58.302	1.5813				293	402	12.1	136	11.1	0.269
61.511	1.5063				287	577	17.4	193	15.8	0.267
66.210	1.4103				297	419	12.6	222	18.1	0.422
68.053	1.3765				294	506	15.3	218	17.8	0.343
72.368	1.3047				283	176	5.3	42	3.4	0.188
75.243	1.2618				286	232	7.0	107	8.7	0.366
80.102	1.1971				281	76	2.3	8	0.7	0.084
82.354	1.1699				316	77	2.3	15	1.2	0.149
83.601	1.1556				310	88	2.7	9	0.7	0.080

7.2.2.3.2. CuO 800/6H

IDEN: CUO800/6H SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 04-13-05@17:09 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit 2-Theta d(A) h k 1 BG Peak P%∣ Area Area% FWHM 9.2 32.550 2.7485 265 408 82 6.8 0.159 86.3 1002 35.558 2.5227 288 3823 84.3 0.210 38.755 2.3216 299 4429 100.0 1189 100.0 0.215 1.9576 269 97 2.2 18 1.5| 0.144 46.342 48.766 1.8658 266 1086 24.5 287 24.1 0.211 1.7762 66 1.5 8 0.6 0.093 51.400 260 53.548 7.5 98 1.7099 265 333 8.2 0.235 58.302 150 1.5813 263 408 9.2 12.6 0.293 61.563 1.5052 266 714 16.1 197 16.5 0.220 13.2 66.257 1.4094 278 586 230 19.3 0.313 68.106 1.3756 279 568 12.8 210 17.7 0.296 72.401 1.3042 265 207 4.7 65 5.4 0.249 75.250 1.2617 254 285 6.4 132 11.1| 0.369 80.298 1.1946 261 62 1.4 8 0.7 0.100 82.404 1.1694 292 85 1.9 23 1.9 0.216 82.537 1.1678 304 70 1.6 16 1.3 0.180 83.553 1.1562 293 89 2.0 16 1.3 0.143

7.2.2.4. Sistemas contendo CuO/Nb₂O₅

7.2.2.4.1. Sistemas simultâneos (razão de 1:10 em CuO:Nb₂O₅)

7.2.2.4.1.1. 15% Nb₂O₅

```
USER: GENERAL
JADE: Peak ID Report
DATE: Thursday, 03-10-05 @10:17a
FILE: CUS80015.MDI
IDEN: CUS 800 15%
SCAN: Range=2.0-100.0/0.05, Dwell=1(sec), Anode=CU, 11-20-03@14:14
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit
 2-Theta
                                 BG
                                        Peak
                                                 P%∣
                                                       Area Area% FWHM
           d(A)
                   h k
                         1|
  22 095
          4.0198
                                138
                                              100 0
                                                             100 0 0 216
                          64
                                                         1 8
```

22.075	1.0100	1 100	01	T00.01	ΞŪ	T00.01	0.210
24.501	3.6302	116	62	96.9	16	90.4	0.201
27.803	3.2061	89	63	98.4	15	84.9	0.186
36.005	2.4924	46	49	76.6	10	57.1	0.161
50.348	1.8109	37	28	43.8	3	15.1	0.074
54.750	1.6752	36	26	40.6	3	15.1	0.080

7.2.2.4.1.2. 25% Nb₂O₅

USER: (GENERAL									
JADE: 1	Peak ID Rep	port								
DATE: 1	Thursday, (3-10-	-05	@1():18a					
FILE: S	SCU25.MDI									
IDEN: S	S25CU 8000									
SCAN: I	Range=2.0-1	.00.0/	/0.0	5,	Dwell=1(s	sec), Anoo	de=CU, 1	L1-13-03@	20:08	
FIND: 1	Filter=25p	Thre	esho	ld=	=3.0s, Cut	coff=0.3%	, 2-Thet	a=Summit	:	
2-The	ta d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
23.29	94 3.8155	5			133	71	74.0	23	69.4	0.254
24.44	47 3.6381	-			130	96	100.0	33	100.0	0.271
28.2	50 3.1564	ŧ			80	42	43.8	5	14.5	0.090
31.64	48 2.8248	3			63	42	43.8	5	13.4	0.083
32.84	41 2.7249)			58	40	41.7	8	22.2	0.144
38.54	49 2.3335	5			35	30	31.2	4	9.7	0.084
43.5	53 2.0763	3			39	35	36.5	16	47.1	0.350
43.69	95 2.0699)			41	28	29.2	9	25.2	0.234

