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An Engel sink of an element g of a group G is a set E (g) such that for every x ∈ G
all sufficiently long commutators [...[[x,g], g], . . . , g] belong to E (g). (Thus, g is an Engel
element precisely when we can choose E (g) = {1}.) It is proved that if every element
of a compact (Hausdorff) group G has a countable (or finite) Engel sink, then G has
a finite normal subgroup N such that G/N is locally nilpotent. This settles a question
suggested by J. S. Wilson.
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1. Introduction

A group G is called an Engel group if for every x, g ∈ G the equation [x, ng] = 1

holds for some n = n(x, g) depending on x and g. Henceforth, we use the left-normed

simple commutator notation [a1, a2, a3, . . . , ar] := [...[[a1, a2], a3], . . . , ar] and the

abbreviation [a, kb] := [a, b, b, . . . , b], where b is repeated k times. A group is said to
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be locally nilpotent if every finite subset generates a nilpotent subgroup. Clearly,

any locally nilpotent group is an Engel group. Wilson and Zelmanov [25] proved

the converse for profinite groups: any Engel profinite group is locally nilpotent.

Later, Medvedev [14] extended this result to Engel compact groups. (Henceforth

by compact groups we mean compact Hausdorff groups.)

Generalizations of Engel groups can be defined in terms of Engel sinks.

Definition. An Engel sink of an element g of a group G is a set E (g) such that for

every x ∈ G all sufficiently long commutators [x, g, g, . . . , g] belong to E (g), that is,

for every x ∈ G there is a positive integer n(x, g) such that [x, ng] ∈ E (g) for all

n ≥ n(x, g).

(Thus, g is an Engel element precisely when we can choose E (g) = {1}, and G is

an Engel group when we can choose E (g) = {1} for all g ∈ G.)

Earlier, we considered in [12] compact groups G in which every element has a

finite Engel sink and proved the following theorem.

Theorem 1.1 ([12, Theorem 1.1]). If every element of a compact group G has

a finite Engel sink, then G has a finite normal subgroup N such that G/N is locally

nilpotent.

In addition, a similar result of quantitative nature was also proved for finite

groups.

In discussions with John Wilson a question was raised whether the condition on

Engel sinks can be weakened to being countable. (By “countable” we mean “finite

or denumerable”.) In this paper, we answer this question in the affirmative.

Theorem 1.2. Suppose that G is a compact group in which every element has a

countable Engel sink. Then G has a finite normal subgroup N such that G/N is

locally nilpotent.

Thus, if all elements of a compact group have at most countable Engel sinks,

then in fact all Engel sinks can be chosen to be finite (and contained in the same

finite normal subgroup). In Theorem 1.2, it also follows that there is a locally

nilpotent subgroup of finite index — just consider CG(N).

The proof uses the aforementioned Wilson–Zelmanov theorem for profinite

groups. First the case of pro-p groups is considered, where Lie ring methods are

applied including Zelmanov’s theorem on Lie algebras satisfying a polynomial iden-

tity and generated by elements all of whose products are ad-nilpotent [26–28]. As

we noted in [12], it is easy to see that if every element of a pro-p group has a

finite Engel sink, then the group is locally nilpotent. But in this paper, with count-

able Engel sinks, the case of pro-p groups requires substantial efforts. Then the

case of prosoluble groups is settled by using properties of Engel sinks in coprime

actions and a Hall–Higman-type theorem. The general case of profinite groups is

dealt with by bounding the nonsoluble length of the group, which enables induction
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on this length. (We introduced the nonsoluble length in [11], although bounds for

nonsoluble length had been implicitly used in various earlier papers, for example,

in the celebrated Hall–Higman paper [5], or in Wilson’s paper [23]; more recently,

bounds for the nonsoluble length were used in the study of verbal subgroups in

finite and profinite groups [3, 21, 22, 10].) Finally, the result for compact groups is

derived with the use of the structure theorems for compact groups.

2. Preliminaries

In this section, we recall some notation and terminology and establish some general

properties of Engel sinks in compact and profinite groups.

Our notation and terminology for profinite and compact groups is standard;

see, for example, [16, 24, 6]. A subgroup (topologically) generated by a subset S

is denoted by 〈S〉. Recall that centralizers are closed subgroups, while commutator

subgroups [B,A] = 〈[b, a] | b ∈ B, a ∈ A〉 are the closures of the corresponding

abstract commutator subgroups.

For a group A acting by continuous automorphisms on a group B, we use the

usual notation for commutators [b, a] = b−1ba and commutator subgroups [B,A] =

〈[b, a] | b ∈ B, a ∈ A〉, as well as for centralizers CB(A) = {b ∈ B | ba = b for all a ∈
A} and CA(B) = {a ∈ A | ba = b for all b ∈ B}.

We record for convenience the following simple lemma.

Lemma 2.1. Suppose that ϕ is a continuous automorphism of a compact group G

such that G = [G,ϕ]. If N is a normal subgroup of G contained in CG(ϕ), then

N ≤ Z(G).

Proof. The centralizer CG〈ϕ〉(N) of N in the semidirect product G〈ϕ〉 is a normal

subgroup containing ϕ by hypothesis. Hence, [g, ϕ] ∈ CG〈ϕ〉(N) for any g ∈ G. Since

CG〈ϕ〉(N) is a closed subgroup, the whole commutator subgroup [G,ϕ] is contained

in CG〈ϕ〉(N), and therefore, G = [G,ϕ] ≤ CG〈ϕ〉(N). This means that N ≤ Z(G).

We denote by π(k) the set of prime divisors of k, where k may be a positive

integer or a Steinitz number, and by π(G) the set of prime divisors of the orders of

elements of a (profinite) group G. Let σ be a set of primes. An element g of a group

is a σ-element if π(|g|) ⊆ σ, and a group G is a σ-group if all of its elements are

σ-elements. We denote by σ′ the complement of σ in the set of all primes. When

σ = {p}, we write p-element, p′-element, etc.

Recall that a pro-p group is an inverse limit of finite p-groups, a pro-σ group is

an inverse limit of finite σ-groups, a pronilpotent group is an inverse limit of finite

nilpotent groups, a prosoluble group is an inverse limit of finite soluble groups.

We denote by γ∞(G) =
⋂

i γi(G) the intersection of the lower central series of

a group G. A profinite group G is pronilpotent if and only if γ∞(G) = 1.
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Profinite groups have Sylow p-subgroups and satisfy analogues of the Sylow the-

orems. Prosoluble groups satisfy analogues of the theorems of Hall and Chunikhin

on Hall π-subgroups and Sylow bases. We refer the reader to the corresponding

chapters in [16, Chap. 2; 24, Chap. 2]. We add a simple folklore lemma.

Lemma 2.2. A profinite group G that is an extension of a prosoluble group N by

a prosoluble group G/N is prosoluble.

Proof. The quotient G/M of G by an open normal subgroup M is an extension

of a finite soluble normal subgroup NM/M by a finite soluble group G/NM , and

therefore G/M is soluble. Hence G is prosoluble.

We shall use several times the following well-known fact, which is straightforward

from the Baire Category Theorem (see [9, Theorem 34]).

Theorem 2.3. If a compact Hausdorff group is a countable union of closed subsets,

then one of these subsets has non-empty interior.

Here is one fact following from this theorem.

Lemma 2.4. If H is a closed subgroup of a compact group G, then the index of H

in G is either finite or uncountable.

Proof. Suppose that the index of H in G is countable. Then G is a countable union

of closed cosets of H . By Theorem 2.3 one of these cosets has a non-empty interior,

and therefore H is an open subgroup. Since G is compact, the index of H must be

finite.

We now establish a few general properties of Engel sinks. Clearly, the intersec-

tion of two Engel sinks of a given element g of a group G is again an Engel sink of g,

with the corresponding function n(x, g) being the maximum of the two functions.

Therefore, if g has a finite Engel sink, then g has a unique smallest Engel sink. If

E (g) is a smallest Engel sink of g, then the restriction of the mapping x �→ [x, g] to

E (g) must be surjective, which gives the following characterization.

Lemma 2.5 ([12, Lemma 2.1]). If an element g of a group G has a finite Engel

sink, then g has a smallest Engel sink E (g) and for every s ∈ E (g) there is k ∈ N

such that s = [s, kg].

We now consider countable Engel sinks in compact groups.

Lemma 2.6. Suppose that an element g of a compact group G has a countable

Engel sink {s1, s2, . . .}. Then there are positive integers i, j and an open set U such

that

[u, ig] = sj for all u ∈ U.
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If in addition G is a profinite group, then there are positive integers i, j and a coset

Nb of an open normal subgroup N such that

[nb, ig] = sj for all n ∈ N.

Proof. We define the sets

Skl = {x ∈ G | [x, kg] = sl}.
Note that each Skl is a closed subset of G. Then

G =
⋃
k,l

Skl

by the definition of the Engel sink. By Theorem 2.3 one of these sets Sij contains

an open subset U , as required. In the case of a profinite group this open subset

contains a coset Nb of an open normal subgroup N .

For profinite groups we can derive the following consequence of Lemma 2.6.

Lemma 2.7. Suppose that an element g of a profinite group G has a countable

Engel sink. Then there are positive integers i, k and a coset Nb of an open normal

subgroup N such that

[[nb, ia], a
k] = 1 for all n ∈ N.

Proof. Let {s1, s2, . . .} be a countable Engel sink of g. By Lemma 2.6, there are

positive integers i, j and a coset Nb of an open normal subgroup N such that

[nb, ia] = sj for all n ∈ N.

