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Resumo

Esse trabalho foi realizado no contexto de uma cooperação de pesquisa internacional
entre a Universidade de Braśılia, a Agência Espacial Brasileira (AEB), a ENS Paris-
Saclay e o grupo SAFRAN. O principal objetivo desta cooperação é a investigação do
fenômeno de fadiga por fretting, problema de contato associado a cargas de fadiga que
é responsável por reduzir consideravelmente a vida em fadiga de componentes mecânicos
devido às elevadas concentrações de tensão, o desgaste e as condições de carregamento
não proporcionais envolvidas nestes problemas. Levando-se em consideração o elevado
custo computacional presente quando avalia-se aplicações industriais, um dos objetivos
deste trabalho é melhorar a performance de simulações de fretting através do uso de
uma abordagem de enriquecimento. A ideia é aproveitar-se do fato de que os campos
mecânicos ao redor das bordas de contatos ciĺındricos sob condições de fretting são
similares aqueles encontrados nas proximidades da ponta da trinca em problemas de
mecânica da fratura linear elástica. Essa semelhança torna atrativa a ideia de enriquecer
simulações de fretting via elementos finitos fazendo-se o uso do X-FEM (Método dos
Elementos Finitos Estendidos), que permite o uso de malhas mais grosseiras enquanto se
mantém uma boa precisão dos resultados. Como será mostrado neste trabalho, fazendo-se
o uso da técnica de enriquecimento é posśıvel trabalhar com malhas até 10 vezes mais
grosseiras quando comparadas com o método dos elementos finitos convencional, o que
permite uma forte melhora na performance computacional.

Esse trabalho também investigará a influência de se considerar os efeitos do desgaste na
predição da vida em fadiga sob condições de fretting. Portanto, simulações de fretting via
método dos elementos finitos foram conduzidas considerando a atualização das superf́ıcies
de contato devido a remoção de material e os resultados foram comparados com dados
experimentais e simulações onde o efeito de desgaste é desprezado (hipótese simplificadora
comumente adotada quando avalia-se problemas de fadiga por fretting). Critérios con-
vencionais de fadiga multiaxial associados à Teoria das Distncias Cŕıticas foram utilizados
a fim de estimar vida. Os resultados mostraram que, para os dados investigados, onde
ensaios de fretting foram conduzidos em uma liga Ti-6Al-4V sob condições de escorrega-
mento parcial, considerar o desgaste nas análises pode ligeiramente melhorar a precisão
nas estimativas de vida. Entretanto, essa ligeira melhora pode não ser justificável ao se
considerar os elevados custos computacionais quando comparado com abordagens padrões
onde o efeito de desgaste é desprezado.



Abstract

This work has been undertaken in the context of an international research cooperation
between the University of Brasilia, the Brazilian Space Agency (AEB), the ENS Paris-
Saclay and the SAFRAN group. The main subject of this cooperation is the investigation
of fretting fatigue, which is a contact problem in conjunction with fatigue loads responsible
for reducing considerably components’ fatigue life due to the high stress concentration,
wear and non-proportional loading conditions involved in such problems. Regarding the
high computational costs involved when assessing industrial applications, one of the aims
of this work is to improve the performance of fretting simulations making use of an
enrichment approach. The idea is to take advantage of the fact that the mechanical fields
around the contact edges in cylindrical contact configurations under fretting conditions
are similar to the ones found close to the crack tip in linear elastic fracture mechanics
problems. This similarity makes attractive the idea of enriching finite element fretting
simulations through the X-FEM framework, which enables us to work with coarser meshes
while keeping a good accuracy. As it will be shown in this work, it is possible to work
with meshes up to 10 times coarser than it should be if a conventional FE method was
used allowing a strong improvement of the computational performances.

This work will also investigate the influence of considering wear effects in the predic-
tion of fretting fatigue lives. Therefore, fretting fatigue FE simulations have been carried
considering the geometry update due to the material removal and results were compared
to both experimental data and FE simulations where wear effects were neglected (simpli-
fying strategy usually adopted when evaluating fretting fatigue problems). Conventional
multiaxial fatigue criteria in association with the Theory of Critical Distances have been
used in order to predict life. Results have shown that, for the data here assessed, where
fretting fatigue tests were conducted on a Ti-6Al-4V alloy under partial slip conditions,
considering wear effects might slightly increase the accuracy of life predictions. However,
this slight improvement may not be worthwhile regarding the increase in the computa-
tional cost when compared to standard approaches where wear is neglected.
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Chapter 1

Introduction

This work is settled in the context of the COGNAC project (COmpetion between the
Gradient effect and the scale effect in Notch fatigue And Contact fatigue), which was
proposed and conceived by Snecma, part of the SAFRAN group. This work is also
supported by the Brazilian Space Agency (AEB). In this framework, the aim of the
research carried out here is to improve the numerical capabilities of performing fretting
simulations.

Fretting occurs when two or more mechanical components come into contact and at
least one of them is subjected to vibration loads inducing micro-slip between the contact
surfaces. This damage phenomenon, known as fretting, may speed up the nucleation
of short cracks in the vicinity of the contact surfaces. In practical situations, if those
components are also subjected to bulk fatigue loads, some of these cracks may propagate
leading to failure by fretting fatigue (Hills and Nowell, 1994).

The fretting fatigue problem is of great importance, for instance, within the aerospace
industry. Figure 1.1 depicts the dovetail connection between blades and discs in aircraft
engines. In this case, the centrifugal load and the vibrations due to the aeroelastic in-
teractions provide fretting fatigue conditions. A simplified spectrum of the micro-slip
experienced by the dovetail connection during a flight is presented in Figure 1.2. In this
case, we can observe low-cycle fatigue during take-off and landing phases as well as high-
cycle fatigue during the cruise phase. Despite the complexity of the problem presented
in Figure 1.1, in practice, simplified contact configurations as the cylinder-plane one (see
(Munoz et al., 2006; Rossino et al., 2009; de Pannemaecker et al., 2015)) are assessed
experimentally in order to obtain better understanding about the fretting-fatigue phe-
nomenon. In the case of a cylinder-plane contact configuration, Figure 1.3, a normal
load, P , is applied to the cylindrical pad while the specimen is fixed on the bottom. After
that, a tangential load, Q(t), is applied to the pad ensuring fretting conditions. In case
of fretting fatigue, the specimen is also subjected to a fatigue bulk load, Fb(t), that is not
necessarily in phase with the tangential load. We can also see in Figure 1.3, the level of
refinement required in such problems when numerical simulations are performed which
leads to high CPU costs.

Over the years, various methodologies have been proposed in order to design safe com-
ponents against fretting fatigue. Some of these methodologies are based on the evaluation
of a nonlocal representative stress/strain tensor, which can be further used inside classical
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multiaxial fatigue criteria (Araújo et al., 2007, 2008; Fouvry et al., 2014). Another com-
mon approach is to check if a short crack after being initiated will arrest or not through
LEFM approaches (Araújo and Nowell, 1999; Fouvry et al., 2008; Dini et al., 2006). The
main concern with the previous approaches is that all of them require simulations with
fine meshes (even a few microns, Figure 1.3) in order to capture the strong stress gradient
nearby the contact surfaces. The elements size in these refined meshes is often much
smaller than the global characteristic dimension of the problem studied.

In an attempt to overcome this issue, recently, Montebello et al. (Montebello et al.,
2016) proposed a new numerical approach capable of capturing the stress gradient effect
in fretting fatigue problems through nonlocal intensity factors, which can be computed
through a non-intrusive reduced order modelling technique based on LEFM insights. They
could also confirm, in a generalized way, the similarity between the mechanical fields
found in contact problems with the ones found close to the crack tip in LEFM problems
as previously suggested by (Giannakopoulos et al., 1998, 2000).

In this setting, one of the ideas behind this work is to enrich fretting simulations
performed on coarse meshes through the X-FEM method, once that, as it has been shown
in (Montebello et al., 2016), the kinematic fields around the contact edges in cylindrical
contact problems under fretting conditions resemble the kinematic fields around the crack
tip in fracture mechanics problems. The idea of using the X-FEM technique in the context
of the simulation of fretting problems has been already the subject of several works (see
e.g. (Giner et al., 2008a, 2009; Pierres et al., 2011; Baietto et al., 2013)). In these
works, the aim was to simulate crack growth under fretting conditions. In addition, it
will not be the first time that the partition of unity framework is applied to enrich the
mechanical fields arising from contact problems. The numerical modelling of complete
sliding contact was carried out through the partition of unity by (Giner et al., 2008b). As
in such complete contact problems there are strong singularities in the contact corners,
the authors have used the X-FEM to enrich the displacement field nearby these critical
zones. Besides that, a domain integral formulation was adopted to compute a generalized
stress intensity factor (Fuenmayor et al., 2005).

This work also intends to verify the influence of considering wear effects when esti-
mating fretting fatigue lives. Over the last decades, many efforts have been made in an
attempt to understand better the mechanisms of failure present in fretting fatigue prob-
lems. Recently, some authors (McColl et al., 2004; Ding et al., 2004; Madge et al., 2007a,b;
Cruzado et al., 2013; Garcin et al., 2015) have tried to verify the influence of the material
removal due to wear when assessing fretting fatigue. The key point here is that, most of
the multiaxial fatigue models commonly considered in order to evaluate fretting problems
so far are stress-strain based. Consequently, the sub-surface stress modifications due to
wear may lead to completely different results in terms of life estimates mainly under gross
sliding conditions. Therefore, in this work, classical multiaxial fatigue criteria will be
used to estimate fretting fatigue life on a Ti-6Al-4V alloy where all the experimental data
assessed was conducted under partial slip conditions (Ferry, 2017). Life prediction will be
carried out considering wear effects, where the contact/sub-surface stress modifications
demands the use of a cumulative damage law. Results will be compared to both standard
fretting fatigue simulations where wear is neglected and with experimental data. At the
end, the idea is to verify whether under partial slip regime wear needs to be taken into
account or not (simplifying approach adopted in most of the work in the fretting research
field (Szolwinski and Farris, 1996; Araujo and Nowell, 2002; Hattori et al., 2003; Araujo
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et al., 2004; Sum et al., 2005; Navarro et al., 2008; Fouvry et al., 2014; Araújo et al.,
2017).).

The remaining of this manuscript is organized as follows:

• Chapter 2: The fretting fatigue problem is introduced. A historical review of the
main research progress in the field over the last decades is presented as well. In addi-
tion, this chapter also addresses the following aspects: fretting fatigue experimental
apparatus, wear, fatigue of materials and basic contact mechanics.

• Chapter 3: A new computational approach for the simulation of fretting prob-
lems is introduced, where it aims to reduce the computational costs involved when
solving such problems. In this case, taking advantage of the crack analogue ap-
proach discussed in (Montebello et al., 2016), an enrichment technique is used in
order to enhance the quality of the results in the context of FE simulations when
using coarser meshes. For so, the X-FEM is used to enrich the displacement field
discretization close to the contact edges in fretting problems.

This chapter ends with a comparison between standard and enriched FE simulations
for both partial and gross sliding conditions. This intends to verify the improvements
in the quality of the results as well as the decrease in the computational cost when
using the enrichment strategy here investigated.

• Chapter 4: This chapter investigates the effects of considering the material removal
due to wear when estimating fretting fatigue lives. The FE computational strategy
used to update the contacting surfaces as wear evolves as well as the procedure used
to evaluate the fatigue damage over the fretting cycles are also presented in this
chapter.

In the end of the chapter, fatigue life estimates considering and neglecting wear are
compared with experimental data for the Ti-6Al-4V titanium alloy. In this case,
only tests under partial slip conditions are considered.

• Chapter 5: The main conclusions draw on this thesis are highlighted. Suggestion
for future work are also addressed in this chapter.
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Chapter 2

Literature review

2.1 Fretting fatigue

The phenomenon so-called fretting has been considerably studied over the last century.
The first recorded reference in the literature seems to be in the paper of Eden et al. (Eden
et al., 1911), published in 1911. Fretting was identified by the presence of oxide debris
on the surface of the steel grips in contact with plain fatigue specimens. The first actual
investigation of the fretting process was carried out by Tomlinson (Tomlinson, 1927). He
associated this phenomenon to very small relative tangential displacements on the contact
surface between materials. Later, more systematic investigations of fretting fatigue showed
that specimens previously subjected to fretting conditions, presented fatigue strength
reductions (14− 17%) (Warlow-Davies, 1941). Further studies conducted by (McDowell,
1952), pointed out that combined effects of fretting and fatigue could reduce material
fatigue strength by factors ranging from 2 to 5 or even more. However, it is worth
mentioning that only after late 1960’s more systematic investigations of parameters such as
contact pressure, relative tangential displacement, contact size, fretting wear, environment
conditions and stress concentration on fretting fatigue were conducted, where (Nishioka
and Hirakawa, 1969a,b,c,d; Nishioka and Kenji, 1972) analysed independently many of
these factors. One of the main conclusions was the small influence of the frequency of
the cyclic loading on the fretted specimens lives. They could also observe the presence of
non-propagating cracks in some of the fretting fatigue experiments, leading to conclude
that although fretting may collaborate to crack initiation, other parameters may influence
the crack arrest. The influence of the relative slip between the surfaces was also verified
in their study, showing that in a range from 5µm to 50µm fatigue strength was reduced
while above 50µm of slip displacement fatigue cracks were not observed, probably because
in these cases the role played by the wear was too strong and cracks were worn out as
soon as they initiated. This behaviour was later evaluated by (Vingsbo and Söderberg,
1988), Figure 2.1. Besides those features, in (Nishioka and Hirakawa, 1969b) the cracks
were noticed to initiate in the high stress zones close to the contact edges and propagate
entering the region behind the contact zone. In (Nishioka and Hirakawa, 1969c) they
observed that the mean bulk stress applied to specimens had not great effects on the
fretting fatigue life.

In the 1970’s, a number of different approaches aiming to design against fretting
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Figure 2.1: Fretting map: wear (thick line) and fatigue life as function of slip amplitude
(Vingsbo and Söderberg, 1988).

fatigue were proposed. In (Gordelier and Chivers, 1979) a literature review of palliatives
for fretting fatigue as surface treatments, coatings, shims and friction reduction is carried
out. A few authors have also focused on stress concentration effects as in (Wright and
O’Connor, 1972). In 1973, Bramhall (Bramhall, 1973) performed a study where he varied
the size of the contact zone in fretting fatigue tests while keeping constant the contact
peak pressure. He could observe that for a certain critical contact size, the fatigue life
of the tests were significantly reduced, which he attributed to the stress gradient effect.
Small contacts have steeper stress decays, whereas larger contacts have smoother ones for
the same levels of surface stress. This behaviour was later confirmed by other authors as
(Nowell, 1988; Araújo and Nowell, 1999). Endo and Goto (1976) performed crack growth
measurements on mild still using cylindrical pads under full slip conditions. They showed
that cracks initiated on shear planes (stage I) and then quickly started propagating nearly
perpendicular to the contact surface (stage II). In their work, it was possible to see that
fretting does not only accelerate crack initiation but it also has a great influence on early
stages of crack propagation.

Ruiz et al. (1984) proposed a particularly popular method used to predict fretting
fatigue performance by the use of empirical parameters formulated purely for the fretting
case. Firstly, it was based on the definition of an energy damage parameter defined as the
product of the local slip amplitude with the maximum shear traction (τδ). A further im-
provement of this formulation was made by introducing the maximum stress component
parallel to the contact surface (στδ). This was found to give better estimations of the
location of fretting cracks initiation. Although the physical interpretation of this param-
eter is not very clear, it often provides a good correlation with experimental observations
(Ciavarella et al., 2001).

With the continuous progress in the development of the contact mechanics theory over
the last century (Hertz, 1882; Cattaneo, 1938; Muskhelishvili, 1953; Johnson, 1987), ana-
lytical results made it possible to obtain precise information about the mechanical fields for
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simple geometries commonly utilized to evaluate the fretting fatigue phenomenon. Thanks
to that, some authors have started working with different theories to predict fretting fa-
tigue performance, among them, notch analogy (Giannakopoulos et al., 2000; Araújo
et al., 2007; Dini et al., 2006), crack analogy (Giannakopoulos et al., 1998; Ciavarella,
2003) and short crack arrest (Araújo and Nowell, 1999; Dini et al., 2006; Fouvry et al.,
2008). At this point, it would be nearly impossible to cover all the relevant contributions
to the fretting fatigue field over the last years. Therefore, bearing in mind the numerical
scope of this thesis, the next section briefly describes some of the relevant works on the
simulation of fretting fatigue carried out in the last decades.

2.2 Numerical modelling of fretting fatigue

With the advent progress of computational mechanics, the fretting fatigue problem could
be better understood through the simulation of more complex and realistic phenomena,
for example, Ruiz et al. (1984) conducted an early study involving the application of a
2D finite element analysis to model fretting fatigue in a dovetail joint. Later, Papanikos
et al. (1998) came with a 3D nonlinear finite element analysis of the same problem. In
(Munoz et al., 2006), under plain fretting conditions, a model which combines both crack
nucleation and propagation processes is used to predict the crack extension throughout
the life of the component. A finite element sub-modelling method was used to estimate
crack progation life in (Fadag et al., 2008). In (Baietto et al., 2013; Giner et al., 2014)
the crack propagation under fretting conditions is simulated through the X-FEM as well
as the interactions between the crack faces are taken into account.

Concerning elasto-plastic analysis, Tsai and Mall (2000) investigated a pre-stressed
strip with a cylindrical pad. In (Goh et al., 2006) crystallographic plasticity is repre-
sented in two-dimensional fretting analyses of Ti-6Al-4V. The relationship between the
location of maximum localized plasticity and Ruiz fretting damage parameter with the
crack initiation site was carried out in (Talemi and Wahab, 2012). Fretting fatigue life
is predicted considering a damage-coupled elastic-plastic constitutive model and wear in
(Shen et al., 2015). In (McColl et al., 2004; Ding et al., 2004; Madge et al., 2007a,b;
Cruzado et al., 2013; Garcin et al., 2015) fatigue damage assessments were carried out
taking into account wear effects (material removal). These works were capable of cap-
turing the increasing effects in fatigue life for gross slip regimes. Ben Dhia and Torkhani
(2008) considered a multimodel/multiscale strategy (Arlequin method) in order to model
fretting wear. In (Ding et al., 2007; Basseville et al., 2011) wear modelling considering
third body interactions were carried out. Yue and Wahab (2017) investigated the influ-
ence of the friction coefficient variation in the numerical assessment of fretting problems.
The digital image correlation method (DIC) was used to calibrate the friction coefficient
in a FE model in (Nesládek et al., 2012). In (Rodŕıguez-Tembleque et al., 2011) a 3D
boundary element method formulation was used to simulate fretting wear under both par-
tial and slip regimes. The boundary element method was also considered in the analysis
of a Cattaneo-Mindlin problem in (Cavalcante et al., 2017). The work of Wang et al.
(2012) introduced a new rolling contact solver using a semi-analytical method in order to
evaluate 3D steady-state rolling contact problems, where creep effects were also included
in the analysis.

The numerical modelling of complete sliding contact was carried out through the par-
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tition of unity framework by (Giner et al., 2008b). These authors have enriched the
displacement field close to the contact edges (XFEM) in order to capture the stress singu-
larities in these regions. Besides, a domain integral formulation was adopted to compute
a generalized stress intensity factor (Fuenmayor et al., 2005). More recently, Montebello
et al. (2016) proposed a new numerical method to describe the stress gradient effect in
fretting problems through an analogy to fracture mechanic problems.

2.3 Fretting fatigue experimental testing

Over the years, experimental investigations of fretting fatigue have occurred in many
different ways. Initially, due to its simplicity, the contact set-up between a specimen and
“bridge” pads was common, Figure 2.2(a), which remained popular until the 1990’s. In
such configuration, a regular fatigue specimen can be used, where the fatigue loads can
be applied due to cyclic bending or tension. The bridges are clamped to the specimen
and the cyclic strain in the specimen provokes the relative motion between the contact
parts. Despite its simplicity, this contact configuration brings some difficulties. It is not
easy to characterize contact conditions at the pad feet, particularly if bending takes place
in the bridge. In general, contact conditions at each foot are not the same and it is likely
that one foot slips before the other. In this case, slip regime during the experiment is
frequently unknown.