7.2.2.4.2. Sistemas seqüenciais (razão de 1:10 em CuO:Nb₂O₅)

7.2.2.4.2.1. 10% Nb₂O₅

IDEN: Cup 10
SCAN: Range=2.0-100.0/0.05, Dwell=1(sec), Anode=CU, 01-21-04@22:43
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%∣	Area	Area%	FWHM
17.750	4.9928			Í	95	39	68.4	4	30.3	0.081
24.951	3.5657				130	57	100.0	14	100.0	0.183
33.249	2.6923			Í	62	34	59.6	4	30.3	0.093
40.555	2.2226			Í	43	30	52.6	3	19.5	0.068

7.2.2.4.2.2. 15% Nb₂O₅

IDEN: Cup 15% SCAN: Range=2.0-100.0/0.05, Dwell=1(sec), Anode=CU, 01-22-04@20:09 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
17.351	5.1068				84	42	32.1	4	10.4	0.073
23.797	3.7360				142	47	35.9	6	15.7	0.099
25.086	3.5469				134	131	100.0	38	100.0	0.226
28.847	3.0924				76	41	31.3	11	28.9	0.209
30.797	2.9009				68	36	27.5	4	10.3	0.084
32.195	2.7780				62	31	23.7	4	8.8	0.084
33.402	2.6804				58	45	34.4	12	30.6	0.202
44.146	2.0498				40	39	29.8	19	49.8	0.378
51.351	1.7778				37	29	22.1	4	8.4	0.086
54.648	1.6781				40	32	24.4	8	19.3	0.179
58.598	1.5740				45	45	34.4	15	38.1	0.251

7.2.2.4.2.3. 25% Nb₂O₅

IDEN: Cup 25% SCAN: Range=2.0-100.0/0.05, Dwell=1(sec), Anode=CU, 01-22-04@20:49 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P∛	Area	Area%	FWHM
14.200	6.2321				50	47	24.5	12	16.2	0.191
17.447	5.0788				73	55	28.6	15	20.3	0.204
24.340	3.6538				162	66	34.4	11	15.1	0.127
24.999	3.5590				131	192	100.0	67	96.2	0.278
28.747	3.1029				82	55	28.6	14	19.8	0.200
29.971	2.9790				117	97	50.5	24	33.3	0.191
30.581	2.9209				59	151	78.6	70	100.0	0.367
33.343	2.6850				53	78	40.6	30	43.1	0.307
35.452	2.5300				54	43	22.4	5	6.1	0.078
36.451	2.4629				55	44	22.9	4	5.6	0.070
38.051	2.3629				44	33	17.2	4	4.5	0.075
43.854	2.0627				46	45	23.4	12	15.9	0.196
47.549	1.9107				45	30	15.6	3	3.8	0.071
48.753	1.8663				48	62	32.3	24	34.3	0.307
51.439	1.7750				35	44	22.9	11	14.7	0.185
53.243	1.7190				42	51	26.6	23	32.5	0.354
58.597	1.5741				53	43	22.4	18	25.8	0.333
65.597	1.4220				40	29	15.1	3	3.5	0.066
97.602	1.0237				24	23	12.0	2	2.3	0.056

7.2.2.4.3. Sistemas simultâneos (razão de 1:1 em CuO:Nb₂O₅)

7.2.2.4.3.1. 5% Nb₂O₅ 300 °C/6h

IDEN: CUST53006
SCAN: Range=5.0-70.0/0.05, Dwell=1(sec), Anode=CU, 11-16-04@15:57
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
35.556	2.5228				153	62	96.9	19	100.0	0.241
38.761	2.3213				135	64	100.0	13	67.0	0.156

