

Universidade de Brasília Departamento de Biologia Celular Programa de Pós-Graduação em Biologia Molecular

# Expressão diferencial de genes associados à degradação enzimática e destoxificação da torta de pinhão-manso em *Pleurotus pulmonarius*

# Taísa Godoy Gomes

Orientador: Professor Dr. Robert Miller Laboratório de Microbiologia-UnB

Brasília-DF

Taísa Godoy Gomes

# Expressão diferencial de genes associados à degradação enzimática e destoxificação da torta de pinhão-manso em *Pleurotus pulmonarius*

Tese apresentada à Universidade de Brasília como requisito para a obtenção do título de Doutor em Biologia Molecular pelo Programa de Pós-Graduação em Biologia Molecular.

Orientador: Prof. Dr° Robert Neil Gerard Miller

BRASÍLIA DISTRITO FEDERAL - BRASIL 2019 Dedico:

Ao professor Doutor Félix Gonçalves de Siqueira e ao professor Doutor Robert Miller. Á vocês, minha eterna gratidão.

#### AGRADECIMENTOS

Agradeço primeiramente à Deus, sem ELE jamais teria conseguido chegar até aqui.

Agradeço também a minha família: Zélia, Daniel, Larissa, Sámed e Donnie. São as pessoas mais importantes da minha vida, por quem eu luto e busco vencer sempre.

Agradeço ao Dr° Félix Siqueira pela oportunidade única de trabalhar nesse projeto e quem me abriu as portas da Embrapa Agroenergia.

Agradeço ao professor Dr° Rob, pela orientação impecável durante os 4 anos de doutoramento, pela dedicação, incentivo e ensinamento. O senhor é meu exemplo como profissional e sou eternamente grata pela confiança e oportunidade de poder desfrutar da UnB e do laboratório Interação Planta Praga.

Agradeço ao Dr° Gabriel Alves por toda a ajuda, conselhos e sugestões, que foram fundamentais durante todo o desenvolvimento dessa tese. Serei eternamente sua fã.

Agradeço ao pessoal do laboratório interação planta praga: Tati, Érica, Michelle, Djair, Clemente especialmente ao Fernando Fonsenca por toda a ajuda. São pessoas especiais ao qual eu tenho um carinho imenso.

Agradeço ao meus amigos Joice, Rúben, Aparecido e Nelma por todo os momentos compartilhados.

Agradeço a Dr<sup>a</sup> Simone Mendonça por todo apoio e confiança para desenvolver esse trabalho.

Agradeço a toda equipe da Embrapa Agroenergia por toda ajuda e contribuições ao longo desse trabalho.

Agradeço a todos do laboratório de bioinformática da Embrapa Cenargen, em especial ao Marcos Mota.

Agradeço ao professor Carlos André, Wagner Fontes e Mariana Castro pelo apoio e auxílio no desenvolvimento desse trabalho.

" It's amazing with the blink of an eye you finally see the light. It's amazing when the moment arrives that you know you'll be alright"

(Amazing, Aerosmith)



## Lista de tabelas

| Table 1. Comparison of Physical, Chemical, and Biological Methods for                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------|
| Degradation of Phorbol Esters                                                                                                            |
| Tabela 2. Resumo do delineamento experimental para a análise do                                                                          |
| transcritoma de P. pulmonarius. 3DAI – 3 dias após inoculação; 7DAI – 7 dias                                                             |
| após inoculação; 11DAI - 11dias após inoculação; B1 - bioensiao 1; B2 -                                                                  |
| bioensiao 2; T - torta de pinhão- manso tóxico; NT - torta de pinhão-manso                                                               |
| atóxica77                                                                                                                                |
| Tabela 3. Dez genes alvo usados na validação dos genes de referência de P.                                                               |
| pulmonarius cultivado em torta de pinhão-manso tóxica e atóxica                                                                          |
| Tabela 4. Genes candidatos a degradação dos ésteres de forbol selecionados                                                               |
| para validação de expressão por RT-qPCR82                                                                                                |
| Tabela 5. Dados do sequênciamento via Illumina Hiseq 2500                                                                                |
| Tabela 6. Unigenes de diferentes basidiomicetos obtidos por sequênciamento                                                               |
| de alto rendimento (RNA-seq) e montados de novo (de novo assembly 88                                                                     |
| Tabela 7. Os genes diferencialmente expressos (DEGs) no cultivo de P.                                                                    |
| pulmonarius em torta de pinhão-manso tóxica em comparação com atóxico,                                                                   |
| durante o 3° dia de cultivo (3 DAI)97                                                                                                    |
| Tabela 8. Os genes diferencialmente expressos (DEGs) no cultivo de P.                                                                    |
| pulmonarius em torta de pinhão-manso tóxica em comparação com atóxico,                                                                   |
| durante o 7° dia de cultivo (3 DAI) 103                                                                                                  |
| Table 9. Os genes diferencialmente expressos (DEGs) no cultivo de P.                                                                     |
| pulmonarius em torta de pinhão-manso tóxica em comparação com atóxico,                                                                   |
| durante o 11º dia de cultivo (3 DAI) 107                                                                                                 |
| Tabela 10. Proteínas candidatas a degradação dos ésteres de forbol por P.                                                                |
| pulmonarius expressas em todos os tempos de cultivo análisados 130                                                                       |
| <b>Tabela 11</b> . Proteínas candidatas a degradação dos ésteres de forbol por <i>P</i> . <i>pulmonarius</i> expressas em 7DAI e 11DA130 |

# Lista de figuras

| rigura 1. Fluxograma ilustrando a integração da cadela produtiva do biodiesei,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fungicultura (cogumelos comestíveis) e indústria de processamento de insumos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| para ração animal21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Figura 2. Chemical structures of the phorbol esters C1-C6. Adapted from ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Figura 3. Summary of inflammatory responses induced by phorbol esters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Adapted from ref 21 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Figura 4. Limitations, advantages, and disadvantages in methods for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| degradation of phorbol esters in Jatropha curcas cake 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figura 5. Applications of crop byproducts that offer added value to the planting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| of Jatropha curcas 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figura 6. Degradação dos ésteres de forbol por P. pulmonarius ao longo de 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| dias de cultivo. Concentrações abaixo da linha vemelha são consideradas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| atóxicas 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Figura 7. Degradação dos ésteres de forbol e atividade enzimática de P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| pulmonarius ao longo de 30 dias de cultivo em torta de pinhão-manso tóxica e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do<br>fungo P. pulmonarius em torta de pinhão-manso tóxica 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do<br>fungo P. pulmonarius em torta de pinhão-manso tóxica57<br><b>Figura 9.</b> Controles externos aplicados a degradação dos ésteres de forbol.                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do<br>fungo P. pulmonarius em torta de pinhão-manso tóxica57<br><b>Figura 9.</b> Controles externos aplicados a degradação dos ésteres de forbol.<br>Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de                                                                                                                                                                                                                                                                                                                                                                                       |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do<br>fungo P. pulmonarius em torta de pinhão-manso tóxica57<br><b>Figura 9.</b> Controles externos aplicados a degradação dos ésteres de forbol.<br>Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de<br>pinhão-manso autoclavada + água; Controle 3-Torta de pinhão-manso                                                                                                                                                                                                                                                                                                                  |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do<br>fungo P. pulmonarius em torta de pinhão-manso tóxica57<br><b>Figura 9.</b> Controles externos aplicados a degradação dos ésteres de forbol.<br>Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de<br>pinhão-manso autoclavada + água; Controle 3-Torta de pinhão-manso<br>autoclavada + água sob agitação; Controle 4- Torta de pinhão-manso                                                                                                                                                                                                                                            |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do<br>fungo P. pulmonarius em torta de pinhão-manso tóxica57<br><b>Figura 9.</b> Controles externos aplicados a degradação dos ésteres de forbol.<br>Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de<br>pinhão-manso autoclavada + água; Controle 3-Torta de pinhão-manso<br>autoclavada + água sob agitação; Controle 4- Torta de pinhão-manso<br>autoclavada + azida sódica; Controle 5- Torta de pinhão-manso autoclavada +                                                                                                                                                             |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do<br>fungo P. pulmonarius em torta de pinhão-manso tóxica57<br><b>Figura 9.</b> Controles externos aplicados a degradação dos ésteres de forbol.<br>Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de<br>pinhão-manso autoclavada + água; Controle 3-Torta de pinhão-manso<br>autoclavada + água sob agitação; Controle 4- Torta de pinhão-manso<br>autoclavada + azida sódica; Controle 5- Torta de pinhão-manso autoclavada +<br>azida sódica sob agitação. As médias seguidas pela mesma letra não diferem                                                                               |
| atóxica. O Gráfico A mostra os resltados da quantificação de enzimas<br>oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de<br>forbol). Os gráficos C e D mostram a quantificação de proteases em substrato<br>tóxico e atóxico, respectivamente56<br><b>Figura 8.</b> Quantificação de holocelulases ao longo de 30 dias de cultivo do<br>fungo P. pulmonarius em torta de pinhão-manso tóxica57<br><b>Figura 9.</b> Controles externos aplicados a degradação dos ésteres de forbol.<br>Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de<br>pinhão-manso autoclavada + água; Controle 3-Torta de pinhão-manso<br>autoclavada + água sob agitação; Controle 4- Torta de pinhão-manso<br>autoclavada + azida sódica; Controle 5- Torta de pinhão-manso autoclavada +<br>azida sódica sob agitação. As médias seguidas pela mesma letra não diferem<br>estatisticamente entre si. Foi aplicado o Teste de Tukey ao nível de 5% de |

**Figura 10**. Influência do tratamento fisíco (autoclave), químico (azida sódica) e enzimático frente a degradação dos ésteres de forbol, presentes na torta de pinhão-manso. Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de pinhão-manso autoclavada + água; Controle 3- Torta de pinhão-manso autoclavada + azida sódica sob agitação. Extrato bruto 1: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de P. pulmonarius em torta de pinhão-manso atóxica; Extrato bruto 2: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de P. pulmonarius em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de P. pulmonarius em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de P. pulmonarius em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de P. pulmonarius em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de P. pulmonarius em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de P. pulmonarius em meio sintético BDA. As médias seguidas pela mesma letra não diferem estatisticamente entre si. Foi aplicado o Teste de Tukey ao nível de 5% de probabilidade.

| Figura 11. Fluxograma geral da metodologia usada no presente trabalho   | 74  |
|-------------------------------------------------------------------------|-----|
| Figura 12. Esquema ilustrativo do desenho experimental usado para o RN  | IA- |
| seq de P. pulmonarius                                                   | 76  |
| Figura 13. Diagrama de Venn, resumindo números de DEGs identificados r  | ios |
| tempos de cultivo 3, 7 e 11 DAI. A região de sobreposição do diagrai    | тa  |
| representa DEGs em comum nos cultivos de P. pulmonarius. A: Diagrama    | de  |
| Venn Global; B: Diagrama de Venn de comparativo dos dias análisado co   | ст  |
| DEGs reprimidos e superexpressos.                                       | 90  |
| Figura 14. Total de sequências anotadas e mapeadas por Blast2GO p       | elo |
| banco de dados INTERPRO para o transcritoma do P. pulmonarius cultiva   | do  |
| em torta tóxica e atóxica de pinhão-manso                               | 92  |
| Figura 15. Número de sequências referentes a grupos enzimátic           | os  |
| identificados durante o crescimento de P. pulmonarius em torta de pinha | ão- |
| manso                                                                   | 92  |
| Figura 16. Ilustração das categorias de GO enriquecidos em 3DAI de      | Ρ.  |
| pulmonarius cultivado em torta de pinhão-manso                          | 93  |
| Figura 17. Ilustração das categorias de GO enriquecidos em 7 DAI de     | Ρ.  |
| pulmonarius cultivado em torta de pinhão-manso                          | 94  |
| Figura 18. Ilustração das categorias de GO enriquecidos em 11DAI de     | Ρ.  |
| pulmonarius cultivado em torta de pinhão-manso                          | 95  |

**Figura 19**. Heatmap dos genes diferencialmente expressos em P. pulmonarius durante 11 dias de cultivo em torta de pinhão-manso. A expressão gênica diferencial após o cultivo em torta tóxica foi relativo ao cultivo em torta atóxica.

Figura 20. Genes em comum que estão diferencialmente expressos pelo basidiomiceto P. pulmonarius nos três momento analisados (3DAI, 7DAI e 11DAI).\_\_\_\_\_\_\_\_\_128

 Figura 21. Genes em comum que estão diferencialmente expressos pelo basidiomiceto P. pulmonarius em 7 e 11DAI.\_\_\_\_\_\_\_\_\_\_128

 Figura 22. Níveis de expressão relativa dada pela razão entre os tratamentos T e NT dos genes que codificam para hidrofobinas, que são proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico \_\_\_\_\_\_132

 Figura 23. Níveis de expressão relativa dada pela razão entre os tratamentos T e NT dos genes que coficam monooxigenases do citocromo P450, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \*

 Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico \_\_\_\_\_\_\_132

 Figura 23. Níveis de expressão relativa dada pela razão entre os tratamentos T e NT dos genes que coficam monooxigenases do citocromo P450, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \*

 Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico = não

 133

**Figura 24**. Níveis de expressão relativa dos genes que coficam para thiolase, metalloprotease e esterase, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico.\_\_\_\_\_\_ 134

**Figura 25**. Níveis de expressão relativa dos genes que coficam para Succinate dehydrogenase, Very-long-chain 3-oxoacyl-CoA reductase, flavin reductase, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhãomanso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico.\_\_\_\_\_\_\_135

**Figura 26**. Níveis de expressão relativa dos genes que coficam para alphaxylosidase e β-glucuronidase, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico.\_\_\_\_\_\_\_ 136 **Figura 27.** VIP scores das proteínas que melhor discriminam entre as condiçõe. 0=T ;1=NT. A -9DAI; 12DAI. \_\_\_\_\_\_ 139

*Figura 28.* PLS-DA 3D mostrando agrupamento de replicatas e diferenciação entre condições. Na legenda da imagem, os grupos 0 e 1 correspondem a T e NT. A- 9DAI; B-12DAI. \_\_\_\_\_\_\_\_\_\_140

**Figura 29.** Mapa de correlações entre o conjunto completo de proteínas analisadas mostrando a razão entre as abundâncias relativas normalizadas de cada proteína regulada. Tons de vermelho indicam correlação positiva, tons de azul, correlação negativa. A-9DAI; B-12DAIVIP scores das proteínas que melhor discriminam entre as condiçõe. 0=T ;1=NT. A -9DAI; 12DAI.\_\_\_\_\_ 141 **Figura 30.** Mapa de correlações (heatmap) entre padrões de abundância normalizada e agrupamento de condições após a segunda etapa de análises estatísticas. O conjunto completo das proteínas reguladas atendeu ao fator limitante do agrupamento das replicatas em cada condição. A- 9 DAI; B-12 DAI.\_\_\_\_\_\_ 142

Figura 31. Agrupamento das proteínas em vias. Duas vias contendo proteínas reguladas detectadas pelas plataformas Blast2GO e BlastKoala A-C: \_\_\_\_\_\_ 144 Figura 32. Distribuição geral de termos GO dentre as proteínas reguladas em 9DAI por P. pulmonarius cultivado em torta de pinhão-manso. A: Funções moleculares; B: Processos biológicos; C: Componentes celulares \_\_\_\_\_\_ 147 Figura 33. Distribuição geral de termos GO dentre as proteínas reguladas em 12DAI por P. pulmonarius cultivado em torta de pinhão-manso. A: Funções moleculares; B: Processos biológicos; C: Componentes celulares reguladas em 12DAI por P. pulmonarius cultivado em torta de pinhão-manso. A: Funções moleculares; B: Processos biológicos; C: Componentes celular.\_\_\_\_\_\_ 150 Figura 34. A-C: Agrupamento semântico das proteínas reguladas em 9DAI (eixos s e y), correlação com frequência absoluta no conjunto de proteínas (tamanho dos círculos) e similaridade com outros termos (escala de cores). A: Funções moleculares; B: Processos biológicos; C: Componentes celulares \_\_\_\_\_\_\_ 150

**Figura 35**. A-C: Agrupamento semântico das proteínas reguladas em 12DAI (eixos s e y), correlação com frequência absoluta no conjunto de proteínas (tamanho dos círculos) e similaridade com outros termos (escala de cores). A: Funções moleculares; B: Processos biológicos; C: Componentes celulares 155 **Figura 36**. Modelo proposto por Takahashi et al. (2005) entre a interação entre polyesterase CutL1 e a proteína hidrofobina RolA para degradação do

## Lista de Abreviaturas

PM- Pinhão-manso

- TSPM- Torta de semente de pinhão-manso
- WRF- Inglês, White-rot fungi. Português, fungos de podridão branca.
- SMS Inglês, Spent Mushroon Substrate. Português (tradução livre) Biomassa

Pós-cultivo de cogumelos comestíveis

- C/N Relação Carbono Nitrogênio
- g Gramas
- mm Milímetros
- mL Mililitros
- $\mu L Microlitros$
- mg Miligramas
- nm nanômetro
- mM Milimolar
- rpm Rotação por Minuto
- UV Ultra violeta
- h- Horas
- MnP- manganês peroxidase
- EFs- ésteres de forbol
- T- Tóxico
- NT-Não tóxico
- DAI- Dias
- NGS- Next Generation Sequencing
- DEG- Differentially expressed gene/ Gene diferencialmente expresso
- GO- Gene Ontology
- Kegg- Kyoto Encyclopedia of Genes and Genomes
- RT-qPCR- PCR em tempo real quantitativa
- EC- Enzyme Commission Numbers

# SUMÁRIO

| 1. | Resumo                                                                             | xvi         |
|----|------------------------------------------------------------------------------------|-------------|
| 2. | Abstract                                                                           | xvii        |
| 3. | I.Introdução geral                                                                 | 18          |
| 4. | 2. Objetivos da tese                                                               | 23          |
|    | 2.1 Objetivo geral                                                                 | 23          |
|    | 2.2 Objetivos especifícos                                                          | 23          |
| 5. | 3. Estrutura da tese                                                               | 24          |
|    | Capítulo I                                                                         |             |
| 6. | INTRODUCTION                                                                       | 26          |
| 7. | AUTHOR INFORMATION                                                                 | 34          |
| 8. | ACKNOWLEDGMENTS                                                                    | 34          |
| 9. | Resumo                                                                             | xl          |
| 10 | Abstract                                                                           | . xli       |
| 11 | .1.Introdução                                                                      | 42          |
| 12 | .2.Objetivos do capítulo                                                           | 46          |
|    | 2.1 Objetivos específicos do capítulo                                              | 46          |
| 13 | .3.Metodologia                                                                     | 47          |
|    | 3.1 Cultivo de <i>P. pulmonarius</i> EF-88 em torta de pinhão-manso tóxica atóxica | a e<br>. 47 |
|    | 3.2 Obtenção dos extratos enzimáticos brutos                                       | 47          |
|    | 3.3. Determinação dos Açúcares Redutores - DNS                                     | 48          |
|    | 3.4. Determinação das atividades de holocelulases                                  | 48          |
|    | 3.5. Atividades de proteases                                                       | 49          |
|    | 3.6. Lacases                                                                       | 50          |
|    | 3.7. Atividade de Lignina peroxidase                                               | 50          |
|    | 3.8. Manganês peroxidases                                                          | 51          |
|    | 3.9. Atividade esterase e lipase                                                   | 51          |
|    | 3.10 Extração metanólica de éster de forbol e quantificação via HPL                | C<br>52     |

| 3.11. Cultivo sólido de <i>P. pulmonarius</i> EF-88 em diferentes fontes de carbono e obtenção do extrato bruto enzimático                       | 2 |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 3.12 Biodegradação enzimática dos ésteres de forbol                                                                                              | 3 |
| <b>14.</b> 4. Resultados                                                                                                                         | 4 |
| 4.1.Degração dos ésteres de forbol pelo basidiomiceto <i>P. pulmonarius</i> ao longo de 30 dias de cultivo estado sólido54                       | 4 |
| 4.2. Quantificação das atividades enzimáticas de <i>P. pulmonarius</i> cultivado em torta de pinhão-manso tóxica e atóxica                       | 5 |
|                                                                                                                                                  | 7 |
| 4.3. Degradação de ésteres de forbol por extratos enzimáticos brutos<br>de <i>P. pulmonarius</i> EF88 obtidos em diferentes fontes de carbono 58 | 8 |
| <b>15.</b> 5. Discussão                                                                                                                          | 1 |
| 5.1 Degração dos ésteres de forbol ao longo de 30 dias6 <sup>4</sup>                                                                             | 1 |
| 5.2. Atividades enzimáticas associadas a degradação de ésteres de forbol6                                                                        | 3 |
| <b>16.</b> 6. Conclusões                                                                                                                         | 6 |
| Capítulo III                                                                                                                                     |   |
| <b>17.</b> Resumo                                                                                                                                | 9 |
| <b>18.</b> Abstract                                                                                                                              | 0 |
| <b>19.</b> 1.Introdução                                                                                                                          | 1 |
| <b>20.</b> 2. Objetivo                                                                                                                           | 3 |
| 2.1 Objetivos específicos do capítulo73                                                                                                          | 3 |
| <b>21.</b> 3. Metodologia                                                                                                                        | 4 |
| 3.1 <i>P. pulmoraius EF</i> 88 e condições de cultivo                                                                                            | 5 |
| 3.2 Extração de RNA e síntese de cDNA75                                                                                                          | 5 |
| 3.4 Avaliação da qualidade das sequências e filtragem dos dados 78                                                                               | 8 |
| 3.5 Mapeamento dos <i>reads</i> e identificação dos transcritos                                                                                  | 8 |
| 3.6 Análise quantitativa da expressão gênica78                                                                                                   | 8 |
| 3.7 Anotação das sequências79                                                                                                                    | 9 |
| 3.8. Validação dos genes de referência79                                                                                                         | 9 |
| 3.9. Desenhos dos primers para validação dos genes de referência 80                                                                              | 0 |
| 3.10 Real-time qPCR80                                                                                                                            | 0 |
| 3.11 Estabilidade de expressão e análise de expressão relativa dos genes de referência                                                           | 1 |

| 3.12 Validação dos genes candidatos a degradação dos ésteres de                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------|
| forbol                                                                                                                                   |
| 3. 13 Secretoma global84                                                                                                                 |
| 3.13.1 Cultivo de <i>P. pulmonarius</i> EF-88 em torta de pinhão-manso tóxica e atóxica                                                  |
| 3.13. 2 Obtenção dos extratos proteicos bruto e preparo das amostras 84                                                                  |
| 3.13.3 Análise por LC-MS-MS85                                                                                                            |
| 3.13.4 Análise de dados 86                                                                                                               |
| 22. Análise qualitativa                                                                                                                  |
| 3.13.5 Análise quantitativa87                                                                                                            |
| <b>23.</b> 4.Resultados                                                                                                                  |
| 4.1 Expressão diferencial de genes do macro-basidiomiceto <i>P. pulmonarius</i> EF88 cultivado em torta de pinhão-manso tóxica e atóxica |
| 4.2 Validação genes candidatos a degradação de ésteres de forbol 131                                                                     |
| 4.3 Secretoma global e análise proteômica do P. pulmonarius 137                                                                          |
| 4.4 Gene Ontology e Kyoto Encyclopedia of Genes and Genomes 143                                                                          |
| <b>24.</b> 5.Discussão                                                                                                                   |
| 5.1 Análise Gene Ontology (GO)156                                                                                                        |
| 5.2 Metabolismo de carboidratos, lipídeos e proteínas                                                                                    |
| 5.3 Influência da molécula tóxica de éster de forbol na expressão<br>diferencial de genes em <i>P. pulmonarius</i> EF88                  |
| 5.4 Mecanismo de proteação: Heat Shock protein e Hidrofobinas 159                                                                        |
| 5.5 Genes e proteínas do EF88 envolvidos na degradação dos ésteres de forbol presentes na torta do pinhão-manso                          |
| 5.5.1 Hidrolases de ésteres carboxílicos 161                                                                                             |
| 5.5.2 Metaloprotease 162                                                                                                                 |
| 5.5.3. Os genes do Citocromo P450 164                                                                                                    |
| 5.5.4 Proteínas hidrofobinas 166                                                                                                         |
| <b>25.</b> 6.Conclusões                                                                                                                  |
| 26.7. Conclusões finais da tese 173                                                                                                      |
| 27.8. Referencial da literatura 174                                                                                                      |
| 28.8. Anexo 1: Propriedade intelectual                                                                                                   |

#### Resumo

A biodestoxificação da torta de pinhão-manso oferece vantagens sobre outros métodos de destoxificação em termos de eficiência, custo e potencial para desenvolvimento de produtos secundários. No entanto, apesar de todas essas vantagens ainda não foi elucidado o mecanismo envolvido (genes, proteínas e metabólicas) nesse processo de biodegradação dos EFs vias por microorganismo. No cenário de biodestoxificação, o macro-basidiomiceto Pleurotus pulmonarius EF-88 degrada com eficiência esse composto e ainda produzir cogumelos comercialmente viáveis. O presente estudo foi conduzido com a finalidade de identificar genes e mecanismos celulares envolvidos no processo de destoxificação dantorta de pinhão-manso. E para isso, ferramentas transcritômicas (RNA-seq) e proteômicas (LC-MS-MS) foram utilizadas. A degradação dos EFs ao longo do cultivo sólido foi usada como parâmetro para determinar os pontos critícos para análise transcritomica e proteomica. O transcriptoma do P. pulmonarius EF88 foi montado usando a estratégia de novoe foram mapeados um total de 23297 genes. O cultivo do basidiomiceto P. pulmonarius em torta de pinhão-manso tóxica revelou um total de 351 DEGs (genes diferencialmente expressos) dos guais 234 estavam superexpressos e 117 reprimidos. As análises proteômicas quantitativas mostraram que 23 proteínas estavam moduladas em 9DAI e 40 proteínas em 12DAI. De acordo com os resultados obtidos em ambas estratégias foi possível estabelecer um modelo de degradação dos EFs por P. pulmonarius: Proteínas hidrofobinas atuam no recrutamento e de esterases e metaloproteases e estas enzimas hidrolisam as ligações C-13 e C-16 dos EFs, os produtos sencundários formados na hidrolíse inicial são oxidados por monooxigenases P450. Complexos proteicos formados por hidrofobinas e enzimas hidrolíticas (esterase e metaloprotease) podem aumentar a eficiência de degradação dos EFs presentes na torta de pinhão-manso. Os resultados obtidos nesse trabalho fornecem os primeiros resultados a nível molecular envolvidos biodestoxificação dos EFs por microorganismos, e podem ser usados para solucionar alguns gargalhos relacionados a biodegradação dos ésteres de forbol, como tempo de cultivo e dificuldade de escalomamento.

**Palavras-chave:** Basidiomiceto, pinhão-maso, éster de forbol, degradação, tóxico, RNA-seq, LC-MS-MS, metaloprotease, hidrofobina.

#### Abstract

The biodetoxification of phorbol esters (PEs) in jatropha cake offers advantages over other approaches for detoxification in terms of efficiency, cost and the potential for development of secondary products. However, despite these advantages, the mechanisms (genes, proteins and metabolic pathways) involved in the biodegradation of PEs by microorganisms has not yet been elucidated. In this context, the macrobasidiomycete Pleurotus pulmonarius EF-88 both enables efficient degradation of PEs and production of commercially viable mushrooms. This study was conducted to identify genes and the cellular mechanisms involved in the detoxification of PEs in jatropha cake. To this end, transcriptional (RNA-seq) and proteomic (LC-MS-MS) approaches were employed. The degradation of PEs throughout solid culture was used as a parameter to determine the critical points for transcriptomic and proteomic analysis. The P. pulmonarius EF88 transcriptome was assembled using a de novo strategy, with a total of 23297 unigenes identified. Cultivation of P. pulmonarius in toxic jatropha cake revealed a total of 351 differentially expressed genes (DEGs), of which 234 were overexpressed and 117 repressed. Quantitative proteomic analyzes showed that 23 proteins were modulated 9 DAI and 40 proteins 12 DAI. According to the results obtained in both strategies, it was possible to establish the following model of degradation of PEs by P. pulmonarius: Hydrophobin proteins act in the recruitment of esterases and metalloproteases and these enzymes hydrolyze the C-13 and C-16 bonds of PEs. The secondary products formed in the initial hydrolysis are monooxygenases. Protein complexes oxidized bv P450 formed by hydrophobins and hydrolytic enzymes (esterase and metalloprotease) may increase the degradation efficiency of PEs present in jatropha cake. The results obtained in this work provides the first insights into the mechanisms, at the molecular level, involved in the biodetoxification of PEs by microorganisms and will be applicable to addressing difficulties related to phorbol ester biodegradation such as culture duration and scaling.

**Keyword:** Basidiomycete, *Jatropha Curca*s, phorbol ester, degradation, toxic, RNA-seq,LC-MS-MS,metalloprotease,hydrophobin.

#### I. Introdução geral

O pinhão-manso ou *Jatropha curcas* é uma oleaginosa pertencente à família das Euforbiáceas, trata-se de uma espécie perene, de crescimento rápido e pode atingir mais de 5 m em 4 anos. Segundo alguns autores o centro de origem de *J. curcas* seria a América do sul e Central (Abdelgadir et al., 2013; Kumar e Tewari et al., 2015). No entanto, é facilmente disseminada em regiões tropicais e subtropicais e amplamente distribuídas na Ásia, África e Índia (Marques et al., 2008; Laviola et al., 2011; Kumar e Tewari et al., 2015).

O plantio dessa oleaginosa permite recuperar e restaurar áreas com erosão, solos pedregosos e pouco produtivos, além disso, possuem a capacidade de se adaptar em regiões mais secas e com baixo índice pluviométrico (Heller, 1996; Makkar et al., 1997; Kumar e Tewari et al., 2015).

A literatura acadêmica faz referência sobre o grande potencial dessa espécie para produção de biodiesel, sendo considerada umas das culturas mais promissora para esse fim, no entanto, para sua real consolidação são necessários desenvolvimentos agronômicos fundamentais, como diferentes variedades com alta produtividade e homogeneização do tempo de colheita (Laviola e Capdeville, 2013). O pinhão-manso apresenta potencial de rendimento de grãos/óleo superior às oleaginosas tradicionais, como a soja, bem como, características físico-químicas de óleo favoráveis à produção de biodiesel como viscosidade adequada, e ácidos graxos de boa qualidade (Drumond *et al.*, 2010; Gomes *et al.*, 2018).

O óleo presente nas sementes de *J. curcas* são constituídos de ácidos graxos saturados (20%) e insaturados (80%), e uma média de 34,4% de óleo/grão pode ser convertido em biodiesel (Kalagatur et al., 2017). Além disso, os principais constituintes do óleo de pinhão-manso são o ácido oleico, linoleico e palmítico, e dessa forma substituíria de forma eficiente e adequada o óleo diesel padrão (Ha et al., 2018).

Mesmo não sendo originário do Brasil, o pinhão-manso cresce espontaneamente em diferentes regiões do país. Inicialmente era cultivada

para ser usada como cerca viva para animais e para recuperar solos degradados. Apesar de ser amplamente distribuída, *J. curcas* ainda está em processo de domesticação e existem poucas informações agronômicas sobre essa espécie, dificultando o interesse e a consolidação dessa cultura. Segundo Laviola et al. (2013) a partir do ano de 2006 o plantio de pinhão-manso ganhou força no Brasil, mas a falta de critérios agronômicos aliados a informações errôneas como a não necessidade de controle de pragas e doenças acarretou em abandono dos plantios (Laviola & Capdeville, 2013).

Para Castro et al. (2010) existem pontos tecnológicos, políticos, econômicos, sociais e ambientais que condicionam a solidez de uma matriz energética a nível mundial. Dentre esses pontos podemos destacar a necessidade de implementação de culturas ou empreendimentos que carecem de mão-de-obra, oferecendo oportunidades com viabilidade econômica a agricultura familiar, e geração de energia ou subprodutos com valor agregado a partir dos resíduos oriundos do processo de produção de biocombustíveis. Além disso, torna-se um grande diferencial em termos econômicos e ambientais, o fato da matéria-prima usada para produção de bioenergia não poder ser destinada a alimentação humana, nem causar impactos ambientais negativos, caso contrário, causará desinteresse no apoio político e social.

A cultura do pinhão-manso não é empregada na indústria alimentícia, portanto não concorre com a agricultura de alimentos. Por se tratar de uma planta com pouca exigência hídrica e a produção de grãos ser alta a partir da fase adulta, a fase inicial de estabelecimento permite o plantio consorciado, ou seja, plantio de culturas anuais, especialmente culturas alimentícias, o que seria uma alternativa de renda a mais para o produtor. Trata-se de uma cultura altamente dependente de mão-de-obra já que a maturação de seus frutos acontece de forma desuniforme (Laviola et al., 2011; Saturnino, 2005). Diante desse panorama, *J. curcas* se encaixa nas diretrizes citadas por Castro et al. (2010) e se torna uma alternativa viável para agricultura familiar sustentável e regiões de clima semiárido.

O pinhão-manso ainda não teve sua cadeia produtiva estabelecida, por ainda não ter um sistema de produção agronômico definido para diferentes regiões do país e também pela falta de agregação de valor ao seu coproduto, a torta, que é toxica para uso em rações animais (mono e poligástricos). A cadeia de biodiesel somente integrará outras oleaginosas se os coprodutos tiverem um mercado tão promissor quanto o das cadeias já estabelecidas como a da soja e algodão.

Portanto, um gargalo importante a ser resolvido dessa cadeia produtiva é a destoxificação da torta de pinhão-manso. Dessa forma, o desenvolvimento de métodos capaz de degradar de forma eficiente os ésteres de forbol, torna-se imprescindível. A literatura descreve inúmeros processos de destoxificação desse resíduo: química, física, biológica ou processos combinados (Gomes *et al.*, 2018).

O método de biodegradação dos ésteres de forbol é uma estratégia promissora e apresenta vantagens como: i) maior eficiência, ii) menor custo, iii) possível obtenção de outros produtos, que agregaria valor, como cogumelos comestíveis ou enzimas de interesse biotecnológico (lacases, fitases, xilanases e proteases).

A produção e consumo de macrofungos ou macro-basidiomicetos (cogumelos comestíveis), como o *Pleurotus pulmonarius*, cresce a cada ano em nosso país, de forma a possibilitar a integração desta cadeia de alimentos, com a utilização de um coproduto da cadeia do biodiesel e o uso da biomassa pós-cultivo (SMS) na cadeia de ração animal, tornando assim uma possível solução tecnológica muito atrativa (Figura 1).

O grupo de pesquisa da Embrapa Agroenergia, por meio do projeto de pesquisa "FungiDetox" – CNPq/Embrapa (projeto numero 404786/2013-8), demostrou que a biodestoxificação da torta de pinhão-manso pelo basidiomiceto *Pleurotus pulmonarius* concomitante a produção de cogumelos comestíveis é possível (Gomes, 2015). A incorporação da torta de pinhão-manso biodestoxificada na alimentação de ratos, comprovou a eficiência do processo de destoxificação por *P. pulmonarius* (dados não publicados). Sendo assim, a torta da semente do pinhão-manso (TSPM) apresenta potencial para ser usada como matéria-prima no cultivo em estado sólido de basidiomicetos de modo a potencializar o seu uso como insumo (aditivo) em ração animal, como tem sido feito nos denominados "DFM – Direct-fed Microbial", de forma independente a produção de corpos de frutificação.



**Figura 1.** Fluxograma ilustrando a integração da cadeia produtiva do biodiesel, fungicultura (cogumelos comestíveis) e indústria de processamento de insumos para ração animal.

Apesar das vantagens desse bioprocesso, alguns gargalos ainda precisam ser solucionados como: tempo de cultivo e dificuldade de escalonamento. O mecanismo de biodegradação dos ésteres de forbol permanece desconhecido, o que dificulta estrátegias como melhoramento genético de cepas, que seria o primeiro passo na tentativa de resolver os gargalos citados.

Dessa forma, o presente trabalho têm como objetivo identificar os genes candidatos a degradação dos ésteres de forbol pelo basidiomiceto *P. pulmonarius EF88* (Coleção de Microrganismos e Microalgas Aplicados a biorefinaria da Embrapa Agroenergia - CMMABio) por meio da análise do transcritoma via NGS (*Next generation sequencing*) e proteoma via LC\_MS-MS

A tese será apresentada em capítulos:O capítulo I trará uma revisão de literatura, sobre os atuais metódos de degradação dos ésteres de forbol da torta de pinhão-manso. Este review, que tem como título: *Current Strategies for the Detoxification of Jatropha curcas Seed Cake: A Review,* foi publicado na

revista cientifica *Journal of agricultural and food chemistry*, com fator de impacto atual de 3.154. Nos capítulos seguintes II e III, os resultados de degradação dos ésteres de forbol por *P. pulmonarius* e de expressão diferencial gênica juntamente com análises proteômicas do fungo foram apresentados e discutidos.

## 2. Objetivos da tese

## 2.1 Objetivo geral

O presente trabalho possuí como objetivo identificar genes e proteínas envolvidos no processo de biodestoxificação dos ésteres de forbol pelo macro-basidiomiceto *P. pulmonarius EF-88* por meio de abordagens moleculares como transcritôma e proteoma.

## 2.2 Objetivos especifícos

- Identificar os pontos críticos da degradação dos ésteres de forbol ao longo de 30 dias de cultivo em torta de pinhão-manso por *P. pulmonarius EF-88;*
- Analisar o transcritôma de *P. pulmonarius* EF-88 em resposta ao cultivo em torta de pinhão-manso tóxica e atóxica e identificar genes candidatos a degradação dos ésteres de forbol *in silico;*
- Validar a expressão dos genes candidatos a degradação dos ésteres de forbol por *P. pulmonarius* via RT-qPCR;
- Analisar o proteoma de *P. pulmonarius* EF-88 em resposta ao cultivo em torta de pinhão-manso tóxica e atóxica e identificar proteínas envolvidas no processo de biodegradação dos ésteres de forbol por *P. pulmonarius* EF-88;

#### 3. Estrutura da tese

A presente tese intitulada "Expressão diferencial de genes associados à degradação enzimática e destoxificação da torta de pinhão-manso em *Pleurotus pulmonarius EF88*" será organizada em III capítulos:

**Capítulo I**: Esse capítulo trará uma revisão de literatura sobre os princípais e atuais métodos de degradação dos ésteres de forbol da torta de pinhão-manso. Este review, que tem como título: *Current Strategies for the Detoxification of Jatropha curcas Seed Cake: A Review,* foi publicado na revista cientifíca *Journal of agricultural and food chemistry*, com fator de impacto atual de 3.154.

**Capítulo II**: Este capítulo abordará os resultados relacionados a curva de degradação dos ésteres de forbol por *P. pulmonarius* EF-88 ao longo de 30 dias de cultivo em estado sólido em torta de pinhão-manso. Esses resultados foram usados como parâmetros para analisar os pontos críticos de biodegradação por métodos transcritômicos e proteômicos. Também serão abordados nesse capítulo resultados voltados a atividadesenzimáticas.

**Capítulo III**: Os resultados das análises moleculares (transcritôma, expressão relativa por RT-qPCR e proteoma) serão apresentados e discutidos nesse capítulo.

Capítulo I: Revisão da literatura

Current Strategies for the Detoxification of Jatropha curcas Seed Cake: A Review



# Current Strategies for the Detoxification of *Jatropha curcas* Seed Cake: A Review

Taisa G. Gomes,<sup>†</sup> <sup>(S</sup>aínd I. I. A. Hadi,<sup>‡</sup> Gabriel S. Costa Alves,<sup>†</sup> Simone Mendonc<sup>§</sup> Felix G. De Siqueira,<sup>\*,§</sup> and Robert N. G. Miller<sup>\*,†</sup>

<sup>†</sup>Instituto de Cieînias Bioloircas, Departamento de Biologia Celular, Universidade de Brasília, Campus Universitario Darcy Ribeiro, Asa Norte, 70910-900, Brasília, DF, Brazil

<sup>‡</sup>Universidade Federal de Minas Gerais, Instituto de Cieînias Bioloigas - ICB, Av. Pres. Antônio Carlos, 6627, 31270-010, Belo Horizonte, MG, Brazil

<sup>§</sup>Embrapa Agroenergia, STN-70297-400, 70297-400, Brasília, DF, Brazil

ABSTRACT: Jatropha curcas is an important oilseed plant, with considerable potential in the development of biodiesel. Although Jatropha seed cake, the byproduct of oil extraction, is a residue rich in nitrogen, phosphorus, potassium, and carbon, with high protein content suitable for application in animal feed, the presence of toxic phorbol esters limits its application in feed supplements and fertilizers. This review summarizes the current methods available for detoxification of this residue, based upon chemical, physical, biological, or combined processes. The advantages and disadvantages of each process are discussed, and future directions involving genomic and proteomic approaches for advancing our understanding of biodegradation processes involving microorganisms are highlighted.

KEYWORDS: Jatropha curcas cake, phorbol ester, detoxification, microorganisms

#### INTRODUCTION

Nonrenewable fossil fuel energy sources are responsible for the emission of pollutants linked to climate change. With the gradual depletion of petroleum reserves, renewable energy

sources based on plant biomass have become ever more important. Among the emerging renewable energy sources today, biodiesel offers numerous advantages over petroleum diesel, with reduced contribution to global warming, low toxicity, high biodegradability, and positive socio-economic impact.<sup>1</sup> According to Castro et al.,<sup>2</sup> technological, political, economic, social, and environmental factors are important in determining the potential strength in any alternative global bioenergy source. Appropriate crops should ideally provide

valuable byproducts from the biofuel production process, guaranteeing economic viability for local smallholder farming.

In addition, the raw materials employed in bioenergy production should also ideally not simultaneously serve as human staple foods, nor cause negative environmental impact.

*Jatropha curcas* L., which is commonly known as physic nut or purging nut, is an important oleaginous plant species from the Euphorbiaceae family with considerable potential as an industrial crop as a source of biodiesel. Seeds from this tropical shrub are composed of approximately 60% kernel and 40% shell, with kernel material comprising up to 50% oil.<sup>3</sup> Higher yields of grains/oils are typically obtained than in many other oleaginous plant species, and extracted oils offer physicochemical characteristics which are appropriate for biodiesel production. High quality fatty acids (monounsaturated oleic and polyunsaturated linoleic acid) are stable at high temperatures, with appropriate semidrying properties, high burning quality, high cetane numbers, and simple conversion into biodiesel by chemical or biological trans-esterification.<sup>4-8</sup> Additional important attributes of the crop include rapid growth, resistance to drought and pests, propagation capacity in different soils, perenniality, and, as an industrial nonfood crop, competition avoidance with food agriculture.<sup>7–13</sup>

Given that *J. curcas* is a plant that is not water demanding and that allows intercropping with annual crops, especially food crops, such cultivation offers a potential additional income for the producer. Given this panorama, *J. curcas* satisfies the requirement guidelines recommended by Castro et al.<sup>2</sup> with regard to bioenergy sources and represents a potentially viable crop for sustainable family agriculture, especially in semiarid production regions. For effective uptake, however, several R&D challenges need to be resolved, including the lack of commercial cultivars, the standardization of agricultural practices for the crop, a lack of uniformity in fruit maturation, and the need for establishment of economically viable applications of residual cake following oil extraction.<sup>4,14-16</sup>

Typically, for production of 1 ton of oil by solvent or mechanical extraction, a total of 2.85 tons of *J. curcas* seeds are required as input, with approximately 70% of this plant material still remaining as a crop residue after the extraction process, constituting *J. curcas* seed cake (JCC).<sup>10,17</sup> This abundant byproduct of oil extraction is a residue which is also rich in nitrogen, phosphorus, potassium, and carbon and, with a significant protein content (at least 16%), can theoretically supply all the amino acids, with the exception of lysine, required for healthy animal growth.<sup>18,19</sup>

Received: December 5,2017 Revised: February 15, 2018 Accepted: February 21, 2018 pubs.acs.org/JAFC



Despite the significant volume and nutritional characteristics of *JCC*, the presence of certain bioactive compounds prevents application of this residue in animal feed. Such compounds include antinutritional factors such as trypsin inhibitors and phytates, toxins such as curcina and phorbol esters (PEs), and allergens such as 2S proteins. PEs are the principal toxic components in JCC, which, when ingested, can act either acutely, inducing an intense inflammatory response, or chronically, inducing tumor development. Although these compounds are liposoluble, with most of the PE content of the seed coextracted with the oil, those minimal amounts that remain in the JCC are sufficient to harm several animal species.<sup>8,20,21</sup>

Efficient detoxification of JCC is therefore a necessary step for subsequent application as fertilizer or as a supplement in animal feed. Numerous detoxification processes for this residue have been described, based on chemical, physical, biological, or combined processes. This review discusses the advantages and disadvantages of each process and highlights future directions involving genomics and proteomics approaches for advancing our understanding of biodegradation processes involving fungi. The potential in value-added products is presented in relation to both the crop and biodegradation products.