P

σ(t)
specimen

bridge 
pads

P

P
Q(t)

P
Q(t)

R

σ(t)

(a) (b)

Figure 2.2: Freting fatigue test configurations: (a) bridge pads, (b) cylindrical pads.

In their breakthrough in the experimental investigation of fretting fatigue, Nishioka
and Hirakawa used a contact configuration characterized by cylindrical pads clamped
against flat specimens, Figure 2.2(b). This contact geometry presents many advantages
such as: pad alignment is not so critic and for some particular cases of interest (elastic
regime and partial slip conditions), the analytical solution of the problem is known (Hertz,
1882; Mindlin, 1949). Besides, important parameters as the normal load, tangential and
fatigue loads can be readily obtained throughout the experiment. Since then, this type
of geometry has been used by many other authors (Bramhall, 1973; Hills et al., 1988;
Rossino et al., 2009; Fouvry et al., 2008). In this kind of test set-up, the normal load
P is usually static while the tangential load Q is cycled in phase with the bulk fatigue
load applied to the specimen, Figure 2.2(b). Tests performed using spherical pads are
also common, (Wittkowsky et al., 2000; Dubourg et al., 2003; Baietto et al., 2013). This

8



2.3. Fretting fatigue experimental testing

geometry favours the contact alignment, however, closed form analytical solutions are
available only for axi-symmetric loads.

Other authors, on the other hand, have focused their attention on geometries closer
to actual industrial components (Papanikos et al., 1998; Ruiz et al., 1984; Rajasekaran
and Nowell, 2006). In (Ruiz et al., 1984), the apparatus consists of two blade specimens
mounted in a central disk specimen, Figure 2.3. Tension loads are applied to the blade
specimens simulating the centrifugal forces. The central disc is also subjected to tension
loads simulating the disc expansion under centrifugal loading. High cycle fatigue loads
are applied by shakers connected to the blades. Figure 2.4 depicts a photograph of a
failed specimen from the biaxial dovetail apparatus (Rajasekaran and Nowell, 2006).

mechanical shakers

blade actuator

disk actuator

load cells

Figure 2.3: Dovetail fretting fatigue apparatus.

Figure 2.4: Failed blade specimen from the biaxial dovetail apparatus (Rajasekaran and
Nowell, 2006).
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At the University of Brasilia, fretting fatigue experiments are conducted in a MTS 322
Test Frame. This machine has two independent hydraulic actuators. One of them has
a load capacity of 250 kN and it is responsible for applying the fatigue loads (including
mean stress) while the other one, with a load capacity of 100 kN, is in charge of applying
the shear fretting loads, Figure 2.5. The fretting actuator is coupled to an external
device designed at the University of Brasilia where a pump is responsible for applying
a compressive load P that presses the pad against the flat specimen (see the details in
Figure 2.5). The maximum normal load that can be applied through this system is 22.4
kN. It is worth mentioning that, this arrangement demands a hydraulic accumulator in
order to keep the normal load, P , constant during the experiments. For more details
concerning pads alignment and friction coefficient determination the reader is referred to
(Hills et al., 1988; Araujo and Nowell, 2002; Martins et al., 2008).

Enerpac

Side View

322 Test Frame

  1 - Fretting hydraulic actuator 100 kN
  2 - Load cell
  3 - Fatigue  hydraulic actuator 250 kN
  4 - Load cell
  5 - Load cell
  6 - Upper hydraulic grip
  7 - Lower hydraulic grip
  8 - Specimen
  9 - Normal load hydraulic system
10 - Bearing
11 - Pad

Figure 2.5: Schematic view of the fretting fatigue apparatus with two independent actu-
ators at the University of Brasilia.

Alternatively, fretting fatigue experiments can be performed on uniaxial fatigue ma-
chines that have only one actuator, Figure 2.6. In this case, the tangential force Q is
developed by restraining the pads movement by beams which act as springs. The load Q
can be adjusted modifying the system stiffness by changing the relative position of the
contact or varying the distance of the vertical columns, Figure 2.6.

The main advantage of the two actuator apparatus is that fretting and fatigue loads are
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uncoupled, despite what happens with the one actuator set-up, providing more flexibility
in the design of fretting conditions (e.g, fretting and fatigue loads out of phase).

upper load
cell

flexibe 
beams

vertical
column

specimen
pad

normal load
actuator

lower load
cell

pad 
support

grip

grip

Figure 2.6: Fretting fatigue apparatus with only one actuator at the University of Brasilia.

2.4 Wear aspects in the context of fretting fatigue

Depending on the contact parameters, especially the slip amplitude, the fretting process
can be divided into three different regimes (Hannel et al., 2001), namely partial slip regime
(PSR), gross slip regime (GSR) and the so-called mixed slip regime (MSR). Regarding
the PSR, the main mechanics of failure is fretting fatigue, where in this case the contact
region is divided into slip and stick zones and the wear process is considerably small and
confined into the slip areas. On the other hand, fretting wear is dominant in GSR, where
in this case, crack growth is limited by the considerably high material removal. The MSR
is observed for intermediate slip ranges and it inherits characteristics from both PSR and
GSR. In (Zhou and Vincent, 1995) the MSR is reported to be the most dangerous regime
for crack nucleation and progation. The effect of slip amplitude can be qualitatively
extracted through fretting maps as the one presented by (Vingsbo and Söderberg, 1988),
Figure 2.1.

The damage process associated with contacts under fretting conditions is a synergistic
competition involving wear, corrosion and fatigue phenomena. As a consequence, the use
of pure stress-strain based multiaxial fatigue criteria may fail to interpret the effect of slip
amplitude on fretting fatigue when wear effects are neglected (Jin and Mall, 2004).
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During fretting, wear is inherent to the problem, influencing the nucleation and prop-
agation of cracks. Recent studies (Madge et al., 2007a,b; Garcin et al., 2015) have taken
into account this issue by developing a coupled wear and fatigue approach. The simula-
tion of material removal is addressed by using local formulations of either the Archad’s
equation (McColl et al., 2004; Ding et al., 2004) or using frictional energy (Fouvry et al.,
2003; Doca and Pires, 2017).

Archad’s equation for sliding wear is commonly expressed as (Archard, 1953):

V

S
= K

P

H
(2.1)

where K is the dimensionless wear coefficient and H is the material hardness. P , S
and V are the normal contact load, total relative slip and volume of material removed,
respectively. Considering an infinitesimal area, Eq. (2.1) can be expressed locally as:

dh = κwpds (2.2)

where dh is the material removal depth for a given incremental relative slip ds, p is contact
pressure and κw the local wear coefficient.

On the other hand, the friction energy wear law consists in relating the total wear
volume to the accumulated friction energy dissipated on the contact interface.

V = α
∑

Ed (2.3)

where Ed is the friction energy dissipated during a fretting cycle and α is the energy wear
coefficient. Locally, for an infinitesimal area, the wear depth can the be expressed by

dh = αqds (2.4)

where q is the contact shear traction.

Equations (2.2) and (2.4) implemented incrementally in a nodal basis through finite
element simulations could provide a better understanding of the slip regimes influence on
fretting fatigue behaviour, where in general, under gross slip conditions, wear has benefi-
cial effects once that it removes severely damaged areas before cracks start propagating.
On the contrary, under partial slip regimes, wear tends to increase the damage process
and at the same shift the crack initiation sites towards the stick/slip transition regions
(McColl et al., 2004; Ding et al., 2004; Madge et al., 2007a,b; Garcin et al., 2015).

2.5 Fatigue of materials

Fatigue of materials is characterized by the nucleation, coalescence, and stable growth
of cracks leading to net section yielding or fracture (Socie and Marquis, 2000). In other
words, it can be seen as the weakening of a material caused by repeatedly applied loads.
It has also been reported in (Campbell, 2008) that nearly 90% of all mechanical service
failures is due to fatigue.

In general, fatigue depends on many factors as frequency of the applied loads, material
properties, stress raisers, load amplitude, load ratio and multiaxiality of the loads. The
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fatigue phenomenon can also be divided in two different concepts, Low Cycle Fatigue
(LCF) and High Cycle Fatigue (HCF). In the LCF, components are subjected to high loads
which introduces appreciable levels of plasticity and short life endurance. On the other
hand, in HCF, loads are sufficiently small in order to ensure primarily elastic deformation
and long lives (for example, more than 105 cycles).

2.5.1 Crack initiation and propagation

Fatigue cracks mostly take place at free surfaces, however, in presence of internal defects
such as voids and inclusions, they might initiate at sub-surfaces.

Cyclic plastic shear strain, cause the nucleation of slip bands. Grains whose crys-
tallographic slip planes and directions are oriented in the same direction of the applied
cyclic shear stress will be the first to form slip bands. At sufficiently high stresses and
strains, slip bands are formed in a considerable amount of grains. In presence of repeated
cyclic loading, these slip bands grow and merge into a single dominant fatigue crack. This
initial stage is denominated Stage I (crack initiation), Figure 2.7. As the crack length
becomes sufficiently large, the crack starts propagating perpendicularly to the principal
stress, where this stage is referred as Stage II.

stage I

stage II
Micro\meso
fatigue crack

σ(t)σ(t)

Figure 2.7: Illustration of the crack initiation/propagation process.

2.5.2 Wöhler diagram

Wöhler diagrams also known as S-N curves were first proposed by the German scientist
Wöhler (1870) when evaluating fatigue failures in rail-road axles. In his studies, he de-
veloped an apparatus used to apply repeated loads to rail-road axles in an attempt to
chart the relation between the load level and the number of cycles to failure. A few years
later, (Basquin, 1910) observed a power function relationship between the nominal stress
amplitude and the number of cycles to failure in HCF.

σa = σ′f (2Nf )
b′ (2.5)
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where σa is the stress amplitude, Nf is the number of cycles to failure, σ′f is the fatigue
strength coefficient and b′ the fatigue strength exponent. This type of stress-life diagrams
are still popular nowadays. In general, in order to obtain the parameters of Eq. (2.5)
standard uniaxial laboratory tests are performed. In order to apply the cyclic loads various
methods are available, e.g. rotating bend, cantilever bend, axial push-pull and torsion.

Some materials, notably low-carbon steels, exhibit a flattening off at a certain stress
level, curve A in Figure 2.8, which is commonly referred as the fatigue limit. However,
most materials, for instance aluminium and titanium alloys, exhibits a continually failing
curve, curve B in Figure 2.8. In this case, the fatigue limit may be defined by choosing a
level of stress below which failure is not expected to occur in less than a given number of
cycles.

cycles to failure, Nf

st
re

ss
 a

m
p

lit
u

d
e

, 
 

a
σ

A

B

Figure 2.8: Typical S-N curves.

2.5.3 Uniaxial fatigue and the influence of the mean stress

Considering engineering applications, components subjected to cyclic loading conditions
in the presence of mean loads are commonly observed. The well known results provided
by (Goodman, 1899; Haigh, 1917) have shown that the presence of mean tensile stress
tends to decrease the fatigue limit of materials while a compressive one may increase it.
Physically speaking, it can be explained due to the fact that tensile loads tend to open
pre-existent cracks whereas compressive loads tends to keep them closed. A common way
for representing the influence of the mean stress in fatigue problems is to express the
material fatigue endurance (stress amplitude) in terms of the mean stress, for example:

• Goodman equation (Goodman, 1899):

σa = σ−1

(
1− σm

σut

)
(2.6)

• Soderberg equation (Soderberg, 1939):

σa = σ−1

(
1− σm

σy

)
(2.7)
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• Gerber equation (Gerber, 1874):

σa = σ−1

[
1−

(
σm
σut

)2
]

(2.8)

where σm is the mean stress, σut the ultimate stress, σy the yield stress and σ−1 is the
fatigue limit for a fully reversed axial test (load ratio Rσ = −1). Figure 2.9 depicts the
shape of these equations. As can be seen, Soderberg is the most conservative model while
Gerber is the most optimistic one. In general, they accuracy will depend on the material
analysed.

Goodman

Soderberg

Gerber

σm

σa

σutσy

σ-1

Figure 2.9: Schematic representation of Haigh diagram for a constant life.

2.5.4 Miner linear cumulative damage law

Miner (1945) popularized a linear cumulative damage rule that had first been proposed
independently by (Palmgren, 1924). According to this uncoupled damage rule, fatigue
failure under a set of different stress levels is observed when:∑

i

∆Ni

Nf,i

= 1 (2.9)

where Nf,i is the number of cycles to failure at a given stress level σa,i and ∆Ni is number
of cycles applied at each stress level σa,i, Figure 2.10.
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ΔNi-1

ΔNi

ΔNi+1
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Figure 2.10: Loading history at different stress levels.

In practice, mechanical components are subjected to complex, sometimes even random,
sequence of loads. However, in these cases, the complex loading history is reduced to a
series of simple cyclic loadings by using techniques such as the rain-flow counting method
(Matsuishi and Endo, 1968). Then, for each stress level, Miner’s rule can be applied. One
of the main advantages of Miner’s damage rule is its simplicity, however, one of its main
drawbacks relies on the fact that it is incapable of recognizing loading sequence effects.

2.5.5 Multiaxial fatigue

Most of the experimental data available, even today, consists of tests performed under
uniaxial stress or pure torsional conditions. However, for engineering applications, mul-
tiaxial stress states are much more likely to happen. In this case, it is often unrealistic
the idea of reproducing experimentally the load conditions observed in real components
experiencing service conditions. The basic idea behind the multiaxial fatigue criteria is to
use data provided from simple laboratory tests in order to design against multiaxial and
more complex stress states.

2.5.5.1 Findley

After analyse an extensive amount of experiments, for instance the ones carried out by
(Gough, 1949; Gough and Pollard, 1935), Findley (1958) have proposed the following
multiaxial fatigue damage parameter:

IFP = (τa + γσn,max)max (2.10)

where γ is a material parameter. τa and σn,max are the shear stress amplitude and the
maximum normal stress, respectively, for a given material plane. The idea behind this
model is that shear stresses lead to crack nucleation and early propagation whereas normal
stress increases crack opening and consequently rate of growth. For ductile materials γ
ranges between 0.2 and 0.3 and it can be obtained considering the results of fatigue tests
performed on different stress states, for example see Table 2.1.

16



2.5. Fatigue of materials

Table 2.1: Solutions for γ based on the ratio of fatigue strength for two stress states.

Ratio of fatigue strength γ expression

σ−1

τ−1

2

1 +
γ√

1 + γ2

σ0

σ−1

γ +
√

1 + γ2

2γ +
√

1 + (2γ)2

σ0.5

σ−1

γ +
√

1 + γ2

4γ +
√

1 + (4γ)2

2.5.5.2 Smith, Watson and Topper (SWT)

An alternate model is necessary for materials that fail predominately by crack growth
on planes of maximum tensile strain or stress. In these materials, despite the fact that
cracks still nucleates under shear mode, crack growth takes place on planes perpendicular
to maximum principal stress and strain. In their model, Smith et al. (1970) proposed a
relationship that takes into account both cyclic strain range and maximum normal stress.

ISWT = σn,max
∆εn

2
(2.11)

where σn,max and ∆εn are the maximum normal stress and normal strain range on the
material plane that maximizes their product. This model can also handle non-proportional
loading conditions. It also permits to estimate the component life by reference to a fully
reversed uniaxial test where Basquin (stress-life) and Coffin Manson (strain-life) relations
can be combined yielding:

σn,max
∆εn

2
=

(σ′f
2)

E
(2Nf )

b′ + σ′fε
′
f (2Nf )

b′+d′ (2.12)

where ε′f and d′ are the fatigue ductility coefficient and exponent, respectively.

2.5.5.3 Modified Wöhler Curve Method (MWCM)

Based on the theory of cyclic deformation in single crystals, which suggests that fatigue
damage in polycrystals depends on the maximum shear stress amplitude and stress com-
ponent normal to the crack initiation plane, Susmel and Lazzarin (2002) proposed their
model.

Considering the assumption that cracks nucleates on planes experiencing maximum
shear stress amplitude, the critical plane can be defined as the material plane subjected
to the maximum shear stress amplitude τa over a loading cycle. Regarding this plane, it
is also possible to define the following stress ratio:

ρ =
σn,max
τa

(2.13)
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where σn,max is the maximum normal stress developed at the critical plane. Note that
this term accounts the influence of mean stress on multiaxial fatigue strength. Without
further ado, the idea of the MWCM consists in characterizing the conventional S-N curves
however assessing τa vs Nf , Susmel and Lazzarin (2002). As well as the presence of mean
stress modifies S-N curves, the stress ratio ρ alters the Modified Wöhler curves, Figure
2.11, where τa,ref is defined as the shear stress amplitude at a certain number of cycles
to failure Nref and κτ is the inverse slop of the curve log(Nf ) vs. log(τa). Therefore, for
a generic stress ratio ρ and shear stress amplitude τa, the fatigue life may be estimated
through the following relation:

Nf = Nref

[
τa,ref (ρ)

τa

]κτ (ρ)

(2.14)

where τa,ref (ρ) and κτ (ρ) can be obtained through linear interpolation considering data
from two different experiment campaigns. For example, considering fully reversed uniaxial
(ρ = 1) and torsional (ρ = 0) fatigue curves one has:

τa,ref (ρ) = [τa,ref (ρ = 1)− τa,ref (ρ = 0)]ρ+ τa,ref (ρ = 0) (2.15)

and

κτ (ρ) = [κτ (ρ = 1)− κτ (ρ = 0)]ρ+ κτ (ρ = 0) (2.16)

κ (ρ)τ

ρ=0

ρ=1

τ (ρ=0)a,ref

τ (ρ)a,ref

τ (ρ=1)a,ref

lo
g
(τ

)
a

log(N )f Nref

1

increasing ρ

Figure 2.11: Modified Wöhler curves.

When reference shear stress values correspond to fatigue limits, Eq. (2.15) becomes:

τa +
(
τ−1 −

σ−1

2

) σn,amx
τa

6 τ−1 (2.17)

It is worth mentioning that the use of the MWCM for large values of ρ leads to conservative
results. It can be explained by the fact that, once the mean normal stress on the critical
plane is larger than a certain value, micro/meso cracks are completely open and thus shear
forces are completely transmitted to the crack tips instead of being partially supported
by the friction interactions between cracks faces (Carpinteri et al., 2003; Susmel, 2008).
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Therefore, the MWCM formulation is valid as long as ρ is lower than a threshold value
ρcrit, where its expression is given by (Susmel, 2009):

ρcrit =
τ−1

2τ−1 − σ−1

(2.18)

where whenever ρ > ρcrit it can be set to ρcrit.

2.5.5.4 Definition of the multiaxial fatigue criteria stress parameters.

Consider a material plane ∆ where its normal is given by the unitary vector n. Consider
as well two other unitary vectors η

1
and η

2
which lies on the ∆ plane, Figure 2.12. These

three vectors are also orthogonal with respect to each other. In this setting, for a given
time instant t the stress component normal to this plane is given by

σn(t) = n · σ(t)n (2.19)

while the components of the shear stress when projected on the basis η
1

and η
2

are given
respectively by

τ1(t) = η
1
· σ(t)n (2.20)

and

τ2(t) = η
2
· σ(t)n (2.21)

where σ is the Cauchy stress tensor. In this framework, the definition of σn,max used in
the multiaxial fatigue criteria is readily obtained

σn,max(t) = max
t

[σn(t)] (2.22)

 
 

n

 

σ (t)n  

O τ(t)  

 Δ

η1

η2

σ(t)n

Figure 2.12: Material plane ∆ and stress vector decomposition.