2 IIICCu	G(11)	11	17	- 1	D0	I Cuit		m cu	mcau	T WITTIN
35.502	2.5265				183	124	100.0	48	100.0	0.307
38.799	2.3191			Í	168	100	80.6	44	91.0	0.346
61.493	1.5067			Í	128	41	33.1	5	9.1	0.085

7.2.2.4.3.3. 25% Nb₂O₅ 300 °C/6h

USER: GENERAL JADE: Peak ID Report DATE: Thursday, 03-10-05 @10:42a FILE: Z00006.RAW IDEN: CUST253006 SCAN: Range=5.0-70.0/0.05, Dwell=1(sec), Anode=CU, 11-16-04@17:30 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
35.546	2.5235				231	130	100.0	51	78.2	0.310
38.706	2.3244				199	124	95.4	65	100.0	0.415
67.850	1.3802				172	47	36.2	4	5.8	0.064

7.2.2.4.3.4. 10% Nb₂O₅ 800 °C/6h

IDEN: CU10%86H
SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 04-15-05@17:19
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%∣	Area	Area%	FWHM
24.341	3.6537			Í	274	133	73.5	27	60.0	0.162
26.348	3.3798				241	56	30.9	7	14.2	0.091
29.967	2.9794			Í	226	167	92.3	44	97.2	0.209
30.457	2.9325			Í	223	118	65.2	35	76.3	0.232
30.584	2.9206			Í	221	181	100.0	45	100.0	0.198
35.537	2.5241				196	101	55.8	26	56.9	0.202
38.701	2.3247			Í	166	87	48.1	21	44.9	0.185
48.992	1.8578			Í	150	45	24.9	5	10.0	0.080
51.357	1.7776				142	43	23.8	б	12.6	0.105
53.295	1.7175				141	79	43.6	40	88.5	0.402

7.2.2.4.3.5. 15% Nb₂O₅ 800 °C/6h

IDEN: CU15%86H SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 04-15-05@18:05 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit P%∣ 2-Theta d(A) h k 1 BG Peak Area Area% FWHM 24.396 3.6455 275 166 72.8 43 55.5 0.206 50.1 30.019 2.9743 305 165 72.4 39 0.187 2.9632 115 50.4 22 27.5 30.134 268 0.147 30 30.621 2.9171 299 146 64.0 38.1 0.161 0.270 35.592 2.5203 211 228 100.0 78 100.0 0.276 38.752 186 175 76.8 61 78.5 2.3217 48.856 1.8626 176 68 29.8 13 16.8 0.152 51.406 28.9 17 21.4 0.200 1.7760 159 66 46.5 35 44.4 0.258 53.310 1.7170 166 106 73 32.0 61.505 1.5064 166 8 10.1 0.085 52 7 63.701 1.4597 161 22.8 8.1 0.095

