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“To be great, be whole: do not
exaggerate or exclude anything from you.

Be all in every thing. Put how much you are
at the very least you do.

So in every lake the whole moon
Shines, because in the high it lives.”

Fernando Pessoa
(personal translation)



Abstract

The Laboratory of Application and Innovation in Aerospace Science (LAICA) of the
University of Brasília (UnB) is developing a nanosatellite testbed capable of simulating the
environment conditions seen in space, specially regarding the Earth magnetic field in orbits,
the frictionless rotational movement and the low gravitational torque. This testbed comprises
various subsystems, such as an air bearing table, on which nanosatellites are mounted for
testing its subsystems; a Helmholtz cage, responsible for simulating the Earth magnetic field
present in various kinds of orbit, specially Low Earth Orbits, which is the most common
for nanosatellites; actuation systems, such as reaction wheels and magnetorquers, used to
study attitude control strategies, and attitude determination systems, such as those based
on embedded telemetry or computer vision. The air bearing table is the part responsible
for providing the frictionless movement with three rotational degrees of freedom. Also, for
providing the low gravitational torque requisite, a method must be developed for balancing
the air bearing table. In this work, focus is given for solving this problem. Various methods
for balancing the LAICA testbed are presented, specially regarding filtering solutions, such
as those using the Kalman Filter and its variations, and adaptive control schemes, aided
by the Lyapunov theory. The performance of the proposed balancing methods is evaluated
through simulations and experiments.

Keywords: Kalman, Lyapunov, air bearing, balancing, nanosatellite testbed, ADCS.
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Resumo

O Laboratório de Aplicação e Inovação em Ciências Aeroespaciais (LAICA) da Uni-
versidade de Brasília (UnB) está desenvolvendo uma plataforma de testes de nanossatélites
capaz de simular condições ambientais vistas no espaço, especialmente no que diz respeito
ao campo magnético da Terra em órbitas, o movimento rotational livre de atrito e o torque
gravitacional baixo. Essa plataforma compreende vários subsistemas, tais como uma mesa
com rolamento a ar, na qual nanossatélites são montados para teste de seus subsistemas;
uma gaiola de Helmholtz, responsável por simular o campo magnético da Terra presente em
vários tipos de órbita, especialmente órbitas de baixa altitude (LOE), que são as mais comuns
para nanossatélites; sistemas de atuação, tais como rodas de reação e atuadores magnéticos,
usados para estudar estratégias de controle de atitude, e sistemas de determinação de ati-
tude, tais como aqueles baseados em telemetria embarcada ou visão computacional. A mesa
com rolamento a ar é a parte responsável por fornecer o movimento livre de atrito com três
graus de liberdade rotacionais. Ademais, para fornecer o requisito de torque gravitacional
baixo, um método deve ser desenvolvido para balancear a mesa com rolamento a ar. Neste
trabalho, foco é dado para a solução desse problema. Vários métodos para balanceamento
da plataforma de testes do LAICA são apresentados, especialmente quanto às soluções de
filtragem, como aquelas que utilizam o filtro de Kalman e suas variações, e esquemas de
controle adaptativo, auxiliados pela teoria de Lyapunov. A performance dos métodos de
balanceamento propostos é avaliada por meio de simulações e experimentos.

Palavras-chave: Kalman, Lyapunov, rolamento a ar, balanceamento, plataforma de testes
de nanossatélites, ADCS.
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Chapter 1

Introduction
If I have seen further than others, it is by
standing upon the shoulders of giants.
- Isaac Newton

Since the early fifties, scientists all over the world invest effort in space exploration.
Motivated by the Cold War, the space race began as a competition between the United States
of America and the Soviet Union, trying to outdo each other in aerospace technologies.
Spanning for more than twenty years, the space race had seen the man send to space the first
living creature - a dog, named Laika -, the first living man to orbit the Earth, Yuri Gagarin,
aboard the Vostok I ship, and culminating with the memorable spacewalk at the surface of the
Moon, set as goal by the US president Kennedy and accomplished by the NASA astronauts
Neil Armstrong and Edwin Aldrin, aboard Apollo XI. Also, it is undeniable that the space
race contributed to many of the advances in technology we see today - the GPS is an example.

Although sometimes these accomplishments were made by taking too much risk of mis-
sion failures, in the majority of times they were made after an extensive load of tests and
simulations. As evolved as the technologies which took the man to space were the tech-
nologies that brought space to man. As examples, the vacuum chamber - to simulate vac-
uum -, thermal chambers - to simulate temperatures in the space environment -, astronaut
pools - for training astronauts to move in low gravity environment and others. Nowadays,
this philosophy still remains. Regarding the study of satellites motion, one of such test-
ing systems must simulate at least two key conditions: the environmental magnetic field in
orbit and the low gravitational torque. For simulating the environmental magnetic field, a
well-known approach is to use a combination of Helmholtz coils disposed in a 3D configu-
ration. In this sense, various works were developed at the Laboratory of Aerospace Science
and Innovation (LAICA) of the University of Brasília (UnB) resulting in the conception of
a Helmholtz cage, capable of simulating the Earth magnetic field in various kinds of or-
bits [de Loiola et al. 2018]. Further details on this system are given in Sec. 2. On the other
hand, to simulate the low gravitational torque the most commonly used systems are gimbals
and bearings. Gimbals are pivoted mechanical devices in which the motion can be restricted
to a single axis. Combining three gimbals, it is possible to perform complete 3D rotational
motion. However, 3D gimbals have specific orientations in which one of the degrees of free-
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dom is lost - namely, gimbal locks -, which are difficult to treat and introduces non linear
effects in the dynamic modelling. The other testing systems - the bearings - may be me-
chanically coupled or not. Concerning mechanically coupled bearings, there are the ball
bearings that, when combined, may also provide complete three dimensional motion, never-
theless effects such as friction may not be negligible. Finally, uncoupled bearings are those
in which a fluid is used to free the rotational joints. This is the most common type of bearing
used in satellite simulators and is the one focused in this work, specially the air bearings.
This kind of bearing may be planar or rotational depending on the desired application to be
simulated. For rendezvous, formation flying and on-orbit construction, planar systems are
recommended, since they can provide freedom to the system to rotate and spin. For rotational
movement, related to attitude control and pointing maneuvers, spheric systems are used. In
this work, a nanosatellite simulator was built on this kind of spheric bearing - namely, the
air bearing - in a configuration called tabletop. In this configuration, a table is mounted on a
half sphere, giving complete rotational freedom around one axis and approximately±45o on
the other two. Details on the other types of spheric air bearing configurations may be seen
in [Schwartz et al. 2003]. Before giving insight in the problem studied in this work, some
similar spacecraft simulators will be presented. After that, the main problem concerning the
design of this kind of platform is presented, followed by the outline of this dissertation.

1.1 Known air bearing platforms

There are various satellite simulators being developed around the world. As said before,
one specific kind of simulator is that which uses pressurized air in order to provide friction-
less motion. These platforms are generally based on air bearings. In what follows, some of
these platforms are exposed. A historical review of satellite simulators based on air bearings
is made in [Schwartz et al. 2003].

1.1.1 INPE - National Institute For Space Research

In Brazil, besides the platform being described in this work, there are also the three plat-
forms present at the National Institute For Space Research (INPE), all of which are dedicated
to simulating rotational dynamics. Two simulators are shown in Fig. 1.1 (photo at left) and
they divide the task of simulating rotational motion in one or three axes. The mono axial plat-
form is based on a plane bearing which permits rotational motion in only one axis, whereas
the three axial platform is based on a spherical bearing and was developed in order to inves-
tigate the dynamic behaviour of the nutation damper used in the first brazilian satellite, the
SCD-1 [Gonzales 2009].

In [Carrara and Milani 2007] the single axis platform is described (photo at right in
Fig. 1.1). This simulator is sufficiently equipped for providing a test environment for attitude
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Reaction wheels

RM antenna

Radio modem

Electronics

Battery

Gyroscope

RS 232-485 converter

Figure 1.1: The INPE Satellite Simulator. From [Gonzales 2009], two rotary tables (left
photo, tri-axis at left and single axis at right) and from [Carrara and Milani 2007], right photo
(adapted), the triaxial one in detail.

determination and control algorithms, being equipped with reaction wheel as actuator. The
importance of calibrating the mass distribution on the platform is emphasized in this work,
which states that the minimum residual torque achieved was of about 10−4 N ·m while the
platform was weighting more than 15 kilograms. This uncalibrated mass distribution is re-
ported as the cause for the platform oscillation when it is not calibrated and it is mentioned
that, after balancing the platform, even a counterweight of only 10 grams placed on the plat-
form can make the oscillations rise up again. The two three-axis simulators are described
and some tests are reported in [de Oliveira et al. 2013] and [de Oliveira et al. 2015].

1.1.2 California Polytechnic State University (Cal Poly)

The Cal Poly developed the Cal Poly Spacecraft Attitude Dynamics Simulator (CP/-
CADS), which is shown in Fig. 1.2. This simulator rests on a spherical air bearing and
provides a simulation environment capable of rotating 360 degrees around the yaw axis and
30 degrees about the roll and pitch axes.

Figure 1.2: The Cal Poly Spacecraft Attitude Dynamics Simula-
tor [Mittelsteadt and Mehiel 2007].
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This simulator, differently from other simulators in which three actuators are normally
orthogonally disposed, has its actuators in a pyramidal configuration composed of four re-
action wheels. It has a simple balancing system made of two rails into which weights are
positioned manually, giving evidence of the importance of distributing the masses of the sys-
tem properly. The project of this simulator foresees space for building an automatic mass
balancing system, although it had not been implemented yet at the moment of that publica-
tion [Mittelsteadt and Mehiel 2007].

1.2 The problem

The main problem concerning the kind of simulation platform being developed is the
gravitational torque which arises from the deviation between the center of rotation and the
center of mass of the testbed. This torque acts as a disturbance torque in the attitude control
system and may limit the actuation devices to function properly. In other words, the actu-
ation devices may saturate before reaching the desired platform orientation. This requisite
is specially critic in nanosatellite simulators, since the actuators present in these small-sized
satellites can typically provide much less torque than that achieved by other big-sized plat-
forms. From now on, this problem will be attributed to the existence of what is called unbal-
ance vector, imbalance or Center of Mass (CM) offset, i.e. the distance between the Center
of Rotation (CR) and the CM of the platform, and diminishing this distance to a value as
close as zero will be set as goal.

This problem has already been addressed in various works.
In [Romano and Agrawal 2003] and [Peck et al. 2003], a minimum gravitational torque of
0.01N ·mwas obtained for an air bearing-based platform by performing a manual balancing
procedure. However, as reported, this procedure may take hours until a reasonable result is
obtained. There are also works in which optimal algorithms were studied in order to obtain
the best placement for objects on a spacecraft simulator, such as in [Xu et al. 2016]. In this
case, before thinking on the implementation of automatic balancing systems, special care
is given to arranging the mass distribution of the platform in such a manner that the CM is
already close to the CR. However, the best approach for accomplishing good results with
low effort is to design an automatic system capable of moving masses in the system until
the CM is placed close to the CR within a previously set tolerance. A cost-effective solution
for the balancing problem was implemented using the Least Squares Method (LSM) for
obtaining batch estimations of the unbalance vector [Silva et al. 2018]. In [Xu et al. 2015],
the balancing was accomplished by implementing a recursive least-squares approach with
a tracking differentiator and an Extended Kalman Filter (EKF) and the obtained results
were compared. In [de Oliveira et al. 2013], an EKF and the nonlinear least squares
method were used for identifying the mass properties of a dumbell air bearing satellite
simulator. The results of this work may be used for implementing an automatic balancing
system. In [Kim and Agrawal 2009], an advanced balancing method was developed
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based on adaptive control and Lyapunov theories. In this case, Control Moment Gyros
(CMGs) are used in order to provide an active threedimensional torque source which is
used in the control scheme. Following the idea of [Kim and Agrawal 2009], but taking
into account the unavailability of CMGs for implementing the same procedure, the work
developed in [Chesi et al. 2014] used the movable masses itself for providing the necessary
control torque of an adapted balancing scheme and compensating the imbalance of the
given platform, without neglecting its mass distribution purpose. In this case, since it is
possible to generate torques only in a plane orthogonal to the gravitational field, only two
of the unbalance vector components are nullified with the adaptive control method, for
which reason an Unscented Kalman Filter (UKF) is used for properly identifying the last
component and compensating it.

In this work, focus will be given in the filtering solutions for estimating the unbalance
vector, specially those based on the Kalman Filter and its variations. Also, the methods
based on Lyapunov control theory and adaptive control will be addressed. Specially, the
method developed in [Chesi et al. 2014] will be studied, since it presents similar constraints
with the testbed being developed at LAICA. The reason for which, at this moment, the
method developed in [Kim and Agrawal 2009] is not studied is that, as it requires Control
Moment Gyros (CMGs), it is not possible to implement it with the current setup of the
LAICA testbed.

1.3 Objectives

After surveying the context of other platforms which holds similarity with the one being
developed in this work and after analyzing works in which balancing techniques were devel-
oped for this kind of platform, a set of techniques were selected in order to persecute better
balancing specifications.

The objective of this work is to implement these advanced balancing techniques for
the nanosatellite simulator being developed at the Laboratory of Science and Innovation
(LAICA) at the University of Brasília (UnB), Brazil. This will be done in order to provide
proper gravitational torque tolerance for future works to be developed in the same project,
specially those concerning the development of Attitude Determination and Control (ADC)
techniques.

Chapter 2 gives insight in the Hardware and Software design of all the systems in the
platform being developed in the LAICA, specially those related to the balancing techniques,
including sensor details and electronic schematics. Chapter 3 provides all the mathemati-
cal background required for deducing the balancing algorithm strategies used in this work.
Details of the design of all the filters developed in this work are given, namely the Kalman
Filter, the Extended Kalman Filter and the Unscented Kalman Filter. Also, details of a bal-
ancing algorithm based on Lyapunov theory and adaptive control theory is presented. Further
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demonstrations are presented in the course of this chapter or left as references or appendices.
Chapter 5 shows the results obtained with the new implemented algorithms, compares these
results to those obtained in previous works and presents an analysis of the achieved per-
formance with judicious experiments. Finally, some concluding remarks and future works
perspectives are left to Chap. 6.
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Chapter 2

System Design

In this chapter, the nanosatellite simulator project being developed in the LAICA is pre-
sented. First an overview of the various subsystems of this project is made. Then, details are
given concerning the components related to the balancing system, which is the main system
used in this work.

2.1 System Overview

Fig. 2.1 depicts the portion of the LAICA in which the nanosatellite simulator was con-
structed. The overall simulator may be divided in four main subsystems, as follows.

Helmholtz cage

Air bearing table

ADCV

Figure 2.1: Nanosatellite simulator into the Laboratory of Aerospace Science and Innovation
(LAICA/UnB).
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2.1.1 The Air Bearing Table

The air bearing table is the system in which the nanosatellite motion is tested. After
mounting the nanosatellite on it, it becomes possible to test attitude control algorithms, given
it provides adequately low gravitational torques and frictionless movement. Considering the
air bearing table was developed in the tabletop configuration, the roll and pitch angles are
limited to the ±45o range, whereas the yaw angle is unlimited. Also, two important charac-
teristics of the air bearing table are its total mass and its inertia. Its total mass was obtained
by separately measuring each component of the table and was obtained as 13.901 kg (with-
out any nanosatellite mockup mounted on it), whereas its inertia is given by the following
matrix

J =

 0.265 −0.014 −0.035

−0.014 0.246 −0.018

−0.035 −0.018 0.427

 [kg ·m2] , (2.1)

which was obtained via CAD software. The meaning of the matrix J will become apparent
in Sec. 3.

Fig. 2.2 shows the air bearing table placed on the air bearing base (left) and the pneumatic
system of the air bearing (right). In order to provide the frictionless contact between the two
parts of the air bearing - the air bearing sphere (see Fig. 2.3) and its base -, a pneumatic
system composed by an air compressor and air filters is connected to the air bearing base,
creating an air cushion between the parts. The air compressor is capable of providing 10 bar

or approximately 145 psi, whereas the air bearing base nominal pressure is 80 psi. The
pressure sent to the air bearing base is controlled in the air filters, which are capable of
filtering particles as small as 0.01 µm. It must be emphasized the importance of the air
filters: although the surrounding air appear to be sufficiently pure, in the operating pressure
of the air bearing the impurities of the air become too concentrated. These impurities may
become stuck in the air bearing, lowering its performance.

Air bearing base

Air bearing sphere

Air compressor

Air filters

Pressure valve

Figure 2.2: The air bearing table and its pneumatic system.

Fig. 2.3 shows components related to the balancing system, namely the Movable Mass
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Units (MMU) and the balancing weight. These elements are used to change the mass dis-
tribution of the table, either manually, as in the case of the balancing weight, either by con-
trolling the stepper motors of the MMUs electronically. As one may realize from Fig. 2.3,
the balancing weight is needed for counterbalancing the weight of the Y-axis MMU, whereas
both the Z-axis and X-axis MMUs counterbalance each other. Looking to the Z-axis in detail
(right portion of Fig. 2.3), it is possible to see that there are two movable axes in a MMU,
both accessible via cranks: a main one which is controlled by a stepper motor and an aux-
iliary one, which is used only manually for fine adjustments of the mass distribution of the
table. Two of the MMUs properties are important, concerning the balancing system: the total
excursion of a MMU in its main axis is about 134 mm and the mass displaced by an MMU,
comprising its movable part (the mass of a stepper motor plus the mass of the other moving
parts), is about 0.78 kg. Also, each turn of the crank of a MMU displaces this 0.78 kg for
exactly 1 mm.

Balancing weight
Z-axis MMU

Y-axis MMU

X-axis MMU

Main axis of

the Z-axis MMU

Auxiliary axis

of the Z-axis MMU

Air bearing
   sphere

Figure 2.3: Bottom view of Air Bearing Table and Z-axis MMU in detail.

Fig. 2.4 shows the air bearing table when the nanosatellite mounting plate is removed. In
this figure, it is possible to see four main components:

1. Batteries: two batteries are used, one as the stepper motors supply (12 V ) and another
for the electronic board (5V ).

2. Movable Mass Units (MMUs): the three MMUs, as explained.

3. Electronic Board: an electronic board, responsible for controlling the MMUs, collect-
ing telemetry data and interfacing with an external computer wirelessly.

9



12V Battery 

(Stepper Motors)

5V Battery

(Electronic Board)

Electronic Board

Movable Mass Units

Figure 2.4: Upper view of Air Bearing Table (below the aluminum plate).

2.1.2 The Helmholtz Cage

The Helmholtz cage is a huge structure that involves the air bearing table. This structure,
which can be seen in Fig. 2.1, is composed by three orthogonally disposed pairs of 2.5 m-
sided square coils, meaning that it can generate magnetic field in its interior pointing in any
direction. The current in each of the cage axes is controlled via DC sources connected to an
external computer (Fig. 2.5 shows the three DC sources below one of the ADCV monitors).

By controlling the magnetic field inside the cage, it is possible to replicate the magnetic
field seen in various orbits around Earth. Having the possibility of controlling this field
is specially important in attitude control algorithms which require the magnetic interaction
between the magnetic actuators of the nanosatellite, such as those which will be described in
Sec. 2.1.4, and the environmental magnetic field.

Further details on the design of the Helmholtz cage may be seen in [van der Ploeg 2017],
whereas other studies may be found in [de Loiola et al. 2018], such as a study of the mag-
netic field capacity of the cage and the homogeneity of the field in its interior.

2.1.3 The Attitude Determination with Computer Vision System
(ADCV)

Fig. 2.5 shows the components of the Attitude Determination with Computer Vi-
sion (ADCV) system developed in the LAICA. This system, which is composed by an
USB camera connected to an external computer (the same responsible for controlling
the Helmholtz cage), is responsible for providing a ground truth reference frame for the
air bearing table, providing the orientation of the table in real-time. Its functioning is
based on the proper placement of square shaped patterns (the ArUco patterns) in strate-
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Helmholtz cage

DC sources

ADCV monitor

ADCV camera

ArUco patterns

placed on the

air bearing table

Figure 2.5: ADCV components.

gic points of the air bearing table. These patterns are detected by the computer vi-
sion software, which determines the Euler angles of the testbed. The reader may re-
fer to the works described in [Garrido-Jurado et al. 2016],[Garrido-Jurado et al. 2014] and
[Romero-Ramirez et al. 2018] for further details on the ArUco library, its theoretical basis
and current development. Regarding embedded attitude determination, some works were al-
ready developed in the LAICA, such as [Guimarães et al. 2017], in which an EKF is used for
determining the Euler angles of the testbed using the data collected by the IMU embedded
in the table.

2.1.4 Actuation Systems

To run attitude control algorithms, it is necessary to embed actuation devices capable of
providing torques on the air bearing table. Fig. 2.6 shows the actuation devices available in
the LAICA. These torques may be internal or external. In the case of reaction wheels, this
torque is internal and the testbed moves by following the conservation of angular momentum
principle. Masses are mounted on brushless DC motors which are commanded by a micro-
controller embedded in the testbed. The properties of this actuator are shown in Table 2.1.
In [de Loiola et al. 2017], the reaction wheels of Fig. 2.6 were used for controlling the ori-
entation of the air bearing table accordingly to the orientation described by a nanosatellite in
a previously set orbit.

In the case of the magnetorquers, the controlling torque is external and is provided by the
interaction between the magnetic field in the laboratory - controlled by the Helmholtz cage
- and the magnetic field generated by the magnetorquers. The magnetorquers consist in sets
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Table 2.1: Reaction Wheels specifications.

Maximum torque 3.7 · 10−3 N ·m
Maximum speed 7000 rpm
Wheels inertia 32 · 10−6 kg ·m2

Momentum 23.4 · 10−3N ·m · s

Reaction wheels

(a) Reaction wheels.

torquerods

Air coil

(b) Magnetorquers.

Figure 2.6: Actuation devices.

of coils in which an electronic controlled current passes through. Fig. 2.6 shows two kinds
of magnetorquers: torquerods, in which the coils are placed around a metal rod made of a
high magnetic permeability material; and air coils, in which the core is mostly air and the
supporting structure made of plastic. The design of the magnetorquers developed in LAICA
and shown in Fig. 2.6 was presented in [Ishioka et al. 2017].

2.2 The Balancing System In Detail

The main part of the balancing system of the air bearing table is the electronic board
shown in Fig. 2.7. This board, developed during this work as an upgrade of the electronics
presented in [Da Silva and Rodrigues 2015], contains the following components:

• An Arduino: the Arduino board (Arduino Uno model), which contains an ATMEGA8
microcontroller, is responsible for collecting the telemetry data from the Inertial Mea-
surement Unit (IMU) and for sending it to an external computer, on which the balanc-
ing algorithms are tested. Also, it is responsible for controlling the stepper motors of
the MMUs.

• Drivers: three drivers are placed in this board for controlling each of the three motors
of the MMUs placed on the air bearing table.

• Inertial Measurement Unit (IMU): an IMU (9DOF IMU, manufactured by Adafruit)
containing three sensors - namely, a 3-axis magnetometer, a 3-axis gyroscope and a
3-axis accelerometer - is responsible for the telemetry data.
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Table 2.2: Specifications of the IMU embedded in the LAICA testbed.

L3GD20 chip LSM303DLHC
Gyroscope Accelerometer Magnetometer

Full scale 250/500/2000 dps ±2/± 4/± 8/± 16 g ±1.3 to ± 8.1 Gauss
Resolution 16 bits in two’s complement.

• And a communication module: a XBee module (Pro Series S2 model) is used for
providing wireless communication between the board and the external computer.

Arduino socket Inertial Measurement Unit

Communication module

(XBee)
Stepper motors' drivers

Figure 2.7: Electronic board in detail.

Concerning the stepper motor drivers, they are based on the A4988 chip and are respon-
sible for sending the Pulse Width Modulation (PWM) signals which controls the stepper
motors. The drivers are configured in a 200-step mode, which means that each turn of a step-
per motor around its corresponding axis is accomplished by sending 200 PWM pulses to the
stepper driver. Also, since each turn of a stepper motor moves a MMU for exactly 1mm, the
minimum distance that may be moved by an MMU is two hundredths of a millimiter (5 µm),
i.e. the distance obtained by sending a single PWM pulse to the driver. Regarding the IMU,
its sensors are contained in 2 chips: the L3GD20 chip holds the gyroscopes, whereas the
LSM303DLHC chip holds both the magnetometer and the accelerometer. The specifications
of each of these sensor are given in Table 2.2.

The reader may find the design schematics of the electronic board of Fig. 2.7, as well as
the blueprints of this board, in the Appendix A.
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Chapter 3

Theoretical Foundation
The enchanting charms of this sublime science
reveal themselves in all their beauty only to
those who have the courage to go deeply into
it.
- Johann Carl Friedrich Gauss

3.1 Reference frames and kinematics

Before going further into the dynamic model description and equations, it is necessary
to establish a standardization to the problem. Such standardization provides means for the
understanding of different equations related to the same physical problem. In other words,
different equations relating the same problem may be both correct.

One of these standards are the reference frames, which are sets of orthogonal axes whose
origins may be positioned in different places of the system space. Its positioning in the
system is important for the understanding of the different vector representations that may
appear. For example, assuming the gravity vector may be represented in an inertial frame
in which the xy plane is parallel to the ground, its z-axis component may have positive or
negative magnitude depending on whether this axis is pointing to Earth or in the reverse
direction.

In this work, two reference frames are defined, an inertial and a body-fixed one. Inertial
frames are assumed to have constant orientation and position in the problem space, while
the body-fixed frame is, as its name indicates, a set of orthogonal axes that are fixed to the
moving body. In the case of the body-fixed frame, its orientation and position is constant
only with relation to the moving body. The inertial frame is represented by the (xi, yi, zi) set
of axes, while the (xb, yb, zb) set is used for the body-fixed frame.

Since the Air bearing platform has, as a consequence of the bearing design, a well-known
center of rotation (CR), this point is taken as the origin for both reference frames. The xi and
yi axes form a plane parallel to the ground of the laboratory, while the zi axis points outwards
the Earth (or, in the perspective of the laboratory, it points to the roof). As a consequence,
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the gravity vector representation is g =
[

0 0 −g
]T
, g ∈ R, g > 0. The set (xb, yb, zb)

of orthogonal axes are placed fixed to the platform in such a manner that the movement of
each of the Movable Mass Units (MMUs) is parallel to one of these axis. Besides this, the
zb axis is normal to the mounting plate of the platform. Figure 3.1 shows how the body
axes - represented by Xψ, Yψ, Xθ, Zθ, Yφ and Zφ, depending on the rotation axis - moves
when the body performs rotations of φ, θ, ψ about its Xb, Yb and Zb axes, respectively. The

Figure 3.1: Inertial and body-fixed frames locations.

chosen directions for the x and y axes will become clear in Sec. 3.1.3, where the attitude
determination algorithm is explained.

After establishing the reference frames used in this work, there must be a mathemati-
cal form to describe the kinematics of the system. In this work, two forms are explained:
the Rotation Matrices with Euler angles and the “four Euler parameters”, also known as
Quaternions. The rotation matrices will be introduced in order to understand the convention
for the rotation sequence adopted. This convention will be later used in the demonstration of
some quaternion equations.

3.1.1 Rotation matrices and sequence of rotation

In the discussion that follows, vectors are going to be represented as boldfaced lower-
case letters. The same applies to the unit vectors used for describing an orthogonal set of
axis, like i, j and k.

In R3 a rotation may be seen as the transformation

va = R3×3vb , (3.1)
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in which R is a 3× 3 transformation matrix R : vb 7→ va. This rotation matrix obeys some
properties, such as

1. Its determinant is equal to ±1. If the coordinate frames and its rotation operations
obey the right-hand rule, the determinant equals 1.

2. R−1 = RT , i.e. its inverse equals its transpose.

3. RRT = RTR = I, i.e. rotation matrices are orthogonal.

The first aspect to be exalted is that a rotation may be interpreted in many ways, e.g. a
rotation of a vector in a fixed coordinate frame, a rotation of the coordinate frame while the
vectors remains fixed or simply the orientation of a transformed frame with respect to a fixed
frame [Spong et al. 2006, p. 40]. The interpretation to be considered must be made clear by
the context of the analysis.

In [Kuipers et al. 1999], it is emphasized that rotation operators may be viewed as rota-
tions of the coordinate frame or the vectors while the other remains fixed. Also, it is shown
that one is the inverse of the other or, considering the rotation operator properties, one is the
transpose of the other. It means that a rotation of θ degrees of the coordinate frame while
the vectors remains fixed may be viewed as a rotation of −θ degrees of the vectors while the
coordinate frame remains fixed, i.e. Rframe(θ) = Rvectors(−θ).

Considering that, in this work, rotations are performed only in order to reference vectors
in different frames - the inertial and the body frames - while the vectors remains fixed, the
standard X, Y and Z axes rotations are given by

RX,φ =

 1 0 0

0 cφ sφ

0 −sφ cφ


RY,θ =

 cθ 0 −sθ
0 1 0

sθ 0 cθ

 (3.2)

RZ,ψ =

 cψ sψ 0

−sψ cψ 0

0 0 1

 .

This is called the usage of the rotation operator and, in the case of this work, the operator is
used as passive, i.e. the rotations are performed world-to-body (PWTB). Some fructiferous
discussions on the different rotation operators usage may be seen in [Sommer et al. 2018,
Appendix C] and [Shuster 1993, p. 494]. In fact, books commonly define the rotation
operator without explicitly showing these two usual conventions, which may lead to con-
fusion when somebody is used to adopt and know only one of them. Taking as examples
the books referenced in this work, [Kuipers et al. 1999] adopts the passive usage, whereas
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[Spong et al. 2006] adopts the active usage. Also, two of the most classical books in at-
titude determination and control utilizes the passive usage, Spacecraft Attitude Dynam-
ics [Hughes 2012] and Spacecraft Attitude Determination and Control [Wertz 2012]. The
duality of passive and active conventions is also known as alias and alibi, respectively, and
is well explained in [Shuster 1993], pointing the convention adopted by some classical works
in attitude determination and control literature. The relation between these two conventions
may be briefly described by Eq. 3.3,

Ractive = RT
passive , (3.3)

which means that if one needs to change between world-to-body (PWTB or passive) and
body-to-world (PBTW or active) perspectives, the only needed operation is a matrix trans-
position.

The matrices in Eq. 3.2 may be combined in various sequences of rotations to relate a
frame with another. To obtain the coordinates of a vector in a rotated frame, the rotation
matrices are pre-multiplied in the order of the desired sequence, i.e. supposing a frame is
obtained from the inertial frame after performing a rotation of α degrees about the Z inertial
axis and a rotation of β degrees about the new x axis, then the coordinates of a vector vi in
the resulting frame are given by

vb′ = RZ,αvi

vb = RX,βvb′ (3.4)

vb = RX,βvb′ = (RX,βRZ,α)vi

in which the subscript b′ denotes the intermediate frame between the initial and the final
frames i and b, respectively. Again, caution must be taken to notice that the composition of
rotations rule adopted in this work follows the passive usage of the rotation operator.

Leonhard Euler (1707-1783), who made great contributions on the field of dynamics and
mechanics, is known for being the first person to use sequences of rotations to determine
orbit relationships in orbital mechanics. Specially, he proved that

Theorem 3.1.1 Theorem of Euler angles. Two coordinate frames may be related by a
sequence of three rotations in which two consecutive rotations are not about the same
axis.

This statement results in a total of twelve combinations of the x, y, z set of axes: x−y−z,
x − y − x, x − z − y, x − z − x, y − x − z, y − x − y, y − z − x, y − z − y, z − x − y,
z−x−z, z−y−x and z−y−z. Moreover, the sequence z− y − x is known for being used
in aerospace applications. In this sequence, a rotation about the inertial Z-axis is performed,
followed by rotations about the new y-axis (body axis) and the newest x-axis (body axis), in
this order. Following the rotation flowchart convention adopted in [Kuipers et al. 1999], this
sequence is represented in Fig.3.2.
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Figure 3.2: The ZYX Euler angles sequence.

From this sequence, the relation between the coordinates of a vector in the body and
inertial frames is given by vb = (RX,φRY,θRZ,ψ)vi. The resulting rotation matrix which
corresponds to this sequence may be obtained by

R = Rb
i = RX,φRY,θRZ,ψ =

=

 1 0 0

0 cφ sφ

0 −sφ cφ

 ·
 cθ 0 −sθ

0 1 0

sθ 0 cθ

 ·
 cψ sψ 0

−sψ cψ 0

0 0 1

 =

=

 cψcθ sψcθ −sθ
−sψcφ + cψsθsφ cψcφ + sψsθsφ cθsφ

sψsφ + cψsθcφ −cψsφ + sψsθcφ cθcφ

 ,

(3.5)

in which Rb
i is read as the rotation matrix that transforms a vector from the inertial to the

body frames.

One of the advantages of this Euler angles sequence, as will be shown in 4.1, is that the
gravity vector may be described in the body frame as a function of only two angles, the roll
(φ) and pitch (θ) angles.

Another important equation concerns the Euler rates of the adopted sequence, i.e. the
derivatives of the Euler angles. As one may notice, the propagation in time of the Euler
angles is not accomplished by applying directly the angular velocities of the body, but rather
by applying the Euler rates Ė as in Eq. 3.6

Ek+1 = Ek + Ė · T ⇒

 φk+1

θk+1

ψk+1

 =

 φk

θk

ψk

+

 φ̇

θ̇

ψ̇

 · T (3.6)

in which T is the sampling time and the discretization is obtained by using the forward Euler
method as an example.

The time propagation of the Euler angles is required when simulating the rigid body
dynamics. For the known ZYX aerospace sequence, the Euler rates are given by Eq. 3.7 (See
Appendix B)

Ė = [ėij]3×3 =

 φ̇

θ̇

ψ̇

 =

 1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sec θ sinφ sec θ cosφ

 . (3.7)
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Eq. 3.7 shows that there exists a set of angles in which the euler rates are not defined. Basi-
cally, due to the presence of the tan and sec = cos−1 functions in {ė12, ė13} and {ė32, ė33},
respectively, the Euler rates are not defined when θ = ±π

2
rad. This singularity in the Euler

rates equation is inherent to all sequences and is one of the main disadvantages of using the
ZYX Euler angles to define attitude, since filters must include algorithms for avoiding the
error introduced when the singular attitude is reached.

3.1.2 Quaternions

It was on October 16, 1843, when, while walking with his wife along the Royal Canal,
Sir William Rowan Hamilton discovered a way to “multiply triples”, after struggling for
more than 15 years in the search for a way of treating vectors with complex algebra. At that
moment, the enthusiasm about his discovery made him carve on a stone of Brougham Bridge
the symbols that were going to rule quaternion algebra [Piaggio 1943].

Quaternions are hyper-complex numbers of rank 4, which means that it has four compo-
nents. Although the order of its components have variations in literature, as will be explained
posteriorly, it can be defined as having a scalar in the first component and other three different
imaginary parts, also called the vector part.

Definition 3.1.2 A quaternion is a hyper-complex number of the form

q = q1 + q2i + q3j + q4k, qi ∈ R ∀ i , (3.8)

in which i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) form the standard orthonormal basis in
R3.

Following this definition, comes the celebrated rule developed by William Rowan Hamil-
ton when discovering the quaternions, as shown in Eq. 3.9.

i2 = j2 = k2 = ijk = −1 (3.9)

Some additional quaternion properties may be found on Appendix E. Here, special attention
is given to the multiplication formula. Being p a quaternion, the following notation will be
used

p = p0 + p, p0 ∈ R, p ∈ R3 , (3.10)

where p is the vector part of the quaternion and may be written as p = (p1, p2, p3) or p =

p1i + p2j + p3k. Considering the quaternion rule in Eq. (3.9), the product between two
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quaternions may be calculated as

p� q = p0q0 − (p1q1 + p2q2 + p3q3)+

+ p0(iq1 + jq2 + kq3) + q0(ip1 + jp2 + kp3)+

i(p2q3 − p3q2) + j(p3q1 − p1q3) + k(p1q2 − p2q1) (3.11)

in which the � symbol is introduced as notation for the Hamiltonian quaternion product.
Using the standard dot and cross products of vectors in R3, this operation may be written as
follows.