Since G/N is a finite group, the coset Nb is invariant under conjugation by some

power ak. Then

sa
k

j = [b, ia]
ak

= [ba
k

, ia]

= [nb, ia] for some n ∈ N

= sj.

In other words, ak commutes with sj , so that

[[nb, ia], a
k] = [sj , a

k] = 1 for all n ∈ N.

Remark 2.8. If all Engel sinks in a group are at most countable, then this con-

dition is inherited by every section of the group, and we shall use this property

without special references. The same applies to a group in which all Engel sinks are

finite.

3. Pronilpotent Groups

When G is a pro-p group, or more generally a pronilpotent group, the conclusion of

the main Theorem 1.2 is equivalent to G being locally nilpotent, and this is what

we prove in this section.
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Theorem 3.1. Suppose that G is a pronilpotent group in which every element has

a countable Engel sink. Then G is locally nilpotent.

The bulk of the proof is about the case where G is a pro-p group. First, we

remind the reader of important Lie ring methods in the theory of pro-p groups.

For a prime number p, the Zassenhaus p-filtration of a group G (also called the

p-dimension series) is defined by

Gi = 〈gpk | g ∈ γj(G), jpk ≥ i〉 for i = 1, 2, . . .

This is indeed a filtration (or an N -series, or a strongly central series) in the sense

that

[Gi, Gj ] ≤ Gi+j for all i, j. (3.1)

Then the Lie ring Dp(G) is defined with the additive group

Dp(G) =
⊕
i

Gi/Gi+1,

where the factors Qi = Gi/Gi+1 are additively written. The Lie product is defined

on homogeneous elements xGi+1 ∈ Qi, yGj+1 ∈ Qj via the group commutators by

[xGi+1, yGj+1] = [x, y]Gi+j+1 ∈ Qi+j

and extended to arbitrary elements of Dp(G) by linearity. Condition (3.1) ensures

that this product is well-defined, and group commutator identities imply thatDp(G)

with these operations is a Lie ring. Since all the factors Gi/Gi+1 have prime ex-

ponent p, we can view Dp(G) as a Lie algebra over the field of p elements Fp. We

denote by Lp(G) the subalgebra generated by the first factor G/G2. (Sometimes,

the notation Lp(G) is used for Dp(G).)

A groupG is said to satisfy a coset identity if there is a group wordw(x1, . . . , xm)

and cosets a1H, . . . , amH of a subgroup H ≤ G such that w(a1h1, . . . , amhm) = 1

for any h1, . . . , hm ∈ H. We shall use the following result of Wilson and Zelmanov

[25] about coset identities.

Theorem 3.2 (Wilson and Zelmanov [25, Theorem 1]). If a group G satisfies

a coset identity on cosets of a subgroup of finite index, then for every prime p the

Lie algebra Lp(G) constructed with respect to the Zassenhaus p-filtration satisfies a

polynomial identity.

Theorem 3.2 was used in the proof of the above-mentioned theorem on profinite

Engel groups, which we state here for convenience.

Theorem 3.3 (Wilson and Zelmanov [25, Theorem 5]). Every profinite Engel

group is locally nilpotent.

The proof of Theorem 3.3 was based on the following deep result of Zelmanov

[26–28], which is also used in our paper.
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Theorem 3.4 (Zelmanov [26–28]). Let L be a Lie algebra over a field and

suppose that L satisfies a polynomial identity. If L can be generated by a finite set

X such that every commutator in elements of X is ad-nilpotent, then L is nilpotent.

We now consider pro-p groups with countable Engel sinks.

Proposition 3.5. Suppose that P is a finitely generated pro-p group in which every

element has a countable Engel sink. Then P is nilpotent.

Proof. We shall first prove that the Lie algebra Lp(P ) is nilpotent, using The-

orem 3.4. The next two lemmas confirm that the hypotheses in Theorem 3.4 are

satisfied.

Lemma 3.6. The Lie algebra Lp(P ) is generated by finitely many elements all

commutators in which are ad-nilpotent.

Proof. The image of the finite generating set of P in the first homogeneous com-

ponent of the Lie algebra Lp(P ) is a finite set of generators of Lp(P ). We claim

that all commutators in these generators are ad-nilpotent. In fact, we prove that

every homogeneous element ā of Lp(P ) is ad-nilpotent. We may assume that ā is

the image of a ∈ P in the corresponding factor of the Zassenhaus filtration Pi/Pi+1.

We say that an element g ∈ Pi \ Pi+1 has degree i with respect to this filtration.

By Lemma 2.7 for any element a ∈ P there are positive integers i, s and a coset

Nb of an open normal subgroup N such that

[[nb, ia], a
s] = 1 for all n ∈ N.

Since P is a pro-p group, we can assume that s is a power of p, so that

[[nb, ia], a
pk

] = 1 for all n ∈ N. (3.2)

Slightly modifying the argument in [25], for generators x, y, z, t of a free group

we write

[[xy, iz], t] = [[x, iz], t] · [[y, iz], t] · v(x, y, z, t),
where the word v(x, y, z, t) is a product of commutators of weight at least i + 3,

each of which involves x, y, t and involves z at least i times. Substituting x = n,

y = b, z = a, and t = ap
k

and using (3.2), we obtain that

[[n, ia], a
pk

] = v(n, b, a, ap
k

)−1 for all n ∈ N.

If |P/N | = pm, then for any g ∈ P we have [g, ma] ∈ N , so that we also have

[[g, i+ma], ap
k

] = v([g, ma], b, a, ap
k

)−1. (3.3)

We claim that ā is ad-nilpotent on Lp(P ) of index i+m+ pk.

Let δ(u) denote the degree of an element u ∈ P with respect to the Zassenhaus

filtration. It is known that

up ∈ Ppδ(u). (3.4)
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Furthermore, in Lp(P ) for the images of u and up in Pδ(u)/Pδ(u)+1 and

Ppδ(u)/Ppδ(u)+1, respectively, we have

[x, ūp] = [x, pū] (3.5)

(see, for example, [1, Chap. II, Sec. 5, Exercise 10]). By (3.4) the degree of

v([g, ma], b, a, ap
k

) on the right of (3.3) is at least δ(b) + δ(g) + (i +m + pk)δ(a),

strictly greater than d = δ(g) + (i+m+ pk)δ(a). This means that the image of the

right-hand side of (3.3) in Pd/Pd+1 is trivial. At the same time, by (3.5) the image

of the left-hand side of (3.3) in Pd/Pd+1 is equal to the image of [g, i+m+pka] in

Pd/Pd+1, which is in turn equal to the element [ḡ, i+m+pk ā] in Lp(P ). Thus, for

the corresponding homogeneous elements of Lp(P ) we have

[ḡ, i+m+pk ā] = 0.

Since here ḡ can be any homogeneous element, we obtain that ā is ad-nilpotent of

index i+m+ pk, as claimed.

Lemma 3.7. The Lie algebra Lp(P ) satisfies a polynomial identity.

Proof. Let C be the family of all cosets Nb where N is a normal open subgroup

of P . Since P is a finitely generated pro-p group, the family C is countable [24,

Proposition 4.1.3]. For every C ∈ C , let

TC,i,k = {x ∈ P | [[g, ix], x
pk

] = 1 for all g ∈ C}.
Note that the sets TC,i,k are closed. By Lemma 2.7, we have

⋃
c∈C

TC,i,k = P.

Therefore by Theorem 2.3 one of the TC,i,k contains an open subset. Thus, there

are positive integers i, k and cosets Nb1, Nb2 of an open normal subgroup N such

that

[[y, ix], x
pk

] = 1 for all y ∈ Nb1, x ∈ Nb2.

Thus, P satisfies a coset identity and therefore the Lie algebra Lp(P ) satisfies a

polynomial identity by Theorem 3.2.

Now, we can resume the proof of Proposition 3.5. The two lemmas above to-

gether with Theorem 3.4 show that Lp(P ) is nilpotent. The nilpotency of the Lie

algebra Lp(P ) of the finitely generated pro-p group P implies that P is a p-adic

analytic group. This result goes back to Lazard [13]; see also [19, Corollary D].

Furthermore, by a theorem of Breuillard and Gelander [2, Theorem 8.3], a p-adic

analytic group satisfying a coset identity on cosets of a subgroup of finite index is

soluble.

Thus, P is soluble, and we prove that P is nilpotent by induction on the derived

length of P . By induction hypothesis, P has an abelian normal subgroup U such
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that P/U is nilpotent. We aim to show that P is an Engel group. Since P/U is

nilpotent, it is sufficient to show that every element a ∈ P is an Engel element in

the product U〈a〉.
Applying Lemma 2.6 to U〈a〉 we obtain a coset Nb of an open normal subgroup

N of U〈a〉, a positive integer i, and some element s of the Engel sink of a such that

[nb, ia] = s for all n ∈ N.

Since [aiun, a] = [un, a] for any u ∈ U , n ∈ N , we can assume that b ∈ U . Then for

any m ∈ U ∩N we have

s = [mb, ia] = [m, ia] · [b, ia] = [m, ia] · s,
since U is abelian. Hence, [m, ia] = 1 for any m ∈ U ∩N . Since U ∩ N has finite

index in U and U〈a〉 is a pro-p group, it follows that a is an Engel element of U〈a〉.
Thus, P is an Engel group and therefore, being a finitely generated pro-p group,

P is nilpotent by Theorem 3.3.

