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Resumo

Nesta dissertação de mestrado, o comportamento reológico de dois ferrofluidos
comerciais, EFH1 e EFH3, produzidos pela Ferrotec, é caracterizado experimentalmente
através do uso de um reômetro de discos paralelos equipado com uma célula magnética.
Os ferrofluidos utilizados variam somente na fração volumétrica de partículas magnéticas
(magnetita) que contém. As amostras dos dois ferrofluidos são testadas de acordo com
três metodologias. A primeira refere-se aos ensaios em regime de cisalhamento perma-
nente na presença de campo magnético, através do qual examina-se o comportamento da
viscosidade aparente e da tensão de cisalhamento dos ferrofluidos em função da intensi-
dade do campo magnético, da taxa de cisalhamento e da fração volumétrica de partículas
do fluido complexo. Isto permite a verificação da aderência do comportamento reológico
de tais fluidos aos modelos de fluido newtoniano generalizado. A segunda metodologia
diz respeito aos ensaios experimentais com escoamentos do tipo transiente, em regime
de impulso de deformação na presença de campo magnético. A partir desta análise ex-
perimental obtiveram-se, para os diferentes ferrofluidos, suas funções relaxação de tensão
dependentes tanto da intensidade campo magnético como da intensidade do impulso apli-
cado, com base nelas, efetuaram-se o cálculo de seus tempos de relaxação. Verificou-se
também que a tensão de cisalhamento não relaxa para zero em ferrofluidos quando na
presença de um campo magnético, mas sim para uma tensão residual a qual foi avaliada
tanto em função da intensidade do campo, quanto da intensidade do escoamento. A ter-
ceira metodologia refere-se a testes com cisalhamento oscilatório na presença de campo
magnético, em regime de viscoelasticidade linear, no qual obtiveram-se os módulos vis-
coelásticos dos ferrofluidos em função da frequência e da intensidade do campo magnético
para uma condição de pequenas deformações. É mostrada, para ambos ferrofluidos, a
dependência da frequência característica de transição de um comportamento predomi-
nantemente dissipativo para um majoritariamente elástico em relação à intensidade do
campo magnético aplicado. Verificações de compatibilidade entre o módulo viscoso e a
viscosidade aparente para valores iguais de frequência e taxa de cisalhamento são real-
izadas e, com base nisso, a primeira diferença de tensões normais é calculada usando a
regra de Laun.

Palavras-chaves: Ferrofluidos, Efeito magnetoviscoso, Pseudoplasticidade, Re-
laxação de tensão, Tensão residual, viscoelasticidade linear, Primeira diferença de tensões
normais.
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Abstract

In this master’s dissertation, the rheological behavior of two commercial ferroflu-
ids, EFH1 and EFH3, produced by Ferrotec, is experimentally characterized through the
use of a parallel disc rheometer equipped with a magnetic cell. The ferrofluids used vary
only in the volume fraction of magnetic particles (magnetite) it contains. Samples of both
ferrofluids are tested according to three methodologies. The first one refers to tests in
permanent shear regime in the presence of magnetic field, through which the behavior of
the apparent viscosity and of the shear stress of the ferrofluids is analyzed as a function
of magnetic field intensity, shear rate and of the volumetric fraction of particles of the
complex fluid. This permits the verification of the adherence of the rheological behavior
of such fluids to the generalized Newtonian fluid models. The second methodology con-
cerns the experimental tests with transient flow under step-strain regime in the presence
of magnetic field. From this experimental analysis it has been obtained, for the different
ferrofluids, their stress relaxation functions dependent on both the magnetic field intensity
and the applied impulse intensity. Based on them, their relaxation times were calculated.
It was also found that the shear stress does not relax to zero in ferrofluids when sub-
jected to an external magnetic field, but rather it relaxes to a residual stress which was
evaluated as a function of both field strength and yield strength. The third methodology
refers to tests with oscillatory shear, in the presence of magnetic field, and under a linear
viscoelastic regime. From this tests, it has been obtained the viscoelastic modules of the
ferrofluids as functions of frequency and intensity of the magnetic field, for a condition of
small deformations. It is shown, for both ferrofluids, the dependence of the characteristic
transition frequency as a function of the intensity of the magnetic field. This frequency
marks the change from a predominantly dissipative to a mostly elastic behavior of the
complex fluids. Compatibility checks between the viscous modulus and apparent viscos-
ity for equal frequency and shear rate values are performed, and based on this, the first
difference of normal stresses is calculated using Laun’s rule.

Key-words: Ferrofluids, Magnetoviscous Effect, Pseudoplasticity, Stress Relaxation, Resid-
ual Stress, Linear Viscoelasticity, First Difference of Normal Stress.
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1 INTRODUCTION

1.1 Motivation

Ferrofluids are colloidal suspensions of nanosized ferro/ferrimagnetic particles dis-
persed in a carrier liquid (ROSENSWEIG, 2013; ODENBACH, 2003). The particles are
usually composed of magnetite (Fe3O4) with an average diameter around 10 nm. The
base fluids are usually oils, water, ester or kerosene with a Newtonian behavior. As the
particles are extremely small, their sedimentation due to the gravitational field or due
to the agglomeration arising from the interaction of the magnetic dipoles is avoided by
thermal agitation, that is, by the Brownian effect (EINSTEIN et al., 1905).

The magnetic nanoparticles in suspension are considered to be small magnets with
permanent magnetic moment of dipole. Yang et al. (2006) argues that, due to the small
sizes of the magnetic particles, particle agglomeration is one of the main issues concerning
the preparation of stable magnetic fluids. The particles tend to aggregate by the action
of Van Der Walls and dipolar interactions. However this process can be avoided by coat-
ing the particles with surfactants. According to Rosensweig (2013), the surfactants are
usually organic long molecules, such as oleic acid, perfluoropolyether acid or tetramethy-
lammonium hydroxide. Landfester and Ramirez (2003) punctuates that an appropriate
coating not only gives a better stability to the magnetic particles in a carrier fluid, but
it is also able to modify the surface properties of the particles. For example, if a biocom-
patible surfactant is used, it may result in a biocompatible magnetic fluid. According to
Odenbach (2003), the thickness of the surfactant layer is around 2-3 nm, which leads to
the concept of hydrodynamic diameter, that is defined as the diameter of the particle
after the addition of the surfactant layer. In the works of Odenbach and Thurm (2002),
Li, Xuan and Wang (2005) are stressed that the viscosity of magnetic fluids depends on
the various components of the complex fluid and on its surfactant concentration. In figure
(1) is shown an schematic representation of particles with surfactant coatings. They are
representatives of a magnetic colloidal suspension which volume fraction of particles is
7%, whereas, the hydrodynamic volume fraction (considering the surfactant) is 23%.
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Figure 1 – Surface coated magnetic particles. The diameter of the particle is 10 nm and its
hydrodynamic diameter is 14 nm. Figure adapted from (ODENBACH, 2003).

The rheological behavior of ferrofluids is for the most part determined by the their
magnetic properties. As it was stated above, each magnetic nanoparticle is considered as
a thermally agitated permanent magnet dispersed in the carrier liquid. In the presence of
an external magnetic field 𝐻 , the magnetic moment 𝑚 of the particles will try to align
with the magnetic field direction, leading to a macroscopic magnetization of the liquid.
According to Odenbach (2003), the magnetization 𝑀 can be described by a paramagnetic
behavior, due to the fact that the particles are extremely small. The referred author also
punctuates that the number of magnetic units, in a magnetic particle, interacting with
the external magnetic field is is high. As a result, a ferrofluid experiences a strong increase
on its magnetization for weak magnetic fields, that is, this material presents an intense
initial magnetic susceptibility. Because the force exerted by a magnetic field gradient on
a magnetized system is proportional to its magnetization, ferrofluids experience strong
magnetic forces, even for weak magnetic fields due to their high initial susceptibility. This
magnetic force enables an efficient control of the liquids flow by moderate magnetic fields
with a strength of less than 50 mT, which can be easily produced by permanent magnets
or small electromagnets.
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Figure 2 – The magnetic force exerted by the electromagnet to a ferrofluid is strong
enough to keep it attached against the earth’s gravitational field and yet to
form the characteristic spike pattern. Adapted from (ODENBACH, 2009).

Ferrofluids were firstly developed by NASA in 1965 to be used as a fuel of low vis-
cosity in low gravity environments (STEPHEN, 1965). Nonetheless, according to Rosensweig
(2013), ferrofluids are interesting to be used in technical applications for no other reason
than the uniqueness of their giant magnetic response, which, as discussed previously, make
them possibly remote controllable by an external magnetic field. This fact has motivated
many efforts in the design of applications using the influence of a magnetic field, especially
when the ferrofluid is located inside a technical device. This has led to the creation of sev-
eral patents concerning this kind of applications, which are described on (BERKOVSKI;
BASHTOVOY, 1996). Some interesting applications are: design of zero-leakage rotary
shafts seals used in computer disk drives (BAILEY, 1983), design of pressure seals for
compressor and blowers (ROSENSWEIG, 1979), design of electric rotating machines with
improved efficiency, in which the ferrofluid is placed between the stator and the rotor to
enhance strength and quantity of movement (NETHE; SCHOLZ; STAHLMANN, 2006).
Besides those applications, ferrofluids are highly applied nowadays on the loudspeakers
of Hi-Fi sound systems. In these devices, the membrane of the speaker is attached to
the voice coil, which is controlled by a magnetic field generated by a permanent toroidal
magnet. Placing a ferrofluid in the magnetic field around the voice coil enhances thermal
conductivity in this region, resulting on an increased heat transfer to the speaker’s struc-
ture. This increases the devices cooling capacity and, thus, permits the increase of the
maximum power of the sound system (ODENBACH, 2003).

Other front of ferrofluid’s applications is in the field of biomedicine, in which they
have been a focus of research for more than three decades. Scherer and Neto (2005)
summarize these applications on four groups:
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∙ Magnetic drug targeting: applications on this area are based on coating the magnetic
particles of a ferrofluid with chemotherapeutic drugs, which are, then, inject on
a cancer tumor. Through a suitably focused magnetic field, the fluid is kept in
the target area during some time, in order for the drug to reach its maximum
action. Besides that, it is important to remark that the amount of drug needed is
much less than the one that what would be necessary if it was dispersed in the
whole body. Also, when the magnetic field is turned off, the drug will disperse
in the body, but, since the total amount is very small, there will be practically
no side effects. Lübbe, Alexiou and Bergemann (2001) present various options of
treatment lines using the technique described above. Alexiou et al. (2002) report
the use of a ferrofluid coated with a powerful chemotherapeutic drug on 26 tumor-
bearing rabbits, showing absolute success on healing the tumors with minimal side
effects. Further bibliography on the topic can be obtained on (MÜLLER; JACOBS;
KAYSER, 2001) and (JURGONS et al., 2006);

∙ Magnetic hyperthermia: this application is based on the property of ferrofluids of
absorbing electromagnetic energy at a frequency that is different from the frequency
at which water absorbs energy. It allows one to heat up a localized portion of a living
body, where a ferrofluid has been injected, such as example a tumor, without heating
at the same time the surrounding parts of the body. In applications, the temperature
reached by the contaminated tissue is in the range of 43 - 55 ∘C, depending on
the concentration and specific heat of the material and also on the parameters of
the applied magnetic field (DIAS, 2015). Reports on the use of nanoparticles to
locally heat tumors can be found on (JORDAN et al., 2001), (BRUSENTSOV et
al., 2002), (BRUNKE et al., 2006) and (GLÖCKL et al., 2006). Figure (3), adapted
from (JORDAN et al., 2001), shows a prostate cell remarkably pigmented, due to
large magnetic nanoparticles uptake, ready for undertaking a process of magnetic
hyperthermia;

∙ Contrast enhancement for magnetic resonance imaging (MRI): this image acquiring
technique has been one of the most powerful diagnose techniques used in medicine
nowadays. Its ability to distinguish between different tissues relies on the different
relaxation times T2 of the proton’s magnetic moments when they are inside dif-
ferent environments. Frequently, however, the differences are not strong enough to
render well resolved images. If magnetic particles from a biocompatible ferrofluid
are selectively absorbed by some kind of tissue, this will become very clearly visible
by MRI. Pouliquen et al. (1989) report a new contrast composed by biocompatible
magnetic nanoparticles for better visualization of liver tissues. Further successful
applications of ferrofluids as contrast enhancer are discussed on (PANKHURST et
al., 2003);

∙ Magnetic separation of cells: It is often advantageous to separate out specific bi-
ological entities from their native environment, for different possible reasons: to

4



produce concentrated samples of these entities or to freed an infected sample from
them. Scherer and Neto (2005) argue that the separation process is carried out on
two steps: the first is to fix a biocompatible magnetic particle to the desired bio-
logical entity, and the second is to pull the magnetic particles, together with their
"prey" out of the native environment by the action of a magnetic field gradient.
Examples of applications and details on the technique can be found on (ŠAFAŘIK;
ŠAFAŘIKOVÁ, 1999).

Figure 3 – Prostate cancerous cell uptaked by magnetic large particles - "ProstCA" (high
pigmentation) compared to a healthy cell - "F" (no pigmentation). Adapted
from (JORDAN et al., 2001).

Motivated by phenomenological interests on the complex rheology of ferrofluids
when subjected to an external magnetic field and by its several and constantly evolving
applications, it will be studied, in this dissertation, the field-induced rheological properties
of two commercial ferrofluids.

1.2 Bibliografic review

The modeling of the hydrodynamics of magnetic fluids combines the fluid mechan-
ics of colloidal suspensions with the fundamental equations of electromagnetism. Cunha
(2012) and Rosensweig (2013) punctuate that the intersection of those areas for a non-
conductor magnetic fluid, free of the action of electric fields and currents, defines the area
of ferrohydrodynamics (FHD). In the absence of external magnetic fields, the Brownian
motion (thermal agitation) orients the the magnetic dipoles of the particles randomly,
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resulting on a state characterized by the nonexistence of a mean magnetization and, as
a result, on a fluid that behaves as an ordinary suspension. On the other hand, when an
external magnetic field is applied, the magnetic dipoles begin to experience the action of
the magnetic forces resulting from magnetic field gradients and of the action of magnetic
torques arising from the misalignment between the dipole and the magnetic field. Consid-
ering the ferrofluid as an equivalent continuous fluid (KIM; KARRILA, 2013), the actions
of the magnetic field over the particles are considered to propagate to the base fluid as
extra stresses. That being said, the stress tensor for the referred theoretical fluid has the
following stress tensor:

Σ = Σℎ + Σ𝑚, (1.1)

where Σℎ is the purely hydrodynamic tensor and Σ𝑚 is the magnetic contribution. The
equivalent stress tensor cannot be deduced only from the balance equations of continuum
mechanics, due to the fact that it needs constitutive models that describe the material. The
formulation of Σ𝑚 is one of the open problems concerning the hydrodynamics of magnetic
fluids. The problem becomes more complex when the magnetic fluid is concentrated,
because, in this regime, hydrodynamic a magnetic interactions between the particles start
to become relevant, even leading to the generation of fluctuations on the velocity of the
particles.

The complex relation between the electromagnetic and hydrodynamic quantities
leads to the necessity of performing thorough characterizations of the rheological behav-
ior of ferrofluids from both, theoretical and experimental, points of view. In this context,
rheometry plays a key role, owing to the fact that it permits the evaluation of the depen-
dence of the complex fluid’s material functions, such as the apparent viscosity and the
shear stress, on both flow- and magnetic-related parameters. According to Tanner (2000),
such evaluations can be done using various types of rheometric flows, like simple shear
(linear), oscillatory shear, step-strain or even quadratic shear, observed in capillary. Each
of these flows provide information on specific material functions, which can be used to
study the adherence of a wide range of constitutive models, theoretical and ad-hoc, to
specific experimental data, in a process aiming the description of the rheological behavior
of the complex fluid.

Generally, the effect of a magnetic field on a sample of ferrofluid leads to two effects:
the appearance of magnetic forces over the magnetic particles and the emergence of inter-
nal magnetic torques on the particles due to the misalignment between the magnetization
and the magnetic field. The first one leads to applications like the magnetic separation
used, as discussed, on medical applications, but also explored by Cunha and Sobral (2004)
as possible remediation technology to oil spills in natural environments. Besides that, this
effect is also used in drag reduction in pipe flow (ROSA; GONTIJO; CUNHA, 2016). The
second effect, the one arising from the field induced magnetic torques, is of extreme im-
portance to understand the rheological behavior of ferrofluids, being therefore, the focus
of this work. Our experiments are carried out on a rheometer of parallel disks, which is
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also able to apply an uniform magnetic field orthogonal to the plates.

The first step into the comprehension of the rheological implications of applying an
external magnetic field on a magnetic colloid was done by McTague (1969). In this work,
the author used a ferrofluid composed by cobalt (Co) particles, with a core diameter
of 10nm and a hydrodynamic diameter of 30nm (considering the polymeric surfactant
coating), dispersed in an organic solvent with a volume concentration as low as 0.05%. He
measured the viscosity of this magnetic colloid using a capillary viscometer, whose test
area was immersed on a uniform magnetic field, with controllable intensity and direction.
From this experiments, McTague (1969) discovered that the viscosity of the referred fluid
increased in the presence of a magnetic field. The viscosity was found to depend not only
on the intensity of the magnetic field, but also on its direction relative to the flow. In
this paper and in the paper of Hall and Busenberg (1969), the effect was explained by a
hindrance of rotation of the suspended particles due to the action of the magnetic field.
In order to completely understand this concept, consider a situation in which a magnetic
fluid is subjected to a shear flow. It can be assured that the particles inside the fluid will
start to rotate with the axis of rotation parallel to the vorticity 𝜉 of the flow due to the
mechanic torque resultant of viscous friction in the fluid. Nonetheless, when an external
magnetic field 𝐻 is applied to the system, the magnetic moment 𝑚 of the particles will
align with the field direction. In a situation where the field direction and the vorticity of
the flow are collinear, as shown in figure (4a), the magnetic alignment will only lead to
the fact that the magnetic moment of the particles will align with the direction of the
vorticity, that is, the particle will rotate around the field direction and, as a result, no
influence on the flow will appear. In contrast, if the field is perpendicular to vorticity, as
shown in figure (4b), the mechanic torque will tilt the particle’s magnetic moment against
the field direction, assuming that the moment of dipole is spatially fixed in the particle.
The resulting finite angle between the magnetic moment and the field direction will give
rise to a magnetic torque, which counteracts the viscous torque and try to realign the
moment of dipole with the magnetic field. The counter action of the torques results in a
hindrance of free rotation of the particles in the flow, an thus in an increase of the fluid’s
viscosity. The magnetic field-dependent viscosity was named rotational viscosity and the
effect, magetoviscous effect (ODENBACH, 2003).
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Figure 4 – On the origin of the magnetoviscous effect in a suspension of magnetic nano
particles. Explanation is given in the text.

Four years after the discovery of the magnetoviscous effect, Shliomis (1971) faced
the problem from a theoretical point of view. Taking into account the Brownian effect
on an previous explanation by Hall and Busenberg (1969), he derived an expression for
the change of the rotational viscosity as a function of the strength and direction of the
magnetic field 𝐻 , which is given by

𝜂𝑟 = 3
2𝜑ℎ𝜂0

𝛼− tanh(𝛼)
𝛼 + tanh(𝛼) < sin2 𝛽 >, (1.2)
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where, 𝜂0 denotes the viscosity of the fluid in the absence of external magnetic field1, 𝜑ℎ

is the hydrodynamic volume fraction of particles (includes surfactant) , < sin2 𝛽 > is a
spatial average of the angle between the vorticity and magnetic field direction. Besides
that, 𝛼 is a parameter that denotes the ratio of magnetic and thermal energy of the
particles, given by

𝛼 = 𝜇0𝑚𝐻

𝑘𝑏𝑇
, (1.3)

where 𝜇0 is the vacuum permeability, 𝑚 is the intensity of the particle’s magnetic mo-
ment, 𝑘𝑏 Boltzmann’s constant and T is the absolute temperature. Shiliomi’s explanation
of rotational viscosity has been built based on two constrains: first, the magnetic moment
is fixed in the particle, and second, the particles do not interact. According to Odenbach
(2009), the first assumption depends on the way that the magnetization relaxes. Fannin
(2002) argues that the relaxation process can be carried out by thermal agitation effects,
that is by Brownian motion (FRENKEL, 1955), through which this property relaxes by
random rotations of the whole magnetic particle, implicating that 𝑚 is fixed on the parti-
cle. The magnetization can also relax by the rotation of the magnetic dipole vector within
the particle (Néel process) (NÉEL, 1953). According to the refereed author, the magne-
tization will relax through the process with the small characteristic time. As reported
by Fannin (2002) both times depend on the size of the particles but the Brownian time
scales only linear with the particle’s volume while the Néel time depends exponentially
on it. This implies that small particles will relax by Néel’s process, while particles above
a certain critical diameter will follow the Brownian process. Particles that relax by the
Brownian effect have the moment of dipole spatially fixed on them, being denominated
magnetically hard. Odenbach and Thurm (2002) affirm that only hard particles contribute
to changes on viscosity. For magnetite, the transition from Néel’s process to Brownian
relaxation occurs for diameters about 13 nm.

Regarding this context, commercial ferrofluids containing magnetite particles with
a mean diameter of 10 nm would be expected to present weak magnetoviscous effect due to
the fact that only a small volume fraction of large particles contained in the fluid would
be able to contribute to magnetoviscosity. Nonetheless, Rosensweig (1979), Odenbach,
Rylewicz and Heyen (1999), Patel, Upadhyay and Mehta (2003) reported observation
of strong magnetoviscous effect in concentrated colloids of magnetite, which is the case
of commercial ferrofluids, whose volume concentration of particles are in the range of
7-10%. This could only be explained by the formation of magnetic-induced structures
build up by action of dipolar interactions between the numerous particles contained in
the fluid. Other factor that speaks in favor of this assumption is the fact that those fluids
exhibit a field dependent shear-thinning as was observed by Odenbach and Störk (1998),
that is, their field-induced structures nor only exists, but are being broken by the action
of the shear, which leads to a reduction of their hydrodynamic size and, as a result,
1 The suspensions considered by Shliomis (1971) are highly dilute, thus 𝜂0 is Einstein’s viscosity (EIN-

STEIN, 1911), given by 𝜂0 = 𝜂𝑠0(1 + 2.5𝜑ℎ). In this equation, 𝜂𝑠0 is the viscosity of the base fluid
(without particles) and 𝜑ℎ is the hydrodynamic volume fraction of particles.
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of their influence in the flow. Odenbach (2003) states that, since the magnetic dipole
interaction energy of particles with diameter below 13 nm is less than their thermal
energy, such particles cannot form permanent structures. This leads to the hypothesis
that only a small fraction of large particles gives rise to the strong magnetoviscous effect,
which was experimentally validated by Odenbach and Raj (2000). More recently, Gontijo
and Cunha (2015) have carried out dynamic simulations of a magnetic suspension with
particles interacting magnetically in a periodic box, in the presence of an applied magnetic
field. These simulations demonstrated the gradual formation of particle structures like
aggregates and their transitions to anisotropic chains of aligned particles, induced by
magnetic effects.

Cunha, Rosa and Dias (2016) present an experimental investigation of the rheolog-
ical behavior of very diluted magnetic suspensions with micro-structures of nanoparticles.
The suspensions are composed by magnetite particles with a mean diameter of 8nm dis-
persed on mineral oil, being produced in a wide variety of particle volume fractions. The
viscosity of the suspensions are measured as a function of the intensity of the applied
magnetic field, shear rate and particle volume fraction. They also investigate the mi-
crostructure transitions provoked by the application of an external magnetic field to the
suspensions. The authors observed that, under the action of magnetic fields, there is a
strong connection between the rheological behavior of the magnetic suspensions and their
microstructure, even in regimes of high dilution. The authors report the increase of the
viscosity of the magnetic suspensions with the applied magnetic field, stating that this
behavior is directly related to the formation of networks of particles or micro blobs-like
aggregates through the suspension. In this work is also shown that, in the absence of
magnetic field and in a regime of highly diluted suspensions, the effective viscosity of
the suspensions presents a linear dependence on the particles volume fraction, i. e. Ein-
stein regime. It was also reported a shear-thinning behavior of the suspensions when in
the presence of an external magnetic field, which was directly linked to the stretching
and breaking of the field-induced structures of different shapes and sizes by the action
of shear-flow. Images of the anisotropic chains and aggregates have been acquired, what
made possible to visually associated changes on the rheological behavior of the suspensions
to modifications in the size and shapes of the particles chains and aggregates.

An opposite effect to magnetoviscosity has also been reported on the literature,
which is called the "negative" rotational viscosity. Bacri, Cebers and Perzynski (1994)
showed and proved by experimental evidence that when a rotating magnetic field is applied
to the flow of a ferrofluid the dependence of its rotational viscosity on the frequency of
rotation is given by:

𝜂𝑟 = 3
2𝜂0𝜑ℎ

Ω − 𝜔𝑝

Ω , (1.4)

where, Ω is the angular velocity resultant from the fluid’s vorticity evaluated in the parti-
cle’s center of mass and 𝜔𝑝 is the angular velocity of the particle induced by the rotating
magnetic field. If the frequency 𝜔𝑝 is smaller than Ω, the free particle rotation will be
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impeded and as a result a viscosity increase will be observed (magneto viscous effect).
However, for large field frequencies, 𝜔𝑝 may become larger than Ω and, as a result, the
particles will spin up the flow, converting magnetic energy on kinetic. This gives rise to
a reduction of viscosity due to the negative dependent term in the expression for the
rotational viscosity. For extremely high frequencies 𝜔𝑝 >> Ω, the rotational viscosity was
observed to assume negative values. It is important to remark that 𝜂𝑟 = 𝜂(𝐻)−𝜂0, thus a
negative value of 𝜂𝑟 implicates that the viscosity evaluated in the presence of the magnetic
field 𝜂(𝐻) is smaller that the viscosity of the fluid in the absence of magnetic field.

The formation of particle’s chains due to the action of an external magnetic field
will not only enhance the field dependent increase of viscosity on a ferrofluid. According to
Odenbach (2000), it will also provide the possibility to generate field dependent viscoelas-
tic effects, which may give rise to new classes of applications of ferrofluids. The existence
of viscoelastic effects in commercial ferrofluids was firstly predicted in the theoretical work
of Zubarev (1992), in which the author foresees the appearance of field-induced normal
stresses differences on magnetic colloids. This prediction led to an experimental search
for the existence of the Weissenberg effect in commercial ferrofluids. This effect, the rise
of a free surface of a viscoelastic fluid around a rotating axis should be dependent on the
intensity of the magnetic field and on the shear flow in the case of a ferrofluid. For vanish-
ing magnetic field, the liquid behaves Newtonian and, as a result, the free surface lowers
at the rod axis due to the action of centrifugal forces. In commercial ferrofluids, this effect
was found to be too small to be observed in normal terrestrial experiments, nonetheless,
an amplification of the free-surface elongation effects is possible by performing the ex-
periments under reduced gravity conditions. This has been done by Odenbach, Rylewicz
and Rath (1999), using parabolic flights that provided 20s of microgravity environment.
The Weissenberg effect was observed, which was the first experimental confirmation of
the existence of normal stress differences in this kind of fluid and, thus, of viscoelasticity
in commercial magnetic fluids containing magnetite particles with a mean diameter of
10nm.

