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A B S T R A C T

The aim of this study was to define the population, morphological and ultrastructural characteristics of bitch
preantral follicles (PAFs) and to compare the effects on the morphology of PAF of two cryopreservation tech-
niques - slow freezing (SF) and vitrification (V) - of bitches' ovarian tissue. The average population (number per
ovary) of PAFs was 48,541 ± 18,366, where 94.25% were primordial (45,145 ± 16,076). The average dia-
meter of the primordial follicles was 27.5 ± 4.2 μm. The overall percentage of morphologically normal PAFs
was 93.66 ± 6.81% for the control group, 86.16 ± 11.05% after SF and 68.14 ± 12.75% after V. The per-
centage of normal primordial follicles was 96.69 ± 4.72% in control, 89.51 ± 10.39% in SF and
75.32 ± 9.23% in V. There was no significant difference in the overall percentage of normal PAFs among SF and
the control. However, slow frozen follicles presented ultrastructural damage, while vitrified primordial and
primary follicles were well preserved. In conclusion, although slow freezing seemed to be a good preserving
method, vitrification was more effective than slow freezing in preserving the ultrastructure of primordial and
primary follicles of bitches.

1. Introduction

Cryobiology has revolutionized studies on reproduction because it
allows the preservation of genetic material from rare breeds, en-
dangered species and animals of commercial interest. Cryopreservation
of ovarian tissue has been attempted in many species like sheep [1,2],
humans [3,4], cows [5,6], goats [2,7], pigs [8] and bitches [9] with
some very promising results.

Nowadays, there are two main techniques for female gamete cryo-
preservation: slow freezing and vitrification. Slow-freezing is usually
achieved by pre-equilibration with 1.5–2M permeating cryoprotectant
agent, such as dimethyl sulfoxide (Me2SO), and then frozen with a
controlled cooling rate [10]. The physical definition of vitrification is
the solidification of a solution at low temperatures without ice crystal
formation. The phenomenon is based on an extreme increase in visc-
osity and requires very quick cooling rates and the use of high con-
centrations of cryoprotectants, which reduces ice crystal formation and
increases viscosity at low temperatures [11]. The solid surface vi-
trification method has been more and more used, especially for ovarian
tissue [12–14]. It has the advantage of using a lesser quantity of vi-
trification solution and a higher heat exchange by using a cold metal
surface; moreover, a clean metal surface facilitates sterile handling of
biological material [15].

Although ovarian tissue cryopreservation is widely exploited in

some species, reports of ovarian tissue cryopreservation in dogs (Canis
familiaris) are scarce. Recently, live births from domestic dog embryos
produced in vitro cryopreserved or not were reported [16]. Concerning
ovarian tissue, studies have been published regarding the viability of
ovarian tissue transplantation after vitrification, and those papers made
just a few considerations about the follicular morphology and the
percentage of morphologically normal follicles after cryopreservation
[9,17]. One study [18] investigated the effect of slow freezing of bitch
ovarian cortex and reported 82% of morphologically normal follicles
after thawing. Another one evaluated two different cryoprotectants
(Me2SO or 1,3-propanediol -PROH) on slow freezing of bitch ovarian
cortex and demonstrated the higher efficacy on survival of canine oo-
cytes using Me2SO [19]. Despite that, no studies have directly com-
pared two methods of cryopreservation for bitches' ovarian tissue: slow
freezing (SL) and vitrification (V). The development of cryopreservation
techniques for canine preantral follicles may be very useful for pre-
serving canids. The domestic dog may be used as a model for future
development of cryopreservation techniques for wild canids, and in
fact, few studies in this area have already been done [20]. Moreover,
dog breeding has received increasing investment by breeders in various
countries. Conservation of genetic material will thus soon be an at-
tractive option for highly valuable animals. In particular, guide dogs for
people with visual impairment may be benefited [21].

