UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL

ANÁLISE LOCAL E GLOBAL DA RESISTÊNCIA AO ESFORÇO CORTANTE DE VIGAS COM E SEM APOIOS EM DENTE

KLEBER CAVALCANTI CABRAL

ORIENTADOR: YOSIAKI NAGATO

DISSERTAÇÃO DE MESTRADO EM ESTRUTURAS PUBLICAÇÃO: E.DM 013A/98

BRASÍLIA - DF, 20 de NOVEMBRO de 1998.

UNIVERSIDADE DE BRASÍLIA FACULDADE DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA CIVIL

ANÁLISE LOCAL E GLOBAL DA RESISTÊNCIA AO ESFORÇO CORTANTE DE VIGAS COM E SEM APOIOS EM DENTE

KLEBER CAVALCANTI CABRAL

DISSERTAÇÃO DE MESTRADO SUBMETIDA AO DEPARTAMENTO DE ENGENHARIA CIVIL DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE BRASÍLIA, COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM CIÊNCIAS (M.SC).

APROVADA POR:

YOSIAKI NAGATO, D.Sc. (UnB) (ORIENTADOR)

GUILHERMÉ SALES SOARES DE AZEVEDO MELO, PhD. (UnB) (EXAMINADOR INTERNO)

LIDIA DA CONCEIÇÃO DOMINGUES SHEHATA, PhD. (UFF - COPPE/UFRJ) (EXAMINADOR EXTERNO)

BRASÍLIA - DF, 20 de NOVEMBRO de 1998.

FICHA CATALOGRÁFICA

CABRAL, KLEBER CAVALCANTI

Análise Local e Global da Resistência ao Esforço Cortante de Vigas com e sem Apoios em Dente.

xxvii, 176p., 297 mm (ENC/FT/UnB, Mestre, Estruturas, 1998)

Dissertação de Mestrado – Universidade de Brasilia. Faculdade de Tecnologia. Departamento de Engenharia Civil.

1. Concreto Armado	2. Esforço Cortante
3. Modelos de Escoras e Tirantes	4. Apoios em Dente
I. ENC/FT/UnB	II. Título (serie)

REFERÊNCIA BIBLIOGRÁFICA

CABRAL, K. C., 1998. Análise Local e Global da Resistência ao Esforço Cortante de Vigas com e sem Apoios em Dente. Dissertação de Mestrado, Publicação E DM 013A/98, Departamento de Engenharia Civil, Universidade de Brasília, Brasília, DF, 176p.

CESSÃO DE DIREITOS

NOME DO AUTOR: Kleber Cavalcanti Cabral

TÍTULO DA DISSERTAÇÃO DE MESTRADO: Análise Local e Global da Resistência ao Esforço Cortante de Vigas com e sem Apoios em Dente

GRAU/ANO: Mestre/1998

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de mestrado e para emprestar ou vender tais cópias somente para propositos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação de mestrado pode ser reproduzida sem a autorização por escrito do autor.

Kleber Cavalcanti Cabral Rua Gov. Juvenal Lamartine, 19 – Bairro Tirol CEP: 59020-280 – Natal/RN – Brasil

DEDICATÓRIA

Aos meus pais, Marcelo e Maria de Fátima, fonte inesgotável de amor, carinho e ensinamentos, e aos meus irmãos, Murilo, Wendy e Angela, que compõem a força especial desta grande família. Á minha noiva Tatianna pelo seu amor e compreensão.

AGRADECIMENTOS

Ao meu orientador, Yosiaki Nagato, pela sua dedicação permanente durante toda a realização deste trabalho, enriquecendo-me com o seu conhecimento; o meu muito obrigado.

Aos professores do Mestrado em Estruturas da Universidade de Brasilia pelos ensinamentos transmitidos.

À eng.^a Eliane Kraus de Castro, ao técnico Leonardo e a Antônio do Laboratório de Estruturas do Departamento de Engenharia Civil, e aos técnicos Severino e Xavier do Laboratório de Ensaios de Materiais, pela colaboração na realização dos ensaios.

Ao Departamento de Apoio e Controle Técnico de Furnas Centrais Eletricas S.A. (Goiânia-GO), na pessoa do Eng.º Walton Pacelli de Andrade, por ter possibilitado a realização de ensaios.

Ao CNPq, pelo suporte financeiro.

A Lourival e Jorge, colegas de apartamento e de discussões, pela valiosa amizade.

A Emidio e Anne, pela amizade e pelo apoio na realização dos ensaios em Furnas Centrais Elétricas.

A Aleide Waleska, pela amizade e pela preciosa colaboração na editoração deste trabalho.

A Islen, Jocinez (Cema) e Rayol pela constante presença e auxílio durante a realização dos ensaios.

Aos meus colegas do Mestrado em Estruturas da UnB: Ana Elisa, Cecília, César, Chênia, Feijão, Felipe, Flávio, Francely, Gustavo, Henrique, Ieda, Jaqueline, Jonathan, Liana, Márcia, Márcio (Caratinga), Ricardo, Rodnny, Selênio, Silvana, Soraia, Ana Gabriela, Pedro Cláudio, Mário, Dênio, Marlos, Lisandra, Rodolfo, Gilberto, Izidileno, Marcus Vinicius, Nazaré, Moacir, Ediane, Luciano, Nélvio, Miguel, Suzana, Janes e Luciana, pessoas que contribuiram de alguma forma para a realização deste trabalho.

Minha gratidão a meus primos Cassio e José Ivo, pelo importante incentivo e contribuição nessa conquista.

RESUMO

A resistência ao esforço cortante de vigas de concreto armado com e sem apoios em dente vem sendo estudada ao longo dos anos, e, apesar da quantidade e variedade de estudos já realizados, algumas questões ainda persistem sem respostas claras e definitivas.

Este trabalho dá continuidade a uma linha de pesquisa cujo objetivo principal é estudar em laboratório o comportamento de modelos representativos da escora junto ao apoio em dente de uma viga, com tipos alternativos de armaduras determinadas a partir de uma modelagem local com escoras e tirantes simulando o espraiamento da escora original. Foram ensaiados 15 blocos cuja forma procura reproduzir a escora geralmente assumida na extremidade da viga com apoio em dente. Foram considerados 3 ângulos de inclinação da escora (30°, 45° e 60°), e foram ensaiados blocos sem armadura, com armadura normal ao eixo da escora e com armaduras correspondentes a estribos verticais e a grampos ou estribos horizontais na viga.

Os ensaios dos blocos permitiram constatar-se que ocorre um espraiamento da escora, mas parece que tais ensaios não representam bem o comportamento real da escora principal do dente da viga.

Com o objetivo de complementar o conhecimento sobre os mecanismos de resistência ao esforço cortante de vigas de concreto armado, foram ensaiadas também 5 vigas de altura constante, com a mesma armadura longitudinal principal, sendo uma viga sem armadura transversal, uma só com armadura longitudinal complementar distribuída ao longo da altura (armadura de pele), uma só com estribos verticais, uma com estribos verticais e armadura de pele, e uma sem armadura transversal e tendo na zona de compressão do vão de cisalhamento duas chapas lubrificadas cujo objetivo seria eliminar a parcela do esforço cortante resistente dessa região e permitir a medição do efeito conjugado de engrenamento dos agregados e de ação de pino da armadura longitudinal.

Os ensaios das vigas mostraram que a armadura de pele aumenta a resistência à flexão das vigas e aumenta substancialmente a resistência ao esforço cortante da viga sem armadura transversal.

vii

ABSTRACT

The shear strength of reinforced concrete beams with or without dapped ends have been studied trough the years but, despite the quantity and the variety of available results some questions still remain without definitive and clear answers.

The main objective of this experimental research work was to study the behaviour of models planned to simulate the main strut irradiating from the support of a beam with dapped end, with alternative types of reinforcement derived from a local modelling with a strut-and-tie model equivalent to the original main strut. 15 model blocks were tested, trying to simulate the main strut at the dapped end with 3 different strut inclination. Some models were unreinforced, and others were reinforced with vertical or/and horizontal stirrups or with inclined stirrups perpendicular to the original strut axis.

The tests of the model blocks lead to the conclusion that the spreading of the main strut takes place as described in the related literature, but this kind of test seems not to represent adequately the real behaviour of the strut in the dapped end of a beam.

As a complementary study, five beams without dapped ends were also tested in order to study the shear resisting mechanisms. The main longitudinal reinforcement was kept constant. One beam had no transverse reinforcement, the second one had only aditional longitudinal reinforcement distributed along the height of the beam, the third one had only vertical stirrups, the fourth one had both vertical stirrups and longitudinal reinforcement along the height and the last beam had neither transverse reinforcement nor aditional longitudinal reinforcement, but had two lubricated steel plates in the compression zone within the shear span and close to the load point in order to cancel the shear resisted by the concrete in that zone.

From the beam tests it was concluded that the aditional longitudinal reinforcement placed along the height of the beam increases the flexural strength and also increases significantly the shear strength of a beam without transverse reinforcement.

ÍNDICE

Capítulo		Página
1.	INTRODUÇÃO	1
1 1		1
1.1 -		2
1.2 -		2
1.5 -	DESENVOLVIMENTO DO TRABALHO	2
2 -	REVISÃO BIBLIOGRÁFICA	4
2.1 -	INTRODUÇÃO	4
2.2 -	MODELO DE ESCORAS E TIRANTES	4
2.2.1 -	Regiões "B" e "D"	4
2.2.2 -	Procedimento para a analise estrutural	5
2.2.3 -	Modelagem	5
2.2.4 -	Tensões nas escoras, regiões nodais e tirantes	6
2.2.4.1 -	Resistência das escoras	6
2.2.4.2 -	Resistência dos nós	8
2.2.4.3 -	Resistência dos tirantes	10
2.3 -	ALGUNS ESTUDOS E RECOMENDAÇÕES SOBRE APOIOS EM	11
	DENTES	
2.3.1 -	Modelagem global	11
2.3.1.1 -	Segundo Leonhardt e Mönnig	11
2.3.1.2 -	Segundo Schlaich e Schäfer	13
2.3.1.3 -	Segundo a NBR 9062	14
2.3.1.4 -	Segundo Regan	14
2.3.1.5 -	Segundo Melo	18
2.3.2 -	Modelagem local	18
2.3.2.1 -	Segundo o CEB/90	19
2.3.2.2 -	Segundo Souza	19

2.4 -	CONSIDERAÇÕES SOBRE ESFORÇO CORTANTE EM VIGAS	20
2.4.1 -	Vigas sem armadura transversal	21
2.4.1.1 -	Forças internas em uma viga sem armadura transversal	21
2.4.1.2 -	Fatores que afetam a resistência ao esforço cortante de vigas sem	22
	armadura transversal	
2.4.2 -	Vigas com armadura transversal	22
2.4.2.1 -	Forças internas em uma viga com armadura transversal	23
2.5 -	PRESCRIÇÕES NORMATIVAS E DE PESQUISADORES QUANTO	24
	AO CÁLCULO DA ARMADURA DE CISALHAMENTO	
2.5.1 -	Norma NBR 6118	24
2.5.2 -	Norma CEB-FIP MC90	26
2.5.3 -	Norma ACI 318-95	28
2.5.4 -	Norma Eurocode 2/91	30
2.5.5 -	Norma CAN3-A23-3-M84	33
2.5.6 -	Zsutty	34
2.5.7 -	Bazant	35
2.6 -	ESTUDOS EXPERIMENTAIS DESENVOLVIDOS NA UnB SOBRE	37
	A RESISTÊNCIA AO ESFORÇO CORTANTE EM VIGAS DE	
	CONCRETO ARMADO COM ARMADURA LONGITUDINAL DE	
	PELE	
3 -	PROGRAMA EXPERIMENTAL	38
3.1 -	INTRODUÇÃO	38
3.2 -	PEÇAS ENSAIADAS	38
3.2.1 -	Dimensões básicas	38
3.2.1.1 -	Modelos de escoras	38
3.2.1.2 -	Vigas	39
3.2.2 -	Dimensionamento das armaduras	40
3.2.2.1 -	Modelos de escoras	40
3.2.2.2 -	Vigas	42
3.2.3 -	Detalhamento	43
3.2.3.1 -	Modelos de escoras	43

3.2.3.2 -	Vigas	47
3.3 -	MATERIAIS	49
3.3.1 -	Concreto	49
3.3.2 -	Aço	52
3.3.2.1 -	Modelos de escoras	52
3.3.2.2 -	Vigas	55
3.3.2.3 -	Tipos de aços empregados	57
3.4 -	FABRICAÇÃO	57
3.5 -	MONTAGEM E TÉCNICA DE ENSAIO	57
3.5.1 -	Modelos de escoras	57
3.5.2 -	Vigas	60
3.6 -	INSTRUMENTAÇÃO	63
3.6.1 -	Cargas	63
3.6.1.1 -	Modelos de escoras	63
3.6.1.2 -	Vigas	63
3.6.2 -	Deslocamento vertical nas vigas	63
3.6.3 -	Deformações especificas nas armaduras	63
3.6.4 -	Deformações especificas no concreto	68
3.6.5 -	Fissuração	69
4 -	RESULTADOS EXPERIMENTAIS	71
4.1 -	INTRODUÇÃO	71
4.2 -	COMPORTAMENTO DAS PEÇAS ENSAIADAS	71
4.2.1 -	Modelos de escoras	71
4.2.1.1 -	Modelos de escoras com ângulo de inclinação da escora igual a 30°	72
4.2.1.2 -	Modelos de escoras com ângulo de inclinação da escora igual a 45°	76
4.2.1.3 -	Modelos de escoras com ângulo de inclinação da escora igual a 60°	80
4.2.2 -	Vigas	82
4.2.2.1 -	Viga V1	82
4.2.2.2 -	Viga V2	83
4.2.2.3 -	Viga V3	84
4.2.2.4 -	Viga V4	85

4.2.2.5 -	Viga V5	86
4.3 -	EVOLUÇÃO DAS ABERTURAS DE FISSURAS	87
4.3.1 -	Modelos de escoras	87
4.3.2 -	Vigas	89
4.4 -	DESLOCAMENTOS VERTICAIS NAS VIGAS	90
4.5 -	DEFORMAÇÕES ESPECÍFICAS NAS ARMADURAS	90
4.5.1 -	Modelos de escoras	90
4.5.2 -	Vigas	95
4.6 -	DEFORMAÇÕES NO CONCRETO	99
4.6.1 -	Modelos de escoras	99
4.6.2 -	Vigas	112
5 -	ANÁLISE DOS RESULTADOS	123
5.1 -	INTRODUÇÃO	123
5.2 -	MODO DE RUPTURA DAS PEÇAS ENSAIADAS	123
5.2.1 -	Modelos de escoras	123
5.2.1.1 -	Modelos de escoras com ângulo de inclinação da escora igual a 30°	123
5.2.1.2 -	Modelos de escoras com ângulo de inclinação da escora igual a 45°	124
5.2.1.3 -	Modelos de escoras com ângulo de inclinação da escora igual a 60°	124
5.2.2 -	Vigas	125
5.3 -	TENSÕES ÚLTIMAS NOS MODELOS DE ESCORAS	126
5.4 -	EVOLUÇÃO DAS ABERTURAS DAS FISSURAS NOS MODELOS	127
	DE ESCORAS	
5.4.1 -	Modelos de escoras com ângulo de inclinação da escora igual a 30°	127
5.4.2 -	Modelos de escoras com ângulo de inclinação da escora igual a 45°	127
5.4.3 -	Modelos de escoras com ângulo de inclinação da escora igual a 60°	128
5.5 -	DESLOCAMENTOS VERTICAIS NAS VIGAS	128
5.6 -	DEFORMAÇÕES ESPECÍFICAS NAS ARMADURAS	129
5.6.1 -	Modelos de escoras	129
5.6.1.1 -	Modelos de escoras com ângulo de inclinação da escora igual a 30°	129
5.6.1.2 -	Modelos de escoras com ângulo de inclinação da escora igual a 45°	129
5.6.1.3 -	Modelos de escoras com ângulo de inclinação da escora igual a 60°	130

5.6.2 -	Vigas	130
5.7 -	DEFORMAÇÕES ESPECIFICAS NO CONCRETO	131
5.7.1 -	Modelos de escoras	131
5.7.1.1 -	Deformação em leque	131
5.7.1.2 -	Deformação na direção da escora	131
5.7.1.3 -	Deformação ao longo da altura da escora	131
5.7.2 -	Vigas	132
5.7.2.1 -	Deformações na direção da diagonal comprimida ao longo do vão de	132
	corte	
5.7.2.2 -	Deformações na direção vertical ao longo do vão de corte	132
5.7.2.3 -	Deformações na direção da diagonal tracionada ao longo do vão de corte	132
5.7.2.4 -	Deformações na zona comprimida abaixo do ponto de aplicação das	133
	cargas	
5.7.2.5 -	Deformações no meio do vão ao longo da altura	133
5.7.2.6 -	Deformações na superficie do concreto na parte superior da viga próximo	133
	aos pontos de aplicação das cargas e no meio do vão	
5.8 -	COMPARAÇÃO ENTRE OS RESULTADOS EXPERIMENTAIS E	134
	TEÓRICOS DAS VIGAS ENSAIADAS	
6 -	CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS	137
6.1 -	INTRODUÇÃO	137
6.2 -	CONCLUSÕES	137
6.2.1-	Modelos de escoras	137
6.2.2 -	Vigas	138
6.3 -	SUGESTÕES PARA TRABALHOS FUTUROS	139
6.3.1 -	Modelos de escoras	139
6.3.2 -	Vigas	140

REFERÊNCIAS BIBLIOGRÁFICAS

141

ANEXO A – RESULTADOS DAS LEITURAS EFETUADAS NOS 144 EXTENSÔMETROS ELÉTRICOS DURANTE OS ENSAIOS DOS MODELOS DE ESCORAS

ANEXO B – RESULTADOS DAS LEITURAS EFETUADAS NOS 150 EXTENSÔMETROS ELÉTRICOS DAS VIGAS

ANEXO C – RESULTADOS DAS LEITURAS EFETUADAS NO CONCRETO 153 (x10⁻³) DURANTE OS ENSAIOS DOS MODELOS DE ESCORAS

ANEXO D – RESULTADOS DAS LEITURAS EFETUADAS NO CONCRETO 163 (x10⁻³) DURANTE OS ENSAIOS DAS VIGAS

ANEXO E - RESULTADOS DAS LEITURAS EFETUADAS NO 175 DEFLECTÔMETRO DURANTE OS ENSAIOS DAS VIGAS

LISTA DE TABELAS

Tabela		Página
3.01 -	Resistência à compressão e à tração do concreto dos modelos de escoras	50
3.02 -	Resistência à compressão e à tração do concreto das vigas	51
3.03 -	Características dos aços utilizados na armação dos modelos de escoras	54
3.04 -	Característica dos aços utilizados na armação das vigas	56
4.01 -	Cargas de fissuração, carga de ruptura, tensão ultima e relação entre a	71
	tensão última e a tensão de compressão do concreto	
4.02 -	Cargas de fissuração diagonal e ruptura	82
4.03 -	Evolução das aberturas das fissuras em função da carga aplicada para as	88
	escoras com ângulo de inclinação igual a 30°	
4.04 -	Evolução das aberturas das fissuras em função da carga aplicada para as	88
	escoras com ângulo de inclinação igual a 45°	
4.05 -	Evolução das aberturas das fissuras em função da carga aplicada para as	89
	escoras com ângulo de inclinação igual a 60"	
4.06 -	Evolução das aberturas das fissuras nas vigas em função da carga aplicada	89
5.01 -	Cargas de ruptura obtidas experimentalmente e cargas últimas calculadas	134
	através dos métodos apresentados por normas e pesquisadores	
5.02 -	Comparação entre as cargas últimas obtidas experimentalmente e as	135
	calculadas através de formulações apresentadas por normas e	
	pesquisadores	
A.01 -	Deformações nas armaduras do modelo M1-AH	144
A.02 -	Deformações nas armaduras do modelo M1-AC	144
A.03 -	Deformações nas armaduras do modelo M1-AV	145
A.04 -	Deformações nas armaduras do modelo M1-AI	145

A 05 -	Deformações nas armaduras do modelo M2 1-AV	146
A.06	Deformações nas armaduras do modelo M2.1-AC	146
A.00 -	Deformações nas armaduras do modelo M2.1-AC	140
A.07 -	Deformações has armaduras do modelo M2.1-Al	147
A.08 -	Deformações nas armaduras do modelo M2.2-AV	147
A.09 -	Deformações nas armaduras do modelo M2.2-AC	148
A.10 -	Deformações nas armaduras do modelo M2.2-Al	148
A.11 -	Deformações nas armaduras do modelo M3-AH	149
A.12 -	Deformações nas armaduras do modelo M3-A1	149
B .01 -	Deformações nas armaduras e na superfície do concreto da viga V1	150
B.02 -	Deformações nas armaduras e na superficie do concreto da viga V2	150
B.03 -	Deformações nas armaduras e na superfície do concreto da viga V3	151
B .04 -	Deformações nas armaduras e na superfície do concreto da viga V5	151
B.05 -	Deformações nas armaduras e na superfície do concreto da viga V4	152
C.01 -	Deformações no concreto do modelo M1-SA	153
C.02 -	Deformações no concreto do modelo M1-AH	154
C.03 -	Deformações no concreto do modelo M1-AC	154
C.04 -	Deformações no concreto do modelo M1-AV	155
C.05 -	Deformações no concreto do modelo M1-AI	156
C.06 -	Deformações no concreto do modelo M2.1-SA	157
C.07 -	Deformações no concreto do modelo M2.1-AV	157
C.08 -	Deformações no concreto do modelo M2.1-AC	158
C.09 -	Deformações no concreto do modelo M2.1-AI	158
C.10 -	Deformações no concreto do modelo M2.2-AV	159
C.11 -	Deformações no concreto do modelo M2.2-AC	159
C.12 -	Deformações no concreto do modelo M3-SA	160
C.13 -	Deformações no concreto do modelo M3-AH	161
C.14 -	Deformações no concreto do modelo M3-A1	162
D.01 -	Deformações no concreto da viga VI	163
D.02 -	Deformações no concreto da viga V2	165

D.03 -	Deformações no concreto da viga V3	167
D.04 -	Deformações no concreto da viga V4	170
D.05 -	Deformações no concreto da viga V5	173
E.01 -	Deslocamentos verticais da viga Vl	175
E.02 -	Deslocamentos verticais da viga V2	175
E.03 -	Deslocamentos verticais da viga V3	176
E.04 -	Deslocamentos verticais da viga V4	176
E.05 -	Deslocamentos verticais da viga V5	176

LISTA DE FIGURAS

Figura		Página
2.01 -	a) Campo de tensões tipo leque, b) Campo de tensões tipo garrafa e c)	6
	Campo de tensões tipo prisma (Schlaich e Schäfer)	
2.02 -	Exemplo de resistência reduzida f_{cd2} (CEB/90)	8
2.03 -	Exemplo de nós contínuos e nós singulares (Schäfer e Schlaich)	9
2.04 -	Exemplo de nós: a) nó CCC, b) nó CCT, c) nó CTT e d) nó TTT (Schäfer	10
	e Schlaich)	
2.05 -	Modelos de escoras e tirantes para apoios em dentes, segundo Leonhardt	11
	e Mönnig	
2.06 -	Tipos de armaduras possíveis para os apoios em dentes, segundo	12
	Leonhardt e Mönnig	
2.07 -	Modelos propostos por Schlaich e Schäfer para apoios em dentes	13
2.08 -	Armação proposta para os modelos 1 e 3 (Schlaich e Schäfer)	13
2.09 -	Detalhamento de apoios em dentes segundo a NBR 9062	14
2.10 -	Modelos de escoras e tirantes adotados por Regan	14
2.11 -	Detalhe das armaduras e instrumentação utilizados por Regan	15
2.12 -	Esquema dos ensaios utilizados por Regan	15
2.13 -	Ruptura dos ensaios dos dentes 1/1 e 1/2 (Regan)	17
2.14 -	Modelo de escoras e tirantes utilizado para o ensaio do dente 1/2	17
2.15 -	Modelos de escoras e tirantes utilizados por Melo	18
2.16 -	Modelagem local proposta pelo CEB/90	19
2.17 -	Modelagem local proposta por Souza	20
2.18 -	Forças internas em uma viga fissurada sem armadura transversal	21
	(MacGregor)	
2.19 -	Forças internas em uma viga fissurada com armadura transversal	23
	(MacGregor)	

xviii

2.20 - Distribuição dos esforços cortantes resistentes em vigas com armadura 24 transversal (ACI – ASCE COMMITTEE 426)

3.01 -	Dimensões dos modelos de escoras	39
3.02 -	Dimensões das vigas ensaiadas	40
3.03 -	Modelagem local utilizada	41
3.04 -	Armaduras utilizadas nos modelos com $\theta = 30^{\circ}$	43
3.05 -	Armaduras utilizadas nos modelos com $\theta = \alpha = 45^{\circ}$	44
3.06 -	Armaduras utilizadas nos modelos com $\theta = 45^{\circ}$ e $\alpha = 30^{\circ}$	45
3.07 -	Armaduras utilizadas nos modelos com $\theta = 60^{\circ}$	46
3.08 -	Detalhamento das vigas V1 e V2	47
3.09 -	Detalhamento das vigas V3 e V4	48
3.10 -	Detalhamento da viga V5	49
3.11 -	Gráfico tensão x deformação do concreto	52
3.12 -	Diag. tensão x deformação do aço com diâmetro nominal de 8,0 mm	53
3.13 -	Diag. tensão x deformação do aço com diâmetro nominal de 10,0 mm	53
3.14 -	Diag. tensão x deformação do aço com diâmetro nominal de 12,5 mm	54
3.15 -	Diag. tensão x deformação do aço com diâmetro nominal de 6,3 mm	55
3.16 -	Diag. tensão x deformação do aço com diâmetro nominal de 20,0 mm	56
3.17 -	Posição dos extensômetros elétricos nas armaduras dos modelos de	64
	escoras com $\theta = \alpha = 30^{\circ}$	
3.18 -	Posição dos extensômetros elétricos nas armaduras dos modelos de	65
	escoras com $\theta = \alpha = 45^{\circ}$	
3.19 -	Posição dos extensômetros elétricos nas armaduras dos modelos de	66
	escoras com $\theta = 45^{\circ} e \alpha = 30^{\circ}$	
3.20 -	Posição dos extensômetros elétricos nas armaduras dos modelos de	67
	escoras com $\theta = 60^{\circ}$ e $\alpha = 30^{\circ}$	
3.21 -	Posição dos extensômetros elétricos nas armaduras das vigas	67
3.22 -	Instrumentação utilizada no concreto para os modelos de escoras	69
3.23 -	Instrumentação utilizada no concreto para as vigas	70
4.01 -	Gráfico carga x flecha das vigas	90

4.02 -	Deformações medidas nas armaduras dos modelos de escoras com	91
	$\theta = \alpha = 30^{\circ}$	
4.03 -	Deformações medidas nas armaduras dos modelos de escoras com	92
	$\theta = \alpha = 45^{\circ}$	
4.04 -	Deformações medidas nas armaduras dos modelos de escoras com	93
	$\theta = 45^{\circ} e \alpha = 30^{\circ}$	
4.05 -	Deformações medidas nas armaduras dos modelos de escoras com	94
	$\theta = 60^\circ e \alpha = 30^\circ$	
4.06 -	Deformações medidas nas armaduras da viga Vl	95
4.07 -	Deformações medidas nas armaduras da viga V2	96
4.08 -	Deformações medidas nas armaduras da viga V3	97
4.09 -	Deformações medidas nas armaduras da viga V4	98
4.10 -	Deformações medidas nas armaduras da viga V5	99
4.11 -	Gráfico carga x deformação nos leques dos modelos de escoras com	100
	$\theta = \alpha = 30^{\circ}$	
4.12 -	Gráfico carga x deformação nos leques dos modelos de escoras com	101
	$\theta = \alpha = 45^{\circ}$	
4.13 -	Gráfico carga x deformação nos leques dos modelos de escoras com	102
	$\theta = 45^{\circ} e \alpha = 30^{\circ}$	
4.14 -	Gráfico carga x deformação nos leques dos modelos de escoras com	103
	$\theta = 60^\circ e \alpha = 30^\circ$	
4.15 -	Gráfico carga x deformação na direção da escora nos modelos de escoras	104
	$\cos \theta = \alpha = 30^{\circ}$	
4.16 -	Gráfico carga x deformação na direção da escora nos modelos de escoras	105
	$\cos \theta = \alpha = 45^{\circ}$	
4.17 -	Gráfico carga x deformação na direção da escora nos modelos de escoras	106
	$\cos \theta = 45^\circ e \alpha = 30^\circ$	
4.18 -	Gráfico carga x deformação na direção da escora nos modelos de escoras	107
	$\cos\theta = 60^\circ e \alpha = 30^\circ$	
4.19 -	Gráfico carga x deformação ao longo da altura da escora nos modelos de	108
	escoras com $\theta = \alpha = 30^{\circ}$	

XX

- 4.20 Gráfico carga x deformação ao longo da altura da escora nos modelos de 109 escoras com $\theta = \alpha = 45^{\circ}$
- 4.21 Gráfico carga x deformação ao longo da altura da escora nos modelos de 110 escoras com $\theta = 45^{\circ}$ e $\alpha = 30^{\circ}$
- 4.22 Gráfico carga x deformação ao longo da altura da escora nos modelos de 111 escoras com $\theta = 60^{\circ}$ e $\alpha = 30^{\circ}$
- 4.23 Gráfico carga x deformação na direção da diagonal comprimida ao longo
 113 do vão de corte
- 4.24 Gráfico carga x deformação na direção vertical ao longo do vão de corte 115
- 4.25 Gráfico carga x deformação na direção da diagonal tracionada ao longo 117 do vão de corte
- 4.26 Gráfico carga x deformação da zona de compressão abaixo do ponto de 119 aplicação das cargas
- 4.27 Gráfico carga x deformação no meio do vão ao longo da altura da viga 121
- 4.28 Gráfico carga x deformação na superfície superior da viga próximo aos 122 pontos de aplicação de carga e no meio do vão

LISTA DE FOTOS

Foto		Página
3.01 -	Esquema de ensaio utilizado para a determinação do módulo de	51
	elasticidade do concreto	
3.02 -	Montagem dos ensaios realizados no Laboratório de Ensaio de Materiais	59
	da UnB	
3.03 -	Montagem dos ensaios realizados no Laboratório de Estruturas da UnB	59
3.04 -	Montagem dos ensaios realizados no Laboratório de Concreto do Deptº	60
	de Apoio e Controle Técnico de FURNAS CENTRAIS ELÉTRICAS	
3.05 -	Montagem dos ensaios das vigas	61
3.06 -	Apoio utilizado entre o bloco e a viga	62
3.07 -	Apoio utilizado para aplicação da carga nas vigas	62
4.01 -	Fissuração do modelo M1-SA para a carga última	73
4.02 -	Fissuração do modelo M1-AH para a carga última	74
4.03 -	Fissuração do modelo M1-AV para a carga última	74
4.04 -	Fissuração do modelo M1-AC para a carga última	75
4.05 -	Fissuração do modelo M1-AI para a carga última	75
4.06 -	Fissuração do modelo M2.1-SA para a carga última	76
4.07 -	Fissuração do modelo M2.1-AV para a carga última	77
4.08 -	Fissuração do modelo M2.1-AC para a carga última	77
4.09 -	Fissuração do modelo M2.1-AI para a carga última	78
4.10 -	Fissuração do modelo M2.2-AV para a carga última	78
4.11 -	Fissuração do modelo M2.2-AC para a carga última	79
4.12 -	Fissuração do modelo M2.2-Al para a carga última	79
4.13 -	Fissuração do modelo M3-SA para a carga última	80
4.14 -	Fissuração do modelo M3-AH para a carga última	81
4.15 -	Fissuração do modelo M3-AI para a carga última	81

4.16 -	Fissuração da viga V1 para a carga última	83
4.17 -	Fissuração da viga V2 para a carga última	84
4.18 -	Fissuração da viga V3 para a carga última	85
4.19 -	Fissuração da viga V4 para a carga última	86
4.20 -	Fissuração da viga V5 para a carga última	87

LISTA DE SÍMBOLOS

Símbolo	:Significado

: vão de corte
: área de armadura longitudinal de tração
: área da seção transversal de estribos verticais
: área da seção transversal dos estribos inclinados
: largura da viga
força de compressão na escora e no nó
força de compressão do concreto na região comprimida
altura util da viga
diâmetro máximo do agregado
módulo de elasticidade secante
força de compressão na escora e no nó
resistência do concreto à compressão
resistência de cálculo do concreto à compressão
resistência do concreto para nós e escoras segundo Schlaich
tensão média do concreto para regiões não fissuradas
tensão media do concreto para regiões fissuradas
resistência à compressão do concreto aos 28 dias
resistência característica do concreto à compressão
: 10 MPa
resistência à tração do concreto por compressão diametral
: valor característico da tensão de ruptura do concreto à tração simples
resistência média de tração do concreto
tensão de ruptura do aço
: esforço cortante resistente de cálculo da armadura transversal
: força de tração no tirante
tensão ultima

f_{y}	: tensão de escoamento do aço	
fyd.	: resistência de cálculo do aço à tração	
f _{yk}	resistência característica de escoamento do aço	
f_{yl}	: tensão de escoamento do aço da armadura longitudinal de flexão	
f_{yv}	: tensão de escoamento do aço da armadura transversal	
fywd	tensão de escoamento de cálculo da armadura de combate ao esforço	
	cortante	
h	: altura total da viga	
h_k	distância entre o centróide da zona de compressão e o centróide da	
	armadura de tração na seção transversal	
Ι	força no tirante inclinado da modelagem local das escoras	
M_{μ}	momento fletor último	
N_{sd}	: esforço normal na seção devido às cargas aplicadas ou pré-esforço	
S	espaçamento entre estribos	
Т	: força de tração no tirante	
T_{1}, T_{2}	força de tração na armadura longitudinal de flexão	
V_a	esforço cortante transferido através da fissura pelo engrenamento dos	
	agregados nas duas faces da fissura	
V_{ay}	: componente vertical do esforço cortante transferido através da fissura pelo	
	engrenamento dos agregados nas duas faces da fissura	
V _{ax}	componente horizontal do esforço cortante transferido através da fissura	
	pelo engrenamento dos agregados nas duas faces da fissura	
V_c	resistência nominal ao cisalhamento proveniente do "concreto"; esforço	
	cortante da primeira fissura diagonal	
Vcd	capacidade resistente de cálculo ao esforço cortante do concreto	
V _{cr}	esforço cortante correspondente à fissuração diagonal	
V_{co} V'_{cc}	parcela do esforço cortante na zona comprimida da viga	
V_d	ação de pino da armadura longitudinal de flexão na resistência ao esforço	
	cortante; Esforço cortante de calculo	
V_n	: resistência nominal ao cisalhamento	
V _{Rd1}	: valor de cálculo do esforço cortante resistente do elemento sem armadura	

XXV

	transversal	
V _{Rd2}	valor de cálculo do esforço cortante suportado sem a ocorrência de	
	esmagamento das escoras comprimidas	
V _{Rd3}	valor de cálculo do esforço cortante que pode ser suportado por um	
	elemento com armadura transversal	
V_s	força de tração nos estribos	
V_{μ}	: esforço cortante último	
V_{wd}	capacidade resistente de cálculo da armadura de cisalhamento	
Z	distância entre o centróide da zona de compressão e o centróide da	
	armadura longitudinal de tração na seção transversal	
Z_{A}	força na armadura de flexão do dente	
Z_S	força no tirante inclinado do dente	
Z_{V}	força na armadura de suspensão do dente	
α	angulo entre a direção dos estribos ou barras dobradas e a horizontal;	
	ângulo de abertura da escora	
$\alpha_{fct.m}$: 1,40 MPa	
$\mathcal{E}_{\mathcal{Y}}$	deformação especifica de escoamento do aço	
ϕ	: fator de minoração da resistência; diâmetro nominal do aço	
ϕ_c	fator de minoração da resistência do concreto	
ϕ_l	: diâmetro nominal da armadura longitudinal	
ϕ_s	: fator de minoração da resistência do aço	
ϕ_t	diâmetro nominal da armadura transversal	
Yc	coeficiente de minoração da resistência do concreto	
λ	: 1, para concreto de densidade normal	
V	a fator de eficácia	
θ	angulo de inclinação da escora	
ρ, ρ_w	taxa de armadura longitudinal, igual a A, bd	
ρ_{I}	menor taxa de armadura longitudinal de tração no trecho de comprimento	
	2h a partir da face do apoio	
σ_{cp}	. N _{sd} A _c	
$ au_{Rd}$	valor de referência para o cálculo do esforço cortante resistente	
Twee	: tensão cisalhante de cálculo	

 τ_{wu} : tensão cisalhante nominal última

 $\pm 1 \pm \sqrt{\frac{200}{d}}$

 ω_{sw} : taxa mecânica de armadura transversal

ξ

 ψ_{I}

: coeficiente empiricamente determinado que leva em conta a influência, sobre os resultados fornecidos pela Teoria da Treliça Generalizada, da rigidez de seu bordo tracionado em função da menor taxa de armação longitudinal de tração ρ_1 , no trecho de comprimento 2*h* medido a partir da face do apoio

CAPÍTULO 1

INTRODUÇÃO

1.1 - HISTÓRICO

O mecanismo de resistência ao esforço cortante de peças de concreto foi e continua sendo objeto de numerosos estudos e, apesar da quantidade e variedade de estudos já realizados, algumas questões ainda persistem sem respostas claras e definitivas.

Na busca de soluções racionais e práticas para o dimensionamento de estruturas de concreto armado, modelos teóricos têm sido desenvolvidos, como os modelos de escoras e tirantes. Esses modelos são uma generalização do conceito da análise clássica de treliça, usada desde o início do século para verificar o equilíbrio entre as ações, as reações e os esforços internos no concreto e no aço de um elemento estrutural, onde as escoras representam campos de tensões de compressão no concreto e os tirantes campos de tensões de tração nas armaduras.