#### PHORBOL ESTERS

**Chemical Structure.** PEs are natural substances commonly found in plant species of the families Euforbiaceae and Timelaeaceae.<sup>8,22</sup> These toxins, which are classified as tetracyclic diterpenes with a tigliane skeleton, are defined as polycyclic compounds in which two hydroxyl groups on neighboring carbon atoms are esterified with fatty acids. The possibilities of ester linkages and the acid fraction, together with the hydroxylation capacity of the parent structure, lead to various PE compounds.<sup>21,23,24</sup> Tigliane diterpenes are based on a tetracyclic ring system, comprised of A, B, C, and D rings. Each ring possesses a distinct number of members: five members on ring A, seven members on ring B, a six membered C ring, and a cyclopropane system on ring D. The skeleton contains 20 carbon atoms.<sup>21</sup> To date, six different types of PEs have been characterized in *J. curcas*, all with the same primary structure as 12-deoxy-16-hydroxyphorbol. These PEs are referred to as C1–C6 *Jatropha* factors, according to the carbon distribution in their side chains (Figure 1).<sup>25</sup>

**Toxicity.** The toxicity for all PEs is typically high even at low concentrations,<sup>21</sup> with the intensity of acute and chronic effects

of these diterpenes dependent upon the PE chemical structure.<sup>20,22,26</sup> Different forms of PEs can activate distinct cellular pathways in each affected animal species, leading to specific symptoms in animal tissues that range from tumor formation to inflammation, cell differentiation, and apoptosis.<sup>24</sup>

PEs are amphiphilic molecules with an affinity for phospholipid membrane receptors. During normal cellular signal transduction processes, the enzyme diacylglycerol is the natural activator of protein kinase C (PKC). This enzyme is critical in signal transduction responses to various hormones and in the regulation of cell proliferation. PEs act analogously to diacylglycerol, activating PKC.<sup>21</sup> Saturable binding between the molecules occurs through specific interactions between the

C1 factor domain and the regulatory region of the PKC molecule.<sup>24</sup> Prolonged activation of this host enzyme may lead

to myogenic responses, enhancing the efficacy of other carcinogens. PEs are considered as cocarcinogens,<sup>21</sup> as they do not directly induce the formation of tumors, but promote their growth.<sup>27</sup> Acute effects of PEs occur rapidly and intensely, with an inflammatory response of the affected animal a typical first symptom of *Jatropha* intoxication (Figure 2). Here, PEs



Figure 2. Summary of inflammatory responses induced by phorbol esters. Adapted from ref 21.

will mobilize phospholipids that release arachidonic acid, causing secretion of prostaglandins. In the case of external contact with PEs, inflammation will generally occur in the afflicted area and in the eyes, while, in the case of ingestion, inflammation will mainly occur in the stomach.<sup>19,20,26,28</sup>

**Concentration.** The concentration of PEs in JCC will depend upon the oil residue associated with the solid material following seed processing.<sup>29</sup> According to Gogoi et al.,<sup>30</sup> PEs generally range from 1 to 3 mg/g in JCC and from 3 to 6 mg/g in oil. Levels below 0.09 mg/g in seed cake are considered as tolerable.<sup>31</sup> The concentration of PEs can vary across production areas, due to cultivation of different regional *J. curcas* genotypes. In Mexico, for example, varieties free of PEs or with only minimal amounts (0.11 mg/g) have been described.<sup>19,22,32</sup> Here, safe human consumption of seeds, either as peanuts or as pastes, is common in communities in the

Mexican state of Veracruz.<sup>19,33</sup> Such nontoxic varieties. however, are generally unsuitable for use in biodiesel production, as fruit vields are low and plants are more susceptible to biotic stresses than those containing PEs.<sup>16</sup> Conversely, elevated concentrations can be observed in regional genotypes, with Makkar and Becker,<sup>19</sup> for example, describing elevated concentrations in seed from genotypes grown in Nicaragua, Nigeria, and Cabo Verde, at 2.17, 2.30, and 2.70 mg/g, respectively. In a study comparing PE concentrations in J. curcas seed from 18 different regions, Makker and colleagues<sup>22</sup> also observed considerable variation, with PE concentrations ranging from 0.87 to 3.32 mg/g. Similarly, considerable variation in PE content in J. curcas seed from different growing regions in China has been reported, with concentrations ranging from 1.098 to 2.417 mg/g. Here, PE derivatives (C1-C6 factors) also varied according to region.<sup>34</sup>

Biosynthesis. Although understanding of the biosynthesis of PEs is incomplete, a recent study by Li et al.<sup>35</sup> provided evidence for the casbane diterpenoid as the precursor of PEs. The casbane synthase genes JcCASA163 and JcCASD168 have been identified in *Jatropha*, with transcriptome analyses reporting expression of JcCASD168 exclusively in seed, while JcCASA163 can be expressed in seeds, leaves, and inflorescences. Following expression in Escherichia coli, activity analysis of the JcCASA163 casbane synthase protein was shown to be functional on the substrate geranyl diphosphate (GPP). Function validation of these genes through gene silencing in J. curcas supported their involvement in PE biosynthesis, with a significantly decreased PE concentration when compared to control plants. Silencing expression of JcCASA163 was reported to have a greater effect on reducing PE concentration when compared to its homologue JcCASD168, although when both target genes were silenced the reduction in seeds increased, on average up to 80%. As silencing of these two target genes did not result in complete inhibition of PE biosynthesis, these data suggest that other casbane synthases may also be involved in their synthesis, with several homologues of this enzyme present in the J. curcas genome.<sup>36</sup>Costa et al.<sup>37</sup> analyzed the differential expression of genes involved in seed development and germination in J. curcas and identified additional genes potentially involved in PE biosynthesis. These included those coding for enzymes involved in terpene synthesis, such as farnesyl-diphosphate synthase (FPS2) and geranylgeranyl diphosphate synthase (GGR).

Biosynthesis of PEs has been reported to take place within the tegmen, the seed inner layer tissue.<sup>32,38</sup> During the final stages of seed development, the tegmen is crushed and the hydrophobic PEs are believed to diffuse into the endosperm.<sup>38</sup> Recent analysis of the *J. curcas* proteome has indicated, however, that PE synthesis may not be occurring in seeds but in other tissues such as leaves or roots, from which they are likely translocated to the developing seed.<sup>39–41</sup>

Chemical and Physical Degradation. Numerous chemical and physical methods have been described for degradation of PEs, with degradation data for methods summarized in Table 1. PMA (Phorbol-12-Myristate-13-Acetate) is a synthetic phorbol with a very similar structure to natural PEs. This compound can be efficiently degraded within 10 min using ozone in an aqueous solution. Such rapid degradation occurs through oxidation of carbon-carbon double bonds, with the conversion of the ester into a nontoxic compound. This proces

#### Table 1. Comparison of Physical, Chemical, and Biological Methods for Degradation of Phorbol Esters

| Treatment                      | Degradation method                                                                | Initial PE <sup>a</sup><br>level | Final PE level                         | Time<br>period   | % Reduction             | Reference |
|--------------------------------|-----------------------------------------------------------------------------------|----------------------------------|----------------------------------------|------------------|-------------------------|-----------|
| Physical                       | ozone                                                                             | 12 ppm                           | PE decreased to<br>nondetectable level | 10 min           | 100                     | 42        |
|                                | γ radiation (125 kGy)                                                             | 0.29 mg/g                        | 0.012 mg/g                             | not<br>specified | 96                      | 30        |
|                                | sunlight, room temperature                                                        | 2.09 g/L                         | 1.04 g/L                               | 30 days          | 49                      | 44        |
|                                | sunlight, room temperature                                                        | 2.3 mg/L                         | PE decreased to<br>nondetectable level | 9 days           | 100                     | 47        |
| Chemical                       | Hydrogen peroxide oxidation was established and optimized                         | 0.52 mg/g                        | PE decreased to<br>nondetectable level | 8 h              | 100                     | 43        |
|                                | methanol solvent extraction                                                       | 3.6 mg/g                         | 0.10 mg/g                              | 8 h              | 97.30                   | 48        |
|                                | ethanol solvent extraction                                                        | 3.07 mg/g                        | PE decreased to<br>nondetectable level | 60 min           | 100                     | 49        |
|                                | surfactants                                                                       | 1.45 mg/g                        | 0.27 mg g                              | 15 min           | 80                      | 50        |
|                                | alkaline (NaHCO <sub>3</sub> )                                                    | 1.29 mg/g                        | 0.70 mg/g                              | not<br>specified | 55                      | 52        |
|                                | alkaline and heat                                                                 | 1.78 mg/g                        | 0.13 mg/g                              | not<br>specified | 92                      | 31        |
| Combined                       | alkaline and heat (Ca(OH)2 and NaOH)                                              | 135 mg/g                         | 16 mg/g and 13.6 mg/g                  | 2 h              | 89                      | 29        |
|                                | alkaline and heat (NaOH and Ca(OH) <sub>2</sub> )                                 | 2.14 g/kg                        | 0.32 g/kg and 0.36 g/kg                | not<br>specified | 85 and 83.2             | 51        |
|                                | Bjerkandera adusta and Phlebia rufa                                               | 0.82 mg/g                        | 0.05  mg/g and $0.02  mg/g$            | 30 days          | 91 and 97               | 53        |
|                                | Pleurotus ostreatus                                                               | 0.63 mg/g                        | 0.0063 mg/g                            | 60 days          | 99                      | 54        |
| Biological                     | Ganoderma lucidum, Trametes zonata                                                | 1.072 mg/g                       | PE decreased to<br>nondetectable level | 20 days          | 100                     | 62        |
|                                | Pleurotus ostreatus, Pleurotus sajor-caju                                         | 1.072 mg/g                       | 0.28 mg/g and 0.37 mg/g                | 20 days          | 73 and 65               | 62        |
|                                | Pleurotus sapidus, Pleurotus florida and Phanerochaete chysosporium               | 1.072 mg/g                       | 0.27 mg/g, 0.38 mg/g, and 0.6 mg/g     | 20 days          | 74, 64, and 45          | 62        |
|                                | Trametes hirsute, Trametes versicolo and Trametes gibbosa                         | 1.072 mg/g                       | 0.2 mg/g, 0.15 mg/g, and 0.08 mg/g     | 20 days          | 81, 86, and 92          | 62        |
|                                | Aspergillus niger, Penicillium chrysogenum                                        | 0.13 mg/g                        | 0.03 mg/g and 0.11 mg/g                | 7 days           | 76 and 15               | 63        |
|                                | Rhizopus oligosporus, Rhizopus nigricans, and Trichoderma longibrachitum          | 0.13 mg/g                        | 0.12 mg/g, 0.10 mg/g, and 0.11 mg/g    | 7 days           | 7, 23, and 15           | 63        |
|                                | Aspergillus versicolor                                                            | 0.832 mg/g                       | 0.158 mg/g                             | 6 days           | 81                      | 64        |
|                                | Trichoderma harzianum, Paecilomyces sinensis, and<br>Cladosporium cladosporioides | 2.78 mg/g                        | 0.05 mg/g, 0.03 mg/g, and 0.08 mg/g    | 30 days          | 99.7, 98.9, and<br>96.9 | 65        |
|                                | Morganella morganii                                                               | not specified                    | not specified                          | 4 days           | 92                      | 66        |
|                                | Pseudomonas aeruginosa                                                            | not specified                    | PE decreased to<br>nondetectable level | 9 days           | 100                     | 67        |
|                                | Bacillus sp.                                                                      | 0.60 mg/g                        | PE decreased to<br>nondetectable level | 7 days           | 100                     | 68        |
|                                | Bacillus licheniformis                                                            | 0.1199 mg/g                      | 0.04 mg/g                              | 5 days           | 62                      | 69        |
|                                | Acinetobacter calcoaceticus                                                       | not specified                    | PE decreased to<br>nondetectable level | 5 weeks          | 100                     | 45        |
|                                | J. curcas lipases                                                                 | 1.05 mg/g                        | 0.06 mg/g                              | 12 h             | 94                      | 71        |
|                                | Pleurotus ostreatus                                                               | 0.5 mg/g                         | 0.005 mg/g                             | 45 days          | 99                      | 72        |
| <sup><i>a</i></sup> PE, phorbo | l ester.                                                                          |                                  |                                        |                  |                         |           |

has been applied with similar efficiency for the degradation of natural PEs in JCC.<sup>42</sup>

As PEs are susceptible to oxidation,  $\gamma$  radiation is effective in their degradation.<sup>30</sup> Exposure of JCC to  $\gamma$  radiation at different doses was reported to decrease the concentration of PEs by 33.4% at 30 kGy and by 96% at 125 kGy. Here, water was also employed as a sensitizing agent, accelerating and facilitating the degradation of the toxic diterpene in the cake, likely as a result of disassociation of water molecules into ions (H<sup>+</sup> and OH<sup>-</sup>).<sup>30</sup> Oxidation of PEs in JCC using hydrogen peroxide has also been reported, with complete degradation after 8 h of exposure.<sup>43</sup>

Phasukarratchai et al.<sup>44</sup> reported that sunlight and fluorescent light can also accelerate degradation of PEs in oil extracted from *J. curcas* in a time-dependent manner. While degradation could also occur in pressed seed material, degradation efficiency was lower than in oil, likely due to reduced light penetration in the solid residues.

High temperature treatment of cake has been shown to be ineffective when applied as a single approach for PE elimination, with heating to 160 °C for 30 min ineffective in reducing PE levels significantly.<sup>22</sup>

Nakao et al.<sup>45</sup> investigated PE stability over time in soil, given that JCC has been widely applied as a soil supplement. Their study revealed that PEs could be completely degraded after 35 days of incubation, attributing degradation either to the action of soil microorganisms and their oxidative enzymes or to sunlight penetration and oxidation. Plants subsequently cultivated in the supplemented soil did not show any accumulation of PEs. Effective degradation of JCC PEs in soil was also demonstrated by Devappa et al.,<sup>46</sup> with only 9 days of incubation necessary for complete degradation of the toxic compound. Similarly, Yunping et al.<sup>47</sup> reported exposure to sunlight as arapid method for degradation and detoxification of



Figure 3. Limitations, advantages, and disadvantages in methods for degradation of phorbol esters in Jatropha curcas cake.

PEs present in cake, irrespective of soil type, supporting the safe application of this residue as a fertilizer.

Chemical extraction of PEs, mostly through employment of surfactants and organic solvents, has also been employed for detoxification of JCC. Guedes et al.<sup>48</sup> reduced by 97.30% the concentration of PEs in cake following an 8 h extraction process. Here, a solute/solvent ratio of 1:10 (w/v) was employed, using Soxhlet and a mixture of methanol (1/2) and ethanol (1/2). Although both solvents were effective in the extraction of PEs, methanol (80–100%) and a short extraction time indicated that PEs have a high affinity for methanol. In another study, by contrast, Nokkaew et al.<sup>49</sup> were able to extract 100% of PEs in cake using a two-step extraction process with ethanol.

Surfactants can break surface tension between cake material and the toxic hydrophobic compounds, thus releasing PEs from the residue. Two different surfactant solutions have been shown to be effective, one a single nonionic surfactant (Tween group and Dehydol group) and the other a mixed surfactant containing both nonionic and anionic compounds (sodium bis(ethylhexyl) surfactant sulfosuccinate [AOT]).<sup>50</sup> Here, the Tween group surfactants were more efficient in reducing the diterpene than the Dehydol surfactants, likely as a result of greater compatibility of the polysorbate fraction of this surfactant with the PE structure. The ethoxylate number (EON) of the ethoxylate fatty acid present in the surfactants of the Tween group also appeared to play a greater role in detoxification than the length of the carbon chain tail. Although both surfactant types were able to remove up to 80% of PEs, safe levels could not be reached by this single approach.<sup>50</sup>

Combinations of physical and chemical treatments are also promising approaches for PE degradation.<sup>29,31</sup> Rakshit and collaborators<sup>29</sup> achieved an 89% degradation of PEs present in JCC when combining alkaline conditions (2% Ca(OH)<sub>2</sub> and 2% NaOH) and heat treatment (autoclaving at 121 °C for 30 min). Despite the high level of degradation achieved, when treated cake was tested as feed for lab mice, animals showed severe symptoms of exposure to the toxins, with appetite loss, weight loss, diarrhea, reduced motor activity, and death after 12 days. Aregheore et al.<sup>31</sup> evaluated different concentrations of NaOH and NaOCl followed by heat treatment (autoclaving at 121 °C for 30 min) for PE degradation in JCC. Here, although all treatments were able to reduce PE levels, none were sufficiently effective in reducing concentrations to safe levels. Only a positive control method including quadruple washing with 92% methanol was able to reach safe levels of toxicity (0.09 mg/g). This study also revealed that heat treatment was ineffective in reduction of PE concentrations. The most efficient combined approach presented in this investigation (4% NaOH (w/v) + 10% NaOCl (w/v)) reduced PE concentration to 0.13 mg/g. Toxicological tests, however, showed that mice fed with JCC after this combined chemical and heat treatment displayed difficulties in feeding, probably as a result of alterations in taste, smell, and texture of the cake. Here, a decreased growth rate, protein efficiency rate, and food processing index were observed when compared to control animals fed on cake detoxified using methanol. In another study with combined approaches, chemical treatment of JCC using NaOH and Ca(OH)<sub>2</sub> was able to reduce 85% and 83.2% of PEs, respectively, with each compound. After alkaline treatment the cake was also subjected to soaking (overnight) and roasting (100 °C for 30 min). Despite the effective reduction in PEs, sheep fed with a formulation containing JCC as 10% of the diet displayed altered blood metabolite levels and suffered reduced nutrient intake.51

Elangovan et al.<sup>52</sup> reported a reduction of 55% of PEs in JCC using chemical treatment with sodium hydroxide and sodium bicarbonate, with a minimum concentration of 3% of each compound necessary for effective reduction of PE. As in similar previous studies, however, cake treated with 3% sodium bicarbonate, when incorporated into sheep feed, subsequently resulted in symptoms of toxicity, including dizziness, poor appetite, diarrhea, and death. Pathological alterations comprised hydropericardium syndrome, heart enlargement, and kidney congestion. Sheep that died within 6 days of feeding showed normal liver pathologies, whereas sheep that died after 10 days of feeding displayed darkened and congested livers.

In conclusion, although numerous chemical and physical treatments have been described for degradation of PEs in *J. curcas*, the majority of treatments are aggressive, causing degradation of proteins and functional amino acids and thus decreasing the nutritional qualities of JCC. Treatments with organic solvents and NaOH can also modify the odor of the crop residue, leading to decreased consumption by animals. The presence of residual toxic solvents such as methanol will also render treated JCC as unfit as a protein source,<sup>31,51</sup> restricting application of JCC to only fertilizers and soil supplementation. Although chemical treatments candegrade PEs rapidly, requiring considerably less time than biological processes, numerous factors such as operational complexity,

specialized equipment demands, adequate disposal of solvent residues, and limitations in detoxification efficiency<sup>43</sup> all limit the consolidation of such methods for PE degradation in JCC.

**Biodetoxification.** The application of biodegrading microorganisms able to degrade toxic terpene metabolites represents a promising strategy for elimination of PEs<sup>53,54</sup> (Table 1). Terpenes are secondary plant metabolites, many of which play key roles in development and growth, ecological interactions,

and defense against pathogens and pests.<sup>55,56</sup> While such compounds are widely employed in industrial production of edible products, pharmaceuticals, medicinal products, and insecticides,<sup>55,57,58</sup> the bioprospection of microorganisms

capable of degrading such substances is important in bioremediation, since these compounds are the main pollutants in the cellulose and terpene-based industries. Such biodetoxification offers a number of advantages to other methods, such as (i) potential greater efficiency, (ii) lower cost, and (iii) production of additional value-added products, such as edible mushrooms or enzymes of biotechnological interest, including laccases, phytases, xylanases, and proteases. Disadvantages with

such approaches exist, however, with the kinetics of fermentation considerably slower when compared to chemical and physical methods, and product safety dependent upon microbial secondary metabolism. As numerous fungal species can secrete mycotoxins,<sup>59</sup> candidate microorganisms must ensure terpene detoxification without simultaneous secretion of toxic secondary metabolites (Figure 3).

Basidiomycete fungi are widely employed in bioconversion processes, such as in the conversion of polymers in lignocellulosic biomass into fermentable sugars, or in the bioremediation of heavy metals and xenobiotic compounds.<sup>60</sup> Numerous macrofungi have also been used to supplement animal feed, improving the nutritional quality and digestibility of agricultural residues through protein enrichment, lignin degradation, and hemicellulosic fractioning. The cultivation of such fungion abundant agroindustrial residues thus represents a potentially profitable and economically viable setup.<sup>61</sup> In this context, a number of groups have screened basidiomycete White Rot Fungi (WRF) for its ability to degrade PEs in JCC. Barros et al.<sup>53</sup> reported, for example, 91% and 97% reductions in PE concentrations in JCC following 30 days of incubation with Bjerkandera adusta and Phlebia rufa, respectively. Similarly, DaLuz et al.<sup>54</sup> observed a 99% reduction in JCC PE levels after 60 days of cultivation with the fungus Pleurotus ostreatus. Here, protein content and in vitro digestibility of the residue also increased, with decreased final lignin and cellulose content. Edible mushroom production using this substrate was enhanced through alteration of the carbon to nitrogen ratio, mixing additional agroindustrial residues of eucalyptus and coffee bark, as well as rice straw to JCC. Only minimal concentrations of PEs were detected in mushrooms from JCC  $(0.009 \,\mu g \cdot g^{-1})$ , representing a concentration 1000-fold lower than that typically detected in nontoxic varieties of J. curcas.<sup>54</sup> Bose and Keharia<sup>62</sup> also reported effective degradation of PEs in JCC after colonization for 20 days with Ganoderma lucidum. Phanerochaete chysosporium, Pleurotus ostreatus, Pleurotus sajorcaju, Pleurotus sapidus, Pleurotus florida, Trametes gibbosa, Trametes hirsute Trametes versicolor, and Trametes zonata, with the former and latter species enabling complete degradation of PEs in colonized cake.

Belewu and Sam<sup>63</sup> also analyzed the potential of the Ascomycete fungi Aspergillus niger, Penicillium chrysogenum, Rhizopus oligosporus, Rhizopus nigricans, and Trichoderma

*longibrachitum* in PE degradation. Under solid state fermentation for 7 days, *A. niger* was identified as the most efficient species for detoxification of PE, reducing concentrations to safe levels (<0.009 mg/g). Veerabhadrappa et al.<sup>64</sup> also observed significant degradation of PE with *Aspergillus versicolor*, reporting an 81.1% reduction in PE levels following solidstate fermentation. Optimized conditions of cultivation can also induce efficient secretion of proteases and lipases, enzymes of importance for many industrial applications. Strains of *Trichoderma harzianum*, *Paecilomyces sinensis*, and *Cladosporium cladosporioides* also show potential in PE degradation, with 30 days of cultivation on JCC resulting in 99.7%, 98.9%, and 96.9% reductions in PE content, respectively.<sup>65</sup>

In addition to fungi, certain bacterial species also show promise in PE detoxification. Under optimized conditions of solid-state culture, for example, a strain of the Gram-negative bacterium Morganella morganii, isolated from J. curcas seed kernel material, resulted in a 92.78% reduction in JCCPEs after 4 days incubation.<sup>66</sup> Similarly, *Pseudomonas aeruginosa* has also been effectively employed in degradation of PEs, with complete degradation in residual solid biomass observed after 9 days. Numerous lipases were secreted by this bacterial species during cultivation, which are likely to be involved in the degradation process.<sup>67</sup> Certain spore-forming Gram-positive Bacillus species are also able to degrade JCC PEs. In submerged cultivation with JCC, five strains of Bacillus sp. were shown to degrade PEs.<sup>68</sup> After 3 days of cultivation, the percentage of degradation varied from 76.5% to 92.0%, while a seven day cultivation period enabled complete degradation of PEs. Solid culture increased the velocity of PE degradation, with a three day period resulting in degradation of between 86% and 93% of PEs, depending on the tested strain. Under both culture conditions, these bacteria also secreted enzymes of industrial interest, including amylase, cellulase, lipase, pectinase, protease, and xylanase.68

Phengnuam and Suntornsuk<sup>69</sup> also investigated the potential of *Bacillus subtilis* and *Bacillus licheniformis* in PE degradation in JCC. In contrast to the previous study,<sup>68</sup> submerged fermentation resulted in greater bacterial growth, although PE degradation was inferior, with *B. licheniformis* degrading only 60% and *B. subtilis* degrading only 40% of PEs after 5 days of incubation. The authors also reported that degradation of PEs was related not only to bacterial growth but also to esterase activities, through the ability of these enzymes to hydrolyze short chain esters. Esterase activities appeared in both bacterial cultures by the second day of cultivation, peaking after 5 days, with activities of up to 300 U/mL.

Continuing investigations into the role of esterases in PE degradation, Nakao et al.<sup>45</sup> characterized the esterase KM109 from the Gram-negative *Acinetobacter calcoaceticus*, demonstrating its ability to degrade 13,16-diester of 12-deoxy-16-hydroxyphorbol, 12-deoxy-16-hydroxyphorbol-4'-[12',14'-buta-dienyl]-6'-[16',18',20'-nonatrienyl]-bicyclo[3.1.0] hexane-(13-O)-2'-[carboxylate]-(16-O)-3'-]8'-butenoic-10']ate (DHPB), which is the most abundant PE in *Jatropha* seed and in JCC. In addition to esterases, lipases are also recognized as important enzymes involved in PE degradation, due to their ability to hydrolyze ester bonds, converting PEs to a phorbol moiety and fatty acids.<sup>70,53</sup> In addition to microbial-derived lipases, plant lipases have also been shown to degrade PEs in JCC, with lipases extracted from germinated seeds of *J. curcas* reducing PEs to nontoxic levels (0.06 mg/g) after 12 h.<sup>71</sup>

Additional microbial enzymes likely involved in the degradation of PEs include proteases that hydrolyze diterpene and its derivatives. Such enzymes are highly secreted in *P. aeruginosa* during PE degradation.<sup>67</sup> Kassuya et al.<sup>72</sup> raised the hypothesis that the degradation of PEs by basidiomycete fungi may involve enzymes also responsible for lignin depolymerization, with a 45 day incubation period of *Pleurotus ostreatus* on JCC resulting in PE degradation, with concomitant laccase and manganese peroxidase activities.

#### MOLECULAR STRATEGIES FOR TOXIN DEGRADATION

Although biodegradation of PEs can be achieved through microbial cultivation and enzyme secretion, a complete characterization of the genes, enzymes, and metabolic pathways responsible for degradation of PEs may solve bottlenecks in biodegradation, increasing degradation efficiency through the development of modified microbial strains harboring genes and promoters for increased enzyme secretion. While microbial esterases, lipases, and oxidative enzymes are known to participate in the direct degradation of such plant diterpenes, additional enzyme groups are likely involved in the complete degradation of these toxic compounds across prokaryotic and eukaryotic biodetoxifiers.

Although the molecular mechanisms responsible for biodegradation of PEs remain largely unresolved, genes and enzymes involved in the degradation of related plant terpenes have been identified, which are likely also involved in PE degradation. For example, genes and enzymes involved in the degradation of the diterpene abietane have been characterized in Pseudomonas abietaniphila BKME-9.73-75 This bacterium is able to degrade nonaromatic abietans and dehydroabietic acid into 7-oxodehydroabietic acid via the dioxygenigenic pathway. Here, the dit gene cluster encodes ferredoxin and  $\alpha$ - and  $\beta$ subunits of a class of ring-hydroxylating dioxygenases as well as an extradiol ring-cleavage dioxygenase.73 According to Morgan et al.,<sup>74</sup> tdt genes are also required for the degradation of tricyclic diterpenes in Pseudomonas diterpeniphila A19-6a. Knockout of the tdtL gene encoding a putative CoA resulted in loss of degradation capacity for dehydroabietic acid diterpenes and abietic acid. Similarly, knockout of the tdtD gene (homologous to the ditQ gene in Pseudomonas abietaniphila BKME-9), which encodes a cytochrome P450 monooxygenase, limited growth and the ability to degrade tricyclic diterpenes.

Different *Pseudomonas* strains have also been screened for growth on a selective medium with the diterpene dehydroabietic acid (DhA) as sole carbon source. Here, the homologue of the gene DitA1 (catalytic  $\alpha$ -subunit of the diterpenoid dioxygenase) was identified in all strains able to grow on this medium, with the gene either constitutively expressed or expressed in response to DhA, indicating likely involvement in DhA-degradation.<sup>76</sup>

Conifer tree species are known to produce monoterpenes and diterpenes as plant defense mechanisms to pathogens and pests. Certain bark beetles, however, such as the mountain pine beetle *Dendroctonus ponderosae*, can overcome such host defenses and cause severe damage to colonized trees. Through a DGGE and metagenomic approach, Adams et al.<sup>77</sup> revealed that symbiotic bacterial communities were likely responsible for host terpene degradation, contributing to the beetle's ability to overcome tree defenses. The main genera of bacteria identified in this association were *Pseudomonas*, *Rahnella*, *Serratia*, and *Burkholderia*, with metagenomic data indicating enrichment of genes in these microbial communities involved in limonene and pinene degradation, together with the genes from the diterpene degradation gene cluster *dit*.

Using molecular techniques such as transposon insertion mutation, RT-PCR, and mass spectrometry, Diaz-Perez et al.<sup>78</sup> identified the participation of the gnyRDBHAL cluster in the degradation of the acyclic terpene citronellol by *Pseudomonas aeruginosa*, with Western blot data indicating gnyB and gnyA genes encoding geranoyl-CoA carboxylase. Forster-Fromme and Jendrossek<sup>79</sup> similarly reported that *Pseudomonas citronellol* and geraniol, again with geranyl-CoA carboxylase as the key enzyme for degradation of these acyclic terpenes. A cluster of eight genes (atuABCDEFGH) was identified in the genome of this microorganism encoding proteins with high similarity to the gnyRDBHAL cluster in *P. aeruginosa*.

In addition to genes and enzymes characterized in relation to terpene degradation, ligninolytic enzymes allow microorganisms to grow on different recalcitrant lignocellulosic substrates.<sup>80,81</sup> Such enzymes, which are common to White Rot Basidiomycete fungi, also play roles in the degradation of aromatic pollutants and xenobiotic compounds.<sup>81–84</sup> In addition to the secreted enzymes involved in degradation, such as manganese peroxidases, lignin peroxidases, versatile peroxidases, and laccases, such fungi also possess intracellular systems of versatile metabolites, allowing them to metabolize intracellularly fragments generated following aromatic lignin degradation.<sup>85,86</sup> As such, enzyme products of numerous genes are involved in the degradation of xenobiotic substances in Basidiomycetes.

Cytochrome P450 genes are present in the genomes of most organisms and encode a superfamily of heme-containing monooxygenases that metabolize a wide variety of xenobiotic compounds such as polyaromatic hydrocarbons (PAHs), alkanes, terpenes, herbicides, and insecticides.<sup>87-89</sup> In fungi, they also participate in the synthesis of membrane sterols and in lipid carbon metabolism.<sup>89</sup> In Basidiomycetes, different functions of these versatile monooxygenases may have contributed to metabolic adaptations such as lignin degradation, production of secondary metabolites, and degradation of xenobiotics.<sup>86</sup> According to Suzuki et al.,<sup>90</sup> Phanerochaete carnosa contains numerous genes encoding P450 monooxygenases, with enzyme products likely related to the ability of this fungus to degrade phenolic extracts and to colonize heartwood from both softwood and hardwood species. Hirosue et al.<sup>85</sup> also reported the action of Cytochrome P450 monooxygenases from Phanerochaete chrysosporium in the catalytic conversion of aromatic petrochemical products and environmental pollutants carbazole, dibenzofuran, dibenzothiophene, fluorene, biphenyl, and naphthalene.

Next generation sequencing (NGS) approaches are applicable for identification of comprehensive data sets of genes and pathways involved in toxin degradation. Recent RNA-seq analysis of gene expression in fungi, for example, has been widely applied in the identification of genes related to degradation of lignocellulosic residues<sup>83,91–99</sup> as well as in the unraveling of mechanisms involved in plant host/pathogen interactions.<sup>100–103</sup> Such transcriptomic approaches for the characterization of genes and metabolic pathways in microorganisms that are involved in the biodegradation of plant toxins, by contrast, have been limited, with no specific data yet available with regard to PE degradation.



Figure 4. Applications of crop byproducts that offer added value to the planting of Jatropha curcas.

The literature, however, does provide a number of examples of gene discovery in relation to biodegradation of similar plant toxins. Young et al.,<sup>104</sup> for example, investigated the expression of genes in the fungus Punctularia strigosozonata related to degradation of petroleum compounds. From a total of 14 transcripts up-regulated only when grown on medium containing oil, transcripts encoding putative oxido-reductases were identified as likely responsible for the degradation of the carbon source. Using a similar approach, Ianiri et al.<sup>105</sup> were able to elucidate the mechanism for degradation of the important mycotoxin Patulin by the yeast Sporobolomyces sp. The toxin appeared to induce oxidative stress responses in the fungus, with up-regulation of genes involved in redox and transport, likely involved in detoxification and toxin expulsion. In this organism, patulin degradation likely occurs in the vacuole, with involvement of ABC transporters and vacuolar proteins. NGS genomics and transcriptomics approaches also enabled the identification of Pseudomonas species as predominant microbial communities in pine tree resin, which is rich in terpenic compounds. Data identified over 40 bacterial genera and numerous genes involved in the degradation of terpene families, including the diterpene-degradation gene cluster and acyclic terpene degradation pathway genes.<sup>106</sup>

Proteomics is also a powerful molecular tool with potential for identification of proteins involved in biodetoxification processes. Although no direct investigation of PE degradation and characterization of enzymes involved has yet been published, numerous proteomic based studies have been conducted into the elucidation of biodegradation mechanisms for other natural toxins. For example, Zammit et al.<sup>107</sup> characterized the proteome in the bacterium *Cupriavidus metallidurans*, which is able to grow in the presence of a number of heavy metals. Differentially expressed proteins were detected by differential gel electrophoresis and identified by liquid chromatography coupled with mass spectrometry.

Detoxification of Au(III) was shown to be due to a CupC chaperone, which binds to the Au(III) complex. Data suggested that the detoxification of Au and Cu occur in a similar manner

or with shared metabolic routes. Proteins related to cell membrane protection were also abundantly expressed, suggesting attenuation of oxidative stress damage caused by Au(III).<sup>107</sup> Using iTRAQ marking combined with proteomic analyses (LC-MS/MS), Chen et al.<sup>108</sup> reported a short-chain

dehydrogenase (gi|190348612) with a key role in the degradation of the mycotoxin Patulin by the Ascomycete fungus *Candida guilliermondii*. A total of 30 different proteins involved in 10 biological processes were identified, with 9 proteins up-regulated and 21 down-regulated, indicating a complex mechanism involved in degradation of this mycotoxin.

Given that casbane is a precursor of PEs, in addition to strategies based on the employment of microorganisms and their genes for detoxification of PEs, the down-regulation of casbene synthase may also be effectively applied to reduce PE biosynthesis in *J. curcas*. Using an RNAi approach for casbane synthase genes and a seed-specific promoter, engineering plants with low seed PE content has been reported, revealing promise in PE biosynthesis interception strategies as well as those focused on PE degradation.<sup>35</sup>

INTEGRATED INDUSTRIAL AND AGRICULTURAL APPLICATIONS OF JATROPHA

The high viscosity oil from *Jatropha* seed has appropriate physicochemical characteristics not only for biodiesel production after trans-esterification but also for application in the manufacture of candles, soaps, and cosmetics.<sup>8</sup>

In addition to such potential in cultivation, potential application of crop byproducts also offers added value to the crop, as summarized in Figure 4. In addition to serving as an industrial crop, *Jatropha* may also be used effectively in the recovery of degraded soils and as a wind-break to protect crops

and animals, when planted as a hedgerow. Given that the plant has low water requirements, establishment of the crop is also compatible with intercropping, providing greater income for producers.<sup>4,8,16</sup> In order to encourage greater uptake of *J. curcas* by smallholder farmers and cooperatives, however, a number of obstacles still need to be overcome, such as the lack of commercial cultivars, the definition of standardized agricultural practices, and the need for profitable and safe applications for crop residues. *JCC* shows considerable potential for recovery nutrient poor soils,<sup>109</sup> increasing organic carbon and soil biological activity. Toxic PEs, although immediately present in *JCC*, have been shown to degrade in soil environments, as described previously, with no observable negative impact on soil microbial activity.

Although JCC is a residue rich in nitrogen, phosphorus, potassium, and carbon and high in protein content for application as animal feed, with its potential highlighted in the literature.<sup>72,110,111</sup> the presence of toxic PEs limits its application as a feed supplement or fertilizer. The development of appropriate processing methods for removal of PEs is therefore key to enable JCC to be applied as a nutritive animal feed. As described in this review, biodegradation of PEs has been shown to be effective with numerous Prokaryotic and Eukaryotic microorganisms. Given that Basidiomycete fungi are among the most promising biodegraders, <sup>53,62,72</sup> their role in PE degradation on JCC also shows potential for exploitation in edible mushroom production and in spent mushroon substrate for animal feed. Ongoing work by our group has revealed numerous edible mushroom species that can degrade 100% of PEs in JCC and with satisfactory biological efficiency and productivity. Toxicological tests have shown evidence that both mushrooms and spent mushroom substrate may be safely used for human consumption and animal supplementation, respectively.

JCC can also serve as a suitable substrate for the production of microbial-derived enzymes with industrial applications. Important examples of producing microorganisms and their enzymes include cellulolytic and xylanolytic enzymes secreted by *Aspergillus niger*,<sup>112</sup> lipases and proteases from *P. aeruginosa*, xylanases from *Scytalidium thermophilum*,<sup>113</sup> and amylases, cellulases, lipases, pectinases, proteases, and xylanases from *Bacillus* sp.<sup>68</sup> JCC has also been shown to be a suitable substrate for Pullulan production by *Aureobasidium pullulans*. This exopolysaccharide polymer has a number of important applications in the food, pharmaceutical, and cosmetic industries.<sup>114</sup>

Watanabe et al.<sup>115</sup> recently described physicochemical conversion methods for *J. curcas* lignocellulosic biomass, where seed coat, kernel, stem, xylem, bark, and leaf tissues were submitted to torrefaction under different temperature conditions. Physicochemical decomposition of cellulose, hemicellulose, and lignin enabled conversion to value-added compounds such as oligosaccharides, glucuronoxylan, and maltodextrin, which can be applied as biorefinery feed stock or fertilizer.

Although this review is focused on detoxification, the recovery of PEs from *Jatropha* leaves with organic solvents also has potential application in the pharmaceutical and agrochemical industries. Antimicrobial, antiparasitic, and antiviral activities have been described, <sup>116</sup> with PEs isolated from *J. curcas* oil also employed in prostratin synthesis.<sup>23</sup> Ratnadass and Wink<sup>117</sup> also reported applications of PEs as bioinsecticides and molluscicides. According to Devappa and

collaborators,<sup>26</sup> methanol-based extraction and recovery is simple and appropriate for scale up, although the storage conditions and period remain limiting factors, given that PEs degrade by auto-oxidation. Cold storage (-4 °C to -80 °C) slows down degradation, although loss of biological activity continues to be proportional to storage time.<sup>26</sup>

#### FINAL CONSIDERATIONS

The chosen method for detoxification of JCC ultimately depends on the final destination of the crop residue, whether in animal feed, fertilizer, mushroom, and/or enzyme production.

As mentioned, while a number of chemical and physical treatments are able to degrade PEs in *J. curcas*, the majority of such treatments are aggressive, inactivating or decreasing the nutritional qualities of JCC as a result of protein and functional amino acid degradation. Treatments with organic solvents and NaOH, for example, can modify residue odor, leading to decreased consumption by animals. Methanol is also a toxic solvent and may poison the final detoxified cake, making it unfit as a protein source.<sup>31,51</sup> As a consequence, the use of JCC may become restricted to only fertilizers and soil supplementation.

Factors such as complexity of operation and equipment, adequate disposal of solvent residues, and limitation in detoxification efficiency<sup>43</sup> all limit the consolidation of such detoxification methods.

While biodetoxification shows potential in terms of efficiency and specificity, this process still presents limitations in terms of cultivation time and scale up. Such treatment with microorganisms, however, not only may enable PE degradation but also may potentially improve the residue nutritional value, through increasing available protein content and reducing lignin fractions, and through contributing bioactives such as  $\beta$ -glucan and ergosterol from fungal mycelium.

Transcriptomic and proteomic approaches offer considerable potential for increasing our understanding of enzymatic degradation of PEs by microorganisms. Elucidation of the genes involved in such processes is an important first step toward the accurate screening of efficient biodetoxifying species, as well as in the genetic improvement of microbial strains, enabling degradation time and efficiency to be optimized.

#### AUTHOR INFORMATION

#### **Corresponding Authors**

\*E-mail: robertmiller@unb.br. Phone: +55-61-3107-3048.

\*E-mail: felix.siqueira@embrapa.br. Phone: +55-61-3448-2324. ORCID ©

Taisa G. Gomes: 0000-0002-0449-287X Felix G. De Siqueira: 0000-0001-5239-4994 Robert N. G. Miller: 0000-0002-5798-4552

#### Funding

This work was financially supported by CAPES (Program 53001010007P8) and CNPq/Embrapa (Project Number 404786/2013-8). RNGM was supported by a fellowship from CNPq (Project Number 307035/2013-1).

#### Notes

The authors declare no competing financial interest.

## ACKNOWLEDGMENTS

The authors would like to thank Maria Goreti Braga Dos Santos for contributions in figure illustrations.

#### REFERENCES

(1) Kiss, A. A.; Dimian, A. C.; Rothenberg, G. Biodiesel by catalytic reactive distillation powered by metal oxides. *Energy Fuels* 2008, *22*, 598–604.

(2) de Castro, A. M. G.; Lima, S. M. V.; Silva, J. F. V. Complexo agroindustrial de biodiesel no Brasil: competitividade das cadeias produtivas de matérias-primas; Embrapa Agroenergia: 2010.

(3) Singh, R.; Vyas, D.; Srivastava, N.; Narra, M. SPRERI experience on holistic approach to utilize all parts of Jatropha curcas fruit for energy. *Renewable Energy* 2008, *33*, 1868–1873.

(4) Duraes, F. O. M.; Laviola, B. G. a.; Alves, A. A. Potential and challenges in making physic nut (Jatropha curcas L.) a viable biofuel crop: the Brazilian perspective. *Plant Sciences Reviews* 2012, 2011, 179.

(5) Jongschaap, R.; Corre, W.; Bindraban, P.; Brandenburg, W. *Claims and facts on Jatropha curcas L.: global Jatropha curcas evaluation. breeding and propagation programme*; Plant Research International: 2007.

(6) Koh, M. Y.; Ghazi, T. I. M. A review of biodiesel production from Jatropha curcas L. oil. *Renewable Sustainable Energy Rev.* 2011, *15*, 2240–2251.

(7) Kumar, A.; Sharma, S. An evaluation of multipurpose oil seed crop for industrial uses (Jatropha curcas L.): a review. *Ind. Crops Prod.* **2008**, *28*, 1–10.

(8) Makkar, H. P.; Becker, K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. *Eur. J. Lipid Sci. Technol.* 2009, *111*, 773–787.

(9) Abhilash, P.; Srivastava, P.; Jamil, S.; Singh, N. Revisited Jatropha curcas as an oil plant of multiple benefits: critical research needs and prospects for the future. *Environ. Sci. Pollut. Res.* 2011, *18*, 127–131.