On the other hand, the definition of τa is more challenging once that the shear stress
vector may describe a generic path Θ as the one illustrated by the red curve in Figure 2.13.
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Some definitions of τa are also depicted in this figure. The Minimum Radius Circle (MRC)
(Dang Van et al., 1989), Figure 2.13(a), may fail for some loading paths, e.g. rectangular
ones. Mamiya and Araújo (2002) proposed the Minimum F-norm Ellipse method, Figure
2.13(b). In this case, for elliptical paths, it was shown that the shear stress amplitude
could be computed from the axes of any arbitrarily oriented rectangular hull. However
this method is restricted to cases where the rectangular hull circumscribing the load path
Θ approximates well an ellipsoid. Later (Mamiya et al., 2009) came up with the definition
of the Maximum Rectangular Hull (MRC), Figure 2.13(c), which besides its simplicity,
it can handle non-proportional paths better than the MRC, for instance. More recently,
Meggiolaro and de Castro (2015) proposed the Moment of Inertia (MOI) Method, which
better handles path-shape dependence issues.

τa
τaτa

τ1

τ2

τ1

τ2

τ1

τ2

a) c)b)

Figure 2.13: Different definitions for the shear stress amplitude, adapted from (Castro
et al., 2009): (a) Minimum Radius Circle; (b) Minimum F-norm Ellipse; (c) Maximum
Rectangular Hull.

2.6 Theory of critical distances (TCD)

It is well known that hot-spot approaches lead to very conservative results when high
stress gradients are present like the ones found close to notches and the edges of contact
problems. The theory of critical distances (TCD) was first proposed in order to deal with
problems in presence of stress raisers such as notches and cracks (Taylor, 1999). In its
most fundamental definition, the idea consists in evaluating an effective stress F (σ) that
can appropriately characterize the fatigue damage process inside a specified volume V
surrounding the stress raiser:

1

V

ˆ
V

F
(
σ
)
dV 6 b (2.23)

where b is a material property associated with its fatigue strength. The volume V , in
general is associated with the material characteristic length L, a material property that
can be defined as (El Haddad et al., 1979):

L =
1

π

(
∆Kth

∆σ−1

)2

(2.24)
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where ∆Kth is the material threshold stress intensity factor range and ∆σ−1 is the uniaxial
fatigue limit range. For 2D analysis, the TCD can be expressed in its simplified versions
(Figure 2.14) by substituting the material volume mentioned above by a point, line or
area, receptively:

• Point method

F
(
σ(r = L/2, θ = 0)

)
6 b (2.25)

• Line method

1

2L

2Lˆ

0

F
(
σ(r, θ = 0)

)
dr 6 b (2.26)

• Area method

2

πL2

π/2ˆ

−π/2

L̂

0

F
(
σ(r, θ)

)
rdrdθ 6 b (2.27)

2L

L/2 L

r
+θ

Figure 2.14: TCD averaging regions in its simplified 2D versions (point,line and area).

One of the main advantages of the TCD is that it can be used in conjunction with
any multiaxial fatigue criteria (Susmel et al., 2006). However, some more recent works
have claimed that the critical distance parameter (Eq. (2.24)) may vary depending on
the number of cycles (Susmel and Taylor, 2007, 2008).

2.7 Basic contact mechanics

Typically, fretting problems involve the contact of components of great complexity. In
this setting, numerical methods becomes mandatory where the finite element method is
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mostly the option chosen. This section however focuses on the analytic aspects of con-
tact problems, more specifically, the contact between a cylinder pressed onto an elastic
half-plane. More details about numerical aspects are given in 3.3. This contact set-up
is often assessed experimentally once that it has well-defined stresses/displacement solu-
tions. Besides, tests are easily controlled, repeatable and insensitive to small fabrication
imperfections (Hills and Nowell, 1994).

2.7.1 Surface tractions distributions

In this section, the analytical solutions which ensure a full determination of the contact
tractions for the cylinder on plane contact configuration (Figure 2.15) is presented. In
this case, the results provided by (Hertz, 1882) have shown that the pressure distribution
developed between two cylindrical contact surfaces subjected to a static normal load P is
given by

p(x) = −p0

√
1−

(x
a

)2

(2.28)

where p0 is the peak pressure

p0 =
2P

πa
(2.29)

a is the contact semi-width

a =

√
4PR∗

πE∗
(2.30)

where

R∗ =

(
1

R1

+
1

R2

)−1

(2.31)

being R1 and R2 the radius of the bodies coming into contact. For the cylinder on plane
configuration, R∗ is simply equal to the pad radius. The equivalent Young modulus in
Eq. (2.30) is given by

E∗ =

(
1− ν2

1

E1
+

1− ν2
2

E2

)−1

(2.32)

where E and ν are, respectively, the Young modulus and the Poisson’s ratio. The sub-
scripts 1 and 2 refer to each body in contact.

In presence of a tangential load Q, shear tractions are developed along the contact
surface. The solution of this problem was given by (Cattaneo, 1938) and independently by
(Mindlin, 1949). Once that the elliptical distribution of the contact pressure falls to zero
at the contact extremities, it is unavoidable that some slip takes place nearby the contact
edges even when Q/P is less than the friction coefficient µ (partial slip conditions). In
this case, it is reasonable assuming that two symmetrical slip zones surrounding a central
stick zone are formed along the contact surface. Mathematically speaking, this feature
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Figure 2.15: Schematic representation of the cylinder on plane contact configuration.

can be addressed to the problem facing the shear traction distribution q for partial slip
conditions as a perturbation of the solution for gross sliding:

q(x) = µp0

√
1−

(x
a

)2

+ q′(x) (2.33)

where

q′(x) =

0, if c 6 |x| 6 a

−µp0
c

a

√
1−

(x
c

)2

, if |x| < c
(2.34)

where a is the semi-width of the contact zone and the semi-width of the stick zone c is
obtained imposing tangential equilibrium:

c

a
=

√
1−

∣∣∣∣ QfP
∣∣∣∣ (2.35)

Under fretting conditions, the tangential load Q varies over time. Figure 2.16 depicts a
typical load history for the tangential load. The tangential traction q(x) presented so far is
valid only when the tangential load is applied monotonically from 0 to its maximum value
Qmax, point A (Figure 2.16). However, as soon as the tangential load is infinitesimally
decreased from point A to B, the whole contact experiences stick condition. Note that
the tangential traction acts oppositely to relative motion between the contact parts and
at this point, this condition is violated. Further reducing the load Q to point C will lead
the appearance of reversal slip once that, locally, the relative motion between the contact
parts has been reversed. In the knew slip zones, shear traction will change from µp(x)
to −µp(x). In order to capture these effects, a second corrective term q′′ is added to the
shear traction construction:

q′′(x) = 2µp0
c′

a

√
1−

(x
c′

)2

(2.36)
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The following shear traction is then obtained, see Hills and Nowell (1994) for more details:

q(x)

µp0

=



−
√

1−
(x
a

)2

, if c′ < |x| 6 a

−
√

1−
(x
a

)2

+ 2
c′

a

√
1−

(x
c′

)2

if c < |x| 6 c′

−
√

1−
(x
a

)2

+ 2
c′

a

√
1−

(x
c′

)2

− c

a

√
1−

(x
c

)2

, if |x| 6 c

(2.37)

where again, from the equilibrium of forces in the tangential direction:

c′

a
=

√
1−

(
Qmax − sQ(t)

2µP

)
(2.38)

where one assumes s = 1 when one moves from Qmax towards Qmin and s = −1 during
the reloading phase, i.e. from Qmin to Qmax in the tangential loading cycle, Figure 2.16.

Qmax

Qmin

t

A
B

C

D

E

F

Figure 2.16: Variation of the tangential load Q over time.
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Figure 2.17: Shear traction distributions during a tangential cycle, Qmax/µP = 0.6.
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Figure 2.17 depicts the shear tractions distribution during a tangential cycle when
moving from point A to F in Figure 2.16. Note that when the tangential tangential load
Q is null the shear traction distribution along the contact surface does not vanish, which
exemplifies the loading history dependency in contact problems. It also worth mentioning
that the contact solutions presented in this section are valid for elastically similar bodies,
which implies that p(x) and q(x) are uncoupled. In other words, tangential loads do not
modify the contact pressure distribution and normal loads do not generate shear tractions.

2.7.2 Bulk load effect on the shear traction distribution

Fretting fatigue in general takes place in the presence of bulk stresses acting in one or
both of the contacting bodies. Let one considers here that only the flat specimen, body 2
in Figure 2.15 is subjected to a bulk load acting in phase with the tangential load Q. This
bulk load generates a bulk stress σb(t) on the specimen which will cause a mismatch in
strain between the contacting parts. This mismatch will modify the Mindlin-type analyses
presented in the previous section. Now the perturbation solutions q′ and q′′ in Eq. (2.37)
need to be rewritten as follows:

q′ = −µp0
c

a

√
1−

(
x− e
c

)2

(2.39)

and

q′′ = 2µp0
c′

a

√
1−

(
x− e′

c′

)2

(2.40)

where the normalized offset terms e/a and e′/a are given respectively by:

e

a
=
σb,max
4µp0

(2.41)

being σb,max the maximum value reached by the bulk stress over a cycle and

e′

a
=
σb,max − sσb(t)

8µp0

(2.42)

It is worth pointing out that, these equations are valid only for small values of bulk fatigue
load where the following relations must be respected: e + c < a and e′ + c′ < a. Figure
2.18 depicts the shear traction distributions for different time instants (Figure 2.16) when
the specimen is subjected to a sinusoidal bulk stress σb in phase with the tangential load
Q.
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Figure 2.18: Shear traction distributions during a fretting cycle, Qmax/µP = 0.6 and
σb,max/µp0 = 0.8.

2.7.3 Sub-surface stress distributions

For plane problems, the most popular way to compute the internal stress distribution is
via Muskhelishvili potential (Muskhelishvili, 1953). This potential, φ, is a function of
position, z, which is a complex coordinate, i.e. z = x + yi. The potential itself can be
obtained performing a contour integral along the contact line:

φ(z) =
1

2πi

ˆ

contact

p(ς)− iq(ς)
ς − z

dς (2.43)

Once the potential φ is found, stress components can be defined by

σxx + σyy = 2[φ(z) + φ(z)] (2.44)

σyy − σxx + 2iσxy = 2[(z − z)φ′(z)− φ(z)− φ(z)] (2.45)

where φ′(z) implies differentiation with respect to z and • implies taking the conjugate.
For the cylinder on plane contact configuration here assessed, pressure distribution has an
elliptical profile. In addition, the shear traction distribution is a superposition of elliptical
traction distributions. In this setting, two different potential expressions can be defined:

φn(z) =
1

2πi

ˆ

contact

p(ς)

ς − z
dς (2.46)

φt(z) =
1− iµ

2πi

ˆ

contact

p(ς)

ς − z
dς (2.47)
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where φn is obtained considering only the normal load, P , while φt is obtained considering
gross sliding conditions. Therefore, solving the linear system described by Eqs. (2.44)
and (2.45), the following expressions for the σxx stress component can be obtained for
instance:

• At maximum and minimum loads:

σxx(x, y)

p0

=

(
σnxx
(
x
a
, y
a

)
p0

)
± µ

(
σtxx
(
x
a
, y
a

)
µp0

)
∓ µc

a

(
σtxx
(
x−e
c
, y
c

)
µp0

)
+
σb
p0

(2.48)

where the signal combination + and - holds for the maximum load.

• During unloading and reloading phases:

σxx(x, y)

p0

=

(
σnxx
(
x
a
, y
a

)
p0

)
∓ µ

(
σtxx
(
x
a
, y
a

)
µp0

)
± 2µ

c′

a

(
σtxx
(
x−e′
c′
, y
c′

)
µp0

)

∓ µc
a

(
σtxx
(
x−e
c
, y
c

)
µp0

)
+
σb
p0

(2.49)

where the signal combination −, + and − holds for the unloading phase.

Similarly, the other stress components can be obtained.
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Chapter 3

A new multiscale approach for the
simulation of fretting problems

In this chapter, the first part of the research conducted in this thesis is addressed, where
a new methodology for the simulation of fretting problems in the context of the FE
framework is presented. In this setting, the idea is to reduce the computational cost when
performing fretting simulations and at the same time keep the accuracy of stress/strain
solutions close to the contact zones. More specifically, at the contact edges, regions where
the stress state is in general the most severe. For so, an enrichment-based approach is
used in order to enrich the displacement field close to the contact edges. This chapter
is organized as follows: in the first two sections, the spatial modes utilized in order
to enrich the fretting simulations as well as the enrichment technique here considered
are presented. In the next section, concepts concerning the numerical implementation
of contact problems are discussed. After that, simulations considering the enrichment
technique proposed are compared with standard FE simulations in order to verify its
applicability and benefits when considering both partial and gross slip conditions.

3.1 Reduced basis (spatial modes) and crack analogy

In this section, the non-intrusive methodology proposed by (Montebello et al., 2016) used
to extract the spatial modes that will be further used to enrich the fretting simulations
will be briefly presented. For further details, the reader is referred to (Montebello, 2015;
Montebello et al., 2016).

One of the main features of fretting-fatigue problems is the considerably high and
localized stress gradient generated by the contact loads, which nearby the contact edges
is comparable to what happens close to the crack tip (complete contacts) or in the vicinity
of notches (incomplete contacts) (Giannakopoulos et al., 1998, 2000). For instance, in the
crack analogue applied to complete contact configurations proposed by (Giannakopoulos
et al., 1998), the normal load P , generates a symmetric field which is analogue to what
is observed in a crack loaded under mode I, whereas, the antisymmetric effect of the
tangential load Q is comparable to a mode II loading, Fig. 3.1. In this setting, expression
for stress intensity factors can be readily obtained using fracture mechanics insights. In
spite of these really interesting features, this type of approach is restricted to some simple
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Figure 3.1: Analogy between complete contact under fretting condition (a) and double-
edge cracked plate (b).

contact geometries like the one presented Fig. 3.1 when predominantly stick condition is
held.

Considering the crack tip in fracture mechanics problems, an original approach was
proposed by (Pommier et al., 2009) in order to describe mixed-mode cyclic elastic-plastic
behaviour at the global scale. The goal was to establish a model reasonably precise but
condensed into a set of partial derivative equations avoiding huge plastic FE computations.
In this context, the kinematics of the crack tip region was characterized by a set of
condensed variables (model order reduction). The non-intrusive methodology proposed
by (Montebello et al., 2016) is highly inspired in the aforementioned works, where the
aim was to describe the stress field under fretting conditions arising close to the contact
edges via nonlocal stress intensity factors, transposing what have been done by (Pommier
et al., 2009) to fretting fatigue problems, which was justified by the analogies between
these two problems of different nature (Giannakopoulos et al., 1998, 2000).

The idea, basically, relies on the fact that in presence of strong gradients, the local
geometry dictates the mechanical fields distribution while its intensity is governed by
macroscopic loads. It suggests that the solution of the problem can be described through
a “fracture mechanics approach”, where the velocity field, for instance, can be computed
as a product between intensity factors and spatial reference fields:

v(x, t) ' İs(t)ds(x) + İa(t)da(x)︸ ︷︷ ︸
ve

+ İc(t)dc(x)︸ ︷︷ ︸
vc

(3.1)

where v(x, t) is expressed with respect to a reference system attached to the contact edge,
Figure 3.2, while x and t are position and time, respectively (see Appendix A). Velocity is
chosen rather than displacement or stress once that the velocity field characterizes better
the nonlinear behaviour due to friction (load history dependency). As can be seen in
Eq. (3.1), the velocity field is partitioned into two parts, ve which is related to the linear
response of the problem and vc which represents the nonlinear response due to friction
inside the slip zones. In addition, the linear part can be divided into a symmetric and an
antisymmetric part as presented in Eq. (3.1). The idea is that each one of these terms can
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Figure 3.2: FE model used to extract the spatial modes and the nonlocal intensity factors.

be described as product of nonlocal intensity factors (İs, İa, İc), capable of capturing the
effects of the macroscopic loads, and spatial modes, that describe the local geometrical
effects (ds, da, dc).

When it comes to the linear part of the velocity field, the spatial modes ds and da

can be computed extracting the velocity field in some strategic time steps of the load
history (snapshots) presented in Figure 3.2. The point is to catch separately the effects of
the normal and tangential loads. When these spatial modes are computed, both bodies
behave like one, once they are calculated in time steps where the whole contact zone is
in stick condition. This is the reason why ve is referred as linear, once that the nonlinear
effects due to friction inside the slip zones are not taken into account in this term.

Once ds and da are computed, the nonlocal intensity factors can be obtained through
these decompositions:

İs(t) =

´
Ω
v · dsdΩ´

Ω
ds · dsdΩ

(3.2)

İa(t) =

´
Ω
v · dadΩ´

Ω
da · dadΩ

(3.3)

where the domain of integration Ω is depicted in Figure 3.2. The complementary part of
the velocity field can be determined evaluating the residue of the velocity field approxi-
mation when only the linear part of the velocity field is considered.

vc(x, t) = v(x, t)− ve(x, t) (3.4)

Once that vc is defined differently, İc(t) and dc(x) can be computed applying a Proper
Orthogonal Decomposition (POD) to vc(x, t).

vc(x, t) '︸︷︷︸
POD

İc(t)dc(x) (3.5)

30



3.1. Reduced basis (spatial modes) and crack analogy

Note that, in this case, only the first mode of the decomposition is considered. For more
details concerning the POD technique see Appendix B.

As well as the complementary part of velocity field, through a second POD, the spatial
modes can be expressed in polar coordinates using a reference frame attached to the
contact edge assuming that the geometry under analysis can be approximated as self-
similar (scale invariant):

ds(x)→ ds(r, θ) ' f s(r)gs(θ) (3.6)

da(x)→ da(r, θ) ' fa(r)ga(θ) (3.7)

dc(x)→ dc(r, θ) ' f c(r)gc(θ) (3.8)

where the radial and angular components of ds and da are depicted in Figures 3.3 and
3.4, respectively.
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Figure 3.3: (a) Comparison between the radial evolution of ds and the radial evolution of
the displacement field nearby a crack tip (mode I), (b) Comparison between the angular
evolution of ds and the angular evolution of the displacement field nearby a crack tip
(mode I).

A generic contact configuration may not respect the self-similar hypothesis, however
the polar decomposition is applied within a circular region close enough to the contact
edges such as self-similarity can be approximated. Note that the fretting spatial modes
(points) are similar to the ones used to describe the mechanical fields close to crack tip in
LEFM problems (solid lines), which confirms the crack analogy proposed by (Montebello
et al., 2016). For the sake of brevity, the results concerning the complementary field
will not be shown here, however, as presented in (Montebello et al., 2016), the radial
component of dc decreases quickly when one moves away from the contact edge confirming
the very localized effects of friction inside the slip zones. Knowing that, and pointing out
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Figure 3.4: (a) Comparison between the radial evolution of da and the radial evolution of
the displacement field nearby a crack tip (mode II), (b) Comparison between the angular
evolution of da and the angular evolution of the displacement field nearby a crack tip
(mode II).

that the angular functions coming from the complementary part are not so smooth as the
ones coming from ds and da, only these spatial modes will be used to enrich the fretting
simulations.

Figure 3.5: Comparison of ga(θ) for different geometries obtained varying the pad radius.

In addition, it has been shown in (Montebello, 2015) that, for different cylindrical
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3.2. Enrichment technique

contact configurations, the reference functions which describe the spatial modes ds, da

and dc can be regarded as the same. For instance, in Fig. 3.5, the angular functions
coming from da are plotted for different pad radii. This is an important result once that,
for industrial applications, the contact geometries are not necessarily the cylindrical one.
For example, the contact configuration present in the dovetail root of a fan blade root
is better described by the rounded punch-on-flat contact set-up. Nevertheless, locally,
close to the contact tip where the partition is applied, the contact geometry can be
approximated as self-similar resulting in unchanged reference functions.