Com a utilização do modelo de escoras e tirantes pretende-se atingir um melhor grau de racionalidade para toda a estrutura, seja onde se aplica a hipótese de Bernoulli de distribuição plana de deformações, ou, por exemplo, nas regiões de apoios em dentes, aberturas em vigas, nós de pórticos e consolos, onde a validade desta hipótese não é mais observada.

Algumas normas de projeto e execução de estruturas de concreto armado começam a incorporar regras de dimensionamento baseadas em modelos de escoras e tirantes. Entretanto, muitas dúvidas ainda persistem sobre a aplicação desses modelos, tais como definir a posição das escoras e tirantes, definir as dimensões dos nós e das escoras para verificação das tensões no concreto, que limites utilizar para essas tensões, compatibilizar os modelos com o comportamento desejável em serviço, pois em muitos casos a

1

modelagem global é feita com escoras que não representam adequadamente o comportamento da peça na região de abrangência dessas escoras.

1.2 - OBJETIVO DO TRABALHO

O presente trabalho envolve dois estudos paralelos, com objetivos distintos.

O primeiro estudo visa obter informações sobre o comportamento até a ruptura da escora principal de um apoio em dente, encontrada na modelagem global da viga, armada a partir da modelagem local proposta por Souza [35].

O segundo estudo visa ampliar o conhecimento experimental sobre o mecanismo de ruptura por esforço cortante de vigas de concreto armado com altura constante, envolvendo a influência dos estribos, da armadura de pele, da zona comprimida do concreto, do engrenamento dos agregados e do efeito de pino da armadura longitudinal.

Nos capítulos 3 a 6, os dois estudos serão apresentados em paralelo, sob títulos comuns.

1.3 - DESENVOLVIMENTO DO TRABALHO

No capítulo 2, apresenta-se uma breve revisão bibliográfica a respeito do uso de modelos de escoras e tirantes no dimensionamento de vigas com apoios em dentes, onde estes modelos são tratados global e localizadamente. Apresenta-se, também, uma breve revisão sobre os mecanismos resistentes ao esforço cortante e as formulações propostas por diversas normas e pesquisadores para o dimensionamento ao esforço cortante de vigas de concreto armado. Finalmente, descrevem-se brevemente os estudos experimentais já realizados na UnB sobre a resistência ao esforço cortante de vigas de concreto armado com armadura longitudinal de pele.

No capítulo 3, descreve-se o programa experimental, apresentando o projeto e a execução dos modelos de escoras e das vigas, as características dos materiais empregados, a instrumentação utilizada e a metodologia empregada nos ensaios.

2

No capitulo 4 são apresentados os resultados experimentais dos ensaios.

No capítulo 5 são feitas as análises dos resultados experimentais apresentados no capítulo 4 e é feita também uma comparação entre os resultados experimentais e teóricos.

No capítulo 6 são apresentadas as conclusões do trabalho e as sugestões para trabalhos futuros.

CAPÍTULO 2

REVISÃO BIBLIOGRÁFICA

2.1 - INTRODUÇÃO

A resistência ao esforço cortante de vigas de concreto armado vem sendo estudada ao longo dos anos, e apesar da quantidade e variedade de estudos já realizados, algumas questões ainda persistem sem respostas claras e definitivas. Neste capítulo apresenta-se uma breve revisão sobre o uso de modelos de escoras e tirantes para o dimensionamento de vigas com apoios de altura reduzida (dentes Gerber) e as proposições de pesquisadores e normas vigentes para o calculo da resistência ao esforço cortante de vigas de concreto armado com e sem armadura de cisalhamento, assim como uma relação dos estudos experimentais realizados na UnB sobre a resistência ao esforço cortante de vigas de concreto armado com armadura longitudinal de pele.

2.2 - MODELOS DE ESCORAS E TIRANTES

Os modelos de escoras e tirantes têm sido estudados visando o dimensionamento de peças de concreto armado, especialmente em regiões com perturbações no estado de tensões produzidas por descontinuidades geométricas ou físicas. Esses modelos são representações discretas dos campos de tensão nos elementos estruturais de concreto armado, onde as escoras são idealizações dos campos de tensões de compressão no concreto, e os tirantes campos de tração nas armaduras.

2.2.1 - Regiões "B" e "D"

Para efeito da aplicação do modelo de escoras e tirantes, pode-se subdividir a estrutura em regiões continuas (regiões "B") e descontínuas (regiões "D").

Regiões "B" são aquelas em que as hipóteses de Bernoulli, de distribuição plana de deformações ao longo da seção transversal, são válidas, enquanto que nas regiões "D" as distribuições de deformações não são planas, podendo ser produzidas por descontinuidades físicas e/ou geométricas. Os exemplos mais comuns de descontinuidades geométricas são: apoios em dentes, aberturas em vigas, nós de pórticos e consolos. Como exemplos mais comuns de descontinuidades físicas têm-se: ações concentradas e reações de apoio.

2.2.2 - Procedimento para a análise estrutural

Conforme recomendado por Schlaich et al [30] e Schäfer [28], o mais conveniente para a análise estrutural é dividir a estrutura em regiões "B" e "D", pois seria muito incômodo modelar a estrutura inteira com escoras e tirantes.

O projeto das regiões "B" pode ser efetuado utilizando-se a teoria de flexão no estado limite último com os modelos de treliça. Para o projeto das regiões "D", deve-se conhecer os esforços solicitantes no contorno destas regiões.

O método do caminho de carga é usado para sistematizar o modelo de escoras e tirantes, através das trajetórias de tensão ou trajetórias de forças.

2.2.3 - Modelagem

Na literatura [28,29,30] é indicado que os modelos de escoras e tirantes sejam, a princípio, baseados em análises elásticas de elementos não fissurados. Isto, entretanto, deve ser tomado como uma orientação para os casos de regiões de descontinuidade (regiões "D") para os quais não existe suficiente comprovação experimental da possibilidade de redistribuição de forças (Schlaich e Schäfer [30]).

Pode-se ajustar a geometria de um modelo formado a partir de uma análise elástica, para traduzir melhor as condições de ruptura verificadas experimentalmente, ou mesmo devido a imposições de ordem prática para o detalhamento da armadura. Em geral, não há um único modelo para cada caso. Esta não unicidade não deve ser tomada como desvantagem, pois a liberdade de escolha entre diversas opções que possam traduzir um comportamento

real, permite ao projetista, com experiência e com boa noção do comportamento de estruturas, uma certa liberdade quanto à definição dos modelos a serem utilizados.

2.2.4 - Tensões nas escoras, regiões nodais e tirantes

Um dos aspectos mais questionáveis com relação a modelos formados por elementos comprimidos e tracionados parece ser a definição da resistência das escoras e das regiões nodais. Embora, na maioria dos elementos normalmente armados ou subarmados, estas tensões, geralmente, não sejam críticas, em algumas regiões de descontinuidade isto pode não ser o caso (Shehata e Nagato [34]).

2.2.4.1 - Resistência das escoras

As escoras são discretizações de campos de tensões de compressão no concreto. Trata-se de uma idealização da realidade. Dependendo da forma como as tensões de compressão se distribuem através da estrutura, a partir de ações concentradas e reações, teremos escoras ou campos de compressão diferentes. Para cobrir todos os campos de distribuição de tensões de compressão, segundo Schlaich [30], três configurações típicas são enumeradas:

- distribuição de tensões radial tipo leque
- distribuição de tensões em linhas curvilíneas com afunilamento da seção tipo garrafa
- distribuição de tensões paralelas tipo prisma

Figura 2.01 - a) Campo de tensões tipo leque: b) Campo de tensões tipo garrafa e c) Campo de tensões tipo prisma (Schlaich e Schäfer | 30]).

A distribuição de tensões radial (figura 2.01-a) e uma idealização de um campo de tensões com curvatura desprezível. Este tipo de distribuição de tensões pode ser encontrado em regiões "D", onde força concentradas são introduzidas e propagadas de maneira suave. Neste campo de tensão, não se desenvolvem trações transversais.

A distribuição de tensões em linhas curvilíneas com afunilamento da seção (figura 2.01-b) ocorre quando forças concentradas são introduzidas e propagadas através de curvaturas acentuadas. A difusão dessas tensões provoca compressão biaxial ou triaxial abaixo da força e trações transversais consideráveis mais adiante. Esta tração transversal, combinada com a compressão longitudinal, pode provocar fissuras longitudinais e iniciar uma ruptura prematura. Como a resistência à tração do concreto é muito baixa, normalmente se reforça este campo de tensões na direção transversal.

A distribuição de tensões paralela (figura 2.01-c) ocorre quando as tensões se distribuem uniformemente, sem perturbação. Este campo de tensão e típico de uma região "B" e evidentemente não desenvolve trações transversais.

A resistência à compressão das escoras é menor que a resistência à compressão dos banzos comprimidos principalmente devido aos efeitos de tração vindos da armadura que as atravessa.

Schäfer e Schlaich [30] sugerem os seguintes valores simplificados da resistência da escoras:

 $0.85 f_{cd}$ para um estado de tensão uniaxial e sem perturbação;

 $0,68 f_{cd}$ para campos de compressão com fissuras paralelas às tensões de compressão; $0,51 f_{cd}$ para campos de compressão com fissuras inclinadas.

onde: $f_{cd} = f_{ck} / \gamma_c$

No código CEB/90 [18], a resistência de projeto de uma região sob compressão uniaxial pode ser determinada através de um diagrama simplificado de tensões uniformes para o

concreto, ao longo de toda a altura, de escoras e banzos comprimidos. Considera-se a tensão media igual a:

$$f_{cd1} = 0.85 \left[1 - \frac{f_{ck}}{250} \right] f_{cd}$$
(2.01)

para zonas não fissuradas, ou

$$f_{cd2} = 0,60 \cdot \left[1 - \frac{f_{ck}}{250} \right] \cdot f_{cd}$$
(2.02)

para zonas fissuradas onde a resistência à compressão pode ser reduzida pelo efeito de tração transversal da armadura e pela necessidade de transmitir forças através das fissuras (Fig. 2.02).

Figura 2.02 - Exemplo de resistência reduzida f_{cd2} (CEB/90 | 18]).

2.2.4.2 - Resistência dos nós

Um nó pode ser definido como o volume de concreto que envolve as interseções das escoras comprimidas, em combinação com forças de ancoragem de armaduras e/ou forças de compressão externas (ações concentradas ou reações de apoio). O nó também representa uma mudança brusca na direção das forças, enquanto em uma estrutura de concreto armado real, este desvio normalmente ocorre em certo comprimento e largura.

Segundo Schäfer e Schlaich [30] os nos podem ser classificados em contínuos e singulares (Figura 2.03). Os nos continuos são aqueles em que o desvio de forças é feito em comprimentos razoáveis. Estes nos normalmente não são críticos, desde que seja providenciada uma ancoragem adequada para a armadura. Os nos singulares são aqueles em que as forças concentradas são aplicadas e o desvio de forças é feito localizadamente. Estes nos são críticos e devem ter suas tensões verificadas.

Figura 2.03 - Exemplo de nós contínuos e nós singulares (Schäfer e Schlaich [30]).

Há essencialmente quatro tipos de nós, dependendo da combinação das escoras (C) e dos tirantes (T):

CCC = nos com apenas escoras comprimidas;

CCT = nós com duas escoras comprimidas e um tirante tracionado;

CTT = nos com uma escora comprimida e dois tirantes tracionados;

TTT = nois com apenas tirantes tracionados.

A figura 2.04 mostra os quatro tipos principais de nos.

Figura 2.04 - Exemplo de nós: a) nó CCC, b) nó CCT, c) nó CTT e d) nó TTT (Schäfer e Schlaich | 30]).

Schäfer e Schlaich [30] sugerem como limites de tensões de compressão média no contorno dos nós :

- $f^*_{cd} = 1,0 f_{cd}$, para nos que só encontram escoras comprimidas (tipo CCC), criando um estado de tensão biaxial ou triaxial na região nodal;
- $f^*_{cd} = 0,8 f_{cd}$, para nós onde barras tracionadas são ancoradas (tipos CCT, CTT ou TTT), para $f_{cd} = 0,85 f_c/\gamma_c$, onde f_c = resistência do concreto à compressão e γ_c = coeficiente de minoração da resistência do concreto.

2.2.4.3 - Resistência dos tirantes

A força nos tirantes é usualmente absorvida pela armadura, cujo eixo deve coincidir com o do tirante do modelo. A área de armadura necessária é obtida diretamente através da força no tirante no estado limite último e a resistência de escoamento do aço:

$$A_s = \frac{F_t}{f_{vd}} \tag{2.03}$$

onde:

- $A_s =$ Area de aço;
- F_t = Força de tração no tirante;
- f_{yd} = Resistência de cálculo do aço à tração.

2.3 - ALGUNS ESTUDOS E RECOMENDAÇÕES SOBRE APOIOS EM DENTES

2.3.1 - Modelagem global

Um modelo adequado para a região de apoio em dente (apoio com altura reduzida em relação à altura da viga) depende de vários fatores, tais como: dimensões relativas do dente, tipo de carregamento, dimensões e posição do aparelho de apoio e tipo de detalhe de armadura (Shehata e Nagato [33]).

2.3.1.1 - Segundo Leonhardt e Mönnig [23]

Leonhardt e Mönnig [23] apresentam dois modelos que mostram a influência da disposição da armadura sobre o fluxo dos esforços internos na região do dente (Figura 2.05).

Figura 2.05 - Modelos de escoras e tirantes para apoios em dentes, segundo Leonhardt e Mönnig | 23 |.

São apresentados também alguns critérios para o detalhamento das armaduras, dentre os quais:

a) Não usar barras grossas para estribos e grampos;

b) Para combater a força Z_A , usar barras com laços horizontais (grampos), podendo-se levar em conta o efeito favorável da compressão transversal proveniente da reação vertical de apoio A. Os laços podem estar dispostos em várias camadas, distribuídas numa altura $h_k/4$;

c) Para a armadura de suspensão Z_V , usar estribos próximos a extremidade da viga, dispostos numa distância x = h/4;

d) Barras do banzo tracionado dobradas devem ser ancoradas o mais próximo possível do canto superior do dente, e, de preferência, chanfrar a viga embaixo, acompanhando as barras inclinadas;

e) Os estribos inclinados, correspondentes a Z_s , devem ficar o mais próximo possível do canto reentrante, devendo ser distribuídos num comprimento de no máximo h/4;

 f) Se as barras grossas inferiores do banzo tracionado terminarem com extremidades retas ou com ganchos, dispor alguns grampos horizontais na extremidade da viga para garantir a escora inclinada D_s;

g) Dois a quatro estribos verticais no dente, o último próximo ao canto reentrante, garantem a escora comprimida que chega no apoio.

A figura 2.06 mostra os tipos de armaduras indicado por Leonhardt e Mönnig [23] para os apoios em dentes.

Figura 2.06 - Tipos de armaduras possíveis para apoios em dentes, segundo Leonhardt e Mönnig [23].

2.3.1.2 - Segundo Schlaich e Schäfer [31]

Schlaich e Schäfer [31] indicam que as armaduras nos dentes sejam dimensionadas segundo modelos simples (modelos 1 e 2) ou segundo modelo composto (modelo 3) obtido a partir da combinação dos dois modelos simples, conforme mostra a figura 2.06, os quais são analisados separadamente. Para a utilização do modelo composto, Schlaich e Schäfer [31] recomendam que pelo menos 30% da carga total no dente sejam absorvidos pelo modelo simples sem tirante inclinado.

Pode-se ver na figura 2.08 que na região do dente são colocados estribos verticais, apesar dos modelos não indicarem sua necessidade.

2.3.1.3 - Segundo a NBR 9062 | 9 |

A NBR 9062 [9], no item 7.4, trata de dentes de apoios, permitindo que sejam assemelhados a consolos. Na norma existem recomendações quanto às armaduras, como a necessidade da colocação de estribos verticais e horizontais no dente, conforme mostra a figura 2.09, apesar da modelagem global não indicar essa necessidade.

2.3.1.4 - Segundo Regan [27]

Regan [27] ensaiou duas vigas, com cada dente sendo ensaiado separadamente. Os modelos utilizados para o dimensionamento das vigas estão apresentados na figura 2.10. Os dois dentes de cada viga foram nominalmente similares.

a) Modelo com tirantes ortogonais

b) Modelos com tirantes inclinados

Os detalhes das armaduras e localização dos extensômetros elétricos das vigas ensaiadas por Regan [27] encontram-se na figura 2.11.

Os esquemas dos ensaios para os quatro dentes são mostrados na figura 2.12.

b) ensaio 1/2

Figura 2.12 - Esquema dos ensaios utilizados por Regan [27].

d) ensaio 2/2

Figura 2.12 (cont.) - Esquema dos ensaios utilizados por Regan | 27].

A ruptura do ensaio 1/1 ocorreu com uma fissura de separação entre o apoio e o ponto de encontro da armadura de suspensão com a armadura superior causando a desintegração da extremidade do dente além do apoio (Figura 2.13-a). As deformações medidas mostraram que a armadura de flexão do dente escoou, enquanto que as deformações nos estribos foram relativamente baixas.

Para evitar o tipo de ruptura ocorrido no dente 1/1, foi colocado um estribo externo no dente 1/2 (Figura 2.12-b). Esse estribo foi apertado antes do ensaio, mas a força nele atuante não foi monitorada. Antes da ruptura, abriu-se uma fissura inclinada entre o apoio e o ponto de encontro da armadura superior com a armadura de suspensão, como no caso do dente 1/1, mas sua abertura foi controlada pelo estribo externo. A ruptura no ensaio 1/2 ocorreu com uma fissura diagonal partindo do canto reentrante (a primeira a surgir) e estendeu-se até quase o topo da viga, onde ocorreu o esmagamento do concreto (Figura 2.13-b). As deformações medidas mostraram que a armadura de flexão do dente escoou.

A ruptura da viga 2/1 ocorreu devido à flexão no meio do vão, apesar do dente estar próximo da ruptura. A propagação da ruptura da viga foi evitada devido à necessidade de se fazer o ensaio 2/2. Houve escoamento das barras horizontais.

Para evitar a ruptura por flexão ocorrida no ensaio 2/1, o vão de cisalhamento foi reduzido para a realização do ensaio 2/2. A ruptura no dente 2/2 ocorreu com a separação da zona de compressão a partir da parte superior da armadura inclinada. Os estribos inclinados internos e os mais externos, assim como as barras horizontais, atingiram o escoamento.

a) Ruptura do ensaio 1/1

b) ruptura do ensaio 1/2

Figura 2.13 - Ruptura dos ensaios dos dentes 1/1 e 1/2 (Regan [27]).

Com a colocação do estribo externo no dente 1/2, mudou-se o modelo da figura 2.10-a para o modelo da figura 2.14, que é um modelo hiperestático. Conhecido o valor da força no estribo externo, o modelo ficaria resolvido. Mas no caso do ensaio do dente 1/2, esta força não foi monitorada.

Melo [25] ensaiou três vigas com cada dente sendo ensaiado separadamente (dois ensaios por viga), com o esquema de ensaio mantido invariável. Foram adotados modelos propostos na literatura com algumas modificações, onde pode-se notar que houve a preocupação em reforçar a região do dente de altura reduzida com estribos verticais (Figura 2.15).

Os dentes 1 e 2 da primeira viga foram armados segundo o modelo de escoras e tirantes da figura 2.15-a, os dentes 3 e 4 da segunda viga foram armados segundo o modelo da figura 2.15-b e os dentes 5 e 6 da terceira viga, segundo o modelo da figura 2.15-c.

Figura 2.15 - Modelos de escoras e tirantes utilizados por Melo [25].

Em todos os dentes, a ruptura ocorreu com abertura excessiva da fissura que partiu do apoio, cruzando (dentes 1,2,3 e 5) ou não (dentes 4 e 6) a face superior da viga. O cruzamento indicou um cisalhamento da zona comprimida. Em todos os dentes houve escoamento da armadura de flexão.

2.3.2 - Modelagem local

Como foi apresentado no item 2.3.1, as normas e pesquisadores recomendam a utilização de estribos verticais e grampos ou estribos horizontais na região de altura reduzida nos apoios em dentes, embora os modelos usuais de escoras e tirantes não mostrem a necessidade dessas armaduras.

A necessidade de estribos verticais nos apoios em dentes foi confirmada por Regan [27], onde a ausência de estribos no dente 1/1 levou à ruptura prematura com a desintegração da extremidade do dente além do apoio, e a adição de um estribo externo no dente 1/2 mostrou, no decorrer do ensaio, ser suficiente para evitar danos nesta região.

Serão apresentadas a seguir, propostas de modelagem local encontradas na literatura consultada.

2.3.2.1 - Segundo o CEB/90 [18]

O CEB/90 [18] indica um modelo com tirante vertical e outro com tirante horizontal para cargas concentradas próximas aos apoios, sendo a distância relativa "a/z" o parâmetro que define a aplicação de qual modelo deve-se utilizar, como mostra a figura 2.16.

Figura 2.16 - Modelagem local proposta pelo CEB/90 [18]

2.3.2.2 - Segundo Souza [35]

Souza [35] propôs uma modelagem local para a escora do dente buscando uma forma de dimensionar racionalmente tanto os estribos verticais como os grampos ou estribos horizontais a serem colocados nos dentes. Esse modelo considera que a escora tem um espraiamento entre o apoio e o topo da armadura de suspensão, como mostra a figura 2.17. O modelo apresenta duas soluções, dependendo do ângulo θ (ângulo de inclinação da

escora). Se $\theta \le 45^{\circ}$, adota-se o modelo da figura 2.17-a e se $\theta > 45^{\circ}$, adota-se o modelo da figura 2.17-b.

Figura 2.17 - Modelagem local proposta por Souza [35].

2.4 - CONSIDERAÇÕES SOBRE ESFORÇO CORTANTE EM VIGAS

Os estudos até agora realizados mostram que a analogia clássica de treliça de Mörsch [26] não é correta quando admite que todo o esforço cortante é absorvido pela armadura transversal (estribos ou barras dobradas). Após a fissuração inclinada, uma parte do esforço cortante é resistida pela armadura transversal, outra parte é resistida pelo concreto da região comprimida e a parte restante é resistida pela ação de engrenamento dos agregados ao longo das fissuras e pela ação de pino da armadura longitudinal.

2.4.1 - Vigas sem armadura transversal

2.4.1.1 - Forças internas em uma viga sem armadura transversal

O esforço cortante transferido através de uma fissura inclinada em uma viga sem armadura transversal é mostrado na figura 2.18. O esforço cortante é transferido através da seção A-B-C por:

- V_{cz} = esforço cortante na zona de compressão;
- V_{av} = a componente vertical do esforço cortante transferido através da fissura pelo engrenamento dos agregados nas duas faces da fissura;
- $V_d = -a$ ação de pino da armadura longitudinal de flexão.

Após o surgimento da fissura inclinada, aproximadamente 40 a 60% do esforço cortante total pode ser transferido por V_d e V_{av} , juntos.

Figura 2.18 - Forças internas em uma viga fissurada sem armadura transversal (MacGregor | 24])

Considerando a porção D-E-F abaixo da fissura, e assumindo momentos sobre a armadura no ponto E, mostra que V_d e V_a causam um momento sobre o ponto E que pode ser equilibrado por uma força de compressão C_1 . O equilibrio de forças horizontais na seção A-B-D-E mostra que $T_1 = C_l + C'_l$, e finalmente, $T_1 \in C_l + C'_l$ deve equilibrar o momento externo nesta seção.

Quando as fissuras alargam, V_a decresce, aumentando a fração do esforço cortante resistido por V_{cz} . O efeito de pino V_d conduz a um fendilhamento do concreto ao longo da armadura longitudinal. Quando este fendilhamento do concreto ao longo da armadura longitudinal ocorre, V_d cai a praticamente zero. Quando V_a e V_d desaparecem, todo o esforço cortante na viga é resistido através de V_{cz} e na altura AB acima da fissura, que se reduz progressivamente. Isto pode causar esmagamento ou cisalhamento do concreto nesta região devido à combinação de V_{cz} com a compressão C_1 , ou a ruptura da parte superior da viga por um mecanismo de flexo-compressão.

2.4.1.2 - Fatores que afetam a resistência ao esforço cortante de vigas sem armadura transversal

Vigas sem armadura transversal podem chegar à ruptura quando fissuras inclinadas ocorrem. Por esta razão a capacidade de resistência ao esforço cortante de tais membros é considerado como sendo igual a força cortante que provoca o aparecimento da fissura diagonal. A força cortante que provoca fissuração inclinada em uma viga é afetada por cinco variáveis principais: resistência de tração do concreto (f_{ct}), percentual de armadura longitudinal (ρ_w), relação a/d, altura da viga e forças axiais, sendo dificil quantificar a influência de cada uma dessas variáveis.

2.4.2 - Vigas com armadura transversal

Devido ao aparecimento de fissuras inclinadas, a resistência da viga cai abaixo da capacidade de resistência à flexão, se não existir armadura transversal. A finalidade da armadura transversal é para assegurar que a total capacidade de flexão da viga seja alcançada, impedindo a ruptura prematura devida ao esforço cortante.

2.4.2.1 - Forças internas em uma viga com armadura transversal

As forças transmitidas através de uma fissura em uma viga com armadura transversal são mostradas na figura 2.19. A terminologia é a mesma da figura 2.18. O esforço cortante V_s é transferido através da tração nos estribos. Como V_s cresce quando as fissuras se abrem, haverá sempre uma força de compressão C'_l e uma força de cisalhamento V'_{cz} atuando na parte da viga abaixo da fissura. Como resultado disso, T₂ será menor que T₁, a diferença dependendo da quantidade de armadura transversal. A força T₂, entretanto, será maior que T =M/z baseado no momento em C.

Figura 2.19 - Forças internas em uma viga fissurada com armadura transversal (MacGregor [24])

A história do carregamento de uma viga é mostrado qualitativamente na figura 2.20. As somas das componentes do esforço cortante interno resistente deve ser igual ao esforço cortante aplicado, como indicado pela linha a 45° na parte superior. Antes do aparecimento da fissuração de flexão, todo o esforço cortante é suportado pelo concreto não-fissurado. Entre o aparecimento da fissuração de flexão e a fissuração inclinada, o esforço cortante externo é resistido por V_{cz} , V_{ay} e V_d . Finalmente, os estribos que atravessam a fissura escoam, e V_s permanece constante para maiores esforços cortantes aplicados. Uma vez que os estribos escoam, a fissura inclinada abre mais rapidamente. Com o aumento da abertura da fissura inclinada, V_{ay} decresce, forçando o aumento de V_d e V_{cz} em uma velocidade acelerada até ocorrer a ruptura por fendilhamento ao longo da armadura longitudinal de flexão, ou a ruptura da zona de compressão devido ao esforço cortante e compressão combinados.

Figura 2.20 - Distribuição dos esforços cortantes resistentes em vigas com armadura transversal (ACI-ASCE COMMITTEE 426 | 13]).

Cada uma das componentes desse processo, exceto V_s , tem uma resposta carga-deflexão frágil. Com isso, torna-se dificil quantificar as contribuições de V_{cz} , V_d e V_{ay} . No projeto, essas parcelas são juntadas em V_c , que é chamada incorretamente de "esforço cortante suportado pelo concreto".

2.5 - PRESCRIÇÕES NORMATIVAS E DE PESQUISADORES QUANTO AO CÁLCULO DA ARMADURA DE CISALHAMENTO

2.5.1 - Norma NBR 6118 [1]

A NBR 6118 [1] prescreve que a verificação da segurança é feita usando o modelo da treliça clássica de Mörsch [26], baseada na configuração de fissuras por ocasião do colapso de um elemento fletido. No item 4.1.4.2 da NBR 6118 [1], a resistência ao

esforço cortante das vigas sem armadura transversal não é especificada. Para o caso de vigas com armadura transversal submetidas à flexão simples, tem-se:

$$V_c = 0.87. \,\Psi_l. \, b_w. d. \,\sqrt{f_{ck}} \tag{2.04}$$

onde:

$$\Psi_l = 0,07 \text{ para } \rho_l \le 0,001$$

 $\Psi_l = 0,14$ para $\rho_l \ge 0,015$

interpolando-se linearmente para valores intermediários de ρ_l , que é a menor taxa de armadura longitudinal de tração no trecho de comprimento 2*h* a partir da face do apoio, não se tomando valores menores que 0,001 nem maiores que 0,015.

A contribuição da armadura transversal das peças lineares é calculada pela teoria clássica da treliça de Mörsch [26]:

$$V_s = 0,87. \frac{A_{sw.fyd.d}}{s}$$
 (2.05)

onde

 $f_{yd} = f_{yk} / 1,15$

Portanto tem-se:

$$V_d = V_s + V_c$$
, ou $\tau_{wd} = 0.87$. $(\Psi_{l}, \sqrt{f_{ck}} + \rho_{w}, f_{yd}) \le \tau_{wu}$ (2.06)

A NBR 6118 [1], no item 5.3.1.2-b, prescreve que para peças lineares com $b_w \le 5h$, sendo h a altura total e com armadura transversal constituída por estribos verticais, o valor limite da tensão de cálculo para cisalhamento será:

$$\tau_{wns} = 0.25 f_{cd} \le 4.5 \text{ MPa}$$
(2.07)

onde:

 f_{cd} = Resistência de calculo do concreto a compressão igual a f_{ck} / 1,4.

2.5.2 - Norma CEB-FIP MC90 [18]

A norma CEB-FIP MC90 [18] não adota a teoria aditiva para a resistência ao esforço cortante ($V_u = V_s + V_c$). Ela propõe a utilização do modelo de treliça generalizada como base para o dimensionamento ao cisalhamento de peças de concreto armado submetidas à flexão simples e cisalhamento, estabelecendo para a inclinação das diagonais comprimidas da treliça ao nivel da linha neutra valores compreendidos entre 18,4° e 45° ($3 \ge \cot \theta \ge 1$).

No caso em que uma grande parcela do esforço cortante é produzido por uma ação aplicada a uma distância z.cotg θ ($\leq 3z$) do apoio, permite-se que a armadura transversal seja projetada para uma força menor. Isto traz as seguintes consequências:

 a) a força de compressão inclinada no apoio pode ser consideravelmente aumentada, por isso deve-se verificar as tensões de compressão nas regiões nodais.

b) a força na armadura principal a ser ancorada é maior e a ancoragem deve ser verificada.

c) se a fissuração ocorrer em serviço, a quantidade de armadura transversal controlando a abertura da fissura diagonal pode ser muito pequena e violar o critério estabelecido. Na ausência de um cálculo mais preciso, o esforço cortante que causa a fissuração pode ser estimado por:

$$V_{cr} = 0,15.\sqrt[3]{\frac{3.d}{a}} . \xi.\sqrt[3]{100.\rho.f.k} . b.d \qquad (f_{ck} \text{ em MPa})$$
(2.08)

onde a função $(3d/a)^{1/3}$ é uma expressão empírica que leva em conta a influência da compressão transversal devido às ações e reações de apoio, e $\xi = 1 + \sqrt{\frac{200}{d}}$, com d em mm.

Para vigas com armadura transversal, o esforço cortante resistente e considerado como sendo obtido do modelo de treliça, de acordo com a equação 2.09:

$$F_{RTw} = \frac{A_{sw.}f_{yd}}{s} z. \left(\cot \theta + \cot \alpha\right)$$
(2.09)

onde α é o ângulo de inclinação da armadura transversal com a horizontal , $f_{yd} = f_{yk} / 1,15$ e $z \approx 0,90.d$.

A aplicação dos modelos está sujeita as seguintes condições:

a) a taxa mecânica minima de armadura transversal não deve ser menor que 0,2, isto é:

$$\omega_{\text{sw}} = \frac{A_{\text{sw}} f_{yk}}{b_{\text{w},\text{S}} f_{\text{ctm.sen}} \alpha} \ge 0,2$$
(2.10)

onde:

 $A_{sw} =$ área da seção transversal das barras da armadura transversal;

 f_{yk} = resistência característica do aço;

 $b_w =$ largura das vigas de seção retangular;

s = espaçamento entre os estribos;

 $f_{ctm} =$ resistência média de tração do concreto, sendo igual a $\alpha_{fcl,m} \cdot \sqrt[3]{\left(\frac{f_{ck}}{f_{cko}}\right)^2}$, com

 $\alpha_{fct,m} = 1,40$ MPa e $f_{cko} = 10$ MPa.

b) a inclinação dos estribos em relação ao eixo da peça deve ser no minimo 45° e as barras dobradas no minimo 30°.

c) o espaçamento entre os ramos dos estribos não deve ser maior que 0,75d ou 800 mm.

d) a armadura de cisalhamento deve ser adequadamente ancorada nos banzos.

Para a determinação da tensão nominal de cisalhamento última, adotando-se $\theta = 45^{\circ}$ e $\alpha = 90^{\circ}$, tem-se:

$$\tau_{wu} = 0.87 \ \rho_{w} \ f_{vd} \tag{2.11}$$

onde:

$$1,15.\tau_{wu}\left(\frac{1+\cot^2\theta}{\cot\theta}\right) \le 0,6.f_{cd}\left(1-\frac{f_{ck}}{250}\right), \ \text{com} \ f_{ck} \ \text{em} \ \text{MPa e} \ f_{cd} = f_{ck}/1,5$$

2.5.3 - Norma ACI 318-95 [12]

De acordo com a norma ACI 318-95 [12], no item 11.1, o dimensionamento de peças de concreto armado deve basear-se na expressão:

$$V_u \le \phi V_n \tag{2.12}$$

onde ϕ é o fator de minoração da resistência, sendo, para cisalhamento, igual a 0,85, V_u é a força cortante na seção considerada e V_n a resistência nominal ao cisalhamento, dada por:

$$V_n = V_c + V_s \tag{2.13}$$

onde V_c é a resistência nominal ao cisalhamento proveniente "do concreto" e V_s é a resistência nominal da armadura transversal.

O código do ACI assume que a parcela V_c da resistência ao cisalhamento das vigas sem armadura transversal é o esforço cortante correspondente a fissuração diagonal, de acordo com a equação (2.14).

$$V_{c} = \left(0,16.\sqrt{f_{c}} + 17.\rho.\frac{V_{u.d}}{M_{u}}\right)bd \le 0,29.bd.\sqrt{f_{c}}$$
(2.14)

com f_c em MPa, $b \in d$ em mm e V_c em N, onde M_u é o momento último da seção e ($V_u d / M_u$) ≤ 1 expressa a relação entre a altura útil e o vão de cisalhamento, d/a.

Esta equação considera os parâmetros $\sqrt{f_c}$, $\rho \in a d$, mas alguns pesquisadores [11,21] indicam que a equação proposta pelo ACI superestima a influência de f_c e subestima a influência de $\rho \in a d$. Outras pesquisas [14,22] indicam que a resistência ao cisalhamento diminui com o aumento da altura útil (efeito escala), o que não é considerado por essa expressão.

A norma sugere ainda uma fórmula simplificada, que assume que a segunda parcela da equação (2.14), relacionada com o efeito de pino e a relação a d, é equivalente a 0,01 $\sqrt{f_c}$, ou seja:

$$V_c = 0,17.b.d\sqrt{f_c} \qquad (f_c \text{ em MPa, } b \text{ e } d \text{ em mm e } V_c \text{ em N})$$
(2.15)

A parcela da resistência ao esforço cortante resistida pela armadura transversal é obtida considerando-se uma treliça com diagonais comprimidas a 45° com o eixo da viga.

Assumindo que todos os estribos que atravessam a fissura escoem e que $z \approx d$, esta parcela, para o caso da armadura transversal perpendicular ao eixo da viga, é:

$$V_s = \frac{A_{sw.} f_{yd.} d}{s} \le 0,68 \sqrt{f_c} \cdot b.d \quad (f_c \text{ em MPa}, b \text{ e } d \text{ em mm e } V_s \text{ em N})$$
(2.16)

O mecanismo de ruptura das vigas com armadura transversal é totalmente diferente do das vigas sem armadura transversal. Contudo, o ACI e vários outros códigos consideram a resistência ao esforço cortante de vigas com armadura transversal como sendo $V_u = V_c + V_s$.

A tensão nominal de cisalhamento última, para vigas com armadura transversal, é dada pela expressão (2.17) considerando-se $z \approx d$.

$$\tau_{wu} = \phi \left[\frac{V_c}{bd} + \rho_{w.} f_{yd} \right]$$
(2.17)

A norma estabelece os seguintes limites a serem considerados:

a) √f_c ≤ 8,30 MPa (f_c em MPa), com exceção das vigas onde: 0,01.(f_c/f_y) ≤ ρ_w ≤ 1,035/
f_y. (f_c e f_y em MPa)
b) f_y ≤ 414 MPa

2.5.4 - Norma Eurocode 2/91 [19]

O método de cálculo, correspondente ao esforço cortante, baseia-se em três valores do esforço cortante resistente:

- a) V_{RdI} = valor de cálculo do esforço cortante resistente do elemento sem armadura de cisalhamento.
- b) V_{Rd2} = valor máximo do esforço cortante suportado sem ocorrência de esmagamento das escoras comprimidas do concreto.
- c) V_{Rd3} = valor de cálculo do esforço cortante que pode ser suportado por um elemento com armadura transversal.

Na ausência de uma análise mais rigorosa, o valor de cálculo do esforço cortante atuante nunca deve ser superior a V_{Rd2} em qualquer seção ou elemento.