(10) Achten, W.; Verchot, L.; Franken, Y. J.; Mathijs, E.; Singh, V. P.; Aerts, R.; Muys, B. Jatropha bio-diesel production and use. *Biomass Bioenergy* 2008, *32*, 1063–1084.

(11) Bailis, R.; McCARTHY, H. Carbon impacts of direct land use change in semiarid woodlands converted to biofuel plantations in India and Brazil. *GCB Bioenergy* **2011**, *3*, 449–460.

(12) Becker, K.; Makkar, H. Jatropha curcas: a potential source for tomorrow's oil and biodiesel. *Lipid Technol.* 2008, *20*, 104–107.

(13) Edrisi, S. A.; Dubey, R. K.; Tripathi, V.; Bakshi, M.; Srivastava, P.; Jamil, S.; Singh, H.; Singh, N.; Abhilash, P. Jatropha curcas L.: a crucified plant waiting for resurgence. *Renewable Sustainable Energy Rev.* 2015, *41*, 855–862.

(14) Bahadur, B.; Sujatha, M.; Carels, N. Jatropha, Challenges fora New Energy Crop; Springer: 2013.

(15) Carels, N.; Sujatha, M.; Bahadur, B. Jatropha, Challenges for a New Energy Crop: Farming. *Economics and Biofuel*; Springer Verlag: 2013.

(16) Laviola, B. G.; Alves, A. A.; Rocha, R. B.; Drumond, M. A., The importance of Jatropha for Brazil. *Jatropha, challenges for a new energy crop*; Springer: 2012; pp 71–94.

(17) Baldini, M.; Ferfuia, C.; Bortolomeazzi, R.; Verardo, G.; Pascali, J.; Piasentier, E.; Franceschi, L. Determination of phorbol esters in seeds and leaves of Jatropha curcas and in animal tissue by high-performance liquid chromatography tandem mass spectrometry. *Ind. Crops Prod.* 2014, *59*, 268–276.

(18) Belewu, M.; Muhammed, N.; Ajayi, F.; Abdulgafar, D. Performance characteristics of goat fed Trichoderma treated feather meal-rice husk mixture. *Anim. Nutr. Feed Technol.* 2009, *9*, 203–208.

(19) Makkar, H.; Aderibigbe, A.; Becker, K. Comparative evaluation of non-toxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. *Food Chem.* **1998**, *62*, 207–215.

(20) Devappa, R. K.; Makkar, H. P.; Becker, K. Jatropha toxicity a review. *J. Toxicol. Environ. Health, Part B* 2010, *13*, 476–507.

(21) Goel, G.; Makkar, H. P.; Francis, G.; Becker, K. Phorbol esters: structure, biological activity, and toxicity in animals. *Int. J. Toxicol.* 2007, *26*, 279–288.

(22) Makkar, H.; Becker, K.; Sporer, F.; Wink, M. Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. *J. Agric. Food Chem.* **1997**, *45*, 3152–3157.

(23) Devappa, R. K.; Malakar, C. C.; Makkar, H. P.; Becker, K. Pharmaceutical potential of phorbol esters from Jatropha curcas oil. *Nat. Prod. Res.* 2013, *27*, 1459–1462.

(24) Oskoueian, E.; Abdullah, N.; Ahmad, S. Phorbol esters isolated from Jatropha meal induced apoptosis-mediated inhibition in proliferation of Chang and Vero cell lines. *Int. J. Mol. Sci.* 2012, *13*, 13816–13829.

(25) Haas, W.; Sterk, H.; Mittelbach, M. Novel 12-Deoxy-16hydroxyphorbol Diesters Isolated from the Seed Oil of Jatropha curcas. *J. Nat. Prod.* 2002, *65*, 1434–1440.

(26) Devappa, R. K.; Roach, J. S.; Makkar, H. P.; Becker, K. Occular and dermal toxicity of Jatropha curcas phorbol esters. *Ecotoxicol. Environ. Saf.* 2013, *94*, 172–178.

(27) Li, C.-Y.; Devappa, R. K.; Liu, J.-X.; Lv, J.-M.; Makkar, H.; Becker, K. Toxicity of Jatropha curcas phorbol esters in mice. *Food Chem. Toxicol.* 2010, *48*, 620–625.

(28) Strair, R. K.; Schaar, D.; Goodell, L.; Aisner, J.; Chin, K.-V.; Eid, J.; Senzon, R.; Cui, X. X.; Han, Z. T.; Knox, B. Administration of a phorbol ester to patients with hematological malignancies. *Clin. Cancer Res.* 2002, *8*, 2512–2518.

(29) Rakshit, K.; Darukeshwara, J.; Raj, K. R.; Narasimhamurthy, K.; Saibaba, P.; Bhagya, S. Toxicity studies of detoxified Jatropha meal (Jatropha curcas) in rats. *Food Chem. Toxicol.* 2008, *46*, 3621–3625.

(30) Gogoi, R.; Niyogi, U. K.; Tyagi, A. K. Reduction of phorbol ester content in jatropha cake using high energy gamma radiation. *J. Radiat. Res. Appl. Sci.* 2014, *7*, 305–309.

(31) Aregheore, E.; Becker, K.; Makkar, H. Detoxification of a toxic variety of Jatropha curcas using heat and chemical treatments, and preliminary nutritional evaluation with rats. *South Pacific Journal of Natural and Applied Sciences* 2003, *21*, 51–56.

(32) He, W.; King, A. J.; Khan, M. A.; Cuevas, J. A.; Ramiaramanana, D.; Graham, I. A. Analysis of seed phorbol-ester and curcin content together with genetic diversity in multiple provenances of Jatropha curcas L. from Madagascar and Mexico. *Plant Physiol. Biochem.* 2011, *49*, 1183–1190.

(33) Makkar, H. P.; Martinez-Herrera, J.; Becker, K. Variations in seed number per fruit, seed physical parameters and contents of oil, protein and phorbol ester in toxic and non-toxic genotypes of Jatropha curcas. J. Plant Sci. 2008, 3, 260–265.

(34) Liu, X.; Li, L.; Li, W.; Lu, D.; Chen, F.; Li, J. Quantitative determination of phorbol ester derivatives in Chinese Jatropha curcas seeds by high-performance liquid chromatography/mass spectrometry. *Ind. Crops Prod.* 2013, 47, 29–32.

(35) Li, C.; Ng, A.; Xie, L.; Mao, H.; Qiu, C.; Srinivasan, R.; Yin, Z.; Hong, Y. Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis. *Plant Cell Rep.* **2016**, *35*, 103–114. (36) Sato, S.; Hirakawa, H.; Isobe, S.; Fukai, E.; Watanabe, A.; Kato,

M.; Kawashima, K.; Minami, C.; Muraki, A.; Nakazaki, N. Sequence analysis of the genome of an oil-bearing tree, Jatropha curcas L. *DNA research* **2010**, *18*, 65–76.

(37) Costa, G. G.; Cardoso, K. C.; Del Bem, L. E.; Lima, A. C.; Cunha, M. A.; de Campos-Leite, L.; Vicentini, R.; Papes, F.; Moreira, R. C.; Yunes, J. A. Transcriptome analysis of the oil-rich seed of the bioenergy crop Jatropha curcas L. *BMC Genomics* 2010, *11*, 462.

(38) King, A. J.; Montes, L. R.; Clarke, J. G.; Affleck, J.; Li, Y.; Witsenboer, H.; Vossen, E.; Linde, P.; Tripathi, Y.; Tavares, E. Linkage mapping in the oilseed crop Jatropha curcas L. reveals a locus controlling the biosynthesis of phorbol esters which cause seed toxicity. *Plant biotechnology journal* **2013**, *11*, 986–996.

(39) Nakano, Y.; Ohtani, M.; Polsri, W.; Usami, T.; Sambongi, K.; Demura, T. Characterization of the casbene synthase homolog from Jatropha (Jatropha curcas L.). *Plant Biotechnol.* **2012**, *29*, 185–189.

(40) Shah, M.; Soares, E. L.; Lima, M. L.; Pinheiro, C. B.; Soares, A. A.; Domont, G. B.; Nogueira, F. C.; Campos, F. A. Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas. *J. Proteomics* 2016, *143*, 346–352.

(41) Soares, E. L.; Shah, M.; Soares, A. A.; Costa, J. H.; Carvalho, P.; Domont, G. B.; Nogueira, F. C.; Campos, F. A. Proteome analysis of DOI:10.1021/acs.idc.7b05691 the inner integument from developing Jatropha curcas L. seeds. J. Proteome Res. 2014, 13, 3562-3570.

(42) Kuvshinov, D.; Siswanto, A.; Zimmerman, W. Microbubbles Enhanced Synthetic Phorbol Ester Degradation by Ozonolysis. *International Journal of Chemical, Materials Science and Engineering* **2014**, 8, 78–81.

(43) Zhang, M.; Gong, K.; Jiao, S.; Qin, Y.; Xiang, C.; He, J.; Li, B. Rapid Detoxification of Jatropha curcas Seed Cake by Hydrogen Peroxide Oxidation and Acute Toxicity Evaluation of Detoxified Product. *Agric. Res.* **2014**, *3*, 302–307.

(44) Phasukarratchai, N.; Damrongsiri, S.; Tongcumpou, C. Degradation rates of phorbol esters in Jatropha curcas L. oil and pressed seeds under different storage conditions. *J. Sci. Food Agric.* 2017, *97*, 1482–1487.

(45) Nakao, M.; Hasegawa, G.; Yasuhara, T.; Ishihara, Y. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity. *Ecotoxicol. Environ. Saf.* 2015, *114*, 357–364.

(46) Devappa, R. K.; Makkar, H. P.; Becker, K. Biodegradation of Jatropha curcas phorbol esters in soil. *J. Sci. Food Agric.* 2010, *90*, 2090–2097.

(47) Yunping, B.; Ha, B. T. N.; Eunice, Y.; Chueng, L. L.; Yan, H. Light induced degradation of phorbol esters. *Ecotoxicol. Environ. Saf.* **2012**, *84*, 268–273.

(48) Guedes, R. E.; de Almeida Cruz, F.; de Lima, M. C.; Luiza, D.; Castro, R. N.; Mendes, M. F. Detoxification of Jatropha curcas seed cake using chemical treatment: analysis with a central composite rotatable design. *Ind. Crops Prod.* **2014**, *52*, 537–543.

(49) Nokkaew, R.; Punsuvon, V. Multistage solvent extraction for high yield oil and phorbol esters removal from Thai toxic Jatropha curcas meal. *Walailak Journal of Science and Technology (WJST)* 2013, *12*, 299–310.

(50) Phasukarratchai, N.; Tontayakom, V.; Tongcumpou, C. Reduction of phorbol esters in Jatropha curcas L. pressed meal by surfactant solutions extraction. *Biomass Bioenergy* **2012**, *45*, 48–56.

(51) Katole, S.; Saha, S. K.; Das, A.; Sastry, V. R. B.; Lade, M. H.; Prakash, B. Nutrient intake, digestibility, and blood metabolites of goats fed diets containing processed jatropha meal. *Trop. Anim. Health Prod.* 2013, *45*, 1563–1569.

(52) Elangovan, A.; Gowda, N.; Satyanarayana, M.; Suganthi, R.; Rao, S.; Sridhar, M. Jatropha (Jatropha curcas) seed cake as a feed ingredient in the rations of sheep. *Animal Nutrition and Feed Technology* **2013**, *13*, 57–67.

(53) de Barros, C. R.; Ferreira, L. M.; Nunes, F. M.; Bezerra, R. M.; Dias, A. A.; Guedes, C. V.; Cone, J. W.; Marques, G. S.; Rodrigues, M. A. The potential of white-rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake. *Engineering in Life Sciences* 2011, *11*, 107–110.

(54) da Luz, J.; Rodrigues, e. M.; Nunes, M. D.; Paes, S. A.; Torres, D. P.; Kasuya, M. C. M. Bio-detoxification of Jatropha curcas seed cake by Pleurotus ostreatus. *Afr. J. Microbiol. Res.* 2014, *8*, 1148–1156.

(55) Tholl, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. *Curr. Opin. Plant Biol.* 2006, *9*, 297–304.

(56) Jia, Q.; Li, G.; Kollner, T. G.; Fu, J.; Chen, X.; Xiong, W.; Crandall-Stotler, B. J.; Bowman, J. L.; Weston, D. J.; Zhang, Y. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. *Proc. Natl. Acad. Sci. U. S. A.* 2016, *113*, 12328–12333.

(57) Maurya, R.; Ravi, M.; Singh, S.; Yadav, P. P. A review on cassane and norcassane diterpenes and their pharmacological studies. *Fitoterapia* **2012**, *83*, 272–280.

(58) Zerbe, P.; Chiang, A.; Dullat, H.; O'Neil-Johnson, M.; Starks, C.; Hamberger, B.; Bohlmann, J. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. *Plant J.* 2014, *79*, 914–927.

(59) Zain, M. E. Impact of mycotoxins on humans and animals. *J. Saudi Chem. Soc.* 2011, *15*, 129–144.

Κ

(60) Kulikova, N.; Klein, O.; Stepanova, E.; Koroleva, O. Use of basidiomycetes in industrial waste processing and utilization technologies: Fundamental and applied aspects. *Appl. Biochem. Microbiol.* **2011**, *47*, 565–579.

(61) Owen, E.; Smith, T.; Makkar, H. Successes and failures with animal nutrition practices and technologies in developing countries: A synthesis of an FAO e-conference. *Anim. Feed Sci. Technol.* 2012, *174*, 211–226.

(62) Bose, A.; Keharia, H. Phorbol ester degradation in Jatropha seedcake using white rot fungi. *3 Biotech* 2014, *4*, 447–450.

(63) Belewu, M.; Sam, R. Solid state fermentation of Jatropha curcas kernel cake: proximate composition and antinutritional components. *Journal of yeast and fungal research* **2010**, *J*, 44–46.

(64) Veerabhadrappa, M. B.; Shivakumar, S. B.; Devappa, S. Solidstate fermentation of Jatropha seed cake for optimization of lipase, protease and detoxification of anti-nutrients in Jatropha seed cake using Aspergillus versicolor CJS-98. *J. Biosci. Bioeng.* 2014, *117*, 208– 214.

(65) Najjar, A.; Abdullah, N.; Saad, W. Z.; Ahmad, S.; Oskoueian, E.; Gherbawy, Y. Removal of Phorbol Esters Present in Jatropha curcas Kernel by Fungal Isolates. *International Journal of Agriculture & Biology* **2014**, *16*, 871–878.

(66) Zhang, X.; Yang, Z.; Liang, J.; Tang, L.; Chen, F. Detoxification of Jatropha curcas seed cake in solid-state fermentation of newly isolated endophytic strain and nutrition assessment for its potential utilizations. *Int. Biodeterior. Biodegrad.* **2016**, *109*, 202–210.

(67) Joshi, C.; Mathur, P.; Khare, S. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. *Bioresour. Technol.* 2011, *102*, 4815–4819.

(68) Chang, C.-F.; Weng, J.-H.; Lin, K.-Y.; Liu, L.-Y.; Yang, S.-S. Phorbol esters degradation and enzyme production by bacillus using jatropha seed cake as substrate. *Journal ISSN* **2014**, *1929*, 2732.

(69) Phengnuam, T.; Suntornsuk, W. Detoxification and antinutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. J. Biosci. Bioeng. 2013, 115, 168–172.

(70) Najjar, A.; Abdullah, N.; Saad, W. Z.; Ahmad, S.; Oskoueian, E.; Abas, F.; Gherbawy, Y. Detoxification of toxic phorbol esters from Malaysian Jatropha curcas Linn. kernel by Trichoderma spp. and endophytic fungi. *Int. J. Mol. Sci.* **2014**, *15*, 2274–2288.

(71) Hidayat, C.; Hastuti, P.; Utazmi, S.; Wardhani, A. K.; Pradipta, D. S. Enhancing indigenous lipase activity of germinated Jatropha curcas L. Seeds for the enzymatic degradation of phorbol ester. *Biocatal. Agric. Biotechnol.* 2014, *3*, 71–76.

(72) Kasuya, M. C. M.; da Luz, J. M. R.; da Silva Pereira, L. P.; da Silva, J. S.; Montavani, H. C.; Rodrigues, M. T., Bio-detoxification of jatropha seed cake and its use in animal feed. In *Biodiesel-Feedstocks, Production and Applications*; Intech: 2012.

(73) Martin, V. J.; Mohn, W. W. Genetic Investigation of the Catabolic Pathway for Degradation of Abietane Diterpenoids by Pseudomonas abietaniphilaBKME-9. *Journal of bacteriology* 2000, *182*, 3784–3793.

(74) Morgan, C.; Wyndham, R. Characterization of tdt genes for the degradation of tricyclic diterpenes by Pseudomonas diterpeniphila A19–6a. *Can. J. Microbiol.* **2002**, *48*, 49–59.

(75) Smith, D. J.; Martin, V. J.; Mohn, W. W. A cytochrome P450 involved in the metabolism of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. *Journal of bacteriology* **2004**, *186*, 3631–3639.

(76) Witzig, R.; Aly, H. A.; Strömpl, C.; Wray, V.; Junca, H.; Pieper, D. H. Molecular detection and diversity of novel diterpenoid dioxygenase DitA1 genes from proteobacterial strains and soil samples. *Environ. Microbiol.* 2007, *9*, 1202–1218.

(77) Adams, A. S.; Aylward, F. O.; Adams, S. M.; Erbilgin, N.; Aukema, B. H.; Currie, C. R.; Suen, G.; Raffa, K. F. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. *Appl. Environ. Microbiol.* **2013**, *79*, 3468–3475.

(78) Diaz-Perez, A.; Zavala-Hernandez, A.; Cervantes, C.; Campos-Garcia, J. The gnyRDBHAL cluster is involved in acyclic isoprenoid

Review
degradation in Pseudomonas aeruginosa. Applied and environmental microbiology 2004, 70, 5102–5110.

(79) Förster-Fromme, K.; Jendrossek, D. Identification and characterization of the acyclic terpene utilization gene cluster of Pseudomonas citronellolis. *FEMS Microbiol. Lett.* 2006, *264*, 220–225.

(80) Bonugli-Santos, R. C.; Durrant, L. R.; Sette, L. D. The production of ligninolytic enzymes by marine-derived basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. *Water, Air, Soil Pollut.* 2012, *223*, 2333–2345.

(81) Feofilova, E.; Mysyakina, I. Lignin: Chemical structure, biodegradation, and practical application (a review). *Appl. Biochem. Microbiol.* **2016**, *52*, 573–581.

(82) Arun, A.; Eyini, M. Comparative studies on lignin and polycyclic aromatic hydrocarbons degradation by basidiomycetes fungi. *Bioresour. Technol.* **2011**, *102*, 8063–8070.

(83) Chen, L.; Gong, Y.; Cai, Y.; Liu, W.; Zhou, Y.; Xiao, Y.; Xu, Z.; Liu, Y.; Lei, X.; Wang, G. Genome sequence of the edible cultivated mushroom Lentinula edodes (shiitake) reveals insights into lignocellulose degradation. *PLoS One* 2016, *11*, e0160336.

(84) Mori, T.; Kondo, R. Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. *FEMS Microbiol. Lett.* 2002, *216* (2), 223–227.

(85) Hirosue, S.; Tazaki, M.; Hiratsuka, N.; Yanai, S.; Kabumoto, H.; Shinkyo, R.; Arisawa, A.; Sakaki, T.; Tsunekawa, H.; Johdo, O. Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. *Biochem. Biophys. Res. Commun.* 2011,407,118–123.

(86) Ichinose, H. Cytochrome P450 of wood-rotting basidiomycetes and biotechnological applications. *Biotechnol. Appl. Biochem.* 2013, *60*, 71–81.

(87) Bernhardt, R. Cytochromes P450 as versatile biocatalysts. *J. Biotechnol.* 2006, *124*, 128–145.

(88) Girvan, H. M.; Munro, A. W. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. *Curr. Opin. Chem. Biol.* 2016, *31*, 136–145.

(89) Hsu, K.-H.; Lee, Y.-R.; Lin, Y.-L.; Chu, F.-H. Cytochrome P450 Genes in Medicinal Mushroom Antrodia cinnamomea TT Chang et WN Chou (Higher Basidiomycetes) are Strongly Expressed During Fruiting Body Formation. *Int. J. Med. Mushrooms* 2011, *13*, 513–523. (90) Suzuki, H.; MacDonald, J.; Syed, K.; Salamov, A.; Hori, C.; Aerts, A.; Henrissat, B.; Wiebenga, A.; Barry, K.; Lindquist, E. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. *BMC Genomics* 2012, *13*, 444.

(91) Alfaro, M.; Castanera, R.; Lavín, J. L.; Grigoriev, I. V.; Oguiza, J. A.; Ramírez, L.; Pisabarro, A. G. Comparative and transcriptional analysis of the predicted secretome in the lignocellulose-degrading basidiomycete fungus Pleurotus ostreatus. *Environ. Microbiol.* 2016, *18*, 4710–4726.

(92) Borin, G. P.; Sanchez, C. C.; Santana, E. S.; Zanini, G. K.; Santos, R. A. C.; Pontes, A. O.; Souza, A. T.; Dal, R. M. M. T. S.; Riaño-Pachón D. M.; Goldman, G. H. Comparative transcriptome analysis reveals different strategies for degradation of steam-exploded sugarcane bagasse by Aspergillus niger and Trichoderma reesei. *BMC Genomics* 2017, *18*, 501.

(93) Bozan, M.; Akyol, Ç; Ince, O.; Aydin, S.; Ince, B. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass. *Appl. Microbiol. Biotechnol.* 2017, *101*, 6849–6864.

(94) Hori, C.; Ishida, T.; Igarashi, K.; Samejima, M.; Suzuki, H.; Master, E.; Ferreira, P.; Ruiz-Dueñas, F. J.; Held, B.; Canessa, P. Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. *PLoS Genet.* 2014, *10*, e1004759.

(95) Martinez, D.; Berka, R. M.; Henrissat, B.; Saloheimo, M.; Arvas, M.; Baker, S. E.; Chapman, J.; Chertkov, O.; Coutinho, P. M.; Cullen, D. Genome sequencing and analysis of the biomass-degrading fungus

Trichoderma reesei (syn. Hypocrea jecorina). *Nat. Biotechnol.* 2008, 26, 553–560.

(96) Miao, Y.; Liu, D.; Li, G.; Li, P.; Xu, Y.; Shen, Q.; Zhang, R. Genome-wide transcriptomic analysis of a superior biomass-degrading strain of A. fumigatus revealed active lignocellulose-degrading genes. *BMC Genomics* **2015**, *16*, 459.

(97) Navarro, D.; Rosso, M.-N.; Haon, M.; Olive, C.; Bonnin, E.; Lesage-Meessen, L.; Chevret, D.; Coutinho, P. M.; Henrissat, B.; Berrin, J.-G. Fast solubilization of recalcitrant cellulosic biomass by the basidiomycete fungus Laetisaria arvalis involves successive secretion of oxidative and hydrolytic enzymes. *Biotechnol. Biofuels* **2014**, *7*, 143.

(98) Sablok, G.; Fu, Y.; Bobbio, V.; Laura, M.; Rotino, G. L.; Bagnaresi, P.; Allavena, A.; Velikova, V.; Viola, R.; Loreto, F. Fuelling genetic and metabolic exploration of C3 bioenergy crops through the first reference transcriptome of Arundo donax L. *Plant biotechnology journal* 2014, *12*, 554–567.

(99) Zhang, L.; Wang, Z.-X.; Wang, Y.; Huang, B. Transcriptomic Profile of Lignocellulose Degradation from Trametes versicolor on Poplar Wood. *BioResources* 2017, *12*, 2507–2527.

(100) Massart, S.; Perazzolli, M.; Hořte, M.; Pertot, I.; Jijakli, M. H. Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. *BioControl* 2015, *60*, 725–746.

(101) Molitor, A.; Zajic, D.; Voll, L. M.; Pons-Kuhnemann, J.; Samans, B.; Kogel, K.-H.; Waller, F. Barley leaf transcriptome and metabolite analysis reveals new aspects of compatibility and Piriformospora indica-mediated systemic induced resistance to powdery mildew. *Mol. Plant-Microbe Interact.* 2011, *24*, 1427–1439.

(102) Passos, M. A.; de Cruz, V. O.; Emediato, F. L.; de Teixeira, C. C.; Azevedo, V.C. R.; Brasileiro, A. C.; Amorim, E. P.; Ferreira, C. F.; Martins, N. F.; Togawa, R. C. Analysis of the leaf transcriptome of Musa acuminata during interaction with Mycosphaerella musicola: gene assembly, annotation and marker development. *BMC Genomics* **2013**, *14*, 78.

(103) Soanes, D. M.; Chakrabarti, A.; Paszkiewicz, K. H.; Dawe, A. L.; Talbot, N. J. Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. *PLoS Pathog.* 2012, *8*, e1002514.

(104) Young, D.; Rice, J.; Martin, R.; Lindquist, E.; Lipzen, A.; Grigoriev, I.; Hibbett, D. Degradation of bunker C fueloil by white-rot fungi in sawdust cultures suggests potential applications in bioremediation. *PLoS One* 2015, *10*, e0130381.

(105) Ianiri, G.; Idnurm, A.; Castoria, R. Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin. *BMC Genomics* **2016**, *17*, 210.

(106) Vilanova, C.; Marín, M.; Baixeras, J.; Latorre, A.; Porcar, M. Selecting microbial strains from pine tree resin: biotechnological applications from a terpene world. *PLoS One* **2014**, *9*, e100740.

(107) Zammit, C. M.; Weiland, F.; Brugger, J.; Wade, B.; Winderbaum, L. J.; Nies, D. H.; Southam, G.; Hoffmann, P.; Reith, F. Proteomic responses to gold (III)-toxicity in the bacterium Cupriavidus metallidurans CH34. *Metallomics* 2016, *8*, 1204–1216.

(108) Chen, Y.; Peng, H.-M.; Wang, X.; Li, B.-Q.; Long, M.-Y.; Tian, S.-P. Biodegradation Mechanisms of Patulin in Candida guilliermondii: An iTRAQ-Based Proteomic Analysis. *Toxins* 2017, *9*, 48.

(109) Anand, K. V.; Kubavat, D.; Trivedi, K.; Agarwal, P. K.; Wheeler, C.; Ghosh, A. Long-term application of Jatropha press cake promotes seed yield by enhanced soil organic carbon accumulation, microbial biomass and enzymatic activities in soils of semi-arid tropical wastelands. *Eur. J. Soil Biol.* 2015, *69*, 57–65.

(110) Kumar, S.; Kaushik, N. Endophytic fungi isolated from oil-seed crop Jatropha curcas produces oil and exhibit antifungal activity. *PLoS One* 2013, *8*, e56202.

(111) Makkar, H. P. State-of-the-art on detoxification of Jatropha curcas products aimed for use as animal and fish feed: A review. *Anim. Feed Sci. Technol.* 2016, 222, 87–99.

(112) Ncube, T.; Howard, R. L.; Abotsi, E. K.; van Rensburg, E. L. J.; Ncube, I. Jatropha curcas seed cake as substrate for production of

xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. *Ind. Crops Prod.* **2012**, *37*, 118–123.

(113) Joshi, C.; Khare, S. Utilization of deoiled Jatropha curcas seed cake for production of xylanase from thermophilic Scytalidium thermophilum. *Bioresour. Technol.* 2011, *102*, 1722–1726.

(114) Choudhury, A. R.; Prasad, G.; Sharma, N. Deoiled jatropha seed cake is a useful nutrient for pullulan production. *Microb. Cell Fact.* **2012**, *11*, 39.

(115) Watanabe, T.; Shino, A.; Akashi, K.; Kikuchi, J. Chemical profiling of Jatropha tissues under different torrefaction conditions: application to biomass waste recovery. *PLoS One* 2014, *9*,e106893.

(116) Insanu, M.; Dimaki, C.; Wilkins, R.; Brooker, J.; van der Linde, P.; Kayser, O. Rational use of Jatropha curcas L. in food and medicine: from toxicity problems to safe applications. *Phytochem. Rev.* 2013, *12*, 107–119.

(117) Ratnadass, A.; Wink, M. The phorbol ester fraction from Jatropha curcas seed oil: potential and limits for crop protection against insect pests. *Int. J. Mol. Sci.* 2012, *13*, 16157–16171.

Capítulo II: Biodegradação dos ésteres de forbol da torta de pinhãomanso pelo basidiomiceto *Pleurotus pulmonarius EF88* 

#### Resumo

O macrofungo P. pulmonarius EF88 é um eficiente biodegradador dos ésteres de forbol presentes na torta do pinhão-manso. No entanto, a degradação biológica dos ésteres de forbol enfrenta alguns gargalos importantes que podem ser resolvidos com métodos de melhoramento genéticos. Análises referentes ao RNA-seg e proteoma foram escolhidas como estratégias para tentar identificar genes e proteínas chave envolvidas nesse processo de biodegradação. Dessa forma, o primeiro passo para realizar análises transcritômicas e proteômicas é a identificação dos pontos críticos a serem avaliados. A curva de degradação dos EFs por P. pulmonarius ao longo de 30 dias de cultivo sólido foi usada como parâmetro para determinar os pontos do transcritoma e proteoma. Também foram quantificadas atividades enzimáticas de enzimas que possam estar relacionadas a ação degradadora dos ésteres de forbol e de interesse industrial. A degradação dos EFs ocorreu em todos os momentos analisados. No 21° dia de cultivo, a concentração desse diterpeno foi reduzida para níveis considerados atóxicos (0,06 mg/g), e ao final de 30 dias de cultivos restaram apenas 0,02 mg/g do composto tóxico. O pico de degradação ocorre entre os dias 7 e 11 de cultivo. Não foram dectados atividades de lipases e esterases. Atividades de enzimas oxidativas (lacases e MnP) e proteases permaneceram altas durante todo o cultivo, principalmente no cultivo em substrato tóxico. O extrato enzimático bruto de P. pulmonarius também foi capaz de degradar os EFs da torta de pinhãomanso, após 36h de tratamento, em condições não otimizadas, comprovando que a degração dos ésteres de forbol é decorrente de ação enzimática. A eficiência de degradação dos ésteres de forbol pelo extrato enzimático bruto de P. pulmonarius está relacionada ao substrato usado no cultivo.

**Palavras-chave**: éster de forbol, torta de pinhão-manso, extrato enzimático, enzimas, proteases, lacases, macro-basidiomiceto.

The macro-basidiomycete P. pulmonarius EF88 can efficiently degrade the phorbol esters present in jatropha cake. However, the biological degradation of phorbol esters faces some important bottlenecks that can be solved with genetic improvement. RNA-seq and proteome analysis were used to identify key genes and proteins involved in this biodegradation process. Thus, the first step to carry out transcriptional and proteomic analyzes were the identification of the critical points to be evaluated. The PEs degradation curve were evaluated over 30 days of solid culture and used as a parameter to determine the transcriptome and proteome critical points. Enzymatic activities of other enzymes of industrial interest that could be related to phorbol esters degradation were also quantified. The degradation of EFs occurred at all analyzed moments. On day 21 of cultivation, the concentration of the studied diterpene was reduced to non-toxic levels (0.06 mg/g), and at the end of 30 days of cultivation only 0.02 mg/g of the toxic compound remained. The peak of degradation occurs between days 7 and 11 of culture. Lipase and esterase activities were not detected. Oxidative enzyme activities (laccase and MnP) and proteases remained high throughout the culture, especially in toxic substrate culture. The crude enzymatic extract of P. pulmonarius was also able to degrade the PEs of jatropha cake after 36h of treatment under non optimized conditions, attesting that the phorbol esters degradation is due to enzymatic action. The degradation efficiency of phorbol esters by the crude enzymatic extract of *P. pulmonarius* is related to the substrate used in the culture.

**Keywords**: phorbol ester, jatropha curcas cake, extract, enzymes, proteases, laccases, macrobasidiomycete.

# 1. Introdução

A cadeia produtiva do biodiesel foi iniciada no Brasil a partir do Programa de Produção e Uso de Biodiesel (PNPB), em 2004. Embora tenha evoluído de forma bastante eficiente, superando as metas iniciais e chegando a 5% de biodiesel no diesel de petróleo três anos antes do previsto, o Programa ainda enfrenta a forte dependência do óleo de soja como única fonte de matéria-prima. O óleo de soja é responsável por cerca de 80% do total de biodiesel produzido no Brasil, sendo o restante distribuído entre sebo bovino, óleo de algodão e todas as demais matéria-primas (Mendes e Costa, 2010; Ramos *et al.*, 2017; Silva e Silva *et al.*, 2017). Idealizado com as premissas de inclusão social, a partir da diversificação da base econômica dos agricultores familiares, o Programa ainda tem como desafio encontrar alternativas viáveis de matérias-primas que atendam essa demanda (Castro, 2010).

Entre as matérias-primas com potencial para produção de biodiesel o pinhão-manso (*Jatropha curcas* L.) foi uma das apostas iniciais do PNPB. Porém não se concretizou no Brasil, por inúmeros motivos, mas o principal deles foi a questão agronômica não estabelecida para cultura. Entretanto, pesquisas voltadas para resolver essas questões agronômicas e visando explorar potencias bioprodutos continuam sendo desenvolvidas no Brasil, México, India, entre outros países (Capdeville & Laviola, 2013).

O pinhão-maso pertence à família das Euforbiáceas é uma espécie arbustiva perene, de crescimento rápido e vegeta espontaneamente em diversas regiões do Brasil, podendo atingir mais de 5 m de altura (Duraes *et al.*, 2012; Laviola *et al.*, 2012; Kumar *et al.*, 2017). Essa oleaginosa apresenta potencial de rendimento de grãos/óleo superior às oleaginosas tradicionais, como a soja, bem como, características físico-químicas de óleo favoráveis à produção de biodiesel e outros bioprodutos (Drumond *et al.*, 2010; Gomes *et al.*, 2018). Para se obter 1t de óleo de pinhão-manso, mediante extração mecânica, são necessárias 2,85 t de sementes (Makkar e Becker, 2009). O resíduo gerado após o processamento da semente de pinhão-manso (torta) representa cerca de 70% do volume total (Achten *et al.*, 2008; Gomes *et al.*, 2018). Assim, torna-se fundamental desenvolver formas de utilização destes produtos a fim de agregar renda à cadeia produtiva desta oleaginosa (Rodrigues e Rondina, 2013).

Por ser rica em minerais (nitrogênio, fósforo e potássio) a torta de pinhão-manso é utilizada como adubo orgânico, além disso, apresenta teor de proteína significativo (no mínimo 16%) com presença de todos os aminoácidos essenciais (exceto lisina) para crescimento e boa saúde dos animais (Makkar *et al.*, 1997; Belewu *et al.*, 2009). Diante disso, a composição desse coproduto o torna um candidato potencial para ser usado na suplementação animal; no entanto, faz-se necessária a inativação de compostos tóxicos e fatores antinutricionais que estão presentes nesta biomassa vegetal.

Os ésteres de forbol são os principais componentes tóxicos presentes nesse resíduo, e quando ingeridos podem agir no organismo de forma aguda (resposta inflamatória intensa) ou crônica (indução de tumor). Por ser lipossolúvel, grande parte dos ésteres de forbol é extraída juntamente com o óleo. No entanto, quantidades mínimas que ficam nas tortas, já são capazes de causar danos a diversas espécies animais (Makkar *et al.*, 1997; Goel *et al.*, 2007; Makkar e Becker, 2009). A semente de pinhão-manso em diversos estudos com animais, ruminantes (bovinos e caprinos) e monogástricos (camundongos, ratos, frangos, peixe, humanos), demonstraram toxicidades, e dependendo da dose podem levar os animais à morte em poucos dias (Mendonca e Laviola, 2009).

No México, precisamente na região Papantla no estado de Veracruz, há ocorrência de variedades de pinhão-manso naturalmente livres de ésteres de forbol ou em quantidades mínimas, estas variedades são consideradas atóxicas (Makkar et al., 1998; Makkar & becker 1999). Essas sementes atóxicas são inclusive incorporadas a alimentação das pessoas da região (Makkar et al., 2009). No entanto esses genotipos não são usados para prodrução de biodiesel. De acordo com Laviola et al. (2011) essas variedades de pinhão-manso apresentam menor vigor e produtivade de frutos em relação plantas tóxicas, além de serem mais suscetíveis a doenças que não são observadas nas plantas onde o éster de forbol se faz presente.

Os ésteres de forbol nas variedades atóxicas depinhão-manso estão presentes em níveis não detectáveis ou abaixo de 0.11 mg/g (Makkar et al., 1997). Ratos e peixes não apresentam nenhum sinal de toxidez quando

alimentados com torta de pinhão-manso provenientes das variedades atóxicas da região de Papantla (Makkar et al., 1999). Como dito anteriormente, essas sementes são consumidas pelos moradores do estado de Veracruz e nenhum sintoma intoxicação foi exibido, a semente pode ser torrada e consumida como amendoin ou incorporada a alimentação em forma de pasta (Makkar e becker 1998, Makkar et Makkar et al., 2009)

Diversas estratégias químicas e biológicas têm sido abordadas na tentativa de resolver este problema, no entanto algumas destas estratégias são inviáveis economicamente, ou então resolvem parcialmente o problema da toxicidade, o que possibilita apenas a mistura de um percentual muito baixo da torta na ração animal (Gomes *et al.*, 2018). Na linha biológica de destoxificação, os macro-basidiomicetos são eficientes degradadores de ésteres de forbol (De Barros *et al.*, 2011; Luz *et al.*, 2012).

Gomes (2015) realizou um *screening* com 13 cepas de macrobasidiomicetos capazes de crescer em torta de pinhão-manso. Dentre essas cepas, *P. pulmonarius* EF88 foi o fungo mais eficiente na degradação dos ésteres de fobol. Após 60 dias de cultivo destoxificou de forma efetiva o resíduo e ainda foi possível produzir cogumelos comestíveis de forma viável. Ensaios toxicologicos foram feitos para assegurar a destoxificação, e os animais (artêmia salina e ratos) não apresentaram sinais de toxicidade (dados não publicados).

Os macro-basidiomicetos apresentam a capacidade de produzir simultaneamente enzimas hidrolíticas e oxidativas necessárias para degradar substratos ligninocelulósicos, e por isso são usados em tratamentos biológicos para degradação de lignina e compostos tóxicos (Sharma & Arora , 2010; Yang et al , 2010; Camassola & Dillon, 2009). Atualmente o grande foco nas pesquisas envolvendo macro-basidiomicetos estão voltadas para as principais enzimas secretas por estes, tais como lacases e manganês peroxidase (MnP). O complexo enzimático secretado por esses fungos dependerá do substrato usado no cultivo, e é justamente essa ampla gama de enzimas que permite que esses fungos sejam utilizados em diversos processos.

Apesar da alta eficiência na degradação dos ésteres de forbol, essa biodegradação apresenta alguns desafios como: tempo de cultivo e dificuldade de escalonamento. O entendimento das vias metabólicas e enzimas envolvidas nesse processo de destoxificação torna-se primordial para solucionar esses desafios. Técnicas moleculares como sequênciamento do transcritoma e análise do proteoma do fungo, em resposta a molécula tóxica, são ferramentas com vasto potencial e podem ser usadas para chegar em genes e proteínas chave no processo de biodestoxificação.

Nesse capítulo serão discutidos e mostrados resultados referentes a curva de degradação dos ésteres de forbol e atividade de vários grupos enzimáticos ao longo de 30 dias de cultivo. Esses dados também serviram como parâmetros para a escolha dos tempos de cultivo para análise do transcritoma via RNA-seq e proteoma via LC-MS-MS.

# 2. Objetivos do capítulo

# 2.1 Objetivos específicos do capítulo

- Analisar a curva de degradação dos ésteres de forbol pelo fungo *P. pulmonarius* ao longo de 30 dias de cultivo, e assim determinar os tempos de cultivo para análise do transcritoma e secretoma do basidiomiceto em resposta ao cultivo em torta de pinhão-manso tóxica e atóxica.
- Determinar a influência da torta de pinhão-manso (tóxica e atóxica) nas atividades enzimáticas oxidativas e hidrolíticas de *P. pulmonarius EF88* com potencial envolvimento na degradação dos ésteres de forbol.
- Determinar a capacidade isolada do extrato enzimático de P. pulmonarius frente a degradação dos ésteres de forbol.

### 3. Metodologia

3.1 Cultivo de *P. pulmonarius* EF-88 em torta de pinhão-manso tóxica e atóxica

A cepa de P. pulmonarius EF88 proveniente da Coleção de Microrganismos e Microalgas Aplicados a Biorefinaria (CMMABIO) da Embrapa Agroenegia foi preservada no método Castellani (Castella, 1967). Posteriormente, para a obtenção da cepa de trabalho um dos discos em estoque foi transferido para placas com meio de cultivo ágar pinhão-manso, incubados á 28°C por 7 dias. Para o cultivo em estado sólido foram usadas placas de petri de vidro (150mm x 20mm) com 100g de cada substrato (torta tóxica e atóxica) e umidade de 70%. O material foi esterilizado em autoclave á 121°C, 1 atm por 120 minutos. Após o resfriamento das placas, em câmara de fluxo laminar estéril, o micélio do fungo P. pulmonarius, previamente repicado (como descrito anteriormente) foi inoculado em torta de pinhão-manso tóxica (bioensaio T) e em torta de pinhão-manso atóxica (bioensaio NT). O cultivo ocorreu em estufa (BOD) com temperatura controlada (28°C). Foram retiradas amostras de 3 em 3 dias para extração dos ésteres de forbol e quantificação das atividades enzimáticas.

# 3.2 Obtenção dos extratos enzimáticos brutos

Para obtenção do extrato enzimático bruto, o substrato sólido foi diluído em água destilada gelada na proporção de 1:2. Dessa forma, 25g de substrato foram ressuspensos em 50 mL de água destilada e adicionados em erlenmeyer de 150 mL. A mistura foi então homogeneizada em shaker (agitação mecânica) durante 40 min a 5°C. O extrato enzimático foi filtrado em funil de buchner com papel de filtro e auxílio de bomba de vácuo. Para evitar contaminações foi adicionado azida sódica junto ao extrato (1mL para 50mL de extrato).

#### 3.3. Determinação dos Açúcares Redutores - DNS

Para a determinação dos açúcares redutores liberados após reações enzimáticas, utilizou-se uma modificação do método do DNS (ácido 3,5dinitrosalicílico), originalmente proposto por Miller (1959). O método do DNS baseia-se na redução do ácido 3-amino-5-nitrosalicílico, concomitantemente com a oxidação do grupo aldeído do açúcar a grupo carboxílico. Após aquecimento, a solução torna-se avermelhada, sendo lida em espectrofotômetro a 540 nm. O preparo da solução de DNS seguiu o método de Ghose (1987).

#### 3.4. Determinação das atividades de holocelulases

Os ensaios enzimáticos determinação CMCase para de (endoglicanase), xilanase, pectinase e mananase presentes no extrato bruto enzimático foram realizados utilizando 50 µL de enzima (extrato bruto) e 100 µL de substrato (Carboximetilcelulose, xilana, pectina cítrica ou galactomanana), sendo os três primeiros ensaios com solução de 1% do substrato e 0,5% para mananase, que reagiram por 30 minutos a 50°C. Após este tempo foram adicionados 300 µL de DNS (preparado de acordo com 4.12) e os tubos com os ensaios foram fervidos por 10 minutos. Adicionou-se 1,5 mL de água para leitura do ensaio no espectrofotômetro a 540 nm. Para o ensaio de FPase (celulase total) foi utilizado como substrato papel Whatman número 1 em forma de tiras de 1x6 cm, com aproximadamente 50 mg de massa, e 150 µL de enzimas (extrato bruto), que foram incubadas por 1 h a 50°C. Os ensaios de FPase foram interrompidos e analisados como descrito acima para outras holocelulases.

Para determinação da quantidade de açúcar redutor liberado durante os ensaios enzimáticos foram construídas as curvas de calibração com os monossacarídeos que formam as cadeias principais dos respectivos polissacarídeos, seguindo os protocolos descritos no item 3.3. Para calibração foi utilizado uma solução estoque de 2 mg/mL para cada açúcar redutor quantificado pelo método DNS, conforme descrito item 3.3 (glicose, xilose, manose e ácido galacturônico). Variando a concentração do açúcar redutor com água destilada, assim foram construídos 5 pontos do gráfico de regressão linear, e a partir da equação da reta obtida pelo método DNS. Para todos os ensaios enzimáticos foi utilizado UI.mL<sup>-1</sup> como unidade de açúcar redutor liberada durante todo o tempo do ensaio enzimático. Unidade internacional (UI) representa a quantidade que a enzima necessita para liberar 1 µmol de açúcar redutor por minuto.