3.2 Enrichment technique

One of the main ideas of this work is to enrich fretting simulations using the spatial modes
presented in the previous section. To accomplish that, the standard FE approximation
will be enriched using the partition of unity framework as previously applied to LEFM
problems in (Moës et al., 1999; Sukumar et al., 2000; Moës et al., 2002) and in particular
to fretting problems in (Giner et al., 2008a, 2009; Pierres et al., 2011; Baietto et al., 2013;
Giner et al., 2014), where the authors simulated the crack propagation under fretting
conditions. However, note that, in the present work, cracks are not considered once the
goal here is only to improve the accuracy of the stress computation close to the contact
surfaces when fretting takes place as it has been done by (Giner et al., 2008b) for complete
sliding contacts. In the standard FEM, the displacement field can be approximated and
expressed as:

u =
∑
i ∈ I

Ni(x)ui (3.9)

where I is the set of all nodes discretizing the domain, ui is the displacement field at the
node i and Ni is the corresponding basis function of this node. It is well known that the
FE basis functions represents the partition of unity. The basic idea behind the X-FEM
(see (Moës et al., 1999; Sukumar et al., 2001; Khoei, 2014)) is the multiplication of the
nodal basis functions Ni(x) with some enrichment function ψ(x), where this function, in
general, is capable of capturing some previous known behaviour of the problem studied.
Defining J as the subset of enriched nodes, J ⊂ I, the enriched approximation of the
displacement field using the partition of unity can be expressed as:

u(x) =
∑
i ∈ I

Ni(x)ui +
∑
j ∈ J

Nj(x)
∑
α

ψα(x)bj,α (3.10)

where ψα are the set of enriched functions at each enriched node j ∈ J multiplying the
new degrees of freedom bj,α. This approach permits us to inherit some properties of the
FE basis functions, such as their compact support, and hence preserving the advantages
of the standard FEM, such as the symmetry and sparsity of the stiffness matrix.

As it has been shown in Section 3.1, the mechanical fields around the contact edges in
fretting problems are similar to the ones found close to the crack tip in fracture mechanics
problems. Therefore, it seems a reasonable idea to use the same analytical functions used
to enrich the displacement field close to the crack tip in LEFM problems to enrich fretting
simulations, where in this case, one has:

ψα = {
√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ} (3.11)
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A linear combination of these enrichment functions can recover with high accuracy the
distribution of the fretting spatial modes presented in Figs. 3.3 and 3.4 (Section 3.1). The
actual spatial modes from the velocity field decomposition could also have been used in
this setting, however, it would introduce less flexibility when composing the enrichment
functions.

It is worth mentioning that, despite the self-similar behaviour found nearby the contact
edges in the non-complete contact configuration here assessed, it is true that at the contact
tip, there is no stress singularity like the ones in LEFM or complete contact problems.
The mechanical fields at the contact tip in this type of smooth contact are more likely to
behave like the ones found in the vicinity of blunt cracks Giannakopoulos et al. (2000). In
this case, the asymptotic stress solution contains the regular sharp crack solution and an
additional non-singular term Creager and Paris (1967). The enrichment functions (Eq.
(3.11)) contain only the singular term, the non-singular term of the partition proposed
in Eq. (3.1) is embodied in the complementary field dc, which is not used here due
to its complexity and localized effects. However as will been seen in Section 3.4, it
does not seem to introduce any anomalous behaviour to the fretting fields solution in
the proximity of the contact edges. In addition, Giner et al. (2008b) verified that the
order of the singularity (rβ) in complete contacts was associated to parameters like the
contact geometry, the friction coefficient and the stick/slip condition. Here the order
of the singularity extracted directly from FE computations appeared to be 1/2 when
considering only the linear response of the problem. An exponential term seems to govern
the evolution of the complementary part that takes into account the nonlinearities inside
the slip zones. In his work, Montebello et al. (2016) verified that considering only the
linear description of the velocity field could lead to errors around 20% when trying to
recover the actual velocity field extracted from FE computations. The magnitude of this
error was related to the size of the slip zones which in his study represented up to around
40% of the contact total width. The use of the complementary part of the velocity field
could make this error falls below 5%. Having said that, differently from what have been
done in Giner et al. (2008b), an approximation have been done in order to choose the
enrichment functions where these ones describes better the problem the smaller the slip
zones are.

Figure 3.6 illustrates how the enrichment technique is applied in order to solve fretting
problems, for more details concerning the X-FEM implementation see Appendix C. As
can be seen, two different areas surrounding the contact edges are enriched. In these
two regions the stress concentrations are the highest. The amount of elements enriched
is controlled by the enrichment radius re. It is also possible to see three different types
of elements. The fully enriched elements are the ones where all its nodes are enriched
whereas the standard elements are enrichment free. The blended elements are composed
of both enriched and standard nodes. It is worth mentioning that, in this kind of problem,
where one has smooth non-complete contact configurations, which means that the width
of the contact zone depends on the external applied loads, the position of the contact
edges need to be known a priori in order to apply the enrichment technique.
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Figure 3.6: Enrichment scheme.

3.3 Contact aspects

In this work, the enrichment technique has been implemented inside an in-house FE
element code, which consequently, made things easier to be implemented and tested.
Nevertheless, the ideas and techniques used here can be readily reproduced using some of
the commercial FE software available nowadays.

Regardless the enrichment procedure presented in the last section, the contact problem
is solved in a standard way considering two deformable bodies coming into contact, Figure
3.7. In this case, Ω(1) and Ω(2) are the domains occupied by the bodies 1 and 2, respectively,
with open boundaries that can be distinguished in three sets at a certain time t ∈ [0, T ] ⊂
R:

• Γ
(i)
d : part of the boundary where displacements are prescribed.

• Γ
(i)
σ : part of the boundary where external loads are prescribed.

• Γ
(i)
c : part of the boundary where contact is likely to occur.

where the subscript “i” denotes the bodies 1 and 2. We first define the notion of solution
spaces U (i)

t and a weighting spaces V(i)
0 as

U (i)
t =

{
u

(i)
t : Ω(i) → R2|u(i)

t ∈ H1(Ω(i)), u
(i)
t = u

(i)
d inΓ

(i)
d

}
(3.12)

V(i)
0 =

{
u∗(i) : Ω(i) → R2|u∗(i) ∈ H1(Ω(i)), u∗(i) = 0 inΓ

(i)
d

}
(3.13)

where u
(i)
t is the displacement field at a given time t and u∗(i) is the weight function.

Assuming linear quasi-static conditions, the equilibrium equation of this problem can be
expressed in terms of its weak formulation by:

2∑
i=1

(ˆ
Ω(i)

σ(i) : ε(u∗(i))dΩ−
ˆ

Γ
(i)
σ

f (i)

ext
· u∗(i)dΓ−

ˆ
Γ
(i)
c

f (i)

c
· u∗(i)dΓ

)
= 0,

∀u∗(i) ∈ V(i)
0

(3.14)
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Figure 3.7: Contact problem two deformable bodies.

where σ is the Cauchy stress tensor, ε is the linear strain tensor, f (i)

ext
and f (i)

c
are the

external and contact loads in each body, respectively.

Regarding the contact aspects, the first thing to be considered is the non-penetration
condition, where the following relation must be respected:

(u(2) − u(1)) · n+ g0 > 0 (3.15)

where n is defined as the outward normal on the contact surface of the body 1, Figure
3.8. The normal initial gap between the two bodies is defined as g0. When Eq. (3.15) is
equal to zero, contact happens and the following relation is observed:

(f (1)

c
+ f (2)

c
) · n = 0. (3.16)

In this case, Coulomb’s friction law with no regularization is used, where, if one has stick
condition:

|f (1)

c
· nt| < µ|f (1)

c
· n| (3.17)

and

(u̇(2) − u̇(1)) · nt = 0 (3.18)

where µ is the friction coefficient, u̇(i) is the velocity field on the contact zones and nt is
defined as the tangential unitary vector to the contact surface in the body 1, Figure 3.8.
On the other hand, if one has slip conditions:

|f 1

c
· nt| = µ|f (1)

c
· n| (3.19)

and ∃ γ̇ > 0 such that:

(u̇(2) − u̇(1)) · nt = γ̇
f (1)

c
· nt

|f (1)

c
· nt|

(3.20)
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and according to Newton’s third law:

(f (1)

c
+ f (2)

c
) · nt = 0. (3.21)

Considering Eq. (3.14) and the inequality constraints coming from the local contact
problem formulation, Eqs. (3.15)-(3.21), it is clear that even under linear elastic condi-
tions contacts problems are nonlinear and a wide range of optimization techniques can
be used to solve these problems, being the most commonly used the penalty and La-
grange multiplier methods (Wriggers, 1995; Laursen, 2013; Yastrebov, 2013). Here a brief
presentation of this two methods are presented.

n ntg0

(1)u

(2)u

(1)
Ω

(2)Ω

Figure 3.8: Local contact formulation.

3.3.1 Penalty method

The penalty method has the advantage of removing explicitly the contact constraints
from the variational formulation which enables us to solve the problem as a simple un-
constrained optimization problem. In this setting, the following potential penalty energy
terms are added to the sum of the potential energy of each body:

Πc :=
1

2

ˆ
Γ
(1)
c

εN〈gN〉2dΓ +
1

2

ˆ
Γ
(1)
c

εTgT
2dΓ (3.22)

where εN and εT , both positive, are the penalty parameters. The notation 〈∗〉 denotes
the Macauley bracket operator. The normal and tangential gap function gN and gT are
defined respectively as:

gN = (u(1) − u(2)) · n− g0 6 0 (3.23)

gT = (u(2) − u(1)) · nt (3.24)

The penalized energy functional can be expressed as:

Πpen(u(i)) =
2∑
i=1

Π(i)(u(i)) + Πc (3.25)
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where

Π(i) =
1

2

ˆ
Ω(i)

σ(i) : ε(i)dΩ−
ˆ

Γ
(i)
σ

f (i)

ext
· u(i)dΓ (3.26)

The weak form of the problem can then be established minimizing the penalized energy
functional resulting in

2∑
i=1

(ˆ
Ω(i)

σ(i) : ε(u∗(i))dΩ−
ˆ

Γ
(i)
σ

f (i)

ext
· u∗(i)dΓ

)
+

ˆ
Γ
(1)
c

εN〈gN〉δgNdΓ +

ˆ
Γ
(1)
c

εTgT δgTdΓ = 0, ∀u∗(i) ∈ V(i)
0

(3.27)

that can be solved using Newton Raphson methods for instance. Expanding Eq. (3.27)
it can be shown that contact tractions in the penalty formulation can be regarded as:

f (1)
c · n = −εNgN

f (1)
c · nt = εTgT

(3.28)

where the magnitude of f
(1)
c ·nt is limited by Coulomb’s friction law. Despite its simplicity,

the penalty method presents some shortcomings. Impenetrability and Coulomb’s friction
law are only perfectly observed for εN , εT → ∞ which from a numerical point of view
is not possible (ill-conditioning). Thus, the penalty method is not able to fulfil contacts
constraints arbitrarily close, which depending on the problem assessed it may be an issue.

3.3.2 Lagrange multipliers method

Another method that can be used in order to enforce contact constraints is the Lagrange
multipliers method. In this case, the following potential energy terms are added to the
sum of the potential energy of each body:

Πc :=

ˆ
Γ
(1)
c

λNgNdΓ +

ˆ
Γ
(1)
c

λTgTdΓ (3.29)

where λN and λT are the normal and tangential components of the Lagrange multipliers,
respectively, and gN and gT are defined by Eqs. (3.23) and (3.24). Therefore, the solution
of the contact problem can be obtained by finding the stationary point of the following
functional:

Πlag(u(i)) =
2∑
i=1

Π(i)(u(i)) +

ˆ
Γ
(1)
c

λNgNdΓ +

ˆ
Γ
(1)
c

λTgTdΓ (3.30)

which results in

2∑
i=1

(ˆ
Ω(i)

σ(i) : ε(u∗(i))dΩ−
ˆ

Γ
(i)
σ

f (i)

ext
· u∗(i)dΓ

)
+

ˆ
Γ
(1)
c

λNδgNdΓ +

ˆ
Γ
(1)
c

λT δgTdΓ

+

ˆ
Γ
(1)
c

λ∗NgNdΓ +

ˆ
Γ
(1)
c

λ∗TgTdΓ = 0,∀u∗(i) ∈ V(i)
0 and λN > 0

(3.31)
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This non-linear equation can be solved using Newton-like methods and also note that,
as the constraint λN > 0 needs to be fulfilled, the Lagrange multiplier method does not
convert a minimization problem with inequalities constraint to a complete unconstrained
one. It can also be seen that the Lagrange multipliers have physical meaning being λN
and λT , respectively:

f (1)

c
· n = −λN

f (1)

c
· nt = λT

(3.32)

During the solution of this minimization problem, λT is bounded by Coulomb’s friction
law and in this case, Eq. (3.31) should be modified yielding

2∑
i=1

(ˆ
Ω(i)

σ(i) : ε(u∗(i))dΩ−
ˆ

Γ
(i)
σ

f (i)

ext
· u∗(i)dΓ

)
+

ˆ
Γ
(1)
c

λNδgNdΓ +

ˆ
Γ
(1)
c

(f (1)

c
· nt)δgTdΓ

+

ˆ
Γ
(1)
c

λ∗NgNdΓ = 0,∀u∗(i) ∈ V(i)
0 and λN > 0

(3.33)

One of the main advantages of the Lagrange multiplier method is that it fulfils ex-
actly the local contact conditions, however it makes the problem to be solved larger, and
sometimes convergence might become a hard task. Another important difficulty associ-
ated with the Lagrange multipliers approach is the determination of the active constraints
which is surely a nontrivial exercise. For a more rigorous formulation of the Lagrange
multipliers in the context of contact problems the reader is referred to (Kikuchi and Oden,
1988).

3.3.3 Contact formulation adopted in this chapter

In this chapter, a search direction iterative method was used to find the set of solutions
verifying the admissible displacement field satisfying Eq. (3.14) and the set of contact
admissibility equations (Eqs. (3.15) to (3.21)). Integrations over time were performed
using backward Euler. In case of gross slip, the connectivity between contact surfaces
was updated at each time step, once that, in this case, appreciable amounts of relative
slip between the contacting surfaces are observed. Although in this work gross slip under
large tangential displacement has been assessed, linear hypothesis were always assumed
(elastic response and small deformations), once that, large rotations and plasticity were
not experienced in the simulations. Note that Coulomb’s friction law always limits the
shear stress developed close to the contact surfaces.

In this case, let one considers two contact bodies Ω(1) and Ω(2) where contact and
friction may occur along their contact interfaces Γ

(1)
c and Γ

(2)
c , Figure 3.7. This contact

problem can be divided in a global problem, written at the Ω(i) scale, and a local problem,
written at the Γ

(i)
c scale. The global problem is defined with its own variables, the dis-

placement field u(i) and the Cauchy stress tensor σ(i). Similarly, the local contact problem

can be defined by its own variables w(i) and f (i)

c
, the displacement field at the contact

interfaces and the contact tractions respectively. The coupling between the global and
the local problems can be ensured through:

u(i) = w(i) on Γ(i)
c (3.34)
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Figure 3.9: LATIN scheme.

Under small displacement and deformation assumptions, as already shown in (Pierres
et al., 2010; Gravouil et al., 2011), the weak formulation of the contact problem at a given
time t ∈ [0;T ] can be expressed as (absence of body forces):

2∑
i=1

(ˆ
Ω(i)

σ(i) : ε(u∗(i))dΩ−
ˆ

Γ
(i)
σ

f (i)

ext
· u∗(i)dΓ−

ˆ
Γ
(i)
c

f (i)

c
· w∗(i)dΓ

−
ˆ

Γ
(i)
c

λ∗(i) · (u(i) − w(i))dΓ−
ˆ

Γ
(i)
c

λ(i) · (u∗(i) − w∗(i))dΓ

)
= 0

(3.35)

where in a 2D framework

u(i) ∈ U (i) =
{
u(i) : Ω(i) → R2|u(i) ∈ H1(Ω(i)), u(i) = u

(i)
d inΓ

(i)
d

}
(3.36)

u∗(i) ∈ V(i)
0 =

{
u∗(i) : Ω(i) → R2|u∗(i) ∈ H1(Ω(i)), u∗(i) = 0 inΓ

(i)
d

}
(3.37)

w(i) ∈ W(i), w∗(i) ∈ W(i) = {w(i) ∈ H1(Γ(i)
c )} (3.38)

λ(i) ∈ Λ(i), λ∗(i) ∈ Λ(i) = {λ(i) ∈ L2(Γ(i)
c )} (3.39)

where λ is a Lagrange multiplier field. The quantities w(i) and f (i)

c
should obey the

relations described in Eqs. (3.15)-(3.21), where Eq. (3.34) retains its validity.

In order to solve Eq. (3.35), firstly, one assumes that the following variables are

known at time tk−1: u
(i)
k−1, σ(i)

k−1
, w

(i)
k−1, f (i)

c,k−1
. Within a quasi-static incremental frame-

work, the the solution of the problem at tk can be computed through a search direction
approach likewise the LATIN method (Ladevèze et al., 2010; Ladevèze, 2012; Giacoma
et al., 2014), Figure 3.9. Briefly, this method consists in a separation of the linear and
nonlinear equations of the problem studied. In this setting, A denotes the set of solutions
S

(i)
k = (w

(i)
k , f

(i)

c,k
) satisfying the linear constitutive law, kinematic and static admissibility,
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whereas B, is the set of solutions Ŝ
(i)

k = (ŵ
(i)
k , f̂

(i)

c,k
) verifying the local contact admissi-

bility equations. A two-staged iterative algorithm can then be settled, where at the jth

iteration, the global stage consists in finding [S
(i)
k ]j+1 ∈ A, with a search direction:

[f (i)

c,k
]j+1 − [f̂

(i)

c,k
]j = −κ([w

(i)
k ]j+1 − [ŵ

(i)
k ]j) (3.40)

then the local stage consists in finding [Ŝ
(i)

k ]j+1 ∈ B:

[f̂
(i)

c,k
]j+1 − [f (i)

c,k
]j+1 = κ([ŵ

(i)
k ]j+1 − [w

(i)
k ]j+1) (3.41)

where κ is the search direction parameter which has only influence in the rate of conver-
gence of the method.

Replacing Eq. (3.40) into Eq. (3.35):

2∑
i=1

(ˆ
Ω(i)

[σ(i)

k
]j+1 : ε(u∗(i))dΩ−

ˆ
Γ
(i)
σ

f (i)

ext
· u∗(i)dΓ−

ˆ
Γ
(i)
c

(
[f̂

(i)

c,k
]j + κ[ŵ

(i)
k ]j

)
· w∗(i)dΓ

+

ˆ
Γ
(i)
c

κ[ŵk]j+1 · w∗(i)dΓ−
ˆ

Γ
(i)
c

λ∗(i) · ([u(i)
k ]j+1 − [w

(i)
k ]j+1)dΓ

−
ˆ

Γ
(i)
c

[λ
(i)
k ]j+1 · (u∗(i) − w∗(i))dΓ

)
= 0

(3.42)

Introducing the FEM discretization to Eq. (3.42) the following linear system is yielded
(global stage).

 K 0 −Kuλ

0 Kww Kwλ

−KT
uλ KT

wλ 0

Uj+1

Wj+1

Λj+1

 =

Fext

Fc

0

 (3.43)

The following relative error indicator may be used (Ribeaucourt et al., 2007) as a stop
criterion for a given time instant tk:

η =

√√√√ ||S(i+1)
k − Ŝ

(i)

k ||

||S(i+1)
k ||+ ||Ŝ

(i)

k ||
< tol (3.44)

According to (Trollé et al., 2012) a stabilization operator can be introduced to Eq.
(3.43) reducing spurious oscillations on the dual fields. Eq. (3.43) then becomes: K 0 −Kuλ

0 Kww Kwλ

−KT
uλ KT

wλ Kλλ

Uj+1

Wj+1

Λj+1

 =

 Fext

Fc

KλλΛj

 (3.45)

where

Kλλ = −ζ
ˆ

Γc

χiχjdΓ (3.46)
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and ζ is the stabilization parameter and χ the shape function associated to the Lagrange
multipliers. Note that at convergence, KλλΛj+1 −KλλΛj approaches 0.