As seções em que o valor de cálculo do esforço cortante atuante (V_{sd}) é inferior a V_{Rdl} , não necessitam de armadura de cisalhamento, mas deverá ser utilizada uma armadura mínima. O valor de calculo do esforço cortante resistente V_{Rdl} é dado por:

$$V_{RdI} = \left[\mathcal{T}_{Rd.} K \cdot (1, 2 + 40\rho_1) + 0, 15\sigma_{cp} \right] b_{w.d}$$
(2.18)

onde:

- τ_{Rd} = valor de referência para o cálculo do esforço cortante resistente igual a 0,25 $f_{ctk0.05}$ γ_c , onde γ_c coeficiente de minoração relativo às propriedades de concreto devendo ser tomado igual a 1,5, e $f_{ctk0.05}$ é o valor característico da tensão de ruptura do concreto à tração simples, obtido através da tabela 2.01;
- K = 1 para elementos em que mais de 50% da armadura inferior é interrompida no vão. Caso contrário, $K = 1,6 - d \le 1$, sendo d expresso em metros;

$$\rho_l = \frac{A_{sl}}{b_{w,d}} \ge 0,02;$$

- $A_{sl} =$ área da armadura longitudinal de tração;
- $b_w = -$ largura mínima da seção ao longo da altura útil;
- $\sigma_{cp} = N_{Sd} / A_c ;$
- N_{Sd} = esforço normal na seção devido às cargas aplicadas ou pré-esforco (compressão positiva).

Tabela 2.01 – Valores de τ_{Rd} (N/mm²), com $\gamma_c = 1,5$, para diferentes classes de resistência do concreto

f_{ck} (MPa)	12	16	20	25	30	35	40	45	50
T _{Rd}	0,18	0,22	0,26	0,30	0,34	0,37	0,41	0,44	0,48

O valor de cálculo do esforço cortante resistente máximo (V_{Rd2}), para a verificação relativa ao esmagamento da escora comprimida, é dado pela expressão 2.19:

$$V_{Rd2} = 0,45. v.f_{cd}. b_w.d \tag{2.19}$$

sendo o fator de eficácia v dado por:

$$v = 0,7 - \frac{f_{ck}}{200} \ge 0,5 \quad (f_{ck} \text{ em MPa})$$
 (2.20)

A resistência ao esforço cortante de uma seção com armadura de cisalhamento é dada pela expressão (2.21):

$$V_{Rd3} = V_{cd} + V_{wd} (2.21)$$

onde :

 V_{cd} = capacidade resistente de cálculo ao esforço cortante "do concreto", igual a V_{RdI} , calculado de acordo com a equação 2.18;

 V_{wd} = capacidade resistente de cálculo da armadura de cisalhamento.

A contribuição da armadura de cisalhamento é dada, no caso de estribos verticais, pela expressão 2.22.

$$V_{wd} = 0.9. \frac{A_{sw.} f_{ywd.} d}{s}$$
(2.22)

onde:

 $A_{sw} =$ área da seção da armadura de cisalhamento;

s = espaçamento entre estribos;

 f_{ywd} = valor de cálculo da tensão de escoamento da armadura de combate ao esforço cortante.

No caso de barras inclinadas, a contribuição da armadura de cisalhamento é dada pela equação 2.23:

$$V_{wd} = 0.9. \frac{A_{sw.} f_{ywd.} d}{s} (1 + \cot \alpha) \operatorname{sen} \alpha$$
(2.23)

Para a verificação relativa ao esmagamento das escoras comprimidas, V_{Rd2} é dada pela seguinte expressão:

$$V_{Rd2} = 0.45. v. f_{cd}. b_w. d. (1 + \cot g \alpha)$$
(2.24)

onde α é o ângulo de inclinação das barras inclinadas com relação à horizontal.

2.5.5 - Norma CAN3-A23-3-M84 [16]

De acordo com a norma CAN3-A23-3-M84 [16], no item 11.3, a resistência de ao esforço cortante de vigas é dada por:

$$V_r = V_c + V_s \tag{2.25}$$

onde V_e é a resistência nominal ao cisalhamento proveniente "do concreto" e V_s é a resistência nominal da armadura transversal.

Para membros sujeitos somente a cisalhamento e flexão, a norma CAN3-A23-3-M84 [16], item 11.3.4.1, estabelece a seguinte expressão para o cálculo da parcela proveniente do "concreto":

$$V_c = 0,20.\lambda.\phi_c.\sqrt{f'c}.b_w.d \quad (f'c \text{ em MPa}, b_w e d \text{ em mm e } V_c \text{ em N})$$
(2.26)

onde:

 $\lambda = 1$, para concreto de densidade normal;

 ϕ_c = fator de minoração da resistência para o concreto igual a 0,60.

A contribuição da armadura de cisalhamento é dada, no caso de estribos verticais, pela expressão 2.27 (item 11.3.6.1).

$$V_s = \phi_s \frac{A_{v.f_v.d}}{s} \le 0.8.\lambda \phi_c \sqrt{f'c} \cdot b_w d$$
(2.27)

onde:

 ϕ_s = Fator de minoração da resistência para a armadura, igual a 0,85.

No caso de estribos inclinados, a contribuição da armadura de cisalhamento é dada pela expressão 2.28 (item 11.3.6.3):

$$V_s = \phi_s \cdot \frac{A_{vi.} f_{y.} d}{s} (\operatorname{sen} \alpha + \cos \alpha) \le 0, 8 \cdot \lambda \phi_c \sqrt{f'_c} \cdot b_{w} d$$
(2.28)

Quando a armadura de combate ao esforço cortante consiste somente de uma barra ou um grupo de barras paralelas dobradas à mesma distância do apoio, a contribuição desta armadura é dada pela expressão 2.29 (item 11.3.6.3):

$$V_s = 0.85. A_{vi} f_{y} \operatorname{sen} \alpha \le 0.3. \lambda \phi_c \sqrt{f'_c} b_w d$$

$$(2.29)$$

Onde a armadura de combate ao esforço cortante consiste de uma série de barras paralelas ou de grupos de barras paralelas dobradas a diferentes distâncias do apoio, a resistência ao esforço cortante V_s será admitido como 0,75 vezes o valor dado pela equação 2.29, mas não maior que $0.5.\lambda \phi_c \sqrt{f'_c}$. $b_w d$ (item 11.3.6.4).

2.5.6 - Zsutty [36,37]

De acordo com Zsutty [36,37], a resistência ao esforço cortante último das vigas é dada por:

$$V_u = \phi_{\cdot}(V_c + V_s) \tag{2.30}$$

onde:

 $V_u =$

 $\phi = 0,85$ (coeficiente de redução usado na norma ACI-318);

esforço cortante último;

 $V_c =$ parcela do esforço cortante resistida pelo "concreto";

 $V_s =$ parcela do esforço cortante resistida pelos estribos.

Para as vigas com a relação $a/d \ge 2.5$, a parcela do esforço cortante resistida pelo "concreto" é dada por:

$$V_c = 2,3.b.d.\sqrt[3]{f_c.\rho.\frac{d}{a}} \quad (f_c \text{ em MPa, } b \text{ e } d \text{ em mm e } V_c \text{ em N})$$
(2.31)

e, para as vigas com relação a/d < 2,5, a equação 2.31 é multiplicada por um fator linear que leva em conta a ação de arco. Portanto, a parcela do esforço cortante resistida pelo "concreto" é dada por:

$$V_{c} = \left(\frac{2,5}{a/d}\right) \left(2,3.b.d.\sqrt[3]{f_{c},\rho.\frac{d}{a}}\right) (f_{c} \text{ em MPa, } b \text{ e } d \text{ em mm e } V_{c} \text{ em N})$$
(2.32)

A parcela do esforço cortante resistida pelos estribos é dada por:

$$V_s = \frac{A_{sw.} f_{yw.} d}{s} \tag{2.33}$$

onde:

 $V_s = parcela$ do esforço cortante resistido pela armadura transversal;

 A_{sw} = área da seção da armadura transversal na distância s;

 f_{yd} = tensão de escoamento da armadura transversal;

s = espaçamento entre os estribos;

d = altura útil da viga.

A tensão nominal de cisalhamento última, para vigas com armadura transversal, é dada por:

$$\tau_{wu} = \phi \left[\frac{V_c}{bd} + \rho_{w} f_{yw} \right]$$
(2.34)

2.5.7 - Bazant [14]

De acordo com Bazant [14], a resistência ao esforço cortante último das vigas é dada por:

$$V_u = V_c + V_s \tag{2.35}$$

onde:

 V_u = esforço cortante último;

- V_c = parcela do esforço cortante resistida pelo "concreto";
- V_s = parcela do esforço cortante resistida pelos estribos.

Para as vigas de concreto armado a parcela do esforço cortante resistida pelo "concreto" é dada por:

$$V_{c} = 0,54.b_{w}.d.\sqrt[3]{\rho} \left(\sqrt{f'_{c}} + 249 \sqrt{\frac{\rho}{(a/d)^{5}}} \right) x \frac{1 + \sqrt{5,08/d_{a}}}{\sqrt{1 + d/25d_{a}}}$$
(2.36)

 $\operatorname{com} f'_c \operatorname{em} MPa$, $b \in d \operatorname{em} \operatorname{mm} e V_c \operatorname{em} N$, onde:

- d_a = diâmetro máximo do agregado;
- $\rho =$ taxa de armadura longitudinal;
- f'_c = resistência a compressão do concreto

A parcela do esforço cortante resistida pelos estribos é dada por:

$$V_s = \frac{Av \cdot fy v \cdot d}{s} (\operatorname{sen} \alpha + \cos \alpha)$$
(2.37)

onde:

- $V_s =$ parcela do esforço cortante resistido pela armadura transversal;
- A_{v} = área da seção da armadura transversal na distância s;
- f_{yy} = tensão de escoamento da armadura transversal;
- s = espaçamento entre os estribos;
- d = altura útil da viga;
- α = ângulo entre os estribos e a armadura longitudinal.

2.6 - ESTUDOS EXPERIMENTAIS DESENVOLVIDOS NA UnB SOBRE A RESISTÊNCIA AO ESFORÇO CORTANTE EM VIGAS DE CONCRETO ARMADO COM ARMADURA LONGITUDINAL DE PELE

Relacionam-se a seguir os estudos já realizados sobre o assunto na UnB, com os dados principais dos ensaios.

Cavalcante Neto et alli [17] realizaram ensaios à ruptura de cinco vigas de concreto armado com seção retangular de 150 mm x 300 mm, comprimento total de 2800 mm, vão livre de 2600 mm e relação a/d igual a 3,2. Das cinco vigas ensaiadas, três não possuíam armadura transversal, visando estudar a contribuição da armadura de pele.

Sedycias Filho [32], seguindo o mesmo esquema de ensaio e as características das vigas de Cavalcante Neto et alli [17], realizou o ensaio de duas vigas: uma apresentando apenas armadura convencional de cisalhamento e a outra possuindo, além dos estribos verticais, uma armadura longitudinal de pele.

Bernadina e Silva [15] realizaram ensaios à ruptura de quatro vigas de concreto armado com seção retangular de 150 mm x 300 mm, comprimento total igual a 3000 mm, vão livre de 2400 mm e relação a/d igual a 2,4.

França Júnior e Kunze [20] pesquisaram a contribuição da armadura de pele no combate ao esforço cortante em vigas de concreto armado com diferentes relações a/d. O programa experimental desenvolvido envolveu o ensaio à ruptura de sete vigas com seção retangular de 150 mm x 300 mm, comprimento total de 3000 mm e vão livre igual a 2600 mm, com relações a/d assumindo os valores 3,2, 3,6 e 4,0.

Adorno [10] realizou ensaios à ruptura de onze vigas, objetivando examinar a influência de taxas mais altas de estribos sobre a contribuição da armadura de pele na resistência ao esforço cortante em vigas de concreto armado com seção retangular de 150 mm x 300 mm, comprimento total igual a 3000 mm, vão livre de 2400 mm, com relação a/d assumindo valores 1,9 e 2,4 e com taxas de armadura transversal maiores que as dos programas experimentais anteriores.

CAPÍTULO 3

PROGRAMA EXPERIMENTAL

3.1 - INTRODUÇÃO

O programa experimental que será descrito neste capítulo, como mostrado no item 1.2, envolve dois estudos paralelos, com objetivos distintos: um sobre o comportamento até a ruptura da escora principal de um apoio em dente, realizado por meio de ensaios em blocos cuja forma procura reproduzir tal escora, e o outro sobre os mecanismos resistentes ao esforço cortante em vigas de altura constante. Os dois estudos serão apresentados em paralelo, sob títulos comuns.

Os ensaios das escoras foram realizados no Laboratório de Ensaio de Materiais, no Laboratório de Estruturas da Universidade de Brasília e no Laboratório de Concreto do Departamento de Apoio e Controle Técnico de FURNAS CENTRAIS ELÉTRICAS em Goiânia-GO.

Os ensaios das vigas foram realizados na laje de reação do Laboratório de Estruturas da Universidade de Brasília.

3.2 – PEÇAS ENSALADAS

3.2.1 - Dimensões básicas

3.2.1.1 - Modelos de escoras

Foram ensaiados 15 blocos simulando a escora geralmente assumida na extremidade da viga, nos modelos de escoras e tirantes, principalmente em dentes Gerber, utilizando-se ângulos θ (ângulo de inclinação da escora) de 30°, 45° e 60°. As dimensões dos blocos foram baseadas em uma viga com a altura do dente de 300 mm e largura de alma de 150

mm, sendo o comprimento do dente função do ângulo θ . As dimensões dos blocos são mostradas na figura 3.01.

Figura 3.01 - Dimensões dos modelos de escoras

3.2.1.2 - Vigas

Foram ensaiadas cinco vigas de dimensões constantes: comprimento total de 2300 mm, seção transversal retangular com 150 mm de largura por 300 mm de altura.

O esquema de ensaio das cinco vigas foi mantido invariável. A distância das cargas concentradas aos centros dos apoios (vão de cisalhamento) era de 600 mm, a distância entre as cargas era de 500 mm e o vão total de 1700 mm. A figura 3.02 apresenta as dimensões das vigas ensaiadas.

Figura 3.02 - Dimensões das vigas ensaiadas

3.2.2 - Dimensionamento das armaduras

3.2.2.1 - Modelos de escoras

Para o dimensionamento dos modelos de escoras foi utilizada a modelagem local proposta por Souza [35], considerando-se valores do ângulo θ (ângulo de inclinação da escora) de 30°, 45° e 60°. A partir desta modelagem local, determinou-se o ângulo de espraiamento (abertura) total da escora (2 α), de 60° (para as escoras com ângulo de inclinação de 30° e 60°) e 90° (para as escoras com ângulo de inclinação de 45°). Para a escora com ângulo de inclinação de 45°, foi utilizada também uma modificação na modelagem proposta por Souza [35], limitando-se o ângulo de espraiamento total (2 α) em 60°, por entender-se que esta escora não tenha um espraiamento total que chegue a 90° e também para que esta escora tenha um espraiamento total igual às escoras com ângulo de inclinação de 30° e 60°. As modelagens locais utilizadas estão mostradas na figura 3.03.

Figura 3.03 - Modelagem local utilizada

Para o cálculo dos esforços de compressão C1, C2, C3 e C4, e de tração I, faz-se o equilíbrio dos nos, seguindo a orientação dos eixos ilustradas na figura 3.03. Por equilíbrio dos nos, obtêm-se:

$$C1 = C2 = C3 = C4$$

$$C1 = \frac{C}{2.\cos\alpha}$$
(3.01)

$$I = C \tan \alpha \tag{3.02}$$

Para o dimensionamento das armaduras do dente, isto é, os estribos verticais e horizontais, tem-se que decompor o esforço de tração *I* nas direções vertical e horizontal. A força C foi calculada a partir da fórmula encontrada no item 6.9.2 do CEB/90 [18] para um concreto com $f_{ck} = 30$ MPa . Para as escoras com ângulo de inclinação de 30° e 45°, a força C foi calculada de acordo com a equação 3.03 e para as escoras com ângulo de inclinação de 60°, de acordo com a equação 3.04.

$$f_{cd2} = 0,60 \left[1 - \frac{f_{ck}}{250} \right] f_{cd} \qquad \text{(unidades em MPa)}$$
(3.03)

$$f_{cd2} = 0,85 \left[1 - \frac{f_{ck}}{250} \right] f_{cd} \qquad \text{(unidades em MPa)}$$
(3.04)

3.2.2.2 - Vigas

Para o dimensionamento à flexão e ao esforço cortante das cinco vigas foi utilizado o processo da norma NBR 6118 [1] onde foram fixados a seção transversal ($b_w = 150$ mm e h = 300 mm), o diâmetro ($\phi_1 = 20$ mm) e a tensão de escoamento ($f_{yk} = 500$ MPa, aço CA 50) das barras da armadura longitudinal, o diâmetro ($\phi_t = 6,35$ mm) e a tensão de escoamento ($f_{yk} = 500$ MPa) das barras da armadura transversal, o cobrimento de concreto (c = 15 mm) medido até a face externa dos estribos, a resistência característica à compressão do concreto ($f_{ck} = 30$ MPa) e o vão de cisalhamento (a = 600 mm).

Procurando induzir uma ruptura por esforço cortante, foi considerada, para o dimensionamento ao esforço cortante, uma carga de aproximadamente 60% da carga de ruptura por flexão.

3.2.3 - Detalhamento

3.2.3.1 - Modelos de escoras

Foram ensaiados blocos representando a escora geralmente assumida nas extremidades das vigas, principalmente em dentes Gerber, calculados de acordo com a modelagem local apresentada no item 3.2.2.1. Foram ensaiados blocos sem armadura, blocos com armadura normal ao eixo da escora (correspondendo a armadura inclinada no dente) e com armadura correspondente a estribos verticais e a grampos horizontais. As figuras 3.04 a 3.07 apresentam o detalhamento dos quinze modelos de escoras ensaiados. Foram utilizados estribos fechados, dobrados ou soldados (no caso de barras de 12,5 mm).

e) Armadura cruzada (M1-AC)

Figura 3.05 - Armaduras utilizadas nos modelos com $\theta=\alpha=45^\circ$

Figura 3.06 - Armaduras utilizadas nos modelos com θ = 45° e α = 30°

Figura 3.07 - Armaduras utilizadas nos modelos com $\theta = 60^{\circ}$

3.2.3.2 - Vigas

Foram ensaiadas cinco vigas onde a armadura longitudinal de flexão foi mantida constante, compreendendo uma viga sem armadura transversal, uma viga com armadura longitudinal distribuída ao longo da altura (além da armadura de flexão principal), uma viga só com estribos verticais, uma viga com estribos verticais e armadura longitudinal distribuída ao longo da altura e uma viga sem armadura transversal onde foram colocadas duas chapas metálicas lubrificadas na zona de compressão do vão de cisalhamento para excluir a parcela do esforço cortante resistente da região comprimida. As figuras 3.08 a 3.10 apresentam o detalhamento das cinco vigas ensaiadas.

Figura 3.08 - Detalhamento das vigas V1 e V2

Viga V4

Figura 3.09 - Detalhamento das vigas V3 e V4

Figura 3.10 - Detalhamento da viga V5

3.3 - MATERIAIS

3.3.1 - Concreto

Para a moldagem dos quinze modelos e das cinco vigas, utilizou-se um concreto especificado para $f_{c,28d}$ = 30 MPa, fornecido pela empresa "CAUEMIX S/A", cujo traço em peso empregado foi de 1: 1,5: 2,0, utilizando-se a brita 1 como agregado graúdo, relação água/cimento (a/c) igual a 0,43, porcentagem de aditivo de 2% e consumo de cimento igual a 483 kg/m³. O concreto utilizado apresentou um Slump de 130 mm, que foi obtido segundo a NBR 7223 [6].

Para os 15 modelos e as 5 vigas, foram moldados 54 corpos de prova cilíndricos de dimensões 150 mm x 300 mm segundo a NBR 5738 [2]. Esses corpos de prova foram usados para a determinação das resistências à compressão e à tração e do módulo de elasticidade do concreto.

Os corpos de prova foram moldados de forma semelhante à dos modelos e das vigas, ou seja, o concreto foi lançado manualmente e vibrado com um vibrador de imersão de 25 mm de diâmetro até que a maior parte do ar imerso na massa de concreto fosse expulsa. Os corpos de prova foram desformados após 24 horas de sua moldagem e colocados em uma câmara úmida até os 14 dias de idade, quando foram expostos ao meio ambiente do laboratório.

As tabelas 3.01 e 3.02 apresentam os valores médios das resistências à compressão (ensaios realizados na data do ensaio das peças, segundo a NBR 5739 [3] e tração por compressão diametral (ensaios realizados 60 dias após o ensaio das peças, segundo a NBR 7222 [5]) do concreto dos modelos e das vigas ensaiadas, respectivamente.

Modelo	f_c (MPa)	f_{α} (MPa)
M1-SA	42,6	3,1
M1-AI	42,4	3,1
M1-AV	42,6	3,1
M1-AH	42,6	3,1
M1-AC	42,4	3,1
M2.1-SA	41,3	3,1
M2.1-AI	41,1	3,1
M2.1-AV	41,3	3,1
M2.1-AC	41,3	3,1
M2.2-AI	41.1	3,1
M2.2-AV	41.1	3,1
M2.2-AC	41.1	3,1
M3-SA	42,4	3,1
M3-AI	42,4	3,1
М3-АН	42,4	3,1

Tabela 3.01 - Resistência à compressão e à tração do concreto dos modelos de escoras

f _c (MPa)	f_{ct} (MPa)
42,0	3,1
42,0	3,1
42,0	3,1
42,0	3,1
42,0	3,1
	f_c (MPa) 42,0 42,0 42,0 42,0 42,0 42,0 42,0

Tabela 3.02 - Resistência à compressão e à tração do concreto das vigas

Foi executado o ensaio para a determinação do módulo de elasticidade do concreto aos 28 dias de idade, de acordo com o plano de carga número 3 da NBR 8522 [8]. A foto 3.01 apresenta o esquema de ensaio utilizado e a figura 3.11 apresenta o gráfico tensão x deformação do concreto, com o valor de E_{sec} .

Foto 3.01 - Esquema de ensaio utilizado para a determinação do módulo de elasticidade do concreto

Figura 3.11 - Gráfico tensão x deformação do concreto

3.3.2 - Aço

3.3.2.1 - Modelos de escoras

Para a armação dos modelos, foram utilizadas barras (CA-50A) de diâmetros nominais de 8,0 mm, 10,0 mm e 12,5 mm.

As amostras do aço empregado na confecção dos modelos foram ensaiadas à tração, segundo a NBR 6152 [4], na máquina de ensaios tipo universal AMSLER com capacidade para 600 kN e as deformações das barras medidas com extensômetro mecânico (Mitutoyo - 0,01 a 5 mm).

As figuras 3.12 a 3.14 apresentam os diagramas tensão x deformação das amostras dos aços, ensaiados à tração, utilizados na armação dos modelos.

Figura 3.12 - Diag. tensão x deformação do aço com diâmetro nominal de 8,0 mm

Figura 3.14 - Diag. tensão x deformação do aço com diâmetro nominal de 12,5 mm

A tabela 3.03 apresenta os valores médios das diversas grandezas determinadas nos ensaios à tração dos aços utilizados na armação dos modelos.

Diâm (mi	netro m)	fy (MPa)	f, (MPa)	Ey (‰)
Nominal	Efetivo			
8,0	7,90	600	930	4,2
10,0	9,85	700	930	4,8
12,5	12,30	600	980	3,2

3.3.2.2 - Vigas

Para a armação das vigas, foram utilizadas barras (CA-50A) de diâmetros nominais de 20,0 mm, para a armadura longitudinal de flexão, e 6,3 mm, para os estribos e armadura longitudinal distribuída ao longo da altura.

As amostras do aço empregado na confecção das vigas foram ensaiadas à tração, segundo a NBR 6152 [4], na máquina de ensaios tipo universal AMSLER com capacidade para 600 kN, e as deformações das barras medidas com extensômetro mecânico (Mitutoyo - 0,01 a 5 mm).

As figuras 3.15 e 3.16 apresentam os diagramas tensão x deformação das amostras dos aços, ensaiados à tração, utilizados na armação das vigas.

Figura 3.15 - Diag. tensão x deformação do aço com diâmetro nominal de 6,3 mm

Figura 3.16 - Diag. tensão x deformação do aço com diâmetro nominal de 20,0 mm

A tabela 3.04 apresenta os valores médios das diversas grandezas determinadas nos ensaios à tração dos aços.

A ROCH DIO I CHINCEELIDEELLO GOD HOO HOO HELLDEGOD HELLHELEU GUD TILLE	Tabela 3.04 -	Características	dos a	aços	utilizados	na	armação	das	vigas
--	---------------	-----------------	-------	------	------------	----	---------	-----	-------

Diân (m	Diâmetro (mm)		f, (MPa)	Ey. (%0)
Nominal	Efetivo			
6,3	6,26	700	870	5,2
20,0	19,99	600	980	2.9

3.3.2.3 - Tipos de aços empregados

Os diagramas tensão x deformação das amostras ensaiadas fornecem dois tipos diferentes de aço: o primeiro com patamar de escoamento em torno de 600 MPa ($\phi = 20,0 \text{ e } 12,5 \text{ mm}$) e os demais sem patamar de escoamento definido, adotando-se como tensão de escoamento a convencional, obtida pela interseção da curva com uma reta paralela ao trecho linear do diagrama, a partir da deformação específica residual de 0,2% (NBR 7480 [7]).

3.4 - FABRICAÇÃO

Na fabricação dos modelos utilizou-se formas de madeirit e para a fabricação das vigas utilizou-se formas: metálicas (Vigas: V1, V2, V3 e V4) e de madeirit (Viga V5). Antes da concretagem, colocou-se óleo nas formas a fim de facilitar a desmoldagem. Para conseguir o cobrimento de 15 mm, tanto para os modelos como para as vigas, foram utilizadas "pastilhas" de argamassa de areia e cimento pré fabricadas com arame para amarração. Os modelos de escoras foram concretados na posição horizontal.

Os modelos e as vigas foram curadas com a aplicação de panos umedecidos colocados sobre as partes expostas cobrindo-se todo o conjunto com uma lona plástica durante 14 dias. A seguir foram desmoldadas e expostas às condições internas do laboratório.

3.5 – MONTAGEM E TÉCNICA DE ENSAIO

3.5.1 - Modelos de escoras

Os ensaios foram efetuados em três locais distintos, em função das dimensões das peças e da capacidade dos equipamentos: na prensa do Laboratório de Ensaio de Materiais da UnB (modelos: M2.1-SA, M2.1-AI, M2.1-AV, M2.1-AC, M2.2-AI, M2.2-AV, M2.2-AC, M3-SA, M3-AI e M3-AH), no Laboratório de Estruturas da UnB (modelos: M1-SA, M1-AH e M1-AV) e no Laboratório de Concreto do Departamento de Apoio e Controle Técnico de FURNAS CENTRAIS ELÉTRICAS em Goiânia-GO (modelos: M1-AC e M1-AI).

Para os ensaios realizados no Laboratório de Ensaio de Materiais da UnB, utilizou-se uma prensa hidráulica da marca DENISON com capacidade de 2000 kN. Os ensaios realizados no Laboratório de Estruturas da UnB foram efetuados no pórtico de reação localizado sobre uma laje de reação, onde utilizou-se, para a aplicação da carga, o macaco ENERPAC - 500 kN (vigas: V1, V2, V3 e V5) e o macaco ENERPAC - 1000 kN (viga V4), juntamente com a célula de carga KRATOS de 500 kN e 1000 kN respectivamente. Para os ensaios realizados no Laboratório de Concreto do Departamento de Apoio e Controle Técnico de FURNAS CENTRAIS ELÉTRICAS, utilizou-se uma prensa hidráulica da marca MARUTO com capacidade para 5000 kN.

Antes da montagem de cada ensaio, os modelos recebiam um capeamento em suas bases com enxofre ou gesso (exceto nos modelos de escoras M2.1-SA, M2.1-AV e M2.1-AC) a fim de garantir o nivelamento da superficie. Foi decidida a colocação deste capeamento depois que ocorreu um problema no ensaio do modelo M2.1-AV que apresentava a superficie de contato muito irregular.

A técnica de ensaio constituiu na aplicação de um carregamento vertical por etapas, com o número de etapas de leituras da instrumentação variando entre: 15 a 28 (modelos M1), 14 a 22 (modelos M2.1), 17 a 24 (modelos M2.2) e 21 a 26 (modelos M3). A ruptura é atingida incrementando-se as cargas lentamente de maneira a tornar possível o registro do aparecimento de fissuras e do carregamento de surgimento das mesmas.

As fotos 3.02 a 3.04 apresentam uma visão global da montagem dos ensaios.

58

Foto 3.02 - Montagem dos ensaios realizados no Laboratório de Ensaio de Materiais da UnB

Foto 3.03 - Montagem dos ensaios realizados no Laboratório de Estruturas da UnB

Foto 3.04 - Montagem dos ensaios realizados no Laboratório de Concreto do Dept^o de Apoio e Controle Técnico de FURNAS CENTRAIS ELÉTRICAS

3.5.2 - Vigas

Os ensaios das 5 vigas foram realizados sobre a placa da reação do Laboratório de Estruturas da UnB.

A montagem adotada foi a de uma viga simplesmente apoiada com duas cargas concentradas simétricas. Esta montagem é a mais usual nas investigações de ruptura por esforço cortante, pois tem a vantagem de combinar duas condições diferentes: flexão pura, na região entre as cargas, e flexão com esforço cortante, nas duas regiões extremas da viga.

Primeiramente são colocadas chapas metálicas, niveladas com gesso, entre os blocos e os apoios da viga. Para a aplicação das duas cargas concentradas, primeiro a viga é centralizada em relação ao pórtico de ensaio e o macaco é verticalizado e centralizado em relação à viga. Sob o macaco é colocado um perfil metálico que descarrega em dois apoios previamente fixados sobre a viga e nivelados com gesso.

A técnica de ensaio consistiu na aplicação de um carregamento vertical por etapas, com o número de etapas de leituras da instrumentação variando entre: 17 a 21. A ruptura é atingida incrementando-se as cargas lentamente de maneira a tornar possível o registro do aparecimento de fissuras e do carregamento de surgimento das mesmas.

A foto 3.05 apresenta uma visão global da montagem dos ensaios, e as fotos 3.06 e 3.07 apresentam os apoios utilizados entre o bloco e a viga e entre a viga e o perfil metálico respectivamente.

Foto 3.05 - montagem dos ensaios das vigas

Foto 3.06 - Apoio utilizado entre o bloco e a viga

Foto 3.07 - Apoio utilizado para aplicação da carga nas vigas

3.6 - INSTRUMENTAÇÃO

3.6.1 - Cargas

3.6.1.1 - Modelos de escoras

Para os modelos ensaiados no Laboratório de Ensaio de Materiais da UnB e no Laboratório de Concreto do Departamento de Apoio e Controle Técnico de FURNAS CENTRAIS ELÉTRICAS, as cargas axiais foram medidas através de um mostrador de escala analógica pertencente à própria prensa hidráulica na qual foi realizado o ensaio. No Laboratório de Estruturas da UnB, as cargas foram medidas através de uma célula de carga instalada em linha com o macaco hidráulico.

3.6.1.2 - Vigas

As cargas transversais foram medidas através de uma célula de carga instalada em linha com o macaco hidráulico.

3.6.2 - Deslocamento vertical nas vigas

O deslocamento vertical, nos ensaios das vigas, foi medido através de um deflectômetro mecânico da marca Huggenberger, com menor divisão de escala igual a 0,01 mm instalado no meio do vão.

3.6.3 - Deformações específicas nas armaduras

As deformações específicas nas barras de aço, tanto dos modelos de escoras como nas vigas, foram medidas com extensômetros elétricos (EER) de resistência da marca EXCEL (São Paulo), onde foi utilizado dois extensômetros em cada ponto de medição. A cola utilizada foi do tipo cianoacrilática da marca KYOWA, e a proteção foi feita com uma resina epóxica flexível envolvida por uma camada de silicone que, por sua vez, era envolvida por uma fita de autofusão.

A leitura das deformações especificas nas armaduras foi feita através de uma caixa comutadora e balanceadora da marca KYOWA (SS-24R) ligada a um indicador de deformações da marca KYOWA (SM-60D).

As figuras 3.17 a 3.21 apresentam as posições dos extensômetros elétricos nas armaduras dos modelos de escora e das vigas.

Figura 3.17 - Posição dos extensômetros elétricos nas armaduras dos modelos de

escoras com $\theta = \alpha = 30^{\circ}$

c) Armadura cruzada (M2.2-AC)

Figura 3.20 - Posição dos extensômetros elétricos nas armaduras dos modelos de escoras com $\theta = 60^\circ$ e $\alpha = 30^\circ$

Figura 3.21 - Posição dos extensômetros elétricos nas armaduras das vigas

Figura 3.21 (cont.)- Posição dos extensômetros elétricos nas armaduras das vigas

3.6.4 - Deformações específicas no concreto

As deformações especificas superficiais no concreto, tanto nos modelos de escoras como nas vigas, foram medidas com extensômetros mecânicos tipo TENSOTAST, marca HUGGENBERGER, com menor divisão de escala igual a 0,001 mm. As medições foram feitas sobre pastilhas de aço inox coladas na superfície do concreto, com base de medição de 100 mm. Nas vigas foram usados também extensômetros elétricos de resistência, marca

EXCEL, em certos pontos de medição na superficie do concreto. As figuras 3.22 a 3.23 apresentam a instrumentação no concreto dos modelos de escoras e das vigas, respectivamente.

c) Modelo com $\theta = 60^{\circ}$

3.6.5 - Fissuração

As fissuras foram marcadas com caneta de ponta porosa e as aberturas foram medidas com uma "régua de fissuras" da marca LNEC.

Figura 3.23 - Instrumentação utilizada no concreto para as vigas

CAPÍTULO 4

RESULTADOS EXPERIMENTAIS

4.1 - INTRODUÇÃO

Neste capítulo serão apresentados os resultados experimentais relativos às peças ensaiadas nesta pesquisa. Serão feitas considerações a respeito dos ensaios, quanto aos aspectos das peças até a ruptura, fissuração, deslocamentos verticais (no caso das vigas) e aos pontos instrumentados no concreto e no aço.

Os resultados dos dois estudos realizados (blocos e vigas) serão apresentados em paralelo, sob títulos comuns, como no capítulo 3.

4.2 - COMPORTAMENTO DAS PEÇAS ENSALADAS

4.2.1 - Modelos de escoras

A carga correspondente ao aparecimento da primeira fissura, a carga última de ruptura, a tensão última e a relação entre a tensão última e a tensão de compressão do concreto encontram-se na tabela 4.01.

Tabela 4.01 – Cargas de fissuração, carga de ruptura, tensão última e relação entre a tensão última e a tensão de compressão do concreto

MODELOS		CARGA	CARGA			
DE	f_c	1 ^ª FISSURA	ÚLTIMA	fult	fult	fut
ESCORAS	(MPa)	(kN)	(k N)	(MPa)	fe	fcd 2
M1-SA	42,4	450	540	26,9	0,63	1,27
М1-АН	42,6	270	510	25,4	0,60	1,19
M1-AV	42,6	480	840	41,8	0,98	1,97

MODELOS		CARGA	CARGA			
DE	Fc	1 ^ª FISSURA	ÚLTIMA	fut	Juli	futt
ESCORAS	(MPa)	(kN)	(k N)	(MPa)	fe	fcd2
M1-AC	42,4	300	750	37,3	0,88	1,76
M1-AI	42,4	400	875	43,5	1,03	2,05
M2.1-SA	41,3	350	650	27,5	0,67	1,32
M2.1-AV	41,3	350	750	31,7	0,77	1,53
M2.1-AC	41,3	350	700	29,6	0,72	1,43
M2.1-AI	41,1	500	1100	46,6	1,13	2,26
M2.2-AV	41,1	400	800	33,9	0,82	1,64
M2.2-AC	41,1	450	800	33,9	0,82	1,64
M2.2-AI	41,1	600	1150	48,7	1,18	2,36
M3-SA	42,4	700	1080	42,4	1,00	1,42
М3-АН	42,4	600	1100	43,1	1,02	1,44
M3-AI	42,4	850	1320	51,8	1,22	1,73

Tabela 4.01 (cont.) – Cargas de fissuração, carga de ruptura, tensão última e relação entre a tensão última e a tensão de compressão do concreto

4.2.1.1 - Modelos de escoras com ângulo de inclinação da escora igual a 30°

Para o modelo de escora M1-SA, a primeira fissura surgiu no centro da peça para uma carga de 450 kN, se estendendo até os pontos de aplicação de carga para cargas posteriores, onde aconteceu a ruptura por cisalhamento para uma carga de 540 kN.

Para o modelo de escora M1-AH, a primeira fissura surgiu no centro da peça para uma carga de 270 kN, que se estendeu até os pontos de aplicação de carga em cargas posteriores. A ruptura se deu através de uma fissura diagonal para uma carga de 510 kN.

Para o modelo de escora M1-AV, a primeira fissura surgiu no centro da peça para uma carga de 480 kN, que se estendeu até os pontos de aplicação de carga em cargas posteriores. Neste ensaio não se conseguiu chegar à ruptura da peça, pois o ensaio atingiu o

limite de carga do macaco, embora a peça já apresentasse início de esmagamento do concreto na região abaixo do ponto de aplicação de carga. A carga última medida foi de 840 kN.

Para o modelo de escora M1-AC, a primeira fissura surgiu no centro da peça para uma carga de 300 kN. Após o aparecimento da primeira fissura, surgiu uma fissura ao lado, para uma carga de 350 kN que se estendeu até os pontos de aplicação de carga em cargas posteriores. A ruptura se deu por esmagamento da escora para uma carga de 750 kN.

Para o modelo de escora M1-AI, a primeira fissura surgiu no centro da peça para uma carga de 400 kN. Após o aparecimento da primeira fissura, surgiu uma fissura ao lado, para uma carga de 700 kN que se estendeu até os pontos de aplicação de carga em cargas posteriores. A ruptura se deu por esmagamento do concreto na região abaixo dos pontos de aplicação de carga para uma carga de 875 kN.

As fotos 4.01 a 4.05 mostram o aspecto da fissuração nos modelos de escoras com ângulo de inclinação de 30°, para a carga de ruptura.