Proof of Theorem 3.1. By Theorem 3.3, it is sufficient to prove that G is an

Engel group. For each prime p, let Gp denote the Sylow p-subgroup of G, so that G

is a Cartesian product of the Gp, since G is pronilpotent. Given any two elements

a, g ∈ G, we write g =
∏

p gp and a =
∏

p ap, where ap, gp ∈ Gp. Clearly, [gq, ap] = 1

for q �= p.

By Lemma 2.7, for the element a ∈ G there are positive integers i, k and a coset

Nb of an open normal subgroup N such that

[[nb, ia], a
k] = 1 for all n ∈ N. (3.6)

Let l be the (finite) index of N in G. Then N contains all Sylow q-subgroups of G

for q �∈ π(l). Hence we can choose b to be a π(l)-element. Let π = π(l) ∪ π(k); note

that π is a finite set of primes.

We claim that

[gq, i+1aq] = 1 for q �∈ π.

Indeed, since b commutes with elements of Gq and Gq ≤ N , by (3.6), we have

1 = [gqb, ia], a
k] = [[gq, ia], a

k] · [[b, ia], a
k]

= [[gq, ia], a
k]

= [[gq, iaq], a
k
q ]. (3.7)

Thus, akq centralizes [gq, iaq]. Since k is coprime to q, we have 〈akq 〉 = 〈aq〉. Therefore
(3.7) implies that [[gq, iaq], aq] = 1, as claimed.

For every prime p the group Gp is locally nilpotent by Proposition 3.5, so there

is kp such that [gp, kpap] = 1. Now, for m = max{i + 1,maxp∈π{kp}} we have

[gp, map] = 1 for all p, which means that [g, ma] = 1. Thus, G is an Engel group

and therefore it is locally nilpotent by Theorem 3.3.
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4. Coprime Actions

In this section, first we list several profinite analogues of the properties of coprime

automorphisms of finite groups; we prove some of them in those cases where we

could not find a convenient reference to the literature. Then, we prove several

lemmas on coprime automorphisms in relation to Engel sinks.

If ϕ is an automorphism of a finite group H of coprime order, that is, such

that (|ϕ|, |H |) = 1, then we say for brevity that ϕ is a coprime automorphism

of H . This definition is extended to profinite groups as follows. We say that ϕ is a

coprime automorphism of a profinite group H meaning that a procyclic group 〈ϕ〉
faithfully acts onH by continuous automorphisms and π(〈ϕ〉)∩π(H) = ∅. Since the

semidirect productH〈ϕ〉 is also a profinite group, ϕ is a coprime automorphism ofH

if and only if for every open normal ϕ-invariant subgroupN ofH the automorphism

(of finite order) induced by ϕ on H/N is a coprime automorphism. The following

folklore lemma follows from the Sylow theory for profinite groups and an analogue

of the Schur–Zassenhaus theorem.

Lemma 4.1. If ϕ is a coprime automorphism of a profinite group G, then for every

prime q ∈ π(G) there is a ϕ-invariant Sylow q-subgroup of G. If G is in addition

prosoluble, then for every subset σ ⊆ π(G) there is a ϕ-invariant Hall σ-subgroup

of G.

Proof. Let Q be a Sylow q-subgroup of G. By the analogue of Frattini argu-

ment [24, Proposition 2.2.3(c)], G〈ϕ〉 = GNG〈ϕ〉(Q). By the analogue of the Schur–

Zassenhaus theorem [24, Proposition 2.3.3] applied to NG〈ϕ〉(Q) and NG(Q), there

is a subgroup K ≤ NG〈ϕ〉(Q) such that NG〈ϕ〉(Q) = KNG(Q) and K ∼= 〈ϕ〉; fur-
thermore, K and 〈ϕ〉 are conjugate in G〈ϕ〉 = GK. Thus, 〈ϕ〉 = Kx ≤ NG〈ϕ〉(Qx)

for some x ∈ G, so that ϕ normalizes the Sylow q-subgroup Qx.

When G is prosoluble, an analogue of the Frattini argument also holds for Hall

subgroups because these are conjugate [16, Corollary 2.3.7], and then the above

proof works in exactly the same manner.

The following lemma is a special case of [16, Proposition 2.3.16].

Lemma 4.2. If ϕ is a coprime automorphism of a profinite group G and N is a

closed normal subgroup of G, then every fixed point of ϕ in G/N is an image of a

fixed point of ϕ in G, that is, CG/N (ϕ) = C(ϕ)N/N .

As a consequence, we have the following lemma.

Lemma 4.3. If ϕ is a coprime automorphism of a profinite group G, then

[[G,ϕ], ϕ] = [G,ϕ].

Proof. By Lemma 4.2, we have G = CG(ϕ)[G,ϕ], whence [G,ϕ] = [CG(ϕ)

[G,ϕ], ϕ] = [[G,ϕ], ϕ].
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Lemma 4.4. Let ϕ be a coprime automorphism of finite order of a profinite

group G. If [g, iϕ] = 1 for g ∈ G for some i ∈ N, then [g, ϕ] = 1.

Proof. Let |ϕ| = n. Due to the obvious induction it is sufficient to prove that if

[g, ϕ, ϕ] = 1, then [g, ϕ] = 1. We have

[g, ϕ] · [g, ϕ]ϕ · · · [g, ϕ]ϕn−1

= g−1gϕ · (g−1)ϕgϕ
2 · (g−1)ϕ

2

gϕ
3 · · · (g−1)ϕ

n−1

gϕ
n

= 1

and [g, ϕ] ∈ CG(ϕ), whence [g, ϕ]n = 1. Since π(n) ∩ π(G) = ∅, it follows that

[g, ϕ] = 1, as required.

The following useful lemma was proved for coprime automorphisms of finite

nilpotent groups in [18].

Lemma 4.5 ([18, Lemma 2.4]). Let ϕ be a coprime automorphism of a finite

nilpotent group G. Then any element g ∈ G can be uniquely written in the form

g = cu, where c ∈ CG(ϕ) and u = [v, ϕ] for some v ∈ G.

A similar result follows also for profinite groups, but we prefer to state more

specialized lemmas following from Lemma 4.5.

Lemma 4.6. Let ϕ be a coprime automorphism of a pronilpotent group G. Then

the restriction of the mapping

θ : x �→ [x, ϕ]

to the set K = {[g, ϕ] | g ∈ G} is injective.

Proof. First, consider the case where G is finite (and nilpotent). Then K = θ(K).

Indeed, every g ∈ G is equal to g = c[v, ϕ] for c ∈ CG(ϕ) and some v ∈ G by

Lemma 4.5. Hence,

[g, ϕ] = [c[v, ϕ], ϕ] = [[v, ϕ], ϕ] ∈ θ(K).

Thus, θ is surjective on the finite set K, and therefore also injective.

The result for the general case of pronilpotent group G follows: if we had

[u, ϕ, ϕ] = [v, ϕ, ϕ] for [u, ϕ] �= [v, ϕ], then the images of [u, ϕ] and [v, ϕ] would

be different also in some finite quotient over an ϕ-invariant open normal subgroup,

contrary to what was proved for finite groups.

Lemma 4.7. Let ϕ be a coprime automorphism of a pronilpotent group G with

a countable Engel sink E (ϕ) in the semidirect product G〈ϕ〉. Then the set K =

{[g, ϕ] | g ∈ G} is a finite smallest Engel sink of ϕ in the semidirect product G〈ϕ〉.

Proof. Since the mapping θ : x �→ [x, ϕ] is injective on the set K by Lemma 4.6,

every mapping θk : x �→ [x, kϕ] is also injective on K. Therefore for every k ∈ N

and every element s ∈ E (ϕ) of the Engel sink E (ϕ) there is at most one element of

the form [g, ϕ] such that [[g, ϕ], kϕ] = s. Hence for every element s ∈ E (ϕ) there
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are at most countably many elements of the form [g, ϕ] such that [[g, ϕ], jϕ] = s

for some j.

Since E (ϕ) is countable and for every element [g, ϕ] ∈ K there is s ∈ E (ϕ) such

that [[g, ϕ], jϕ] = s for some j, the set K is at most countable as a countable union

of countable sets. It is well known that the set K = {[g, ϕ] | g ∈ G} is in a one-to-one

correspondence with the set of (say, right) cosets of the centralizer CG(ϕ). But this

set of cosets cannot be infinite countable by Lemma 2.4. Therefore it is finite, and

so is the set K.

The mapping [g, ϕ] �→ [g, ϕ, ϕ] is injective on K by Lemma 4.6, and therefore

it is also surjective, since K is finite. Hence this set is a smallest finite Engel sink

of ϕ.

Lemma 4.8. Let ϕ be a coprime automorphism of a pronilpotent group G. If all

elements of the semidirect product G〈ϕ〉 have countable Engel sinks, then γ∞(G〈ϕ〉)
is finite and γ∞(G〈ϕ〉) = [G,ϕ].

Proof. The group G is locally nilpotent by Theorem 3.1. By Lemma 4.7, the set

K = {[g, ϕ] | g ∈ G} is finite. Therefore the commutator subgroup [G,ϕ] = 〈K〉 is
nilpotent. By Lemma 4.3,

[[G,ϕ], ϕ] = [G,ϕ]. (4.1)

Let V be the quotient of [G,ϕ] by its derived subgroup. For any u, v ∈ V we

have [uv, ϕ] = [u, ϕ][v, ϕ], since V is abelian, and [V, ϕ] = V by (4.1). Hence V

consists of the images of elements of K, and therefore is finite. Then the nilpotent

group [G,ϕ] is also finite (see, for example, [17, 5.2.6]).