In addition, the ovarian morphology of domestic bitches have not
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been fully described in the literature and there is only one study re-
porting population of ovarian bitch's focused in compare the number of
preantral follicles between the bitches at different reproductive stages
[22]. Moreover, the population of preantral follicles has been estimated
for different species, such as bovine (Bos indicus: 35,288 - [23]; Bos
Taurus: 89,577 - [24], bubaline [25], ovine [26], caprine [27], domestic
feline [28], capuchin monkey (Cebus apella) 108,216 [29], and humans
[30]. Similarly, the morphometry and ultrastructure of preantral folli-
cles, which are very important parameters for the knowledge of their
physiology, have been described for caprine [27], bovine [31,32], bu-
baline [25], swine [33] and domestic feline [28]. However, these data
have not been described for dogs yet.

The aim of this study was to estimate the population, describe the
morphometric and ultrastructural characteristics of canine preantral
follicles, and to compare the effects on the morphology of preantral
follicles of cryopreserving bitch ovarian tissue by SF and V.

2. Materials and methods

2.1. Animals and ovary collection

Ovaries were collected from healthy non-pregnant female dogs,
between 6 months and 4 years of age undergoing elective ovar-
iohysterectomy procedure, at the Veterinary Hospital of the University
or private clinics. All ovaries were washed in saline solution and
transported to the laboratory at 36 °C.

The work was divided in two parts. First, 5 ovaries from 5 different
bitches were used to estimate the population and to describe the mor-
phometry and ultrastructure of preantral follicles. Then, another 10
ovaries from 5 bitches were used for the cryopreservation experiment.

2.2. Part 1 – preantral follicles population, morphometry and ultrastructure

2.2.1. Light microscopy
To estimate the population of preantral follicles 5 whole ovaries

were fixed in Carnoy fixative for 4–6 h, dehydrated in ethanol, clarified
with xylene and embedded in paraffin wax (Histosec, Merck,
Darmstadt, Germany). Serial sections (5 μm thick) were cut and every
120th section was mounted and stained with hematoxylin and eosin
and examined under a Leica DM500 (Wetzlar, Germany) light micro-
scope. All follicles with a visible oocyte nucleus were counted and
classified as primordial, primary or secondary according to their mor-
phological characteristics.

In order to estimate the follicular population correctly, we used a
correction factor described by Gougeon and Chainy [34], namely:

N1 = No.St.Ts/So.dn

Where: N1= the total number of follicles calculated per class; No= the
number of follicles observed in the ovary; St= the total number of
sections in the ovary; Ts= the thickness of the section (μm); So= the
total number of sections observed; and dn= the mean diameter of
oocyte nucleus for each follicle class.

Images were captured with a digital CCD camera (Sony DXC-107A,
Tokyo, Japan), and measurements were performed with the aid of
morphometric analysis software (Image Pro-Plus 5.1,
MediaCybernetics, Bethesda, MD, USA). Granulosa cell counts and
diameter measurements of follicles, oocytes, and oocyte nuclei were
always obtained from the equatorial section of primordial (n= 100),
primary (n= 50), and secondary (n= 40) follicles.

2.2.2. Transmission electron microscopy
Small pieces of ovarian cortex (approximately 1.0 mm3) were fixed

in 2% paraformaldehyde (v/v) and 2.5% glutaraldehyde (v/v) in 0.1 M
sodium cacodylate buffer (pH 7.3) and postfixed in 1% osmium tetr-
oxide (v/v), 0.8% potassium ferricyanide and 5mM calcium chloride in

0.1 M sodium cacodylate buffer. The samples were in bloc contrasted
with 0.5% uranil acetate (w/v), and then dehydrated in acetone and
embedded in Spurr resin. Semi-thin sections (3.0 μm) were stained with
toluidine blue and examined under a light microscope to localize the
follicles. Ultrathin sections (70 nm) were examined in a Jeol 1011
transmission electron microscope (Jeol, Tokyo, Japan).

In the present study, 21 primordial, 10 primary and 5 secondary
follicles were used to describe their ultrastructure. Characteristics of
oocyte and granulosa cells cytoplasm, presence and distribution of or-
ganelles, nuclear, plasmatic and basal membranes and zona pellucida
were observed.

2.3. Part 2 - ovarian tissue cryopreservation

Three fragments of cortex from each ovary, measuring 1.0 mm
x 1.0mm x 5.0mm were cut and randomly allocated to control (1
fragment immediately fixed), slow freezing (1 fragment) or vitrification
procedures (1 fragment).