7.2.2.5. CCA cristalina

7.2.2.5.1. CCA tratada a 300°C/6h

IDEN: CNC 300 6H SCAN: Range=2.0-90.0/0.05, Dwell=0.25(sec), Anode=CU, 03-15-06@20:49 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10.798	8.1868				15	23	1.9	3	0.6	0.075
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	21.850	4.0643				62	1192	100.0	337	100.0	0.226
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28.303	3.1506				27	88	7.4	25	7.2	0.220
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31.377	2.8486				22	108	9.1	25	7.2	0.180
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35.995	2.4930				17	169	14.2	62	18.4	0.293
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	42.545	2.1231				13	28	2.3	7	1.9	0.181
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	44.651	2.0278				11	32	2.7	15	4.3	0.363
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	46.946	1.9338				11	54	4.5	16	4.7	0.236
53.952 1.6981 11 27 2.3 8 2.3 0.23 56.998 1.6144 13 39 3.3 16 4.6 0.31 60.149 1.5371 11 29 2.4 8 2.4 0.23 61.949 1.4967 12 24 2.0 8 2.3 0.22 64.904 1.4355 13 22 1.8 8 2.3 0.22 64.904 1.4355 13 22 1.8 8 2.3 0.22 72.507 1.3026 9 20 1.7 4 0.9 0.12 73.802 1.2829 8 18 1.5 7 1.8 0.26 88.757 1.1014 7 18 1.5 5 1.4 0.20	48.502	1.8754				12	44	3.7	16	4.5	0.275
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	53.952	1.6981				11	27	2.3	8	2.3	0.231
60.1491.537111292.482.40.2161.9491.496712242.082.30.2564.9041.435513221.882.30.2672.5071.30269201.740.90.1273.8021.28298181.571.80.2688.7571.10147181.551.40.20	56.998	1.6144				13	39	3.3	16	4.6	0.319
61.9491.496712242.082.30.2564.9041.435513221.882.30.2672.5071.30269201.740.90.1273.8021.28298181.571.80.2688.7571.10147181.551.40.20	60.149	1.5371				11	29	2.4	8	2.4	0.219
64.904 1.4355 13 22 1.8 8 2.3 0.28 72.507 1.3026 9 20 1.7 4 0.9 0.12 73.802 1.2829 8 18 1.5 7 1.8 0.26 88.757 1.1014 7 18 1.5 5 1.4 0.20	61.949	1.4967				12	24	2.0	8	2.3	0.255
72.507 1.3026 9 20 1.7 4 0.9 0.12 73.802 1.2829 8 18 1.5 7 1.8 0.26 88.757 1.1014 7 18 1.5 5 1.4 0.20	64.904	1.4355				13	22	1.8	8	2.3	0.284
73.802 1.2829 8 18 1.5 7 1.8 0.26 88.757 1.1014 7 18 1.5 5 1.4 0.20	72.507	1.3026				9	20	1.7	4	0.9	0.122
88.757 1.1014 7 18 1.5 5 1.4 0.20	73.802	1.2829				8	18	1.5	7	1.8	0.267
	88.757	1.1014				7	18	1.5	5	1.4	0.207

7.2.2.5.2. CCA tratada a 1000°C/3h

IDEN: CNCP SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 11-28-05@04:17 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
8.202	10.7708				665	99	2.2	8	0.4	0.058
10.098	8.7521				677	86	1.9	8	0.4	0.071
18.293	4.8458				393	74	1.6	8	0.4	0.082
19.699	4.5030				401	68	1.5	б	0.3	0.064
20.799	4.2672				550	106	2.3	13	0.7	0.095
22.042	4.0293				533	4576	100.0	1719	100.0	0.300
28.459	3.1337				354	310	6.8	96	5.6	0.246
31.537	2.8345				304	345	7.5	119	6.9	0.276
36.193	2.4798				249	727	15.9	288	16.7	0.316
42.787	2.1117				191	129	2.8	29	1.6	0.175
44.891	2.0175				180	108	2.4	32	1.8	0.232
47.005	1.9316				174	177	3.9	68	4.0	0.307
48.652	1.8699				172	149	3.3	61	3.5	0.327
54.068	1.6947				151	84	1.8	15	0.9	0.140
57.144	1.6106				160	145	3.2	57	3.3	0.313
60.342	1.5326				135	86	1.9	30	1.7	0.272
62.051	1.4945				140	83	1.8	28	1.6	0.267
65.092	1.4318				132	99	2.2	41	2.4	0.331
72.651	1.3003				123	57	1.2	13	0.8	0.181
74.050	1.2792				114	69	1.5	7	0.4	0.075
81.151	1.1842				125	47	1.0	10	0.5	0.154
89.052	1.0985				107	70	1.5	14	0.8	0.159
89.399	1.0951				106	55	1.2	6	0.3	0.081