The quotient G〈ϕ〉/[G,ϕ] is obviously the direct product of the images of G

and 〈ϕ〉 and therefore is pronilpotent. Hence, γ∞(G〈ϕ〉) ≤ [G,ϕ], so γ∞(G〈ϕ〉) is

finite. Since the set of commutators {[g, ϕ] | g ∈ G} is the smallest Engel sink of ϕ

by Lemma 4.7, it follows that γ∞(G〈ϕ〉) = [G,ϕ].

5. Prosoluble Groups

In this section, we prove Theorem 1.2 for prosoluble groups. First, we consider the

case of prosoluble groups of finite Fitting height. Recall that by Theorem 3.1 any

pronilpotent group with countable Engel sinks is locally nilpotent. Therefore, if

G is a profinite group with countable Engel sinks, then the largest pronilpotent

normal subgroup F (G) is also the largest locally nilpotent normal subgroup, and

we call it the Fitting subgroup of G. Then further terms of the Fitting series are

defined as usual by induction: F1(G) = F (G) and Fi+1(G) is the inverse image of

F (G/Fi(G)). A group has finite Fitting height if Fk(G) = G for some k ∈ N.

Proposition 5.1. Let G be a prosoluble group of finite Fitting height. If every

element of G has a countable Engel sink, then γ∞(G) is finite.
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Proof. It is sufficient to prove the result for the case of Fitting height 2. Then

the general case will follow by induction on the Fitting height k of G. Indeed,

then γ∞(G/γ∞(Fk−1(G))) is finite, while γ∞(Fk−1(G)) is finite by the induction

hypothesis, and as a result, γ∞(G) is finite.

Thus, we assume that G = F2(G). By Theorem 1.1, it is sufficient to show that

every element a ∈ G has a finite Engel sink. Since G/F (G) is locally nilpotent, an

Engel sink of a in F (G)〈a〉 is also an Engel sink of a in G.

For a prime p, let P be a Sylow p-subgroup of F (G), and write a = apap′ ,

where ap is a p-element, ap′ is a p′-element, and [ap, ap′ ] = 1. Then P 〈ap〉 is a

normal Sylow p-subgroup of P 〈a〉, on which ap′ induces by conjugation a coprime

automorphism. By Lemma 4.8, the subgroup γ∞(P 〈a〉) = [P, ap′ ] is finite. Since

the pronilpotent group P 〈a〉/γ∞(P 〈a〉) is locally nilpotent by Theorem 3.1, we can

choose a finite smallest Engel sink Ep(a) ⊆ γ∞(P 〈a〉) of a in P 〈a〉.
Note that

if Ep(a) = {1}, then γ∞(P 〈a〉) = 1. (5.1)

Indeed, if Ep(a) = {1}, then, in particular, the image ā of a in 〈a〉/C〈a〉([P, ap′ ]) is

an Engel element of the finite group [P, ap′ ]〈ā〉 and therefore ā is contained in its

Fitting subgroup by Baer’s theorem [7, Satz III.6.15]. Then

γ∞(P 〈a〉) = [P, ap′ ] = [[P, ap′ ], ap′ ] = [[P, ap′ ], āp′ ] = 1.

By Lemma 2.5, for every s ∈ Ep(a) we have s = [s, ka] for some k ∈ N, and then

also

s = [s, kla] for any l ∈ N. (5.2)

We claim that Ep(a) = {1} for all but finitely many primes p. Suppose the

opposite, and Epi(a) �= {1} for each prime pi in an infinite set of primes π. Choose

a nontrivial element spi ∈ Epi(a) for every pi ∈ π. For any subset σ ⊆ π, consider

the (infinite) product

sσ =
∏
pj∈σ

spj .

Note that the elements spj commute with one another belonging to different normal

Sylow subgroups of F (G). If E (a) is any Engel sink of a in G, then for some

k ∈ N the commutator [sσ, ka] belongs to E (a). Because of the properties (5.2),

all the components of [sσ, ka] in the Sylow pj-subgroups of F (G) for pj ∈ σ are

nontrivial, while all the other components in Sylow q-subgroups for q �∈ σ are trivial

by construction. Therefore for different subsets σ ⊆ π we thus obtain different

elements of E (a). The infinite set π has continuum of different subsets, whence

E (a) is uncountable, contrary to a having a countable Engel sink by the hypothesis

of the proposition.
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Thus, for all but finitely many primes p we have Ep(a) = {1}, which is the same

as γ∞(P 〈a〉) = 1 by (5.1). Therefore the subgroup

γ∞(F (G)〈a〉) =
∏
p

γ∞(P 〈a〉)

is finite. The quotient F (G)〈a〉/γ∞(F (G)〈a〉) is pronilpotent and therefore locally

nilpotent by Theorem 3.1. Hence, we can choose a finite Engel sink for a in G as a

subset of γ∞(F (G)〈a〉).
Thus, every element of G has a finite Engel sink, and therefore γ∞(G) is finite

by Theorem 1.1.

Lemma 5.2. Let ϕ be a coprime automorphism of a prosoluble group G such that

the set of primes π(G) is finite. If every element of the semidirect product G〈ϕ〉 has
a countable Engel sink, then the subgroup [G,ϕ] is finite.

Proof. By Lemma 4.3, we can assume that G = [G,ϕ]. For every prime q ∈ π(G)

there is a ϕ-invariant Sylow q-subgroup Gq of G by Lemma 4.1. By Lemma 4.7, the

set {[g, ϕ] | g ∈ Gq} is finite. Since π(G) is finite, there is an open normal subgroup

N of G that intersects trivially with every set {[g, ϕ] | g ∈ Gq}, which implies that

ϕ centralizes every Sylow q-subgroup N ∩ Gq and therefore [N,ϕ] = 1. Since N

is normal and G = [G,ϕ], we obtain [N,G] = 1 by Lemma 2.1. Thus, G/Z(G) is

finite and, in particular, the Fitting height of G is finite. Then γ∞(G〈ϕ〉) is finite

by Proposition 5.1, and therefore [G,ϕ] is also finite, since [G,ϕ] ≤ γ∞(G〈ϕ〉) by

Lemma 4.8 applied to G〈ϕ〉/γ∞(G〈ϕ〉).

Lemma 5.3. Let a be a coprime automorphism of prime order p of a prosoluble

group H such that 2 �∈ π(H). If every element of the semidirect product H〈a〉 has

a countable Engel sink, then the subgroup [H, a] is finite.

Proof. By Lemma 4.3, we can assume that H = [H, a]. By Lemma 2.6 there is a

coset bN of an open normal subgroup N of H , a positive integer i, and an element

s of an Engel sink of a such that

[nb, ia] = s for all n ∈ N. (5.3)

Let π = π(H/N). Then, we can choose the element b in (5.3) in an a-invariant Hall

π-subgroup Hπ of H (which exists by Lemma 4.1). By Lemma 5.2, the subgroup

[Hπ , a] is finite. Therefore a has a finite smallest Engel sink EHπ(a) in Hπ. Replacing

i and s in (5.3) if necessary, we can assume that s ∈ EHπ(a) (for possibly a bigger

integer i).

If s = 1, then [bN, a] = 1 by Lemma 4.4, and then [N, a] = 1. Since N is normal

and H = [H, a], we obtain [N,H ] = 1 by Lemma 2.1. Thus, H/Z(H) is finite

and, in particular, the Fitting height of H is finite. Then γ∞(H〈a〉) is finite by

Proposition 5.1, and [H, a] ≤ γ∞(H〈a〉) by Lemma 4.8 applied to H〈a〉/γ∞(H〈a〉).
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Therefore, we can assume that s is a nontrivial element of the finite smallest

Engel sink EHπ(a) contained in the finite group [Hπ, a]. By Lemma 2.5, we have

s = [s, ka] for some k ∈ N. Then the subgroup S = 〈s〈a〉〉 is finite of odd order

coprime to p = |a| and S = [S, a].

If x ∈ CN (a), then taking the conjugates by x of (5.3) we obtain

sx = [bx, ia
x]

= [bn, ia] for some n ∈ N

= s.

Thus, CN (a) ≤ CH(s) and then also

CN (a) ≤ CH(S). (5.4)

Recalling that [Hπ, a] is finite, we choose an open normal subgroup K of H such

that K ∩ [Hπ, a] = 1. Then [K ∩ Hπ, a] = 1. We can of course choose K ≤ N , so

that we also have

[kb, ia] = s for all k ∈ K. (5.5)

If U is some S〈a〉-invariant π-section of K, then a acts trivially on U and therefore

so does S = [S, a] by Lemma 2.1.

We claim that S also acts trivially on S〈a〉-invariant π′-sections of K. If this

is not the case, we can choose an S〈a〉-invariant elementary abelian π′-section V

of K on which S acts nontrivially and S〈a〉 acts irreducibly. Let the bar denote

the images of elements and subgroups of S〈a〉 in the action on V . There is an ā-

invariant Sylow r-subgroup R of S̄ such that [R, ā] �= 1. Then [R, ā]〈ā〉 is a p-soluble

group without normal p-subgroups acting as a group of coprime automorphisms on

V . Now, the ‘non-modular’ Hall–Higman-type results ensure that CV (a) �= 1. If

p �= 2, then [R, ā]〈ā〉 is of odd order and then CV (a) �= 1 by [8, Theorem IX.6.2]. If

p = 2, then one can choose an element in R inverted by a and then the situation

is even simpler, for an action of a dihedral group of order 2r. Since a is a coprime

automorphism of K, every element of CV (a) is an image of an element of CK(a)

by Lemma 4.2. By (5.4) we obtain that 1 �= CV (a) ≤ CV (S〈a〉). This contradicts

the assumption that S acts nontrivially and S〈a〉 acts irreducibly on V .