Cryoprotectant solution for slow freezing was prepared in Minimal
Essential Medium (MEM - Invitrogen, Grand Island, NY, USA), supple-
mented with 20% fetal bovine serum (MEM+), 1.5 M Me2SO (Sigma-
Aldrich, St Louis, USA) and 0.4% sucrose (w/v). For vitrification two
solutions were used: VS1, composed of 1 M Me2SO in MEM+, and VS2,
containing 2 M Me2SO, 1 M acetamide (Sigma-Aldrich, St Louis, USA),
and 3 M PROH (Vetec, Duque de Caxias, RJ, Brazil) in MEM+.

2.3.1. Slow freezing procedure
Slow freezing procedure was based on the method described by

Borges et al. [8], with modifications. Cortex fragments were equili-
brated in cryovials containing 1ml cryoprotectant solution at 10 °C for
20min. After that, the cryovials were placed in a programmable freezer
(BIOCOM, Uberaba, MG, Brazil) previously cooled to 10 °C and then
cooled at a rate of 1 °C/min to −7 °C. At this temperature manual
seeding was performed. Then the temperature was reduced 0.3 °C/min
down to −30 °C, and the cryovials were removed from the freezer,
plunged into liquid nitrogen (−196 °C) and stored for at least one week.
For thawing, the cryovials were exposed to room temperature for 10 s
and then immersed in a water bath at 37 °C for a period sufficient for
full melting. For cryoprotectant removal, each ovarian fragment was
subjected separately to three washes in MEM containing decreasing
concentrations of sucrose (0.4%, 0.2% and 0) and Me2SO (0.75 M,
0.325 M and 0), for 5min each time.

2.3.2. Vitrification procedure
The method of vitrification was based on the method described by

Ishijima et al. [9], with modifications. Initially, the fragments were kept
in VS1 for 5 min and then on VS2, for another 5 min, always at 0 °C. The
vitrification process was carried out on solid surface. The pieces of
ovarian cortex were retrieved from VS2 and immediately dropped on a
dry inox surface that was partially immersed in liquid nitrogen. After
that, the samples were collected from the surface with precooled for-
ceps and quickly placed in cryotubes previously cooled in liquid ni-
trogen, which were then immersed in liquid nitrogen and kept stored
for at least a week. For warming, cryovials were exposed to room
temperature for 10 s and then immersed in a water bath at 37 °C at the
same time that 1.5 ml of warmed (37 °C) MEM+ with 0.25 M sucrose
was added to the cryovial, and maintained for a period of 5 min. To
remove the cryoprotectant solutions were changed twice, reducing the
concentration of sucrose to 0.125 M and then 0 M, each time with a 5-
min interval.

At the end of each treatment, each fragment was divided into two
parts: a small sample (∼1.0 mm3) was immediately fixed and processed
for transmission electron microscopy and the remaining part was fixed
and processed for light microscopy.

For histological analysis, the ovarian pieces were fixed in Carnoy
fixative for 1 h, dehydrated in ethanol, clarified with xylene and
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embedded in paraffin wax. Sections (5 μm) were taken randomly and
stained with hematoxylin and eosin and examined under a light mi-
croscope. At least 5 sections per fragment were analyzed. Follicles (with
a visible oocyte nucleus) were counted and classified according to the
stage of development (primordial, primary or secondary) and as mor-
phologically normal or degenerated. Follicles were considered de-
generated when presenting pyknotic bodies in granulosa cells, con-
densed oocyte nucleus, shrunken oocyte, oocyte cytoplasm
vacuolization or low cellular density. The percentage of morphologi-
cally normal and degenerated follicles was calculated for each ovarian
piece.

Morphometry was also performed for morphologically normal fol-
licles after slow freezing and vitrification. Diameter measurements of
follicles, oocytes, and oocyte nuclei were performed in the same way
described for fresh ovaries, always obtained from the equatorial section
of primordial (n= 100), primary (n= 50), and secondary (n= 40)
follicles from each preservation method. At least 10 primordial, 5 pri-
mary and 4 secondary follicles were measured per ovary.