# 3.5. Atividades de proteases

O método de determinação das atividadesproteoliticas foram realizados de acordo com o protocolo de (Charney e Tomarelli, 1947), com adaptações. Os ensaios para proteases presentes no extrato bruto ocorreram em tubos plásticos de 2 mL. Foram adicionados 500 µL do filtrado (extrato bruto enzimático), 500 µL de azocaseína, incubados em banho-maria a 37°C por 40 min. Após o termino de incubação (40 min) a reação foi paralisada com TCA (ácido tricloroacético). No preparo do branco da amostra para que não haja reação enzimática o TCA foi adicionado antes do extrato enzimático. Para o branco adicionou 500 µL de azocaseína, 500 µL de tampão acetato de sódio pH 5. As amostras foram a 6000 rpm, por 10 min a 4°C. Os sobrenadantes foram transferidos para tubos limpos, então adicionou-se 1 mL de KOH 0,5 M. A leitura em espectrofotômetro foi a 430 nm. Para o cálculo da atividade de protease não foi usada curva padrão como a metodologia usando DNS, mas sim uma fórmula, descrita abaixo:

$$\mathsf{X} = \left(\frac{\frac{Abs}{0,001}}{t(\min)X \, V.enzimaX \, V.EC}\right) * Volume \ total \ ensaio$$

$$X = valor U/mL$$

Onde:

- Abs = Absorbância ensaio Absorbância branco
- t = tempo em minutos no banho-maria;
- V = volume
- EC = ensaio colorimétrico

3.6. Lacases

A atividade de lacases foi determinada com o uso do substrato 2,2'azino-bis (3-etilbenzotiazolina-6-sulfonato) (ABTS). A mistura reacional para ABTS continha 0,45 mM do ABTS preparado em tampão acetato de (sódio pH 5,0 90 mM) e 1 mL de amostra diluída 10 vezes com água destilada. A oxidação do ABTS foi monitorada pelo aumento da absorbância em 420 nm, durante 90 segundos a 25°C (Wolfenden & Wilson, 1982).

$$\Delta Abs \times 10^{6} = Enzima \left(\frac{U}{L}\right)$$
$$\varepsilon \times V \times T$$

Onde:

 $\Delta Abs = valor de absorbância$ 

 $\mathcal{E} = \text{Lacase: } 36000 \text{ L.mol}^{-1} \text{cm}^{-1};$ 

V = volume (mL) do sobrenadante

T = Tempo de reação (min).

### 3.7. Atividade de Lignina peroxidase

A atividade de LiP foi determinada pela oxidação de álcool veratrílico na presença de peróxido de hidrogênio, segundo Tien & Kirk (1984). O meio reacional foi composto de 500 µL de sobrenadante do extrato enzimático centrifugado, 200 µL de álcool veratrílico (2 mM) em tampão tartarato de sódio (0,4 M; pH 3,0) e 200 µL de peróxido de hidrogênio (2 mM). A formação de aldeído veratrílico foi acompanhada pela leitura da absorbância a 310 nm em espectrofotômetro UV-Vis (Spectrum SP-2000 UV) por 5 minutos, com registros a cada 10 segundos.

$$\Delta Abs \times 10^{6} = Enzima \left(\frac{U}{L}\right)$$
$$\varepsilon \times V \times T$$

Onde:

 $\Delta Abs = valor de absorbância$  $<math>\mathcal{E} = LiP: 9300 L.mol^{-1}cm^{-1};$ 

V = volume (mL) do sobrenadante; T = Tempo de reação (min).

# 3.8. Manganês peroxidases

A atividade de manganês peroxidases foi determinada pelo método proposto por (Kuwahara *et al.*, 1984). A mistura reacional consistiu de 50 mg.mL<sup>-1</sup> de vermelho de fenol, 50 mM de sulfato de manganês, 50 mM de H<sub>2</sub>O<sub>2</sub>, 12,5 mM de lactato de sódio, 500 mg.mL<sup>-1</sup> de albumina bovina e tampão succinato de sódio pH 4,5, sendo adicionados 0,5 mL de amostra (extrato bruto enzimático). Após 5 min a 30°C, as reações foram interrompidas pela adição de 40 mL de NaOH- 2M. A formação do produto de oxidação foi quantificada pela variação da absorbância (610 nm).

$$\Delta Abs \times 10^{6} = Enzima \left(\frac{U}{L}\right)$$
$$\varepsilon \times V \times T$$

Onde:

 $\Delta Abs = valor de absorbância$   $\mathcal{E} = MnP: 460L.mol^{-1}cm^{-1};$  V = volume (mL) do sobrenadante;T = Tempo de reação (min).

# 3.9. Atividade esterase e lipase

A determinação da atividade esterase e lipase foi por método titulométrico de acordo com protocolo de Diaz, (2006). O método baseia-se na titulação com NaOH dos ácidos graxos liberados pela ação da enzima a partir dos triagliceróis na reação de hidrolise. Para os ensaios enzimáticos foi feita uma emulsão com 2,5 mmol. L<sup>-1</sup> de tampão Tris-HCL pH 7,0; 150 mmol. L<sup>-1</sup> de NaCl; 2 mmol. L<sup>-1</sup> de CaCl<sub>2</sub>, com adição de 3% de goma arábica. Para determinação de lipases usou-se como substrato óleo de oliva (66 mmol. L<sup>-1</sup>) e tributirina (66 mmol. L<sup>-1</sup>) para ensaio enzimático de esterases.

3.10 Extração metanólica de éster de forbol e quantificação via HPLC

Após o término de tempo dos cutilivos do do *P. pulmonarius* EF88 foram feitas as extrações dos ésteres de forbol. A extração desse composto ocorreu conforme o protocolo estabelecido na Embrapa Agroenergia (Ribeiro et al., 2014).

As amostras foram secas em estufa a 50°C durante 64 h e maceradas em cadinhos de porcelana. Pesou-se 3 g da amostra macerada em tubos falcon de 50 mL e adicionou-se 15 mL de metanol (grau PA) em cada tudo. As amostras junto com o solvente foram agitados por 1 minuto com bastão de vidro e colocados em banho-ultrasson com gelo durante 3 minutos e centrifugou-se a 9000 rpm á 25°C durante 8 minutos (etapa repetida por duas vezes para obter maior acurácia da extração). Os sobrenadantes foram transferidos para balão de 100 mL de fundo redondo. O metanol foi removido em rota-evaporador a 40°C (a temperatura do banho controlada abaixo de 40°C); após a evaporação completa do solvente, o resíduo foi ressuspendido com 2,5 mL de metanol, o balão foi submetido a banho-ultrasson durante 4 minutos a temperatura ambiente.

O material foi transferido para balão volumétrico de 5 mL (ação repetida mais uma vez). A quantificação dos ésteres extraídos foi feita cromatografia liquida de ultra eficiência acoplada a um detector por espectrometria de massas (UPLC-MS), com uma coluna C18 de fase reversa HSS T3. A fase móvel foi composta de porção aquosa, com 0,2% de ácido fórmico e porção orgânica, de 70% de acetonitrila e 30% de etanol, com as porções na proporção de 1:1 (v:v).

3.11. Cultivo sólido de *P. pulmonarius* EF-88 em diferentes fontes de carbono e obtenção do extrato bruto enzimático

O fungo EF-88 foi cultivado em três substratos diferentes: torta de pinhão-manso (tóxica), torta de pinhão-manso (atóxica) e meio BDA (batata dextrose ágar). O cultivo ocorreu em placas de petri de vidro (ver tamahho), com 80g de substrato (torta de pinhão-manso) umedecidos com 80mL de água

destilada (75% umidade), e 200mL de meio BDA (tratamento controle). O material foi autoclavado por 20 min, à 121°C e 1 atm de pressão. Inoculou-se 10 discos de 8mm de massa micelial em cada placa, o experimento foi realizado em triplicata. O material foi então incubado á 28°C, por 7 dias. Para obtenção dos extratos brutos (enzimas extracelulares) os conteúdos dos frascos foram transferidos para Erlenmeyers estéreis de 250 mL, que foram acrescidos de água destilada estéril (1:2 m/v) e incubados em shaker à 4°C e 180 rpm, por 40 minutos. O material foi, então, filtrado utilizando gazes de fio de algodão e funis de buchner, em falcons de 50 mL estéreis, que foram centrifugados a 4°C por 10 minutos a 8.000g. O experimento foi conduzido sem adição de azida sódica nos extratos enzimáticos brutos.

# 3.12 Biodegradação enzimática dos ésteres de forbol

Os ensaios foram realizados em erlenmeyer de 100 mL com 1g de torta de pinhão-manso e adição de 10 mL dos extratos brutos, sem adição de azida sódica. Os ensaios foram conduzidos por 18h e 36h sob agitação 230 rpm á 37°C. Os controles foram feitos utilizando água destilada autoclavada no lugar dos extratos enzimáticos. Todos os ensaios foram realizados em triplicata.

#### 4. Resultados

4.1.Degração dos ésteres de forbol pelo basidiomiceto *P. pulmonarius* ao longo de 30 dias de cultivo estado sólido

Os resultados de degradação dos ésteres de forbol, obtidos ao longo de 30 dias de cultivo estado sólido, estão apresentados na figura 6. No 3° dia de cultivo, primeiro ponto avaliado, é possível observar uma redução de 28% dos ésteres de forbol em relação ao controle *in natura* (resíduo sem tratamento biológico). No terceiro ponto quantificado, 9° dia de cultivo, houve uma redução significativa não somente em relação ao controle (70%), como também em relação ao ponto anterior ou 6° dia de tratamento (52%). O mesmo padrão foi observado no ponto posterior(12° dia) onde os ésteres de forbol presentes no substrato foram reduzidos para 0,147 mg/g com taxa de degradação de 90% em relação ao controle e de 68% em relação ao nono dia.

Concentrações de ésteres de forbol inferiores á 0,09 mg/g são consideradas atóxicas ou seguras biologicamente (Aregheore et al. 2003). Após 21 dias de tratamento biológico, os níveis de ésteres de forbol foram reduzidos para 0,06 mg/g (Ilinha vermelha – figura 6), níveis seguros de toxicidade. No final de 30 dias de cultivo restaram apenas 0,02 mg/g do composto tóxico, uma degradação de 98% em relação ao substrato inicial.



**Figura 6.** Degradação dos ésteres de forbol por *P. pulmonarius* ao longo de 30 dias de cultivo. Concentrações abaixo da linha vemelha são consideradas atóxicas.

A maior taxa de degradação dos ésteres de forbol pelo macrofungo *P. pulmonarius* se dá nos primeiros 12 dias de cultivo. A curva de degradação foi usada como parâmetro para determinar os tempos de cultivo para RNA-seq, e a partir dos dados coletados foram escolhidos os dias 3, 7 e 11 de cultivo e, dessa forma, observar três pontos distintos frente a degradação.

# 4.2. Quantificação das atividades enzimáticas de *P. pulmonarius* cultivado em torta de pinhão-manso tóxica e atóxica

Algumas enzimas extracelulares foram monitoradas, ao longo de todo o processo de cultivo microbiano, afim de estabelecer uma possível relação de degradação de ésteres de forbol e atividades hidrolíticas (proteases, esterases, lipases) e lignoceluloticas. O cultivo do EF88 foi realizado em torta atóxica (bioensaio NT) e tóxica (bioensaio T) possibilitando, dessa forma, análisar o perfil enzimático do fungo em dois substratos distintos: com presença de éster de forbol e na ausência de ester de forbol.

Dados da literatura apontam que esterases e lipases são responsáveis pela biodegradação desse diterperno, dessa forma, a quantificação dessas enzimas foi realizada ao longo dos 30 dias de cultivo. No entanto, por meio dos métodos utilizados (espectrofotometria e titulação), não foram constatadas atividades dessas enzimas, em ambos substratos (bioensaiso NT e T).

As oxidases quantificadas, lacase e MnP, apresentaram alta atividade ao longo de todo o cultivo (Figura 7). As lacases quantificadas no substrato com ausência dos ésteres de forbol (NT), atingiram maior atividade quando comparadas ao substrato tóxico; sendo o pico dessa atividade em apenas 6 dias de cultivo, enquanto na torta tóxica (T) a maior atividade foi identificada no útimo dia (30 dias). O perfil enzimático de MnP foi similar em ambos substratos, com aumento gradual em função do tempo, principalmente no substrato atóxico (NT), onde o pico da atividade ocorreu no último ponto (30° dia) e atingiu 170 U/mL (Figura 7). Ao contrário das lacases, a atividade de MnP foi superior no extrato enzimático do substrato tóxico, chegando a 700 U/mL no 24° dia, após esse ponto há um declínio da atividade enzimática (Figura 7). Não foram



detectadas atividades de LiP e oxidases do álcool veratrílico, por meio do métodos usados.

**Figura 7.** Degradação dos ésteres de forbol e atividade enzimática de *P. pulmonarius* ao longo de 30 dias de cultivo em torta de pinhão-manso tóxica e atóxica. O gráfico A mostra os resltados da quantificação de enzimas oxidativas em substrato tóxico e o gráfico B no substrato atóxico (sem éster de forbol). Os gráficos C e D mostram a quantificação de proteases em substrato tóxico e atóxico, respectivamente.

As atividades de proteases (Figura 7) também permaneceram altas durante todo período avaliado. No extrato enzimático bruto obtido no cultivo tóxico, o pico dessa atividade foi observada no 24°dia (3500 U/mL), com drástico decréscimo nos dias subsequentes. As proteases quantificadas no extrato enzimático obtido do substrato atóxico, assim como as MnP, foram inferiores e com um perfil distinto em relação ao substrato tóxico. Houve um

aumento gradual das atividadesproteolitícas a partir do 6° dia de cultivo, e apesar da redução observada no 18° dia, a atividade volta a subir até atingir o pico de 800 U/mL no último ponto.

As xilanases quantificadas apresentaram um pico na atividade enzimática no 12° dia de cultivo atingindo 22 UI/mL (Figura 8). Celulases totais (FPase) e Endoglucanase (CMCase) apresentaram apenas atividades basais como mostrado na figura 8.

Os gráficos sobre as atividades enzimáticas obtidas do substrato tóxico, enfatizam um comportamento semelhante sobre as diferentes classes de enzimas quantificadas. Tanto as enzimas oxidativas quanto as hidrolases aumentaram sua atividade enzimática somente após o 12°, quando os ésteres de forbol são degradados em 90% (0,4mg/g)



**Figura 8**. Quantificação de holocelulases ao longo de 30 dias de cultivo do fungo *P. pulmonarius* em torta de pinhão-manso tóxica.

4.3. Degradação de ésteres de forbol por extratos enzimáticos brutos de *P. pulmonarius* EF88 obtidos em diferentes fontes de carbono

Os ésteres de forbol podem ser degradados por oxidação ou hidrolíse (Gomes et al., 2018), acerca disso, foram conduzidos experimentos controles para avaliar a influência da azida sódica, água e agitação na degradação desse diterpeno. Fatores externos como luz e temperatura (28°C) também foram investigados e, isoladamente não são capazes de degradar os ésteres de forbol presentes na torta do pinhão-manso após 36h de exposição (Figura 9). O tratamento térmico (autoclave) também não teve influência na degradação do composto tóxico, o que já era esperado, uma vez que se trata de uma molécula termoestável (Aregheore et al. 2003; Gomes, 2015). A azida sódica degradou diretamente os ésteres de forbol, em cerca de 50% e sob agitação essa degradação aumenta para 60%.

A biodegradação dos ésteres de forbol pelo cultivo de *P. pulmonarius* foi comprovadamente demonstrada. No entanto, a ação direta do extrato enzimático bruto sobre essa molécula tóxica ainda não foi avaliada. Visando comprovar a degradação enzimática desse processo e investigar se a presença da própria molécula de éster de fobol induz a atividade de enzimas que promovam sua degradação, diferentes extratos enzimáticos brutos foram testados: 1) obtido do cultivo em torta de pinhão-manso tóxico; 2) obtido do cultivo em torta de pinhão-manso tóxico; 3) obtido do cultivo em meio sintético BDA.



**Figura 9.** Controles externos aplicados a degradação dos ésteres de forbol. Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de pinhão-manso autoclavada + água Controle 3-Torta de pinhão-manso autoclavada + água sob agitação; Controle 4- Torta de pinhão-manso autoclavada + azida sódica; Controle 5- Torta de pinhão-manso autoclavada + azida sódica sob agitação. As médias seguidas pela mesma letra não diferem estatisticamente entre si. Foi aplicado o Teste de Tukey ao nível de 5% de probabilidade.

Os extratos enzimáticos bruto foram obtidos após 7 dias de cultivo e usados diretamente na torta de pinhão-manso sem adição de ázida sódica. Em meio de cultivo com pinhão-manso como fonte de carbono, o crescimento micelial foi mais rápido quando comparado ao meio de cultivo controle (BDA). No entanto, não houve diferença no crescimento entre os meios com presença e ausência de éster de forbol.

Os tratamentos apresentaram diferença estatística em relação a degradação dos ésteres de forbol (Figura 10), o extrato obtido no cultivo de *P. pulmonarius* EF88 em torta de pinhão-manso tóxica foi o mais eficiente na degradação dos ésteres de forbol e o cultivo em meio sintético BDA foi o menos eficiente. Já em relação ao tempo de tratamento (18h e 36h) não houve

diferença estatística, com exceção ao extrato obtido no cultivo em meio BDA (Figura 10). No entanto, quando o experimento foi conduzido por 72h a degradação dos ésteres de forbol foi superior a 80% (dados não mostrados).

A eficiência na degradação dos extratos brutos, provenientes do cultivo a base de pinhão-manso, pode estar relacionada com as enzimas secretadas pela indução dos ésteres de forbol ou outros compostos químicos que compõe essa biomassa vegetal.



**Figura 10**. Influência do tratamento fisíco (autoclave), químico (azida sódica) e enzimático frente a degradação dos ésteres de forbol, presentes na torta de pinhão-manso. Controle 1- Torta de pinhão-manso autoclavada 20 min; Controle 2- Torta de pinhão-manso autoclavada + água; Controle 3- Torta de pinhão-manso autoclavada + azida sódica sob agitação. Extrato bruto 1: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de *P. pulmonarius* em torta de pinhão-manso atóxica; Extrato bruto 2: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de *P. pulmonarius* em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de *P. pulmonarius* em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de *P. pulmonarius* em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de *P. pulmonarius* em torta de pinhão-manso atóxica; Extrato bruto 3: Extrato enzimático bruto (sem adição de azida sódica) obtido do cultivo de *P. pulmonarius* em meio sintético BDA. As médias seguidas pela mesma letra não diferem estatisticamente entre si. Foi aplicado o Teste de Tukey ao nível de 5% de probabilidade.

## 5. Discussão

#### 5.1 Degração dos ésteres de forbol ao longo de 30 dias

Existe na literatura sobre destoxificação de TSPM uma lista de diferentes formas de tratamentos físicos e químicos para degradação dos ésteres de forbol, como uso de solventes (metanol e etanol), surfactantes e irradiação (Aregheore *et al.*, 2003; Martinez-Herrera *et al.*, 2006; Devappa *et al.*, 2010; Xiao *et al.*, 2011; Phasukarratchai *et al.*, 2012; Guedes *et al.*, 2014). No entanto, esses tratamentos são de alto custo e em alguns casos não degradam de forma eficiente os ésters de forbol (Gomes *et al.*, 2018).

A inclusão de microorganismos capazes de degradar substâncias tóxicas é uma estratégia promissora, e em alguns casos atingim maior degradação que tratamentos químicos (De Barros *et al.*, 2011; Luz *et al.*, 2012; Gomes *et al.*, 2018). O processo de biodestoxificação da torta de pinhãomanso apresenta vantagens além da eficiência de degradação, como o menor custo, resíduo com alto valor nutricional agregado, e ainda é possível obter outros co-produtos a partir do mesmo cultivo, como cogumelos comestíveis ou enzimas de interesse biotecnológico (Gomes et al., 2018).

No entanto, a cinética dos processos fermentativos é mais lenta e para tratamentos em larga escala podem ser necessárias grandes áreas. Além disso, é necessário aprofundar-se no estudo da segurança do produto final, uma vez que estes microrganismos podem secretar micotoxinas, principalmente os fungos pertencentes do filo *Ascomycota* como os gêneros *Fusarium, Trichoderma* e *Penicillium*, conferindo ao produto toxicidade semelhante ou superior à previamente apresentada pelo produto *in natura* (Singh *et al.*, 2010).

Os fungos macro-basidiomicetos são amplamente empregados em processos de bioconversão, seja dos polímeros presentes em biomasss lignocelulosicas em açúcares fermentescíveis, como também na bioconversão de metais pesados e compostos xenobióticos (Kulikova *et al.*, 2011). Esses macrofungos também são usados para melhorar a qualidade nutricional de resíduos destinados a ração animal, uma vez que agem no enriquecimento

proteico, na degradação da lignina, aumento da fração hemicelulósica e da digestibilidade (Gomes et al., 2018). O cultivo desses fungos em resíduos agroindustriais abundantes torna-se uma alternativa lucrativa e economicamente viável (Owen *et al.*, 2012).

A partir dos resultados da curva de degradação, apresentados na Figura 6, o processo de degradação dos ésteres de forbol está diretamente relacionada ao tempo de cultivo, ou seja, quanto maior o tempo de incubação maior será a degradação do composto tóxico. No entanto, ação biodegradativa ocorre nos primeiros dias de cultivo. O metabolismo destes fungos avançam sobre todas estruturas da parede celular (lignina e holocelulose) com passar do tempo, de forma a descontruir toda biomassa e converte-los em estruturais metabolizáveis.

A cepa de *P. pulmonarius* EF88 usada no presente trabalho já foi previamente avaliada quanto a degradação de ésteres de forbol e a viabilidade de produção de cogumelos comestíveis (Gomes, 2015). Ao final de 60 dias de cultivo, *P. pulmonarius* foi capaz de degradar todos os ésteres de forbol presentes no substrato, restando apenas quantidades resíduais do composto tóxico. O substrato destoxificado foi submetido a análises toxicologicas (ratos) e os animais avaliados não apresentaram nenhum sintoma de toxidez (Gomes, 2015). Outros autores também relatam o potencial de macrofungos na degradação de ésteres de forbol. Barros *et al.* (2011) mostraram que os fungos de podridão branca (inglês *White Rot fungi-WRF*) *Bjerkandera adusta* e *Phlebia rufa* foram capazes de degradar ésteres de forbol da torta de pinhão-manso.Os fungos, foram inoculados em 30 g de substrato e o cultivo durou 30 dias em agitação mecânica. A degradação dos ésteres de forbol foram de 91 e 97% nos cultivos de *B. adusta* e *P. rufa*, respectivamente.

Da luz *et al.* (2014) usaram o basidiomiceto *Pleurotus ostreatus* como agente biológico para destoxificar a torta de pinhão-manso, e após 60 dias de cultivo os teores de ésteres de forbol foram reduzidos em 99%. O resíduo após ser submetido ao tratamento biológico, apresentou aumento do teor proteico (concentração da biomassa microbiana) e aumento da digestibilidade *in vitro*, e diminuição dos teores de lignina e celulose.

Fatores como espécie e origem da cepa usadas no processo de biodestoxifcação da torta de pinhão-manso estão intimamente relacionados a

eficiência de degradação do composto tóxico em questão. Dessa forma, tornase imprescindível o estudo prévio das espécies estudas e as condições de cultivo como: tipo de cultivo (sólido ou submerso), temperatura, umidade e tempo de cultivo.

Bose e Keharia (2014) realizaram um screening de 10 fungos basidiomicetos referente a capacidade de degradar ésteres de forbol. Diferentes macrofungos como Pleurotus ostreatus, Pleurotus sajor-caju, Pleurotus sapidus, Pleurotus florida, Trametes zonata, Trametes gibbosa, Trametes hirsuta, Trametes versicolar, Phanerochaete chysosporium e Ganoderma lucidum foram inoculados em erlenmeyer de 250 mL com 25g de TSPM, 70% de umidade a 30°C, durante 20 dias. Todos os fungos testados nesse experimento foram capazes de degradar os ésteres de forbol presentes na torta. Os melhores resultados foram obtidos com os macrofungos G. lucidum e T. zonata, com a degradação total dos ésteres de forbol, enquanto que os cultivos com os macrofungos T. versicolor e T. gibbosa foram detectadas apenas quantidades residuais. As quatro espécies de Pleurotus testadas por Bose e Keharia (2014) conseguiram degradar em torno de 70% dos ésteres de forbol presentes na TSPM, nas condições estabelecidas. Estes ainda observaram que o resultado menos eficiente foi do fungo P. chrysosporium que reduziu em apenas 45% dos ésteres de forbol. Esses fungos também foram capazes de aumentar os valores nutricionais da torta.

5.2. Atividades enzimáticas associadas a degradação de ésteres de forbol

Alguns trabalhos tem associado a biodegradação dos ésteres de forbol com enzimas microbianas, principalmente esterases e lipases. De acordo com Phengnuam e Suntornsuk (2013) a degradação dos ésteres de forbol por bactérias do genêro Bacillus é decorrente da atividade de esterases, enzimas que hidrolisam ésteres de cadeia curta. As atividades de esterases foram observadas nos cultivos bacterianos de *Bacillus subtilis* e *Bacillus licheniformis*, que apesar de não apresentar total destoxificação, foram capazes de degradar o composto tóxico durante 5 dias de cultivo submerso. Outros trabalhos também sustentam a participação de esterases e lipases bacterianas na degradação desses diterpenos. Nakao *et al.* (2015) relatam que a enzima

esterase KM109 obtida da bactéria *Acinetobacter. calcoaceticus* é capaz de degradar os ésteres de forbol de pinhão-manso.

Em contraste, Najjar *et al.* (2014) afirmam que as esterases não são os principais agentes degradadores do diterpeno tóxico. *Trichoderma harzianum* após 30 dias de cultivo em torta de pinhão-manso, reduziu a concentração dos ésteres de forbol para 0.06 mg/g. Não foram detectadas esterases nesse cultivo, dessa forma, os autores consideram que a degradação desse mesmo composto pelo fungo *T. harzianum* foi decorrente da ação isolada de lipases. Outros trabalhos também confirmam a ação isolada de lipases frente os ésteres de forbol. Lipases extraídas da própria semente germinada de pinhão-manso foi usada para degradar ésteres de forbol e após 12 horas de tratamento enzimático os ésteres de forbol foram reduzidos a níveis não tóxicos (Hidayat *et al.*, 2014).

Tanto no presente trabalho, quanto em trabalho anterior do grupo, descrito por Gomes (2015), não foram detectadas atividade de esterases e lipases ao longo do cultivo de *P. pulmonarius* EF88 em torta de pinhão-manso. Essses dados indicam que os microorganismos (bactérias, fungos filamentosos e macrofungos) capazes de degradar os ésteres de forbol podem atuar de forma distinta nesse processo.

Outros autores apontam a participação de diferentes grupos de enzimas na degradação dos ésteres de forbol. Para Joshi *et al.* (2011) além das esterases, as proteases podem estar envolvidas na degradação dos ésteres de forbol por microrganismos, com essas enzimas agindo via hidrolise desse diterpeno e seus derivados. Kasuya *et al.* (2012) levantam a hipótese que a degradação dos ésteres de forbol por basidiomicetos ou WRFs ocorre por enzimas oxidativas responsáveis pela despolimeração da lignina, principalmente por lacases e manganês peroxidase (MnP). Devappa *et al.*, (2010) também sugerem que enzimas oxidativas estão envolvidas na degradação dos diterpenos presentes na torta de pinhão-manso. Os autores informam que os próprios microrganismos presentes no solo degradaram por completo os ésteres de forbol do resíduo, em apenas nove dias.

Os macrofungos de podridão branca (WRF) são conhecidos pela habilidade de produzir enzimas extracelulares oxidativas que iniciam um processo de despolimerização da lignina, componente da parede celular vegetal, onde estes microrganismos se desenvolvem. Esta capacidade permite estender seu uso para uma série de aplicações biotecnológicas, baseadas na degradação das estruturas de diversos compostos aromáticos presentes em alguns processos indústriais ou efluentes (biorremediação). Partindo desse príncipio, enzimas oxidativas podem desempenhar um papel importante na completa degradação dos ésteres de forbol, agindo por exemplo, na oxidação de produtos secundários.

As maiores atividades quantificadas ao longo de 30 dias de cultivo do basidiomiceto *P. pulmonarius* foram das enzimas proteases e lacases (Figura 7 A e C). No entanto, o EF88 quando cultivado em substrato com ausência dos ésteres de forbol apresentou perfil enzimático similar ao cultivo em torta de pinhão-manso tóxica. Quando comparadas as atividades em ambos substratos, a quantificação de proteases e lacases foi superior na torta tóxica, ainda assim, essas enzimas apresentaram alta atividade no torta atóxica (figura 7 B e D). No substrato atóxico também não foram detectadas atividades de lipases e esterases. Ressalta-se que os macro-basidiomicetos são naturalmente conhecidos pela capacidade de secretar enzimas lignolíticas (oxidativas) e que o substrato de pinhão-manso, rico em proteínas, pode estimular atividade de proteases.

Apesar da biodestoxificação de ésteres de forbol por enzimas oxidativas não estar completamente compreendida, a efetivitidade de inúmeros processos químicos oxidativos já foram descritos na literatura e esses processos incluem a degradação por peroxido de hidrogênio, por ozônio e raios gamas (Gogoi *et al.*, 2014; Kuvshinov *et al.*, 2014; Zhang *et al.*, 2014)

A produção de hidrolases envolvidas na degradação de celulose e hemicelulose por basidiomiceto é relativamente baixa e vária de acordo com a espécie usada. Entretanto, Xiao *et al.* (2011) apontam que essas enzimas podem desempenhar papel na degradação dos ésteres de forbol. Segundo esses autores, o coquetel enzimático contendo celulases e pectinases aumentou a eficiência de remoção dos ésteres de forbol por solvente orgânico (etanol 65%).

A torta de pinhão-manso como substrato para *P. pulmonarius* EF88 mostrou-se promissora para induzir a produção de enzimas com apelo industrial, como as lacases, MnP e proteases e xilanases. Demais trabalhos

encontrados na literatura corroboram para tal afirmativa. Como por exemplo, o fungo *Sporotrichum thermophile* ao ser cultivado em torta de pinhão-manso, sob condições otimizadas, foi capaz de produzir 1025 U/g de xilanase após 96h de cultivo (Sadaf e Khare, 2014). O cultivo em estado sólido de *Aspergillus niger* em torta de pinhão-manso foi efciente para produção de celulales (3974 U/g de substrato) e xilanases (6087 U/g de substrato), após 72h de incubação (Ncube *et al.*, 2012). O fungo *Scytalidium thermophilum* produziu xilanases termofílicas ao ser cultivado em torta de pinhão-manso, em condições otimizadas, a máxima atividade foi de 1455 U/g por substrato seco. Ao ser usada no cultivo da cepa bacteriana de *Pseudomonas aeruginosa PseA*, a torta de pinhão-manso foi eficaz para produção de lipases e proteases, com atividade máxima de 625 U/g e 1818 U/g por grama de substrato, respectivamente (Mahanta *et al.*, 2008).

Diante dos resultados apresentados no gráfico 8, o extrato enzimático bruto do EF88 possuí ação direta na degradação dos ésteres de forbol, provavelmente em decorrência das enzimas presentes em tal extrato. Entretanto, não foi possível afirmar quais enzimas estão atuando nesse processo de biodegradação da molécula diterpenica.

### 6. Conclusões

O macro-basidiomiceto *P. pulmonarius EF88* possuí ação eficiente na degração dos ésteres de forbol presente em torta de sementes de pinhãomanso. A curva de degradação desse composto demostrou que a atividade degradadora dos diterpenos ocorre nos primeiros dias de cultivo, e já em 21 dias de cultivo em estado sólido os níveis dos ésteres de forbol foram reduzidos a concentrações consideradas atóxicos. A partir dessa curva também foram selecionados os pontos para análise RNA-seq do transcritoma e secretoma global/proteoma. Assim, foram definidos 3, 7 e 11 dias de cultivo para RNA-seq e 9 e 12 dias para análises proteicas. E dessa forma, analisar momentos distintos da resposta do metabolismo do fungo frente ao substrato e a molécula tóxica de éster de forbol.

As atividades enzimáticas, tanto hidrolases quanto oxidases, aumentaram após o 9° dia de cultivo, quando os ésteres de forbol foram degradados em 80%. Ambos os substratos, torta de pinhão-manso tóxica e atóxica, mostraram potencial para produção de enzimas de interesse industrial como as lacases e proteases de P. *pulmonarius* EF88.

O extrato enzimático bruto do fungo *P. pulmonarius* EF88 também pode ser usado para degradação dos ésteres de forbol presentes na torta do pinhão-manso. No entanto, alguns parâmetros devem ser investigados afim de aumentar a eficiência de degradação e diminuir o tempo de processo. Esses parâmetros estão relacionados ao tempo de cultivo do fungo, método de obtenção do extrato enzimático bruto, temperatura e pH do processo de degradação.

Capítulo III: Expressão diferencial de genes do basidiomiceto *P. pulmonarius EF88* em respostas a molécula tóxica de éster de forbol

#### Resumo

O mecanimo de bio-degradação do composto tóxico éster de forbol encontrado na biomassa gerada após a extração do óleo de Jatropha curcas ainda não foi esclarecido. A principal hipotese é que essa degradação seria decorrente da ação de enzimas secretadas pelos microorganismos. Na literatura há relatos da participação de lipases e esterases na degradação direta desses diterpenos, outros autores descrevem ação de enzimas oxidativas, no entanto é possível que varios grupos enzimáticos estejam envolvidos na degradação total dos ésteres de forbol. Conhecer os genes envolvidos na degradação dos ésteres de forbol seria o primeiro passo para solucionar gargalhos importantes relacionados a bio-degradação, como: diminuição do tempo de cultivo, aumento da eficiencia de degradação de cepas pouco eficientes. Ferramentas moleculares como transcriptoma e proteoma são capazes de fornecer dados robustos que seriam capazes de identificar por meio de estratégias apropriadas, os genes e vias metabolicas envolvidas na degradação desse composto tóxico. Neste contexto, este capítulo teve objetivo de identificar genes de P. pulmonarius EF88 envolvidos no processo de destoxificação, a fim de compreender e estabelecer o mecanismo de degradação dos EFs encontrados em tortas de pinhão-manso. A quantificação de atividades enzimáticas juntamente com a degradação dos EFs ao longo do cultivo sólido foram usados como parâmetros para determinar os pontos para analise transcritomica e proteomica. O transcritoma do EF88 foi montado usando o software Trinity e foram mapeados um total de 23297 genes. Sendo que, 351 genes diferencialmente expressos foram detectados no cultivo P. pulmonarius em torta de pinhão-manso tóxica (T), dos quais 234 estavam superexpressos e 117 reprimidos. O resultados in silico de expressão diferencial gênica indicou que genes que codificam para proteínas como esterases, metaloprotease, citocromo P450, hidrofobinas e heat shock foram regulados positivamente pelo fungo no cultivo em torta de pinhão-manso tóxica. Dessa forma, os genes candidatos foram validados quanto sua expressão por RT-gPCR, e os resultados confirmaram a modulação positiva no cultivo tóxico. Em relação as análises de proteoma, tanto as metaloproteases quanto as esterases foram moduladas positivamente no cultivo em torta de pinhão-manso tóxica, guando comparados ao cultivo controle (torta não tóxica – NT). Assim, metaloproteases e esterases podem ser as principais enzimas envolvidas na degradação dos ésteres de forbol pelo macro-basidiomceto P. pulmonarius. Além disso, as funções dos genes e proteínas anotados foram classificadas pelas análises GO. As análises de expressão diferencial de genes obtidos nesse presente trabalho, fornecem os primeiros dados relacionados os mecanismos envolvidos na biodegradação de ésteres de forbol por *P. pulmonarius EF88*. Esses dados podem ser usados para solucionar alguns gargalos relacionados a biodegradação dos ésteres de forbol, como tempo de cultivo e dificuldade de escalomamento.

**Palavras-chave:** éster de forbol; bio-destoxifição; expressão diferencial de genes; hidrofobinas; esterase; metaloprotease; citocromo P450.

#### Abstract

This chapter aimed to identify P. pulmonarius EF88 genes involved in the detoxification process in order to understand and establish the mechanism of degradation of PEs found in jatropha cake. The quantification of enzymatic activities along with the degradation of PEs throughout the solid culture were used as parameters to determine the points for transcriptomic and proteomic analysis. The EF88 transcriptome was assembled using the Trinity software and a total of 23297 genes were mapped. As a result, 351 differentially expressed genes were detected in *P. pulmonarius* cultivation in toxic jatropha (T), of which 234 were overexpressed and 117 repressed. The in-silico differential gene expression results indicated that genes encoding proteins such as esterases, metalloprotease, cytochrome P450, hydrophobins and heat shock proteins were upregulated by the fungus in toxic jatropha. Thus, the candidate genes were validated for their expression by RT-qPCR, and the results confirmed positive modulation in the toxic culture. Regarding proteome analyzes, both metalloproteases and esterases were positively modulated in toxic jatropha cake cultivation when compared to the control (non-toxic cake - NT) culture. Thus, metalloproteases and esterases may be the main enzymes involved in the degradation of phorbol esters by the macro-basidiomycete *P. pulmonarius*. In addition, the biological functions of annotated genes and proteins were classified by GO analyzes. The differential expression analyzes of genes obtained in this present work provide the first data related to the mechanisms involved in the biodegradation of phorbol esters by *P. pulmonarius* EF88. These data can be used to address some bottlenecks related to the biodegradation of phorbol esters, such as time of culture and scaling.

**Key words:** phorbol ester; bio-detoxification; differential gene expression; hydrophobins; esterase; metalloprotease; cytochrome P450.

# 1. Introdução

O mecanimo de biodegradação do composto tóxico éster de forbol encontrado na biomassa gerada após a extração do óleo de *Jatropha curcas* (torta) ainda não foi esclarecido. Uma das hipóteses sobre esse processo de biodegradação de ésteres de forbol por microrganismos esta envolto de enzimas extracelulares secretadas durante o crescimento microbiano. Na literatura há relatos da participação de lipases e esterases na degradação direta desses diterpenos, outros autores descrevem ação de enzimas oxidativas, no entanto é possível que varios grupos enzimáticos estejam envolvidos na degradação total dos ésteres de forbol.

Os terpenos são compostos metabolítos segundários de plantas, e desempenham papel fundamental no seu desenvolvimento, interação ecolológica e na defesa contra ataques de pragas e patógenos (Tholl, 2006; Jia *et al.*, 2016). Esses compostos são amplamente utilizados em diversos processos industriais como: produção de comésticos, farmácos, produtos medicinais e inseticidas (Tholl, 2006; Maurya *et al.*, 2012; Zerbe *et al.*, 2014).

Segundo Vilanova *et al.*, (2014) a bioprospecção de microorganismos capazes de degradar essas substâncias e seus derivados é de fundamental importância no que tange o cenário de biorremediação, uma vez, que esses compostos estão entre os principais poluentes oriudos dos processos industriais de celulose e papel.

Apesar da biodegradação dos ésteres de forbol ainda permanecer desconhecida, existe na literatura exemplos de investigações sobre genes microbianos relacionados a degradação de outros diterpenos, via cultivo de bactérias. Os genes envolvidos na degradação do diterpeno abietano por *Pseudomonas abietaniphila* foi bem caracterizado (Martin *et al.*, 1999; Martin e Mohn, 2000; Morgan e Wyndham, 2002; Smith *et al.*, 2004). *Pseudomonas abietaniphila* BKME-9 foi capaz de degradar abietanos não aromáticos e ácido dehidroacético, por meio da via dioxigenolítica, codificada pelo "cluster *dit*". O *cluster dit* codifica para uma ferredoxina e para subunidades  $\alpha$  e  $\beta$  de dioxigenases (Martin e Mohn, 2000).

Conhecer os genes microbianos envolvidos na degradação dos ésteres de forbol seria o primeiro passo para solucionar gargalos importantes relacionados a biodegradação, como: diminuição do tempo de cultivo, e aumento da eficiência de degradação de cepas pouco eficientes. Ferramentas moleculares voltados a ánalise global do transcritoma e proteoma possibilitam a identificação dos genes e vias metabólicas envolvidas na degradação desse composto tóxico, além de informações complementares importantes, como por exemplo a expressão de enzimas de aplicação industrial (Gomes *et al.*, 2018).

Os dados de degradação dos ésteres de forbol, apresentados no capítulo III, foram usados como parâmetros para escolher tempos de cultivo distintos que melhor represente a resposta do fungo frente a molécula tóxica de éster de forbol. Dessa forma, optou-se por analisar a resposta inicial do fungo quando exposto a altas concentrações de ésteres de forbol, analisar o ponto em que ocorre maior degradação desse diterperno e após a degradação da molécula tóxica.

Com base na curva de degradação (Figura 6) os dias selecionados foram 3DAI, 7DAI e 11DAI para RNA-seq e 9DAI e 12DAI para as analises de proteoma. Sendo assim, esse capítulo versará sobre os os dados do transcritoma de *P. pulmonarius EF88* em resposta à torta de pinhão-manso, obtidos por Next Generation Sequencing (NGS) e do proteoma/secretoma obtidos por espectrometria de massas.
## 2. Objetivo

### 2.1 Objetivos específicos do capítulo

- Analisar o transcritoma e proteoma do basidiomiceto *P. pulmonarius EF88* em respostas ao cultivo em torta de pinhão-manso tóxica (T), e identificar os genes e proteínas envolvidos na degradação dos ésteres de forbol. Selecionar as sequências gênicas diferencialmente expressas nas diferentes fases do crescimento do fungo, candidatas a degradação dos ésteres de forbol;
- Validar a expressão de genes candidatos e de interesse biotecnológico via qRT-PCR.

#### 3. Metodologia



**Figura 11**. Fluxograma apresentnado as estratégias utilizadas na obtenção do transcriptoma e proteoma do *P. pulmonarius* cultivado em tortas de pinhão-manso toxica e não-toxica.

#### 3.1 P. pulmoraius EF88 e condições de cultivo

A cepa de *P. pulmonarius*, proveniente da coleção de basidiomicetos da Embrapa Agroenergia, foi preservada no método *Castellani (Catella, 1967)*. Posteriormente, para a obtenção da cepa de trabalho um dos discos em estoque foi transferido para placas com meio de cultivo ágar pinhão-manso, incubados á 28°C por 7 dias. Para o cultivo em estado sólido foram usadas placas de petri de vidro (150mm x 20mm) com 100g de cada substrato (torta tóxica e atóxica) e umidade de 70%. O material foi esterilizado em autoclave á 121°C, 1 atm por 120 minutos. Após o resfriamento das placas, em câmara de fluxo laminar estéril, o micélio do fungo *P. pulmonarius*, previamente repicado (como descrito anteriormente) foi inoculado em torta de pinhão-manso tóxica (tratamento T) e em torta de pinhão-manso atóxica (tratamento NT). O cultivo ocorreu em estufa (BOD) com temperatura controlada (28°C). Foram retiradas amostras do micélio fungico em 3, 7 e 11 dias para extração de RNA. Todos os biensaios foram realizados em triplicadas.

#### 3.2 Extração de RNA e síntese de cDNA

A massa micelial do EF88 foi coletada em 3, 7 e 11 dias (DAI) após inoculação foi rapidamente congeladas com nitrogênio líquido. A extração e purificação do RNA total de cada tratamento, foi realizada por meio do kit INVITRAP® SPIN PLANT RNA (*Stratec Molecular GMBH, Berlin, Germany*), seguindo as instruções dos fabricantes. O RNA total foi tratado com DNase I (*New England Biolabs, Ipswich, MA, EUA*) para remoção do DNA genômico resídual.