As a result, we obtained that S acts trivially on invariant π- and π′-sections
of K. Hence in any finite quotient of K〈s〉 the image of s is an Engel element and

therefore belongs to the Fitting subgroup by Baer’s theorem [7, Satz III.6.15]. Then

the subgroup [K, s] is pronilpotent and therefore [K, s] ≤ F (K).

We now consider the quotient H̄ = H/F (K) denoting the images by bars. Let

L = K〈b, s, a〉. Since [K̄, s̄] = 1, while b and s belong to an a-invariant Hall π-

subgroup Hπ, the normal closure 〈s̄L̄〉 is contained in H̄π.

Let tilde denote the images in the group L̃ = L̄/〈s̄L̄〉. By (5.5), we have

[kb̃, iã] = 1 for all k ∈ K̃.
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Since ã is a coprime automorphism, by Lemma 4.4 we obtain b̃K̃ ⊆ CL̃(ã), and

then also K̃ ≤ CL̃(ã). In terms of the group H̄ this means that [K̄, a] ≤ 〈s̄L̄〉 ≤ H̄π.

We also have [K̄, a] ≤ K̄. Then

[K̄, a, a] ≤ [〈s̄L̄〉, a] ∩ K̄ ≤ [H̄π, a] ∩ K̄. (5.6)

However, [Hπ, a] ∩ K = 1 by the choice of K, and H̄ = H/F (K); therefore the

right-hand side of (5.6) is also trivial. As a result we obtain [K̄, a, a] = 1, whence

[K̄, a] = 1 by Lemma 4.4. Then also [K̄, H̄ ] = 1 by Lemma 2.1, since H̄ = [H̄, a].

Thus, H̄ has a central subgroup of finite index, and therefore H̄ has finite Fitting

height. Since H̄ = H/F (K), the whole group H〈a〉 has finite Fitting height. By

Proposition 5.1, the group γ∞(H〈a〉) is finite. Since a is a coprime automorphism

of H , the subgroup [H, a] is contained in γ∞(H〈a〉) by Lemma 4.8, and therefore

is also finite.

Recall that any prosoluble group G has a Sylow basis — a family of pairwise

permutable Sylow pi-subgroups Pi of G, exactly one for each prime, and any two

Sylow bases are conjugate (see [16, Proposition 2.3.9]). The basis normalizer (also

known as the system normalizer) of such a Sylow basis in G is T =
⋂

i NG(Pi). If

G is a prosoluble group and T is a basis normalizer in G, then T is pronilpotent

and G = γ∞(G)T (see [15, Lemma 5.6]).

Proposition 5.4. If every element of a prosoluble group G has a countable Engel

sink, then F (G) �= 1.

Proof. Let {Pi | i ∈ N} be a Sylow basis of G, where Pi is a Sylow pi-subgroup.

Let

T1 =
⋂
i

NG(Pi)

be a basis normalizer of G. Then T1 is pronilpotent and G = γ∞(G)T1. Note that

T1 �= 1, since G is prosoluble.

The intersections Pi∩γ∞(G) are Sylow pi-subgroups of γ∞(G) forming a Sylow

basis of γ∞(G). Clearly, T1 normalizes each of Pi ∩ γ∞(G). Then

T2 =
⋂
i

Nγ∞(G)(Pi ∩ γ∞(G))

is a basis normalizer of γ∞(G), which is normalized by T1. We know that T2 is also

pronilpotent, and G = γ∞(G)T1 = γ∞(γ∞(G))T2T1.

If γ∞(G) = 1, then there is nothing to prove. Otherwise, since G is prosoluble,

γ∞(γ∞(G)) �= γ∞(G) and therefore the subgroup T2T1 is not pronilpotent, that

is, γ∞(T2T1) �= 1. However, T2T1 has Fitting height 2, and therefore γ∞(T2T1) is

a finite group by Proposition 5.1. Therefore, we can choose an element a of prime

order p in T2.

Since T2 is a basis normalizer of γ∞(G), for every prime q there is an a-invariant

Sylow q-subgroup Sq of γ∞(G). Let H be an a-invariant Hall {p, 2}′-subgroup of
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γ∞(G) (which is simply a Hall 2′-subgroup of γ∞(G) in the case p = 2). The

following arguments include the cases where H = 1 or/and S2 = 1.

By Lemma 4.8, the subgroup [S2, a] is finite in the case p �= 2. By Lemma 5.3,

the subgroup [H, a] is finite. Therefore there is an open normal a-invariant subgroup

N of γ∞(G) such that N ∩ [H, a] = 1, as well as N ∩ [S2, a] = 1 in the case p �= 2.

Then [N∩H, a] = 1, as well as [N∩S2, a] = 1 in the case p �= 2. Hence the subgroup

[N, a] is pronilpotent, and therefore,

[N, a] ≤ F (N) ≤ F (γ∞(G)) ≤ F (G).

Thus, the proposition is proved if [N, a] �= 1.

If [N, a] = 1, then also [N, [γ∞(G), a]] = 1. Then [γ∞(G), a] has a central sub-

group of finite index and therefore has finite Fitting height. By Proposition 5.1,

γ∞([γ∞(G), a]) is finite, and therefore F ([γ∞(G), a]) �= 1 unless [γ∞(G), a] = 1.

Since

F ([γ∞(G), a]) ≤ F (γ∞(G)) ≤ F (G),

the proof is complete if [γ∞(G), a] �= 1. Finally, if [γ∞(G), a] = 1, then a is an

Engel element since G/γ∞(G) is locally nilpotent by Theorem 3.1. Then the nor-

mal subgroup [G, a]〈a〉 is pronilpotent by Baer’s theorem [7, Satz III.6.15], and

F (G) �=1.

We are now ready to prove the main result of this section.

Theorem 5.5. Suppose that G is a prosoluble group in which every element has

a countable Engel sink. Then G has a finite normal subgroup N such that G/N is

locally nilpotent.

Proof. By Theorem 3.1, it is sufficient to prove that γ∞(G) is finite.

By Proposition 5.1, we obtain that γ∞(F2(G)) is finite and the quotient

F2(G)/γ∞(F2(G)) is locally nilpotent by Theorem 3.1. Then the subgroup C =

CF2(G)(γ∞(F2(G))) has finite index in F2(G) and is locally nilpotent. Indeed, for

any finite subset S ⊆ CF2(G)(γ∞(F2(G))) we have γk(〈S〉) ≤ γ∞(F2(G)) for some

k, and then

γk+1(〈S〉) = [γk(〈S〉), 〈S〉] ≤ [γ∞(F2(G)), C] = 1.

As a normal locally nilpotent subgroup,C is contained in F (G). Hence, F2(G)/F (G)

is finite.

We claim that the quotient G/F (G) is finite. Let the bar denote the images

in Ḡ = G/F (G). Then F (Ḡ) = F2(G) is finite by the above. There is an open

normal subgroup N of Ḡ such that N ∩ F (Ḡ) = 1. If N �= 1, then F (N) �= 1 by

Proposition 5.4. But F (N) ≤ N ∩ F (Ḡ) = 1; hence we must have N = 1, so Ḡ is

finite.

Thus, G/F (G) is finite, and therefore G has finite Fitting height. By Proposi-

tion 5.1 we obtain that γ∞(G) is finite, as required.

2050015-17

B
ul

l. 
M

at
h.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
89

.3
1.

38
.2

21
 o

n 
05

/2
5/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

May 19, 2020 10:28 WSPC/1664-3607 319-BMS 2050015

E. I. Khukhro & P. Shumyatsky

Here, we also derive the following corollary for a virtually prosoluble group (that

is, a group with a prosoluble open normal subgroup), which will be needed in the

sequel.

Corollary 5.6. Suppose that G is a virtually prosoluble group in which every ele-

ment has a countable Engel sink. Then G has a finite normal subgroup N such that

G/N is locally nilpotent.

Proof. By Theorem 3.1, it is sufficient to show that γ∞(G) is finite. By hypothesis,

G has an open normal prosoluble subgroup H . By Theorem 5.5, γ∞(H) is finite.

Therefore, passing to the quotient group, we can assume that γ∞(H) = 1 and the

Fitting subgroup F (G) is open.

Since G/F (G) is finite, we can use induction on |G/F (G)|. The basis of this

induction includes the trivial case G/F (G) = 1 when γ∞(G) = 1. But the bulk of

the proof deals with the case where G/F (G) is a finite simple group. If G/F (G) is

abelian, then G has Fitting height 2 and γ∞(G) is finite by Proposition 5.1 and the

proof is complete.

Thus, suppose that G/F (G) is a non-abelian finite simple group. Let p be a

prime divisor of |G/F (G)|, and g ∈ G \ F (G) an element of order pn, where n

is either a positive integer or ∞ (so pn is a Steinitz number). Let T be the Hall

p′-subgroup of F (G). By Lemma 4.8 the subgroup [T, g] is finite.

Since [T, g] is normal in F (G), its normal closure R = 〈[T, g]G〉 in G is a product

of finitely many conjugates and is therefore also finite. Therefore it is sufficient to

prove that γ∞(G/R) is finite. Thus, we can assume that R = 1. Note that then

[T, ga] = 1 for any conjugate ga of g.

