
A BENCHMARK FOR ASSESSING
NANOSATELLITE ON-BOARD COMPUTER

POWER-EFFICIENCY AND PERFORMANCE

ANA CAROLINA CABRAL PIMENTEL DE MELO

MASTER’S DEGREE THESIS PRESENTED IN THE POSTGRADUATE
PROGRAM IN ELECTRONIC SYSTEMS AND AUTOMATION

DEPARTMENT OF ELECTRICAL ENGINEERING

FACULDADE DE TECNOLOGIA

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

A BENCHMARK FOR ASSESSING
NANOSATELLITE ON-BOARD COMPUTER
POWER-EFFICIENCY AND PERFORMANCE

ANA CAROLINA CABRAL PIMENTEL DE MELO

Supervisor: PROF. DR. RENATO ALVES BORGES, ENE/UNB

DISSERTAÇÃO DE MESTRADO EM ENGENHARIA ELÉTRICA

BRASÍLIA-DF, 16 DE DEZEMBRO DE 2019.

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE TECNOLOGIA

DEPARTAMENTO DE ENGENHARIA ELÉTRICA

A BENCHMARK FOR ASSESSING
NANOSATELLITE ON-BOARD COMPUTER
POWER-EFFICIENCY AND PERFORMANCE

ANA CAROLINA CABRAL PIMENTEL DE MELO

DISSERTAÇÃO DE MESTRADO ACADÊMICO SUBMETIDA AO DEPARTAMENTO DE

ENGENHARIA ELÉTRICA DA FACULDADE DE TECNOLOGIA DA UNIVERSIDADE DE

BRASÍLIA, COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO

GRAU DE MESTRE EM ENGENHARIA ELÉTRICA.

APROVADA POR:

Prof. Dr. Renato Alves Borges, ENE/UnB
Orientador

Dr. Thyrso Villela Neto, CGEE/INPE
Examinador externo

Prof. Dr. Marcelo Grandi Mandelli, CIC/UnB
Examinador interno

BRASÍLIA, 16 DE DEZEMBRO DE 2019.

FICHA CATALOGRÁFICA
ANA CAROLINA CABRAL PIMENTEL DE MELO
A BENCHMARK FOR ASSESSING NANOSATELLITE ON-BOARD COMPUTER
POWER-EFFICIENCY AND PERFORMANCE
2019xv, 147p., 201x297 mm
(ENE/FT/UnB, Mestre, Engenharia Elétrica, 2019)
Dissertação de Mestrado - Universidade de Brasília
Faculdade de Tecnologia - Departamento de Engenharia Elétrica

REFERÊNCIA BIBLIOGRÁFICA

ANA CAROLINA CABRAL PIMENTEL DE MELO (2019) A BENCHMARK FOR AS-
SESSING NANOSATELLITE ON-BOARD COMPUTER POWER-EFFICIENCY AND PER-
FORMANCE. Dissertação de Mestrado em Engenharia Elétrica, Publicação 736/19, Depar-
tamento de Engenharia Elétrica, Universidade de Brasília, Brasília, DF, 147p.

CESSÃO DE DIREITOS

AUTOR: Ana Carolina Cabral Pimentel de Melo
TÍTULO: A BENCHMARK FOR ASSESSING NANOSATELLITE ON-BOARD COM-
PUTER POWER-EFFICIENCY AND PERFORMANCE.
GRAU: Mestre ANO: 2019

É concedida à Universidade de Brasília permissão para reproduzir cópias desta dissertação de
Mestrado e para emprestar ou vender tais cópias somente para propósitos acadêmicos e cientí-
ficos. O autor se reserva a outros direitos de publicação e nenhuma parte desta dissertação de
Mestrado pode ser reproduzida sem a autorização por escrito do autor.

__
Ana Carolina Cabral Pimentel de Melo
ana.cpmelo95gmail.com

Agradecimentos

Primeiramente, gostaria de expressar minha eterna gratidão à minha família, que são o
motivo da minha existência e que possibilitaram essa conquista, assim como todas as anteri-
ores. Mãe, pai, vó, sem vocês eu nada seria. Obrigada pelo apoio, compreensão e amor que
sempre me deram.

Gostaria de agradecer imensamente ao meu orientador, Prof. Renato, por essa oportu-
nidade que mudou a minha vida e mais ainda, por ter me recebido de braços abertos, sempre
muito prestativo, incentivando e inspirando o trabalho de todos dentro do laboratório. Sou
extremamente grata aos professores Sandro Haddad e Daniel Café pela atenção, paciência
e por compartilharem comigo um pouco do vasto conhecimento que possuem. Reconheço
também a ajuda sempre presente dos professores parceiros do laboratório, Prof. Simone e
em especial, Prof. Chantal, por ser uma inspiração como professora, mãe e engenheira em
um domínio ainda predominantemente masculino.

Aos meus amigos da universidade, em especial Letícia, Luan, Lukas e Victor, que com-
partilharam o prazer e o estresse do dia-a-dia, meu muito obrigada. Aprendi muito com cada
um de vocês e os recordarei para sempre com muito carinho e gratidão. Obrigada também
à minhas amigas de infância, Ana Beatriz e Luisa, e aos parceiros da graduação, Lorena e
Samael, por todo suporte emocional para concluir essa etapa da minha vida.

Aproveito para expressar ao meu orientador da graduação, Prof. Vincent Bourguet, que
suas palavras de incentivo me acompanham até hoje. Por fim, gostaria de agradecer o apoio
das entidades que possibilitaram a realização do presente trabalho: Universidade de Brasília,
Fundação de Apoio a Pesquisa do Distrito Federal (FAPDF), Coordenação de Aperfeiçoa-
mento de Pessoal de Nível Superior (CAPES) e Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq).

i

Abstract

This manuscript is aimed at specifying, implementing and executing a benchmark to
evaluate the performance of different microcontrollers of nanosatellite onboard computers.
The focus of this work is on Attitude Determination and Control System (ADCS) applica-
tions and therefore, a review of common attitude determination and control algorithms is
presented in order to identify the main features to be explored. The benchmark proposal
specifies a workload, which corresponds to a set of instructions that represent the appli-
cation in question, a metric for evaluating the performance of different architectures and
operational rules to ensure fair and reliable results. The implementation was carried out in
a higher-level language, C, and it was validated by running it on four different architectures,
where execution time and power measurements were used to evaluate energy consumption.
The development platforms evaluated were the Texas Instruments MSP430FR5994 Launch-
pad Kit, STMicroeletronics Nucleo-L432KC board, Arduino Uno and Raspberry Pi 3B. The
results obtained show that Arduino Uno has the highest energy consumption (1.41mJ) while
Nucleo L432KC has the lowest (0.05mJ). These results were also analyzed with the purpose
of using these platforms in the projects currently developed at the Laboratory of Simulation
and Control of Aerospace Systems at the University of Brasilia where the Raspberry Pi was
chosen for the applications of the nanosatellite simulator facility and the Nucleo L432KC for
LAICAnSat activities.

Index terms: Onboard computer, power efficiency, nanosatellite, benchmark.

ii

Resumo

O presente manuscrito tem como escopo a especificação, implementação e execução de
um benchmark para avaliar o desempenho de diferentes microcontroladores de computa-
dores de bordo de nanossatélites. O foco deste trabalho está nas aplicações dos sistemas
de determinação e controle de atitude (ADCS, do inglês Attitude Determination and Con-
trol System), e portanto, uma revisão de algoritmos de determinação e controle de atitude
utilizados em missões espaciais é apresentada, visando a identificação de recursos a serem
explorados. A proposta do benchmark especifica uma carga de trabalho, que corresponde a
um conjunto de instruções representativas da aplicação em questão, uma métrica para avaliar
o desempenho de diferentes arquiteturas e regras operacionais para garantir resultados justos
e confiáveis. A implementação foi realizada em linguagem de alto nível, C, e sua validação
foi realizada através de sua execução em quatro diferentes arquiteturas, onde medidas de
tempo e consumo de potência são utilizados para avaliar o consumo de energia. As platafor-
mas de desenvolvimento avaliadas foram o MSP430FR5994 Launchpad Kit da Texas Instru-
ments, a placa Nucleo-L432KC da STMicroeletronics, o Arduino Uno e o Raspberry Pi 3B.
Os resultados obtidos mostram que o Arduino Uno apresenta o maior consumo de energia
(1.41mJ) enquanto o Nucleo L432KC possui o menor (0.05mJ). Esses resultados também
foram analisados visando a utilização dessas plataformas nos projetos desenvolvidos atual-
mente no Laboratório de Simulação e Controle de Sistemas Aeroespaciais da Universidade
de Brasília, onde o Raspberry Pi foi escolhido para as aplicações do simulador de atitude de
nanossatélites e o Nucleo L432KC para as atividades do LAICAnSat.

Palavras-chave: Computador de bordo, eficiencia energética, nanossatélite, benchmark.

iii

Contents

AGRADECIMENTOS . I

ABSTRACT . II

RESUMO . III

ACRONYMS .VIII

1 INTRODUCTION . 1
1.1 SMALL SATELLITES . 1
1.1.1 CUBESAT SUBSYSTEMS . 3
1.2 WORKPLACE FRAMEWORK . 5
1.2.1 LAICANSAT . 6
1.2.2 THREE-AXIS NANOSATELLITE SIMULATOR FACILITY . 8
1.3 OBJECTIVES . 9
1.4 THESIS OUTLINE . 9

2 THE NANOSATELLITE OBC BENCHMARK . 11
2.1 WORKLOAD . 11
2.1.1 OVERVIEW OF COMMON BENCHMARKS . 14
2.2 THE BENCHMARK PROPOSITION . 18
2.2.1 IMPLEMENTATION . 18
2.2.2 METRICS AND RULES . 19
2.3 TARGET DEVICES . 20
2.3.1 MEASUREMENT PROCEDURES . 22
2.4 SUMMARY . 23

3 EXPERIMENTAL RESULTS . 25
3.1 EXECUTION TIME . 26
3.2 ENERGY CONSUMPTION . 27
3.3 REFERENCE PLATFORM . 30
3.4 LODESTAR APPLICATIONS . 31

4 CONCLUSION . 33

iv

4.1 FUTURE WORKS . 34

REFERENCES . 35

REFERENCES . 35

A REFERENCE FRAMES . 40
A.1 BODY-FIXED FRAME . 40
A.2 LOCAL-VERTICAL/LOCAL-HORIZONTAL FRAME . 41
A.3 EARTH-CENTERED-EARTH-FIXED . 41
A.4 EARTH-CENTERED INERTIAL . 42

B ATTITUDE REPRESENTATIONS . 43
B.1 DEFINITIONS . 43

List of Figures

1.1 Common CubeSat Configurations [3]. .. 2
1.2 Poly-Picosatellite Orbital Deployer [5]. ... 2
1.3 Usual CubeSat architecture. ... 4
1.4 LAICAnSat mission lifecycle. .. 6
1.5 LAICAnSat developments.. 7
1.6 Pressure valve prototype [19]. ... 8
1.7 Helmholtz cage.. 9

2.1 Generic setup of measurement. ... 20
2.2 Setup of measurement. .. 22

3.1 Power consumption per MHz (mW/MHz). .. 27
3.2 Energy consumed (mJ). ... 28
3.3 Power consumption (mW/MHz) per function. .. 29
3.4 EnergyTrace++ comparison.. 30

A.1 3U CubeSat body-fixed frame. .. 40
A.2 Local-Vertical/Local-Horizontal Frame. .. 41
A.3 ECEF reference frame. .. 41
A.4 ECI reference frame.. 42

B.1 Roll (φ), pitch (θ) and yaw (ψ) angles. .. 44

vi

List of Tables

1.1 Small satellite classification by mass. ... 1
1.2 Common benchmarks. .. 5
1.3 Embedded benchmarks.. 5

2.1 Attitude representations summary. ... 12
2.2 Benchmark descriptions... 15
2.3 BEEBS benchmarks. .. 17
2.4 Embedded benchmarks description. ... 17
2.5 Commercial onboard computers microprocessors (adapted from [?, ?]).......... 21
2.6 Hardware specifications. .. 21