Since the appearance of viscoelastic behavior on commercial ferrofluids had been
confirmed, theoretical and experimental works have been carried out exploring this phe-
nomenon. Odenbach and Thurm (2002) report the use of a rheometer cone-and-plate
to directly evaluate the viscoelastic properties of the commercial ferrofluid APG513A
through experiments of small amplitude oscillatory shear. The author affirms that this
kind of flow has an important advantage, which is the fact that it does not change the
"zero-shear-rate" structure of the fluid, due to small applied amplitudes of the shear ap-
plied. In the referred study, it has been measured the phase shift 𝛿 between shear and
stress. It is important to remark that for an elastic body this phase shift should be zero,
while for a Newtonian liquid, 𝛿 = 𝜋/2 is expected. The samples used in the experiments
had different concentration of large particles, which was achieved by means of magnetic
separation. Odenbach and Thurm (2002) report the use of a trapezoidal container, where
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a sample of 300 ml of APG513A is placed. After, this devices is subjected to a vertical
magnetic field gradient of 107 A/m2. This give rise to two kinds of derivative samples:
the upper fraction (collected from the upper part of the container) presented an average
diameter of 11.6 nm, while the lower fraction, a mean diameter of 12.1nm. It is important
to remark that the original mean diameter of APG513A is 12nm. Even under the action
of an external magnetic field, the upper fraction showed a linear relation between stress
and shear rate, indicating Newtonian behavior. This was confirmed by the fact that the
measured phase shift, 𝛿 = 𝜋/2, was constant over the whole range of oscillating frequen-
cies 𝜔. In contrast, two behaviors were observed for the lower fraction, in a condition of
absence of external magnetic field, no phase shift was observed, indicating that the fluid
behaves Newtonian. On the other hand, when a magnetic field was applied, the lower
fraction presented a phase shift 𝛿 between 0 and 𝜋/2. The last effect comes from the fact
that the lower fraction has a big amount of large particles what makes it more likely for
chains and aggregates to form, injecting, thus, elasticity in the system. The phase shift
was found to increase as the shear rate decreased, what is related to the fact that, in
this condition, the length of the particle chains enhances, indicating that progressively
the elastic-like behavior is becoming predominant. The phase shift of the original fluid
takes values in between the phase shifts of the upper and lower fractions. To sum up, the
authors punctuate that the higher number of large particles in the lower fraction fluid en-
hances the appearance of viscoelasticity and a reduction of the number of bigger particles
in the upper fraction sample leads to a pure Newtonian system.

In the work of Odenbach (2009), it is reported the experimental analysis of field-
induced viscoelasticity resultant from the application of a oscillatory stress on a ferrofluid.
The author investigates the behavior of the complex viscosity of a ferrofluid for different
different magnetic field strengths, as a function of the frequency of the stress oscillations.
It is reported that for vanishing magnetic field, the imaginary part of the complex viscosity
𝜂′′(𝜔) also vanishes, as it is expected for a Newtonian fluid. Nonetheless, increasing the
magnetic field strength, 𝜂′′ enhances, clearly indicating the rise of viscoelastic effects
in the fluid. It is also stressed that the frequency at which a pronounced maximum of
the complex viscosity occurs corresponds to the inverse of the relaxation time of the
magnetic structures in the fluid. It is pointed out that the increase of the frequency of the
maximum indicates a reduction of the relaxation time with increasing field strength, which
is explained by an enhanced alignment of the growing structure with the field direction.

The thematic of stress relaxation has been the focus of more recent rheological
studies, both from a theoretical and experimental point of view. Borin et al. (2011) per-
form experiments on the relaxation of shear stress in a diluted ferrofluid with clustered
magnetic nanoparticles (𝜑 = 0.1%). It was observed that the fluid under analysis showed
field-induced viscoelasticity, resulting in slow relaxation phenomena. Elasto-thixotropy of
the fluid and further transient behavior under shear-flow result from the deformation and
destruction of agglomerates of the magnetic clusters and depend strongly on the relation
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between magnetic field strength and the rate of mechanical deformation. The authors
punctuate that the transient time until shear stress in the fluid become steady can reach
several minutes, what should be taken into account when carrying out rheological mea-
surements and on the design of applications that use ferrofluid with strong interacting
particles. It is also observed that a polymer-like behavior of the ferrofluids appears and
is enhanced as the intensity of the external magnetic field increases. According to the
authors, this rheological phenomena arises from the fact that, as the intensity of the field
rises, magnetic-induced linear chains of those high interacting particles dominate the mi-
crostructure. Yang et al. (2006) by perpetrating experimental rheological investigations
on aqueous ferrofluids in a regime of oscillatory shear report a constant value of the elastic
modulus 𝐺′(𝜔) for a wide range of frequencies of oscillation. This behavior has a parallel
on polymer dynamics, being, according to Doi and Edwards (1988), an indication of for-
mation of a 3D network. Similar to the theory of polymers, the authors consider that the
result discussed above is a rheological evidence of formation of 3D structure by particles
and particle’s aggregates in ferrofluids.

In other theoretical and experimental work, Borin et al. (2014) consider the stress
relaxation of a ferrofluid based on clustered iron nanoparticles, under the influence of a
magnetic field, when a simple shear flow is suddenly interrupted. The authors remark
that, in this condition, the shear stress does not relaxes to zero after a sudden cessation
of the flow, but instead, it reaches a constant value, named residual stress. The residual
stress was found to increase as the magnetic field intensity enhances, due to the fact that
high intensities of the magnetic field lead to the formation of aggregates with large size
and improved overall stability. Moreover, it was also reported that the residual stress
presented a dependence on the intensity of the shear being applied before the cessation
of the flow. The residual stress was found to decrease as the shear rate increased. The
reason of this behavior is the breakup of the field induced structures by the intensification
of shear.

In the study by Shahnazian and Odenbach (2008), the appearance of yield stress
was evaluated for three ferrofluids with different volume fractions of magnetic particles and
mean particle diameter. From the fluid characteristics, a parameter was calculated that
accounts for particle-particle interactions. It was observed that the yield stress increases
with the square of the intensity of the magnetic field. Comparing ferrofluids with particles
of the same average size (16 nm), the fluid with the smallest volume fraction of large
particles did not exhibit yield stress even at the higher field strength (80 kA/m). On
the other hand, for the fluid composed of particles with an average diameter of 10 nm,
it was obtained higher values of yield stress due to its bigger fraction of large particles.
This shows that there is a relationship between the yield stress and the amount of larger
particles, owing to the fact that they are responsible for the formation of chains and
aggregates. It was also observed that the yield stress increases as the distance between
the rheometer discs decreases. This can be due to the interaction between the particles as
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well as the amount of large ones in the measuring gap of the instrument. In this sense, the
study by Liu and Jin (2011) analyzed the influence of the volume of liquid used between
the discs of a rheometer. They found that the shear stress increases as the volume of
liquid heightens due to the larger amount of magnetized particles

1.3 Objectives

The main objective of this work is the characterization of the rheological behavior
of two ferrofluids, differing on their volume fractions of magnetic particles. The analysis
will be mostly experimental, using a parallel plate rheometer with a magnetic cell. This
device permits the application of several regimes of shear flow in the complex fluid under
analysis and, also, to produce and maintain a controlled magnetic field in the zone where
the fluid sample is being tested. Regarding this context, this dissertation has the following
specific objectives:

∙ Perform a bibliographic review on themes related to the constitutive modeling of
ferrofluids and to the rheological effects that arise from the interaction of a ferrofluid
with a magnetic field;

∙ Investigate, through experiments in permanent simple shear in the presence of a
magnetic field, the rheological behavior of the apparent viscosity of the ferrofluid as
a function of the magnetic field intensity and of the shear rate. That is, to perform
the characterization of the magnetoviscous effect and of the pseudoplastic behavior
of the ferrofluid when tested in the presence of an external magnetic field;

∙ Using the same flow regime, perform the characterization of the behavior of the
shear stress as a function of the shear rate for different intensities of the external
magnetic field. Besides that, verify the existence of yield stress and the adherence of
the collected experimental data to generalized Newtonian fluid constitutive models;

∙ Through experiments in the regime of transient shear, specifically the step-strain,
obtain the stress relaxation functions for different conditions of magnetic field and
flow intensities. Analyze the likely complex relaxation and obtain the main and
secondary relaxation times as functions of the magnetic field intensity. Verify the
adherence of the data collected for the stress relaxation functions to Maxwell’s
generalized viscoelastic model. Besides that, obtain the residual stress and study its
dependence on the intensity of the magnetic field and on the shear rate;

∙ Using small amplitude oscillatory shear, verify the viscoelastic behavior of the fer-
rofluid in the presence of a magnetic field. Obtain the viscoelastic modules and
analyze their dependence on the intensity of the magnetic field. Investigate the
effect of the magnetic field on the viscous and elastic properties of the ferrofluids;
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∙ For each fluid and magnetic condition, compare the modulus of the complex viscos-
ity, measured on oscillatory shear, and the apparent viscosity, obtained from simple
permanent shear, for compatible values of frequency and shear-rate. In case of agree-
ment between the behavior of the referred material function, verify the applicability
of empirical relations to determine the first normal stresses difference.
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2 THEORETICAL
BACKGROUND

In this chapter, it will be presented the fundamental laws of the mechanics of
continuous media and of the electromagnetism. This is necessary due to the fact that
these equations are the basis for the physical description of the flow of a magnetic fluid.
Nonetheless, they are not enough to give a complete description of the fluid flow, what
will be evident on the following sections.

2.1 Continuum hypothesis

Materials have a discontinuous molecular structure, since their mass is concen-
trated in the nucleus of the atoms that make up their molecules. As a result, it is found
that this property is not evenly distributed throughout the volume of the material, even
in liquids and solids, where the distance between molecules is reduced compared to gases.
According to Batchelor (2000), other properties of the fluid, such as composition and
velocity, exhibit a strongly nonlinear distribution when the fluid is analyzed from a suffi-
ciently small scale to allow analysis of the behavior of individual molecules.

However, fluid mechanics has a focus on the behavior of matter on a macroscopic
scale, which is characterized by a much larger typical length scale (𝐿) when compared
to the molecular scale (𝜆), associated to the mean distance between the molecules that
compose the material. Between the macroscopic and the molecular scale is the local con-
tinuum scale (𝑙). This scale defines a volume of material sufficiently small that it can be
considered "local" relative to the volume comprised by the macroscopic scale, and large
enough to contain a sufficient number of molecules. Such characteristics allow the be-
havior of the material to be analyzed assuming, by hypothesis, a perfectly continuous
distribution of its microscopic structure and therefore of its physical properties, such as
its mass. The scales referred to above are shown in the figure (5), which schematically
represents a fluid particle 𝒫 in a continuous body ℬ.
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Figure 5 – Continuous body (ℬ), in which is presented a fluid particle (𝒫) and its typical
scales, respectively, the integral (macroscopic) scale (𝐿) and the local contin-
uum scale (𝑙).

(BATCHELOR, 2000) remarks that, on the continuum scale, the measured prop-
erties are effectively volumetric averages of the effects of molecules on the sensible volume
(defined by the local continuum scale). Thus, it is observed that the fluctuations of the
properties at the molecular level do not affect this average, which remains constant. How-
ever, with the increase of the scale parameter, we arrive at the integral scale, in which
the spatial distribution of the property under study becomes important.

The continuum hypothesis ensures the possibility of associating a definite meaning
to the notion of point (local) value of the most varied properties of a material, such as
density, velocity and temperature. As a consequence, in the scale of the continuum, these
properties are considered as continuous functions of the position in the local material
volume and of the time. As an example, considering valid the continuum hypothesis, the
density of a material can be defined as follows :

𝜌 = lim
𝛿𝑉 →𝛿𝑉 ′

1
𝛿𝑉

∫︁
𝛿𝑉

∑︁
𝑖

𝑚𝑖𝛿(𝑥 − 𝑥𝑖)𝑑𝑉, (2.1)

where 𝛿𝑉 ′ is the volume of a material point, that is, the property is obtained as a vol-
umetric average in the vicinity of that point. Based on this, it is possible to establish
governing equations for the motion of the material particle that are independent of its
constituent particles.

Arising out of the local scale (l) and molecular scale (𝜆) definitions, the Knudsen
number (Kn), which is a nondimensional parameter, is specified as:

Kn = 𝜆

𝑙
. (2.2)

This dimensionless number is of great importance in determining the applicability of the
continuum hypothesis. If the Knudsen number is close to or greater than one, the free mean
path of a molecule is comparable to the length scale of the problem, so the consideration
of continuity of the material properties is no longer a good approximation, and other fields
of statistical mechanics must be used. Considering the case in which 0.01 < 𝐾𝑛 < 0.1, the
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problem presents an interface condition, where the validity of the continuum hypothesis
must be evaluated. Nonetheless, for values of 𝐾𝑛 < 0.01 the hypothesis is strictly valid.

2.2 Governing equations of fluid motion

Fluids are substances that continuously deform (flow) when subjected to tangential
stresses. Fluid flow is governed by a set of balance equations, namely: the continuity equa-
tion, the linear momentum balance equation, the angular momentum balance equation,
and the energy equation.

2.2.1 Balance of Mass

The density of a given material is locally defined as follows:

𝜌 = lim
𝛿𝑉 →𝛿𝑉 ′

𝛿𝑚

𝛿𝑉
, (2.3)

where 𝛿𝑉 ′ and 𝛿𝑚 are, respectively, the volume and the mass of the smallest material
particle (𝒫), belonging to a material body ℬ, of volume 𝑉 and mass 𝑚. Considering that
ℬ meets the continuum hypothesis, the total mass of the body is given by:

𝑚 =
∫︁

𝑉
𝜌𝑑𝑉. (2.4)

From the principle of conservation of mass, it is known that in a given control vol-
ume, the net effect of input, output and mass generation is null, which is mathematically
expressed as:

𝐷𝑚

𝐷𝑡
= 0, (2.5)

where 𝐷

𝐷𝑡
is the substantive derivative operator, which is defined based on an observer

moving along with the material particle. This operator is expressed as follows:
𝐷(*)
𝐷𝑡

= 𝜕(*)
𝜕𝑡

+ 𝑢 · ∇(*), (2.6)

in which, (*) is any property of the fluid and 𝑢, the velocity field of the flow.

Replacing equation (2.4) into (2.5), one obtains:
𝐷

𝐷𝑡

∫︁
𝑉
𝜌𝑑𝑉 = 0. (2.7)

Then, applying the Reynolds transport theorem (ARIS, 2012), equation (2.7) is rewritten
as:

𝐷

𝐷𝑡

∫︁
𝑉
𝜌𝑑𝑉 =

∫︁
𝑉

𝜕𝜌

𝜕𝑡
𝑑𝑉 +

∫︁
𝑆
𝜌𝑢 · �̂�𝑑𝑆 = 0, (2.8)

where 𝑢 is the velocity field, S is the control surface and �̂� is the unit vector normal to
S in the outward direction. From Gauss theorem (ARIS, 2012), it can be affirmed that:∫︁

𝑆
𝜌𝑢 · �̂� =

∫︁
𝑉

∇ · (𝜌𝑢)𝑑𝑉. (2.9)
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Replacing this result on equation (2.8), one obtains that:

𝐷

𝐷𝑡

∫︁
𝑉
𝜌𝑑𝑉 =

∫︁
𝑉

(︃
𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢)

)︃
𝑑𝑉 = 0. (2.10)

As this equation is valid in all the volume of the material body ℬ, the theorem of local-
ization (ARIS, 2012) can be applied to equation (2.10), which results in:

𝜕𝜌

𝜕𝑡
+ ∇ · (𝜌𝑢) = 0. (2.11)

Developing equation (2.11), one obtains:

𝜕𝜌

𝜕𝑡
+ 𝜌∇ · 𝑢 + 𝑢 · ∇𝜌 = 0. (2.12)

rearranging the therms of equation (2.12), it can be rewritten as:

𝐷𝜌

𝐷𝑡
+ 𝜌∇ · 𝑢 = 0, (2.13)

which is named the equation of continuity. Expression (2.13) represents mathematically
the physical principle of mass conservation applied to an element of a continuous material.

2.2.2 Balance of linear momentum

The linear momentum (𝑃 ) of a continuous body ℬ is given by:

𝑃 =
∫︁

𝑉
𝜌𝑢𝑑𝑉. (2.14)

From Newtons’ second law of motion, it is known that the variation of linear
momentum is equal to the sum of all external forces that act on the continuous body.
Formalizing this principle, one obtains that:

𝐷𝑃

𝐷𝑡
= 𝑓 , (2.15)

where 𝑓 is the resultant of all external forces, which can be divided in two groups: field
and surface forces. As a result, 𝑓 can be rewritten as: :

𝑓 =
∫︁

𝑉
𝜌𝑏𝑑𝑉 +

∫︁
𝑆
𝑡𝑑𝑆, (2.16)

in which 𝑏 is a force per unit of volume and 𝑡 is the stress vector, also called traction,
which is defined from Cauchy’s theorem (BATCHELOR, 2000) as:

𝑡 = �̂� · Σ, (2.17)

where Σ is the stress tensor. Replacing this result in equation (2.16), one obtains:

𝑓 =
∫︁

𝑉
𝜌𝑏𝑑𝑉 +

∫︁
𝑆
�̂� · Σ𝑑𝑆. (2.18)
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This expression can be rewritten by applying the theorem of divergence (ARIS, 2012) as:

𝑓 =
∫︁

𝑉
(𝜌𝑏 + ∇ · Σ) 𝑑𝑉. (2.19)

From the theorem of localization (ARIS, 2012) and regarding equation (2.15), one can
write that:

𝜌𝐷(𝑢)
𝐷𝑡

= 𝜌𝑏 + ∇ · Σ, (2.20)

in which, 𝑏 is the gravity acceleration vector. The stress tensor Σ determines the distri-
bution of stress in the continuous medium, the presents the following form:

Σ = −𝑝𝐼 + 𝜎, (2.21)

where 𝑝 is the mechanic pressure and 𝐼 is the identity tensor, which together form the
isotropic part of the stress tensor, 𝜎 is the deviatoric part of it, being associated with the
shear stresses that develop over the material.

Equations (2.13) and (2.20) govern the flow of any homogeneous continuous medium,
however, they are not able to describe the response of the material. To do that, it is nec-
essary to know the relationship between stress and strain specifically for the material
being analyzed, which is done by proposing constitutive equations for 𝜎, what allows the
obtainment of the stress tensor Σ. Constitutive equations are generally determined from
experimental observations or theoretically by a process of proposing hypotheses. However,
such expressions should fit a set of fundamental principles, which will be covered in the
next chapter.

2.3 Principles of electromagnetism

In this section it will be discussed the fundamental quantities and the governing
equations of the electromagnetism. The Maxwell’s equations are presented and particular-
ized for the regime of the ferrohydrodynamics. After that, it will be deduced the magnetic
force and torque acting upon a magnetic dipole. Such discussions are of high importance
for the deduction of a constitutive equation for the deviatoric part of the stress tensor of
a magnetic fluid, which will be done in section (3.2.2).

It is important to remark that the International System of Units will be used in
this work, thus the form of the governing equations may differ from those presented on
other studies that use the CGS system.

2.3.1 Maxwell’s equations

The electromagnetism is governed by the four Maxwell’s equations, that relate the
main electric and magnetic quantities. In order to derive those equations, we will start by
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discussing the phenomenological laws, which are: Gauss’ Law of Electricity, Gauss’ Law
of Magnetism, Faraday’s Law and Ampère’s Law.

The Gauss’ law of electricity relates the net rate of an electric field vector 𝐸 to
the charge 𝑞 in the interior of an enclosed surface 𝑆 of a certain volume 𝑉 , that is∫︁

𝑆
𝐸 · �̂� 𝑑𝑆 = 𝑞

𝜖0
, (2.22)

to which applying the theorem of divergence, one obtains∫︁
𝑉

∇ · 𝐸 𝑑𝑉 = 𝑞

𝜖0
, (2.23)

where 𝜖0 is the vacuum permittivity, whose value in the in the international system of
units is 8.854 × 10−12C2/Nm2. Using on equation (2.23) the localization theorem (ARIS,
2012), one obtains that

∇ · 𝐸 = 𝜌𝑞

𝜖0
, (2.24)

where 𝜌𝑞 is the charge density in the volume 𝑉 . For dielectrics, this parameter is given
by

𝜌𝑞 = 𝜌𝑙 + 𝜌𝑝, (2.25)

in which, 𝜌𝑙 is the free-charge density and 𝜌𝑝 is the density of polarized charges, that is
defined as

𝜌𝑝 = ∇ · 𝒫 , (2.26)

where 𝒫 is the polarizing vector of the dielectric. Now, substituting expression (2.26) and
(2.25) on equation (2.24), one obtains, after rearranging the terms, that

∇ · (𝜖0𝐸 + 𝒫) = 𝜌𝑙. (2.27)

The vector 𝜖0𝐸 + 𝒫 is defined as the electric displacement vector 𝒟. Based on this,
equation (2.27) becomes:

∇ · 𝒟 = 𝜌𝑙. (2.28)

This expression is the Gauss Law of Electricity and also the first Maxwell’s equation on
its differential non-relativistic form.

The fundamental quantities regarding the magnetism are the vector of magnetic
field density 𝐵 and the effective magnetic field vector 𝐻 . In general, it can be considered
that 𝐵 is the fundamental physical quantity given its further generality granted by the
fact that it can defined directly from the law of Biot-Savart (GRANT; PHILLIPS, 2013)
applied to an electric circuit 𝐶 traversed by a current 𝐼,

𝐵 = 𝜇0

4𝜋

∮︁
𝐶

𝐼 × 𝑥

𝑥3 𝑑𝑙, (2.29)

where, 𝑟 is the position vector of the line element 𝑑𝑙. The Gauss’ law of the magnetism
is a direct consequence of the nonexistence of magnetic monopoles, postulating that the
flux of 𝐵 trough an enclosed surface 𝑆 is null,∫︁

𝑆
𝐵 · �̂� 𝑑𝑆 = 0, (2.30)
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in which �̂� is the unit vector normal to the surface 𝑆 point outwards from it. Applying
the divergence theorem to equation (2.30), one obtains∫︁

𝑉
∇ · 𝐵 𝑑𝑉 = 0. (2.31)

Applying the theorem of localization to the last equation, it comes that

∇ · 𝐵 = 0. (2.32)

This is the Gauss’ Law of Magnetism and also the Second Maxwell’s equation.

Faraday’s Induction Law relates the circulation of the electric field vector on a
closed circuit 𝐶 to the temporal variation of the density of magnetic flux 𝐵 that trans-
verses the surface 𝑆 limited by 𝐶, which is represented mathematically as∫︁

𝐶
𝐸 · 𝑑𝑙 = − 𝐷

𝐷𝑡

∫︁
𝑆
𝐵 · �̂�𝑑𝑆. (2.33)

Applying Leibniz theorem for surface integrals, one obtains:

𝐷

𝐷𝑡

∫︁
𝐴
𝐵 · �̂� 𝑑𝑆 =

∫︁
𝑆

(︃
𝜕𝐵

𝜕𝑡
+ ∇ · 𝑢𝐵

)︃
· �̂� 𝑑𝑆 −

∫︁
𝑆
𝐵�̂� : ∇𝑇𝑢 𝑑𝑆. (2.34)

Considering the surface 𝑆 fixed in the space, that is 𝑢 = 0, equation (2.34) assumes the
following form:

𝐷

𝐷𝑡

∫︁
𝐴
𝐵 · �̂� 𝑑𝑆 =

∫︁
𝑆

𝜕𝐵

𝜕𝑡
· �̂� 𝑑𝑆. (2.35)

Replacing this result on equation (2.33), it comes that:∫︁
𝐶
𝐸 · 𝑑𝑙 = −

∫︁
𝑆

𝜕𝐵

𝜕𝑡
· �̂� 𝑑𝑆. (2.36)

Since the domain under analysis is considered to be regular, Stokes’ Theorem can be
applied to the integral on the left of equation (2.36), what leads to:∫︁

𝑆
(∇ × 𝐸) · �̂�𝑑𝑆 = −

∫︁
𝑆

𝜕𝐵

𝜕𝑡
· �̂� 𝑑𝑆. (2.37)

Rearranging the terms, one obtains:∫︁
𝑆

(︃
∇ × 𝐸 − 𝜕𝐵

𝜕𝑡

)︃
· �̂�𝑑𝑆 = 0. (2.38)

Applying to this equation the Theorem of Localization, one obtains the third Maxwell’s
equation:

∇ × 𝐸 = 𝜕𝐵

𝜕𝑡
. (2.39)

Ampère’s law postulates that the circulation of the effective magnetic field vec-
tor 𝐻 around a closed circuit 𝐶 is equals to the net rate of the intensity of current
vector 𝐽 (i.e. the free current 𝐼𝑓 ) through the area 𝑆 limited by 𝐶, which is expressed
mathematically as ∫︁

𝐶
𝐻 · 𝑑𝑙 =

∫︁
𝑆
𝐽 · �̂� 𝑑𝑆 = 𝐼𝑓 . (2.40)
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Applying Stokes’s Theorem on the left integral on this equation, one obtains∫︁
𝑆
(∇ × 𝐻) · �̂� 𝑑𝑆 =

∫︁
𝑆
𝐽 · �̂� 𝑑𝑆. (2.41)

Rearranging the terms, one gets∫︁
𝑆
(∇ × 𝐻 − 𝐽) · �̂� 𝑑𝑆 = 0. (2.42)

Now applying the Localization Theorem to the last equation, it comes that

∇ × 𝐻 = 𝐽 , (2.43)

which is the differential form of Ampère’s Law, also named fourth Maxwell’s equation in
the case of steady regime of the current displacement (𝜕𝒟/𝜕𝑡 = 0).

As shown in this section, the Maxwell’s equations of the electromagnetism are
given by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · 𝒟𝑒 = 𝜌𝑙, (Gauss’ law of the electricity)

∇ · 𝐵 = 0, (Gauss’ law of the magnetism)

∇ × 𝐸 = 𝜕𝐵

𝜕𝑡
(Faraday’s law of induction).

∇ × 𝐻 = 𝐽 + 𝜕𝒟𝑒

𝜕𝑡
, (Ampère’s law)

(2.44)

Nonetheless, for applications in ferrohydrodynamics, it will be considered the magneto-
static regime in which the effects of the flux of electric current and of the electric field
can be disregarded, that is:

𝐽 = 0, (2.45)

and
𝐸 = 0. (2.46)

With those assumptions, the Maxwell’s equations, for applications in ferrohydrodynamics,
are given by: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∇ · 𝐵 = 0,

∇ × 𝐻 = 0,
𝜕𝐵

𝜕𝑡
= 0.