Choose a transversal {u1, . . . , uk} of G modulo F (G). Let G1 = 〈gu1 , . . . , guk〉.
Clearly, G1F (G)/F (G) is generated by the conjugacy class of the image of g. Since

G/F (G) is simple, we have G1F (G) = G. By our assumption, the Hall p′-subgroup
T of F (G) is centralized by all elements gui . Hence, [G1, T ] = 1. Let P be the Sylow

p-subgroup of F (G) (possibly, trivial). Then also [PG1, T ] = 1, and therefore

γ∞(G) = γ∞(G1F (G)) = γ∞(PG1).

Let the bar denote images in Ḡ = G/P . Note that γ∞(Ḡ) = γ∞(Ḡ1), while

F (Ḡ) = T̄ and Ḡ/T̄ = Ḡ1T̄ /T̄ ∼= F/F (G) is a non-abelian finite simple group.

Hence, Ḡ = γ∞(Ḡ1)T̄ . Therefore, since [γ∞(Ḡ1), T̄ ] = 1,

γ∞(Ḡ1) = [γ∞(Ḡ1), Ḡ1] = [γ∞(Ḡ1), γ∞(Ḡ1)T̄ ] = [γ∞(Ḡ1), γ∞(Ḡ1)].

As a result, γ∞(Ḡ1) ∩ T̄ is contained both in the center and the derived subgroup

of γ∞(Ḡ1), and therefore is isomorphic to a subgroup of the Schur multiplier of the

finite group γ∞(Ḡ1)/(γ∞(Ḡ1)∩ T̄ ) ∼= G/F (G). Since the Schur multiplier of a finite

group is finite [7, Hauptsatz V.23.5], we obtain that γ∞(Ḡ1) ∩ T̄ is finite. Since T̄

is canonically isomorphic to T , it follows that

γ∞(G) ∩ T ∼= γ∞(Ḡ) ∩ T̄ = γ∞(Ḡ1) ∩ T̄
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is also finite. Therefore, we can assume that T = 1, in other words, that F (G) is a

p-group.

Since G/F (G) is a non-abelian simple group, we can choose another prime r �= p

dividing |G/F (G)| and repeat the same arguments as above with r in place of p.

As a result, we reduce the proof to the case F (G) = 1, where the result is obvious.

We now finish the proof of Corollary 5.6 by induction on |G/F (G)|. The basis

of this induction where G/F (G) is a simple group was proved above. Now, suppose

that G/F (G) has a nontrivial proper normal subgroup with full inverse image N ,

so that F (G) < N � G. Since F (N) = F (G), by induction applied to N the

group γ∞(N) is finite. Since N/γ∞(N) ≤ F (G/γ∞(N)), by induction applied to

G/γ∞(N) the group γ∞(G/γ∞(N)) is also finite. As a result, γ∞(G) is finite, as

required.

6. Bounding the Nonprosoluble Length

In this section, we approach the case of profinite groups by obtaining bounds for the

so-called nonprosoluble length. These bounds follow from the bounds for nonsoluble

length of the corresponding finite quotients. We begin with the relevant definitions.

The nonsoluble length λ(H) of a finite group H is defined as the minimum

number of nonsoluble factors in a normal series in which every factor either is

soluble or is a direct product of non-abelian simple groups. (In particular, the

group is soluble if and only if its nonsoluble length is 0.) Clearly, every finite group

has a normal series with these properties, and therefore its nonsoluble length is

well defined. It is easy to see that the nonsoluble length λ(H) is equal to the least

positive integer l such that there is a series of characteristic subgroups

1 = L0 ≤ R0 < L1 ≤ R1 < · · · ≤ Rl = H

in which each quotient Li/Ri−1 is a (nontrivial) direct product of non-abelian simple

groups, and each quotient Ri/Li is soluble (possibly trivial).

We shall use the following result of Wilson [23], which we state in the special

case of p = 2 using the terminology of nonsoluble length.

Theorem 6.1 (see [23, Theorem 2*]). Let K be a normal subgroup of a finite

group G. If a Sylow 2-subgroup Q of K has a coset tQ of exponent dividing 2k, then

the nonsoluble length of K is at most k.

We now turn to profinite groups. It is natural to say that a profinite group G

has finite nonprosoluble length at most l if G has a normal series

1 = L0 ≤ R0 < L1 ≤ R1 < · · · ≤ Rl = G

in which each quotient Li/Ri−1 is a (nontrivial) Cartesian product of non-abelian

finite simple groups, and each quotient Ri/Li is prosoluble (possibly trivial). As a

special case of a general result in Wilson’s paper [23] we have the following lemma.
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Lemma 6.2 (see [23, Lemma 2]). If, for some positive integer m, all continuous

finite quotients of a profinite group G have nonsoluble length at most m, then G

has finite nonprosoluble length at most m.

We are now ready to prove the main result of this section.

Proposition 6.3. Suppose that G is a profinite group in which every element has

a countable Engel sink. Then G has finite nonprosoluble length.

Proof. Let H =
⋂
G(i) be the intersection of the derived series of G. Then H =

[H,H ]. Indeed, if H �= [H,H ], then the quotient G/[H,H ] is a prosoluble group by

Lemma 2.2, whence
⋂
G(i) = H ≤ [H,H ], a contradiction. Since the quotient G/H

is prosoluble, it is sufficient to prove the proposition for H . Thus, we can assume

from the outset that G = [G,G].

Let T be a Sylow 2-subgroup of G. By Theorem 3.1, the group T is locally

nilpotent. Consider the subsets of the direct product T × T

Si = {(x, y) ∈ T × T | the subgroup 〈x, y〉 is nilpotent of class at most i}.
Note that each subset Si is closed in the product topology of T × T , because the

condition defining Si means that all commutators of weight i+1 in x, y are trivial.

Since every 2-generator subgroup of T is nilpotent, we have
⋃
i

Si = T × T.

By Theorem 2.3 one of the sets Si contains an open subset of T × T . This means

that there are cosets aN and bN of an open normal subgroup N of T and a positive

integer c such that

〈x, y〉 is nilpotent of class c for any x ∈ aN, y ∈ bN. (6.1)

Let K be an open normal subgroup of G such that K ∩T ≤ N . If we replace N

by K ∩ T , then (6.1) still holds with the same a, b. Hence, we can assume that N

is a Sylow 2-subgroup of K.

We now apply the following general fact (which, for example, immediately fol-

lows from [16, Lemma 2.8.15]).

Lemma 6.4. Let G be a profinite group and K a normal open subgroup of G. There

exists a subgroup H of G such that G = KH and K ∩H is pronilpotent.

Let H be the subgroup given by this lemma for our group G and subgroup

K. Since H is virtually pronilpotent and every element has a countable Engel

sink, by Corollary 5.6 the subgroup γ∞(H) is finite. Recalling our assumption that

G = [G,G], we obtain

G = [G,G] = γ∞(G) ≤ γ∞(HK) ≤ γ∞(H)K.

Thus, G = γ∞(H)K, where γ∞(H) is a finite subgroup.
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Hence, we can choose the coset representative a satisfying (6.1) in a conjugate

of a Sylow 2-subgroup of γ∞(H), and therefore having finite order, say, |a| = 2n.

For any y ∈ bN the 2-subgroup 〈a, y〉 is nilpotent of class at most c, while

a2
n

= 1. Then

[a, y2
n(c−1)

] = 1. (6.2)

This follows from well-known commutator formulae (and for any p-group); see, for

example, [20, Lemma 4.1].

In particular, for any z ∈ N by using (6.2) we obtain

[z, cy
2n(c−1)

] = [az, cy
2n(c−1)

] = 1, (6.3)

since 〈az, y2n(c−1)〉 is a subgroup of 〈az, y〉, which is nilpotent of class c by (6.1).

Our aim is to show that there is a uniform bound, in terms of |G : K|, c, and
n, for the nonsoluble length of all finite quotients of G by open normal subgroups.

Let M be an open normal subgroup of G and let the bar denote the images in

Ḡ = G/M . It is clearly sufficient to obtain a required bound for the nonsoluble

length of K̄.

Let R0 be the soluble radical of K̄, and L1 the inverse image of the generalized

Fitting subgroup of K̄/R0, so that

L1/R0 = S1 × S2 × · · · × Sk (6.4)

is a direct product of non-abelian finite simple groups. Note that R0 and L1 are

normal subgroups of Ḡ. The group Ḡ acting by conjugation induces a permutational

action on the set {S1, S2, . . . , Sk}. The kernel of the restriction of this permutational

action to K̄ is contained in the inverse image R1 of the soluble radical of K̄/L1:⋂
i

NK̄(Si) ≤ R1. (6.5)

This follows from the validity of Schreier’s conjecture on the solubility of the outer

automorphism groups of non-abelian finite simple groups, confirmed by the classi-

fication of the latter, because L1/R0 contains its centralizer in K̄/R0.

Let e be the least positive integer such that 2e ≥ c, and let t = 2n(c−1)+e.

We claim that for any y ∈ b̄N̄ the element y2
t

normalizes each factor Si in (6.4).

Arguing by contradiction, suppose that the element y2
t

has a nontrivial orbit on

the set of the Si. Then the element y2
n(c−1)

has an orbit of length 2s ≥ 2e+1 on

this set; let {T1, T2, . . . , T2s} be such an orbit cyclically permuted by y2
n(c−1)

. Since

non-abelian finite simple groups have even order (by the Feit–Thompson theorem

[4]) and the subgroups Si are subnormal in K̄/R0, each subgroup Si contains a

nontrivial element of N̄R0/R0. If x is a nontrivial element of T1 ∩ N̄R0/R0, then

the commutator

[x, cȳ
2n(c−1)

],

written as an element of T1 × T2 × · · · × T2s , has a nontrivial component in Tc+1

since 2s ≥ 2e+1 > c. This, however, contradicts (6.3).
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Thus, for any element y ∈ b̄N̄ the power y2
t

normalizes each factor Si in (6.4).