For ultrastructural analysis, the small pieces of ovarian cortex were
processed as described above. Only follicles that were of normal mor-
phology on semi-thin sections were evaluated. Characteristics of oocyte
and granulosa cells, their organelles and membranes were observed. A
total of 25 follicles were evaluated after cryopreservation (slow freezing
or vitrification).

2.3.3. Statistical analyses
The diameter of follicles, oocytes and nuclei, and the number of

granulosa cells, were compared among follicle classes by ANOVA and
Tukey's test. The percentages of morphologically normal follicles were
compared between the control and cryopreservation treatments. Data
were transformed to Arcsin √% and submitted to ANOVA and Scheffé
test. All analyses were performed using the software StatView for
Windows (SAS Institute Inc., Cary, N.C., USA). Differences were con-
sidered significant when P < 0.05.

3. Results

3.1. Follicular population and morphometry

The number of preantral follicles per ovary and the average dia-
meter of the follicle, oocyte, oocyte nucleus, and the number of gran-
ulosa cells of bitch ovarian follicles are shown in Table 1. Significant
differences (P < 0.05) were observed among the three classes for fol-
licle, oocyte and oocyte nucleus diameter. However, only secondary
follicles showed a significantly higher number of granulosa cells
(P < 0.05) than primordial and primary follicles (Table 1).

3.2. Follicular ultrastructure

In the ultrastructural analysis, normal primordial follicles had an
oocyte with homogeneous cytoplasm and a large round nucleus. The
chromatin was loose and nucleoli were usually observed. The orga-
nelles were evenly distributed throughout the cytoplasm (Fig. 1A and
C). The most abundant organelles were round mitochondria, but a few

elongated mitochondria could also be seen. Rough endoplasmic re-
ticulum cisternae were observed, in most cases associated with mi-
tochondria (Fig. 1B). Golgi cisternae were sometimes found. The
membranes of oocyte and granulosa cells were attached, with a close
contact supported through invaginations (Fig. 1C). The granulosa cells
were flat and small, with a large nucleus and cytoplasm with a few
organelles (Fig. 1C).

Primary follicles' ultrastructure was very similar to that observed in
the primordial stage (Fig. 1D). Oocytes were usually spherical, but
elongated oocytes were occasionally observed. Round mitochondria
were still the most abundant organelle. The endoplasmic reticulum and
Golgi cisternae were also present (Fig. 1D). At this stage granulosa cells
were cuboidal, their nuclei were round and they had a higher number
of organelles, mainly mitochondria and endoplasmic reticulum
(Fig. 1D).

Secondary follicles showed the beginning of zona pellucida forma-
tion around the oocyte, and oocyte microvilli started to penetrate it
(Fig. 1E). More advanced secondary follicles had a completely formed
zona pellucida and granulosa cells projections could be seen across it,
along with oocyte microvilli (Fig. 1F). Round and elongated mi-
tochondria could still be observed (Fig. 1E and F). Cisternae of en-
doplasmic reticulum were abundant and the association with mi-
tochondria was common. Vesicles were abundant when compared to
the previous stages. In secondary follicles, granulosa cells were cuboidal
and had many organelles (Fig. 1E).

3.3. Cryopreserved follicles

A total of 1747 follicles were evaluated by light microscopy, (831
fresh, 591 frozen/thawed and 325 vitrified/warmed follicles). The
percentage of morphologically normal follicles (Table 2), was sig-
nificantly lower in the vitrification treatment when compared to control
and slow freezing (P < 0.05), regardless of follicular class. There was
no significant difference between control and slow freezing treatment.

The morphology of fresh control follicles (Fig. 2A–C) and frozen/
thawed follicles (Fig. 2D–F) was very similar. The oocyte presented a
well-defined homogeneous cytoplasm in close contact with granulosa
cells. The most commonly observed characteristics of degeneration
were pyknotic nuclei (Fig. 2G) and total disintegration of the oocyte
(Fig. 2H), mostly after vitrification, but also after slow freezing. In vi-
trified ovarian tissue only, an interesting feature observed was the de-
tachment of the whole follicle from the ovarian stroma (Fig. 2I),
especially in secondary follicles. However, in most cases, the follicle
itself showed normal morphology and was classified as such.