A integridade de RNA total extraídos foi avaliado em gel de agarose (1%), revelado com 1µl de brometo de etídio, visualizado em transiluminador-UV e foto-documentado com câmara EDAS 290 (Kodak). Foi utilizado como referência o marcador de peso molecular 1 kb DNA Ladder (Invitrogen®).

A quantidade e pureza dos RNAs totais foi estimada por análise da absorbância a 260 nm, utilizando como padrão 1 unidade A260=40 µg de RNA, por meio de espectrofotômetro Nanodrop ND-1000 (*Thermo Scientific, Waltham*, MA, EUA), que pela razão A260/A280, indica possíveis

contaminações de RNA como: proteínas, sais caotrópicos (guanidina isotiocianato) ou fenol. Baseado na lei de Beer-Lambert, uma mudança linear na absorbância ocorre com a concentração do ácido nucleico. Uma relação OD 260/280 maior do que 1,8 foi considerado um indicador de RNA de alta qualidade. Taxas para A260/A230 próximas a 2,0 são indicativos de um RNA puro. Ao final dos processos, o RNA total eluído foi estocado a -80°C.

Foram preparados conjuntos contendo quantidades equimolares de RNA total a partir de três replicas biológica. No total, oito *pools* foram preparados, um para cada condição experimental. Esses *pools* de RNAs totais foram enviados para sequenciamento (item 3.3) e para síntese dos cDNAs que foram usados para validação dos genes candidatos a degradação dos ésteres de forbol via RT-qPCR. Um total de 2 µg de cada *pool* de RNA total foi transcrito reversamente em cDNA usando Super Script II RT e Oligo (dT) 16-18 (Invitrogen, Carlsbad, CA, EUA). A seguir uma ilustração do delineamento experimental (figura 12).



Figura 12. Esquema ilustrativo do delineamento experimental usado para o RNAseq de *P. pulmonarius EF88*.

**Tabela 2.** Resumo do delineamento experimental para a análise do transcritoma de *P. pulmonarius* EF88. 3DAI – 3 dias após inoculação; 7DAI – 7 dias após inoculação; 11DAI – 11dias após inoculação; B1 – bioensiao 1; B2 – bioensiao 2; T – torta de pinhão- manso tóxico; NT – torta de pinhão-manso atóxica.

| Tratamento  | Flowcell do canal Illumina (replica técnica) |
|-------------|----------------------------------------------|
| 3DAI_T_B1   | 1                                            |
| 3DAI_NT_B1  | 1                                            |
| 7DAI_T_B1   | 1                                            |
| 7DAI_NT_B1  | 1                                            |
| 11DAI_T_B1  | 1                                            |
| 11DAI_NT_B1 | 1                                            |
| 3DAI_T_B2   | 1                                            |
| 3DAI_NT_B2  | 1                                            |
| 7DAI_T_B2   | 1                                            |
| 7DAI_NT_B2  | 1                                            |
| 11DAI_T_B2  | 1                                            |
| 11DAI_NT_B2 | 1                                            |
| 3DAI_T_B1   | 2                                            |
| 3DAI_NT_B1  | 2                                            |
| 7DAI_T_B1   | 2                                            |
| 7DAI_NT_B1  | 2                                            |
| 11DAI_T_B1  | 2                                            |
| 11DAI_NT_B1 | 2                                            |
| 3DAI_T_B2   | 2                                            |
| 3DAI_NT_B2  | 2                                            |
| 7DAI_T_B2   | 2                                            |
| 7DAI_NT_B2  | 2                                            |
| 11DAI_T_B2  | 2                                            |
| 11DAI_NT_B2 | 2                                            |

#### 3.3 Sequenciamento RNAseq via Illumina HiSeq 2500

A construção das bibliotecas de cDNA e o sequenciamento foram realizadas na Empresa EUROFINS (Eurofins MWG Operon Kentucky, Louisville, Kentucky, EUA), utilizando a tecnologia Illumina (http://illumina.ucr.edu/ht/). Os *pools* de RNAs totais foram previamente quantificadas e transportadas em RNAstable (Biomatrica), de acordo com as instruções do fabricante. Após ressuspensão, a integridade do RNA foi avaliada utilizando o sistema do Agilent 2100 Bioanalyzer e RNA LabChip® kit (Agilent Technologies). Foram sequenciadas 12 bibliotecas em duas canaletas (replicas técnicas). O sequênciamento RNAseq via Illumina HiSeq 2500 foi conduzido

com sequenciamento *Paired-end* (2 X 100 bases), nos dois sentidos da fita de cDNA, usando a quimica *TruSeq RNA Chemistry v3*.

#### 3.4 Avaliação da qualidade das sequências e filtragem dos dados

Inicialmente, um relatório das análises de qualidade de todas as sequências obtidas por RNAseq foi gerado por meio do programa *Fastq Quality Control Report (Fastq QC Report)*. Os fragmentos de sequências (*reads*) foram aferidos por qualidade superior a 20 e tamanho mínimo igual a 36 pares de bases (pb) utilizando o programa *Trimmomatic* (Bolger *et al.*, 2014). Para garantir que somente sequencias com alta qualidade fossem selecionadas, optou-se pela eliminação de 5 nucleotídeos da extremidade 5' e 1 nucleotídeo da extremidade 3' de cada uma das sequências analisadas.

#### 3.5 Mapeamento dos reads e identificação dos transcritos

O transcritoma de *P. pulmonarius* EF88 foi montado por *de novo assembly* e para isso foram usados os softwares *STAR* e *gsnap* para mapear todos os *reads*. *SPAdes*, *Trinity* e *SOAPdenovo-Trans-31mer* foram utilizados para gerar *de novo* transcritos. Todos esses transcritos foram juntados pelo *EvidentialGene*. Como parâmetros utilizaram-se: i) penalidade para *mismatches*: 2; ii) penalidade para inserção: 3; iii) custo para deleção: 3; iv) fração mínima de comprimento: 0,90 v) fração mínima de similaridade: 0,95; v) número máximo de *hits* por *read*: 10; e distância entre *paired reads* determinada automaticamente.

#### 3.6 Análise quantitativa da expressão gênica

A contagem do número de *reads* mapeados por módulos gênicos foram obtidas pelo *HTSeq-count* (Simon *et al.*, 2014), um software *Python* aplicado para o processamento de dados a partir de ensaios de sequenciamento de alto rendimento. Análises estatísticas foram empregadas para identificar genes com mudanças significativas no número de *reads* unicamente mapeados entre os tratamentos experimentais realizados. Os cálculos foram realizados com software *EdgeR* (Robinson *et al.*, 2010) e para cada tratamento foram adotadas expressões com significância estatisticamente diferentes, aceitando como ponto de corte, valores menores que 0,01 para o valor de *p* ajustado para múltiplos testes utilizando o método Benjamini-HochBergh (padj), e valor da razão entre tratamentos T/NT na base logarítmica de 2 (log2FoldChange) maior que 1 ou menor que -1, ou seja, foram considerados como diferencialmente expressos os genes que tiveram expressão igual ou maior que duas vezes entre os tratamentos avaliados.

#### 3.7 Anotação das sequências

A anotação dos genes foi realizada por homologia entre as seguências genômicas mapeadas е as presentes no banco de dados Uniprot/SWISSPROT. Para isso, foi utilizado a plataforma Blast2GO®, versão 2.8 (Conesa et al., 2005). As sequências foram comparadas com aquelas presentes no banco de dados do Uniprot/SWISSPROT, empregando o algoritmo BLASTp e considerando um número máximo de 10 hits por entrada e o valor mínimo esperado de  $10^{-6}$  (*Evalue*  $\leq 1.10^{-6}$ ). Em seguida, realizou-se a anotação das seguências e seus respectivos termos de ontologia gênica (Gene Ontology, THE GENE ONTOLOGY CONSORTIUM, 2000) usando os parâmetros padrões do Blast2GO. As análises de sub-representação e sobrerepresentação associadas aos genes e produtos de acordo com a categoria de ontologia gênica foram feitas com o teste hipergeométrico do programa FUNC (Prüfer *et al.*, 2007). Posteriormente, os termos redundantes foram eliminando e as categorias sumarizadas pelo programa REVIGO (http://revigo.irb.hr/).

#### 3.8. Validação dos genes de referência

Anterior a validação dos genes candidatos a degradação dos ésteres de forbol via RT-qPRC, foi conduzido um experimento para garantir a eficiência dos genes de referência endogenos para esta condição especifica (*Pleurotus pulmonarius* EF88 cultivado em torta de pinhão-manso tóxica e atóxica). Para tal, foram usados os mesmos cDNAs (*pools*) sintetizados no item 3.2. Conforme mostrado na tabela 3, foram testados 10 genes de refência para *P. pulmonarius* na condição analisada (cultivo em torta T e NT).

3.9. Desenhos dos primers para validação dos genes de referência

Para o experimento de validação de genes de referência com expressão estável em *P. pulmonarius* EF-88, foram selecionados 10 genes candidatos que codificam para proteínas envolvidas em atividades celulares basais em espécies de *Pleurotus* sp. descritos na literatura (Tabela 3). O programa <u>PrimerQuest Tool</u> (Integrated DNA Technologies - IDT) foi usado para o desenho de todos os primers específicos para cada gene de referência candidato. As sequências gênicas foram usadas para desenhar primers curtos (20-22 pb), com Tm de 62°C, para amplificar produtos entre 90-120pb.

| Tabel | a 3  | . Dez  | genes     | alvo | usados   | na | validação  | dos    | genes   | de   | referência | de | Ρ. |
|-------|------|--------|-----------|------|----------|----|------------|--------|---------|------|------------|----|----|
| pulmo | nari | ius EF | -88 culti | vado | em torta | de | pinhão-mai | nso to | óxica e | atóx | kica.      |    |    |

| Gene         | Amplicon Length | Tm (C°) | ID          | Referência                          |
|--------------|-----------------|---------|-------------|-------------------------------------|
| hata tubulia | (pb)            | 60      | 447005      | Castonara et al. (2012): Carrida    |
| beta-tubulin | 102             | 62      | 117235      | Castanera et al., (2012); Gamdo-    |
|              |                 |         |             | Bazan et al., (2016)                |
| GAPDH        | 102             | 62      | 1090672     | Soden et al., (2001); Feldman et ., |
|              |                 |         |             | (2015)                              |
| VP           | 119             | 62      | JX021525.1  | Este estudo                         |
|              |                 |         |             |                                     |
| MYP          | 121             | 62      | AB353725    | Yamaguchi et al., (2009)            |
| LAC          | 118             | 62      | AY836675.1  | Este estudo                         |
| Actin 1      | 109             | 62      | 1087906     | Castanera et al., (2012); Garrido-  |
|              |                 |         |             | Bazan et al., (2016); Musa et al.,  |
|              |                 |         |             | (2017)                              |
| Phos         | 105             | 62      | 49987       | Castanera et al., (2015)            |
| EF-1         | 90              | 60      |             | <u>Este estudo</u>                  |
| Mnp3         | 107             | 62      | 1089546     | Castanera et al., (2015)            |
| Trpho        | 113             | 60      | EE645805 1  | Este estudo                         |
|              |                 |         | L1 070000.1 |                                     |

A análise RT-qPCR da expressão dos genes de referência candidatos, foi realizada utilizando o kit iTaq<sup>™</sup> universal SYBR® Green (Bio-Rad, CA <u></u>EUA). As amplificações por PCR foram realizadas em um termociclador Real-Time PCR da ABI StepOne® (Applied Biosystems, Foster City, EUA), utilizando três repetições experimentais independentes e três replicatas técnicas por amplificação. Para reações de PCR, as misturas continham 2 µL de uma diluição de 1:20 de cada cDNA estoque, 0,2 µM de cada primer (Tabela 3) e 5 µL de kit iTaq<sup>™</sup> universal SYBR® Green, com volume final de 10 µL. A amplificação por PCR foi conduzida utilizando um passo inicial de 52°C durante 2 min, 95 °C durante 10 min, seguido de 40 ciclos de desnaturação a 95 °C durante 15 s, hibridização dos iniciadores e extensão a 60°C durante 60 s. A especificidade do primer foi verificada analisando a Tm (dissociação) de produtos amplificados usando o software SDS 2.2.2 (Applied Biosystems, Foster City, USA). Dados ARn brutos foram aplicados para determinar a eficiência de RT-qPCR para cada gene usando o programa LinRegPCR, versão 2017.1. O mesmo programa foi usado posteriormente para calcular os ciclos médios de quantificação (Cqs) por gene.

# 3.11 Estabilidade de expressão e análise de expressão relativa dos genes de referência

Os dados de expressão para cada gene de referência candidato foram visualizados como um valor do ciclo de quantificação (Cq) de cada amostra de RNA. Este valor representa o número de ciclos de amplificação necessários para atingir um valor limite padrão para detecção durante a fase de amplificação exponencial da reação de PCR. A estabilidade de expressão de cada gene de referência candidato foi determinada usando os algoritmos geNorm (Vandesompele et al., 2002), NormFinder (Anderson et al., 2004) e BestKeeper (Pfaffl et al., 2004). O GeNorm também foi empregado para calcular a variação pareada (Vn / n +1) entre cada gene de referência, para indicação do número ótimo de genes de referência para emprego na normalização da expressão gênica. Um ranking global dos genes candidatos foi realizado usando ferramenta baseada web RefFinder а na (http://www.leonxie.com/referencegene.php).

3.12 Validação dos genes candidatos a degradação dos ésteres de forbol

Foram selecionados 21 genes candidatos a degradação dos ésteres de forbol, que estavam diferencialmente expressos *in silico*, para validação via RT-qPCR. O *design* dos *primers* para cada gene seguiu os passos descritos no item 3.9 usando as sequências dos transcritos especifícos gerados do transcritoma de *P. pulmonarius EF88*. Os *primers* para os genes estão descritos na tabela 4. A PCR em tempo real seguiu os mesmos passos descritos no item 3.10.

A análise de expressão relativa dos genes candidatos foram obtidas pelo software qBase+. A normalização da expressão gênica foi realizada utilizando os genes referencia *Elongation Factor* (EF-1) e *Methioadenosine Phospharylase* (Phos), resultante das análises descritas no item 3.11. Os resultados de expressão relativa foram analisados utilizando o programa *REST*©- *Relative espression programa tool* (Pfaffl et al., 2002) e ANOVA para comparar e gerar um nível de significância entre os grupos T e NT.

| Gene   | Proteína    | Tamanho esperado do<br><i>amplicon</i> |
|--------|-------------|----------------------------------------|
| HYD-1  | Hidrofobina | 114pb                                  |
| POH2   | Hidrofobina | 100pb                                  |
| Hydph7 | Hidrofobina | 90pb                                   |
| Hydph8 | Hidrofobina | 92pb                                   |

**Tabela 4.** Genes candidatos a degradação dos ésteres de forbol selecionados para validação de expressão por RT-qPCR.

| G3Y416                 | Monooxigenase P450                | 114pb |
|------------------------|-----------------------------------|-------|
| WOLCODRAFT_167<br>027  | Monooxigenase P450                | 100pb |
| patl                   | Monooxigenase P450                | 83pb  |
| af510                  | Monooxigenase P450                | 100pb |
| Cyp4f5                 | Monooxigenase P450                | 113pb |
| ppoA_3                 | Monooxigenase P450                | 106pb |
| KUTG_07618             | Monooxigenase P450                | 92pb  |
| рроА                   | Monooxigenase P450                | 107pb |
| DFR76_10551            | Thiolase                          | 100pb |
| SMAC_06893             | Metalloprotease                   | 96pb  |
| CHU_2040               | Esterase                          | 108pb |
| sdhaf1A,               | Succinate<br>dehydrogenase        | 100pb |
| PLEOSDRAFT_509<br>2    | Very-long-chain 3-<br>oxoacyl-CoA | 99pb  |
| PLEOSDRAFT_1083<br>952 | flavin reductase                  | 105pb |

| axlA     | alpha-xylosidase | 123pb |
|----------|------------------|-------|
| NCU00937 | β-glucuronidase  | 99pb  |

#### 3. 13 Secretoma global

3.13.1 Cultivo de *P. pulmonarius* EF-88 em torta de pinhão-manso tóxica e atóxica

A cepa de *P. pulmonarius* proveniente da coleção de basidiomicetos da Embrapa Agroenegia foi preservada no método *Castellani (Castella, 1967).* Posteriormente, para a obtenção da cepa de trabalho um dos discos em estoque foi transferido para placas com meio de cultivo ágar pinhão-manso, incubados á 28°C por 7 dias. Para o cultivo em estado sólido foram usadas placas de petri de vidro (150mm x 20mm) com 100g de cada substrato (torta tóxica e atóxica) e umidade de 70%. O material foi esterilizado em autoclave á 121°C, 1 atm por 120 minutos. Após o resfriamento das placas, em câmara de fluxo laminar estéril, o micélio do fungo *P. pulmonarius,* previamente repicado (como descrito anteriormente) foi inoculado em torta de pinhão-manso tóxica (bioensaio T) e em torta de pinhão-manso atóxica (bioensaio NT). O cultivo ocorreu em estufa (BOD) com temperatura controlada (28°C). Foram retiradas amostras no 9° dia de cultivo-9D e no 12° dia de cultivo-12D.

3.13. 2 Obtenção dos extratos proteicos bruto e preparo das amostras

Para obtenção do extrato proteico bruto, o substrato sólido foi diluído em água destilada gelada na proporção de 1:2. Dessa forma, 25g de substrato foram diluídos em 50 mL de água destilada e adicionados em erlenmeyer de 150 mL. A mistura foi então homogeneizada em shaker (agitação mecânica) durante 40 min a 5°C. O extrato enzimático bruto foi filtrado em funil de Buchner com tecido composto por 50% viscose e 50% poliéster.

As amostras dos extratos extratos secretados foram dessalinizadas em filtração tangencial com filtros de 5Kda e dosadas quanto a concentração de proteínas brutas (método BCA) e padronizados para uma concentração final de 100ug/mL (todo o experimento foi realizado em triplicata). As amostras foram analisadas em 4 condições: cultivo tóxico e atóxico, em dois tempos de cultivo 9 dias (9D) e 12 dias (12D). As amostras preparadas préviamente passaram por novas etapas de dessalinização, dosagem de proteínas (método BCA), redução com DTT, alquilação com iodoacetamida e digestão tríptica. Os peptídios obtidos foram dessalinizados em micro-colunas C-18 e quantificados usando-se o sistema *Qubit* (Rappsilber et al., 2007; Crowell et al., 2013).

De forma mais descritiva, alíquotas dos secretomas contendo 10 µg de proteina total foram precipitadas (Crowell et al., 2013), secas sob vácuo, reconstituídas em 150 µL de uréia (8 M). NaCl (7,5 M), bicarbonato de trietilamio 50 mM (TEAB), NaCl 7,5 mM, bicarbonato de trietilamio 50 mM (TEAB), ditiotreitol 5 mM (DTT), pH 8,2 e incubado a 55 °C durante 25 min. Adicionou-se iodoacetamida a uma concentração final de 14 mM seguida de 40 min de incubação a 25 ° C no escuro. Adicionou-se DTT numa concentração final de 10 mM e a mistura reacional foi então diluída cinco vezes em 25 mM de TEAB, pH 7,9, seguido por adição de CaCl2 até uma concentração final de 1 mM. As amostras foram então digeridas com tripsina porcina modificada (1 µg por 50 µg de proteína total) durante a noite a 37 °C, seguindo da adição de ácido trifluoroacético (TFA) até uma concentração final de 0,5% (v / v). As amostras foram secas a vácuo, reconstituídas em TFA a 0,1% (v / v) e dessalinizadas usando StageTips (preenchidas com membrana Empore C18) (Rappsilber et al., 2007). Os péptidos trípticos foram quantificados por fluorometria (Qubit, Thermo Fisher Scientific, Waltham, MA, EUA).

#### 3.13.3 Análise por LC-MS-MS

A análise cromatográfica e de espectrometria de massas foi realizada como descrito em Arshid et al. (2017), com adaptações descritas resumidamente a seguir.

#### Cromatografia:

Os peptídios obtidos foram injetados em sistema cromatográfico (Dionex Ultimate 3000 RSLCnano UPLC, Thermo, USA), configurado com coluna de aprisionamento (*trap column*) de 3 cm x 100 µm contendo partículas de C18 5 µm, 120 Å (ReprosilPur, Dr. Maich GmbH), conectada em série à coluna analítica de 24 cm x 75 µm contendo partículas de C18 3 µm, 120 Å (ReprosilPur, Dr. Maich GmbH). As amostras foram injetadas de forma a se obter 1 µg na coluna, submetidas a gradiente linear de eluição entre solventes A (ácido fórmico 0,1% em água) e B (ácido fórmico 0,1% em acetonitrila) de 2% B a 35% B durante 155 min.

#### Espectrometria

As frações separadas no sistema cromatográfico foram eluídas diretamente na fonte de ionização de um espectrômetro de massas *Orbitrap Elite* (Thermo, USA), configurado para operar em modo DDA (*data dependent acquisition*), sendo que os espectros de MS1 foram adquiridos no analisador *Orbitrap*, com resolução de 120000 e faixa de m/z entre 300 e 1650. Os 20 íons mais intensos, acima do limite de intensidade de 3000 foram fragmentados, gerando espectros de MS2, ao analisador *ion trap* por CID (Kalli et al., 2013; Hawkridge et al., 2014). A reanálise de íons já fragmentados foi inibida por exclusão dinâmica (Andrews et al., 2011), favorecendo a identificação de peptídios menos abundantes.

#### 3.13.4 Análise de dados

Os espectros obtidos foram analisados de forma qualitativa e quantitativa, de forma a permitir a identificação do conjunto total de proteínas detectáveis nas amostras, bem como avaliar quantitativamente as proteínas que apresentaram abundância relativa significativamente diferente entre as condições. Estas proteínas foram analisadas em maior detalhe, fornecendo informações sobre os componentes que melhor distinguem entre as condições e agrupadas quanto a vias, termos GO e interações. Os métodos utilizados, de forma geral, seguem a estratégia descrita em Arshid et al. (2017) com

#### Análise qualitativa

O conjunto completo de espectros foi analisado utilizando-se o software *Peaks* versão 7.0 (BSI, USA), com o banco de dados obtido do repositório *Uniprot* em outubro de 2018, filtrado para o gênero *Pleurotus*, tax. ID 5320, adicionado ao banco filtrado para a espécie *Jatropha curcas*, tax ID 180948, o banco combinado foi submetido à remoção de sequências redundantes utilizando-se software *FASTAtools*. A busca foi realizada com base em sequenciamento *de novo* e em PSM, tolerância para a massa do precursor de 10 ppm, e dos fragmentos de 0,5 Da, tolerância de até 2 clivagens perdidas, carbamidometilação de cisteínas como modificação fixa e oxidação de metionina como modificação variável. Além disso foram ativados os módulos de busca por modificações do banco *Unimod* com base em padrões de fragmentação, bem como busca de mutações pontuais (*Z*hang et al., 2012). Foram identificados 2776 grupos de proteínas de maneira confiável -FDR < 1%, pelo menos 2 peptídios.

#### 3.13.5 Análise quantitativa

Os espectros foram analisados com auxílio do programa *Progenesis QI* for *Proteomics* (Valikangas et al., 2017), com o qual foi realizado o alinhamento dos cromatogramas, a quantificação por área dos picos extraídos (*XIC – extracted ion chromatogram*), normalização e análise estatística (ANOVA) dos eventos de MS1. Os eventos significativamente diferentes (p-valor <0,05) tiveram seus espectros de MS2 submetidos à identificação utilizando-se o programa *Peaks*, com os mesmos parâmetros descritos no tópico anterior. Após a inferência de proteínas, a quantificação foi refinada considerando a média dos peptídios atribuídos a cada proteína e foi realizada a análise estatística em nível de proteínas, sendo consideradas reguladas as proteínas que apresentaram ANOVA p-valor <0.05. Tais proteínas foram submetidas à análise multivariada de PCA e agrupamento em clusters de acordo com os perfis de abundância relativa.

#### 4. Resultados

4.1 Expressão diferencial de genes do macro-basidiomiceto *P. pulmonarius* EF88 cultivado em torta de pinhão-manso tóxica e atóxica

O sequenciamento Illumina HiSeq 2500, das 12 bililotecas de cDNA do macro-basidiomiceto EF88, gerou um total de 110.515.557 pares de *reads* no bioensaio 1 e no bioensaio 2 um total 90.145.288 pares de *reads* (tabela 5). O transcritoma do *P. pulmonarius EF88* foi montado pela estratégia *de novo assembly*, SPAdes, Trinity e SOAPdenovo-Trans-31mer foram utilizados para gerar de novo transcritos, todos os transcritos gerados foram juntados pelo software *Evidential Gene*, e assim identificados um total de 23.297 unigenes. Como forma de orientação e comparação dos dados obtidos nesse trabalho (unigenes), buscou-se na literatura trabalhos recentes relacionados ao trancritôma de macro-basidiomicetos sequênciados por RNA-seq e montados *De novo* (tabela 6).

O cutoff usado para definir os genes diferencialmente expressos entre os tratamentos foram baseados no *Log2FoldChange* ( $\leq 2$ ;  $\geq 2$ ) e FDR(<0,1), seguindo padrões estabelecidos na literatura. O biensaio NT foi usado como controle da expressão gênica, sendo assim, os DEGs identificados estão expressos pelo EF88 durante o tratamento T, em comparação com NT. Seguindo essas diretrizes, 351 genes diferencialmente expressos foram detectados no cultivo do *P. pulmonarius* em torta de pinhão-manso tóxica, dos quais 234 estavam superexpressos e 117 menos expressos em relação ao cultivo controle. O panorama geral de DEGs em cada tempo analisado foram descritos no diagrama de Venn (Figura 13).

| Biblioteca de cDNA | High quality<br>reads (Q30)* Lane 1 | High quality<br>reads (Q30)* Lane 2 |
|--------------------|-------------------------------------|-------------------------------------|
| Bioensaio 1        |                                     |                                     |
| 3DAI_T_B1          | 17427915                            | 17429098                            |
| 7DAI_T_B1          | 15274455                            | 15256660                            |
| 11DAI_T_B1         | 24733156                            | 24764719                            |
| 3DAI_NT_B1         | 12387032                            | 12400348                            |
| 7DAI_NT_B1         | 26647413                            | 26647978                            |
| 11DAI_NT_B1        | 14045586                            | 14048639                            |
| Bioensaio 2        |                                     |                                     |
| 3DAI_T_B2          | 15475575                            | 15454642                            |
| 7DAI_T_B2          | 12269506                            | 12280299                            |
| 11DAI_T_B2         | 20200518                            | 20198008                            |
| 3DAI_NT_B2         | 15441662                            | 15433568                            |
| 7DAI_NT_B2         | 9070858                             | 9079182                             |
| 11DAI_NT_B2        | 17687169                            | 17677139                            |

**Tabela 5.** Dados do sequênciamento via Illumina Hiseq 2500 de *P. pulmonarius* EF88 cultivado em torta de pinhão-manso toxica e não-toxica

**Tabela 6**. Unigenes de diferentes basidiomicetos obtidos por sequênciamento de alto rendimento (RNA-seq) e montados de novo (de novo assembly).

| Basidiomiceto        | Unigenes | Referência          |
|----------------------|----------|---------------------|
| P. pulmonarius EF-88 | 23.297   | Este estudo         |
| Peniophora sp.       | 16.663   | Otero et al. (2017) |
| Coriolopsis gallica  | 28.034   | Chen et al. (2017)  |
| Pleurotus eryngii    | 21.558   | Fu et al. (2016)    |
| Flammulina velutipes | 20.157   | Wu et al. (2018)    |



**Figura 13**. Diagrama de Venn, resumindo números de DEGs identificados nos tempos de cultivo 3, 7 e 11 DAI. A região de sobreposição do diagrama representa DEGs em comum nos cultivos de *P. pulmonarius EF88*. A: Diagrama de Venn Global; B: Diagrama de Venn comparativo entre os pontos análisados com DEGs reprimidos e superexpressos.

A plataforma *Blast2GO* foi usada para anotar os 23.297 genes expressos em resposta ao cultivo de *P. pulmonarius* em torta de pinhão-manso, e foram encontrados *hits* para 12.207 genes, dentre os quais 6.804 estavam anotados (Figura 14). Dentre as seis principais classes de enzimas, genes que codificam para hidrolases foram mais expressas, seguidas de transferase e oxidoreductase (Figura 15).

As categorias funcionais de *Gene Ontology* (GO) foram geradas para os 351 DEGs identificados por BLAST e categorizados de acordo com função molecular, processos biológicos e componente celular. Em 3DAI foram atribuídas 23 anotações relacionadas a função molecular, 11 a processos biológicos e 3 a componente celular (Figura 16). Em 7DAI a maior parte dos genes enriquecidos estão relacionados a processos biológicos ao qual foram atribuídas 20 anotações, 11 anotações para função molecular e 3 para componente celular (Figura 17). Em 11 DAI foram identificadas 22 anotações para função molecular, 11 referentes a processo biológico e 2 a componente celular (Figura 18).

Os GOs de função molecular atribuídos aos unigenes, de uma forma geral, desempenham funções relativas a síntese de proteínas e na atividade catalítica de enzimas oxirredutases e hidrolases. No que se refere aos GOs dentro de processos biólogicos, as funções estão relacionadas ao metabolismo e síntese se ácidos graxos, processamento de proteínas, manutenção e regulação do material genético. GOs responsáveis pela resposta ao estresse, resposta a substâncias tóxicas e destoxificação estão enriquecidos em 11DAI.



**Figura 14.** Total de sequências anotadas e mapeadas por Blast2GO pelo banco de dados INTERPRO para o transcritoma *do P. pulmonarius* cultivado em torta tóxica e atóxica de pinhão-manso.



**Figura 15.** Número de sequências referentes a grupos de enzimas identificados durante o crescimento de *P. pulmonarius* EF8 em torta de pinhãomanso.

#### **Molecular function** glutathione transferase activity transition metal ion binding structural constituent of cell wall catalytic activity oxidoreductase activity metal ion binding cation binding zinc ion binding cation-transporting ATPase activity copper ion binding protein C-terminal S-isoprenylcysteine carboxyl O-methyltransferase activity . iron ion binding heme binding oxidoreductase activity, acting on paired donors, with incorporation or reduction of molecular oxygen ATPase coupled ion transmembrane transporter activity primary active transmembrane transporter activity carboxyl-O-methyltransferase activity P-P-bond-hydrolysis-driven transmembrane transporter activity O-methyltransferase activity active ion transmembrane transporter activity ATPase activity, coupled to movement of substances ATPase activity, coupled to transmembrane movement of substances

## **Biological process**



Figura 16. Ilustração das categorias de GO enriquecidos em 3DAI de *P. pulmonarius* cultivado em torta de pinhão-manso.



**Figura 17.** Ilustração das categorias de GO enriquecidos em 7 DAI de *P. pulmonarius* cultivado em torta de pinhão-manso.

## **Molecular function**





## **Biological process**



**Figura 18**. Ilustração das categorias de GO enriquecidos em 11DAI de *P*. *pulmonarius* cultivado em torta de pinhão-manso.

Os resultados mostraram que a expressão gênica foi diferente em cada dia analisado e esses dados estão ilustrados no *HeatMap* (Figura 19). A cores em tons amarelos representam que naquele ponto a expressão gênica foi positiva (genes superexpressos) e a cor vermelha representa uma expressão negativa (genes menos expressos). No primeiro ponto analisado-3DAI, a maioria dos genes estão menos expressos em relação ao tratamento controle (NT). Nos dias subsequentes (7 e 11 DAI) esse cenário foi alterado, ou seja a expressão gênica no tratamento tóxico foi maior em relação ao tratamento não tóxico, no entanto grupos gênicos estão menos expressos nos três momentos. Deste modo, pode-se obervar também, que a expressão gênica em 7DAI e 11 DAI foi mais homogênia.



**Figura 19.** Heatmap dos genes diferencialmente expressos em *P. pulmonarius* durante 11 dias de cultivo em torta de pinhão-manso. A expressão gênica diferencial após o cultivo em torta tóxica foi relativo ao cultivo em torta atóxica.

Em 3 DAI apenas 50 genes foram diferencialmente expressos, dentre os quais 37 estavam regulados positivamente (*upregulated*) no tratamento NT e reprimidos (*downregulated*) no tratamento T, e apenas 13 regulados positivamente no tratamento T. Nesse primeiro ponto, três genes foram expressos mais de 5x. Esses DEGs codificam para, *Cu* (+)-*transporting ATPase, Furin-like cysteine-rich domain e Major intrinsic protein* (Tabela 7). Dois DEGs que codificam para proteínas hidrofobinas também foram reguladas positivamente no tratamento com torta de pinhão-manso tóxica. Assim como duas distintas monooxigenases do citocromo P450. Genes que codificam para proteínas importantes para o metabolismo de lipídeos, carboidratos e síntese de metabólitos secundários, como: *flavodoxin, acetylxylan esterase, Acyl-CoA dehydrogenase, Glycoside hydrolase family 16 protein, alpha-D-phospho hexomutase,6-phospho glucono lactonases e pyro phospho hydrolases*, nesse primeiro momento, foram reprimidos ou menos expressos no tratamento T.

**Tabela 7.** Os genes diferencialmente expressos (DEGs) no cultivo de *P. pulmonarius EF88* em torta de pinhão-manso tóxica em comparação com atóxico, durante o 3° dia de cultivo (3 DAI).

| Transcritos                                        | Proteína                                               | LogFC | FDR     |
|----------------------------------------------------|--------------------------------------------------------|-------|---------|
| Upregulated                                        |                                                        |       |         |
| evgsoapTRINITY_DN63324_c0_g1_i1                    | Cu-transporting P-type ATPase                          | 7.65  | 3.5e-05 |
| evgsoapTRINITY_GG_8_c2557_g1_i2                    | Furin-like cysteine-rich domain                        | 6.66  | 0.022   |
| evgsoapTRINITY_GG_2_c505_g1_i4                     | Major intrinsic protein                                | 5.50  | 0.0116  |
| evgsoapTRINITY_DN57622_c1_g2_i1                    | Hydrophobin SC3                                        | 4.82  | 9.9e-06 |
| evgsoapTRINITY_DN62114_c0_g1_i1                    | Cytochrome P450 monooxygenase yanC                     | 4.03  | 0.021   |
| evgsoapNODE_27677_length_744_cov_63.3208_g15975_i0 | Predicted protein                                      | 4.03  | 0.042   |
| evgsoapNODE_11382_length_1453_cov_622.414_g5870_i0 | Peroxisomal membrane protein PEX14                     | 3.72  | 0.009   |
| evgsoapNODE_15919_length_1159_cov_86.9547_g2758_i3 | Protein-S-isoprenylcysteine O-<br>methyltransferase    | 3.06  | 0.0129  |
| evgsoapNODE_33374_length_624_cov_583.204_g20404_i0 | Beta 1,3 exoglucanase                                  | 3.053 | 0.011   |
| evgsoapNODE_15306_length_1191_cov_327.81_g7979_i0  | Hydrophobin SC3                                        | 3.036 | 0.0007  |
| evgsoapNODE_2117_length_3130_cov_397.871_g1137_i0  | Ostreolysin A6                                         | 2.36  | 0.034   |
| evgsoapNODE_8786_length_1708_cov_180.031_g4315_i1  | Multifunctional cytochrome P450<br>monooxygenase af510 | 2.27  | 0.033   |

| evgsoapTRINITY_DN60104_c1_g1_i3                    | Uncharacterized protein                                              | 2.09   | 0.044     |
|----------------------------------------------------|----------------------------------------------------------------------|--------|-----------|
| Downregulated                                      |                                                                      |        |           |
| evgsoapTRINITY_DN63678_c1_g1_i3                    | dNTPase                                                              | -10.23 | 8.49e-12  |
| evgsoaploc5134t3                                   | Protein kinase-like                                                  | -8.12  | 0.0004    |
| evgsoapTRINITY_GG_14_c778_g1_i1                    | 6-phosphogluconolactonases (6PGL)                                    | -7.87  | 0.002     |
| evgsoapNODE_42229_length_489_cov_1675.78_g28031_i0 | Uncharacterized protein                                              | -7.87  | 0.002     |
| evgsoapTRINITY_GG_8_c2476_g1_i1                    | Uncharacterized protein                                              | -7.42  | 0.0069    |
| evgsoapTRINITY_DN62310_c0_g1_i1                    | Uncharacterized protein                                              | -7.34  | 0.0126    |
| evgsoapTRINITY_GG_11_c2636_g1_i1                   | Uncharacterized protein                                              | -6.51  | 3.453e-10 |
| evgsoapTRINITY_GG_7_c655_g1_i1                     | Uncharacterized protein                                              | -6.37  | 0.0027    |
| evgsoapTRINITY_GG_2_c1353_g1_i2                    | tRNA (adenine(58)-N(1))-methyltransferase<br>catalytic subunit TRM61 | -6.33  | 0.0031    |
| evgsoapNODE_5865_length_2104_cov_35.2318_g3062_i0  | Vegetative incompatibility protein HET-E-1                           | -6.30  | 0.0067    |
| evgsoapTRINITY_DN63384_c0_g1_i2                    | Cytochrome P450 52E1                                                 | -5.33  | 0.031     |
| evgsoaploc80720t1                                  | Phosphopantetheine                                                   | -4.37  | 0.0053    |
| evgsoapNODE_47520_length_434_cov_6701.98_g32964_i0 | alpha-D-phosphohexomutase                                            | -4.285 | 0.0040    |

| evgsoapTRINITY_DN60732_c0_g1_i1                    | Acyl-CoA dehydrogenase                         | -3.91  | 0.0164 |
|----------------------------------------------------|------------------------------------------------|--------|--------|
| evgsoapTRINITY_GG_10_c246_g1_i1                    | Thymidylate synthase                           | -3.62  | 0.0318 |
| evgsoapTRINITY_GG_2_c1316_g1_i3                    | Vacuolar protein sorting-associated protein 45 | -3.31  | 0.0187 |
| evgsoapNODE_23410_length_858_cov_148.171_g11854_i1 | flavodoxin                                     | -3.26  | 0.0040 |
| evgsoapTRINITY_DN63282_c4_g1_i3                    | Uncharacterized protein                        | -3.21  | 0.0212 |
| evgsoapTRINITY_GG_13_c1638_g1_i3                   | (S)-coclaurine N-methyltransferase             | -2.97  | 0.031  |
| evgsoapTRINITY_DN57602_c0_g1_i2                    | Uncharacterized protein                        | -2.93  | 0.094  |
| evgsoapTRINITY_DN60516_c0_g1_i1                    | Vegetative incompatibility protein HET-E-1     | -2.72  | 0.034  |
| evgsoapTRINITY_DN63376_c0_g2_i1                    | Cutinase/acetylxylan esterase                  | -2.67  | 0.0318 |
| evgsoapNODE_2794_length_2830_cov_139.768_g1367_i1  | Cytochrome P450 monooxygenase                  | -2.55  | 0.0475 |
| evgsoapNODE_36007_length_577_cov_613.99_g22585_i0  | Aldehyde oxidase GLOX                          | -2.54  | 0.0287 |
| evgsoapNODE_22636_length_881_cov_265.783_g12460_i1 | Alcohol dehydrogenase                          | -2.43  | 0.0318 |
| evgsoapTRINITY_DN55940_c0_g2_i1                    | Alpha/Beta hydrolase                           | -2.42  | 0.0225 |
| evgsoapNODE_1781_length_3334_cov_1116.08_g960_i0   | NADH:flavin oxidoreductase/NADH oxidase        | -2.42  | 0.0002 |
| evgsoapNODE_14399_length_1245_cov_560.482_g6991_i1 | Alcohol dehydrogenase                          | -2.357 | 0.0160 |

| evgsoapTRINITY_GG_8_c2598_g1_i2                    | pyrophosphohydrolases                 | -2.35  | 0.0187 |
|----------------------------------------------------|---------------------------------------|--------|--------|
| evgsoaploc13101t1                                  | 4-O-methyltransferase 1               | -2.327 | 0.0002 |
| evgsoapNODE_49645_length_415_cov_1485.02_g29778_i1 | Hydrophobin SC3                       | -2.32  | 0.0556 |
| evgsoapTRINITY_GG_12_c976_g1_i2                    | Oxidoreductase AfIY                   | -2.30  | 0.0166 |
| evgsoaploc282120t1                                 | Thioredoxin-like superfamily          | -2.21  | 0.0391 |
| evgsoapTRINITY_DN61004_c2_g1_i1                    | Uncharacterized protein               | -2.18  | 0.0475 |
| evgsoapTRINITY_DN60351_c0_g1_i4                    | Glycoside hydrolase family 16 protein | -2.14  | 0.0318 |
| evgsoapTRINITY_DN58981_c0_g1_i1                    | Uncharacterized protein               | -2.04  | 0.0302 |
| evgsoapTRINITY_GG_11_c1776_g1_i1                   | Nitrilase                             | -2.006 | 0.0558 |

No entanto, em 7 DAI foram identificados 110 DEGs, dos quais, 75 estavam regulados positivamente no tratamento T e 35 DEGs reprimidos ou menos expressos, em relação ao tratamento NT. Quatro DEGs que codificam para proteínas transportadoras e para uma oxirredutase (2-dehydropantoate 2reductase) foram expressos mais de 11x no tratamento T (Tabela 7). Genes que codificam para proteínas como: Beta-glucuronidase, carbohydrate-binding module family 13 protein, glycoside hydrolase family 92, Alpha-xylosidase, aspartic-type endopeptidase, metalloprotease, metalloendopeptidase, Lipase class 3, Laccase-1 entre outras envolvidas no metabolismo de carboidratos, lipídeos e peptídeos, foram superexpressas no tratamento T, de forma antagônica ao 3° dia de cultivo (tabela 8). Genes que codificam para Hidrofobinas, monooxigenases do citocromo P450 e proteínas heat shocks também foram moduladas positivamente. Em contraste, genes que codificam para proteínas como: Translation initiation factor IF-2, Zinc finger (Znf), Protein kinase-like, ABC transporter-like foram reprimidas no tratamento em torta de pinhão-manso tóxica (T) e reguladas positivamente no cultivo controle (NT).