(2.47)

2.3.2 Force and torque over a magnetic particle

Consider a punctual magnetic particle , with moment of magnetic dipole 𝑚 fixed
on it, under the action of an external magnetic field 𝐻 . The moment of magnetic dipole
can be defined by the product of the electric current 𝐼 and the area 𝑆 of an small closed
plane circuit, that is

𝑚 = 𝐼𝑆�̂�, (2.48)

where �̂� is the unit vector normal to the circuit, oriented according to the right-hand
convention. The magnetic force and torque over this particle resulting from the external
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field 𝐻 will be analyzed using the principle of virtual work. According to Grant and
Phillips (2013), the potential energy associated to this particle is given by

𝐸𝑚 = −𝜇0𝐻 · 𝑚. (2.49)

Lets suppose a virtual angular displacement 𝛿𝜃 over the particle. As a result, the variation
of the potential energy is

𝛿𝐸𝑚 = 𝛿(−𝜇0𝐻 · 𝑚) = 𝜇0(𝐻 × 𝑚) = 𝜇0(𝐻 × 𝑚) · 𝛿𝜃. (2.50)

This energy variation is equal to minus the work exerted by the magnetic torque 𝑡𝑚 over
the particle, thus

−𝑡𝑚 · 𝛿𝜃 = 𝜇0(𝐻 × 𝑚) · 𝛿𝜃. (2.51)

Then, by the principle of virtual work, the magnetic torque over the particle is:

𝑡𝑚 = 𝜇0𝑚 × 𝐻 . (2.52)

In order to obtain the magnetic force action on the particle, lets suppose a virtual
displacement of translation 𝛿𝑥 applied to the particle. In this condition, the variation of
potential energy becomes

𝛿𝐸𝑚 = 𝛿(−𝜇0𝐻 · 𝑚) = −𝜇0∇(𝐻 · 𝑚) · 𝛿𝑥. (2.53)

In this case, the variation of energy is equals to minus the work exerted by the force 𝑓𝑚

over the particle, thus
−𝑓𝑚 · 𝛿𝑥 = −𝜇0∇(𝐻 · 𝑚) · 𝛿𝑥. (2.54)

Applying the principle of virtual work, one obtains

𝑓𝑚 = ∇(𝜇0𝐻 · 𝑚). (2.55)

The last expression leads to the definition of the magnetic scalar potential

Ψ𝑚 = 𝜇0𝑚 · 𝐻 . (2.56)

Since the dipole is constant for a given translation, the expression for the magnetic force
can be rewritten as:

𝑓𝑚 = ∇(Ψ𝑚) = 𝜇0𝑚 · ∇𝐻 . (2.57)
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3 CONSTITUTIVE MODELS

This chapter begins by presenting a set of principles that any constitutive equation
must fit in order to truly describe the rheological properties of a given material. After that,
a constitutive model for the stress tensor of a highly diluted ferrofluid is obtained using
concepts of continuum mechanics, electromagnetism and microhydrodynamics. In the rest
of the chapter, other constitutive models for non-Newtoninan fluids, case of ferrofluids in
the presence of a magnetic field, are presented, due to the fact that most of them will be
used in the analysis of the experimental results.

First, it is discussed the generalized Newtonian fluids, also called viscous non-
Newtonian fluids, which are models based on the fact that viscosity, for non-Newtonian
fluids, are not constant as a function of shear rate, are addressed. Based on this, very useful
models for modeling this relationship are proposed in the literature, which are developed
from empirical observations of the behavior of the most diverse fluids, usually performed
in simple permanent shear experiments. However, a defining feature of these models is
that they do not clearly capture the characteristics arising from the elastic properties of
many non-Newtonian fluid classes, such as memory effects.

Then, the viscoelastic-linear models will be treated, aiming at the proposition of
constitutive equations capable of modeling the behavior of viscoelastic fluids, that is, of
materials that present, at the same time, elastic characteristics, associated with the typical
behavior of solids. and dissipative, typical of fluids. These models will be demonstrated
from the approach of small deformations, which, in turn, will allow the linearization of
the problem. In addition, analogies with other physical systems such as mass spring-
damper systems will be discussed to obtain the constitutive equations in order to capture
the elastic and dissipative modules, besides the stress relaxation function, from which
it is possible to determine The relaxation time spectrum for the most complex fluids is
shown. It will also be presented the general model, proposed by Oldroyd (1956), for the
constitutive equations in linear-viscoelasticity regime.

3.1 Constitutive formalism

In the later chapter, it has been verified the necessity of establishing a constitutive
equation for the deviatoric part of the stress tensor (𝜎) in order to complete the set of the
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equations of motion, which associated with the equation of continuity, lead to a complete
characterization of the problem. The purpose of the constitutive equations is to model
the relationship between stress and strain as a function of material constitution, that is,
from an informal point of view, it can be said that they inform the balance equation of
momentum about the characteristics of material.

According to Yamaguchi (2008), the construction of constitutive equations for
complex materials basically follows three different approaches: The first seeks to develop
the constitutive equation from the generalization of a simple one-dimensional rheological
equation, taking into account the principles of continuum mechanics in association with
experimental analyzes. The second approach is derived solely from the general concepts of
continuum mechanics, with a more phenomenological bias. The third is based on molecular
dynamics in combination with the concept of the continuum, taking into account the
molecular structure of the fluid. In this work, it will be presented a constitutive modeling
for the stress tensor of magnetic fluids using the second approach.

However, regardless of the approach used in constructing a given constitutive equa-
tion, according to Truesdell and Noll (2004), there is a set of fundamental principles to
which they must fit in order to truly describe the rheological properties of a given material,
which are:

∙ Principle of causality;

∙ Principle of local action;

∙ Principle of coordinate invariance;

∙ Principle of fading memory;

∙ Principle of absence of a reference state; and

∙ Principle of the material frame indifference (objectivity).

Materials whose description fits these conditions are called simple materials. These prin-
ciples are described in detail below.

Principle of causality

The principle of causality, also called the principle of determinism, or of cause and
effect, postulates that the stress tensor 𝜎 depends on the recent history of the motion,
i.e. the velocity field or deformation. From a more general point of view, a constitutive
equation is said to relate the stress of the material in time 𝑡 to the present and to previous
experiences of deformation suffered by it, thus:

𝜎(𝑡) = F(Deformation history of the material), (3.1)
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where, 𝜎 is the stress tensor and F is a functional is a functional that involves derivatives
and integrals of the velocity field with respect to time and space, and contains coefficients
that can be associated with physical properties of the material (SALAS, 2006).

Principle of local action

The principle of local action postulates that only the material particles in a small
neighborhood mudt be involved on the determination of the stress at a given point, i.e.,
this principle is consistent with the idea of short range forces between the particles of the
material.

Consider a Lagrangian description of movement, in which the material body ℬ,
at an initial position 𝜉 in 𝑡 = 0 moves to the position 𝑋(𝜉, 𝜏) in time 𝜏 and, after that,
to the position 𝑥(𝜉, 𝑡) at instant t. A schematic interpretation of the referred movement
(map) is presented on figure (6).

Figure 6 – Schematics of the movement of a continuous body ℬ, with representation of
the different configurations 𝒞 obtained throughout the process: 𝒞0 at the initial
time 𝑡 = 0, 𝒞𝜏 at an intermediate time instant 𝑡 = 𝜏 and 𝒞𝑡 at the actual instant
of time 𝑡.

Performing an analysis in the vicinity of a point, at the moment 𝜏 , we have, by a
Taylor series expansion that:

𝑋(𝜉 + 𝑑𝜉) = 𝑋(𝜉) + 𝜕𝑋

𝜕𝜉
𝑑𝜉 +𝑂(|𝑑𝜉|2), (3.2)

thus,
𝑑𝑋 = 𝑋(𝜉 + 𝑑𝜉) − 𝑋(𝜉) = 𝜕𝑋

𝜕𝜉
𝑑𝜉 +𝑂(|𝑑𝜉|2). (3.3)
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Similarly, we have that:

𝑑𝑥 = 𝑥(𝜉 + 𝑑𝜉) − 𝑥(𝜉) = 𝜕𝑥

𝜕𝜉
𝑑𝜉 +𝑂(|𝑑𝜉|2). (3.4)

This analysis is based on the continuum hypothesis, what implicates that the
scale |𝑑𝑋| must be much bigger than the molecular scale 𝜆 and much smaller than the
microscopic scale 𝐿. Regarding this context, the second-order terms can be neglected due
to the fact that they are second-order infinitesimals. Based on this, it comes that

𝑑𝑋 = 𝜕𝑋

𝜕𝜉
𝑑𝜉 𝑒𝑚 𝑡 = 𝜏, (3.5)

and
𝑑𝑥 = 𝜕𝑥

𝜕𝜉
𝑑𝜉 𝑒𝑚 𝑡. (3.6)

The tensor gradient of strain (ARIS, 2012) is define in terms of the variables used
to in this movement as

𝐹 (𝑡) = 𝜕𝑋

𝜕𝜉
. (3.7)

As a result, the stress tensor of the material can be written in terms of the functional F
as follows:

𝜎(𝑡) = F{𝐹 (𝜏)}0≤𝜏≤𝑡. (3.8)

Equation (3.8) shows that the stress tensor is a functional of the tensor gradient
of strain, which, as it was demonstrated, is influenced only by the nearby vicinities of the
material particle 𝒫 .

Principle of coordinate invariance

A constitutive equation must be always valid, independently of the coordinate
systems in which the position and velocity vectors or the stress tensor is described, i.e.,
the functional F must be held valid,

A constitutive equation must always be valid, regardless of the coordinate system in
which the position and velocity vectors or the stress tensor is described, i.e., the functional
F must be maintained, independently of whether 𝜎 and 𝑛𝑎𝑏𝑙𝑎𝑢 are described in Cartesian,
spherical, cylindrical coordinates, or even curvilinear coordinate systems. Physically, this
principle implies that new constitutive equations should not emerge as a consequence of
a change in coordinates.

Principle of Fading Memory

The Fading memory principle postulates, according to Truesdell and Noll (2004),
that deformations which occurred in the distant past should have less influence on the
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determination of present stress than those that occurred in the recent past, i.e. the in-
stantaneous structure of the stress field is more closely related to more recent events
(strains).

Generally, in the literature, one instant of time 𝑡′ is defined in the past of material
deformation history and one in the present 𝑡), so, based on this principle, it is said that
the effect of Strain tensions 𝜎) is greater for 𝑡 ∼ 𝑡′ than for 𝑡′ ≪ 𝑡.

Principle of absence of a reference state

This principle postulates that there is no natural equilibrium (or preferential) state
of the material, in contrast to the behavior of solid materials.

Principle of the material frame indifference (objectivity)

The principle of material indifference, according to Truesdell and Noll (2004),
postulates that if a constitutive equation is satisfied by a given process, characterized
by a movement (successive configuration changes) and a symmetric tensor, respectively
denoted by:

𝑥 = 𝑥(𝑋, 𝑡), 𝜎 = 𝜎(𝑋, 𝑡), (3.9)

in which 𝑋 is the label of a given material particle and 𝑡 is the time, then it also should be
satisfied by an equivalent process {𝑥*,𝜎*}, in which the moviment and the stress tensor
are given by:

𝑥* = 𝑥*(𝑋, 𝑡*) = 𝑐(𝑡) + 𝑄(𝑡)𝑥(𝑋, 𝑡), (3.10)

𝜎* = 𝜎*(𝑋, 𝑡*) = 𝜎(𝑡) + 𝑄(𝑡)𝜎(𝑋, 𝑡)𝑄(𝑡)𝑇 , (3.11)

𝑡′ = 𝑡− 𝑎, (3.12)

where, 𝑐(𝑡) is an arbitrary function of point associated with a rigid body translation, 𝑄(𝑡)
is an orthogonal time-dependent tensor linked to a rigid body rotation and 𝑎 an arbitrary
constant.

The physical foundation of this principle lies in the fact that the material must
be independent of the referential. That is, the instantaneous field of stresses (material
response) must be independent of the observer or the referential motion. In other words,
the mechanical response of a material must be invariant with respect to arbitrary rigid
body motion. This principle is mathematically expressed by the equation (3.11), called,
in the literature, the homogeneous transformation of Truesdell and Noll (2004).

The quantities that transform according to the linear homogeneous transforma-
tions shown in (3.11) and (3.12) are said to be objectives. As a result a direct consequence
of principle of the material frame indifference is that constitutive equations must contain
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only objective quantities, because of that, this principle is also called principle of objec-
tivity.

3.2 Constitutive modeling for diluted magnetic suspensions

3.2.1 Concept of magnetization

V

mk

xk

0

Figure 7 – Schematic representation of the three possible rheological behaviors of a power-
law fluid.

As stated by Cunha (2012), the magnetization is a macroscopic property that
measures the degree of polarization of a given continuum magnetizable material. Ferro-
magnetic materials, such as cobalt, iron and nickel can intensify the applied field in the
order of a few hundred times. From a microscopic point of view, the magnetization is an
average of the moment of dipoles presented in the material per unit of volume. In the case
of a magnetic fluid, each magnetic particle contains a moment of magnetic dipole 𝑚𝑘,
immersed on a non-magnetizable fluid, as shown in figure (7). The magnetic moment of
dipole is given by

𝑚𝑘 = 𝑀𝑑𝑣𝑑𝑘, (3.13)
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where, 𝑀𝑑 is the saturation magnetization of the ferromagnetic solid, 𝑣 is the volume of
the particle and 𝑑𝑘 is the orientation of the magnetic moment. It is supposed a monodis-
perse distribution of particles with the same intensity of magnetic dipole 𝑚. However the
orientation of each magnetic dipole can vary from particle to particle, it is possible to
define a mean moment of dipole 𝑚, considering a volume 𝑉 containing 𝑁 particles, as

𝑚 = 1
𝑁

𝑁∑︁
𝑘=1

𝑚𝑘. (3.14)

It is defined, then, a microscopic continuum quantity 𝑀 , named local magnetiza-
tion, that is given by a probability average of the dipole moments of the medium per unit
of volume. If the distribution of moments is statistically homogeneous and independent of
the volume 𝑉 , that contain a sufficient high number of particles, the standard probability
average can be replaced by a volumetric average. Then, the magnetization can be written
as

𝑀 = 1
𝑉

∫︁
𝑉
𝑑𝑚, (3.15)

in which 𝑑𝑚 is the moment of dipole associated to a differential element 𝑑𝑉 . The volume
𝑉 corresponds to the volume of the base fluid 𝑉𝑓 added of the volume of each particle 𝑣𝑝,
being the moment of dipole of the fluid null. Thus,

𝑀 = 1
𝑉

∫︁
𝑉𝑓

𝑑𝑚 + 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑣𝑘

𝑑𝑚 = 1
𝑉

𝑁∑︁
𝑘=1

𝑚𝑘 = 𝑁

𝑉
𝑚. (3.16)

The ratio 𝑁/𝑉 corresponds to the density number 𝑛 of the suspension, being equal to the
ratio of the volumetric fraction of particles 𝜑 and the volume of a particle 𝑣. Then,

𝑀 = 𝑛𝑚 = 𝜑

𝑣
𝑚. (3.17)

3.2.2 Stress tensor for a dilute magnetic fluid

As any other fluid, complex or Newtonian, the description of the hydrodynamics of
magnetic fluids is given by the balance equations of the continuum mechanics. As stated
previously, the way that stresses and strains are related on a given fluid is informed to
the equation of Cauchy by the stress tensor Σ, whose deviatoric part 𝜎 need to be de-
scribed through a constitutive equation. Cunha (2019) suggests a deduction of the stress
tensor based on microhydrodynamics. In his demonstration, the referred author consid-
ers a diluted suspension composed by rigid magnetic particles randomly dispersed on a
Newtonian base fluid. Also, by hypotheses, the suspension is considered to be statisti-
cally homogeneous, what allows, by the principle of ergodicity (LANDAU; LIFSHITZ,
1987; BATCHELOR, 2000), the formal probability averages to be replaced by volumet-
ric averages. Regarding these constraints, the suspension can be treated as an equivalent
continuous medium, being its average stress tensor given by

𝜎 = 1
𝑉

∫︁
𝑉
𝜎 𝑑𝑉. (3.18)
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Following a process similar to the one presented on Graham (2018), the volume 𝑉
corresponds to the sum of the volume of the base fluid and of the particles, that is

𝑉 = 𝑉𝑓 +
𝑁∑︁

𝑘=1
𝑣𝑘, (3.19)

where, 𝑉𝑓 is the volume of the base fluid and 𝑣𝑘 the volume of the particle 𝑘. Replacing
equation (3.19) into (3.18), one obtains

𝜎 = 1
𝑉

∫︁
𝑉𝑓

𝜎 𝑑𝑉 + 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑣𝐾

𝜎 𝑑𝑉, (3.20)

The stress tensor for a Newtonian fluid 𝜎𝑁 is

𝜎𝑁 = −𝑝𝐼 + 2𝜂0𝐷, (3.21)

where, p is the mechanic pressure, 𝜂0 is the dynamic viscosity of the fluid and 𝐷 is the
rate of strain tensor, which is defined as the symmetric part of the tensor gradient of
velocity ∇𝑢. Replacing equation (3.21) on (3.20), it comes that

𝜎 = 1
𝑉

∫︁
𝑉𝑓

(−𝑝𝐼 + 2𝜂0𝐷) 𝑑𝑉 + 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑣𝐾

𝜎 𝑑𝑉. (3.22)

The integrals on equation (3.22) will be evaluated indirectly by calculating averages
of other properties. Firstly, consider the average pressure of the fluid, which is defined as

𝑝𝑓 = 1
𝑉

∫︁
𝑉𝑓

𝑝 𝑑𝑉. (3.23)

Now, consider the definition of the average rate of strain tensor

𝐷 = 1
𝑉

∫︁
𝑉𝑓

𝐷 𝑑𝑉 + 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑣𝑘

𝐷 𝑑𝑉. (3.24)

Due to the fact that the particles are rigid, its rate of strain is null. This implicates that
the volume integral over the particle’s volume, on equation (3.24), is also null. Thus, the
average strain rate tensor is given by

𝐷 = 1
𝑉

∫︁
𝑉𝑓

𝐷 𝑑𝑉. (3.25)

Replacing the results obtained in the equations (3.23) and (3.25) on the expression for
the average stress tensor, equation (3.22), one obtains

𝜎 = −𝑝𝑓𝐼 + 2𝜂0𝐷 + 1
𝑉

𝑁∑︁
𝑘=1

∫︁
𝑣𝐾

𝜎 𝑑𝑉. (3.26)

Aiming to evaluated the integral of the stress tensor over the volume of the rigid
particles, one starts by using the following identity,

𝜎 = ∇ · (𝜎𝑥) − 𝑥(∇ · 𝜎), (3.27)
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where 𝑥 is the position vector. Replacing this identity on the volume integral in equation
(3.26), it comes that ∫︁

𝑣𝑘

𝜎 𝑑𝑉 =
∫︁

𝑣𝑘

∇ · (𝜎𝑥) 𝑑𝑉 −
∫︁

𝑣𝑘

𝑥(∇ · 𝜎) 𝑑𝑉. (3.28)

Now, applying the divergence theorem on the firs volume integral after the equality on
this expression, one obtains∫︁

𝑣𝑘

𝜎 𝑑𝑉 =
∫︁

𝑣𝑘

𝑥(�̂� · 𝜎) 𝑑𝑉 −
∫︁

𝑣𝑘

𝑥(∇ · 𝜎) 𝑑𝑉. (3.29)

In order to evaluate these integrals, it is necessary to study the flow of a spheric
rigid magnetic particle under the action of an external field. Lets consider that the
Reynolds’ number in the scale of the particle to be much smaller than 1, that is

𝑅𝑒𝑝 = 𝑎2�̇�𝑐𝜌

𝜂0
<< 1, (3.30)

where 𝑎 is the radius od the particle, �̇�𝑐 is the flows characteristic shear-rate, 𝜌 and 𝜂0

are, respectively, the density and the dynamic viscosity of the fluid. In this condition, the
flow around a given particle centered at 𝑥0 is described by a multipole expansion of the
Stokes’ flow (KIM; KARRILA, 2013), which is represented by

−∇𝑝+ 𝜂0∇2𝑢 = 𝑓𝛿(𝑥0) + 𝐷𝑠∇𝛿(𝑥0) + ... , (3.31)

in which 𝑓 is the force over the particle and 𝐷𝑠 is the hydrodynamic dipole in the
particle. The particle dipole generated by th k-th particle in suspension is given by the
surface integral in (3.29).

𝐷𝑘
𝑠 =

∫︁
𝑠𝑘

𝑥(�̂� · 𝜎) 𝑑𝑆. (3.32)

The dipole can be split into
𝐷𝑘

𝑠 = 𝑆𝑘 + 𝐿𝑘, (3.33)

in which 𝑆𝑘 is the symmetric part, called Stresslet or particle tension, and 𝐿𝑘 is the anti-
symmetric part, named torque tensor. By Faxèns’ third law (BATCHELOR; GREEN,
1972), the stresslet for the k-th particle in the suspension is given by is given by

𝑆𝑘 = 5𝜂0𝑣𝑘𝐷
𝑘. (3.34)

The torque tensor is related to the magnetic torque 𝑡𝑚 acting upon the k-th particle by
the dual relation (ARIS, 2012), that is

𝐿𝑘 = −1
2𝜖 · 𝑡𝑘

𝑚, (3.35)

where 𝜖 is the tensor of Levi-Civita. For a magnetic particle with dipole moment 𝑚𝑘, free
of inertia, its magnetic torque 𝑡𝑘

𝑚, is given by

𝑡𝑘
𝑚 = 𝜇0𝑚𝑘 × 𝐻 . (3.36)
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Replacing this expression in equation (3.35), one obtains

𝐿𝑘 = −1
2𝜖 · (𝜇0𝑚𝑘 × 𝐻), (3.37)

which can be rewritten as
𝐿𝑘 = 𝜇0

2 (𝐻𝑚𝑘 − 𝑚𝑘𝐻). (3.38)

Now, applying the results (3.38) and (3.34) on equation (3.29), one obtains∫︁
𝑣𝑘

𝜎 𝑑𝑉 = 5𝜂0𝑣𝑘𝐷
𝑘 + 𝜇0

2 (𝐻𝑚𝑘 − 𝑚𝑘𝐻) −
∫︁

𝑣𝑘

𝑥(∇ · 𝜎) 𝑑𝑉. (3.39)

In pursuance of solving the last volume integral in (3.39), it must be noted that the term
∇ · 𝜎 = −𝑓𝑘 is the force per unit of volume acting upon the particle, which corresponds
to the magnetic force 𝑓𝑘

𝑚 which is defined by

𝑓𝑘 = ∇𝜓𝑚

𝑣𝑘

, (3.40)

where Ψ𝑚 is the scalar magnetic potential, given by

Ψ𝑚 = 𝜇0𝑚 · 𝐻 . (3.41)

Thus,
𝑓𝑘 = 𝜇0𝑚𝑘 · 𝐻

𝑣𝑘

, (3.42)

Regarding this result, the referred integral becomes∫︁
𝑣𝑘

𝑥(∇ · 𝜎) 𝑑𝑉 = −
∫︁

𝑣𝑘

𝑥∇
(︃
𝜇0𝑚𝑘 · 𝐻

𝑣𝑘

)︃
𝑑𝑉, (3.43)

which, after some vectorial manipulations and the application of Gauss theorem, can be
reduced to ∫︁

𝑣𝑘

𝑥(∇ · 𝜎) 𝑑𝑉 = −
∫︁

𝑠𝑘

(︃
𝑥
𝜇0𝑚𝑘 · 𝐻

𝑣𝑘

)︃
�̂� 𝑑𝑆. (3.44)

In the surface of the sphere, 𝑥 = 𝑥0 + 𝑎�̂�, where 𝑎 is the radius of the sphere, thus∫︁
𝑣𝑘

𝑥(∇ · 𝜎) 𝑑𝑉 = −
∫︁

𝑠𝑘

(︃
𝑥0
𝜇0𝑚𝑘 · 𝐻

𝑣𝑘

)︃
�̂� 𝑑𝑆 −

∫︁
𝑠𝑘

(︃
𝑎
𝜇0𝑚𝑘 · 𝐻

𝑣𝑘

)︃
�̂��̂� 𝑑𝑆. (3.45)

Since the magnetic moment dipole and the magnetic field are constants in the scale of
the sphere,∫︁

𝑣𝑘

𝑥(∇ · 𝜎) 𝑑𝑉 = −
(︃
𝑥0
𝜇0𝑚𝑘 · 𝐻

𝑣𝑘

)︃∫︁
𝑠𝑘

(𝐼 · �̂�) 𝑑𝑆 −
(︃
𝑎
𝜇0𝑚𝑘 · 𝐻

𝑣𝑘

)︃∫︁
𝑠𝑘

�̂��̂� 𝑑𝑆. (3.46)

Applying the theorem of divergence to the first integral after the equality sign, one obtains:
(︃
𝑥0
𝜇0𝑚𝑘 · 𝐻

𝑣𝑘

)︃∫︁
𝑠𝑘

(𝐼 · �̂�) 𝑑𝑆 =
∫︁

𝑣𝑘

∇ · 𝐼 𝑑𝑉 = 𝑂. (3.47)

The second one is isotropic, being calculated as follows∫︁
𝑠𝑘

�̂��̂� 𝑑𝑆 = 4
3𝜋𝑎

2𝐼 = 𝑣𝑘

𝑎
𝐼, (3.48)
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what leads to ∫︁
𝑣𝑘

𝑥(∇ · 𝜎) 𝑑𝑉 = −(𝜇0𝑚𝑘 · 𝐻)𝐼. (3.49)

Replacing this result into equation (3.39), one obtains∫︁
𝑣𝑘

𝜎 𝑑𝑉 = 5𝜂0𝑣𝑘𝐷
𝑘 + 𝜇0

2 (𝐻𝑚𝑘 − 𝑚𝑘𝐻) + (𝜇0𝑚𝑘 · 𝐻)𝐼, (3.50)

which replaced on equation (3.26), leads to the following expression for the average stress
tensor of the suspension,

𝜎 = −𝑝𝑓𝐼 + 2𝜂0𝐷 + 1
𝑉

𝑁∑︁
𝑘=1

[︂
5𝜂0𝑣𝑘𝐷

𝑘 + 𝜇0

2 (𝐻𝑚𝑘 − 𝑚𝑘𝐻) + (𝜇0𝑚𝑘 · 𝐻)𝐼
]︂
. (3.51)

Due to the fact that the suspension is monodispersed on the diameters of the
particles and on the moment of dipoles, equation (3.51) can be rewritten as

𝜎 = −𝑝𝑓𝐼 + 2𝜂0𝐷 + 5𝑛𝑣𝑝𝜂0𝐷 + 𝜇0

2 (𝐻𝑛𝑚 − 𝑛𝑚𝐻) + 𝑛

𝑁

𝑁∑︁
𝑘=1

(𝜇0𝑚𝑘 · 𝐻)𝐼. (3.52)

Observing that 𝑛𝑣𝑝 = 𝜑 and 𝑀 = 𝑛𝑚, this expression becomes

𝜎 = −𝑝𝑓𝐼 + 2𝜂𝜑𝐷 + 𝜇0

2 (𝐻𝑀 − 𝑀𝐻) + 𝑛

𝑁

𝑁∑︁
𝑘=1

(𝜇0𝑚𝑘 · 𝐻)𝐼, (3.53)

where, 𝜂𝜑 = (1 + 5𝜑/2)𝜂0 is Einstein’s viscosity for a diluted suspension of rigid spheres.
This expression is the constitutive equation of the stress tensor for a diluted magnetic
fluid firstly presented on (MALVAR; GONTIJO; CUNHA, 2018). It can be rewritten as

𝜎 = −𝑝𝐼 + 2𝜂𝜑𝐷 + 𝜇0

2 (𝐻𝑀 − 𝑀𝐻), (3.54)

in which,

𝑝 = 𝑝𝑓 − 𝑛

𝑁

𝑁∑︁
𝑘=1

(𝜇0𝑚𝑘 · 𝐻), (3.55)

is the mixture pressure, composed by contributions arising from the fluid and from the
magnetic particles. It is also important to remark that this pressure is also the mechanical
pressure of the equivalent fluid, what can be easily proven by calculating the trace of
equation (3.54).

This constitutive model presents a asymmetric stress tensor, what is originated by
the fact that the magnetic particles, when under the action of a magnetic field, experiment
a resultant magnetic torque. As, in this condition, the resultant of external torques over
the equivalent fluid particles are different from zero, the principles of angular momentum
conservation, on its differential formulation (BATCHELOR, 2000), requires the stress
tensor of the referred to be asymmetric.

Replacing the expression for the stress tensor (3.52) on the equation of balance
of linear momentum (2.20), which results on the modified Navier-Stokes equation for a
diluted magnetic fluid:

𝜌𝐷𝑢

𝐷𝑡
= −∇𝑝+ 𝜂𝜑∇2𝑢 + 𝜇0

2 ∇ × (𝑀 × 𝐻) + 𝜇0𝑀 · ∇𝐻 . (3.56)
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It is important to note that the first magnetic term 𝜇0∇ × (𝑀 × 𝐻)/2 is related to the
magnetic torques over the particles, arising when there is a misalignment between the
magnetic field and the magnetization. The second magnetic term 𝜇0𝑀 · ∇𝐻 is related
to the magnetic forces acting upon the particles and arises when there is a gradient of
magnetic field. In this work, only the first term is important, due to the fact that we
are interested only in the effect of an uniform magnetic field when the magnetization is
misaligned in reference to it by the action of the vorticity.