Foto 4.01 - Fissuração do modelo M1-SA para a carga última

Foto 4.02 - Fissuração do modelo M1-AH para a carga última

Foto 4.03 - Fissuração do modelo M1-AV para a carga última

Foto 4.04 - Fissuração do modelo M1-AC para a carga última

Foto 4.05 - Fissuração do modelo M1-AI para a carga última

4.2.1.2 - Modelos de escoras com ângulo de inclinação da escora igual a 45º

A ruptura de todos os modelos aconteceu por esmagamento do concreto na região localizada abaixo dos pontos de aplicação de carga.

As fotos 4.06 a 4.12 mostram o aspecto da fissuração nos modelos de escoras com ângulo de inclinação de 45°, para a carga de ruptura.

Foto 4.06 - Fissuração do modelo M2.1-SA para a carga última

Foto 4.07 - Fissuração do modelo M2.1-AV para a carga última

Foto 4.08 - Fissuração do modelo M2.1-AC para a carga última

Foto 4.09 - Fissuração do modelo M2.1-AI para a carga última

Foto 4.10 - Fissuração do modelo M2.2-AV para a carga última

Foto 4.11 - Fissuração do modelo M2.2-AC para a carga última

Foto 4.12 - Fissuração do modelo M2.2-AI para a carga última

4.2.1.3 - Modelos de escoras com ângulo de inclinação da escora igual a 60°

A ruptura de todos os modelos aconteceu por esmagamento do concreto na região localizada abaixo dos pontos de aplicação de carga.

As fotos 4.13 a 4.15 mostram o aspecto da fissuração nos modelos de escoras com ângulo de inclinação de 60°.para a carga de ruptura.

Foto 4.13 - Fissuração do modelo M3-SA para a carga última

Foto 4.14 - Fissuração do modelo M3-AH para a carga última

Foto 4.15 - Fissuração do modelo M3-AI para a carga última
4.2.2 - Vigas

A carga correspondente ao aparecimento da primeira fissura, assim como a carga última de ruptura encontram-se na tabela 4.02.

	CARGA	CARGA
VIGAS	1 ^a FISSURA DIAGONAL	ÚLTIMA (kN)
	(kN)	
V1	60	78,3
V2	60	103,7
V3	60	195,2
V4	60	208,5
V5	45	78,2

rabeia 4.02 Cargas de lissuração diagonar e raptar	Tabela	4.02 -	Cargas	de	fissuração	diagonal	e ruptur
--	--------	--------	--------	----	------------	----------	----------

4.2.2.1 - Viga V1

A primeira fissura surgiu no meio do vão para uma carga de 20 kN. Posteriormente houve o aparecimento das primeiras fissuras diagonais, para uma carga de 60 kN, que atingiram metade da altura da viga.

A ruptura aconteceu com a abertura excessiva de uma fissura que partiu do apoio e alcançou a parte superior da viga para uma carga última de 78,3 kN caracterizando uma ruptura por tração diagonal.

A foto 4.16 mostra o aspecto da fissuração da viga V1.

Foto 4.16 - Fissuração da viga V1 para a carga última

4.2.2.2 - Viga V2

A primeira fissura surgiu no meio do vão para uma carga de 20 kN. Posteriormente houve o aparecimento das primeiras fissuras diagonais, para uma carga de 60 kN. Com uma carga de 85 kN apareceu uma fissura que se estendeu do apoio até a parte superior da viga.

A ruptura aconteceu com a abertura excessiva da fissura que partiu do apoio e alcançou a parte superior da viga para uma carga última de 103,7 kN caracterizando uma ruptura por tração diagonal.

A foto 4.17 mostra o aspecto da fissuração da viga V2.

Foto 4.17 - Fissuração da viga V2 para a carga última

4.2.2.3 - Viga V3

A primeira fissura surgiu no meio do vão para uma carga de 30 kN. Posteriormente houve o aparecimento das primeiras fissuras diagonais, para uma carga de 60 kN que se estenderam do apoio até a parte superior da viga.

A ruptura aconteceu através do esmagamento do concreto na região de flexão pura da viga para uma carga última de 195,2 kN, embora a fissura que se estendeu do apoio até a parte superior da viga apresentasse uma abertura de fissura da ordem de 0,8 mm. Pode-se notar também que houve a flambagem da armadura utilizada como porta estribos na região central da viga, o que ajudou para o esmagamento do concreto nesta região.

A foto 4.17 mostra o aspecto da fissuração da viga V3.

Foto 4.18 - Fissuração da viga V3 para a carga última

4.2.2.4 - Viga V4

A primeira fissura surgiu no meio do vão para uma carga de 30 kN. Posteriormente houve o aparecimento das primeiras fissuras diagonais, para uma carga de 60 kN. Com uma carga de 90 kN apareceu uma fissura que se estendeu do apoio até aproximadamente 2/3 da altura da viga.

A ruptura aconteceu através do esmagamento do concreto na região de flexão pura da viga para uma carga última de 208,5 kN, embora a fissura que se estendeu do apoio até a parte superior da viga apresentasse uma abertura de fissura da ordem de 1,0 mm. Pode-se notar também que houve a flambagem da armadura utilizada como porta estribos na região central da viga, o que ajudou para o esmagamento do concreto nesta região.

A foto 4.19 mostra o aspecto da fissuração da viga V4.

Foto 4.19 - Fissuração da viga V4 para a carga última

4.2.2.5 - Viga V5

Na concretagem da viga V5, colocou-se duas chapas metálicas na região comprimida próximo ao ponto aplicação de uma das cargas para tentar eliminar a parcela do esforço cortante resistida pelo concreto nesta região. Infelizmente, no processo de concretagem houve um deslocamento das placas que permitiu a penetração de nata de cimento entre elas, de modo parcial. O ensaio ficou prejudicado por esse fato. No início do ensaio, a viga funcionou como se tivesse uma altura reduzida na seção onde foram colocadas as chapas metálicas, alterando a posição e o desenvolvimento da fissura diagonal principal.

A primeira fissura surgiu no meio do vão para uma carga de 20 kN. Posteriormente houve o aparecimento da primeira fissura diagonal, para uma carga de 45 kN, que atingiu metade da altura da viga. Para uma carga de 75 kN, apareceu uma fissura diagonal que partiu do apoio e atingiu a região superior da viga na extremidade em que não tinham sido colocadas as chapas metálicas.

A ruptura aconteceu com a abertura excessiva de uma fissura que partiu do apoio e alcançou a região logo abaixo das chapas metálicas e em seguida subiu até a base das chapas, dividindo a viga em duas partes, para uma carga última de 78,2kN. Após esta ruptura, tentou-se reaplicar o carregamento, atingindo-se um valor de 30,8 kN.

A foto 4.16 mostra o aspecto da fissuração da viga V5.

Foto 4.20 - Fissuração da viga V5 para a carga última

4.3 – EVOLUÇÃO DAS ABERTURAS DAS FISSURAS

4.3.1 - Modelos de escoras

As tabelas 4.03 a 4.05 mostram a evolução das aberturas das fissuras em função do carregamento aplicado.

Tabela 4.03 - Evolução das aberturas das fissuras em função da carga aplicada para as escoras com ângulo de inclinação igual a 30º

MODELOS	CARGAS (kN)										
	30	35	40	45	50	55	60	65	70	80	85
M1-SA (mm)				0,1	0,2	0,5					
M1-AH (mm)	0,1	0,4	0,5	0,6							
M1-AV (mm)						0,05	0,1	0,1	0,3	0,3	
M1-AC (mm)		0,05	0,05	0,1	0,2	0,3	0,4				
M1-AI (mm)				0,05	0,05	0,05	0,1	0,1	0,2	0,3	

Tabela 4.04 - Evolução das aberturas das fissuras em função da carga aplicada para as escoras com ângulo de inclinação igual a 45°

MODELOS		CARGAS (kN)											
	40	45	50	55	60	65	70	75	90	95	100		
M2.1-SA (mm)	0,05	0,05	0,1	0,2	0,3								
M2.1-AV (mm)	0,05	0,05	0,1	0,1	0,2	0,2	0,3						
M2.1-AC (mm)	0,2	0,3	0,3	0,3	0,4								
M2.1-AI (mm)							0,05	0,1	0,1	0,1	0,2		
M2.2-AV (mm)	-			0,05	0,05	0,1	0,2	0,3	0,4				
M2.2-AC (mm)				0,05	0,1	0,2	0,2	0,3					
M2.2-AI (mm)									0,05	0,1	0,2		

(*) Modelo com superficie de carregamento irregular

(*)

Tabela 4.05 - Evolução das aberturas das fissuras em função da carga aplicada para as escoras com ângulo de inclinação igual a 60°

MODELOS		CARGAS (kN)											
	70	75	80	85	90	95	100	105	110	120	125		
M3-SA (mm)	0,05	0,05	0,05	0,1	0,2	0,4	0,5						
M3-AH (mm)	0,05	0,05	0,05	0,05	0,1	0,2	0,3	0,4					
M3-AI (mm)									0,05	0,05	0,05		

4.3.2 - Vigas

A tabela 4.06 mostra a evolução das aberturas das fissuras em função do carregamento aplicado nas vigas, a fim de estabelecer uma comparação.

Tabela 4	.06 -	Evolução	das	aberturas	das	fissuras	nas	vigas	em	função	da	carga		
	anlicada													

VIGAS	CARGAS (kN)												
	5,0	6,5	7,0	7,5	8,0	9,0	10,5	14,0	16,0	18,0	19,0	20,0	
V1 (mm)		1	L	L	Não fo	ram fe	eitas m	edidas		1	<u> </u>	<u> </u>	
V2 (mm)		0,1	0,4	0,8	1,0	1,3							
V3 (mm)	-				0,05	0,3	0,4	0,5	0,6	0,7			
V4 (mm)			0,1			0,2	0,3	0,4	0,5	0,7	0,8	0,9	
V5 (mm)	0,2	0,5	0,6	1,0									

4.4 – DESLOCAMENTOS VERTICAIS NAS VIGAS

A figura 4.01 mostra o gráfico carga x flecha das vigas ensaiadas.

Figura 4.01 – Gráfico carga x flecha das vigas

4.5 – DEFORMAÇÕES ESPECÍFICAS NAS ARMADURAS

4.5.1 - Modelos de escoras

As figuras 4.02 a 4.05 mostram as deformações medidas nas armaduras dos modelos de escoras.

Figura 4.02 – Deformações medidas nas armaduras dos modelos de escoras com $\theta = \alpha = 30^{\circ}$ (ver figura 3.17)

 $\cos \theta = \alpha = 45^{\circ}$ (ver figura 3.18)

c) Armadura cruzada (M2.2-AC)

a) Armadura inclinada (M3-AI)

4.5.2 - Vigas

As figuras 4.06 a 4.10 mostram as deformações medidas nas armaduras das vigas.

Figura 4.06 - Deformações medidas nas armaduras da viga V1

Figura 4.07 - Deformações medidas nas armaduras da viga V2

Figura 4.08 - Deformações medidas nas armaduras da viga V3

Figura 4.09 - Deformações medidas nas armaduras da viga V4

Figura 4.10 - Deformações medidas nas armaduras da viga V5

4.6 – DEFORMAÇÕES NO CONCRETO

4.6 1 – Modelos de escoras

Nos modelos de escoras procurou-se, com a instrumentação das deformações no concreto, obter três tipos de leitura: um para determinar o ângulo de abertura da escora, um para determinar a compressão à meia altura do modelo de escora e um para determinar a tração ao longo da altura do modelo de escora.

As figuras 4.11 a 4.14 mostram o gráfico carga x deformação nos leques dos modelos de escoras, as figuras 4.15 a 4.18 mostram o gráfico carga x deformação da compressão à meia altura do modelo de escora e as figuras 4.19 a 4.22 mostram o gráfico carga x deformação da tração ao longo da altura do modelo de escora.

Figura 4.12 – Gráfico carga x deformação nos leques dos modelos de escoras

 $\cos\theta=\alpha=45^{\circ}$

a) Armadura vertical (M2.2-AV)

b) Armadura cruzada (M2.2-AC)

a) Sem armadura (M3-SA)

Figura 4.14 – Gráfico carga x deformação nos leques dos modelos de escoras com $\theta = 60^{\circ}$ e $\alpha = 30^{\circ}$

Figura 4.16 – Gráfico carga x deformação na direção da escora nos modelos de escoras com $\theta = \alpha = 45^{\circ}$

Figura 4.17 – Gráfico carga x deformação na direção da escora nos modelos de escoras com $\theta = 45^{\circ}$ e $\alpha = 30^{\circ}$

Figura 4.18 – Gráfico carga x deformação na direção da escora nos modelos de escoras com $\theta = 60^\circ$ e $\alpha = 30^\circ$

Figura 4.20 – Gráfico carga x deformação ao longo da altura da escora nos modelos de escoras com $\theta = \alpha = 45^{\circ}$

Figura 4.21 – Gráfico carga x deformação ao longo da altura da escora nos modelos de escoras com $\theta = 45^{\circ}$ e $\alpha = 30^{\circ}$

4.6 2 – Vigas

As deformações específicas na superficie do concreto foram medidas em pontos simétricos em relação ao centro da viga.

A figura 4.23 apresenta os diagramas das deformações especificas medidas na direção da diagonal comprimida ao longo do vão de corte.

A figura 4.24 apresenta os diagramas das deformações específicas medidas na direção vertical ao longo do vão de corte.

A figura 4.25 apresenta os diagramas das deformações específicas medidas na direção da diagonal tracionada ao longo do vão de corte.

A figura 4.26 apresenta os diagramas das deformações específicas medidas na zona de compressão localizada abaixo do ponto de aplicação das cargas.

A figura 4.27 apresenta os diagramas das deformações específicas medidas no meio do vão ao longo da altura.

A figura 4.28 apresenta os diagramas das deformações específicas medidas na superficie do concreto em cima da viga, próximo aos pontos de aplicação de carga e no meio do vão, medidos através de extensômetros elétricos de resistência colados na superficie do concreto.

112

Figura 4.23 (cont.) – Gráfico carga x deformação na direção da diagonal comprimida ao longo do vão de corte

Figura 4.24 (cont.) – Gráfico carga x deformação na direção vertical ao longo do vão de corte

Figura 4.26 (cont.) – Gráfico carga x deformação da zona de compressão abaixo do ponto de aplicação das cargas

Figura 4.27 – Gráfico carga x deformação no meio do vão ao longo da altura da viga

CAPÍTULO 5

ANÁLISE DOS RESULTADOS

5.1 - INTRODUÇÃO

Este capítulo apresenta a análise dos resultados que foram mostrados no capítulo anterior, obtidos dos ensaios dos 15 modelos de escoras e das 5 vigas. Esta análise é realizada através da comparação do modo de ruptura das peças ensaiadas, desenvolvimento e abertura das fissuras, dos deslocamentos verticais das vigas e das deformações especificas nas armaduras e no concreto.

5.2 - MODO DE RUPTURA DAS PEÇAS ENSAIADAS

5.2.1 - Modelos de escoras

5.2.1.1 - Modelos de escoras com ângulo de inclinação da escora igual a 30°

Do exame das fotos 4.01 a 4.05 e das anotações feitas no decorrer dos ensaios, pode-se ver que:

a) Os modelos M1-SA e M1-AH tiveram tipos de ruptura semelhantes (ruptura por cisalhamento), sendo que a carga de ruptura do modelo com armadura horizontal (M1-AH) foi ligeiramente menor que a carga de ruptura do modelo sem armadura (M1-SA). Através do exame da foto 4.02, pode-se notar que o plano de ruptura do modelo M1-AH foi paralelo à direção da armadura;

b) Os modelos M1-AV e M1-AI tiveram tipos de ruptura semelhantes (ruptura por esmagamento do concreto na região abaixo dos pontos de aplicação de carga), podendo-se notar, através da carga última e das deformações medidas nas armaduras, que as armaduras trabalharam praticamente iguais;

c) Embora o tipo de ruptura do modelo M1-AC fosse semelhante ao dos modelos M1-AV e M1-AI (ruptura por esmagamento do concreto abaixo dos pontos de aplicação de carga), a carga última foi menor, provavelmente pelo fato da armadura horizontal ter influenciado negativamente.

5.2.1.2 - Modelos de escoras com ângulo de inclinação da escora igual a 45°

Do exame das fotos 4.06 a 4.12, da tabela 4.01 e das anotações feitas no decorrer dos ensaios, pode-se ver que:

 a) O tipo de ruptura de todos os modelos aconteceu por esmagamento do concreto na região localizada abaixo do ponto de aplicação da carga;

b) Os modelos M2.1-AV e M2.2-AV apresentaram carga última praticamente iguais, o mesmo acontecendo com os modelos M2.1-AI e M2.2-AI;

c) O modelo M2.1-AC apresentou uma carga última de ruptura menor que a do modelo M2.2-AC. Isso provavelmente ocorreu pelo fato de que, no ensaio do modelo M2.1-AC, a superficie de contato com o ponto de aplicação de carga apresentasse irregularidades, fato que foi corrigido, nos ensaios seguintes, pela aplicação de um capeamento com enxofre ou gesso;

d) O aumento na carga de ruptura ocorrido nos modelos com armadura inclinada (M2.1-AI e M2.2-AI), em relação aos outros modelos, pode ter sido pelo fato de que a distribuição das armaduras pode ter dado um maior confinamento do concreto.

5.2.1.3 - Modelos de escoras com ângulo de inclinação da escora igual a 60°

Do exame das fotos 4.13 a 4.15, da tabela 4.02 e das anotações feitas no decorrer dos ensaios, pode-se ver que:

a) O tipo de ruptura de todos os modelos aconteceu por esmagamento do concreto na região localizada abaixo do ponto de aplicação da carga;

b) Os modelos M3-SA e M3-AH apresentaram aproximadamente a mesma carga de ruptura;

c) O aumento na carga de ruptura ocorrido no modelo com armadura inclinada (M3-AI), em relação aos outros modelos, pode ter sido pelo fato de que a distribuição das armaduras possa ter dado um maior confinamento do concreto.

5.2.2 - Vigas

Do exame das fotos 4.16 a 4.20 e das anotações feitas no decorrer dos ensaios, pode-se ver que:

 a) As vigas V1, V2 e V5 apresentaram uma ruptura no vão de corte, iniciada com a abertura e propagação da fissura diagonal e terminando com a ruptura da zona comprimida, enquanto que as vigas V3 e V4 apresentaram ruptura por esmagamento do concreto na região de flexão;

b) As vigas V1 e V5 apresentaram a mesma carga de ruptura, embora a viga V5 apresentasse duas chapas metálicas juntas e lubrificadas, na região comprimida próxima ao ponto de aplicação da carga, para tentar excluir a parcela do esforço cortante resistida pelo cisalhamento do concreto nesta região. Essa igualdade na carga de ruptura pode ser explicada pelo fato das chapas metálicas apresentarem, após a concretagem, uma folga entre elas, anulando a parcela da compressão e criando um outro mecanismo resistente, fazendo com que a viga tivesse uma altura reduzida nesta região.

A fissura diagonal que se abriria mais próxima ao apoio, subindo até a parte superior da viga, com esse novo mecanismo abriu-se um pouco mais abaixo, sem atingir as duas placas metálicas. Cabe observar que foi feita uma tentativa de melhorar o contato entre as chapas colocando-se outra chapa fina de aço entre as mesmas, no início do ensaio, além de se serrarem as barras da armadura construtiva que atravessava os furos existentes nas placas.

125

Esta chapa, no entanto, não preencheu completamente o espaço existente. Com a deformação da viga ocorreu o contato parcial das chapas, fazendo surgir a parcela da compressão antes inexistente devido à folga entre as mesmas, o que fez com que a viga passasse a funcionar com uma altura quase igual à altura total, tendo uma região abaixo das placas ainda resistindo ao cisalhamento;

c) Embora a ruptura das vigas V3 e V4 tenha sido por esmagamento do concreto na região de flexão pura, pode-se observar, através dos gráficos de deformação do aço utilizado em alguns estribos, que os mesmos escoaram. A fissura diagonal também já se encontrava bem aberta.

5.3 – TENSÕES ÚLTIMAS NOS MODELOS DE ESCORAS

Na tabela 4.01 e do exame das fotos 4.01 a 4.15, pode-se observar que:

a) Todos os modelos de escoras com inclinação de 30° e 45° (exceto os que apresentavam armadura inclinada) apresentaram a relação f_{ulr}/f_c menor que 1. Isso provavelmente aconteceu pelo fato do mecanismo de fissuração ter influenciado de alguma forma para que a tensão última tenha dado menor que a resistência à compressão do concreto.

b) Os modelos com armadura inclinada apresentaram a relação f_{ulr}/f_c maior que 1. Isso provavelmente ocorreu pelo fato da distribuição da armadura ter controlado bem a abertura das fissuras e ter proporcionado um maior confinamento do concreto.

c) Todos os modelos de escoras com inclinação de 60° apresentaram a relação $f_{ulr}f_c$ maior que 1. Isso pode ser explicado pelo fato de que esses modelos apresentavam uma maior área de contato (em relação aos modelos com inclinação de 30° e 45°) com uma menor distância entre os pontos de carregamento (tamanho da escora). No modelo M3-AS (sem armadura), através da foto 4.13, podemos ver que a fissura surgiu lateralmente fazendo com que a peça se tornasse um prisma de base retangular, o que poderia explicar essa relação $f_{ulr}f_c = 1$. d) Os modelos sem armadura M1-SA e M2.1-SA apresentaram uma tensão última em torno de 60% da resistência à compressão do concreto, se aproximando do valor da resistência da escora para campos de compressão com fissuras paralelas às tensões de compressão, proposto por Schäfer e Schlaich [24], de acordo com o item 2.2.4.1.

5.4 - EVOLUÇÃO DAS ABERTURAS DAS FISSURAS NOS MODELOS DE ESCORAS

5.4.1 - Modelos de escoras com ângulo de inclinação da escora igual a 30°

A partir da tabela 4.03 pode-se constatar que:

a) O modelo com armadura horizontal (M1-AH) foi o que apresentou uma maior abertura de fissuras, maior até que o modelo sem armadura (M1-SA). As fissuras abriram-se quase paralelamente à direção da armadura, a qual apresentou inicialmente deformação de compressão, o que pode ter forçado tal fissuração;

b) O modelo com armadura vertical (M1-AV) e o modelo com armadura inclinada (M1-AI) apresentaram praticamente a mesma evolução de abertura das fissuras;

c) Embora se esperasse que o modelo com armadura cruzada (M1-AC) tivesse um comportamento parecido com o do modelo com armadura vertical, este apresentou uma evolução de abertura de fissuras maior para cargas menores, o que comprova que a armadura horizontal deve ter influenciado negativamente.

5.4.2 - Modelos de escoras com ângulo de inclinação da escora igual a 45°

A partir da tabela 4.04 pode-se constatar que:

a) O modelo M2.1-AV, embora apresentasse uma área de estribos superior à do modelo
M2.2-AV, apresentou cargas de fissurassão mais baixas que o modelo M2.2-AV;

b) Com relação aos modelo M2.1-AC e M2.2-AC, fica difícil se fazer uma comparação, uma vez que o modelo M2.1-AC não era provido de nenhum tipo de capeamento em suas bases e apresentava uma superfície de contato bastante irregular;

c) Os modelos com armadura inclinada (M2.1-AI e M2.2-AI) foram os que controlaram melhor a abertura das fissuras.

5.4.3 - Modelos de escoras com ângulo de inclinação da escora igual a 60°

A partir da tabela 4.05 pode-se constatar que o modelo com armadura inclinada foi o que controlou melhor a abertura das fissuras, fazendo com que a peça só apresentasse fissuras perto da ruptura.

5.5 - DESLOCAMENTOS VERTICAIS NAS VIGAS

De acordo com a figura 4.01, que mostra o gráfico carga x flecha das vigas ensaiadas, pode-se constatar que:

a) A viga V1 apresentou flechas um pouco maiores, para o mesmo carregamento, que a viga V2. Isso pode ser explicado pelo fato de que a viga V2 apresentava armadura longitudinal adicional distribuída ao longo da altura, a qual contribuiu para a resistência à flexão;

 b) O mesmo aconteceu para as vigas V3 e V4, onde a viga V3 apresentou maiores flechas,
para o mesmo carregamento, que a viga V4, sendo a armadura adicional ao longo da altura a única diferença entre as vigas;

c) com relação à viga V5, não podemos fazer nenhuma comparação pelo fato de que nesta viga foram colocadas duas chapas de aço juntas, na região comprimida próximo ao ponto de aplicação da carga, que apresentaram uma folga entre elas durante o ensaio, o que pode ter ocasionado flechas maiores.

5.6 - DEFORMAÇÕES ESPECÍFICAS NAS ARMADURAS

5.6.1 - Modelos de escoras

5.6.1.1 - Modelos de escoras com ângulo de inclinação da escora igual a 30°

De acordo com a figura 4.02, pode-se constatar que:

a) Embora nenhuma armadura tenha escoado, nos modelos com armadura vertical (M1-AV) e com armadura inclinada (M1-AI), as deformações nas armaduras mostram que elas trabalharam bem, no sentido de controlar a abertura das fissuras;

b) No modelo com armadura cruzada (M1-AC), a armadura horizontal praticamente não trabalhou.

5.6.1.2 - Modelos de escoras com ângulo de inclinação da escora igual a 45°

De acordo com as figuras 4.03 e 4.04, pode-se constatar que:

a) As deformações medidas nas armaduras do modelo com armadura inclinada M2.2-AI foram maiores que as do modelo M2.1-AI, também com armadura inclinada. Isso provavelmente deve-se ao fato de que a taxa de armadura do modelo M2.2-AI era menor que a do modelo M2.1-AI;

b) As deformações medidas nas armaduras dos modelos com armadura vertical (M2.1-AV e
M2.2-AV) mostram que elas quase não trabalharam;

c) Com relação aos modelos com armadura cruzada (M2.1-AC e M2.2-AC), não podemos fazer comparação entre eles pelo fato de que o modelo M2.1-AC apresentou irregularidades na superfície de contato durante o ensaio.

5.6.1.3 - Modelos de escoras com ângulo de inclinação da escora igual a 60°

De acordo com a figura 4.05, pode-se constatar que nenhuma armadura chegou próxima ao escoamento e que as armaduras do modelo com armadura horizontal (M3-AH) pouco trabalharam.

5.6.2 - Vigas

De acordo com as figuras 4.06 a 4.10, pode-se constatar que:

a) As deformações medidas na armadura longitudinal de flexão das vigas V1, V2 e V5 mostram que estas ficaram longe de atingir o escoamento.

b) As deformações medidas na armadura longitudinal, distribuída ao longo da altura, na viga
V2 mostram que estas também ficaram longe de atingir o ponto de escoamento.

c) Na viga V3, os extensômetros localizados no meio do vão (L3-L4), na armadura longitudinal de flexão, mostram que estas atingiram o escoamento. Em relação aos estribos, as deformações medidas nos extensômetros localizados no estribo "V1-V2" mostram que este atingiu o escoamento, e as deformações medidas no extensômetro localizado no estribo "V3-V4" mostram que este esteve perto do escoamento.

d) Na viga V4, os extensômetros localizados no meio do vão (L3-L4), na armadura longitudinal de flexão, mostram que estas atingiram o escoamento. Em relação aos estribos, as deformações medidas nos extensômetros localizados no estribo "V3-V4" mostram que este atingiu o escoamento, e as deformações medidas no extensômetro localizado no estribo "V5-V6" mostram que este esteve perto do escoamento. As deformações medidas nas armaduras longitudinais distribuídas ao longo da altura mostram que estas trabalharam muito pouco.

5.7 - DEFORMAÇÕES ESPECÍFICAS NO CONCRETO

5.7.1 - Modelos de escoras

5.7.1.1 - Deformação em leque

Das figuras 4.11 a 4.14, que mostram os gráficos carga x deformação nos leques dos modelos de escoras, pode-se ver que claramente que acontece um espraiamento (abertura) da escora, pois os gráficos mostram que houve compressão em quase todos os pontos medidos.

As deformações medidas mostram que não houve compressão nas leituras "1-1" do modelo de escora M1-AI e nas leituras "4-8" dos modelos M3-AH e M3-AI, o que comprova que a distribuição da armadura influencia no espraiamento da escora.

5.7.1.2 - Deformação na direção da escora

Das figuras 4.15 a 4.18, que mostram os gráficos carga x deformação na direção da escora, pode-se ver que claramente que houve compressão em quase todos os pontos medidos, o que vem a comprovar, pela localização dos pontos de medição, que acontece o espraiamento (abertura) da escora, mas ficando evidente que a deformação é maior nas proximidades do eixo da escora.

No caso dos modelos M2.1-SA, M2.1-AV e M2.1-AC, a análise fica prejudicada pelo fato de não ter sido feito nenhum tipo de capeamento nas superfícies carregadas, o que pode ter influenciado de alguma forma nos resultados.

5.7.1.3 - Deformação ao longo da altura da escora

Das figuras 4.19 a 4.22, que mostram os gráficos carga x deformação ao longo da altura da escora, pode-se ver que claramente que houve tração em quase todos os pontos medidos, o que vem a comprovar que acontece o espraiamento (abertura) da escora, causando uma força de tração perpendicular à direção da escora.

Pode-se ver que, em alguns modelos, as leituras feitas nos pontos de medição "9-9" e "13-13" não apresentaram deformações ou ficaram parcialmente comprimidos até o ponto de fissuração. Isso pode ser explicado pelo fato de que esses pontos de medição estarem localizados próximos aos pontos de aplicação de carga, o que faria que eles fossem afetados pelo cone de compressão que se forma abaixo desses pontos.

5.7.2 - Vigas

5.7.2.1 - Deformações na direção da diagonal comprimida ao longo do vão de corte

Da figura 4.23, que mostra o gráfico carga x deformação na direção da diagonal comprimida ao longo do vão de corte das 5 vigas, pode-se ver que as deformações medidas, de um modo geral, indicaram compressão nas etapas iniciais de carregamento.

Pode-se notar que, em alguns gráficos, houve uma mudança brusca no sentido de crescimento, o que indica que alguma fissura cruzou a região entre os pontos de medição.

5.7.2.2 - Deformações na direção vertical ao longo do vão de corte

Da figura 4.24, que mostra o gráfico carga x deformação na direção vertical ao longo do vão de corte das 5 vigas, pode-se ver que praticamente não houve deformações nas etapas iniciais de carregamento, até o ponto em que alguma fissura cruza a região entre os pontos de medição. Este fato também pode ser comprovado através das figuras 4.08 e 4.09, que mostram os gráficos das deformações medidas nas armaduras das vigas V3 e V4 respectivamente, onde pode-se ver claramente que os estribos verticais só passaram a funcionar no momento em que ocorrem fissuras de cisalhamento na peça.

5.7.2.3 - Deformações na direção da diagonal tracionada ao longo do vão de corte

Da figura 4.25, que mostra o gráfico carga x deformação na direção da diagonal tracionada ao longo do vão de corte, pode-se ver que, assim como no item anterior, praticamente não houve deformações nas etapas iniciais de carregamento, até o instante em que alguma fissura cruza a região entre os pontos de medição.

5.7.2.4 - Deformações na zona comprimida abaixo do ponto de aplicação das cargas

Da figura 4.26, pode-se ver que a região mais comprimida é a região localizada exatamente abaixo do ponto de aplicação da carga (pontos C2 e C'2), onde pode-se notar que, para as vigas V3 e V4, ocorreram deformações da ordem de $4x10^{-3}$ sem que ocorresse esmagamento do concreto nesta região, o que contraria a norma que limita essa deformação em $3,5x10^{-3}$.

As grandes deformações observadas no gráfico do lago esquerdo da viga V5 deve-se ao fato de que, na região entre os pontos de medição, se encontravam as chapas metálicas utilizadas para anular a parcela cisalhante da região comprimida, que apresentavam uma folga entre elas. As deformações medidas, portanto, não representam deformações no concreto, mas a aproximação relativa entre as chapas.

5.7.2.5 - Deformações no meio do vão ao longo da altura

Da figura 4.27, que mostra o gráfico carga x deformação no meio do vão ao longo da altura da viga, pode-se fazer uma análise sobre a posição da linha neutra no meio do vão, onde pode-se ver que a linha neutra estava localizada na altura do ponto de medição "L5" na viga V1, na altura entre os pontos de medição "L4" e "L5" nas vigas V2 e V3 e na altura do ponto de medição "L4" nas vigas V4 e V5.

5.7.2.6 - Deformações na superfície do concreto na parte superior da viga próximo aos pontos de aplicação das cargas e no meio do vão

Da figura 4.28, que mostra o gráfico carga x deformação na superficie do concreto próximo aos pontos de aplicação de carga e no meio do vão, pode-se ver que os extensômetros "EER1" e "EER-3" nas vigas V1 e V2 e o extensômetro "EER-3" na viga V5, a partir de uma certa etapa de carregamento, passaram a sofrer uma descompressão seguida de tração (no caso dos extensômetros EER-1 das vigas V1 e V2 e EER-3 da viga V5). Isso ocorre pelo fato de que quando a fissura de cisalhamento se aproxima da face superior da viga, ocorre uma flexo-compressão na região acima da fissura, ocasionando essa descompressão na face superior da viga.

5.8 - COMPARAÇÃO ENTRE OS RESULTADOS EXPERIMENTAIS E TEÓRICOS DAS VIGAS ENSALADAS

Neste item, os resultados experimentais obtidos através do ensaio das 5 vigas são comparados com resultados obtidos a partir de formulações propostas por diversas normas e pesquisadores.

A tabela 5.01 apresenta as cargas de ruptura obtidas experimentalmente no ensaio das vigas e as cargas últimas calculadas através dos métodos apresentados por normas e pesquisadores.

A tabela 5.02 apresenta uma comparação entre as cargas últimas obtidas experimentalmente e as calculadas através de formulações apresentadas em diversas normas e pesquisadores.

Tabela 5.01	- Cargas	de ruptura	obtidas	experiment	talmente e	cargas	últimas
calculadas	através o	los métodos	s aprese	ntados por	normas e p	oesquisa	dores

							_		Modo
V			С	arga de ru	iptura (kN)				
I									de
G	Experi-	NBR-	CEB-FIP	ACI -	Eurocode	CAN3-	Zsutty	Bazant	
Α	mental.	6118	MC90	318 -95	2/91	A23 M84			ruptura
V1	78,3	32,8	57,6	49,2	72,3	31,5	79,7	88,1	(c.t)
V2	103,7	32,8	61,1	50,6	78,5	-X-	84,6	97,3	(c.t)
V3	195,2	93,6	118,4	119,1	135,2	91,0	149,6	158,0	(f.e)
V4	208,5	93,6	121,9	120,5	141,4	-X-	154,5	167,2	(f.e)
V5	78,2	-X-	-X-	-X-	-X-	-X-	-X-	-X-	(c.t)

Modo de ruptura: $(c.t) \rightarrow Cisalhamento/tração diagonal$

 $(f.e) \rightarrow$ Flexão/esmagamento da zona comprimida

V I G	Carga experimental / Carga teórica								
A	NBR-	CEB-FIP	ACI -318	Eurocode	CAN3-	Zsutty	Bazant		
S	6118	MC90	-95	2/91	A23 M84				
V1	2,38	1,35	1,59	1,08	2,48	0,98	0,89		
V2	2,16	1,70	2,05	1,32	-X-	1,22	1,06		
V3	2,09	1,65	1,64	1,44	2,15	1,30	1,23		
V4	2,23	1,71	1,73	1,47	-x-	1,35	1,24		
V5	-X-	-X-	-X-	-X-	-X-	-X-	-X-		

Tabela 5.02 - Comparação entre as cargas últimas obtidas experimentalmente e ascalculadas através de formulações apresentadas por normas e pesquisadores

Analisando-se a tabela 5.02, verifica-se que as equações propostas por Zsutty, Bazant e pelo Eurocode 2/91 foram as que levaram a valores mais próximos dos reais e que as normas NBR 6118 e CAN3-A23.3 M84 foram as que levaram a valores mais conservadores.

Para o cálculo teórico das vigas V2 e V4, como as normas e pesquisadores não consideram a contribuição da armadura longitudinal distribuída ao longo da altura no combate ao esforço cortante, foi considerado que estas entrariam no cálculo da taxa de armadura longitudinal ρ .

No caso da norma CAN3-A23.3 M84, não foram feitas comparações para as vigas V2 e V4, pelo fato da formulação proposta por esta norma não levar em consideração a contribuição da armadura longitudinal (de flexão e distribuída ao longo da altura da viga) na resistência ao esforço cortante (equação 2.25).

Quanto à viga V5, não há comparação a fazer com previsões teóricas. O que se esperava com o ensaio desta viga era medir a resistência ao esforço cortante devida ao efeito de pino da armadura longitudinal. Infelizmente, o problema ocorrido na concretagem levou a viga a apresentar um comportamento distinto do esperado, com a contribuição dos efeitos de engrenamento dos agregados e de resistência ao cisalhamento da zona comprimida do concreto somando-se ao efeito de pino.

CAPÍTULO 6

CONCLUSÕES E SUGESTÕES PARA TRABALHOS FUTUROS

6.1 - INTRODUÇÃO

Neste capítulo são apresentadas as principais conclusões a respeito do comportamento local e global das peças ensaiadas, procurando contribuir para o esclarecimento de algumas dúvidas ainda existentes. São apresentadas, também, algumas sugestões para a continuidade do trabalho de forma a obter novas conclusões.