It is worth mentioning that, despite the similarity with the conventional LATIN for-
mulation, the problem here studied is solved incrementally for each time step, where the
admissible solutions are obtained time step by time step.

Given the solution of the global stage [S
(i)
k ]j+1, which satisfy kinematic and static

admissibility conditions, the local stage can be faced as an updating stage taking place
along the contact surfaces. Therefore, at each contact node, frictional contact conditions
must be verified making use of the search direction relation expressed by Eq. (3.41). In
order to solve the local stage explicitly, let one first defines the following contact indicators
for the normal interactions:

Cn =
1

2

(
[f̂

(1)

c,k
]j+1 − [f̂

(2)

c,k
]j+1

)
· n+

κ

2

[(
[ŵ

(2)
k ]j+1 − [ŵ

(1)
k ]j+1

)
· n+ g0

]
(3.47)

Using the search direction relation expressed in Eq. (3.41), Cn can be rearranged as:

Cn =
1

2

(
[f (1)

c,k
]j+1 − [f (2)

c,k
]j+1

)
· n+

κ

2

[(
[w

(2)
k ]j+1 − [w

(1)
k ]j+1

)
· n+ g0

]
(3.48)

Notice that in this relation, only informations provided by the linear stage are needed.
Similarly, a tangential contact indicator can be defined as:

Ct =
1

2

(
[f̂

(1)

c,k
]j+1 − [f̂

(2)

c,k
]j+1

)
· nt +

κ

2

[(
[ŵ

(2)
k ]j+1 − ŵ(2)

k−1

)
−
(

[ŵ
(1)
k ]j+1 − ŵ(1)

k−1

)]
· nt =

1

2

(
[f (1)

c,k
]j+1 − [f (2)

c,k
]j+1

)
· nt +

κ

2

[(
[w

(2)
k ]j+1 − ŵ(2)

k−1

)
−
(

[w
(1)
k ]j+1 − ŵ(1)

k−1

)]
· nt

(3.49)

Note that, the choice of Cn and Ct were made judiciously, such that, if there is contact

Cn = [f̂
(1)

c,k
]j+1 · n 6 0 (3.50)

otherwise, there is no contact and Cn > 0. For the tangential indicator, if |Ct| 6 µ|Cn|
stick condition is observed and

Ct = [f̂
(1)

c,k
]j+1 · nt (3.51)

otherwise, slip occurs and the tangential load is limited by Coulomb’s friction law. Table
3.1 summarizes the explicit solutions of the local stage, where the subscripts k and j + 1
were dropped for the sake of brevity.

It is worth mentioning that the convergence of the iterative method here presented
strongly depends on the parameters κ and ζ. In previous uses of the LATIN method
to solve contact problems (Champaney et al., 1999; Cognard et al., 1996), the search
direction parameter was defined through the following relation:

κ = E/L0 (3.52)

where E is the Young’s modulus and L0 is a characteristic length of the structure. In
their structure assembly analysis (Champaney et al., 1999; Cognard et al., 1996), near
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Table 3.1: Solution of the local stage.

if Cn > 0 (no contact)

f̂
(1)

c
= f̂

(2)

c
= 0

ŵ(1) = w(1) − f (1)

c
/κ

ŵ(2) = w(2) − f (2)

c
/κ

if Cn 6 0 (contact)

f̂
(1)

c
· n = −f̂

(2)

c
· n = Cn

ŵ(1) · n = w(1) · n+ (f̂
(1)

c
− f (1)

c
) · n/κ

ŵ(2) · n = w(2) · n+ (f̂
(2)

c
− f (2)

c
) · n/κ

if |Ct| < µ|Cn| (stick condition) if |Ct| > µ|Cn| (slip condition)

f̂
(1)

c
· nt = −f̂

(2)

c
· nt = Ct f̂

(1)

c
· nt = −f̂

(2)

c
· nt = µ|Cn|Ct/|Ct|

ŵ(1) · nt = w(1) · nt + (f̂
(1)

c
− f (1)

c
) · nt/κ ŵ(1) · nt = w(1) · nt + (f̂

(1)

c
− f (1)

c
) · nt/κ

ŵ(2) · nt = w(2) · nt + (f̂
(2)

c
− f (2)

c
) · nt/κ ŵ(2) · nt = w(2) · nt + (f̂

(2)

c
− f (2)

c
) · nt/κ

optimum values for κ were obtained setting L0 as the structure maximum length. In
the case of frictional cracks, L0 was set as the crack length (Ribeaucourt, 2006). In this
work, however, optimum values for κ were obtained defining L0 as the contact semi-width,
whereas, ζ was chosen according to (Trollé et al., 2012):

ζ =
1

κ
(3.53)

3.4 Results and discussions

3.4.1 Fretting under partial slip conditions

In order to check the improvements in the fretting simulations when making use of the
crack analogy presented in Section 3.1, the problem depicted in Figure 3.10 will be as-
sessed. In this case, a vertical monotonic displacement, uy, presses the cylindrical pad, of
radius R = 40 mm, against the specimen that is fixed on the bottom and on both lateral
sides. After that, a tangential sinusoidal displacement is imposed on the pad ensuring
fretting conditions. The total normal load, P , and the total tangential load, Q, developed
at the contact interfaces always obey the relation Q/P < µ, where µ is the friction co-
efficient between the contact surfaces. However, locally, slip zones may be observed. All
the simulations considered in this work will be confined to the linear quasi-static case,
where the material Young’s modulus, E, is 200 GPa and the Poisson’s ratio, ν, is 0.3.
The procedure used to enrich the simulations is presented in Section 3.2. The contact
problem, implemented via MATLAB, is solved according to the formulation presented in
Subsection 3.3.3. The friction problem is formulated using the Coulomb’s friction law with
a friction coefficient µ = 0.9. As can be seen in Figure 3.10, the finite element discretiza-
tion far from the contact surfaces consists of linear triangular elements, whereas linear
quadrangular elements are used to discretize the neighbourhood of the contact surfaces.
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Figure 3.10: (a) Fretting model under partial slip, (b) fretting under partial slip load
history.
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Figure 3.11: Directions of stress evaluation.

Three different simulations were confronted in order to check the improvements ob-
tained through the enrichment technique. The first one, the reference solution, was per-
formed considering the standard FEM. In this case, a fine mesh was used (0.0025 mm),
around 180 elements discretizing the contact zone. The second one was also conducted
considering the standard FE framework. However, in this case, a relatively coarse mesh
was considered (0.025 mm), around 18 contact elements dicretizing the contact zones,
which in this case, is compatible with engineering facilities when performing simulation
on real components as the dovetail connection between blades and discs in aeronautical
compressors (SAFRAN). Finally, a third simulation was carried out, but now the enrich-
ment technique was applied. In this case, the mesh discretization used is the same one
used in the coarse standard FE simulation (0.025 mm). It is worth mentioning that, this
simplified study case admits analytical solution, see Section 2.7, and that, the size of the
mesh refinement in the reference solution is the one needed to recover with a good accu-
racy the analytical solution of this problem, Figure 3.12. In order to compare these three
simulations, the stress distributions were assessed in two different directions, firstly along
the contact surfaces (y = 0) and secondly inward the contact in the vertical direction
at the left contact edge (x = −a and y 6 0), Figure 3.11. Note that “a” is the semi-
width of the contact zone. The stress distributions were assessed at the time step where
ux = ux,max, where in this case, ux,max is the maximum value achieved by the prescribed
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tangential displacement.
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Figure 3.12: Reference solution of the fretting problem: (a) FE model and von Mises
contour at ux = ux,max, (b) comparison between analytical and reference solution of the
problem investigated for the σxy stress component along the contact surface (ux = ux,max).

In order to improve the accuracy of the FE computations within the enriched elements,
these ones were subdivided in n× n sub-domains, where in each sub-domain, four Gauss
points were considered in order to integrate the FE stiffness matrix, Figure 3.13. In this
study, convergence was achieved when 8×8 sub-domains were considered in each enriched
element.

In Figures 3.14 and 3.15 the σxx and σxy stress components of the three simulations
are compared. The reference solution is depicted by the black lines, the coarse standard
simulation by the blue ones, while the enriched one is depicted by the red lines. In
Figure 3.14, the stress distribution is assessed along the contact surface while Figure 3.15
depicts the results for the stress distribution inwards the contact. As can be seen, the
enrichment technique can improve considerably the quality of the results, mainly when
one analyses the σxy stress component along the contact surface. Note that, using the
enrichment technique, it was possible to work with a mesh 10 times coarser than the one
for the reference solution without losing quality. The enrichment radius considered in
these simulations was 0.6a. This value will be discussed in the next subsection.
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Figure 3.13: Gauss points integration scheme.
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Figure 3.14: (a) σxx stress component (y = 0, ux = ux,max), (b) σxy stress component
(y = 0, ux = ux,max).
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Figure 3.15: (a) σxx stress component (x = −a, y < 0, ux = ux,max), (b) σxy stress
component (x = −a, y < 0, ux = ux,max).

To quantify the improvements obtained when using the enrichment technique, different
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simulations considering different mesh sizes were performed. Some of these simulations
were also performed making use of the enrichment fields. To measure these gains, a
numerical error was defined, where the σxy stress component along the contact surface
obtained numerically in each simulation was compared with the one obtained analytically.
The σxy stress component was evaluated at the time instant where ux = ux,max.

ξ =

√∑
k∈K

(σnxy(xk)− σaxy(xk))
2

√∑
k∈K

σaxy(xk)
2

(3.54)

where K denotes the set of contact nodes on the specimen. Figure 3.16(a) depicts the
numerical error expressed by Eq. (3.54) for different mesh sizes. It is possible to see that
the enrichment technique considerably improves the quality of the results when the same
mesh size is considered (for example, from nearly 35% to less than 10% for the mesh of
0.025 mm). The improvement is higher the coarser the meshes are. In Figure 3.16(b), the
numerical error is also assessed, but this time, it was compared with the elapsed time in
each simulation. Again, it is possible to see a noticeable time-saving when the enrichment
technique is applied (for example, for an error of around 10%, the enriched simulation
was 16 times faster).
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Figure 3.16: (a) numerical error expressed by means of the size of mesh, (b) numerical
error expressed by means of the elapsed time in each simulation.

This work was more focused on a proof of concept of the enrichment technique pre-
sented in Section 3.2. Therefore, convergence rate analysis of the method are not rig-
orously conducted here. However, from Figure 3.16, it is possible to see that, standard
and and enriched simulations provided similar rates of convergence. Note as well that,
the enrichment technique in this work is employed in a whole fixed area surrounding the
contact edges, strategy similar to that applied to cracked problem in (Laborde et al.,
2005) in an attempt to find optimal rate of convergence with the X-FEM (even though
the X-FEM improves accuracy of solutions, blending elements are responsible for lack of
optimal convergence rate).
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3.4.2 Enrichment radius sensitivity

A question that may raise in this approach is how many elements surrounding the contact
edges should be enriched. A study was conducted where different simulations were carried
out. In these simulations, the only parameter changed was the enrichment radius. The
results are presented in Figure 3.17, where the σxx stress component when ux = ux,max is
plotted against the distance from the surface at x = −a.
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Figure 3.17: Variation of σxx when ux = ux,max against distance from the surface (x/a =
−1) for different enrichment radii.

The external loads considered here are the same as the ones presented in Figure 3.10.
The mesh considered was again the same as the previous coarse enriched simulation (0.025
mm). As can be seen in Figure 3.17, for enrichment radii higher than 0.4a, the results
remain nearly the same, which means that, in order to apply the enrichment technique to
capture the strong stress gradient, usually present in fretting problems, there is no need
to enrich large regions.

3.4.3 Fretting under gross slip conditions

In the previous subsections, all the simulations were confined under partial slip conditions,
which means that during the entire time domain evaluated, the position of the contact
edges remained the same during the simulations. In this subsection, the issue is to check
if the enrichment technique used up to this point works well when gross slip is present. In
this case, one needs to track the position of the contact edges in order to enrich locally the
model. For this purpose, a problem very similar to the one depicted in the Figure 3.10(a)
will be assessed, however, now, gross slip needs to be taken into account. The displacement
history depicted in Figure 3.18(a) will be considered, where, in this case, after the static
vertical displacement, uy, a large monotonic tangential displacement, ux, is applied to the
pad ensuring gross slip conditions. Further, the tangential displacement, ux, starts varying
sinusoidally ensuring partial slip conditions. Even-though large tangential displacements
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Figure 3.18: (a) Prescribed displacement history in gross slip, σxy stress component at
time steps (b) A, (c) B, (d), C and (e) D.

were here considered, linear elastic simulations under small deformations were always
assumed. It was possible once that, contact tractions are limited by Coulomb’s friction
law, where for the study case evaluated in this work, contact stresses remains inside the
elastic domain.

Again, a reference solution performed on a fine mesh (0.0025 mm) through the stan-
dard FEM was compared with two other coarse simulations (0.025 mm), one of them
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considering the enrichment technique and the other one without any enrichment. The
results are depicted in Figure 3.18, where the σxy stress component is evaluated at the
contact surface for different time steps. At this point, the position of the contact edges
were assumed to be known in order to apply the enrichment multiscale approach. This
information could be obtained from the reference solution of the problem.

Figure 3.18(a) depicts the displacement history considered in this analysis. At the
time step A (Figure 3.18(b)), the tangential displacement is not high enough to cause
gross slip. In this case we have two slip zones in the extremities of the contact surface
and a central stick zone. At the time steps B (Figure 3.18(c)), C (Figure 3.18(d)) and
D (Figure 3.18(e)), partial slip is also observed, but in these cases one can see that the
contact surface was shifted to the right, once that, during the monotonic increase of the
external tangential displacement gross slip was observed. Regarding these results, one
can see that, whenever the enrichment technique is considered, a good improvement in
the results is observed. The enriched simulations could recover with a good accuracy the
results obtained through the reference solution, where the mesh used was 10 times finer.
Regarding the results obtained by the standard coarse FE simulation, the response was
not very accurate.

3.4.4 Contact status identification through nonlocal intensity
factors

As presented in Section 3.1, the nonlocal intensity factors Is and Ia are related to com-
pressive and tangential loads, respectively. The idea is that these nonlocal parameters are
capable of providing some information concerning the contact status. In order to check
what happens with Ia and Is when gross slip is present, a model very similar to the one
presented in the last subsection (Fretting under gross slip conditions) will be assessed,
however, in this case, the amplitude of the tangential displacement during the sinusoidal
phase is greater (0.02 mm), Figure 3.19(a). It will ensure gross slip conditions most of
the loading cycle.

Results were then obtained performing a standard FE simulation. The mesh discretiza-
tion used here is very similar to the ones used so far, Figure 3.10, where, in this case,
the size of the refined mesh surrounding the contact surface is 0.0025 mm. The results
coming from this simulation will be also used as our reference solution hereinafter. Figure
3.19(b) depicts the slip zone semi-width over time. Note that “c” is the semi-width of the
stick zone and that when (a− c)/a is equal to 1, gross slip occurs. In Figure 3.19(c), one
can observe that the nonlocal intensity factor, Ia, the one related with tangential effects,
is always upper and lower bounded, which means that whenever gross slip is present, its
value is limited. This behaviour can be described using a generalization of Coulomb’s
friction law (Montebello et al., 2016):

|Ia| 6 µ̃|Is| (3.55)

where, µ̃, can be regarded as a nonlocal “friction coefficient”. Figure 3.19(d) confirms that
when gross slip is present |Ia| = µ̃|Is|, on the other hand, under partial slip conditions
|Ia| < µ̃|Is|. This behaviour suggests that, it is possible to link these nonlocal quantities,
Is and Ia, with the contact status of the problem which can speed up the simulations and
permit a better application of the enrichment fields when gross slip is present. In order to
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Figure 3.20: σxy stress component along the contact surface for different time steps when
gross slip is predominantly observed.

verify that, the same problem presented in Figure 3.19(a) was solved again. However, now,
two coarse simulations (0.025 mm) were performed. One of them considering the standard
FE method and the other one making use of the enrichment technique. In the enriched
case, during the solution of the contact problem, in the end of each time step iteration,
the nonlocal intensity factors were computed and the relation expressed by Eq. (3.55)
was checked. In case of |Ia| < µ̃|Is| the local contact problem in the next time step was
solved normally as presented in Subsection 3.3.3. However if |Ia| = µ̃|Is|, gross slip was
assumed, and the contact front was shifted by the same amount of the imposed external
displacement increment at that time step preserving all other contact parameters. Note
that this assumption is possible due to fact that the problem studied here considers two
elastic bodies under small deformations. In Figure 3.20, the σxy stress component on the
contact surface is depicted for different time steps for the three different simulations. The
reference solution is depicted by the blue lines, the coarse standard one by the green lines
and the enriched one by the red ones. As can be seen, a good improvement is observed in
the results when the enrichment technique is used in association with the nonlocal IF that
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3.4. Results and discussions

were used to track the position of the contact edges. In this case, the major advantages
are that during the gross slip phases, the problem does not need to be iteratively solved
which save a significant amount of time, and at the same time, when the enrichment
technique is being used, the position of the contact edge can be readily obtained ensuring
that the enrichments field are being used in the right place. Note that in this case, just
the initial information about the precise position of the contact edges needs to be known.

Further studies are still in progress in an attempt to link the nonlocal intensity factors
Is, Ia and Ic with some local quantities as the size of the stick/slip zones as well as the
position of the contact edges. With those informations the enrichment technique will
become more independent of prior informations about the contact front. Note that it
would not be a problem if we were dealing with complete contact problems, those ones
where the position of the contact edges do not depend on the applied external loads.

3.4.5 PGD strategy to enhance performance

For the enrichment technique proposed in this work, under gross sliding conditions, the
position of the contact edges are constantly changing. Since the enrichment functions are
computed with respect to a reference frame attached to the contact edges, every time
that the contact edges experience appreciable displacements, the enriched part of the FE
element stiffness matrix needs to be recomputed. Even tough it was not deeply verified
in this work, an attempt to describe the stiffness matrix of enriched elements by using
the proper generalized decomposition (PGD) (Néron and Ladevèze, 2010; Ladevèze et al.,
2010; Chinesta et al., 2011) was briefly tested in this work. The idea then is to use the
PGD to build a library during a learning stage, which will allow the fast recovering of the
enriched part of the stiffness matrix for a given element during actual simulations.

Therefore, consider a simple quadrangular element of sizes L with its center expressed
in polar coordinates as depicted in Figure 3.21. In this case, denoting the enriched part
of the stiffness matrix of this element by Kenr(r, θ, L,M), where M refers to material
properties, the PGD yields an approximate solution of the form:

Kenr(r, θ, L,M) ≈
n∑
i=1

fi(r)gi(θ)hi(L)mi(M) (3.56)

In order to verify the applicability of this approach, the simplest case was investigated,
where the size of the elements nearby the contact edges and the material properties were
assumed constant, i.e.

Kenr(r, θ) ≈
n∑
i=1

fi(r)gi(θ) (3.57)

In this setting, only the functions fi(r) and gi(θ) need to be determined. Then, the form
of these functions can be obtained by the following relations:

fi(r) =

ˆ

θ

(
Kenr(r, θ)−

i−1∑
k=1

fk(r)gk(θ)

)
: gi(θ)dθ

/ˆ
θ

gi(θ) : gi(θ)dθ (3.58)
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gi(θ) =

ˆ

r

(
Kenr(r, θ)−

i−1∑
k=1

fk(r)gk(θ)

)
fi(r)dr

/ ˆ
r

fi(r)
2dr (3.59)

where these equations can be solved throughout a fixed point iteration scheme.

x’

y’

θ

r
L

L

Figure 3.21: Reference frame PGD description.