3.1 Code size. .. 26
3.2 Elapsed time. .. 26
3.3 Power consumption. ... 27
3.4 Power and energy consumption. .. 28
3.5 Results related to a reference platform .. 31
3.6 Hardware peripherals. ... 32

vii

viii

Acronyms

ADA Analysis, Design and Algorithm
ADC Analog to Digital Converter

ADCS Attitude Determination and Control System
ALGOL60 Algorithm Language 1960

AO Atomic Oxygen
BEEBS Bristol Energy Efficiency Benchmark Suite
BLAS Basic Linear Algebra Subprograms
C&DH Command and Data Handling
CDS CubeSat Design Specifications

COTS Commercial-Off-the-Shelf
CPU Central Processing Unit
CRC Cyclic Redundancy Check
DEC Digital Equipment Corporation
DMA Direct Memory Access

DMIPS Dhrystone Million Instructions per Second
EEMBC Embedded Microprocessor Benchmark Consortium

EPS Electrical Power System
ESOQ Estimators of the Optimal Quaternion
FLOPS Floating-point Operations Per Second
FOAM Fast Optimal Attitude Matrix

FPU Floating-point Unit
GCC GNU Compiler Collection
GPIO General Purpose Input/Output
GPU Graph Processing Unit

HDMI High-Definition Multimedia Interface
IDE Integrated Development Environment
LEO Low Earth orbit

LODESTAR Laboratory of Simulation and Control of Aerospace Systems
LPM Low Power Mode
MCU Microcontroller Unit
OBC Onboard Computer

P-POD Poly-Picosatellite Orbital Deployer
PID Proportional-Integral-Derivative

PWM Pulse Width Modulation

QUEST Quaternion Estimator
RAM Random Access Memory
ROM Read Only Memory
SO(n) Special Orthogonal group
SPEC Standard Performance Evaluation Corporation
SPI Serial Peripheral Interface

TRIAD Triaxial Attitude Determination
TT&C Telemetry, Tracking and Command
UHV Ultra-high Vacuum
ULP Ultra-low Power
UnB University of Brasília
USB Universal Serial Bus
UV Ultraviolet

WIPS Whetstone Instructions Per Second

Chapter 1

Introduction

1.1 Small satellites

The interest in space exploration dates back to the dispute between the United States and
the Soviet Union in search of pioneering access to space. This dispute, known as the Space
Race, was marked by the launch of the first artificial satellite, Sputnik I, in 1957. Since
then, the magnitude of space missions has increased, thereby increasing substantially the
complexity and size of spacecrafts, as well as development time. All of these factors have
limited access to space to only a few wealthy companies and government agencies with large
financial budgets and technically specialized teams.

In this context, the emergence of small satellite technologies has become an interesting
approach for rapid and democratic access to space. The small satellite category encompasses
the spacecrafts with total mass below 180kg, classified according to Table 1.1 [1].

Classification Mass (kg)

Mnisatellite 100-180
Microsatellite 10-100
Nanosatellite 1-10
Picosatellite 0.01-1

Femtosatellite 0.001-0.01

Table 1.1: Small satellite classification by mass.

In particular, a specific class of nanosatellites, the CubeSats, leveraged this new mindset
of developing space technology cheaper, faster and more independently. The concept was
created by Prof. Robert Twiggs and Prof. Jordi Puig-Suari at Standford University and Cali-
fornia Polytechnic State University [2], initially thought as an educational tool for university
students to learn about the process of designing a space mission through hands-on experi-
ence. The development cycle should be short enough to be completed during an undergrad-
uate course, and this has been achieved through miniaturization of real aerospace systems

1

with simplified functions and the use of commercially available technology. A CubeSat, as
the name implies, is a cubic-shaped miniaturized satellite with edges of 10cm. Each cube
represents a unit (1U) that can be stacked in two or more to form CubeSats of up to 24U,
with a limited weight of 1.33kg per unit. Figure 1.1 shows common CubeSat configurations.

Figure 1.1: Common CubeSat Configurations [3].

Nowadays, this new concept of designing a space mission is widely spread, even beyond
universities, being adopted by private companies and government agencies in a variety of
applications, such as remote sensing, technology demonstration, communications and oth-
ers [3, 4]. It complies with an open-source specification of basic physical features and safety
requirements, the CubeSat Design Specification (CDS) [5].

In general, this satellite class is known for being released as secondary payloads aboard
larger missions, and the CDS benefited both developers, by optimizing launch costs even
further, and launchers, by ensuring the integration of the modules and safety of the launch
vehicle. Shown in Figure 1.2 is the Poly-Picosatellite Orbital Deployer (P-POD), the first
design meant to release on orbit three CubeSats as secondary payloads of larger spacecrafts.

Figure 1.2: Poly-Picosatellite Orbital Deployer [5].

2

1.1.1 CubeSat subsystems

Although it is a miniaturized version, a CubeSat follows the architecture of large space
systems, which comprises the following subsystems, each one developing its specific func-
tionality. Figure 1.3 shows the generic architecture, adapted from [6, 7]. A summary of the
main subsystems is presented bellow in accordance with [8].

• Command and Data Handling (C&DH) system: it gathers, processes and formats
housekeeping and mission data and manages communications between other systems.
This functionality is usually performed by an onboard computer (OBC), that also
comprises the memories (boot, safeguard and work memories), data buses and bus
controllers, debug interface and real-time clock.

• Attitude Determination and Control System (ADCS): as the name implies, it is
responsible to determine the attitude of the spacecraft and control its orientation.
It uses actuators such as reaction wheels or magnetic torque rods to stabilize the
vehicle or to achieve a required maneuver, e.g. point solar panels towards the sun or
antennas towards the Earth. In order to do so, it collects data from sensors, such as
star trackers, sun sensors, magnetometers, gyroscopes, and others to determine its
orientation relative to some reference frame.

• Telemetry, Tracking and Command (TT&C) system: it is the interface between the
spacecraft and the ground station. It allows sending and receiving information both
ways, as well as tracking the location of the satellite. This information can be
telemetry data to inform about the health of the satellite and/or commands from the
ground station to execute a specific function.

• Electrical Power System (EPS): it is responsible for providing a stable and continuous
power source. That means it conditions, stores and distributes the electrical power to
all spacecraft systems, as well as protects the electronics from non-nominal voltages
and currents. It consists mainly of a power source, energy storage, regulation and
control units, and power distribution.

• Payload: it consists of the necessary hardware to perform the intended satellite mis-
sion. It may be remote sensing, imaging, technology demonstration, science or others.

Regarding the computer system architecture, it can be centralized, distributed or a com-
bination of both (hybrid) [7, 9, 10]. In the first, there is one main processing unit with point-
to-point interfaces between the other ones, achieving a highly reliable topology if employed
with few subsystems. In the second one, there is more than one processor sharing a common

3

Figure 1.3: Usual CubeSat architecture.

data bus, which is very useful for implementing fault tolerance and redundancy with limited
impact on size, weight and power. In general, a hybrid approach is used when there are
systems that require critical processing and others that can rely on one single processor unit
to perform their tasks.

Moreover, in the case of nanosatellites, due to their limited size, weight and power con-
straints, multiple processing tasks are often incorporated into a single onboard computer,
such as ADCS and C&DH functionalities. This type of space mission is characterized by
a reduced-lifetime (less than five years) at a Low Earth Orbit (LEO), making the use of
commercial-off-the-shelf (COTS) processors more attractive than ad-hoc1 development.

Throughout the computer system design, it is important to have a quantitative mechanism
for comparing computer resources. A common approach to optimize a design process is to
use a benchmark since it provides a common method of comparing different systems across
different architectures by simulating a particular type of workload on a component or system.
It prevents the designer from making oversized or undersized choices, saving costumers
money and development time.

A benchmark program should contain a set of relevant instructions that reflects the fi-
nal operation. According to [10], the software for onboard processing can be classified as
control system software, system management software, command and data handling soft-
ware, payload management and operating system software. The focus of this work relies on
the control system software, which is mathematically intensive and performs many floating-
point computations. Also, a metric is used to evaluate different devices. Due to limited
power constraints, in the case of nanosatellites it is interesting to have a metric to evaluate
energy consumption as well. In Table 1.2 the workloads of some common benchmarks are
described, however these are not designed for embedded applications.

1For a particular purpose or need.

4

Name Description

Whetstone It evaluates performance on floating-point operations.

Linpack It evaluates basic vector and matrix operations with floating-point calculations.

Dhrystone It addresses string handling and integer operations.

SPEC Comprises a set of programs to evaluate performance of computing systems.

JouleSort It measures the amount of energy required to sort 1010 records.

Table 1.2: Common benchmarks.

In fact, the embedded domain is led by a consortium that comprises all the main sup-
pliers and provides suites for different applications, the Embedded Microprocessor Bench-
mark Consortium (EEMBC), which concentrates most of the work developed in this area.
Table 1.3 presents benchmarks focused on providing small programs. Only EEMBC and
BEEBS provide energy measurements, but the EEMBC benchmarks are not readily accessi-
ble due to the high cost to adhere to the consortium and the workloads from BEEBS do not
exploit the elementary operations of a control system software.

Name Description

EEMBC Benchmark suites for various applications, such as mobile devices and many others.

MiBench Benchmark suites for various applications, following EEMBC model.

BEEBS Set of small programs chosen from available suites.

MLPerf Machine learning (training and inference) benchmarks.

EmBench Set of small programs chosen from available suites.

Table 1.3: Embedded benchmarks.

A detailed overview of these benchmarks is presented in Chapter 2. The proposal of a
new benchmark is justifiable as no set of programs was found to evaluate the desired func-
tions.

1.2 Workplace Framework

Considering the capability to reduce costs of space mission by using the small and stan-
dardized CubeSat platforms, the Laboratory of Simulation and Control of Aerospace Sys-
tems (LODESTAR) at the University of Brasilia (UnB) has embraced this opportunity and
has been working towards the establishment of a nanosatellite program at UnB. Although the

5

first CubeSat mission, the Alfa Crux I, has just started at LODESTAR, preliminaries activi-
ties and projects have paved the way to get a simple concept of a nanosatellite to a complete
operational spacecraft in orbit. The two main projects that provide the first experience with
the process of a CubeSat mission and the development of specific subsystems such as the
ADCS, are the LAICAnSat project, a high altitude platform for stratospheric experiments
and applications, and a nanosatellite three-axis simulator facility. A brief overview of both
projects is provided in the sequel in order to assess the goals of both initiatives. The idea is
to apply the proposed benchmark to help decide whether their objectives are achievable with
regard to OBC performance and power consumption.

1.2.1 LAICAnSat

The LAICAnSat project started in 2013. It aims to develop a vehicle capable of conduct-
ing scientific studies at high and low altitudes. Meteorology and remote sensing applications
are among some of the applications intended, as it is the qualification of commercial-off-the-
shelf technology and validation of control algorithms for landing systems [11, 12].

Figure 1.4 shows a mission lifecycle, where a platform is sent at an altitude of up to 30km
through an atmospheric balloon. Traditionally, latex balloon bursts at a certain altitude and
releases the payload, which falls in a free flight with a parachute to cushion the impact and
it is recovered upon reaching the ground.

Figure 1.4: LAICAnSat mission lifecycle.

The first prototype was a TubeSat shape platform [13] equipped with a high-resolution
camera and a sensor suite that provided temperature, humidity, pressure, UV light level
and power informations. The first electronic system consisted of two modules: one for
data acquisition responsible for processing and storing data from the sensors and another
for attitude determination and communication. The components were connected using a
breadboard and were arranged inside a styrofoam box that provided thermic isolation. The
payload was a camera that worked independently by storing time-lapse images on an internal

6

memory card.