6.2 - CONCLUSÕES

6.2.1 - Modelos de escoras

 a) Os modelos de escoras ensaiados não reproduziram bem o comportamento real da escora principal do dente dentro da viga.

b) Os modelos de escoras com armadura inclinada foram os que apresentaram maiores cargas, em relação aos modelos com armadura vertical, horizontal e cruzada. Isso provavelmente ocorreu pelo fato de que a armadura inclinada estava melhor distribuída e pode ter dado um maior confinamento do concreto. Cabe observar que os ensaios com as armaduras horizontal e vertical isoladamente foram realizados apenas para se ter uma idéia sobre seu funcionamento individual, uma vez que a modelagem local conduz ao uso simultâneo das duas armaduras (armadura cruzada).

c) Nos modelos M1-AH e M1-AC, a armadura horizontal influenciou negativamente, criando um plano de ruptura paralelo à direção da armadura. No dente, esta armadura não influenciaria negativamente pois estaria tracionada devido a flexão do dente.

d) Nos modelos com armadura inclinada, apesar de nenhuma armadura ter escoado, a armadura controlou melhor a abertura das fissuras e produziu um maior confinamento do concreto, devido à sua melhor distribuição. Vale ressaltar que na prática esse tipo de armadura não é utilizada com muita frequência hoje em dia.

e) As deformações em leque e na direção da escora mostram que houve compressão em quase todos os pontos medidos, o que vem a comprovar que acontece o espraiamento (abertura) da escora, com maiores deformações nas proximidades do meio da escora.

f) As deformações ao longo da escora mostram que houve tração em quase todos os pontos medidos, o que vem a comprovar que o espraiamento da escora causa uma força de tração perpendicular à direção da escora.

g) A modelagem local adotada mostrou-se, de um modo geral, conservadora, pois os estribos não atingiram o escoamento.

h) A modelagem local da escora com $\theta = \alpha = 45^{\circ}$ mostrou-se mais conservadora que a modelagem local com $\theta = 45^{\circ}$ e $\alpha = 30^{\circ}$.

6.2.2 - Vigas

Para as vigas ensaiadas neste trabalho, com relação a/d igual a 2,22, pode-se concluir que:

a) As vigas V2 e V4, que apresentavam uma armadura longitudinal adicional distribuída ao longo da altura, tiveram flechas menores para o mesmo carregamento que as vigas V1 e V3 (sem armadura longitudinal adicional distribuída ao longo da altura), respectivamente, comprovando que esta armadura adicional distribuída ao longo da altura contribuiu para a resistência à flexão da viga.

b) A utilização de uma armadura longitudinal adicional distribuída ao longo da altura, alterou substancialmente a capacidade resistente ao esforço cortante da viga sem armadura transversal provocando um acrescimo de 32% na carga última.

138

c) A utilização das expressões propostas por Zsutty e pelo Eurocode 2/91 para o cálculo da resistência última teórica ao esforço cortante de vigas sem armadura transversal, foram as que apresentaram resultados mais próximos do resultado experimental da viga V1.

d) A equação proposta por Bazant, para vigas sem armadura transversal mas com armadura longitudinal adicional distribuída ao longo da altura, foi a que forneceu um resultado mais próximo do resultado experimental da viga V2.

e) As equações propostas pela NBR-6118 e pela CAN3-A23.3 M84 foram as que conduziram a valores mais conservadores.

 f) De um modo geral, as equações propostas por Bazant e Zsutty foram as que conduziram a valores mais próximos da realidade.

6.3 - SUGESTÕES PARA TRABALHOS FUTUROS

6.3.1 - Modelos de escoras

a) Ensaiar vigas com apoios em dente utilizando a modelagem local adotada, uma vez que os ensaios dos blocos simulando a escora, geralmente assumida na extremidade de vigas com apoios em dente, não reproduziram bem o comportamento real dessa escora.

b) Estudar a influência da taxa de armadura dos grampos ou estribos horizontais no dente em relação ao combate à flexão na região do dente.

c) Estudar o limite inferior do ângulo θ a aplicabilidade da modelagem local adotada neste trabalho. Para ângulos θ pequenos, pode ser mais adequada a modelagem local em [25].

6.3.2 - Vigas

a) Estudar a influência na resistência ao cisalhamento da quantidade e posição relativa das barras longitudinais adicionais ao longo da altura da viga.

b) Ensaiar à ruptura vigas com relações a d maiores que as apresentadas neste trabalho.

c) Estudar a contribuição do efeito de pino, utilizando um mecanismo para excluir a parcela do esforço cortante resistente da região comprimida da viga e a parcela proveniente do engrenamento dos agregados, variando-se a taxa de armadura longitudinal.

d) Na montagem do ensaio, caso seja utilizada uma viga de distribuição para a aplicação do carregamento, como mostrado na foto 3.07, garantir que um dos apoios seja do 1º gênero e o outro de 2º gênero.

REFERÊNCIAS BIBLIOGRÁFICAS

- [1] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 6118, Projeto e Execução de Obras de Concreto Armado. Rio de Janeiro, 1978.
- [2] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 5738, Moldagem e cura de corpos-de-prova de concreto, cilíndricos ou prismáticos de concreto. Rio de Janeiro, 1984.
- [3] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 5739, Concreto Ensaio de compressão de corpos-de-prova cilíndricos. Rio de Janeiro, 1980.
- [4] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 6152, Materiais metálicos – Determinação das propriedades mecânicas à tração. Rio de Janeiro, 1980.
- [5] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 7222, Argamassas e concretos – Determinação da resistência à tração por compressão diametral de corpos-de-prova cilíndricos. Rio de Janeiro, 1983.
- [6] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 7223, Concreto Determinação da consistência pelo abatimento do tronco de cone. Rio de Janeiro, 1982.
- [7] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 7480, Barras e fios da aço destinados a armaduras para concreto armado. Rio de Janeiro, 1985.
- [8] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 8522, Concreto Determinação do módulo de deformação estática e diagrama – tensãodeformação. Rio de Janeiro, 1983.
- [9] ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, NBR 9062, Projeto e Execução de Estruturas de Concreto Pré-moldado,. Rio de Janeiro, 1985.
- [10] ADORNO, A. L. C., Contribuição da Armadura de Pele na Resistência ao Cisalhamento na Flexão em Vigas de Concreto armado. Dissertação de Mestrado, UnB, Brásilia, DF, 1996.
- [11] AHMAD, S. H., KHALDO, A. R., POVEDA, A. Shear Capacity of Reinforced High-Strength Concrete Beams. ACI – Journal, V. 83, N². 2, March-April, 1986.
- [12] AMERICAN CONCRETE INSTITUTE, ACI 318M-83, Building code requirements for reinforced concrete. Detroit, Jun, 1995.

- [13] ACI-ASCE COMMITTEE 426, The Shear Strength of Reinforced Concrete Members. ACI Manual of Concrete Pratice, 1977.
- [14] BAZANT, Z. P., SUN, H. H., Size Effect in Diagonal Shear Failure: Influence of Aggregate Size and Stirrups. ACI – Materials Journal, V. 84, N^o. 4, July-Aug., 1987.
- [15] BERNADINA, R. F. D., SILVA, R. C., Contribuição de Armadura de Pele à Resistência do Cisalhamento por Flexão em Vigas de Concreto Armado. Monografia de Estágio Supervisionado, UnB, Brasília, DF, 1994.
- [16] CANADIAN STANDARDS ASSOCIATION, Design of Concrete Structures. CAN3-A23.3 M84, December, 1984.
- [17] CAVALCANTE NETO, M. P., NAZARETH, P. L. M., XAVIER, N. P., Mecanismo de Ruptura ao Esforço Cortante em Vigas de Concreto Armado sem Armadura Transversal com Armadura Longitudinal Disposta ao Longo da Nervura. Monografia de Estágio Supervisionado, UnB, Brasília, DF, 1981.
- [18] COMITÉ EURO-INTERNATIONAL DU BÉTON, CEB-FIP model code 1990, Bulletin D'Information N⁹⁵ 203, 204 e 205, final draft, July, 1990.
- [19] EUROCODE 2, Design of Concrete Structures Part 1: General Rules and Rules for Buildings. December, 1991.
- [20] FRANÇA JÚNIOR, F. F., KUNZE, A. A. C., Contribuição da Armadura de Pele na Resistência ao Cisalhemento em Vigas de Concreto Armado com Diferentes Relações a/d. Monografia de Estágio Supervisionado, UnB, Brasília, DF, 1995.
- [21] KANI, G. N. J., Basic Facts Concerning Shear Failure. ACI Journal, Proceedings, V. 64, Nº 3, March, 1967.
- [22] KIN, J. J., PARK, Y. D., Prediction of Shear Strength of Reinforced Concrete Beams without Web Reinforcement. ACI – Materials Journal, V. 93, Nº 3, May-June, 1996.
- [23] LEONHARDT, F., MÖNNIG, E., Construções de Concreto. Vol. 3, ed. Interciência, Rio de Janeiro, 1978.
- [24] MacGREGOR, J. G., Reinforced Concrete Mechanics and Design. Prentice Hall, 3rd- ed, 1997.
- [25] MELO, S. T., Um estudo Sobre Vigas com Apoios em Dentes. Tese de Mestrado, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 1991.
- [26] MÖRSCH, E., Reinforced Concrete, Theory and Application. Verlag Konrad Wittwer, Stuttgard, Germany, 1912.

- [27] REGAN, P. E., Tests of Reinforced Concrete Beams with Dapped Ends. August, 1989.
- [28] SCHÄFER, K., SCHLAICH, J., Consistent Design of Structural Concrete Using Strut-and-Tie Models. 5° Colóquio sobre Comportamento e Projeto de Estruturas, PUC/RJ, Rio de Janeiro, 1988.
- [29] SCHLAICH, J., SCHÄFER, K., Design and Detailing of Structural Concrete using Strut-and-Tie Models. The Structural Engineer, Vol. 69, N² 6, March, 1991.
- [30] SCHLAICH, J., SCHÄFER, K., JENNEWEIN, M., Toward a Consistent design of Structural Concrete. PCI – Journal, Vol. 32, Nº 3, 1987.
- [31] SCHLAICH, J., SCHÄFER, K., The Design of Structural Concrete. IABSE, Workshop, New Delhi, 1993.
- [32] SEDYCIAS FILHO, D. P., Mecanismo de Ruptura ao Esforço Cortante em Vigas de Concreto Armado Armadas não Convensionalmente. Monografia de Estágio Supervisionado, UnB, Brasília, DF, 1982.
- [33] SHEHATA, L. C. D., NAGATO, Y., Modelos de Escoras e Tirantes. Colóquio sobre Estruturas de Concreto Armado e Protendido. Vol. 2, PUC/RJ, Agosto, 1990.
- [34] SHEHATA, L. C. D., NAGATO, Y., Modelos de Escoras e Tirantes para Regiões de Descontimuidade. Ciclo de Palestras sobre o Colóquio Modelo CEB – FIP 1990, 1991.
- [35] SOUZA, S. T. M., Estudo Teórico-Experimental de Dentes de Vigas Gerber de Pontes de Concreto Armado. Tese de Doutorado, COPPE/UFRJ, Rio de Janeiro, RJ, Brasil, 1997.
- [36] ZSUTTY, T. C., Beam Shear Strength Prediction by Analysis of Existing Data. ACI – Journal, Proceedings, Vol. 65, Nº 8, November, 1968.
- [37] ZSUTTY, T. C., Shear Strength Prediction for Separate Categories of Simple Beam Tests. ACI – Journal, Proceedings, Vol. 68, N² 2, February, 1971.

ANEXO A

RESULTADOS DAS LEITURAS EFETUDAS NOS EXTENSÔMENTROS ELÉTRICOS DURANTE OS ENSAIOS DOS MODELOS DE ESCORAS

Mo	delo: M	1-AH							
Defor	mações	(x10 ⁻³):							
CARGA (KN)	1	2	H1-H2						
0	0.000	0.000	0.000						
29	-0.020	-0.020	-0.020						
59	-0.035	-0.035	-0.034						
88	-0.045	-0.045	-0.044						
118	-0.055	-0.055	-0.054						
147	-0.065	-0.065	-0.063						
177	-0.085	-0.075	-0.078						
206	-0.095	-0.090	-0.090						
235	-0.110	-0.095	-0_100						
265	-0.110	-0.095	-0.100						
294	0.085	0.385	0.229						
324	0.170	0.565	0_359						
353	0.255	0.725	0.478						
383	0.355	0.935	0.629						
412	0.490	1.155	0.802						
441	0.855	1.730	1.261						
508	1.550	2.610	2.029						

Tabela A.01 – Deformações nas armaduras do modelo M1-AH

Tabela A.02 – Deformações nas armaduras do modelo M1-AC

				Modelo: M	1-AC					
	Deformações (x10 ⁻³)*									
CARGA (KN)	1	2	V1-V2	3	4	V3-V4	5	6	H1-H2	
(0)	0 000	0.000	0 000	0.000	0 000	0.000	0000	0.000	0 000	
49	-0.005	0 000	-0.002	0.005	0.005	0.005	-0 840	0.000	-0 020	
98	-0 005	0 005	0 000	0.005	0 005	0 005	-0 070	0.000	-0 034	
147	-0.010	000 0	-0.005	0.005	0.010	0.007	-0 105	0.000	-0.051	
196	0 000	0.000	0.000	0.010	0.010	0.010	-0 145	0.000	-0 071	
245	0.005	0 0 1 0	0.007	0 035	0 020	3 027	-0 175	0.000	-0.085	
294	ũ 060	0.065	0.061	ü 110	0.075	0.090	-0 180	0 000 D	-0 088	
343	0 175	C 170	0.168	0 225	0 165	0 190	-0 155	0.000	-0 076	
392	0 270	0 260	0 259	0.335	0 245	0 283	-0 135	0.000	-0 066	
441	0.400	0 390	0.385	0.475	0.350	0 402	-0 100	0 000	-0.049	
491	0 470	0 460	0 454	0 565	0 420	0 480	-0 095	0.000	-0 046	
540	0.575	C 575	0.561	0 630	0 430	0.517	-0 075	0.000	-0 037	
589	0.685	0.685	0 668	0.740	0 495	0.602	-0 055	0.000	-0 027	
638	008 C	0 825	0 793	0.875	0 585	0712	-0 010	0000	-0 005	
÷87	0 920	0 975	0 924	1 085	0 705	0.873	0.045	0.000	0 022	
736	1 130	1 200	1 137	1 500	0 950	1 195	0 240	0 000	0 117	

		Mode	lo: M1-A	V		
		Deforma	ções (x1	0 ⁻³):		_
CARGA (KN)	1	2	V1-V2	3	4	V3-V4
0	0.000	0.000	0.000	0.000	0.000	0.000
29	-0.005	-0.005	-0.005	-0.005	0.000	-0.002
59	-0.005	0.000	-0.002	0.000	0.005	0.002
88	0.000	0.005	0.002	0.005	0.010	0.007
118	0 005	0.010	0.007	0.010	0.020	0.015
147	0.005	0.010	0.007	0.015	0.025	0.020
177	0.005	0.015	0.010	0.025	0.035	0.029
206	0.010	0.020	0.015	0 035	0.040	0.037
235	0.010	0.025	0.017	0.045	0 055	0.049
265	0.015	0.035	0.024	0.055	0 070	0.061
294	0.025	0.045	0.034	0.075	0.085	0.078
324	0 025	0.060	0.041	0.095	0.105	0.098
353	0.035	0.080	0.056	0.130	0.145	0.134
383	0.045	0.105	0.073	0.175	0.190	0.178
412	0.065	0.145	0.102	0.240	0.245	0.237
441	0.090	0.195	0.139	0.330	0.335	0.324
471	0.125	0.265	0.190	0.450	0.445	0.437
500	0.185	0.370	0.271	0.685	0.605	0.629
530	0.235	0.450	0.334	0.775	0.730	0.734
559	0.280	0.535	0.398	0.900	0.850	0.854
589	0.315	0.605	0.449	1 010	0.945	0.954
618	0.355	0.680	0.505	1.130	1.050	1,063
647	0.400	0.760	0.566	1,250	1,155	1.173
677	0.450	0.850	0.634	1.390	1.285	1.305
706	0.510	0.950	0.712	1.550	1.430	1.454
736	0.580	1.050	0.795	1,720	1.585	1.612
765	0.650	1.150	0.878	1,900	1.740	1.776
795	0.740	1 280	0.985	2.140	1.970	2.005
824	0.815	1,380	1.071	2 320	2.130	2.171

Tabela A.03 – Deformações nas armaduras do modelo M1-AV

Tabela A.04 – Deformações nas armaduras do modelo M1-AI

	Modelo: M1-Al								
Deformações (x10 ⁻³):									
CARGA (KN)	1	2	11-12	3	4	13-14			
0	0.000	0.000	0.000	0.000	0.000	0.000			
49	0.030	0.025	0.027	0.040	0.045	0.041			
98	0.050	0.035	0.041	0.055	0.065	0.059			
147	0.075	0.050	0.061	0.080	0.095	0.085			
196	0.100	0.070	0.083	0.115	0.130	0.120			
245	0.125	0.085	0.102	0.145	0.165	0.151			
294	0.165	0.105	0.132	0.195	0.220	0.202			
343	0.230	0.150	0.185	0.295	0.325	0.302			
392	0.350	0.220	0.278	0.430	0.465	0.437			
441	0.510	0.315	0.402	0.615	0.650	0.617			
491	0.615	0.380	0.485	0.745	0.790	0.749			
540	0.755	0.460	0.593	0.895	0.945	0.898			
589	0.900	0.540	0.702	1.050	1.110	1.054			
638	1_060	0.640	0.829	1.240	1.310	1 244			
687	1.230	0.745	0.963	1 430	1 505	1.432			
736	1_425	0.865	1.117	1_630	1.715	1.632			
785	1 650	1.005	1.295	1.840	1.940	1.844			
834	1,990	1.305	1.607	2.190	2.300	2,190			

Modelo: M2.1-AV								
De	formaçõe	s (x10 ⁻³):						
CARGA (KN)	1	2	V1-V2					
0	0.000	0.000	0.000					
49	0.005	0.010	0.007					
98	0.005	0.020	0.012					
147	0.005	0.025	0.015					
196	0.005	0.025	0.015					
245	0.000	0.030	0.015					
2 <mark>94</mark>	0.010	0.040	0.024					
343	0.075	0.100	0.085					
392	0.140	0.175	0.154					
441	0.190	0.225	0.202					
491	0.260	0.270	0.259					
540	0.315	0.300	0.300					
589	0.360	0.350	0.346					
638	0.425	0.390	0.398					
687	0.510	0.425	0.456					
736	0.605	0.475	0.527					

Tabela A.05 – Deformações nas armaduras do modelo M2.1-AV

Tabela A.06 – Deformações nas armaduras do modelo M2.1-AC

	Modelo: M2.1-AC								
Deformações (x10 ⁻³):									
CARGA (KN)	1	2	V1-V2	3	4	H1-H2			
0	0.000	0.000	0.000	0.000	0.000	0.000			
49	-0.020	-0.025	-0.022	0.000	0.000	0.000			
98	-0.070	-0.065	-0.066	0.010	0.000	0.005			
147	-0.110	-0.100	-0.102	0.015	0.005	0.010			
196	-0.150	-0.125	-0.134	0.040	0.015	0.027			
245	-0.140	-0.075	-0,105	0.100	0.050	0.073			
294	-0.110	-0.035	-0.071	0.165	0.090	0.124			
343	-0.070	0.010	-0.029	0.225	0.120	0.168			
392	-0.005	0.075	0.034	0.275	0.145	0.205			
441	0.150	0.185	0.163	0.350	0.185	0.261			
491	0.270	0.260	0.259	0.405	0.215	0.302			
540	0.390	0.330	0.351	0.465	0.235	0.341			
589	0.490	0.375	0.422	0.550	0.245	0.388			
638	0.600	0.400	0.488	0.640	0.225	0.422			

	_		ñ	Nodelo: M	2.1-AI					
	Deformações (x10 ⁻³):									
CARGA (KN)	1	2	11-12	3	4	13-14	5	6	15-16	
0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
49	0.010	0.005	0.007	0.010	0.010	0.010	0.005	0.010	0.007	
98	0.030	0.015	0.022	0.030	0.025	0.027	0.035	0.025	0.029	
147	0.060	0.030	0.044	0.055	0.055	0.054	0.065	0.055	0.059	
196	0.085	0.045	0.063	0.085	0.085	0.083	0.095	0.080	0.085	
245	0.120	0.065	0.090	0.125	0.120	0.120	0.135	0.115	0.122	
294	0.155	0.095	0.122	0.160	0.160	0.156	0.175	0.145	0.156	
343	0.195	0.125	0.156	0.205	0.200	0.198	0.225	0.185	0.200	
392	0.240	0.165	0.198	0.280	0.275	0.271	0.305	0.255	0.273	
441	0.325	0.240	0.276	0.385	0.380	0.373	0.415	0.355	0.376	
491	0.425	0.315	0.361	0.485	0.475	0.468	0.515	0.440	0.466	
540	0.490	0.375	0.422	0.575	0.555	0.551	0.610	0.515	0.549	
589	0.580	0.440	0.498	0.670	0.635	0.637	0.695	0.585	0.624	
638	0.650	0.510	0.566	0.755	0.715	0.717	0.790	0.660	0.707	
687	0.745	0.590	0.651	0.870	0.805	0.817	0.895	0.745	0.800	
736	0.850	0.675	0.744	0.985	0.905	0.922	1.010	0.830	0.898	
785	0.945	0.755	0.829	1:100	1.010	1.029	1.125	0.925	1.000	
834	1_060	0.855	0.934	1.245	1.135	1.161	1.255	1.020	1,110	
883	1.180	0.935	1.032	1.375	1.240	1.276	1.385	1.115	1.220	
932	1.320	1.035	1.149	1.530	1.380	1.420	1.560	1.245	1.368	
981	1.540	1.150	-1.312	1.740	1.550	1.605	1.770	1.395	1.544	
1030	1.760	1.290	1.488	1.925	1 730	1.783	2.040	1.570	1.761	

Tabela A.07 - Deformações nas armaduras do modelo M2.1-AI

Tabela A.08 – Deformações nas armaduras do modelo M2.2-AV

Modelo: M2.2-AV							
	Deformaçã	bes (x10 ⁻³):					
CARGA (KN)	1	2	V1-V2				
0	0.000	0.000	0.000				
49	-0.005	-0.005	-0.005				
98	-0.025	-0.025	-0.024				
147	-0.050	-0.050	-0.049				
196	-0.065	-0.065	-0.063				
245	-0.085	-0.085	-0.083				
294	-0.110	-0.100	-0.102				
343	-0.130	-0.120	-0.122				
392	-0.145	-0.135	-0.137				
441	-0.145	-0.135	-0.137				
491	-0.125	-0.115	-0.117				
540	-0.090	-0.085	-0.085				
589	-0.050	-0.035	-0.041				
638	0.010	0.015	0.012				
687	0.085	0.160	0.120				
736	0.200	0.320	0.254				
785	0.280	0.430	0.346				

	Modelo: M2.2-AC									
Deformações (x10 ⁻³):										
CARGA (KN)	1	2	V1-V2	3	4	H1-H2				
0	0.000	0.000	0.000	0.000	0.000	0.000				
49	-0.020	-0.020	-0.020	-0.015	-0.015	-0.015				
98	-0.045	-0.045	-0.044	-0.040	-0.040	-0.039				
147	-0.075	-0.085	-0.078	-0.005	-0.065	-0.034				
196	-0.100	-0.115	-0.105	-0.095	-0.095	-0.093				
245	-0.115	-0.145	-0.127	-0.115	-0.115	-0.112				
294	-0.145	-0.175	-0.156	-0.140	-0.135	-0.134				
343	-0.165	-0.195	-0.176	-0.155	-0.155	-0.151				
392	-0.165	-0.210	-0.183	-0.140	-0.155	-0.144				
441	-0.150	-0.210	-0.176	-0.100	-0.135	-0.115				
491	-0.110	-0.205	-0.154	-0.045	-0.100	-0.071				
540	-0.065	-0.190	-0.124	0.005	-0.075	-0.034				
589	-0.015	-0.165	-0.088	0.060	-0.040	0.010				
638	0.075	-0.070	0.002	0.140	0.010	0.073				
587	0.200	0 090	0.141	0.230	0.075	0.149				
736	0.310	0.215	0.256	0.345	0.180	0.256				
785	0.500	0.415	0.446	0.700	0 500	0.585				

Tabela A.09 -	Deformações	nas armaduras	do	modelo	M2.2-AC
---------------	--------------------	---------------	----	--------	---------

Tabela A.10 – Deformações nas armaduras do modelo M2.2-AI

Modelo: M2.2-Al														
			Defe	ormações	(x10 ⁻³):									
CARGA (KN)	1	2	11-12	3	4	13-14	5	6	15-16					
0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0.000	0.000					
49	0 0 0 5	0 015	0 0 1 0	0.015	0 0 1 5	0.015	0 015	0.010	0.012					
58	0 0 2 0	0 0 3 5	0 0 2 7	0 0 3 0	0 0 3 5	0 032	0 0 3 5	0.025	0.029					
147	0.040	0 0 5 5	0 0 4 6	0.050	0 0 5 5	0.051	0 065	0.045	0.054					
196	0 0 5 5	0 0 8 0	0 0 6 6	0 0 7 0	0 085	3 076	0 0 9 0	0.070	0 0 7 8					
245	0 0 7 0	0 105	0.085	0 095	0 1 1 0	0 100	0 1 2 0	0.095	0 105					
294	0 0 8 5	0 135	0 107	0 1 2 0	0 1 4 0	0 1 2 7	0 160	0_120	0.137					
343	0 1 1 5	0 160	0.134	0.145	0 170	0.154	0_195	0.205	0.195					
392	0 1 2 5	0 1 9 0	0 1 5 4	0 170	0 200	0 1 8 0	0 230	0 225	0_222					
441	0,155	0 235	0 190	0.215	0 245	0 224	0.285	0 265	0.268					
491	0 185	0 275	0 224	0 2 5 0	0 290	0 263	0 335	0 305	0 312					
540	0 215	0 335	0 268	0 300	0 350	0 317	0 4 1 0	0 4 0 0	0 395					
589	0 265	0 400	0 324	0 360	D 410	0.376	0 490	0.515	0 490					
638	0 325	0 4 9 0	0 398	0 435	0 500	0 4 5 6	0 595	0.550	0 5 5 9					
687	0.375	0 575	0 463	0 505	0 575	0 5 2 7	0.695	0 7 0 5	0 683					
736	0 450	0 685	0 554	0 595	0 670	0 617	0.815	0 825	0 800					
785	0 535	0 805	0 654	0 680	0 7 7 0	0.707	0 950	0.970	0.937					
834	0 615	0 9 3 5	0 756	0 7 80	0 870	0 805	1 0 9 5	1 045	1 0 4 4					
883	3710	1 065	0 866	0 885	0 975	0 907	1 235	1 185	1_180					
932	0 815	1 235	1 000	1 0 2 0	1 105	1 0 3 7	1 415	1 210	1 280					
981	0 9 1 0	1 390	1 1 2 2	1 1 50	1 235	1 163	1 585	1 285	1_400					
1030	1 040	1 625	1 300	1 335	1 400	1 334	1 800	1 550	1 634					
1079	1 160	1 875	1 480	1 540	1 535	1 500	2 0 4 0	1 795	1 871					
1128	1 360	2 335	1 802	1 940	1 625	1 739	2 500	2 260	2 3 2 2					

		M	lodelo: M3-A	H		
		Defe	ormações (x1)	0 ⁻³):		
CARGA (KN)	1	2	H1-H2	3	4	H3-H4
0	0.000	0.000	0.000	0.000	0.000	0.000
49	-0.010	-0.010	-0.010	-0.010	-0.010	-0.010
98	-0.020	-0.020	-0.020	-0.020	-0.015	-0.017
147	-0.030	-0.030	-0.029	-0.020	-0.020	-0.020
196	-0.040	-0.030	-0.034	-0.020	-0.020	-0.020
245	-0.045	-0.035	-0.039	-0.020	-0.020	-0.020
294	-0.045	-0.035	-0.039	-0.015	-0.015	-0.015
343	-0.050	-0.030	-0.039	-0.005	-0.005	-0.005
392	-0.050	-0.020	-0.034	0.005	0.005	0.005
441	-0 045	-0.015	-0.029	0.025	0.025	0.024
491	-0.035	0.000	-0.017	0.050	0.045	0.046
540	-0 025	0.020	-0.002	0.080	0.070	0.073
589	-0.015	0.050	0.017	0.120	0.105	0.110
638	0.005	0.090	0.046	0.175	0.155	0.161
687	0.025	0.120	0.071	0.225	0.195	0.205
736	0.045	0.160	0.100	0.280	0.240	0.254
785	0.065	0.200	0.129	0.340	0.285	0.305
834	0.090	0.250	0.166	0.410	0.335	0.363
883	0.115	0.310	0.207	0.485	0.390	0.427
932	0.140	0.380	0.254	0.575	0.450	0.500
981	0.165	0.475	0.312	0.675	0.520	0.583
1030	0.215	0.620	0.407	0.810	0.570	0.673
1079	0.300	0.870	0.571	1.040	0.480	0.741

Tabela A.11 – Deformações nas armaduras do modelo M3-AH

Tabela A.12 – Deformações nas armaduras do modelo M3-AI

	Modelo: M3-Al													
		Defor	mações (x10) ⁻³):										
CARGA (KN)	1	2	11-12	3	4	13-14								
0	0.000	0.000	0.000	0.000	0.000	0.000								
49	0.000	0.000	0.000	0.005	0.005	0.005								
- 98	0.010	0.015	0.012	0.015	0.020	0.017								
147	0.030	0.030	0.029	0.035	0.040	0.037								
196	0.045	0.045	0.044	0.055	0.055	0.054								
245	0.065	0.065	0.063	0.075	0.075	0.073								
294	0.085	0.085	0.083	0.095	0.095	0.093								
343	0.105	0.105	0.102	0.115	0.115	0.112								
392	0.130	0.125	0.124	0.135	0.135	0.132								
441	0.155	0.145	0.146	0.165	0.165	0.161								
491	0.180	0.165	0.168	0.185	0.185	0.180								
540	0.205	0.190	0.193	0.210	0.210	0.205								
589	0.235	0.220	0.222	0.240	0.240	0.234								
638	0.260	0.245	0.246	0.270	0.270	0.263								
687	0.290	0.270	0.273	0.300	0.300	0.293								
736	0.325	0.300	0.305	0.330	0.330	0.322								
785	0.360	0.330	0.337	0.365	0.365	0.356								
834	0.405	0.360	0.373	0.410	0.410	0.400								
883	0.460	0.415	0.427	0.465	0.465	0_454								
932	0.515	0.465	0.478	0.530	0.520	0.512								
981	0.595	0.525	0.546	0.605	0.585	0.580								
1030	0.675	0.590	0.617	0.690	0.665	0.661								
1079	0.770	0.660	0.698	0.785	0.750	0.749								
1128	0.885	0.720	0.783	0.895	0.845	0.849								
1177	1.040	0.795	0.895	1 045	0.980	0.968								
1226	1.220	0.825	0,996	1,205	1.115	1.132								
1275	1,510	0.790	1.122	1,455	1.445	1.415								

ANEXO B

RESULTADOS DAS LEITURAS EFETUDAS NOS EXTENSÔMENTROS ELÉTRICOS DURANTE OS ENSAIOS DAS VIGAS

	Viga V1													
Deformações (x10 ⁻³):														
CARGA (kN)	L1	L2	L3	L4	EER-1	EER-2	EER-3							
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000							
2.5	0.005	0.005	0.024	0.024	-0.023	-0.014	-0.014							
4.9	0.010	0.010	0.049	0.039	-0.042	-0.028	-0.033							
9.8	0.020	0.015	0.107	0.088	-0.093	-0.065	-0.070							

0.176

0.263

0.351

0.434

0.532

0.600

0.693

0.776

0.863

0.941

0.956

1.156

14.7

19.6

24.5

29.4

34.3

39.2

44.1

49.1

54.0

58.9

63.8

73.6

0.029

0.034

0.044

0.054

0.068

0.083

0.107

0.141

0.190

0.278

0.322

0.346

0.024

0.034

0.049

0.059

0.073

0.093

0.122

0.171

0.239

0.376

0.449

1.283

-0.140

-0.200

-0.260

-0.316

-0.377

-0.423

-0.493

-0.553

-0.619

-0.726

-0.223

0.237

0.141

0.210

0.278

0.346

0.420

0.478

0.556

0.624

0.698

0.766

0.780

0.961

-0.107

-0.153

-0.200

-0.247

-0.298

-0.340

-0.391

-0.442

-0.498

-0.544

-0.549

-0.674

-0.107

-0.153

-0.195

-0.237

-0.284

-0.321

-0.377

-0.433

-0.405

-0.558

-0.572

-0.033

Tabela B.01 – Deformações nas armaduras e na superfície do concreto da viga V1

Tabela B.02 – Deformações nas armaduras e na su	uperfície do concreto d	a viga '	V2
---	-------------------------	----------	-----------

					-	Viga V2							
					Defo	rmações	x10 ⁻³):						
CARGA (kN)	L1	L2	L3	L4	H1	H2	H3	H4	H5	H6	EER-1	EER-2	EER-3
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4.91	0.010	0.010	0.000	0.044	0.005	0.010	0.009	0.009	0.000	0.000	-0.028	-0.042	-0.023
9.81	0 015	0.020	0.000	0.102	0.009	0.015	0.014	0.009	-0.005	-0.009	-0.065	-0.098	-0.056
14.72	0.020	0 024	0.000	0.107	0.019	0.020	0.019	0.014	-0.005	-0.014	-0.098	-0.153	-0.084
19.62	0.024	0.034	0.000	0.215	0.023	0.024	0.023	0.019	-0.009	-0.019	-0.130	-0.200	-0.112
24.53	0.034	0 049	0.000	0.278	0.028	0.029	0.028	0.023	-0.009	-0.019	-0.167	-0.256	-0.144
29.43	0.044	0.059	0.000	0.346	0.037	0.039	0.033	0.028	-0.005	-0.023	-0.209	-0.316	-0.181
34.34	0.054	0.068	0.000	0.405	0.047	0.044	0.037	0 033	-0.005	-0.028	-0.242	-0.363	-0.209
39.24	0.063	0.088	0.000	0.468	0.051	0.049	0.047	0.037	-0.005	-0.028	-0.288	-0.423	-0.242
44.15	0 078	0.107	0.000	0.537	0.056	0.054	0.051	0.047	-0.005	-0.033	-0.326	-0.479	-0.284
49.05	0.098	0.122	0.000	0.600	0.065	0.059	0.056	0.051	-0.005	-0.033	-0.367	-0.535	-0.326
53.96	0.117	0.156	0.000	0.668	0.070	0.063	0.061	0.051	-0.005	-0.033	-0.405	-0.586	-0.363
58.86	0.146	0.195	0.000	0.732	0.061	0.049	0.051	0.037	-0.014	-0.037	-0.493	-0.637	-0.405
63.77	0.185	0.254	0.000	0.795	0.051	0.044	0.047	0.028	-0.028	-0.051	-0.558	-0.693	-0.447
68.67	0 2 4 9	0.351	0 000	0.854	0 327	0.780	0.509	1 028	0.425	0.584	-0.521	-0.702	-0.470
73.58	0.605	0.400	0.000	0.917	0.481	1.190	0.584	1.481	0.556	0.799	-0.316	-0.786	-0.498
78.48	0.702	0.337	0.000	0.990	0.547	1.400	0.570	1.743	0.575	0.874	-0.163	-0.842	-0.484
83.39	0.800	0.312	0.000	1.078	0.565	1 610	0.570	2.000	0.617	0.981	-0.023	-0.916	-0.423
88.29	0.849	0.293	0.000	1,137	0.565	1.751	0.579	2,164	0.640	1.042	0.056	-0.963	-0.400

	Viga V3													
					Defor	macões (x10 ⁻³):							
CARGA (kN)	L1	L2	L3	L4	V1	V2	V3	V4	∨5	V6	EER-1	EER-2	EER-3	
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
4.91	0.010	0.005	0.044	0.034	0.000	0.000	0.000	0.000	0.000	0.000	-0.023	-0.070	-0.023	
9.81	0.024	0.015	0.098	0.068	0.000	0.000	0.000	0.000	0.000	0.000	-0.056	-0.140	-0.051	
14.72	0.034	0.024	0.151	0.112	0.000	0.005	0.000	0.005	0.000	0.005	-0.093	-0.209	-0.079	
19.62	0.054	0.034	0.239	0.161	0.005	0.009	0.005	0.009	0.000	0.009	-0.135	-0.274	-0.112	
29.43	0.093	0.059	0.415	0.278	0.019	0.019	0.019	0.028	0.000	0.000	-0.237	-0.400	-0.186	
39.24	0.127	0.098	0.600	0.405	0.051	0.065	0.048	0.065	-0.005	-0.005	-0.340	-0.526	-0.256	
49.05	0.229	0 224	0.780	0.537	0.280	0.308	0.159	0.210	0.009	0.019	-0.460	-0.647	-0.335	
58.86	0.420	0.434	0.951	0.663	0.766	0.995	0.716	0.921	0.229	0.332	-0.591	-0.767	-0.405	
73.58	0.551	0.537	1.185	0.854	1.121	1.463	0.981	1.290	0.416	0.570	-0.744	-0.907	-0.600	
88.29	0.712	0.634	1.449	1.063	1.519	1.977	1.255	1 668	0.584	0.780	-0.958	-1.172	-0.749	
103.01	0.878	0.702	1.698	1.259	1.752	2.294	1 409	1 874	0.734	0.949	-1.177	-1.400	-0.870	
117.72	1.020	0.780	1.946	1.459	1.949	2.598	1.591	2.107	0.902	1,136	-1.349	-1.633	-0.981	
127.53	1.107	0.839	2.151	1.624	2.126	2.883	1.774	2.355	1.056	1.318	-1.516	-1.842	-1.079	
137.34	1.176	0.893	2.322	1.761	2.266	3.145	1.938	2.584	1.187	1.477	-1.674	-2.037	-1.172	
147.15	1.244	0.961	2.498	1.898	2.416	3.453	2.101	2.818	1.332	1.640	-1.847	-2.237	-1.260	
156.96	1.322	1.034	2.717	2.063	2.617	3.953	2.313	3.136	1.514	1.841	-2.098	-2.451	-1.372	
166.77	1,405	1.146	3.117	2.249	2.836	4.650	2.534	3.509	1.734	2.070	-2.414	-2.647	-1.521	
176.58	1.454	1.268	3.780	2.444	3.098	5.411	2.788	4.005	1.958	2.290	-2.740	-2.814	-1.674	
186.39	2.463	1.390	5.220	3.171	3.374	6.065	3.212	4.902	2.201	2.551	-3.084	-2.851	-1.823	
193.36	1.337	1.351	4.615	2.502	3.463	6.463	3.389	5.322	2.238	2.551	-2.902	0.000	-1.712	