Definition 3.1.3 Product. Being p and q two different quaternions and pi and qi, i = 1, ..., 4

the respective components, its product is defined as

p� q = p0q0 − p · q + p0q + q0p + p× q (3.12)

This product may also be written in matrix form as

p� q =


p0 −p1 −p2 −p3

p1 p0 −p3 −p2

p2 p3 p0 −p1

p3 −p2 p1 p0



q0

q1

q2

q3

 (3.13)

The importance of quaternions in this work relies on the utility of one of its subgroups:
the unit quaternions, also known as Euler-Rodrigues symmetric parameters, Euler symmet-
ric parameters or quaternions of rotation. Unit quaternions may be used for performing
rotations in 3D space in a similar manner to that accomplished by using rotation matrices.

Definition 3.1.4 The rotation quaternion [Kuipers et al. 1999]. Being q = q0 + q an unit
quaternion, ||q|| = 1, it is called a “rotation quaternion” if it can be written as

q = cos

(
θ

2

)
+ u sin

(
θ

2

)
, u ∈ R3, − π < θ < π (3.14)

in which u is the rotation axis for a given rotation angle θ.

As one may notice, the argument of the rotation quaternion is half the desired rotation
angle. Indeed, only unit quaternions may be used to perform rotations, which is why it is
rigorously wrong to refer to quaternions lato sensu as rotation operators. In other words,
every 4× 1 vector of Euler-Rodrigues symmetric parameters is a quaternion, but the inverse
is not true [Shuster 1993]. Following Def. 3.1.4, given a vector v ∈ R3, its rotation by an
angle θ yields a vector w ∈ R3 and may be defined as

w = qvq (3.15)
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where q = cos
(
θ
2

)
+ u sin

(
θ
2

)
is the associated rotation quaternion and q is the quaternion

conjugate of q. Whenever a vector, such as w and v in Eq. (3.15), is introduced in a for-
mula containing quaternions, it is treated as a purely imaginary quaternion, overloading the
quaternion product for pairs in R3×R4 and R4×R3. It must be emphasized that the rotation
defined by Eq. (3.15) is performed world-to-body (PWTB, a frame rotation), following the
passive convention. In case the active convention is needed, i.e. in a context where vectors
are rotated and the frame is hold still, the desired rotation may be obtained by swapping the
conjugated quaternion as w = qvq.

The world-to-body rotation performed with unit quaternions may also be described ma-
tricially as

w = qvq = Qb
iv , (3.16)

in which the matrix [Qb
i ]3×3 is given by

Qb
i =



2q2
0 − 1 2q1q2 2q1q3

+2q2
1 +2q0q3 −2q0q2

2q1q2 2q2
0 − 1 2q2q3

−2q0q3 +2q2
2 +2q0q1

2q1q3 2q2q3 2q2
0 − 1

+2q0q2 −2q0q1 +2q2
3


. (3.17)

At this point, it is prudent to mention the differences of notation seen in literature.
In [Markley and Crassidis 2014], it is mentioned that there are two usual notations for repre-
senting a quaternion. These notations differ basically by the order in which the vector part of
the quaternion is disposed. In the work originally developed by Sir William Rowan Hamil-
ton (1805-1865), the idea of having an hypercomplex number with three imaginary parts was
adopted, resulting in a notation in which the vector part comes after the scalar part, i.e. the
Hamiltonian quaternion is defined as

qH = q0 + q1i + q2j + q3k = q0 + q1:3 =


q0

q1

q2

q3

 . (3.18)

On the other hand, another convention was created and vastly adopted in works related
to aerospace engineering, which defines the quaternion as a four-component vector in which
the vector part comes first. This convention, assigned to Malcon D. Shuster in this work, is
defined as

qS = q1:3 + q4 =


q1

q2

q3

q4

 . (3.19)
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Historically, these differences come from mathematical preferences or even as a conse-
quence of the chosen programming language used to implement quaternion equations at
the epoch [Shuster 1993, p. 467].

Along with this difference between quaternion definitions, different formulae for quater-
nion multiplications were also developed. In [Shuster 1993], the use of the ⊗ quater-
nion product was advocated. The definition of the ⊗ quaternion product is obtained from
Eq. (3.12) by swapping the signal of the cross product as

p⊗ q = p0q0 − p · q + p0q + q0p−p× q , (3.20)

i.e. p ⊗ q = q � p. The advantage of the Shuster quaternion product becomes apparent
for compositions of rotations. Considering the set of unit length quaternions, U, the Special
Orthogonal Group SO(3) and the mapping C : U 7→ SO(3), which assigns direct cosine
matrices to the rotation quaternions, it can be seen that

∀p, q ∈ U : C(p� q) = C(q) · C(p), while, for the ⊗ product,

p⊗ q := q � p⇒ C(p⊗ q) = C(p) · C(q) .

In other words, using the Shuster product rule changes the composition of rotations map-
ping from an antihomomorphism to an homomorphism. Recent discussions about these
conventions were made recently, in an attempt to discontinuing the usage of the ⊗ prod-
uct [Sommer et al. 2018].

From this point on, whenever one of the cited works differ from the notations adopted
in [Kuipers et al. 1999], the formulas will be shown in the notation of the corresponding au-
thor and how it should be in the notation of this work. Additionally, whenever the operator�
or ⊗ is omitted, the product of quaternions is made using the classical Hamiltonian product.

Rotation quaternions provide some strong advantages with relation to rotation matrices
for attitude representation, such as requiring 4 instead of 9 elements for its complete repre-
sentation, fewer constraints - one, about the unit norm of the rotation quaternion, instead of
the six constraints of a rotation matrix which imply that all of its rows and columns are unit
vectors - and less math operations in its composition rule (16 instead of 27) [Shuster 1993].
Another great advantage of the quaternion approach for describing attitude is that its kine-
matic equation, the quaternion rates equation, does not present any singularity, in opposition
to the ZYX Euler rates equation shown in Eq. 3.7. The quaternion rates equation is shown
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in Eq. 3.21,

dq

dt
=

1

2


0 −ω1 −ω2 −ω3

ω1 0 ω3 −ω2

ω2 −ω3 0 ω1

ω3 ω2 −ω1 0



q0

q1

q2

q3



=
1

2


q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0




0

ω1

ω2

ω3

 , (3.21)

in which it can be seen that the quaternion rates are linear within its parameters. Its demon-
stration is shown in Appendix F, page 118, with little adaption from [Kuipers et al. 1999,
p. 263].

However, a rotation quaternion does not have an intuitive meaning as that of Euler angles.
In this sense, in order to provide means of comparing the attitude obtained with quaternion
algorithms with that obtained using the ZYX Euler angles sequence, the attitude quaternion
will be translated to the corresponding roll, pitch and yaw angles. This may be done by
comparing Eqs. 3.5 and 3.17, the composite ZYX rotation matrix and the matrix version of
the rotation operation with quaternions, respectively,

Rb
i = Qb

i ,

[rij]3×3 = [qij]3×3 , (3.22)

 |cψcθ sψcθ |−sθ
−sψcφ + cψsθsφ cψcφ + sψsθsφ cθsφ

sψsφ + cψsθcφ −cψsφ + sψsθcφ cθcφ

 =



2q2
0 − 1 2q1q2 2q1q3

+2q2
1 +2q0q3 −2q0q2

2q1q2 2q2
0 − 1 2q2q3

−2q0q3 +2q2
2 +2q0q1

2q1q3 2q2q3 2q2
0 − 1

+2q0q2 −2q0q1 +2q2
3


.

It may be seen that, considering the cosine of the pitch angle (θ) is not null, the roll and
yaw angles may be calculated, using the blue and red portions of Eq. (3.22), respectively, by

φ = tan−1
2

(
r23

r33

)
= tan−1

2

(
q23

q33

)
= tan−1

2

(
2(q2q3 + q0q1)

2(q2
0 + q2

3)− 1

)
, (3.23)

ψ = tan−1
2

(
r12

r11

)
= tan−1

2

(
q12

q11

)
= tan−1

2

(
2(q1q2 + q0q3)

2(q2
0 + q2

1)− 1

)
, (3.24)

in which tan−1
2 is the two argument arc tangent function, whereas the pitch angle may be
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calculated directly from the green portion of Eq. (3.22) by

θ = sin−1 (−r13) = sin−1 (2q0q2 − 2q1q3) . (3.25)

Fig. 3.3 shows the percent errors in the roll, pitch and yaw angles when they are cal-
culated directly from time propagation of euler angles and when they are calculated from
Eqs. 3.23, 3.25 and 3.24, during a 100 s simulation (0.1 s sampling time). This graph shows
that both representations, Euler angles and quaternions, indicates the same attitude, consid-
ering that the maximum error is 0.18% and is mainly introduced by the usage of the tan−1

and tan−1
2 functions, since these functions introduce discontinuities in the attitude graphs.
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Figure 3.3: Errors in {φ, θ, ψ} angles when they are calculated from DCMs.

3.1.3 Attitude determination

In this work the eCompass system described in [Semiconductors 2018] is used for deter-
mining the attitude of the platform based on the measurements of the three-axis accelerom-
eter and the three-axis magnetometer, both embedded in the LAICA testbed. This system
follows the basic idea of the TRIAD algorithm, which is obtaining the attitude with relation
to two inertial vectors (in this case, the local magnetic field and the local gravity). Further
details on the TRIAD algorithm may be found in [Bar-Itzhack and Harman 1997].

The eCompass algorithm starts by considering an initial position of the body frame in
which the magnetometer points to the direction of the planar component of the local magnetic
field and the accelerometer is positioned flat with relation to the surface of the Earth, consid-
ering the axes of both sensors are aligned with the axes of the body frame (see Fig. 3.4). In
this configuration, the corresponding measurements, gaccel and Bmag for the accelerometer and
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Figure 3.4: Reference frames in the eCompass algorithm.

the magnetometer, respectively, may be given as

Bmag = B

 cδ

0

−sδ

 , (3.26)

gaccel =

 0

0

−g

 . (3.27)

The local magnetic field intensityB and the declination angle δ of the local magnetic field
vector B may be obtained by using the local GPS coordinates in one of the documented geo-
magnetic field maps available, such as the WMM (World Magnetic Model) from the National
Oceanic and Atmospheric Administration (NOAA) [Oceanic and Administration 2018]. Al-
though these information is useful for calibrating the magnetometer and will be determined
afterwards, it does not interfere with the eCompass algorithm, since both values are canceled
in the calculations.

Following the adopted Euler angle convention, the ZYX sequence, these measurement
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vectors may be given, after a general rotation of the electronic board, as

Brot =

 Brx

Bry

Brz

 = Rb
iBmag = Rx,φRy,θRz,ψBmag ,

grot =

 grx

gry

grz

 = Rb
igaccel = Rx,φRy,θRz,ψgaccel . (3.28)

in which the subscript ri, i ∈ {x, y, z} is used for the components of the rotated Brot and grot

vectors. Pre-multiplying Eq. 3.28 by Rx,−φ first and then by Ry,−θ to remove the roll and
pitch rotations gives

Ry,−θRx,−φgrot = Ry,−θRx,−φRx,φRy,θRz,ψgaccel = Rz,ψgaccel

RT
y,θR

T
x,φgrot = Rz,ψgaccel cθ sθsφ sθcφ

0 cφ −sφ
−sθ cθsφ cθcφ


 grx

gry

grz

 = Rz,ψ

 0

0

−g

 =

 0

0

−g

 ,

(3.29)

in which the property R−α = R−1
α = RT

α is used. The trick is to notice that any rotation of
the gravity vector about the z-axis when it is pointing in this axis does not change the vector
components. From Eq. 3.29, it is possible to extract the following formulas from the second
and first rows, necessarily in this order,

grycφ − grzsφ = 0⇒ tanφ =
gry
grz

,

grxcθ + grysφsθ + grzsθcφ = 0⇒ tan θ =
−grx

grysφ + grzcφ
, (3.30)

which, after applying the adequate inverse trigonometric function, gives the roll and pitch
angles of the electronic board. With the roll and pitch angles computed, the magnetic field
vector may be rotated back to its original position

Ry,−θRx,−φBrot = Ry,−θRx,−φRx,φRy,θRz,ψBmag = Rz,ψBmag

RT
y,θR

T
x,φBrot = Rz,ψBmag cθ sθsφ sθcφ

0 cφ −sφ
−sθ cθsφ cθcφ


 Brx

Bry

Brz

 = Rz,φ ·

 Bcδ

0

−Bsδ

 =

 cψBcδ

−sψBcδ
−Bsδ


 Brxcθ +Brysθsφ +Brzsθcφ

Brycφ −Brzsφ

−Brxsθ +Brycθsφ +Brzcθcφ

 =

 cψBcδ

−sψBcδ
−Bsδ

 ,

(3.31)
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and the yaw angle can then be computed, using the first and second rows of Eq. 3.31, as{
cψBcδ = (Brxcθ +Brysθsφ +Brzsθcφ)

sψBcδ = −(Brycφ −Brzsφ)
⇒ tanψ =

Brzsφ −Brycφ
Brxcθ +Brysθsφ +Brzsθcφ

.

(3.32)

Since there is more than one solution to the set of angles (φ, θ, ψ), which is a consequence
of the 360-degrees periodicity of the trigonometric functions, a convention is adopted: roll
and yaw angles are computed with tan−1

2 - the two-argument arc tangent function - and may
vary from −180o to 180o, whereas the pitch angle is computed with the tan−1 function and
may vary from −90o to 90o. In Eq. 3.32 it is assumed that the Bri, i = x, y, z components
are calibrated for the hard-iron effect in the magnetometer. If it is not true, then the hard-iron
offsets Vi, i = x, y, z must be determined with a proper calibration procedure and the yaw
angle is determined from raw data as

tanψ =
(Brz − Vz)sφ − (Bry − Vy)cφ

(Brx − Vx)cθ + (Bry − Vy)sθsφ + (Brz − Vz)sθcφ
. (3.33)

To illustrate the effect of poor calibration in the magnetometer, a simulation was run
with the testbed dynamic model described in this work. In this simulation, an initial an-
gular velocity is applied to the body z-axis of the testbed only, which means that the yaw
angle is expected to increase over time infinitely (no friction is considered). Raw data for
accelerometer and magnetometer is simulated, considering noise for all measurements and
V offsets for the magnetometer measurements, and the attitude of the testbed is determined.
Fig. 3.5 depicts the simulated attitude and the simulated measurements obtained with the
eCompass algorithm, showing that, when the magnetometer readings are not calibrated for
the V offsets, the yaw angle appear not to be linear (see expected yaw angle in dashed line).
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Figure 3.5: Yaw distortion when magnetometer is not calibrated.

Since the balancing algorithms described in this work depend on good attitude estima-
tion, a calibration procedure must be used before running any experiment. The magnetometer
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Table 3.1: LSM303DLH chip 6-parameter calibration.

Axis x y z
Offset V (µT ) 3.4770 −11.8123 4.9395

Scaling Factor S (µT ) 29.9352 29.3514 27.4197

readings are typically submitted to five different sources of errors, namely scaling factors,
null shift errors, misalignement errors and hard and soft iron effects. The null shift errors
- or offset errors - and the scaling factors are inherent to the sensor manufacturing and are
not the same for each of the axes of a three-axial sensor. Also, the misalignment errors
are errors introduced by the sensor manufacturing and are perceptible when the sensors in
each axis are not perfectly orthogonal within each other. Hard and soft iron effects come
as side effects of magnetic field interaction with permanent and induced magnetic fields, re-
spectively, and the first, as a consequence of being constant in the body frame, is usually
mathematically indistinguishable from null shift errors [Foster and Elkaim 2008]. Referring
to [STMicroelectronics 2018], it is possible to determine 6 calibration parameters for the
3-axis magnetometer: 3 offsets (V{x,y,z}) and 3 scaling factors (S{x,y,z}), all of them esti-
mated by fitting an ellipsoid to a set of calibration data through Least Squares Method. One
may refer to Appendix C for further details on the adopted magnetometer calibration method
and [Foster and Elkaim 2008] for deeper contextualization on the matter. Fig. 3.6 shows the
data obtained by rotating the LAICA testbed covering a 4π steradian surface and used in
the 6-parameter calibration of the 3-axis magnetometer. Table 3.1 shows the obtained cal-
ibration parameters used for calibrating the IMU magnetometer. Applying these values to
the magnetometer raw data, the magnetic field vector may be normalized to an unit vector
which may be then scaled with the local magnetic field intensity (obtained with magnetic
maps database such as NOAA WMM or with another standard calibrated magnetometer).

The eCompass algorithm may result in erratic behaviour of the attitude determination
because it is known that Eqs. 3.30 and 3.32 do not work well in some singular orientations.
However, it is assumed that these orientations will not be achieved during the movement of
the platform, due to the restriction imposed by the air bearing configuration as tabletop.

In the following developments, when the attitude must be determined in terms of a quater-
nion, this quaternion will be determined by transforming the ZYX Euler angles obtained
with the method explained in this section to the quaternion representation. This could be
done by using the relationships between {φ, θ, ψ} and {q0, q1, q2, q3} in Eq. 3.22. Consider-
ing, however, that the direct cosine matrix built by inserting the roll, pitch and yaw angles
in Eq. (3.5) may not be precise, the optimal method described in [Bar-Itzhack 2000] will be
used to obtain the “best fit” quaternion. In [Bar-Itzhack 2000], it is proposed three versions
of the DCM-to-quaternion method, two of them for obtaining the quaternion from orthog-
onal DCMs and one for nonorthogonal DCMs. The third version, which serves the desired
purpose, is given by the following steps

1. Given a nonorthogonal 3×3 direct cosine matrix corresponding to the testbed attitude,
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such as that in Eq. (3.5), the K3 matrix is formed as in (3.34)

K3 =
1

3


d11 − d22 − d33 d21 + d12 d31 + d13 d23 − d32

d21 + d12 d22 − d11 − d33 d32 + d23 d31 − d13

d31 + d13 d32 + d23 d33 − d11 − d22 d12 − d21

d23 − d32 d31 − d13 d12 − d21 d11 + d22 + d33

 ,

(3.34)
considering that the attitude DCM of the testbed is given by

D = [dij]3×3 =

 d11 d12 d13

d21 d22 d23

d31 d32 d33

 . (3.35)

2. The λi eigenvalues of K3 are obtained.

3. The λmax eigenvalue is selected as maxi(λi).

4. The desired attitude quaternion is calculated as being the eigenvector qλ =

[q1λ q2λ q3λ q4λ] associated with the λmax eigenvalue, in which q4λ is the scalar part
of the quaternion.
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An important observation is that, as in [Bar-Itzhack 2000] it is considered that the quater-
nion in given in the q1:3 + q4 order, the obtained quaternion must be rearranged as

qattitude = [q4λ q1λ q2λ q3λ]
T (3.36)

to follow the convention adopted in this work. Fig. 3.7 shows the percent error of the quater-
nion components between when they are calculated from time propagation and when they
are calculated from [Bar-Itzhack 2000] methods.
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3.2 Dynamic Modeling

In order to implement filters and control laws in the testbed, it is necessary to determine
a dynamic model for it. The dynamic model rules the relationship between the torques and
forces applied to the testbed and translates it into positions, velocities and accelerations. In
the present case, the testbed is not capable of translating, which means that only rotational
dynamics is developed.

In this work, three models are studied: two of them - a complete and a simplified ones
- were studied by [Young 1998], whereas the third one is used recurrently in most works,
including [Chesi et al. 2014], and is referred to as the Euler Equations of Motion.

From now on, whenever convenient, the notation used for the cross product between two
vectors will be [a×], which means that this operation is taken in its matrix form, as shown in
Eq. 3.37

[a×] =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 , (3.37)

in which [a×] is a skew-symmetric matrix.
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Also, when time differentiating a vector in a fixed reference frame - e.g. the inertial frame
- using information about this vector in a rotating reference frame - e.g. the body frame, the
following definition is used [Hibbeler 2010], which is referred to as the Transport Theorem
or the Basic Kinematic Equation (BKE).

Theorem 3.2.1 Basic Kinematic Equation (BKE). Given two reference frames i and b,
being b a frame which rotates about the fixed frame i with angular velocity ωb

i , the time
derivative of a vector a expressed in terms of the inertial frame may be obtained as

da

dt

∣∣∣∣
i

=
da

dt

∣∣∣∣
b

+ ωbi
∣∣
i
× a|i , (3.38)

in which ωb
i is the angular velocity of the rotating frame b in relation to the frame i,

measured in the frame i. The subscripts b and i after the bar are used to define the frame
in which the quantity is taken.

The development of all the dynamic models in this work start with the law of moment of
momentum [Wittenburg 2013]. This law, which is a parallel to the Newton’s second axiom
on translational motion, states that the absolute time derivative, i.e. the time derivative taken
in a fixed reference frame, of the absolute angular momentum with respect to a reference
point O is given by the resultant torque applied to this same point, as shown in Eq. 3.39

dLO

dt
= MO . (3.39)

Following the procedure adopted by [Young 1998], the angular momentum about the
Center of Rotation (CR) of the testbed must be determined as function of the unbalance
vector and the angular momentum about the Center of Mass (CM) of the testbed.

Before developing Eq. 3.39, the expressions for the angular momentum about some
strategic points must be determined. First, consider an arbitrary rigid body in a inertial
reference frame rotating with angular velocity ω and consider it is composed of infinite par-
ticles of mass mi, i = 1, . . .∞. Fig. 3.8 shows this rigid body and the vector quantities to
be considered [Hibbeler 2010].

The angular momentum of an arbitrary particle of this body HA, i about the arbitrary point
A is given by Eq. 3.40,

(HA, i)|i = ρA, i|i ×mi vi|i , (3.40)

in which the right bar indicates the reference system to which each quantity is related, vi is
the velocity of the i-th particle and ρA, i is the position vector of the i-th particle with relation
to the point A. This bar is considered implicit from now on. The velocity of this particle
contains two portions: one given by translation and another given by the rotation of the
body. These quantities are addressed in Eq. 3.41,

vi = vtrans + vrot = vA + ω × ρA, i , (3.41)
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Figure 3.8: An arbitrary rotating rigid body.

in which vA is the translation velocity of the rigid body with relation to the point A. Upon
substitution of Eq. 3.41 in Eq. 3.40, Eq. 3.42 is obtained,

(HA, i) = ρA, i ×mivA + ρA, i ×mi(ω × ρA, i) . (3.42)

Eq. 3.42 may be integrated for the entire set of particles of the rigid body, considering
infinitesimal particles of mass dm, to obtain the angular momentum of the body about the
point A, HA, in Eq. 3.43,

HA, i = lim
mi→dm

∑
i

(HA) =

(∫
m

ρA, i dm

)
× vA +

∫
m

ρA, i × (ω × ρA, i) dm . (3.43)

Important expressions arise when the point A is strategically selected as the Cen-
ter of Mass (point G) or the Center of Rotation (point O) of the rotating rigid body.
Eqs. 3.44 and 3.45,

HO =

(∫
m

ρO dm

)
× vO︸︷︷︸

0︸ ︷︷ ︸
0

+

∫
m

ρO × (ω × ρO) dm =

∫
m

ρO × (ω × ρO) dm (3.44)
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and

HG =

(∫
m

ρG dm

)
︸ ︷︷ ︸

0

×vG

︸ ︷︷ ︸
0

+

∫
m

ρO × (ω × ρG) dm =

∫
m

ρG × (ω × ρG) dm , (3.45)

shows that the angular momentum assumes the general form H =
∫
m
ρ × (ω × ρ) dm in

these cases. It must be noticed that, from the definition of the Center of Mass, the mass
distribution gives

∫
m
ρG dm = 0, whereas the velocity of the Center of Rotation is given by

vO = 0, following from the fact that the CR is a fixed point.

Proceeding from Eq. 3.43 and given that the vector ρA, i may be obtained from the vector
ρG using the relative position vector ρG/A, i, Eq. 3.46 states an useful expression for the angular
momentum about an arbitrary point A considering knowledge of the angular momentum HG

(see Appendix D),

HA = ρG/A ×mvG + HG , (3.46)

Eq. 3.46 will be useful when deriving the dynamic model used by [Young 1998] and to
analyze the difference between the models to be considered. Before that, the inertia tensor is
defined and its relationship with the angular momentum equation is given.

Definition 3.2.2 The Inertia Tensor of a three-dimensional rigid body is defined as the
3× 3 symmetric matrix J, given by

J =

 Jxx −Jxy −Jxz
−Jyx Jyy −Jyz
−Jzx −Jzy Jzz

 . (3.47)

in which the principal moments of inertia are given by

Jxx =
∫
m

(y2 + z2) dm ,

Jyy =
∫
m

(x2 + z2) dm ,

Jzz =
∫
m

(x2 + y2) dm

(3.48)
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and the products of inertia are given by

Jxy = Jyx =
∫
m
xy dm ,

Jxz = Jzx =
∫
m
xz dm ,

Jyz = Jzy =
∫
m
yz dm .

(3.49)

It may be noticed from Eqs. 3.44 and 3.45 that the angular momentum about these
points are of the form H =

∫
m
ρ × (ω × ρ) dm. Following the procedure described

in [Greenwood 1965], this integral is developed as follows. From Eq. 3.50,

H =

∫
m

ρ× (ω × ρ) dm , (3.50)

upon substitution of Eqs. 3.51 and 3.52,

ρ = xi + yj + zk (3.51)

and
ω = ωxi + ωyj + ωzk , (3.52)

the cross products may be developed as shown in Eqs. 3.53 and 3.54,

ω × ρ =

∣∣∣∣∣∣∣
i j k

ωx ωy ωz

x y z

∣∣∣∣∣∣∣ = (zωy − yωz)i + (xωz − zωx)j + (yωx − xωy)k (3.53)

and

ρ× (ω × ρ) =

∣∣∣∣∣∣∣
i j k

x y z

(zωy − yωz) (xωz − zωx) (yωx − xωy)

∣∣∣∣∣∣∣
= [(y2 + z2)ωx − xyωy − xzωz]i
+ [−yxωx + (x2 + z2)ωy − yzωz]j
+ [−zxωx − zyωy + (x2 + y2)ωz]k .

(3.54)

Using these expressions for the cross products, the angular momentum equation may be
obtained, as in Eq. 3.55, in which the definitions of the principal moments of inertia and the
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products of inertia becomes present.

∫
m

ρ× (ω × ρ) dm =

[∫
m

(y2 + z2)ωx dm+

∫
m

−xyωy dm+

∫
m

−xzωz dm
]

i

+

[∫
m

−yxωx dm+

∫
m

(x2 + z2)ωy dm+

∫
m

−yzωz dm
]

j

+

[∫
m

−zxωx dm+

∫
m

−zyωy dm+

∫
m

(x2 + y2)ωz dm

]
k .

(3.55)

Using the definition of the inertia tensor, the angular momentum may be finally obtained
as shown in Eq. 3.56,

H =(Ixx · ωx + Ixy · ωy + Ixz · ωz)i
+ (Iyx · ωx + Iyy · ωy + Iyz · ωz)j
+ (Izx · ωx + Izy · ωy + Izz · ωz)k

=J · ω

(3.56)

In the present case, the system is modeled as a rigid body rotating around a fixed CR and
having its CM displaced by an offset vector, the unbalance vector. To develop the Equations
Of Motion (EOM) of this system, the angular momentum must be differentiated, as shown
in Eq. 3.39. From Eq. 3.46, selecting the arbitrary point A as being the CR of the testbed
(point O), gives

HO = ρG/O ×mvG + HG . (3.57)

Eq. 3.57 shows that the angular momentum about the CR of the testbed may be obtained as
function of the angular momentum about the CM - HG - and the momentum of the linear
momentum mvG. Differentiating this equation and applying the BKE, gives

ḢO =
d

dt
HO =

d

dt
(r×mvG) +

d

dt
(HG)

=
d

dt
(r×mvG)

∣∣∣∣
b

+ ωbi × (r×mvG) +
d

dt
(HG)

∣∣∣∣
b

+ ωbi × (HG)

in which the applicability of the BKE becomes apparent from the fact that the components
of HG are taken in the body frame, since the Inertia Tensor is constant in the body frame,
whereas is a function of time when taken in the inertial frame. Since d

dt
r = vG by definition,

d

dt
(r×mvG)

∣∣∣∣
b

=
d

dt
r×mvG︸ ︷︷ ︸

vG×vG=0

+r×m d

dt
vG = r×maG (3.58)
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and considering

d

dt
(HG)

∣∣∣∣
b

=
d

dt

(
Jωb

i

)∣∣∣∣
b

=
d

dt
J︸︷︷︸

0

ωbi + J
d

dt
ωbi = Jω̇bi (3.59)

then, the model developed by [Young 1998] is achieved:

Definition 3.2.3 Equation of Motion [Young 1998]. The motion of the spacecraft sim-
ulator is given by

dHO

dt
= MO ,

ḢO = r×m ˙̇r + ω × (r×mṙ) + Jω̇ + ω × (Jω)

in which MO is the external torque applied on the testbed, r = ρG/O is the unbalance
vector and ω = ωbi is the angular velocity of the body with respect to the inertial frame.

To simulate this model, its equations may be further developed. First, considering
Eq. (3.56), the Jω factor may be written as

Jω =

 Jxxωx + Jxyωy + Jxzωz

Jyxωx + Jyyωy + Jyzωz

Jzxωx + Jzyωy + Jzzωz

 , (3.60)

in which the inertia tensor J is the inertia tensor around the center of mass of the testbed.
Also, the external moments applied to the testbed may be written as

MO = τdev + τaero + τG (3.61)

τdev =
[
τdevx τdevy τdevz

]T
, (3.62)

τaero =
[
−BXω

2
x −BYω

2
y −BZω

2
z

]
, (3.63)

τG = r× (mgb) = m g

 −rycφcθ + rzsφcθ

rxcφcθ + rzsθ

−rxsφcθ − rysθ

 , (3.64)

in which gb is the gravity vector represented in the body frame and τG is the gravitational
torque. For simulation purposes, aerodynamic drag torque, τaero, characterized by the BX ,
BY and BZ coefficients, and actuator devices torques, τdev, may be added.

Making the proper substitutions, the model equation may be written as

Aω̇ + B = M , (3.65)

in which the A, B and M matrices are given by Eqs. (3.66),
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A =

 mr2
y +mr2

z + Jxx −mrxry + Jxy −mrxrz + Jxz

−mrxry + Jxy mr2
x +mr2

z + Jyy −mryrz + Jyz

−mrxrz + Jxz −mryrz + Jyz mr2
x +mr2

y + Jzz


3×3

,

B =



[(−2mryrz + Jzy)ω
2
y + (2mryrz − Jyz)ω2

z+

+(−mrxrz + Jxz)ωxωy + (mrxry − Jxy)ωxωz+
+(mr2

y −mr2
z − Jyy + Jzz)ωyωz]

[(2mrxrz − Jzx)ω2
x + (−2mrxrz + Jxz)ω

2
z+

+(mryrz − Jzy)ωxωy + (−mrxry + Jxy)ωyωz+

+(−mr2
x −mr2

z + Jxx − Jzz)ωxωz]
[(−2mrxry + Jxy)ω

2
x + (2mrxry − Jxy)ω2

y+

+(−mryrz + Jyz)ωxωz + (−mrxrz + Jxz)ωyωz+

+(mr2
x −mr2

y − Jxx + Jyy)ωxωy]


3×1

, (3.66)

M =

 τdevx −BXω
2
x −mgrycφcθ +mgrzsφcθ

τdevy −BYω
2
y +mgrxcφcθ +mgrzsθ

τdevz −BZω
2
z −mgrxsφcθ −mgrysθ


3×1

,

which can be isolated for the angular accelerations as

ω̇ = A−1(M−B) . (3.67)

This model can be simulated along with the Euler rates equation to obtain the motion of
the testbed. The code developed by [Young 1998] for simulating this model was adapted and
is present in Appendix K.

Def. 3.2.3 can be simplified considering some assumptions, such as considering r, ω and
the products of inertia Jij, i 6= j small with relation to the other terms, as well as considering
that the only external torque present in the system is the gravitational torque. This gives the
second model described in this work:

Definition 3.2.4 Simplified Equation of Motion [Young 1998]. The simplified motion
of the spacecraft simulator is given by

ω̇ =


mg
Jx

(−rycφcθ + rzsφcθ)
mg
Jy

(rxcφcθ + rzsθ)
mg
Jz

(−rxsφcθ − rysθ)

 (3.68)

in which c· and s· operators are used to denote the sine and cosine of the roll and pitch
angles, φ and θ.

Finally, the third model to be considered is that used
by [Chesi et al. 2014] and [Kim and Agrawal 2009]. This model considers the dy-
namics of the simulator with respect to the center of rotation as being given by the known
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Euler Equations of Motion. In this case, the angular momentum HO is used directly. Besides
this, the only external torque to be considered in this model is the gravitational torque. This
model is defined as follows.

Definition 3.2.5 Euler Equations of Motion [Chesi et al. 2014]. The motion of the
spacecraft simulator is given by the Euler EOM with respect to the CR,

dHO

dt
= MO ,

ḢO = ḢO

∣∣∣
b

+ ω ×HO|b = Jω̇ + ω × Jω

MO = r× FG = r×mgb ,

in which gb is the gravity vector with respect to the body frame.

One of the main differences in this model is that the Inertia Tensor J is not the same as
that used in the model developed by [Young 1998]. In this case, the Inertia Tensor is devel-
oped with relation to the CR of the system, whereas the inertia tensor used in the Young’s
model is developed with relation to the CM of the system. Still, both tensors are constant
with relation to the body frame and can be used without changing the model complexity.

To understand the difference between these tensors, one must record the parallel axis
theorem applied to 3D motion, which states that

Theorem 3.2.6 Parallel Axis Theorem Considering the principal moments of inertia,
Jxx, Jyy and Jzz, and the products of inertia Jxy, Jxz and Jyz, of a rigid body composes
the inertia tensor with respect to the CM, JG, then the parallel axis theorem states that
the inertia tensor about any arbitrary point may be obtained as

JA =

 J ′xx −J ′xy −J ′xz
−J ′yx J ′yy −J ′yz
−J ′zx −J ′zy J ′zz

 . (3.69)

in which the principal moments of inertia are given by

J ′xx = Jxx +m(y2
G + z2

G),

J ′yy = Jyy +m(x2
G + z2

G) ,

J ′zz = Jzz +m(x2
G + y2

G) ,

(3.70)
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Table 3.2: Maximum percent error for various simulation conditions.

Simulation conditions Maximum error in ω (%)
J ωat=0 r 0.0049346%

10J ωt=0 r 2.1227 · 10−5%
102J ωt=0 r 4.5847 · 10−8%
103J ωt=0 r 1.9938 · 10−10%

J 10ωt=0 r 0.021518%
J 102ωt=0 r 0.32%
J 103ωt=0 r 190.50%
J ωt=0 10r 1.96%
J ωt=0 102r 6.27%
J ωt=0 103r 0.078532%

a: ωt=0 = [0.01 0.01 0.01]T rad/s

the products of inertia are given by

J ′xy = Jxy +mxGyG ,

J ′xz = Jxz +mxGzG ,

J ′yz = Jyz +myGzG

(3.71)

and the components xG, yG and zG define the position of the point with respect to the CM.

In other words, the relationship between the inertia tensor considered about the center of
rotation and considered about the center of mass is given by

JO = JG + J+ , (3.72)

in which J+ is given by

J+ =

 m(y2
G + z2

G) −mxGyG −mxGzG

−mxGyG m(x2
G + z2

G) −mzGyG

−mxGzG −mzGyG m(x2
G + y2

G)

 . (3.73)

Fig. 3.9 shows the difference between the angular velocities obtained by simulating the
models by [Chesi et al. 2014] and [Young 1998] using the same model conditions (same
inertia tensor and unbalance vector, angular velocity initially null and attitude angles initially
null) for a 100 s simulation. Also, Table 3.2 shows how the magnitude of the error increases
when the values of angular velocity, inertia and unbalance distances increases.