After two successful missions (LAICAnSat-1 and 2) have validated the first assumptions
adopted in the project, further enhancements included a structural standardization, manufac-
turing method and researches on trajectory control [14, 15, 16]. The structure adopted the
CubeSat standard fabricated using rapid prototype technologies and the PC/1042 standard
was chosen as a guideline for embedded systems [17]. Figure 1.5 shows both structures and
their respective electronic systems.

(a) TubeSat structure. (b) First electronics.

(c) CubeSat structure. (d) Standardized OBC.

Figure 1.5: LAICAnSat developments.

With this standardized system, the team succeed in its fifth launch, which was concerned
with the recording of the total solar eclipse from the stratosphere in 2017 within the NASA
Space Grant Eclipse Ballooning Project [18], and marked the beginning of new steps for the
project. Based on the analysis of previous missions, several aspects related to the system
development and its modules integration were identified in order to be improved. Also,

2PC/104 defines both form factors and computer buses to make the printed-circuit board modular and stack-
able.

7

following the evolutionary scale of this project, enhancements are needed in order to provide
a better service as means of conducting these experiments. Therefore, the entire system is
being rethought to increase its capacity and reliability.

An example of an additional demand currently pursued is a floatation stage that is being
planned to ensure scientific operations at a desired altitude. A control system equipped
with a pressure valve is being developed in-house using rapid prototype technologies to be
able to control the helium flow rate of the atmospheric balloon. Figure 1.6 shows the latest
prototype, a spherical valve commonly used in many commercial applications and a servo
motor to control its opening [19].

Figure 1.6: Pressure valve prototype [19].

Another required improvement concerns the payload recovery. As the balloon rises
freely, there is a possibility that it will drift far away from the starting point. Without a
landing control, the platform can land in places hard to reach, as it has already happened in
previous missions. This lead to another project front in charge of studying and developing
parachute control methods [11, 12, 20, 21].

1.2.2 Three-axis nanosatellite simulator facility

Simultaneously to LAICAnSat activities, another project being developed at
LODESTAR is a nanosatellite three-axis simulator facility [22, 23, 24, 25]. The purpose
is to allow the simulation, testing and validation of attitude determination and control al-
gorithms [26, 27, 28], in addition to other spacecraft technologies, such as magnetic torque
rods [29, 30], reaction wheels and communication modules.

The simulator main components are an air-bearing table and a Helmholtz cage. A pneu-
matic system is used to replicate low gravitational torque and the frictionless conditions
encountered by satellites in space [31]. The Helmholtz cage, shown in Figure 1.7, is a struc-
ture composed of three orthogonally disposed pairs of square coils used to replicate magnetic
fields perceived by satellites in orbit. It is able to simulate variations in magnitude and direc-
tion from the generation of three-axis magnetic fields of intensities ±1.5G with closed loop
control. The nanosatellite is mounted on the air-bearing table that moves freely on top of the

8

Figure 1.7: Helmholtz cage.

sphere around the yaw axis, but with roll and pitch angles limited to ±45◦.

1.3 Objectives

The primary objective of this work is to develop a benchmark based on applications of
ADCS running on COTS OBC for nanosatellites. From that, specific objectives are listed as
follows:

1. To propose a workload based on nanosatellites control system software. For that, the
main ADCS algorithms currently used in space missions are analyzed to specify a
relevant set of functions;

2. To select a metric to evaluate different microcontrollers for nanosatellites onboard
computers;

3. To define an appropriate set of rules for the benchmark;

4. To validate the benchmark on different COTS microprocessors;

5. To illustrate its functionality and applicability in the context of the current projects
being developed at LODESTAR.

1.4 Thesis outline

This manuscript is structured according to the following chapter distribution, including
this introductory chapter concerned with introducing the objectives and motivation.

9

Chapter 2 presents a literature review on benchmarking and its applications in the embed-
ded systems domain. In addition, the chapter also specifies the workload, metrics and rules
of the benchmark in question. Furthermore, the hardware platforms chosen for validating
the implementation are exposed.

Chapter 3 shows the results obtained and finally, the concluding remarks and future works
perspectives are presented in Chapter 4.

10

Chapter 2

The nanosatellite OBC benchmark

A benchmark can be synthetic or application-based [32]. Synthetic benchmarks are arti-
ficially created to evaluate a particular component capability, like a hard disk or networking
device, but do not reflect an user actual experience with the machine. Application-based
benchmarks mimic a real-world workload by performing common functions from within a
particular industry segment and measure the overall performance of a system. There is also
a combination of both, called hybrid or derived benchmarks.

The conception of a benchmark must specify a workload that reflects a real application, a
metric for comparison and rules to ensure that the benchmark operates in fair conditions [33].
To assign a proper workload one should keep in mind the scenario in which this benchmark
will be evaluated, i.e on nanosatellite onboard computers.

Moreover, space missions require certain requirements to be met to ensure mission suc-
cess, such as power consumption. This further restricts the specification of the desired bench-
mark in terms of metrics, as the most common is to evaluate only performance. One review
of available benchmarks was conducted in order to identify one applicable to the context of
the control system software and this discussion is presented throughout this chapter.

Then, the methodology adopted to implement the workload and a relevant metric to com-
pare different machines are presented. Latter, the real hardware platforms used for validating
the benchmark are specified, as well as the procedures for running and measuring it on each
device.

2.1 Workload

As mentioned before, the proposed benchmark is developed based on applications of
ADCS running on COTS OBC for nanosatellites. In this sense, the main attitude estimation
and control methods used nowadays are listed and analyzed as the basis for the workload
choice. The goal is to define a representative set of instructions for numerical programming
of such algorithms. Specifically, the main set of mathematical operations should be defined

11

Attitude Representations
Euler axis (e) and angle (ϑ) A(e, ϑ) = I3 − sin(ϑ)[e×] + (1− cos(ϑ))[e×]2

Rotation vector A(e, ϑ) = exp([ϑe×])
Quaternion (q = [q1:3 q4]

T) A(q) = (q24 − ||q1:3||2)I3 − 2q4[q1:3×] + 2q1:3qT1:3
Rodrigues parameters

(
g = q1:3

q4

)
A(g) = I3 + 2 [g×]2−[g×]

1+||g||2

Modified Rodrigues parameters
(

p = q1:3

1+q4

)
A(p) = I3 + 8[p×]2−4(1−||p||2)[p×]

(1+||p||2)2

Euler angles (φ, θ, ψ) Aijk(φ, θ, ψ) = A(ek, ψ)A(ej, θ)A(ei, φ)

Table 2.1: Attitude representations summary.

in such a way that it fairly represents the computational complexity of the current ADCS
algorithms. For that, one should keep in mind the different ways to represent the satellite
attitude, the respective kinematics and dynamics equations, and the attitude determination
and control methods themselves.

The attitude of a rigid body is estimated by comparing two reference frames, or two
vectors [34, 35]. It is a linear transformation represented by a 3 × 3 matrix that rotates
one reference frame into the other (alias sense) [36]. This matrix, called rotation matrix or
attitude matrix, represents the physical attitude of the rigid body. It is well known that the
set of all rotation matrices is the special orthogonal group of rigid rotations in R3, denoted
by SO(3) (i.e. proper orthogonal matrix). Different representations may be used for the
attitude matrix. Further informations about reference frames and attitude representations can
be found on appendices A and B. Table 2.1 summarizes the main attitude representations.

The fundamental equation of attitude kinematics is obtained by evaluating the time
derivative of the attitude matrix, and the parameterization follows from those appeared in
Table 2.1. In other words, the time rate of change of a rigid body attitude is given by Equa-
tion 2.1:1

Ȧ = A[ω×]. (2.1)

whereA ∈ SO(3) is the attitude matrix and [ω×] is the cross product skew symmetric matrix
obtained with the angular velocity vector ω. For the dynamics, first the moment of inertia
tensor is defined, then the angular momentum and rotational kinetic energy are expressed in
terms of the moment of inertia and angular velocity, given by Equation 2.2:1

Jω̇ = −[ω×]Jω + T. (2.2)

where J is the moment of inertia tensor and T the net external torque (control torque and
disturbance torques due to, for instance, gravitational, aerodynamic and solar radiation).
Once again, any representation may be used to parameterize the attitude motion [37, 36, 38].

Concerning the control laws and filter implementation for ADCS in modern-day, they
are still very simple and well-known solutions, but extremely effective [39, 40, 36]. Attitude
determination (static) is mainly based on the TRIAD algorithm that uses body and reference

1The reference frames information are omitted for simplicity of notation.

12

frames observations to estimate the attitude matrix. The basic idea is as follows. If one has
an orthonormal right-handed triad of vector {v1v2v3} in the reference frame, and the cor-
responding orthonormal right-handed triad {w1w2w3} in the body frame, then the attitude
matrix is given by Equation 2.3 [36]:

A = [w1w2w3][v1v2v3]T . (2.3)

Improvements and extensions can be done in different ways leading to, for instance,
the formulation of attitude estimation as a least square problem (Wahba’s problem). The
Wahba’s problem provides the basis of most of the popular methods such as Quaternion
Estimator (QUEST), Estimators of the Optimal Quaternion (ESOQ), and Fast Optimal At-
titude Matrix (FOAM), and can be solved using quaternion parameterization through the
Davenport’s method [36, 38]. When it comes to attitude estimation, the Kalman filter and its
extensions are widely used for onboard attitude estimators [41]. From the other side, most
of the attitude controllers are simple proportional–integral–derivative (PID) solutions [42],
although the use of Lyapunov-based methods has increased recently.

The interesting feature to be noticed in all of these methods, not only the solutions for
attitude determination but also for control, is that all of them rely on fundamental numerical
matrix operations, such as multiplicative, inverse, summation and difference. Not surpris-
ingly, matrix product is among the most studied computational problems, belonging to the
P-class, that is, the algorithm computes the product in at most Anc steps for positive con-
stants A and c with n being the matrix order [43, 44].

Nevertheless, it is well known that some problems in systems and control fall into the
non-polynomial class (NP -class), as, for instance, the stability of interval matrix, very com-
mon in robust analysis and design [45]. Despite the nature of the problem, the set of instruc-
tions to be implemented (namely, elementary operations) will fall into the efficient compu-
tation category, that is, the ones whose runtime on any input of length n is bounded by a
polynomial function in n (P -class). For instance, the inversion of integer matrices can be
carried out using Gaussian elimination with O(n3) arithmetic operations.

In fact, many questions about linear systems can be decided efficiently, for example,
controllability, stability, and observability of continuous or discrete time linear systems can
be decided in polynomial time [45]. The theory of dynamical systems and the development
of system analysis considering robustness and control led to classical, and in some cases
new, matrix problems. Nowadays, a great number of different methods for stability analysis
and controller and filter design are based on a matrix approach [46]. One of the fundamental
ideas behind the Lyapunov theory, expected to be the future of spacecraft control designs,
is that the stability of a dynamic system can be analyzed through the spectral properties
of the system matrix [47]. Different concepts concerned with linear dynamical systems
analysis, such as multiplicative and additive D-stability, diagonal stability, Schur D-stability,
H-stability, depend on a stability region, a matrix class and an operation [46].

13

As a consequence, considering the application of the proposed benchmark and the dis-
cussion presented so far, the choice of the workload should definitely include a set of matrix
operations instructions, specifically matrix multiplication and inversion. An overview of
available benchmarks is presented next in order to identify one applicable to this context.

2.1.1 Overview of common benchmarks

The Whetstone benchmark was the first general purpose benchmark to set industry stan-
dards for computer system performance [48]. It is a synthetic benchmark written in algorith-
mic language 1960 (ALGOL 60) in 1972 by Dr. B. A. Wichman and Harold Curnow [49] to
evaluate performance on floating-point operations of scientific computers. It also addressed
the issue of the efficiency of the different programming languages, being latter translated to
Fortran, C/C++, Basic, Visual Basic and Java. The results were given in thousands of Whet-
stone instructions per second (kWIPS), that eventually evolved to millions (MWIPS) with
advances in technology. It was still run by Digital Equipment Corporation (DEC) and Intel
until 1996 [50].