The average diameter of follicle, oocyte and oocyte nucleus of
cryopreserved follicles is shown in Table 3. For secondary follicles,
significant difference (P < 0.05) among treatments was observed both
for follicle, oocyte and nucleus diameter. Slow freezing follicles always
presented smaller sizes than the fresh follicles. Vitrified primary folli-
cles showed oocyte and oocyte nuclei significantly smaller (P < 0.05)
than fresh follicles. Primordial follicles had smaller oocyte nuclei after
vitrification when compared to fresh and slow frozen follicles
(P < 0.05).

The ultrastructural analysis showed divergent results compared to

Table 1
Mean number (± SD), percentage of each class and morphometric parameters (mean ± SD) of preantral follicles in bitches.

Class Population (%) Diameter (μm) Number of granulosa cells

Follicle Oocyte Oocyte nucleus

Primordial 45,145 ± 16,076 (94.25) 27.5 ± 4.2a 21.7 ± 2.7a 11.3 ± 1.6a 6.0 ± 1.8a

Primary 2358 ± 1253 (4.92) 42.6 ± 12.5b 27.8 ± 7.5b 13.7 ± 2.6b 15.0 ± 7.0a

Secondary 397 ± 351 (0.83) 101.6 ± 62.9c 48.0 ± 12.6c 18.7 ± 4.2c 61.5 ± 63.5b

Total 47,900 ± 17,680 – – – –

a,b,c Numbers with different letters in the same column differ statistically (P < 0,05).
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light microscopy. Surprisingly, vitrified follicles showed subcellular
structure closer to the control group than follicles subjected to slow
freezing. In primordial (Fig. 3A) and primary (Fig. 3B) follicles cryo-
preserved by slow freezing the oocytes presented regions with low

density of organelles, presence of vesicles, slight detachment of gran-
ulosa cells, and disintegration of some granulosa cells. The nuclei of the
oocytes had an irregular shape (Fig. 3A, B and C) and sometimes the
nuclear membrane was ruptured (Fig. 3C). Most mitochondria were
swollen (Fig. 3C). Secondary follicles also showed a total loss of oocyte
cytoplasmic structure (Fig. 3D and E). Some secondary follicles pre-
sented a shrunken aspect, comparable to dehydration of the tissue
(Fig. 3F). It is important to remember that only follicles classified as
morphologically normal in the semi-thin sections were evaluated by
TEM.

On the other hand, vitrified primordial (Fig. 4A and B) and primary
follicles (Fig. 4C and D) were ultrastructurally similar to the control
(see Fig. 1). Briefly, oocyte and granulosa cells were in close contact
with each other (Fig. 4A–C), and many intact round mitochondria,
often in association with endoplasmic reticulum, could be seen in the

Fig. 1. Electron-micrographs of bitch preantral follicles. (a)
Overview of primordial follicle. (b) Detail of the oocyte of a
primordial follicle showing the association of mitochondria
and endoplasmic reticulum (arrows). (c) Detail of contact
between oocyte and granulosa cells in primordial follicles.
Note the invaginations (arrows). (d) Primary follicle
showing the association of mitochondria and endoplasmic
reticulum, also seen in primordial follicles. Note the greater
amount of granulosa cell organelles. (e-f) Secondary folli-
cles showing either the zona pellucida in development (e)
or completely formed around the oocyte (f). Note the oo-
cyte microvilli (arrowheads) and granulosa cells projections
(arrows). O: oocyte, Gc: granulosa cell, Nu: nucleus, Zp:
zona pellucida, M: mitochondria, Mi: myelin figure, G:
Golgi, *: nucleolus, Bm: basement membrane, V: vesicle.

Table 2
Percentage (mean ± SD) of morphologically normal preantral follicles in fresh (control),
frozen or vitrified ovaries.