Analyzing the data of these tests, it could be seen that the error caused by r is the most
critical and has the trend to increase with time, while others tend to vary cyclically.
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Figure 3.9: Error between [Young 1998] and [Chesi et al. 2014] simulated angular veloci-
ties.
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Chapter 4

Balancing Techniques

Control, control, you must learn control!
- Yoda

After having described the kinematic and dynamic models to be considered in this work,
the balancing techniques can now be proposed. In this chapter the following techniques will
be explained:

• Batch and recursive Least Squares Methods (LSM), page 41,

• Linear Kalman filtering, page 48,

• Nonlinear Kalman filtering (EKF and UKF), page 53 and

• Hybrid adaptive control method, page 72.

4.1 Estimating through Least Squares Method

The Least Squares Method was extensively studied in [Young 1998],
[Da Silva and Rodrigues 2015], [Da Silva et al. 2016] and [Silva et al. 2018], for which
reason this procedure is simply summarized in this section. Rewriting Eq. (3.68),

ω̇ =


mg
Jx

(−rycφcθ + rzsφcθ)
mg
Jy

(rxcφcθ + rzsθ)
mg
Jz

(−rxsφcθ − rysθ)

 , (4.1)

it must be noticed thatm, g, Jxx, Jyy, Jzz and r = [rx ry rz]
T are all constants and the r vector

is the parameters vector to be estimated. The measurements in this model are the angular
acceleration components, which will be estimated, through discretization, with the angular
velocity components ωx, ωy and ωz, and the orientation given in the ZYX Euler angles, roll
(φ), pitch (θ) and yaw (ψ).
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The angular acceleration may be discretized as

ω̇ ≈ ∆ωk

T
=

1

T

 ωk+1
x − ωkx
ωk+1
y − ωky
ωk+1
z − ωkz

 , (4.2)

in which T is the sampling time. Using the trapezoidal rule, the equations of the simplified
model may be written as

∆ωkx = ωk+1
x − ωkx =

−mgT
2Jxx

{[
(cφcθ)

k+1 + (cφcθ)
k
]
ry −

[
(sφcθ)

k+1 + (sφcθ)
k
]
rz
}
,

∆ωky = ωk+1
y − ωky =

mgT

2Jyy

{[
(cφcθ)

k+1 + (cφcθ)
k
]
rx +

[
(sθ)

k+1 + (sθ)
k
]
rz
}

∆ωkz = ωk+1
z − ωkz =

−mgT
2Jzz

{[
(sφcθ)

k+1 + (sφcθ)
k
]
rx +

[
(sθ)

k+1 + (sθ)
k
]
ry
}
.

(4.3)

Eq. 4.3 can be written in a linear form as

∆Ω = φr ∆ωkx
∆ωky
∆ωkz


︸ ︷︷ ︸

∆Ω

=

 0 φ12 φ13

φ21 0 φ23

φ31 φ32 0


︸ ︷︷ ︸

φ

 rx

ry

rz


︸ ︷︷ ︸

r

, (4.4)

where the φkij terms are given by φk12 = −mgT
2Jxx

(
(cφcθ)

k+1 + (cφcθ)
k
)

φk13 = mgT
2Jxx

(
(sφcθ)

k+1 + (sφcθ)
k
)

φk21 = mgT
2Jyy

(
(cφcθ)

k+1 + (cφcθ)
k
)

φk23 = mgT
2Jyy

(
(sθ)

k+1 + (sθ)
k
)

φk31 = −mgT
2Jzz

(
(sφcθ)

k+1 + (sφcθ)
k
)

φk32 = −mgT
2Jzz

(
(sθ)

k+1 + (sθ)
k
)

 . (4.5)

The Least Squares Method applied to this problem consists in augmenting the matrix
equation in Eq. 4.4 for obtaining a more accurate estimative of the unbalance vector, since
the noise inherent to the angular velocities ω and the attitude angles {φ, θ, ψ} prevents the
possibility of obtaining a good estimative through simple matrix inversion. Then, augment-
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ing Eq. 4.4 leads to

∆Ωaug = φaugr (4.6)

∆ω0
x

∆ω0
y

∆ω0
z

∆ω1
x

∆ω1
y

∆ω1
z

...


3n×1︸ ︷︷ ︸

∆Ωaug

=



0 φ0
12 φ0

13

φ0
21 0 φ0

23

φ0
31 φ0

32 0

0 φ1
12 φ1

13

φ1
21 0 φ1

23

φ1
31 φ1

32 0
...

...
...


3n×3︸ ︷︷ ︸

φaug

 rx

ry

rz


3×1︸ ︷︷ ︸

r

, (4.7)

in which n is the selected number of batch estimates of Eq. (4.4). The unbalance vector may
then be determined, using the pseudoinverse of φaug, as

r = [φTaugφaug]
−1φTaug∆Ωaug . (4.8)

The adjustment of the CM position may be then accomplished by moving the movable
masses orthogonally disposed onto the testbed. The calculation may be simplified by consid-
ering that the testbed without the movable masses is already balanced and the unbalance is
due solely by the addition of the movable mass on the table. Considering this, the unbalance
vector may be calculated as

r =
1

m

∑
i

miri ,

= m00 +mxrmx i +my rmyj +mzrmz k ,

=


mx
m
rmx

my
m
rmy

mz
m
rmz

 , (4.9)

m = m0 +mx +my +mz ,

in which m0 is the mass of the testbed without movable masses, m{x,y,z} are the masses of
each movable mass and r{mx,my,mz} are the positions of the masses along its corresponding
axes. Considering that the interest relies on the variation δm applied to the mass positions to
compensate the unbalancing, one may write

rnew = 0 =


mx
m

(rmx + δmx)
my
m

(rmy + δmy)
mz
m

(rmz + δmz)

 =


mx
m
rmx

my
m
rmy

mz
m
rmz


︸ ︷︷ ︸

=r, Eq. 4.9

+


mx
m
δmx

my
m
δmy

mz
m
δmz

 (4.10)
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Thus, isolating the δm = [δmx δmy δmz]
T vector from Eq. (4.10), the position variations

of the movable masses are determined as

δm = −m


rx
mx
ry
my
rz
mz

 (4.11)

which, considering all the movable masses displace equal amounts of mass, i.e. k = mx =

my = mz, may be simplified as
δm = −m

k
r . (4.12)

This was the balancing procedure adopted in the work developed
in [Da Silva and Rodrigues 2015]. It is most unlikely that the testbed balancing will
reach reasonable results in only one batch estimation For this reason, multiple balancing
iterations (“estimation-plus-actuation”) must be performed. To optimize this process, the
batch size was studied in order to establish the minimum usable batch size. Fig. 4.1 shows
how the unbalance vector estimate converges as function of the batch size, evidencing that
after about 50 s of measurements acquired at 10 Hz rate (a total of 500 measurements) the
final estimate and its standard deviation has acceptable variation.

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Number of measurements (k)

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

N
or

m
 o

f t
he

 u
nb

al
an

ce
 v

ec
to

r 
es

tim
at

io
n 

(m
)

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 la

st
 1

0 
es

tim
at

ed
 n

or
m

s 
(m

)

Convergence of unbalance vector estimation through LSM

Norm
Standard deviation

Figure 4.1: Parameter estimation convergence as function of the batch size.

Also, considering the practical design of the balancing system, sometimes the measure-
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ments may be acquired at a variable sampling rate or even present huge time gaps between
measurements when the electronic system fails (e.g. when the battery level goes low or the
wireless communication fails). To study the effect of this problem in the estimation process,
a batch of measurements was obtained through simulation and portions of the data were
eliminated, i.e. if the set of measurements is given by {x0, · · · , xk}, then the modified set
is given by {x0, · · · , xn,xn+l, · · · ,xk], in which the set {xn+1, · · · ,xn+l−1} was removed.
Fig. 4.2 shows the estimate convergence when two sets of measurements are eliminated,
{x500, · · · ,x700} and {x1500, · · · ,x1700}.
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Figure 4.2: Parameter estimation convergence as function of the batch size.

As can be seen in Fig. 4.2, there is little effect of these measurement gaps in the param-
eter convergence. However, attention must be given for ensuring that the measured attitude
angles are synchronized with the measured angular velocities. Fig. 4.3 depicts the effect
of the synchronization fault of the roll angle in a extreme example in which the roll angle
becomes 50 samples advanced in time with relation to the other measurements. This figure
shows that the unbalance vector estimation starts to oscillate right after the data becomes
unsynchronized.

There are some improvements that may be made in the balancing
method presented in this section. One of these improvements is described
in [Xu et al. 2015], [Sharifi et al. 2017], [Krishnanunni et al. 2018] and, primarily,
in [Kim and Agrawal 2009] and refers to the possibility of estimating not only the unbalance
vector, but also the inertia tensor components. Referring to the model in 3.2.5, a term for
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Figure 4.3: Effect of a synchronization fault.

representing the torque generated by momentum exchanging devices is added, which means
that

dHO

dt
=
dJω

dt
+
dh

dt
= Jω̇ + ω × Jω + ḣ + ω × h , (4.13)

in which the BKE is applied and the superscripts and subscripts referring to coordinate
frames are suppressed. Considering the derivative of the angular momentum equals the ap-
plied external torque, considering only the gravitational torque is present and rearranging
terms, Eq. 4.13 becomes

Jω̇ + ω × Jω = −ḣ− ω × h− [g×]mr , (4.14)

in which the matrix form of the cross product and the identity a×b = −b×a are used. Con-
sidering the parameters vector to be estimated is x = [Jx Jy Jz Jxy Jxz Jyz mrx mry mrz]

T ,
Eq. 4.13 may be rearranged in the linear form as

[
Ω̇ + ω ×Ω [g×]

] [ J̃

mr

]
︸ ︷︷ ︸

x

= −ḣ− ω × h (4.15)
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in which Ω, J̃ and [g×] are given by

Ω =

 ω1 0 0 ω2 ω3 0

0 ω2 0 ω1 0 ω3

0 0 ω3 0 ω1 ω2

 (4.16)

J̃ =
[
Jx Jy Jz Jxy Jxz Jyz

]T
(4.17)

[g×] = [gb×] = g

 0 −cφcθ sφcθ

cφcθ 0 sθ

−sφcθ −sθ 0

 . (4.18)

Before applying the Least Squares Method (LSM), it must be noticed that Eq. (4.15)
utilizes the derivative of the angular rates, which is not desirable, since it can amplify the
noises in these signals. To relieve some of this effect, Eq. (4.15) is integrated over time

[
Ω +

∫ t
t0
ω ×Ω dt

∫ t
t0

[g×] dt
]

︸ ︷︷ ︸
Φ

[
J̃

mr

]
︸ ︷︷ ︸

x

= −h−
∫ t

t0

ω × h dt︸ ︷︷ ︸
H

(4.19)

and the LSM for n samples may be applied as

x = (ΦT
augΦaug)

−1ΦT
augHaug , (4.20)

in which Φaug and Haug are given by

Φaug =


Φ0

Φ1

...
Φk


3n×9

, (4.21)

Φk =
[

Ω +
∫ tk
t0
ω ×Ω dt

∫ tk
t0

[g×] dt
]

3×9
, (4.22)

Haug =


H0

H1

...
Hk


3n×1

, (4.23)

Hk =

[
−h−

∫ tk

t0

ω × h dt

]
3×1

. (4.24)

Another improvement would be implementing this parameter estimation recursively. In
this way, there is no need of acquiring a set of measurements to proceed with a batch es-
timation of the desired parameters. This has special utility in embedded systems, in which
memory and computational effort requisites are more restrict. Starting from the modified
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loss function in Eq. (4.25),

V (t) =
k∑

n=1

λk−n(Hn −ΦT
nx) , (4.25)

the work described in [Sharifi et al. 2017] designs the Recursive Least Squares (RLS) ap-
proach for Eq. (4.19), following the procedure described in [Haykin 1986], as

Kk =
λ−1Pk−1Φk

1 + λ−1ΦT
kPk−1Φk

,

αk = Hk −ΦT
k xk−1 ,

xk = xk−1 + Kkαk ,

Pk = λ−1Pk−1 − λ−1KkΦ
T
kPk−1 ,

whereαk is a residual estimation error at time k and λ is the forgetting factor, a scalar which
defines how the past observations are considered in the estimation process. The λ parameter
ranges in the (0; 1] interval and values near 1 indicates that only recent observations are taken
into account. Another advantage of this recursive estimation is that is does not require any
matrix inversion. Another technique, based on the Classical Levenberg-Marquadt (CLM)
algorithm, is explained in [Sharifi et al. 2017] and compared with the results obtained by
RLS estimation. For further details, one must refer to this work. Recursive estimation may
be also achieved using the well-known Kalman filter, as will be shown in the next section.

4.2 Estimating unbalance with a Kalman Filter

Section 4.1 showed how to estimate the unbalance vector recursively. Another recursive
approach may be given to this problem. As it can be seen in Def. 3.2.4, the simplified
dynamic model is linear with respect to the unbalance vector parameters. To explicit this
relation, Eq. 4.4 may be rewritten as ωk+1

x

ωk+1
y

ωk+1
z

 =

 ωkx
ωky
ωkz

+

 0 φk12 φk13

φk21 0 φk23

φk31 φk32 0


 rkx
rky
rkz

 (4.26)

and, choosing the augmented state vector xk = [ωkx ω
k
y ω

k
z r

k
x r

k
y r

k
z ]
T , in which the unbalance

vector is added as a static parameter (i.e. ṙ = 0), the discretized dynamic equation becomes
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xk+1 =



ωk+1
x

ωk+1
y

ωk+1
z

rk+1
x

rk+1
y

rk+1
z


=



1 0 0 0 φ12 φ13

0 1 0 φ21 0 φ23

0 0 1 φ31 φ32 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


︸ ︷︷ ︸

Fk



ωkx
ωky
ωkz
rkx
rky
rkz


+ w6×1 , (4.27)

= Fkxk + wk (4.28)

in which w6×1 represents the process noise. The angular velocities may be obtained from the
sensor, whereas the unbalance vector components may be only estimated. In other words,
the output equation is given by

yk = H · xk + vk (4.29)

in which H = [I3×3 03×3] and vk is the 3×1 vector of measurement noises. The observability
of the state vector may be analyzed by checking the rank of the observability matrix

O =

[
H3×6

(HF)3×6

]
=

[
I3×3 03×3

I3×3 Φ3×3

]
. (4.30)

The determinant of this block matrix equals the determinant of the Φ3×3 matrix, which de-
pends on the values of the φij = f(m, g, T, Ixx, Iyy, Izz, φ, θ, ψ) terms. By analyzing the
expression for the φij terms in Eq. 4.5, it can be concluded that the determinant of the φ
matrix will become zero only when the roll and pitch angles of the system are 0o, ±90o

or ±180o for at least two consecutive instants. This observability issue may be avoided by
simply guaranteeing that the system stays oscillating around these angles.

Following the format of the Kalman Filter shown in G, the KF is implemented as

1. Time update:

[P−k ]6×6 = [Fk−1]6×6[P
+
k−1]6×6[F

T
k−1]6×6 + [Qk−1]6×6 (4.31)

x̂k = Fk−1x̂k−1 (4.32)

2. Measurement update:

[Kk]6×3 = [P−k ]6×6[H
T
k ]6×3

(
[Hk]3×6[Pk]6×6[H

T
k ]6×3 + [Rk]3×3

)−1
(4.33)

[x̂+
k ]6×1 = [x̂−k ]6×1 + [Kk]6×3

(
[yk]3×1 − [Hk]3×6[x̂

+
k ]6×1

)
(4.34)

[P+
k ]6×6 = ([I]6×6 − [Kk]6×3[Hk]3×6)[P

−
k ]6×6 (4.35)

with P0, the initial state covariance, set as P0 = 06×6 and the process noise and measurement
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noise matrices, Qk and Rk, respectively, given by

Qk = E(wwT ) = diag





5 · 10−4 rad2/s2

5 · 10−4 rad2/s2

5 · 10−4 rad2/s2

1 · 10−8 m2

1 · 10−8 m2

25 · 10−8 m2




and (4.36)

Rk = E(vvT ) = diag


 0.052 rad2/s2

0.052 rad2/s2

0.052 rad2/s2


 , (4.37)

in which it is observed that both matrices are diagonal. This fact is coherent with the assump-
tion that all the axes of the gyroscope are uncorrelated (e.g. there is no misalignment in the
gyroscope axes). Besides considering the hardware setup, the approach adopted in order to
select these noise matrices was to analyze the filter consistency. The Normalized Innovation
Squared (NIS) test states that, under the hypothesis that a filter is consistent, its NIS will
present a chi-square (X2) distribution with n degrees of freedom, in which n is the number
of measurements. Following the definition shown in [Bar-Shalom et al. 2004, p. 236], the a
priori distribution of the squared innovation terms d2

k is given by

d2
k = (yk −Hkx̂

−
k )T (HkP

−
k HT

k + Rk)
−1(yk −Hkx̂

−
k ) , (4.38)

which is the called NIS. From the number of degrees of freedom n and by setting the con-
fidence level - which, in this work, is always set as 95% - the value X of the cumulative
distribution of the X2(n) may be obtained, e.g. from a predetermined table. The test consists
in verifying if the value of the d2

k terms stay below this X value, but close to it.

Also, the error signals given by ek = xk − x̂k, which must rely on the ±3σi intervals,
were analyzed. The σi’s are calculated in each time step k as σi =

√
Pii, in which Pii are the

diagonal terms of the P+
k matrix.

Fig. 4.4 shows the innovation terms obtained. It is known that these innovation terms
have a Chi-square distribution. To perform this analysis, the cumulative value of the Chi-
square distribution with the 95% confidence interval and 3 degrees of freedom (number of
measurements) is determined and used as the limit, obtained as 7.815 in this case. It is
expected that, at maximum, only 5% of the samples appear above this limit.
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Figure 4.4: Innovation terms d2 throughout a 100 s simulation of the Kalman Filter.

Simulating the Kalman Filter with the characteristics described in this section resulted
that 96.90% of the samples were below this limit. Fig. 4.5 shows that all the state errors
remained in its corresponding ±3σ intervals, which is the 99.7% confidence interval.
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Figure 4.5: State errors and the ±3σ intervals.

The estimated unbalance vector components were estimated as −1.0349541074 mm,
−1.0008567124 mm and −4.9812694038 mm when the simulated unbalance vector was
r = [−1 − 1 − 5]T mm. This filter, however, does not work well when the conditions
assumed in the model simplification do not hold anymore. Fig. 4.6 shows, as an example, the
estimation of the rx component of the unbalance vector in three different cases: under normal
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conditions; when the r components are 20 times bigger; and when the angular velocities are
much higher than normal operation (ω = [1 1 1] rad/sT ).
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Figure 4.6: rx estimation when: (up) normal conditions, (middle) r is 20 times bigger, (bot-
tom) high angular velocities (ω = [1 1 1] rad/sT ).

As can be seen in Fig. 4.6, when the r components are big enough compared to the other
terms in the complete model, Eq. (3.2.3), the filter converges to a value within an offset of the
true value. From simulation, it was concluded that this offset grows with the r components.
Also, from this figure it can be seen that, when the angular velocities are high enough, the
estimation oscillates around the true value, with amplitude getting as big as bigger become
the angular velocities of the system. Additionally, Fig. 4.7 depicts the estimation of the
rx component when the inertia products have considerable value when compared with the
principal moments of inertia, showing that the estimation starts to present an unexpected
behaviour, never converging to the true value of rx.
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Figure 4.7: rx estimation when Jij, i 6= j have comparable magnitude with Jii.

In all these conditions, the KF converged to erratic values. To improve the filter robust-
ness in these conditions, the complete nonlinear model for the testbed dynamics must be
considered, which implies the use of the nonlinear Kalman filters. The following section
explains how the Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF)
may be used for this purpose.

4.3 Nonlinear filtering applied to the balancing problem

In Sec. 3.2, the testbed was modeled as a rigid body rotating without translation about a
center of rotation (CR). As shown in the previous sections, this model may be simplified and
the unbalance vector may be estimated using the Least Squares Method or the classical linear
Kalman Filter. However, if the experiment does not satisfy one of the listed assumptions, the
linear model will not hold anymore and the effect of the nonlinearities cannot be neglected.

Adopting the complete dynamic model and considering the angular velocities as part of
the state vector of the filter, it can be seen that the relationship between the state vector and
the dynamic model will not be linear. In this section, to overcome the limitations imposed by
the usage of the simplified dynamic model, two nonlinear filters will be used: the Extended
Kalman Filter (EKF) and the Unscenter Kalman Filter (UKF).

First, it will be explained how the EKF may be used to estimate the unbalance vector
only. Then, the procedure for augmenting the state vector and estimating the inertia tensor
components will be explained. This procedure was presented in the 4th IAA Conference
on University Satellite Missions and CubeSat Workshop [Silva et al. 2017] and is based on
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the method described in [Xu et al. 2015]. Finally, the UKF approach will be presented.
Observability analyses will be made in the course of the section, as well as simulations to
validate the proposed methods.

4.3.1 The EKF applied to the balancing problem

The Extended Kalman Filter was developed as an approach for applying the Kalman Filter
in nonlinear problems. To accomplish this goal, the main idea of this filter is that a simple
Kalman Filter may be used if the model is linearized around the current state. Following the
procedure for the discrete EKF shown in [Simon 2006] and summarized in Appendix H, the
model must be written in the state-space form as

xk = fk−1(ωk−1, rk−1,wk−1) (4.39)

yk = hk(ωk, rk,vk)

in which the state vector is defined as x = [ω r]T = [ωx ωy ωz rx ry rz]
T and fk−1 is

obtained by discretizing the Def. 3.2.5 and considering rk = rk−1. Also, considering that
the angular velocities are directly obtained from the sensors, the same output equation used
in the Kalman Filter approach may be used (Eq. (4.29)).

The EKF requires the calculation of four jacobians. Considering that the process noise
wk and the measurements noise vk are additive gaussian noises, the Lk−1 and Mk jacobians
are 3 × 3 identity matrices. Also, considering that the output equation is linear, the Hk

jacobian is given by the H matrix itself, which is a 3× 6 matrix H = [I3×3 03×3].

The remaining task is to determine the Fk−1 jacobian, which is given by

Fk−1 =


∂fk−1

1

∂xk−1
1

· · · ∂fk−1
1

∂xk−1
6... . . . ...

∂fk−1
6

∂xk−1
1

· · · ∂fk−1
6

∂xk−1
6

 =

 ∂f1:3k−1

∂xk−1

∂f4:6k−1

∂xk−1

 , (4.40)

implying that the fi , i ∈ {1, . . . , 6} functions must be determined. Dividing ω̇ given by
Def. 3.2.5 in two different portions, it follows that

ω̇ = J−1[Jω×]ω︸ ︷︷ ︸
Term 1

+ J−1[−mgb×]r︸ ︷︷ ︸
Term 2

, (4.41)

in which the cross products are taken in matrix form. Assuming that the inertia products are
negligible when comparing with the main inertia terms - which is a reasonable consideration,
given the real inertia tensor of the testbed -, the J is diagonal, which simplifies the develop-
ment of Eq. (4.41). The term 1 in Eq. (4.41), aided by the developments in [Shen et al. 2004],
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is given by

J−1[Jω×]ω =

 J−1
x 0 0

0 J−1
y 0

0 0 J−1
z


 0 −Jzωz Jyωy

Jzωz 0 −Jxωx
−Jyωy Jxωx 0


 ωx

ωy

ωz

 (4.42)

=


ωzωy

(
Jy−Jz
Jx

)
ωxωz

(
Jz−Jx
Jy

)
ωxωy

(
Jx−Jy
Jz

)
 , (4.43)

whereas the term 2 is given by

J−1[−mgb×]r =

 J−1
x 0 0

0 J−1
y 0

0 0 J−1
z


 0 mgbz −mgby
−mgbz 0 mgbx

mgby −mgbx 0


 rx

ry

rz

 (4.44)

=


1
Jx

(mgbzry −mgbyrz)
1
Jy

(−mgbzrx +mgbxrz)
1
Jz

(mgbyrx −mgbxry)

 , (4.45)

following that the fi terms are given by
fk−1

1 = ωx,k = ωx + ω̇xT = ωx +
[
ωzωy

(
Jy−Jz
Jx

)
+ 1

Jx
(mgbzry −mgbyrz)

]
T

fk−1
2 = ωy,k = ωy + ω̇yT = ωy +

[
ωxωz

(
Jz−Jx
Jy

)
+ 1

Jy
(−mgbzrx +mgbxrz)

]
T

fk−1
3 = ωz,k = ωz + ω̇zT = ωz +

[
ωxωy

(
Jx−Jy
Jz

)
+ 1

Jz
(mgbyrx −mgbxry)

]
T

,

(4.46)
in which the ω, gb and r components at the right-hand side are taken at the instant k − 1.
Then, the partial derivatives in

∂f1:3k−1

∂xk−1
are obtained as

∂f1
∂ωx,k−1

= 1 ∂f2
∂ωx,k−1

= ωz,k−1

(
Jz−Jx
Jy

)
T ∂f3

∂ωx,k−1
= ωy,k−1

(
Jx−Jy
Jz

)
T

∂f1
∂ωy,k−1

= ωz,k−1

(
Jy−Jz
Jx

)
T ∂f2

∂ωy,k−1
= 1 ∂f3

∂ωy,k−1
= ωx,k−1

(
Jx−Jy
Jz

)
T

∂f1
∂ωz,k−1

= ωy,k−1

(
Jy−Jz
Jx

)
T ∂f2

∂ωz,k−1
= ωx,k−1

(
Jz−Jx
Jy

)
T ∂f3

∂ωz,k−1
= 1

∂f1
∂rx,k−1

= 0 ∂f2
∂rx,k−1

= − 1
Jy
mgbzT

∂f3
∂rx,k−1

= 1
Jz
mgbyT

∂f1
∂ry,k−1

= 1
Jx
mgbzT

∂f2
∂ry,k−1

= 0 ∂f3
∂ry,k−1

= − 1
Jz
mgbxT

∂f1
∂rz,k−1

= − 1
Jx
mgbyT

∂f2
∂rz,k−1

= 1
Jy
mgbxT

∂f3
∂rz,k−1

= 0

(4.47)

For the partial derivatives in
∂f4:6k−1

∂xk−1
, one must first notice that the f 4:6

k−1 functions are given
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by

fk−1
4 = rkx = rk−1

x (4.48)

fk−1
5 = rky = rk−1

y (4.49)

fk−1
6 = rkz = rk−1

z , (4.50)

which implies that
∂f4:6k−1

∂ωk−1
= 0 and

∂f4:6k−1

∂rk−1
= I3×3. In other words, the Fk−1 jacobian is given

by

Fk−1 =

 [∂fk−1
1:3

∂xk−1

]
3×6

03×3 I3×3

 . (4.51)

Having described the filter design, the EKF equations may be used as follows, in which
the matrix dimensions are made explicit to verify compatibility,

1. Time update:

[P−k ]6×6 = [Fk−1]6×6[P
+
k−1]6×6[F

T
k−1]6×6 + [Lk−1]6×6[Qk−1]6×6[L

T
k−1]6×6 (4.52)

= [Fk−1]6×6[P
+
k−1]6×6[F

T
k−1]6×6 + [Qk−1]6×6 (4.53)

x̂k =



ω̂kx
ω̂ky
ω̂kz
r̂kx
r̂ky
r̂kz


=



ω̂k−1
x +

[
ω̂k−1
z ω̂k−1

y

(
Jy−Jz
Jx

)
+ 1

Jx

(
mgbz r̂

k−1
y −mgby r̂k−1

z

)]
T

ω̂k−1
y +

[
ω̂k−1
x ω̂k−1

z

(
Jz−Jx
Jy

)
+ 1

Jy

(
mgbz r̂

k−1
x −mgbxr̂k−1

z

)]
T

ω̂k−1
z +

[
ω̂k−1
x ω̂k−1

y

(
Jx−Jy
Jz

)
+ 1

Jz

(
mgby r̂

k−1
x −mgbxr̂k−1

y

)]
T

r̂k−1
x

r̂k−1
y

r̂k−1
z


(4.54)

2. Measurement update:

[Kk]6×3 = [P−k ]6×6[H
T
k ]6×3([Hk]3×6[Pk]6×6[H

T
k ]6×3 + [Mk]3×3︸ ︷︷ ︸

=I3×3

[Rk]3×3 [M
T
k ]3×3︸ ︷︷ ︸

=I3×3

)−1

(4.55)

= [P−k ]6×6[H
T
k ]6×3

(
[Hk]3×6[Pk]6×6[H

T
k ]6×3 + [Rk]3×3

)−1
(4.56)

[x̂+
k ]6×1 = [x̂−k ]6×1 + [Kk]6×3

(
[yk]3×1 − [Hk]3×6[x̂

+
k ]6×1

)
(4.57)

[P+
k ]6×6 = ([I]6×6 − [Kk]6×3[Hk]3×6)[P

−
k ]6×6 (4.58)

A 50 s simulation was performed to test the proposed filter. Figs. 4.8 and 4.9 shows
the Chi-squared test and the 3σ intervals, whereas Fig. 4.10 shows the estimation of the
r components throughout the simulation (the simulated unbalance vector is r = [−1 −
1 − 5]T10−3 m. Fig. 4.11 shows the estimation when the angular velocities magnitude is
ω = [10 10 10]T rad/s.
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Figure 4.8: Innovation terms d2 throughout a 100 s simulation of the Extended Kalman Filter.
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Figure 4.9: State errors and the ±3σ intervals.

As can be seen in Fig. 4.11, the Extended Kalman Filter does not perform well when
high angular velocities are considered. It is a consequence of unmodelled dynamics, since
the simulated model considers the complete inertia tensor matrix, augmented with the terms
of the parallel axis theorem, whereas the filter considers only the diagonal terms. To enhance
the filter performance for this situation, one must consider the entire inertia tensor matrix as
will be explained in the next section.
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4.3.2 Augmenting the EKF

One of the possible ways of controlling the platform or estimating its parameters
in order to compensate the unbalance vector is by using momentum exchange devices,
such as reaction wheels, to excitate the platform along with the movable masses. This
is done, for example, in the works developed by [Xu et al. 2015], which uses reaction
wheels, and [Kim and Agrawal 2009], which uses Control Moment Gyros (CMGs). In this
section the method developed by [Xu et al. 2015] is focused.

The adaptation required in this case is simply adding an angular momentum term h to the
total angular momentum of the platform HO. It must be noticed that the additional term h is
not added as external torque, which remains the same. From the Euler equation of motion
defined in Def. 3.2.5,

d

dt
h

∣∣∣∣
i

= ḣ
∣∣∣
b

+ ω × h

dHO

dt
= Jω̇ + ω × Jω +

d

dt
h

∣∣∣∣
i

=

= Jω̇ + ω × Jω + (ḣ + ω × h) = ρCM ×mgb + T , (4.59)

where h is the added momentum generated by the reaction wheels, T is the total external
torque disturbances and the BKE is applied to the reaction wheels angular momentum, since
its components are measured in the body frame.

Similarly to the first EKF approach, the angular velocities of the platform composes
the state vector x1 = [ωx ωy ωz]

T . This state vector may be augmented with the physical
parameters of the system, based on the same procedure described by [Simon 2006]. In this
case, the vector with the augmented parameters comprises the components of the inertia
tensor and the unbalance vector components, as shown in Eq. 4.60

x2 =
[
Jx Jy Jz Jxy Jxz Jyz mrx mry mrz

]T
9×1

, (4.60)

in which the mass m of the system is grouped with the unbalance vector and estimated
together. The system dynamics in state-space form can then be represented by Eq.4.61, in
which the complete state vector is represented by x = [x1 x2]T ,

ẋ =

[
ẋ1

ẋ2

]
= F (x1,x2,u) =

[
f(x1,x2,u)

0

]
, (4.61)

where f(x1,x2,u) = ω̇ = J−1(Jω×ω+ r×mgb− (ḣ +ω×h)) and, in discretized form,
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as

xk = fk−1(ωk−1, rk−1,wk−1) (4.62)

yk = hk(ωk, rk,vk) .

As in the previous cases, the output equation is linear, since the measurements are taken
directly from the sensor. Besides it, the state vector contains 12 elements and only the first
three are measured, which are the components of the angular velocity vector ω. Having it
said, the output equation is given by

yk = Hkxk + vk = Hxk + vk , (4.63)

in which the H matrix is constant and given by H = [I3×3 03×9]. Also, the same consider-
ations of the last section are used with relation to the process and measurement noises, i.e.
both are additive noises, which have, as consequence, that the Lk−1 and Mk matrices are
given by

Lk−1 = I12×12 (4.64)

Mk = I3×3 , (4.65)

in which attention must be given to the adapted size of the matrices, that are compatible with
the new state vector size. Again, the main challenge concerning the usage of this algorithm
is determining the Fk−1 jacobian. By discretizing Eq. 4.61, the dynamic discrete equations
are obtained as

ωkx = fk−1
1 (x) = ωk−1

x + ω̇k−1
x T + wk−1

1 (4.66)

ωky = fk−1
2 (x) = ωk−1

y + ω̇k−1
y T + wk−1

2 (4.67)

ωkz = fk−1
3 (x) = ωk−1

z + ω̇k−1
z T + wk−1

3 (4.68)

Jkx = fk−1
4 (x) = Jk−1

x + wk−1
4 (4.69)

Jky = fk−1
5 (x) = Jk−1

y + wk−1
5 (4.70)

Jkz = fk−1
6 (x) = Jk−1

z + wk−1
6 (4.71)

Jkxy = fk−1
7 (x) = Jk−1

xy + wk−1
7 (4.72)

Jkxz = fk−1
8 (x) = Jk−1

xz + wk−1
8 (4.73)

Jkyz = fk−1
9 (x) = Jk−1

yz + wk−1
9 (4.74)

(mrx)
k = fk−1

10 (x) = (mrx)
k−1 + wk−1

10 (4.75)

(mry)
k = fk−1

11 (x) = (mry)
k−1 + wk−1

11 (4.76)

(mrz)
k = fk−1

12 (x) = (mrz)
k−1 + wk−1

12 (4.77)

The set of functions fk−1
4:12 depend only on one of the 12 states, which means that, con-
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sidering the noises wk−1
4:12 are independent with relation to the state vector, the Fk−1 jacobian

may be simplified as

Fk−1 =


∂fk−1

1 (x)

∂x1
· · · ∂fk−1

1 (x)

∂x3

∂fk−1
1 (x)

∂x4
· · · ∂fk−1

1 (x)

∂x9

∂fk−1
1 (x)

∂x10
· · · ∂fk−1

1 (x)

∂x12
∂fk−1

2 (x)

∂x1
· · · ∂fk−1

2 (x)

∂x3

∂fk−1
2 (x)

∂x4
· · · ∂fk−1

2 (x)

∂x9

∂fk−1
2 (x)

∂x10
· · · ∂fk−1

2 (x)

∂x12
∂fk−1

3 (x)

∂x1
· · · ∂fk−1

3 (x)

∂x3

∂fk−1
3 (x)

∂x4
· · · ∂fk−1

3 (x)

∂x9

∂fk−1
3 (x)

∂x10
· · · ∂fk−1

3 (x)

∂x12

09×3 I9×9


(4.78)

=

 [ ∂fk−1
1:3

∂ωk−1

]
3×3

[
∂fk−1

1:3

∂Jk−1

]
3×6

[
∂fk−1

1:3

∂mrk−1

]
3×6

09×3 I9×9

 (4.79)

As the set of functions in fk−1
1:3 are nonlinear with relation to the state vector, determining

the
[
∂fk−1

1:3

∂ωk−1

]
3×3

,
[
∂fk−1

1:3

∂Jk−1

]
3×6

and
[
∂fk−1

1:3

∂mrk−1

]
3×6

jacobians turn out to be a complex task, since
the analytic solution may be cumbersome to determine or result in enormous equations. In
this work, to avoid this obstacle, these jacobians were determined numerically using the
Complex Step Differentiation (CSD) method. The CSD implementation by Yi Cao was used
and is available in [Cao 2018]. The basic idea of this differentiation method is given in Ap-
pendix I, whereas the reader may refer to [Al-Mohy and Higham 2010, Martins et al. 2001,
Martins et al. 2003] for further details. To exemplify how it is done, the

[
∂fk−1

1:3

∂ωk−1

]
3×3

jacobian

is calculated by first determining the ∂ω̇k−1T
∂ωk−1

= T ∂ω̇k−1

∂ωk−1
term through CSD and adding the

identity matrix, resulting [
∂fk−1

1:3

∂ωk−1

]
3×3

= I3×3 + T

[
∂ω̇k−1

∂ωk−1

]
CSD

. (4.80)

The identity matrix is added as a result of the derivative of the ωk−1
x,y,z terms. To calculate the[

∂ω̇k−1

∂ωk−1

]
CSD

term through CSD each column is determined with the following steps

1. First, the point x−k−1 is taken as the reference point.

2. The point is incremented in its kth independent variable by a complex infinitesimal
value h · i, in which i is the complex variable. The h value is chosen near to the min-
imum scalar that can be represented in the digital system. For example, the minimum
value in the double floating point arithmetic used in MATLAB is 2.2204 · 10−16.