3.3 The generalized Newtonian fluids

The constitutive equation for generalized Newtonian fluids (GNF), according to
Morrison (2001), was developed based on the constitutive of incompressible Newtonian
fluids, which is given by :

𝜎 = 𝜇�̇�, (3.57)

where,
�̇� =

√
2𝐷 : 𝐷. (3.58)

In those equations, 𝜎 is the stress tensor, �̇� is the shear-rate tensor and 𝐷 is
the tensor rate of strain, defined as the symmetric part of the tensor gradient of velocity
∇𝑢. However, equation (3.57) predicts a constant viscosity, independent from the shear-
rate �̇�. This feature must be changed in order to cope with the dynamical description of
materials whose viscosity is not constant, what leads to the adequacy of equation (3.57)
to the following form:

𝜎 = 𝜂(�̇�)�̇�, (3.59)

where, 𝜂(�̇�) is a scalar function and �̇� = |�̇�|. The material function 𝜂(�̇�) is called apparent
viscosity, due to the fact that it varies as a function of the shear-rate. Nonetheless, it is
related to the effective viscosity of the fluid 𝜇 as follows:

lim
�̇�→0

𝜂(�̇�) = 𝜇. (3.60)

It is important to note that, even though the form of the stress tensor for the
generalized Newtonian fluids are given by equation (3.59), for it to truly represent the
rheological characteristics of a given material, it is necessary to propose constitutive mod-
els for the apparent viscosity function 𝜂(�̇�). Bird, Armstrong and Hassager (1987) argues
that the majority of models for this material function come from experimental observa-
tions, being referred as ad-hoc expressions. The models used in the analysis carried out
in this dissertation are describe in the next subsections.
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3.3.1 Power-law model

One of the best known viscous non-Newtonian fluid models in the literature is
the power-law model, also called the Ostwald-De-Waele model (BIRD; ARMSTRONG;
HASSAGER, 1987). This model describes viscosity as a function proportional to some
power of the shear-rate (�̇�), being mathematically expressed by:

𝜂(�̇�) = 𝐾�̇�𝑛−1, (3.61)

which presents two parameters that must be adjusted to experimental data. The first one
is the power (𝑛− 1) of �̇�, which represents the slope of the line obtained by representing
equation (3.61) on a log-log graph. The second parameter is the consistency index, 𝐾,
whose logarithm indicates the intersection with the ordinates axis in the graph of log(𝜂)
vs log(�̇�). Besides that, 𝐾 directly related to the magnitude of the fluid’s viscosity.

The power law model can be used to describe a Newtonian fluid, in this case 𝐾 = 𝜇

and 𝑛 = 1. For 𝑛 > 1, the graph of log(𝜂) vs log(�̇�) is a rising line and the material is
said Shear-thickening, since it has the property of its apparent viscosity increasing with
the intensification of the applied shear-rate. For 𝑛 < 1, the log(𝜂) vs log(�̇�) graph is a
descending line and the fluid behavior is said to be shear-thinning, showing a decrease in
apparent viscosity as a function of increased shear-rate. These behaviors are shown in the
figure (8).

η = Kγ̇n−1, n < 1

log(η)

log(γ̇)

Shear-thickening

η = Kγ̇n−1, n > 1

η = K, n = 1

Newtonian

Shear-thinning

Figure 8 – Schematic representation of the three possible rheological behaviors of a power-
law fluid.

According to Morrison (2001), this model is well suited for modeling non-Newtonian
fluids subjected to medium to high shear-rate regimes, such as polymer extrusion pro-
cesses. In addition, this model allows simplified calculations and good modeling in pre-
dicting flow measurements as a function of pressure drop in various industrial applications.
However, this has some limitations, such as not capturing the Newtonian plateau at small
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shear-rates 𝜂0. Another disadvantage is that this model is purely experimental and, there-
fore, its description of a particular material is specific, that is, it is not possible to predict
the behavior of a material knowing the parameters of the power-law model of a similar
material. It may be added, furthermore, that this model has no temporal constant be-
tween its parameters, what makes it unable to capture any material relaxation time, i.e.
this model is not able to predict how quickly the fluid will relax after the flow is finished.

3.3.2 Sisko’s model

This model was proposed by Sisko (1958) as an excellent alternative for modeling
the rheological behavior of shear-thinning fluids, such as greases, emulsions and many
other complex fluids when subjected to medium-high shear-rates. The constitutive equa-
tion for the relation between the apparent viscosity and the shear-rate suggested by this
model is

𝜂(�̇�) = 𝜂∞ +𝐾𝑠�̇�
(𝑛−1). (3.62)

As it can be immediately seen, this model comes from the addition of another parameter
to the power-law model. This parameter is the infinite shear viscosity 𝜂∞, that represents
the constant value to which the viscosity tends when the shear-rate increases. The other
parameters 𝐾𝑠 and (𝑛 − 1) have the same interpretation that was for the parameters of
the power-law model.

3.3.3 Herschel-Bulckley’s model

This model describes complex fluids that present yield stress, that is, a minimum
level of shear stress is needed for this kind of fluid to start flowing. Generally, these fluids
present a well consolidated microstructure at equilibrium, having a solid-like behavior.
Nevertheless, when the shear-stress reaches the yielding point, the microstructure of the
complex fluid begins to beak, what is reflected in a severe reduction of the apparent
viscosity. The constitutive equation proposed by this model is:

𝜂(�̇�) =

⎧⎪⎪⎨⎪⎪⎩
𝜎0

�̇�
+𝐾𝐻 �̇�

𝑛−1, 𝑠𝑒 |𝜎| > |𝜎0|

∞, 𝑠𝑒 |𝜎| ≤ |𝜎0|,
(3.63)

where 𝜎0 is the yield stress, 𝐾𝐻 is the consistency parameter and 𝑛 is the power-law index.
It is important to note that the constitutive equation of this model predicts an infinite
viscosity for the case in which the intensity of the shear-stress is lower than the yield
stress. This implicates that in this condition the complex fluid will not flow, presenting
then a solid-like behavior.
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Applying this constitutive equation to equation (3.59), one obtains the following
relation for the shear-stress:

𝜎(�̇�) =

⎧⎪⎨⎪⎩𝜎0 +𝐾𝐻 �̇�
𝑛, if |𝜎| > |𝜎0|

�̇� = 0, if |𝜎| ≤ |𝜎0|,
(3.64)

From this equation, it is immediate that this model predicts a non-linear relation between
the shear stress and the shear rate.

3.3.4 Bingham’s model

This model is similar to Hershel-Bulckley’s, from which it can be obtained by
making 𝑛 = 0 on equation (3.63). As a result, it also describes complex fluids that need
a critical stress 𝜎0 to start flowing. These material are generally called Bingham plastics.
The equation proposed for the relationship between apparent viscosity and shear rate by
this model is:

𝜂(�̇�) =

⎧⎪⎪⎨⎪⎪⎩
𝜎0

�̇�
+ 𝜂𝑝, if |𝜎| > |𝜎0|,

∞, if |𝜎| ≤ |𝜎0|,
(3.65)

where 𝜎0 is the yield stress and 𝜂𝑝 is the plastic viscosity, which indicates the viscosity to
which the fluid’s apparent viscosity tends at flow conditions of high shear-rates.

Using equation equation (3.59), one can easily show that the relation between the
shear-stress and the shear-rate predicted by this model is:

𝜎(�̇�) =

⎧⎪⎨⎪⎩𝜎0 + 𝜂𝑝�̇�, if |𝜎| > |𝜎0|,

�̇� = 0, if |𝜎| ≤ |𝜎0|.
(3.66)

It is important to note that this model predicts a linear relation for the functional de-
pendence of the shear-stress on the shear-rate after the yield point being reached. In this
regime, the complex fluid is said to present a Newtonian behavior.

3.4 The general linear viscoelastic fluids

The word viscoelasticity refers to the simultaneous existence of viscous and elas-
tic characteristics in a material. According to Barnes, Hutton and Walters (1989), it is
reasonable to assume that all materials are viscoelastic, 𝑖.𝑒. in all of them, both viscous
and elastic properties coexist. This is because the response of a given material sample in
a given experiment depends on the relationship between the observer’s time scale and the
characteristic time scale of the material (the time it takes the material to respond to a
given external stimulus. ). For example, if an experiment is relatively slow, the sample
will be more viscous than elastic, however, if the experiment is relatively fast, the effect
will be opposite and therefore the sample will behave more elastic than viscous. However,
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if the experiment scale has an order of magnitude compatible with the material’s natural
time scale, a viscoelastic response is observed.

The above description leads to the definition of a very important dimensionless
number, the Deborah number (𝐷𝑒), defined as the ratio of a material’s timescale 𝜏 , whose
origin is closely related to its microstructure, and a characteristic time scale of the flow
𝜏𝑓 , of macroscopic origin, that is:

𝐷𝑒 = 𝜏

𝜏𝑓

. (3.67)

In this context, it is clear that a Hookean solid has 𝐷𝑒 = ∞, since its characteristic
relaxation time is theoretically infinite, on the other hand, Newtonian fluids have 𝐷𝑒 = 0,
since its characteristic time is very small compared to common experiment scales. It also
appears that viscoelastic materials have 𝐷𝑒 ≈ 1, as both time scales have the same order
of magnitude.

3.4.1 Linear viscoelasticity

According to (CUNHA, 2016), linear viscoelasticity is a description of the vis-
coelastic response (𝐷𝑒 ≈ 1) of non-Newtonian fluids, whose main feature is to be a small
deformation regime. It was, according to Barnes, Hutton and Walters (1989), the first
study for transient description of non-Newtonian fluids, where the elastic response of the
fluid becomes important. In this type of approach, the fluid response, i.e., the stress at
any time is directly proportional to the strain or strain rate.

Due to linearity, the differential equations that govern the phenomenon are linear
and the coefficients of the temporal derivatives are constant,i.e. they are independent of
strain and stress. Nevertheless, according to Barnes, Hutton and Walters (1989), the main
consequence of linearity is that the principle of effects superposition can be applied to the
system, a fact explored in the proposition made by Oldroyd (1956) of an general equation
for the linear viscoelasticity regime, which is:(︃

1 + 𝜏1
𝜕

𝜕𝑡
+ 𝜏2

𝜕2

𝜕𝑡2
+ ...+ 𝜏𝑛

𝜕𝑛

𝜕𝑡𝑛

)︃
𝜎(𝑡) =

(︃
𝛽0 + 𝛽1

𝜕

𝜕𝑡
+ 𝛽2

𝜕2

𝜕𝑡2
+ ...+ 𝛽𝑚

𝜕𝑚

𝜕𝑡𝑚

)︃
𝛾(𝑡)

(3.68)
where 𝜏𝑛 and 𝛽𝑚 are material parameters, which can be measured experimentally, 𝜎(𝑡)
and 𝛾(𝑡) are, respectively, the stress tensor and the strain tensor.

Bird, Armstrong and Hassager (1987) state that there are many reasons to deter-
mine the viscoelastic-linear response of fluids, firstly, it allows the understanding of the
effects of the microstructure of the material on its behavior when flowing. In addition,
the experimentally measured parameters and material functions in small deformation flow
have been very useful in the quality control of industrial processes. Another important
reason is the fact that a good basis in linear viscoelasticity is of paramount importance
for understanding nonlinear viscoelastic models.
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3.4.2 Maxwell’s viscoelastic model

Maxwell was a pioneer on the proposition of a constitutive model to described
the characteristics of viscoelastic materials. According to Bird, Armstrong and Hassager
(1987), Maxwell developed the theory of elasticity, in the belief that gases could exhibit
viscoelastic behavior.

In order to obtain the constitutive equation of Maxwell’s model in a two-dimensional
approach,Barnes, Hutton and Walters (1989) propose a system composed by a spring
whose elastic constant is 𝐺, and a damper with damping constant 𝜇, connected in series
and subjected to periodic small amplitude excitations, in which the spring continuously
shifts 𝛾 and the damper observes a damping rate �̇�. This system is known as the Maxwell
element and is represented in the figure (9).

Figure 9 – Schematics of a Maxwell’s element.

Considering a Hookean spring, it comes that

𝜎𝐸 = 𝐺𝛾𝐸. (3.69)

Then, differentiating equation (3.69), one obtains:

𝜎𝐸 = 𝐺�̇�𝐸, (3.70)

on the other hand, for the damper:

𝜎𝑉 = 𝜂�̇�𝑉 . (3.71)

Since the system is composed of elements in a series arrangement, the spring and
the damper will suffer the same stress and the total damping rate will be the sum of the
damping rate of both components, i.e.:

𝜎𝐸 = 𝜎𝑣 = 𝜎 𝑒 �̇� = �̇�𝐸 + �̇�𝑉 , (3.72)
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Therefore, substituting the results obtained from the equations (3.70) and (3.71) in the
equation (3.72), we obtain that:

�̇� = �̇�𝐸

𝐺
+ 𝜎𝑉

𝜂
= �̇�

𝐺
+ 𝜎

𝜂
. (3.73)

By reorganizing the terms of the equation (3.73), we arrive at the differential one-dimensional
formulation of Maxwell’s model, given by the following ordinary differential equation:

𝜎 + 𝜂

𝐺

𝜕𝜎

𝜕𝑡
= 𝜂�̇�. (3.74)

In this analogy, the viscous effects and hence the dissipative characteristics, related
to the liquid behavior of the viscoelastic material, are represented by the damper and the
elastic characteristics, linked to the solid behavior, are represented by the spring.

A general formulation of Maxwell’s model, in tensor notation, is obtained by ob-
serving that this constitutive model is based on the precepts of linear viscoelasticity, and
therefore its constitutive equation must meet Oldroyd’s general form, equation (3.68),
discussed in the previous section. Keeping nonzero only the terms 𝜏1 and 𝛽1 in the equa-
tion (3.68) and equating 𝛽1 with the viscosity 𝜂, one obtains the following differential
equation:

𝜎 + 𝜏1
𝜕𝜎

𝜕𝑡
= 𝜂

𝜕𝛾

𝜕𝑡
, (3.75)

where
�̇� = 𝜕𝛾/𝜕𝑡 = 2D. (3.76)

In these expressions, D is the rate of strain tensor and 𝜏1 = 𝜂/𝐺 is a material time
constant, more specifically named time of relaxation, and 𝐺 is the elastic modulus. With
this alteration, equation (3.75) becomes:

𝜎 + 𝜏1
𝜕𝜎

𝜕𝑡
= 2𝜂𝐷. (3.77)

The solution of the ordinary differential equation (3.77) is obtained by the method
of the integrating factor (𝐹.𝐼.). Defining 𝐹.𝐼. = 𝑒(1/𝜏1𝑡) and multiplying both sides of
equationi (3.77) by this factor, one obtains:

𝑒(𝑡/𝜏1)𝑑𝜎

𝑑𝑡
+ 1
𝜏1
𝑒(𝑡/𝜏1) = 2𝜂

𝜏1
𝐷(𝑡)𝑒(𝑡/𝜏1), (3.78)

and, thus:
𝑑

𝑑𝑡

(︁
𝜎𝑒(𝑡𝜏1)

)︁
= 2𝜂
𝜏1

𝐷(𝑡)𝑒(𝑡/𝜏1). (3.79)

Integrating equation (3.79), it is obtained the constitutive equation for the stress tensor
for a Maxwell’s fluid, which is expressed by:

𝜎(𝑡) = 2𝜂
𝜏1

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜏1𝐷(𝑡′)𝑑𝑡′. (3.80)
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From this equation, it is defined the stress relaxation function as:

Φ(𝑡− 𝑡′) = 2𝜂
𝜏1
𝑒−(𝑡−𝑡′)/𝜏1 (3.81)

where, Φ(𝑡 − 𝑡′) is a positive function that depends on the nature of the fluid. Besides
that, it decreases monotonically for zero as 𝑡 − 𝑡′ −→ 0. Based on this, the stress tensor
of a Maxwell’s fluid can be rewritten as:

𝜎(𝑡) =
∫︁ 𝑡

−∞
Φ(𝑡− 𝑡′)𝐷(𝑡′)𝑑𝑡′. (3.82)

That is, according to Salas (2006), for a viscoelastic incompressible fluid subject to
small displacement gradients or arbitrary strain rates, the expression for the total stress
tensor Σ is given by:

Σ(𝑡) = −𝑝𝐼 + 𝜎(𝑡), (3.83)

where −𝑝𝐼 is the isotropic part of the stress tensor and 𝜎(𝑡) is its deviatoric part, that
in this case is given by equation (3.82).

The equation (3.82) is interpreted from the perspective of the causality principle,
which states that stress depends on the history of loading, i.e., the stress in the present-
time (𝑡) depends on the strain-rate or history of deformation in earlier times (𝑡′). In this
context, the exponential shown in the equation (3.81), which mathematically represents
the stress relaxation function, can be understood as a multiplicative factor of that equa-
tion, which assumes higher values ??for times closer to the present time and smaller for
later times, thus indicating that stress is more susceptible to the more recent history of
deformation. As a result, Maxwell fluids are said to have memory, as their current state
depends on past states and, moreover, their memory decreases rapidly for events that
occurred at a time away from the present, showing that this model fits the principle of
fadding memory.

3.4.3 Generalized Maxwell’s viscoelastic model

It was previously stated that Maxwell’s fluid has memory and that a good measure
of this parameter is the relaxation time 𝜏1. Now consider a complex material composed
of 𝑁 Maxwell’s elements, as shown in the figure (10).
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Figure 10 – Schematics of a complex fluid composed by 𝑁 Maxwell’s elements.

The two-dimensional form of Maxwell’s model is obtained by integrating equation
(3.75) through the integrating factor technique, whose procedure is analogous to that
approached for the general solution addressed in the section (3.74). Solving the said
ordinary differential equation, one obtains that:

𝜎(𝑡) = 𝜂

𝜏1

∫︁ 𝑡

−∞
𝑒(−𝑡−𝑡′)/𝜏1 �̇�(𝑡′)𝑑𝑡′. (3.84)

Regarding the principle of superposing effects, which is one of the foundations of linear
viscoelasticity theory, it can be stated that the total stress felt by the material formed by
𝑁 Maxwell’s elements is given by the sum of the stress for each element, that is:

𝜎(𝑡) =
𝑁∑︁

𝑗=1

𝜂𝑗

𝜏𝑗

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜏𝑗 �̇�(𝑡′)𝑑𝑡′, (3.85)

which, in terms of the stress relaxation function can be rewritten as follows:

𝜎(𝑡) =
∫︁ 𝑡

−∞

𝑁∑︁
𝑗=1

Φ𝑗(𝑡− 𝑡′)�̇�(𝑡′)𝑑𝑡′. (3.86)

This equation shows us that in a linear viscoelastic regime the relaxation of a
given stress applied to a complex material develops as a combined relaxing effect of the 𝑁
elements that compose it, i.e. there are 𝑁 relaxation times which characterize the typical
time scale of a complex fluid in this flow regime. One can, therefore, write the stress
relaxation function by considering Maxwell’s 𝑁 elements as follows:

Φ(𝑠) =
𝑁∑︁

𝑗=1
Φ𝑗(𝑠) =

𝑁∑︁
𝑗=1

𝜂𝑗

𝜏𝑗

𝑒−𝑠/𝜏𝑗 , (3.87)

where 𝑠 = 𝑡− 𝑡′.
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3.4.4 Determination of the viscoelastic modules

Consider a Maxwell’s fluid subjected to a small amplitude oscillatory shear. In this
conditions, from equation (3.84), one obtains:

𝜎(𝑡) = 𝜂1

𝜏1

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜏1 �̇�(𝑡′)𝑑𝑡′, (3.88)

where, 𝜂1 is the viscosity of the fluid for a condition of null frequency (equilibrium) and
𝜏1 its characteristic time of relaxation. Given the characteristics of the small amplitude
oscillatory shear, it is defined that:

𝜎(𝑡) = �̇�(𝑡)𝜂*(𝜔), (3.89)

in which, 𝜂*(𝜔) is the complex viscosity modulus of the fluid.

Besides that, the angular strain is given by:

𝛾(𝑡′) = 𝛾0𝑒
𝑖𝜔𝑡′
. (3.90)

Now, the shear-rate is defined by differentiating equation (3.90), which results in:

�̇�(𝑡′) = 𝑖𝜔𝛾0𝑒
𝑖𝜔𝑡′
. (3.91)

Replacing this expression into equation (3.88), one obtains:

𝜎(𝑡) = 𝜂1

𝜏1

∫︁ 𝑡

−∞
𝑒−(𝑡−𝑡′)/𝜏1𝑖𝜔𝛾0𝑒

𝑖𝜔𝑡′
𝑑𝑡′. (3.92)

Applying a substitution of variables 𝑠 = 𝑡 − 𝑡′ in equation (3.92), that results in
𝑑𝑠 = −𝑑𝑡′, and inverting the limits of integration, one obtains:

𝜎(𝑡) = 𝜂1

𝜏1

∫︁ ∞

0
𝑒−𝑠/𝜏1𝑖𝜔𝛾0𝑒

𝑖𝜔(𝑡−𝑠)𝑑𝑠. (3.93)

Removing constant terms from the integral,

𝜎(𝑡) = 𝜂1

𝜏1
𝑖𝜔𝛾0𝑒

𝑖𝜔𝑡
∫︁ ∞

0
𝑒−𝑠/𝜏1𝑒−𝑖𝜔𝑠𝑑𝑠, (3.94)

and using equation (3.91), (3.94) can be rewritten in the following form:

𝜎(𝑡) = 𝜂1

𝜏1
�̇�(𝑡)

∫︁ ∞

0
𝑒−𝑠/𝜏1𝑒−𝑖𝜔𝑠𝑑𝑠. (3.95)

Now, adding the powers of the exponentials in the integrand of (3.95), factorizing 𝑠 and
rearranging the terms, one obtains:

𝜎(𝑡) = 𝜂1

𝜏1
�̇�(𝑡)

∫︁ ∞

0
𝑒[−𝑠(1+𝑖𝜔𝜏1)/𝜏1]𝑑𝑠. (3.96)

Integrating (3.96),

𝜎(𝑡) = 𝜂1

𝜏1
�̇�(𝑡)

[︃
−𝜏1

(1 + 𝑖𝜔𝜏1)
𝑒[−𝑠(1+𝑖𝜔𝜏1)/𝜏1]

]︃ ⃒⃒⃒⃒
⃒
𝑠→∞

𝑠=0
, (3.97)
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and taking equation (3.97) into account, one obtains:

𝜎(𝑡) = 𝜂1

(1 + 𝑖𝜔𝜏1)
�̇�(𝑡). (3.98)

Besides that, using the definition stated on equation (3.89), it comes that:

𝜂* = 𝜂1

(1 + 𝑖𝜔𝜏1)
. (3.99)

Multiplying and dividing equation (3.99) by the conjugate of the denominator:

𝜂* = 𝜂1 − 𝑖𝜔𝜏1𝜂1

(1 + 𝜔2𝜏 2
1 ) , (3.100)

and observing that:
𝜂*(𝜔) = 𝜂′(𝜔) − 𝑖𝜂′′(𝜔), (3.101)

it is easily shown that:
𝜂′(𝜔) = 𝜂1

(1 + 𝜔2𝜏 2
1 ) (3.102)

and
𝜂′′(𝜔) = 𝜂1𝜏1𝜔

(1 + 𝜔2𝜏 2
1 ) . (3.103)

Finally, using the definition 𝐺* = 𝑖𝜔𝜂*, one obtains that:

𝐺*(𝜔) = 𝑖𝜔𝜂1

(1 + 𝑖𝜔𝜏1)
, (3.104)

from which, through a process analogous to the one carried out on equation (3.100), it is
obtained that:

𝐺′(𝜔) = 𝜔𝜂′′(𝜔) = 𝜂1𝜏1𝜔
2

(1 + 𝜔2𝜏 2
1 ) , (3.105)

and
𝐺′′(𝜔) = 𝜔𝜂′(𝜔) = 𝜂1𝜔

(1 + 𝜔2𝜏 2
1 ) . (3.106)

Now admitting a fluid composed of 𝑁 elements of Maxwell, as discussed in the
section (3.4.3), it is shown by the superposition principle that:

𝜂′(𝜔) =
𝑁∑︁
𝑗

𝜂𝑗

(1 + 𝜔2𝜏 2
𝑗 ) , (3.107)

𝜂′′(𝜔) =
𝑁∑︁
𝑗

𝜂𝑗𝜏𝑗𝜔

(1 + 𝜔2𝜏 2
𝑗 ) , (3.108)

𝐺′(𝜔) =
𝑁∑︁
𝑗

𝜂𝑗𝜏𝑗𝜔
2

(1 + 𝜔2𝜏 2
𝑗 ) , (3.109)

e
𝐺′′(𝜔) =

𝑁∑︁
𝑗

𝜂𝑗𝜔

(1 + 𝜔2𝜏 2
𝑗 ) . (3.110)
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3.4.5 Relationship between the stress relaxation function and viscoelastic
modules

Consider again a Maxwell fluid subjected to a small amplitude oscillatory shear.
In this case, the system excitation given in terms of the shear-rate is expressed as:

�̇�(𝑡′) = 𝛾0𝑐𝑜𝑠(𝜔𝑡′). (3.111)

Replacing the expression (3.111) into the bidimensional constitutive equation for
the stress tensor of a Maxwell’s fluid, equation (3.84), one obtains:

𝜎(𝑡) =
∫︁ 𝑡

−∞
Φ(𝑡− 𝑡′)𝛾0𝑐𝑜𝑠(𝜔𝑡′)𝑑𝑡′. (3.112)

Defining 𝑠 = 𝑡− 𝑡′ on equation (3.112), it comes that:

𝜎(𝑠) =
∫︁ 𝑡

−∞
Φ(𝑠)𝛾0𝑐𝑜𝑠(𝜔(𝑡− 𝑠))𝑑𝑠. (3.113)

Developing the term 𝑐𝑜𝑠(𝜔(𝑡− 𝑠)), ic can be easily shown that:

𝜎(𝑠) =
∫︁ 𝑡

−∞
[Φ(𝑠)𝑐𝑜𝑠(𝜔𝑠)𝑑𝑠] 𝛾0𝑐𝑜𝑠(𝜔𝑡)𝑑𝑠+

∫︁ 𝑡

−∞
[Φ(𝑠)𝑠𝑒𝑛(𝜔𝑠)𝑑𝑠] 𝛾0𝑠𝑒𝑛(𝜔𝑡)𝑑𝑠. (3.114)

Comparing this result with equation (4.11), it is obtained that:

𝜂′(𝜔) =
∫︁ 𝑡

−∞
Φ(𝑠)𝑐𝑜𝑠(𝜔𝑠)𝑑𝑠, (3.115)

𝜂′′(𝜔) =
∫︁ 𝑡

−∞
Φ(𝑠)𝑠𝑒𝑛(𝜔𝑠)𝑑𝑠. (3.116)

Alternatively, using complex variables, one obtains:

𝜂*(𝜔) = 𝜂′(𝜔) − 𝑖𝜂′′(𝜔) =
∫︁ 𝑡

−∞
Φ(𝑠)𝑒−𝑖𝜔𝑠𝑑𝑠. (3.117)

Using the inverse Fourier transform, it is immediate that:

Φ(𝑠) = 2
𝜋

∫︁ 𝑡

−∞
𝜂′(𝜔)𝑐𝑜𝑠(𝜔𝑠)𝑑𝜔 (3.118)

Φ(𝑠) = 2
𝜋

∫︁ 𝑡

−∞
𝜂′′(𝜔)𝑠𝑒𝑛(𝜔𝑠)𝑑𝜔 (3.119)

3.4.6 Determination of the relaxation time from the stress relaxation function

The relaxation time (𝜏) for a simple Maxwell’s fluid (composed of one Maxwell
element) or the main relaxation time for a complex memory fluid can be calculated from
the stress relaxation function. For that, lets calculate the following relation:

lim
𝜔→0

𝜂′′(𝜔)/𝜔
𝜂′(𝜔) , (3.120)
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where 𝜂′(𝜔) and 𝜂′′(𝜔) are given by (3.115), thus:

lim
𝜔→0

𝜂′′(𝜔)/𝜔
𝜂′(𝜔) = lim

𝜔→0

⎡⎢⎢⎢⎣
∫︁ 𝑡

−∞

Φ(𝑠) sin(𝜔𝑠)
𝜔

𝑑𝑠∫︁ 𝑡

−∞
Φ(𝑠) cos(𝜔𝑠)𝑑𝑠

⎤⎥⎥⎥⎦ . (3.121)

Evaluating the limit of the denominator of the fraction located on the left side of equity
on equation (3.121), one obtains:

lim
𝜔→0

𝜂′(𝜔) = lim
𝜔→0

∫︁ 𝑡

−∞
Φ(𝑠) cos(𝜔𝑠)𝑑𝑠 =

∫︁ 𝑡

−∞
Φ(𝑠)𝑑𝑠 = 𝜂(0) = 𝜂0, (3.122)

where 𝜂0 is the viscosity of the fluid in the limit of flow absence (equilibrium). The limit
of the numerator is calculated as follows:

lim
𝜔→0

𝜂′′(𝜔)
𝜔

= lim
𝜔→0

∫︁ 𝑡

−∞

Φ(𝑠) sin(𝜔𝑠)
𝜔

𝑑𝑠 (3.123)

to which, applying the rule of L’Hôpital, it is obtained that:

lim
𝜔→0

𝜂′′(𝜔)
𝜔

= lim
𝜔→0

∫︁ 𝑡

−∞
𝑠Φ(𝑠) cos(𝜔𝑠)𝑑𝑠 =

∫︁ 𝑡

−∞
𝑠Φ(𝑠) cos(𝜔𝑠)𝑑𝑠. (3.124)

Now, substituting the results obtained in (3.123) and (3.124) into (3.121), one
obtains that:

lim
𝜔→0

𝜂′′(𝜔)/𝜔
𝜂′(𝜔) =

∫︀ 𝑡
−∞ 𝑠Φ(𝑠) cos(𝜔𝑠)𝑑𝑠∫︀ 𝑡

−∞ Φ(𝑠)𝑑𝑠
= 𝛽

𝜇
, (3.125)

By dimensional analysis, knowing that 𝑠 has unit of time and Φ(𝑠) unit of tension, it
is obtained, as a result, that [𝛽] = 𝑃𝑎.𝑠2 and [𝜇] = 𝑃𝑎.𝑠, then the quotient shown on
equation (3.125) has unit of time, being defined as the relaxation time 𝜏 of the material.
Based on that:

𝜏 =
∫︀ 𝑡

−∞ 𝑠Φ(𝑠) cos(𝜔𝑠)𝑑𝑠∫︀ 𝑡
−∞ Φ(𝑠)𝑑𝑠

. (3.126)
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4 RHEOLOGICAL FLOWS AND
MATERIAL FUNCTIONS

The description of the flow behavior of complex fluids, such as magnetic fluids, dif-
fers strongly from that predicted by the Newton viscosity law. An incompressible, constant
temperature Newtonian fluid is completely characterized by only two material constants:
its specific mass 𝜌 and the viscosity 𝜂. Therefore, having measured these quantities, the
governing equations for the stress and velocity distribution in the fluid are fixed for any
type of flow (BIRD; ARMSTRONG; HASSAGER, 1987).