Let 2d be the highest power of 2 dividing |G : K|, and let u = max{t, d}. Then
y2

u ∈ R1 by (6.5), since y2
u ∈ K̄ and y2

u

normalizes each Si in (6.4) by the choice

of u.

As a result, in the quotient Ḡ/R1 all elements of the coset b̄N̄R1/R1 of the

Sylow 2-subgroup N̄R1/R1 of K̄/R1 have exponent dividing 2u. We can now apply

Theorem 6.1, by which the nonsoluble length of K̄/R1 is at most u. Then the

nonsoluble length of K̄ is at most u + 1. Clearly, the nonsoluble length of Ḡ/K̄

is bounded in terms of |G : K|. As a result, since the number u depends only

on |G : K|, n, and c, the nonsoluble length of Ḡ is bounded in terms of these

parameters only. Since this holds for any quotient of the profinite group G by a

normal open subgroup, the group G has finite nonprosoluble length by Lemma 6.2.

This completes the proof of Proposition 6.3.

7. Profinite Groups

We are now ready to handle the general case of profinite groups using Corollary 5.6

on virtually prosoluble groups and induction on the nonprosoluble length. First, we

eliminate infinite Cartesian products of non-abelian finite simple groups.

Lemma 7.1. Suppose that G is a profinite group that is a Cartesian product of

non-abelian finite simple groups. If every element of G has a countable Engel sink,

then G is finite.

Proof. Suppose the opposite: then G is a Cartesian product of infinitely many

non-abelian finite simple groups Gi over an infinite set of indices i ∈ I. Every

subgroup Gi contains an element gi ∈ Gi with a nontrivial smallest Engel sink

E (gi) �= {1}. (Actually, any nontrivial element of Gi has a nontrivial Engel sink,

since an Engel element of a finite group belongs to its Fitting subgroup by Baer’s

theorem [7, Satz III.6.15].) By Lemma 2.5, for any s ∈ E (gi) we have s = [s, kgi]

for some k ∈ N, and then also

s = [s, klgi] for any l ∈ N. (7.1)

For every i, choose a nontrivial element si ∈ E (gi) ⊆ Gi. For any subset J ⊆ I,

consider the (infinite) product

sJ =
∏
j∈J

sj .

Let

g =
∏
i∈I

gi.

If E (g) is any Engel sink of g in G, then for some k ∈ N the commutator [sJ , kg]

belongs to E (g). Because of the properties (7.1), all the components of [sJ , kg] in the

2050015-22

B
ul

l. 
M

at
h.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
89

.3
1.

38
.2

21
 o

n 
05

/2
5/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

May 19, 2020 10:28 WSPC/1664-3607 319-BMS 2050015

Compact groups with countable Engel sinks

factors Gj for j ∈ J are nontrivial, while all the other components in Gi for i �∈ J

are trivial by construction. Therefore for different subsets J ⊆ I we thus obtain

different elements of E (g). The infinite set I has at least continuum of different

subsets, whence E (g) is uncountable, contrary to g having a countable Engel sink

by the hypothesis.

Theorem 7.2. Suppose that G is a profinite group in which every element has a

countable Engel sink. Then G has a finite normal subgroup N such that G/N is

locally nilpotent.

Proof. By Proposition 6.3, the group G has finite nonprosoluble length l. This

means that G has a normal series

1 = L0 ≤ R0 < L1 ≤ R1 < L1 ≤ · · · ≤ Rl = G

in which each quotient Li/Ri−1 is a (nontrivial) Cartesian product of non-abelian

finite simple groups, and each quotient Ri/Li is prosoluble (possibly trivial). We

argue by induction on l. When l = 0, the group G is prosoluble, and the result

follows by Theorem 5.5.

Now, let l ≥ 1. By Lemma 7.1 each of the nonprosoluble factors Li/Ri−1 is finite.

In particular, the subgroup L1 is virtually prosoluble, and therefore γ∞(L1) is finite

by Corollary 5.6. The quotient R1/γ∞(L1) is prosoluble by Lemma 2.2. Hence, the

nonprosoluble length of G/γ∞(L1) is l − 1. By the induction hypothesis we obtain

that γ∞(G/γ∞(L1)) is finite, and therefore γ∞(G) is finite. By Theorem 3.1 the

quotient G/γ∞(G) is locally nilpotent, and the proof is complete.

8. Compact Groups

In this section, we prove the main Theorem 1.2 about compact groups with count-

able Engel sinks. We use the structure theorems for compact groups and the results

of the preceding section on profinite groups. Parts of the proof are similar to the

proof of the main result of [12], that is, Theorem 1.1 on compact groups with finite

Engel sinks. Rather than modifying the whole proof of that theorem, we are able

to reduce the proof to the situation where all Engel sinks are finite, and then apply

Theorem 1.1.

By the well-known structure theorems (see, for example, [6, Theorems 9.24 and

9.35]), the connected component of the identity G0 of a compact (Hausdorff) group

G is a divisible group such that G0/Z(G0) is a Cartesian product of (non-abelian)

simple compact Lie groups, while the quotient G/G0 is a profinite group. (Recall

that a group H is said to be divisible if for every h ∈ H and every positive integer

k there is an element x ∈ H such that xk = h.)

We shall be using the following lemma from [12].

Lemma 8.1 ([12, Lemma 5.3]). Suppose that G is a compact group in which

every element has a finite Engel sink and the connected component of the identity
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G0 is abelian. Then for every g ∈ G and for any x ∈ G0 we have

[x, kg] = 1 for some k = k(x, g) ∈ N.

For compact groups with countable Engel sinks, we begin with eliminating sim-

ple Lie groups.

Lemma 8.2. A non-abelian simple compact Lie group contains an element all of

whose Engel sinks are uncountable.

Proof. It is well known that any non-abelian compact Lie group G contains a

subgroup isomorphic either to SO3(R) or SU2(C) (see, for example, [6, Proposi-

tion 6.46]), and therefore in any case, a section isomorphic to SO3(R). Since the

property that every element has a countable Engel sink is inherited by sections, it

is sufficient to consider the case G = SO3(R).

Consider the following elements of SO3(R):

aϑ =

⎛
⎜⎝

cosϑ sinϑ 0

− sinϑ cosϑ 0

0 0 1

⎞
⎟⎠, ϑ ∈ R,

and

g =

⎛
⎜⎝
−1 0 0

0 1 0

0 0 −1

⎞
⎟⎠.

We have

[aϑ, g] = a−1
ϑ ag =

⎛
⎜⎝

cos(−ϑ) sin(−ϑ) 0

− sin(−ϑ) cos(−ϑ) 0

0 0 1

⎞
⎟⎠ ·

⎛
⎜⎜⎝
cosϑ − sinϑ 0

sinϑ cosϑ 0

0 0 1

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

cos(−2ϑ) sin(−2ϑ) 0

− sin(−2ϑ) cos(−2ϑ) 0

0 0 1

⎞
⎟⎟⎠ = a−2ϑ,

and then by induction,

[aϑ, ng] = a(−2)nϑ.

Therefore any Engel sink of g must contain, for every ϑ ∈ R, an element of the form

a(−2)n(ϑ)ϑ for some n(ϑ) ∈ N. Since for ϑ we can choose continuum elements of R

that are linearly independent over Q, any Engel sink of g must be uncountable.

The next lemma is a step towards proving that every element has a finite Engel

sink.
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Lemma 8.3. Suppose that G is a compact group in which every element has a

countable Engel sink. If G has an abelian subgroup A with locally nilpotent quotient

G/A, then every element of G has a finite Engel sink.

Proof. Since G/A is locally nilpotent, for showing that an element g ∈ G has

a finite Engel sink we can obviously assume that G = A〈g〉. Let {s1, s2, . . .} be

a countable Engel sink of g. By Lemma 2.6 there is an open subset U of A and

positive integers m,n such that

[u, ng] = sm for all u ∈ U.

The union of all translates aU = {au |u ∈ U} over a ∈ A is equal to A. Since A is

compact, it is equal to the union of finitely many such translates:

A = a1U ∪ a2U ∪ · · · ∪ akU.

Then any element of A has the form aiu for u ∈ U , and

[aiu, ng] = [ai, ng][u, ng] = [ai, ng]sm,

where we used the fact that A is abelian. Hence the set

S = {[a1, ng]sm, . . . , [ak, ng]sm}
is a finite Engel sink of g. Indeed, for any x ∈ A and for any k ≥ n we have

[x, kg] = [[x, k−ng], ng] ∈ S.

We are now ready to prove the main result.

Theorem 8.4. Suppose that G is a compact group in which every element has a

countable Engel sink. Then G has a finite normal subgroup N such that G/N is

locally nilpotent.

Proof. In view of Lemma 8.2, the connected component of the identity G0 is an

abelian divisible normal subgroup.

Lemma 8.5. For every g ∈ G and for any x ∈ G0, we have

[x, kg] = 1 for some k = k(x, g) ∈ N.

Proof. We can obviously assume that G = G0〈g〉. The group G0〈g〉 satisfies the

hypothesis of Lemma 8.3 and therefore every element in it has a finite Engel sink.

Then for any x ∈ G0 we have [x, kg] = 1 for some k = k(x, g) ∈ N by Lemma 8.1.