3. The function is evaluated at this point, the imaginary part of the result is taken and
divided by h. The result is the kth column of the CSD jacobian. The process is repeated
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for all the variables in x−k−1 and is given, in the prescribed example, by

[
∂ω̇k−1

∂ωk−1

]
CSD

=

 Im

ω̇k−1


ωk−1
x + h · i
ωk−1
y

ωk−1
z




h
· · ·

 (4.81)

Repeating the methodology used in the 6-state EKF shown in the last section, the time
update and measurement update phases are shown to facilitate the verification of matrix
compatibility and to summarize the algorithm,

1. Time update:

[P−k ]12×12 = [Fk−1]12×12[P+
k−1]12×12[FTk−1]12×12 + [Lk−1]12×12[Qk−1]12×12[LTk−1]12×12

= [Fk−1]12×12[P+
k−1]12×12[FTk−1]12×12 + [Qk−1]12×12

x̂k =



ω̂kx
ω̂ky
ω̂kz
r̂kx
r̂ky
r̂kz


=



ω̂k−1
x + ˆ̇ωk−1

x T

ω̂k−1
y + ˆ̇ωk−1

y T

ω̂k−1
z + ˆ̇ωk−1

z T

Ĵk−1
x

Ĵk−1
y

Ĵk−1
z

Ĵk−1
xy

Ĵk−1
xz

Ĵk−1
yz

m̂rk−1
x

m̂rk−1
y

m̂rk−1
z



2. Measurement update:

[Kk]12×3 = [P−k ]12×12[HT
k ]12×3([Hk]3×12[Pk]12×12[HT

k ]12×3 + [Mk]3×3︸ ︷︷ ︸
=I3×3

[Rk]3×3 [MT
k ]3×3︸ ︷︷ ︸

=I3×3

)−1

= [P−k ]12×12[HT
k ]12×3

(
[Hk]3×12[Pk]12×12[HT

k ]12×3 + [Rk]3×3

)−1

[x̂+
k ]12×1 = [x̂−k ]12×1 + [Kk]12×3

(
[yk]3×1 − [Hk]3×12[x̂+

k ]12×1

)
(4.82)

[P+
k ]12×12 = ([I]12×12 − [Kk]12×3[Hk]3×12)[P−k ]12×12

A 100 s experiment was run with the following initial conditions and matrices setup:

1. Process noise:

Q = diag
([

(5 · 10−6)1×3 (10−6)1×3 (10−7)1×3 (2 · 10−8)1×3

]T) (4.83)[
(rad2/s2)1×3 (kg2m4)1×6 (kg2m2)1×3

]
2. Measurement noise:

R = diag
([

0.0052 0.0052 0.0052
]T
rad2/s2

)
(4.84)
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The R matrix is coherent with the noise level in the IMU embedded in the LAICA
testbed.

3. Initial conditions:

P0 = diag(03×1[rad2/s2] 03×1[m2]) (4.85)

ω = [0 0 0]T rad/s (4.86)

φ = 0 rad (roll angle) (4.87)

θ = 0 rad (pitch angle) (4.88)

ψ = 0 rad (yaw angle) (4.89)

ḣ = [0.05 0.05 0.05]T N ·m (RW torques) (4.90)

4. Testbed and general characteristics:

J =

 0.265 −0.014 −0.035

−0.014 0.246 −0.018

−0.035 −0.018 0.427

 kgm2 (4.91)

r = [−1 − 1 − 5]T · 10−3 m (4.92)

m = 14.307 kg (4.93)

g = 9.78 m/s2 (local gravity acceleration) (4.94)

The R matrix is set up considering the characteristics of the testbed IMU, whereas the
Q is adjusted in accordance with the 3σ-interval graphs and the chi-squared test, which are
shown in Figs. 4.13 and 4.12. The chi-squared test resulted in 82.44 % samples inside the
95 % confidence interval and it is possible to notice that the majority of the outgoing samples
are concentrated in the first 50 s of the simulation. Simulating this experiment with longer
periods, e.g 500 s, result in even higher percentages of innovation samples inside the proper
confidence level. In Fig. 4.13, in the 3σ intervals graph, it may be noticed that each parameter
may delay until approximately 50 s of the simulation to converge to the confidence interval.
However, after this period, all parameters stay in its proper interval, as could be seen in
longer simulations.
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Figure 4.12: Innovation terms d2 throughout a 300 s simulation of the 12-state EKF.
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Figure 4.13: 3σ intervals for the 12-state EKF.

Fig. 4.14 shows the convergence of the 9 parameters (three for the unbalance vector and
six for the inertia tensor). This graph shows that the convergence of the parameters is slower
than that obtained in the 6-state EKF, but it tends to the correct parameters values properly.
Also, a simulation was performed considering high angular rates, similarly to to that tested
in the 6-state EKF (in this case, ω = [10 10 10]T rad/s) and is shown in Fig. 4.15.

As can be seen in Fig. 4.15, the estimation of the r components still does not perform
well, although the complete dynamic model is considered in the filter design, and the J

components estimation also present erratic behaviour. It turned out that tuning the R and Q

matrices of the filter become a difficult task. The same noise levels of the low angular rates
experiment cannot be used, otherwise the filter would be using almost noiseless signals, since
the magnitude of the angular rates are much higher than the previous noise level. Besides
this, the sampling time also cannot be the same. As the angular rates become higher, the
0.1 s sampling time turned out to be inadequate, since too much information is lost from
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Figure 4.14: Parameter estimation in the 12-state EKF under usual conditions.

the signals. The high omega experiment, when running with lower sampling times, such as
0.01 s, still does not provide good estimation results, presenting responses similar to those
shown in Fig. 4.11, for the 6-state EKF.

It must be emphasized that testing the filters with high angular rates is considered just for
study purposes, since the testbed will not reach this velocities in a normal experiment. In the
next section, the design of an Unscented Kalman Filter (UKF) is shown, as well as results
showing that this high velocity limitation may be overcome.
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Figure 4.15: Parameter estimation in the 12-state EKF (high angular rates).

4.3.3 The UKF applied to the balancing problem

The Unscented Kalman Filter is another method for adapting the Kalman Filter to non-
linear problems. In this case, the approach for approximating the system dynamics is accom-
plished by determining an optimal set of samples of the system - the sigma points - which
can represent the same probability distribution of the nonlinear problem [Simon 2006]. One
of the main advantages of using the UKF is that there is no need of determining the jacobians
of the model, which may represent great reduction in computational efforts - if they are de-
termined numerically - or no need of determining them analytically - which may be difficult,
as in the case of the model in Eq. (4.59).

To apply the UKF, the same state-space form presented in Eq.4.39 may be used, i.e. the
inertia terms will not be grouped in the state vector x as in the augmented EKF of Sec. 4.3.2.
The only difference is that, since the complete dynamic model is used, whenever a time
update of the state or the sigma points is needed, the following discretization rule is applied:

ωk = ωk−1 + ω̇T , (4.95)

in which the ω̇ term is that from Def. 3.2.5 and T is the sampling time. Following the
procedure for implementing the discrete UKF described in [Simon 2006] and presented in
Appendix J, in the time update phase the a priori estimated state x̂−k and the a priori state
covariance matrix P−k are determined by using the Unscented Transformation (UT). In the
measurement update phase, the current output estimate ŷk, the output covariance matrix Py
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and the cross-covariance matrix Pxy are determined with through UT and the corrected state
x̂−k , the updated Kalman gain Kk and the corrected state covariance matrix P+

k are obtained
by using the following equations

x̂+
k = x̂−k + Kk(yk −Hkx̂

−
k ) = a posteriori state estimate

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k

= [(P−k )−1 + HT
kR−1

k Hk]
−1

= (I−KkHk)P
−
k ,

in which the usual KF equations are used for the measurement update phase, since the mea-
surement equation is linear (the angular velocities, present in the state vector, are measured
directly by the IMU).

A 50 s simulation is performed using the same conditions listed from Eq. 4.83 to Eq. 4.94.
Fig. 4.16 shows the Chi-squared test and the 3σ intervals used for tuning the filter, whereas
Fig. 4.17 shows the estimation of the unbalance vector components throughout the simula-
tion. In this simulation, the chi-squared test with 95% confidence gave a 90.22% rating, but
this rate naturally becomes better when longer simulations are made (e.g. 100 s or 200 s),
achieving a > 95% rate.
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Figure 4.16: UKF consistency and 3σ intervals for the estimated states.
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Figure 4.17: UKF: Convergence of the unbalance vector components under normal condi-
tions.

An improvement obtained by using the UKF approach is that the unbalance vector com-
ponents may be estimated under extreme conditions, specially high angular velocities and
higher unbalance magnitude. In a first moment, by simply setting up the initial velocity of
the experiment shown in Fig. 4.17 to ω = [10 10 10]T rad/s, the parameters estimation
diverge as in Fig. 4.15. Also, when the unbalance vector is set up as 20 times bigger (i.e.
r = [20 60 100]T mm, the parameters estimation diverge. However, by simply reducing the
sampling time from 0.1 s to 0.01 s, the estimation converges properly with any of these two
conditions, alone or together. The result of applying both conditions is shown in Fig. 4.18
and corresponds to a 89.16% rating in the Chi-squared test. As one may notice, the depen-
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Figure 4.18: UKF: Convergence of the unbalance vector components (high angular velocities
and unbalance magnitude).

dency of the filter on the sampling time is a consequence of the information loss that occurs
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when the platform achieves high angular velocities and this dependency is present even when
only the unbalance magnitude is raised because a natural consequence of a bigger unbalance
vector is that the platform will achieve higher angular velocities (given the initial attitude is
the same as in the previous tests). Also, the erroneous tuning of the filter sampling time may
lead to the occurrence of aliasing, lowering the filter performance.

The UKF approach turns out to be better than the EKF approaches, since it gives rea-
sonable parameter estimates in any condition and with lower convergence time. A possible
reason for this performance may be the strong nonlinearities in the dynamic model of the
platform, which could not be properly treated by the local linearization performed by the
EKF. Also, this approach may be augmented with the inertia terms as made in Sec. 4.3.2,
but it will not be studied further because, as will be explained in Sec. 5, the momentum ex-
changing devices available until the moment that this work is being written are not capable
of providing enough excitation to the platform.

4.3.4 Discussions about observability

The filter in order to develop well has to guarantee some assumptions, such as the ob-
servability of the state equation. In this section the observability of the model used for
the augmented EKF given by Eq. 4.62 is analyzed, following the same procedure adopted
in [Xu et al. 2015]. However, in the case of nonlinear models the observability of the system
is not determined as directly as in the linear case, for which reason the following concepts,
from [Kang and Barbot 2007], are used:

Definition 4.3.1 Observability. The function z = z(t, ε(t), u(t)) is said to be observable
in U if for any two trajectories (t, εi(t), ui(t)), i = 1, 2 in U defined on a same interval
[t0, t1], the equality

h(ε1(t), u1(t)) = h(ε2(t), u2(t)), almost everywhere in [t0, t1] (4.96)

implies
z(t, ε1(t), u1(t)) = z(t, ε2(t), u2(t)) (4.97)

almost everywhere in [t0, t1]. Suppose for any trajectory (t, ε(t), u(t)) in U there always
exists an open set U1 ∈ U so that (t, ε(t), u(t)) is contained in U1 and z(t, ε, u) is
observable in U1. Then, z = z(t, ε, u) is said to be locally observable in U .

Definition 4.3.2 Observability (lemma). Consider a system without control

ε̇ = f(t, ε), ε ∈ Rn Y = h(t, ε) (4.98)
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Let U ∈ R× Rn be an open set. Consider

V = (Y T , DY T , . . . , . . . , Dl−1Y T )T (4.99)

for some l > 0, where D is the differentiation operator. If

rank

(
∂V

∂ε

)
= n (4.100)

for (t, ε) ∈ U , then z = z(t, ε) is locally observable in U .

In the case of the augmented EKF, the vector Y is given by Y = ω = [ωx ωy ωz]
T and

DY is given by DY = ω̇, in which ω̇ is given by f(x1,x2,u) of Eq. 4.61. Then, it follows
that the value of n in Def. 4.3.2 is 6, i.e. for the system to be observable the jacobian ∂V

∂ε
must

have rank equal to 6. Considering the definitions of x1 and x2 previously given in Sec. 4.3.2
and considering u is given by

u = [ḣx ḣy ḣz]
T , (4.101)

in which the hi = Jrwωrw,i, i ∈ {x, y, z} terms are the angular momenta of the reaction
wheels, used as input torque, then the jacobian ∂V

∂ε
is given by

∂V

∂[x1 x2 u]
=

 I3×3 03×9 03×3[
∂DY
∂x1

]
3×3

[
∂DY
∂x2

]
3×9

[
∂DY
∂u

]
3×3


6×15

, (4.102)

where DY = ẋ1 = J−1(Jx1 × x1 + r ×mgb − (ḣ + x1 × h)).

The ∂DY
∂u

jacobian may be calculated as

∂DY

∂u
=
∂DY

∂h
=

∂

∂h
ẋ1 =

∂

∂h
J−1(Jx1 × x1 + r ×mgb − (ḣ + x1 × h)) (4.103)

=
∂

∂h
J−1(−(ḣ + x1 × h)) (4.104)

=
∂

∂h
J−1(−(ḣ + x1 ×

∫
ḣ dt)) (4.105)

=
∂

∂h
J−1(−(ḣ + x1 × ḣt)) (4.106)

=
∂

∂h
J−1(−(I + x1 × It)) , (4.107)

in which it was considered that all the reaction wheels provide square waves of output
torques, i.e. the ḣi terms are constant most of the time and independent of the time t. Thus,
from Eq. 4.107 it follows that the rank of the ∂Y

∂u
is 3. Without continuing with the calcu-

lus of the jacobians ∂DY
∂x1

and ∂DY
∂x2

, by simply analyzing the rank of the jacobian matrix in
Eq. 4.102, it follows that

6 ≥ rank
(

∂V

∂[x1 x2 u]

)
= rank (I3×3) + rank

([
∂V

∂x2

∂V

∂u

])
≥ rank (I3×3) + rank

(
∂V

∂u

)
= 6 ,

(4.108)
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thus the rank of ∂V
∂[x1 x2 u]

must be equal to 6 and the system is observable. In other words, as
long as the torques provided by the momentum exchange devices remain different of zero,
the observability of the augmented 12-state EKF shown in Sec. 4.3.2 is guaranteed.

4.3.5 Parameter estimation summary

After analyzing the various approaches for estimating the unbalance vector of the plat-
form, it is possible to summarize the main results obtained in Secs. 4.1 through 4.3.3 as
shown in Table 4.1.

Table 4.1: Summary of parameter estimation approaches.

Approach Description
LSM As an advantage, it can be cited that the LSM method presents

reasonable fast convergence. However, as disadvantages, it can
be cited that its computation effort (e.g. matrix inversion) and
memory requisites increases with the size of the batch of data.
Also, it is susceptible to mismodeling, i.e. linear models do not
provide the best accuracy.

KF The Kalman Filter presents an advantage when compared with
the LSM method: it is recursive, meaning that it requires less
memory. However, it is susceptible to unmodeled dynamics er-
rors as well.

EKF Compared to the linear KF, the EKF is better since it provides
means for considering the complete non-linear model of the plat-
form, which may increase the parameter estimation accuracy.
However, it has the disadvantage of requiring the determination
of complex jacobians through numerical or analytical methods.
Also, it still presents erratic behaviour when extreme conditions
are applied to the simulation (e.g. high angular velocities).

UKF The UKF, when compared with the EKF, has the advantage of
not requiring the calculation of any jacobian. It relies on the idea
that it is easier to approximate a probability distribution than an
arbitrary nonlinear function. Also, the UKF presented the most
robust behaviour of all previously presented methods, giving rea-
sonable estimations under any condition.
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4.4 The hybrid adaptive control method

In this work, because of the actuation capabilities inherent to the platform, there is no
manner to reproduce a similar work to that presented in [Kim and Agrawal 2009], since the
only torque exchanging devices in the testbed are the MMUs, which provide only torques
orthogonal to gravity. In the other hand, this limitation was already encountered by Chesi et
al. and a solution was proposed [Chesi et al. 2014].

The proposed solution, following the procedure developed in [Chesi et al. 2014], can be
divided in two major steps.

1. Transverse plane compensation

2. Vertical unbalance compensation

In the first step, the transverse plane compensation, an adaptive control technique is used
in order to compensate the unbalance vector for its transverse components. This, as will
become clear in the next sections, happens as a consequence of the MMUs being capable of
generating only torques that are perpendicular to the gravitational field.

In the second step, assuming that the transverse components (x and y components in the
body frame) of the unbalance vector were already nullified, an Unscented Kalman Filter
(UKF) is applied in order to estimate the remaining vertical component. The UKF step is
similar to that described in Sec. 4.3 with the difference that, instead of estimating the entire
unbalance vector, the model assumption rx = ry = 0 is used to simplify the filter.

After these two steps, the platform is assumed to be balanced and results may be col-
lected. As follows, these steps are explained in detail.

4.4.1 The transverse plane compensation

As stated by Eq. (3.2.5), the dynamic model of the whole platform, considering it as a
rigid body performing only rotational movement about a center of rotation (CR), is given by

dHO

dt
= ḢO + ω ×HO = MO = r×Mgb (4.109)

where the BKE is applied to HO, the only external torque being considered is the gravitational
torque and all quantities are related to the body frame. Also, the angular momentum, as
shown in Eq. (3.56), is given by

HO = Jω . (4.110)
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During the transverse plane compensation, the MMUs will displace masses accordingly
to the adaptive law to be designed. As a consequence, the inertia tensor J, which is used in
the model and assumed to be known, will be updated as shown in Eq. (4.111)

J = JO −mMMU

∑
i

[ri×][ri×] , (4.111)

where mMMU is the amount of mass displaced by a single MMU, which is considered to be
equal to the three MMUs placed embedded in the system, JO is the inertia tensor of the
system when the MMUs are in their initial positions and ri are the positions of the MMUs in
the body frame.

From Eq. (4.109), using Eq. (4.110), the system model may be written as

Jω̇ + ω × Jω = r×Mgb , (4.112)

in which the gravity vector referred to the body frame gb is obtained by

gb = Qb
igi, gi = [0 0 − g]T . (4.113)

The assumptions made for the terms in Eq. (4.112) may be summarized in the following
list:

• The initial inertia tensor JO is diagonal, i.e. the body coordinate system is parallel to
the principal inertia axes of the simulator.

• The MMUs are perfectly aligned with the body axes, meaning that each of the ri in
Eq. (4.111) has only one variable component.

• The velocities of the MMUs displacements are slow enough to neglect the dynamics
of the inertia tensor, i.e. J̇ = 0.

In [Chesi et al. 2014] and [Chesi 2015], the Qb
i direct cosine matrix is described in the

“vector-scalar” order of the quaternions, i.e. the quaternions are given by q = [q1 q2 q3 q4]T .
To adapt the notation used in these works to the notation adopted here, one may simply
replace the q4 terms with q0 terms and make algebraic manipulations with the diagonal
terms considering q2

0 + q2
1 + q2

2 + q2
3 = 1. However, even after making this change, the

obtained matrix is not the same as in Eq. (3.17). It was noticed that the matrix adopted
by [Chesi et al. 2014] should be transposed. Also, the formula in the a32 term should be
2(q2q3 + q0q1) (see red portion). These changes are left as an addendum to the original
works.
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Qb
i =



1− 2q2
2 2q1q2 2q1q3

−2q2
3 −2q4q3 +2q4q2

2q1q2 1− 2q2
1 2q2q3

+2q4q3 −2q2
3 −2q4q1

2q1q3 2q1q3 1− 2q2
1

−2q4q2 +2q4q1 −2q2
2


Chesi version. (4.114)

Qb
i =



2q2
0 − 1 2q1q2 2q1q3

+2q2
1 −2q0q3 +2q0q2

2q1q2 2q2
0 − 1 2q2q3

+2q0q3 +2q2
2 −2q0q1

2q1q3 2q1q3 2q2
0 − 1

−2q0q2 +2q0q1 +2q2
3


After q4 → q0 and manipulating diagonal.

(4.115)

Qb
i =



2q2
0 − 1 2q1q2 2q1q3

+2q2
1 +2q0q3 −2q0q2

2q1q2 2q2
0 − 1 2q2q3

−2q0q3 +2q2
2 +2q0q1

2q1q3 2q2q3 2q2
0 − 1

+2q0q2 −2q0q1 +2q2
3


Notation of this work.. (4.116)

Still regarding the quaternion notation adopted in [Chesi et al. 2014], the quaternion
derivatives are also given with the “vector-scalar” order of the quaternions, as shown in
Eq. 4.117, 

q̇1

q̇2

q̇3

q̇4

 =
1

2


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0



q1

q2

q3

q4

 . (4.117)

It is possible to verify that, to adapt Eq. (4.117) to the notation used in this work, one
must simply replace q4 by q0 and rearrange the order of the lines in the matrices, leading
to Eq. 3.21.

The design of the adaptive control law The main concept used to design the adaptive
control law is the conservation of the angular momentum. If the external torques applied to
the system are null, then the angular momentum is conserved, whereas when they are not -
if the gravitational torque is present, for example - the angular momentum is not conserved.
Then, the goal is to achieve, with the design of the control torque, a condition in which the
derivative of the angular momentum becomes null.

First, considering the design of the system, the control torque is provided by the displace-
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ments performed by the MMUs. This torque can be written as

τr = mMMU

∑
i

rMMU, i × gb , for i = x, y, z (4.118)

where rMMU, i is the displacement of the ith MMU and mp is the mass moved by a single
MMU.

Also, by adding to Eq. 4.112 the control torque, which is external, since it is a conse-
quence of the gravitational field, the system model is given by

Jω̇ + ω × Jω = r×Mgb + τr . (4.119)

From the successful design of the control torque τr, the MMU displacements rMMU may
be obtained, as explained posteriorly. First, the Φ is defined as Φ = r, where r is the initial
unbalance vector parameter, a constant parameter of the system. Then, the gravitational
torque resulting from the entire system may be written as

Θ×mgb = ΦΘ , (4.120)

Φ(q) = −mgb × , (4.121)

in which Φ(q) is a function of the attitude quaternion q, since it depends on the gravity
vector referred to the body frame. Considering the Θ parameter is an unknown, its estimate
is given by Θ̂, whereas the error in estimation is given by

Θ̃ = Θ− Θ̂(t) . (4.122)

Also, the following quantities are defined:

• X = [q ω Φ̃]T - the state vector

• ωg - vertical component of the system angular velocity ω, parallel to gb.

• ωp - transverse component of the system angular velocity ω, orthogonal to gb. This
component may be calculated as

ωp = Pp(q)ω , (4.123)

in which the Pp(q) operator is a function of the attitude quaternion q, since it depends
on the gravity field referred to the body frame, and is given by

Pp(q) =

[
I− gb(gb)T

||gb||2

]
. (4.124)
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• The following rules apply for the ωg and ωp vectors

ω = ωg + ωp , (4.125)

ωTg ωp = 0, (4.126)

(gb)Tωp = 0 . (4.127)

The state feedback control law and the adaptive law are designed by considering the
following Lyapunov function,

V (X) = V (q,ω, Φ̃) =
1

2
ωTJω +

1

2
Φ̃T Φ̃ +

1

2
qTq , (4.128)

which was designed in [Chesi 2015]. Further details on the Lyapunov theory
as well as common practices when designing Lyapunov functions may be found
in [Haddad and Chellaboina 2011].

The derivative of this Lyapunov function is given by

V̇ (t) = ωT (Jω̇) + Θ̃T ˙̃Θ + �
��>

0
qT q̇︸︷︷︸

Eq. (4.117), q̇

(4.129)

= ωT (−ω × Jω + ΦΘ + τr)︸ ︷︷ ︸
Jω̇ from Eq. (4.119).

+Θ̃T ˙̃Θ (4.130)

= ωTΦΘ + ωTτr + Θ̃T ˙̃Θ (4.131)

Replacing Θ = Θ̂ + Θ̃,

V̇ = ωTΦΘ̂ + Θ̃T (ΦTω+ ˙̃Θ) + ωTτr (4.132)

Then, choosing the adaptive law ˙̂Θ as

˙̂Θ = ΦTω (4.133)

and the control torque to be
τr = −ΦΘ̂− kpωp , (4.134)

the Lyapunov derivative may be further developed as

V̇ = ωTΦΘ̂− ωTΦΘ̂− kpωTωp (4.135)

= −kpωTωp (4.136)

= −kp(ωg + ωp)
Tωp (4.137)

Finally, consideringωTg ωp = 0, the derivative of the chosen Lyapunov function V results
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in
V̇ = −kp||ωp||2 , (4.138)

which is negative semidefinite. Thus, the closed loop system is stable in the Lyapunov sense.
Additionally, as shown in [Chesi 2015], following as a consequence of the LaSalle Invariance
Principle, the system will converge to the largest invariant set Ω contained in{

V̇ (t) ≡ 0
}

=
{

X : V̇ (q,ω, Φ̃) ≡ 0
}

= {ωp(t) ≡ 0} (4.139)

i.e., lim
t→∞

ωp = 0 (4.140)

Determining the control torque parameters Given that the designed control torque τr
accomplishes the desired goal, the next task is mapping the obtained control torque to MMU
displacements. This may be obtained as follows. First, to verify that the designed control
torque can be generated by simply displacing the movable masses, one may pre-multiply
Eq. (4.134) by (gb)

T , use the rules in Eqs. (4.125) to (4.127) and the definition of Φ from
Eq. (4.121), giving

(gb)
Tτr = −(gb)

TΦΘ̂− kp(gb)
Tωp = 0 , (4.141)

i.e. since the scalar product between (gb) and τr equals zero, these vectors are mutually
orthogonal. Transcribing Eq. (4.118) after writing the movable masses positions in a single
vector rMMU, it follows that

τr = mMMU(−gb × rMMU) , (4.142)

which gives a solution for rMMU. As proved in [Chesi 2015], a solution to Eq. (4.142) is

rMMU =
gb× τr
||gb||2mMMU

, (4.143)

which can be verified by substituting r given by Eq. (4.143) into Eq. (4.142), as follows

−mMMU

(
gb× gb× τr
||gb||2mMMU

)
= −mMMU

(
(gb · τr)gb− (gb · gb)τr

||gb||2mMMU

)
= τr . (4.144)

In summary, to properly control the movable masses, one must determine the control
signal τr from Eq. (4.134) and then substitute its value in Eq. (4.143) to obtain rMMU.

About the convergence of the estimated unbalance vector Θ̂ The convergence of the
estimated unbalance vector Θ̂ was already studied in [Chesi et al. 2014]. However, for con-
venience purposes, it is replicated in what follows. Considering, from application of the
LaSalle Invariance Principle to the problem, that ωp → 0, then the adaptation law gives that

˙̂Θ = ΦTω = ΦTωp + ΦTωg = ΦTωg = 0 , (4.145)
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considering ΦTωg represents the cross-product between two vectors point in the same direc-
tion, the gravity field gb and ωg, which is the component of ω pointing in the same direction
of gb. To study the effect of the proposed control law, ω̇ is isolated from Eq. (4.119) after
substitution of the control law, giving

ω̇ = J−1(−ω× Jω+ ΦΘ̃− kpωp) . (4.146)

The projection factor shown in Eq. (4.124) may be developed, in this case, as

Pp(q) =

 1 0 0

0 1 0

0 0 1

−
 (gb,x)

2 gb,xgb,y gb,xgb,z

gb,ygb,x (gb,y)
2 gb,ygb,z

gb,zgb,x gb,zgb,y (gb,z)
2

 1

||gb||2
=

 1 0 0

0 1 0

0 0 0

 , (4.147)

which follows from the fact that gb,x = gb,y = 0, since when ωp = 0 the platform rotates
around the gravity field, which is along the Z-axis of the body frame, and from the fact that
when gb,x = gb,y = 0, then gb = gb,z, following that ||gb|| = gb,z. The square exponent in red
is an addendum to the analysis shown in [Chesi et al. 2014] and [Chesi 2015]. Applying the
projection operator to both sides of Eq. (4.146), it follows, considering the projection factor
is constant when ωp = 0, that

Ppω̇ =
d(Ppω)

dt
= ω̇p = PpJ

−1(−ω× Jω+ ΦΘ̃−Kpωp) . (4.148)

Knowing that

Φ = M

 0 gb,z 0

−gb,z 0 0

0 0 0

 , (4.149)

ω = ωp + ωg (4.150)

0 = ωg × Jωg (4.151)

then Eq. (4.148) may be further simplified as

0 = PpJ
−1(−ωg × Jωg + ΦΘ̃) (4.152)

0 = PpJ
−1(ΦΘ̃) (4.153)

0 = M

 1 0 0

0 1 0

0 0 0


 J−1

x 0 0

0 J−1
y 0

0 0 J−1
z


 0 gb,z 0

−gb,z 0 0

0 0 0


 Θ̃x

Θ̃y

Θ̃z

 , (4.154)
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which gives

J−1
x gb,zΘ̃y = 0 (4.155)

−J−1
y gb,zΘ̃x = 0 (4.156)

0Θ̃z = 0 (4.157)

In conclusion, since J−1
x , J−1

y and gb,z are all terms different from zero, then both Θ̃x and
Θ̃y are null, as desired. Also, nothing can be said about Θ̃z, which is the reason why Θ̃z will
be estimated by using an UKF, as explained in the next section.

Simulations In order to test the transverse unbalance compensation method described in
this section, simulations were performed. Fig. 4.19 shows the angular velocities of the plat-
form, whereas Fig. 4.20 shows the balance masses positions throughout the balancing pro-
cedure and Fig. 4.21 shows the estimated unbalance vector components obtained from the Θ̂

vector. In this simulation, the testbed parameters and the control gain kp were set as

J =

 0.265 −0.014 −0.035

−0.014 0.246 −0.018

−0.035 −0.018 0.427

 kg ·m2 , (4.158)

roff = [−1 − 2 − 5] · 10−3 m , (4.159)

M = 14.307 kg , (4.160)

mMMU = 0.7 kg , (4.161)

kp = 0.5 , (4.162)

in which the control gain kp was empirically set, since the purpose of this simulation is to test
the control scheme convergence only, without setting any control performance specifications.
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Figure 4.19: Testbed angular velocities during transverse balancing.
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Figure 4.20: MMUs positions during transverse balancing.

As one may notice, the graph in Fig. 4.20 shows fast variations in the MMUs positions,
since the dynamics of the MMUs were not considered, i.e. the MMUs change its positions
instantly during the simulation. In fact, to implement this scheme physically, the dynamics
must be considered, which means that the convergence of the terms in all graphs will delay
more than what is shown. From all these graphs, it also can be seen that the terms related
to the z-axis does not vary. It is inherent to the limitation of the MMUs to generate torque
in the transverse plane only, which means that the z-axis related terms will stay in the initial
condition set up in the simulation. Also, the little variation in the ωz signal in Fig. 4.19
is a consequence of the presence of the products of inertia in the simulated body model.
Although the balancing scheme developed by Chesi considers a diagonal matrix of inertia J,
the simulated dynamics considered an inertia tensor will all elements different from zero, as
shown in Eq. 4.158. As a final reminder for the transverse balancing phase, additional care
must be taken when selecting the gain kp, since the magnitude of the signals in the graph of
Fig. 4.20 cannot be bigger than the excursion of the MMUs.
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Figure 4.21: The estimated unbalance vector components (Θ̂).

4.4.2 The vertical imbalance compensation

As explained previously, the adaptive control can only compensate the transverse com-
ponents of the unbalance vector, since the torque provided by the actuator is always perpen-
dicular to the gravity vector. After performing the transverse plane compensation, a filter is
used to estimate the remaining unbalance.

Following the procedure developed by [Chesi 2015], an Unscented Kalman Filter is used.
The state vector of the proposed filter contains the angular velocities of the system, as well
as the desired parameter to be estimated, as shown in Eq. 4.163,

x =


ωx

ωy

ωz

rz

 . (4.163)

This procedure is similar to that used in the EKF imbalance compensation shown in
Sec. 4.3.1, in which the state vector containing the dynamics of the system is augmented
to estimate some of the parameters of the system and may also be viewed as a particular
case of the UKF developed in Sec. 4.3.3. However, some differences are perceptible when
comparing to the models of the EKF or UKF methods shown previously, such as considering
J a diagonal matrix, which is a reasonable consideration given the real testbed inertia and
simplifies the foregoing analyses (e.g the observability analysis). In this case, since the
vertical imbalance is considered to be constant throughout the estimation, the corresponding
dynamics is given by ṙz = 0. The dynamics of the simulator remains the same used in
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the transverse plane compensation, except for the gravitational torque, which is given by
Eq. 4.164,

r×mgb =

∣∣∣∣∣∣∣
i j k

0 0 rz

mgbx mgby mgbz

∣∣∣∣∣∣∣ =

 −mgbyrzmgbxrz

0

 , (4.164)

since it is assumed that the rx and ry components were nullified in the transverse plane
compensation. Using this assumptions, the dynamics of the system in state-space form may
be given, in continuous time, by

ẋ = f(x) + w(t) , (4.165)

in which f is given by

f =

 J−1

−ω × Jω +

 −mgbyrzmgbxrz

0




0


4×1

(4.166)

and w(t) is the process noise. The angular velocity measurements may be directly obtained
from a gyroscope, which means that the output equation is linear on the state vector. The
discretized output equation is given by Eq. 4.167

[yk]3×1 = Hk(xk) + vk =
[

I3×3 03×1

]
3×4

[xk]4×1 + vk (4.167)

in which I is the identity matrix and vk represents the measurement noise, i.e. the noise from
the gyroscope. To run the UKF, the sigma points x̂

(i)
k in the time update phase are calculated

as
x̂

(i)
k = x̂

(i)
k−1 + f · dt , (4.168)

in which dt is the sampling time, and the filter equations are given by

[Kk]4×3 = [Pxy]4×3[P−1
y ]3×3

[x̂+
k ]4×1 = [x̂−k ]4×1 + [Kk]4×3([yk]3×1 − [ŷk]3×1)

[P+
k ]4×4 = [P−k ]4×4 − [Kk]4×3[Py]3×3[KT

k ]3×4 ,

Fig. 4.22 shows the estimation of the rz component when the simulation settings are
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given by

R = diag([0.0052 0.0052 0.0052]) rad2/s2 (4.169)

Q = diag([0.00005 0.00005 0.00005 (5 · 10−4)2]) [rad2/s2 m2] (4.170)

dt = 0.1 s (4.171)

rz = 5 · 10−3 m (4.172)

r̂z,0 = 10 · 10−3 m (4.173)

Jx = 0.265 kg ·m2 (4.174)

Jy = 0.246 kg ·m2 (4.175)

Jz = 0.427 kg ·m2 , (4.176)

as well as the 3σ intervals and the chi-squared test with 95% confidence interval, which, in
this case, gave a 97.1% rating.