The situation becomes considerably more complicated when it comes to the ex-
perimental description of incompressible non-Newtonian fluids, as such materials do not
necessarily have a constant viscosity and, in addition, exhibit normal stresses and elastic
effects such as stress relaxation.

While different types of experiments applied to Newtonian fluids lead to the mea-
surement of a single material constant (viscosity), the same ones applied to a magnetic
fluid may lead to a set of material functions, which depend on the intensity of the applied
external magnetic field, the shear rate, the frequency, the time and of other parameters.
According to Bird, Armstrong and Hassager (1987), these functions are intended to pro-
mote the classification of various types of non-Newtonian fluids, and are essential for
determining constants of specific constitutive equations for these fluid classes.

4.1 The stress tensor: an overview

Newtonian fluids subjected to a simple shear present only 𝜎𝑥𝑦 different from zero.
Nonetheless, for non-Newtonian fluids, in the absence of any applicable constitutive equa-
tion, it must be considered that the six components of the stress tensor are different from
zero. According to Bird, Armstrong and Hassager (1987), for viscometric flows of incom-
pressible liquids, it can be shown that a maximum of three combinations of components of
the stress tensor can be measured. Based on that, the most general form that this tensor
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can assume is given by:

Σ = −𝑝𝐼 + 𝜎 =

⎛⎜⎜⎜⎝
−𝑝+ 𝜎𝑥𝑥 𝜎𝑥𝑦 0
𝜎𝑥𝑦 −𝑝+ 𝜎𝑦𝑦 0
0 0 −𝑝+ 𝜎𝑧𝑧

⎞⎟⎟⎟⎠ (4.1)

Since for incompressible fluids it is not possible to separate the contribution of
pressure and normal stresses in the measurement of normal forces on surfaces, the only
amounts of experimental interest are shear stress and two normal stress differences, defined
as:

∙ Shear stress: 𝜎𝑦𝑥;

∙ First normal stress difference: 𝑁1 = 𝜎𝑥𝑥 − 𝜎𝑦𝑦;

∙ Second normal stress difference: 𝑁2 = 𝜎𝑦𝑦 − 𝜎𝑧𝑧.

In this chapter it will discussed the material functions that come from three types
of viscometric flow of non-Newtonian fluids: permanent simple shear, small amplitude
oscillatory shear, and impulse of strain (step-strain).

4.2 Permanent simple shear

Permanent simple shear is a viscometric flow used to evaluate the dependence
of viscometric functions on the shear-rate �̇�. This type of flow is widely used to char-
acterize rheological behavior from constitutive models that consider complex fluid as a
system without memory, which are generically called generalized Newtonian fluids. Fur-
thermore, it is important to note that the viscometric functions obtained experimentally
by measuring instruments based on this flow are of fundamental importance for engineer-
ing applications. This type of flow can be also carried out in the presence of an external
magnetic field 𝐻 , what makes it possible to evaluate the material functions not only in
terms of the shear-rate, but also as a function of the intensity of the applied magnetic
field.

Considering a situation where the external magnetic field is constant and homo-
geneous, the stress tensor depends only of the flow field, thus, it can be said that the
stresses, in permanent regime when the fluid is subjected to a simple shear, are functions
only of the shear-rate �̇� (BIRD; ARMSTRONG; HASSAGER, 1987). The Viscosity 𝜂,
also called shear-rate dependent viscosity, is defined analogously to Newtonian fluids:

𝜎𝑥𝑦 = 𝜂(�̇�)�̇�𝑦𝑥. (4.2)

Following the same logic we define the normal stress coefficients Ψ1 and Ψ2 as follows:

𝑁1 = 𝜎𝑥𝑥 − 𝜎𝑦𝑦 = Ψ1(�̇�)�̇�2
𝑦𝑥, (4.3)

𝑁2 = 𝜎𝑦𝑦 − 𝜎𝑧𝑧 = Ψ2(�̇�)�̇�2
𝑦𝑥. (4.4)
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The Ψ1 and Ψ2 functions are known as the first and second normal stress coefficients,
respectively. The set of material functions 𝜂, Ψ1 and Ψ2 is called viscometric functions of
the simple shear flow.

Morrison (2001) states that the viscosity 𝜂 is the best known experimental vis-
cometric function, being also the most important in terms of engineering applications a.
According to such authors, a usual way to study it is by plotting the 𝜂(�̇�) function keeping
all external variables fixed (temperature, magnetic field intensity and others). In this type
of curve, three regions of rheological behavior are defined. At low shear rates, stress is
proportional to �̇� and viscosity approaches a constant value 𝜂0, called effective viscosity
(zero-shear viscosity). For high shear-rate values, the viscosity of most non-Newtonian
fluids decreases with the increase of �̇�, usually according to a power law. This effect is
called shear-thinning. On the other hand, there are some liquids whose apparent viscosity
𝜂 increases as a function of �̇�, which are called shear-thickening. Under very high shear-
rates, the viscosity may again be independent of the shear-rate, becoming constant and
approaching 𝜂∞, called infinite-shear viscosity. Such viscometric functions are arranged
in the figure (11).

η0

η∞

log(η)

log(γ̇)

Power-law region

Figure 11 – Typical result for the viscosity behavior 𝜂(�̇�) of a shear-thinning liquid, show-
ing the three regions of interest: the plateau characterized by the effective
viscosity 𝜂0, the power-law and the infinite-shear viscosity plateau 𝜂∞.

Morrison (2001) states, based on several experimental studies, that Ψ1 is a gener-
ally positive amount. In addition, this material function has a large power-law type region
of decrease, in which this function can be reduced by a factor of up to 106. The rate of
decrease of Ψ1 from �̇� is often higher than that observed for 𝜂 due to �̇�. At low shear-rates,
the first normal stress difference 𝑁1 is proportional to �̇�2, so by looking at the equation
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(4.3), it is observed that Ψ1 tends to a constant Ψ1,0, the first normal stress coefficient
in the absence of shear, when �̇� tends to zero (SALAS; OLIVEIRA; CUNHA, 2006). The
second normal stress coefficient Ψ2 is much less experimentally explored than Ψ1, since
its measurement implies specific and highly complex instruments (BARNES; HUTTON;
WALTERS, 1989). For the vast majority of non-Newtonian fluids, their value is negative
and, moreover, their absolute value is generally 10% lower than Ψ1.

4.3 Small amplitude oscillatory shear

The viscoelastic properties of non-Newtonian fluids with memory, as the magnetic
fluids when subjected to a non-zero external magnetic field, can be determined by experi-
ments in small amplitude oscillatory shear regime, by evaluating the viscoelastic response
of the given fluid to a known external excitation.

The system is assumed to oscillate at a given frequency 𝜔. Considering a small and
therefore linear deformation regime, it is assumed that the shear stress oscillates at the
same frequency as the system, but not necessarily at the same phase. To illustrate this flow
type, lets consider a complex fluid located between two parallel plates, one movable and
the other fixed, as shown in the figure (12). The movable one is considered to oscillate with
an small amplitude and frequency, which is traduced to the fluid as a simple oscillatory
shear, whose velocity field is given by

𝑢 = �̇�(𝑡)𝑦𝑒𝑥, (4.5)

where �̇� is the oscillatory shear-rate, 𝑦 is the vertical position measured from the fixed
plate and 𝑒𝑥 is the unit vector of the x-direction.

y

x

u = γ̇(t)yê1

Fixed plate

γ(t) = γ0 sin (ωt)

Oscillating plate

Figure 12 – Schematics representation of a small amplitude oscillatory shear.

The excitation applied to the system by the movable plate is in the form of an
oscillating small deformation, that is:

𝛾(𝑡) = 𝛾0𝑠𝑒𝑛(𝜔𝑡), (4.6)
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where, 𝛾0 is the deformation amplitude (𝛾0 ≪ 1). Differentiating equation (4.6) with
respect to time, one obtains the shear-rate excitation:

�̇� = 𝑑𝛾

𝑑𝑡
= 𝜔𝛾0𝑐𝑜𝑠(𝜔𝑡) = 𝛾0𝑐𝑜𝑠(𝜔𝑡), (4.7)

in which the amplitude of the shear-rate is defined as 𝛾0 = 𝜔𝛾0.

The response to the excitation imposed to the system will be represented by a
shear stress 𝜎, which will be written in terms of the strain amplitude 𝛾0 and the strain
itself 𝛾(𝑡), or in terms of the shear rate �̇�(𝑡). In addition, we also consider the phase of
the response, which is not necessarily equal to the phase of the excitation, so in terms of
the strain amplitude 𝛾0 , it is obtained that:

𝜎(𝑡) = 𝐴(𝜔)𝛾0𝑠𝑒𝑛(𝜔𝑡+ 𝛼), (4.8)

and, in terms of the shear-rate, �̇�(𝑡):

𝜎(𝑡) = 𝐵(𝜔)𝛾0𝑐𝑜𝑠(𝜔𝑡− 𝛽), (4.9)

in which, 0 6 𝛼 6 𝜋/2, 0 6 𝛽 6 𝜋/2 e 𝛽 = 𝜋

2 − 𝛼.

It is convenient to rewrite (4.8) and (4.9) in terms of sine and cosine sums to make
explicit the components of the shear stress in phase and out of phase with excitation.
Based on this, it comes that:

𝜎(𝑡) = 𝐺′(𝜔)𝛾0𝑠𝑒𝑛(𝜔𝑡) +𝐺′′(𝜔)𝛾0𝑐𝑜𝑠(𝜔𝑡), (4.10)

or,
𝜎(𝑡) = 𝜂′(𝜔)𝛾0𝑐𝑜𝑠(𝜔𝑡) + 𝜂′′(𝜔)𝛾0𝑠𝑒𝑛(𝜔𝑡), (4.11)

where, 𝐺′,𝐺′′,𝜂′ and 𝜂′′ are viscoelastic functions of the material (complex fluid).

It is important to remark that for a perfect elastic solid, 𝐺′′(𝜔) = 0 and, as a
result, 𝜎 = 𝐺′𝛾(𝑡), where 𝐺′(𝜔) = 𝐺0 is known as the shear elastic modulus of the
material. Additionally, for a Newtonian fluid, 𝜂′′(𝜔) = 0, which leads to 𝜎(𝑡) = 𝜂′(𝜔)�̇�(𝑡),
where 𝜂′(𝜔) = 𝜂0 is called the dynamic shear viscosity of the fluid.

Expanding equations (4.8) e (4.9), one obtains:

𝜎(𝑡) =𝐴(𝜔)𝛾0𝑐𝑜𝑠(𝛼)𝑠𝑒𝑛(𝜔𝑡)+

𝐴(𝜔)𝛾0𝑠𝑒𝑛(𝛼)𝑐𝑜𝑠(𝜔𝑡), (4.12)

and,

𝜎(𝑡) =𝐵(𝜔)𝛾0𝑐𝑜𝑠(𝛽)𝑐𝑜𝑠(𝜔𝑡)+

𝐵(𝜔)𝛾0𝑠𝑒𝑛(𝛽)𝑠𝑒𝑛(𝛾𝑡). (4.13)

Comparing equations (4.12) and (4.13), respectively with (4.8) and (4.9), it can be eas-
ily noted that the components in phase with 𝛾(𝑡) and ˙𝛾(𝑡) are, in this order, 𝐺′(𝜔) =
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𝐴(𝜔)𝑐𝑜𝑠(𝛼) and 𝜂′(𝜔) = 𝐵(𝜔)𝑐𝑜𝑠(𝛽). Besides that, the components out of phase are
𝐺′′(𝜔) = 𝐴(𝜔)𝑠𝑒𝑛(𝛼) and 𝜂′′(𝜔) = 𝐵(𝜔)𝑠𝑒𝑛(𝛽). As a result, it comes that:

𝐴(𝜔) =
√︁
𝐺′(𝜔)2 +𝐺′′(𝜔)2, (4.14)

tan(𝛼) =
(︃
𝐺′′(𝜔)
𝐺′(𝜔)

)︃
, (4.15)

and,

𝐵(𝜔) =
√︁
𝜂′(𝜔)2 + 𝜂′′(𝜔)2, (4.16)

tan(𝛽) =
(︃
𝜂′′(𝜔)
𝜂′(𝜔)

)︃
. (4.17)

The viscoelastic parameters have the following physical interpretations: 𝐺′ is called
storage modulus, as it is associated with the elastic character of the fluid, i.e. to the energy
stored during deformation; 𝐺′′ is called loss modulus and is associated with the viscous
character of the fluid and, thus, to the energy dissipation during flow, 𝜂′ is called dynamic
viscosity, which also relate to dissipative effects, and 𝜂′′ which represents the imaginary
part of the complex viscosity, is associated with elastic effects. Another important system
parameter is 𝑡𝑎𝑛(𝛼), as it is a measure of system damping capacity.

Another way to approach this problem is using complex variables, where the os-
cillating excitation imposed to the system with a frequency 𝜔, is described as follows:

𝛾(𝑡) = 𝛾0𝑒
𝑖𝜔𝑡. (4.18)

The shear-rate is then obtained by deriving the equation (4.18) with respect to time, what
results in:

�̇�(𝑡) = 𝑖𝜔𝛾0𝑒
𝑖𝜔𝑡, (4.19)

from which the shear-rate amplitude is defined as 𝛾0 = 𝑖𝜔𝛾0. The stress, obtained as a
response to the excitation stated in equation (4.19) is given as follows:

𝜎(𝑡) = ̃︀𝜎𝑒𝑖(𝜔𝑡+𝜑), (4.20)

which is analogous to
𝜎(𝑡) = 𝜎′𝑒𝑖𝜔𝑡, (4.21)

where 𝜎′ = ̃︀𝜎𝑒𝑖𝜑 is an complex amplitude. As it was done previously on this section, the
shear stress is defined as a function of the deformation 𝛾0(𝑡) or from the shear-rate �̇�(𝑡),
as follows:

𝜎*(𝑡) = 𝐺*(𝜔)𝛾(𝑡) = 𝛾0𝐺
*(𝜔)𝑒𝑖𝜔𝑡, (4.22)

or
𝜎*(𝑡) = 𝜂*(𝜔)�̇�(𝑡) = 𝜂*(𝜔)𝛾0𝑒

𝑖𝜔𝑡 = 𝜂*(𝜔)𝑖𝜔𝛾0𝑒
𝑖𝜔𝑡. (4.23)

Comparing equations (4.22) and (4.23), one obtains that:

𝐺*(𝜔) = 𝑖𝜔𝜂*(𝜔), (4.24)
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but, since:
𝐺*(𝜔) = 𝐺′(𝜔) + 𝑖𝐺′′(𝜔), (4.25)

and
𝜂*(𝜔) = 𝜂′(𝜔) − 𝑖𝜂′′(𝜔). (4.26)

Replacing equations (4.25) and (4.26) into (4.24), it comes that:

𝐺′(𝜔) − 𝑖𝐺′′(𝜔) = 𝜔𝜂′′(𝜔) − 𝑖𝜔𝜂′(𝜔), (4.27)

that is, the viscoelastic modules are related as follows:

𝐺′(𝜔) = 𝜔𝜂′′(𝜔), (4.28)

and
𝐺′′(𝜔) = 𝑖𝜔𝜂′(𝜔). (4.29)

4.4 Step-strain

The step-strain is a viscometric flow used to characterize the memory effects of a
given complex fluid, since it allows its stress relaxation function Φ to be obtained and,
from this, its main relaxation time 𝜏 .

Consider that an elastic fluid, and therefore with memory, is at rest in a region
between two parallel plates for all instants 𝑡 < 𝑡0 where 𝑡0 is a given reference instant.
At 𝑡 = 𝑡0, the top plate is instantly moved in the x direction, i.e. the fluid senses a
deformation 𝛾0 as shown in the figure (13a). The system excitation, given by the applied
shear rate �̇� over a short period of time 𝑡0 − (𝑡0 − 𝜖), can be understood as an impulse-like
function, being mathematically expressed by:

�̇�(𝑡) = 𝛾0

𝑡0 − (𝑡0 − 𝜖) = 𝛾0

𝜖
, (4.30)

t0 − ǫ

γ

t0 t

γ0

(a)

γ̇ = γ0/ǫ

γ̇

tt0t0 − ǫ

(b)

Figure 13 – (a) Step-strain, (b) Applied shear-rate (impulse function).

55



Let us get the expression for the stress tensor 𝜎(𝑡), under linear viscoelasticity, for
the case of the strain impulse:

𝜎(𝑡) =
∫︁ 𝑡0−𝜖

−∞
Φ(𝑡− 𝑡′)�̇�(𝑡′)𝑑𝑡′ +

∫︁ 𝑡0

𝑡0−𝜖
Φ(𝑡− 𝑡′)�̇�(𝑡′)𝑑𝑡′ +

∫︁ 𝑡−𝜖

𝑡0−𝑡
Φ(𝑡− 𝑡′)�̇�(𝑡′)𝑑𝑡′. (4.31)

However:

𝑡′ ∈ [𝑡 < 𝑡0 − 𝜖] −→ �̇�(𝑡′) = 0 −→
∫︁ 𝑡0−𝜖

−∞
Φ(𝑡− 𝑡′)�̇�(𝑡′)𝑑𝑡′ = 0, (4.32)

and

𝑡′ ∈ [𝑡 > 𝑡0] −→ �̇�(𝑡′) = 0 −→
∫︁ 𝑡0−𝜖

−∞
Φ(𝑡− 𝑡′)�̇�(𝑡′)𝑑𝑡′ = 0. (4.33)

Hence, the integral resumes to

𝜎(𝑡) =
∫︁ 𝑡0

𝑡0−𝜖
Φ(𝑡− 𝑡′)�̇�(𝑡′)𝑑𝑡′, (4.34)

which, associated to the obtained result (4.30), one obtains that:

𝜎(𝑡) = 𝛾0

𝜖

∫︁ 𝑡0

𝑡0−𝜖
Φ(𝑡− 𝑡′)𝑑𝑡′. (4.35)

Evaluating the limit when 𝜖 −→ 0 and applying the theorem of L’Hôpital, one
obtains:

𝜎(𝑡) = lim
𝜖→0

𝛾0

⎡⎢⎢⎣
𝑑

𝑑𝜖

∫︀ 𝑡0
𝑡0−𝜖 Φ(𝑡− 𝑡′)𝑑𝑡′

𝑑

𝑑𝜖
𝜖

⎤⎥⎥⎦ , (4.36)

based on this, the stress tensor for a viscoelastic fluid subjected to a step-strain is given
by:

𝜎(𝑡) = 𝛾0Φ(𝑡− 𝑡0) (4.37)

The equation (4.37) corroborates the fact that a viscoelastic fluid, due to its elastic
characteristics, is not instantaneous, since the stress responds with a delay in relation
to the applied deformation. In addition, it allows experimentally to obtain the stress
relaxation function Φ(𝑡 − 𝑡′) of a given complex fluid by simply deforming the material
within a short time and compute the variation of the stress 𝜎(𝑡) as a function of a given
time interval, then applying the equation (4.37) to the experimental data. The stress
relaxation function Φ(𝑡 − 𝑡′) is of utmost importance because from it, much important
information about the fluid is obtained, such as its relaxation time and its elastic and
viscous modules.

4.5 Empirical correlations for material functions

In this section, it will be described two empirical rules used in the correlation of
linear viscoelastic properties, obtained via experiments in the regime of small amplitude
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oscillatory shear flow, and the viscometric functions observed arising from the permanent
simple shear flows. Their importance relies in the fact that they allow the indirect deter-
mination of a material function from the measurement of the viscoelastic modules and
vice-versa.

4.5.1 Cox-Merz’s rule

One way to correlate the viscous modulus 𝜂′(𝜔) and the fluid apparent viscosity
𝜂 is through the Cox-Merz rule (COX; MERZ, 1959), which has an empirical origin and
predicts that the apparent viscosity 𝜂 is equal to the magnitude of the complex viscosity
|𝜂*(𝜔)|, for corresponding values of frequency 𝜔 and shear-rate �̇�,

𝜂(�̇�) = |𝜂*(𝜔)|(𝜔=�̇�) = 𝜂′(𝜔)
⎡⎣1 +

(︃
𝜂′′(𝜔)
𝜂′(𝜔)

)︃0,5
⎤⎦2

(𝜔=�̇�)

. (4.38)

However, this rule is suitable only in the linear viscoelasticity regime.

It is easy to show from equations (3.107) and (3.108) that, at the limit where 𝜔
tends to zero, i.e. when the system goes into steady-state, the rule of Cox-Merz simplifies
to the fact that 𝜂′(𝜔) tends to the dynamic viscosity 𝜂0, as shown in the equation (4.39).

lim
𝜔→0

𝜂′(𝜔) = 𝜂0 (4.39)

The Cox-Merz rule also applies to the elastic properties of complex fluids. In this
case, it relates the elastic modulus 𝐺′(𝜔), obtained from the small amplitude oscillatory
shear, and the first normal stress difference 𝑁1, obtained from the permanent shear flow
tests, as follows:

𝐺′(𝜔) = 𝑁1(�̇�)
2 . (4.40)

4.5.2 Laun’s rule

Laun (1986) proposes a correlation between the first normal stress difference 𝑁1(�̇�)
measured using steady shear flow and the storage𝐺′(𝜔) and loss modulus 𝐺′′(𝜔) measured
in oscillatory shear, which is:

𝑁1(�̇�)|�̇�=𝜔 = 2𝐺′(𝜔)
⎛⎝1 +

(︃
𝐺′(𝜔)
𝐺′′(𝜔)

)︃2
⎞⎠𝑛

. (4.41)

As the Cox-Merz rule, this ad-hoc expression comes from extensive experimental obser-
vations, being found to be usable for many complex fluids, such as polymer melts and
concentrated solutions. From such analysis, the power index 𝑛 was found to lay in between
(0.5,0.7). It is important to remark that in the case of a complex fluid that presents a
much bigger the loss modulus 𝐺′(𝜔) in comparison to the storage modulus 𝐺′(𝜔), it can
be easily shown, by a binomial expansion of the term between parenthesis on equation
(4.41), that Laun’s rule corresponds to the Cox-Merz rule.
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5 MATERIALS AND METHODS

5.1 Experimental apparatus

5.1.1 Rheometer

The rheological properties of the fluids under analysis in this work are obtained
using a high performance Physica Modular Compact Rheometer - MCR 301 (Anton Paar
GmbH, Germany), illustrated in figure (14). As its name states, this rheometer works
based on modules, a feature that makes this device really versatile. Each module is com-
posed by a measuring system and a measuring cell, which combined permit the user to
measure several material functions of both, Newtonian and non-Newtonian fluids, in a
variety of shear flow conditions (permanent and transient). Depending on the module
mounted on the rheometer, not only flow-related effects on the rheological behavior of a
given fluid can be measured, but also, one can measure the dependence of the material
functions on different external variables, like temperature and magnetic field.

The MCR 301 rheometer is very robust. The measuring system is powered by a
permanent magnet synchronous drive motor placed on the measuring head, which is able
to apply torques from 0.1𝜇N.m to 200𝑚N.m with resolution of 0.001𝜇N.m and accuracy of
0.2𝜇N.m. The capability of the device to apply a wide range of torques is the key factor
that allows the measurement of several rheological properties of a considerable variety
of fluids. The motor can also apply oscillations in a range from 0.0001 to 100 Hz. Those
characteristics can only be achieved due to the fact that the shaft of the measuring system
is sustained by an pressurized air bearing, what strongly reduces the friction between the
components of the drive system. The pressurized air is provided by an oil-free MSV6
compressor (Schulz S.A., Brazil), with operating pressure of 8.3 bar, this device is shown
in figure (15a). Besides that, the pneumatic system of the rheometer requires high quality
air, what is obtained using a setup composed by a dehumidifier and filters of oil and solid
particles, as depicted in figure (15b).