Dhrystone is a similar synthetic benchmark for integer and string operations. It was pub-
lished in 1984 by R. P. Weicker [51], written in analysis, design and algorithm language
(ADA). Its C version has become a key standard benchmark with the growth of Unix sys-
tems [52]. Nowadays, there are modified versions to run on Android tablets and phones and
ARM CPUs, such as Raspberry Pi. Original versions of the benchmark provided Dhrystones
per second performance ratings, which later was changed to VAX MIPS (DMIPS).

Similarly, around the same decade, the Linpack [53] was written by Jack Dongarra, Jim
Bunch, Cleve Moler, and Gilbert Stewart. It was initially a package of Fortran subroutines for
solving dense linear equations using Basic Linear Algebra Subprograms (BLAS) libraries. It
evaluates the speed of supercomputer performing basic vector and matrix operations with 64-
bit floating-point calculations, measured in floating-point operations per second (FLOPS).

The Standard Performance Evaluation Corporation (SPEC), founded in 1988, provides
a standardized suite of benchmarks based on real applications divided into separate integer
and floating-point categories. According to [54], SPEC is a "non-profit corporation formed to
establish, maintain and endorse standardized benchmarks and tools to evaluate performance
and energy efficiency for the newest generation of computing systems".

Among its benchmarks, SPEC released in 2007 the SPECpower_ssj2008 [55, 56]. It
aims to measure the power and performance characteristics of volume server-class computer
equipment, exercising the CPUs, memories and other aspects of the operating system. Other
benchmarks incorporate power measurements as well2, but none is designed for embedded
systems.

JouleSort [33] is an energy-oriented benchmark that provides the amount of energy re-

2Available at https://www.spec.org/benchmarks.html#power.

14

https://www.spec.org/benchmarks.html#power

quired to sort 1010 records. It sorts a fixed number of randomly permuted 100-byte records
with 10-byte keys from an input file. This workload is said to be simple and portable, but the
way it was implemented requires access to a filesystem and manages a large amount of data
(greater than 10GB), often incompatible with embedded applications.

Table 2.2 exhibits information regarding the previous benchmarks and their initial targets
and developer entity, as well as the cost to obtain their source code (if freely available or
required paid membership).

Whetstone Linpack Dhrystone SPEC JouleSort
Year 1972 1977 1984 1989 2007

Initial target Scientific computers Supercomputers System programming Unix server Data centers
Type Synthetic Library Synthetic Applications Energy-oriented

Availability Free Free Free Paid membership Free
Developer Academia + Industry Academia Academia Academia + Industry Academia

Table 2.2: Benchmark descriptions.

All those benchmarks are not easily portable or even representative of small embed-
ded systems, where there are particularities like small memory size and lack of operating
systems. In 1997, the embedded community formed the Embedded Microprocessor Bench-
mark Consortium (EEMBC) to provide an industry standard for evaluating embedded system
implementations. It offers a variety of suites that reflect real-world applications from five
embedded markets: Automotive/Industrial, Consumer, Networking, Office Automation and
Telecommunications [57, 58].

The benchmarks can be grouped into Ultra-Low-Power and Internet of Things, Hetero-
geneous Computer, Phone and Tablet or Single-core or Multi-core Performance categories.
Its Ultra-Low Power (ULP) suite is designed to run on devices from 8- to 64-bit micropro-
cessors and it has three profiles:

• ULPMark-CoreProfile: consists of commonly used functions, such as memory and
math operations, sorting, GPIO interaction, besides others. It focuses on the MCU’s
core and the transition between low-power and active modes;

• ULPMark-PeripheralProfile: focuses on commonly used peripherals, such as Real
Time Clock (RTC), Pulse-width Modulation (PWM), Analog-to-Digital Conversion
(ADC) and Serial Peripheral Interface (SPI);

• ULPMark-CoreMark: is comprised of list processing (find and sort), common ma-
trix manipulation and state machine processing based on switch and if statements. A
Cyclic Redundancy Check (CRC) is also implemented to ensure the accuracy of the
outputs, besides being a commonly used workload itself.

The EEMBC consortium leads the industry but it is only available upon paid membership.

15

Similar to EEMBC suites, there are the MiBench suites [59] that follow the same model. It
is freely available as standard C source code and is divided into six categories:

1. Automotive and Industrial Control: it evaluates basic math abilities, bit manipulation,
data input/output and simple data organization;

2. Consumer Devices: it focuses on multimedia applications and exploits audio and video
processing algorithms;

3. Office Automation: it consists of text manipulation algorithms to represent office ma-
chinery, such as printers;

4. Networking: it includes shortest path calculations, tree and table lookups and data
input/output workloads;

5. Security: it consists of common algorithms for data encryption, decryption and hash-
ing applications;

6. Telecommunications: it includes radio frequency analysis, voice encoding/decoding
and checksum algorithms.

It provides a small data and large data set to represent two different levels of stress, but
this requires access to a filesystem that may not always be available on small embedded plat-
forms. It analyses the instruction distribution and compares three different architectures
(simulated with SimpleScalar) with the integer SPEC2000, the current version of SPEC
benchmark at the time of their writing, but does not analyze power consumption. Also,
among the categories aforementioned, the closest one to represent our applications is Au-
tomotive and Industrial Control. However, its basicmath test performs only cubic function
solving, integer square root and angle conversions from degrees to radians.

James Pallister et al. [60] developed the Bristol/Embecosm Energy Efficiency Benchmark
Suite (BEEBS) with the purpose of exposing the energy consumption characteristics of mi-
croprocessors. It consists of programs chosen from available suites presented in Table 2.3
with their description and respective sources.

16

Name Description
Blowfish (MiBench) Encryption algorithm used in cryptography.
CRC32 (MiBench) Verification of data streams often used to detect errors in data transmission.
Cubic root solver (MiBench) Solves cubic equations.
Dijkstra (MiBench) Shortest-algorithm path commonly used in network devices.
FDCT (WCET) Finite discrete cosine transform used in many video decoders.
Float Matmult (WCET) Floating-point matrix multiplication.
Integer Matmult (WCET) Integer matrix multiplication.
Rijndael (MiBench) Advanced Encryption Standard algorithm used in security applications.
SHA (MiBench) Hashing algorithm used mainly for fingerprinting and data verification.
2D FIR (DSPstone) Finite impulse response filter frequently used in image transformations.

Table 2.3: BEEBS benchmarks.

It collects the instruction distribution (integer, floating-point, memory, branch or other)
per benchmark for different platforms. Through measuring the average power and instruction
distribution per benchmark, linear regression is used to attribute an average power dissipation
to each class of instructions.

Table 2.4 summarizes the informations discussed above. There is a certain lack in bench-
marks focused on the embedded domain, mainly because the consortium concentrates all the
main suppliers of microprocessors. However, recent works show that benchmark remains a
relevant subject in both industry and academia.

EEMBC MiBench BEEBS
Year 1997 2001 2016

Initial target Embedded Embedded Compiler
Type Small programs Small programs Small programs

Availability Paid membership Free Free
Developer Industry Academia Academia + Industry

Table 2.4: Embedded benchmarks description.

Two works are under development, MLPerf and EmBench, both with their 0.5 versions
published at the time of this writing. MLPerf is aimed at evaluating machine learning hard-
ware, software and services with respect to both training [61] and inference [62] perfor-
mance. Training is the compute-intensive process where the neural network learns a new
capability tuning weights based on massive datasets to achieve a quality metric. Inference
utilizes the trained model to make useful predictions. Each benchmark is defined by a dataset,
a quality target and for MLPerf Inference, a model and a latency constraint. It measures
the time to either train a model or produce results using a trained model. The suites in-
clude workloads from image classification, object detection, translation, recommendation
and reinforcement learning. Various other benchmarks have also emerged in the past from
researches in the field of deep learning, such as DeepBench, DAWNbench, Fathom, Training
Benchmarks for DNNs (TBD), AIMatrix, EEMBC MLMark, among others.

17

EmBench [63] is a trademark of the Embench Task Group of the Free and Open Source
Silicon Foundation to develop a free and open-source benchmark suite of programs with no
more than 64kB of ROM and 64kB of RAM. Its current version (EmBench 0.5) has 20 pro-
grams largely derived from BEEBS with branch, memory or integer computer intensive but
no floating-point computation. The group intends to release the full version at the Embedded
World Conference in February 2020.

2.2 The benchmark proposition

When selecting a benchmark it is important to choose one that has a set of instructions
similar to the actual operation of the component in question. Although there are a vari-
ety of methods and metrics for measuring performance, few studies have been found about
benchmarks concerned in measuring power consumption, especially for embedded systems.
Moreover, none of the workloads aforementioned is suitable for ADCS applications running
on an embedded microcontroller.

As stated in Section 2.1, the workload should explore floating-point operations of ma-
trices and quaternions. The ULPMark suites are not freely available and MiBench suites in
addition to not being directed to energy consumption, they use external files and do not have
representative instructions. MLPerf and EmBench are still under development and also do
not have floating-point calculations. The closest one is BEEBS, but among its programs, it
only explores matrix multiplication, while there are other operations that are relevant to our
purpose, for example, matrix inversion. Consequently, the proposal of a new benchmark is
justifiable within this context.

2.2.1 Implementation

The workload proposed is based on floating-point calculations implemented in C lan-
guage and consists of the following operations:

1. Addition of m× n matrices;

2. Multiplication of m×n and n× p ma-
trices;

3. Inversion of a n× n matrix;

4. Transposition of a n× n matrix;

5. Adjoint of a n× n matrix;

6. Cofactor from ijth position of a n × n

matrix;

7. Cofactor matrix of a n× n matrix;

8. Quaternion products (defined in equa-
tions B.21 and B.22 on Appendix B);

9. Determinant of a n× n matrix;

10. Trace of a n× n matrix;

11. Norm of a n-dimensional vector.

18

These functions compose a C library used to implement the code on Algorithm 1. Each
function is executed for a given number of iterations and execution time is obtained with a
system call or with a timer for those that do not support operating systems.

Declare input and output variables;
for i = 0 to number of iterations do

Clear timer and/or variables;
Start timer;
for f in F do

Execute function f
end
End timer;
Store difference between start and finish;

end
Calculate average time and standard deviation;

Algorithm 1: Benchmark pseudocode.

In this implementation, the input variables are two 3 ×3 matrices, A and B, and two
quaternions, QA and QB and the set F of operations is:

f1 Addition of A and B;

f2 Multiplication of A and B;

f3 Inversion of A;

f4 Inversion of B;

f5 Transposition of A;

f6 Transposition of B;

f7 Quaternion product QA ⊗QB;

f8 Quaternion product QA �QB;

f9 Determinant of A;

f10 Determinant of B;

f11 Trace of A;

f12 Trace of B;

f13 Norm of QA;

f14 Norm of QB.

With respect to implementation targeted to embedded systems, each function receives
its output variable avoiding dynamic memory allocation and the matrices are manipulated
as a one-dimensional array. Three auxiliary arrays are also statically allocated within the
library itself. The output variables are overwritten as each function is executed. These
output variables are one array of n×p elements to compute matrix operations, a 1×4 vector
for quaternion operations and a scalar for other operations.

2.2.2 Metrics and rules

Energy consumption is an important design constraint in most embedded systems, from
small handheld devices to servers clusters. In addition, the EPS poses concerns for all space-
crafts and can be attributed to 27% of mission failures [64]. In particular, CubeSats have

19

limited power available due to its constrained size and low efficiency of solar panels tech-
nologies. A 3U CubeSat can reach up to 30W by using deployable solar panels with an
efficiency of less than 33% [65, ?]. Although the success rate of CubeSat missions is in-
creasing over time [4], the EPS can be attributed to 14% of mission failures for the first 100
launched Cubesats [66].