0 20 40 60 80 100

t [s]

-0.02

-0.01

0

0.01

0.02

ω
x [r

ad
/s

]

Estimation error in ω
x
 and 3σ  intervals

0 20 40 60 80 100

t [s]

-0.02

-0.01

0

0.01

0.02

ω
y [r

ad
/s

]

Estimation error in ω
y
 and 3σ  intervals

0 20 40 60 80 100

t [s]

-0.02

-0.01

0

0.01

0.02

ω
z [r

ad
/s

]

Estimation error in ω
z
 and 3σ  intervals

0 20 40 60 80 100

t [s]

-5

0

5

r z [m
]

×10-3 Estimation error in r
z
 and 3σ  intervals

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

d
2
(k

)

Chi-squared test

0 10 20 30 40 50 60 70 80 90 100

t [s]

-10

-5

0

5

r z [m
]

×10-3 Estimation of r
z
 and corresponding deviation

r
z
hat

P
44
1/2

X: 77.2
Y: 0.0005695

X: 77.2
Y: -0.005048

Figure 4.22: Results of the simulation of the 4-state UKF.

Following the same procedure adopted when analyzing the observability of the EKF
balancing procedure, Eq. 4.100 may be applied along with the previously given observability
definition. From Eq. 4.166 and considering that the measurements are given by h(t) =
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[ωx ωy ωz], the variable to be estimated is z(t, ε) = rz. Being D the differentiation operator,
the function V described in Def. 4.3.2 is developed by considering Y and DY given by

Y = [ω] and by

DY = [ω̇] =

 J−1

−ω × Jω +

 −mgbyrzmgbxrz

0




0

 .

As follows from Def. 4.3.2, the interest relies on discovering on whether the following
matrix V

V =
∂

∂X

[
Y

DY

]
=

[ [
∂Y
∂X

]
4×3[

∂DY
∂X

]
4×3

]
(4.177)

has full column rank or not, i.e. if its rank equals 4 or not (4 is the length of the state vector).
As ω is in the state vector itself, ∂Y

∂ω
= ∂ω

ω
= I3×3. Also, as rz is not contained in Y,

∂Y
∂rz

= ∂ω
rz

= 03×1 and the V is simplified as

[V]6×4 =

[
I3×3 03×1

V21 V22

]
, (4.178)

in which [V21]3×3, differentiating the result in Eq. (4.43) with respect to ω, and [V22]3×1,
differentiating Eq. (4.166) with respect to rz, are given by

V21 =


0 ωz

(
Jy−Jz
Jx

)
ωy

(
Jy−Jz
Jx

)
ωz

(
Jz−Jx
Jy

)
0 ωx

(
Jz−Jx
Jy

)
ωy

(
Jx−Jy
Jz

)
ωx

(
Jx−Jy
Jz

)
0

 (4.179)

V22 =
∂ω̇

∂rz
=

 −
mgby
Jxx

−mgbx
Jyy

0

 . (4.180)

In other words, to provide the required observability of the state vector it suffices to
guarantee that gbx or gby in V22 do not equal zero. It can be done by tumbling the simulator in
order to prevent the roll and pitch angles of reaching 0 rad.
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Chapter 5

Tests and Results

In this chapter the balancing methods shown in Sec. 4 are tested in the physical platform.
The analysis will comprise the following techniques:

• The Kalman Filter;

• The 6-state Extended Kalman Filter (simplified inertia);

• The 6-state Extended Kalman Filter (complete inertia); and

• The 6-state Unscented Kalman Filter.

As one may notice, further experiments concerning the Least Squares Method are not
performed, since it was already studied in [Silva et al. 2018], being its appearance in this
section summarized by the results obtained in that work. Also, neither the Extended Kalman
Filter, nor the Unscented Kalman Filter are tested in its 12-state forms, which also estimates
the inertia tensor components. The main reason for which these methods were not tested
is that these methods require an input torque and the only available momentum exchange
devices - the reaction wheels and the magnetorquers - cannot provide the required torque
magnitude. Magnetorquers are used in slower dynamics experiments when compared with
reaction wheels, since they provide torques with low magnitude. On the other hand, the
reaction wheels, which would be the best actuator candidate, also cannot provide an ade-
quate torque level, taking into account the resolution of the gyroscopes in the IMU, which is
0.01 rad/s, and the signal-noise ratio in this sensor. To illustrate it, it is possible to estimate
the reachable angular velocity of the testbed when the reaction wheels saturate at maximum
velocity by applying the angular momentum conservation principle, which in this case states
that

∆H = 0⇒ Jω + JRWωRW = 0 , (5.1)

in which JRW and ωRW are the inertia tensor of the reaction wheels, whose characteristics
are available in Sec. 2.1.4, and the angular velocity of the reaction wheels, respectively.
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Simplifying the analysis for one of the axis, the maximum angular velocity reachable by the
testbed in this axis is obtained as

ωz = −JRW,z

Jz
ωRW = −0.000032

0.427
7000 rpm ≈ −0.5246 rpm ≈ −0.0549 rad/s (5.2)

in which the analysis was made in the Zb axis. Comparing this angular velocity with the
resolution of the IMU, the resolution represents approximately 20% of the signal magnitude,
which indicates an ill-conditioned signal and worsen when the noise in this signal or lower
angular velocities are also considered. Moreover, this analysis was made in the Zb axis since
the gravitational torque, which must also be considered, is more critical in theXb and Yb axes,
i.e. the Zb axis represents the best case scenario. The maximum torque of the reaction wheels
also cannot help the testbed to reach higher angular velocities, since the highest attainable
angular acceleration is given by (in the Zb axis)

τ = Jzω̇z ⇒ ω̇z =
0.0037

0.427
= 0.0087rad/s2 , (5.3)

meaning that the testbed would need 6 s to reach the 0.05 rad/s velocity, which is sufficient
time for the reaction wheels to saturate at its maximum velocity. In conclusion, the available
actuators are not capable of guaranteeing a good filter performance or even the proper ob-
servability of the state vector, as analyzed in Sec. 4.3.4. This problem will be avoided with
the acquisition of new actuators, capable of providing enough torque, for which reason the
validation of the 12-state filters are left for future works.

Another balancing technique that was not tested is the two-step balancing method devel-
oped in [Chesi et al. 2014]. In this case, an obstacle is introduced by the adopted hardware
architecture, which uses the embedded electronic board for actuation and telemetry purposes
only, whereas an external computer is responsible for running the algorithms and heavy
calculations. This architecture is not adequate in this case since the delays introduced by
the wireless communication between the external computer and the electronic board highly
affects the stability of the controller, as concluded from simulations. As an example, to
determine the current control torque magnitude a request would be sent from the external
computer to the electronic board, which would respond to this command with the actuator
telemetry. However, the received signal would correspond to a past instant, considering the
time for the message to be sent and to be received, about 0.1 s at best. Another problem
concerns the actuation: when the external computer sends an actuation command, the mi-
crocontroller in the electronic board becomes dedicated to moving the stepper motors and
does not respond to other requests - such as telemetry from the testbed or the actuators - until
the actuator reaches the position indicated by the command. These obstacles indicate that
the proper hardware setup for implementing this balancing technique requires a real-time
embedded system, similarly to what is done in [Chesi et al. 2014], and it is left for future
works.
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5.1 Methods for evaluating the balancing performance

In order to evaluate the performance of the balancing techniques, there are some experi-
ments that may be made. The first and simpler one, also used in [Da Silva et al. 2016], is to
consider the movement of the platform as analogous to a 3D physical pendulum. In this case,
the mass of the platform is considered to be concentrated in the Center of Mass position, the
pivot is the Center of Rotation and the length of the rod is given by the unbalance vector
magnitude. In this scenario, the experiment consists in observing the oscillation period of
the pendulum, which, considering the oscillation period of the 2D pendulum, is given by

T = 2π

√
Ji

mg||r||
, (5.4)

in which Ji is the inertia moment of the selected axis i of the testbed. Eq. (5.4) indicates
that the oscillation period of the platform is inversely proportional to the unbalance vector
magnitude, i.e. as higher is the oscillation period, better is the balancing. This selection
is made arbitrarily, but the experiment must be performed accordingly to the selected axis,
i.e. when one of the axes is analyzed, then effort is made to make oscillations in this axis
only. For example, if the Xb axis is selected, then Jx is used in Eq. 5.4 and the testbed
must oscillate only around this axis. This is made by giving an initial impulse in the testbed
manually. The reason for it is that, as the testbed has freedom to rotate around its three
rotational axes, energy may flow from one axis to another, making it difficult to observe
the oscillation period graphically and introducing errors when using Eq. 5.4. As can be
seen in [Da Silva and Rodrigues 2015], evaluating the oscillation period with this experiment
incurs in high order percent errors between the measured period and that estimated from
Eq. 5.4. In this work, considering this difficulty, the oscillations periods are estimated by
obtaining the frequency spectrum of the attitude signals and extracting the corresponding
dominant frequencies.

The second method, shown in [Chesi et al. 2014], consists in evaluating the potential
energy of the testbed in time. In this method, an initial impulse is given to the testbed, which
introduces mechanical energy to the system. This mechanical energy, neglecting eventual
energy losses due to aerodynamic drag and residual friction, is composed by kinetic (Ek)
and potential (Eu) energies. For a rigid body, these energies may be calculated as

Emech = Ek + Eu =
1

2
ωTJω +mgh , (5.5)

in which h is the height of the CM while it moves, with relation to an inertial reference
system. When the testbed is unbalanced, this height oscillates, as well as the potential energy,
consequently. In this way, the mechanical energy flows between its kinetic and potential
portions. This can be seen graphically as oscillations in the kinetic energy. If the testbed is
balanced, the height h in Eq. 5.5 becomes almost constant, as well as the potential energy,
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as consequence. In other words, one may evaluate the balancing performance by analyzing
the reduction in the kinetic energy oscillations: if there is no potential energy oscillating in
the system, then the kinetic energy is constant, considering the total mechanical energy has
to be constant (neglecting friction and other sources of energy loss).

5.2 Analysis

In what follows, the performance of the proposed balancing methods is analyzed. To
allow a fair comparison between the different techniques, an effort was made in order to
guarantee that all experiments start with the same CM position. However, since the CM
position may not be measured, the adopted way was to certify that all balancing masses start
in the middle of the corresponding excursions. Since all MMUs move accordingly to the
signals sent by the electronic board, it is possible to track the distance moved by each MMU,
which allows to send the MMUs to its initial positions with fair precision.

After setting up the testbed in this initial condition, an initial impulse was given to the
testbed and a set of measurements were acquired. Fig. 5.1 shows the angular velocities and
attitude angles of the testbed while it was swinging.
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Figure 5.1: Angular velocities and Euler angles of the platform in the unbalanced condition.

From this initial condition and considering this initial data set, all the filters were run and
the corresponding unbalance vector estimations may be seen in Figs. 5.2, 5.3, 5.4 and 5.5
for the Kalman Filter, the Extended Kalman Filter (simplified inertia), the Extended Kalman
Filter (complete inertia) and the Unscented Kalman Filter, respectively. In these filters, both
the R and the Q matrices were tuned to the same values, which are

R = diag([0.012 0.012 0.012]) rad2/s2 and (5.6)

Q = diag([0.00005 0.00005 0.00005 10−8 10−8 10−8]) [rad2/s2 m2] , (5.7)

whereas the initial value for the state covariance matrix P was set as P0 = 06×1.
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Figure 5.2: Unbalance vector components estimated by the KF.

Table 5.1: Unbalance vector components estimation and corresponding Chi-squared ratings
in the initial testbed condition.

Unbalance components
Filter rx (mm) ry (mm) rz (mm) Chi-squared rate
KF 0.4647498458 0.1486030602 −2.9139714047 99.5%

EKF1a 0.4507034361 0.1551217675 −2.6196104581 93.75%
EKF2b 0.3722184772 0.1201874945 −2.5159876292 90.78%
UKF 0.3725541379 0.1202941854 −2.5180617614 99.02%

a: Simplified inertia.
b: Complete inertia.

The final estimated unbalance vector components are shown in Table 5.1 with the corre-
sponding Chi-squared test ratings in the 95% confidence interval. Since the estimated values
may oscillate more or less depending on the selected filter, the strategy of taking the mean
value of the final third portion of the graphs was adopted. It is specially relevant when
considering, for example, the rz component estimation shown in Fig. 5.2 for the Kalman
Filter, which oscillates from approximately 2.3 mm to 3.5 mm, a wide range considering
the application.

Fig. 5.2 shows remarkable oscillations in the estimation of the Zb axis component of the
unbalance vector. Referring to Sec. 4.1, one may notice that these oscillations remember
the same effect caused by various conditions, such as synchronization errors in the teleme-
try, high angular velocity conditions or erratic inertia modeling. Considering the testbed
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Figure 5.3: Unbalance vector components estimated by the EKF (simplified inertia).
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Figure 5.4: Unbalance vector components estimated by the EKF (complete inertia).

parameters were set as (updated before running the experiments)

J =

 0.265 −0.014 −0.035

−0.014 0.246 −0.018

−0.035 −0.018 0.427

 kg m2 (5.8)

m = 13.901 kg , (5.9)

in which the J matrix is that obtained from the CAD model of the platform, the most reason-
able argument is that these oscillations are caused by erratic inertia modeling, since the KF
assumes that the inertia tensor J is a diagonal matrix, when it is not. In fact, estimating the
inertia tensor matrix through CAD modeling may incur in considerable errors, as it depends
on the skills of the CAD modeler for reproducing the platform model accurately. These os-
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Figure 5.5: Unbalance vector components estimated by the UKF.

cillations in the parameter estimation may also be seen in the graphs corresponding to the
EKF and the UKF. However, it may be observed that these oscillations occur in a narrower
range for the EKF of Fig. 5.3, even considering this filter does not model the products of in-
ertia Jij, i 6= j, as well. The narrowest oscillation range is obtained from the EKF (complete
inertia) and the UKF, shown in Figs. 5.4 and 5.5. It is coherent with the fact that both these
two filters model the inertia tensor with all its 9 elements.

Another interesting remark concerns the estimation issue pointed in Fig. 5.3 and present
in Figs.5.2 to 5.5. This issue was artificially made by interrupting the wireless communica-
tion during the estimation process and shows that the filters have high sensibility regarding
this error source. It indicates that unsynchronization in the telemetry may not be the cause of
the oscillations seen in these graphs, since it would represent gross estimation errors instead
of the observed oscillations.

After this initial estimation, the values obtained for the unbalance vector were used for
simulating the testbed model, for model validation purposes. Since it is difficult to deter-
mine which of the unbalance vector estimations shown in Table 5.1 is the closest to the real
unbalance vector, the values obtained for the UKF in Table 5.1 are used. Fig. 5.6 shows the
simulated and the measured angular velocities of the testbed.

From Fig. 5.6, it can be seen that the adopted model provides a reasonable fit to the
measured data, neglecting the phase difference between the real and measured signals and
considering the similarity between the shapes of the graphs. Also, the amplitudes of the
graphs are similar. However, as one may notice, in all the three axes the oscillations appear
to have different periods when comparing the simulated data with the measured data. It
indicates that the unbalance vector estimated in the filters presents a difference with relation
to the real value, as the oscillation period is closely related to the magnitude of the unbalance
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Figure 5.6: Model validation using the r vector estimated by the UKF.

vector (as discussed previously, in the 3D pendulum analogy). Also, it may be noticed a
difference in the magnitude of the simulated and measured angular velocities in the Zb axis.
It indicates that the inertia terms related to the Zb axis - the Jz, Jxz and Jyz terms - may
present some difference with relation to the real ones. In other words, the current analysis
indicates that the proper functioning of the described filters is highly dependent on a good
estimation of the inertia tensor.

An additional analysis concerns the frequency spectrum of the roll and pitch signals ob-
tained from the measured data and the corresponding simulated model. These spectra are
shown in Fig. 5.7. As can be seen in Fig. 5.7, the dominant frequencies in both the simu-
lated and measured graphs are almost the same, which indicates that, despite the differences
previously pointed, the adopted model provides reasonably similar results. Moreover, the
measured angular velocities of the platform during the initial position experiment may be
used to calculate the kinetic energy of the system EK accordingly to Eq. (5.5). The upper
portion of Fig. 5.8 shows the kinetic energy signal, whereas the middle portion shows only
the oscillating part of the kinetic energy signal. The lower portion of Fig. 5.8 shows the am-
plitude of the oscillating part and is used as a unbalance performance index: the unbalance
performance becomes as better as smaller is the overall amplitude. In this case, the maxi-
mum amplitude is around 0.09 J . Unfortunately, this performance index must be analyzed
carefully, since this amplitude does not depend only on the unbalance vector magnitude, but
also on the initial attitude angles and initial angular velocities imposed on the platform.

Before testing the estimations shown in Table 5.1, a manual balance is performed in
order to acquire a notion of the real unbalance vector. Starting from the same initial con-
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Figure 5.7: Spectrum of the roll and pitch signals during the initial condition experiment.

dition of the previous experiments, the procedure consists in applying reverse engineering
on Eq. (4.12): by moving the MMUs until the platform reaches a reasonable balancing per-
formance and taking note of the MMUs position, the unbalance vector may be estimated
through Eq. (4.12), given both the platform mass m and the MMUs masses mMMU are known.
After this procedure, which took about an hour, the variations in the positions of the MMUs
were obtained as δm ≈ [7 4 51]T mm, which, after multiplying by the ratio between mMMU

(0.78 kg) and m (13.901 kg), gives r ≈ [−0.39 − 0.22 − 2.86]T mm. Fig. 5.9 shows
the measuring scales used for estimating the MMUs positions, as well as the position of the
balancing weight.

The frequency spectrum of the roll angle and the energy graphs for this manual balancing
are shown in Fig. 5.10 and indicates an oscillation period of about 30 s and energy amplitude
of about 0.003 J at maximum.

After the analysis made so far, the unbalance vector estimations shown in Table 5.1 were
used to move the MMUs in order to nullify the unbalance vector. The adopted methodology
was to use Eq. (4.12) to determine how much each MMU has to move, followed by the cor-
responding actuation. Then, a data set is collected in order to evaluate the balancing perfor-
mance and the MMUs are placed in the initial condition again. Using the collected data set,
the frequency spectrum and the amplitude of the energy oscillation are determined, similarly
to the experiments previously made. Since both the EKF2 and UKF filters in Table 5.1 show
similar estimations of the unbalance vector, they are analyzed first. After performing the
required MMUs movements for nullifying the unbalance vector, a data set was collected and
a new oscillation period of about 10 s was obtained. Also, a maximum energy oscillation of
0.2 J was obtained - a reduction of almost 80% compared to the initial condition in Fig. 5.8.
When using this data set in the EKF2 or UKF for estimating the unbalance vector again, the
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Figure 5.8: Energy analysis of the initial condition of the platform.

new obtained unbalance vector was r ≈ [−0.074 0.082 − 0.332]T mm, distant from the
null value expected. The EKF2 presented a slightly better performance, giving 12.5 s for the
oscillation period. Moreover, the performance of the balancing using the unbalance vector
estimated by the KF could not be evaluated, since the testbed reached an inverted pendulum
configuration after moving the MMUs. These results indicates that the filters present limited
performance which may be explained by low accuracy on the assumed model parameters,
such as the inertia tensor J and the platform mass m.

A final analysis can be made concerning the energy losses in the system. As can be seen
in Fig. 5.1, the angular velocities decay in time. This effect, which is a consequence of the
low - but existent - friction in the air bearing, was not modeled in the filters. By analyzing
Figs. 5.2, 5.3, 5.3 and 5.5, it appears that this effect does not interfere with the estimation
of the unbalance vectors components, neither creating a biased estimation nor introducing
undesired oscillations. In either case, this effect is estimated as follows. Fig. 5.11 shows
the envelopes of the angular velocity ω components, whereas the upper bounds are used in
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Figure 5.9: Final MMUs and balancing weight positions for the manual balancing.

Table 5.2: Curve fitting parameters for ωx, ωy and ωz.

Curve a [rad/s]a τ [s]a

ωx 0.4856 (0.485, 0.4862) 362.3188 (361.4022, 363.1082)
ωy 0.5638 (0.5631, 0.5646) 407.8303 (406.6694, 408.8307)
ωz 0.6879 (0.6875, 0.6883) 1316.1 (1312.2, 1320.0)

a: The values of a and τ are accompanied by the corresponding 95% confidence upper
and lower bounds in parenthesis.

Fig. 5.12 for the curve fitting of an exponential model of the form

f(t) = a · e−
t
τ , (5.10)

in which a represents the initial value of the exponential and τ its time constant or mean
lifetime. The curve fitting parameters obtained from these curves are shown in Table 5.2.

As can be seen in Table 5.2, the obtained values for τ indicates that it delays at least
approximately 350 s for any angular velocity to decay about 63% of its initial value. Consid-
ering all the tested filters - KF, EKF or UKF - have a convergence for the unbalance vector
components much lower than this time - usually less than 50 s -, it can be concluded that,
unless the system energy is fully dissipated, the friction effect does not interfere with the
unbalance vector estimation at all.
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Figure 5.10: Performance of the manual balancing.
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Chapter 6

Conclusion

This work showed various methods for solving a remarkable problem in attitude simu-
lators for spacecrafts: the offset between the CM and the CR. As explained, this problem is
responsible for limiting the capacity of this kind of simulator of performing attitude control
experiments, specially when the goal is to control the roll and pitch angles of the platform.
The reduction of this offset - named throughout the text as unbalance vector - may allow
even low torque actuators to perform attitude control properly. In others words, even the
low torque actuators present in nanosatellites such as CubeSats may be tested in this kind of
simulator if the adopted balancing method has adequate performance.

In this work, the Kalman filter and its most popular nonlinear versions - the EKF and
the UKF - were tested with various filter designs and simulation conditions. It was shown
that these filters may provide reasonably good estimations of the unbalance vector. Also,
the method developed in [Chesi et al. 2014] was presented along with simulation results. In
all these cases the filters consistency was guaranteed and the observability of the states was
analyzed.

On the other hand, when experimentally testing the proposed filters some obstacles arise.
The current hardware setup available at the LAICA is not capable of running the filters
which entirely estimates the inertia tensor, for which reason all the tested filters consider
the inertia tensor as a previously known parameter. In fact, this parameter may be obtained
by CAD models of the platform. However, this approach turned out to be imprecise, since
the unbalance vector estimations presented undesirable oscillations and were biased from
the real value. Possibly, this obstacle may be avoided by developing a detailed and accurate
CAD model of the platform.

Better results may be obtained by implementing the balancing method developed
in [Chesi et al. 2014], but special attention must be given to the second phase of this bal-
ancing method, since it also assumes the knowledge of the inertia tensor. A more efficient
approach may be upgrading this method for using a 12-state UKF instead of the 4-state UKF
originally adopted in this work, since estimation errors concerning erratic inertia tensor com-
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ponents would not be introduced. Moreover, after upgrading the actuators available in the
LAICA, it will be possible to test the method developed by [Kim and Agrawal 2009], which,
differently from the Hybrid Adaptive Control method, is a one-step method, since it may
generate torques in all three directions.

6.1 Future perspectives

The project being developed at LAICA involves a wide variety of research topics. As
could be seen throughout this work, one of these possibilities is related with attitude deter-
mination. The precision of the attitude determination method interferes in all supervenient
aspects of the project, such as attitude controlling and is specially critical when implementing
advanced balancing methods.

Considering attitude determination, there are many improvements that may be made,
such as improving the calibration, the precision and even the hardware of the attitude deter-
mination methods based on computer vision, as well as implementing various attitude deter-
mination filters in the embedded systems to be tested on the table, including the model of the
sensors in these filters. Also, the calibration procedures adopted may be further improved,
specially when considering the accelerometers and gyroscopes, that were not calibrated ex-
cept for the static bias offset, which is known to change dynamically.

Concerning the balancing methods, possible improvements include developing proce-
dures for determining the testbed characteristics - such as its inertia tensor - accurately, e.g.
developing a minimallistic CAD model for the testbed. The augmented versions of the filters
may also be implemented for estimating the inertia tensor components. Moreover, the bal-
ancing techniques described in [Chesi et al. 2014] and in [Kim and Agrawal 2009] may be
implemented, involving hardware advances such as developing a real-time embedded system
for the platform and actuators with higher torque capacity.

Minor improvements include adding endstop sensors for preventing eventual damage
in the stepper motors of the MMUs when they reach the end of its excursion. Also, another
model of MMU may be developed, decreasing the mass displaced by the MMU and allowing
even more fine adjustment of the CM position.

The development of the platform will also provide the necessary experimental apparatus
for designing and implementing algorithms for attitude control.
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Appendix A

Electronic board design and blueprint

7/2/2018 10:01 AM  E:\Google Drive\Mestrado PGEA-UnB\6-Dissertação\EagleFiles\AirBearingTableBalancingSystem.brd

MARK I
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Rodrigo Cardoso

ARDUINO (7-12V)_ +

+
_

MOTOR SUPPLY (8-35V)

Attention!
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Driver Y
Driver Z

Driver X

XBee

IMU

Z Y X

Figure A.1: Upper layer of the electronic board (labels only).
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7/2/2018 10:01 AM  mirrored  E:\Google Drive\Mestrado PGEA-UnB\6-Dissertação\EagleFiles\AirBearingTableBalancingSystem.brd

Figure A.2: Bottom layer of the electronic board (copper trails).
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Figure A.3: Electronic board schematics.
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Appendix B

Euler rates in the ZYX sequence

The Euler rates are the derivatives of the Euler angles and is dependent on the adopted
rotation sequence. Based on the procedure shown in [Wie 1998, p. 324] and with the notation
used in this work, the body angular velocity vector ω may be represented as

ωi1i = ψ̇iz = ψ̇(i1)z since iz equals to (i1)z, (B.1)

ωi2i1 = θ̇(i1)y = θ̇(i2)y since (i1)y equals to (i2)y and (B.2)

ωb(i2) = φ̇(i2)x = φ̇bx since (i2)x equals to bx, (B.3)

in which {(i1)x, (i1)y, (i1)z} and {(i2)x, (i2)y, (i2)z} are the versors of the i1 and i2 in-
termediate frames between the inertial i and the body b frames, respectively, and the ωyx
notation is used to indicate the angular velocity between frames x and y. The resulting angu-
lar velocity equals to the sum of these three terms, following that

ω = ωbi = ωi1i + ωi2i1 + ωb(i2) (B.4)

= φ̇bx + θ̇(i2)y + ψ̇(i1)z , (B.5)

which can be rewritten, using the rotation operators Rx,φ and Ry,θ, as

ωbi =
[
φ̇ 0 0

] bx

by

bz


︸ ︷︷ ︸

b

+
[

0 θ̇ 0
] (i2)x

(i2)y
(i2)z


︸ ︷︷ ︸

(i2)

+
[

0 0 ψ̇
] (i1)x

(i1)y
(i1)z


︸ ︷︷ ︸

(i1)

(B.6)

=
[
φ̇ 0 0

]
b +

[
0 θ̇ 0

]
Rx,φRy,θb +

[
0 0 ψ̇

]
Rx,φb (B.7)

=
([

φ̇ 0 0
]

+
[

0 θ̇ 0
]

Rx,φRy,θ +
[

0 0 ψ̇
]

Rx,φ

)
b (B.8)

in which it is used the fact that the frame (i1) is obtained through a rotation of φ degrees
about the bx axis of the b frame and the frame (i2) is obtained through a rotation of θ degrees
about the (i1)y axis of the (i1) frame. Considering ωbi = [ωx ωy ωz]

Tb, i.e. ωbi is measured
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in the body frame, it follows, after developing the rotation operators and summing the terms,
that  ωx

ωy

ωz

 =

 1 0 − sin θ

0 cosφ cos θ sinφ

0 − sinφ cos θ cosφ


 φ̇

θ̇

ψ̇

 , (B.9)

which, after isolating the Euler rates, finally gives φ̇

θ̇

ψ̇

 =

 1 tan θ sinφ tan θ cosφ

0 cosφ − sinφ

0 sec θ sinφ sec θ cosφ


 ωx

ωy

ωz

 . (B.10)

Another approach for achieving the Euler rates equations may be seen
in [Kuipers et al. 1999, p. 263].
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Appendix C

The 6-parameter magnetometer
calibration

As explained in [Foster and Elkaim 2008], there are mainly five different sources
of errors that may affect magnetometer readings. Following the procedure described
in [STMicroelectronics 2018], these errors may be grouped in the following calibration equa-
tion,  Bnx

Bny

Bnz

 = [Cm]3×3


1
Sx

0 0

0 1
Sy

0

0 0 1
Sz


︸ ︷︷ ︸

=CS

[Csi]3×3

 Brx −Ox

Bry −Oy

Brz −Oz

 (C.1)

=

 C11 C12 C13

C21 C22 C23

C31 C32 C33


 Brx −Ox

Bry −Oy

Brz −Oz

 = C(Br −O) , (C.2)

in whichBni, i ∈ {x, y, z} are the normalized magnetometer readings,Bri, i ∈ {x, y, z} are
the raw magnetometer readings, Cm is the misalignment correction matrix, Csi is the soft
iron effect correction matrix, Si, i ∈ {x, y, z} are the scaling factors and Oi, i ∈ {x, y, z}
are the offsets. After performing the calibration methods, the calibration matrix C must
be obtained, as well as the offsets vector O. The goal of the calibration is to obtain unit
magnetic field vectors which may be scaled with the local magnetic field intensity.

In this work, it is considered that each of the three magnetic field sensors inside the IMU
embedded in the LAICA testbed are perfectly orthogonal within each other, given all of them
are inside the same chip, which means that Cm is a 3×3 identity matrix. The soft iron effect
will be considered negligible, which implies that Csi is also a 3 × 3 identity matrix. For
calibrating the magnetometer readings, two kinds of error will be estimated, scaling factors
(CS matrix) and offsets (vector O). Also, since the consequence of the hard iron effect is an
offset in the readings, it is mathematically indistinguishable of the null shift errors and both
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these kinds of error are estimated together.

To perform the calibration, a set of magnetometer readings is acquired while the sensor
is rotated in an approximately 4π steradian surface. The expected result is, for a sensor
suffering from all the five kinds of calibration errors, a tilted ellipsoid, whose equation is
given by

(Brx −Brx0)
2

a2
+

(Bry −Bry0)
2

b2
+

(Brz −Brz0)
2

c2
+ · · ·

· · ·+ (Brx −Brx0)(Bry −Bry0)

d2
+

(Brx −Brx0)(Brz −Brz0)

e2
+

(Bry −Bry0)(Brz −Brz0)

f2
= R2 ,

(C.3)

in which Brx0, Bry0 and Brz0 are the coordinates of the center of the ellipsoid, a, b and c are
the semi-axes lengths, d, e and f are the cross axis effect which makes the ellipsoid tilted
and R is a constant related to the size of the ellipsoid or its radius, when a = b = c. Since
the soft iron effect is considered negligible, Eq. (C.3) may be simplified as

(Brx −Brx0)2

a2
+

(Bry −Bry0)2

b2
+

(Brz −Brz0)2

c2
= R2 . (C.4)

To estimate all the unknown parameters in Eq. (C.4), the Least Squares Method (LSM) is
used. First, the unknown parameters and the magnetometer readings may be separated as
follows

B2
rx︸︷︷︸

w

=
[
Brx Bry Brz −B2

ry −B2
rz 1

]
︸ ︷︷ ︸

H



2Brx0

a2

b2
2Bry0

a2

c2
2Brz0

a2

b2

a2

c2

a2R2 −B2
rx0 − a2

b2
B2
ry0 − a2

c2
B2
rz0


︸ ︷︷ ︸

X

,

(C.5)
and written, for a single measurement, as

wn×1 = Hn×6X6×1 . (C.6)

Augmenting Eq. (C.6) for a set of n measurements, the solution of the unknown parameters
is given by

X = [HTH]−1HTw (C.7)

and the calibration parameters may be extracted from the X = [x1 x2 x3 x4 x5 x6]T vector

112



as follows

Ox = Brx0 =
x1

2
(C.8)

Oy = Bry0 =
x2

2x4

(C.9)

Oz = Brz0 =
x3

2x5

(C.10)

A = a2R2 = x6 +B2
rx0 + x4B

2
ry0 + x5B

2
rz0 (C.11)

B =
A

x4

(C.12)

C =
A

x5

. (C.13)

The ellipsoid can be compensated for the offsets - which means recentering the ellipsoid
to the (0, 0, 0) origin - making the following transformation

B(1)
rx = Brx −Ox (C.14)

B(1)
ry = Bry −Oy (C.15)

B(1)
rz = Brz −Oz , (C.16)

which turns Eq. (C.4) into

(x(1))2

A
+

(y(1))2

B
+

(z(1))2

C
= 1 . (C.17)

Then, determining the scaling factors as

Sx =
√
A (C.18)

Sy =
√
B (C.19)

Sz =
√
C (C.20)

and performing the following transformation

Bnx =
B

(1)
rx

Sx
(C.21)

Bny =
B

(1)
ry

Sy
(C.22)

Bnz =
B

(1)
rz

Sz
, (C.23)

the magnetometer readings become a unit sphere centered at the origin, as desired, i.e.

B2
nx +B2

ny +B2
nz = 1 . (C.24)

113



Appendix D

Angular momentum about point A -
simplified equation

The angular momentum of a rigid body about an arbitrary point A in space may be ob-
tained by summing up the moment of momentum of each particle of this body. Considering
discrete particles, the moment of momentum of the ith particle is given, as shown in Eq.(3.42)
by

(HA, i) = ρA, i ×mivA + ρA, i ×mi(ω × ρA, i) , (D.1)

which, after integrating for infinitesimal particles all over the body, gives

HA = lim
mi→dm

∑
i

(HA, i) =

(∫
m

ρA, i dm

)
× vA +

∫
m

ρA, i × (ω × ρA, i) dm . (D.2)

Considering that the position of each infinitesimal particle with relation to the Center of
Mass (CM or G) may be expressed as

ρA, i = ρG, i + ρG/A , (D.3)

which means that the distance of the ith infinitesimal particle to the point A equals the dis-
tance of this particle to the Center of Mass (G) plus the distance between the point G with
relation to the point A. Considering the point A is fixed to the body, the vector ρG/A is constant
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in the body frame. Substituting this expression in Eq. D.2 gives

HA =

(∫
m

ρA, i dm

)
× vA +

∫
m

ρA, i × (ω × ρA, i) dm (D.4)

=

(∫
m

(ρG, i + ρG/A) dm

)
× vA +

∫
m

ρA, i × (ω × ρA, i) dm (D.5)

=
��

�
��

�
��*

0(∫
m

ρG, i dm

)
× vA +

(∫
m

ρG/A dm

)
× vA +

∫
m

ρA, i × (ω × ρA, i) dm (D.6)

= mρG/A × vA +

∫
m

ρA, i × (ω × ρA, i) dm︸ ︷︷ ︸
(II)

, (D.7)

since, by definition,
(∫

m
ρG, i dm

)
= 0 and

∫
m
ρG/A dm = mρG/A, since ρG/A is a constant

vector. The integral in the right-hand side of Eq. (D.7) may be developed as

(II) =

∫
m

(ρG, i + ρG/A)× (ω × [ρG, i + ρG/A)] dm (D.8)

=

∫
m

ρG × (ω × ρG) dm+
��

��
��*0∫

m

ρG dm× (ω × ρG/A) + · · · (D.9)

· · ·+ ρG/A ×

ω ×
��

�
��
�*0∫

m

ρG dm

+ ρG/A × (ω × ρG/A)m (D.10)

= HG +mρG/A × (ω × ρG/A) , (D.11)

since, from Eq. (3.45), HG =
∫
m
ρG × (ω × ρG) dm. Substituting (II) in Eq. (D.7) gives

HA = mρG/A × vA + HG +mρG/A × (ω × ρG/A) , (D.12)

= HG +mρG/A × (vA + ω × ρG/A) . (D.13)

From the relative motion between A and G, the velocities of both points are related as

vG = vA + ω × ρG/A , (D.14)

which, after substitution in Eq. (D.13), gives

HA = ρG/A ×mvG + HG , quod erat demonstrandum. (D.15)
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Appendix E

Quaternion algebra

The following definitions, which describe the algebra of quaternions, were obtained
from [Kuipers et al. 1999, Chap. 5].