For the FE model considered in the previous subsections and for an element of size
equal to 0.025 mm, the error of the approximation expressed by Eq. (3.57) in terms of
the number of functional products is depicted in Figure 3.22. As can been seen, only a
few terms (around 5) are already enough to build our library. It is worth noting that, the
introduction of more variables will increase the number of terms needed, however, it will
probably be advantageous yet.
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Figure 3.22: PGD error in terms of the number of functional pairs.
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3.5 Chapter highlights

In this chapter, an enrichment-based approach for the simulation of fretting problems
was proposed and tested. The enrichment functions here used were obtained through
the crack analogue approach presented in (Montebello, 2015; Montebello et al., 2016)
where it can be observed that the mechanical fields close to the contact edges in fretting
problems are close to the ones near the crack tip in LEFM problems. Taking advantage
of this similarity, closed form enrichment functions were used in order to enrich fretting
simulations by using the X-FEM allowing us to capture the strong stress gradient nearby
the contact edges. Both partial and gross slip regimes were assessed. Results have shown
that, without appreciable loss of accuracy, the enrichment technique can considerably
improve the quality of the results allowing the use of meshes up to 10 times coarser than
those utilized when performing standard FE simulations, which consequently reduces
computational costs.

The nonlocal intensity factors Ia and Is coming from the crack analogue approach
presented in Section 3.1 have also shown to be good indicators of the problem contact
status. In this setting, those were used in order to track the position of the contact edges
when gross slip takes place, which permits to apply the enrichment technique in the right
place.
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Chapter 4

Wear effects on fretting fatigue life
estimate

In this chapter, the influence of the material removal due to wear when estimating fretting
fatigue life under partial slip condition is addressed. Details concerning the numerical
model and the contacting surfaces update are provided. Multiaxial fatigue life assessments
and experimental data are compared.

4.1 Contextualization

Fretting fatigue life prediction approaches generally neglect wear effects when partial slip
conditions are predominant (Araujo and Nowell, 2002; Hattori et al., 2003; Araujo et al.,
2004; Navarro et al., 2008; Araújo et al., 2017). However, the contact surface evolution
due to wear, over the fretting cycles, may lead to appreciable changes in the stress field
distributions caused by the contact loads (McColl et al., 2004; Ding et al., 2004). As most
of the works done so far concerning life prediction for fretting problems rely on stress based
models, considering wear effects may change life predictions. Madge et al. (2007a,b) took
into account wear effects in order to estimate fatigue life for a titanium alloy and could
capture efficiently the detrimental wear effect under partial slip conditions and a beneficial
one when gross sliding was observed. Under gross sliding conditions, cracks are worn out
before they even start growing. This chapter will focus on the analysis of fretting fatigue
data undertaken at the University of Brasilia by (Ferry, 2017; Ferry et al., 2017) for the
titanium alloy Ti-6Al-4V. The main idea here is to compare life predictions regarding
wear effects with the ones obtained when wear is neglected. All the analysis are carried
out under the partial slip regime (PSR).

4.2 Wear numerical modelling and damage accumu-

lation

As presented in Section 2.4, wear can be computed locally by using the Archard’s law,
Eq. (2.2) or the friction energy local law, Eq. (2.4). Those equations can be readily
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4.2. Wear numerical modelling and damage accumulation

implemented in the context of a FE code. Thus, the total required number of wear cycles
(loading cycles), Nt, can be split in nw wear blocks, where each block corresponds to ∆N
wear cycles, i.e. nw = Nt/∆N . From a practical point of view, it would not be feasible in
many situations to simulate each wear cycle. In this case, a strategy commonly adopted
is to compute the wear during a fretting cycle and then multiply it by the jumping factor
∆N assuming that the wear is nearly constant for ∆N wear cycles. Doing so, the contact
surface of the problem can be updated on a nodal basis after the application of the ith

wear block ∆N as follows:

• Archard’s law:

∆hi,j =

ninc∑
k=1

κwp(xj, tk)∆s(xj, tk)∆N (4.1)

• Frictional dissipated energy:

∆hi,j =

ninc∑
k=1

αq(xj, tk)∆s(xj, tk)∆N (4.2)

where ∆hi,j is the wear depth increment of the node j located at the contact surface,
κw is the local wear coefficient, α is the energy wear coefficient and ninc is the total
number of load increments over a fretting cycle. The contact variables p(xj, tk), q(xj, tk)
and ∆s(xj, tk) denote, respectively, the pressure distribution, the shear traction and the
contact relative slip increment for the node j at the time increment tk. Therefore, the
total wear depth at Nt cycles for the node j is given by:

hj =
nw∑
i=1

∆hi,j (4.3)

Besides the update of the contact surface, which is addressed in the next section,
changes in stress and strain are recorded for each wear step so that the Miner’s linear
cumulative damage rule (Palmgren, 1924; Miner, 1945) can be used to predict material
failure. In this case, for a material sub-surface point x, the total cumulative damage
associated with the nth wear step is given by:

Df,n(x) =
n∑
i=1

∆N

Nf,i(x)
(4.4)

where Nf,i is the fatigue life expected for a given stress state, i.e. after determining the
stress state σ(x, t) for given material point x and time instant t over the ith fretting cycle,
it can be introduced in multiaxial fatigue criteria in order to predict the fatigue life Nf,i(x)
(see Subsection 2.5.5).

In this work, the centroid of elements were chosen in order to compute the damage
parameter defined by Eq. (4.4). However, it is worth noting that, due to the material
removal along the contact surfaces, the contact geometries are constantly modified which
as consequence changes the position of the element centroids describing such geometries
(mainly under gross sliding conditions). In order to account for that, the following nu-
merical scheme was adopted: after each ith fretting cycle simulation, the damage value on
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Df,i-1 ΔDf,i

Df,i-1
*

= Df,i  + D ΔDf,i-1 f,i
*

Figure 4.1: Illustration of the methodology used in order to transfer the cumulative
damage from a previous fretting cycle simulation to the next.

the (i− 1)th fretting cycle was interpolated from the previous (i− 1)th element centroids
to the new ith element centroids location. Therefore, the actual damage field distribution
at the ith damage increment can be expressed as:

Df,i = D?
f,i−1 + ∆Df,i (4.5)

where D?
f,i−1 is the damage field from the previous fretting cycle simulation (i−1)th inter-

polated to the position of the element centroid points at the ith fretting cycle, Figure 4.1.
As can be seen, this strategy ensures that damage is not accumulated at material points
removed due to wear. Damage interpolation from a previous mesh configuration (Df,i−1)
to the new one (D?

f,i−1) were performed by firstly applying a Delaunay triangulation to

points at the (i−1)th centroids location followed by a linear interpolation of Df,i−1 to the
new element centroid positions.

4.3 Contact surface update

In order to update the contact surfaces as the fretting cycles goes on, two different strate-
gies are commonly applied. One of them is the remeshing technique (McColl et al., 2004;
Ding et al., 2004; Garcin et al., 2015), in this case, after the simulation of a fretting cy-
cle, the coordinates of the contact nodes are vertically displaced by the amount defined
in Eqs. (4.1)-(4.2) and another mesh is generated in order to avoid element distortion.
Another way to tackle the problem is by using adaptive meshes (Madge et al., 2007a;
Madge, 2009; Cruzado et al., 2013; Silva, 2016), where the position of the contact nodes
are also displaced over the fretting cycles, however, this technique dispenses the remeshing
procedure once that the mesh topology is held the same while nodal positions are shifted
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4.3. Contact surface update

in order to avoid distortion. However, an advection process needs to be carried out, which
consists in remapping solution variables from an old mesh to the new one.

These two techniques were tested in this work. Figure 4.2 displays a flowchart illus-
trating the FE-based wear model coupled with the remeshing technique. Herein, a main
Python script manages all the process which consists in the simulation of each fretting cy-
cle i followed by the contact surfaces updating, where contact nodes are vertically moved
according to Eq. (4.1) or (4.2) depending on the wear model used.

  

Pre-processing phase 

Input data through python script: 

 Geometry and mesh discretization 

 Material and contact properties 

 Loads and boundary conditions 

 Total number of wear cycles 𝑁𝑡 

 Launch ABAQUS  

𝑖 = 1 

Processing phase 

 

 

Results from one fretting cycle 

simulation: 

 Contact pressure 

 Relative slip 

 Coordinates 

Wear input data: 

 Wear coefficient  (𝜅𝑤) 

 Cycle jumping (Δ𝑁) 

Wear computation (Python script that reads 

output results from ABAQUS): 

Δℎ𝑖,𝑗 = ∑ 𝜅𝑤𝑝(𝑥𝑗 , 𝑡𝑘)Δ𝑠(𝑥𝑗 , 𝑡𝑘)Δ𝑁

𝑛𝑖𝑛𝑐

𝑘=1

 

Contact geometry update by 

modifying contact nodal positions 

𝑁 = 𝑁 + 1 
𝑁 = 𝑁𝑡  

remeshing 

𝑖 = 𝑖 + 1 

false 

true 

Post-processing phase 

Figure 4.2: FE-based model for wear analysis using the remeshing technique.
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Figure 4.3, on the other hand, depicts the incremental wear simulation methodology
when using the adaptive meshing (ALE adaptive meshing (Abaqus, 2013)). In this case,
the main difference is that instead of computing the material removal and updating the
contact surface at the end of a complete fretting cycle, wear calculation and contact nodes
motion are carried out within a fretting cycle for each load increment. This procedure is
implemented by a user subroutine (UMESHMOTION, (Abaqus, 2013)).

‘  

Pre-processing phase 

Input data through python script: 

 Geometry and mesh discretization 

 Material and contact properties 

 Loads and boundary conditions 

 Total number of wear cycles 𝑁𝑡 

 

Processing phase 

Simulation of the 

first fretting cycle 

𝑖 = 1 

𝑘 = 1 

 

 

 

Results from each increment 

within one fretting cycle: 

 Contact pressure 

 Relative slip 

 Coordinates 

Wear input data: 

 Wear coefficient  (𝜅𝑤) 

 Cycle jumping (Δ𝑁) 

Wear computation (UMESHMOTION): 

Δℎ𝑖,𝑗,𝑘 = 𝜅𝑤𝑝(𝑥𝑗 , 𝑡𝑘)Δ𝑠(𝑥𝑗 , 𝑡𝑘)Δ𝑁 

Contact geometry 

update (ALE mesh): 

 Mesh sweep 

 Sweep advection 

 

 

𝑘 = 𝑘 + 1 

false 

true 

𝑁
=
𝑁
+
Δ
𝑁

 

true 

Post-processing phase 

 

false 

Simulation of another 

fretting cycle 

𝑖 = 𝑖 + 1 

𝑁 = 𝑁𝑡  

𝑘 = 𝑛𝑖𝑛𝑐   

Figure 4.3: FE-based model for wear analysis using the ALE adaptive technique.

In order to evaluate these two methods, results from (Ding et al., 2004) were here
reproduced and used as reference for validation. These authors have investigated the
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P
ux

R = 6 mm

fixed

Figure 4.4: FE model used to validate wear implementations.

wear effects on the stress distribution under both partial and gross sliding conditions.
Figure 4.4 depicts the geometry and load conditions considered, where first a normal
load P = 120 N/mm is applied to the cylindrical pad pressing it onto the flat specimen
which is fixed on the bottom surface. Then, while this normal load P is held constant,
a tangential oscillatory displacement ux is applied to the pad. The upper surface of the
pad is also subjected to a multi-point constraint which prevents pad’s rotation. Two
different amplitudes of ux were investigated, a smaller one of 2.5 µm establishing partial
slip conditions and larger one of 10 µm ensuring gross sliding regime.

The material considered was a high strength steel with Young modulus E = 200 MPa,
Poisson’s ration ν = 0.3 and a local wear coefficient kw = 1.0× 10−7 MPa−1 (Ding et al.,
2004). The friction coefficient assumed in the simulations was µ = 0.6.

Figure 4.5 shows the contact pressure distribution for different number of fretting
cycles under partial slip conditions considering both contact surface update procedures
(remeshing and adaptive meshing). In this case, the size of the mesh near the contacting
surfaces was set equal to 5 µm. As can be seen, as the wear evolves, slip zones are worn
out while the stick zone tends to support all external contact loads. For a high enough
number of cycles (18000 cycles, Figure 4.5(a)), it is possible to observe that the pressure
distributions along the initial slip zones are nearly null, which happens because these zones
were completely removed at this point. In this case, a full stick condition is observed at
the initial stick zone region where the pressure distribution is close to the one found in
complete contact problems (flat-on-flat). Similar conclusions were obtained previously
by (Ciavarella and Hills, 1999) when evaluating wear effects under partial slip conditions
analytically. This shifting of the hot spot zones from the contact edges towards the stick
zones may explain why many times cracks are observed at the slip zones close the initial
stick/slip zone region.
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Figure 4.5: Contact pressure distributions under partial slip conditions (P = 120 N/mm,
ux = 2.5 µm, R = 6 mm) for different number of fretting cycles: (a) considering the
remeshing technique and (b) the adaptive mesh.
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Figure 4.6: Contact pressure distributions under partial slip conditions for different num-
ber of fretting cycles (Ding et al., 2004).
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Results from Figure 4.5(a) were obtained by using the remeshing tehcnique and are
in close agreement with the data provided by (Ding et al., 2004) (Figure 4.6), which used
a similar contact surface updating procedure. On the other hand, the adaptive mesh
strategy lead to overestimate wear effects. As can be seen in Figure 4.5(b), the size of the
stick zone is always decreasing which consequently makes the peak pressure achieve very
high values. Note as well that the pressure distribution at the initial slip zones falls to
zero slower when compared to the remeshing technique. It may be due to the smoothing
procedures performed on the ALE adaptive meshing algorithm (Abaqus, 2013). However,
this phenomenon only took place when partial slip conditions were evaluated, i.e. ux =
2.5 µm.
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Figure 4.7: Contact pressure distributions under gross sliding conditions (P = 120 N/mm,
ux = 10 µm, R = 6 mm) for different number of fretting cycles: (a) considering the
remeshing technique and (b) the adaptive mesh.

When gross sliding conditions were assessed, both contact surface update procedures
provided nearly the same results as depicted in Figure 4.7. In this case, the size of the
mesh in the refined region surrounding the contact surfaces was defined equal to 10 µm.
For the gross sliding regime, it is possible to see that, as the fretting cycles evolve, the
contact region becomes larger and the pressure distribution tends to a flat distribution.
Note that the initial peak pressure is around 4 times higher than that at 5000 fretting
cycles. In addition, the large amount of material loss is constantly removing severely
damaged areas, which hinders the propagation of cracks. Results depicted in Figure
4.7 are in very good accordance with the ones presented by (Ding et al., 2004) (Figure
4.8). Results from Figures 4.5 and 4.7 were obtained before start applying the tangential
displacement to the pad (ux = 0).

For the partial slip conditions, a jumping cycle (∆N) of 2000 was used when using
the adaptive meshing procedure. For the remeshing technique, the jumping cycle was
set to 500. Fretting cycles were equally divided into 16 steps when using the remeshing
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Figure 4.8: Contact pressure distributions under gross conditions sliding for different
number of fretting cycles (Ding et al., 2004).

technique and 50 steps when using the adaptive meshing for the partial slip regime. For
gross sliding conditions, the jumping cycle was set to 25 and 100, respectively, when
using the remeshing and adaptive meshing procedures. In this case, for the fretting cycle
increments, 16 time steps were used for the remeshing approach while 100 time steps for
the adaptive meshing one.

Generally speaking, the ALE adaptive meshing is computationally more efficient and
allows the use of higher cycle jumps. This procedure permits the modification of the
contact surface incrementally throughout a tangential cycle. In addition, the unloading
and loading phases of the normal load does not need to be carried out as it is done in
the remeshing technique. However, this strategy is more memory demanding once that,
all the fretting cycles incrementation data need to be stored in memory while the FE
analysis is running, which can be a huge drawback when considering large problems.
Besides, the apparently no stabilization of the worn profile under partial slip conditions
is a considerable shortcoming in the scope of this work, once that, high cycle fretting
fatigue cases will be evaluated. Therefore, the remeshing technique was chosen in order
to update contact surfaces when performing fretting simulations in this work. Figures 4.9
and 4.10 show the worn profile of the flat specimen and the cylindrical pad by using the
remeshing technique for both slip regimes.

It is worth noting that, in spite of the slip regime, Madge et al. (2007a) obtained
good results by estimating the effect of slip amplitude on fretting fatigue life by using
the adaptive meshing technique. In this case, good results under partial slip conditions
may be explained due to the fact that, for the data by them assessed, contact loads and
wear coefficient were smaller, which consequently decreases wear rates. And as can be
seen in Figure 4.9, for the first 5000 cycles, results obtained by using the remeshing or the
adaptive meshing technique do not diverge too much. In other words, for a certain level
of wear, under partial partial slip conditions, both procedures provide similar results.
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Figure 4.9: Worn profile under partial slip conditions (P = 120 N/mm, ux = 2.5 µm,
R = 6 mm): (a) pad, (b) specimen.
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R = 6 mm): (a) pad, (b) specimen.
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4.4 Experimental data available

Aiming to investigate the influence of wear under fretting fatigue conditions (partial slip),
the experimental data provided by (Ferry, 2017) is assessed and used as reference for
comparison with the numerical results. In her work, besides evaluating the applicability of
the nonlocal intensity factors presented in Section 3.1 when those are used to define crack
initiation frontiers under fretting conditions, the size effect in fretting fatigue problems
was also investigated. In this case, two types of experimental campaigns were evaluated.
In one of them (Group-2a of tests) 1, the aim was to investigate the effect of the volume
of material being stressed under the contact. In this group-2a tests, the stress gradient
inward the contact and the area of the slip zones were the same for all the experiments.
In the other set of experiments (Group-2b of tests), the goal was to verify the influence
of damaged area on the tests while the stress gradient was kept the same. The contact
geometry considered was the cylinder on plane one. For more details concerning pads and
specimens manufacturing and specifications, see (Ferry, 2017).

The stress gradient inward the contact moving away from the trailing edge was eval-
uated via MWCM (Subsection 2.5.5.3), where it can be expressed as:

IMWCM = τa +

(
σ−1 − σ0

2

)
σn,amx
τa

(4.6)

Table 4.1: Group-2 fretting fatigue data for the Ti-6Al-4V (Ferry, 2017) (pad radius
R = 70 mm).

test thickness (mm) σb,max/p0 Qmax/µP Asth (mm2) N exp
f

T1 8 0.45 0.68 7.43 218000
T2 13 0.6 0.46 7.37 167000
T3 8 0.3 0.65 7.01 672000
T4 13 0.46 0.44 6.99 443000
T5 8 0.6 0.46 4.53 207000
T6 8 0.40 0.42 4.08 529000
T7 13 0.40 0.42 6.62 538000

The data provided by (Ferry, 2017) is presented in Table 4.1, where σb,max is the
maximum value reached by the bulk stress during a fretting cycle while Qmax is the
maximum tangential load. Asth is the theoretical area of the slip zones and N exp

f is the
experimental number of cycles to failure. A pad radius R = 70 mm was considered in
the analysis. A peak pressure p0 = 500 MPa was kept in all tests. The numerical model
and load sequence considered in the experiments are depicted in Figure 4.12, where more
details will be given in the next section. Tests from 1 to 4 aimed to investigate the effect
of the volume of material being stressed. For example, tests T1 and T2 were designed

1The nomenclature Group-2a is here used in order to be in accordance with the one utilized in (Ferry,
2017), where, in her work, Group-1 tests were intended to verify the accuracy of the nonlocal intensity
factors (Section 3.1) in estimating fretting crack initiation frontiers.
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Figure 4.11: Schematic representation of the Group-2 tests: (a) Group-2a tests with the
same slip zone areas for different contact widths, (b) Group-2b tests with different slip
zone areas.

to have the same slip areas (Figure 4.11(a)) and the same stress gradient at the contact
trailing edge (x = −a), however with different volumes of material being stressed. This
can be done by changing the specimens and pads thickness, i.e. from 8 to 13 mm. In
order to keep the same slip areas between these two tests, the tangential load needs to de
modified, once that it changes the length of the slip areas. Doing so, the bulk load also
needs to be adequately changed in order to hold the same stress gradient for the two tests
(T1 and T2). Same is required for tests T3 and T4, however in this case, loads are lower
so that higher lives could be achieved during experiments.