Já em 11 DAI o número de DEGs aumentou para 191, e a expresssão gênica manteve o padrão observado no ponto antecedente, com 145 genes positivamente regulados no tratamento T, e 46 genes reprimidos. Como pode ser observado na Tabela 8, genes que participam do metabolismo de carboidratos, lipídeos e peptídeo foram expressos positivamente no substrato tóxico. Genes que codificam para proteínas hidrofobinas, monooxigenases do citocromo P450 e proteínas *heat shocks* também foram regulados positivamente no tratamento T, da mesma forma que em 7DAI. Genes envolvidos em processos como replicação, transcrição, síntese de proteínas mantiveram uma menor expressão em relação ao tratamento controle (tabela 9). **Tabela 8.** Os genes diferencialmente expressos (DEGs) no cultivo de *P. pulmonarius* EF88 em torta de pinhão-manso tóxica em comparação com atóxico, durante o 7° dia de cultivo (7 DAI).

| Gene                                               | Proteína                                                   | LogFC | FDR      |
|----------------------------------------------------|------------------------------------------------------------|-------|----------|
| Upregulated                                        |                                                            |       |          |
| evgsoapTRINITY_DN56991_c0_g1_i1                    | Uncharacterized protein                                    | 15.40 | 3.2e-07  |
| evgsoapNODE_4866_length_2280_cov_810.653_g440_i4   | 2-dehydropantoate 2-reductase/Ketopantoate reductase       | 12.96 | 1.4e-13  |
| evgsoapTRINITY_GG_7_c410_g1_i1                     | Uncharacterized protein                                    | 12.77 | 2.9e-09  |
| evgsoapTRINITY_DN60801_c0_g1_i1                    | Uncharacterized protein                                    | 11.61 | 0.0067   |
| evgsoapNODE_18816_length_1018_cov_468.795_g9295_i1 | Uncharacterized protein P. ostreatus                       | 8.60  | 1.76e-05 |
| evgsoaploc281705t1                                 | Uncharacterized protein ( <i>Pleurotus ostreatus</i> PC15) | 6.51  | 0.0005   |
| evgsoapNODE_11881_length_1414_cov_106.525_g6124_i0 | cell surface protein                                       | 6.16  | 0.0214   |
| evgsoapNODE_3297_length_2671_cov_31.7718_g1744_i0  | Uncharacterized protein (Pleurotus ostreatus PC15)         | 6.055 | 0.0067   |
| evgsoapTRINITY_DN58115_c0_g1_i1                    | Extracellular metalloprotease                              | 4.69  | 0.0015   |
| evgsoapNODE_38532_length_538_cov_3950.52_g24746_i0 | transcriptional regulator                                  | 4.66  | 0.0285   |
| evgsoaploc6140t1                                   | carbohydrate-binding module family 13 protein              | 4.53  | 0.028    |
| evgsoapNODE_12034_length_1402_cov_162.068_g5455_i2 | Uncharacterized protein ( <i>Pleurotus ostreatus</i> PC15) | 4.47  | 0.0071   |
| evgsoaploc56944t1                                  | Uncharacterized protein (Pleurotus ostreatus               | 4.42  | 0.054    |

## PC15)

| evgsoapTRINITY_DN61177_c1_g1_i3                       | Uncharacterized protein ( <i>Pleurotus ostreatus PC15)</i> | 4.36         | 0.001             |
|-------------------------------------------------------|------------------------------------------------------------|--------------|-------------------|
| evgsoapTRINITY_GG_13_c1007_g1_i1                      | serum paraoxonases/arylesterases                           | 4.29         | 0.0005            |
| evgsoapTRINITY_DN60947_c2_g1_i4                       | Uncharacterized protein ( <i>Pleurotus ostreatus</i> PC15) | 4.26         | 0.0214            |
| evgsoapTRINITY_DN61177_c1_g1_i4                       | Uncharacterized protein ( <i>Pleurotus ostreatus</i> PC15) | 4.03         | 7.863e-06         |
| evgsoapNODE_41572_length_497_cov_708.007_g27439_i0    | Nitrite reductase                                          | 3.91         | 0.0437            |
| evgsoaploc282388t1                                    | Very-long-chain 3-oxoacyl-CoA reductase                    | 3.87         | 0.0071            |
| evgsoapNODE_26773_length_766_cov_1529.43_g5858_i4     | Putative ankyrin repeat protein                            | 3.816        | 0.0102            |
| evgsoapTRINITY_DN54364_c0_g1_i2                       | Predicted protein                                          | 3.73         | 0.0392            |
| evgsoapNODE_19043_length_1009_cov_12641.4_g10176_i0   | Uncharacterized protein (Pleurotus ostreatus PC15)         | 3.71         | 0.0091            |
| evgsoapTRINITY_DN57602_c0_g1_i2                       | Uncharacterized protein (Pleurotus ostreatus PC15)         | 3.69         | 0.007             |
| evgsoapNODE_33504_length_621_cov_4106.56_g20513_i0    | Uncharacterized protein (Pleurotus ostreatus PC15)         | 3.68         | 0.050             |
| evgsoapTRINITY_GG_8_c2183_g1_i3<br>evgsoaploc282430t1 | Beta-ketoacyl synthase<br>Beta-glucuronidase               | 3.63<br>3.58 | 0.020<br>1.87e-08 |

| evgsoapTRINITY_GG_10_c246_g1_i1                    | Thymidylate synthase                               | 3.57  | 0.028    |
|----------------------------------------------------|----------------------------------------------------|-------|----------|
| evgsoapTRINITY_GG_11_c1491_g1_i1                   | Uncharacterized protein (Pleurotus ostreatus PC15) | 3.48  | 0.0073   |
| evgsoaploc84064t1                                  | Methyltransferase                                  | 3.47  | 7.83e-06 |
| evgsoapTRINITY_GG_10_c798_g1_i1                    | glycoside hydrolase family 92 protein              | 3.45  | 0.0224   |
| evgsoapTRINITY_GG_2_c1128_g1_i1                    | class I heat shock protein                         | 3.44  | 0.007    |
| evgsoapTRINITY_DN55070_c0_g1_i1                    | carbohydrate-binding module family 13 protein      | 3.437 | 0.015    |
| evgsoapTRINITY_DN60327_c1_g1_i2                    | Uncharacterized protein                            | 3.42  | 0.00795  |
| evgsoaploc79199t1                                  | serine proteases                                   | 3.41  | 0.0083   |
| evgsoapTRINITY_DN57622_c1_g2_i1                    | Hydrophobin SC3                                    | 3.36  | 0.039    |
| evgsoapNODE_27677_length_744_cov_63.3208_g15975_i0 | Predicted protein                                  | 3.31  | 0.079    |
| evgsoapTRINITY_DN52296_c0_g1_i1                    | Uncharacterized protein (Pleurotus ostreatus PC15) | 3.25  | 0.020    |
| evgsoapTRINITY_DN64212_c1_g2_i8                    | Uncharacterized protein (Pleurotus ostreatus PC15) | 3.22  | 0.0795   |
| evgsoapNODE_25922_length_788_cov_213.948_g14726_i0 | Uncharacterized protein (Pleurotus ostreatus PC15) | 3.14  | 0.064    |
| evgsoapTRINITY_DN60192_c1_g2_i7                    | growth factor receptor                             | 3.11  | 0.071    |
| evgsoapTRINITY_DN61038_c0_g1_i3                    | cvtochrome P450 monooxvgenase                      | 3.09  | 0.07     |
| evgsoapTRINITY_DN67746_c0_g1_i1                    | Uncharacterized transporter C1002.16c              | 3.08  | 0.0027   |

| evgsoapNODE_62091_length_334_cov_1943.77_g47323_i0 | PREDICTED: neurobeachin-like protein 2            | 3.08  | 0.067   |
|----------------------------------------------------|---------------------------------------------------|-------|---------|
| evgsoapTRINITY_GG_10_c2072_g1_i1                   | U5 small nuclear ribonucleoprotein 40 kDa protein | 3.076 | 0.0001  |
| evgsoapNODE_1433_length_3576_cov_876.904_g773_i0   | Alpha-xylosidase A                                | 3.056 | 0.08    |
| evgsoapTRINITY_GG_10_c260_g1_i1                    | Aspartic protease                                 | 2.98  | 0.0065  |
| evgsoapTRINITY_GG_7_c720_g1_i1                     | Uncharacterized protein                           | 2.97  | 0.0001  |
| evgsoapTRINITY_GG_14_c567_g1_i1                    | Ferredoxin                                        | 2.97  | 0.0013  |
| evgsoapTRINITY_DN63601_c4_g1_i11                   | aspartic-type endopeptidase                       | 2.96  | 0.058   |
| evgsoapNODE_13911_length_1275_cov_196.655_g7242_i0 | carbohydrate-binding module family 13 protein     | 2.95  | 0.013   |
| evgsoapTRINITY_DN60587_c0_g1_i1                    | metalloendopeptidase                              | 2.90  | 0.00976 |
| evgsoapNODE_29929_length_693_cov_1125.23_g7351_i1  | No hits found                                     | 2.86  | 0.0079  |
| evgsoapNODE_27096_length_758_cov_233.967_g15551_i0 | carbohydrate esterase family 16 protein           | 2.81  | 0.051   |
| evgsoapTRINITY_GG_7_c330_g1_i1                     | lipoprotein LpqB                                  | 2.796 | 0.0503  |
| evgsoaploc281124t1                                 | Uncharacterized protein                           | 2.61  | 0.026   |
| evgsoaploc36467t1                                  | Nuclear transcription factor                      | 2.54  | 0.020   |
| evgsoapNODE_30565_length_679_cov_2463.36_g7201_i2  | Uncharacterized protein                           | 2.46  | 0.0015  |
| evgsoaploc10579t1                                  | ZIP superfamily                                   | 2.41  | 0.089   |
| evgsoapTRINITY_DN63399_c0_g1_i1                    | Uncharacterized protein                           | 2.39  | 0.001   |

| evgsoapNODE_9731_length_1603_cov_123.413_g4102_i2                                    | Lipase class 3                                      | 2.38           | 0.083               |
|--------------------------------------------------------------------------------------|-----------------------------------------------------|----------------|---------------------|
| evgsoapTRINITY_GG_2_c1213_g1_i2                                                      | Uncharacterized protein                             | 2.32           | 0.094               |
| evgsoapNODE_35993_length_577_cov_1666.01_g22574_i0                                   | glycoside hydrolase family 31 protein               | 2.37           | 0.002               |
| evgsoaploc278283t1                                                                   | Succinate dehydrogenase                             | 2.33           | 0.074               |
| evgsoapTRINITY_DN61823_c3_g1_i3                                                      | Heat shock protein 16                               | 2.30           | 0.005               |
| evgsoapNODE_6942_length_1938_cov_576.367_g1853_i2                                    | COBW domain-containing protein                      | 2.27           | 0.026               |
| evgsoapTRINITY_DN62402_c0_g1_i2                                                      | MFS general substrate transporter                   | 2.23           | 0.026               |
| evgsoapTRINITY_DN61132_c0_g1_i2                                                      | Transcription factor HIVEP3                         | 2.20           | 0.054               |
| evgsoapTRINITY_DN63302_c0_g1_i2                                                      | Topoisomerase 1-associated factor 1                 | 2.165          | 0.079               |
| evgsoapTRINITY_DN61823_c3_g1_i6                                                      | Heat shock protein 16                               | 2.15           | 0.026               |
| evgsoapNODE_15306_length_1191_cov_327.81_g7979_i0                                    | Hydrophobin SC3                                     | 2.14           | 0.017               |
| evgsoapTRINITY_DN46650_c0_g1_i1                                                      | Uncharacterized protein                             | 2.11           | 0.016               |
| evgsoapTRINITY_DN58573_c0_g1_i1                                                      | Uncharacterized protein                             | 2.106          | 0.0111              |
| evgsoapNODE_44111_length_468_cov_4267.23_g29758_i0                                   | Laccase-1                                           | 2.073          | 0.020               |
| Dowregulated                                                                         |                                                     |                |                     |
| evgsoapTRINITY_DN63828_c0_g1_i1                                                      | Glucan endo-1,3-alpha-glucosidase agn1              | -13.44         | 0.0001              |
| evgsoapNODE_4859_length_2281_cov_549.846_g2558_i0<br>evgsoapTRINITY_DN62310_c0_g1_i3 | SKP1/BTB/POZ domain<br>2-carboxy-1,4-naphthoquinone | -8.22<br>-7.11 | 1.8e-07<br>0.000464 |

#### phytyltransferase

| evgsoapTRINITY_DN62756_c2_g3_i5                    | L-type lectin-domain containing receptor kinase IV.3                         | -6.84 | 0.001   |
|----------------------------------------------------|------------------------------------------------------------------------------|-------|---------|
| evgsoapTRINITY_DN60801_c0_g1_i5                    | Leucine-rich repeat domain superfamily                                       | -4.63 | 0.00232 |
| evgsoapNODE_34434_length_604_cov_149.685_g21278_i0 | basic-leucine zipper (bZIP)                                                  | -4.38 | 0.011   |
| evgsoapTRINITY_DN63844_c1_g1_i2                    | monocarboxylate transporter 1-like isoform X2                                | -3.95 | 0.008   |
| evgsoapNODE_6657_length_1980_cov_138.398_g3295_i1  | glycoside hydrolase family 115 protein<br>[ <i>Pleurotus ostreatus</i> PC15] | -3.79 | 0.0041  |
| evgsoapNODE_7830_length_1818_cov_37.6222_g4045_i0  | Fucose permease                                                              | -3.59 | 0.026   |
| evgsoapNODE_22097_length_899_cov_81.686_g12099_i0  | Aromatic amino acid hydroxylase                                              | -3.51 | 0.033   |
| evasoapNODE 22635 length 881 cov 275.953 a12460 i0 | NADP-dependent oxidoreductase RED1                                           | -3.33 | 0.006   |
| evgsoapTRINITY_DN60468_c0_g1_i1                    | 3-phosphoinositide-dependent protein kinase 1                                | -3.24 | 0.00873 |
| evgsoapTRINITY_DN55868_c0_g1_i2                    | Quinoprotein alcohol dehydrogenadehyase-like superfamily                     | -3.20 | 0.0023  |
| evgsoapTRINITY_GG_11_c2093_g1_i1                   | Kinase-like protein                                                          | -3.17 | 0.085   |
| evgsoapTRINITY_DN59202_c0_g1_i1                    | (R,R)-butanediol dehydrogenase                                               | -2.91 | 0.00046 |
| evgsoapTRINITY_DN62932_c1_g1_i7                    | Protein kinase-like                                                          | -2.89 | 0.0285  |
| evgsoapNODE_3846_length_2515_cov_24.8675_g2034_i0  | ABC transporter-like                                                         | -2.75 | 0.0734  |
| evgsoapTRINITY_DN62522_c0_g1_i2                    | Uncharacterized protein                                                      | -2.66 | 0.063   |
| evgsoapTRINITY_DN63507_c3_g5_i3                    | ATP dependent RNA helicase                                                   | -2.64 | 0.071   |
| evgsoapNODE_22483_length_886_cov_326.331_g12358_i0 | Uncharacterized protein            | -2.61  | 0.054  |
|----------------------------------------------------|------------------------------------|--------|--------|
| evgsoapTRINITY_DN55868_c0_g1_i1                    | PE-PGRS family protein             | -2.54  | 0.0545 |
| evgsoapTRINITY_DN63922_c0_g1_i3                    | acetyl-CoA synthetase-like protein | -2.461 | 0.073  |
| evgsoapNODE_20603_length_948_cov_121.207_g11165_i0 | Major facilitator superfamily      | -2.41  | 0.091  |
| evgsoapNODE_7142_length_1910_cov_516.763_g3700_i0  | Zinc finger (Znf)                  | -2.39  | 0.079  |
| evgsoapTRINITY_DN61371_c0_g1_i2                    | High-affinity methionine permease  | -2.35  | 0.001  |
| evgsoapTRINITY_DN62965_c1_g1_i1                    | Calcium-transporting ATPase 3      | -2.31  | 0.0010 |
| evgsoapTRINITY_DN62446_c0_g1_i7                    | Thioredoxin-like superfamily       | -2.26  | 0.051  |
| evgsoapTRINITY_DN64228_c2_g1_i6                    | Uncharacterized protein            | -2.231 | 0.06   |
| evgsoaploc54907t1                                  | Uncharacterized protein            | -2.145 | 0.08   |
| evgsoapNODE_3852_length_2514_cov_82.0643_g2038_i0  | Translation initiation factor IF-2 | -2.12  | 0.094  |
| evgsoapTRINITY_DN60121_c0_g2_i1                    | Zinc finger (Znf)                  | -2.100 | 0.054  |

| evgsoapTRINITY_DN64228_c4_g2_i9                   | Uncharacterized protein              | -2.08  | 0.041  |
|---------------------------------------------------|--------------------------------------|--------|--------|
| evgsoapNODE_2607_length_2901_cov_941.176_g423_i4  | Elongation factor 2                  | -2.06  | 0.01   |
| evgsoapNODE_6060_length_2073_cov_95.8023_g3155_i0 | Tip elongation aberrant protein Tea4 | -2.046 | 0.089  |
| evgsoapTRINITY_DN63519_c1_g1_i3                   | Alcohol oxidase 1                    | -2.006 | 0.0082 |

**Tabela 9.** Os genes diferencialmente expressos (DEGs) no cultivo de *P. pulmonarius EF88* em torta de pinhão-manso tóxica em comparação com atóxico, durante o 11° dia de cultivo (7 DAI).

| Gene                                              | Proteína                                  | LogFC | FDR       |
|---------------------------------------------------|-------------------------------------------|-------|-----------|
| Upregulated                                       | _                                         |       |           |
| evgsoapNODE_12481_length_1370_cov_334.84_g6452_i0 | ABC transporter substrate-binding protein | 7.2   | 2.81e-07  |
| evgsoapNODE_6942_length_1938_cov_576.367_g1853_i2 | COBW domain-containing protein C15D4.05   | 7.14  | 1.4e-22   |
| evgsoaploc282388t1                                | Very-long-chain 3-oxoacyl-CoA reductase   | 7.02  | 8.7e-18   |
| evgsoapNODE_52475_length_393_cov_518.74_g37764_i0 | Uncharacterized protein                   | 6.37  | 1.846e-05 |

| evgsoapTRINITY_GG_10_c1048_g1_i1                   | Aspartic protease                        | 6.27 | 2.04e-05 |
|----------------------------------------------------|------------------------------------------|------|----------|
| evgsoapTRINITY_DN60192_c1_g2_i7                    | growth factor receptor                   | 5.84 | 1.01e-12 |
| evgsoapTRINITY_GG_11_c2867_g1_i1                   | Rhodanese-like protein                   | 5.56 | 2.96e-15 |
| evgsoapNODE_19706_length_981_cov_5963.57_g10611_i0 | Cuticle-degrading protease               | 5.23 | 0.008    |
| evgsoapTRINITY_DN58115_c0_g1_i1                    | Extracellular metalloprotease SMAC_06893 | 5.18 | 5.26e-35 |
| evgsoapTRINITY_GG_5_c1791_g1_i1                    | Uncharacterized protein                  | 5.05 | 2.51e-09 |
| evgsoapNODE_33504_length_621_cov_4106.56_g20513_i0 | Uncharacterized protein                  | 5.01 | 8.3e-18  |
| evgsoapTRINITY_DN62374_c0_g1_i4                    | Sphingomyelinase                         | 4.82 | 3.2e-09  |
| evgsoapTRINITY_GG_7_c410_g1_i1                     | Uncharacterized protein                  | 4.47 | 8.4e-19  |
| evgsoapNODE_41407_length_499_cov_3010.33_g27289_i0 | Uncharacterized protein                  | 4.32 | 5.7e-11  |
| evgsoapTRINITY_DN59286_c0_g1_i1                    | Lipoxygenase 3                           | 4.16 | 8.38e-17 |
| evgsoaploc280142t1                                 | Carbamoyl-phosphate synthase             | 3.95 | 7.3e-08  |
| evgsoaploc280372t1                                 | Uncharacterized protein                  | 3.90 | 5.3e-18  |

| evgsoapTRINITY_DN54424_c0_g1_i1                    | 2-oxo acid dehydrogenase  | 3.82  | 2.4e-07  |
|----------------------------------------------------|---------------------------|-------|----------|
| evgsoapTRINITY_DN54364_c0_g1_i2                    | Predicted protein         | 3.81  | 3.4e-22  |
| evgsoapTRINITY_DN54424_c0_g1_i2                    | Uncharacterized protein   | 3.71  | 3.01e-09 |
| evgsoapNODE_7779_length_1824_cov_8638.01_g4015_i0  | Uncharacterized protein   | 3.67  | 9.88e-09 |
| evgsoapNODE_60194_length_344_cov_6334.08_g45426_i0 | Hydrophobin SC1           | 3.57  | 8.7e-18  |
| evgsoapNODE_38532_length_538_cov_3950.52_g24746_i0 | transcriptional regulator | 3.56  | 1.3e-07  |
| evgsoapTRINITY_DN62513_c0_g6_i12                   | Uncharacterized protein   | 3.51  | 5.85e-06 |
| evgsoapTRINITY_GG_13_c1007_g1_i1                   | arylesterases             | 3.47  | 5.37e-05 |
| evgsoaploc281124t1                                 | Uncharacterized protein   | 3.458 | 3.8e-11  |
| evgsoapTRINITY_GG_8_c2751_g1_i2                    | Uncharacterized protein   | 3.451 | 6.08e-07 |
| evgsoaploc276309t1                                 | T-complex protein 10      | 3.41  | 0.014    |
| evgsoapNODE_45509_length_453_cov_1962.1_g31054_i0  | Glutamyl aminopeptidase   | 3.409 | 2.5e-07  |

| evgsoaploc56944t1                                   | Uncharacterized protein                       | 3.34  | 8.5e-13  |
|-----------------------------------------------------|-----------------------------------------------|-------|----------|
| evgsoapTRINITY_GG_1_c1990_g1_i6                     | Uncharacterized protein                       | 3.31  | 0.001    |
| evgsoapNODE_19043_length_1009_cov_12641.4_g10176_i0 | Uncharacterized protein                       | 3.28  | 1.31e-07 |
| evgsoaploc282130t1                                  | Carbohydrate-binding module family 13 protein | 3.24  | 1.36e-07 |
| evgsoaploc84064t1                                   | methyltransferase                             | 3.23  | 3.96e-17 |
| evgsoapTRINITY_GG_14_c697_g1_i1                     | SAM-dependent methyltransferase               | 3.20  | 0.0001   |
| evgsoapNODE_8140_length_1778_cov_4505.24_g3989_i1   | Uncharacterized protein                       | 3.19  | 1.8e-10  |
| evgsoapTRINITY_GG_8_c2183_g1_i3                     | Beta-ketoacyl synthase                        | 3.161 | 2.01e-07 |
| evgsoapNODE_19188_length_1002_cov_5763.64_g10269_i0 | Uncharacterized protein                       | 3.15  | 7.49e-18 |
| evgsoapNODE_25922_length_788_cov_213.948_g14726_i0  | Uncharacterized protein                       | 3.11  | 1.5e-15  |
| evgsoapNODE_11036_length_1485_cov_2728.82_g5045_i2  | Uncharacterized protein                       | 3.11  | 1.79e-15 |
| evgsoapTRINITY_DN62717_c1_g1_i7                     | Uncharacterized protein                       | 3.05  | 0.0001   |

| evgsoaploc77723t1                                  | threonine-protein phosphatase PP-Z                          | 3.04  | 0.065     |
|----------------------------------------------------|-------------------------------------------------------------|-------|-----------|
| evgsoapTRINITY_GG_10_c246_g1_i1                    | Thymidylate synthase                                        | 3.04  | 1.10e-06  |
| evgsoaploc282430t1                                 | Beta-glucuronidase                                          | 3.03  | 2.05e-17  |
| evgsoaploc36467t1                                  | Nuclear transcription factor                                | 3.03  | 3.42e-11  |
| evgsoapTRINITY_DN58573_c0_g1_i1                    | Uncharacterized protein                                     | 3.03  | 9.54e-14  |
| evgsoapTRINITY_GG_1_c1990_g1_i4                    | Uncharacterized protein                                     | 2.94  | 7.291e-14 |
| evgsoapTRINITY_GG_12_c1251_g1_i1                   | Uncharacterized protein                                     | 2.94  | 3.41e-15  |
| evgsoapTRINITY_GG_14_c778_g1_i1                    | 6-phosphogluconolactonases (6PGL)                           | 2.91  | 0.013     |
| evgsoapNODE_29152_length_710_cov_11160_g17099_i0   | Uncharacterized protein                                     | 2.87  | 1.43e-19  |
| evgsoapNODE_5383_length_2180_cov_48.0499_g2810_i0  | FAD-linked oxidoreductase patO                              | 2.86  | 0.03      |
| evgsoapNODE_41051_length_504_cov_97.1114_g26970_i0 | Inositol phosphorylceramide synthase catalytic subunit aur1 | 2.860 | 0.03      |

| evgsoapNODE_8376_length_1751_cov_51.2594_g4337_i0  | Cytochrome P450 monooxygenase patl  | 2.84 | 0.027       |
|----------------------------------------------------|-------------------------------------|------|-------------|
| evgsoapTRINITY_DN63930_c3_g1_i1                    | Uncharacterized protein             | 2.82 | 0.001       |
| evgsoapTRINITY_GG_10_c2076_g1_i3                   | 14-3-3 proteins                     | 2.81 | 0.001       |
| evgsoapNODE_38782_length_535_cov_123.658_g24965_i0 | Uncharacterized protein             | 2.80 | 1.09e-05    |
| evgsoapTRINITY_DN60947_c2_g1_i4                    | Uncharacterized protein             | 2.80 | 2.75e-07    |
| evgsoapTRINITY_GG_8_c3080_g1_i1                    | DNA primase                         | 2.80 | 5.75e-11    |
| evgsoapNODE_7238_length_1895_cov_65.537_g3746_i0   | Uncharacterized protein             | 2.79 | 0.007       |
| evgsoaploc281533t1                                 | Uncharacterized protein             | 2.75 | 3.10e-07    |
| evgsoapNODE_9791_length_1598_cov_252.955_g4793_i3  | cytochrome P450 monooxygenase af510 | 2.72 | 7.59795e-10 |
| evgsoapNODE_5865_length_2104_cov_35.2318_g3062_i0  | protein HET-E-1                     | 2.71 | 0.001       |
| evgsoapNODE_5269_length_2201_cov_78.5322_g1745_i1  | protein HET-E-1                     | 2.71 | 1.80646e-05 |
| evgsoapNODE_8098_length_1783_cov_270.533_g4197_i0  | Aldehyde dehydrogenase              | 2.71 | 7.478e-06   |

| evgsoapTRINITY_GG_2_c1621_g1_i1                    | Helicase                             | 2.69  | 8.2848e-10 |
|----------------------------------------------------|--------------------------------------|-------|------------|
| evgsoapNODE_26570_length_772_cov_708.614_g15178_i0 | Uncharacterized protein)             | 2.69  | 0.0001     |
| evgsoapTRINITY_DN62963_c2_g1_i1                    | Homocysteine synthase                | 2.681 | 0.0008     |
| evgsoapNODE_20735_length_943_cov_1348.18_g11245_i0 | Uncharacterized protein              | 2.66  | 9.6e-10    |
| evgsoapTRINITY_GG_7_c330_g1_i1                     | lipoprotein LpqB                     | 2.65  | 1.6e-06    |
| evgsoapNODE_7108_length_1914_cov_67.3755_g3679_i1  | Uncharacterized protein              | 2.63  | 0.071      |
| evgsoapNODE_23816_length_846_cov_537.043_g13258_i0 | Plant-expansin-like protein          | 2.62  | 0.00012    |
| evgsoaploc66177t1                                  | Aspartic peptidase                   | 2.62  | 1.3e-08    |
| evgsoapNODE_4045_length_2464_cov_1756.77_g2134_i0  | Aromatic amino acid aminotransferase | 2.61  | 2.52e-11   |
| evgsoapTRINITY_DN61177_c1_g1_i4                    | Uncharacterized protein              | 2.56  | 0.001      |
| evgsoapNODE_7444_length_1867_cov_47.8477_g3847_i0  | isoprenoid synthase                  | 2.55  | 0.036      |
| evgsoapTRINITY_DN58327_c0_g2_i1                    | threonine-protein kinase PLK4        | 2.55  | 0.003      |

| evgsoapNODE_11004_length_1488_cov_3929.53_g5045_i1 | Carbohydrate esterase family 4 protein | 2.54  | 5.8e-15 |
|----------------------------------------------------|----------------------------------------|-------|---------|
| evgsoapNODE_26820_length_765_cov_100.851_g15356_i0 | Glycoside hydrolase family 61 protein  | 2.53  | 0.008   |
| evgsoapTRINITY_GG_11_c1748_g1_i1                   | Ribonuclease T1                        | 2.52  | 0.007   |
| evgsoapNODE_16238_length_1142_cov_343.519_g7877_i1 | Uncharacterized protein                | 2.52  | 2.3e-06 |
| evgsoaploc10579t1                                  | ZIP superfamily                        | 2.51  | 8.3e-20 |
| evgsoapTRINITY_DN63448_c0_g2_i1                    | Polysaccharide monooxygenase Cel61a    | 2.50  | 0.0006  |
| evgsoapTRINITY_DN63483_c1_g3_i4                    | Uncharacterized protein                | 2.49  | 0.060   |
| evgsoaploc10253t1                                  | Uncharacterized protein                | 2.49  | 0.065   |
| evgsoapTRINITY_DN58246_c1_g1_i5                    | oxidoreductase EphD                    | 2.48  | 0.0002  |
| evgsoapTRINITY_DN64236_c2_g5_i13                   | Cytochrome P450 4F5                    | 2.475 | 0.00065 |
| evgsoapTRINITY_GG_2_c1474_g1_i1                    | Uncharacterized protein                | 2.467 | 0.0004  |
| evgsoapNODE_8214_length_1772_cov_23.9575_g4235_i1  | Uncharacterized protein                | 2.46  | 0.078   |

| evgsoaploc278283t1                                 | Succinate dehydrogenase                     | 2.45  | 0.0002   |
|----------------------------------------------------|---------------------------------------------|-------|----------|
| evgsoapNODE_34801_length_597_cov_111.614_g21577_i0 | Uncharacterized protein                     | 2.43  | 0.002    |
| evgsoapTRINITY_DN56534_c0_g2_i1                    | Uncharacterized protein                     | 2.41  | 0.0004   |
| evgsoapTRINITY_DN58664_c0_g1_i2                    | Uncharacterized protein                     | 2.41  | 1.2e-05  |
| evgsoapNODE_52357_length_394_cov_107.811_g37647_i0 | Uncharacterized protein                     | 2.40  | 0.0802   |
| evgsoapNODE_38691_length_536_cov_728.089_g24886_i0 | Fatty-acyl-CoA synthase                     | 2.39  | 0.050    |
| evgsoaploc13101t1                                  | 4-O-methyltransferase 1                     | 2.38  | 0.0183   |
| evgsoapTRINITY_GG_5_c1526_g2_i1                    | Putative glutathione-dependent formaldehyde | 2.37  | 1.34e-07 |
| evgsoapTRINITY_DN62629_c1_g1_i1                    | Glycoside hydrolase family 61 protein       | 2.36  | 0.054    |
| evgsoapTRINITY_GG_8_c2281_g1_i1                    | Flavin-containing monooxygenases (FMOs)     | 2.36  | 3.1e-05  |
| evgsoapNODE_2621_length_2893_cov_43.0539_g1391_i0  | protein HET-E-1                             | 2.361 | 0.005    |
| evgsoapNODE_1478_length_3544_cov_64.9834_g801_i0   | Uncharacterized protein                     | 2.36  | 0.0017   |
| evgsoapNODE_1433_length_3576_cov_876.904_g773_i0   | Alpha-xylosidase A                          | 2.35  | 0.042    |

| evgsoapNODE_17647_length_1071_cov_70.312_g9313_i0  | Class III chitinase ARB_03514                            | 2.355 | 0.0008   |
|----------------------------------------------------|----------------------------------------------------------|-------|----------|
| evgsoapTRINITY_GG_13_c1838_g1_i3                   | Glycoside hydrolase family 92 protein                    | 2.34  | 0.0002   |
| evgsoapNODE_76943_length_270_cov_2173_g62172_i0    | 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase | 2.32  | 0.034    |
| evgsoapTRINITY_DN60733_c0_g1_i1                    | histidine phosphatase                                    | 2.327 | 9.27e-07 |
| evgsoapNODE_12444_length_1373_cov_36.9469_g6436_i0 | Protein kinase                                           | 2.32  | 0.0209   |
| evgsoapTRINITY_GG_8_c2751_g1_i3                    | Uncharacterized protein                                  | 2.30  | 3.85e-09 |
| evgsoapTRINITY_DN62036_c1_g1_i2                    | lipase                                                   | 2.30  | 1.5e-06  |
| evgsoapNODE_15263_length_1193_cov_70535.2_g4296_i2 | Uncharacterized protein                                  | 2.29  | 4.83e-06 |
| evgsoapNODE_3299_length_2670_cov_65.678_g1745_i0   | protein HET-E-1                                          | 2.294 | 0.002    |
| evgsoapTRINITY_GG_5_c1215_g1_i1                    | Cytochrome P450                                          | 2.29  | 5.94e-05 |

| evgsoapTRINITY_DN62681_c0_g1_i9                    | Uncharacterized protein                                    | 2.27  | 0.0006     |
|----------------------------------------------------|------------------------------------------------------------|-------|------------|
| evgsoapNODE_45860_length_450_cov_83.2354_g31383_i0 | Uncharacterized protein                                    | 2.27  | 0.083      |
| evgsoapTRINITY_DN61177_c1_g1_i1                    | Uncharacterized protein                                    | 2.27  | 0.060      |
| evgsoapTRINITY_DN21651_c0_g1_i1                    | Uncharacterized protein                                    | 2.27  | 5.71e-12   |
| evgsoapTRINITY_DN62382_c0_g1_i2                    | Isocitrate lyase                                           | 2.265 | 0.00063    |
| evgsoapTRINITY_DN63678_c1_g1_i3                    | Deoxynucleoside triphosphate<br>triphosphohydrolase SAMHD1 | 2.25  | 0.013      |
| evgsoapTRINITY_DN61177_c1_g1_i3                    | Uncharacterized protein                                    | 2.23  | 0.00090    |
| evgsoapTRINITY_DN58664_c0_g1_i1                    | Uncharacterized protein                                    | 2.230 | 0.0014     |
| evgsoapNODE_25818_length_790_cov_3224.96_g14651_i0 | Uncharacterized protein                                    | 2.22  | 0.0016     |
| evgsoapTRINITY_GG_13_c2241_g1_i1                   | aromatic-L-amino-acid decarboxylase                        | 2.220 | 0.040      |
| evgsoapTRINITY_DN60310_c1_g1_i1                    | Cytochrome P450                                            | 2.20  | 2.6379e-09 |
| evgsoapTRINITY_GG_5_c1406_g2_i2                    | 4-hydroxy-2-oxoglutarate aldolase                          | 2.207 | 0.002      |
| evgsoapTRINITY_DN60332_c0_g1_i2                    | Prolyl aminopeptidase                                      | 2.2   | 2.1661e-05 |

| evgsoapNODE_32503_length_640_cov_5370.74_g10843_i1 | Uncharacterized protein               | 2.18  | 1.4071e-10  |
|----------------------------------------------------|---------------------------------------|-------|-------------|
| evgsoapTRINITY_GG_5_c1642_g1_i1                    | Uncharacterized protein               | 2.17  | 1.70579e-13 |
| evgsoapNODE_1426_length_3586_cov_560.93_g769_i1    | Carboxylic ester hydrolase            | 2.17  | 0.0798085   |
| evgsoapTRINITY_DN61612_c0_g1_i1                    | Glycoside hydrolase family 30 protein | 2.17  | 0.002       |
| evgsoapNODE_11881_length_1414_cov_106.525_g6124_i0 | cell surface protein                  | 2.17  | 0.0001      |
| evgsoapTRINITY_GG_7_c720_g1_i1                     | Uncharacterized protein               | 2.17  | 0.0048      |
| evgsoapNODE_3412_length_2632_cov_92.1731_g1809_i0  | F-box domain                          | 2.16  | 1.5e-05     |
| evgsoapTRINITY_DN60493_c0_g1_i2                    | Uncharacterized protein               | 2.15  | 3.5e-06     |
| evgsoapTRINITY_DN58501_c0_g1_i1                    | Pre-mRNA splicing factor              | 2.13  | 6.5e-06     |
| evgsoapTRINITY_GG_12_c1131_g2_i1                   | Uncharacterized protein               | 2.12  | 2.1e-05     |
| evgsoapTRINITY_DN64330_c1_g1_i8                    | Stabilin-2                            | 2.11  | 0.0001      |
| evgsoapTRINITY_DN46901_c0_g1_i1                    | Hydrophobin SC3                       | 2.098 | 0.0005      |

| evgsoapNODE_19456_length_992_cov_412.815_g8460_i1  | Cytochrome P450                                | 2.08   | 1.06e-05 |
|----------------------------------------------------|------------------------------------------------|--------|----------|
| evgsoapNODE_20594_length_948_cov_439.831_g10295_i1 | Cytochrome P450                                | 2.07   | 0.0027   |
| evgsoapTRINITY_DN58326_c0_g1_i1                    | Putative uncharacterized oxidoreductase        | 2.07   | 0.0004   |
| evgsoapTRINITY_DN61823_c3_g1_i6                    | Heat shock protein 16                          | 2.070  | 0.0490   |
| evgsoapTRINITY_DN61132_c0_g1_i2                    | Transcription factor HIVEP3                    | 2.05   | 1.09e-10 |
| evgsoapNODE_25842_length_790_cov_106.766_g14668_i0 | mannosyl-oligosaccharide alpha-1               | 2.047  | 0.021    |
| evgsoapTRINITY_DN58307_c0_g1_i1                    | Uncharacterized protein                        | 2.0345 | 0.0280   |
| evgsoapNODE_1525_length_3506_cov_53.0835_g826_i0   | Vegetative incompatibility protein HET-E-1     | 2.03   | 4.24e-05 |
| evgsoapNODE_3958_length_2488_cov_1737.04_g2100_i0  | Uncharacterized protein                        | 2.028  | 4.5e-11  |
| Dowregulated                                       | _                                              |        |          |
| evgsoapTRINITY_GG_8_c2158_g1_i1                    | GTP-binding protein rho1                       | -9.93  | 2.7e-27  |
| evgsoapNODE_28256_length_730_cov_639.904_g16426_i0 | Uncharacterized protein                        | -6.49  | 6.9e-05  |
| evgsoapNODE_5627_length_2140_cov_625.068_g2943_i0  | Glyoxylate reductase/hydroxypyruvate reductase | -4.81  | 6.53e-17 |

| evgsoapTRINITY_GG_10_c1521_g1_i1                   | Growth arrest-specific protein 2 (GAS2)      | -3.30  | 1.0e-09  |
|----------------------------------------------------|----------------------------------------------|--------|----------|
| evgsoapTRINITY_DN59618_c3_g2_i1                    | DNA-directed RNA polymerase subunit beta     | -3.08  | 3.9e-05  |
| evgsoapNODE_42229_length_489_cov_1675.78_g28031_i0 | Uncharacterized protein                      | -2.84  | 0.001    |
| evgsoapNODE_4471_length_2358_cov_1050.76_g2215_i1  | Diacetyl reductase [(S)-acetoin forming]     | -2.78  | 1.9e-10  |
| evgsoapNODE_22483_length_886_cov_326.331_g12358_i0 | Uncharacterized protein                      | -2.78  | 2.31e-06 |
| evgsoapNODE_6426_length_2018_cov_443.434_g2206_i5  | short-chain dehydrogenases/reductases family | -2.72  | 4.7e-05  |
| evgsoapTRINITY_DN62511_c4_g1_i4                    | Lytic transglycosylase catalytic             | -2.65  | 0.0001   |
| evgsoapTRINITY_DN59202_c0_g1_i1                    | (R,R)-butanediol dehydrogenase               | -2.64  | 2.2e-14  |
| evgsoaploc26654t1                                  | Uncharacterized protein                      | -2.63  | 4.2e-05  |
| evgsoapTRINITY_DN62808_c0_g1_i1                    | cytochrome P450 monooxygenase af510          | -2.59  | 1.9e-11  |
| evgsoapTRINITY_DN64330_c1_g1_i2                    | Laminins                                     | -2.56  | 2.0e-06  |
| evgsoapTRINITY_DN62728_c0_g2_i3                    | ketoacyl-ACP synthase                        | -2.551 | 0.002    |
| evgsoapTRINITY_GG_11_c2636_g1_i1                   | Uncharacterized protein                      | -2.53  | 6.5e-17  |
| evgsoapTRINITY_DN64277_c0_g1_i7                    | Acylcarnitine hydrolase                      | -2.459 | 9.6e-07  |
| evgsoapNODE_10683_length_1516_cov_665.949_g5502_i0 | transglycosylase                             | -2.45  | 9.6e-06  |

| evgsoapTRINITY_GG_7_c1478_g1_i1                    | 5'3'-exonuclease              | -2.43  | 1.2e-14  |
|----------------------------------------------------|-------------------------------|--------|----------|
| evgsoapTRINITY_GG_12_c1190_g1_i1                   | alcohol dehydrogenase         | -2.385 | 1. 8e-09 |
| evgsoapTRINITY_DN47446_c0_g1_i1                    | Glycosyltransferase family 87 | -2.37  | 0.0002   |
| evgsoapNODE_22309_length_892_cov_297.366_g12245_i0 | ABC transporter-like protein  | -2.35  | 7.4e-06  |
| evgsoapTRINITY_DN63519_c1_g1_i3                    | Alcohol oxidase 1             | -2.33  | 4.33e-11 |
| evgsoapTRINITY_DN58877_c0_g1_i1                    | Uncharacterized protein       | -2.33  | 3.4e-09  |
| evgsoapNODE_35224_length_590_cov_199.617_g21923_i0 | Uncharacterized protein       | -2.318 | 0.0004   |
| evgsoapNODE_5378_length_2181_cov_666.36_g1863_i3   | Uncharacterized protein       | -2.24  | 1.0e-09  |
| evgsoapNODE_32262_length_645_cov_517.481_g19514_i0 | Adenine deaminase             | -2.23  | 1.80e-05 |
| evgsoapTRINITY_DN62821_c4_g4_i2                    | Aminotransferase              | -2.22  | 0.004    |
| evgsoapTRINITY_DN59794_c0_g1_i1                    | Uncharacterized protein       | -2.17  | 0.0002   |
| evgsoaploc281849t1                                 | acyl-CoA N-acyltransferase    | -2.16  | 0.074    |

| evgsoapNODE_12191_length_1391_cov_71.8937_g6290_i0                  | AB hydrolase superfamily protein YdjP                  | -2.15           | 5.9e-05            |
|---------------------------------------------------------------------|--------------------------------------------------------|-----------------|--------------------|
| evgsoapTRINITY_DN63448_c0_g2_i4                                     | Glycoside hydrolase family 61 protein                  | -2.153          | 0.019              |
| evgsoapNODE_1119_length_3846_cov_65.2706_g606_i1                    | Bifunctional solanapyrone synthase                     | -2.15           | 0.001              |
| evgsoapNODE_14071_length_1265_cov_556.575_g7320_i0                  | RNA-directed DNA polymerase from mobile element jockey | -2.136          | 0.0022             |
| evgsoapNODE_37070_length_560_cov_104.242_g23487_i0                  | heat shock protein                                     | -2.12           | 0.0002             |
| evgsoapTRINITY_DN57749_c0_g1_i2                                     | DNA excision repair protein ERCC-1                     | -2.10           | 0.0143             |
| evgsoapNODE_16993_length_1103_cov_176.797_g8938_i0                  | Glutamine amidotransferase (GATase)                    | -2.10           | 0.002              |
| evgsoapNODE_4968_length_2260_cov_26.317_g2603_i0                    | Uncharacterized protein                                | -2.066          | 0.004              |
| evgsoapTRINITY_DN60486_c3_g1_i1                                     | Glycosyl transferase                                   | -2.06           | 0.0325             |
| evgsoapNODE_48357_length_426_cov_1819.99_g33759_i0                  | Uncharacterized protein                                | -2.06           | 0.0325             |
| evgsoapTRINITY_GG_12_c944_g1_i1                                     | Farnesyl pyrophosphate synthase                        | -2.062          | 7.3e-05            |
| evgsoapTRINITY_DN60220_c1_g1_i1<br>evgsoapTRINITY_GG_12_c1193_g1_i2 | Amino-acid permease inda1<br>N-glycosidase R617        | -2.062<br>-2.04 | 2.5e-12<br>2.5e-07 |
|                                                                     |                                                        |                 |                    |

| evgsoapNODE_20113_length_966_cov_54.9232_g10857_i0 | Uncharacterized protein | -2.03  | 0.001   |
|----------------------------------------------------|-------------------------|--------|---------|
| evgsoapTRINITY_DN62479_c0_g1_i5                    | Uncharacterized protein | -2.014 | 0.053   |
| evgsoapNODE_49870_length_413_cov_511.855_g35197_i0 | Uncharacterized protein | -2.006 | 4.5e-06 |

Somente um DEG, identificado como *tms1*, foi comum nos três pontos avaliados, esse o gene codifica para *Thymidylate synthase* (TS). Sete DEGs foram compartilhados entre 3DAI e 7DAI, dentro os quais, dois codificam para diferentes proteínas hidrofofinas e estão superexpressos em ambos os dias. Sete também foi o número de DEGs em comum nos dias 3 e 11. Apenas dois desses genes mativeram o padrão comportamental e continuaram regulados negativamente durante todo o período avaliado, esses genes codificam para proteínas ainda não caracterizadas. Genes que codificam para metabólitos secundários em 3DAI estão reprimidos, no entanto em 7DAI a expressão torna-se positiva (Figura 21). Tais informações ressaltam as diferentes respostas moleculares e biológicas do fungo em decorrência do tempo de cultivo ou em função do composto tóxico.

Nos dias 7 e 11 dias o número de DEGs em comum foi maior (33), e todos apresentaram o mesmo padrão, ou seja, o gene permaneceu *upregulated ou downregulated.* Apenas três desses genes foram reprimidos ou menos expressos no bioensaio T. Esss genes são identificados como: METBIDRAFT\_42631, bdhA e AOX1, dos quais os dois últimos DEGs codificam para duas *oxirredutases butanediol dehydrogenase e Methanol oxidase 1*, respectivamente (Figura 21).