7.2.2.6. Nb₂O₅/CCA cristalina

7.2.2.6.1. 5% Nb₂O₅/CCA cristalina calcinada a 300°C/6h

IDEN: CNC5MIL
SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 11-28-05@04:41
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
9.551	9.2528				622	113	2.5	34	2.2	0.238
15.149	5.8437				475	88	1.9	7	0.4	0.061
21.995	4.0379			Í	614	4563	100.0	1551	100.0	0.272
28.453	3.1343			Í	444	289	6.3	89	5.7	0.245
31.495	2.8382			ĺ	413	350	7.7	100	6.4	0.227
36.110	2.4854			İ	361	702	15.4	259	16.6	0.294
42.650	2.1181			İ	300	95	2.1	22	1.4	0.181
44.856	2.0190			Í	285	106	2.3	25	1.6	0.185
47.045	1.9300			ĺ	277	164	3.6	57	3.6	0.275
48.604	1.8717			İ	270	195	4.3	69	4.4	0.283
54.243	1.6897			İ	256	83	1.8	21	1.3	0.198
57.102	1.6117			Í	252	120	2.6	56	3.6	0.372
59.055	1.5629			ĺ	236	53	1.2	б	0.3	0.079
60.300	1.5336			İ	232	97	2.1	22	1.4	0.176
62.052	1.4944			İ	230	78	1.7	20	1.3	0.199
65.052	1.4326			İ	221	94	2.1	44	2.8	0.366
68.353	1.3712			Í	224	59	1.3	7	0.4	0.081
69.502	1.3513			Í	233	54	1.2	5	0.3	0.073
72.748	1.2988			Í	204	71	1.6	24	1.5	0.261
72.894	1.2966			Í	203	73	1.6	9	0.5	0.093
73.854	1.2821			Í	199	82	1.8	13	0.8	0.122
81.300	1.1824			İ	204	56	1.2	7	0.4	0.087
89.101	1.0980			İ	190	49	1.1	б	0.4	0.095
7.2.2.6.2. 10% Nb₂O₅/CCA cristalina calcinada a 300°C/6h

IDEN: CNC10MIL
SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 11-28-05@05:04
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
9.401	9.4001				647	106	3.0	13	0.9	0.095
9.645	9.1624				630	101	2.8	13	0.8	0.096
21.948	4.0463				633	3562	100.0	1431	100.0	0.321
24.152	3.6819				533	88	2.5	9	0.6	0.076
25.196	3.5316				515	80	2.2	7	0.4	0.063
27.458	3.2456				515	76	2.1	9	0.6	0.087
28.401	3.1399				500	259	7.3	86	6.0	0.264
31.443	2.8428				438	298	8.4	119	8.3	0.317
36.059	2.4887				399	561	15.7	230	16.1	0.328
39.249	2.2935				341	76	2.1	7	0.4	0.066
42.508	2.1249				346	91	2.6	16	1.1	0.137
44.797	2.0215				317	120	3.4	35	2.4	0.231
47.004	1.9316				325	130	3.6	45	3.1	0.275
48.601	1.8718				311	161	4.5	55	3.8	0.269
54.293	1.6882				301	82	2.3	8	0.5	0.072
57.131	1.6109				297	151	4.2	27	1.9	0.141
60.206	1.5358				268	87	2.4	10	0.7	0.090
61.902	1.4977				263	90	2.5	9	0.6	0.079
65.149	1.4307				268	60	1.7	8	0.5	0.097
72.649	1.3004				238	55	1.5	6	0.4	0.075
74.094	1.2785				234	53	1.5	5	0.3	0.072
82.500	1.1683				236	56	1.6	6	0.4	0.073
89.099	1.0980				213	59	1.7	7	0.5	0.090