On the other hand, tests T2, T5-T7 were intended to investigate the influence of the
damaged area due to wear on fretting fatigue, Figure 4.11(b). In this setting, tests T2
and T5 have the same stress gradient nearby the contact edges, however, the size of the
slip areas are different within these two tests. The same is valid for tests T6 and T7 but
with a less severe stress gradient.

All these experiments were conducted in the facilities of the Fatigue, Fracture and
Materials Research Group at the University of Brasilia. The experimental apparatus
is presented in Figure 2.5 (Section 2.3). The material of the pads and specimens was
the titanium alloy Ti-6Al-4V. Its basic properties are given in Table 4.2. The friction
coefficient, µ, is 0.5 (Bellecave et al., 2014).

67



Chapter 4. Wear effects on fretting fatigue life estimate

Table 4.2: Mechanical properties of the Ti-6Al-4V alloy (Le Biavant-Guerrier, 2000).

Material E (GPa) ν σy (MPa) σut (MPa) HV
Ti-6Al-4V 119.4 0.286 850 1000 360

4.5 Finite element modelling of wear

To carry out the fretting fatigue simulations, the commercial FE software ABAQUS 6.14
was used (Abaqus, 2013). It allowed a faster and simpler implementation of the contact
evolution approach assessed in this work. The FE model adopted in this work is illustrated
in Figure 4.12. As depicted, a static normal load, P , presses a cylindrical pad of radius R
against a flat specimen which is already subjected to a static mean bulk load. After that,
a tangential load Q is applied to the pad in phase with an alternate bulk load. Note that
the mean and the alternate bulk loads give rise to the mean (σm) and alternate (σa) bulk
stresses, respectively. A central refined zone composed of linear quadrilateral elements is
defined in a rectangular region surrounding the contact surfaces. The size of the elements
in this area is around 15 µm. Outside this region, a coarser mesh is formed by linear
triangular elements. Plain strain elements are considered in the analysis. Concerning the
contact aspects, the nodes on the refined region of the pad are defined as the slave ones
while the master nodes are set on the specimen. The frictional contact constraints are
imposed via the Lagrange multiplier approach (Subsection 3.3.2). The penalty method
was not used here once that, in order to perform wear computations, exact slip solutions
are needed inside the stick zones (the Penalty method allows some slip to take place even
under stick conditions). Multi-point constraints are enforced on the upper surface of the
pad so that rotation is prevented.

normal load, P
tangential load, Q
bulk load, Fb

time

A
p
p
lie

d
 lo

a
d
s
 

P
Q(t)

F (t)b

~15 μm

40 mm

Figure 4.12: Finite element model used in order to carry out fretting fatigue/wear simu-
lations.

To validate the FE model, a fretting fatigue problem neglecting wear effects was sim-
ulated and results were compared to the analytical solution of the problem (Section 2.7).
Figure 4.13 depicts the normal and shear traction distributions along the contact when
both the tangential and the bulk loads achieve their maximum value (load case test T2).
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Figure 4.13: Comparison between analytical and FE solution: (a) pressure and (b) shear
traction distribution (loading conditions from test T2 in Table 4.1).

As can be seen, a good agreement can be found between the FE predictions and analytical
solution of the problem.

4.6 Multiaxial fatigue life assessment

The objective of this chapter is to investigate the effects of wear when estimating fatigue
life under fretting conditions. The material investigated here is the Ti-6Al-4V. To calibrate
the fatigue models presented in Subsection 2.5.5, the uniaxial fatigue data provided by
(Kallmeyer et al., 2002) was used, see Figure 4.14. In this case, S-N curves for the Ti-
6Al-4V were obtained considering uniaxial tests for different load ratios Rσ.

For instance, when considering the Smith, Watson and Topper (SWT) fatigue model,
the fatigue data presented in Figure 4.14 can be expressed by means of its parameter,
Eq. (2.11), as a function of the number of cycles to failure, Figure 4.15. Then, a two
parameter power law can be used to fit the experimental data yielding:

ISWT = 4.35N−0.093
f + 2.45× 104N−0.94

f (4.7)

Figure 4.16 illustrates the same procedure previously described, however using Find-
ley’s multiaxial fatigue parameter, which produces:

IFP = 1.02× 105N−0.64
f + 363N−0.031

f (4.8)

Note that the computation of IFP demands the knowledge of the material parameter γ
(see Eq. (2.10)), which for metals, in general, ranges between 0.2 and 0.3. The value
value of 0.3 was assumed in this work.
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Figure 4.14: Uniaxial fatigue data for the Ti-6Al-4V (Kallmeyer et al., 2002).
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Figure 4.16: Uniaxial fatigue data for the Ti-6Al-4V (Kallmeyer et al., 2002) expressed
in terms of the Findley parameter.
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Figure 4.17: Uniaxial fatigue data for the Ti-6Al-4V (Kallmeyer et al., 2002) expressed
in terms of the MWCM.

Finally, considering the Modified Wöhler Curve Method (MWCM), the following ex-
pressions were found:

Nf = 5× 106

[
τa,ref (ρ)

τa

]κτ (ρ)

(4.9)

where

τa,ref (ρ) = −32ρ+ 205 (4.10)

and

κτ (ρ) = −0.0269ρ− 0.0711 (4.11)
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In order to obtain Eqs. (4.10) and (4.11) the interpolation strategy shown in Subsec-
tion 2.5.5.3 was applied to the uniaxial fatigue data corresponding to the load ratios −1
(ρ = 1) and 0.5 (ρ = 4). Figure 4.17 depicts the two reference modified Wöhler curves
investigated. In order to compute τa used in the Findley and MWCM multiaxial fatigue
criteria, the MRH has been used (see Appendix D). Note that these three multiaxial
fatigue models considered presented a considerable dispersion for low cycle fatigue data.
However, for high cycle fatigue, the regime assessed in this work, correlation with uniaxial
data is quite fair.

Again, as this chapter aims to check if it is really worthwhile considering wear effects
under partial slip conditions, three different models are used in an attempt to minimize
the influence of the multiaxial fatigue criteria considered in the present investigation.

4.7 Results

Aiming to investigate the effects of wear under fretting fatigue conditions, two types of
simulations were performed in this work. Firstly, wear effects were neglected in order to
estimate fatigue life. In sequence, wear effects were considered following the procedures
described in the previous sections. The friction dissipated energy equation (Eq. (4.2)) was
considered in the analysis due to experimental availability of the energy wear coefficient
α for the Ti-6Al-4V, which was obtained from (Garcin et al., 2015), (α = 1.43 × 10−8

MPa−1).
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Figure 4.18: Specimen’s worn profile for different number of fretting fatigue cycles con-
sidering loading conditions from test T1.

Figure 4.18 depicts the worn surface of the specimen for different number of cycles when
the load conditions given by the test T1 are considered. Contact pressure distribution
for different number of cycles are shown in Figure 4.19(a). On the other hand, Figure
4.19(b) depicts the shear traction distribution over the cycles. Pressure profiles are taken
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Figure 4.19: Contact traction distribution for different number of fretting fatigue cycles
considering loading conditions from test T1: (a) pressure (Q(t) = 0) and (b) shear traction
(Q(t) = Qmax).

before applying the tangential load, i.e. Q(t) = 0, whereas shear tractions are obtained
when Q(t) = Qmax. As can be seen, the presence of the bulk load Fb, besides provoking
an offset of the stick zone, makes the material removal more prominent on the left slip
zone. As fretting cycles goes on, pressure distributions on the initial slip zones are reduced
while stress distributions at the initial stick zones are increased in order to keep the force
equilibrium. Peaks in the transitions between stick and slip zones are also observed. A
similar trend is observed when loading conditions from the other tests (Table 4.1) are
assessed.

Fatigue life was estimated by using each one of the three different multiaixal fatigue
criteria given by Eqs. (4.7)-(4.9). Note that when wear is included in the analysis, the
damage cumulation law presented in Section 4.2 is needed once that, due to the material
removal and geometry modification, stress distributions are constantly changing. Since
hot spot approaches are not well suited for contact problems (Araujo and Nowell, 2002;
Araújo et al., 2007; Taylor, 2011), a nonlocal procedure based on the Theory of Critical
Distances (point method) have been used in this work (see Section 2.6 for more details).
A critical distance parameter L = 30 µm was adopted in this work (Bellecave et al., 2014).

When neglecting wear effects, stresses/strains can be readily obtained considering a
point L/2 vertically distant from the contact trailing edge and life can be estimated
through multiaxial fatigue criteria, Figure 4.20. However, when wear takes place, the
hot spot point at the contact surface is continually changing. In this case, in order to
estimate fatigue life, the procedure adopted here is to compute the damage parameter
defined by Eq. (4.4) and check when it achieves the value of 1 (failure). However, failure
is only considered when this point is at least L/2 distant from the contact surface, Figure
4.21. This procedure was conducted in order to incorporate the stress gradient in the life
estimation procedure. If stresses were considered too close from the contact surface, life

73



Chapter 4. Wear effects on fretting fatigue life estimate

L/2
σ (t)b

P
Q(t)

x

y

-a a

σ(t)

R

Figure 4.20: TCD applied to fretting problems when wear effects are neglected.
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Figure 4.21: TCD applied to fretting problems when wear is taken into account.

estimates would be systematically underestimated.

Table 4.3 summarizes the life estimate for the experimental data presented in Table 4.1
when wear effects are taken into account. Life results are provided considering each one of
the multiaxial fatigue criteria presented in Section 4.6, i.e. SWT (NSWT

f ), Findley (NFP
f )

and MWCM (NMWCM
f ). The same is valid for Table 4.4 but neglecting wear effects, i.e.

contact geometry is assumed to be the same all over the fretting cycles.

Note that tests conduced at the same loading levels but with different specimen thick-
ness presented the same life estimates (T2/T5 and T6/T7). This is due to the fact that
one carries out numerical simulations by assuming 2D plain strain elements. Besides, as
can be seen in the experimental results and as pointed out by (Ferry, 2017), the specimen
thickness does not have a great influence in terms of life when the same levels of loads are
considered. In other words, components subjected to the same stress gradients nearby
the contact edges will experience similar lives despite the size of the slip areas.

Regarding the dispersion when evaluating fatigue lives, at a first glance, both predic-
tions considering and neglecting wear effects seem reasonably accurate, Figure 4.22. Only
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Table 4.3: Life estimates condidering wear effects.

Results considering wear
test thickness (mm) σb,max/p0 Qmax/µP N exp

f NSWT
f NFP

f NMWCM
f

T1 8 0.45 0.68 218000 271000 155000 132000
T2 13 0.6 0.46 167000 304000 174000 208000
T3 8 0.3 0.65 672000 405000 251000 192000
T4 13 0.46 0.44 443000 573000 328000 343000
T5 8 0.6 0.46 207000 304000 174000 208000
T6 8 0.40 0.42 529000 821000 447000 475000
T7 13 0.40 0.42 538000 821000 447000 475000

Table 4.4: Life estimates neglecting wear effects.

Results neglecting wear
test thickness (mm) σb,max/p0 Qmax/µP N exp

f NSWT
f NFP

f NMWCM
f

T1 8 0.45 0.68 218000 106000 75000 152000
T2 13 0.6 0.46 167000 122000 87000 237000
T3 8 0.3 0.65 672000 387000 187000 512000
T4 13 0.46 0.44 443000 452000 224000 733000
T5 8 0.6 0.46 207000 122000 87000 237000
T6 8 0.40 0.42 529000 1363000 465000 1441000
T7 13 0.40 0.42 538000 1363000 465000 1441000

a few cases lie outside the region defined by the factor of 2 lines. Besides, these cases are
apparently more related to the multiaxial fatigue criterion used itself. In addition, Table
4.5 expresses the life estimate errors for each multiaxial fatigue criteria assessed in this
work. In this setting, for the data here studied, when considering wear effects, the SWT
model provided the least conservative results although all estimates had errors smaller
100 %. Findley and MWCM criteria lead to similar estimates, however with results a
little more centred than the SWT ones and with a more conservative trend. On the other
hand, when neglecting wear effects, estimates are in general more scattered than when
considering wear. Additionally, except for tests T6 and consequently T7, where SWT and
MWCM considerably overestimated the results, all other predictions got errors smaller
than 100 %. Therefore, in spite of the results obtained considering wear effects are slightly
better, neglecting wear does not seem to strongly affect multiaxial fatigue damage assess-
ment still providing reasonable life predictions under partial slip conditions. Neglecting
wear also simplifies the problem and significantly reduces its computational cost, which
would be a key point if complex 3D components were being evaluated.

However, it is worth noting that, when considering wear effects, the fatigue damage
tends to spread over a larger region and failure is predicted to happen inside the slip zone.
For the load configuration T1, for example, failure is predicted close to the transition
between the stick and the slip zone, Figure 4.23(a). On the other hand, when neglecting
wear effects, failure is always predicted to take place near the contact trailing edge despite
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Figure 4.22: Estimated and observed fretting fatigue lives reported in (Ferry, 2017).

Table 4.5: Estimated errors considering (a) and neglecting wear effects (b).

test SWT Findley MWCM
(a) Errors (%) considering wear:

T1 24 -29 -39
T2 82 4 25
T3 -40 -63 -71
T4 29 -26 -23
T5 47 -16 0
T6 55 -16 -10
T7 53 -17 -12

(a) Errors (%) neglecting wear:
T1 -51 -66 -30
T2 -27 -48 42
T3 -42 -72 -24
T4 2 -49 65
T5 -41 -58 14
T6 158 -12 172
T7 153 -14 168

*Erros (%) are defined as the difference between the estimated
lives and the experimental ones divided by the experimental ob-
servations.
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the load configuration assessed, Figure 4.23(b).
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Figure 4.23: Damage distribution inward the contact at L/2 for the load configuration
T1: (a) considering and (b) neglecting wear effects.

The author is aware that wear simulations carried out in this work did not take into
account third body effects (Ding et al., 2007; Basseville et al., 2011) and variations of
the friction coefficient (Yue and Wahab, 2017). Another important point is that, when
performing wear simulations under partial slip conditions, cracks would have appeared at
some point, and this would be responsible for modifying the contact stress distributions
even more. However, in the view of the dispersion involved in fatigue, simplifications
assumed in this work seem to be reasonable. It is also worth noting that, the material here
considered was an aeronautical Ti-6Al-4V alloy, which has some interesting properties,
for instance, high mechanical properties such as its hardness, corrosion resistance and fine
surface finishing, which all along contributed to low wear rates (Waterhouse, 1992). In
this setting, further investigations should also be employed to materials more susceptible
to wear.
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4.8 Chapter highlights

In this chapter, the influence of considering wear on the simulation of fretting fatigue
problems under partial slip conditions was investigated. For so, life estimates taking into
account and neglecting wear were both carried out. Results were compared to experi-
mental data for a Ti-6Al-4V titanium alloy (Ferry, 2017). To estimate fatigue life, three
different multiaxial fatigue criteria were assessed (SWT, Findley and MWCM). In addi-
tion, in order to account for the stress gradient effect inherent to contact problems, the
Theory of Critical Distances (TCD) has been considered. Wear was computed on a nodal
basis by using the dissipated friction energy criterion (Fouvry et al., 2003). The updating
of the contacting surfaces through the fretting cycles was achieved by using a remesh-
ing technique, once that it has proven to be more reliable than the adaptive meshing
(UMESHMOTION) in the framework of this work.

Results have shown that, considering wear effects slightly improve the quality of the
results where these are less scattered than the ones obtained neglecting wear. However,
wear modelling is computationally speaking much more expensive, once that, many fret-
ting cycles need to be simulated during the analysis. When considering wear, the SWT
multiaxial fatigue criterion provided less conservative results than the shear stress based
models, i.e. Findley and MWCM. When wear is neglected, MWCM and SWT overesti-
mated the fatigue life in one more than 150% for one of the loading conditions assessed.
In addition, when wear is regarded, failure is predicted inside the slip zone towards the
location of the initial transition between stick and slip zones. Nevertheless, neglecting
wear systematically indicates failure at the contact trailing edge.
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Chapter 5

Conclusion and perspectives

5.1 Main conclusions

In this work, which was divided in two parts, firstly, an enrichment-based (X-FEM)
approach was used in order to capture the strong stress gradient close to the contact
surfaces in fretting simulations performed on coarse meshes. The results were compared
with reference solutions obtained using refined standard FE simulations. The modes used
to enrich the simulations were obtained through a crack analogy approach (Montebello
et al., 2016; Giannakopoulos et al., 1998, 2000). The results have shown that, by using
the enrichment technique, the computational cost of such simulations can be considerably
reduced, once that, without loosing accuracy, one can work with meshes up to 10 times
coarser than those considered in the standard FEM. The methodology also proved itself
effective when gross slip is taken into account.

The nonlocal intensity factors presented in Section 3.1 proved to be good indicators of
the contact status, suggesting that they may be used to obtain precise information about
local contact parameters, as the position of the contact edges, allowing a more precise
application of the enrichment technique for moving contact surfaces. In this context, only
an initial guess about the position of the contact edge needs to be known. The main
challenge for further studies in this setting consists in testing the enrichment technique
presented in this work in a 3D framework, which will be certainly the case for future
cooperation with SAFRAN. Besides, studies are still in progress in an attempt to link
local contact quantities with the nonlocal intensity factors Is, Ia and Ic, (Rousseau et al.,
2018).

In the second part of this thesis, the influence of considering wear effects when es-
timating fretting fatigue life was also investigated. Available fretting fatigue data for a
Ti-6Al-4V alloy were confronted with both: life estimates taking into account the con-
tact/stress evolution due to material removal and life estimates where these effects are
neglected (simplifying approach often adopted). Numerical simulations were carried out
through the standard FEM. Results have shown that, considering wear effects allow us to
slightly improve the accuracy of life predictions, where results were less scattered when
compared to estimates obtained when wear is disregarded. In order to estimate the fatigue
life, the TCD has been used in association with three different multiaxial fatigue criteria
(SWT, Findley and MWCM). When considering wear effects, all the models provided
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errors smaller than 85 % which is quite good in terms of fatigue. Additionally, the SWT
normal stress based criterion led to less conservative estimates when compared to Findley
and MWCM approaches (shear stress based models). On the other hand, neglecting wear
effects led to more scattered estimates. However, only for one of the load configurations
here assessed, SWT and MWCM multiaxial fatigue criteria provided errors around 160
%, while the other cases studied yielded errors less than 75 % in the estimates. In this
setting, for the experimental data that one has assessed, i.e. fretting fatigue conditions
under partial slip regime, neglecting wear effects in terms of material removal does not
seem to strongly decrease the accuracy of life predictions, which on the other hand saves
a lot of computational cost mainly if we are dealing with complex real components. Note
that many fretting cycles need to be evaluated when simulating wear, which is not the
case when it is disregarded. In this case, only the information from one cycle is needed.

5.2 Suggestions for future work

Concerning the enrichment technique presented in Chapter 3, spatial reference fields used
in order to enrich the displacement field close to the contact edges under fretting condi-
tions were obtained for the cylinder on plane contact configuration. It would be interesting
to apply similar methodologies to the ones here presented in order to validate the applica-
bility of it for generic geometric configurations, for example, when considering flat punch
pads with rounded edges, or even complete contacts. The latter, has the advantage that
the position of the contact edges is easily known despite the mesh refinement, however,
the strong stress singularity nearby the contact edges may lead to challenges for instance
when applying the mechanical field decomposition presented in Section 3.1. Another ge-
ometric related applicability that should be verified is the assessment of the enrichment
technique here considered for 3D analyses. Even tough this work was more focused on
the use of the spatial reference fields in order to enrich simulations carried out on coarse
meshes, a promising branch also related to the crack analogue here explored is the use
of the nonlocal intensity factors presented in Section 3.1 aiming to define crack initiation
boundaries, which was already the object of study in (Ferry et al., 2017) and is one of the
aims of Guillaume Rousseau (Rousseau et al., 2018) who is currently conducting his PhD
at the ENS Paris-Saclay.