Temperature greatly influences the rheological behavior of almost all substances
(BIRD et al., 1987; BARNES; HUTTON; WALTERS, 1989). As a result, it is of high
importance, for obtaining significant measurements, that rheometric devices could provide
means of effectively control the temperature of samples under analysis. In this context,
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Figure 14 – Rheometer Anton Paar - model Physica MCR 301.

(a) Oil-free MSV6 compressor (Schulz S.A., Brazil)

The Physica MCR 301 rheometer presents different systems of temperature control, also
called environmental systems, whose utilization depend on the measuring cell mounted on
the flange ring of the device. It is important to note that the temperature control systems
are highly accurate, with minimal thermal gradients. In addition, traceable automatic
temperature calibration sensors are available to ensure that the system is always operating
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(b) Air treatment system: (1) - water filter with manometer, (2) - solid particle filters, (3) -
dehumidifier, (4) - oil filter.

Figure 15 – Pressurized air: production and treatment devices.

within specifications.

An environmental system designed to work with all the measuring cells is the liquid
temperature control, which operates based on the flow of a liquid with controlled temper-
ature through the measuring cell. The fluid exchange heat with the metal disk, where the
material sample is placed. When thermal equilibrium is reached, the temperature of the
sample under analysis tends to the temperature of flowing fluid (despite a small uncer-
tainty). The refrigeration/heating fluid must have a well controlled temperature and flow
with a high mass flux in order to fulfill the heat exchange needs for keeping the sample at a
prescribed temperature. These properties of the flowing fluid are provided by an external
Ecoline Staredition RE104 thermal bath (Lauda GmbH, Germany), which is coupled to
the rheometer. This device is capable of working with water or oil as circulating fluid. The
choice of which fluid to use must take into account their freezing and boiling points, due
to the fact that this device can provide controlled temperatures from −30 ∘ up to 180 ∘C.

Other environmental system available is the Peltier temperature control. In this
technical solution, the temperature of the sample is controlled by a Peltier thermoelectric
plate, that is attached to the fixed disk of the measuring cell. This system operates based
on the Peltier effect, characterized by maintaining a temperature difference in the union
of two conductors (or semiconductors) of distinct materials in a closed circuit when it is
passed through by an electric current. This device allows fast, precise and active control
of the sample temperature in a range from −40 to 200 ∘C. It is interesting to note that the
Peltier system cannot be used in applications where external magnetic fields are applied
to the sample. In this case, temperature control is only done using the thermal bath.

Figure (17) summarizes the systems involved in the acquisition of the data con-
cerning the rheological properties of a fluid sample. Despite the pneumatic control system
already discussed in this section, the referred schematic representation shows that the
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Figure 16 – Ecoline Staredition RE104 thermal bath (Lauda GmbH, Germany)

Figure 17 – Schematic.

rheometer is connected to a microcomputer, through which it is operated with the help
of the software Rheoplus (Anton Paar GmbH, Germany). In this software, all conditions
necessary for performing different types of rheological experimental trials are defined,
such as the shear rate, the oscillation frequency, the amplitude of strain , the magnetic
field intensity, the temperature of the sample or the heating-rate profile, among other
parameters. Additionally, the software presents in real-time the collected data arranged
in the form of graphs and tables. Several ad-hoc rheological models are available and
automated in its database, what enables a preliminary post-processing analysis and, as a
result, a previous verification of the adequacy of theoretical models to the data obtained
from measurements. Figure (18) shows a typical image of the Rheoplus program interface
during data collection.
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The assemblies of the rheometer used in this work are all of the parallel plate
type. They are characterized by the fact that its test region, in which the fluid under
analysis is placed, is a fictitious cylinder delimited by two discs, one mobile (measuring
system) and the other fixed (measuring cell). The height of this cylinder, which is also
the gap between the discs is a function of the fluid viscosity and should be optimized
for each type of fluid under analysis. It is important to note that the device is equipped
with the TruGap technology (Anton Paar GmbH, Germany), which permits the precise
adjustment of the gap between the parallel plates to the value prescribed by the operator,
independently of the temperature and thermal expansion of the assembly components.
With this feature, small gaps (< 0.5 mm) can be achieved with micrometric precision.
The volume of the fluid sample required to obtain a consistent experimental trial can be
approximated by the volume of the fictitious cylinder, however it is a good practice to use
a slightly larger volume to ensure that the space between the plates is fully filled during
data collection.

In order to obtain meaningful measurements, the gap of the rheometer have been
calibrated through the measurement of the viscosity of a series of different Newtonian
fluids. Figure (19) shows the result of the measurement of the viscosity of water, at a
constant temperature of 25∘C, when subjected to a fixed shear rate of 100 s−1. The gap
used in the referred measurement was 0.08 mm, that resulted on a viscosity of 0.89 ± 0.01
mPa.s. This result is in agreement with the consolidated value presented for the viscosity
of water at the referred temperature, what can be easily verified on (TANNER, 2000). As
a result, such value of gap is the ideal for performing rheological measurements on fluids
whose viscosities are of the same order of magnitude of the one observed for water.
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Figure 19 – Viscosity of distilled water as a function of time, measured on the rheometer
of parallel plates Physica MCR-301. The shear rate is fixed at 100 s−1 and
the temperature, at 25∘C. The gap between the parallel plates is 0.8 mm.
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Using the same methodology, it was possible to establish a reference of optimal
gaps to be used in the measurement of the rheological properties of fluids with a wide
range of viscosity. The results of this calibration are summarized on table (1).

Table 1 – Optimal gaps for carrying out rheological experiments, on fluids, as a function
of the order of magnitude of their kinematic viscosity

Fluid Viscosity [mPa.s]
(order of magnitude) Optimal gap

Water 1 0.08
Ethylene glycol 10 0.1

Mineral oil 100 0.3
Glycerin 1000 0.5

Silicon oil > 10000 0.8

5.1.1.1 Standard assembly

This mouting is presented in figure (20a). Its measuring system is denominated
PP-50, which is a stainless steel rod that in one of its ends presents a disk with a diameter
of 49.963 ± 0.005 mm.

(a) (b)

Figure 20 – (a) Physica MCR 301 rheometer: standard Assembly. (b) Detail of the mea-
suring system PP50.

The measuring cell in this assembly is a Peltier-temperature-controlled bottom
plate. This assembly is used to measure rheological properties of Newtonian and non-
Newtonian fluids in regimes of permanent and transient shear. Those properties can be
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assessed as functions of time, shear-rate and, especially of temperature, due to the fact
that this parameter is precisely controlled in this assembly.

5.1.1.2 Magneto-rheology assembly

This assembly is used to investigate the effects caused by the application of an
external homogeneous magnetic field on the rheological behavior of a given magnetizable
fluid. Generally, ferrofluids and magneto-rheological suspensions are investigated utilizing
this apparatus. In this assembly, the measuring system is denominated PP-20, which is
shown in figure (21a). It has the same geometry of PP-50, differing only in the diameter
of the disk, that in this device measures 19.946 ± 0.005mm.

(a) (b)

Figure 21 – (a) Physica MCR 301 rheometer: Magneto-rheology assembly. (b) Detail of
the measuring system PP20.

In this assembly, the measuring cell is denominated MRD (magneto-rheological
device) and it consists of a liquid-temperature-controlled bottom plate with built-in coils
that produce magnetic field. A magnetic yoke covers the plate to ensure a homogeneous
field and perpendicular field lines with respect to the plate. The parallel-plate system is
made of non-magnetized metal, preventing radial forces acting on the shaft. The yoke
can be temperature-controlled up to 70∘C with the liquid used in the bottom plate. It is
important to note that the Peltier temperature controller cannot be used in this assembly
owing to the fact that it works based on an eletric circuit, that would be certainly damaged
by the external magnetic field applied by the coils located under the bottom plate. The
MRD is fully integrated in the rheometer’s software, which controls the magnetic field and
records all important parameters. Measurements of the magnetic field are made using an
external Hall sensor. All the features summarized here ar displayed on figure (22).
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Figure 22 – MRF assembly: schematic of the measuring cell.

The continuous current needed to generate the magnetic field by the coils of the
measuring cell is provided by a PS-MRD DC power supply (Anton Paar GmbH, Germany),
which is shown in figure (23). This device can furnishes continuous currents up to 5A
between its terminals. In this maximum condition of operation, the coils produce an
magnetic field of up to 1.3 Tesla in the air gap between the parallel disks.

Figure 23 – PS-MRD DC power supply (Anton Paar GmbH, Germany).

5.2 Fluids under analysis

In this dissertation, the rheological behavior of two ferrofluids is described: EFH1
and EFH3, which are produced by the Ferrotec Corporation (USA). Those fluids are
examples of the EFH product series, which is a class designed to be used on educational
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applications. Regarding this context, they feature strong magnetic properties, such as the
magnetization of saturation, in order to make easy the visualization of magnetic patterns
that result from the interaction between the fluid and an external magnetic field. These
ferrofluids are suspensions of nanoparticles of magnetite (Fe3O4) dispersed on a base fluid
composed of synthetic hydrocarbons, possessing very low volatility and high thermal
stability. The average particle diameter on both ferrofluids is 10nm.

The characteristics regarding the ferrofluids EFH1 and EFH3, according to tech-
nical data obtained from the producer, are summarized on table (2).

Table 2 – Properties of the ferrofluids EFH1 and EFH3.

Ferrofluid 𝑀𝑠 (kA/m) 𝜑 𝜂0(cP) (27∘C) 𝜌 (g/ml) (25∘C) Base fluid
EFH-1 35.0 7.9% 6.0 1.21 hydrocarbons
EFH-3 52.5 11.8% 12.0 1.42 hydrocarbons

5.3 Rheometry

5.3.1 Measurement of the apparent viscosity on a parallel plate rheometer

In a parallel disk system, whose schematic representation is show at figure (24),
when the upper disk is rotated with constant angular velocity, the torque 𝒯 required to
achieve this rotation, the total force ℱ required to maintain the disks at a separation 𝐻

and the pressure distribution (𝑝+𝜎𝑧𝑧)|𝑧=0 across one of the plates can be measured. From
this measurements, one can obtain expressions for some material functions of a given
complex fluid, such as for its apparent viscosity 𝜂(�̇�), which will be done in the rest of
this section.
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Ω
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h

Figure 24 – Schematic representation of a parallel disk rheometer, where R is the maxi-
mum radius of the disks and H their spacing.

We begin by considering the shearing surfaces as fluid planes of constant 𝑧, each
one rotating with an angular velocity Ω(𝑧), that depends on its position between the
parallel disks. Under these conditions and considering a cylindrical coordinate system, as
shown in figure (25), it is reasonable to assume that the velocity field is 𝑢𝑟 = 𝑢𝑧 = 0 and
𝑢𝜙 ̸= 0, that is:

𝑢 =

⎡⎢⎢⎢⎣
0
𝑢𝜙

0

⎤⎥⎥⎥⎦
𝑟𝜙𝑧

. (5.1)

C2

C1

r

z

ϕ

êr

êϕ
êz

Ω

Figure 25 – Parallel plates with cylindrical coordinate system.
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With the referred velocity field and assuming that the fluid is incompressible, the
application of the continuity equation leads to:

∇ · 𝑢 = 0 −→ 𝜕𝑢𝜙

𝜕𝜙
= 0. (5.2)

Now, assuming that a simple shear flow develops in the 𝜙 direction, with velocity gradient
in the 𝑧 direction, that is, the velocity profile is linear on 𝑧, it can be written that:

𝑢𝜙 = 𝐴(𝑟)𝑧 +𝐵(𝑟), (5.3)

where 𝐴(𝑟) and 𝐵(𝑟) are unknown functions of r. Looking at the cylindrical coordinate
system shown in the figure (25), it comes that the boundary conditions for the velocity
field are given by: 𝑢𝜙 = 0 in 𝑍 = 0 and 𝑢𝜙 = 𝑟Ω at 𝑍 = ℎ, in which ℎ = ||𝐶1 − 𝐶2||
is the spacing between the two disks (𝐶1 and 𝐶2 are points located, respectively, at the
center of the upper and the lower disk). Applying these conditions to the equation (5.3),
one obtains:

𝑢𝜙 = 𝑟𝜙𝑧

ℎ
. (5.4)

After the determination of the velocity field, the rate of strain tensor 𝐷 can be
calculated as follows:

𝐷 = ∇𝑢 + (∇𝑢)𝑇

2 = 1
2

⎡⎢⎢⎢⎢⎢⎣
0 𝜕𝑢𝜙

𝜕𝑟
− 𝑢𝜙

𝑟
0

𝜕𝑢𝜙

𝜕𝑟
− 𝑢𝜙

𝑟
0 𝑢𝜙

𝑧
0 𝑢𝜙

𝑧
0

⎤⎥⎥⎥⎥⎥⎦
𝑟𝜙𝑧

=

⎡⎢⎢⎢⎢⎢⎣
0 0 0

0 0 𝑟Ω
2ℎ

0 𝑟Ω
2ℎ 0

⎤⎥⎥⎥⎥⎥⎦
𝑟𝜙𝑧

(5.5)

Thus, the shear-rate �̇�, calculated from its definition, is given by:

�̇� = ||2𝐷|| = (2𝐷 : 𝐷) 1
2 = 𝑟Ω

ℎ
. (5.6)

At the extremity of the moving disk (𝑟 = 𝑅), the shear-rate is given by: �̇� = �̇�𝑅. Therefore,
regarding the hypothesis that the velocity profile in 𝑧 is linear, the shear-rate for any given
𝑟 may be expressed as a function of �̇�𝑅 as follows:

�̇� = �̇�𝑅
𝑟

𝑅
, (5.7)

where, �̇�𝑅 = 𝑅Ω/ℎ. Based on this, it is now possible to calculate an expression for the
angular strain, having in mind that it is also a function of 𝑟, what is done by:

𝛾(0, 𝑡) =
∫︁ 𝑡

0
�̇�(𝑡′)𝑑𝑡′ =

∫︁ 𝑡

0

𝑅Ω
ℎ
𝑑𝑡′ = 𝑅Ω𝑡

ℎ
(5.8)

Looking at the equations (5.4) and (5.5), one realizes that the effect of curvature
in the 𝜙 direction was ignored. This was so, due to the fact that, according to Morrison
(2001), the effects coming from the referred curvature on simple shear flows are insignif-
icant and, therefore, the flow can be considered unidirectional in 𝜙, having the form
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𝑢 = �̇�𝑧𝑒𝜙. This hypothesis of unidirectional flow applies more effectively to the disk end,
where 𝑟 = 𝑅, what justifies the calculation of viscosity from the following relationships:

𝜎12 = 𝜎𝑧𝜙|𝑟=𝑅, (5.9)

�̇�0 = 𝑅Ω
ℎ

= �̇�𝑅, (5.10)

𝜂 = 𝜎21

�̇�0
= 𝜎𝑧𝜙

�̇�𝑟

. (5.11)

The equation (5.11) implies that, to calculate the viscosity, it is necessary to know
𝜎𝑧𝜙 in 𝑟 = 𝑅, which is done by observing that the flow is axisymmetric in 𝑧 and, therefore,
the stress tensor in cylindrical coordinates assumes the following form:

𝜎 =

⎡⎢⎢⎢⎣
𝜎𝑟𝑟 0 0
0 𝜎𝜙𝜙 𝜎𝑧𝜙

0 𝜎𝑧𝜙 𝜎𝑧𝑧

⎤⎥⎥⎥⎦
𝑟𝜙𝑧

. (5.12)

In order to write the equations of motion using this form of the stress tensor, we assume
by hypothesis:

1. Steady, laminar, isothermal flow;

2. Negligible body forces;

3. Cylindrical edge.

Under those conditions, the components of the equation of motion (Cauchy’s equation)
can be written as:

𝑟 − component :
𝜌𝑢2

𝜙

𝑟
= 1
𝑟

𝜕

𝜕𝑟
(𝑟𝜎𝑟𝑟) − 𝜎𝜙𝜙

𝑟
, (5.13)

𝜙− component : 0 = 𝜕𝜎𝑧𝜙

𝜕𝑧
, (5.14)

𝑧 − component : 0 = 𝜕𝜎𝑧𝑧

𝜕𝑧
. (5.15)

The torque 𝒯 required to rotate the upper disk (or to keep the lower disk station-
ary) is given by:

𝒯 =
∫︁

𝐴
−𝜎𝑧𝜙(𝑟, 𝑧 = ℎ)(2𝜋𝑟𝑑𝑟). (5.16)

Also, viscosity at any value of 𝑟 can be written as follows:

𝜂 = −𝜎21

�̇�0
= −𝜎𝑧𝜙

�̇�(𝑟) = 𝜂(𝑟), (5.17)
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which, substituted on equation (5.16), results in:

𝒯 = 2𝜋
∫︁ 𝑅

0
𝜂(𝑟)�̇�𝑟2𝑑𝑟. (5.18)

The equation (5.18) implies that the torque is given as a function of an integral
over the viscosity and shear rate, however, for practical reasons, it is more usual to ex-
press viscosity as a function of torque, given that the latter is the truly experimentally
obtained parameter. For this, an approach similar to the Weissenberg-Rabinowitsch cor-
rection factor (MORRISON, 2001), which was originally proposed to determine viscosity
as a function of shear rate from experimental data, obtained from capillary tube tests. In
the context of the flow under study, which is performed between parallel disks, the ap-
proach is to differentiate the equation (5.18) with respect to the the-shear rate. In order to
do that, one first eliminates 𝑟 in equation (5.18), using the following change of variables:
�̇� = �̇�𝑅𝑟/𝑅. This results on:

𝒯 = 2𝜋𝑅3

�̇�3
𝑅

∫︁ �̇�𝑅

0
𝜂�̇�3𝑑�̇�. (5.19)

Next, using the rule of Leibniz (ARIS, 2012), one differentiates both sides of equation
(5.19) with respect to �̇�𝑅, obtaining:

𝒯
2𝜋𝑅3 �̇�

3
𝑅 =

∫︁ �̇�𝑅

0
𝜂�̇�3𝑑𝛾, (5.20)

𝑑

𝑑�̇�𝑅

[︂ 𝒯
2𝜋𝑅3 �̇�

3
𝑅

]︂
=
∫︁ �̇�𝑅

0

𝜕

𝜕(�̇�𝑅)(𝜂�̇�3)𝑑�̇� + 𝜂(�̇�𝑅)�̇�3
𝑅. (5.21)

The first term on the right side of the equation is zero, so, by rearranging the terms,
one obtains an equation for the apparent viscosity measured on a torsional rheometer of
parallel disks, which is:

𝜂(�̇�𝑅) = 𝒯
2𝜋𝑅3�̇�𝑅

⎡⎢⎢⎣3 +
𝑑 log( 𝒯

2𝜋𝑅3 )
𝑑 log �̇�𝑅

⎤⎥⎥⎦ . (5.22)

Therefore, to measure the apparent viscosity of any given fluid on a parallel disk rheometer
based on the shear-rate evaluated on the border of the disk �̇�𝑅, it is necessary to obtain
experimental data of the viscosity for multiple values of �̇�𝑅, that is, for a wide range of Ω,
so that the torque derivative shown in equation (5.22) can be calculated. Based on this,
one can finally apply the correction represented by the bracketed term in this equation
to each pair of data (𝒯 , �̇�𝑅).

It is important to note that the material particles do not experience the same
angular deformation (𝛾) because it varies with the radius, as shown in equation (5.8). On
the other hand, the torque 𝒯 is an integral quantity and, as a result, it represents the con-
tribution of all fluid elements subjected to shear, which is also verified for viscosity, since
it is obtained from the measurement of the torque. Therefore, this property represents an
average viscosity that would be calculated for each element subjected to a different shear
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rate. This only poses a problem for fluids that are very sensitive to angular deformation,
such as liquid crystals and multiphase fluids.

The formula (5.22) permits the obtainment of the viscosity as a function of torque
for any fluid in a parallel disc rheometer. Therefore, it is also applicable to Newtonian
fluids, for which it is considerably simpler. By developing the exact differentials of the
numerator and denominator on the right side of the equation (5.22), we obtain that:

𝑑
[︂
log

(︂ 𝒯
2𝜋𝑅3

)︂]︂
= 2𝜋𝑅3

ln(10)𝑑
(︂ 𝒯

2𝜋𝑅3

)︂
, (5.23)

and
𝑑 [𝑙𝑜𝑔 (𝛾𝑅)] = 1

ln(10)𝛾𝑅

𝑑 (𝛾𝑅) . (5.24)

Dividing equations (5.23) and (5.24), we obtain that:

𝑑 log( 𝒯
2𝜋𝑅3 )

𝑑 log �̇�𝑅

= 2𝜋𝑅3�̇�𝑅

𝒯

𝑑
(︂ 𝒯

2𝜋𝑅3

)︂
𝑑 (�̇�𝑅) . (5.25)

For a Newtonian fluid, it is easily shown that the applied torque on a parallel disks
configuration (Couette flow) is ggiven by:

𝒯 = 𝜋�̇�𝑅𝜂
𝑅3

2 . (5.26)

Replacing this result on equation (5.25), it comes that:

𝑑 log( 𝒯
2𝜋𝑅3 )

𝑑 log �̇�𝑅

= 4
𝜂

𝑑
(︂
�̇�𝑅𝜂

4

)︂
𝑑 (�̇�𝑅) . (5.27)

Since viscosity 𝜂 is constant with respect to shear-rate variations for a Newtonian fluid,
one obtains:

𝑑 log( 𝒯
2𝜋𝑅3 )

𝑑 log �̇�𝑅

= 𝑑 (�̇�𝑅)
𝑑 (�̇�𝑅) = 1. (5.28)

Because of this result, it can be shown that equation (5.22) for a Newtonian fluid
reduces to:

𝜂(�̇�𝑅) = 𝒯
2𝜋𝑅3�̇�𝑅

[3 + 1] = 2𝒯
𝜋𝑅3�̇�𝑅

. (5.29)

Substituting expression (5.10) on equation (5.29), one obtains:

𝜂(�̇�𝑅) = 2𝒯 ℎ
𝜋Ω𝑅4 . (5.30)
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6 RESULTS: RHEOLOGY OF
FERROFLUIDS

6.1 Permanent shear analysis

In this section, it will be shown and discussed the experimental results concerning
the rheological behavior of the apparent viscosity 𝜂 as a function of the magnetic field
intensity 𝐻 and of the shear flow intensity �̇�. As a result, it will be discussed the mag-
netoviscous effect, which is the elevation of the viscosity of a ferrofluid when it is placed
under the influence of an external magnetic field and the pseudoplastic effect, which is the
shear rate dependence of the ferrofluid’s viscosity, which also appears when it is subjected
to an external magnetic field.

In order to focus on the physical meaning of the material functions and the vari-
ables on which they depend, they are going to be denoted by nondimensional parameters.
Regarding this context, the intensity of the effective applied magnetic field is expressed
by the magnetic parameter 𝛼, defined as:

𝛼 = 𝜇0𝑚𝐻

𝑘B𝑇
, (6.1)

where, 𝜇0 is the vacuum magnetic permeability, 𝑚 is the intensity of the magnetic dipole
momentum of a magnetic particle, 𝐻 is the modulus of the effective magnetic field, 𝑘B

is the Boltzmann constant and 𝑇 is the absolute temperature. Besides that, the inten-
sity of the magnetic dipole of a single-domain particle can be expressed in terms of its
magnetization of saturation by

𝑚 = 𝑣𝑝𝑀𝑑, (6.2)

in which, 𝑣p = 4𝜋𝑎3/3 is the volume of a magnetic particle of radius 𝑎 and 𝑀d is the
magnetization of the material that composes the particles. Replacing equation (6.2) into
(6.1) one obtains:

𝛼 = 𝜇0𝑣𝑝𝑀𝑑𝐻

𝑘B𝑇
. (6.3)

It is important to remark that this parameter is a ratio between the magnetic and the
Brownian forces.
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Other important parameter is the ratio between the magnetic dipolar force and
the Brownian force, named parameter of dipolar interaction,

𝜆 = 𝜇0𝜋𝑣𝑝𝑀
2
𝑑

24𝑘𝐵𝑇
(6.4)

It is important to note that this parameter is intrinsically related to the formation of
particles chains. Big values of 𝜆 indicate that the magnetic force is much intenser than
the Brownian one, making it possible for aggregates to form. The particles which compose
the ferrofluids used in the experiments have the same average diameter (1 0nm) and are
formed by the same material, magnetite, whose magnetization 𝑀𝑑 is 440 kA/m. Besides
that, the experiments were carried out at a constant temperature of 300 K. Regarding this
context, in this work, the parameter of dipolar interaction is constant for both ferrofluids
and equals to 1.3.

The intensity of the flow, measured by its shear-rate, is referred in this work by
the number of Peclét. This nondimensional parameter is defined as a ratio between two
characteristic times, one related to Brownian diffusion 𝜏d and other to the flow’s convection
𝜏f, that is:

𝑃𝑒 = 𝜏d

𝜏f
. (6.5)

As the particles that make up the ferrofluids have a mean characteristic length of ap-
proximately 10−9 m, its movement, in the absence of flow or external magnetic field, is
dominated by the Brownian motion. Because of that, the characteristic time of diffusion
can be modeled as the inverse of the Stokes-Einstein coefficient of diffusion D (EINSTEIN
et al., 1905),

𝜏d = 𝑎2

𝐷
= 6𝜋𝜂𝑎3

𝑘B𝑇
. (6.6)

Following the same idea, the characteristic time of the flow can be defined as:

𝜏f = 1
�̇�
. (6.7)

Replacing equations (6.6) and (6.7) into equation (6.5), one obtains:

𝑃𝑒 = 6𝜋𝜂𝑎3�̇�

𝑘B𝑇
. (6.8)

The apparent viscosity of a ferrofluid is composed, when in the presence of an
external magnetic field, by Einstein’s viscosity 𝜂𝜑, which is a correction to the viscosity of
the base fluid originated from the presence of the rigid particles in the suspension, by a
correction of the viscosity of the base fluid due to hydrodynamic iterations 𝜂ℎ between the
particles, by the rotational viscosity 𝜂𝑟, induced by the external magnetic field and also,
by a correction to the viscosity of the suspension owing to dipolar interactions between
the magnetic particles, 𝜂𝑑. This apparent viscosity function is made nondimensional by
defining its characteristic scale 𝜂* as the viscosity of the ferrofluid in the absence of external
magnetic field 𝜂0, which is the viscosity of the suspension, describe above, removing the
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effect of the magnetic field, that is, excluding the rotational viscosity 𝜂𝑟. As a result, the
nondimensional viscosity is given by:

𝜂 = 𝜂

𝜂* = 𝜂

𝜂0
. (6.9)

6.1.1 Magnetoviscous effect

In this subsection, it is presented the magnetoviscous effect of the ferrofluids EFH1
and EFH3, that is, the increase of their viscosity in response to an elevation on the
intensity of the applied magnetic field.

6.1.1.1 Experimental procedure

The magneto viscous effect of a sample of ferrofluid is evaluated by fixing the shear
flow intensity and applying a continuous increase of magnetic field intensity 𝐻1, which
is varied, in the experiments here detailed, from 0 to 2.07 × 105 A/m, considering three
fixed intensities of the shear flow �̇�: 100, 2500 and 5000s−1.