Class Control (%) Slow freezing (%) Vitrification (%)

Primordial 96.69 ± 4.72a 89.51 ± 10.39a 75.32 ± 9.23b

Primary 94.80 ± 6.91a 86.8 ± 12.15a 61.53 ± 14.78b

Secondary 87.62 ± 17.12a 76.35 ± 26.34a 52.25 ± 22.13b

TOTAL 93.66 ± 6.81a 86.16 ± 11.05a 68.14 ± 12.75b

a,b Numbers with different letters in the same row differ statistically (P < 0.05).
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Fig. 2. Micrographs of morphologically normal primordial, primary and secondary follicles from the control (a, b and c, respectively) and slow freezing (d-f) groups. Degeneration signs
mostly observed in vitrification group were pyknotic nuclei (g) and disintegration of oocyte (h). Morphologically normal secondary follicle detached from the ovarian stroma after
vitrification (i). Bars= 20 μm.

Table 3
Mean morphometric parameters (mean ± SD) of cryopreserved preantral follicles in bitches.

Class Diameter (μm)

Follicle Oocyte Oocyte Nucleus

C SF V C SF V C SF V

Primordial 27.5 ± 4.2 24.9 ± 4.8 27.5 ± 4.2 21.7 ± 2.7 19.9 ± 3.1 19.0 ± 2.9 11.3 ± 1.6a 11.6 ± 2.3a 9.5 ± 3 b

Primary 42.6 ± 12.5 34.5 ± 11.2 30.7 ± 3.7 27.8 ± 7.5a 25.3 ± 6.1a,b 22.6 ± 3.3 b 13.7 ± 2.6a 12.5 ± 2.6a 9.8 ± 1.8 b

Secondary 101.6 ± 62.9a 55.8 ± 17.8c 75.4 ± 23.3 b 48.0 ± 12.6a 36.1 ± 9.3 b 42.9 ± 13.5a 18.7 ± 4.2a 14.7 ± 3.4b 14.5 ± 4.3b

C: Fresh control, V: Vitrification, SL: Slow Freezing. a,b,c Numbers with different letters in the same row differ statistically (P < 0.05).
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oocyte cytoplasm (Fig. 4D). In a single primordial follicle, a slight
disruption of the nuclear membrane was observed (not shown). How-
ever, vitrified secondary follicles were not as well preserved. Their
oocytes were vacuolated and presented a deformed nucleus (Fig. 4E)
and swollen mitochondria without ridges (Fig. 4F). Even extensive
degeneration of granulosa cells was observed (Fig. 4E).

4. Discussion

The estimated follicular population per ovary was approximately
47,900 preantral follicles. This number was similar to that described for

the adult bitches (60,461) [22], domestic cat 37,853 [28] and goats
37,646 [27], but much smaller than that estimated in cows 750,000
[35], capuchin monkey (Cebus apella) 108,216 [29] and prepubertal
bitches 107,152 [22] and higher than in buffaloes 19,819 [25]. Of all
follicles, primordial follicles were the most abundant, corresponding to
94.25% of the follicular population. This high proportion of primordial
follicles is consistent to that previously reported in bitches [22], queens
[28], ewes [26] and cows [23]. Although in goats [27] the percentage
of primordial follicles is not as high, they are still the vast majority
(67.8%). A great difference, however, is shown in buffaloes [25] where
approximately only 17.5% of the total population are primordial

Fig. 3. Electron-micrographs of frozen/thawed preantral follicles. (a) Overview of primordial follicle. (b) Overview of primary follicle. (c) Detail of the oocyte of a primary follicle. Note
the detachment of granulosa cells and the presence of vesicles and swollen mitochondria (arrowheads) in the oocyte. Oocyte nucleus with irregular contour and rupture of the nuclear
membrane (arrow). (d-f) secondary follicles. Note the total loss of cytoplasmic structure (d and e) and the shrunken aspect (f). O: oocyte, Gc: granulosa cell, Nu: nucleus, Zp: zona
pellucida, M: mitochondria, *: nucleolus, Mb: basement membrane, V: vesicle.
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follicles, and the vast majority (74%) are primary follicles.
Regarding follicle population, other studies reported bovine follicle

population using 6 ovaries [23], bubaline follicle population using 5
ovaries [25], monkey follicle population using 3 ovaries [29] and cat
follicle population using 5 [28]. Other studies were also carried out in
other species using a higher number of ovaries, but the variation was
still high. Lunardon et al. [22], reported the follicle population of 20
prepubertal medium-size dogs and found 135,467 follicles on average
with 97,127 of standard deviation. We consider the individual variation
natural and it will always happen, even if the number of ovaries eval-
uated is high.