Definition E.0.1 Addition. Being p and q two different quaternions and pi and qi, i ∈
1, . . . , 4 the respective components, its addition is defined as

p+ q = (p0 + q0) + i(p1 + q1) + j(p2 + q2) + k(p3 + q3) , (E.1)

in which the versors i, j, k are treated as pure complex quaternions, i.e.

i =
[

0 1 0 0
]

(E.2)

j =
[

0 0 1 0
]

(E.3)

k =
[

0 0 0 1
]
. (E.4)

Definition E.0.2 Equality. Being p and q two different quaternions and pi and qi, i ∈
1, . . . , 4 the respective components, one can say that p and q are equal if and only if the
components of p and q with same index are equal, i.e. if

p0 = q0 (E.5)

p1 = q1 (E.6)

p2 = q2 (E.7)

p3 = q3 . (E.8)

Definition E.0.3 Conjugate. Being p = p0 + ip1 + jp2 + kp3 an arbitrary quaternion,
its conjugate is obtained by negating its complex components, i.e.

p̄ = p0 − ip1 − jp2 − kp3 , (E.9)
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or, if the quaternion is represented as p = p0 + p, its conjugate is given by

p = p0 − p , (E.10)

in which p is called the complex or vector part of the quaternion q.

Definition E.0.4 Norm. Being p = p0 + ip1 + jp2 + kp3 an arbitrary quaternion, its
norm is a scalar given by

||q|| =
√
q2

0 + q2
1 + q2

2 + q2
3, ||q|| ∈ R . (E.11)

The product between two quaternions was already defined throughout the text of Chap-
ter 3. An useful relation is given by the product of a quaternion and its conjugate, which
gives

pp̄ = (p0 + p)(p0 − p)

= p2
0 − p · −p + p0−p + p0p + p×−p

= p2
0 + p · p

= p2
0 + p2

1 + p2
2 + p2

3 = ||p||2 (E.12)

Definition E.0.5 Inverse. Being p = p0 + ip1 + jp2 + kp3 an arbitrary quaternion, its
inverse is another quaternion which satisfies

p−1p = pp−1 = 1 . (E.13)

Pre-multiplying and post-multiplying Eq. (E.13) by the conjugate of p, it follows that

p−1pp̄ = p̄pp−1 = p̄⇒ p−1||p||2 = p̄⇒ p−1 =
p̄

||p||2
, (E.14)

in which Eq. (E.12) was used. It is important to notice that, if the quaternion has unit
norm, its inverse equals its conjugate, which is an useful relation when working with
rotation quaternions.

Observation: the fact that the product of two arbitraty quaternions is not commu-
tative justifies why p−1p and pp−1 Eq. (E.13) cannot be both pre-multiplied or post-
multiplied.
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Appendix F

Quaternion rates

To demonstrate the quaternion rates equation, q̇, the limit definition of derivatives may
be used, i.e.

q̇ = lim
∆t→0

q(t+ ∆t)− q

∆t
(F.1)

The unit quaternion q(t + ∆t) is obtained from the initial unit quaternion q after per-
forming an infinitesimal rotation. This rotation, using rotation quaternion operators, is given
by

q(t+ ∆t) = qRq , (F.2)

in which qR is the quaternion rotation operator. This rotation operator is described as an
infinitesimal rotation of ∆α degrees about the u axis, which is an unit vector in the same
direction of the angular velocity ω of the system, during the interval ∆t. In other words,

qR = cos

(
∆α

2

)
+ u sin

(
∆α

2

)
≈ 1 + u

∆α

2
, (F.3)

in which attention must be given to the fact that, although the argument of the cos and sin

functions is ∆α
2

, the rotation performed by qR is ∆α degrees. Also, the approximations
cos θ ≈ 1, θ � 1 and sin θ ≈ θ, θ � 1 are used. Substituting Eq. (F.3) in Eq. (F.2) and the
result in Eq. (F.1) gives

q̇ = lim
∆t→0

q(t+ ∆t)− q

∆t
= lim

∆t→0

qRq− q

∆t
(F.4)

= lim
∆t→0

(
1 + u∆α

2

)
q− q

∆t
= lim

∆t→0

u∆α
2

q

∆t
(F.5)

=
1

2
qu lim

∆t→0

∆α

∆t
=

1

2
quω =

1

2
qω , (F.6)

in which ω is the scalar angular rate about the direction u and ω = uω is the angular rate
vector of the quaternion qR. To obtain Eq. (F.6) in matrix form, it suffices to perform the
quaternion multiplication in matrix form (Eq. (3.13)) between q and ω = [0 ωx ωy ωz]

T .
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Appendix G

The Kalman Filter

The discrete-time Kalman Filter is summarized in the steps that follows. The focus in
this work is in the usage of the filter and familiarization with the filter notation, whereas the
reader may refer to [Simon 2006, p. 123] for further details.

1. The first step in the Kalman filtering approach is to arrange the system model in the
state-space form. The most usual path is obtaining a set of continuous-time differential
equations describing the system dynamics. These equations may be discretized using
any discretization rule, from the simple Euler first order discretization to the fourth or-
der Runge-Kutta method. The discretized dynamic system equations must be arranged
in the following format:

xk = Fk−1xk−1 + Gk−1uk−1 + wk−1

yk = Hkxk + vk

(G.1)

in which x is the vector comprising the chosen system states, u is the system input, y

is the system output, w is the process noise, v is the measurement noise and the F, G

and H matrices are dependent on the system equations and complete the filter design.
Also, for the w and v noises the following properties apply

E(wkw
T
j ) = Qkδk−j

E(vkv
T
j ) = Rkδk−j

E(wkv
T
j ) = 0 , (G.2)

in which Q and R are the covariance matrices of the w and v noises, respectively, and
the E(�) operator denotes the expected value. From these equations, some assump-
tions are made clear:

• The states vector xk−1 and the system input uk−1 are linear within the filter equa-
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tions.

• Both the w and v noises are additive and uncorrelated.

Another essential covariance matrix is the P matrix, which represents the covariance
of the system states and is used throughout the filter run.

2. To start the filter, the a posteriori initial state estimate and initial state covariance
matrix must be initialized. Considering the knowledge of the state in the beginning of
the process, these variables may be initialized as

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ] (G.3)

where the hat symbol ˆ indicates an estimated variable.

3. The Kalman gain K, the state covariance matrix P and the state estimates x̂ are up-
dated iteratively for k = 1, 2, . . . according to the following equations

P−k = Fk−1P
+
k−1F

T
k−1 + Qk−1

Kk = P−k HT
k (HkP

−
k HT

k + Rk)
−1

= P+
k HT

kR−1
k

x̂−k = Fk−1x̂
+
k−1 + Gk−1uk−1 = a priori state estimate (G.4)

x̂+
k = x̂−k + Kk(yk −Hkx̂

−
k ) = a posteriori state estimate (G.5)

P+
k = (I−KkHk)P

−
k (I−KkHk)

T + KkRkK
T
k

= [(P−k )−1 + HT
kR−1

k Hk]
−1

= (I−KkHk)P
−
k (G.6)

in which it is noticed that the − and + superscripts are used to indicate the a priori
and the a posteriori values of the referred quantities, i.e. the value before and after
the measurement update is done, explained in what follows. It is expected that, if the
filter runs correctly, the estimated state vector x̂ will converge to the true state of the
system x at each instant. It must be noticed that the iterative portion of the Kalman
Filter may be divided in two phases: the time update and the measurement update.
The time update phase, represented by Eq. (G.4), predicts the propagation in time of
the current state using the known system dynamics, whereas the measurement update
phase, represented by Eq. (G.5), utilizes the system outputs - usually measurements
obtained from the system sensors - to correct the current state.
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Appendix H

The EKF Algorithm

Maintaining the philosophy adopted in this work for all the filters, only the algorithm of
the Extended Kalman Filter (EKF) will be presented, since its concept is already well-known
in literature. The reader may refer to [Simon 2006, p. 407] for further details on the filter
derivation. In this work, it suffices to understand that the EKF is an approach in which the
nonlinear equations of the system are linearized around the current state in order to make the
classical Kalman filter applicable. The EKF is summarized as follows.

1. The EKF is one of the filter approaches used with nonlinear systems. After discretizing
the system equations, one may end up with a nonlinear system of the following form:

xk = fk−1(xk−1,uk−1,wk−1)

yk = hk(xk,vk)

wk ∼ (0,Qk)

vk ∼ (0,Rk)

in which, considering this general notation, the process noise w and the measurement
noise v may be additive or not. Also, the state equation, given by fk−1, and the output
equation, given by hk may be nonlinear or not, but are functions of the x, u, w and v

vectors. If at least one of the nonlinear equations, f or h, are nonlinear, the EKF usage
is justified. Both the w and v noises are assumed to be zero mean Gaussian noises
with its covariances given by the Q and R matrices, respectively.

2. Maintaining the strategy adopted in the classical Kalman Filter, reasonable guesses
for the initial a posteriori state x̂0 and the a posteriori state covariance matrix P+

0 are
given by

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]
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3. The following equations must be run iteratively, for k = 1, 2, 3, . . . :

• Considering the state equation, the following jacobian matrices must be calcu-
lated and evaluated at the a posteriori previous state x+

k−1:

Fk−1 =
∂fk−1

∂x

∣∣∣∣
x+
k−1

Lk−1 =
∂fk−1

∂w

∣∣∣∣
x+
k−1

• With the Fk−1 and Lk−1 jacobians determined, the time update of the previous a
posteriori state estimate and the previous a posteriori estimation-error covariance
must be performed as follows:

P−k = Fk−1P
+
k−1F

T
k−1 + Lk−1Qk−1L

T
k−1

x̂−k = fk−1(x̂+
k−1,uk−1, 0) ,

in which it is assumed that the process noise v is not present. In this phase, the
only the known system dynamics are used to predict the propagation in time of
the current state.

• In sequence, another two jacobian matrices must be calculated, Hk and Mk.
However, differently from the Fk−1 and Lk−1 jacobians, these are evaluated at
the a priori current state x−k as follows:

Hk =
∂hk
∂x

∣∣∣∣
x−k

Mk =
∂hk
∂v

∣∣∣∣
x−k

• Finally, at the end of the current iteration, the measurement update of the state
estimate and estimation-error covariance is performed as follows:

Kk = P−k HT
k (HkP

−
k HT

k + MkRkM
T
k )−1

x̂+
k = x̂−k + Kk[yk − hk(x̂

−
k , 0)]

P+
k = (I−KkHk)P

−
k

in which the estimation of the current output, ŷk, given by hk(x̂
−
k , 0), is evaluated

considering that the measurement noise v is not present.
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Appendix I

The Complex Step Differentiation (CSD)

The Complex Step Differentiation (CSD) represents an advantage with respect to the an-
alytic solution of derivatives. When used with the Extended Kalman Filter (EKF), it provides
a good generalization for the filter: independently of the system model, the jacobians may
be directly estimated numerically. Although it increases the computational effort required
to run the filter, it facilitates the filter implementation, which is reasonable when the interest
relies only on the offline filter simulation.

The general idea of the CSD method is simplified in this appendix, whereas the reader
may refer to [Al-Mohy and Higham 2010, Martins et al. 2001, Martins et al. 2003]. for fur-
ther details. Starting from a complex function f(z) = u(z) + i · v(z) of a complex variable
z = x + i · y on the complex plane, if this function is analytic, then the Cauchy-Riemann
equations are valid,

∂u

∂x
=
∂v

∂y
(I.1)

∂u

∂y
= −∂v

∂x
(I.2)

The partial derivatives in Eq. (I.1) may be rewritten using its limit definition. For ∂u
∂x

, it gives

∂u

∂x
= lim

h→0

v(x+ i(y + h))− v(x+ iy)

h
. (I.3)

Considering the focus is to determine the numerical derivative of a real function which de-
scribes a physical system, the following assumptions are made:

y = 0 (I.4)

u(x) = f(x) (I.5)

v(x) = 0 , (I.6)
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and the limit in Eq. I.3 simplifies to

∂f

∂x
=
∂u

∂x
= lim

h→0

Im[f(x+ ih)]

h
. (I.7)

In other words, approximating the limit in Eq.I.7 for a small h the ingenious idea behind
the CSD method is summarized by the following equation

∂f

∂x
≈ Im[f(x+ ih)]

h
, (I.8)

which does not use subtractive operations. It is known that subtractive operations incur in
cancellation errors which are avoided by the CSD method, since it needs only a division after
evaluating the imaginary part of f(x+ ih).
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Appendix J

The Unscented Kalman Filter

It is known that the Extended Kalman Filter is widely used in state estimation for nonlin-
ear systems. However, if the system presents strong nonlinearities, the approximation errors
caused by the linerization used to propagate the mean and covariance of the current state
may not be negligible. In order to avoid this source of error, the Unscented Kalman Filter
(UKF) was developed [Julier and Uhlmann 2004]. The basic idea of the UKF is that it is
easier to approximate a probability distribution than approximating an arbitrary nonlinear
function and this idea culminated with the creation of the Unscented Transformation (UT).
Again, the reader may refer to [Simon 2006] for further details, such as the derivation of the
UT. In what follows, the UKF is presented algorithmically.

1. As well as in the EKF, the UKF assumes a nonlinear system of equations describing
the system dynamics. The general model is replicated:

xk+1 = fk−1 (xk,uk) + wk

yk = hk(xk) + vk

wk ∼ (0,Qk)

vk ∼ (0,Rk)

in which it is made the same assumptions of the EKF regarding the process and mea-
surement noises, w and v.

2. Also, the same filter initialization guesses used in the KF and in the EKF hold for the
initial state x̂+

0 and state covariance matrix P+
0 , which are

x̂+
0 = E(x0)

P+
0 = E[(x0 − x̂+

0 )(x0 − x̂+
0 )T ]

3. Having the filter initialized, the following steps are run iteratively, for k = 1, 2, 3, . . . :
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• In the time update phase, the state and the state covariance matrix are propagated
in time using only the previous gathered information and the model dynamics. In
the UKF, this phase is divided in four steps, as follows.

(a) In the first step, the 2n sigma points x
(i)
k−1 are determined. The superscript

(i) denotes the ith sigma point of a total of 2n sigma points, in which n is
the number of states in the state vector x. The sigma points are calculated as

x̂
(i)
k−1 = x̂+

k−1 + x̃(i), i = 1, ..., 2n

x̃(i) =

(√
nP+

k−1

)T
i

, i = 1, ..., n

x̃(n+i) = −
(√

nP+
k−1

)T
i

, i = 1, ..., n

in which the subscript i outside the parenthesis denotes that the ith column of
the matrix inside the parenthesis is taken. It must be noticed that the sigma
points are calculated around the previous a posteriori estimated state x̂+

k−1.

(b) The sigma points must be transformed in x̂
(i)
k vectors, i.e. propagated in time

through the nonlinear state equation fk−1(·), as

x̂
(i)
k = fk−1(x̂

(i)
k−1,uk) (J.1)

(c) The sigma points are combined in order to obtain the a priori estimated state
x̂−k , as

x̂−k =
1

2n

2n∑
i=1

x̂
(i)
k . (J.2)

In this case, a simple arithmetic mean is used. Some studies refer to method-
ologies which result in optimal weighting functions for combining the 2n

sigma points, rather than assigning the same weight to every sigma point.

(d) Still using the transformed sigma points x̂
(i)
k , the a priori state covariance

matrix must be determined as

P−k =
1

2n

2n∑
i=1

(x̂
(i)
k − x̂−k )(x̂

(i)
k−1 − x̂−k ) + Qk−1 (J.3)

The (a), (b), (c) and (d) steps combined in order to obtain x̂−k and P−k form
what is called an Unscented Transformation (UT).

• In the measurement update phase, the a priori state estimation is updated using
the output equation of the system. This phase is divided in four steps, as follows.

(a) An optional step is to recalculate the sigma points, but, instead of using
the previous a posteriori estimated state x̂+

k−1, the current a priori estimated
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state x̂−k given by the time update phase must be used, as

x̂
(i)
k = x̂−k + x̃(i), i = 1, ..., 2n

x̃(i) =

(√
nP+

k−1

)T
i

, i = 1, ..., n

x̃(n+i) = −
(√

nP+
k−1

)T
i

, i = 1, ..., n

Considering or not this step means a trade-off between computational effort
and filter performance.

(b) The nonlinear output equation hk is used to transform the sigma points in
ŷ

(i)
k vectors, as

ŷ
(i)
k = hk(x̂

(i)
k ) (J.4)

(c) The Unscented Transformation is finished by combining the predicted mea-
surement vectors ŷ

(i)
k to obtain the predicted measurement at current time ŷk,

the covariance of the predicted measurement Py and the cross-covariance
between x̂−k and ŷk, Pxy, as

ŷk =
1

2n

2n∑
i=1

ŷ
(i)
k (J.5)

Py =
1

2n

2n∑
i=1

(ŷ(i) − ŷk)(ŷ
(i) − ŷk)

T + Rk (J.6)

Pxy =
1

2n

2n∑
i=1

(x̂(i) − x̂k)(ŷ
(i) − ŷk)

T (J.7)

Again, the reader may refer to works in literature regarding optimal weight-
ing functions to calculate these quantities, instead of applying a simple arith-
metic mean.

(d) Finally, the normal KF equations may be used to obtain the a posteriori state
estimate x̂+

k and P+
k as

Kk = PxyP
−1
y

x̂+
k = x̂−k + Kk(yk − ŷk)

P+
k = P−k −KkPyK

T
k
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Appendix K

Source codes

K.1 Dynamic model comparison

function ydot = eom1(t,y)
% LAICA Testbed Equations of Motion (Chesi)
% y = [phi, theta, psi, wx, wy, wz, rx, ry, rz]
ydot = zeros(9,1);

%J0 = [0.265 0 0; 0 0.246 0; 0 0 0.427];
%J = [0.265 0.1 0.1; 0.1 0.246 0.1; 0.1 0.1 0.427];
J0 = 10*[0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427]; % inertia tensor
%J = [10 -1 -1; -1 10 -1; -1 -1 10];

%Rcm = [-1; -1; -5]*10^-3; % CM offset vector
Rcm = [y(7); y(8); y(9)];
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity
Jaug = [m*(Rcm(2)^2+Rcm(3)^2) -m*Rcm(1)*Rcm(2) -m*Rcm(1)*Rcm(3);

-m*Rcm(1)*Rcm(2) m*(Rcm(1)^2+Rcm(3)^2) -m*Rcm(2)*Rcm(3);
-m*Rcm(1)*Rcm(3) -m*Rcm(2)*Rcm(3) m*(Rcm(1)^2+Rcm(2)^2)];

%Jaug=0;
J = J0 + Jaug;

omega = [y(4); y(5); y(6)];
sphi = sin(y(1));
cphi = cos(y(1));
sth = sin(y(2));
cth = cos(y(2));

%% Model equations
% Kinematic equation

% Euler rates
eulerdot = [1 sphi*tan(y(2)) cphi*tan(y(2));

0 cphi -sphi;
0 sphi/cth cphi/cth]*omega;
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% Gravity vector in body-frame
gb = [g*sth; -g*sphi*cth; -g*cphi*cth];

% Dynamics equation
omegadot=J\(-cross(omega,J*omega)+cross(Rcm,gb*m));

%% Derivatives (xdot)
% Omega(dot)
ydot(1:3) = eulerdot;
% Euler angles (dot)
ydot(4:6) = omegadot;

Listing K.1: Euler equations of motion

function ydot = eom2(t,y)
% LAICA Testbed Equations of Motion for the Testbed (Young)
% y = [phi, theta, psi, wx, wy, wz, rx, ry, rz]
%I = [0.265 0 0; 0 0.246 0; 0 0 0.427];
I = 10*[0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427]; % inertia tensor
%I = [10 -1 -1; -1 10 -1; -1 -1 10];

Bd = zeros(3,1); % no damping torque
m=14.307; %Kg
g=9.78; %m/s^2

cphi=cos(y(1));
sphi=sin(y(1));
cth=cos(y(2));
sth=sin(y(2));

A = [ m*y(8)^2+m*y(9)^2+I(1,1) -m*y(7)*y(8)+I(1,2) -m*y(7)*y(9)+I(1,3);
-m*y(7)*y(8)+I(1,2) m*y(7)^2+m*y(9)^2+I(2,2) -m*y(8)*y(9)+I(2,3);
-m*y(7)*y(9)+I(1,3) -m*y(8)*y(9)+I(2,3) m*y(7)^2+m*y(8)^2+I(3,3)];

B = [(-2*m*y(8)*y(9)+I(2,3))*y(5)^2+(2*m*y(8)*y(9)-I(2,3))*y(6)^2+(-m*y(7)*y(9)+I(1,3))*y(4)*y(5)+(m
*y(7)*y(8)-I(1,2))*y(4)*y(6)+(m*y(8)^2-m*y(9)^2-I(2,2)+I(3,3))*y(5)*y(6);

(2*m*y(7)*y(9)-I(1,3))*y(4)^2+(-2*m*y(7)*y(9)+I(1,3))*y(6)^2+(m*y(8)*y(9)-I(2,3))*y(4)*y(5)+(-m*y
(7)^2+m*y(9)^2+I(1,1)-I(3,3))*y(4)*y(6)+(-m*y(7)*y(8)+I(1,2))*y(5)*y(6);

(-2*m*y(7)*y(8)+I(1,2))*y(4)^2+(2*m*y(7)*y(8)-I(1,2))*y(5)^2+(m*y(7)^2-m*y(8)^2-I(1,1)+I(2,2))*y(4)
*y(5)+(-m*y(8)*y(9)+I(2,3))*y(4)*y(6)+(m*y(7)*y(9)-I(1,3))*y(5)*y(6)];

M1 = [ m*g*(-y(8)*cth*cphi+y(9)*sphi*cth); % Gravitational Torque
m*g*(y(9)*sth+y(7)*cphi*cth);
m*g*(-y(7)*sphi*cth-y(8)*sth)];

M2=[-Bd(1)*y(4)^2; % Damping torque
-Bd(2)*y(5)^2;
-Bd(3)*y(6)^2];

M=M1+M2;

%% Derivatives
% Euler angles
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ydot(1)=y(4)+sth*sphi/cth*y(5)+sth*cphi/cth*y(6); % phi
ydot(2)=cphi*y(5)-sphi*y(6); % theta
ydot(3)=sphi/cth*y(5)+cphi/cth*y(6); % psi
% Angular accelerations
ydot(4:6)= pinv(A)*(M-B);
% CM Offset variations (CM Offset is constant in the Testbed+RW model)
ydot(7)=0;
ydot(8)=0;
ydot(9)=0;
ydot=ydot';

Listing K.2: Young equations of motion

function YoungCrossChesi
% Model comparison

tf = 100; % simulation length
dt = 0.1; % simulation step size

%% Testbed characteristics
J = [0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427]; % inertia tensor
%J = [0.265 0 0; 0 0.246 0; 0 0 0.427];
%J = [10 -1 -1; -1 10 -1; -1 -1 10];

Rcm = [-1; -1; -5]*10^-0; % CM offset vector
m = 14.307; % mass of the testbed

%% Initial values of state variables
x = [0; 0; 0; J(1,1); J(2,2); J(3,3); -J(1,2); -J(2,3); -J(1,3); m*Rcm(1); m*Rcm(2); m*Rcm(3)]; % initial state
x2 = [0; 0; 0; J(1,1); J(2,2); J(3,3); -J(1,2); -J(2,3); -J(1,3); m*Rcm(1); m*Rcm(2); m*Rcm(3)]; % initial state

% Initialize arrays for later plotting
xArray = x;
x2Array = x2;
tArray = 0;
y = [0 0 0 0 0 0 Rcm(1) Rcm(2) Rcm(3)];
y2 = [0 0 0 0 0 0 Rcm(1) Rcm(2) Rcm(3)];

dtPlot = dt; % how often to plot output data

tic;
for t = dt : dt : tf

if mod(t,1)==0
t

end
tc = round(t/dt); % time counter
%% Simulate the system.
% Integrate
[t1, y_dt] = ode23('eom1', [0 dt], y(:), 1e-5);
y(:)=y_dt(size(y_dt,1),:)'; % y = [phi, theta, psi, wx, wy, wz, rx, ry, rz]

130



[t2, y2_dt] = ode23('eom2', [0 dt], y2(:), 1e-5);
y2(:)=y2_dt(size(y2_dt,1),:)'; % y = [phi, theta, psi, wx, wy, wz, rx, ry, rz]

%% Observation: The state vector is x = [x1 x2]
% x1 = [omegax omegay omegaz]^T
% x2 = [Jx Jy Jz Jxy Jxz Jyz mRx mRy mRz]^T
x(1:3) = y(4:6); % x(4:12) is already set (see beginning of code)
x2(1:3) = y2(4:6); % x(4:12) is already set (see beginning of code)

%% Save data for plotting.
xArray = [xArray x];
x2Array = [x2Array x2];
tArray = [tArray t];

end

% Plot results
close all
t = 0 : dtPlot : tf;

figure;
plot(t, xArray(1:3,:)-x2Array(1:3,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('Error (\omega_1-\omega_2) (in rad/s)');

figure;
plot(t, xArray(1:3,:));
hold on
plot(t, x2Array(1:3,:));
time=clock;
%save(['EKF-Data-day-25_' num2str(time(4)) '-' num2str(time(5)) '.mat']);
disp(['Elapsed time = ', num2str(toc), ' seconds']);

Listing K.3: Model comparison code for Young and Euler equations of motion

K.2 Kalman Filter

function KalmanFilterForBalancing
% Kalman filter for estimating the unbalance vector r.
% Estimate the 3x1 unknown parameter vector r = [rx ry rz]'
% Observation: to change the platform inertia, modify the value of
% J0 in the testbed dynamics file "eom1.m"
close all
clear all
clc
tf = 100; % simulation length
T = 0.1; % sampling time

%% Testbed characteristics
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%J = [0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427]; % full inertia
J = [0.265 0 0; 0 0.246 0; 0 0 0.427]; % diagonal inertia
Rcm = [-1; -1; -5]*10^-3; % CM offset vector
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity

%% Matrices setup
R = [0.01^2 0 0;0 0.01^2 0 ;0 0 0.01^2]; % process noise matrix
Q = diag([0.000005 0.000005 0.000005 (0.1*Rcm(1))^2 (0.1*Rcm(2))^2 (0.1*Rcm(2))^2]); % measurement

noise matrix
H = [eye(3) zeros(3)]; % measurement matrix

%% Initial values
P_post = zeros(6);
x = [0; 0; 0; Rcm(1); Rcm(2); Rcm(3)]; % initial true state
xhat_post = [zeros(3,1); x(4:6)]; % initial state estimate
z = H * x + sqrt(R) * [randn; randn; randn]; % initial measurement

%% Initialize arrays for later plotting
PArray = P_post;
zArray = z;
xArray = x;
tArray = 0;
xhatArray = xhat_post;
y = [0 0 0 0 0 0 Rcm(1) Rcm(2) Rcm(3)];
yArray = y';
phi = y(1);
theta = y(2);
psi = y(3);

tic;
chi2lim = chi2inv(0.95,length(z)) % chi-squared test limit
pause(3)
d2 = 0;
for t = T : T : tf

k = round(t/T)+1; % MATLAB initial vector position is 1
%% Simulate the system.
% Integrate
[~, y_dt] = ode23('eom1', [0 T], y(:), 1e-5);
y(:)=y_dt(size(y_dt,1),:)'; % y = [phi, theta, psi, wx, wy, wz, rx, ry, rz]
% The intermediate values of the integration with ode23 are transparent
% for the x state vector.
phi(k) = y(1);
theta(k) = y(2);
psi(k) = y(3);
Phi_matrix = [0 -m*g*T/(2*J(1,1))*(cos(phi(k))*cos(theta(k))+cos(phi(k-1))*cos(theta(k-1))) m*g*T/(2*J

(1,1))*(sin(phi(k))*cos(theta(k))+sin(phi(k-1))*cos(theta(k-1)));
m*g*T/(2*J(2,2))*(cos(phi(k))*cos(theta(k))+cos(phi(k-1))*cos(theta(k-1))) 0 m*g*T/(2*J(2,2))*(sin(
theta(k))+sin(theta(k-1)));
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-m*g*T/(2*J(3,3))*(sin(phi(k))*cos(theta(k))+sin(phi(k-1))*cos(theta(k-1))) -m*g*T/(2*J(3,3))*(sin(
theta(k))+sin(theta(k-1))) 0];

%% Observation: The state vector is x = [wx wy wz rx ry rz]
F = [eye(3) Phi_matrix;

zeros(3) eye(3)];
x = y(4:9)' + sqrt(Q) * [randn; randn; randn; randn; randn; randn];
z = H * x + sqrt(R) * [randn; randn; randn]; % size(H)=[3 3]; size(x) = [6 1];

%% Simulate the Kalman filter.
P_pri = F * P_post * F' + Q;
K = P_pri * H' * inv(H * P_pri * H' + R);
% P[6x6], H[3x6], R[3x3]
%% Prediction phase
xhat_pri = F * xhat_post;
% Inovation squared (d2) a priori:
d2(k) = (z - H * xhat_pri)' * inv(H * P_pri * H' + R) * (z - H * xhat_pri);
% The first innovation term is calculated between k=1 and k=2
%% Correction phase
xhat_post = xhat_pri + K * (z - H * xhat_pri);
P_post = (eye(6) - K * H) * P_pri * (eye(6) - K * H)' + K * R * K';

%% Save data for plotting.
PArray(:,:,k) = P_post;
xArray = [xArray x];
xhatArray = [xhatArray xhat_post];
yArray = [yArray y'];
zArray = [zArray z];
tArray = [tArray t];

end

for i = 1:size(PArray,3)
vwx_est(i) = PArray(1,1,i);
vwy_est(i) = PArray(2,2,i);
vwz_est(i) = PArray(3,3,i);
vrx_est(i) = PArray(4,4,i);
vry_est(i) = PArray(5,5,i);
vrz_est(i) = PArray(6,6,i);

end

count = 0;
for i = 1:length(d2)

if d2(i) > chi2lim
count = count + 1;

end
end

Performance = 1 - count/length(d2);
display(sprintf('Percentage of inovation samples inside Chi-Square margin: %.2f

%%',100*Performance))
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%% Plot results
subplot(321);
plot(tArray,xArray(1,:)-xhatArray(1,:),'k'); hold on;
plot(tArray,+3*sqrt(vwx_est),'k:'); plot(tArray,-3*sqrt(vwx_est),'k:');
xlabel('t [s]'); ylabel('\omega_x [rad/s]'); title('Estimation error in \omega_x and

3\sigma intervals');
axis([0 tArray(end) -1.3*max(3*sqrt(vwx_est(round(end/2):end))) 1.3*max(3*sqrt(vwx_est(round(end/2):end

)))])
subplot(322);
plot(tArray,xArray(2,:)-xhatArray(2,:),'k'); hold on;
plot(tArray,+3*sqrt(vwy_est),'k:'); plot(tArray,-3*sqrt(vwy_est),'k:');
xlabel('t [s]'); ylabel('\omega_y [rad/s]'); title('Estimation error in \omega_y and

3\sigma intervals');
axis([0 tArray(end) -1.3*max(3*sqrt(vwy_est(round(end/2):end))) 1.3*max(3*sqrt(vwy_est(round(end/2):end

)))])
subplot(323);
plot(tArray,xArray(3,:)-xhatArray(3,:),'k'); hold on;
plot(tArray,+3*sqrt(vwz_est),'k:'); plot(tArray,-3*sqrt(vwz_est),'k:');
xlabel('t [s]'); ylabel('\omega_z [rad/s]'); title('Estimation error in \omega_z and

3\sigma intervals');
axis([0 tArray(end) -1.3*max(3*sqrt(vwz_est(round(end/2):end))) 1.3*max(3*sqrt(vwz_est(round(end/2):end

)))])
subplot(324);
plot(tArray,xArray(4,:)-xhatArray(4,:),'k'); hold on;
plot(tArray,+3*sqrt(vrx_est),'k:'); plot(tArray,-3*sqrt(vrx_est),'k:');
xlabel('t [s]'); ylabel('r_x [m]'); title('Estimation error in r_x and 3\sigma

intervals');
axis([0 tArray(end) -1.1*max(3*sqrt(vrx_est(round(end/2):end))) 1.1*max(3*sqrt(vrx_est(round(end/2):end))

)])
subplot(325);
plot(tArray,xArray(5,:)-xhatArray(5,:),'k'); hold on;
plot(tArray,+3*sqrt(vry_est),'k:'); plot(tArray,-3*sqrt(vry_est),'k:');
xlabel('t [s]'); ylabel('r_y [m]'); title('Estimation error in r_y and 3\sigma

intervals');
axis([0 tArray(end) -1.1*max(3*sqrt(vry_est(round(end/2):end))) 1.1*max(3*sqrt(vry_est(round(end/2):end))

)])
subplot(326);
plot(tArray,xArray(6,:)-xhatArray(6,:),'k'); hold on;
plot(tArray,+3*sqrt(vrz_est),'k:'); plot(tArray,-3*sqrt(vrz_est),'k:');
xlabel('t [s]'); ylabel('r_z [m]'); title('Estimation error in r_z and 3\sigma

intervals');
axis([0 tArray(end) -1.1*max(3*sqrt(vrz_est(round(end/2):end))) 1.1*max(3*sqrt(vrz_est(round(end/2):end))

)])

figure;
size(tArray)
size(d2)
plot(tArray, d2,'k',[tArray(1) tArray(end)], chi2lim*[1 1],'k--'); hold on; xlabel('t [s]'); ylabel('d
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^2(k) [m]');
title('KF: Comparison between Inovation d^2 and Chi-square limit')
legend('d^2', 'Chi-square limit')
axis([0 tArray(end) 0 max(d2)])

figure;
plot(tArray, xhatArray(4,:), 'k');
hold on
plot(tArray, Rcm(1)*ones(size(tArray)), 'k--');
legend('r_x estimated', 'r_x true')
title('r_x estimation when J_{ij}\approx J_{ii}')
xlabel('Time (s)')
ylabel('r_x (m)')
axis([0 max(tArray) min([xhatArray(4,:) xArray(4,:)]) max([xhatArray(4,:) xArray(4,:)])])

figure;
plot(tArray, xhatArray(1,:));
hold on;
plot(tArray, xArray(1,:));
hold on
plot(tArray, yArray(4,:));
hold on
plot(tArray, zArray(1,:));
legend('\omega_{x-est}', '\omega_{x-processnoise}', '\omega_{x-true}', '\omega_

{x-measured}')

figure;
plot(tArray, xhatArray(4,:));
title('r_x estimated')

set(gca,'FontSize',12); set(gcf,'Color','White');
display(sprintf('Estimated r_x = %.10f mm', 10^3*xhat_post(4,end)));
display(sprintf('True r_x = %.10f mm', 10^3*Rcm(1)));
display(sprintf('Estimated r_y = %.10f mm', 10^3*xhat_post(5,end)));
display(sprintf('True r_y = %.10f mm', 10^3*Rcm(2)));
display(sprintf('Estimated r_z = %.10f mm', 10^3*xhat_post(6,end)));
display(sprintf('True r_z = %.10f mm', 10^3*Rcm(3)));
disp(['Elapsed time = ', num2str(toc), ' seconds']);