7.2.2.6.3. 15% Nb₂O₅/CCA cristalina calcinada a 300°C/6h

SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 11-28-05@05:27 FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
9.594	9.2112				531	106	4.2	21	2.3	0.154
10.099	8.7517				562	106	4.2	12	1.3	0.085
22.046	4.0286				594	2505	100.0	893	100.0	0.285
28.508	3.1285				493	170	6.8	47	5.2	0.219
31.415	2.8453				437	204	8.1	68	7.5	0.263
36.194	2.4798				401	355	14.2	145	16.2	0.327
38.901	2.3132				358	66	2.6	б	0.6	0.064
42.998	2.1018				345	78	3.1	7	0.8	0.071
44.800	2.0214				336	80	3.2	10	1.1	0.094
47.008	1.9314				334	99	4.0	18	2.0	0.143
48.607	1.8716				325	123	4.9	29	3.1	0.182
53.001	1.7263				318	67	2.7	б	0.6	0.064
53.900	1.6996				314	67	2.7	8	0.8	0.088
57.057	1.6128				317	91	3.6	18	2.0	0.157
61.756	1.5009				290	71	2.8	8	0.8	0.083
62.002	1.4955				290	71	2.8	8	0.9	0.088
64.960	1.4344				286	78	3.1	8	0.8	0.077
68.351	1.3713				281	67	2.7	б	0.6	0.067
72.701	1.2996				258	69	2.8	8	0.8	0.085
73.895	1.2815				248	69	2.8	13	1.4	0.147
79.401	1.2059				250	65	2.6	8	0.8	0.090
80.913	1.1871				257	55	2.2	б	0.6	0.076

7.2.2.6.4. 25% Nb₂O₅/CCA cristalina calcinada a 300°C/6h

IDEN: CNC25MIL
SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 11-28-05@06:05
FIND: Filter=25p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2 Thota		Ъ	1-	٦ I	PC	Doola	٦e	7 moo	7rosel	TATLIN
z-meta	u(A)	11	ĸ	Ξļ	ן טם	Peak	Ръ	Area	Areas	L MUIN
9.397	9.4036				585	124	4.7	24	2.5	0.152
19.796	4.4812				610	102	3.9	11	1.1	0.080
21.993	4.0382				719	2621	100.0	930	100.0	0.284
28.448	3.1349			Í	653	200	7.6	47	5.0	0.187
31.489	2.8388			Í	610	189	7.2	49	5.3	0.207
36.106	2.4856			Í	536	480	18.3	162	17.4	0.270
42.650	2.1182			Í	473	106	4.0	17	1.7	0.121
47.102	1.9278			Í	482	90	3.4	28	2.9	0.244
48.608	1.8715			Í	480	99	3.8	21	2.2	0.168
56.959	1.6154			Í	454	99	3.8	10	1.0	0.077
58.648	1.5728			Í	440	73	2.8	6	0.5	0.055
63.149	1.4711			Í	412	84	3.2	10	1.0	0.090
68.199	1.3740			Í	412	73	2.8	8	0.8	0.084
77.800	1.2266			Í	382	77	2.9	9	0.9	0.088
79.356	1.2064			İ	381	71	2.7	9	0.9	0.096
85.951	1.1300			İ	354	86	3.3	9	0.9	0.077

6.5. 5% Nb₂O₅/CCA cristalina calcinada a 800°C/6h

SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 12-01-05@06:08 FIND: Filter=15p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
9.193	9.6120			İ	735	120	2.7	16	0.9	0.104
9.601	9.2045			Í	769	91	2.1	13	0.7	0.109
9.896	8.9309			Í	755	140	3.2	16	0.9	0.090
19.654	4.5131			ĺ	454	116	2.6	20	1.2	0.133
21.851	4.0641			Í	638	4435	100.0	1659	100.0	0.299
25.954	3.4301			Í	421	77	1.7	9	0.5	0.088
28.350	3.1455			Í	429	353	8.0	91	5.4	0.204
29.300	3.0456			ĺ	403	92	2.1	16	1.0	0.138
31.307	2.8548			Í	381	347	7.8	129	7.8	0.296
36.041	2.4900			Í	320	735	16.6	279	16.8	0.303
38.148	2.3571			Í	294	63	1.4	б	0.3	0.067
42.547	2.1230			Í	268	104	2.3	29	1.7	0.219
44.752	2.0234				244	113	2.5	24	1.4	0.166
46.950	1.9337				239	181	4.1	50	3.0	0.218
47.602	1.9087				238	85	1.9	7	0.4	0.063
48.459	1.8769				230	178	4.0	59	3.5	0.264
51.310	1.7791				217	65	1.5	8	0.4	0.086
54.051	1.6952				205	122	2.8	27	1.6	0.176
57.093	1.6119				207	153	3.4	79	4.7	0.408
60.111	1.5380				189	88	2.0	16	0.9	0.139
61.853	1.4988				187	91	2.1	20	1.2	0.174
63.795	1.4578				178	50	1.1	б	0.3	0.090
64.864	1.4363				185	82	1.8	14	0.8	0.131
66.650	1.4021				176	59	1.3	7	0.4	0.087
68.333	1.3716				183	72	1.6	13	0.8	0.140
70.253	1.3387				184	69	1.6	7	0.4	0.076
72.647	1.3004				169	56	1.3	7	0.4	0.099
73.755	1.2836				166	69	1.6	8	0.5	0.090
81.008	1.1860				168	95	2.1	10	0.6	0.080