The determination of the optimized gap between the disks of the rheometer, which
is used in the experimental trials must be chosen carefully, due to the fact that both
ferrofluids present a severe change on their viscosity as the intensity of the magnetic field
strengthens. For each of the three flow intensities, the process of choosing the optimal gap
for each ferrofluid was carried out following these steps:

1. In the absence of external magnetic field, the viscosity of EFH1, at 25∘C, is lower
than 6 cP. For EFH3, at the same temperature, the value of this property is lower
than 12 cP. The usual gap to measure the viscosity of water, which is 0.89cP at the
referred temperature, is 0.08mm. As a result, by comparison, a gap of 0.1mm is a
good choice to measure the viscosity of both ferrofluids in the referred condition.
This gap value was considered the bottom limit for choosing the optimal gap;

2. For a condition of medium magnetic field intensity, H= 2.07 × 105, six gaps were
tried for both ferrofluids, 0.2, 0.3, 0.4, 0.5, 0.6 and 0.7. The ones that resulted in a
lower variation of the viscosity were chosen;

3. The same process was repeated for the highest intensity of magnetic field applied.
Gaps that implicated on lower variability of the viscosity being measured were
chosen as alternatives for the optimized gap;

4. Regarding the results obtained in the last two steps, one chooses an intermediate gap
for each fluid that, when applied to the limit conditions of low and high magnetic
field intensities, generates variability in the viscosity results lower than 5%.

1 The intensity of the magnetic field is a part of the intensity of the induced magnet field B, generated
by the application of a current to the coils located under the lower fixed disk of the rheometer.

75



For each of the flow intensities, the gaps chosen for the ferrofluids are displayed on table
(3)

Table 3 – Optimal gaps used in the experimental evaluations of the magnetoviscous effect
of the ferrofluids EFH1 and EFH3, for different flow intensities.

�̇� EFH1 EFH3
100 0.4 0.6
2500 0.2 0.3
5000 0.2 0.3

Having chosen the optimal gap, the experimental evaluation of the magetoviscous
effect, for each fixed condition of flow intensity (constant shear rate), presented by both
ferrofluids was done by applying the following experimental protocol:

1. The volume of ferrofluid needed to fulfill the optimum gap is calculated and, after,
this quantity is pipetted in the testing area;

2. The upper disk is lowered until the prescribed gap is achieved between the two disks.
The gap is visually inspected in order to identify possible leakages of the sample,
which, if found, must be cleaned due to the fact that they can severely increase the
experimental error;

3. The magnetic yoke is placed around the measuring device. A demagnetization proce-
dure is applied to the sample, in order to free the ferrofluid of any previous magnetic
effects;

4. The temperature of the experiment, 25∘C, is set on the thermal bath attached to the
rheometer. After this, enough time is waited for the temperature of the sample, here
defined as the temperature of the lower plate, which is measured by the rheometer,
to reach the target temperature;

5. Using the software Rheoplus, the flow condition is set, which is resumed to define a
constant value of shear-rate for the experimental trial;

6. Using the software Rheoplus, the magnetic field conditions are programmed indi-
rectly by controlling the electric current that the power supply (PS-MRD) provides
to the coils located under the bottom disk of the rheometer (see figure 5.8). The
current is programmed to vary from 0 to 5A, following a linear increase ramp. Be-
tween these limits, 15 data points are collected, each one with a variable time of
measurement, due to the fact that the option "no time setting" is active during the
data acquisition. This feature ensures that enough time is being waited at each data
acquisition in order to guarantee that the steady state has been achieved when the
data collection is done.
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7. The viscosity and the shear stress are acquired as a function of the magnetic field
intensity for a given constant condition of shear rate.

This process was carried out 10 times, for each ferrofluid, at every condition of flow inten-
sity prescribed. The experimental errors were calculated using the methodology presented
on appendix (A.1).

6.1.1.2 Discussion

The first insights on the physical process behind the increase of viscosity on mag-
netic colloids by the action of applying an external magnetic field were drawn considering
the experimental works of McTague (1969), Hall and Busenberg (1969). The authors re-
ported an increase of about 40 % in the viscosity of a ferrofluid, composed by hard Cobalt
spherical particles with a diameter of about 10 nm and volume fraction of 0.05%, when
subjected to a weak flow in the presence of an orthogonal external homogeneous magnetic
field with intensity varying from 0 to 8 kG. In other words, it can be said that the ferroflu-
ids evaluated on these works are highly diluted suspensions composed by small spheres,
which are considered to be magnetically hard, that is, its characteristic length scale (e.g.
diameter) is big enough for its Néel time 𝜏𝑁 to be much greater than its Brownian time
𝜏𝐵. This guarantees that the magnetic moment 𝑚 is fixed in the particle and. As a result,
when the magnetic dipole is rotated by the magnetic torque in order to align itself with
the external field, the whole particle rotates with it. It is important to remark that, since
the suspensions are diluted, the particles do not interact neither hidrodynamically, nor
magnetically.

Based on those assumptions, the referred authors explain that the magnetoviscous
effect arises from a hindrance of rotation perpetrated by the suspended magnetic particles
due to the action of the magnetic field. That is, the particles are no longer free to rotate by
the action of the flow-induced mechanical torque, because when an external magnetic field
is applied, the magnetic moment 𝑚 of the particles will try to align with the magnetic field
direction by the action of the magnetic torque, that arises from the misalignment between
𝑚 and 𝐻 promoted by the mechanical torque. Such competition between mechanic and
magnetic torque increases the local viscous dissipation of energy in each particle, what is
translated in an increase of the suspension’s viscosity.

Regarding this context, a rigorous theoretical analysis of this phenomenon was
firstly addressed by Shliomis (1971), which considering the Brownian motion of the parti-
cles, derived an expression to model the change of viscosity as a function of the strength
and direction of the applied magnetic field, which is given by

𝜂𝑟 = Δ𝜂 = 𝜂(𝛼) − 𝜂0 = 3
2𝜂0𝜑ℎ𝛼

𝐿(𝛼)
2 + 𝛼𝐿(𝛼) , (6.10)

where, 𝜂𝑟 is called the rotational viscosity, 𝜂(𝛼) is the viscosity of the ferrofluid for a
given intensity of magnetic field 𝛼, 𝜂0 is the viscosity of the ferrofluid in the absence of an
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external magnetic field, 𝜑ℎ is the volume concentration of the magnetic particles including
surfactant and 𝐿(𝛼) = coth(𝛼) − 𝛼−1 is the Langevin function. It is important to note
that for diluted suspensions, the viscosity of magnetic colloids of nanoparticles, in the
absence of magnetic field, is composed by the viscosity of the base fluid 𝜂𝑏 enhanced by
the presence of the suspended particles, that is 𝜂0 = 𝜂𝑏(1 + 2.5𝜑ℎ), which is Einstein’s
viscosity.

Considering a microscopic approach, using the kinetic theory and defining the
ferrofluid as an ideal suspension of non-interacting magnetic dipoles subjected to magnetic
field, Brownian motion and the vorticity of the flow, Martsenyuk, Raikher and Shliomis
(1974) predicted, for weak flows, the following relation for the dependence of the rotational
viscosity on the intensity of the magnetic field:

𝜂𝑟 = Δ𝜂 = 3
2𝜂0𝜑ℎ

𝛼𝐿2(𝛼)
𝛼− 𝐿(𝛼) . (6.11)

This model is generally referred as the non-interacting model (ODENBACH, 2009).

Figure (26) presents the increase in the relative viscosity as a function of 𝛼. The
black squares present the results obtained for the ferrofluid EFH1 at a condition of weak
flow (Pe= 4.64 × 10−4). This ferrofluid is composed by magnetite hard particles at a
volume fraction of 7.9%. The insert presents other results: the circles are experimental
data obtained from Odenbach and Thurm (2002) for a ferrofluid composed by magnetite
hard particles at a volume concentration of 7.2% in a similar condition of weak flow
(Pe=1.85 × 10−2). Besides that, it is also shown a curve, which was generated applying
the properties of EFH1 to equation (6.11). It is immediate from figure (26) and from its
insert that the dependence of the viscosity increment on the intensity of the magnetic
field is much stronger than the non-interacting model was able to predict. According
to Odenbach (2009), the discrepancies between ideal and real ferrofluids arises from the
fact that the ideal ones are considered high diluted and, as a result, its particles do not
interact. However, real ferrofluids, which generally have volumetric fractions of particles in
the range of 7−10%, cannot be considered diluted and, therefore, the effect of interparticle
interactions must be considered. In concentrated ferrofluids, those interactions, such as
the dipolar interactions, lead to formation of particles chains and agglomerates which
produce a much severe hindrance of rotation, leading to a much intenser increase on
viscous dissipation and, as a result on overall viscosity of the fluid. Odenbach and Thurm
(2002) argue that, as in other complex fluids, the transport and rheological properties of
ferrofluids are strongly influenced by their internal, flow- and field-induced structures.

It is interesting to observe that the increment on the viscosity of saturation
Δ𝜂/𝜂0(∞) of EFH1 is harshly different from the one obtained in the work of Oden-
bach (2009), even though both fluids are subjected to very similar weak-flow conditions.
This effect comes from the difference in the volume concentration of the fluids. Since
more particles per volume of fluid are available on EFH1, induction of particle aggregates
formation can be done on a wider range of 𝛼 in comparison to the fluid tested in the work
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of Odenbach (2009). That is, the field-induced microstructure of EFH1 can structurally
responds to a wide range of field intensities and, reaching its maximum complexity (big-
ger length scale of the chains and agglomerates) for a high value of 𝛼, regarding a fixed
weak-flow condition.
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Figure 26 – Relative viscosity increment Δ𝜂/𝜂0 as a function of the non-dimensional mag-
netic field strength 𝛼 subjected to a weak flow, Pe = 4.64 × 10−4 (�). In the
insert, it is shown a comparison of the behavior of Δ𝜂/𝜂0 as a function of
𝛼 for two magnetic fluids: (�) represents, as previously, the data obtained
for the ferrofluid EFH1, which is a colloidal suspension of magnetite particles
with mean diameter of 10 nm and 𝜑 = 7.9% subjected to Pe = 4.64 × 10−4,
(∘) speaks for the data presented on the work of Odenbach (2009) for a col-
loidal suspension of magnetite particles with mean diameter of 10 nm and
𝜑 = 7.2% subjected to a similar weak flow, Pe = 1.85 × 10−2). The curve
is theoretically predicted behavior by equation (6.11), considering 𝜑 = 7.9%.
The viscosity in the absence of magnetic field 𝜂0 is constant and, at 25∘𝐶,
equals to 0.94 × 10−2 Pa.s.

Figures (27) and (28) respectively show the behavior of the relative viscosity in-
crease Δ𝜂/𝜂0 of the ferrofluids EFH1 and EFH3 as functions of the intensity of the applied
magnetic field, here denoted by the magnetic parameter 𝛼. For each fluid, the referred
viscosity variation was obtained considering three intensities of shear flow: a weak-flow
(𝒪(Pe)∼ 10−4), a medium-flow (𝒪(Pe)∼ 10−2) and a strong-flow (𝒪(Pe)∼ 10−2). Both
ferrofluids under analysis presented an increase on the viscosity provoked by the applica-
tion of an orthogonal homogeneous magnetic field. EFH3, for all applied flow intensities,
showed viscosity increments superiors than EFH1. In fact, figure (27) shows that the fer-
rofluid EFH1, in a condition of weak-flow (Pe= 4.64 × 10−4), presents an increase of its
viscosity increment of almost 80% as 𝛼 rises from 0 to 15. On the other hand, regarding
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the same flow intensity2 (Pe= 1.01 × 10−3) and magnetic conditions applied to EFH1,
it follows from figure (28) that the viscosity increment of the ferrofluid EFH3 increased
140%. These results are much higher when compared to the 40% of increase on Δ𝜂/𝜂0

reported by McTague (1969) for a diluted ferrofluid. This discrepancy comes from the
fact that both ferrofluids, EFH1 and EFH3, have high volume fractions of particles, re-
spectively 7.9% and 11.8%, which implies that both hydrodynamic and, mainly, magnetic
interactions occur between the particles. Under the influence of a magnetic field, Oden-
bach and Thurm (2002) argue that those interactions lead to the formation of chains and
clusters of particles, which generate a hindrance of rotation much more intense than the
one produced by single particles. The bulk effect of the viscous dissipation caused by the
hindrance of rotation of the agglomerates gives rise to the severe increase of viscosity
of the ferrofluids as the magnetic field strengthens. Based on this theory, the fact that
the ferrofluid EFH3 has a much stronger magnetoviscous effect when compared to the
ferrofluid EFH1 is explained by the fact that the volume fraction of EFH3 is bigger and,
as a result, the formation of chains and clusters is more pronounced in this fluid when
subjected to an external magnetic field.
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Figure 27 – EFH1: Relative viscosity increment Δ𝜂/𝜂0 as a function of the non-
dimensional magnetic field strength 𝛼 for different flow intensities: Pe =
4.64 × 10−4 (�), Pe = 1.18 × 10−2 (○), Pe = 2.32 × 10−2 (△). The vis-
cosity in the absence of magnetic field 𝜂0 is constant and, at 25∘𝐶, equals to
0.94 × 10−2 𝑃𝑎.𝑠.

2 The same flow condition is related to the fact that the same constant shear-rate was applied to both
ferrofluids, �̇� = 100s−1. The difference on the resulting values of Pe comes from the fact that the
viscosity in the absence of magnetic field 𝜂0 is slightly different for both ferrofluids, as shown at table
(2).
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Figure 28 – EFH3: Relative viscosity increment Δ𝜂/𝜂0 as a function of the non-
dimensional magnetic field strength 𝛼 for different flow intensities: Pe =
1.01 × 10−3 (�), Pe = 2.57 × 10−2 (○), Pe = 5.02 × 10−2 (△). The vis-
cosity in the absence of magnetic field 𝜂nf is constant and, at 25∘𝐶, equals to
1.80 × 10−2 𝑃𝑎.𝑠.

As the magnetic field gets stronger, that is, as 𝛼 rises, the relative viscosity
increment tends to a constant value, named relative viscosity increment of saturation
Δ𝜂(∞)/𝜂0. This is due to the fact that when 𝛼 reaches a critical value, the magnetization
saturates at its maximum, which characterized by a condition in which all magnetic mo-
ments of dipole are fully aligned with the direction of the magnetic field. In the saturation
range, the field-induced microstructure of the fluid has reached a maximum complexity,
that is, the mean length size of the chains and agglomerates no longer increase following
increments on 𝛼. This property clearly depends on the intensity of the flow, being higher
the lower that Pe is, what is explained by the fact that a stronger flow subjects the mag-
netic field induced structures to much stronger shear stresses, leading to their rupture and,
as a result, decreasing the fluid’s viscosity. It can be said that each value of Δ𝜂(∞)/𝜂0

indicates that a dynamical equilibrium is achieve between the rate of structures being
formed by the action of the magnetic field and those being broken by the action of the
flow. The values of Δ𝜂(∞)/𝜂0 obtained for both ferrofluids at each condition of Pe are
summarized on table (4)
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Table 4 – Viscosity increment of saturation Δ𝜂(∞)/𝜂0 obtained, for each ferrofluid, as a
function of Pe.

Ferrofluid EFH1
�̇� [1/s] Pe Δ𝜂(∞)/𝜂0

100 4.64 × 10−4 7.68 × 10−1 ± 3.73 × 10−2

2550 1.18 × 10−2 3.04 × 10−1 ± 1.23 × 10−3

5000 2.32 × 10−2 1.63 × 10−1 ± 4.40 × 10−3

Ferrofluid EFH3
100 1.01 × 10−3 1.30 × 100 ± 5.94 × 10−2

2550 2.57 × 10−2 3.75 × 10−1 ± 1.62 × 10−2

5000 5.02 × 10−2 2.44 × 10−1 ± 6.58 × 10−3

Figures (27) and (28) also show that the growth of the apparent viscosity is differ-
ent depending on the intensity of the applied flow. In both figures, one can easily see that,
in the condition of weak flow, that is 𝑃𝑒 = 4.64×10−4 for the EFH1 and 𝑃𝑒 = 1.01×10−3

for the EFH3, the viscosity of both ferrofluids increases strongly as 𝛼 rises. On the other
hand, for medium and high intensities of flow, that is 𝑃𝑒 > 1.18 × 10−2 for the EFH1 and
𝑃𝑒 > 2.57×10−2 EFH3, the viscosity increases slowly and reaches values much smaller in
comparison to those obtained in the condition of weak flow. This is due to the fact that
when a magnetic field is applied to a concentrated ferrofluid, a microstructure of chains
and clusters of particles is developed, turning the viscosity of this complex fluid dependent
on the intensity of the flow, that is, the fluid becomes pseudoplastic. This effect will be
discussed in details on subsection (6.1.2).

6.1.2 Pseudo-plasticity

In this subsection, it is discussed the experimentally observed pseudoplastic be-
havior of the ferrofluids EFH1 and EFH3. This effect appears when those fluids flow in
the presence of an external magnetic field, being characterized by an intense decrease on
their apparent viscosity 𝜂 when subjected to the action of a strengthening shear flow.

6.1.2.1 Experimental procedure

The pseudoplastic effect of a ferrofluid sample is evaluated by fixing the magnetic
field intensity and applying a continuous increase of shear rate. Both ferrofluids were
tested in three conditions of magnetic field intensity: 𝐻 = 0 (absence of magnetic field),
𝐻 = 6.87 × 104 A/m (𝑖 = 1A) and 𝐻 = 1.61 × 105 A/m (𝑖 = 3A). The shear rate was
varied from 10 to 5000s−1. As both ferrofluids present shear rate dependence when they
are in the presence of a magnetic field, it is important to choose an appropriate length
of gap to obtain consistent results from the experiments. The process of choosing the
optimal gap is similar to the one described on subsection (6.1.1.1) for dealing with the
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same issue on the analysis of the magnetoviscous effect. This process, for each ferrofluid
followed these steps:

1. In the absence of external magnetic field, both ferrofluids are Newtonian and present
viscosity similar to water, as can be seen on table (2), thus a gap of 0.1mm is an
appropriate choice for this condition;

2. For the first non-zero magnetic field condition applied, that is, 𝐻 = 6.87×104 A/m,
the viscosity was evaluated for the minimum and the maximum values of �̇�, which
are, respectively, 10 and 5000s−1. This tests are carried out for six values of the gap:
0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 mm. A value of gap that permits the evaluation of the
viscosity in both conditions is searched. This process resulted on the choice of 0.2
mm as the optimal gap for EFH1 and of 0.3 mm for EFH3;

3. Repeating the last step, but considering the highest value of magnetic field intensity,
𝐻 = 1.61 × 105 A/m, the choosing process resulted on the choice of the following
gaps: 0.3 mm for EFH1 and 0.4 mm for EFH3.

Having chosen the optimal gap, the experimental evaluation of the magnetoviscous
effect, for each fixed condition of flow intensity (constant shear rate), presented by both
ferrofluids, was done by applying the following experimental protocol:

1. The volume of ferrofluid necessary to fulfill its optimum gap is calculated and, then,
this quantity is pipetted in the testing area;

2. The upper disk is lowered until the prescribed gap is achieved between the two disks.
The gap is visually inspected in order to identify possible leakages of ferrofluid,
which, if found, must be trimmed and cleared;

3. The magnetic yoke is placed around the measuring rod and a process of demagne-
tization is applied in order to free the magnetic fluid of any previous influences of
external magnetic fields;

4. The temperature of the experiment, 25∘C, is set on the thermal bath attached to the
rheometer. After this, enough time is waited for the temperature of the sample, here
defined as the temperature of the lower plate, which is measured by the rheometer,
to reach the target temperature;

5. Using the software Rheoplus, the magnetic field intensity condition is set. It is re-
sumed to define a constant value of current in order to provide a constant magnetic
field intensity when passing through the coils underneath the bottom plate of the
measuring device (see figure 5.8);

6. Using the software Rheoplus, the shear rate is programmed to vary from 1 to 5000
s−1 according to a logarithmic ramp, with increase rate of 10 points per decade.
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Each data point has a variable time of collection due to the fact that the option "no
time setting" is active during the data acquisition process. This feature ensures that
enough time is being waited at each data acquisition, what aims to guarantee that
the steady state has been achieved while data collection is being done.

7. The viscosity and the shear stress are acquired as a function of shear rate for a given
constant magnetic field intensity.

This process was carried out 10 times, for each ferrofluid, at every condition of magnetic
field intensity prescribed.The experimental errors were calculated using the methodology
presented on appendix (A.1).

6.1.2.2 Discussion

Another effect caused by the application of an external effective magnetic field on
a ferrofluid is the appearance of pseudo-plasticity, which is intimate related to the mag-
netoviscous effect analyzed on the previous subsection. Figures (29) and (30) depict that
the apparent viscosity of both ferrofluids presents two behaviors: in the absence of mag-
netic field, the viscosity of the samples remains constant (independent of Pe variations),
that is, the fluid presents a Newtonian behavior. Nonetheless, when an external magnetic
field is applied and its intensity is held constant, the apparent viscosity 𝜂 of the ferrofluid
under analysis is observed to strongly decreases as Pe strengthens, characterizing both
ferrofluids, EFH1 and EFH3, as shear-thinning.

Shear-thinning behavior is generally associated with microstructure changes caused
by modifications on the intensity of the flow, that is, on its shear rate. In the case of the
ferrofluids EFH1 and EFH3 this is also verified, but it is of high importance to remark that
the formation and resultant complexity of the microstructure of those fluids is strongly
dependent on the intensity of the applied magnetic field 𝛼. In the absence of an external
magnetic field, those ferrofluids, whose particles’ length scale is nanometric, do not present
a microstructure of equilibrium due to the fact that, in this condition, the Brownian mo-
tion tends to randomize the particles in the suspension (ROSENSWEIG, 2013). However,
when an external magnetic field is applied, as commented in the previous subsection, the
nanoparticles align with the field, what is followed by a process in which dipolar inter-
actions promote the formation of anisotropic chains and clusters. From equation (6.4), it
can be seen that an increase on the length scale of the particles has a severe influence
on the intensity of the dipolar interaction between them. Since chains of aligned particles
are formed, the length scale of the resulting structure increases rapidly, implicating that
the dipolar interactions also strengthens. As the fluids are concentrated, this process go
even further and stronger dipolar interactions between big structures take place, leading
the formation of even bigger, stiffer and stabler structures.
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Figure 29 – Ferrofluid EFH1: (a) Relative viscosity 𝜂 as a function Pe for three values of
the magnetic parameter: 𝛼 = 0 (△), 𝛼 = 4.85 × 100 (�) and 𝛼 = 1.14 ×
101 (○). The curves are fits of the experimental data by the generalized
fluid model denoted by equation (6.12). (b) Nondimensional shear-stress as a
function of Pe for the same values of 𝛼. The curves are fits of the experimental
data by the generalized fluid model denoted by equation (6.14). (The viscosity
in the absence of magnetic field 𝜂nf, at 25∘𝐶, which is equals to 0.94 × 10−2.
Pa.s.) The fitting parameters obtained for the referred models are displayed
on table (5).
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Figure 30 – Ferrofluid EFH3: (a) Relative viscosity 𝜂 as a function Pe for three values of
the magnetic parameter: 𝛼 = 0 (△), 𝛼 = 4.84×100 (○) , 𝛼 = 1.14×101 (�).
The curves are fits of the experimental data by the generalized fluid model
denoted by equation (6.12). (b) Nondimensional shear-stress as a function of
Pe for the same values of 𝛼. The curves are fits of the experimental data by
the generalized fluid model denoted by equation (6.14). (The viscosity in the
absence of magnetic field 𝜂nf, at 25∘𝐶, which is equals to 1.80 × 10−2 Pa.s.).
The fitting parameters obtained for the referred models are displayed on table
(5).
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Table 5 – Parameters obtained from nonlinear regressions of the data, collected on ex-
periments performed on permanent simple shear flow regime, for the ferrofluids
EFH1 and EFH3 by the proposed generalized fluid model, which is described
by equations (6.12) and (6.14).

Ferrofluid Fitting
Parameter 𝐻 = 0 𝐻 = 6.87 × 104 [A/m] 𝐻 = 1.61 × 105 [A/m]

EFH1

�̃�0 0 1.83 × 100 ± 3.00 × 10−2 2.35 × 100 ± 1.69 × 10−2

𝜂∞ 1 1.19 × 100 ± 2.13 × 10−3 1.32 × 100 ± 1.98 × 10−3

K 0 2.07 × 104 ± 3.70 × 102 2.12 × 104 ± 2.80 × 102

𝑛 0 7.69 × 10−1 ± 4.70 × 10−3 8.89 × 10−1 ± 2.31 × 10−3

EFH3

�̃�0 0 2.18 × 100 ± 1.42 × 10−2 3.63 × 100 ± 8.27 × 10−3

𝜂∞ 1 1.23 × 100 ± 1.84 × 10−2 1.98 × 100 ± 4.70 × 10−3

K 0 1.00 × 104 ± 3.60 × 101 9.82 × 103 ± 1.60 × 101

𝑛 0 7.23 × 10−1 ± 2.00 × 10−3 9.34 × 10−1 ± 1.82 × 10−3

Figures (29a) and (30a) display that, in a condition of Pe approaching zero, the vis-
cosity is higher for more intense magnetic fields, what corroborates the fact that stronger
magnetic fields induce the formation of bigger and stiffer agglomerates of particles. This
kind of microstructure, when subjected to a flow field, generates a high local energy dis-
sipation, due to the fact that they produce a more intense local drag when compared
to single particles owing to their bigger characteristic length scales. Besides that, those
structures, due to their anisotropic shape, present a much bigger rotational inertia, what
increases their already high magnetic-induced rotational hindrance and, therefore, the lo-
cal energy dissipation. The bulk effect of those energy dissipation mechanisms is traduced
by the high value of viscosity in the presence of an external magnetic field in a condition
of weak-flow.

Still considering a situation in which the external magnetic field is held constant,
the apparent viscosity is observed to strongly decrease as the flow intensifies. This ob-
servation can be explained considering two mechanisms: the first one is related to the
fact that the strengthening shear flow tries to align the magnetic field induced chains
and clusters of particles with the stream lines, reducing the drag produced by them and
leading to an overall reduction of the suspension’s viscosity. The second mechanism takes
place on much stronger flow regimes, in which the magnetic field induced microstructure
of the fluid is gradually broken by the action of the increasingly intense shear-stresses
that arises from the strengthening of Pe. This latter process leads to a microstructure
formed by ever smaller agglomerates of particles, resulting on a continuous reduction of
the intensity of local drag and also, of the particle hindrance effects in the flow. This
mitigation of energy dissipation mechanisms is observed macroscopically as the severe
decrease on the apparent viscosity, especially in the region of medium and high values of
Pe depicted on figures (29a) and (30a). It is important to note that, in the limit of high
values of Pe, that is, for strong flows, the apparent viscosity tends to its value in the case
of absence of magnetic field 𝜂0. This happens because, in a regime of extremely strong
flow, the magnetic field-induced microstructure is almost completely broken, resembling
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the situation characterized by the absence of external magnetic field.

Figures (29b) and (30b) respectively present the behavior of the shear stress of
the ferrofluids EFH1 and EFH3. As it is expected, in the case of 𝛼 = 0, that is, when
no external magnetic field is applied, the relation between the shear stress �̃� and Pe is
perfectly linear, confirming that, in this condition, both ferrofluids behave as Newtonian
fluids. In the cases in which 𝛼 is different from zero, a non-linear relation between �̃� and
Pe is observed. Besides that, both fluids have presented yield stress �̃�0 when subjected to
an external magnetic field (𝛼 ̸= 0).

From the discussions above presented, it can be concluded that the ferrofluid
present yield stress �̃�0, and, when flowing, display a shear-thinning behavior. It has also
been noted that, for high values of Pe, their viscosities tend to a constant plateau, named
infinity-shear viscosity 𝜂∞. Because of these characteristics, the following constitutive
model has been proposed:

�̃�(𝑃𝑒) =

⎧⎪⎨⎪⎩�̃�0 + 𝜂∞Pe + KPe𝑛, if |�̃�| > |�̃�0|

∞, if |�̃�| ≤ |�̃�0|,
(6.12)

in which, K is a consistency coefficient and 𝑛 is the power-law index. The experimental
data presented on the graphs of figures (29b) and (30b) have been adjusted to this model
and the resulting constants of fit ar displayed on table (5).