Listing K.4: Kalman Filter

function KalmanFilterForBalancing_graphs
% Graphs showing how KF estimates for the unbalance vector
% reacts when specific conditions are tested (e.g. high angular
% velocities, non-diagonal inertia)
% Estimates the 3x1 unknown parameter vector r = [rx ry rz]'
% Observation: to change the platform inertia, modify the value of
% J0 in the testbed dynamics file "eom1.m"
close all
clear all
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clc
tf = 50; % simulation length
T = 0.1; % sampling time

%% Testbed characteristics
J = [0.265 0 0; 0 0.246 0; 0 0 0.427]; % change in "eom1.m" also
Rcm = [-1; -1; -5]*10^-3; % CM offset vector
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity

%% Matrices setup
Q = diag([0.0005 0.0005 0.0005 (0.1*Rcm(1))^2 (0.1*Rcm(2))^2 (0.1*Rcm(3))^2]);
R = [0.05^2 0 0;0 0.05^2 0 ;0 0 0.05^2]; % covariance of measurement noise
H = [eye(3) zeros(3)]; % measurement matrix

%% Initial values
P_post = zeros(6);
x = [0; 0; 0; Rcm(1); Rcm(2); Rcm(3)]; % initial state
xhat_post = [0; 0; 0; 3*1e-3; 0; 0]; % initial state estimate
z = H * x + sqrt(R) * [randn; randn; randn]; % initial measurement

% Initialize arrays for later plotting
PArray = P_post;
zArray = z;
xArray = x;
tArray = 0;
xhatArray = xhat_post;
y = [0 0 0 0 0 0 Rcm(1) Rcm(2) Rcm(3)];
yArray = y';
phi = y(1);
theta = y(2);
psi = y(3);

tic;
d2 = 0;
for test_number = 1:3

for t = T : T : tf
k = round(t/T)+1; % MATLAB initial vector position is 1
%% Simulate the system.
% Integrate
[~, y_dt] = ode23('eom1', [0 T], y(:), 1e-5);
y(:)=y_dt(size(y_dt,1),:)'; % y = [phi, theta, psi, wx, wy, wz, rx, ry, rz]
% The intermediate values of the integration with ode23 are transparent
% for the x state vector.
phi(k) = y(1);
theta(k) = y(2);
psi(k) = y(3);

Phi_matrix = [0 -m*g*T/(2*J(1,1))*(cos(phi(k))*cos(theta(k))+cos(phi(k-1))*cos(theta(k-1))) m*g*T/(2
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*J(1,1))*(sin(phi(k))*cos(theta(k))+sin(phi(k-1))*cos(theta(k-1)));
m*g*T/(2*J(2,2))*(cos(phi(k))*cos(theta(k))+cos(phi(k-1))*cos(theta(k-1))) 0 m*g*T/(2*J(2,2))*(sin

(theta(k))+sin(theta(k-1)));
-m*g*T/(2*J(3,3))*(sin(phi(k))*cos(theta(k))+sin(phi(k-1))*cos(theta(k-1))) -m*g*T/(2*J(3,3))*(sin(

theta(k))+sin(theta(k-1))) 0];
%% Observation: The state vector is x = [wx wy wz rx ry rz]
F = [eye(3) Phi_matrix;

zeros(3) eye(3)];
x = y(4:9)' + sqrt(Q) * [randn; randn; randn; randn; randn; randn];
z = H * x + sqrt(R) * [randn; randn; randn]; % size(H)=[3 3]; size(x) = [6 1];

%% Simulate the Kalman filter.
P_pri = F * P_post * F' + Q;
K = P_pri * H' * inv(H * P_pri * H' + R);
% P[6x6], H[3x6], R[3x3]
%% Prediction phase
xhat_pri = F * xhat_post;
% Inovation squared (d2) a priori
d2(k) = (z - H * xhat_pri)' * inv(H * P_pri * H' + R) * (z - H * xhat_pri);
% The first innovation term is calculated between k=1 and k=2
%% Correction phase
xhat_post = xhat_pri + K * (z - H * xhat_pri);
P_post = (eye(6) - K * H) * P_pri * (eye(6) - K * H)' + K * R * K';

%% Save data for plotting.
PArray(:,:,k) = P_post;
xArray = [xArray x];
xhatArray = [xhatArray xhat_post];
yArray = [yArray y'];
zArray = [zArray z];
tArray = [tArray t];

end

subplot(3,1,test_number)
plot(tArray, xhatArray(4,:), 'k')
hold on
plot(tArray, x(4)*ones(size(tArray)), 'k--')
if test_number == 1

title('r_x component estimation under various conditions')
end
legend('r_x estimated', 'r_x true')
ylabel('r_x (m)')
axis([0 50 min([xhatArray(4,:) xArray(4,:)]) max([xhatArray(4,:) xArray(4,:)])])
if test_number == 2

axis([0 50 -30*1e-3 max([xhatArray(4,:) xArray(4,:)])])
end
if test_number == 3

axis([0 50 -30*1e-4 10*1e-4])
end
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pause(1)
if test_number == 1

clear z y x xhat_post P_post xArray xhatArray yArray zArray tArray
P_post = zeros(6);
x = [0; 0; 0; 20*Rcm(1); 20*Rcm(2); 20*Rcm(3)]; % initial state
xhat_post = 0 * x; % initial state estimate
z = H * x + sqrt(R) * [randn; randn; randn]; % initial measurement
% Initialize arrays for later plotting
PArray = P_post;
zArray = z;
xArray = x;
tArray = 0;
xhatArray = xhat_post;
y = [0 0 0 0 0 0 20*Rcm(1) 20*Rcm(2) 20*Rcm(3)];
yArray = y';
phi = y(1);
theta = y(2);
psi = y(3);

else
clear z y x xhat_post P_post xArray xhatArray yArray zArray tArray
P_post = zeros(6);
x = [1; 1; 1; Rcm(1); Rcm(2); Rcm(3)]; % initial state
xhat_post = 0 * x; % initial state estimate
z = H * x + sqrt(R) * [randn; randn; randn]; % initial measurement
% Initialize arrays for later plotting
PArray = P_post;
zArray = z;
xArray = x;
tArray = 0;
xhatArray = xhat_post;
y = [0 0 0 1 1 1 Rcm(1) Rcm(2) Rcm(3)];
yArray = y';
phi = y(1);
theta = y(2);
psi = y(3);

end
end
xlabel('Time (s)')
disp(['Elapsed time = ', num2str(toc), ' seconds']);

Listing K.5: Kalman Filter performance under specific conditions

K.3 Extended Kalman Filter

function EKFForBalancing_3D
% 6-state Extended Kalman filter for unbalance vector estimation.
% In this case the EKF jacobians are determined analytically.

tf = 100; % simulation length
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dt = 0.1; % simulation step size
n = 6; % number of states

%% Testbed characteristics
% (see eom_ekf3d.m)
J = [0.265 0 0; 0 0.246 0; 0 0 0.427];
Jx = J(1,1); Jy = J(2,2); Jz = J(3,3);
Rcm = [-1; -1; -5]*10^-3; % CM offset vector
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity

%% Filter matrices
R = [0.05^2 0 0;0 0.05^2 0 ;0 0 0.05^2];
%R = eye(3);
H = [eye(3) zeros(3)]; % measurement matrix (OK)

%% Initialization of variables
xstate = [0; 0; 0; Rcm(1); Rcm(2); Rcm(3)]; % initial state
xhatekf = [zeros(3,1); 2*xstate(4:6)]; % initial UKF state estimate
z = H * xstate + sqrt(R) * [randn; randn; randn];
Q = diag([0.000005 0.000005 0.000005 (0.01*Rcm(1))^2 (0.01*Rcm(2))^2 (0.01*Rcm(2))^2]);
% change the initial angular velocity of the simulation in y(4:6)
y = [0 0 0 0 0 0 Rcm(1) Rcm(2) Rcm(3)];

%% Initialize arrays for later plotting
yArray = y';
zArray = z;
tArray = 0;
xArray = xstate;
dtPlot = dt; % how often to plot output data
xhatekfArray = xhatekf;
P = 1e-5*eye(6);
Pekf = P;
Pekfarray = diag(Pekf);
chi2lim = chi2inv(0.95,3);
d2 = 0;
tic;
for t = dt : dt : tf

k = round(t/dt)+1;
tc=round(t/dt); % Time counter
%% Simulate the system.
% Integrate
[~, y_dt] = ode23('eom1', [0 dt], y(:), 1e-5);
y(:)=y_dt(size(y_dt,1),:)'; % y = [phi, theta, psi, wx, wy, wz, rx, ry, rz]
xstate(1:6) = y(4:9)' + sqrt(Q) * [randn; randn; randn; randn; randn; randn]; % xstate is a 12x1 column

vector
z = H * xstate + sqrt(R) * [randn; randn; randn]; % Sensor simulation with noise

%% Simulate the Extended Kalman filter.
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%% Step 1: the model must be written in the form
% x_k = f_k-1(x_k-1, u_k-1, t_k-1) + w_k-1 (additive noise model)
% yk = h(xk, tk) + vk
% wk ~ (0, Qk)
% vk ~ (0, Rk)

%% Step 2: The EKF must be initialized (x0hat_posteriori and P0_posteriori)
% Done
%% Step 3: repeat iteratively the following steps
% (a) compute the f jacobians relative to x and w
sth = sin(y(2)); cth = cos(y(2));
sphi = sin(y(1)); cphi = cos(y(1));
gb = [g*sth; -g*sphi*cth; -g*cphi*cth];
F = [1 xhatekf(3)*((Jy-Jz)/Jx)*dt xhatekf(2)*((Jy-Jz)/Jx)*dt 0 (1/Jx)*m*gb(3)*dt -(1/Jx)*m*gb(2)*dt;

xhatekf(3)*((Jz-Jx)/Jy)*dt 1 xhatekf(1)*((Jz-Jx)/Jy)*dt -(1/Jy)*m*gb(3)*dt 0 (1/Jy)*m*gb(1)*dt;
xhatekf(2)*((Jx-Jy)/Jz)*dt xhatekf(1)*((Jx-Jy)/Jz)*dt 1 (1/Jz)*m*gb(2)*dt -(1/Jz)*m*gb(1)*dt 0;
zeros(3) eye(3)];

L = eye(6);
% (b) Time update
P = F * P * F' + L * Q * L';
xhatekf = [xhatekf(1)+(xhatekf(2)*xhatekf(3)*(Jy-Jz)/Jx + m/Jx*(gb(3)*xhatekf(5)-gb(2)*xhatekf(6)))*dt;

xhatekf(2)+(xhatekf(1)*xhatekf(3)*(Jz-Jx)/Jy + m/Jy*(-gb(3)*xhatekf(4)+gb(1)*xhatekf(6)))*dt;
xhatekf(3)+(xhatekf(1)*xhatekf(2)*(Jx-Jy)/Jz + m/Jz*(gb(2)*xhatekf(4)-gb(1)*xhatekf(5)))*dt;
xhatekf(4);
xhatekf(5);
xhatekf(6)];

% inovation = d = zk - Hk*xkhat (xkhat a priori)
d2(k) = (z - H * xhatekf)' * inv(H * Pekf * H' + R) * (z - H * xhatekf); %xhatekf and Pekf -> a priori

% (c) compute the h jacobians relative to x and v
H = [eye(3) zeros(3)]; % the measurement equation is linear
M = eye(3); % v is an additive noise

% (d) Measurement update
K = P * H' * inv(H * P * H' + M * R * M');
xhatekf = xhatekf + K * (z - H * xhatekf);
P = (eye(6) - K * H) * P;

%% Save data for plotting.
yArray(:, tc+1) = y';
PArray(:,:,k) = P;
xArray(:,tc+1) = xstate;
zArray(:,tc+1) = z;
xhatekfArray(:,tc+1) = xhatekf;
Pekfarray(:,tc+1) = diag(P);
tArray = [tArray t];

end
rx_hat_mean = mean(xhatekfArray(4,round(end/2):end))
close all
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t = 0 : dtPlot : tf;
for i = 1:size(PArray,3)

vwx_est(i) = PArray(1,1,i);
vwy_est(i) = PArray(2,2,i);
vwz_est(i) = PArray(3,3,i);
vrx_est(i) = PArray(4,4,i);
vry_est(i) = PArray(5,5,i);
vrz_est(i) = PArray(6,6,i);

end
count = 0;
for i = 1:length(d2)

if d2(i) > chi2lim
count = count + 1;

end
end
Performance = 1 - count/length(d2);
display(sprintf('Percentage of inovation samples inside Chi-Square margin: %.2f

%%',100*Performance))

%% Plot results
figure;
subplot(321);
title('3\sigma intervals in 6-state EKF')
plot(tArray,xArray(1,:)-xhatekfArray(1,:),'k'); hold on;
plot(tArray,+3*sqrt(vwx_est),'k:'); plot(tArray,-3*sqrt(vwx_est),'k:');
xlabel('Time [s]'); ylabel('\omega_x [rad/s]'); title('Estimation error in \omega_x

and 3\sigma intervals');
axis([0 100 -0.1 0.1])
subplot(322);
plot(tArray,xArray(2,:)-xhatekfArray(2,:),'k'); hold on;
plot(tArray,+3*sqrt(vwy_est),'k:'); plot(tArray,-3*sqrt(vwy_est),'k:');
xlabel('Time [s]'); ylabel('\omega_y [rad/s]'); title('Estimation error in \omega_y

and 3\sigma intervals');
axis([0 100 -0.1 0.1])
subplot(323);
plot(tArray,xArray(3,:)-xhatekfArray(3,:),'k'); hold on;
plot(tArray,+3*sqrt(vwz_est),'k:'); plot(tArray,-3*sqrt(vwz_est),'k:');
xlabel('Time [s]'); ylabel('\omega_z [rad/s]'); title('Estimation error in \omega_z

and 3\sigma intervals');
axis([0 100 -0.1 0.1])
subplot(324);
plot(tArray,xArray(4,:)-xhatekfArray(4,:),'k'); hold on;
plot(tArray,+3*sqrt(vrx_est),'k:'); plot(tArray,-3*sqrt(vrx_est),'k:');
xlabel('Time [s]'); ylabel('r_x [m]'); title('Estimation error in r_x and 3\sigma

intervals');
axis([0 100 -4*1e-4 4*1e-4])
subplot(325);
plot(tArray,xArray(5,:)-xhatekfArray(5,:),'k'); hold on;
plot(tArray,+3*sqrt(vry_est),'k:'); plot(tArray,-3*sqrt(vry_est),'k:');

141



xlabel('Time [s]'); ylabel('r_y [m]'); title('Estimation error in r_y and 3\sigma

intervals');
axis([0 100 -4*1e-4 4*1e-4])
subplot(326);
plot(tArray,xArray(6,:)-xhatekfArray(6,:),'k'); hold on;
plot(tArray,+3*sqrt(vrz_est),'k:'); plot(tArray,-3*sqrt(vrz_est),'k:');
xlabel('Time [s]'); ylabel('r_z [m]'); title('Estimation error in r_z and 3\sigma

intervals');
axis([0 100 -4*1e-4 4*1e-4])

figure;
plot(t, xhatekfArray(4,:), 'k', 'LineWidth', 2); hold on;
plot(t, xhatekfArray(5,:), 'k'); hold on;
plot(t, xhatekfArray(6,:), 'k:'); hold on;
plot(t, Rcm(1)*ones(size(t,2)), 'k--'); hold on;
plot(t, Rcm(3)*ones(size(t,2)), 'k--');
title('Unbalance vector components estimation in 6-state EKF')
set(gca,'FontSize',12); set(gcf,'Color','White');
legend('r_x estimate (m)','r_y estimate (m)','r_z estimate (m)', 'r_x true (m

)','r_y true (m)','r_z true (m)')
xlabel('Time [s]'); ylabel('r [m]');
axis([0 5 -0.013 0.005])

figure;
plot(tArray, d2,'k',[tArray(1) tArray(end)], chi2lim*[1 1],'k--'); hold on; xlabel('Time [s]'); ylabel(

'd^2(k) [m]');
legend('d^2', 'Chi-square limit')
title('Chi-squared test in 6-state EKF')
axis([0 100 0 30])

display(sprintf('Estimated r_x = %.10f mm', 10^3*xhatekf(4,end)));
display(sprintf('True r_x = %.10f mm', 10^3*Rcm(1)));
display(sprintf('Estimated r_y = %.10f mm', 10^3*xhatekf(5,end)));
display(sprintf('True r_y = %.10f mm', 10^3*Rcm(2)));
display(sprintf('Estimated r_z = %.10f mm', 10^3*xhatekf(6,end)));
display(sprintf('True r_z = %.10f mm', 10^3*Rcm(3)));
disp(['Elapsed time = ', num2str(toc), ' seconds']);

Listing K.6: 6-state Extended Kalman Filter (analytic jacobians)

function EKFForBalancing_RW_Xu
% 12-state Extended Kalman filter for unbalance vector estimation.
% In this case the EKF jacobians are determined numerically by using
% the Complex Step Differentiation (CSD) method.
% Observations:
% 1 - this method requires an active control torque (e.g. reaction wheels)
% 2 - the "jacobiancsd" function is available at
% https://www.mathworks.com/matlabcentral/fileexchange/18176-complex-step-jacobian
% 3 - This EKF estimates the 9x1 unknown parameter vector x2=[Jij mRi]', i=1:3, j=1:3, ji=ij
% 4 - Adjust xstate and y before the loop! (initial condition)
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tf = 300; % simulation length
dt = 0.1; % simulation step size

%% Testbed characteristics
J = [0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427]; % inertia tensor
%J = [0.265 0 0; 0 0.246 0; 0 0 0.427];
Rcm = [-1; -1; -5]*10^-3; % CM offset vector
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity

Q = diag([0.000005 0.000005 0.000005 1e-6*ones(1,3) 1e-7*ones(1,3) (0.01*m*Rcm(1))^2 (0.01*m*Rcm
(2))^2 (0.01*m*Rcm(2))^2]); % process noise covariance

R = [0.005^2 0 0; 0 0.005^2 0; 0 0 0.005^2];
H = [eye(3) zeros(3,9)]; % measurement matrix
P = 1e-4*eye(12);
xstate = [0; 0; 0; J(1,1); J(2,2); J(3,3); J(1,2); J(1,3); J(2,3); m*Rcm(1); m*Rcm(2); m*Rcm(3)]; % initial

state
xhatekf = [1; 1; 1; 2*xstate(4:12)]; % initial state estimate
u = [0; 0; 0];
z = H * xstate + sqrt(R) * [randn; randn; randn];

% Initialize arrays for later plotting
zArray = z;
xArray = xstate;
xhatekfArray = xhatekf;
uArray = u;
PArray = P;
tArray = 0;
dtPlot = dt; % how often to plot output data
y = [0 0 0 0 0 0 Rcm(1) Rcm(2) Rcm(3) 0 0 0];

%% Configure the input signal
uT = 1;% square wave period
A = 1*[0.05; 0.05; 0.05]; %in N.m, the amplitude of the torque signal

chi2lim = chi2inv(0.95,3);
d2 = 0;
tic;
for t = dt : dt : tf

tc=round(t/dt); % Time counter
k = round(t/dt)+1;
%% Simulate the system.
% Input signal value
if mod(t, uT) < uT/2

%u = - A - cross(omega, A*mod(t, uT));
y(10:12) = A;

else
%u = A + cross(omega, A*mod(t, uT));
y(10:12) = -A;
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end

%% Simulate the system.
% Integrate
[~, y_dt] = ode23('eom_ekf3d_aug', [dt*(tc) dt*(tc+1)], y(:), 1e-5);
y(:)=y_dt(size(y_dt,1),:)'; % y = [phi, theta, psi, wx, wy, wz, rx, ry, rz, hdotx, hdoty, hdotz]
% Gravity vector in body-frame
sth = sin(y(2)); cth = cos(y(2));
sphi = sin(y(1)); cphi = cos(y(1));
gb = [g*sth; -g*sphi*cth; -g*cphi*cth];
xstate(1:3) = y(4:6)';
xstate(1:12) = xstate(1:12) + sqrt(Q) * [randn; randn; randn; randn; randn; randn; randn; randn; randn;

randn; randn; randn]; % xstate is a 12x1 column vector
z = H * xstate + sqrt(R) * [randn; randn; randn]; % size(H)=[3 12]; size(x) = [12 1];

%% Simulate the Kalman filter.
% Input signal value ESTIMATE (uhat - it is dependent on xhatekf(1:3)!
if mod(t, uT) < uT/2

uhat = - A - cross(xhatekf(1:3), A*mod(t, uT));
else

uhat = A + cross(xhatekf(1:3), A*mod(t, uT));
end
% (a) compute the f jacobians relative to x and w
L = eye(12);
% dF/domega jacobian
omegahat = xhatekf(1:3);
Jhat=[xhatekf(4) -xhatekf(7) -xhatekf(8);
-xhatekf(7) xhatekf(5) -xhatekf(9);
-xhatekf(8) -xhatekf(9) xhatekf(6)];
mRhat = xhatekf(10:12);
rhat = xhatekf(10:12)/m;
Jaug = [m*(rhat(2)^2+rhat(3)^2) -m*rhat(1)*rhat(2) -m*rhat(1)*rhat(3);

-m*rhat(1)*rhat(2) m*(rhat(1)^2+rhat(3)^2) -m*rhat(2)*rhat(3);
-m*rhat(1)*rhat(3) -m*rhat(2)*rhat(3) m*(rhat(1)^2+rhat(2)^2)];

if mod(t, uT) < uT/2
f1=@(param1)inv(Jhat+Jaug)*(-cross(param1,(Jhat+Jaug)*param1)-cross(gb,xhatekf(10:12))+(- A -
cross(param1, A*mod(t, uT))));

else
f1=@(param1)inv(Jhat+Jaug)*(-cross(param1,(Jhat+Jaug)*param1)-cross(gb,xhatekf(10:12))+(A +
cross(param1, A*mod(t, uT))));

end
[F1,omegadothat]=jacobiancsd(f1,xhatekf(1:3));
% dF/dJ jacobian
f2=@(param2)inv([param2(1) -param2(4) -param2(5);

-param2(4) param2(2) -param2(6);
-param2(5) -param2(6) param2(3)]+Jaug)*(-cross(omegahat,([param2(1) -param2(4) -param2(5);

-param2(4) param2(2) -param2(6);
-param2(5) -param2(6) param2(3)]+Jaug)*omegahat)-cross(gb,

mRhat)+uhat);
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[F2,~]=jacobiancsd(f2,xhatekf(4:9));
% dF/d(mR) jacobian
f3=@(param3)inv(Jhat+[m*((param3(2)/m)^2+(param3(3)/m)^2) -m*(param3(1)/m)*(param3(2)/m) -m*(

param3(1)/m)*(param3(3)/m);
-m*(param3(1)/m)*(param3(2)/m) m*((param3(1)/m)^2+(param3(3)/m)^2) -m*(param3(2)/

m)*(param3(3)/m);
-m*(param3(1)/m)*(param3(3)/m) -m*(param3(2)/m)*(param3(3)/m) m*((param3(1)/m)

^2+(param3(2)/m)^2)])*...
(-cross(omegahat,(Jhat+[m*((param3(2)/m)^2+(param3(3)/m)^2) -m*(param3(1)/m)*(param3(2)/m) -m
*(param3(1)/m)*(param3(3)/m);

-m*(param3(1)/m)*(param3(2)/m) m*((param3(1)/m)^2+(param3(3)/m)^2) -m*(param3(2)/
m)*(param3(3)/m);

-m*(param3(1)/m)*(param3(3)/m) -m*(param3(2)/m)*(param3(3)/m) m*((param3(1)/m)
^2+(param3(2)/m)^2)])*omegahat)-cross(gb,param3)+uhat);

[F3,~]=jacobiancsd(f3,xhatekf(10:12));
F=[F1 F2 F3; zeros(9,12)] * dt; % multiply by dt!!!
F=F+eye(12);

% (b) Time update
P = F * P * F' + L * Q * L';
xhatekfdot = [omegadothat; zeros(6,1); zeros(3,1)]; % Jhatdot and mRdot equals zero!
xhatekf = xhatekf + xhatekfdot * dt;

% inovation = d = zk - Hk*xkhat (xkhat a priori)
%d2(k) = (z - H * xhatekf)' * inv(H * Pekf * H' + R) * (z - H * xhatekf); %xhatekf and Pekf -> a priori
d2(k) = (z - H * xhatekf)' * inv(H * P * H' + R) * (z - H * xhatekf); %xhatekf and Pekf -> a priori
% (c) compute the h jacobians relative to x and v
H = [eye(3) zeros(3,9)]; % the measurement equation is linear
M = eye(3); % v is an additive noise
% (d) Measurement update
K = P * H' * inv(H * P * H' + M * R * M');
xhatekf = xhatekf + K * (z - H * xhatekf);
P = (eye(12) - K * H) * P;
%P = (eye(12)-K*H) * P * (eye(12)-K*H)' + K * R * K';

%% Save data for plotting.
uArray = [uArray u];
xArray = [xArray xstate];
xhatekfArray = [xhatekfArray xhatekf];
zArray = [zArray z];
PArray(:,:,k) = P;
tPlot = t;
tArray = [tArray t];

end

for i = 1:size(PArray,3)
vwx_est(i) = PArray(1,1,i);
vwy_est(i) = PArray(2,2,i);
vwz_est(i) = PArray(3,3,i);
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vJx_est(i) = PArray(4,4,i);
vJy_est(i) = PArray(5,5,i);
vJz_est(i) = PArray(6,6,i);
vJxy_est(i) = PArray(7,7,i);
vJxz_est(i) = PArray(8,8,i);
vJyz_est(i) = PArray(9,9,i);
vmRx_est(i) = PArray(10,10,i);
vmRy_est(i) = PArray(11,11,i);
vmRz_est(i) = PArray(12,12,i);

end

% Plot results
close all
t = 0 : dtPlot : tf;

count = 0;
for i = 1:length(d2)

if d2(i) > chi2lim
count = count + 1;

end
end

Performance = 1 - count/length(d2);
display(sprintf('Percentage of inovation samples inside Chi-Square margin: %.2f

%%',100*Performance))
figure;
plot(tArray, d2,'k',[tArray(1) tArray(end)], chi2lim*[1 1],'k-'); hold on; xlabel('Time [s]'); ylabel('

d^2(k) [m]');
title('Chi-squared test in 12-state EKF')
axis([0 tArray(end) 0 30])

figure;
% Plot results
subplot(621);
title('3\sigma intervals in 12-state EKF')
plot(tArray,xArray(1,:)-xhatekfArray(1,:),'k'); hold on;
plot(tArray,+3*sqrt(vwx_est),'k:'); plot(tArray,-3*sqrt(vwx_est),'k:');
xlabel('Time [s]'); ylabel('\omega_x [rad/s]'); title('Estimation error in \omega_x

and 3\sigma intervals');
axis([0 tArray(end) -0.02 0.02])
subplot(622);
plot(tArray,xArray(2,:)-xhatekfArray(2,:),'k'); hold on;
plot(tArray,+3*sqrt(vwy_est),'k:'); plot(tArray,-3*sqrt(vwy_est),'k:');
xlabel('Time [s]'); ylabel('\omega_y [rad/s]'); title('Estimation error in \omega_y

and 3\sigma intervals');
axis([0 tArray(end) -0.02 0.02])
subplot(623);
plot(tArray,xArray(3,:)-xhatekfArray(3,:),'k'); hold on;
plot(tArray,+3*sqrt(vwz_est),'k:'); plot(tArray,-3*sqrt(vwz_est),'k:');

146



xlabel('Time [s]'); ylabel('\omega_z [rad/s]'); title('Estimation error in \omega_z

and 3\sigma intervals');
axis([0 tArray(end) -0.02 0.02])
subplot(624);
plot(tArray,J(1,1)*ones(size(xArray(4,:)))-xhatekfArray(4,:),'k'); hold on;
plot(tArray,+3*sqrt(vJx_est),'k:'); plot(tArray,-3*sqrt(vJx_est),'k:');
xlabel('Time [s]'); ylabel('J_x [m]'); title('Estimation error in J_x and 3\sigma

intervals');
axis([0 tArray(end) -0.04 0.04])
subplot(625);
plot(tArray,J(2,2)*ones(size(xArray(5,:)))-xhatekfArray(5,:),'k'); hold on;
plot(tArray,+3*sqrt(vJy_est),'k:'); plot(tArray,-3*sqrt(vJy_est),'k:');
xlabel('Time [s]'); ylabel('J_y [m]'); title('Estimation error in J_y and 3\sigma

intervals');
axis([0 tArray(end) -0.04 0.04])
subplot(626);
plot(tArray,J(3,3)*ones(size(xArray(6,:)))-xhatekfArray(6,:),'k'); hold on;
plot(tArray,+3*sqrt(vJz_est),'k:'); plot(tArray,-3*sqrt(vJz_est),'k:');
xlabel('Time [s]'); ylabel('J_z [m]'); title('Estimation error in J_z and 3\sigma

intervals');
axis([0 tArray(end) -0.06 0.06])
subplot(627);
plot(tArray,-J(1,2)*ones(size(xArray(7,:)))-xhatekfArray(7,:),'k'); hold on;
plot(tArray,+3*sqrt(vJxy_est),'k:'); plot(tArray,-3*sqrt(vJxy_est),'k:');
xlabel('Time [s]'); ylabel('J_{xy}'); title('Estimation error in J_{xy} and 3\sigma

intervals');
axis([0 tArray(end) -0.02 0.02])
subplot(628);
plot(tArray,-J(1,3)*ones(size(xArray(8,:)))-xhatekfArray(8,:),'k'); hold on;
plot(tArray,+3*sqrt(vJxz_est),'k:'); plot(tArray,-3*sqrt(vJxz_est),'k:');
xlabel('Time [s]'); ylabel('J_{xz}'); title('Estimation error in J_{xz} and 3\sigma

intervals');
axis([0 tArray(end) -0.02 0.02])
subplot(629);
plot(tArray,-J(2,3)*ones(size(xArray(9,:)))-xhatekfArray(9,:),'k'); hold on;
plot(tArray,+3*sqrt(vJyz_est),'k:'); plot(tArray,-3*sqrt(vJyz_est),'k:');
xlabel('Time [s]'); ylabel('J_{yz}'); title('Estimation error in J_{yz} and 3\sigma

intervals');
axis([0 tArray(end) -0.02 0.02])
subplot(6,2,10);
plot(tArray,m*Rcm(1)*ones(size(xArray(10,:)))-xhatekfArray(10,:),'k'); hold on;
plot(tArray,+3*sqrt(vmRx_est),'k:'); plot(tArray,-3*sqrt(vmRx_est),'k:');
xlabel('Time [s]'); ylabel('mR_x'); title('Estimation error in mR_x and 3\sigma

intervals');
axis([0 tArray(end) -3*1e-3 3*1e-3])
subplot(6,2,11);
plot(tArray,m*Rcm(2)*ones(size(xArray(11,:)))-xhatekfArray(11,:),'k'); hold on;
plot(tArray,+3*sqrt(vmRy_est),'k:'); plot(tArray,-3*sqrt(vmRy_est),'k:');
xlabel('Time [s]'); ylabel('mR_y'); title('Estimation error in mR_y and 3\sigma

147



intervals');
axis([0 tArray(end) -3*1e-3 3*1e-3])
subplot(6,2,12);
plot(tArray,m*Rcm(3)*ones(size(xArray(12,:)))-xhatekfArray(12,:),'k'); hold on;
plot(tArray,+3*sqrt(vmRz_est),'k:'); plot(tArray,-3*sqrt(vmRz_est),'k:');
xlabel('Time [s]'); ylabel('mR_z'); title('Estimation error in mR_z and 3\sigma

intervals');
axis([0 tArray(end) -7*1e-3 7*1e-3])

figure;
plot(t, xArray(1:3,:));
hold on
plot(t, xhatekfArray(1:3,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('\omega (in rad/s)');

figure;
subplot(1,1,1)
title('Convergence of the parameters in 12-state EKF (normal angular rates)'

)
subplot(2,2,2)
plot([0 t(end)], [J(1,1) J(1,1); J(2,2) J(2,2); J(3,3) J(3,3)], 'k--')
hold on
plot(t, xhatekfArray(4,:), 'k:'); hold on;
plot(t, xhatekfArray(5,:), 'k'); hold on;
plot(t, xhatekfArray(6,:), 'k', 'LineWidth',3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('Principal Inertia Moments');
legend('Jx', 'Jy', 'Jz', 'Jxhat', 'Jyhat', 'Jzhat')
subplot(2,2,4)
plot([0 t(end)], [-J(1,2) -J(1,2); -J(1,3) -J(1,3); -J(2,3) -J(2,3)], 'k--')
hold on
plot(t, xhatekfArray(7,:), 'k:'); hold on;
plot(t, xhatekfArray(8,:), 'k'); hold on;
plot(t, xhatekfArray(9,:), 'k', 'LineWidth',3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('Inertia Products');
legend('Jxy', 'Jxz', 'Jyz', 'Jxyhat', 'Jxzhat', 'Jyzhat')
subplot(2,2,[1 3])
plot([0 t(end)], [m*Rcm(1) m*Rcm(1); m*Rcm(2) m*Rcm(2); m*Rcm(3) m*Rcm(3);], 'k--')
hold on
plot(t, xhatekfArray(10,:), 'k:'); hold on;
plot(t, xhatekfArray(11,:), 'k'); hold on;
plot(t, xhatekfArray(12,:), 'k', 'LineWidth',3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('mR');
legend('mRx', 'mRy', 'mRz', 'mRxhat', 'mRyhat', 'mRzhat')

display(m*Rcm)
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time=clock;
save(['EKF-Data-day-25_' num2str(time(4)) '-' num2str(time(5)) '.mat']);
disp(['Final estimation error = ', num2str(xArray(4,end)-xhatekfArray(4,end))]);
disp(['Elapsed time = ', num2str(toc), ' seconds']);

Listing K.7: 12-state Extended Kalman Filter (jacobians calculated through Complex Step
Differentiation)

function ydot = eom_ekf3d_aug(t,y)
% This dynamic model is augmented for
% considering the input torque given
% by hdotx, hdoty and hdotz.
% y = [phi, theta, psi, wx, wy, wz, rx, ry, rz, hdotx, hdoty, hdotz]
ydot = zeros(12,1);
uT = 1;% square wave period
% state-space dynamics: xdot = f(x) + d(t), d(t) process noise.
% output equation: y = H*x + v(t), v(t) measurement noise.
Rcm = [y(7); y(8); y(9)];
%J0 = [0.265 0 0; 0 0.246 0; 0 0 0.427];
J0 = [0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427];
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity
Jaug = [m*(Rcm(2)^2+Rcm(3)^2) -m*Rcm(1)*Rcm(2) -m*Rcm(1)*Rcm(3);

-m*Rcm(1)*Rcm(2) m*(Rcm(1)^2+Rcm(3)^2) -m*Rcm(2)*Rcm(3);
-m*Rcm(1)*Rcm(3) -m*Rcm(2)*Rcm(3) m*(Rcm(1)^2+Rcm(2)^2)];

J = J0 + Jaug;
%J = J0;
hdot = [y(10); y(11); y(12)];
omega = [y(4); y(5); y(6)];
sphi = sin(y(1));
cphi = cos(y(1));
sth = sin(y(2));
cth = cos(y(2));

%% Model equations
% Kinematic equation

% Euler rates
eulerdot = [1 sphi*tan(y(2)) cphi*tan(y(2));

0 cphi -sphi;
0 sphi/cth cphi/cth]*omega;

% Gravity vector in body-frame
gb = [g*sth; -g*sphi*cth; -g*cphi*cth];

% Dynamics equation
omegadot=J\(-hdot-cross(omega,hdot*mod(t, uT))-cross(omega,J*omega)+cross(Rcm,gb*m)); % hdot is

assumed constant

%% Derivatives (xdot)
% Omega(dot)
ydot(1:3) = eulerdot;
% Euler angles (dot)
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ydot(4:6) = omegadot;