Genes que codificam para proteínas envolvidas na degradação de compostos tóxicos como esterase e metaloprotease estão reguladas positivamente em 7DAI e 11DAI. Assim como genes que codificam para hidrolases envolvidas no metabolismo de carboidrato e lipídeo. Como discutido no capítulo II, a degradação dos ésteres de forbol foi mais acentuada entre os dias 7 e 12 de cultivo.



**Figura 20**. Genes em comum que estão diferencialmente expressos pelo basidiomiceto *P. pulmonarius* EF88 nos três momento analisados (3DAI, 7DAI e 11DAI).



Figura 20. Genes em comum que estão diferencialmente expressos pelo basidiomiceto *P. pulmonarius* em 7 e 11DAI.

128

Genes que codificam para proteínas hidrofobinas e para monooxigenases do citocromo 450 estão expressas em todos os tempos de cultivo análisados 3, 7 e 11DAI (tabela 10). Proteínas envolvidas no metabolismo de lipídeo e carboidratos estão expressas positivamente em 7 e 11 DAI, tempos de cultivo onde a resposta de degradação dos ésteres de forbol se intensifica. Genes candidatos a degradação dos ésteres de forbol estão apresentados na tabela 10 e 11, a seguir, e serão discutidos posteriormente.

| LogFC | Proteína                                                                                                                      |
|-------|-------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                               |
| 4.03  | Monooxigenase P450                                                                                                            |
| 4.82  | Hidrofobina                                                                                                                   |
| 3.03  | Hidrofobina                                                                                                                   |
|       |                                                                                                                               |
| 3.09  | Monooxigenase P450                                                                                                            |
| 3.36  | Hidrofobina                                                                                                                   |
| 2.14  | Hidrofobina                                                                                                                   |
|       |                                                                                                                               |
| 2.84  | Monooxigenase P450                                                                                                            |
| 2.72  | Monooxigenase P450                                                                                                            |
| 2.47  | Monooxigenase P450                                                                                                            |
| 2.20  | Monooxigenase P450                                                                                                            |
| 2.08  | Monooxigenase P450                                                                                                            |
| 2.07  | Monooxigenase P450                                                                                                            |
| 3.57  | Hidrofobina                                                                                                                   |
| 2.09  | Hidrofobina                                                                                                                   |
|       | LogFC<br>4.03<br>4.82<br>3.03<br>3.09<br>3.36<br>2.14<br>2.84<br>2.72<br>2.47<br>2.20<br>2.08<br>2.08<br>2.07<br>3.57<br>2.09 |

**Tabela 10.** DEGs candidatos a degradação dos ésteres de forbol por *P. pulmonarius* EF88 expressos em todos os tempos de cultivo análisados.

## 129

| Gene               | 7DAI<br>LogFC | 11DAI<br>LogFC | Proteína                                    |
|--------------------|---------------|----------------|---------------------------------------------|
| DFR76_10551        | 2.79          | 2.65           | acetoacetyl-CoA thiolase                    |
| sdhaf1A            | 2.33          | 2.45           | Succinate dehydrogenase                     |
| PLEOSDRAFT_50927   | 3.87          | 7.02           | Very-long-chain 3-oxoacyl-<br>CoA reductase |
| CHU_2040           | 3.63          | 3.16           | Esterase                                    |
| axIA               | 3.05          | 2.35           | Alpha-xylosidase                            |
| NCU00937           | 3.58          | 3.03           | β-glucuronidase                             |
| SMAC_06893         | 4.69          | 5.18           | Metalloprotease                             |
| PLEOSDRAFT_1083952 | 4.29          | 3.47           | flavin reductase                            |

**Tabela 11.** DEGs candidatos a degradação dos ésteres de forbol por *P.pulmonarius* EF88 expressos em 7DAI e 11DAI.

## 4.2 Validação genes candidatos a degradação de ésteres de forbol

Baseados nos resultados de expressão gênica diferencial obtidos *in silico*, foram selecionados um total de 21 genes do EF88 candidatos a degradação dos ésteres de forbol presentes na torta de pinhão-manso (tabela 9 e 10). Todos os 21 genes candidatos foram validados quanto sua expressão via RT-qPCR e a análise de expressão gênica foi dada pela diferença entre as médias da expressão relativa entre os tratamentos T e NT.

Dados *in silico* de expressão diferencial gênica indicou que quatro diferentes genes (*HYD-1, POH2, Hydph7, Hydph8*) codificadores de proteínas hidrofobinas, foram diferencialmente expressos em todos os dias de cultivo avaliados. Sendo assim, esses genes foram selecionados como potenciais candidatos a degradação dos ésteres de forbol.

Como possível observar na figura 22 o gene *HYD-1* estava regulado positivamente em 3DAI e 7DAI, com expressão relativa de 0,75 e 0,48, respectivamente. No entanto em 11DAI a expressão gênica se altera, e o gene passa a estar regulado negativamente (-0,1095) no tratamento T. O Gene *POH2* está superexpresso em todos os dias analisados. A expressão foi maior em 3 e 7 DAI com expressão relativa de 0,87 e 0,83, respectivamente. Em 11DAI a expressão continua postitiva, no entanto, diminuí para 0,36. Dentre os quatros diferentes genes que codificam para hidrofobinas, a menor expressão foi do gene *Hydph7*, que em 3DAI estava regulado negativamente com expressão relativa de -2,2. Em 7DAI e 11DAI a expressão passa a ser positiva, com maior expressão em 11DAI. Já o gene *Hydph8* estava expresso positivamente em todos os dias. Em 3 DAI a expressão relativa foi de 0,65, em 7DAI a expressão aumenta para 3,2 e no último dia analisado (11DAI) a expressão foi de 0,6 (Figura 22).



**Figura 22.** Níveis de expressão relativa dada pela razão entre os tratamentos T e NT dos genes que codificam para hidrofobinas, que são proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico.

As monooxigenases do citocromo P450 também são enzimas candidatas a degradação dos ésteres de forbol, como indicado nos resultados *in silico*. Diferentes genes que codicam para essas enzimas estão positivamente expressas em todos os momentos analisados. Dessa forma, os genes *G3Y416*, *Q4WAZ6*, *WOLCODRAFT\_167027*, *patl*, *af510*, *Cyp4f5*, *ppoA\_3*, *ppoA*, *KUTG\_07618* que codificam para monooxigenases do citocromo P450 foram validadas quanto sua expressão relativa via RT-qPCR.

Dos 9 genes que codicam para essa classe de enzima, apenas os genes *Q4WAZ6 e KUTG\_07618* mostraram uma expressão gênica diferente dos demais (Figura 23). O gene *Q4WAZ6* apesar da expressão positiva em todos os momentos 3-7-11 DAI, apresentou uma diminição na expressão em 7DAI, como obervado na figura 23. O gene *KUTG\_07618* foi o menos expresso quando comparado aos demais, em 3DAI sua expressão estava reprimida ou menos expressa em relação ao tratamento controle NT (-0,6). Em 7 e 11 DAI a expressão passa a ser positiva, com valores relativos de 0,35 e 0,06, respectivamente. O perfil de expressão relativa dos genes *G3Y416, WOLCODRAFT\_167027, patl, af510, Cyp4f5, ppoA\_3, e ppoA* foi semelhante-aumento da expressão nos primeiros dias (3-7DAI) e em 11DAI a expressão diminuí ou está reprimida em relação ao tratamento atóxico-NT.



**Figura 23.** Níveis de expressão relativa dada pela razão entre os tratamentos T e NT dos genes de EF88 que coficam monooxigenases do citocromo P450, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhãomanso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico.

Os resultados *in silico* também indicaram que genes que codificam para enzimas envolvidas em outros processos de degradação de xenobióticos estavam diferencialmente expressos. Como por exemplo, os genes *DFR76\_10551, SMAC\_06893* e *CHU\_2040* que codificam para uma *thiolase, metalloprotease* e *esterase*, respectivamente.

Os resultados de expressão gênica por RT-qPCR mostrou que o gene *DFR76\_10551* estava superexpresso na torta tóxica em todos os dias analisados. A maior expressão foi em 3 DAI, onde a expressão relativa foi de 1,05, em 7DAI a expressão diminuí para 0,64 e em 11DAI a expressão foi de 0,01. A expressão do gene *SMAC\_06893* foi positiva na torta tóxica em todos os momentos, com expressão relativa de 0,91; 0,67 e 1,02. O gene *CHU\_2040* que codifica para uma esterase apresentou expressão positiva nos primeiros dias analisados (3 e 7) com maior expressão em 7DAI. Não houve diferença significativa nos valores de expressão dos tratamentos em 11DAI (figura 24).



**Figura 24.** Níveis de expressão relativa dos genes de EF88 que coficam para thiolase, metalloprotease e esterase, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico.

Os silico resultados in mostraram sdhaf1A, que OS genes PLEOSDRAFT 50927, PLEOSDRAFT\_1083952 que codificam respectivamente para Succinate dehydrogenase, Very-long-chain 3-oxoacyl-CoA reductase, flavin reductase estavam positivamente expressos no tratamento tóxico. No entanto, nos dados de expressão relativa via RT-qPCR os três genes apresentaram comportamento diferente dos dados de expressão diferencial in silico, como apresentado na figura 25, os genes estavam negativamente expressos no substrato tóxico.



**Figura 25.** Níveis de expressão relativa dos genes que coficam para *Succinate dehydrogenase*, *Very-long-chain 3-oxoacyl-CoA reductase*, *flavin reductase*, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico.

De acordo com os dados *in silico*, dois genes envolvidos no metabolismo de carboidratos foram diferencialmente expressos na torta tóxica. No entanto, de acordo com os dados de expressão relativa via RT-qPCR, o gene axlA que codifica para uma *alpha-xylosidase*, não apresentou diferença estatística entre os tratamentos em 3 e 7 DAI. Em 11 DAI, a expressão relativa em torta tóxica foi negativa. O gene *NCU00937* que codifica para uma β-glucuronidase apresentou expressão relativa positiva em todos os momentos em torta tóxica nos dados de RT-qPCR (figura 26).



**Figura 26.** Níveis de expressão relativa dos genes de EF88 que coficam para alpha-xylosidase e β-glucuronidase, proteínas candidatas a degradação dos ésteres de forbol da torta de pinhão-manso. \* Modulação estatisticamente diferente em relação ao tratamento tóxico e não tóxico.

## 4.3 Secretoma global e análise proteômica do *P. pulmonarius*

Foram identificadas 106 proteínas reguladas entre os tratamentos tóxicos-T e não tóxico-NT em 9 dias de cultivo, sendo apenas uma delas identificada no banco do vegetal, que permitiram o agrupamento de replicatas e distinção entre condições. Como critério adicional de estringência, foram consideradas apenas as proteínas identificadas com dois ou mais peptídios, limitando o total de proteínas reguladas a 23, nenhuma das quais pertencente a *Jatropha curcas* (pinhão-manso). Em 12 DAI foram identificadas 119 proteínas reguladas entre as condições analisadas, sendo apenas duas delas identificadas no banco de pinhão-manso, que permitiram o agrupamento de replicatas e distinção entre condições. As proteínas reguladas foram agrupadas em *clusters* de acordo com seus perfis de abundância. Como critério adicional de estringência, foram consideradas apenas as proteínas reguladas a 40, ainda contendo as duas proteínas vegetais, as quais foram excluídas a partir das análises de agrupamento de proteínas, vias metabólicas e ontologia gênica

Dessa forma foi realizada uma segunda etapa de análise estatística utilizando-se a plataforma *MetaboAnalyst* (Chong et al., 2018). Foi incrementada a análise multivariada de forma a se obterem os *Variable Importance Projection scores* (*VIP-scores*), indicando as proteínas que melhor discriminam entre as condições e *partial least squares discriminant analysis*-PLS-DA como forma de aprimorar, em relação à análise de PCA, a detecção de grupos de proteínas diferencialmente abundantes (Le Cao et al., 2011), mostrado na figura 28. Foram também gerados gráficos de correlações entre as todas proteínas reguladas (figura 29). Após as correções estatísticas, foi gerado novo mapa de correlação entre condições por perfis de abundância para as 23 principais proteínas em 9DAI e 40 principais proteínas em 12DAI, apontadas pela nova análise (30).

A análise de PLS-DA mostrados na figura 28 dos grupos de proteínas diferencialmente abundantes nos tratamentos T e NT, confirmam a hipotése que *P. pulmonarius EF88* apresenta resposta metabólica diferente quando cultivado em torta de pinhão-manso com presença e ausência de éster de

forbol. Os resultados de correlações entre o conjunto completo de proteínas analisadas mostrando a razão entre as abundâncias relativas normalizadas de cada proteína regulada, 23 em 9DAI e 40 em 12DAI, estão ilustrados na figura 28. Tons de vermelho indicam correlação positiva, tons de azul, correlação negativa.

As proteínas que melhor discriminam entre as condições, em 9DAI e 12 DAI estão apresentados na figura 30. Dentre as proteínas que mais se discriminam nos tratamentos T e NT em 9DAI, destacam-se A0A067T9i9, A0A067NYT5, A0A067NRL6, A0A067NZ51, identificadas como metalloproteinase, heat shock protein, Cytochrome b5 e hidrolase de éster carboxilico, respectivamente. Já em 12DAI dentre as proteínas que melhor discriminam entre os tratamentos A0A067NTA0, A0A067NEB2, A0A067P2R6, A0A067P227, A0A067NLX2, A0A067NYG5, A0A067NHH3 identificadas como metalloprotease, aminoendopepitidase, Glutamine keto reductase. amidotransferase. Cytochrome b5, Polysaccharide lyase Aldehyde е dehydrogenases, respectivamente.



Figura 27. VIP scores das proteínas que melhor discriminam entre as condições. 0=T; 1=NT. A- 9DAI; B-12DAI.



**Figura 28.** PLS-DA 3D mostrando o agrupamento de replicatas e diferenciação entre as condições. Na legenda da imagem, os grupos 0 e 1 correspondem a T e NT.A-9 DAI; B-12 DAI.



Figura 29. Mapa de correlações entre o conjunto completo de proteínas analisadas mostrando a razão entre as abundâncias relativas normalizadas de cada proteína regulada. Tons de vermelho indicam correlação positiva, tons de azul, correlação negativa. A-9 DAI; B-12DAI



**Figura 30**. Mapa de correlações (heatmap) entre padrões de abundância normalizada e agrupamento de condições após a segunda etapa de análises estatísticas. O conjunto completo das proteínas reguladas atendeu ao fator limitante do agrupamento das replicatas em cada condição. A- 9 DAI; B-12 DAI.

4.4 Gene Ontology e Kyoto Encyclopedia of Genes and Genomes

As categorias funcionais de Gene Ontology (GO) e vias de Kegg (Kyoto Encyclopedia of Genes and Genomes), foram geradas para as proteínas reguladas nos tratamentos avaliados, tóxico (T) e não tóxico (NT). Para permitir uma análise adequada de representação de vias e termos GO, foi realizado um mapeamento dos códigos de acesso das proteínas para códigos de genes nos bancos pertinentes aos programas de predição. Para isso, foi utilizada as plataformas de mapeamento *BLASTKoala* para identificar as vias de Keeg e *Blast2GO* para gerar os termos de GO. A plataforma Revigo revelou agrupamentos semânticos entre os termos GO mais frequentes associados às proteínas reguladas.

Sobre as análises de Kegg, duas vias distintas contendo proteínas reguladas foram detectadas por BLASTKoala. Em 9DAI foram atribuídos 12 anotações para a categoria de função molecular, relacionados principalmente a *hydrolase activity*. Em relação a categoria de processos biológicos foram identificados 9 anotações, ao qual a maior parte está relacionada a *organic substance metabolic process* e *primary metabolic process*. Em relação a categoria de componente celular foram atribuídas 10 anotações, envolvidos principalmente em processos intracelulares.

Em 12DAI foram identificadas 9 anotação para função molecular, e assim como em 9DAI a maior parte também está relacionada a *hydrolase activity*. Os GO relacionados a categoria de processos biológicos em 12DAI se assemelharam aos resultados encontrados em 9DAI. Já em relação a categoria de componente celular foram atribuídas 11 anotações também relacionados, em sua maioria, a processos intracelulares.

No que se refere aos agrupamentos semânticos de função molecular mais frequentes em 9DAI e 12DAI, destacam-se atividade catalitíca, de hidrolase, de metaloproteinase, *peroxiredoxin*, ligação de celulose e carboidrato. Entre os termos mais frenquentes agrupados na categoria de processos biólogicos, as funções que mais se destacam estão relacionadas a *cellular oxidant detoxification response to reactive oxygen species, oxydationreduction process e cell redox homeostasis.* 





Figura 21. Agrupamento das proteínas em vias. Duas vias contendo proteínas reguladas detectadas por *BlastKoala*.






# Cellular component

**Figura 32**. A-C: Distribuição geral de termos GO dentre as proteínas reguladas em 9DAI por *P. pulmonarius* cultivado em torta de pinhão-manso. A: Funções moleculares; B: Processos biológicos; C: Componentes celulares.







**Figura 33**. Distribuição geral de termos GO dentre as proteínas reguladas em 12DAI por *P. pulmonarius* cultivado em torta de pinhão-manso. A: Funções moleculares; B: Processos biológicos; C: Componentes celulares







**Figura 34.** A-C: Agrupamento semântico das proteínas reguladas em 9DAI (eixos s e y), correlação com frequência absoluta no conjunto de proteínas (tamanho dos círculos) e similaridade com outros termos (escala de cores). A: Funções moleculares; B: Processos biológicos; C:: Componentes celulares.





**Figura 35.** A-C: Agrupamento semântico das proteínas reguladas em 9DAI (eixos s e y), correlação com frequência absoluta no conjunto de proteínas (tamanho dos círculos) e similaridade com outros termos (escala de cores). A: Funções moleculares; B: Processos biológicos; C: Componentes celulares.

#### 5. Discussão

# 5.1 Análise Gene Ontology (GO)

As três classificações de termos de Gene Ontology (GO): função molecular, processos biológicos e compomente celular foram enriquecidas durante todos os dias avaliados, tanto no dados transcritômicos quanto proteômicos. Esses dados mostram a complexidade da resposta do macrobasidiomiceto EF88 em relação ao cultivo em torta de pinhão-manso. A categoria de função molecular apresentou o maior número de subcategorias de termos GO, e dentro dos quais se destacaram: atividade transportadora e atividade de oxirretudases. Em relação as subcategorias de processos biológicos se destacam: resposta ao *stress*, detoxificação, resposta a substância tóxica, celular destoxificação enriquecidos em 11DAI.

No que se refere aos dados proteicos, a categoria componente celular apresentou maior números de subcategorias (11) em ambos os dias analisados, das quais se destacam os processos intracelulares. Já entre as subcategorias de processos biológicos, destacam-se: processo metabólico de nitrogênio, processo metabólico de substâncias orgânicas e processo de oxidação-redução. Com relação a função molecular, duas subcategorias de termos GO foram mais abundantes: atividade hidrolase, principalmente atividade de metalopepitidase e atividade de oxiredutase.

Em 11 DAI GO relacionados a atvidade antioxidante está enriquecido, indicando que o microrganismo está sofrendo um *stress* oxidativo e dessa forma aciona enzimas antioxidantes para manter a homeostase redox do organismo. Os resultados de *Gene Ontology* proteicos indicam que o cultivo de *P. Pulmonarius EF88* em torta de pinhão-manso pode desencadear um estresse oxidativo, processos biológicos relacionados *cell redox homeostasis* e *cellular oxidant detoxification* foram identicados tanto em 9DAI quanto em 12DAI.

Segundo Inari, a micotoxina PAT desencadeia um estresse oxidativo na levedura Sporobolomyces sp, que em reposta a esse desequilíbrio ativa a expressão de sistemas antioxidantes e de desintoxicação celular. A análise transcritômica de comunidades microbianas encontradas em resina de pinheiro, substrato rico compostos terpênicos, identificou 40 gêneros bacterianos presentes nesse microbiota. Também foram identificados genes envolvidos na degradação de terpenos, incluindo o cluster gênico (dit) envolvido na via de degradação de terpenos acíclicos. Os GOs enriquecidos nesse trabalho estão relacionados a atividade transportadora, NADH dehydrogenase e hidrolase de éster carboxilíco (Vilanova et al., 2014).

#### 5.2 Metabolismo de carboidratos, lipídeos e proteínas

Diferentes enzimas relacionadas ao metabolismo de carboidratos, lipídeos e proteínas estão reguladas positivamente durante o crescimento de *P. pulmonarius* EF88 em torta de pinhão-manso. Resultados de expressão diferencial *in silico* indicaram que os genes axlA e NCU00937 que codificam para *Alpha-xylosidase* e  $\beta$ -glucuronidase, respectivamente, estavam modulados positivamente no cultivo de *P. pulmonarius* em torta de pinhão-manso tóxica. No entanto, nos dados de RT-qPCR apenas o gene NCU00937 estava diferencialmente expresso no cultivo tóxico, a expressão do gene axlA não diferiu estatísticamente do cultivo controle em 3DAI e 7DAI, em 11DAI a expressão foi negativa.

Análises de expressão diferencial de genes, *Gene Ontology-* GO e *Kyoto Encyclopedia of Genes and Genomes-KEGG* indicam que genes e proteínas envolvidas na degradação de lipídeos, carboidratos foram encontrados tanto na cultivo tóxico quanto no cultivo controle. A torta de pinhão-manso tem em sua constituição frações hemicelulósicas (25%), lignina (24%), proteínas (46-63%), lipídeos (19%) e minerais (Gomes, 2015). Dessa forma, vias relacionadas a degradação de carboidratos e lipídeos se tornam essenciais para a sobrevivênvia de *P. pulmonarius* em torta de pinhão-manso, sendo assim estão acionadas pelo fungo em ambos os substratos, independente da presença do éster de forbol. No entanto, o cultivo em substrato tóxico intensificou a expressão gênica de proteases e do metabolismo de nitrogênio.

5.3 Influência da molécula tóxica de éster de forbol na expressão diferencial de genes em *P. pulmonarius* EF88

Os ésteres de forbol presentes na torta do pinhão-manso são diterpenos tigliane e podem agir no organismo de duas formas; aguda acarretando uma resposta inflamatória intensa ou crônica que leva a formação de tumores, a intensidade da ação desse composto no organismo depende de sua estrutura química (Makkar *et al.*, 1998; Makkar e Becker, 2009). A atividade biológica do éster de forbol é altamente específico-estrutural, mesmo em concentrações baixas podem causar intoxicação (Goel *et al.*, 2007). Diferentes formas de PE podem ativar vias distintas na resposta celular, e dessa forma, cada organismo pode apresentar sintomas distintos, como a formação de tumores, inflamação, diferenciação e apoptose nos tecidos animais (Goel *et al.*, 2007; Gomes *et al.*, 2018).

Esses diterpenos também podem ser usados como agentes antimicrobianos e antivirais (Insanu *et al.*, 2013). Trabalhos anteriores mostraram a interferência desse composto no crescimento fúngico, onde apenas 13 éspecies de basidiomicetos, de um total de 30, foram capazes de crescer em meio seletivo a base de pinhão-manso (Gomes, 2015).

A análise dos genes diferencialmente expressos de *P. pulmonarius* revelou que os genes reprimidos no cultivo do macrofungo em torta tóxica estão relacionados em sua maioria com funções celulares como: replicação, regulação transcricional, sinalização e complexos proteicos.

Diante desses resultados foi possível inferir que a molécula tóxica de éster de forbol interfere na resposta metabólica e desenvolvimento inicial do macro-basidiomiceto EF88. Tal comportamente também fica evidenciado nos resultados transcritômicos obtidos pela análise de *Gene Ontology*, onde processos biológicos como: processamento de forquilhas de replicação, regulação negativa de recombinação de DNA, manutenção de fidelidade na replicação de DNA, resposta ao eestressee, resposta a substância tóxica e destoxificação celular estão enriquecidos.

Os ésteres de forbol podem causar danos nas células do fungo e a recuperação dos danos e equilíbrio metabólico exige um alto gasto energético e dessa forma, outras vias metabólicas são reduzidas. Essa hipótese também

foi levantada por laniri *et al.* (2016) que analisaram o transcritoma da levedura *Sporobolomyces sp.* em resposta a exposição e degradação da micotoxina patulina produzida por *Penicillium expansum*, genes envolvidos nos processos de síntese e modificação de proteínas, e genes que codificam para proteínas envolvidas no transporte de íons, divisão celular e ciclo celular foram reprimidos na presença da micotoxina.

# 5.4 Mecanismo de proteação: Heat Shock protein e Hidrofobinas

Nos dados *in silico* de expressão diferencial de genes, foram identificados DEGs que codificam para proteínas de choque térmico ou *heat shock protein*- HSP. Os genes *PLEOSDRAFT\_1090083* e *hsp16*, estavam expressos positivamente na torta tóxica em 7DAI com *LogFoldChange* de 3.44 e 2.3, respectivamente. O gene *PLEOSDRAFT\_1090983* foi identificado tanto em 7DAI quanto em 11DAI, com LogFoldChange de 2.15 e 2.07, respectivamente. Os dados proteicos suplementam os dados de expressão diferencial de genes. A proteína A0A067NYT5, identificada como uma *heat shock protein*, estava regulada positivamente no cultivo tóxico 9D. Essas proteínas são conhecidas por serem induzida sob uma variedade de fatores de eestressee como na presença de metais pesados, substâncias tóxicas e temperatura elevadas. As HSPs impedem a desnaturação, dobramento incorreto ou agregação em tais condições de eestressee e são capazes de restabelecer o equilíbrio entre síntese de proteínas, montagem e desmontagem de complexos proteicos e degradação (Hall, 2002; Kregel, 2002).

A análise transcritômica *in silico* do basidiomiceto *P. pulmonarius* cultivado em torta de pinhão-manso revelou que genes que codificam para proteínas hidrofobinas, foram superexpressas em todos os momentos avaliados (3, 7 e 11 dias). Os resultados da expressão gênica por RT-qPCR confirmaram a modulação positiva desses genes em relação ao cultivo controle.

Wösten e Scholtmeijer, (2015) em uma publicação recente sobre o estado da arte das proteínas hidrofobinas, afirmam que estas desempenham um papel importante para o crescimento e desenvolvimento de fungos filamentosos. Hidrofobinas são proteínas de baixo peso molecular (≤20 kDa) secretadas exclusivamente por fungos. São constituídos de 100 a 140

aminoácidos com 8 resíduos de cisteína conservados (Bayry *et al.*, 2012; Wösten e Scholtmeijer, 2015).

Essas proteínas se montam em filmes estáveis anfipáticos que cobrem células fúngicas, e dessa forma, contribuem para a hidrofobicidade superficial. A formação desse filme permite o crescimento de hifas fúngicas e os protegem em ambientes desfavoráveis (Peddireddi *et al.*, 2006). A hidrofobicidade superficial é importante também em processos de associação de hifas nas estruturas reprodutivas, dispersão de esporos aéreos e adesão de agentes patogênicos às estruturas hospedeiras (Bayry *et al.*, 2012)

De acordo com análise de sequências as hidrofobinas podem ser divididas em duas classes I e II. Hidrofobinas pertencentes a classe I formam membranas estáveis do tipo amilóide e apenas são rompidas em condições severas, como a utilização de ácidos fortes (ácido trifluoroacético e ácido fórmico), enquanto as hidrofobinas da classe II formam estruturas menos resistêntes e podem ser dissociados usando etanol 60%, SDS 2% ou por exposição a pressão (Morris *et al.*, 2011; GrunéR *et al.*, 2012; Wösten e Scholtmeijer, 2015). Em ambas as classes, as membranas parecem ter múltiplas funções, como adesão, formação de revestimentos em esporos ou corpos frutíferos, e até mesmo facilitar a formação de estruturas ou complexos (Kubicek *et al.*, 2008; GrunéR *et al.*, 2012).

Essas pequenas proteínas podem ser secretadas em respostas a mudanças no desenvolvimento fúngico, condições ambientais (Plett *et al.*, 2012), resposta e proteação a condições estressantes de crescimento (Mukherjee et al., 2006; Ying et al., 2006).

Dados do genoma e analises transcriptomas do macro-basidiomicetos halofilíco *Wallemia ichthyophaga* indicou que as hidrofobinas podem desempenhar função importante na fortificação da parede celular de *W. lchthyophaga* contra ambientes extremos saturados com NaCl (Zajc *et al.*, 2013). O transcritoma do macro-basidiomiceto *Rigidoporus microporus* cultivado nos resíduos da seringueira *Hevea brasiliensis* revelou que os genes que codificam para hidrofobinas foram diferecialmente expressos durante todo o crescimento fúngico (Oghenekaro *et al.*, 2016).

Os resultados de RT-qPCR mostraram que a expressão relativa dos genes que codificam para hidrofobinas foi maior nos primeiros dias analisados

(3 e 7DAI), e nos dados proteícos, a proteína A0A067NYT5 foi modulada positivamente somente no 9° dia de cultivo. Diante disso, proteínas como *heat shock* e hidrofobinas podem fornecer proteção ao estresse causado ao fungo *P. pulmonarius* no cultivo em substrato tóxico de pinhão-manso e essa proteção pode ser fundamental para sobrevivência inicial do basiodimiceto em torta de pinhão-manso.

# 5.5 Genes e proteínas do EF88 envolvidos na degradação dos ésteres de forbol presentes na torta do pinhão-manso

#### 5.5.1 Hidrolases de ésteres carboxílicos

As hidrolases de ésteres carboxílicos (3.1.1.x) mais conhecidas pertencem a superfamilía dobra alfa/beta hidrolase, e hidrolisam as ligações éster em soluções aquosas formando um álcool e um ácido carboxílico (Hotelier et al., 2004; Wang et al., 2010). Essas enzimas estão envolvidas diretamente da degradação de compostos xenobióticos dentre os quais se destacam as carboxilesterases (3.1.1.1), arilesterases (3.1.1.2), lipases (3.1.1.3), acetylxylan esterases (EC 3.1.1.72) e feruloyl esterases (EC 3.1.1.73) (Chang *et al.*, 2008; Sood *et al.*, 2016; Haernvall *et al.*, 2017). Esterases como acetyl xylan esterase e feruloyl esterase participam da degradação completa da parede celular vegetal por microrganismos celulolíticos (Hashimoto et a., 2010).

Os dados de expressão diferencial mostaram que o gene *CHU\_2040* que codifica para uma ezima pertencente a família 1 das carboidrato esterase, estava diferencialmente expresso pelo EF88 no cultivo tóxico. Os resultados de RT-qPCR confirmaram a expressão gênica positiva em relação ao tratamento controle. Os dados do secretoma global indicaram que a proteína A0A067NZ51, identificada como uma carboxiesterase, estava regulada positivamente no cultivo de *Pleurotus pulmonarius* em substrato tóxico.

A familía 1 das carboidratos esterases (CE1) representa a maior e mais diversificada família de CE, dentre essa variedade enzimática, podemos destacar as classes de *acetilxilan* esterases (EC 3.1.1.72), feruloil esterases (EC 3.1.1.73), cinamoil esterases (EC 3.1.1-), carboxilesterases (EC 3.1.1.1), diacilglicerol O-aciltransferases (EC 2.3.1.20) (Lombard et al., 2014).

Carboxiesterases são enzimas encontradas em macro e microrganismos que catalalisam a clivagem de ligações éster simples e triglicérides de cadeia curta (C <8) (Chahinian et al., 2009; Sood et al., 2016; Hussein et al., 2015). Possuem preferência por substratos solúveis em água, são enzimas que geralmente não requerem cofator e exibem alta regioespecificidade e estereoespecificidade ao substrato (Panda & Gowrishankar, 2005; Hussein et al., 2015). As carboxiesterases desempenham papel importante na degradação e destoxificação de vários compostos xenobióticos como piretróides e organofosfato encontrados em inseticidas e herbicidas (Wheelock et al., 2008).

Trabalhos anteriores já mostraram a participação de carboxilesterase na degradação do éster de forbol 12-0-Tetradecanoyl Phorbol13-Acetate -TPA (Mentlei et al., 1986). Essas enzimas atuam na hidrolíse da ligação éster C-12 do esqueleto principal tigliane, o principal metabólito dessa reação é o forbol 13-acetate (PA) (Mentlei et al., 1986). Esterases e lipases microbianas são apontadas como as principais enzimas envolvidas na biodegradação dos ésteres de forbol, enzimas oxidativas e proteases podem atuam na degradação de produtos secundários (Gomes et al., 2018).

#### 5.5.2 Metaloprotease

Proteases são enzimas hidrolíticas que clivam ligações peptídicas entre os aminoácidos das proteínas, são classificadas com base no tipo de reação catalisada, natureza química do sítio catalítico e relação evolutiva com referência à estrutura (Barett,1994; Rao et al., 1998).

De forma geral, as proteases podem ser divididas em dois grupos: I) Exopeptidases que atuam somente nos finais das cadeias polipeptídicas na região N ou C terminal, as enzimas que atuam na região amino terminal livre liberam um único resíduo de aminoácido, um dipeptídeo ou um tripeptídeo. As exopeptidases que atuam na região carboxi terminal livre liberam um único aminoácido ou um dipeptídeo. ii) Endopeptidases atuam preferencialmente nas regiões internas da cadeia polipeptídica, entre as regiões N- e C-terminal (Rao et al., 1998).

Além disso, as proteases podem ser classificadas em sete grupos principais: serina, cisteína, aspartato, metaloprotease, glutâmicas, peptidases treonina e peptídeo-liase da asparagina não-hidrolítica (Rawlings et al. 2011; Silva 2017; da Silva et al., 2017). Essa classificação baseia-se no mecanismo de ação de cada enzima e nos nos grupos funcionais do sítio ativo (Rao et al., 1998; . Sabotic et al., 2007; Inácio et al., 2015). As Metaloproteases são os mais diversos tipos catalíticos de proteases, e precisam de de um íon metálico divalente para sua atividade, como zinco e cobalto (Rao et al., 1998).

Tanto dos dados transcritômicos quanto proteômicos indicaram que a atividade de metaloproteases foi maior no cultivo de *P. pulmonarius* em torta de pinhão-manso tóxica em relação ao cultivo controle. Como foi abordado no capítulo II, as atividades de proteases foram maiores em *P. pulmonarius* no cultivo em torta de pinhão-manso tóxica. Inúmeros trabalhos relatam que a torta de pinhão-manso tem sido um substrato promissor para produção de proteases (Gomes et al., 2018).

Fungos cultivados em resíduos agroindustriais apresentam alta expressão de proteases extracelulares como metaloproteases e serina proteases, enzimas de ampla especificidades de substrato, essa expressão foi induzida pela presença de uma fonte de nitrôgenio presente nos substratos lignocelulósicos (*Zorn et al., 2005;* Scully et al., 2011).

Entretanto, já está bem caracterizado que algumas metaloproteases conseguem hidrolisar ligações éster (Bornscheuer et al., 2004; Pedersen et al., 2002; Grogan,2009; Kim et al., 2000). Dessa forma, essas enzimas poderiam ser protagonistas, juntamente com as esterases, na degradação dos ésteres de forbol. Baseado nos resultados de expressão relativa (RT-qPCR) e no secretoma, as metaloproteases ainda foram diferencialmente expressas mesmo após a drástica resução dos ésteres de forbol, diferentemente das esterases, que só foram diferencialmente expressas em relação ao cultivo tóxico quando os níveis de esteres de forbol eram altos. Com isso, foipossível inferir que as metaloproteases podem exercer dois papeis no metabolismo do basiodiomiceto *P. pulmonarius*: i) degradando a fonte de nitrogênio do substrato (função essencial para sobrevivência do fungo), ii) degradando os ésteres de forbol em decorrência de sua ambiguidade de ação.

#### 5.5.3. Os genes do Citocromo P450

Os macro-basidiomicetos de podridão branca são os maiores degradadores de substratos lignocelulósicos, e usados frequentemente para biodegradar poluentes aromáticos e compostos xenobióticos (Mori e Kondo, 2002; Arun e Eyini, 2011; Chen *et al.*, 2016; Feofilova e Mysyakina, 2016). Enzimas ligninolíticas permitem que os fungos consigam crescer em substratos recalcitrantes de estruturas aleatórias, uma vez que essas enzimas não necessitam de alta especificidade para aturar sobre o substrato, essa característica provavelmente decorre de uma adaptação dos fungos as diversas estruturas da lignina (Bonugli-Santos *et al.*, 2012). Dessa forma conseguem atuar sobre uma gama de compostos (Bonugli-Santos *et al.*, 2012; Feofilova e Mysyakina, 2016).

Além de secretar enzimas responsáveis pela degradação de materiais lignocelulósicos, os macro-basidiomicetos possuem um sistema intracelular de metabólicos versáteis, uma vez que os fragmentos aromáticos gerados pela degradação da lignina, são metabolizados e mineralizados intracelularmente (Hirosue *et al.*, 2011; Ichinose e Wariishi, 2013). Dessa forma, a ação de uma gama de genes estão envolvidas na degradação de substancias xenobióticas, como por exemplo, os genes do Citocromo P450.

Os genes do Citocromo P450 estão presentes no genoma de quase todos os organismos e codificam uma superfamília de monooxigenases contendo hemo que metabolizam uma grande variedade de compostos xenobióticos como hidrocarbonetos poliaromáticos (PAHs), alcanos, terpenos, herbicidas e inseticidas (Bernhardt, 2006; Hsu *et al.*, 2011; Urlacher e Girhard, 2012; Girvan e Munro, 2016). As monooxigenases catalisam a incorporação de um único átomo de oxigênio em um substrato orgânico e redução concomitante do outro átomo a água (Bernhardt, 2005; Ichinose et al., 2012). A diversidade de aplicação dessas enzimas se dá justamente por essa capacidade de inserir átomos de oxigênio em posições específicas de moléculas complexas (Girvan & Munro, 2016). Em fungos, também participam da síntese de esteróis de membrana e no metabolismo de carbono lipídico (Hsu *et al.*, 2011).

Nos macro-basidiomicetos as diferentes funções dessas monooxigenases versáteis podem ter contribuído para adaptações

metabólicas, como degradação da lignina, produção de metabólitos secundários e degradação de xenobióticos (Ichinose e Wariishi, 2013). De acordo com dados publicados por Suzuki et al. (2012) o genoma do basidiomiceto Phanerochaete carnosa foi enriquecido por genes que codificam P450 monooxigenases e essas enzimas podem estar relacionadas com a capacidade do fungo em degradar extrativos fenolícos e de colonizar tanto madeiras folhosas (heartwood) como coníferas (softwood). Em outro trabalho, Hirosue et al. (2011) relatam que o macro-basidiomiceto Phanerochaete chrysosporium degradou substâncias aromáticas como carbazole, dibenzofurano, dibenzotiofeno, fluoreno, bifenilo e naftaleno. Segundo esse autores os resultados obtidos confirmam a capacidade desses fungos em metabolizar uma grande variedade de produtos petroquímicos aromáticos e poluentes ambientais por meio de reações mediadas por monooxigenases do Citocromo P450.

No presente trabalho, os resultados *in silico* de expressão diferencial gênica, indicaram que 9 genes que codificam para essa superfamília de oxirredutases foram expressos positivamente em todos os dias de cultivo. Os resultados de expressão gênica via RT-qPCR também mostraram expressão positiva no cultivo tóxico, em pelo menos dois momentos, dos três analisados. Ainda sobre os dados de RT-qPCR, é importante ressaltar a similitude entre o comportamento dos genes do Citocromo P450. Os genes apresentaram maior expressão em 3DAI e 7DAI, já em 11DAI (degradação de 90% dos ésteres de forbol) a expressão diminuí ou se torna negativa em relação ao cultivo controle. O secretoma de *P. pulmonarius* mostrou que enzimas do complexo *citochromo b5* estavam reguladas positivamente no cultivo de *P. pulmonarius* EF88 em substrato tóxico.

Existem dois sistemas enzimáticos redox centrais para reduzir as enzimas P450 eucarióticas, a oxidorredutase P450 (POR) e as citocromo b5 (cyt b5; b5 redutase) (Syed et al., 2011). O complexo *cyt b5* desempenha um papel importante nas reações do citocromo P450, essas enzimas são capazes de doar o segundo elétron dos dois requeridos pelo citocromo P450, aumentando a eficiência da reação e a afinidade com o substrato (*Parkinson et al.,* Syeda et al., 2011).

Os ésteres de forbol são moléculas sensíveis ao oxigênio e podem ser rapidamente degradados por oxidação externa e autoxidação (Gogoi et al., 2014; Goel et al., 2007). Diversos processos físicos de degradação desses diterpernos usam como principío a degradação oxidativa (Gomes, 2018). Devappa *et al.* (2010) sugerem que enzimas oxidativas da microbiota do solo podem estar envolvidas na degradação dos diterpenos presentes na torta de pinhão-manso.

Traballhos anteriores também apontam a participação dessas enzimas na degradações de outros terpenos. Segundo Morgan e Wyndham, (2002) e Smith *et al.* (2004) monooxigenases do citocromo P450 estão diretamente envolvidas na degradação do diterpenóides abietano por cepas bacterianas de *Pseudomonas*. Quando o gene *tdtD* que codifica uma monooxigenase do citocromo P450 sofreu *knockout*, limitou o crescimento e a capacidade de degradação dos diterpenos triciclicos pela cepa de *Pseudomonas diterpeniphila* A19-6<sup>a</sup> (Morgan e Wyndham, 2002). De acordo com Martins et al. (2017), enzimas P450 foram responsáveis pela biodegradação do terpenóide ácido labanólico pelo fungo *Penicillium janczewskii*. Monooxigenases do citocromo P450 foram diferencialmente secretadas pelo fungo na presença do terpenoíde, e a bioconversão do mesmo foi inibida na presença de um inibidor de P450.

# 5.5.4 Proteínas hidrofobinas

Dados da literatura fornecem informações relevantes sobre essas enzimas e suas possíveis ações em processos de degradação de compostos aromáticos recalcitrantes e na fixação na parede celular vegetal, e serão discutidas a seguir.

O fungo Aspergillus oryzae foi capaz de hidrolizar o polímero polybutylene succinate-coadipate (PBSA) em decorrência da ação de enzimas de polyesterase como a CutL1. Takahashi *et al.* (2005) investigaram outras possíveis proteínas envolvidas no processo de degradação desse composto. O gene que codifica para a hidrofobina RoIA foi altamente transcrito pelo fungo *A. oryzae* cultivado em meio com PBSA como única fonte de carbono. A co-expressão dos genes *RoIA e CutL1* em uma cepa recombinante de *A. oryzae* 

aumentou sua capacidade de degradar o polímero. Tais resultados indicam que a expressão da hidrofobina RoIA estimula a hidrolíse de PBSA pela enzima CulL1. Segundo os autores, RoIA e CutL1 podem formar um mecanismo molecular para a degradar compostos hidrofóbicos, no caso o polímero *polybutylene succinate-coadipate*. A hidrofobina ao ser adsorvida a superfície hidrofóbica da molécula de PBSA recruta a enzima CutL1, ocasionando o seu acúmulo e assim estimula a hidrólise do polímero em questão. O mecanismo e cinética da interação entre RoIA-PBSA não está totalmente elucidado, no entanto, os resíduos de aminoácidos L137 e L142 localizados no loop C7 – C8 da proteína RoIA está diretamente envolvido em sua interação com materiais sólidos (Tanaka *et al.*, 2014). Para Tanaka *et al.*,(2017) existe uma interação iônica entre hidrofobinas e cutinases e essa interação pode ser comum entre os fungos do genêro *Aspergillu*s e demais fungos filamentosos.