The morphometry of bitch PAF was described in two studies
[36,37]. The diameter of bitch primordial follicles found here (∼25 μm
in diameter), was similar to that reported by Durrant et al. [37]. The
comparison for primary and secondary follicles was not possible since

in that study the primary and secondary follicles were grouped into a
single class (advanced preantral follicles). Furthermore, our results
were quite different from those described by Diagone et al. [36], who
reported measurements consistently higher than those obtained in this
study. However, a hypothesis cannot be drawn about why this differ-
ence happened. Differences in follicular morphology within species are
also seen among published studies for domestic cats [28,38]. In this
case, the data from this study are comparable to those described by
Carrijo Júnior et al. [28], but show lower values than those presented
by Reynaud et al. [38]. Compared even with other species, the mea-
surements obtained for dogs are similar to those reported for cattle
[32], but higher than those described for buffaloes [39]. Knowledge of
follicular morphometry is important for monitoring follicular growth in
techniques such as in vitro culture of preantral follicles. Regarding the
morphometry of slow frozen and vitrified follicles, the differences do

Fig. 4. Electron-micrographs of vitrified preantral follicles.
(a) Overview of primordial follicles. (b) Detail of the oocyte
of a primordial follicle. (c) Overview of primary follicle. (d)
Detail of the oocyte of a primary follicle. Note the well-
preserved ultrastructure of the oocyte with round well-de-
limited nucleus, round mitochondria in association with
endoplasmic reticulum, homogeneously distributed
throughout the cytoplasm. (e) Secondary follicle, showing
extensive degeneration of granulosa cells and oocyte with
vacuoles in the cytoplasm and deformed nucleus. (f) Detail
of a secondary follicle oocyte cytoplasm showing swollen
mitochondria without cristae (arrowhead). O: oocyte, Gc:
granulosa cell, Nu: nucleus, M: mitochondria, *: nucleolus,
Bm: basement membrane, V: vesicle.
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not seem to be connected to the treatment to which the ovarian tissue
was subjected. It is quite expected that the diameter of cryopreserved
follicles (and their oocytes) are smaller, since they were immersed in
hyperosmotic solutions, especially immediately after thawing/
warming. However, to our knowledge, there are no studies describing
the morphometry of cryopreserved follicles, specially in bitches. Con-
cerning stromal cells, a subjective analysis was performed and in the
slow frozen tissue there were a higher density and well-preserved
stromal cells than in vitrified tissue. Numerous recent studies have in-
vestigated stromal tissue density as an indicator of tissue integrity
(reviewed by Shi et al. [40]).

The ultrastructure of primordial follicles observed in our study was
similar to that previously described for dogs [41]. Lopes et al. [41] also
described a general appearance of the follicles, but did not describe the
characteristics of each class in detail. In our study, all classes of PAFs
from bitches have been described. In general, the ultrastructure of
bitches' PAFs is similar to that of other species (bovine [32], bubaline
[39], ovine [42], feline [28] and swine [43].

Besides the follicular characterization, this study describes the ef-
fects of cryopreservation of bitches ovarian tissue on PAFs. Some other
studies involving conservation (but not cryopreservation) of ovarian
tissue have been carried out in dogs [41,44], demonstrating that dog
PAFs can maintain their normal morphology when subjected to low
temperatures (0-4 °C) for up to 36 h.