It is also worth noting that, the enrichment-based approach assessed in this work
demands a previous knowledge of the problem’s solution behaviour in critical zones. For
more complex cases, for instance the ones involving elastoplastic analyses or material
inhomogeneities, solutions behaviour are not readily available. However, this issue can be
overcome by using multi-modelling techniques such as the Arlequin method (Ben Dhia,
1998; Ben Dhia and Jamond, 2010; Néron et al., 2016), which consists in the superposition
of local models with a global one. In this case, the superposition technique is based on
an energy formulation, where it is distributed among the various models used. To the
author’s opinion, this is a promising branch that could be investigated in future works.

With respect to the fretting fatigue life estimate considering wear effects, more so-
phisticated models which include friction coefficient variation, third body effects and the
inclusion of propagating cracks would be interesting in an attempt to understand better
the failure mechanisms involved in such problems. Even elasto-platic analysis may become
necessary in cases where stress concentrations due to geometric modifications surpass the
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material elastic regime. In addition, HCF fretting tests under partial slip conditions with
different materials would be very interesting, specially for those more susceptible to wear
when compared to the Ti-6Al-4V here investigated.

Concerning fatigue life estimate, this work considered a very simple uncouple damage
model (Miner’s rule), although the present analysis would also profit the use of more
recent and sophisticated coupled or uncoupled damage models (Hojjati-Talemi et al.,
2014; Zhang et al., 2012; Shen et al., 2015).
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Araújo, J. A. and Nowell, D. (1999). Analysis of pad size effects in fretting fatigue using
short crack arrest methodologies. International Journal of Fatigue, 21(9):947–956.

Araujo, J. A. and Nowell, D. (2002). The effect of rapidly varying contact stress fields on
fretting fatigue. International Journal of Fatigue, 24(7):763–775.

Araujo, J. A., Nowell, D., and Vivacqua, R. C. (2004). The use of multiaxial fatigue models
to predict fretting fatigue life of components subjected to different contact stress fields.
Fatigue & Fracture of Engineering Materials & Structures, 27(10):967–978.
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based short crack growth model for fretting fatigue. Tribology International, 76:23–34.

82



Bibliography

Ben Dhia, H. (1998). Multiscale mechanical problems: the arlequin method. Comptes Ren-
dus de l’Academie des Sciences Series IIB Mechanics Physics Astronomy, 12(326):899–
904.

Ben Dhia, H. and Jamond, O. (2010). On the use of xfem within the arlequin framework
for the simulation of crack propagation. Computer methods in applied mechanics and
engineering, 199(21-22):1403–1414.

Ben Dhia, H. and Torkhani, M. (2008). Modeling of wear in the arlequin framework.

Bramhall, R. (1973). Studies in fretting fatigue. PhD thesis, University of Oxford.

Campbell, F. C. (2008). Elements of metallurgy and engineering alloys. ASM Interna-
tional.

Carpinteri, A., de Freitas, M., and Spagnoli, A. (2003). The influence of static mean
stresses applied normal to the maximum shear planes in multiaxial fatigue. Biax-
ial/Multiaxial Fatigue and Fracture, 31:123.
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Giner, E., Sabsabi, M., Ródenas, J. J., and Fuenmayor, F. (2014). Direction of crack
propagation in a complete contact fretting-fatigue problem. International Journal of
Fatigue, 58:172–180.

Giner, E., Sukumar, N., Denia, F. D., and Fuenmayor, F. J. (2008a). Extended finite
element method for fretting fatigue crack propagation. International Journal of Solids
and Structures, 45(22-23):5675–5687.

85



Bibliography

Giner, E., Sukumar, N., Fuenmayor, F. J., and Vercher, A. (2008b). Singularity enrich-
ment for complete sliding contact using the partition of unity finite element method.
International journal for numerical methods in engineering, 76(9):1402–1418.

Giner, E., Tur, M., Vercher, A., and Fuenmayor, F. J. (2009). Numerical modelling
of crack–contact interaction in 2d incomplete fretting contacts using x-fem. Tribology
International, 42(9):1269–1275.

Goh, C. H., McDowell, D. L., and Neu, R. W. (2006). Plasticity in polycrystalline fretting
fatigue contacts. Journal of the Mechanics and Physics of Solids, 54(2):340–367.

Goodman, J. (1899). Mechanics applied to engineering. Longmans, Green.

Gordelier, S. C. and Chivers, T. C. (1979). A literature review of palliatives for fretting
fatigue. Wear, 56(1):177–190.

Gough, H. J. (1949). Engineering steels under combined cyclic and static stresses. Pro-
ceedings of the Institution of Mechanical Engineers, 160(1):417–440.

Gough, H. J. and Pollard, H. V. (1935). The strength of metals under combined alternating
stresses. Proceedings of the institution of mechanical engineers, 131(1):3–103.

Gravouil, A., Pierres, E., and Baietto, M. C. (2011). Stabilized global–local x-fem for 3d
non-planar frictional crack using relevant meshes. International Journal for Numerical
Methods in Engineering, 88(13):1449–1475.

Haigh, B. P. (1917). Experiments on the fatigue of brasses. Journal of the Institute of
Metals, 18:55–86.

Hannel, S., Fouvry, S., Kapsa, P., and Vincent, L. (2001). The fretting sliding transition
as a criterion for electrical contact performance. Wear, 249(9):761–770.

Hattori, T., Nakamura, M., and Watanabe, T. (2003). Simulation of fretting-fatigue life
by using stress-singularity parameters and fracture mechanics. Tribology international,
36(2):87–97.
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Appendix A

Velocity fields and spatial reference
fields computation

As presented in Section 3.1, the velocity field in the vicinity of the contact edges can be
partitioned into a product of spatial reference fields associated to the local geometry of
the problem and nonlocal intensity factors associated to the macroscopic loads, Eq. (3.1).
In this case, the velocity field is computed with respect to a reference frame attached to
the contact edges, Fig. A.1.

vR′(t) = vR(t)− vR′R(t) (A.1)

For the sake of notation simplicity, the velocity field computed with respect to the contact
edges vR′(t) appears only as v in this work.

As mentioned in Section 3.1, the spatial modes ds and da are computed extracting the
velocity field (relative to the contact edge) in some strategic time steps of the load history
depicted in Fig. 3.2 (learning phase to generate reduced-order model). In this case:

ds(x) = v(x, ts)

da(x) = v(x, ta)
(A.2)

Note that ts is the time instant where a small perturbation is introduced to the normal
load P while the tangential load Q is null. On the other hand, ta is the time step where

R’
R x

y
xr

yr

x(X,t+Δt) - x(X,t)
Δt

v =R

Figure A.1: Reference frame velocity field computation.
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Figure A.2: Spatial fields extracted from FE modelling: (a) ds on the x direction, (b) ds

on the y direction, (c) da on the x direction, da on the y direction.

the tangential load Q starts being reversed (full stick condition) whereas the normal load
is kept constant. Doing so, the effects of the normal and tangential loads can be taken into
account separately. It is worth mentioning that when these fields are computed in polar
coordinates (Eqs. 3.6 and 3.7), they are further normalized in order to be comparable
to the displacement field obtained at the crack tip during a elastic loading phase either
KI = 1 MPa

√
m or KII = 1 MPa

√
m, Figs. 3.3 and 3.4. A 2D distribution of those

spatial reference fields extracted from a FE computation can be found in Fig. A.2. The
coordinate system, normalized with respect to the contact semi-width, is expressed in
the reference system fixed at the contact edge. The problem solved is depicted in Fig.
3.2. The normal load applied to the pad was P = 227N/mm and the tangential load
Q = 169N/mm. The small perturbation in the normal load (time instant ts) was equal
to 0.05P . The contact parts are elastically similar with the following material properties:
E = 200 MPa and ν = 0.3. The friction coefficient in the slip zones was assumed as
µ = 0.9. Linear elastic regime was always assumed.
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Appendix B

Proper orthogonal decomposition

The proper orthogonal decomposition (POD) works as the basis for the modal decompo-
sition of a set of functions, such as data obtained from experiments or heavy numerical
computations (Chatterjee, 2000; Liang et al., 2002). One of the most notorious proper-
ties of this method is its optimality: it provides the most efficient way of capturing the
dominant terms of a high-dimensional problem with, often, only a few modes.

Suppose that one wants to approximate a certain function u(x, t) over some time-space
domain of interest [0, T ]×Ω. This function can be approximated as a linear combination
of the form:

u(x, t) ≈
K∑
i=1

ai(t)φi(x) (B.1)

It is natural to expect that this approximation becomes exact as K → ∞. In order
to obtain the approximation functions ai(t) and φi(x) one has to solve a minimization
problem: ∣∣∣∣∣

∣∣∣∣∣u(x, t)−
K∑
i=1

ai(t)φi(x)

∣∣∣∣∣
∣∣∣∣∣
L2

→ min (B.2)

Notice that the representation of Eq. (B.1) is not unique. On the POD basis, the choice
of φi(x) is constrained by the following orthonormal property:

ˆ
Ω

φi(x)φj(x)dΩ = δij (B.3)

In this case, the determination of ai(t) becomes as simple as then

ai(t) =

ˆ
Ω

u(x, t)φi(x)dΩ (B.4)

Having in mind the numerical application of this work, only the discrete theory of the
POD will be presented. Therefore, let us assume that we have a set of N -dimensional
vectors (say, M of them) stored in a matrix U, where N represents the number of spatial
degrees of freedom and M the number of time snapshots. In this case, the aim is to
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Appendix B. Proper orthogonal decomposition

find the most accurate description of U in some subspace W with dimension K < N .
Denoting by φ1, φ2, ..., φK the orthonormal basis of W then each each vector from the
original set can be approximated as:

U ≈
K∑
j=1

φja
T
j (B.5)

or in terms of the columns of U

ui ≈
K∑
j=1

aijφj, i = 1, ...,M (B.6)

The total error of this approximation is given by:

Er =
M∑
i=1

∣∣∣∣∣
∣∣∣∣∣ui −

K∑
j=1

aijφj

∣∣∣∣∣
∣∣∣∣∣
2

L2

(B.7)

Expanding Eq. (B.7):

Er =
M∑
i=1

||ui||2 − 2
M∑
i=1

K∑
j=1

aiju
T
i φj +

M∑
i=1

K∑
j=1

a2
ij (B.8)

In order to minimize the error, let one first derive Eq. (B.8) with respect to aij.

∂Er

∂akl
= −2uTkφl + 2akl (B.9)

where, optimum values for akl are given by

akl = uTkφl (B.10)

Replacing Eq. (B.10) in Eq. (B.8) and performing a few manipulations:

Er =
M∑
i=1

||ui||2 −
K∑
j=1

φT
j

(
M∑
i=1

uiu
T
i

)
φj =

M∑
i=1

||ui||2 −
K∑
j=1

φT
j Cφj (B.11)

where C is the so-called correlation matrix:

C = UUT (B.12)

The problem now consists in minimizing the error expressed by Eq. (B.11) when it is
subjected to the following equality constraint:

φT
j φj = 1, j = 1, ..., K (B.13)

This optimization problem can be solved using the Lagrange multipliers method which
converts the problem into

M∑
i=1

||ui||2 −
K∑
j=1

φT
j Cφj +

K∑
j=1

λj(φ
T
j φj − 1)→ min (B.14)
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Figure B.1: POD application example.

Then equalizing to zero the first derivative of Eq. (B.14) with respect to φj one has the
following relation

Cφj = λjφj (B.15)

which is satisfied when φj and λj are the eigenvectors and the eigenvalues, respectively,
of the correlation matrix C.

Once that the basis φj are obtained, the coefficients aj can be determined as:

aj = UTφj (B.16)

Fig. B.1 depicts an application of the use of the POD in order to describe a complex
field using less degrees of freedom. In this context, a 2D function was generated performing
a cubic interpolation on random values distributed along the (t, x) plane. As can be seen,
despite the complexity of the function analysed, only a few modes are capable of describing
it properly.
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Appendix C

Enrichment technique formulation

As already presented in Subsection 3.2, in order to model the displacement field close to
the contact edges, the asymptotic functions extracted from the crack analogy (see Section
3.1) are used:

ψα = {
√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ} (C.1)

The distribution of these four asymptotic functions are shown in Figure C.1, where
the reference frame adopted is depicted in Figure C.2. Thus, the enriched displacement
field discretization for the fretting problem can be written as:

u(x) =
∑
i ∈ I

Ni(x)ui +
∑
j ∈ J

Nj(x)
∑
α

ψα(x)bj,α (C.2)

where I is the set of all nodes and J is the set of enriched ones. In this relation, ui are the
standard degrees of freedom associated to the node i and bj,α are the additional degrees of
freedom associated to enrichment function ψα at the node j. Ni denotes standard linear
shape functions.

Globally, the extended FE approximation of the displacement field, Eq. (C.2), can be
summarized as:

u(x, t) = Nstd(x)U(t) + Nenr(x)A(t) (C.3)
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Figure C.1: Schematic view of the asymptotic fretting enrichment functions.
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Accordingly, the strain vector corresponding to the approximate displacement field
expressed in Eq. (C.3) can be written in terms of the standard and enriched nodal values:

ε(x, t) = Bstd(x)U(t) + Benr(x)A(t) (C.4)

where the strain vector in 2-D plain strain conditions can be defined as:

ε ≡

 εxxεyy
2εxy

 (C.5)

The terms Bstd and Benr involve spatial derivatives of Nstd and Nenr, respectively. In
this setting, Bstd ≡ LNstd and Benr ≡ LNenr, with L denoting the matrix differential
operator.

L =

∂/∂x 0
0 ∂/∂y

∂/∂y ∂/∂x

 (C.6)

Recalling the weak form of a contact problem between two elastic bodies under small
deformation one has (Section 3.3):

2∑
i=1

(ˆ
Ω(i)

σ(i) : ε(u∗(i))dΩ−
ˆ

Γ
(i)
σ

f (i)

ext
· u∗(i)dΓ−

ˆ
Γ
(i)
c

f (i)

c
· u∗(i)dΓ

)
= 0,

∀u∗(i) ∈ V(i)
0

(C.7)

For a matter of convenience, for the development of the discretized governing equations,
the summation and the superscript indices (i) will be dropped from Eq. (C.7). Thus,
assuming that the test function u∗ can be considered in the same approximating space as
the displacement field defined in Eq. (C.3), one can rewrite the weak formulation of the
problem in its discretized form as:

[
U∗T A∗T

](ˆ
Ω

BTDBdΩ

[
U
A

]
−
ˆ

Γσ

NTf
ext
dΓ−

ˆ
Γc

NTf
c
dΓ

)
= 0

∀U∗T ,A∗T | U∗T ,A∗T = 0 onΓd

(C.8)
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Appendix C. Enrichment technique formulation

where N =
[
Nstd Nenr

]
and B =

[
Bstd Benr

]
(note Γd is the set of surfaces where

Dirichlet boundary conditions are prescribed). The discrete system of equations can be
finally expressed as:[´

Ω
BstdTDBstddΩ

´
Ω

BstdTDBenrdΩ´
Ω

BenrTDBstddΩ
´

Ω
BenrTDBenrdΩ

][
U
A

]
=

[ ´
Γσ

NstdTf
ext
dΓ +

´
Γc

NstdTf
c
dΓ´

Γσ
NenrTf

ext
dΓ +

´
Γc

NenrTf
c
dΓ

]
(C.9)

This nonlinear problem due to the contact interactions may be solved using the procedure
exposed in Subsection 3.3.3, even tough, for the sake of brevity, the enrichments aspects
are not considered there.

Defining Nstd
i = NiI and Nenr

i,α = Niψα(xi)I, with I denoting a 2 × 2 identity matrix,

the matrices Bstd and Benr can be defined for the X-FEM formulation using the enriched
displacement field for the nodes i as:

Bstd
i =

∂Ni/∂x 0
0 ∂Ni/∂y

∂Ni/∂y ∂Ni/∂x

 (C.10)

Benr
i,α =

∂(Niψα(x))/∂x 0
0 ∂(Niψα(x))/∂y

∂(Niψα(x))/∂y ∂(Niψα(x))/∂x

 (C.11)

where the derivative of the asymptotic fretting functions is

∂

∂x
(Niψα(x)) =

∂Ni

∂x
ψα(x) +Ni

∂ψα(x)

∂x
(C.12)

in which ∂ψα(x)/∂x can be obtained firstly using a transformation from polar to Cartesian
coordinates in a reference frame (x1, x2) attached at the contact edge of the problem in
study, Figure C.2.

∂ψα
∂x1

=
∂ψα
∂r

∂r

∂x1

+
∂ψα
∂θ

∂θ

∂x1

∂ψα
∂x2

=
∂ψα
∂r

∂r

∂x2

+
∂ψα
∂θ

∂θ

∂x2

(C.13)

where ∂r/∂x1 = cos θ, ∂r/∂x2 = sin θ, ∂θ/∂x1 = − sin θ/r and ∂θ/∂x2 = cos θ/r. Hence,
the local derivatives of the enrichment functions ψα can be obtained using the relation
expressed by Eq. (C.13).

∂ψ1

∂x1

= − 1

2
√
r

sin
θ

2
,
∂ψ1

∂x2

=
1

2
√
r

cos
θ

2

∂ψ2

∂x1

=
1

2
√
r

cos
θ

2
,
∂ψ2

∂x2

=
1

2
√
r

sin
θ

2

∂ψ3

∂x1

=
1

2
√
r

sin
θ

2
(2 sin2 θ − cos θ) ,

∂ψ3

∂x2

=
1

2
√
r

cos θ(cos
θ

2
− 2 sin

θ

2
sin θ)

∂ψ4

∂x1

=
1

2
√
r

cos
θ

2
(2 sin2 θ + cos θ) ,

∂ψ4

∂x2

=
1

2
√
r

cos θ(sin
θ

2
− 2 cos

θ

2
sin θ)

(C.14)
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Figure C.3: Schematic view of the asymptotic fretting enrichment functions.

Finally, the derivative of the enrichment functions with respect to the global coordinate
system (x, y) can be obtained by

∂ψα
∂x

=
∂ψα
∂x1

∂x1

∂x
+
∂ψα
∂x2

∂x2

∂x
∂ψα
∂y

=
∂ψα
∂x1

∂x1

∂y
+
∂ψα
∂x2

∂x2

∂y

(C.15)

where ∂x1/∂x = cosϑ, ∂x2/∂x = − sinϑ, ∂x1/∂y = sinϑ and ∂x2/∂y = cosϑ, being ϑ
the angle between x1 (local coordinate system) and x (global coordinate system), Figure
C.3.
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Appendix D

Maximum Rectangular Hull (MRH)

Consider a rectangular geometry circumscribing the closed shear stress path given by Θ,
Figure D.1. This rectangle is tangent to the stress path Θ at the points:

pi = max
t

[τi(ω, t)], i = 1, 2 (D.1)

and

qi = min
t

[τi(ω, t)], i = 1, 2 (D.2)

where both belong to the curve Θ. τi(ω, t) represents the ith component of the shear stress
τ(t) projected on the plane ∆ in terms of a orthonormal basis oriented by an angle ω,
Figure D.1.

For each angle ω, the amplitude of the ith component of the stress history can be
defined as:

di(ω) =
1

2
(pi − qi) (D.3)

Therefore, the shear stress amplitude through the MRH can defined as:

τa = max
w

√
d1(ω)2 + d2(ω)2 (D.4)
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Figure D.1: Maximum Rectangular Hull (MRH) method.
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