7.2.2.6.6. 10% Nb₂O₅/CCA cristalina calcinada a 800°C/6h

IDEN: NB205/SI02 10% SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 12-01-05@06:33 FIND: Filter=15p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
9.863	8.9606				722	105	2.6	13	0.9	0.097
10.447	8.4612				762	90	2.3	10	0.7	0.083
13.864	6.3820				573	95	2.4	8	0.6	0.067
15.809	5.6010				533	87	2.2	8	0.6	0.073
19.644	4.5155				509	79	2.0	9	0.6	0.086
20.748	4.2776				666	89	2.2	13	0.9	0.109
21.891	4.0567				694	3974	100.0	1401	100.0	0.282
25.648	3.4704				507	91	2.3	18	1.2	0.153
28.387	3.1415				510	377	9.5	97	6.9	0.205
29.396	3.0359				485	193	4.9	48	3.4	0.198
30.193	2.9576				469	96	2.4	11	0.7	0.085
31.344	2.8515				456	326	8.2	100	7.1	0.244
36.006	2.4923				409	583	14.7	228	16.2	0.312
38.192	2.3545				362	83	2.1	9	0.6	0.080
39.298	2.2907				346	71	1.8	10	0.7	0.103
42.508	2.1249				339	118	3.0	14	0.9	0.089
42.696	2.1160				343	80	2.0	11	0.7	0.100
45.908	1.9751				356	71	1.8	8	0.5	0.086
46.995	1.9319				359	134	3.4	24	1.7	0.140
48.548	1.8737				316	174	4.4	58	4.1	0.266
49.658	1.8344				298	60	1.5	8	0.5	0.096
50.181	1.8165				313	60	1.5	5	0.3	0.065
51.546	1.7715				315	88	2.2	15	1.0	0.130
55.255	1.6611				304	68	1.7	8	0.5	0.085
56.952	1.6155				294	171	4.3	64	4.6	0.299
60.100	1.5382				274	69	1.7	9	0.6	0.094
61.987	1.4959				271	87	2.2	16	1.1	0.138
64.916	1.4353				252	125	3.1	23	1.6	0.147
66.806	1.3992				252	55	1.4	7	0.5	0.097
68.149	1.3748				262	73	1.8	7	0.5	0.075
71.494	1.3185				244	73	1.8	8	0.5	0.081
72.559	1.3018				241	91	2.3	11	0.7	0.091
80.855	1.1878				242	65	1.6	6	0.4	0.071
82.888	1.1638				217	53	1.3	6	0.4	0.088
86.956	1.1195				208	54	1.4	5	0.3	0.064
88.653	1.1024				208	59	1.5	6	0.4	0.079
88.953	1.0994				203	77	1.9	13	0.9	0.127

7.2.2.6.7. 15% Nb₂O₅/CCA cristalina calcinada a 800°C/6h

```
IDEN: NB205/SI02 15%
SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 12-01-05@06:54
FIND: Filter=15p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit
```