To evaluate both performance and power consumption, the metric chosen was energy, the
product of power and execution time (E = P × T), which weights both variables equally.
Figure 2.1 introduces the generic method used to measure power consumption that consists
of an ammeter in series and a voltmeter in parallel with the device being measured. The
power is calculated according to P = V × I .

Figure 2.1: Generic setup of measurement.

The execution time is measured within the code and for fair comparisons, it is important
that the compilers apply the same amount of optimization, otherwise, it may overshadow
speed differences. In order to obtain the worst case scenario, the clock frequency should be
set manually to its maximum value before running the benchmark.

This set-up allowed real measurements to be taken, rather than using an abstract power
model. However, this adds systematic errors from instrumentation. Thus, the result should
be obtained as a geometric average of several benchmark rounds, as well as the standard
deviation of these measurements.

2.3 Target devices

This section exposes the real hardware plataforms used for validating the benchmark.
Firstly, a survey about the microprocessors used in commercial solutions was conducted,
presented in Table 2.5.

20

Vendor Product Manufacturer Processor

GomSpace Nanomind A712D ATMEL ARM7TDMI
GomSpace Nanomind A3200 ATMEL AVR32
GomSpace Nanomind Z7000 Xilinx ARM Cortex-A9 + FPGA

ISIS ISIS OBC ATMEL ARM 9
GAUSS Srl Abacus Texas Instruments MSP430 + FPGA
GAUSS Srl Hercules Texas Instruments ARM Cortex R4F

Pumpkin PSPM D/E, PPM D1/D2 Microchip PIC
Pumpkin PPM A1/A2/A3, FM430 Texas Instruments MSP430

NanoSatisfi ArduSat ATMEL AVR

Table 2.5: Commercial onboard computers microprocessors (adapted from [?, ?]).

The ARM, PIC, MSP and FPGAs families are widely used in this market, there-
fore, a set of representative development boards are chosen as follows: Texas Instrument
MSP430FR5994 Launchpad Kit, Arduino Uno Rev.3, ST Nucleo-L432KC and Raspberry
PI 3B. Table 2.6 displays their hardware specifications.

Specification Arduino MSP430 Nucleo L4 Raspberry Pi 3B

Processor Atmega328P-PU MSP430FR5994 STM32L4KC Broadcom BCM2837
Architecture AVR MSP430 ARM Cortex M4 4 x ARM Cortex A53

Bit width 8-bit 16-bit 32-bit 64-bit
Frequency 20MHz 16MHz 80Mhz 1.2GHz

Temperature -40ºC to +85ºC -40ºC to +85ºC -40ºC to +85ºC -10ºC to +50 ºC
Supply Voltage 1.8V to 5.5V 1.7V to 3.6V 1.71V to 3.6V 2.5V to 5.5V

Floating-point unit No MPY Yes Yes

Memory
Flash 32kB FRAM 256kB Flash 256kB RAM 1GB

EEPROM 1kB SRAM 8kB SRAM 64kB
RAM 2kB

Table 2.6: Hardware specifications.

It is noteworthy that Raspberry Pi is a different category from the other microcontrollers
studied. It has a much higher processing capacity since it is quad-core, 64-bit, with a much
higher frequency than the previous ones and many more available peripherals, such as WiFi
and Ethernet module, audio and HDMI outputs, GPU among others. However, it provides
an interesting metric to compare such processing power within its constrained size.

21

2.3.1 Measurement procedures

In this section, the methodologies and considerations adopted for measuring power and
time consumption for each hardware are explained.

2.3.1.1 Measuring power consumption

In Section 2.2.2 it was described a generic methodology to measure power consumption
by using an ammeter and a voltmeter. For our measurements, it was used two Minipa ET-
1110 DMM, one for measuring voltage and other for current, as it provides multiple scales
for current measurements (µA and mA). The Raspberry Pi 3B, Nucleo-L432KC and Arduino
Uno boards were powered at 5V, while MSP430FR5994 Launchpad kit was powered at 3.3V
with a DC power supply (EQ030F). Figure 2.2 illustrates this setup, where the Raspberry Pi
was used as a representation.

Figure 2.2: Setup of measurement.

2.3.1.2 Measuring execution time

In this section, it will be explained the configurations implemented to measure the time,
as well as the software used during programming and debugging of each hardware.

Arduino Uno - The ATmega328P has two 8-bit timers and one 16-bit timer that was con-
figured to measure execution time. Using timers yielded in more precise results than using
the micros() or millis() functions of the standard Arduino library. Although the datasheet
states that the maximum frequency is 20MHz at 5V, the standard Arduino frequency is
16MHz to ensure compatibility with older microprocessor models.

The Arduino code was compiled with avr-gcc on Arduino IDE v. 1.8.10. It is important
to highlight that it does not have a floating-point unit or a dedicated hardware multiplier.

MSP430FR5994 Launchpad kit - The chip in question, MSP430FR5994, has different
timer instances that can be configured in multiple modes. Timer TA2 has been set to mea-
sure the time interval in continuous mode. This timer is sourced from the sub-main clock

22

(SMCLK) at 1MHz.

Some devices of the MSP430 family have a peripheral module called the hardware mul-
tiplier. In our case, there is a 32-bit hardware multiplier that supports 8-bit, 16-bit, 24-bit and
32-bit operands. It supports unsigned or signed multiplications with or without accumulate,
as well as fractional numbers.

The Texas Instruments Code Composer Studio v. 9.1.0.10 was used to program and
debug the MSP launch kit, with TI compiler v18.12.2.LTS.

Nucleo-L432KC - Some ARM architectures, such as Cortex M4, have a Data Watchpoint
and Trace (DWT) unit implemented, which contains up to four comparators that can be
configured as desired. It presents a counter of clock cycles (CYCCNT) that was used in the
code to measure execution time. The device also features a floating-point unit (FPU) single
precision.

For programming and debugging the Nucleo-L432KC board, it was used the software
STMicroelectronics System Workbench v. 4.6.3, an Eclipse based IDE, that uses compiler
GCC Cross Compiler v. 9.2.1.201704050430.

STMicroelectronics has an interesting software for hardware configurations, the
STM32CubeMX v. 5.3.0, where it is possible to manage peripherals and set the clock source
and frequency, that was configured at 80MHz.

Raspberry Pi 3B - Raspberry is the only one that has its own operating system. It is
based on Debian Buster, the Raspbian v. 4.19. The code was compiled with GNU Compiler
v. 9.1. Execution time was measured with a system call clock_gettime() using a single core
with a fixed frequency of 1.2GHz. This particular configuration was achieved by modifying
two system archives:

• /boot/cmdline.txt: added maxcore=1 (reboot needed)

• cpu0/cpufreq/scaling_governor: changed ondemand to performance

2.4 Summary

This chapter presented the specification and implementation of a complete benchmark
concerned at evaluating the energy consumption of elementary operations from nanosatel-
lites control system software. The proposed benchmark can be summarized as the following
three main specifications:

• Workload: comprises a set of floating-point operations on matrices and quaternions
written in C language. The proposed set is defined by 14 operations listed in Sec-
tion 2.2.1;

23

• Metric: the proposed metric weighs performance and power equally and uses energy
consumption as the output, that is, the product of execution time and power;

• Rules: for running the workload, it is important that the compilers apply the same
amount of optimization, and the clock frequency should be configured to its maximum
value. For measuring energy consumption, the execution time should be calculated
within the algorithm itself (see Algorithm 1: Benchmark pseudocode) and the current
and voltage should be measured with appropriate external instruments, such as amme-
ter and voltmeter. In both cases, in order to obtain the best value (and thus improve
accuracy and precision), it is suggested to perform measurements under repeatability
conditions using the same instruments and under the same environmental conditions
to obtain a mean value. This average value is expected to become more accurate as the
number of repetitions increases. The uncertainty in a specific result will be specified
by the standard deviation, that is, the standard uncertainty.

The chapter also presented the hardware and software specifications of the platforms used
for validating the benchmark and the measurement procedures for each of them.

24

Chapter 3

Experimental results

This chapter presents the results obtained by running the benchmark on different micro-
controllers. To get as close as possible to the application in question, the input matrices
have dimensions 3×3 since they are representations of attitude. All the values have the same
magnitude of the real variables, represented as a float data type with four significant digits,
taken from the book [67]:

A =

 0.3520 0.8640 0.3600

−0.8640 0.1520 0.460

0.3600 −0.4800 0.8000

 B =

−0.5736 0.0000 −0.8192

0.0496 0.8660 −0.2868

0.7094 −0.5000 −0.4967

 , (3.1)

qA =

√
2
2

0.0000

0.0000
√
2
2

 qB =

0.6853

0.6953

0.1531

0.1531

 . (3.2)

CubeSats are mostly launched into Low Earth Orbit with altitudes ranging from 200 to
1000km. At this range, the space environment is extremely adverse and can affect the system
operation in many different ways. Atomic oxygen (AO), ultraviolet (UV) radiation, ionizing
radiation, ultra-high vacuum (UHV), thermal cycles and orbital debris can cause deteriora-
tion of materials and electronic components. This type of mission is tolerable to certain risks
compared to traditional spacecraft, but even so, the pre-launch process must follow some
testing and integration phases to prove the safety and robustness of the CubeSat [68].

The testing phase typically includes vibration and thermal vacuum tests and it is known
that these variables may cause malfunction even within the operating range provided by the
suppliers. The following tests were performed under ambient conditions (32◦C and 900hPa)
and do not analyze the behavior of the microcontrollers for variations of these conditions.

The benchmark was validated using the following development platforms: Arduino Uno,

25

MSP430FR5994 Launchpad Kit, Nucleo L432KC and Raspberry Pi 3B. At this point, it is
interesting to note that the number of iterations of each round was limited by the Arduino
memory size, which corresponds to 700 iterations. Table 3.1 shows the code size for each
platform.

Platform Code size (kB)
Arduino Uno 9.252

MSP430FR5994 19.116
Nucleo L432KC 33.288
Raspberry Pi 3B 13.564

Table 3.1: Code size.

The above results include both code and data values. The Arduino code is only 9kB, but
more than 1.8kB is used for global variables that are stored in RAM, which represents 91%
of the total space (as shown in Table 2.6, Arduino has only 2kB of RAM) thus limiting the
number of iterations per round. The Nucleo L432KC code has the greatest size because the
System Workbench has a hardware abstraction layer (HAL) that is already incorporated into
the project for hardware configurations, followed by MSP430FR5994 which also incorpo-
rates all libraries used in the implementation for clock configuration, timers and ports.

3.1 Execution time

The benchmark execution time is presented in Table 3.2. The results are the geometric
mean and standard deviation for a single run with a number of iterations equal to 700.

Platform Clock frequency (MHz) Execution time (ms)
Arduino Uno 16 8.65 ± 0.0030

MSP430FR5994 16 12.24 ± 0.0005
Nucleo L432KC 80 0.94 ± + 0.0002
Raspberry Pi 3B 1200 0.05 ± + 0.0064

Table 3.2: Elapsed time.

Raspberry Pi results are the ones that vary the most for consecutive rounds, which is jus-
tified by the presence of its operating system that must perform tasks with higher priorities.
In other cases, for consecutive rounds the results are almost always the same. Arduino Uno
and MSP430 Launchpad have similar values as they have the same clock frequency, but the
latter is much more accurate given the standard deviation obtained. The others, Raspberry
and Nucleo board, are faster due to their higher frequency and the presence of a dedicated
floating-point unit that improves their performance.

26

3.2 Energy consumption

The instrumentation for measuring energy consumption was explained in Section 2.3.1.1
and the results are presented in tables 3.3 and 3.4. The results presented are the geometric
mean and standard deviation from 100 benchmark measurements.