Tabela B.03 – Deformações nas armaduras e na superfície do concreto da viga V3

Tabela B.04 – Deformações nas armaduras e na superfície do concreto da viga V5

	Viga V5													
		Defo	rmações	(x10 ⁻³):										
CARGA (kN)	L1	L2	L3	L4	EER-1	EER-2	EER-3							
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000							
2.45	0.005	0.005	0.024	0.020	0.000	-0.019	-0.009							
4.91	0.010	0.015	0.039	0.039	0.000	-0.042	-0.023							
9.81	0.020	0.020	0.098	0.098	0.000	-0.093	-0.051							
14.72	0.024	0.029	0.151	0.151	0.000	-0.140	-0.079							
19.62	0.039	0.044	0.224	0.215	-0.005	-0.200	-0.112							
24.53	0.049	0.063	0.302	0.288	-0.005	-0.251	-0.144							
29.43	0.068	0.083	0.376	0.356	-0.005	-0.302	-0.181							
34.34	0.093	0.112	0.439	0.420	-0.005	-0.358	-0.214							
39.24	0.137	0.127	0.522	0.498	-0.005	-0.409	-0.251							
44.15	0.263	0.459	0.590	0.566	-0.009	-0.465	-0.284							
49.05	0.312	0.634	0.610	0.634	-0.009	-0.512	-0.326							
53.96	0.371	0.922	0.717	0.698	-0.014	-0.558	-0.358							
58.86	0.483	1.146	0.800	0.780	-0.028	-0.628	-0.391							
63.77	0.541	1.361	0.863	0.849	-0.051	-0.684	-0.414							
68.67	0.590	1.395	0.932	0.917	-0.079	-0.744	-0.437							
73.58	0.624	1.522	0.927	0.922	-0.070	-0.749	0.130							

									Viga V4										
					-			Defor	mações ()	(10 ⁻³):									
CARGA (kN)	L1	L2	L3	L4	H1	H2	H3	H4	H5	H6	V1	V2	V3	V4	V5	V6	EER-1	EER-2	EER-3
0.00	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4.91	0.008	0.008	0.044	0.039	0.005	0.005	0.005	0.005	-0.005	-0.005	0.000	0.000	0.000	0.000	0.005	0.005	-0.033	-0.033	-0.070
981	0.015	0.015	0,102	0.083	0.005	0.009	0.009	0.005	-0.005	-0_009	0.000	0.000	0.005	0.000	0.009	0.009	-0.060	-0.079	-0.149
14.72	0.024	0.024	0.171	0.141	0.014	0.014	0.014	0.009	-0.009	-0.014	0.005	0.005	0.005	0.005	0.014	0.014	-0.093	-0.121	-0.228
19.62	0.039	0.039	0,259	0.210	0.019	0.023	0.023	0.019	-0.009	-0.014	0.009	0.010	0.005	0.005	0.014	0.019	-0.126	-0.167	-0.298
29.43	0.063	0.063	0.424	0.356	0.029	0.028	0.033	0.023	-0.014	-0.023	0.023	0.015	0.014	0.009	0.023	0.023	-0.195	-0.260	-0,433
39.24	0_102	0.117	0.605	0 502	0.034	0.037	0.056	0.042	-0.005	-0.023	0.051	0.044	0.037	0.023	0.028	0.028	-0.274	-0.367	-0.567
49.05	0.161	0 195	0.756	0.629	0.034	0.037	0 098	0.070	0.005	-0.014	0.136	0.107	0.075	0.061	0.033	0.033	-0.349	-0,460	-0.684
58_86	0.278	0.439	0.922	0.766	0.091	0.117	0.220	0.332	0.238	0.201	0.500	0_400	0.621	0.612	0.210	0 187	-0.460	-0,563	-0.823
73.58	0.376	0.659	1,156	0.961	0.192	0.248	0_299	0.612	0.416	0.388	0.860	0.678	1.140	1.121	0.598	0.514	-0.614	-0.707	-1.033
88 29	0.473	0.863	1,405	1.176	0.308	0.388	0.332	0.883	0.537	0.547	1.308	1.029	1.650	1.617	0.916	0.794	-0.763	-0.870	-1.302
103.01	0.571	1.024	1.659	1,380	0.385	0.477	0.322	1.051	0.579	0.621	1.673	1.351	2.009	1.963	1.173	1.037	-0.874	-1.051	-1.502
117 72	0.683	1.146	1.898	1 580	0.442	0.551	0.276	1.126	0.537	0 598	2.028	1.678	2.304	2.243	1.350	1.201	-0.958	-1.237	-1.660
132.44	0.800	1.278	2.151	1.790	0.495	0.621	0.234	1.215	0.505	0.579	2.336	1.976	2.617	2.537	1.547	1 388	-1,056	-1.442	-1 833
147.15	0 902	1.424	2.410	2.010	0.567	0.710	0.201	1.341	0.477	0.579	2.668	2 298	3.056	2.972	1.836	1 645	-1.172	-1.665	-2.037
156 96	0 971	1.537	2.600	2.171	0.625	0.780	0.173	1.439	0.463	0.579	2 9 1 6	2 556	3,495	3.458	2.079	1.846	-1.293	-1.823	-2 200
166 77	1,029	1.644	2.776	2.327	0.683	0.846	0.150	1.542	0.439	0.579	3.168	2.829	4,103	4 178	2.336	2.037	-1.405	-1 963	-2,386
176_58	1.078	1.756	3.015	2.512	0.740	0.921	0.107	1.659	0.421	0.561	3.505	3.210	5.084	5 383	2.449	2.252	-1.549	-2,116	-2.581
186_39	1.117	1.883	3.532	2.712	0.808	1.000	0.047	1.776	0.393	0.561	3.963	3,185	6.458	7.103	2.963	2 505	-1.707	-2 279	-2.767
196.20	1.141	2.059	4.654	3.590	0.894	1.112	-0.047	1.953	0.290	0.514	4 8 4 1	2 146	8.435	2.486	3.626	3.019	-1.953	-2.484	-2.791
204.54	1.005	2.132	8.239	5.073	0.952	1.178	-0.299	1.972	-0.089	0.257	5.967	1.639	9.813	2.075	4.822	4.121	-2.465	0.000	-2.265

Tabela B.05 – Deformações nas armaduras e na su	uperfície do concreto da	viga V4
---	--------------------------	---------

ANEXO C

RESULTADOS DAS LEITURAS EFETUDAS NO CONCRETO (x10⁻³) DURANTE OS ENSAIOS DOS MODELOS DE ESCORAS

CARGA (kN)	1-1	1-2	1-3	1-4	1-5	6-6	6-7	6-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
0	0 000	0 000	0 000	0 000	0.000	0.000	0 000	0.000	0 000	0 000	0 000	0 000	0.000	0.000	0.000	0 000	0.000	0 000	0.000
29	0.000	-0 0 10	0 030	-0 040	-0 020	-0.040	-0 050	-0 120	0.000	0 000	0.040	0 0 10	0.040	0 020	-0 070	-0.010	0.050	-0 040	-0 020
59	-0.040	-0.060	-0.030	-0 100	-0.060	-0.100	-0 150	-0.170	0 0 2 0	0.020	0.030	0 000	0 010	0_000	0.030	-0.060	-0.090	-0.090	-0.050
88	-0.050	0 0 90	0 0 6 0	0.150	0 140	0.230	-0.250	0 240	0 0 2 0	0 040	0.060	0 ()50	0 050	0 0 10	-0 070	-0 100	-0.140	0.140	-0.090
118	-0.070	-0 1 20	-0.110	-0.230	-0.210	0.290	-0.330	-0.300	0.050	0.080	0.090	0 060	0 060	-0.020	-0 090	-0 140	-0 200	0 200	-0.130
147	-0.090	-0 140	-0_160	-0.270	-0.250	-0.320	-0 370	-0 350	0 060	0 090	0 090	0 060	0 070	-0.030	-0 110	-0.160	-0 240	-0.210	0 140
177	-0 070	0 1 70	-0 180	-0 290	-0 280	-0.360	-0.390	-0_400	0.060	0 090	0 120	0 060	0 070	-0 030	-0 120	-0 190	-0 290	-0 250	-0 170
206	-0.120	-0.210	-0 260	-0.400	-0.380	-0.450	-0.450	-0 420	0.060	0.110	0 140	0 110	0 140	-0.050	-0 160	-0 240	-0 330	-0 300	-0.150
235	-0.120	-0.250	-0.310	-0.470	-0.470	-0.550	-0 550	-0 500	0.100	0 170	0.180	0 140	0.150	-0.060	-0.210	-0.310	-0.410	-0.350	0.230
265	-0 160	-0 300	-0.390	-0 560	-0.570	-0.620	-0.650	-0 610	0.110	0 190	0 200	0 180	0.180	-0.080	-0 250	-0 360	0.460	0.380	-0 240
294	-0 200	-0 340	-0.440	-0 630	-0 650	-0.680	-0 730	-0.680	0 1 10	0 210	0 210	0 180	0 190	-0,140	-0 330	-0 440	-0 530	-0.440	0 250
324	-0 200	-0 380	-0.510	-0.670	-0 690	-0.720	-0 750	-0 720	0.140	0 260	0 300	0 260	0 280	-0 120	-0 340	-0.460	-0.550	-0 460	-0.250
353	-0 230	0 4 1 0	-0 550	-0 760	-0 760	-0.830	-0.830	-0 770	0.190	0 360	0_360	0 310	0 300	-0,150	-0 370	-0.550	-0 640	-0 500	-0.280
383	-0 220	-0 4 30	-0.580	-0.820	-0.830	-0 900	-0 910	-0.840	0 210	0 460	0 470	0 400	0.360	-0 160	-0 390	-0 600	-0.710	-0 550	-0.310
412	-0 250	0 450	-0 630	-0.880	-0.900	0 970	-0.980	-0.850	0.250	0 560	0 610	0 560	0 490	-0 160	0 460	-0 660	-0 770	-0 590	-0.310
441	-0 260	0 4 9 0	-0 700	-0.970	-1.020	1 110	-1 050	-0.920	0.460	0 980	1_140	1_120	0 880	-0 160	-0 500	-0.790	-0.980	-0.670	0.300
471	-0 190	-0 460	-0.660	-1.080	-1 210	-1 640	-1 300	-0.800	2 260	3 170	3 280	2 990	2 280	-0 100	-0 530	-1 000	-1.400	-0 740	-0.150
500	-0 180	0 500	-0 820	-1.190	-1 370	-2.090	-1 500	-0 660	3 420	4 410	4 450	4 010	3 020	-0.060	-0 580	-1 160	-1 640	-0.810	-0.100
530	-0 140	-0.510	-0 860	-1 300	-1,540	-2.790	-1 930	-0 670	5 1 1 0	6 260	6 150	5 510	4.140	0 070	-0 610	-1 390	-2 230	0.810	-0 050
CARGA (kN)	1-1	1-2	1-3	1-4	1-5	6-6	6-7	6-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
------------	----------	---------	----------	--------	--------	--------	--------	--------	---------	-------	-------	---------	-------	---------	--------	--------	---------	---------	--------
0	0 000	0.000	0 000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0 0 0 0	0 000	0 000	0.000	0 000	0.000	0.000	0.000
29	-0.020	0.000	0.000	0.000	0 000	-0 150	0.010	-0 050	0.000	0.000	0 020	0.000	0.010	-0 0 10	-0.010	-0 030	-0.010	-0 0 30	-0 010
59	0.030	-0 020	-0 0 20	-0 040	-0 040	-0 160	-0.080	-0 140	0.010	0 020	0.040	0 040	0.050	-0 020	-0.010	-0 110	-0 100	-0 090	-0 040
88	-0.050	-0.040	-0.090	-0 100	-0 120	-0 220	-0.120	-0 190	0 010	0.040	0.060	0 060	0.080	-0 0 20	-0.010	-0.140	0 1 3 0	-0.120	-0 060
118	0.060	-0.060	-0 1 1 0	-0 120	-0 150	-0 280	-0.120	-0 230	0 0 1 0	0 050	0 090	0.080	0 100	-0 0 30	-0 050	-0,190	-0 180	-0.160	-0 110
147	-0 1 00	-0.090	-0.140	-0 150	-0 200	-D 360	-0_140	-0 300	0 0 2 0	0 090	0.110	0.110	0 120	-0.010	-0 070	-0 220	-0 240	-0 220	-0,130
177	-0.100	-0 120	-0 160	-0 190	-0 250	-0 450	0.300	-0 340	0 030	0 100	0 120	0.150	0 140	-0 070	-0.130	-0 270	-0 280	-0.270	-0 170
206	-0.100	-0.130	-0.180	-0 230	-0.300	-0 570	-0.340	-0 380	0 060	0 160	0.190	0 200	0 180	-0 060	-0 130	-0.310	-0 390	-0 350	-0 210
235	-0 1 0 0	0 150	0 220	0 260	-0 340	-0 600	0 420	-0 450	0 060	0 190	0.250	0.250	0 230	-0 060	-0 190	-0.350	-0.430	-0 390	-0 240
265	-0 1 10	-0 170	0 260	-0.350	-0 440	-0 730	-0.530	-0 500	0 200	0 470	0 600	0 590	0 450	-0 090	-0.220	-0.450	-0 490	-0 510	-0.310
294	-0.030	-0 120	-0 240	-0 350	-0 530	-1.150	-0 550	-0 250	1 940	2 660	2 940	2 800	2 230	0 050	-0.250	-0 670	-1 050	-0 680	-0 220
324	-0 020	0.130	-0.310	0.380	-0.590	-1.390	-0.560	-0 160	2 590	3 520	3 910	3 750	2 950	0 200	-0.270	-0 810	-1 220	-0 7 70	-0 230
353	0 000	0 1 3 0	-0 320	-0.420	-0 650	-1.610	-0 660	-0 100	3 280	4 330	4 840	4 680	3 560	0.350	-0 260	-0 920	-1 350	-0.860	-0 240
383	0 000	-0 130	-0 320	0 450	-0 740	1 980	-0.700	0 050	4 150	5 500	6 220	6 030	4 300	0 670	-0 240	-1.109	-1 450	-0 950	-0 240
412	0 010	-0.130	-0.290	-0.470	-0.800	-2 280	-0.750	0.100	4 920	6 580	7 530	7 350	5 280	0 970	-0.200	-1 280	-1 450	-0.990	-0 240

Tabela C.02 - Deformações no concreto do modelo M1-AH

Tabela C.03 – Deformações no concreto do modelo M1-AC

CARGA (kN)	1-1	1-2	1-3	1-4	1-5	6-6	6-7	6-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
0	0.000	0 0 000	0 000	0 0 00	0.000	0 0 00	0.000	0 0 0 0	0.000	0.000	0.000	0.000	0.000	0 0 0 0	0.000	0.000	0 000	0.000	0.000
49	-0.020	-0.050	0.80 0	-0 090	-0.080	-0.140	-0.130	-0 100	0.050	0.040	0.060	0.070	0.040	0 0 000	-0 070	-0.120	-0 150	-0.040	-0.040
98	-0.060	-0 130	-0 160	-0 170	-0 190	-0.250	-0 260	-0.170	0 0 7 0	0 080	0 100	0.100	0 080	-0 060	-0 120	-0 190	-0 220	-0 130	-0 080
147	-0 050	-0 150	-0 220	-0 250	-0 260	-0.350	-0 380	-0 270	0 110	0.120	0 160	0 150	0 100	-0 070	-0 180	-0 270	-0.310	-0 180	-0.100
196	-0 110	-0 220	-0 310	-0 350	-0 380	-0.530	-0.510	-0 280	0 180	0 190	0 260	0 220	0 160	-0.110	-0 280	-0.440	-0 480	-0 300	-0 170
245	-0 150	-0 300	-0 390	-0 450	-0.480	-0 640	0 640	-0 460	0 2 2 0	0 300	0 350	0.300	0.190	-0 110	-0 290	-0 490	-0 520	-0 300	-0 170
294	-0 170	-0.340	-0 480	-0.570	-0.640	-0.830	-0 780	0 600	0.380	0 530	0 650	0.580	0.380	-0 160	-0.440	-0.730	-0 740	-0.440	-0.220
343	-0 180	-0 420	-0 590	-0 710	-0.810	-0 950	-0.910	-0 710	0.650	0 850	1 030	0 920	0 6 4 0	-0 140	0 480	-0.830	-0 870	-0.480	-0.210
392	-0 200	-0 470	-0 700	-0 840	-0 970	-1,150	-1 030	-0 790	0.950	1 270	1.460	1 310	0 9 3 0	-0 160	-0 580	-1 020	-1 070	-0 580	-0 230
441	-0 180	-0.510	-0 800	-0 990	-1 160	-1.370	-1 200	-0.880	1_290	1.810	2.010	1.860	1.360	-0 170	-0 700	-1 310	-1.340	-0 730	0 280
491	-0 180	-0 550	-0.890	-1 140	-1 350	-1 580	-1.390	-0.990	1.610	2 310	2 580	2 300	1 780	-0 200	-0.840	-1 580	-1 570	-0 870	-0.320
540	-0 200	-0.610	-1 010	-1 300	-1 550	-1.780	-1.550	-1 070	1,940	2 900	3 270	3 000	2 280	-0 250	-1 000	-1 850	-1 840	-0 980	-0 330
589	-0 160	-0 660	-1 130	-1 510	-1.820	-2 050	-1.720	-1 180	2.350	3 640	4 150	3 830	2 950	-0 280	-1.130	-2 180	-2 150	-1.120	-0 380
638	-0 070	-0 700	-1 280	-1 740	-2 090	-2 340	-1 940	-1,300	2.890	4 670	5 350	4 910	3810	-0 290	-1 340	-2 650	-2.550	-1_310	0 390
687	0 050	0 700	-1 440	-2 010	-2.440	-2.900	-2 160	-1.390	3 600	6.080	7 040	6 690	5 1 8 0	-0 350	-1,670	-3 370	-3 040	-1.490	-0 460

CARGA (kN)	1-1	1-2	1-3	1-4	1-5	6-6	6-7	6-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
0	0.000	0 000	0 000	0 000	0 000	0.000	0 000	0 000	0 000	0.000	0 000	0.000	0.000	0 000	0 000	0.000	0 000	0.000	0.005)
29	0 0 2 0	0 0 3 0	0.040	0.080	0.080	0 1 10	-0 1 20	0 100	0 010	0 030	0 0 2 0	0.030	0 040	-0 070	0.080	0 0 7 0	-0 080	-0.100	0.040
59	0.040	-0.060	-0.090	-0 1 20	-0.150	-0.200	-0 220	0 170	0 060	0 080	0 070	0.070	0 080	-0.080	-0 120	0 1 30	0 150	-0 1 4 0	=0.050
38	0.040	0.090	0 1 2 0	·0 160	-0 190	-0 300	-0 320	0 230	0 090	0.110	0 100	0.090	0 100	-0 110	0 220	-0.230	-0 2 10	-0.180	-0 070
118	0.050	0 1 10	-0 170	-0 200	0 240	-0 370	-0 350	0 270	0 1 1 0	0 130	0 150	0 140	0 150	-0 120	-0 250	0 270	0 2 7 0	-0.220	-0 100
147	0.050	0 120	-0 190	0 230	0 260	-0.430	0 430	0 370	0 1 1 0	0 160	0 200	0 160	0 180	-0 1.30	-0 270	0 310	0 300	-0.250	0 100
177	0.070	0.150	0.210	0 270	0 300	-0.520	-0 470	0 370	0.130	0.190	0 220	0 200	0 220	-0 150	0 300	0 340	0 340	0.280	0.110
206	0.080	0.160	-0.230	0 290	0 3 3 0	-0.610	0 570	0.420	0 180	0 230	0 250	0 230	0 240	0 150	0 350	0 380	0 380	0 3 2 0	-0.120
235	-0.090	0 190	0 280	-0.330	-0 380	0 690	-0 680	0 540	0 190	0 260	0 280	0 270	0 280	0 160	0 370	0 450	0 450	-0.350	0 150
265	0.110	0 210	0.310	-0.390	-0.450	-D 780	-0 780	0 620	0 230	0 310	0 320	0 330	0 320	0 180	0 4 40	0.510	0 5 2 0	0 400	-0.160
294	0 130	0 250	0 340	-0 460	0.510	-0.860	-0 820	0 640	0 260	0 350	0 370	0 390	0 370	-0.210	_D 480	-0 590	-0 580	-0.440	0 180
324	0 1 4 0	0 270	-0.380	-0.480	-0 550	-0 920	-0.910	0 700	0 330	0 420	0 450	0 470	0 410	-0 240	0 550	0 660	0 670	-0.500	0 210
353	-0 130	0 280	-0 400	-0.510	-0.590	-1 000	-0 970	0 760	0 370	0 500	0 530	0.540	0 470	-0 250	-0 580	-0 720	0710	-0 520	-0 200
383	0 170	-0 320	0 440	-0 580	-0.650	-1 060	-1 070	0 800	0 450	0 610	0 680	0 680	0 580	-0 250	0 620	0.800	0 790	-0 570	0 250
412	0 150	0 310	-0.460	-0 610	-0.700	-1.1.30	-1 1 30	0 840	0 570	0 730	0 800	0 840	0 710	0 280	0 670	0.880	-0 850	0.640	0 260
441	-0.130	0 3 1 0	-0.480	0.660	-0 7 70	-1 210	-1 200	0 8 9 0	0 570	0 950	1 020	1 070	0.890	-0.300	-0 730	0.990	0 950	-0.670	0 270
471	-0.130	0 3 10	-0 520	-0 700	-0.830	-1 310	-1 280	0.890	0 920	1 240	1 350	1 370	1 140	0 3 3 0	0 790	-1 110	-1 030	-0.730	0 290
500	-0.150	0 350	0 550	-0 750	0 900	-1 390	-1 370	0 900	1 170	1 530	1 700	1 740	1 460	0 280	-0 800	1 190	1 080	-0 780	0 280
530	-0.130	0 340	-0 560	-0 7 90	-0 940	-1.470	-1 420	0 900	1 400	1 800	1 990	2 050	1 690	-0.310	0 860	1 290	1 1 7 0	-0 860	0 300
559	-0 130	0 360	0 590	0.830	-1010	-1 580	-1 500	0 900	1 630	2 080	2 260	2 300	1 910	0 300	0 900	1 370	-1 230	-0.910	-0 320
589	0 1 3 0	-0 380	-0 630	-0 900	-1 060	-1 660	-1 570	-0 920	1 860	2 330	2 520	2 560	2 090	-0.330	0.970	1 5 1 0	1 330	-0.970	0 340
618	-0 140	0 380	0 660	-0 940	1 1 30	-1 770	1 650	0 970	2 100	2 630	2 780	2 840	2 200	-0 350	1.040	1 6 1 0	-1 430	1 0 3 0	-0.340
647	0 1 2 0	0.400	0 680	1 0 1 0	1 200	1 9 1 0	-1 770	0 960	2 380	2 930	3 080	3 1 2 0	2 450	0 350	-1 100	-1 740	-1 560	-1.130	0 360
677	0 100	0 400	0 7 3 0	-1 070	-1.300	-2 050	-1870	0 970	2 750	3 350	3 520	3 530	2 720	0 350	1 1 30	1 880	=1 700	=1.200	0 390
706	-0.070	0 410	0 780	1 150	-1 390	-2 2 2 0	-1970	0 970	3 170	3 810	3 930	3 890	2 970	-0 370	1 220	2 0 3 0	=1 860	-1 300	0.400
/36	0.030	-0.410	-0 800	1 2 2 0	-1 490	-2 4 30	-2 120	0.980	3 660	4 400	4 450	4 360	3 220	0 370	1 310	-2 200	2 050	-1.400	-0.430
765	0.030	0.390	-0.850	1 320	1 600	2 6 4 0	-2 270	1 030	4 190	5 070	5 060	4 860	3 520	0 400	1 420	2 470	2 2 9 0	-1.540	0 460
795	0 130	0 360	-0.900	1 450	-1 800	2 880	-2 440	-1.000	5 230	6 370	6 390	5 840	4 110	0 4 1 0	1 620	-2 900	2 680	1 7 70	0 490

Tabela C.04 – Deformações no concreto do modelo M1-AV

CARGA (kN)	1-1	1-2	1-3	1-4	1-5	6-6	6-7	6-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
Ú	0.000	0 000	0 0 00	0.000	0 000	0.000	0 0 0 0	0.000	0.000	0000	0.000	0.000	0 0 0 0	0.000	0000	0.000	0 0 00	0 0 0 0	0 000
49	0.000	0 000	0.010	-0 010	-0.010	0.010	-0.010	-0.010	0.000	0.030	0 0 2 0	0 0 30	0 0 20	0.010	0 0 0 0	0 0 4 0	0 040	0 020	0 0 1 0
98	0 0 1 0	0 000	-0 010	-0.030	0 020	-0 020	-0 110	-0.060	0.010	0.050	0 050	0 0 2 0	0 0 2 0	0 0 0 0	0 0 1 0	-0 080	0 080	-0.040	0.010
147	0 0 1 0	0 030	-0 040	-0 070	-0 070	-0 110	0 140	-0.110	0.030	0 060	0 060	0 060	0 050	0 0 0 0	-0 030	-0 120	-0 120	-0 080	0 0 2 0
196	000.0	0 050	0.060	0 100	-0 110	-0 190	-0.180	-0 140	0 0 3 0	0.090	0.090	0 080	0 080	-0.010	-0 070	0 160	-0 190	0 130	0 0 3 0
245	-0 030	-0 050	-0 070	-0 140	-0 130	-0 250	0 170	0 130	0.060	0 1 2 0	0 150	0 1 3 0	0 1 0 0	-0 010	-0 090	-0 230	-0 260	0 170	0 050
294	-0 040	0 080	-0.120	-0 190	-0.210	-0 270	-0 250	-0 200	0 100	0 180	0 200	0 160	0 1 3 0	-0.010	-0 170	-0 320	0 330	0 220	0.80 0
343	-0.050	0 090	·Ó 140	-0 240	-0 250	-0 310	-0 280	-0 260	0 1 2 0	0 240	0 270	0 220	0 150	0 030	-0 190	0 400	-0 410	0 280	-0 100
392	0 0 3 0	0 040	0 090	-0 240	0 250	-0.310	-0 270	0 260	0 280	0 4 4 0	0 490	0.430	0 280	-0.010	-0 230	-0 470	-0 480	0 320	0.090
441	-0.010	0.080	-0 170	-0 300	-0 370	-0.440	-0 310	0 300	0 360	0.610	0 650	0 570	0.410	0 0 1 0	-0 280	-0 600	0.610	-0 410	0 120
491	-0.050	-0 130	-0 200	-0 380	0 430	-0 500	0 390	-0 280	0 4 8 0	0 7 4 0	0.800	0 7 3 0	0 520	-0 030	-0 360	0730	-0 740	0 490	-0 160
540	-0 050	0 150	-0 250	-0 470	0 520	-0 630	-0 530	-0.360	0 6 3 0	0 960	1 010	0 920	0 670	-0.050	0 430	-0 880	-0 880	0 600	-0.200
589	0 060	0 190	-0 300	-0 530	-0 630	-0 780	0.590	-0 380	0 820	1 180	1 230	1 150	0 880	-0 060	-0 510	-1 060	-1 040	0 700	0 240
638	-0.070	0 220	-0.340	-0 630	-0 750	-0 920	0 720	-0.470	1 0 7 0	1 550	1 560	1 430	1 1 4 0	-0 100	-0 570	-1 260	-1 230	0 820	0 280
687	0 070	-0 240	0 400	-0 720	-0.850	=1.110	-0.870	0.530	1 390	1 950	1 920	1 760	1 370	0.110	-0 690	-1 490	1 420	0 850	0 340
736	0 0 0 0	-0 240	0 430	-0 820	-0 980	1 400	-1 050	-0.550	1 750	2 4 2 0	2 4 1 0	2 160	1 620	-0.150	-0 800	1 770	1 680	1 120	0 440
785	0.060	-0 270	-0 450	0 930	-1 170	-1 750	-1 370	-0 590	1 850	3 0 4 0	3 250	2 850	2 1 2 0	0 150	-0 870	2 090	-2 000	1 260	0 530

Tabela C.05– Deformações no concreto do mo	aelo	BYLL-AL
--	------	---------

CARGA (kN)	1-1	1-2	1-3	1-4	5-5	5-6	5-7	5-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
0	0.000	0 000	0.000	0.000	0 000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000
20	-0 020	0 040	0 070	-0 120	-0 040	0.010	0.010	0.040	0 020	0 030	-0.010	-0 040	0 000	0 010	-0.010	0 010	0 000	0 050	0 000
39	-0.080	0 1 1 0	-0 140	-0 190	-0 040	0.030	-0 040	-0 020	0 000	0 020	0 000	-0 040	0 020	0 000	0 000	-0.030	-0 030	0 010	0.050
59	-0.160	0 170	-0 230	-0.310	0 070	0 0 70	-0.060	-0 020	0.030	0 070	0 020	-0.010	0 020	-0 020	-0 0 20	0.080	-0 020	0 020	-0 040
78	-0 190	0 270	0 290	-0 370	-0 100	0 0 4 0	-0.090	0 0 20	0 030	0.080	0 050	0 020	0 030	-0 020	-0.040	-0 1 30	-0 100	0 020	-0 040
118	-0 270	0 3 3 0	-0 400	-0 500	-0.120	-0 110	-0 160	0 070	0 080	0 090	0 080	0 050	0 080	-0 030	-0 090	0 150	-0 110	0 010	0 0 40
157	0.300	0 400	-0.510	0.530	-0 160	0 1 4 0	-0.180	0 0 9 0	0.140	0 160	0 110	0 100	0 100	-0 030	-0 150	-0 250	-0 160	-0 0 1 0	-0 040
196	-0 350	0 480	-0 560	0 720	0 200	0 150	-0 210	0 1 3 0	0 180	0 240	0 210	0 160	0.110	-0 020	-0 180	0.330	-0.210	-0 020	0.040
245	-0.400	0 560	-0 7 40	-0.880	0 240	0 190	-0 250	0 150	0 300	0 380	0 380	0 310	0.210	0.050	-0 240	0 4 4 0	-0 300	0 0 3 0	0 040
294	0.420	0 670	-0.850	-1.010	-0 290	0 2 4 0	0 260	_0 170	0 540	0 740	0 810	0 770	0 490	-0 050	-0 320	0 570	-0 380	-0 040	-0 040
343	0 4 7 0	0710	-0 980	1 220	0 420	0 2 7 0	-0 270	0 180	0 850	1 280	1 390	1 460	0 850	0.030	-0.380	0 750	-0 490	0.050	0 0 20
392	0 480	0 7 90	1 1 20	-1 410	-0.440	0 320	-0 270	0 120	1 180	1 830	2 050	1 890	1 250	0 030	-0.430	-0.950	-0.630	0.030	0.050
441	-0.510	0 870	1 270	1 600	-0 550	0 370	-0 290	-0 0 70	1 470	2 360	2 660	2 470	1 650	0 070	-0.500	-1.110	-0.810	0.040	0 060
491	-0 540	0 960	=1 440	-1.830	-0.660	-0.440	-0 300	0.060	1 800	3 020	3 420	3 180	2 030	0 060	-0.580	-1 320	0 990	0.030	0 040
540	-0 550	1 020	-1 540	-2 020	-0 770	0 490	-0.310	0 0 2 0	2 130	3 640	4 180	3 850	2 410	0 050	0.650	-1 530	-1 170	-0.050	0.010
589	-0 490	1 0 2 0	-1.680	-2 350	-0.940	-0 600	-0.310	0 050	2 700	4 930	5 800	4 180	3 140	0 080	-0.850	2 000	1 480	0 0 9 0	0.010

Tabela C.06- Deformações no concreto do modelo M2.1-SA

Tabela C.07– Deformações no concreto do modelo M2.1-AV

CARGA (kN)	1-1	1-2	1-3	1-4	5-5	5-6	5-7	5-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
0	0.000	0 000	0 000	0 000	0 000	0 000	0 000	0.000	0 000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0 000	0.000	0.000
49	0.000	0.000	0 0 7 0	0 000	0 0 1 0	0 020	0 0 00	0.000	0 050	0 070	0.060	0.030	0.010	-0.010	-0.040	-0 030	0.060	0.030	0 020
98	0.030	0 0 3 0	0800	-0 050	0 0 3 0	0.000	0 000	-0 160	0 050	0 100	0 110	0 070	0 000	-0.010	0 1 50	-0.140	0.100	0.010	0 020
147	0.050	0.050	-0.110	-0.100	-0.080	0 050	-0.010	-0 200	0 100	0 190	0 220	0 190	0 000	-0 020	0 2 3 0	-0 230	0 1 80	0 0 2 0	0 020
196	0.040	-0 0 70	0170	-0 150	-0.160	0 0 30	-0 060	-0 160	0 160	0 300	0 350	0 290	-0.030	-0 060	0 320	-0 330	0 2 5 0	-0.050	0 020
245	0.080	0 1 2 0	0 220	-0.200	-0 170	0 1 1 0	-0 060	-0 190	0 230	0.430	0 510	0 460	-0.040	-0 070	0 400	-0 420	0.300	0 0 90	0 020
294	-0 070	0 1 3 0	-0 270	-0 230	-0 230	0 160	-0 1 10	-0 210	0 360	0 660	0 790	0 710	0 0 3 0	-0 080	0 460	0 550	0 380	-0 070	0 020
343	0 070	0 1 3 0	0 270	-0 290	-0 320	0 210	-0 100	-0 130	0 530	0 950	1 100	1 140	-0.020	-0 070	0 5 1 0	0 690	-0 500	-0.050	0 070
392	0.080	0 160	-0 310	-0 330	0 390	0 260	0 1 2 0	0 180	0 670	1 160	1 340	1 260	0.090	0.090	0.580	-0 850	0.640	-0.210	0.050
441	0 070	-0 170	-0 370	0 4 4 0	0 480	0 340	-0 180	-0 200	0 870	1 490	1 680	1 530	0 150	-0 090	0 660	-1 060	0 770	0.210	0.060
491	0 060	-0 100	-0 370	-0 500	0 570	0 400	-0 210	-0 150	1 170	1 870	2 090	1 850	0.300	-0.080	0730	-1 290	0.910	-0 240	0.060
540	0 210	-0.020	-0 360	-0 580	0 650	-0 440	-0 230	-0 110	1 520	2 360	2 550	2 210	0 450	-0 080	0.830	-1 550	1 050	0 320	0 100
589	0 480	0 1 2 0	0 370	-0 700	-0 790	-0 550	-0 280	-0 050	2 010	3 090	3 280	2 840	0 700	-0 090	-0 970	1 860	-1 280	-0.300	0 100
638	0 750	0 280	-0 370	-0.850	-0 950	-0 620	-0 320	-0.120	2 530	3 970	4 160	3 530	0 970	-0 100	-1 1 30	-2 230	-1 520	-0.390	0 090
687	1 090	0 450	-0 430	-1 000	1 1 50	0.730	-0 340	-0 060	2 980	4 470	5 000	4 420	1 270	-0 100	1 370	-2 730	-1.810	-0 590	0 070
736	1 770	0 910	-0 380	-1.090	1 470	-0 800	-0 250	0.010	3 290	4 420	6 100	4 740	2 480	0.210	-1 750	-4 150	2 6 2 0	-1 050	0.010

CARGA (kN)	1-1	1-2	1-3	1-4	5-5	5-6	5-7	5-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
Ú	0 000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	Ŭ 000
49	-0 020	0.000	0 040	0.070	0 000	-0 1 10	0 010	0 060	-0.060	0.040	0 080	0.060	0.020	0 030	0.040	0 060	0 070	0 110	0.010
98	0.030	0.020	0.080	-0.010	0 240	-0 200	0 0 20	0 060	-0 0 40	0.090	0 120	0 070	0.050	-0 040	-0 090	-0 150	-0.160	0 100	0.030
147	0 060	0.050	0.080	-0.010	0 310	0 250	0 0 201	0.180	0.000	0 260	0.260	0.230	0.100	-0.120	-0 140	0.270	-0 220	-0.210	0 060
196	-0 110	0 1 2 0	-0.150	-0 0 30	0 4 1 0	-0.250	0 160	0 430	0 090	0 590	0 550	0 440	0.260	-0.140	0 260	=0.370	-0 270	-0 340	0 1 1 0
245	-0 160	0 170	-0 210	-0 090	0 540	-0 210	0 330	0 770	0 070	1 050	0 940	0 640	0 390	-0 190	-0 250	0 500	-0 270	0 370	-0.130
294	0 190	0 190	-0 260	0 150	0 740	0 220	0 470	1 040	0 130	1 490	1 360	0 930	0.500	0 170	-0 340	-0 620	-0 360	0 5 2 0	-0 200
343	0 190	0 250	0.310	-0 240	-1 030	-0 380	0 500	1 260	0 150	2 000	1 740	1 160	0 750	0 170	-0 540	0 770	-0.440	0 690	0 2 2 0
392	0 190	0 250	-0.400	-0.330	-1 400	-0 500	0 620	1 440	0 130	2 600	2 280	1 530	0 750	=0 190	-0.450	-1.020	0 680	0 7 9 0	0 280
441	-0.050	0 2 3 0	0 380	-0 340	1 660	-0.690	0 530	1 710	0.180	3 130	3 110	2 090	0 960	0 1 4 0	-0 560	1 1 10	-0 940	0 970	0 250
491	0 200	0.000	0 300	-0 330	2 050	0 830	0 580	1 910	0 1 1 0	3 120	4 050	2 870	1 310	-0 180	-0 540	=1 290	=1 240	1 060	0.330
540	0 500	0 210	0 100	-0 280	2 270	-1 0 10	0 630	2 090	080.0	3 120	4 940	3 600	1 700	-0 040	-0 570	-1 400	-1 530	-1 350	0 340
589	0 780	0 400	0.040	-0 250	2 690	-1 220	0.620	2 440	0 1 1 0		6 000	4 530	2 110	-0 020	0.590	-1.450	=1 990	=1 430	0 350
638	1 300	0 790	0.080	-0 230	-3 490	-1 570	0.680	2 960	060 0		7 910	6 090	3 170	-0.050	0.480	-1.620	-3 040	-1 830	-U 360