Listing K.8: Dynamic model used in the 12-state EKF

K.4 Unscented Kalman Filter

function UKFForBalancing_3D_quat
% Unscented Kalman filter for estimating the unbalance
% vector of the platform.

tf = 50; % simulation length
dt = 0.01; % simulation step size
n=6; % number of states

%% Testbed characteristics
% (see eom_ukf_quat.m)
%J0 = [0.265 0 0; 0 0.246 0; 0 0 0.427];
J0 = [0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427];
Rcm = 20*[-1; -3; -5]*10^-3; % CM offset vector
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity

%% Filter matrices
R = 1*diag([0.0026^2 0.0049^2 0.0031^2]); % covariance of measurement noise (OK)
H = [eye(3) zeros(3)]; % measurement matrix (OK)

%% Initialization of variables
xstate = [0.2*ones(3,1); Rcm(1); Rcm(2); Rcm(3)]; % initial state
xhatukf = 2 * xstate; % initial UKF state estimate
z = H * xstate + sqrt(R) * [randn; randn; randn];
W = ones(2*n,1)/(2*n); % UKF weights (in this case, equal wheights for all sigma points)
Q = 1*diag([0.05 0.05 0.05 1e-7*ones(1,3)]); % process noise covariance
y = [1 0 0 0 10 10 10 Rcm(1) Rcm(2) Rcm(3)];

%% Initialize arrays for later plotting
yArray = y';
zArray = z;
tArray = 0;
zhatArray = z;
xArray = xstate;
dtPlot = dt; % how often to plot output data
xhatukfArray = xhatukf;
P = 1e-5*eye(6);
Pukf = P;
Parray = diag(P);
Pukfarray = diag(Pukf);
chi2lim = chi2inv(0.95,3);
d2 = 0;
tic;
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for t = dt : dt : tf
k = round(t/dt)+1;
tc=round(t/dt); % Time counter
%% Simulate the system.
% Integrate
[~, y_dt] = ode23('eom_ukf_quat', [0 dt], y(:), 1e-5);
y(:)=y_dt(size(y_dt,1),:)'; % y = [phi, theta, psi, wx, wy, wz, rx, ry, rz]
xstate(1:6) = y(5:10)' + sqrt(Q) * [randn; randn; randn; randn; randn; randn]; % xstate is a 12x1 column

vector
% Sensor simulation with noise
z = H * xstate + sqrt(R) * [randn; randn; randn]; % size(H)=[3 4]; size(x) = [4 1];

%% Simulate the Unscented Kalman filter.
%% Step 1: the model must be written in the form
% x_k+1 = f(xk, uk, tk) + wk (additive noise model)
% yk = h(xk, tk) + vk
% wk ~ (0, Qk)
% vk ~ (0, Rk)

%% Step 2: The UKF must be initialized (x0hat_posteriori and P0_posteriori)
% Done

%% Step 3: Time update
[root,~] = chol(n*Pukf); %n*P
for i = 1 : n %1:n

sigma(:,i) = xhatukf + root(i,:)';
sigma(:,i+n) = xhatukf - root(i,:)';

end
for i = 1 : 2*n %1:2n

xbreve(:,i) = sigma(:,i);
end

%% Step 3(b): Use the known f(.) non linear function to transform the
% sigma points into xhat_k(i) vectors.
for i = 1:2*n

xbrevedot = eom_ukf_quat(t,[y(1:4)'; xbreve(1:6,i)]);
xbreve(:,i) = xbreve(:,i) + [xbrevedot(5:7); 0; 0; 0] * dt;

end

%% Step 3(c): Combine the xhat_k(i) vectors to obtain the a priori state
% estimate at time k.
xhatukf = zeros(n,1);
for i = 1 : 2*n % i=1:2n

xhatukf = xhatukf + W(i) * xbreve(:,i); % W is the wheight function (see beginning of file)
end

%% Step 3(d): Estimate a priori error covariance.
Pukf = zeros(n,n);
for i = 1 : 2*n %i=1:2n
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Pukf = Pukf + W(i) * (xbreve(:,i) - xhatukf) * (xbreve(:,i) - xhatukf)';
end
Pukf = Pukf + Q;
d2(k) = (z - H * xhatukf)' * inv(H * Pukf * H' + R) * (z - H * xhatukf); %xhatukf and Pukf -> a priori

%% Step 4: Measurement update
%% Step 4(a): Choose sigma points x_k(i).
% Start of optional step (comment lines below if you want)
[root,~] = chol(n*Pukf); %n=15
for i = 1 : n %1:n

sigma(:,i) = xhatukf + root(i,:)';
sigma(:,i+n) = xhatukf - root(i,:)';

end
for i = 1 : 2*n %1:2n

xbreve(:,i) = sigma(:,i);
end
% End of optional step (comment lines above if you want)

%% Step 4(b): Apply the nonlinear measurement equation to the sigma
% points. In our case, the measurement equation is linear.
for i = 1 : 2*n %i=1:2n

zukf(:,i) = H*xbreve(:,i);
end

%% Step 4(c): Combine the yhat_k(i) vectors to obtain predicted
% measurement at time k.
zhat = zeros(3,1);
for i = 1 : 2*n %i=1:2n

zhat = zhat + W(i) * zukf(:,i);
end

%% Step 4(d): Estimate the covariance of the predicted measurement.
% Obs.: Rk has to be added.
% and Step 4(e): estimate the cross covariance between xhat_k_priori
% and yhat_k
Py = zeros(3,3);
Pxy = zeros(n,3);
for i = 1 : 2*n %i=1:2n

Py = Py + W(i) * (zukf(:,i) - zhat) * (zukf(:,i) - zhat)';
Pxy = Pxy + W(i) * (xbreve(:,i) - xhatukf) * (zukf(:,i) - zhat)';

end
Py = Py + R;

%% Step 4(f): The measurement update may be performed using the standard
% Kalman filter equations.
Kukf = Pxy * inv(Py);
xhatukf = xhatukf + Kukf * (z - zhat);
Pukf = Pukf - Kukf * Py * Kukf';
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%% Save data for plotting.
yArray(:, tc+1) = y';
PArray(:,:,k) = Pukf;
xArray(:,tc+1) = xstate;
zArray(:,tc+1) = z;
zhatArray(:,tc+1) = zhat;
xhatukfArray(:,tc+1) = xhatukf;
Parray(:,tc+1) = diag(P);
Pukfarray(:,tc+1) = diag(Pukf);
tArray = [tArray t];

end
rx_hat_mean = mean(xhatukfArray(4,round(end/2):end))
% Plot results
close all
t = 0 : dtPlot : tf;

for i = 1:size(PArray,3)
vwx_est(i) = PArray(1,1,i);
vwy_est(i) = PArray(2,2,i);
vwz_est(i) = PArray(3,3,i);
vrx_est(i) = PArray(4,4,i);
vry_est(i) = PArray(4,4,i);
vrz_est(i) = PArray(4,4,i);

end

count = 0;
for i = 1:length(d2)

if d2(i) > chi2lim
count = count + 1;

end
end

Performance = 1 - count/length(d2);
display(sprintf('Percentage of inovation samples inside Chi-Square margin: %.2f

%%',100*Performance))

figure;
plot(tArray, yArray(5:7,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('\omega (in rad/s)');
title('y(1)')

figure;
% Plot results
subplot(421);
plot(tArray,xArray(1,:)-xhatukfArray(1,:),'k'); hold on;
plot(tArray,+3*sqrt(vwx_est),'k:'); plot(tArray,-3*sqrt(vwx_est),'k:');
xlabel('t [s]'); ylabel('\omega_x [rad/s]'); title('Estimation error in \omega_x and

3\sigma intervals');
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axis([0 tArray(end) -0.02 0.02])
subplot(422);
plot(tArray,xArray(2,:)-xhatukfArray(2,:),'k'); hold on;
plot(tArray,+3*sqrt(vwy_est),'k:'); plot(tArray,-3*sqrt(vwy_est),'k:');
xlabel('t [s]'); ylabel('\omega_y [rad/s]'); title('Estimation error in \omega_y and

3\sigma intervals');
axis([0 tArray(end) -0.02 0.02])
subplot(423);
plot(tArray,xArray(3,:)-xhatukfArray(3,:),'k'); hold on;
plot(tArray,+3*sqrt(vwz_est),'k:'); plot(tArray,-3*sqrt(vwz_est),'k:');
xlabel('t [s]'); ylabel('\omega_z [rad/s]'); title('Estimation error in \omega_z and

3\sigma intervals');
axis([0 tArray(end) -0.02 0.02])
subplot(424);
plot(tArray,xArray(4,:)-xhatukfArray(4,:),'k'); hold on;
plot(tArray,+3*sqrt(vrz_est),'k:'); plot(tArray,-3*sqrt(vrz_est),'k:');
xlabel('t [s]'); ylabel('r_x [m]'); title('Estimation error in r_x and 3\sigma

intervals');
%axis([0 tArray(end) -1e-3 1e-3])
subplot(425);
plot(tArray,xArray(5,:)-xhatukfArray(5,:),'k'); hold on;
plot(tArray,+3*sqrt(vrz_est),'k:'); plot(tArray,-3*sqrt(vrz_est),'k:');
xlabel('t [s]'); ylabel('r_y [m]'); title('Estimation error in r_y and 3\sigma

intervals');
%axis([0 tArray(end) -1e-3 1e-3])
subplot(426);
plot(tArray,xArray(6,:)-xhatukfArray(6,:),'k'); hold on;
plot(tArray,+3*sqrt(vrz_est),'k:'); plot(tArray,-3*sqrt(vrz_est),'k:');
xlabel('t [s]'); ylabel('r_z [m]'); title('Estimation error in r_z and 3\sigma

intervals');
%axis([0 tArray(end) -1e-3 1e-3])
subplot(4,2,[7 8])
plot(tArray, d2,'k',[tArray(1) tArray(end)], chi2lim*[1 1],'k--'); hold on; xlabel('t [s]'); ylabel('d

^2(k) [m]');
axis([0 tArray(end) 0 30])
title('Chi-squared test')

figure;
plot([0 t(end)], [Rcm(1) Rcm(1)], 'k--'); hold on;
plot([0 t(end)], [Rcm(2) Rcm(2)], 'k--'); hold on;
plot([0 t(end)], [Rcm(3) Rcm(3)], 'k--'); hold on;
hold on
plot(t, xhatukfArray(4,:), 'k');
hold on
plot(t, xhatukfArray(5,:), 'k:');
hold on
plot(t, xhatukfArray(6,:), 'k', 'LineWidth', 3);
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Time [s]'); ylabel('r [m]');

154



title('UKF: unbalance vector components estimation')
legend('r_x', 'r_y', 'r_z', 'r_xhat', 'r_yhat', 'r_zhat')
%axis([0 t(end) -0.015 0.005])

scrsz = get(groot,'ScreenSize');
figure('OuterPosition',[0 scrsz(4)/2 scrsz(3)/3 scrsz(4)/2])
%[(distance of left border from left margin of screen);
% (distance of bottom border from bottom of screen);
% width; height]'.
plot(t, xArray(1:3,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('\omega (in rad/s)');

figure('OuterPosition',[scrsz(3)/3 scrsz(4)/2 scrsz(3)/3 scrsz(4)/2])
plot(t, xhatukfArray(1:3,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
legend('\omega_x (rad/s)', '\omega_y (rad/s)', '\omega_z (rad/s)')
xlabel('Seconds'); ylabel('xhat');

figure('OuterPosition',[scrsz(3)/3 0 scrsz(3)/3 scrsz(4)/2])
plot(t, xhatukfArray(4,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
legend('r_x (m)')
xlabel('Seconds'); ylabel('xhat');

figure('OuterPosition',[2*scrsz(3)/3 scrsz(4)/2 scrsz(3)/3 scrsz(4)/2])
plot(t, zArray(1:3,:));
hold on
plot(t, zhatArray(1:3,:));
legend('z', 'zhat')
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('\omega (in rad/s)');

figure('OuterPosition',[0 0 scrsz(3)/3 scrsz(4)/2])
plot(t, Pukfarray(4,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('P_{44} (in rad/s)');

figure;
plot(tArray, d2,'b',[tArray(1) tArray(end)], chi2lim*[1 1],'r'); hold on; xlabel('t [s]'); ylabel('d^2(

k) [m]');

%% FFT analysis
figure;
fs = 1/dt;
nsamples = length(xhatukfArray(1,:));
freq = (0:nsamples-1)*(fs/nsamples);
freq0 = (-nsamples/2:nsamples/2-1)*(fs/nsamples);
y1 = fft(xhatukfArray(1,:)); power1 = abs(y1).^2/nsamples; y10 = fftshift(y1); power10 = abs(y10).^2/
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nsamples;
y2 = fft(xhatukfArray(2,:)); power2 = abs(y2).^2/nsamples; y20 = fftshift(y2); power20 = abs(y20).^2/

nsamples;
y3 = fft(xhatukfArray(3,:)); power3 = abs(y3).^2/nsamples; y30 = fftshift(y3); power30 = abs(y30).^2/

nsamples;
%plot(freq,power1); hold on; plot(freq,power2); hold on; plot(freq,power3)
plot(freq0,power10); hold on; plot(freq0,power20); hold on; plot(freq0,power30)
xlabel('Frequency')
ylabel('Power')

display(sprintf('Estimated r_x = %.10f mm', 10^3*xhatukf(4,end)));
display(sprintf('True r_x = %.10f mm', 10^3*Rcm(1)));
display(sprintf('Estimated r_y = %.10f mm', 10^3*xhatukf(5,end)));
display(sprintf('True r_y = %.10f mm', 10^3*Rcm(2)));
display(sprintf('Estimated r_z = %.10f mm', 10^3*xhatukf(6,end)));
display(sprintf('True r_z = %.10f mm', 10^3*Rcm(3)));
disp(['Elapsed time = ', num2str(toc), ' seconds']);

Listing K.9: 6-state Unscented Kalman Filter

function ydot = eom_ukf_quat(t,y)
% y = [q1, q2, q3, q4, wx, wy, wz, rx, ry, rz]
ydot = zeros(10,1);
q = [y(1); y(2); y(3); y(4)];
omega = [y(5); y(6); y(7)];
Rcm = [y(8); y(9); y(10)];

% Testbed characteristics
J0 = [0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427];
%J0 = [0.265 0 0; 0 0.246 0; 0 0 0.427];
%J0 = eye(3);
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity
Jaug = [m*(Rcm(2)^2+Rcm(3)^2) -m*Rcm(1)*Rcm(2) -m*Rcm(1)*Rcm(3);

-m*Rcm(1)*Rcm(2) m*(Rcm(1)^2+Rcm(3)^2) -m*Rcm(2)*Rcm(3);
-m*Rcm(1)*Rcm(3) -m*Rcm(2)*Rcm(3) m*(Rcm(1)^2+Rcm(2)^2)];

%Jaug=0;
J = J0 + Jaug;

%% Model equations
% Kinematic equation

% Quaternion rates
qdot = 0.5*[0 -omega(1) -omega(2) -omega(3);

omega(1) 0 omega(3) -omega(2);
omega(2) -omega(3) 0 omega(1);
omega(3) omega(2) -omega(1) 0]*q;

% Gravity vector in body-frame
Rbi = [2*q(1)^2-1+2*q(2)^2 2*q(2)*q(3)-2*q(1)*q(4) 2*q(2)*q(4)+2*q(1)*q(3);

2*q(2)*q(3)+2*q(1)*q(4) 2*q(1)^2-1+2*q(3)^2 2*q(3)*q(4)-2*q(1)*q(2);
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2*q(2)*q(4)-2*q(1)*q(3) 2*q(3)*q(4)+2*q(1)*q(2) 2*q(1)^2-1+2*q(4)^2];
gb = Rbi' * [0; 0; -g];

% Dynamics equation
omegadot=J\(-cross(omega,J*omega)+cross(Rcm,gb*m));

%% Derivatives (xdot)
% qdot
ydot(1:4) = qdot;
% Euler angles (dot)
ydot(5:7) = omegadot;

Listing K.10: Equations of motion used in the 6-state UKF

K.5 Adaptive Control Simulation

function ChesiBalancing
% Adaptive control method for balancing the transverse plane
% components of the unbalance vector developed by Chesi.

tf = 30; % simulation length
dt = 0.01; % simulation step size

%% Testbed characteristics
% (see eom_chesi.m)
%J = [0.265 0 0; 0 0.246 0; 0 0 0.427];
J = [0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427];
Rcm = [-1; -2; -5]*10^-3; % CM offset vector
m = 14.307; % mass of the testbed, in kg
m_mmu = 0.7; % mass of one Movable Mass Unit (MMU), in kg
g = 9.78; % in m/s^2, local gravity
kp = 0.5; % Gain constant in the controller
v_mmu = 0.001; % velocity of the MMUs (1mm/s approx.)

%% Initialize arrays for later plotting
tArray = 0;
omegaArray = zeros(3,1);
r_mmusArray = zeros(3,1);
ctrltorqueArray = zeros(3,1);
r_estArray = zeros(3,1);

%% Initialization of model initial conditions
y = [[1 zeros(1,3)] [0 0 0] Rcm' zeros(1,3) zeros(1,3)];

tic;
for t = dt : dt : tf

tc=round(t/dt); % Time counter

%% Simulation of the system model
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[~, y_dt] = ode23('eom_chesi', [0 dt], y(:), 1e-5);
y(:)=y_dt(size(y_dt,1),:)'; % y = [q omega r r_est, r_mmu]
%% MMUs operation
omega = [y(5); y(6); y(7)];
% gb cross operator at end of time step
q = [y(1); y(2); y(3); y(4)];
Rbi = [2*q(1)^2-1+2*q(2)^2 2*q(2)*q(3)-2*q(1)*q(4) 2*q(2)*q(4)+2*q(1)*q(3);

2*q(2)*q(3)+2*q(1)*q(4) 2*q(1)^2-1+2*q(3)^2 2*q(3)*q(4)-2*q(1)*q(2);
2*q(2)*q(4)-2*q(1)*q(3) 2*q(3)*q(4)+2*q(1)*q(2) 2*q(1)^2-1+2*q(4)^2];

gb = Rbi' * [0; 0; -g];
gbcross = [0 -gb(3) gb(2);

gb(3) 0 -gb(1);
-gb(2) gb(1) 0];

% control torque at end of time step
r_est = [y(11); y(12); y(13)];
Phi = -m*gbcross;
P = eye(3) - gb*gb'/norm(gb)^2;
omegap = P*omega;
control_torque = -Phi*r_est-kp*omegap;

% Determine the new r_mmus vector. Dynamics of the MMUs are not considered,
% which means r_mmus changes instantaneously
r_mmus = gbcross*control_torque/(norm(gb)^2*m_mmu);
for mmu_counter=1:3

y(13+mmu_counter) = r_mmus(mmu_counter);
end

%% Save data for plotting.
%xArray(:,tc+1) = xstate;
tArray = [tArray t];
omegaArray = [omegaArray omega];
r_mmusArray = [r_mmusArray r_mmus];
r_estArray = [r_estArray r_est];
ctrltorqueArray = [ctrltorqueArray control_torque];

end

%% Plot results
figure;
plot(tArray, omegaArray(1,:));
hold on
plot(tArray, omegaArray(2,:));
hold on
plot(tArray, omegaArray(3,:));
title('Angular velocities of the testbed')
legend('\omega_x', '\omega_y', '\omega_z')
xlabel('Time (s)')
ylabel('Angular velocities [rad/s]')

figure;
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plot(tArray, r_mmusArray(1,:));
hold on
plot(tArray, r_mmusArray(2,:));
hold on
plot(tArray, r_mmusArray(3,:));
title('Balance masses positions')
legend('r_{mmux}', 'r_{mmuy}', 'r_{mmuz}')
xlabel('Time (s)')
ylabel('Positions [m]')

figure;
plot(tArray, ctrltorqueArray(1,:));
hold on
plot(tArray, ctrltorqueArray(2,:));
hold on
plot(tArray, ctrltorqueArray(3,:));
title('Control torque components')
legend('\tau_{x}', '\tau_{y}', '\tau_{z}')
xlabel('Time (s)')
ylabel('Torques [N\cdot m]')

figure;
plot(tArray, r_estArray(1,:));
hold on
plot(tArray, r_estArray(2,:));
hold on
plot(tArray, r_estArray(3,:));
title('Estimated unbalance vector components')
legend('r_{x-estimated}', 'r_{y-estimated}', 'r_{z-estimated}')
xlabel('Time (s)')
ylabel('Length [m]')
disp(['Elapsed time = ', num2str(toc), ' seconds']);
end

Listing K.11: Adaptive Control scheme

function ydot = eom_chesi(t,y)
% Equations of motion developed in the work of Chesi.
% y = [q1, q2, q3, q4, wx, wy, wz, rx, ry, rz, rx_est, ry_est, rz_est, r_mmux, r_mmuy, r_mmuz]
kp = 0.5; % Control gain
ydot = zeros(16,1);
dt = 0.01;
v_mmu = 0.001; %1mm/s

q = [y(1); y(2); y(3); y(4)];
omega = [y(5); y(6); y(7)];
Rcm = [y(8); y(9); y(10)];
r_est = [y(11); y(12); y(13)];
MMUx = [y(14); -0.22; 0];
MMUy = [0.22; y(15); 0];
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MMUz = [-0.22; 0; y(16)];

% Testbed characteristics
J0 = [0.265 -0.014 -0.035; -0.014 0.246 -0.018; -0.035 -0.018 0.427];
%J0 = [0.265 0 0; 0 0.246 0; 0 0 0.427];
%J0 = eye(3);
m = 14.307; % mass of the testbed
m_mmu = 0.7; % mass of movable part of a MMU
g = 9.78; % in m/s^2, local gravity
Jaug = [m*(Rcm(2)^2+Rcm(3)^2) -m*Rcm(1)*Rcm(2) -m*Rcm(1)*Rcm(3);

-m*Rcm(1)*Rcm(2) m*(Rcm(1)^2+Rcm(3)^2) -m*Rcm(2)*Rcm(3);
-m*Rcm(1)*Rcm(3) -m*Rcm(2)*Rcm(3) m*(Rcm(1)^2+Rcm(2)^2)];

%Jaug=0;
J = J0 + Jaug;

% Update of inertia tensor
MMUxCross = [0 -MMUx(3) MMUx(2);

MMUx(3) 0 -MMUx(1);
-MMUx(2) MMUx(1) 0];

MMUyCross = [0 -MMUy(3) MMUy(2);
MMUy(3) 0 -MMUy(1);
-MMUy(2) MMUy(1) 0];

MMUzCross = [0 -MMUz(3) MMUz(2);
MMUz(3) 0 -MMUz(1);
-MMUz(2) MMUz(1) 0];

J = J - m_mmu * (MMUxCross*MMUxCross + MMUyCross*MMUyCross + MMUzCross*MMUzCross);

%% Model equations
% Kinematic equation
% Quaternion rates
qdot = 0.5*[0 -omega(1) -omega(2) -omega(3);

omega(1) 0 omega(3) -omega(2);
omega(2) -omega(3) 0 omega(1);
omega(3) omega(2) -omega(1) 0]*q;

% Gravity vector in body-frame
Rbi = [2*q(1)^2-1+2*q(2)^2 2*q(2)*q(3)-2*q(1)*q(4) 2*q(2)*q(4)+2*q(1)*q(3);

2*q(2)*q(3)+2*q(1)*q(4) 2*q(1)^2-1+2*q(3)^2 2*q(3)*q(4)-2*q(1)*q(2);
2*q(2)*q(4)-2*q(1)*q(3) 2*q(3)*q(4)+2*q(1)*q(2) 2*q(1)^2-1+2*q(4)^2];

gb = Rbi' * [0; 0; -g];

% Projection operator
P = eye(3) - gb*gb'/norm(gb)^2;
omegap = P*omega;
gbcross = [0 -gb(3) gb(2);

gb(3) 0 -gb(1);
-gb(2) gb(1) 0];

Phi = -m*gbcross;
control_torque = -Phi*r_est-kp*omegap;
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r_mmu = gbcross*control_torque/(norm(gb)^2*m_mmu);
control_torque = m_mmu * cross(r_mmu,gb);

% Adaptive control law for the estimated unbalance vector
r_est_dot = Phi'*omega;

%% Dynamics equation
omegadot=J\(-cross(omega,J*omega)+cross(Rcm,gb*m)+control_torque);

%% Derivatives (xdot)
% qdot
ydot(1:4) = qdot;
% Euler angles (dot)
ydot(5:7) = omegadot;
% unbalance vector derivative - the vector does not change dynamically
ydot(8:10) = 0;
% adaptive control law for estimated unbalance vector
ydot(11:13) = r_est_dot;
% mmu positions derivative
ydot(14:16) = 0;

Listing K.12: Equations of motion used in ChesiBalancing

function UKFForBalancing_Chesi
% 4-state UKF used in the second phase of the hybrid
% balancing scheme for balancing the rz component.
tf = 100; % simulation length
dt = 0.1; % simulation step size
n=4; % number of states

%% Testbed characteristics
% (see eom_ukf.m)
J = [0.265 0 0; 0 0.246 0; 0 0 0.427];
Rcm = [0; 0; -5]*10^-3; % CM offset vector
m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity

%% Filter matrices
R = [0.005^2 0 0; 0 0.005^2 0; 0 0 0.005^2];
H = [eye(3) zeros(3,1)]; % measurement matrix

%% Initialization of variables
xstate = [0; 0; 0; Rcm(3)]; % initial state
xhatukf = 2 * xstate; % initial UKF state estimate
z = H * xstate + sqrt(R) * [randn; randn; randn];
W = ones(2*n,1)/(2*n); % UKF weights (in this case, equal wheights for all sigma points)
Q = diag([0.00005 0.00005 0.00005 (0.1*Rcm(3))^2]);
y = [pi/6 pi/6 0 0 0 0 Rcm(3)];

%% Initialize arrays for later plotting
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yArray = y';
zArray = z;
tArray = 0;
zhatArray = z;
xArray = xstate;
dtPlot = dt; % how often to plot output data
xhatukfArray = xhatukf;
P = 1e-5*eye(4);
Pukf = P;
Parray = diag(P);
Pukfarray = diag(Pukf);
chi2lim = chi2inv(0.95,length(xstate));
d2 = 0;
tic;
for t = dt : dt : tf

k = round(t/dt)+1;
tc=round(t/dt); % Time counter
%% Simulate the system.
% Integrate
[~, y_dt] = ode23('eom_ukf', [0 dt], y(:), 1e-5);
y(:)=y_dt(size(y_dt,1),:)'; % y = [phi, theta, psi, wx, wy, wz, rz]
xstate(1:4) = y(4:7)' + sqrt(Q) * [randn; randn; randn; randn]; % xstate is a 12x1 column vector
% Sensor simulation with noise
z = H * xstate + sqrt(R) * [randn; randn; randn];
%% Simulate the Unscented Kalman filter.
%% Step 1: the model must be written in the form
% x_k+1 = f(xk, uk, tk) + wk (additive noise model)
% yk = h(xk, tk) + vk
% wk ~ (0, Qk)
% vk ~ (0, Rk)

%% Step 2: The UKF must be initialized (x0hat_posteriori and P0_posteriori)
% Done
%% Step 3: Time update
[root,~] = chol(n*Pukf); %n*P
for i = 1 : n %1:n

sigma(:,i) = xhatukf + root(i,:)';
sigma(:,i+n) = xhatukf - root(i,:)';

end
for i = 1 : 2*n %1:2n

xbreve(:,i) = sigma(:,i);
end

%% Step 3(b): Use the known f(.) non linear function to transform the
% sigma points into xhat_k(i) vectors.
for i = 1:2*n

% x = [omegax, omegay, omegaz, Rcm(3)]
% y = [phi, theta, psi, wx, wy, wz, rz]
xbrevedot = eom_ukf(t,[y(1:3)'; xbreve(1:4,i)]); %first input to UKF_laicatestbed_Chesi2015 is
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irrelevant (time t)
xbreve(:,i) = xbreve(:,i) + [xbrevedot(4:6); 0] * dt;

end

%% Step 3(c): Combine the xhat_k(i) vectors to obtain the a priori state
% estimate at time k.
xhatukf = zeros(n,1);
for i = 1 : 2*n % i=1:2n

xhatukf = xhatukf + W(i) * xbreve(:,i); % W is the wheight function (see beginning of file)
end

%% Step 3(d): Estimate a priori error covariance.
Pukf = zeros(n,n);
for i = 1 : 2*n %i=1:2n

Pukf = Pukf + W(i) * (xbreve(:,i) - xhatukf) * (xbreve(:,i) - xhatukf)';
end
Pukf = Pukf + Q;
d2(k) = (z - H * xhatukf)' * inv(H * Pukf * H' + R) * (z - H * xhatukf); %xhatukf and Pukf -> a priori

%% Step 4: Measurement update
%% Step 4(a): Choose sigma points x_k(i).
% Start of optional step (comment lines below if you want)
[root,~] = chol(n*Pukf); %n=15
for i = 1 : n %1:n

sigma(:,i) = xhatukf + root(i,:)';
sigma(:,i+n) = xhatukf - root(i,:)';

end
for i = 1 : 2*n %1:2n

xbreve(:,i) = sigma(:,i);
end
% End of optional step (comment lines above if you want)

%% Step 4(b): Apply the nonlinear measurement equation to the sigma
% points. In our case, the measurement equation is linear.
for i = 1 : 2*n %i=1:2n

zukf(:,i) = H*xbreve(:,i);
end

%% Step 4(c): Combine the yhat_k(i) vectors to obtain predicted
% measurement at time k.
zhat = zeros(3,1);
for i = 1 : 2*n %i=1:2n

zhat = zhat + W(i) * zukf(:,i);
end

%% Step 4(d): Estimate the covariance of the predicted measurement.
% Obs.: Rk has to be added.
% and Step 4(e): estimate the cross covariance between xhat_k_priori
% and yhat_k
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Py = zeros(3,3);
Pxy = zeros(n,3);
for i = 1 : 2*n %i=1:2n

Py = Py + W(i) * (zukf(:,i) - zhat) * (zukf(:,i) - zhat)';
Pxy = Pxy + W(i) * (xbreve(:,i) - xhatukf) * (zukf(:,i) - zhat)';

end
Py = Py + R;

%% Step 4(f): The measurement update may be performed using the standard
% Kalman filter equations.
Kukf = Pxy * inv(Py);
xhatukf = xhatukf + Kukf * (z - zhat);
Pukf = Pukf - Kukf * Py * Kukf';

%% Save data for plotting.
yArray(:,k) = y';
PArray(:,:,k) = Pukf;
xArray(:,tc+1) = xstate;
zArray(:,tc+1) = z;
zhatArray(:,tc+1) = zhat;
xhatukfArray(:,tc+1) = xhatukf;
Parray(:,tc+1) = diag(P);
Pukfarray(:,tc+1) = diag(Pukf);
tArray = [tArray t];

end
rx_hat_mean = mean(xhatukfArray(4,round(end/2):end))
% Plot results
close all
t = 0 : dtPlot : tf;
for i = 1:size(PArray,3)

vwx_est(i) = PArray(1,1,i);
vwy_est(i) = PArray(2,2,i);
vwz_est(i) = PArray(3,3,i);
vrz_est(i) = PArray(4,4,i);

end
count = 0;
for i = 1:length(d2)

if d2(i) > chi2lim
count = count + 1;

end
end
Performance = 1 - count/length(d2);
display(sprintf('Percentage of inovation samples inside Chi-Square margin: %.2f

%%',100*Performance))

figure;
plot(tArray, yArray(1:3,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('Attitude [rad]');
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title('y(1:3) - rpy')

% Plot results
figure;
subplot(421);
plot(tArray,xArray(1,:)-xhatukfArray(1,:),'k'); hold on;
plot(tArray,+3*sqrt(vwx_est),'k:'); plot(tArray,-3*sqrt(vwx_est),'k:');
xlabel('t [s]'); ylabel('\omega_x [rad/s]'); title('Estimation error in \omega_x and

3\sigma intervals');
subplot(422);
plot(tArray,xArray(2,:)-xhatukfArray(2,:),'k'); hold on;
plot(tArray,+3*sqrt(vwy_est),'k:'); plot(tArray,-3*sqrt(vwy_est),'k:');
xlabel('t [s]'); ylabel('\omega_y [rad/s]'); title('Estimation error in \omega_y and

3\sigma intervals');
subplot(423);
plot(tArray,xArray(3,:)-xhatukfArray(3,:),'k'); hold on;
plot(tArray,+3*sqrt(vwz_est),'k:'); plot(tArray,-3*sqrt(vwz_est),'k:');
xlabel('t [s]'); ylabel('\omega_z [rad/s]'); title('Estimation error in \omega_z and

3\sigma intervals');
subplot(424);
plot(tArray,xArray(4,:)-xhatukfArray(4,:),'k'); hold on;
plot(tArray,+3*sqrt(vrz_est),'k:'); plot(tArray,-3*sqrt(vrz_est),'k:');
xlabel('t [s]'); ylabel('r_z [m]'); title('Estimation error in r_z and 3\sigma

intervals');
subplot(4,2,[5 6]);
plot(tArray, d2,'k',[tArray(1) tArray(end)], chi2lim*[1 1],'k'); hold on; ylabel('d^2(k)');
title('Chi-squared test');
subplot(4,2, [7 8]);
plot(t, xhatukfArray(4,:), 'k'); hold on; plot(t, sqrt(Pukfarray(4,:)), 'k');
xlabel('t [s]'); ylabel('r_z [m]'); legend('r_zhat','P_{44}^{1/2}')
title('Estimation of r_z and corresponding deviation');

scrsz = get(groot,'ScreenSize');
figure('OuterPosition',[0 scrsz(4)/2 scrsz(3)/3 scrsz(4)/2])
%[(distance of left border from left margin of screen);
% (distance of bottom border from bottom of screen);
% width; height]'.
plot(t, xArray(1:3,:));
set(gca,'FontSize',12); set(gcf,'Color','White');
xlabel('Seconds'); ylabel('\omega (in rad/s)');
disp(['Elapsed time = ', num2str(toc), ' seconds']);

Listing K.13: 4-state UKF used in the second phase of the hybrid balancing scheme

function ydot = eom_ukf(t,y)
% y = [phi, theta, psi, wx, wy, wz, rz]
ydot = zeros(7,1);
Rcm = [0 0 y(7)]';
%J0 = [0.265 0 0; 0 0.246 0; 0 0 0.427];
J0 = [0.265 0 0; 0 0.246 0; 0 0 0.427];
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m = 14.307; % mass of the testbed
g = 9.78; % in m/s^2, local gravity
Jaug = [m*(Rcm(2)^2+Rcm(3)^2) -m*Rcm(1)*Rcm(2) -m*Rcm(1)*Rcm(3);

-m*Rcm(1)*Rcm(2) m*(Rcm(1)^2+Rcm(3)^2) -m*Rcm(2)*Rcm(3);
-m*Rcm(1)*Rcm(3) -m*Rcm(2)*Rcm(3) m*(Rcm(1)^2+Rcm(2)^2)];

J = J0 + Jaug;
omega = [y(4); y(5); y(6)];
sphi = sin(y(1));
cphi = cos(y(1));
sth = sin(y(2));
cth = cos(y(2));
%% Model equations
% Kinematic equation
% Euler rates
eulerdot = [1 sphi*tan(y(2)) cphi*tan(y(2));

0 cphi -sphi;
0 sphi/cth cphi/cth]*omega;

% Gravity vector in body-frame
%gb = [g*sth; -g*sphi*cth; -g*cphi*cth];
% Dynamics equation
omegadot=J\(-cross(omega,J*omega)+ [g*sphi*cth*m*y(7); g*sth*m*y(7); 0]);
%% Derivatives (xdot)
% Omega(dot)
ydot(1:3) = eulerdot;
% Euler angles (dot)
ydot(4:6) = omegadot;

Listing K.14: Equations of motion used in the 4-state UKF
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