Platform Current (mA) Voltage (V) Power(mW)
Arduino Uno 33.01 ± 0.79 4.92 ± 0.03 162.52

MSP430FR5994 1.92 ± 0.11 3.39 ± 0.01 6.51
Nucleo L432KC 10.34 ±0.72 4.90 ± 0.04 50.64
Raspberry Pi 3B 290.24 ± 18.82 4.90 ± 0.01 1422.01

Table 3.3: Power consumption.

From the results, it is seen that the Raspberry Pi is the most power consuming device
among those presented. This result was expected by the number of peripherals it has (WiFi,
HDMI, audio output, Ethernet) that were not turned off. The second largest in consump-
tion was Arduino Uno, which can be explained by the presence of a second microcontroller
(ATMEGA16U2) as a programming interface that consumes additional power. Next, is the
Nucleo board followed by the MSP430 Launchpad, the latter being the only one to be pow-
ered at 3.3V. Figure 3.1 shows the power consumption per MHz, as the clock frequency is
directly proportional to the power consumed.

Figure 3.1: Power consumption per MHz (mW/MHz).

27

When we relate to their respective frequencies, Raspberry consumption offers an inter-
esting trade-off in terms of its processing power, consuming much less than Arduino. Nu-
cleo L432KC has a dedicated floating-point hardware, which shortens processing time but
increases power consumption. MSP430 Launchpad kit is the platform that consumes less
power per MHz.

Table 3.4 and Figure 3.2 present the results of energy consumption, which is the product
of power by execution time.

Platform Frequency (MHz) Time (ms) Power (mW) Energy (mJ)
Arduino Uno 16 8.65 162.52 1.41

MSP430FR5994 16 12.24 6.51 0.08
Nucleo L432KC 80 0.94 50.64 0.05
Raspberry Pi 3B 1200 0.05 1422.01 0.07

Table 3.4: Power and energy consumption.

Figure 3.2: Energy consumed (mJ).

The Arduino Uno is the least energy-efficient. It consumes a lot of power and execution
time to perform the same tasks. MSP430 Launchpad consumes almost the same energy as
the Nucleo board, even consuming almost 10x less power. In addition to having a higher
bit width, Nucleo board frequency is 5 times higher, reducing execution time. The MSP430
Launchpad consumes less power, but it takes longer, so energy consumption was higher.

28

As Raspberry Pi performs operations very fast due to its high clock speed, its bit-width
and the presence of a FPU, the energy consumption ends up remaining in the same order of
magnitude as the other devices evaluated, even though their power consumption is at least
8x higher.

An interesting point to note is that the Nucleo L432KC, even with a voltage regulator
from 5V to 3.3V, has comparable energy consumption to MSP430FR5994 Launchpad, which
was powered directly at 3.3V. Each function was evaluated separately inside a while(1) loop
and the values for power consumption per MHz are presented in Figure 3.3.

Figure 3.3: Power consumption (mW/MHz) per function.

The results are the geometric average of 10 consecutive readings. Matrix multiplication
represents the lowest consumption for the MSP430, while matrix B transposition the greatest.
For Nucleo L4, the greater consumption is to calculate the norm of QB and the smaller is for
calculating quaternion product QA ⊗QB.

29

3.3 Reference platform

The MSP4305994 Launchpad was chosen as a reference platform to relate the results
because it has a built-in tool that allows real-time energy monitoring, called EnergyTrace++.
Figure 3.4 presents a comparison of the consumption measured with this tool and the data
previously presented.

(a) Power (mW)

(b) Energy (mJ)

Figure 3.4: EnergyTrace++ comparison

30

We have a difference of 11.4% for both power and energy results that may come from the
components used in the debugger part for EnergyTrace features but which is isolated during
manual measurements. Having the exact same error for both quantities measured in different
ways suggests that the results obtained are coherent.

Table 3.5 presents the time, power and energy ratios to the reference platform. Values
less than 1 indicate that performance was better, as in the case of execution time in Raspberry
Pi or Nucleo board time and energy.

Platform Time Power Energy
Arduino Uno 0.707 24.956 17.636

MSP430FR5994 1.000 1.000 1.000
Nucleo L432KC 0.078 7.776 0.603
Raspberry Pi 3B 0.004 218.354 0.894

Table 3.5: Results related to a reference platform

3.4 LODESTAR applications

Finally, the results obtained are analyzed in the context of the workplace framework,
i.e., LAICAnSat missions and air-bearing table simulations. As stated throughout this work,
using a standardized platform like a CubeSat imposes three major design constraints: size,
weight and power.

Figure 3.2 presents the energy consumed, which is directly related to the power capac-
ity of batteries. That means that the MSP430 family requires more energy (bigger electric
charge) which directly impacts the size of the set of batteries, consequently increasing the
total mass of the system. However, we can see in Figure 3.1 and Table 3.3 that the MSP430
requires less current than the others. That suggests a trade-off between how much energy
is stored in the battery and the amount of current the battery draws for running the same
application.

Futhermore, others requirements must be taken into account, such as communication
interfaces available, analog-to-digital converters and timers. Since the Raspberry Pi does not
have low-power modes, it is not interesting to embed it on atmospheric missions, but in the
electronic system responsible for the simulator it may be the best option for its processing
capability. MSP430FR5994 and STM32L4KC both seem useful solutions for the OBC.
Further informations about the features available on their hardwares are presented in Table
3.6.

31

Peripherals MSP430FR5994 STM32L4KC

LPM 5 7
GPIOS 40 26
DMA 6-channel 14-channel
ADC 20-channel 10-channel

Timers 6 8

Communication
interfaces

2 x I2C
3 x SPI

2 x UART

2 x I2C
2 x SPI

2 x USART
1 x LPUART

1 x SAI
1 x CAN
1 x USB

1 x SWPMI

Table 3.6: Hardware peripherals.

Once more, both have similarities. However, it was shown that STM32 has greater pro-
cessing capabilities than MSP430 for very close power usage. It also possesses more com-
munication interfaces and timers, which are responsible for generating PWM outputs needed
to control actuators. In addition, it is capable of more data handling for it has a larger direct
memory access (DMA) and it has two more low-power modes (LPM) than MSP. Therefore,
STM32 is more suitable to attend LAICAnSat demands.

32

Chapter 4

Conclusion

The context of this work was the elaboration of a new benchmark motivated by the
onboard control system software of nanosatellites. The proposal of a new workload was
justified by the absence of a set of elementary instructions relevant to evaluate both perfor-
mance and power usage for ADCS applications running on commercials microcontrollers
for a nanosatellite OBC. After the analysis of attitude determination and control methods
currently used in the segment, the implementation followed a set of floating-point opera-
tions of 3×3 matrices and quaternions (1×4 vectors). The workload covers various fields of
controllers and filter designs besides this particular application, as stated in Section 2.1.

The benchmark selected energy usage as a metric to compare power consumption and
performance on different hardware configurations and the operational rules for running and
measuring it were presented. The implementation was validated by running it on develop-
ment platforms with microcontrollers from within common families of commercial onboard
computers, namely Arduino Uno, MSP430FR5994 Launchpad, Nucleo L432KC and Rasp-
berry Pi 3B.

It was shown that MSP430FR5994 consumes less power than all evaluated devices, while
Raspberry Pi consumes the most. However, energy consumption was higher for Arduino
Uno and lower for Nucleo L432KC. Raspberry Pi 3B provided an interesting result given the
difference in its processing capabilities from the other ones. It is more power-efficient than
Arduino even with more built-in features, for instance, WiFi, HDMI and Ethernet modules
besides supporting an operating system.

Finally, these results were also analyzed with the purpose of using these platforms in the
projects currently developed at the LODESTAR, where the Raspberry Pi was chosen for the
applications of the nanosatellite simulator facility and the Nucleo L432KC for LAICAnSat
activities.

33

4.1 Future works

• In Section 2.1.1, the benchmarks designed for embedded systems usually consist of a
suite with more than one program to evaluate different features of a particular applica-
tion. This benchmark considered only attitude determination and control algorithms,
therefore it performs mathematically intense calculations. An improvement would be
to add functions that are representative of other subsystems. For instance, command
and data handling functions, such as bit manipulation and data organization, security
functions, such as error detection, encryption/decryption algorithms, among others.

• It would be interesting to have a larger database for future design choices. For that, it
is necessary to add support for devices other than the four that were compared.

• A widely used device in space applications is the FPGAs. These can greatly improve
the performance of matrix operations and porting the code to their language (hardware
description language) would also be interesting.

34

REFERENCES

[1] MABROUK, E. What are SmallSats and CubeSats? 2015. Available at: <https:

//www.nasa.gov/content/what-are-smallsats-and-cubesats>. Ac-
cessed on: 02 sep. 2019.

[2] HEIDT, H. et al. CubeSat: A new generation of picosatellite for education and industry
low-cost space experimentation. AIAA-USU Small Satellite Conference Proceedings, v. 5,
2000.

[3] CENTRO DE GESTÃO E ESTUDOS ESTRATÉGICOS - CGEE. Cubesats. Brasília –
DF: 2018. 46p.

[4] VILLELA, T. et al. Towards the thousandth CubeSat: a statistical overview. Interna-
tional Journal of Aerospace Engineering, Hindawi, 2019.

[5] CALIFORNIA POLYTECHNIC STATE UNIVERSITY. CubeSat Design Specification.
Rev. 13, 2015.

[6] LUMBWE, L. T. Development of an onboard computer (OBC) for a CubeSat. Cape
Peninsula University of Technology, 2013. PhD dissertation.

[7] BORSCHIOV, K. Generic on-board-computer hardware and software development for
nanosatellite applications. York University, 2012. Master thesis.

[8] WERTZ, J. R. Spacecraft attitude determination and control. Springer Science & Busi-
ness Media, 2012.

[9] RAZZAGHI, E. Design and qualification of on-board computer for Aalto-1 CubeSat.
Aalto University, 2012. Master thesis.

[10] WERTZ, J. R.; EVERETT, D. F.; PUSCHELL, J. J. Space mission engineering: the
new SMAD. Microcosm Press, 2011.

[11] AMADO, R. C. Determinação de sistema de reentrada com paraquedas da plataforma
LAICAnSat. Universidade de Brasília, 2018. Undergraduate thesis.

[12] HONDA, Y. H. M. Análise e controle da trajetória do LAICAnSat-3. Universidade de
Brasília, 2017. Undergraduate thesis.

35

https://www.nasa.gov/content/what-are-smallsats-and-cubesats
https://www.nasa.gov/content/what-are-smallsats-and-cubesats

[13] NEHME, P. H. D. et al. Development of a meteorology and remote sensing experi-
mental platform: The LAICAnSat-1. In: IEEE. 2014 IEEE Aerospace Conference, 2014.
p. 1–7.

[14] ALVES, M. F. S. et al. Design of the structure and reentry system for the LAICAnSat-3
platform. In: II Latin American Cubesat Workshop, 2016. p. 1–15.

[15] HOLANDA, M. A. L. et al. Trajectory control system for the LAICAnSat-3 mission.
In: IEEE. 2017 IEEE Aerospace Conference, 2017. p. 1–7.

[16] NORONHA, B. H. A. et al. System identification of a square parachute and payload
for the LAICAnSat. In: IEEE. 2015 IEEE Aerospace Conference, 2015. p. 1–7.

[17] DIAS, R. R. et al. LAICAnSat-3: A mission for testing a new electronic and elec-
tronic and telemetry and tracking system. In: Proceedings of the 2nd Latin American IAA
Cubesat Workshop, 2016. p. 1–9.

[18] BORGES, R. A. et al. LAICAnSat-5: A mission for recording the total solar eclipse
from the stratosphere. In: IEEE. 2018 IEEE Aerospace Conference, 2018. p. 1–7.

[19] HONDA, Y. H. M. Estudo de um sistema de controle de altitude para plataformas at-
mosféricas. Universidade de Brasília, 2019. Master thesis.

[20] BARBOSA, V. H. C. Balloonsats: Projeto de missão e de um sistema de recuperação
de carga paga. Universidade de Brasília, 2019. Undergraduate thesis.