This study reports that the slow freezing of ovaries in bitches using
Me2SO as cryoprotectant resulted in 86% of morphologically normal
PAFs after thawing. These results are very similar to those of Commin
et al. [18], which found 82% of morphologically normal follicles after a
similar slow freezing procedure and to Lopes et al. [19], which found
84% of morphologically normal follicles using Me2SO and 80% using
PROH as cryoprotectants after slow freezing. Me2SO has been proved to
be a good cryoprotectant for slow freezing of pigs' [45] and cows' [5]
ovarian tissue, with 72% and 74–88% of morphologically normal pre-
antral follicles, respectively. On the other hand, studies in goats [7] and
rabbits [46], using this cryoprotectant, showed a smaller percentage of
morphologically normal preantral follicles, 48% and 50% respectively.
In sheep, slow freezing of isolated primordial follicles using Me2SO
resulted in 87% viable follicles [47]. All these results suggest a species-
specific effect of the cryoprotectant.

This is also the first study that reports the effect of the bitch's
ovarian tissue vitrification on the morphology of PAFs. Vitrification of
canine PAFs has been already reported by Ishijima et al. [9] and Suzuki
et al. [17], but the focus of those studies was the success of ovarian
tissue transplantation after cryopreservation, and the percentage of PAF
that maintained their normal morphology after cryopreservation was
not mentioned. The vitrification of canine ovarian tissue by the solid
surface method was used for the first time in this study, resulting in
68% of morphologically normal follicles in light microscopy analysis
with well-preserved ultrastructure. The solid surface vitrification
method was first described for bovine oocytes [15]. Using this method
to preserve goat ovarian tissue, 70–80% of PAFs were histologically
normal after warming [14]. Another study compared different methods
of vitrification of goat ovarian tissue and described the solid surface as
the most effective method, resulting in 72% of morphologically normal
follicles [48]; a similar result was found in our study (68%). Vitrified
canine cumulus-oocyte complexes (obtained from antral follicles) re-
sulted in ∼60% of oocytes with normal morphology (under stereo-
microscope), but with low viability (5–17%, by propidium iodide) [49].
The well preserved ultrastructure of vitrified follicles (similar to con-
trol) could be an important indicator of the follicles' viability because it
demonstrates the integrity of the organelles, suggesting a preservation
of its function.

Evaluated by light microscopy, the rates of morphologically normal
follicles were higher in slow freezing (86%) than in vitrification (68%),
although both rates are quite satisfactory for cryopreservation proce-
dures. Even though slow freezing did not cause many morphological

changes in the histology, several signs of damage was found in the ul-
trastructure, such as mitochondrial swelling, low density of organelles
in the oocyte cytoplasm, oocyte retraction and loss of granulosa cells.
Similar ultrastructural injuries were reported for cryopreserved sheep
PAFs [42]. The differences found between histological and ultra-
structural evaluations using slow freezing have also been reported by
other authors [8,42,50]. This probably happens because the slow
freezing process is less aggressive, triggering minor osmotic stress on
the cells and, consequently, the damage caused is inconspicuous, only
visible under a higher resolution microscope which permits the long-
standing effect of the cryoprotectant to be evaluated. However, using
slow freezing in bitches Lopes et al. [19] found that TEM revealed ul-
trastructure alterations only in follicles frozen with PROH when com-
pared to Me2SO. The higher degeneration rates observed by light mi-
croscopy after vitrification may be due to the very fast and aggressive
procedure that uses very high concentrations of cryoprotectants. It is
worth mentioning again that vitrified PAF did not present ultra-
structural damages, and vitrified primordial and primary follicles
showed similar characteristics to control follicles.

On the other hand, the ultrastructure of secondary follicles was
damaged in both treatments. A study comparing slow freezing and vi-
trification techniques in rhesus monkey ovaries [51] also showed that
secondary follicles were more likely to be damaged than primordial and
primary follicles, in both treatments. The authors also reported that the
vitrification treatment resulted in greater follicle integrity than slow
freezing. In mice, secondary follicles cryopreserved by slow freezing or
vitrification showed similar lesions in ultrastructure, such as mi-
tochondrial deformities and a large number of vacuoles [52]. Moreover,
electron microscopy is an essential tool to detect damage due to cryo-
preservation process, visible only at the ultrastructural level.

In conclusion, this work is the first to describe the follicle popula-
tion and to compare the techniques of slow freezing and vitrification of
bitch's ovarian tissue. The vitrification method was more effective in
preserving the ultrastructure of primordial and primary follicles. For
both treatments, improvements are needed in order to better preserve
secondary follicles.
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