As hidrofobinas-HFB também foram relatadas por aumentar a taxa de degradação enzimática do polímero recalcitrante de *polyethylene terephthalate-PET* (Espino-Rammer *et al.*, 2013; Ribitsch *et al.*, 2015). Hidrofobinas (HFB4 e HFB7E) da classe II isoladas de *Trichoderma sp.* estimularam a hidrolise enzimática do polímero aromático-alifáticos PET pelas cutinases, no entanto essa proteínas podem exibir propriedades diferentes no processo de degradação (Espino-Rammer *et al.*, 2013). Ribitsch *et al.* (2015) relatam ainda que a hidrólise de PET pode ser significativamente aumentada pela fusão de cutinases a hidrofobinas. Com a fusão dessas proteínas a degradação do polímero foi 16x maior em relação a enzima livre, enquanto que o *mix* enzimático com as enzimas individuais aumentou somente em 4x a hidrolíse de PET. Esse aumento pode ser em decorrência de alterações conformacionais no centro ativo das cutinases (Ribitsch *et al.*, 2015)

De acordo com Mgbeahuruike *et al.* (2013), o macro-basidiomiceto *Phlebia brevispora* possuí em seu genoma 10 genes que codificam para hidrofobinas a mais que o genoma do basidiomiceto patogênico *Heterobasidion annosum*, a partir desses dados os autores sustentam a teoria que a distribuição e o número de genes codificadores de hidrofobinas podem ser associados a preferências ecológicas nas espécies de basiodiomicetos analisadas.

Foram identificados dois DEGs que codificam para hidrofobinas, em todos os tempos de cultivo. Em 3 DAI, esses genes apresentaram LogFoldChange de 4.82 e 3.03, em 7DAI o LogFoldChange foi de 3.36 2.14 e em 11DAI 3.57 e 2.09.

Diante de tais fatos, é possível que as hidrofobinas expressas positivamente no presente trabalho, interajam com a superfície hidrofóbica da torta de pinhão-manso e dessa forma auxiliam e potencializam a ação de enzimas necessárias para a sobrevivência do fungo no resíduo em questão. Consequentemente a ação dessas enzimas (esterases e proteases) que foram diferencialmente expressas, mesmo que de forma indireta, resulta na degradação dos ésteres de forbol. Dado o fato que essas proteínas possuem a capacidade de recrutar enzimas hidrolíticas necessárias para penetração de um substrato (Takahashi *et al.*, 2005).

Outra hipótese levantada está na interação direta dessas proteínas com a superficíe hidrofobica dos ésteres de forbol, uma vez que os DEGs que codificam para essas proteínas foram encontrados no bioensaio tóxico, estas por suas vez recrutam esterases ou lipases responsáveis pela degradação dessa molécula, similar ao modelo proposto por Takahashi *et al.* (2005), ilustrado pela figura 36. De acordo com Wang *et al.* (2016) a hidrofobina HFBI de *T. reesei* melhorou a hidrofobicidade da superfície da célula da levedura recombinante *P. pastoris* e dessa forma aumentou a atividade catalítica da lipase B de *Candida antarctica* CALB. Vários genes que codificam para proteínas hidrofobinas são encontrados no genoma dos fungos, está variedade pode estar relacionada a diferentes funções funcionais, expressão diferencial ou relacionados a condições ambientais (Zajc *et al.*, 2013)



**Figura 36**. Modelo proposto por Takahashi et al. (2005) entre a interação entre polyesterase CutL1 e a proteína hidrofobina RolA para degradação do polímero PBSA.

Como já foi abordado no capítulo I, os ésteres de forbol são diterpenos tetracíclicos do tipo tigliane que contém 4 anéis designados como A, B, C e D. Todos os seis tipos de ésteres de forbol (*Jatropha* factors C1–C6) encontrados no pinhão-manso compartilham o mesma esqueleto diterpênico (12-desoxi-16-hidroxiforbol), que se ligam por ligações éster a resíduos de ácidos graxos através do C-13 e C-16 (figura 2).

Esses compostos diterpenos podem ser degradados por transesterificação, hidrólise (química e enzimática) e como são moléculas sensíveis ao oxigênio, podem ser rapidamente degradados por oxidação externa ou autoxidação (Gogoi et al., 2014; Goel et al., 2007).

Baseados nos resultados *in silico* de expressão diferencial gênica, foram escolhidos 21 genes candidatos a biodegradação dos ésteres de forbol, por *P. pulmonarius.* Todos esses genes apresentaram expressão positiva em torta tóxica, a expressão também foi validada via RT-qPCR. Os genes que codificam para esterases, metalloprotease e monooxigenases do citochromo p450 podem desempenhar papel fundamental na degradação dos ésteres de forbol. Dados proteômicos indicam que essas proteínas estão reguladas positivamente no cultivo tóxico em 9D, dia em que a degração se acentua. Isto posto, a degradação dos ésteres de forbol pelo basiomiceto *P. pulmonarius* pode ocorrer em duas estapas:

- I) Degradação hidrolítica das ligações éster nas posições C-13 e C-16, mediadas por esterases ou metalloproteases, a clivagem dessa ligação causará a dissociação da molécula de forbol e de seus ácidos graxos (Figura 37). Atualmente a literatura ainda é escassa sobre os produtos gerados a partir da degradação dos ésteres de forbol, seja por métodos quimícos, fisícos ou biológico. No entanto, trabalho recente publicado por Ahluwalia et al. (2017) relata que a biodegradação dos ésteres de forbol da torta de pinhão-manso (microrganismo não publicado) gera subprodutos como forbol, ácido mirístico e ácido acético
- II) Degradação oxidativa dos possíveis produtos gerados na etapa I, por monooxigenases do citochromo p450. Segundo Kongmany et al. (2013) a oxidação e degradação dos ésteres de forbol por irradiação de plasma se inicia pelo radical hidroxila (• OH). Isto posto, as p450 podem agir de forma similar ao modelo proposto por esses autores (Kongmany et al., 2013). As monooxigenases podem atuar sob as ligações duplas do anel A e / ou B da estrutura principal tigliane, adicionando um ou dois radicais • OH. Tal reação acarretará na clivagem das ligações duplas e destruição dos aneis (figura 36). A degradação oxidativa dos ésteres de forbol podem gerar produtos finais como: ácidos carboxílicos, dióxido de carbono e água (Kongmany et al., 2013).



Figura 37. Modelo proposto para as etapas de degradação dos ésteres de forbol por P. pulmonarius.

#### 6. Conclusões

Dados de expressão diferencial gênica *in silico*, análisado em diferentes tempos de culivo, revelou que a mólecula tóxica de éster de forbol forbol interfere no desenvolvimento inicial do basidiomiceto, inibindo funções celulares e vias metabólicas. Os dados obtidos também indicam que vias relacionadas ao metabolismo de lipídeo e carboidratos estão acionadas durante o crescimento de *P. pulmonarius* em ambos os tratamentos (T e NT), no entanto o metabolismo de proteínas parece se intensificar no cultivo em torta de pinhão-manso tóxica.

A análise de expressão diferencial de genes e do secretoma de *P. pulmonarius* forneceu dados importantes quanto aos genes e proteínas candidatas a degradação do diperteno éster de forbol, como por exemplo: hidrofobinas, *heat shock protein-* HSP, monooxigenases do citocromo P450, metaloproteases e esterases. Tanto os resultados de expressão diferencial de genes (*in silico* e RT-qPCR) indicaram que essas proteínas estão positivamente moduladas pelo basidiomiceto em cultivo tóxico.

De acordo com os dados obtidos, enzimas como esterases e metaloproteases estão envolvidas diretamente na degradação dos ésteres de forbol e essa degradação pode ser mediada ou intensificada pelas proteínas hidrofobinas. As monooxigenases do citocromo P450 podem agir na oxidação dos compostos gerados a partir da hidrolíse da estrutura principal do éster de forbol. As hidrofobinas, juntamente com as *heat shock proteins*, podem também desempenhar um papel de proteção ao fungo contra as condições de *stress* inicial causada pela molécula tóxica.

Dessa forma, diferentes abordagens moleculares foram usadas para determinar quais genes e proteínas estão envolvidas na degradação dos ésteres de forbol pelo basidiomiceto *P. pulmonarius EF88*. Dados do transcritoma via sequênciamento NGS, mostrou ser uma ferramenta eficiente na identificação de genes candidatos a degradação de ésteres de forbol *in silico*. Experimentos adicionais de validação desses genes por PCR em tempo real e análises proteômicas foram importantes para garantir a confiabilidade dos resultados e das hipotéses levantadas.

# 7. Conclusões finais da tese

Além da completa degradação dos ésteres de forbol o uso de microrganismos como agentes degradadores da molécula tóxica, permite melhorar o valor nutricional dos resíduos, aumentando o teor de proteínas disponíveis, reduzindo as frações de lignina (deslignificação) e contribuindo com bioativos como o beta-glucano e o ergosterol do micélio fúngico.

No entanto, apesar da biodesintoxicação ser um método eficiente e específico para degradação dos ésteres de forbol, este processo ainda apresenta limitações como o tempo de cultivo e dificuldades de escalonamento. Abordagens transcritômicas e proteômicas foram usadas para gerar as primeiras informações relacionados ao comportamento de um microorganismo em resposta ao cultivo em torta de pinhão-manso e a molécula tóxica de éster de forbol.

O presente trabalho fornece dados inéditos relacionados ao comportamento de um microrganismo cultivado no resíduo agroindústrial torta de pinhão-manso. Resultados do transcritoma e secretoma do basidiomiceto mostrou que *P. pulmonarius* responde de forma distinta quando cultivado em torta de pinhão-manso tóxica e atóxica, uma vez que os grupos gênicos e proteícos diferencialmente modulados são diferentes. Essas ferramentas foram importantes também para identificar enzimas esterases, uma vez que métodos de quantificação enzimática empregados nesse trabalho não foram eficientes. A quantificação laboratorial de proteases indicou alta atividade dessas enzimas, bem como os dados de expressão diferencial e proteoma.

A elucidação dos genes envolvidos em tais processos foi o primeiro passo em direção à triagem precisa de espécies biodestoxificadoras eficientes, e também para o melhoramento genético de cepas microbianas, permitindo que o tempo de degradação e a eficiência sejam otimizados.

# 8. Referencial da literatura

A, C. Maintenance and cultivation of common pathogenic fungi of man in sterile distilled water. Further researches. **Journal of Tropical Medicine and Hygiene**, v. 70, n. 8, p. 181-&, 1967. ISSN 0022-5304.

Abdelgadir, A. H.; Van Staden, J. Ethnobotany, ethnopharmacology and toxicity of *Jatropha curcas L*.(Euphorbiaceae): A review. **South African Journal of Botany**, v.88, p. 204–218, 2013.

ACHTEN, W. et al. Jatropha bio-diesel production and use. **Biomass and bioenergy**, v. 32, n. 12, p. 1063-1084, 2008. ISSN 0961-9534.

AMITAI, G. et al. Enhanced stereoselective hydrolysis of toxic organophosphates by directly evolved variants of mammalian serum paraoxonase. **The FEBS journal**, v. 273, n. 9, p. 1906-1919, 2006. ISSN 1742-4658.

Andrews, G.L., Dean, R.A., Hawkridge, A.M., Muddiman, D.C., Improving proteome coverage on a LTQ-Orbitrap using design of experiments. **J Am Soc Mass Spectrom**, v. 22, p. 773–783, 2011.

AREGHEORE, E.; BECKER, K.; MAKKAR, H. Detoxification of a toxic variety of Jatropha curcas using heat and chemical treatments, and preliminary nutritional evaluation with rats. **The South Pacific Journal of Natural and Applied Sciences,** v. 21, n. 1, p. 51-56, 2003. ISSN 1838-8388.

ARUN, A.; EYINI, M. Comparative studies on lignin and polycyclic aromatic hydrocarbons degradation by basidiomycetes fungi. **Bioresource technology**, v. 102, n. 17, p. 8063-8070, 2011. ISSN 0960-8524.

Arshid, S., Tahir, M., Fontes, B., de Souza Montero, E.F., et al., High performance mass spectrometry based proteomics reveals enzyme and signaling pathway regulation in neutrophils during the early stage of surgical trauma. **Proteomics - Clin. Appl.** v. 11, 2017.

BAYRY, J. et al. Hydrophobins—unique fungal proteins. **PLoS pathogens**, v. 8, n. 5, p. e1002700, 2012. ISSN 1553-7374.

Barett, A. J. 1994. Proteolytic enzymes: serine and cysteine peptidases. **Methods Enzymology**, v. 244, p. 1–15, 1994.

BELEWU, M. et al. Performance characteristics of goat fed Trichoderma treated feather meal-rice husk mixture. **Animal Nutrition and Feed Technology,** v. 9, n. 2, p. 203-208, 2009. ISSN 0972-2963.

BERNHARDT, R. Cytochromes P450 as versatile biocatalysts. **Journal of biotechnology,** v. 124, n. 1, p. 128-145, 2006. ISSN 0168-1656.

BONUGLI-SANTOS, R. C.; DURRANT, L. R.; SETTE, L. D. The production of ligninolytic enzymes by marine-derived basidiomycetes and their biotechnological potential in the biodegradation of recalcitrant pollutants and the treatment of textile effluents. **Water, Air, & Soil Pollution,** v. 223, n. 5, p. 2333-2345, 2012. ISSN 0049-6979.

BOSE, A.; KEHARIA, H. Phorbol ester degradation in Jatropha seedcake using white rot fungi. **3 Biotech,** v. 4, n. 4, p. 447-450, 2014. ISSN 2190-572X.

BORNSCHEUER, U. T.; KAZLAUSKAS, R. J. Catalytic Promiscuity in Biocatalysis: Using Old Enzymes to Form New Bonds and Follow New Pathways, **Angewandte Chemie e Angewandte Chemie International Edition**, v. 43, 6032 –6040, 2004.

Castanera, R. et al. Transcriptional and Enzymatic Profiling of *Pleurotus ostreatus* Laccase Genes in Submerged and Solid-State Fermentation Cultures. **Applied and Environmental Microbiology**, *v.* 78, p. 4037–4045, 2012.

Castanera, R. et al.Validation of Reference Genes for Transcriptional Analyses in *Pleurotus ostreatus* by Using Reverse Transcription-Quantitative PCR. **Applied and Environmental Microbiology**, *v. 81*, p. 4120–4129, 2015.

CASTRO, A. Complexo Agroindustrial de Biodiesel no Brasil. **Competitividade** das Cadeias Produtivas de Matérias-Primas. Brasília-DF. Embrapa Agroenergia, 2010.

CHANG, A. et al. BRENDA, AMENDA and FRENDA the enzyme information system: new content and tools in 2009. **Nucleic acids research,** v. 37, n. suppl\_1, p. D588-D592, 2008. ISSN 1362-4962.

CHARNEY, J.; TOMARELLI, R. M. A colorimetric method for the determination of the proteolytic activity of duodenal juice. **J. biol. Chem,** v. 171, n. 2, p. 501-505, 1947.

CHEN, L. et al. Genome sequence of the edible cultivated mushroom Lentinula edodes (Shiitake) reveals insights into lignocellulose degradation. **PIoS one,** v. 11, n. 8, p. e0160336, 2016. ISSN 1932-6203.

Chong, J., Soufan, O., Li, C., Caraus, I., et al., MetaboAnalyst 4.0: towards more transparent and integrative metabolomics analysis. *Nucleic Acids Res*, 2018.

Crowell, A.M., Wall, M.J., Doucette, A. A. Maximizing recovery of water-soluble proteins through acetone precipitation. **Analytica chimica acta**, v.796, p.48-54, 2013.

DE BARROS, C. R. et al. The potential of white-rot fungi to degrade phorbol esters of Jatropha curcas L. seed cake. **Engineering in Life Sciences**, v. 11, n. 1, p. 107-110, 2011. ISSN 1618-2863.

DEVAPPA, R. K.; MAKKAR, H. P.; BECKER, K. Biodegradation of Jatropha curcas phorbol esters in soil. **Journal of the Science of Food and Agriculture,** v. 90, n. 12, p. 2090-2097, 2010. ISSN 1097-0010.

DIAZ, J. M. et al. Lipase from the thermotolerant fungus Rhizopus homothallicus is more thermostable when produced using solid state fermentation than liquid fermentation procedures. **Enzyme and Microbial Technology,** v. 39, n. 5, p. 1042-1050, 2006. ISSN 0141-0229.

DRUMOND, M. A. et al. Agronomic performance of different genotypes of physic nut in the semi-arid zone of Pernambuco state. **Ciência Rural**, v. 40, n. 1, p. 44-47, 2010. ISSN 0103-8478.

DURAES, F. O. M.; LAVIOLA, B. G. A.; ALVES, A. A. Potential and challenges in making physic nut (Jatropha curcas L.) a viable biofuel crop: the Brazilian perspective. **Plant Sci. Rev,** v. 2011, p. 179, 2012. ESPINO-RAMMER, L. et al. Two novel class II hydrophobins from Trichoderma spp. stimulate enzymatic hydrolysis of poly (ethylene terephthalate) when expressed as fusion proteins. **Applied and environmental microbiology**, v. 79, n. 14, p. 4230-4238, 2013. ISSN 0099-2240.

FEOFILOVA, E.; MYSYAKINA, I. Lignin: Chemical structure, biodegradation, and practical application (a review). **Applied biochemistry and microbiology**, v. 52, n. 6, p. 573-581, 2016. ISSN 0003-6838.

Feldman, D. et al. Detoxification of 5-hydroxymethylfurfural by the *Pleurotus ostreatus* lignolytic enzymes aryl alcohol oxidase and dehydrogenase. **Biotechnology for Biofuels**, v. 63, n. 8, p. 1-11, 2015.

Garrido-Bazan, V. *et al.* Effect of textile dyes on activity and differential regulation of laccase genes from *Pleurotus ostreatus* grown in submerged fermentation. **AMB Express**, v. 93, n.6, p1-9, 2016.

GIRVAN, H. M.; MUNRO, A. W. Applications of microbial cytochrome P450 enzymes in biotechnology and synthetic biology. **Current opinion in chemical biology,** v. 31, p. 136-145, 2016. ISSN 1367-5931.

GOEL, G. et al. Phorbol esters: structure, biological activity, and toxicity in animals. **International journal of toxicology,** v. 26, n. 4, p. 279-288, 2007. ISSN 1091-5818.

GOGOI, R.; NIYOGI, U. K.; TYAGI, A. K. Reduction of phorbol ester content in jatropha cake using high energy gamma radiation. **Journal of Radiation Research and Applied Sciences,** v. 7, n. 3, p. 305-309, 2014. ISSN 1687-8507.

GOMES, T. G. et al. Current Strategies for the Detoxification of Jatropha curcas Seed Cake: A Review. **Journal of agricultural and food chemistry**, 2018. ISSN 0021-8561.

GRUNÉR, M. S. et al. Self-assembly of class II hydrophobins on polar surfaces. **Langmuir,** v. 28, n. 9, p. 4293-4300, 2012. ISSN 0743-7463.

GUEDES, R. E. et al. Detoxification of Jatropha curcas seed cake using chemical treatment: analysis with a central composite rotatable design. **Industrial Crops and Products,** v. 52, p. 537-543, 2014. ISSN 0926-6690. HAERNVALL, K. et al. A new arylesterase from pseudomonas pseudoalcaligenes can hydrolyze ionic phthalic polyesters. **Journal of biotechnology,** v. 257, p. 70-77, 2017. ISSN 0168-1656.

HA, J. et al. Genome sequence of *Jatropha curcas* L., a non-edible biodiesel plant, provides a resource to improve seed-related traits. **Plant Biotechnology Journal**, pp. 1–14,2018.

HALL, J. Cellular mechanisms for heavy metal detoxification and tolerance. **Journal of experimental botany,** v. 53, n. 366, p. 1-11, 2002. ISSN 1460-2431.

Hawkridge, A.M., in:, *Quant. Proteomics*, 2014.

HIDAYAT, C. et al. Enhancing indigenous lipase activity of germinated Jatropha curcas L. seeds for the enzymatic degradation of phorbol ester. **Biocatalysis** and Agricultural Biotechnology, v. 3, n. 3, p. 71-76, 2014. ISSN 1878-8181.

HIROSUE, S. et al. Insight into functional diversity of cytochrome P450 in the white-rot basidiomycete Phanerochaete chrysosporium: involvement of versatile monooxygenase. **Biochemical and biophysical research communications**, v. 407, n. 1, p. 118-123, 2011. ISSN 0006-291X.

HSU, K.-H. et al. Cytochrome P450 genes in medicinal mushroom Antrodia cinnamomea TT Chang et WN Chou (higher Basidiomycetes) are strongly expressed during fruiting body formation. **International journal of medicinal mushrooms,** v. 13, n. 6, 2011. ISSN 1521-9437.

IANIRI, G.; IDNURM, A.; CASTORIA, R. Transcriptomic responses of the basidiomycete yeast Sporobolomyces sp. to the mycotoxin patulin. **BMC** genomics, v. 17, n. 1, p. 210, 2016. ISSN 1471-2164.

ICHINOSE, H.; WARIISHI, H. High-level heterologous expression of fungal cytochrome P450s in Escherichia coli. **Biochemical and biophysical research communications,** v. 438, n. 2, p. 289-294, 2013. ISSN 0006-291X.

INSANU, M. et al. Rational use of Jatropha curcas L. in food and medicine: from toxicity problems to safe applications. **Phytochemistry reviews**, v. 12, n. 1, p. 107-119, 2013. ISSN 1568-7767.

JIA, Q. et al. Microbial-type terpene synthase genes occur widely in nonseed land plants, but not in seed plants. **Proceedings of the National Academy of Sciences,** v. 113, n. 43, p. 12328-12333, 2016. ISSN 0027-8424.

JOSHI, C.; MATHUR, P.; KHARE, S. Degradation of phorbol esters by Pseudomonas aeruginosa PseA during solid-state fermentation of deoiled Jatropha curcas seed cake. **Bioresource technology**, v. 102, n. 7, p. 4815-4819, 2011. ISSN 0960-8524.

Kalagatur, N. K. et al. Application of Activated Carbon Derived from Seed Shells of *Jatropha curcas* for Decontamination of Zearalenone Mycotoxin. **Frontiers Pharmacology**, v. 8, 2017.

KASUYA, M. C. M. et al. Bio-detoxification of jatropha seed cake and its use in animal feed. In: (Ed.). **Biodiesel-Feedstocks, Production and Applications**: Intech, 2012.

Kalli, A., Smith, G.T., Sweredoski, M.J., Hess, S., Evaluation and optimization of mass spectrometric settings during data-dependent acquisition mode: focus on LTQ-Orbitrap mass analyzers. **J Proteome Res**,v. 12,p. 3071–3086, 2013.

Kim, D. H.; Soo Suk Lee, S. S. Origin of Rate-Acceleration in Ester Hydrolysis with Metalloprotease Mimics. **Bioorganic & Medicinal Chemistry**, v. 8, p. 647-652, 2000.

KREGEL, K. C. Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. **Journal of applied physiology,** v. 92, n. 5, p. 2177-2186, 2002. ISSN 1522-1601.

KUBICEK, C. P. et al. Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. **BMC evolutionary biology,** v. 8, n. 1, p. 4, 2008. ISSN 1471-2148.

KULIKOVA, N. et al. Use of basidiomycetes in industrial waste processing and utilization technologies: fundamental and applied aspects. **Applied biochemistry and microbiology,** v. 47, n. 6, p. 565, 2011. ISSN 0003-6838.

KUMAR, A. et al. Irrigation Scheduling and Fertilization Improves Production Potential of Jatropha (*Jatropha curcas* L.): A Review. **Int. J. Curr. Microbiol. App. Sci**, v. 6, n. 5, p. 1703-1716, 2017.

Kumar, A.; Tewari, S. K. Origin, distribuition, Enthnobotany and Pharmacology of *Jatropha curcas*. **Research Journal of medicinal plan**t, v. 9, n. 2, p. 48-59, 2015.

KUVSHINOV, D.; SISWANTO, A.; ZIMMERMAN, W. Microbubbles enhanced synthetic phorbol ester degradation by ozonolysis. **World Academy of Science, Engineering and Technology, International Journal of Chemical and Molecular Engineering,** v. 1, n. 1, 2014.

KUWAHARA, M. et al. Separation and characterization of two extracelluar H2O2-dependent oxidases from ligninolytic cultures of Phanerochaete chrysosporium. **FEBS letters,** v. 169, n. 2, p. 247-250, 1984. ISSN 1873-3468.

LAVIOLA, B. G. et al. The importance of Jatropha for Brazil. In: (Ed.). **Jatropha**, **challenges for a new energy crop**: Springer, 2012. p.71-94.

Le Cao, K.A., Boitard, S., Besse, P., Sparse PLS discriminant analysis: biologically relevant feature selection and graphical displays for multiclass problems. *BMC Bioinformatics*, v.12,p. 253, 2011.

LUZ, J. M. R. D. et al. Lignocellulolytic enzyme production of Pleurotus ostreatus growth in agroindustrial wastes. **Brazilian Journal of Microbiology**, v. 43, n. 4, p. 1508-1515, 2012. ISSN 1517-8382.

MAHANTA, N.; GUPTA, A.; KHARE, S. Production of protease and lipase by solvent tolerant Pseudomonas aeruginosa PseA in solid-state fermentation using Jatropha curcas seed cake as substrate. **Bioresource technology,** v. 99, n. 6, p. 1729-1735, 2008. ISSN 0960-8524.

MAKKAR, H.; ADERIBIGBE, A.; BECKER, K. Comparative evaluation of nontoxic and toxic varieties of Jatropha curcas for chemical composition, digestibility, protein degradability and toxic factors. **Food chemistry**, v. 62, n. 2, p. 207-215, 1998. ISSN 0308-8146.

MAKKAR, H. et al. Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. **Journal of Agricultural and Food Chemistry**, v. 45, n. 8, p. 3152-3157, 1997. ISSN 0021-8561.

MAKKAR, H. P.; BECKER, K. Jatropha curcas, a promising crop for the generation of biodiesel and value-added coproducts. **European journal of lipid** science and technology, v. 111, n. 8, p. 773-787, 2009. ISSN 1438-9312.

MARTIN, V. J.; MOHN, W. W. Genetic Investigation of the Catabolic Pathway for Degradation of Abietane Diterpenoids by Pseudomonas abietaniphilaBKME-9. **Journal of bacteriology,** v. 182, n. 13, p. 3784-3793, 2000. ISSN 0021-9193. MARTIN, V. J.; YU, Z.; MOHN, W. W. Recent advances in understanding resin acid biodegradation: microbial diversity and metabolism. **Archives of microbiology,** v. 172, n. 3, p. 131-138, 1999. ISSN 0302-8933.

MARTINEZ-HERRERA, J. et al. Chemical composition, toxic/antimetabolic constituents, and effects of different treatments on their levels, in four provenances of Jatropha curcas L. from Mexico. **Food chemistry**, v. 96, n. 1, p. 80-89, 2006. ISSN 0308-8146.

MAURYA, R. et al. A review on cassane and norcassane diterpenes and their pharmacological studies. **Fitoterapia**, v. 83, n. 2, p. 272-280, 2012. ISSN 0367-326X.

MENDES, A. P. D. A.; COSTA, R. C. D. Mercado brasileiro de biodiesel e perspectivas futuras. **BNDES Setorial, Rio de Janeiro**, n. 31, p. 253-279, 2010.

MENDONCA, S.; LAVIOLA, B. G. Uso potencial e toxidez da torta de pinhãomanso. **Embrapa Agroenergia-Comunicado Técnico (INFOTECA-E)**, 2009. ISSN 2177-4447.

Musa, S. F. et al. *Pleurotus sajor-caju* can be used to synthesize silver nanoparticles with antifungal activity against *Candida albicans*. **Journal of the Science of Food and Agriculture**, v. 98, p. 1197–1207, 2018.

MGBEAHURUIKE, A. C. et al. Evolutionary analysis of hydrophobin gene family in two wood-degrading basidiomycetes, Phlebia brevispora and Heterobasidion annosum sl. **BMC evolutionary biology**, v. 13, n. 1, p. 240, 2013. ISSN 1471-2148.

MORGAN, C.; WYNDHAM, R. Characterization of tdt genes for the degradation of tricyclic diterpenes by Pseudomonas diterpeniphila A19-6a. **Canadian journal of microbiology,** v. 48, n. 1, p. 49-59, 2002. ISSN 0008-4166.

MORI, T.; KONDO, R. Oxidation of chlorinated dibenzo-p-dioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. **FEMS microbiology letters,** v. 216, n. 2, p. 223-227, 2002. ISSN 1574-6968.

MORRIS, V. K. et al. Recruitment of class I hydrophobins to the air: water interface initiates a multi-step process of functional amyloid formation. **Journal of Biological Chemistry,** v. 286, n. 18, p. 15955-15963, 2011. ISSN 0021-9258.

NAJJAR, A. et al. Removal of Phorbol Esters Present in Jatropha curcas Kernel by Fungal Isolates. **International Journal of Agriculture & Biology,** v. 16, n. 5, 2014. ISSN 1560-8530.

NAKAO, M. et al. Degradation of Jatropha curcas phorbol esters derived from Jatropha oil cake and their tumor-promoting activity. **Ecotoxicology and environmental safety,** v. 114, p. 357-364, 2015. ISSN 0147-6513.

NCUBE, T. et al. Jatropha curcas seed cake as substrate for production of xylanase and cellulase by Aspergillus niger FGSCA733 in solid-state fermentation. **Industrial Crops and Products,** v. 37, n. 1, p. 118-123, 2012. ISSN 0926-6690.

OGHENEKARO, A. O. et al. De novo transcriptomic assembly and profiling of Rigidoporus microporus during saprotrophic growth on rubber wood. **BMC** genomics, v. 17, n. 1, p. 234, 2016. ISSN 1471-2164.

OWEN, E.; SMITH, T.; MAKKAR, H. Successes and failures with animal nutrition practices and technologies in developing countries: A synthesis of an FAO e-conference. **Animal Feed Science and Technology,** v. 174, n. 3-4, p. 211-226, 2012. ISSN 0377-8401.

PARK, Y.-J.; YOON, S.-J.; LEE, H.-B. A novel thermostable arylesterase from the archaeon Sulfolobus solfataricus P1: purification, characterization, and expression. **Journal of bacteriology,** v. 190, n. 24, p. 8086-8095, 2008. ISSN 0021-9193.

PEDDIREDDI, S. et al. Multiple hydrophobin genes in mushrooms. Antonio G. Pisabarro and Lucía Ramírez (eds.): VI Meeting on Genetics and Cellular Biology of Basidiomycetes (GCBB-VI). Pamplona: Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa, 2006., 2006, Universidad Pública de Navarra/Nafarroako Unibertsitate Publikoa.

PEDERSEN, N. R. et al. Eficient transesterication of sucrose catalysed by the metalloprotease thermolysin in dimethylsulfoxide. **FEBS Letters**, v. 519, p. 181-184, 2002.

PHASUKARRATCHAI, N.; TONTAYAKOM, V.; TONGCUMPOU, C. Reduction of phorbol esters in Jatropha curcas L. pressed meal by surfactant solutions extraction. **Biomass and bioenergy**, v. 45, p. 48-56, 2012. ISSN 0961-9534.

PHENGNUAM, T.; SUNTORNSUK, W. Detoxification and anti-nutrients reduction of Jatropha curcas seed cake by Bacillus fermentation. **Journal of bioscience and bioengineering**, v. 115, n. 2, p. 168-172, 2013. ISSN 1389-1723.

PLETT, J. M. et al. Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. **Fungal Genetics and Biology,** v. 49, n. 3, p. 199-209, 2012. ISSN 1087-1845.

RAMOS, L. P. et al. Biodiesel: Matérias-Primas, Tecnologias de Produção e Propriedades Combustíveis. **Rev. Virtual Quim,** v. 9, p. 317-369, 2017.

RAO, M. B. et al. Molecular and Biotechnological Aspects of Microbial Proteases. **MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS**,vol. 62, n. 3, 1998.

Rappsilber, J., Mann, M., Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. **Nature protocols**, n.2, v.8, p.1896, 2007.

Rawlings, N.D.; Barret, A. J.; Bateman A. Asparagine peptide lyases. **Journal** of Biological Chemistry, v. 286, p.38321–38328, 2011.

RIBITSCH, D. et al. Enhanced cutinase-catalyzed hydrolysis of polyethylene terephthalate by covalent fusion to hydrophobins. **Applied and environmental microbiology,** v. 81, n. 11, p. 3586-3592, 2015. ISSN 0099-2240.
RODRIGUES, F. V.; RONDINA, D. Alternativas de uso de subprodutos da cadeia do biodiesel na alimentação de ruminantes: glicerina bruta. Acta Veterinaria Brasilica, v. 7, n. 2, p. 91-99, 2013. ISSN 1981-5484.

SADAF, A.; KHARE, S. Production of Sporotrichum thermophile xylanase by solid state fermentation utilizing deoiled Jatropha curcas seed cake and its application in xylooligosachharide synthesis. **Bioresource technology**, v. 153, p. 126-130, 2014. ISSN 0960-8524.

SILVA E SILVA, F. D. D.; GRASEL, D.; MERTENS, F. Participação da agricultura familiar no Programa Nacional de Biodiesel. **Revista de Política Agrícola,** v. 26, n. 1, p. 65-80, 2017. ISSN 2317-224X.

Silva, R. R. Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. **Applied Biochemistry and Biotechnology**, 2017.

SINGH, M. P. et al. Fermentative production of self-toxic fungal secondary metabolites. **Journal of industrial microbiology & biotechnology,** v. 37, n. 4, p. 335-340, 2010. ISSN 1367-5435.

SMITH, D. J.; MARTIN, V. J.; MOHN, W. W. A cytochrome P450 involved in the metabolism of abietane diterpenoids by Pseudomonas abietaniphila BKME-9. **Journal of bacteriology,** v. 186, n. 11, p. 3631-3639, 2004. ISSN 0021-9193.

SOOD, S. et al. Carboxylesterases: sources, characterization and broader applications. **Insights in Enzyme Research,** v. 1, n. 1, 2016. ISSN 2573-4466.

Soden, D. M.; Dobson, D. W. Differential regulation of laccase gene expression in *Pleurotus sajor-caju*. **Microbiology**, *v*. 147, p. 1755–1763, 2001.

SUZUKI, H. et al. Comparative genomics of the white-rot fungi, Phanerochaete carnosa and P. chrysosporium, to elucidate the genetic basis of the distinct wood types they colonize. **BMC genomics,** v. 13, n. 1, p. 444, 2012. ISSN 1471-2164.

TAKAHASHI, T. et al. The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfaces. **Molecular microbiology**, v. 57, n. 6, p. 1780-1796, 2005. ISSN 1365-2958.

SCULLY, E. D. Proteomic Analysis of Fusarium solani Isolated from the Asian Longhorned Beetle, Anoplophora glabripennis. **PLOS ONE**, v. 7, n. 4, 2012.

TANAKA, T. et al. Analysis of the ionic interaction between the hydrophobin RodA and two cutinases of Aspergillus nidulans obtained via an Aspergillus oryzae expression system. **Applied microbiology and biotechnology**, v. 101, n. 6, p. 2343-2356, 2017. ISSN 0175-7598.

TANAKA, T. et al. Involvement of hydrophobic amino acid residues in C7–C8 loop of Aspergillus oryzae hydrophobin RolA in hydrophobic interaction between RolA and a polyester. **Bioscience, biotechnology, and biochemistry,** v. 78, n. 10, p. 1693-1699, 2014. ISSN 0916-8451.

THOLL, D. Terpene synthases and the regulation, diversity and biological roles of terpene metabolism. **Current opinion in plant biology,** v. 9, n. 3, p. 297-304, 2006. ISSN 1369-5266.

URLACHER, V. B.; GIRHARD, M. Cytochrome P450 monooxygenases: an update on perspectives for synthetic application. **Trends in biotechnology**, v. 30, n. 1, p. 26-36, 2012. ISSN 0167-7799.

VILANOVA, C. et al. Selecting microbial strains from pine tree resin: biotechnological applications from a terpene world. **PIoS one,** v. 9, n. 6, p. e100740, 2014. ISSN 1932-6203.

WALLACE, P. W. et al. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes. **Applied microbiology and biotechnology,** v. 101, n. 6, p. 2291-2303, 2017. ISSN 0175-7598.

WANG, L. et al. Mining bacterial genomes for novel arylesterase activity. **Microbial biotechnology,** v. 3, n. 6, p. 677-690, 2010. ISSN 1751-7915.

WANG, P. et al. Display of fungal hydrophobin on the Pichia pastoris cell surface and its influence on Candida antarctica lipase B. **Applied microbiology and biotechnology**, v. 100, n. 13, p. 5883-5895, 2016. ISSN 0175-7598.

WÖSTEN, H. A.; SCHOLTMEIJER, K. Applications of hydrophobins: current state and perspectives. **Applied microbiology and biotechnology**, v. 99, n. 4, p. 1587-1597, 2015. ISSN 0175-7598.

XIAO, J. et al. Evaluation of detoxification methods on toxic and antinutritional composition and nutritional quality of proteins in Jatropha curcas meal. **Journal of agricultural and food chemistry**, v. 59, n. 8, p. 4040-4044, 2011. ISSN 0021-8561.

YAMAGUCHI, M. et al. Quantification of the mycelial mass of the white-rot fungus *Pleurotus pulmonarius* by real-time PCR. **Bull FFPRI**, v. 8, p. 133-141, 2009

ZAJC, J. et al. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. **BMC genomics**, v. 14, n. 1, p. 617, 2013. ISSN 1471-2164.

ZERBE, P. et al. Diterpene synthases of the biosynthetic system of medicinally active diterpenoids in Marrubium vulgare. **The Plant Journal**, v. 79, n. 6, p. 914-927, 2014. ISSN 1365-313X.

ZHANG, M. et al. Rapid Detoxification of Jatropha curcas Seed Cake by Hydrogen Peroxide Oxidation and Acute Toxicity Evaluation of Detoxified Product. **Agricultural Research**, v. 3, n. 4, p. 302-307, 2014. ISSN 2249-720X.

Zorn, H.et al. The secretome of *Pleurotus sapidus*. **Proteomics**, v. 5, p. 4832–4838, 2005.

## 8. Anexo 1: Propriedade intelectual

## Pôster premiado no Simpósio de Biologia Molecular 2018



# Expressão diferencial de genes em *Pleurotus pulmonarius* associados a degradação enzimática e destoxificação da torta de pinhão-manso

Taísa Godoy Gomes<sup>1</sup>, Gabriel Sergio Costa Alves<sup>2</sup>, Sámed Ibrahim Isa Abdel Hadi<sup>3</sup>,Marcos Mota do Carmo Costa<sup>4</sup>, Simone Mendonça<sup>5</sup>, Robert Neil Gerard Miller<sup>6</sup>, Félix Gonçalves de Siqueira<sup>7</sup>

#### Resumo

Pinhão-manso (Jatropha curcas) é uma oleaginosa promissora para produção de biodiesel. A composição do coproduto gerado após a extração do óleo, chamado de torta, o torna um potencial candidato para ser usado na suplementação animal. No entanto, para tais fins se faz necessário a inativação de compostos tóxicos presentes nesse resíduo, como os ésteres de forbol (EFs). Os EF são diterpenos que podem induzir respostas inflamatórias agudas e a formação de tumores em animais. No cenário de biodestoxificação, o basidiomiceto P. pulmonarius degrada com eficiência esse composto e ainda produz cogumelos comercialmente viáveis. Neste contexto, o presente trabalho teve como principal objetivo identificar genes envolvidos nesse processo de biodestoxificação, por meio de sequenciamento paralelo massivo do transcritoma de P. pulmonarius via Illumina HiSeq 2500. O transcritoma do basidiomiceto foi analisado em três momento distintos e em torta de pinhão-manso com presença (bioensaio T) e ausência de EFs (bioensaio NT). Os pontos escolhidos (3, 7 e 11 dias) foram baseados nos resultados da curva de degradação dos EFs ao longo de 30 dias de cultivo sólido. O transcriptoma do fungo foi montado usando o software EvidentialGene e assim mapeados um total de 23297 genes. Foram identificados 351 genes diferencialmente expressos (DEGs) no cultivo do basidiomiceto em torta de pinhão-manso tóxica, dos quais 234 estavam superexpressos e 117 reprimidos. Genes que codificam para proteínas como citocromo P450, hidrofobinas e heat shock foram regulados positivamente no tratamento T, em todos os dias avaliados. Além disso, as funções dos genes anotados foram classificadas pelas análises de gene ontology (GO). As análises de expressão diferencial de genes obtidos nesse trabalho fornecem os primeiros dados sobre os possíveis mecanismos envolvidos no processo de biodegradação, e podem ser usados para elucidar as vias metabólicas e principais proteínas envolvidos nesse bioprocesso.

Palavras chaves: Jatropha curcas, transcritoma, NGS, Pré-tratamento biológico, Macrofungos.

<sup>&</sup>lt;sup>1</sup> Biotecnologista, Doutoranda em Biologia Molecular, Universidade de Brasília, taisa.gomes@colaborador.embrapa.br

<sup>&</sup>lt;sup>2</sup> Biotecnologista, Pós Doutor, Universidade de Brasília, gscalves@gmail.com

<sup>&</sup>lt;sup>3</sup> Biotecnologista, Doutorando em Bioinformática, Universidade Federal de Minas Gerais, samed.ibrahim@colaborador.embrapa.br

<sup>&</sup>lt;sup>4</sup> Matemático, Analista Embrapa recursos genéticos e biotecnologia, <u>marcos.costa@embrapa.br</u>

<sup>&</sup>lt;sup>5</sup> Farmacêutica, Pesquisadora Embrapa Agroenergia, <u>simone.mendonca@embrapa.br</u>

<sup>&</sup>lt;sup>6</sup> Biólogo, Professor Associado I, Universidade de Brasília, robertmiller@unb.br

<sup>&</sup>lt;sup>7</sup> Biólogo, Pesquisador Embrapa Agroenergia, felix.siqueira@embrapa.br

# LIGNOCELLULOLYTIC ENZYME ACTIVITIES IN WHITE ROT BASIDIOMYCETES CULTIVATED IN BIODIESEL INDUSTRY WASTES AS CARBON SOURCE

Taísa Godoy Gomes<sup>1</sup>, Clemente Soares Batista Neto<sup>1</sup>, Sámed Hadi<sup>2</sup>; Gabriel Sergio Costa Alves<sup>1</sup>; Simone Mendonça<sup>3</sup>, <u>Félix Goncalves de Siqueira<sup>3</sup></u>, Robert Neil Gerard Miller<sup>1</sup>

<sup>1</sup>Universidade de Brasília; <sup>2</sup>Universidade Federal de Minas Gerais; <sup>3</sup>Embrapa Agroenergia, Brasília, Distrito Federal, Brazil. \*e-mail: felix.sigueira@embrapa.br / robertmiller@unb.br

Cake material resulting from the extraction of oil (biodiesel sources) from Jatropha curcas seeds or cotton (Gossypium hirsutum) contain toxic or antinutritional compounds that limit their use in animal feed. Jatropha curcas is a promising oleaginous plant for biodiesel production due to the high oil yield from seeds and adaptability to different soil types and environmental factors. The residue (cake) generated after mechanical oil extraction consists of lignocellulosic fibers, proteins (46-63%), lipids, soluble carbohydrates and minerals. The composition of Jatropha curcas cake or cotton seed cake makes this co-product a potential candidate for use as an animal feed supplement (after detoxification process) or feedstock for second generation ethanol production. Two white-rot basidiomycete fungi, coded as strains EF-88 and CC-400, were inoculated onto 100 g of Jatropha curcas cake and cotton seed cake, respectively, and cultivated during 30 days. This project aims to identify the enzymes present following growth of these cultures. For the strain EF-88 grown on Jatropha curcas cake media, numerous lignocellulolytic enzymes were guantified after 72 hours growth: Laccase 1061.72± 53.08 U/mL; MnP 26.9± 1.34 U/mL; Protease 1318.75 ± 65.93; Xylanase 3.99 ± 0.11; FPase 0.781 ± 0.03 e CMCase 0.150 ± 0.02. All activities increased as a function of time, but decreased on the 27<sup>th</sup> and 30<sup>th</sup> days. Cultivation of strain CC-400 in cotton seed cake media also showed enzyme activity after 72 hours growth: MnP 66.46± 3.69 U/mL; Protease 943.08 ± 55.65; Xylanase 5.29 ± 0.11; FPase 0.017± 0.01 U/mL and CMCase 0.79 ± 0.01 U/mL. On the 6<sup>th</sup> day, activity of protease and CMCase was reduced, 701.06 ± 32.61 U/mL and 0.24 ± 0.005 U/mL, respectively, but xylanase activity showed an increase of 13.15 ± 0.05 U/mL. The enzymatic activities remained stable until the 30<sup>th</sup> day, with the exception of MnP and CMCase, in which by the 27th day did not display any remaining activities.