[21] BARBOSA, V. C. et al. Development of an actuator for an airdropped platform landing
system. In: Proceedings of the 41st IEEE Aerospace Conference, 2020. p. 1–7.

[22] PLOEG, L. C. van der. Desenvolvimento de sistema para simulação do campo mag-
nético terrestre em órbitas baixas. Universidade de Brasília, 2017. Undergraduate thesis.

[23] SILVA, R. C. da. Filtering and adaptive control for balancing a nanosatellite testbed.
Universidade de Brasília, 2018. Master thesis.

[24] GUIMARÃES, F. C. Implementation of attitude determination techniques for a small
satellite three-axis simulator. Universidade de Brasília, 2018. Master thesis.

[25] SILVA, R. C. da et al. Helmholtz cage design and validation for nanosatellites HWIL
testing. IEEE Transactions on Aerospace and Electronic Systems, IEEE, 2019.

[26] SILVA, R. C. da et al. Tabletop testbed for attitude determination and control of
nanosatellites. Journal of Aerospace Engineering, American Society of Civil Engineers,
v. 32, n. 1, p. 04018122, 2018.

[27] LOIOLA, J. V. L. et al. Development of a hardware-in-the-loop test platform for
nanosatellites ADCS integrated with an UKF. In: 4th Conference on University Satel-
lite Missions and Cubesat Workshop, 2017. p. 365–373.

36

[28] SILVA, R. C. et al. A testbed for attitude and determination control of spacecrafts. In:
II IAA Latin American Cubesat Workshop, 2015.

[29] ISHIOKA, I. S. K. et al. HIL testing of the B-dot attitude control law. In: IAA. III IAA
Latin American Cubesat Workshop, 2018. p. 1–9.

[30] ISHIOKA, I. S. K. et al. Development of an active magnetic actuator for attitude control
system of nanosatellites. In: 4th Conference on University Satellite Missions and Cubesat
Workshop, 2017. p. 327–342.

[31] LOIOLA, J. V. L. de et al. 3 axis simulator of the Earth magnetic field. In: IEEE. 2018
IEEE Aerospace Conference, 2018. p. 1–8.

[32] SHAOUT, A.; WALKER, A. State of the art: benchmarking microprocessors for em-
bedded automotive applications. International Journal of Advanced Computer Research,
International Journal of Advanced Computer Research, v. 6, n. 26, p. 185, 2016.

[33] RIVOIRE, S. et al. JouleSort: a balanced energy-efficiency benchmark. In: ACM. Pro-
ceedings of the 2007 ACM SIGMOD International Conference on Management of Data,
2007. p. 365–376.

[34] CRASSIDIS, J. L.; MARKLEY, F. L.; CHENG, Y. Survey of nonlinear attitude es-
timation methods. Journal of Guidance, Control, and Dynamics, v. 30, n. 1, p. 12–28,
2007.

[35] van der Ha, J. C.; Shuster, M. D. A tutorial on vectors and attitude. IEEE Control
Systems Magazine, v. 29, n. 2, p. 94–107, April 2009.

[36] MARKLEY, F. L.; CRASSIDIS, J. L. Fundamentals of Spacecraft Attitude Determina-
tion and Control. Princeton University Press, 2014.

[37] WERTZ, J. Spacecraft Attitude Determination and Control. Springer Netherlands,
2002. (Astrophysics and Space Science Library).

[38] YANG, Y. Spacecraft Modeling, Attitude Determination, and Control: Quaternion-
Based Approach. Boca Raton: CRC Press, 2019.

[39] WON, C.-H. Comparative study of various control methods for attitude control of a leo
satellite. Aerospace Science and Technology, v. 3, n. 5, p. 323 – 333, 1999.

[40] Chaturvedi, N. A.; Sanyal, A. K.; McClamroch, N. H. Rigid-body attitude control.
IEEE Control Systems Magazine, v. 31, n. 3, p. 30–51, June 2011.

[41] Raitoharju, M.; Piché, R. On computational complexity reduction methods for Kalman
filter extensions. IEEE Aerospace and Electronic Systems Magazine, v. 34, n. 10, p. 2–19,
Oct 2019.

37

[42] ASTRöM, K. J.; HäGGLUND, T. PID Controllers: Theory, Design, and Tuning. 2nd.
ed. ISA: The Instrumentation, Systems, and Automation Society, 1995.

[43] RAZ, R. On the complexity of matrix product. SIAM Journal on Computing, v. 32, n. 5,
p. 1356–1369, 2003.

[44] WIGDERSON, A. Mathematics and Computation: A Theory Revolutionizing Technol-
ogy and Science. Princeton University Press, 2019.

[45] BLONDEL, V. D.; TSITSIKLIS, J. N. A survey of computational complexity results in
systems and control. Automatica, v. 36, n. 9, p. 1249–1274, 2000.

[46] KUSHEL, O. Y. Unifying matrix stability concepts with a view to applications. SIAM
Review, v. 61, n. 4, p. 643–729, 2019.

[47] HADDAD, W. M.; CHELLABOIN, V. S. Nonlinear Dynamical Systems and Control:
A Lyapunov-Based Approach. Springer, New York, NY, 2011.

[48] WHETSTONE (benchmark). In: WIKIPÉDIA: a enciclopédia livre. Wikime-
dia, 2019. Available at: <https://en.wikipedia.org/wiki/Whetstone_

(benchmark)>. Accessed on: 06 jan. 2019.

[49] CURNOW, H. J.; WICHMANN, B. A. A synthetic benchmark. The Computer Journal,
Oxford University Press, v. 19, n. 1, p. 43–49, 1976.

[50] WHETSTONE benchmark history and results. In: ROY Longbottom’s PC Benchmark
Collection. Roy Longbottom, 2014. Available at: <http://www.roylongbottom.
org.uk/whetstone.htm>. Accessed on: 06 jan. 2019.

[51] WEICKER, R. P. An overview of common benchmarks. Computer, IEEE, v. 23, n. 12,
p. 65–75, 1990.

[52] DHRYSTONE benchmark results on PCs. In: ROY Longbottom’s PC Benchmark
Collection. Roy Longbottom, 2017. Available at: <http://www.roylongbottom.
org.uk/dhrystone%20results.htm>. Accessed on: 06 jan. 2019.

[53] DONGARRA, J. J. The LINPACK benchmark: An explanation. In: SPRINGER. In-
ternational Conference on Supercomputing, 1987. p. 456–474.

[54] STANDARD Performance Evaluation Corporation, 2019. Available at: <https://
www.spec.org/>. Accessed on: 02 sep. 2019).

[55] CORPORATION, S. P. E. SPEC Power ®. 2019. Available at: <https://www.

spec.org/power_ssj2008/>. Accessed on: 06 jan. 2019.

[56] WARRENTON, V. SPEC releases power-performance benchmark for servers.
2007. Available at: <https://www.spec.org/power_ssj2008/press/

SPECpower_ssj2008-Press%20Release.html>. Accessed on: 06 jan. 2019.

38

https://en.wikipedia.org/wiki/Whetstone_(benchmark)
https://en.wikipedia.org/wiki/Whetstone_(benchmark)
http://www.roylongbottom.org.uk/whetstone.htm
http://www.roylongbottom.org.uk/whetstone.htm
http://www.roylongbottom.org.uk/dhrystone%20results.htm
http://www.roylongbottom.org.uk/dhrystone%20results.htm
https://www.spec.org/
https://www.spec.org/
https://www.spec.org/power_ssj2008/
https://www.spec.org/power_ssj2008/
https://www.spec.org/power_ssj2008/press/SPECpower_ssj2008-Press%20Release.html
https://www.spec.org/power_ssj2008/press/SPECpower_ssj2008-Press%20Release.html

[57] WEISS, A. R. The standardization of embedded benchmarking: Pitfalls and opportu-
nities. In: IEEE. Proceedings 1999 IEEE International Conference on Computer Design:
VLSI in Computers and Processors, 1999. p. 492–508.

[58] POOVEY, J. A. et al. A benchmark characterization of the EEMBC benchmark suite.
IEEE micro, IEEE, v. 29, n. 5, p. 18–29, 2009.

[59] GUTHAUS, M. R. et al. MiBench: A free, commercially representative embedded
benchmark suite. In: IEEE. Proceedings of the Fourth Annual IEEE International Work-
shop on Workload Characterization. WWC-4 (Cat. No. 01EX538), 2001. p. 3–14.

[60] PALLISTER, J.; HOLLIS, S. J.; BENNETT, J. BEEBS: Open Benchmarks for Energy
Measurements on Embedded Platforms. Cornell University, 8 2013.

[61] MATTSON, P. et al. Mlperf training benchmark. arXiv preprint arXiv:1910.01500,
2019.

[62] REDDI, V. J. et al. Mlperf inference benchmark. arXiv preprint arXiv:1911.02549,
2019.

[63] GROUP, E. T. EmbenchTM user guide. GitHub, 2019. Available: <https://

github.com/embench/embench-iot/blob/master/doc/README.md>.
Accessed on: 06 jan. 2019.

[64] TAFAZOLI, M. A study of on-orbit spacecraft failures. Acta Astronautica, Elsevier,
v. 64, n. 2-3, p. 195–205, 2009.

[65] POGHOSYAN, A.; GOLKAR, A. CubeSat evolution: analyzing CubeSat capabilities
for conducting science missions. Progress in Aerospace Sciences, Elsevier, v. 88, p. 59–
83, 2017.

[66] SWARTWOUT, M. The first one hundred CubeSats: A statistical look. Journal of Small
Satellites, v. 2, n. 2, p. 213–233, 2013.

[67] MARKLEY, F. L.; CRASSIDIS, J. L. Fundamentals of spacecraft attitude determina-
tion and control. Springer, 2014.

[68] INITIATIVE, N. C. L. et al. Cubesat 101: Basic concepts and processes for first-time
cubesat developers. San Luis Obispo, USA, 2017.

39

https://github.com/embench/embench-iot/blob/master/doc/README.md
https://github.com/embench/embench-iot/blob/master/doc/README.md

Appendix A

Reference frames

As seen in Section 2.1, the way a reference frame is defined can affect the observations
relative to that frame. In general, a reference system is specified by its origin location and its
axes orientation, the latter being the most important regarding to the study of attitude.

A reference frame consists of a set of three mutually orthogonal unit vectors that com-
poses an orthonormal basis. An importat aspect related to the definition of the frame is
whether it is inertial or non-inertial. Inertial frames are non-accelerated frames, that is, those
with respect to which the laws of Newton are valid. Non-inertial frames either translate or
rotate with variable velocity and it introduces fictitious forces to the motion of the body.

A.1 Body-fixed frame

A frame fixed on the spacecraft is used to align the various hardware components and
is extremely important for attitude determination. It is a non-inertial frame as it follows the
rotation of the body, and its origin is usually place at the center of the body, as seen in Figure
A.1 for a 3U CubeSat. The frame is conveniently chosen according to the arrangement of
the components within the body.

Figure A.1: 3U CubeSat body-fixed frame.

40

A.2 Local-Vertical/Local-Horizontal Frame

A common case of coordinate axes referenced to the spacecraft’s orbit is the Local-
Vertical/Local-Horizontal (LVLH), which follows the spacecraft in its orbit maintaining its
orientation relative to the Earth. This representantion is convenient for Earth-pointing appli-
cations. As shown in Figure A.2, the Z axis is placed towards the Earth’s center of mass,
the X axis is parallel to the to the orbital plane and has the same direction as the velocity
vector for circular orbits. The Y axis points along the negative orbit normal, in the opposite
direction to the spacecraft’s orbital angular velocity.

Figure A.2: Local-Vertical/Local-Horizontal Frame.

A.3 Earth-Centered-Earth-Fixed

The Earth-Centered-Earth-Fixed (ECEF) is a non-inertial reference frame as it rotates
with the Earth. Its origin is placed at the center of the planet, the X axis is the intersection
between the equatorial plane and the prime meridian in Greenwich (Oº latitude and 0º longi-
tute). The Z axis is parallel to the spin axis of the Earth towards the North Pole, and Y axis
is chosen applying right-handness property. Figure A.3 shows a representation of the ECEF
reference system.