We proceed with the proof of Theorem 8.4. Applying Theorem 7.2 to the profi-

nite group Ḡ = G/G0 we obtain a finite normal subgroup D with locally nilpotent
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quotient. Then every element g ∈ Ḡ has a finite smallest Engel sink Ē (g) contained

in D. Consider the subgroup generated by all such sinks:

E = 〈Ē (g) | g ∈ Ḡ〉 ≤ D.

Clearly, Ē (g)h = Ē (gh) for any h ∈ Ḡ; hence E is a normal finite subgroup of Ḡ.

Note that Ḡ/E is also locally nilpotent by Theorem 3.3 as an Engel profinite group.

We now consider the action of Ḡ by automorphisms on G0 induced by conjuga-

tion.

Lemma 8.6. The subgroup E acts trivially on G0.

Proof. The abelian divisible group G0 is a direct product A0×
∏

p Ap of a torsion-

free divisible group A0 and divisible Sylow p-subgroups Ap over various primes p.

Clearly, every Sylow subgroup Ap is normal in G.

First, we show that E acts trivially on each Ap. It is sufficient to show that

for every g ∈ Ḡ every element z ∈ Ē (g) acts trivially on Ap. Consider the action

of 〈z, g〉 on Ap. Note that 〈z, g〉 = 〈z〈g〉〉〈g〉, where 〈z〈g〉〉 is a finite g-invariant

subgroup, since it is contained in the finite subgroup E. For any a ∈ Ap we have

[a, kg] = 1 for some k = k(a, g) ∈ N by Lemma 8.5. Hence the subgroup

〈a〈g〉〉 = 〈a, [a, g], [a, g, g], . . .〉
is a finite p-group; note that this subgroup is g-invariant. The images of 〈a〈g〉〉 under
the action of elements of the finite group 〈z〈g〉〉 generate a finite p-group B, which is

〈z, g〉-invariant. It follows from Lemma 8.5 that 〈z, g〉/C〈z,g〉(B) must be a p-group.

Indeed, otherwise there is a p′-element y ∈ 〈z, g〉/C〈z,g〉(B) that acts nontrivially on

the Frattini quotient V = B/Φ(B). Then [[V, y], y] = [V, y] �= 1 and C[V,y](y) = 1,

whence [V, y] = {[v, y] | v ∈ [V, y]} and therefore also [V, y] = {[v, ny] | v ∈ [V, y]}
for any n, contrary to Lemma 8.5. Thus, 〈z, g〉/C〈z,g〉(B) is a finite p-group. But

since z ∈ Ē (g), by Lemma 2.5 we have z = [z,mg] for some m ∈ N. Since a finite

p-group is nilpotent, this implies that z ∈ C〈z,g〉(B). In particular, z centralizes a.

Thus, E acts trivially on Ap, for every prime p.

We now show that E also acts trivially on the quotient W = G0/
∏

p Ap of

G0 by its torsion part. Note that W can be regarded as a vector space over Q.

Every element y ∈ E has finite order and therefore by Maschke’s theorem W =

[W, y]×CW (y) and [W, y] = {[w, ny] |w ∈ [W, y]} for any n. If [W, y] �= 1, then this

contradicts Lemma 8.5.

Thus, E acts trivially both on W and on
∏

p Ap. Then any automorphism η of

G0 induced by conjugation by h ∈ E acts on every element a ∈ A0 as aη = ah = at,

where t = t(a, h) is an element of finite order in G0. Then aη
i

= ati, and therefore

the order of t must divide the order of η.

Assuming the action of E on G0 to be nontrivial, choose an element h ∈ E

acting on G0 as an automorphism η of some prime order p. Then there is a ∈ A0

such that ah = as, where s ∈ Ap has order p. There is an element a1 ∈ A0 such that
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ap1 = a. Then ah1 = a1s1, where sp1 = s. Thus, |s1| = p2, and therefore p2 divides

the order of η. We arrived at a contradiction with |η| = p.

We now finish the proof of Theorem 8.4. Let F be the full inverse image of

E in G. Then we have normal subgroups G0 ≤ F ≤ G such that G/F is locally

nilpotent, F/G0 is finite, and G0 is contained in the center of F by Lemma 8.6.

Since F has center of finite index, the derived subgroup F ′ is finite by Schur’s

theorem [7, Satz IV.2.3]. The quotient G/F ′ is an extension of an abelian subgroup

by a locally nilpotent group. Hence every element of G/F ′ has a finite Engel sink

by Lemma 8.3. By Theorem 1.1 the group G/F ′ has a finite normal subgroup with

locally nilpotent quotient. The full inverse image of this subgroup is a required finite

normal subgroup N such that G/N is locally nilpotent. The proof of Theorem 8.4

is complete.

Acknowledgments

The authors thank JohnWilson for stimulating discussions. The work of the first au-

thor was supported by the Mathematical Center in Akademgorodok, the agreement

with Ministry of Science and High Education of the Russian Federation No. 075-

15-2019-1613. The first author thanks CNPq-Brazil and the University of Brasilia

for support and hospitality that he enjoyed during his visit to Brasilia in 2019. The

second author was supported by FAPDF and CNPq-Brazil.

References

[1] N. Bourbaki, Elements of Mathematics. Lie Groups and Lie Algebras. Part I:
Chaps. 1–3 (Hermann, Paris, Addison-Wesley, Reading, MA, 1975).

[2] E. Breuillard and T. Gelander, A topological Tits alternative, Ann. Math. (2) 166(2)
(2007) 427–474.

[3] E. Detomi, M. Morigi and P. Shumyatsky, Bounding the exponent of a verbal sub-
group, Ann. Mat. 193 (2014) 1431–1441.

[4] W. Feit and J. G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13
(1963) 775–1029.

[5] P. Hall and G. Higman, The p-length of a p-soluble group and reduction theorems
for Burnside’s problem, Proc. London Math. Soc. (3) 6 (1956) 1–42.

[6] K. H. Hofmann and S. A. Morris, The Structure of Compact Groups (De Gruyter,
Berlin, 2006).

[7] B. Huppert, Endliche Gruppen. I (Springer, Berlin, 1967).
[8] B. Huppert and N. Blackburn, Finite Groups. II (Springer, Berlin, 1982).
[9] J. L. Kelley, General Topology, Graduate Texts in Mathematics, Vol. 27 (Springer,

New York, 1975).
[10] E. I. Khukhro and P. Shumyatsky, Words and pronilpotent subgroups in profinite

groups, J. Austral. Math. Soc. 97(3) (2014) 343–364.
[11] E. I. Khukhro and P. Shumyatsky, Nonsoluble and non-p-soluble length of finite

groups, Israel J. Math. 207 (2015) 507–525.
[12] E. I. Khukhro and P. Shumyatsky, Almost Engel compact groups, J. Algebra 500

(2018) 439–456.

2050015-27

B
ul

l. 
M

at
h.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
89

.3
1.

38
.2

21
 o

n 
05

/2
5/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



2nd Reading

May 19, 2020 10:28 WSPC/1664-3607 319-BMS 2050015

E. I. Khukhro & P. Shumyatsky

[13] M. Lazard, Groupes analytiques p-adiques, Publ. Math. Inst. Hautes Études Sci. 26
(1965) 389–603.

[14] Yu. Medvedev, On compact Engel groups, Israel J. Math. 185 (2003) 147–156.
[15] C. D. Reid, Local Sylow theory of totally disconnected, locally compact groups,

J. Group Theory 16 (2013) 535–555.
[16] L. Ribes and P. Zalesskii, Profinite Groups (Springer, Berlin, 2010).
[17] D. J. S. Robinson, A Course in the Theory of Groups (Springer, New York, 1996).
[18] S. Rodrigues and P. Shumyatsky, Exponent of a finite group admitting a coprime

automorphism, J. Pure Appl. Algebra 224(9) (2020) 106370.
[19] A. Shalev, Polynomial identities in graded group rings, restricted Lie algebras and

p-adic analytic groups, Trans. Amer. Math. Soc. 337(1) (1993) 451–462.
[20] P. Shumyatsky, On pro-p groups admitting a fixed-point-free automorphism,

J. Algebra 228(1) (2000) 357–366.
[21] P. Shumyatsky, Commutators in residually finite groups, Israel J. Math. 182 (2011)

149–156.
[22] P. Shumyatsky, On the exponent of a verbal subgroup in a finite group, J. Austral.

Math. Soc. 93 (2012) 325–332.
[23] J. S. Wilson, On the structure of compact torsion groups, Monatsh. Math. 96 (1983)

57–66.
[24] J. S. Wilson, Profinite Groups (Clarendon Press, Oxford, 1998).
[25] J. S. Wilson and E. I. Zelmanov, Identities for Lie algebras of pro-p groups, J. Pure

Appl. Algebra 81(1) (1992) 103–109.
[26] E. Zelmanov, Nil Rings and Periodic Groups, Korean Mathematical Society Lecture

Notes in Mathematics (Seoul, 1992).
[27] E. Zelmanov, Lie methods in the theory of nilpotent groups, inGroups’ 93 Galaway/St

Andrews (Cambridge University Press, Cambridge, 1995), pp. 567–585.
[28] E. Zelmanov, Lie algebras and torsion groups with identity, J. Comb. Algebra 1(3)

(2017) 289–340.

2050015-28

B
ul

l. 
M

at
h.

 S
ci

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
89

.3
1.

38
.2

21
 o

n 
05

/2
5/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.


	Introduction
	Preliminaries
	Pronilpotent Groups
	Coprime Actions
	Prosoluble Groups
	Bounding the Nonprosoluble Length
	Profinite Groups
	Compact Groups