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
9.294	9.5076			İ	709	149	4.6	26	2.0	0.135
11.906	7.4269			Í	662	93	2.9	11	0.8	0.086
14.142	6.2573			Í	567	113	3.5	10	0.8	0.068
15.052	5.8809			Í	546	82	2.5	11	0.8	0.098
21.853	4.0637				720	3218	100.0	1263	100.0	0.314
24.143	3.6832				568	84	2.6	8	0.6	0.068
28.353	3.1452			Í	586	477	14.8	156	12.3	0.260
31.379	2.8484			Í	520	243	7.6	59	4.6	0.192
36.006	2.4923				462	481	14.9	198	15.6	0.328
42.646	2.1183				373	80	2.5	10	0.8	0.097
44.502	2.0342			Í	367	65	2.0	8	0.6	0.090
46.002	1.9713				385	113	3.5	26	2.0	0.181
46.964	1.9331				387	111	3.4	19	1.5	0.133
48.547	1.8737				364	143	4.4	27	2.1	0.151
53.802	1.7025			Í	351	77	2.4	8	0.6	0.076
57.097	1.6118				344	128	4.0	32	2.5	0.197
60.248	1.5348				324	71	2.2	8	0.6	0.086
62.305	1.4890				313	84	2.6	10	0.8	0.095
64.948	1.4346				303	79	2.5	14	1.1	0.141
65.553	1.4228				301	74	2.3	9	0.7	0.090
72.502	1.3026				286	61	1.9	6	0.5	0.075
72.734	1.2991				286	64	2.0	6	0.5	0.074
73.697	1.2844				280	60	1.9	7	0.5	0.089
80.963	1.1865				278	62	1.9	7	0.5	0.088
84.249	1.1484				244	76	2.4	8	0.6	0.075

7.2.2.6.8. 25% Nb₂O₅/CCA cristalina calcinada a 800°C/6h

```
IDEN: NB205/SI02 25%
SCAN: Range=2.0-90.0/0.05, Dwell=1(sec), Anode=CU, 12-01-05@07:13
FIND: Filter=15p, Threshold=3.0s, Cutoff=0.3%, 2-Theta=Summit
```

2-Theta	d(A)	h	k	1	BG	Peak	P%	Area	Area%	FWHM
9.255	9.5473				680	102	4.6	33	5.0	0.257
9.651	9.1571				688	155	7.1	43	6.5	0.221
11.799	7.4943				691	89	4.1	7	1.0	0.058
14.163	6.2481				627	85	3.9	7	1.0	0.061
17.546	5.0503				566	91	4.1	7	0.9	0.055
21.845	4.0652				969	2194	100.0	656	100.0	0.239
22.502	3.9479				932	645	29.4	144	21.9	0.178
25.798	3.4506				578	80	3.6	8	1.1	0.073
28.345	3.1460				633	695	31.7	299	45.5	0.344
31.259	2.8591				557	188	8.6	68	10.3	0.288
36.043	2.4898				536	384	17.5	152	23.2	0.316
36.588	2.4540				655	128	5.8	22	3.3	0.134
42.350	2.1325				457	106	4.8	11	1.6	0.077
46.058	1.9690				471	131	6.0	46	7.0	0.281
46.992	1.9320				462	93	4.2	11	1.7	0.094
48.413	1.8786				441	136	6.2	25	3.8	0.145
50.310	1.8121				436	91	4.1	11	1.7	0.096
50.749	1.7975				457	73	3.3	10	1.4	0.099
51.645	1.7684				437	78	3.6	8	1.1	0.074
51.954	1.7586				431	72	3.3	6	0.8	0.059
54.258	1.6892				453	74	3.4	6	0.9	0.063
55.229	1.6618				465	147	6.7	22	3.2	0.115
57.092	1.6119				425	98	4.5	12	1.7	0.091
58.946	1.5656				403	74	3.4	7	1.0	0.070
60.398	1.5314				392	75	3.4	7	1.1	0.074
68.461	1.3693				375	68	3.1	9	1.2	0.096
69.554	1.3505				391	77	3.5	7	1.1	0.072
79.494	1.2047				343	69	3.1	7	1.1	0.081
84.853	1.1418				320	82	3.7	9	1.3	0.083
85.912	1.1304				313	69	3.1	7	1.0	0.078