Tabela C.08- Deformações no concreto do modelo M2.1-AC

Tabela C.09- Deformações no concreto do modelo M2.1-A1

CARGA (kN)	1-1	1-2	1-3	1-4	5-5	5-6	5-7	5-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
0	0.000	0.000	0 000	0 000	0.000	0.000	0 000	0 000	0 000	0.000	0.000	0 000	0.000	0 000	0 000	0.000	0.000	0.000	0.000
49	0.030	0.040	0 050	0 020	0 0 2 0	0 060	0 0 2 0	0.030	0.000	0 020	0.000	0 ()20	0.010	0.040	-0.030	-0 0 2 0	0.030	0 230	-0.040
98	-0.010	-0.020	0.000	0.010	0 160	0 170	-0 140	-0 100	-0 0 10	0.030	-0 070	0.040	0 020	0 030	0 070	0.080	-0 010	0 360	-0.060
147	0.040	-0 090	0 0 4 0	0 0 50	-0.310	0 280	-0 210	-0 160	-0.030	0.090	0 050	0 ()60	0.060	0.010	0 130	-0 210	-0.050	0 390	0 100
196	0.050	-0 1 10	-0 070	-0 070	0 4 2 0	0 360	-0 260	-0 170	-0.030	0 120	0 090	0 120	0.080	0 000	0 120	0 290	0.190	0 450	-0.120
245	0 0 6 0	0.100	0.080	-0 100	-0 530	0 4 4 0	-0 340	0 210	-0.080	0 140	0 130	0 130	0 110	0.010	0 190	0.360	0 290	0 520	=0.140
294	0 080	-0.150	=0.110	-0.130	0.630	0 520	-0 380	-0 230	-0 0 70	0 190	0 190	0 160	0 130	0 010	-0 210	0 4 1 0	0 390	0 590	0 160
343	0.040	0.060	=0.110	-0 120	-0 680	-0 610	-0.450	-0.240	-0.020	0 270	0 280	0 230	0 180	0.010	-0 280	0.490	0 580	0720	-0 200
392	0.110	-0.210	0 170	-0 180	0 840	0.680	-0.480	0 270	-0.030	0 320	0 370	0 270	0 190	-0.050	-0.310	0.630	0.740	0 7 8 0	0 2 40
441	0 1 3 0	0.220	_0.190	0 260	0 970	0 820	-0 590	-0.310	-0.010	0 450	0 500	0 360	0 260	-0.050	0 370	-0 7 20	-0.880	-0 880	0 260
491	0 150	-0.260	-0 250	-0 300	1 1 30	0 930	0 630	-0.310	0 0 3 0	0 570	0 640	0 450	0 290	-0 010	-0 400	0.820	-1.040	0 950	=0.280
540	0 1 7 0	-0.290	-0 280	-0.340	-1 230	-1 050	-0 690	-0 320	0 100	0 700	0 790	0.560	0 320	-0.030	-0 460	0 950	-1 220	-1 080	0 300
589	0 200	-0.310	0 360	0 430	-1 340	-1.150	-0 760	-0 360	0 140	0 810	0 960	0 690	0 380	-0 020	0 470	-1.060	-1 370	=1 150	-0 310
638	0 230	-0.390	0 450	·0 500	-1 480	-1 250	-0.830	-0 320	0 210	0 950	1 150	0 790	0.400	-0.050	-0.570	-1 180	1 540	-1 250	0 370
687	0 250	-0 440	-0 520	-0.620	=1 640	-1 380	-0 880	-0 380	0 270	1 140	1 340	0.940	0.450	-0.030	-0 620	-1.310	-1740	1 360	-0 390
736	0 280	-0 520	-0 600	-0.710	-1 790	-1 490	-0 950	-0 360	0 370	1_320	1.560	1 110	0 480	-0.040	-0 720	-1 440	-1910	-1 470	0.420
785	-0.330	-0.600	-0710	-0 860	-1 980	-1 630	-1 030	-0 370	0 470	1 550	1 780	1 330	0 520	-0 050	-0 830	1 660	-2 150	-1 630	=0.470
834	-0 390	-0 690	-0 850	-1 010	-2 1 4 0	-1 810	-1.100	-0 410	0 550	1 770	2 060	1 510	0 570	-0 070	-0.920	-1.800	-2 370	-1 720	0 500
883	0 410	-0 770	0 970	-1 180	-2 320	-1 940	-1.200	-0 430	0 660	2 010	2 310	1 740	0.620	-0 060	-1.010	1 960	-2 550	1 820	-0.530
932	-0.470	-0.870	-1 160	-1 420	-2 570	-2 150	-1 300	-0 410	0 830	2 340	2 670	2 060	0 670	-0 100	-1 160	-2 190	-2.810	-1 980	0 620
981	-0.470	0.950	-1 360	-1.690	-2 900	-2.370	-1.430	-0 430	1 090	2 830	3 200	2 090	0 850	-0 1 20	-1 280	-2 410	-3 150	-2 060	-0.610
1030	-0 360	-0 940	-1 520	-1 130	-3 130	-2 510	-1.550	0 010	1 650	3 660									

CARGA (kN)	1-1	1-2	1-3	1-4	5-5	5-6	5-7	5-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18-18	19-19
0	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0 000	0.000	0.000	0 000	0 000 0	0.000	0.000	0.000	0 0 00	0 000	0.000	0 000
49	0.040	0.060	-0.040	0 0 9 0	-0 030	0.050	-0 070	-0 040	0.010	0 020	0.050	0.020	-0.040	0.010	0 060	0.050	0.060	0.060	0.010
98	-0.090	0 100	0 0 7 0	-0 240	0 150	0 100	-0.090	0 0 70	0.010	0 020	0.030	0.090	-0 050	0 0 4 0	0 130	0 1 4 0	0 150	0.100	0 050
147	-0.090	0 140	0.040	-0 260	0 190	0 160	-0.140	-0.090	0 0 1 0	0 020	0 040	0 060	-0.040	0 050	-0 190	·0 200	-0 230	0 160	0 0 7 0
196	0.110	D 180	0.050	0 4 1 0	0 300	-0 280	-0.220	-0 140	0 0 2 0	0 040	0 080	0 080	-0 020	-0 040	0 250	-0.310	-0 290	0 190	=0.090
245	0.140	0 2 2 0	-0.100	-0.440	0 380	-0.350	-0.300	-0 170	0.030	0 080	0 120	0 130	-0.020	0 0 30	0 280	0 4 2 0	-0 390	0 280	0 100
294	0.190	0 2 7 0	0 150	0 5 1 0	0 460	-0.390	-0 340	-0.190	0.010	0.080	0 190	0.210	-0.010	0 100	0 380	0 490	-0 450	-0 290	0.110
343	0.210	0.320	0.230	0 580	0.540	0 480	-0 380	0.210	0.040	0 170	0.250	0.260	-0.030	0 130	0 410	0 550	0 5 4 0	0.330	0 140
392	0.210	0.320	0.230	0 580	0 5 4 0	0.480	-0 380	0 210	0.040	0 170	0 250	0 260	-0.030	-0 130	-0 410	-0.550	-0.540	-0.330	0 140
441	0.210	0 360	0 310	-0.690	0 6 3 0	0.540	-0.440	0.230	0.060	0 220	0 330	0.310	0.010	0 130	0 480	0 650	-0.650	0 380	0 170
491	0.250	0 390	0 360	0 7 10	-0.710	-0.620	-0.490	0 240	0.060	0 270	0 430	0 420	0 160	0 140	0 510	0 730	-0770	0 460	0 180
540	-0.250	0.430	0 4 1 0	-0.810	-0.840	-0 740	0 550	-0 250	0.080	0 380	0 650	0 590	0 120	0 150	0 560	0 8 90	-0.910	-0 500	0.200
589	0.300	0 5 3 0	0 590	1 040	=1 210	0 950	-0 650	-0 200	0 150	0 610	1 110	1 160	0 190	-0 150	0 7 4 0	-1 220	1 230	0 650	0.210
638	0.300	0 590	0 690	1 200	=1 470	-1 100	-0.690	-0.140	0 240	0.800	1 370	1 510	0 300	-0 130	-0.800	1 390	-1.430	0 7 7 0	0 200
687	0 280	0 600	0 7 70	1 350	-1 740	1,210	-0 600	0 210	0.410	1 130	1 650	1 650	0.310	-0 120	0.890	-1 670	-1 770	0 960	0 180
736	-0 240	0 630	0 860	-1 550	-2 070	-1 330	-0.530	0 390	0 550	1 520	2 020	1 960	0 370	-0.110	-1 030	1 950	-2 050	1 1 1 0	0 150
/85	0.100	0 590	0.910	1 820	-2510	1 520	-0.440	0 770	0 930	2 130	3 130	3 030	0.450	0.060	1 270	-2 480	-2 520	1 420	D 140

Tabela C.10- Deformações no concreto do modelo M2.2-AV

Tabela C.11- Deformações no concreto do modelo M2.2-AC

CARGA (kN)	1-1	1-2	1-3	1-4	5-5	5-6	5-7	5-8	9-9	10-10	11-11	12-12	13-13	14-14	15-15	16-16	17-17	18- 18	19-19
Ū.	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0 000 U	0.000	0.000	0.000	0.000
49	0.030	0 000	0 0 1 0	-0 090	0.040	-0 060	-0.050	0 0 30	0 010	-0 020	0 0 2 0	-0 030	0.030	0.000	0.010	0 080	-0.020	0.030	0 0 2 0
98	0 0 2 0	0.020	0.050	-0 100	-0 080	-0.100	-0.090	-0 020	0 000	-0.010	0 020	-0 030	0.000	0 0 2 0	0 080	0 180	-0 090	0 120	0.040
147	-0.100	0 120	0 150	-0 190	-0 160	-0.170	-0.140	-0.080	0 020	0 010	0 040	-0 020	-0.010	-0.110	-0 120	0 190	-0 1 40	0 160	-0 070
196	0.090	0 1 2 0	-0.220	-0 260	0 260	0 2 4 0	-0 160	-0.080	0 090	0.020	0 100	0.030	0.000	0 120	-0 110	-0 370	-0.190	0 200	0.080
245	0.090	0 150	0 270	-0.310	-0 300	-0 280	0 200	-0 110	0.080	0 100	0 170	0 070	0 020	-0 100	-0 140	-0 390	·D 270	0 220	0 1 1 0
294	0.130	0 180	-0 340	-0 400	0 400	-0 330	-0 230	-0.100	0 120	0 170	0 260	0 100	0 050	-0 090	0 170	0.490	-0.320	0 300	0 110
343	-0 160	0 220	0 390	-0 440	0 460	-0 370	-0.240	0 100	0 080	0 210	0 370	0 190	0 080	0 0 7 0	-0 510	0 500	-0 390	0 370	-0 120
392	0 1 40	0 250	0.490	-0.580	0.580	-0 400	-0 290	0 110	0 100	0 350	0.600	0 290	0 140	-0.110	0 540	0730	-0 560	0.490	0 150
441	-0.140	-0 280	0.580	-0 690	-0 7 3 0	-0 560	-0 360	-0 1 10	0 100	0 480	0 800	0 460	0.200	-0 190	-0 600	-0.900	0.720	0.510	0 160
491	0 130	0 320	-0.670	-0 850	-0 890	0 640	-0 340	0 050	0 100	0 750	1 150	0 690	0 270	-0 1 10	-0 720	1 060	-0.880	-0 640	0 160
540	0.090	0 360	-0 780	-0 980	-1 1 10	-0.750	-0.360	0 030	0.120	1 110	1.710	0 910	0 370	-0.150	0 790	-1 250	-1.060	-0 750	0 150
589	-0.110	-0 390	-0.920	-1.200	1.350	0.840	-0 350	0 130	0 150	2 020	2 490	0 990	0.450	-0 140	0 910	·1 440	-1.250	0.940	0 1 7 0
638	0 060	0 370	-1 040	-1 490	-1 670	0.980	-0.390	0 240	0 170	2 040	3 300	1 230	0 580	-0 1 30	-0 950	-1 870	-1 460	-1 150	0 140
687	0 210	0 370	-1.190	-1 820	-1.970	-1.100	-0 340	0 420	0 220	2 530	4 140	1 560	0 720	-0.060	-1 100	-2 160	-1 690	-1 340	-0.110
736	0 410	0 360	-1 340	-2 230	-2 300	-1 290	-0 280	0 770	0 260	3 270	3 880	2 220	1 020	-0.060	-1 260	-2 760	-2 190	1 860	-0 080

CARGA (kN)	1-1	1-2	1-3	4-4	4-5	4-6	4-7	4-8	9-9	10-10'	11-11	12-12'	13-13	14-14	15-15	10-12	16-16	17-17	10'-12'
C	0 000 0	0.000	0.000	0 0 00	0 0 0 0	0 0 0 0	0 0 00	0 0 00	0 0 0 0	0 0 0 0	0 0 00	0 0 00	0 0 00	0 0 0 0	0 0 00	0 0 0 0	0000	0 0 0 0	0 000
49	0.010	0.010	0.050	-0 080	-0.080	-0 0 40	0 0 0 0	0 0 3 0	0 0 0 0	0 0 2 0	0 027	0.050	0 0 2 0	-0.010	0 0 10	-0.050	0 0 2 0	0 060	-0 030
98	-0.030	0.050	0.080	-0 170	-0.130	-0 100	-0 040	-0.050	0 0 1 0	0.030	0 0 4 7	0 060	0 0 4 0	-0.020	-0.040	-0 070	-0 090	0 1 1 0	-0.090
147	-0.080	-0 100	-0.150	-0.310	-0.210	-0.150	-0 100	0 0 9 0	0 0 3 0	0.030	0 057	0 0 7 0	0.040	-0 050	-0 090	-0.120	-0 160	0 180	0 130
196	-0.120	-0 140	-0.210	-0 360	-0 270	-0.210	·0 150	-0 1 4 0	0 0 3 0	0 060	0 0 7 7	0 080	0 050	-0 090	-0 120	-0 170	-0 200	-0 250	0 220
245	-0 160	0 190	0 260	-0.430	-0 360	0 240	-0 150	-0 140	0 0 5 0	0 080	0 127	0 120	0 050	-0.120	-0 160	0 230	-0 280	0 340	0 260
294	-0.200	0 250	0 320	-0 510	-0.400	-0.310	-0 220	0 160	0 0 6 0	0 080	0 1 2 7	0 1 2 0	0 070	-0 130	-0 210	0 290	0 340	0 380	0 320
343	-0 240	-0 280	0370	-0 6 1 0	-0 500	0 360	-0 240	0 170	0 0 7 0	0 120	0 177	0 150	0 1 2 0	-0 160	0 260	-0 370	0 420	0 450	0 430
392	-0 260	-0 340	-0.440	0 660	-0 600	-0 4 10	·0 280	0 170	0 1 0 0	0 160	0 227	0 190	0 1 2 0	0 1 9 0	-0 090	-0 430	0.500	-0 530	0 450
441	-0.310	0 400	-0.510	-0 750	-0 640	0.430	-0 280	-0 170	0 1 0 0	0 210	0 277	0 220	0 1 7 0	-0 220	-0.340	-0 470	-0 560	-0 660	0 560
491	-0.360	-0.480	-0 600	-0910	0 730	-0 480	-0 330	-0 200	0 1 1 0	0 240	0 337	0 300	0 220	-0 270	-0 430	-0 550	-0 640	0730	-0.610
540	-0.430	-0 530	0670	-0 980	-0.810	-0.530	-0 340	0 180	0170	0 310	0 427	0 320	0 220	0 290	-0 450	-0 580	-0 700	0 7 90	0 7 2 0
589	-0 500	0 610	0770	-1 080	-0.870	-0 550	-0 320	-0.150	0 190	0 360	0 527	0 400	0 290	-0 350	-0 520	-0710	0 8 20	0.930	0 860
638	-0.520	0 680	0 860	-1 210	-0.960	-0 550	-0 310	-0.040	0 280	0 560	0 837	0 6 3 0	0 360	-0.400	0 600	0 7 90	-0 930	-1 060	-1 060
687	-0.550	-0 740	-0.950	-1 390	-1.010	0 5 3 0	-0 200	0 1 3 0	0 360	0 960	1 317	0 930	0.500	-0 370	-0 630	-0 880	-0 990	-1 170	1 290
736	-0.600	-0.840	-1.060	-1 550	-1 150	-0 500	·0.040	0.360	0.480	1 360	1 837	1 300	0 690	-0 380	-0 680	-0 960	-1 130	-1.390	=1.530
785	-0.660	-0 930	-1.170	-1.750	-1 190	-0 450	0.090	0 5 3 0	0 5 7 0	1 710	2 397	1 610	0 860	0 400	-0 740	-1 060	-1.240	1 590	1 860
834	-0.710	-1 040	-1.3.30	-1 990	-1 290	0 340	0 350	0 960	0 680	2 270	3 2 3 7	2 1 2 0	1 1 2 0	0 470	-0 830	-1 190	-1 430	1 780	2 260
883	-0.810	-1 160	-1.460	2 340	-1.380	0 1 80	0 670	1 4 1 0	0 700	2 4 9 0	4 4 4 7	2 170	1 160	-0 500	-0 950	-1.330	-1.650	2 1 9 0	-2 800
932	-0.870	1 340	-1 7 70	-2 840	-1 420	0.120	1 220	2 180	0 790	2 4 10	5 997	2 270	1 240	0 570	-1 070	-1 530	1 920	2510	3 290
981	-0 960	-1 510	-2 000	-3 260	-1 430	0 3 2 0	1 610	2 7 5 0	0910	2 5 7 0	7 517	2 450	1 340	0 620	-1 200	-1 730	-2 170	-2 880	3 860

Tabela C.12- Deformações no concreto do modelo M3-SA

CARGA (kN)	1-1	1-2	1-3	4-4	4-5	4-6	4-7	4-8	9-9	10-10'	11-11	12-12'	13-13	14-14	15-15	10-12	16-16	17-17	10*-12*
0	0 000	0 0 00	0 0 00	0 000	0 000	0 000	0 0 0 0	0 000	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 00	0 0 0 0	0 0 00	0 000	0.000	0 0 0 0
49	-0 020	-0 020	-0 040	0.030	-0 020	0 060	0 0 0 0	0.010	0.030	0 0 0 0	0 0 2 0	0.010	0 0 2 0	-0 040	0.030	-0 020	-0.030	-0.030	0 020
98	-0.040	-0.040	-0 080	-0.090	-0 030	0 070	-0.030	0 0 1 0	0 0 2 0	0 0 10	0 050	0 0 2 0	0 060	0 050	0 110	-0 090	0 100	0 070	0 100
147	-0.090	-0.110	-0 160	-0 170	-0.050	0 130	-0.040	0 0 1 0	0 0 3 0	0 0 4 0	0 0 8 0	0 060	0 060	-0 080	0 150	-0 160	-0 160	0 140	-0 180
196	-0 150	-0 170	-0 220	-0 250	-0 140	0 140	-0 040	0 0 2 0	0 0 2 0	0 040	0 1 1 0	0 080	0 060	-0.140	-0 220	-0.220	0 280	0 270	-0 270
245	-0 200	-0 240	-0 310	0.350	-0 200	0 190	-0.030	0 0 3 0	0 0 8 0	0 060	0120	0 080	0 060	-0 160	0 260	-0 300	0 360	0 320	0 400
294	-0 230	0 300	-0 400	-0 450	-0 230	0 260	-0 020	0 0 3 0	0 0 8 0	0 0 7 0	0 250	0 1 4 0	0 100	-0 270	-0 370	-0 430	0 460	0 390	0 4 4 0
343	-0 300	0 390	-0 480	-0 510	-0 270	0 220	-0.010	0 060	0 1 0 0	0 1 20	0 250	0 160	0 180	0 270	0 390	-0 480	·0 520	0 510	0 540
392	-0 350	0 470	-0 570	0 580	0 320	0 230	-0.060	0 060	0 0 9 0	0 1 1 0	0 270	0 210	0 1 5 0	0 300	-0 470	-0.580	-0.630	-0 600	0 670
441	-0 420	-0 560	-0 690	-0 640	-0 390	0 290	-0.060	0 1 7 0	0 0 9 0	0 100	0 320	0 260	0 1 4 0	-0 380	-0 590	-0 670	=0 730	0670	0 760
491	-0 460	-0 640	-0 770	-0 790	-0 470	-0 330	-0 090	0 1 4 0	0 1 0 0	0 1 4 0	0 340	0 3 3 0	0 190	-0 400	0 640	-0 760	0 880	0.830	-0.840
540	-0 500	-0 700	-0 850	·0 860	-0 520	0 350	0.080	0 1 4 0	0 1 3 0	0 170	0 4 7 0	0 4 4 0	0 290	-0 460	-0 760	-0 860	-0.930	-0 950	0 980
589	-0 550	-0.810	-1 000	-1 010	-0 670	0 390	-0 100	0 190	0 2 0 0	0 250	0 7 5 0	0 580	0 340	0 520	-0.810	-0 960	=1.090	1.090	1 100
638	-0.620	-0.920	-1.100	1 180	-0 770	0 440	0 120	0 160	0 1 80	0 260	0 850	0 6 8 0	0.410	0 620	-0 920	-1 120	-1 270	1 280	1 280
687	-0.640	0.970	-1 230	1 290	-0.940	0 520	0 120	0 260	0 1 6 0	0 2 7 0	1 060	0.810	0 500	-0 710	-1 080	1 260	-1 430	1 430	-1 450
736	-0 750	-1 150	-1 410	=1.530	-1 020	0.580	0 110	0 280	0 1 90	0 280	1 280	1 0 1 0	0 590	0 770	-1 200	-1 400	1 600	-1620	-1 660
785	-0.800	-1 270	1 570	-1 710	-1 170	0 610	-0 050	0 350	0 1 9 0	0 320	1 470	1 270	0 7 3 0	-0.810	-1_300	-1 540	-1 740	-1 790	=1 900
834	-0.860	1 420	1 750	-1 920	-1 340	0 630	-0 030	0 500	0 350	0 390	1 780	1 4 4 0	0 890	-0.940	-1 450	1 760	2 010	-2 080	-2 120
883	-0 960	-1 570	-1 950	-2 150	-1 550	0 730	0 0 4 0	0 660	0 2 4 0	0 460	2 100	1 730	1 0 4 0	-1 070	-1 650	1 970	-2 290	-2 320	-2 470
932	-1 050	-1 770	-2 220	-2 480	-1740	-0 760	0 170	0 860	0 300	0.510	2 460	1 960	1 240	-1 140	1 830	2 210	-2 530	-2 560	2 730
981	-1 150	-2 020	-2 570	-2 910	-2 130	0 850	0 320	1 290	0 390	0 700	2 980	2 3 1 0	1 450	-1 300	-2 060	2 560	-2 930	-3 050	3 140
1030	-1 300	-2 340	-3 020	-3 500	-2 750	1 180	0 4 7 0	1 970	0750	0 980	3 950	2740	1 670	-1 440	·2 370	2 910	-3 400	-3 630	3 620

Tabela C.13- Deformações no concreto do modelo M3-All

CARGA (kN)	1-1	1-2	1-3	4-4	4-5	4-6	4-7	4-8	9-9	10-10'	11-11	12-12'	13-13	14-14	15-15	10-12	16-16	17-17	10'-12'	18-18
0	0 000	0.000	0 000	0 000	0 000	0 000	0.000	0.000	0 000	0 000	0.000	0.000	0.000	0 000	0.000	0.000	0 000	0.000	0.000	0.000
49	0 070	-0.080	0 070	-0.060	0 050	-0 020	-0 040	0 000	0 010	0 000	0.030	0 020	0 010	-0 110	-0 090	0 1 1 0	0 100	-0 070	-0 100	0 090
88	-0 120	-0 150	-0 140	0 180	-0 150	-0 100	0 060	-0 030	0.010	0 020	0.040	0 030	0 010	-0 110	-0 140	0 180	-0 190	-0 1 40	0 170	0 190
147	-0 170	-0.210	-0 250	-0 250	-0.240	-0.160	-0.090	-0 040	0.020	0 020	0 040	0.060	0 020	-0 160	-0.210	-0 270	0.290	-0 220	0 310	=0.290
196	0 210	0.280	-0 310	-0.350	-0.290	-0 200	0 120	-0.010	0.050	0 040	0.090	0.080	0 030	-0.210	-0 240	-0.340	0 350	-0 310	0 370	=0 330
245	0.260	-0 360	0 390	-0.420	-0.400	-0 240	-0 120	0 050	0 050	0 070	0 110	0.080	0 020	0 240	-0 300	-0.390	-0 470	-0 380	-0 460	0 450
294	0.300	-0 420	0 460	0 540	0 470	0.280	0 130	-0 010	0.050	0 090	0 140	0 110	0 040	-0 330	-0.390	0.490	0 570	0 550	0 540	0 490
343	0.330	-0 450	-0.520	-0.580	-0.500	-0 320	0 140	-0.030	0.050	0 100	0 160	0 130	0 060	-0.380	-0.420	0 550	0 6 1 0	-0 650	0 660	_0.590
392	0 370	-0.520	0 600	-D 680	0.630	-0 390	-0 170	-0 030	0.060	0 130	0.200	0 150	0 080	-0.430	-0 500	-0 610	0 700	0 690	-0 740	0 670
4.41	0.410	-0 610	0.680	0 750	0 650	0 410	-0 220	0 0 30	0 090	0 140	0 240	0 180	0 110	-0 460	-0 550	-0 700	0 770	-0 800	-0.810	0 740
491	0.460	-0.650	0 750	-0.840	0 7 10	-0 470	0 250	-0.030	0 100	0 180	0 260	0 200	0 140	-0 510	0.610	0.760	0.850	-0 890	-0 880	-0.810
540	0.510	-0 720	0.830	-0 920	0.800	-0 520	0 250	=0.030	0 110	0 170	0 320	0 220	0 160	0 550	-0.680	-0 860	0 950	-0.940	-0 960	G38 0
589	0 540	-0.800	0 920	-1 020	-0.850	-0.560	0 260	-0 040	0 120	0 230	0 380	0 270	0 170	-0 570	-0 740	0.930	=1 020	1 050	1 050	0 950
638	0 580	-0.850	-0.990	1 120	-0.920	-0 580	-0 260	0 040	0 120	0 250	0 390	0 270	0 180	-0.600	-0 810	-0 990	=1 090	-1 110	-1 120	1 010
687	0.630	0.930	1 070	1 220	1 000	-0 670	0 270	0 050	0 150	0 300	0 430	0 300	0 190	-0.630	0.68 0	1 080	1 200	-1 220	=1.250	1 140
736	0.690	-1-020	-1 150	-1 350	1 130	-0.720	0 330	0 060	0 170	0 310	0 500	0 320	0 210	-0 730	0.960	=1 170	1 340	-1 390	1 340	1 2 20
785	0.750	-1 110	-1.290	-1.430	1 200	-0 770	0 350	0.060	0 180	0 350	0 550	0 370	0 220	-0 790	1 030	-1 260	1 450	-1 510	-1 440	1 330
834	0.820	-1.200	=1 400	-1 510	-1 340	-0.850	-0 380	0 070	0.200	0 400	0 620	0 400	0 280	-0.870	-1 140	-1 380	1 590	-1 610	-1 590	=1.470
683	-0.900	-1 330	-1 550	-1-720	-1 430	-0.890	0 430	-0.100	0 220	0 450	0 690	0 440	0 290	-0 940	-1.210	-1 510	1 690	=1 /40	-1 /10	-1 590
932	0.950	-1.440	-1 680	-1 890	1 540	0.960	0 4 4 0	-0 080	0.220	0 500	0.820	0 550	0 330	-1 000	-1_300	-1 620	1 840	-1 990	-1 880	-1 700
981	1 020	-1 580	1 850	-2 070	1 690	-1.020	0 460	-0 030	0.250	0 630	0 930	0 580	0 340	1 (190)	1 450	1 790	2 0 / 0	-2 120	-2 030	1 850
1030	=1 130	-1 750	-2 070	-2 300	-1.830	1 070	0 460	0.010	0 280	0 650	1 070	0 620	0.360	-1 210	1 590	-2 020	2 290	2 410	2 210	1 990
1079	1 210	-1 930	-2 310	-2 560	-2 030	-1 140	-0 490	0 020	0 290	0 720	1 280	0 690	0 360	-1 320	1 760	-2 210	2 540	-2 710	-2 510	2 290
1128	-1 350	-2 160	-2 560	-2 820	-2 230	1 160	-0 470	0 090	0 300	0 820	1 490	0 730	0 380	1 410	1 880	-2 390	2 810	-3 020	-2.750	2 520
1177	-1 470	-2 410	2 930	-3 240	2 410	-1 210	-0 430	0 250	0.300	0.850	1 800	0 860	0.390	1 510	-2.060	-2 680	-3 190	-3 520	-3 080	2 090
1226	-1 610	·2 710	-3 380	-3 640	2 650	1 220	0 330	0 470	0.350	1 320	2 210	1 090	0 440	-1 570	-2 190	-2 960	-3 590	-4.050	3 450	-3.310

Tabela C.14- Deformações no concreto do modelo M3-A1

ANEXO D

RESULTADOS DAS LEITURAS EFETUDAS NO CONCRETO (x10⁻³) DURANTE OS ENSAIOS DAS VIGAS

CARGA (kN)	R1D	R1V	R1I	R2D	R2V	R2I	R3D	R3V	R3I	R4D	R4V	R4I	R5D	R5V	R5
0.0	0 000	0.000	0 000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2 5	0 010	0 010	0 000	0.010	0 030	0.010	0_020	0_010	0.020	0.000	0 000	-0 020	0 020	0_030	-0 020
49	0 030	0 000	0 040	0.000	0 060	0.010	-0.020	0_040	-0 010	0.010	0 030	-0.010	0 030	0.040	0.030
9.8	0 030	0 020	0 040	0 000	0 080	0.020	-0 030	0.030	0.050	0.020	0.050	0.040	0 040	0.040	0.060
14.7	0 050	0 030	0.050	-0.010	0.060	0.020	0.000	0.020	0.050	0.010	0.040	0.040	0.010	0_050	0.060
19.6	0.000	0.030	0.050	0 000	0 090	0 040	-0 020	0.040	0 050	0.000	0.060	0.040	0_010	0.050	0.060
24.5	0 030	0 020	0.060	-0.030	0 070	0.060	-0.080	0.030	0.080	0.000	0.060	0.040	0.030	0.050	0.070
29.4	0 000	0.020	0 080	-0 030	0 070	0 070	-0.070	0_030	0.060	-0 010	0 080	0.040	0.020	0_050	0 070
39.2	-0 020	0 020	0 080	-0.050	0 080	0 070	-0 060	0 020	0.100	-0 040	0.080	0.090	0 010	0.050	0.140
49:1	0.000	0.020	0_110	-0_040	0 090	0.110	-0.030	0.030	0.140	-0 010	0_100	0 120	0 010	0.060	0 170
54 0	-0 030	0 030	0.110	-0 050	0.100	0.130	-0.030	0.030	0_110	-0_040	0 130	0 150	0 010	0_060	0 220
58 9	-0 040	0.030	0 100	-0.070	0.120	0.150	-0 070	0.020	0.060	-0.110	0 600	0.810	-0.010	0_100	0.680

Tabela D.01 – Deformações no concreto da viga V1

CARGA (kN)	C1	C2	C3	C4	C5	C6	C7	C8	L1	L2	L3	L4	L5	L6	L.7	L8	C'1	C'2	C'3	C'4
0.0	0 000	0.000	0 000	0 000	0.000	0.000	0.000	0 000	0 000	0.000	0 000	0 000	0.000	0.000	0 000	0 000	0 000	0 000	0.000	0 000
2.5	0 050	0 070	-0 040	0 020	0.010	-0.010	0.010	0 0 10	0.080	0 070	0 0 30	0 000	0 020	0.010	0 000	0 010	0.010	-0 020	0 000	0 0 3 0
4.9	D 060	-0 070	-0 040	0 030	0.050	-0 030	-0 0.30	0 0 10	0 080	0 040	0 0 1 0	0 030	0 020	-0 020	-0 010	-0.030	-0.030	-0.030	0.020	0 050
9.8	0 070	0 080	-0.050	-0 040	-0.05.0	-0 040	0 020	0 0 10	0 170	0 130	0 080	0 050	0.000	-0.040	0 050	-0.100	-0 040	-0 050	-0.030	0 070
14.7	0 120	0 130	-0 080	-0 100	-0.060	-0 040	0.010	0 000	0 250	0 200	0 140	0 110	0 040	-0 070	0.80 0	-0 180	080 0	0 110	-0.080	0 1 3 0
19.6	0 150	0 190	0 090	-0 110	-0.080	-0 080	-0.020	-0.040	0 370	0 310	0 200	0 090	0 000	-0 110	0 140	-0 260	0 120	-0 130	-0 090	0.130
24.5	0 170	0 220	0 120	-0 150	-0 100	-0 090	0 0 30	0 050	0 490	0.420	0 280	0 160	0 000	-0 120	0 180	-0.330	-0 160	0 210	-0 130	0 210
29.4	0 220	0 260	-0 150	0 190	-0 130	-0 120	0.000	0.010	0.580	0 520	0 350	0 150	0 000	-0 160	0 220	-0.390	-0 180	0 220	-0 150	0 240
39.2	0 260	-0 370	0 220	0 230	-0.150	-0.140	0.030	0 040	0.840	0 770	0 570	0 270	0.030	-0 200	-0 280	-0 500	-0 230	0 340	-0 180	-0 290
49.1	0 370	-0.460	0 270	0 300	0 170	-0 180	0.040	0 050	1 100	0 990	0 730	0 370	0 0 2 0	-0.250	0 350	-0 640	-0 310	-0 420	-0.210	-0 370
54.0	-0 410	-0.490	-0 320	0 330	-0 200	-0 200	0.060	0 050	1 240	1 130	0 800	0 400	0.030	-0.280	-0.400	-0 690	-0.360	-0 450	-0 260	0 400
58 9	0.450	0.580	-0 340	-0 370	0 200	-0 230	0 070	0 080	1 370	1 250	0 9 1 0	0 440	0 020	-0 300	0 440	-0 760	-0.440	-0 520	0 300	0 4 4 0

Tabela D.01 (cont.) – Deformações no concreto da viga V1

CARGA (kN)	R1'D	RI'V	R1'I	R2'D	R2'V	R2'I	R3'D	R3'V	R3'I	R4'D	R4'V	R4'I	R5 D	R5'V	R51
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0 000	0.000	0.000	0.000	0.000
2 5	-0 010	-0.030	0 020	0 000	0.020	0 000	0.010	0.010	0_040	0 020	0.010	0.010	0.000	0.010	0.020
49	-0.050	-0.020	0 020	-0.030	0 020	0.020	0.030	0.010	0.050	0.010	0.020	0_060	0.010	0.030	0.030
98	-0.040	0 000	0.040	0 000	0.020	0 070	0.020	0 020	0.060	0 0 1 0	0.050	0.080	0.020	0.050	0.040
14.7	0.000	-0.010	0 080	-0.010	0.040	0.080	0.010	0.060	0_090	0 000	0.050	0.080	-0.020	0,020	0.020
19.6	-0.030	-0 010	0.050	-0.040	0.050	0 070	0.010	0.060	0.090	-0 020	0_050	0.090	-0.010	0_020	0.040
24.5	-0 050	-0 020	0 040	-0.070	0.040	0 070	0.020	0.060	0_100	-0.030	0.050	0.090	-0.020	0 050	0.060
29.4	-0 080	-0 020	0.040	-0.070	0.030	0 060	0.020	0 060	0.100	0.000	0.040	0.110	0.000	0.030	0.040
39.2	-0.060	-0 020	0.060	-0,050	0.050	1.110	0 020	0,060	0 130	-0 030	0_040	-0.020	-0.010	0.030	0.080
49 1	-0 090	-0 020	0.060	-0.020	0 150	1 160	0.010	0 060	0.110	-0.030	0.040	0.140	0_030	0_160	0.370
54.0	-0.090	-0 020	0.050	-0 070	0 260	1_330	0.010	0.080	0_190	-0.030	0.040	0.110	0.060	0 240	0.480
58 9	-0 080	-0 020	0.050	-0 090	0.610	1.740	0.000	-0.270	0 510	-0.020	0.040	0,150	0 070	0_320	0.640

CARGA (kN)	R1D	R1V	R1I	R2D	R2V	R2I	R3D	R3V	R3I	R4D	R4V	R4I	R5D	R5V	R5I
0.0	0 000	0 000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000
49	0.020	0.030	0.000	-0.010	0.020	0_050	-0_010	0.000	0.030	-0.010	0_000	0.020	0.010	-0.010	0 000
9.8	-0.010	0.010	0 020	-0.020	0 030	0.040	-0_020	0.020	0.030	-0 010	0.000	0.010	0.000	0.010	0.020
14.7	-0 020	0 000	0.040	-0.030	0.050	0.070	-0.020	0.020	0 040	-0 030	0.000	0.060	-0.030	-0.020	0 030
19.6	-0.020	0 030	0 070	-0 030	0.030	0_090	-0.060	0.000	0.040	-0 060	-0.010	0.070	-0 020	-0.010	0.050
24 5	-0.040	0.020	0.060	-0.050	0.060	0_110	-0_060	0.020	0.070	-0 060	0 0 1 0	0.100	-0_030	0.000	0.060
29.4	-0.070	0 010	0 040	-0.060	0.040	0_140	-0.080	0.000	0.090	-0 070	0.000	0.100	-0 060	0.000	0 070
39.2	-0.090	0 0 000	0 090	-0.080	0.040	0_140	-0.110	0.010	0.130	-0 090	0_010	0.150	-0_060	0_020	0.120
49 1	-0.110	0.000	0 110	-0_140	0.060	0_150	-0.150	-0.020	0 210	-0 130	0.010	0.180	-0,100	0.080	0_190
58.9	-0.150	-0 010	0.130	-0 170	0 060	0.160	-0.190	-0.050	0 380	-0,160	0.040	0,190	-0,190	0.520	0.820
63 8	-0_170	-0 010	0 140	-0.180	0.080	0.200	-0.200	-0.040	0_490	-0.160	0 090	0.220	-0.220	0.940	1.270
68.7	-0.180	0.040	0.050	-0.240	0.080	0.090	-0.380	5 560	5.710	1.920	5 430	5_200	-0.210	1.090	5_330
73.6	-0.210	0 060	0 050	-0 260	0.100	0 060	-0,400	9_340	8.780	4.260	9 200	8 2 4 0	-0.280	1.090	8.280
83.4	-0.220	0 070	0 020	-0.240	0.090	0.050	-0.410	14 800	13 000	10.070	14 660	12.310	-0 300	1.080	12.420