Figure A.3: ECEF reference frame.

41

A.4 Earth-Centered Inertial

The Earth-Centered Inertial (ECI) frame is useful for describing orbital motion of objects
in space since it is a non-rotating frame and it is considered inertial relative to distant stars.

ECI origin point is fixed at the Earth’s center of mass, with its X axis poiting towards the
Sun at the vernal equinox1, which is the the intersection of the terrestrial equatorial plane with
the ecliptic orbital plane. This point is slowly moving owing to the effects of astronomical
precession and the nutation of the Earth’s rotation axis, therefore, it has to be associated to a
certain date, usually January 1st, 2000, as specified by J2000 standard.

The Z axis is parallel to the rotation axis of the Earth poiting to the North Pole and Y
axis completes the right-handed coordinate frame. A representation of the ECEF system is
exhibited in Figure A.4.

Figure A.4: ECI reference frame.

1This direction points to Aries constellation, so it is commonly represented with Υ

42

Appendix B

Attitude Representations

The attitude of a body was defined as the rotation operation that takes the reference
system into the body-fixed frame. This appendix presents some basic forms of mathematical
representation for rotation matrices.

B.1 Definitions

For ease of understanding, the notations used throughout this chapter are described be-
low:

• Vector are represented by bold minuscule letters: e

• Matrices are represented by capital letters and their entries by the minuscule version
of the same letter: first element of a matrix A is a11

• On a three-dimensional space, a rotation may be seen as the transformation a = Rabb,
where R is a transformation matrix R : a→ b

• i, j and k are unit vectors used to represent an orthonormal basis: i = [1, 0, 0]T , j =

[0, 1, 0]T ,k = [0, 0, 1]T

• This orthonormal base follows the the right hand rule: i× j = k, j× k = i,k× i = j

• Caresian axis X, Y and Z are provided as examples of arbitrary basis when needed

Rotation matrices belong to a particular group called proper real orthogonal matrices.
This group comprises all the matrices of SO(3) group for rotation on a three-dimensional
space. These 3 × 3 matrices have special features such as:

• Orthogonality: The unitary norm of vectors and the angle between them (90◦) remain
unchanged despite of a rotation:

‖i‖ = ‖j‖ = ‖k‖ = 1 iT j = iTk = jTk = 0

43

.

• Right-handedness property: Determinant must be equal to +1 in order to preserve the
following:

i× j = k, j× k = i,k× i = j

.

• Its inverse equals its transpose:
R−1 = RT

.

The parameterization of finite rotations of a rigid body was first described by Leonhard
Euler (1707-1783), using three sequential rotations that resulted on a corolary of his theorem:

Theorem 1 Any rotation can be described by a maximum of three succes-
sive elementary rotations about linearly independent axes

This means any rotation matrix R can be represented as a decomposition of elemental
rotations or arbitraty axes, provided successive rotations are not performed on collinear axes.
Let X, Y and Z represent arbitrary axis:

R = RXRYRZ . (B.1)

Traditionally, it is designated an angle φ about X axis (row), an angle θ about Y axis
(pitch) and an angle ψ about Z axis (yaw), as shown in Figure B.1.

Figure B.1: Roll (φ), pitch (θ) and yaw (ψ) angles.

For rotations of such angles in these three axes we have the matrices B.2, B.3 and B.4.
Note that each rotation matrix is a function of its axis representation, in other words, for

44

each of the elementary matrices, the row and columns associated with each axis preserve
any vector along that axis unchanged.

Rx(φ) =

1 0 0

0 cos(φ) − sin(φ)

0 sin(φ) cos(φ)

 , (B.2)

Ry(θ) =

 cos(θ) 0 sin(θ)

0 1 0

− sin(θ) 0 cos(θ)

 , (B.3)

Rz(ψ) =

cos(ψ) − sin(ψ) 0

sin(ψ) cos(ψ) 0

0 0 1

 . (B.4)

Therefore, given a known rotation matrix, R(φ, θ, ψ), all three angles can be obtained by
equations B.5 and B.6:

R(φ, θ, ψ) =

r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (B.5)

φ = atan2(r32,r33) ψ = atan2(r21,r11).

θ =

atan2(−r31, r21
sin(ψ)

) if cos(ψ) = 0

atan2(−r31, r11
cos(ψ)

) otherwise
. (B.6)

At this point, it is interesting to mention that the order of rotation is not commutative, as
RXRYRZ 6= RZRYRX . Such property is visualized proving that AB 6= BA:

AB (AB)−1︸ ︷︷ ︸
=B−1A−1

= ABB−1A−1 = AA−1 = I, (B.7)

BA(AB)−1 = BAB−1A−1 6= I. (B.8)

In this context, it is easy to see that there is a total of twelve possible combinations: six
where all axes are different (e.g XYZ), known as Cardan Angles, and six where rotation
occurs on the same axis (e.g XZX) known as Euler Angles.

From Equation B.1, the attitude matrix represented by the Euler angles φ, θ and ψ is

45

given by Equation B.9:

Aijk(φ, θ, ψ) = A(ek, ψ)A(ej, θ)A(ei, φ). (B.9)

Unfortunately, such a form of representation has singularities when the pitch angles θ =

±π
2
. This is known as gimbal lock, when a degree of freedom is lost and angles cannot be

determined uniquely. To work around this issue, one can either set the standard operating
conditions away from or avoid maneuvers that pass through θ = ±π

2
.

In the case of rotation applied to the attitude problem, the matrix is also known as
direction-cosine matrix (DCM) by the way it is obtained as a relation between vectors from
one reference frame and its transformation to another. Let b = [b1b2b3]

T and r = [r1r2r3]
T

be the vector representations of body and reference frames, respectively, in a third coordinate
frame, the attitude matrix A is defined as B.10

A =

〈b1, r1〉 〈b1, r2〉 〈b1, r3〉〈b2, r1〉 〈b2, r2〉 〈b2, r3〉
〈b3, r1〉 〈b3, r2〉 〈b3, r3〉

 . (B.10)

where 〈u, v〉 is the inner product operation of two unit vectors, u and v, given by Equation
B.11. Therefore, DCM is due to the fact each entry of A is the cosine of the angle α between
two unit vectors.

〈u, v〉 = uTv = cos(α). (B.11)

Although DCM is the most natural way to represent attitude, it takes nine values to fully
obtain the rotation matrix. In fact, there are only three (out of nine) independent parameters
owing to the orthogonality constraint. There is also another corolary of Euler’s Theorem that
states an important properties of attitude matrices that serves for another option of represen-
tation:

Theorem 2 Any combination of rotations on a rigid body can be de-
scribed as a single rotation on fixed axis

That means there is a single axis, typically represented by e, known as an Euler axis in
which the rotation operation is performed. This axis consists of the eigenvector associated
with the eigenvalue equal to 1 (Ae = e). Besides, it also is required one other parameter to
completely obtain the rotation matrix: the angle of rotation, Euler angle, given by Equation
B.12:

cosϑ =
tr(A)− 1

2
. (B.12)

where tr(A) denotes the trace of matrix A. The attitude matrix parameterized as Euler axis

46

and angle is given by Equation B.13:

A(e, ϑ) = I3 − sin(ϑ)[e×] + (1− cos(ϑ))[e×]2. (B.13)

Sometimes it is convenient for analysis to combine the Euler axis and angles into a rotatio
vecotr, given by pmbϑ = ϑeee, which gives the attitude written as Equation B.14:

A(e, ϑ) = exp([ϑe×]). (B.14)

where exp is the matrix exponential. However, it is impractical for numerical computations
due to its computational burden.

With an unit rotation vector plus the total rotation angle, it is possible to achieve a repre-
sentation without singularities with fewer parameters than DCM. Equation B.15 presents an
attitude representation based on these four parameters, know as Euler-Rodrigues symmetric
parameters.

η1η2
η3

 = ηηη = ê sin

(
Φ

2

)
, η4 = cos

(
Φ

2

)
. (B.15)

This four-component form of representation suggests using a more convenient form by
making use of quaternions. Quaternions are a number system, conceived by Hamilton, which
are extremelly useful for describing rotations in three dimensions. A quaternion q is a four-
component vector that has a three-vector part and a scalar part. The position of the scalar
part in the vector may differ depending on the notation used, so it is worth noting that in this
manuscript, the same notation from [67], is adopted, which uses the scalar part as component
q4: q = [q1:3 q4]

T .

The attitude matrix with this parameterization is given by Equation B.16:

A(q) = (q24 − ||q1:3||2)I3 − 2q4[q1:3×] + 2q1:3qT1:3. (B.16)

A quaternion of unit norm can always be associated to a rotation in the same way a proper
real orthogonal matrix can, so that it has analogous properties such as B.17, B.18:

q−1 = qT , (B.17)

A(q)A(q̂) = A(q⊗ q̂). (B.18)

It is possible to define a rotation quaternion with its components taken as the Euler sym-

47

metric parameters, as defined by Equation B.19:

q =

[
q1:3

q4

]
=

[
ηηη1:3

η4

]
(B.19)

Given two quaternions q = [q1:3q4]
T and q = [q1:3q4]

T , their operations are defined as
follows:

• Addition:

q + q =

q1 + q1

q2 + q2

q3 + q3

q4 + q4

 . (B.20)

• Dot product:

q � q =

[
q4q1:3 + q4q1:3 + q1:3 × q1:3

q4q4 − q1:3 · q1:3

]
. (B.21)

• Cross product:

q ⊗ q =

[
q4q1:3 + q4q1:3 − q1:3 × q1:3

q4q4 − q1:3 · q1:3

]
. (B.22)

• Norm:

‖q‖ =
√
q21 + q22 + q23 + q24. (B.23)

• Complex conjugate:

q∗ =

[
−q1:3

q4

]
. (B.24)

• Identity:

q−1 =
q∗

‖q‖2
. (B.25)

Another possible way to represent attitude is obtained simply dividing the vector part
of Euler symmetric parameters by its scalar part, as stated in Equation B.26, resulting in a
often called Gibbs vector, ggg, or Rodrigues parameters. It gives the attitude representation on

48

Equation B.27.

ggg =

g1g2
g3

 =
ηηη

η4
=

1

η4

η1η2
η3

 . (B.26)

A(g) = I3 + 2
[g×]2 − [g×]

1 + ||g||2
. (B.27)

However, the Gibbs vector is not recommended as a global attitude representation, be-
cause it is not clearly defined for odd multiples of 180◦. A modification of Rodrigues param-
eters allows this singular point to be moved to odd multiples of 360◦, resulting on modified
Rodrigues parameters, ppp, of Equation B.28 and the attitude representation of Equation B.29:

ppp =
ηηη1:3

1 + η4
. (B.28)

A(ppp) = I3 +
8[p×]2 − 4(1− ||ppp||2)[ppp×]

(1 + ||ppp||2)2
(B.29)

49

	Agradecimentos
	Agradecimentos
	Abstract
	Resumo
	Summary
	List of Figures
	List of Tables
	Acronyms
	Acronyms
	Introduction
	Small satellites
	CubeSat subsystems

	Workplace Framework
	LAICAnSat
	Three-axis nanosatellite simulator facility

	Objectives
	Thesis outline

	The nanosatellite OBC benchmark
	Workload
	Overview of common benchmarks

	The benchmark proposition
	Implementation
	Metrics and rules

	Target devices
	Measurement procedures

	Summary

	Experimental results
	Execution time
	Energy consumption
	Reference platform
	LODESTAR applications

	Conclusion
	Future works

	REFERENCES
	REFERENCES
	Reference frames
	Body-fixed frame
	Local-Vertical/Local-Horizontal Frame
	Earth-Centered-Earth-Fixed
	Earth-Centered Inertial

	Attitude Representations
	Definitions