Tabela D.02 – Deformações no concreto da viga V2

CARGA (kN)	C1	C2	C3	C4	C5	C6	C7	C8	L1	L2	L3	L4	L5	L6	L7	L8	C'1	C'2	C'3
0.0	0.000	0.000	0 000	0.000	0 000	0.000	0.000	0.000	0 000	0 000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000
49	0 050	-0.040	-0 030	-0 030	-0 040	-0.050	0 020	0 030	0.020	0 010	0 000	-0.010	-0 020	0 0 3 0	-0 050	0.060	-0.010	-0.020	0.040
98	0 070	0 0 / 0	-0 050	-0.050	0 060	-0.050	0 010	-0.040	0 120	0 070	0 020	-0 020	-0.040	-0.060	-0 100	0 1 1 0	-0.080	0 070	-0 070
14.7	0 120	-0 100	-0 080	-0.090	-0 100	-0.090	0.000	-0 060	0 180	0 120	0.060	0 020	-0 050	-0 090	-0 130	-0.160	-0 110	-0 150	0 100
19.6	0 180	0 150	-0 110	0 1 1 0	0 120	-0 110	0.000	-0.060	0 280	0 200	0 090	0 020	-0 050	-0 130	0 170	-0 210	-0 180	0 180	-0 120
24.5	0 2 3 0	0 190	-0 150	0 150	0 140	-0 140	0.000	-0 060	0 400	0 280	0 160	0 040	-0.060	-0 160	0 230	0 270	0 210	-0.260	-0 180
29.4	0 290	0 240	-0 200	-0 200	0 170	-0 180	0 0 3 0	-0 090	0 540	0 350	0 210	0.060	-0 070	-0 190	-0 280	-0 270	-0 270	-0.320	-0 220
39.2	-0.400	0 340	-0.300	-0 280	0 210	-0.240	-0 030	-0 090	0 780	0 470	0 300	0 100	-0 100	0 270	-0 360	0 450	-0 380	0 4 4 0	-0 300
491	-0 520	-0 460	-0.380	0 370	0 270	-0.300	-0.010	0 100	1 030	0 580	0 380	0.120	-0 130	0.360	-0 460	-0.580	-0 510	0 580	-0.410
58.9	-0.670	-0 600	-0 450	-0 460	0 310	-0 360	0 110	-0 110	1 250	0.690	0 460	0 150	-0 150	-0 440	-0 580	-0 710	-0 620	=0 730	-0 520
63.8	-0 710	-0 650	-0 460	-0 490	-0 290	-0 380	0 240	-0.120	1 360	0 760	0 510	0 190	-0 160	-0 480	-0 620	-0.790	-0 680	0.810	0 560
68 7	0.550	-0 740	0 060	-0 520	0 650	-0.380	0 280	-0 130	1 410	0 790	0 620	0 190	-0 150	-0 480	-0 630	-0 790	-0 700	-0.820	0.580
73 0	-0.680	-0 810	0.080	-0 580	0 880	-0 420	0 270	0.150	1 610	0.900	0 610	0 220	-0 160	-0 530	-0 660	-0.890	-0.940	-1.160	-0 300
83.4	1 060	-1 040	-0.200	-0.680	0.830	-0 520	0 200	-0.210	1.840	1.020	0 690	0.230	-0 240	-0 660	-0.840	-1 060	-1.080	-1 490	-0 190

CARGA (kN)	R1'D	RIV	R1'I	R2'D	R2'V	R2'I	R3 D	R3'V	R3'I	R4'D	R4 [®] V	R4'I	R5'D	R5'V	R5'I
0.0	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0 000	0 000
49	0.000	-0.010	0.000	-0.030	-0.030	-0.030	0.000	-0.010	0.000	-0.010	0.010	-0.010	0.010	-0.010	-0.030
9.8	-0.020	-0.010	0.010	-0.020	-0.020	-0.020	0.010	0.000	0.010	-0.030	0.010	-0.010	0_060	-0_020	0.010
14.7	-0 020	-0.020	-0 010	-0.020	-0 020	-0.030	-0.010	-0.010	0.030	-0.010	0.010	0.010	0.020	-0.020	0_140
19.6	-0.030	-0.010	0.010	-0,020	-0.020	-0.020	0.000	0.010	0.050	-0.010	0.020	0_020	0.020	-0.020	0.110
24.5	-0.030	0 000	0.030	-0,010	-0.010	-0,010	-0_020	0.000	0.060	-0.020	0.010	0_040	-0.010	-0.010	0.120
29.4	-0_050	-0.010	0 030	-0.030	-0.010	0.010	0.000	0.000	0.040	-0.030	0.030	0.040	0 000	-0.020	0 120
39 2	-0 070	-0.010	0.040	-0.030	0.000	0.020	0.000	0_020	0 070	-0.050	0.040	0.060	0,120	0_000	0_180
49.1	-0.050	0 000	0.060	-0.060	0.020	0.060	-0.030	0.020	0.090	-0.060	0 070	0.120	0,160	0.010	0.280
58 9	-0 080	-0.010	0 070	-0.050	0.030	0.070	-0.040	0.020	0.100	-0.080	0.120	0.190	0,150	-0.020	0_490
63 8	-0.080	0.010	0_070	-0.060	0_160	0.150	-0.050	0_050	0_120	-0,110	0_190	0 270	0.140	-0.010	0.610
68 7	-0 080	0.010	0.040	-0:120	0.800	0.870	-0.070	0_470	0.620	-0.130	0.260	0.470	0.150	0.050	0_790
73 6	-0 120	0 040	0 030	-0 150	8.860	7 690	3 000	8.850	7.500	-0.230	0 360	5.750	0.170	0,000	0 740
83.4	-0_160	0.030	0.030	-0_180	13 060	11.000	5 230	13_100	10.780	-0.310	0.560	8.810	0.120	0.000	0 740

Tabela D.02 (cont.) – Deformações no concreto da viga V2

CARGA (kN)	R1D	R1V	R1I	R2D	R2V	R2I	R3D	R3V	R3I	R4D	R4V	R4I	R5D	R5V	R5I
0.0	0.000	0 000	0.000	0.000	0 000	0 000	0 000	0 000	0.000	0.000	0.000	0 000	0.000	0 000	0.000
49	-0.020	0.010	-0.020	0.010	0.000	0 010	-0 010	0.000	0.010	-0 020	-0.010	0 020	0.010	-0.020	0 030
147	-0 010	0 020	0.000	0.000	0.010	0.050	-0.010	0.020	0.020	-0.020	0.010	0.040	0_020	0.000	0 050
19.6	0.020	0.020	0_020	0.000	0.030	0 060	-0_020	0 030	0.030	-0.020	0.010	0.050	0.010	0.010	0.030
29.4	-0 040	0.030	0.010	-0_030	0.030	0 070	-0.040	0.000	0_080	-0_050	0.010	0.080	0.000	0.020	0_100
39.2	-0.040	0.050	0.050	-0.040	0.050	0.090	-0.040	0.000	0.210	-0.050	0_020	0_130	0.000	0 040	0_140
49 1	-0.060	0.020	0.060	-0.100	0.210	0 310	-0.080	0.055	0.560	-0,090	0 130	0.360	-0_040	0.090	0_280
58.9	-0 120	0.020	0.000	-0 150	1.100	1,360	-0.170	0 780	1.540	-0.100	0.350	0_600	-0 070	0.220	0 370
73.6	-0 130	0.040	0.010	-0 200	1.880	2 220	-0.200	1,500	2.270	-0 100	0.410	0 590	-0.090	0 290	0.400
88 3	-0_190	0.010	-0.030	-0.280	2.690	2 990	-0 280	2 230	2.910	-0 150	0,440	0 620	-0_170	0 420	0.540
103.0	-0.210	0.030	-0.050	-0_300	3 200	3 360	-0 290	2 590	3 120	-0.170	0_470	0.580	-0.300	1.520	1_620
117.7	-0 230	0.030	-0 070	-0.360	3.650	3,700	-0.310	2 930	3 360	-0 190	0.500	0 540	-0 370	2 2 3 0	2_390
127 5	-0.260	0.030	-0.070	-0 380	4.110	4 060	-0_310	3 320	3.650	-0.240	0.540	0_570	-0.430	2.670	2.900
137 3	-0.280	0_020	-0.040	-0 410	4,490	4 370	-0_320	3 670	3.890	-0.270	0 570	0_560	-0.480	3 090	3 330
147 2	-0 280	0.060	-0.060	-0.410	4.920	4 670	-0_340	4.050	4 200	-0.290	0.580	0_560	-0.510	3 460	3 760
157_0	-0 320	0 070	-0.080	-0 470	5.470	5.040	-0.330	4 530	4 550	-0.340	0_550	0_540	-0.590	3 940	4 320
166 8	-0 350	0.060	0.050	-0 520	5.950	5 310	-0.300	5.010	4.860	-0.360	0.540	0.510	-0.680	4,480	4 950
176 6	-0 380	0.040	-0.100	-0.560	6.390	5 490	-0.270	5.390	5.000	-0_440	1 220	1.030	-0 760	5 130	5 690

Tabela D.03 – Deformações no concreto da viga V3

CARGA (kN)	C1	C2	C3	C4	C5	C6	C7	C8	L1	L2	L3	L4	L5	L6	L7	L8	C'1	C'2	C'3
ΰü	000.0	0.000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0 000	0.000	0 000	0.000	0 000	0 000	0.000	0.000	0.000
49	0.040	-0 040	-0 060	0 040	0 040	0.000	0 000	0 000	0 040	0 050	0 030	-0.020	-0.010	0 010	-0 040	0.060	0 030	0 070	0 020
14.7	-0 190	-0 160	-0.210	-0 120	-0 100	-0.050	-0 050	0 050	0 140	0 120	0 070	0 010	-0 040	-0.080	-0 140	-0 160	0.010	-0 170	0.080
196	-0.210	-0 210	-0 240	-0 150	-0 120	-0.060	-0.020	0 040	0 220	0 180	0.080	0.010	-0 100	-0 110	-0 160	0 200	-0.030	-0 210	0 110
29.4	-0 320	-0.300	-0 380	-0 230	0 170	-0 110	-0.030	-0 040	0.380	0 360	0 210	0.060	-0.080	-0 160	-0 240	0 300	-0 120	-0.310	0 160
39.2	-0.490	-0.420	-0 470	-0 330	0 250	-0 190	-0 030	-0 060	0 510	0 510	0 310	0.060	-0 110	·0 250	-0 340	-0 430	-0 200	-0 420	-0 250
49 1	=0.570	-0 530	-0.620	0.430	0 290	-0.260	-0 020	0 050	0 690	0 700	0 460	0 130	-0 140	-0 310	-0 450	0 540	-0.320	0 560	0 310
58.9	=0 710	-0 700	=0 730	0 550	0 370	0 320	0 030	0.060	0.800	0 840	0 550	0 160	-0 190	-0 420	-0 560	0 690	-0.430	-0 710	0 400
736	-0.910	-0 900	-0 850	·0 720	-0 450	-0.440	-0 070	-0 040	0 990	1 040	0 680	0 180	-0 260	-0 580	-0 750	-0 890	-0 670	0.940	0 550
88 3	-1.150	-1 210	-0 960	-0 940	-0 550	-0.600	0 150	0.010	1 230	1 270	0 780	0 210	-0 320	-0 740	-0 940	1 130	-0 920	-1 170	-0 690
103.0	-1 390	1 280	1 240	1 210	-0 660	_0.740	0 180	0 180	1 500	1 560	0 910	0 240	-0 380	0 870	-1 150	-1 340	-1 120	-1 520	-0 820
117.7	=1 620	-1 890	1 380	1 450	0 770	0.880	0.200	0.260	1 830	1 860	1 060	0 280	-0 450	-1 050	-1 360	-1 560	-1 330	-1 830	-1 010
127 5	1 800	-2 210	-1 530	-1 690	-0 870	-1.030	-0 200	0 290	2 030	2 070	1 130	0 280	-0 560	-1 190	-1 560	1 740	-1 520	-2 100	=1 110
137.3	-1 980	-2 460	-1 670	-1 890	-0 970	-1 180	-0 210	0 270	2 240	2 250	1 210	0 300	-0 610	-1.350	-1 750	-1 930	-1 700	2 340	-1.250
147.2	-2 150	-2 740	1 810	-2 090	1 060	-1 320	0 210	0 260	2 420	2 440	1 280	0 290	-0 680	1 480	-1 920	-2 150	-1.850	-2.620	-1 390
157 0	-2 390	-3 100	-1 920	-2 350	1 190	-1 500	-0 190	0 230	2 660	2 640	1 350	0 270	-0 790	-1 680	-2 170	-2 340	-2 060	2 940	1 540
166.8	-2 690	-3 520	-2 290	2 650	-1 380	-1 720	0 180	0 180	2 860	2 850	1 410	0.260	-0 900	-1.900	-2 410	-2 570	-2 260	3 260	1 710
176.6	-3 000 £-	4 000	-2 460	-3 010	-1 500	-1.930	0 160	0 110	3 130	5 100	1 490	0.230	-1 040	-2 140	-2 740	-2 790	2 460	-3.630	1 850

Tabela D.03 (c	cont.) – Def	ormações no	concreto da	viga V3
----------------	--------------	-------------	-------------	---------

CARGA (kN)	R1'D	RI'V	R1'I	R2'D	R2'V	R2'I	R3'D	R3'V	R3'I	R4'D	R4'V	R4'I	R5'D	R5 V	R5'I
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4.9	-0 020	0.000	0.000	-0.030	0.010	-0_010	-0.010	0.000	0.060	-0 020	0.000	0.010	-0.040	0.020	0.020
14.7	-0 030	0.010	0.030	-0_040	0.000	0.020	-0.030	0.000	0.080	-0.010	0.020	0_040	-0.050	0,030	0.040
19.6	-0.040	0_020	0,060	-0,050	0.030	0.040	-0.060	0.010	0,100	-0_040	0.020	0.050	-0.070	0,040	0_060
29.4	-0 040	0.020	0.080	-0 070	0 020	0.060	-0.060	0.010	0.150	-0.040	0.030	0.090	-0,070	0 020	0.080
39 2	-0.060	0.010	0.070	-0.070	0.040	0.090	-0_080	0.010	0,190	-0.070	0.020	0.120	-0.110	0.040	0.120
49_1	-0.100	-0.010	0.060	-0.100	0_170	0.200	-0.110	0.030	0.220	-0.070	-0.020	0 230	-0.110	0 020	0.200
58.9	-0.120	-0.020	0_050	-0_140	0.500	0.540	-0_140	0.180	0.370	-0_130	0.080	0.530	-0.140	0_110	0,400
73.6	-0 190	0.000	0.040	-0.230	1.530	1.680	-0.080	1.030	1.270	-0.130	1.150	1.910	-0.240	0_770	1.150
88 3	-0 270	0.000	0.030	-0,310	2 600	2.890	0.200	2.080	2.390	-0_190	2.260	3.240	-0_330	1_260	1_530
103.0	-0.290	-0_020	0,060	-0.360	3.170	3.570	0.320	2 670	2.960	-0.220	2.920	4_050	-0_350	1_610	1.880
117.7	-0.320	0.000	0_060	-0.420	3.690	4.060	0.430	3,130	3.390	-0.250	3.510	4 750	-0.430	2.020	2.270
127.5	-0 350	0.000	0_040	-0 460	4_090	4 520	0.520	3,490	3.730	-0 260	3,950	5 280	-0_450	2 290	2.520
137.3	-0_390	0.000	0.060	-0.480	4,420	4,840	0.620	3.810	4 020	-0.300	4_300	5.710	-0_440	2_490	2 670
147.2	-0.430	0.000	-0.050	-0.510	4.750	5_140	0.720	4.070	4 220	-0.330	4.550	5.960	-0.460	2.620	2,690
157.0	-0_470	0.000	0.070	-0.570	5.100	5.370	0.820	4.380	4.440	-0_350	4.830	6.240	-0 440	2.730	2.700
166.8	-0.510	-0_020	0_050	-0.620	5_470	5.700	0_960	4.730	4.730	-0.400	5.200	6.600	-0,420	2_890	2.790
176.6	-0.530	0.000	0.080	-0.660	5.770	6.010	1.080	5.100	5.010	-0_420	5.490	7,010	-0.450	3.090	2.940

Tabela D.03 (cont.) – Deformações no concreto da viga V3

CARGA (kN)	R1D	R1V	R1Ī	R2D	R2V	R2I	R3D	R3V	R3I	R4D	R4V	R4I	R5D	R5V	R51
0.0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
49	-0 020	0.020	0.010	-0 040	0.010	0.010	0.000	0.010	0.000	-0.030	0.000	0.010	0.000	0.000	-0.030
14.7	-0 040	0.040	0.020	-0.050	0.030	0.030	-0.020	0.010	0.040	-0.050	0_020	0.040	-0.030	0.000	-0.020
19.6	-0.050	0.020	0.040	-0 030	0.050	0.040	-0.030	0.030	0.050	-0.050	0,020	0.030	-0.050	-0.010	-0_020
29.4	-0.070	0.030	0,050	-0.050	0.030	0 070	-0.050	0.050	0,100	-0.050	0.040	0.060	-0.070	0.010	0.050
39.2	-0.110	0.040	0.060	-0.090	0.030	0.080	-0 070	0.090	0,180	-0,110	0.040	0.090	-0.110	0.040	0,110
49.1	-0 130	0.040	0.090	-0.110	0.050	0,110	-0.100	0.160	0 340	-0,130	0.090	0,180	-0,170	0.170	0.240
58.9	-0_160	0.030	0,080	-0.190	0.080	0.090	-0.240	0.960	1,240	-0.170	0.640	0 860	-0.220	0.310	0,360
73.6	-0 200	0.030	0.080	-0 290	0.180	0.110	-0.300	1.790	2 150	-0.250	1,310	1,620	-0.240	0.370	0.420
88.3	-0 230	0.030	0.120	-0.330	0 210	0.130	-0.390	2.540	2.900	-0.360	1.990	2.290	-0 370	0.380	0.560
103 0	-0 290	0 030	0.130	-0.390	0.250	0.170	-0.440	3.210	3 520	-0.380	2.610	2.820	-0.460	0.560	0.860
117.7	-0.330	0.020	0 150	-0 450	0.280	0.250	-0.510	3,740	3.950	-0.430	2.950	3_140	-0.540	1,190	1.500
132.4	-0.360	0.030	0.200	-0510	0.330	0 320	-0 570	4 250	4 360	-0.470	3_290	3.400	-0 680	1.870	2 230
147.2	-0.410	0.050	0.240	-0.570	0.420	0_420	-0 650	4 950	4 970	-0.510	3.830	3 850	-0.780	2.480	2.870
166 8	-0.460	0 060	0.300	-0.650	0.600	0.680	-0.740	6.060	6.020	-0.520	4_810	4.650	-0.930	3.200	3.620
186_4	-0.520	0.100	0.590	-0 550	1.620	1.810	-0 730	7.860	7.950	-0.450	6 430	5.780	-1.120	4_130	4 530

Tabela D.04 – Deformações no concreto da viga V4

CARGA (KN)	C1	C2	C3	C4	C5	C6	C7	C8	L1	L2	L3	L4	L5	L6	L7	LB	C'1	C'2	C'3
0.0	000 0	0.000	0.000	0 000	0.000	0.000	0 000	0 000	0.000	0 000	0 000	0.000	0 000	0 000	0.000	0.000	0.000	0.000	0 000
49	0 000	0.060	0 010	-0 020	-0.050	-0.040	-0 030	-0.020	0.030	0.030	0.030	-0.020	-0 020	0 020	0.060	0.030	-0 040	0.050	-0 050
147	=0.040	-0.180	0 120	-0 170	0.080	0 1 2 0	0.060	-0.080	0 170	0.130	0.070	-0.030	-0 060	-0 120	-0 160	-0 140	-0 140	-0 150	-0 110
19.6	=0 100	-0 210	0 140	-0 210	-0 110	-0 150	-0 050	0.080	0 250	0.180	0 120	-0 010	-0 080	-0 150	0 210	-0 190	-0 180	-0 210	-0 050
29.4	-0 230	0 340	-0 220	0 300	0 180	0 220	-0 080	0 1 1 0	0 430	0.330	0 200	0.000	-0 110	0 230	-0.310	-0 320	-0 280	-0.330	0 170
39.2	0 330	0 490	0 320	-0.410	-0 250	0.310	-0.080	0 140	0 640	0.500	0 280	0 020	-0 170	0 350	-0 460	-0 470	-0 410	-0 490	-0 320
491	0 420	0 590	-0 370	0 480	-0 280	-0 380	-0 070	-0 140	0.800	0.630	0 340	0 030	-0 200	-0 440	-0 600	-0 560	-0 500	-0.610	-0 420
58 9	0 600	-0 740	-0.480	-0 600	-0.330	-0 460	-0 030	-0 160	0.950	0.780	0.410	0 060	-0 240	-0 530	-0 650	-0 700	-0.610	-0.740	-0 520
736	0.810	-0 970	0 640	-0 790	-0 400	-0 590	-0 050	-0.180	1 190	0.970	0 510	0.080	-0 320	-0 710	0 850	0.880	-0 820	-0.990	0 650
88 3	-1 050	-1 260	0 780	-0.990	-0 460	-0 760	-0 160	-0 200	1 400	1 160	0 600	0.080	-0 420	-0 900	-1.070	-1 140	-1 060	-1 300	-0 850
103.0	-1 300	-1 610	-0.990	-1 250	0 560	-0.940	-0 270	-0 250	1 610	1 360	0.670	0 070	-0 520	-1.080	1 290	-1.390	-1 280	1 620	-0 980
1177	1 550	-1 950	=1 170	-1 490	-0 650	-1 100	-0 310	-0 200	1.830	1 550	0 750	0 100	0 600	-1 240	-1 490	1 640	-1 440	-1 920	-1 110
132 4	1 830	-2 350	1 380	-1 760	-0 810	-1 280	-0 310	-0 200	2 070	1 760	0 840	0 100	0 690	-1 450	-1 710	-1 890	-1 660	-2 260	-1 280
147.2	2 150	-2 760	-1 620	-2 060	-0 970	-1 560	-0 360	-0 210	2 310	1 990	0 960	0.100	-0 770	-1 670	1 970	-2 200	-1 910	-2 640	-1 470
166.8	2 700	·3 390	2 000	2 600	-1 230	-1 910	-0 460	-0.300	2 680	2 320	1 090	0 100	-0 960	2 010	-2 340	-2 670	-2 340	-3 190	-1 810
186 4	3 420	-4 110	-2 490	-3 240	1 520	-2 350	-0 570	-0 480	3 040	2 630	1 190	0.040	1 160	2 410	·2 820	-3 250	-2 900	-3 810	-2 230

Tabela D.04 (cont.) – Deformações no concreto da viga V4

CARGA (kN)	R1'D	RI'V	R1'I	R2'D	R2'V	R2'I	R3'D	R3'V	R3'I	R4'D	R4'V	R4'I	R5'D	R5'V	R5'l
0.0	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0 000	0.000
4.9	0.000	-0.030	-0.030	-0.020	0.010	0.020	-0,030	-0.010	0.050	-0 010	0.020	-0_010	0.000	-0.010	0.000
14.7	0.000	-0_040	0.000	-0_020	0.020	0.020	0.000	0.010	0.070	-0.030	0.010	0.000	-0.010	-0.010	0.020
19.6	0.000	-0 030	-0.010	-0.020	0.010	0.020	-0.020	0_010	0_070	-0 030	0 010	-0.010	0.010	0.000	0.010
29.4	-0.060	-0.020	0_020	-0.060	0.000	0.040	-0.020	0.000	0.090	-0.050	0.010	0.040	-0 020	0.010	0.040
39.2	-0.090	-0_040	0.040	-0_070	0.010	0.060	-0.040	0.030	0_120	-0.080	0 030	0.010	-0.050	0.020	0.090
49.1	-0.080	-0.020	0_040	-0.080	0.040	0.100	-0.040	0_030	0_160	-0.080	0.060	0.080	-0.040	0.060	0_170
58.9	-0_120	-0.050	0.020	-0.020	0 200	0.320	-0_100	0_040	0.260	-0.140	0.110	0.280	-0.110	0.110	0_320
73,6	-0,150	-0_040	0.030	-0_190	0.560	0.770	-0.100	0.280	0.540	-0.190	0.330	0 740	-0.120	0.270	0_690
88.3	-0 210	0_020	0_040	-0.250	0.970	1.260	-0.150	0_680	0_920	-0.260	0.800	1_400	-0.240	0.730	1.330
103 0	-0 240	-0_070	0 040	-0_340	1.270	2.010	-0.010	1,390	1_560	-0.280	1.100	2,400	-0.320	1 380	1 920
117.7	-0 310	-0.090	0.030	-0_380	1.420	2.550	0.090	1.810	2.000	-0.350	1,330	3.100	-0.350	1.730	2 210
132.4	-0_330	-0.090	0_050	-0_440	1,740	3 180	0.190	2,390	2.520	-0_410	1,590	3_720	-0.390	1.960	2.370
147.2	-0 380	-0.080	0.080	-0.530	2,130	3.750	0.270	2,960	3.040	-0_490	2.020	4.330	-0.450	2_330	2.710
166.8	-0 450	-0.110	0.090	-0.610	2 740	4.610	0.380	3 830	3.770	-0 560	2.620	5.170	-0.520	2.840	3.210
186.4	-0 530	-0,140	0.100	-0.720	2.960	5_380	0.420	4 650	4_450	-0.700	3 520	6_280	-0.610	3 580	3.920

Tabela D.04 (cont.) – Deformações no concreto da viga V4

CARGA (kN)	R1'D	RI'V	R1'I	R2'D	R2'V	R2'I	R3'D	R3'V	R3'I	R4'D	R4'V	R4'I	R5'D	R5'V	R5'I
0.0	0.000	0.000	0.000	0.000	0.000	0 000	0.000	0.000	0.000	0.000	0,000	0.000	0.000	0.000	0.000
2 5	0.000	0.020	-0.020	0.010	-0.010	-0.020	0.010	-0.010	-0.020	0.000	-0_020	0.010	0,000	0.010	-0.030
49	0.000	-0.010	-0.030	0.000	-0.010	-0.030	0.000	-0.010	-0.020	0.000	-0.030	0.000	-0,040	0.010	-0,020
98	0.000	-0.020	-0.010	0.000	-0.020	-0.020	-0.020	-0.010	-0.020	-0.010	0.000	0_010	-0.010	0.010	-0.010
14.7	-0.010	-0.010	-0.010	-0 020	0.020	0 000	0.020	-0.020	-0.030	-0.020	-0.030	0 000	0.000	0.000	-0.010
19.6	-0.010	-0.020	0.000	-0.020	0.020	-0.010	-0.020	0.000	0.000	-0.040	-0 020	0.010	-0.010	0.010	0.000
24.5	-0.010	-0.010	0.010	-0.010	0.010	-0.010	-0 060	0.000	0.000	-0.020	-0.030	0.030	-0.010	0.010	0.010
29.4	-0.010	0.010	0.020	-0.040	0.000	0 020	-0.020	0.010	-0.010	-0.010	-0.020	0.030	-0 020	0.000	0.000
34_3	-0.020	0.030	0.030	-0.030	0.020	0 020	-0 050	0.000	0.000	-0.030	0.000	0.030	-0.040	0.010	0.010
39.2	-0.020	0.030	0.050	-0.020	0_030	0 020	-0.030	0.010	-0.010	-0.030	0.000	0.050	-0.040	0.010	0.020
44_1	-0,020	0.000	0.070	-0.040	0.010	0.040	-0.030	0.000	-0.010	-0,030	-0.010	0.070	-0.050	0.010	0.020
49_1	-0.050	0.030	0.050	-0.070	0.020	0 080	-0.060	0.000	0.010	-0.040	-0.020	0 080	-0.060	0.010	0.020
54 0	-0.040	0.030	0.050	-0.060	0.010	0,190	-0.100	0.050	0,090	-0,050	-0.020	0.070	-0.090	-0 010	0.000
58.9	-0.050	0.020	0 050	-0.080	-0.010	0 290	-0_190	0.130	0,200	-0,090	0.000	0.100	-0.110	-0.030	-0.040
68 7	-0.090	0 020	0_030	-0.110	-0.010	0 590	-0.270	0.500	0.580	-0.110	0 060	0_270	-0,130	-0.010	-0.020

Tabela D.05 – Deformações no concreto da viga V5

CARGA (kN)	C1	C2	C3	C4	C5	C6	C7	CB	L1	L2	L3	L4	L5	L6	L7	L8	C'1	C'2	C'3
0.0	0.000	0.000	0.000	000 0	0 000	0 000	0.000	0.000	0.000	0 000	0 000	0.000	0 000	0 000	0.000	0.000	0.000	0.000	0 000
2.5	0 120	0 160	-0 070	0 000	0 070	0 010	-0.030	0 070	0.010	0 030	0 000	0.000	-0 010	0.010	0.010	-0.020	-0.020	0 030	-0 020
49	-0.210	-0 180	-0 140	0.010	-0 080	0 010	-0 040	0.090	0.060	0.050	0.020	0.000	-0 020	-0.010	0.020	-0 040	-0 040	-0 070	0 0 3 0
98	0 510	-0 210	-0 400	-0 040	-0 340	-0.010	-0 120	-0 120	0 100	0.090	0.040	-0.010	-0 030	-0 030	-0 070	-0 130	-0.060	+0 150	-0 050
14.7	-0 720	0 230	-0 590	-0 070	0 500	0 050	-0 190	-0 140	0 150	0 120	0 060	0.010	-0.060	-0 130	-0 140	-0.200	-0.100	-0 190	-0 090
19.6	-1 040	-0.250	-0 820	-0 100	-0 670	-0 100	-0 240	-0 170	0 210	0 150	0 070	0 020	-0 090	-0 140	-0 200	0.300	-0 170	-0 250	-0 130
24 5	-1 310	-0 300	-0 990	-0 130	-0 850	-0 130	-0 270	-0 200	0 280	0.200	0.090	0 010	-0 110	-0 170	-0 280	-0 400	-0 220	-0.360	-0 190
29.4	-1 590	0 330	1 240	-0 170	-1 010	-0 160	-0 300	0 220	0 360	0 250	0 120	0 040	-0 120	-0 200	-0.320	-0 460	-0.240	-0 440	-0 220
34 3	-1 860	0 360	-1 440	·0 220	=1 130	0 200	-0 300	-0.250	0 410	0 290	0 140	0.020	-0 160	-0.250	-0 380	-0 530	-0.300	-0.510	-0 250
39.2	-2 200	-0 400	-1 750	-0.250	-1 340	-0 260	-0 350	-0 280	0 490	0 340	0 180	0.030	-0 160	-0 280	-0 4 4 0	-0 630	-0.370	-0 550	-0 380
44 1	2 960	-0 480	1 810	-0.320	1 710	-0 310	-0 260	0 260	0 550	0 400	0 200	0.030	-0 190	-0 330	-0 490	0710	-0 420	-0 570	-0 350
49 1	-3 350	-0 530	-2 630	-0 370	-1 900	-0 370	-0 270	-0 310	0.610	0.450	0 220	0.020	-0 220	-0.400	-0 590	-0 790	-0 480	-0 720	-0 390
54.0	-3 860	-0 600	-3 000	-0 430	2 150	-0.400	-0 190	-0.310	0 670	0.480	0 260	0 040	-0 260	-0 430	-0.630	0.860	-0.530	-0 690	-0 430
58.9	4 350	-0.680	-3.360	0 490	-2 370	-0 460	-0 110	-0 320	0 750	0.590	0 340	0.090	-0.260	-0 470	-0 670	-0.930	-0.600	-0 870	-0 480
68 7	4 990	-0 810	-3 850	-0.620	-2 700	-0 590	-0.010	-0.390	0.890	0 670	0.360	0.060	-0.310	-0.540	-0 800	-1 120	-0 700	-1 020	-0 570

CARGA (kN)	R1D	RIV	R1I	R2D	R2V	R2I	R3D	R3V	R3I	R4D	R4V	R4I	R5D	R5V	R5I
0_0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2.5	0 010	-0 020	0.000	0.010	-0.010	-0.020	0.000	0.030	0 020	-0.030	-0.010	0.010	0.010	0.010	0.030
4.9	-0 010	-0 030	0.020	0.010	0.000	0_020	-0.010	0.030	0.020	-0.020	0.000	0.030	-0.010	0.020	0.060
9.8	-0.030	-0.010	0.020	0.010	0 000	0.040	-0 020	0.020	0.030	-0.010	-0_010	0 070	-0.010	0.010	0.060
14.7	-0.010	-0 020	0.040	-0_020	0.000	0_040	-0.030	0_020	0.030	-0.040	0_040	0.070	-0.020	0.020	0 050
19.6	-0.030	-0.020	0 030	-0.020	0.010	0.070	-0.010	0 020	0.030	-0.050	0.010	0.070	-0_070	0_010	0.110
24 5	-0.040	0 000	0.050	-0,030	0.010	0_050	-0.030	0.030	0.060	-0_040	0_020	0.090	-0_080	0.000	0.230
29.4	-0.030	0.010	0.050	-0.030	0.040	0.060	-0.050	0.030	0.060	-0_040	0.040	0.080	-0_110	-0.010	0 330
34_3	-0.040	-0.010	0.060	-0_050	0.060	0.080	-0_040	0.040	0.050	-0.060	0 060	0.070	-0.130	-0_040	0 440
39.2	-0 080	0.010	0.060	-0.050	0.060	0 070	-0.060	0.040	0.040	-0.080	0 470	0.430	-0.070	0.100	0.600
44 1	-0 080	0 020	0.070	-0.110	0.080	0.050	-0.100	0.050	-0_020	-0,130	1 890	1.840	0.070	1_040	1.580
49.1	-0 090	0 000	0.040	-0_130	0.080	0 040	-0,130	0.070	-0_030	-0,180	2_580	2 510	0_180	1.530	2.050
54.0	-0.140	0.000	0.020	-0.200	0 060	0.000	-0.240	0.070	-0.040	-0.190	3.870	3 620	0_480	2.400	2.920
58 9	-0 170	-0,010	0_030	-0 200	0.060	0.010	-0.200	0_070	-0.020	-0.220	4 870	4 600	0.750	3.090	3 670
68 7	-0.220	-0.030	0.000	-0.290	0_050	-0.010	-0.260	0.070	-0.030	-0.280	6.940	6.380	1_460	4.730	5.050

Tabela D.05 (cont.) – Deformações no concreto da viga V5

ANEXO E

RESULTADOS DAS LEITURAS EFETUDAS NO DEFLECTÔMETRO DURANTE **OS ENSAIOS DAS VIGAS**

Tabela E.01 – Deslocamentos verticais

da viga V1

Tabela E.02 – Deslocamentos verticais

da viga V2

CARGA (kN)	Flecha (mm)
0.0	0.000
2.5	0.090
4.9	0.190
9.8	0.480
14.7	0.710
19.6	0.980
24.5	1.210
29.4	1.490
34,3	1.780
39.2	2.000
44.1	2.300
49.1	2.560
54.0	2.870
58.9	3.190
63.8	3.720

CARGA (kN)	Flecha (mm)
0.0	0.000
4.9	0.290
9.8	0.560
14.7	0.790
19.6	0.990
24.5	1.220
29.4	1.450
34.3	1.660
39.2	1,900
44.1	2.130
49.1	2.360
54.0	2.590
58.9	2.850
63.8	3.110
68.7	3.520
73.6	4.470
78.5	4.920
83.4	5.420
88.3	5.800

Tabela E.03 – Deslocamentos verticais

Flecha (mm) CARGA (kN) 0.000 0.0 0.310 4.9 1.020 14.7 19.6 1.280 29.4 1.770 39.2 2.230 2.720 49.1 58.9 3.260 4.040 73.6 4,900 88.3 5.740 103.0 6.580 117.7 7.280 127.5 7.890 137.3 147.2 8.500 157.0 9.240 166.8 10.010

da viga V3

Tabela E.04 – Deslocamentos verticais

da viga V4

CARGA (kN)	Flecha (mm)
0.0	0.000
4.9	0.250
9.8	0.480
14.7	0.690
19.6	0.890
29.4	1.320
39.2	1.770
49.1	2.180
58.9	2.690
73.6	3.390
88.3	4.150
103.0	4.940
117.7	5.760
132.4	6.630
147.2	7.540
157.0	8.200
166.8	8.830
176.6	9.570
186.4	10.330

Tabela E.05 – Deslocamentos verticais

da viga V5

CARGA (kN)	Flecha (mm)
0.0	0.000
2.5	0.140
4.9	0.250
9.8	0.490
14.7	0.690
19.6	0.940
24.5	1.190
29.4	1.430
34.3	1.670
39.2	1.940
44 1	2.290
49.1	2.580
54.0	2.930
58.9	3.290
63.8	3.590
68.7	3.910
736	4 550