Considering the fundamental constitutive relation for the generalized Newtonian
fluids,

�̃�(Pe) = 𝜂(Pe)Pe, (6.13)

one can derive, based on (6.12), a constitutive relation for the dependence of the apparent
viscosity on Pe, which is given by:

𝜂(𝑃𝑒) =

⎧⎪⎨⎪⎩
̃︀𝜂∞ + �̃�0

Pe + KPe𝑛−1, if 𝛼 ̸= 0,

1, if 𝛼 = 0.
(6.14)

The values obtained by non-linear regression of the experimental data resented on the
graphs of figures (29a) and (30a) to equation (6.14) for the constants 𝜂∞, 𝐾𝑠 and 𝑛 are
presented on table (5).

From table (5), it can be seen that, when an external magnetic field is applied,
the non-Newtonian characteristics of both ferrofluids arise due to the appearance of
anisotropic magnetic field induced microstructure. In this regime, and based on the in-
formation presented on table (5), the following conclusions can be drawn about the rhe-
ological behavior of the ferrofluids EFH1 and EFH3:

∙ For the ferrofluid EFH1, the values for the infinity-shear viscosity parameter ̃︀𝜂∞ are
very close considering the two intensities of external magnetic field applied, rising
just 10.9% when 𝐻 increases from 6.87 × 104 to 1.61 × 105 A/m (increase of 135%).
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The proximity of the values for this parameter comes from the fact that in regimes
of strong flow, the microstructure created by the action of the magnetic field is
being forced to align with the streamlines of the flow and, also, is successively being
broken by the intense shear stresses applied by the flow. This process is carried out
until a theoretical limit is reached, in which no cluster or chain remains formed,
independently of the intensity of the applied magnetic field. On the other hand, the
infinite-shear viscosity 𝜂∞ of EFH3 increases 61% for the same variation of magnetic
field intensity applied to EFH1. That is, even the condition of the flow being very
strong, the magnetic field still can change appreciably the viscosity of this fluid,
what comes from the fact that this fluid has a much higher volume fraction of
magnetic particles and, also, a greater magnetization of saturation than EFH1.

∙ The power-law index 𝑛 of the proposed model, for EFH1, increased approximately
15% following the increase on the intensity of the external magnetic field, whereas,
for EFH3, this variation was around 30%. This indicates that, when subjected to a
higher magnetic field, the fluid becomes less shear-thinning, that is, the decrease of
its viscosity when the flow gets stronger is much less pronounced when compared
to the situation in which a less intense magnetic field is applied. This is physically
explained by the fact that an intense magnetic field leads to the formation of bigger
and stabler structures of magnetic particles, which are much more difficult to be
aligned, by the flow, with its streamlines and also harder to break.

∙ For the ferrofluid EFH1, the yield stress ̃︀𝜎0 increased almost 28% following the en-
hance of 𝛼, whereas for EFH3 the referred growth was of 67%. The increase of the
yield stress following a strengthening of the applied magnetic field comes from the
fact that stronger magnetic fields induce the formation of more complex microstruc-
ture (chains, clusters and aggregates of particles). As a result, microstructure result-
ing from the action of intense magnetic fields are more rigid and well consolidated at
equilibrium, resulting on a much intenser initial resistance to flow. Since the volume
fraction of magnetic particles of EFH3 is higher and, regarding the fact that yield
stress arises from microstructure-related effects, the increase of this property as a
function of the magnetic field intensity must be bigger than the one observed for
EFH1.

6.2 Transient shear analysis

Experimental trials have been executed in the regime of transient shear flow in
order to evaluate how the shear stress relaxes when the fluid is subjected to different
conditions of external magnetic field intensities 𝛼 and angular strains 𝛾0. Those experi-
ments have made possible the determination of the spectrum of relaxation times of each
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ferrofluid and also the measurement of their residual stresses as functions of the applied
magnetic field and of the shear flow intensities.

6.2.1 Step-strain part I: Magnetic field influence

Step-strain experiments were used in this section to evaluate the dependence of the
stress relaxation function Φ(𝑠)3 of both ferrofluids on the intensity of the applied magnetic
field. Based on the time behavior of the referred material function, it was possible to
determine the spectrum of times of relaxation for each fluid at each condition of magnetic
field intensity. Besides that, the residual stress relaxation parameter Φ̃𝑅 was also obtained
as function of the magnetic field intensity for both ferrofluids.

6.2.1.1 Experimental procedure

The step-strain experiment is used to obtain the stress relaxation function Φ(𝑠)
of a given complex fluid. Based on this material function, it is possible to determine the
spectrum of relaxation times characteristic of the fluid.

This experimental protocol is composed by the following steps:

1. For each ferrofluid, the optimized gap between the disks of the rheometer is chosen
based on the viscosity exhibited by them on each of the four magnetic field intensities
applied. The gaps used on this experiment are displayed on table (6);

2. The volume of ferrofluid needed to fulfill the gap is calculated and, after, this quan-
tity is pipetted and placed in the test area;

3. The upper disk is lowered until the precise gap between the disks is reached. Eventual
leakages of fluid from the gap are trimmed and cleaned;

4. The magnetic yoke is placed around the measuring rod and a process of demagne-
tization is applied in order to free the magnetic fluid of any previous influences of
external magnetic fields;

5. Through the software Rheoplus a fixed current is set to be provided by the PS-MRD
DC power supply to the coils in the magneto-rheology assembly, which generate a
homogeneous magnetic field in the gap, where the ferrofluid is located;

6. The temperature of the experiment, 25∘C, is set on the thermal bath attached to the
rheometer. After this, enough time is waited for the temperature of the sample, here
defined as the temperature of the lower plate, which is measured by the rheometer,
to reach the target temperature;

3 It is important to remember that 𝑠 is the time shift, defined as 𝑠 = 𝑡 − 𝑡′, in which 𝑡 is the actual
time and 𝑡′ is a reference time, usually the instant in which the instantaneous strain is applied to the
fluid on a step-strain experiment. Further details are given on subsection (3.4.3).
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7. A step-strain with a fixed angular strain 𝛾0 is applied to the sample. It is important
to note that the angular strain, which is applied instantaneously to the fluid, should
be as small as possible to ensure that the flow regime is linear viscoelastic. However,
it should be noted that the smaller this parameter is, the smaller the applied torque
will be. Therefore, one can easily enter a torque condition lower than the minimum
torque required for meaningful measurements to be made. Regarding this context,
for both ferrofluids, EFH1 and EFH3, 𝛾0 was set as 0.54;

8. The data concerning the stress relaxation function is acquired as a function of time
every 0.01s.

Table 6 – Gaps chosen for each ferrofluid considering four different conditions of magnetic
field intensity, which are here denoted by its originating electric current.

Current [A] EFH1 - h [mm] EFH3 - h [mm]
1 0.2 0.3
2 0.3 0.5
3 0.5 0.7
4 0.5 0.7

The experimental errors were calculated using the methodology presented on ap-
pendix (A.1).

6.2.1.2 Discussion

In this subsection, it will be analyzed and discussed the results obtained by ap-
plying a step-strain reometric flow to samples of the ferrofluids EFH1 and EFH3, in the
presence of a constant homogeneous magnetic field. The realization of this kind of experi-
ments, led to the obtainment of the stress relaxation functions Φ(𝑠) for different intensities
of the external magnetic field 𝐻.

The results are presented here on their dimensionless form. The magnetic field
intensity is traduced, as usually, by the magnetic parameter 𝛼. Regarding this context,
the stress relaxation function, for a fixed intensity of external magnetic field, Φ(𝑠)|𝛼 was
made dimensionless using the following time and viscosity characteristic scales:

𝑡* ∼ 𝜏𝑚, (6.15)

𝜂* ∼ 𝜂0, (6.16)

where 𝜏𝑚 is the principal time of relaxation of the fluid evaluated in the presence of the
lowest magnetic field intensity applied, 𝜂0 is the viscosity of the ferrofluid, at 25∘C, in
4 This value was chosen based on strain-sweep experiments, in the regime of small amplitude oscillatory

shear, carried out for both ferrofluids, at each fixed condition of magnetic field intensity applied. From
the experiments, it was identified a range of 𝛾0 for which the storage modulus 𝐺′ is constant. For each
ferrofluid, and external magnetic field intensity, the value of 𝛾0 used on the step-strain experiments
was selected among the referred range.
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the absence of external magnetic field. Using those scales, the typical scale of the stress
relaxation function, which has unit of stress is given by:

[Φ|𝛼]* ∼ 𝜂0

𝜏𝑚

. (6.17)

Besides that, the time shift, 𝑠 = 𝑡− 𝑡′, has the following typical scale:

𝑠* ∼ 𝑡* ∼ 𝜏𝑚. (6.18)

Therefore, the nondimensional form of the stress relaxation function, considering a fixed
condition of 𝛼, is given by:

̃︀Φ(𝑠)|𝛼 = Φ(𝑠/𝑠*)|𝛼
[Φ|𝛼]* = Φ(𝑠/𝜏𝑚)𝜏𝑚

𝜂0
= Φ(𝑠)𝜏𝑚

𝜂0
, (6.19)

where 𝑠 is the nondimensional time shift.

Analyzing the graphs presented on figures (31) and (32), it can be observed that
both ferrofluids presented a long-time stress relaxation process after the application of
the step-strain (almost instantaneous shear flow), which was done under the permanent
action of a series of external magnetic field intensities. The fact that those fluids are non-
instantaneous, in the presence of an external magnetic field, indicates that their rheology
changed towards a viscoelastic behavior. Bird et al. (1987) affirms that the time retar-
dation on the stress relaxation of complex fluids are intimately related to elastic effects
arising from its microstructure. Borin et al. (2014) argue that the relaxation process of
ferrofluids, when subjected to an external magnetic field, strongly depends on its magni-
tude and that the stress decreases over time in a close exponential fashion, what is also
verified for the stress relaxation function. This context strongly suggests the utilization
of a viscoelastic constitutive model for describing the relaxation of the shear stress on
these fluids. As a result, it has been used Maxwell’s generalized viscoelastic model, due to
the fact that it predicts the stress relaxation function behavior as a summation of expo-
nentials, which are pondered by the a series of characteristics viscosities and times, that
simulate the effects of relaxation due to viscous dissipation and elastic energy storage.

The constitutive equation for Maxwell’s generalized viscoelastic model is presented
on (3.87). In order to obtain its dimensionless form, expression (3.87) will be substituted
on equation (6.19), which leads to

̃︀Φ(𝑠)|𝛼 = Φ(𝑠)𝜏𝑚

𝜂0
=

𝑁∑︁
𝑗=1

𝜂𝑗/𝜂0

𝜏𝑗/𝜏𝑚

exp
(︃

𝑠

𝜏𝑗/𝜏𝑚

)︃
=

𝑁∑︁
𝑗=1

𝜂𝑗

𝜏𝑗

exp (𝑠/𝜏𝑗). (6.20)

Defining,
𝐴𝑗 = 𝜂𝑗

𝜏𝑗

, (6.21)

equation (6.20) can be rewritten as

̃︀Φ(𝑠)|𝛼 =
𝑁∑︁

𝑗=1
𝐴𝑗 exp (𝑠/𝜏𝑗), (6.22)
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where, ̃︀Φ(𝑠)|𝛼 is the nondimensional stress relaxation function, considering a fixed 𝛼, for
a generalized Maxwell’s fluid, 𝐴𝑗 is the j-th amplitude of nondimensional shear stress, 𝑠
is the nondimensional time shift and 𝜏𝑗 is the nondimensional time associated to the j-th
Maxwell’s element. However, analyzing carefully the results present on figures (31) and
(32), it can be seen that the stress relaxation function does not reaches zero for long times,
as predicted by equation (6.22). Instead of this, the referred material function relaxes
for a constant non-zero value, which was named, in this work, residual stress relaxation
parameter Φ̃𝑅|𝛼. From this observation, an adaptation of the constitutive equation (6.22)
was proposed in order to take into account Φ̃𝑅|𝛼, which resulted in:

̃︀Φ(𝑠)|𝛼 = Φ̃𝑅|𝛼 +
𝑁∑︁

𝑗=1
𝐴𝑗 exp (𝑠/𝜏𝑗). (6.23)

Using equation (6.23) to fit the experimental data obtained for each ferrofluid, at
four different conditions of magnetic field intensity 𝛼, it was possible to determine the
dimensionless times of relaxation 𝜏𝑗 and nondimensional shear stress amplitudes 𝐴𝑗. It is
important to note that the main time of relaxation 𝜏1 for each value of 𝛼 was obtained
previously by numerical integration of equation (3.126). As a result, the fitting process
have been carried out already considering defined the referred parameter. The constant
obtained from the fitting process are displayed, for the ferrofluid EFH1 on table (7) and
for the ferrofluid EFH3 on table (8).
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Figure 31 – Ferrofluid EFH1: Dimensionless stress relaxation function Φ̃ in terms of the
nondimensional time shift 𝑠 for different values of 𝛼. The curves are fits of
the experimental data by an adaptation of the generalized Maxwell’s model,
given by equation (6.23). The parameters for each curve are shown in table
(7). The viscosity in the absence of magnetic field 𝜂0, at 25∘C, is 0.94 × 10−2

Pa.s and the main time of relaxation for the lowest magnetic field applied 𝜏𝑚

is 1.24×10−1s. In the inserts, it is shown a plot of the amplitude of the stress
𝐴𝑗 as a function of the characteristic times 𝜏𝑗 involved in the process of stress
relaxation at each condition of magnetic field strength 𝛼.

Table 7 – Material parameters obtained for the ferrofluid EFH1 via non-linear regression
of the experimental data to the model represented by equation (6.23). Four
intensities of the external magnetic field are considered.

i [𝐴] 𝛼 𝜏1 [𝑠] ̃︀Φ𝑅 𝑗 ̃︀𝜂𝑗 ̃︀𝜏𝑘

1 4.85 × 100 1.24 × 10−1 1.88 × 100 1 2.99 × 102 1.00 × 100

2 8.63 × 100 9.00 × 10−2

2 8.37 × 100 1.32 × 10−1 2.01 × 100 1 2.45 × 102 1.06 × 100

2 6.59 × 101 3.65 × 10−1

3 1.14 × 101 1.42 × 10−1 2.31 × 100 1 2.25 × 102 1.15 × 100

2 6.10 × 10−1 1.41 × 10−2

4 1.36 × 101 1.62 × 10−1 8.28 × 100 1 4.35 × 102 1.31 × 100

2 1.82 × 10−1 1.01 × 10−2
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Figure 32 – Ferrofluid EFH3: Dimensionless stress relaxation function Φ̃ in terms of the
nondimensional time shift 𝑠 for different values of 𝛼. The curves are fits of
the experimental data by an adaptation of the generalized Maxwell’s model,
given by equation (6.23). The parameters for each curve are shown in table.
The viscosity in the absence of magnetic field 𝜂0, at 25∘C, is 0.18 × 10−1 Pa.s
and the main time of relaxation for the lowest magnetic field applied 𝜏𝑚 is
6.73 × 10−1s. In the inserts, it is shown a plot of the amplitude of the stress
𝐴𝑗 as a function of the characteristic times 𝜏𝑗 involved in the process of stress
relaxation at each condition of magnetic field strength 𝛼.
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Table 8 – Material parameters obtained for the ferrofluid EFH3 via non-linear regression
of the experimental data to the model represented by equation (6.23). Four
intensities of the external magnetic field are considered.

i [𝐴] 𝛼 𝜏1 [𝑠] ̃︀Φ𝑅 𝑘 ̃︀𝜂𝑗 ̃︀𝜏𝑗

1 4.84 × 100 6.73 × 10−1 5.75 × 100
1 2.51 × 102 1.00 × 100

2 4.80 × 101 2.66 × 10−1

3 1.09 × 100 5.97 × 10−2

2 8.35 × 100 1.09 × 100 1.62 × 101
1 2.03 × 102 1.62 × 100

2 1.37 × 101 2.25 × 10−1

3 2.60 × 100 1.19 × 10−1

3 1.14 × 101 1.84 × 100 6.18 × 101
1 8.81 × 102 2.73 × 100

2 1.84 × 101 2.81 × 10−1

3 3.37 × 100 2.09 × 10−1

4 1.35 × 101 3.16 × 100 1.14 × 102
1 9.13 × 102 4.69 × 100

2 5.29 × 101 7.37 × 10−1

3 1.67 × 100 2.02 × 10−1

According to Borin et al. (2011), Borin et al. (2014), the total stress achieved by
the magnetic fluid just after the cessation of the flow is determined by the presence of
linear chains and bulk, dense aggregates (clusters) due to the action of dipolar interactions
between the particles. It is important to remark that they are formed by the action of the
external magnetic field, vanishing when 𝛼 is zero. Regarding this context it is important
to note that the volumetric fraction of magnetic particles plays an important role on
the stress relaxation due to the fact that it influences directly the complexity of the
microstructure formed when a magnetic field is applied. Ferrofluids with higher 𝜑 produce
bigger and stiffer linear chains and clusters, that form the field induced microstructure
when a given 𝛼 is applied. According to Borin et al. (2014), the linear chains are responsible
for the stress relaxation at short time scales, that is, in the initial part of the process,
whereas the bulk clusters are involved on the final long part of the process.

From tables (7) and (8), it can be observed that for the fluid EFH1, it has been
possible to describe its stress relaxation function, for every condition of 𝛼 applied, using
two Maxwell’s elements. On the other hand, for the ferrofluid EFH3, it was necessary to
use three elements. In the case of the fluid EFH1, it can be said that it presents a simpler
stress relaxation process than EFH3, that is, its relaxation involves less characteristic
times. Bird, Armstrong and Hassager (1987) emphasize that, in a relaxation process,
each characteristic time is intimately related to a physical relaxation mechanism. As a
result, it can be concluded that the stress relaxation of the ferrofluid EFH1 involves less
physical mechanisms than the one of the ferrofluid EFH3, that is, EFH3 has a more
complex memory. This observation is related to the fact that the volume fraction of
magnetic particles of EFH3 is higher in comparison to EFH1, which means that the
magnetic field induces more efficiently the formation of chains and clusters of particles
in this fluid. That is, EFH3 presents more magnetic particles per unit of volume, what
makes it easier for the dipolar interactions to promote the formation of particle chains.
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These structures can interact magnetically on a much more intense fashion, due to their
larger length scale, leading to the formation of even bigger particles aggregates. Due to
this process, EFH3 presents a much more complex, coherent and well-settled magnetic
induced microstructure, composed by bigger chains and aggregates when compared to the
ones formed when the same magnetic field conditions are applied to EFH1. In the inserts
presented on the graphs of figures (31) and (32), it is shown the amplitude of the stress
being dissipated during each characteristic time, it is immediate from all the graphs that
the most part of the shear stress is relaxed by the main relaxation time 𝜏 = 1 due to the
fact that this characteristic time reflects the dominant mechanism of stress relaxation.

Regarding the data concerning the experimentally obtained stress relaxation func-
tions, presented on figures (31) and (32), it was possible to determine the main time of
relaxation, for each intensity of the applied magnetic field, by using equation (3.126), on
a process of numerical integration. Those results are presented for the ferrofluids EFH1
and EFH3, respectively, on figures (33a) and (33b). It is immediate from those graphs,
that the main time of relaxation of both ferrofluids depends on the intensity of the ap-
plied magnetic field. Since the field-dependent time of relaxation is made nondimensional
using the time of relaxation obtained in the condition of lowest 𝛼, the principal time of
relaxation ̃︀𝜏𝑝(𝛼) always starts at one on the graphs of figures (31) and (32) . Regarding
this context, one can see that, when 𝛼 increases from its lower to its higher value (increase
of almost 180%), the time of relaxation of EFH1 increases 31.3%, while in the case of the
ferrofluid EFH3, this increase is of 369.2%. This severe difference in the growth of the
main time of relaxation is also due to the fact that EFH3 has a bigger volume fraction
of magnetic particles than EFH1. Therefore, the magnetic field induces the formation of
bigger and more complex structures on EFH3, leading to a more substantial increase in
the overall elastic behavior of this ferrofluid when compared to EFH1.

Analyzing the data displayed on figures (33a) and (33b), and also regarding the
variations on the main time of relaxation with respect to the intensity of the applied
magnetic field, the following equation has been proposed to model such behavior:

𝜏𝑝(𝛼) = 𝑐1 exp (𝑐2𝛼), (6.24)

where 𝑐1 and 𝑐2 are constants obtained from a non-linear regression of the experimental
data to the model. The values obtained for these constants are shown on table (9).
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Figure 33 – Nondimensional time of relaxation 𝜏 as a function of the magnetic field in-
tensity parameter 𝛼. The curves are fits of the experimental data to equation
(6.24). The fitting parameters are displayed on table (9).

From the constant value towards the stress relaxation function tends, that is, the
residual stress relaxation parameter Φ̃𝑅, it can be defined a nondimensional residual stress
�̃�𝑅 by applying equation (4.37):

�̃�𝑅 = Φ̃𝑟𝛾0; (6.25)
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where, 𝛾0 is the angular strain. Therefore, regarding the results displayed on figures (31)
and (32), it can be said that a residual stress �̃�𝑅 is observed for both fluids at each constant
intensity of magnetic field applied. For the two ferrofluids, the residual stress was observed
to increase as the intensity of the magnetic field strengthened. According to Borin et al.
(2014), this increase is related to the enhancement of the size and intensification of the
stability of the magnetic field-induced aggregates as the intensity of the magnetic field
rises. This effect is stronger on EFH3 than on EFH1, owing to its bigger volume fraction
of magnetic particles. Figures (34a) and (34b) show the dependence of the residual stress
�̃�𝑅 as a function of the nondimensional magnetic field 𝛼. It was proposed a power-law
relation to model such dependence, resulting on the following expression:

�̃�𝑅 = 𝐶3 exp(𝐶2𝛼), (6.26)

where 𝑐1 and 𝑐2 are constants obtained from a non-linear regression of the experimental
data to the model. The values obtained for these constants are shown on table (9).
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Figure 34 – Dimensionless residual stress �̃�𝑅 as a function of the non-dimensional mag-
netic field 𝛼. The curves are fits of the experimental data to equation (6.26).
The fitting parameters are displayed on table (9).

Table 9 – Fitting parameters obtained for the non-linear regression of the data concern-
ing the magnetic field-dependent time of relaxation and the magnetic field-
dependent residual stress, respectively, to the models represented by equations
(6.24) and (6.26).

Constants EFH1 EFH3
𝐶1 6.5 × 10−1 ± 4.32 × 10−2 3.53 × 10−4 ± 7.68 × 10−4

𝐶2 7.0 × 10−3 ± 3.22 × 10−3 2.02 × 100 ± 4.74 × 10−1

𝐶3 2.29 × 10−1 ± 1.63 × 10−2 1.58 × 100 ± 8.40 × 10−1

𝐶4 2.35 × 10−2 ± 7.09 × 10−3 1.98 × 10−2 ± 5.51 × 10−3

6.2.2 Step-strain part II: Effects of the magnitude of the applied strain

Step-strain experiments were used, in this section, to evaluate the dependence of
the stress relaxation function Φ(𝑠), of both ferrofluids, on the intensity of the applied
shear-flow. Based on the time behavior of the referred material function, it was possible
to determine the residual stress relaxation parameter Φ̃𝑅, for both fluids, at different
values of Pe. From this parameter, it was determined the behavior of the residual stress
�̃�𝑅, of both ferrofluids, as a function of Pe.
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6.2.2.1 Experimental proceedure

The experimental protocol used to obtain the results presented in this section is
composed by the following steps:

1. An intensity of electric current is selected to be constant throughout the experi-
mental trials. For the tests on both ferrofluids, it has been selected 2 and 4𝐴, which
correspond to effective magnetic fields with intensities of 1.18 × 105 and 1.92 × 105

A/m, respectively;

2. Having defined a current intensity, the volume of ferrofluid needed to fulfill the gap
between the disks of the rheometer is calculated regarding the usable gaps displayed
on table (6). Following this, the referred quantity is pipetted and placed in the test
area;

3. The upper disk is lowered until the precise gap between the disks is reached. Eventual
leakages of fluid from the gap are trimmed and cleaned. A final visual check is carried
out in order to verify that the gap is completely filled by the ferrofluid being tested;

4. The magnetic yoke is placed around the measuring rod and a process of demagne-
tization is applied in order to free the magnetic fluid of any previous influences of
external magnetic fields;

5. A constant magnetic field is applied orthogonal to the sample. Its intensity is be
kept constant through all the experimental trials;

6. The temperature of the experiment, 25∘C, is set on thermal bath attached to the
rheometer. After this, enough time is waited for the temperature of the sample, here
defined as the temperature of the lower plate, which is measured by the rheometer,
to reach the target temperature. This step must be done after applying the magnetic
field due to the fact that the process of induction of the magnetic field by the coils
below the bottom plate, produces heat, that must be compensated by the thermal
bath, in order to keep the temperature, of the fluid in the gap, constant at 25∘C;

7. A series of step-strains, with different values of angular strain 𝛾0, is applied to the
sample, while the magnetic field intensity is kept constant;

8. The data concerning the stress relaxation function, for each value of 𝛾0 applied, is
acquired as a function of time. The frequency of data collection was of 1 point every
0.01s.

6.2.2.2 Discussion

Following the steps described on the previous subsection, for each of the two con-
stant magnetic field intensities, it has been obtained the behavior of the nondimensional
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stress relaxation function ̃︀Φ(𝑠) as a function of the intensity of the nondimensional time
shift 𝑠, for different intensities of shear flow, here denoted by Pe. As commented on section
(6.1), Pe is defined by:

𝑃𝑒 = 6𝜋𝜂𝑎3�̇�

𝑘B𝑇
. (6.27)

Considering that the fluid characteristics and its temperature defined, this parameter can
only be varied by changing the shear rate of the flow �̇�. It is important to remember that,
from equation (4.30), the shear-rate applied by a step-strain is given by:

�̇� = 𝛾0

𝜖
, (6.28)

where, 𝛾0 is a defined angular strain and 𝜖 is a small time interval in which 𝛾0 is applied.
The time interval 𝜖 is fixed in all the experiments describe on this section. Therefore, to
vary Pe it is necessary to change 𝛾0, to which it is related by:

𝑃𝑒 = 6𝜋𝜂𝑎3𝛾0

𝑘B𝑇𝜖
. (6.29)

In the experiments, for both conditions of constant external magnetic field explored, the
ferrofluids were subjected to nine conditions of 𝛾0, in order to apply a wide range of flow
intensities.

For the ferrofluid EFH1, when subjected to a constant magnetic field intensity
𝐻 of 1.18 × 105 A/m (induced by a current of 2A), figure (35a) displays the temporal
behavior of its stress relaxation function for only three intensities of shear flow in order
to facilitated the visualization of the data. Those intensities are: Pe equals to 2.15 × 10−6,
2.15 × 10−5 and 8.61 × 10−5.Figure (35b) presents the same results, but obtained for a
condition of a much intenser magnetic field, with intensity 𝐻 of 1.92 × 105 A/m (related
to a current of 4A).
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Figure 35 – EFH1: Nondimensional stress relaxation Φ̃ as a function of 𝑠 for different
values of 𝛾0: (×) - Pe= 1.69 × 10−5 (𝛾0 = 0.02), (∙) - Pe= 1.69 × 10−4

(𝛾0 = 0.2), (�) - Pe= 6.74 × 10−4 (𝛾0 = 0.8).

Figure (36) is the analogous of figure (35), but concerning the ferrofluid EFH3.
When this ferrofluid is subjected to a constant magnetic field intensity 𝐻 of 1.18 × 105

A/m (induced by a current of 2A), figure (36a) displays the temporal behavior of its
stress relaxation function for only three intensities of shear flow: Pe equals to 4.03 × 10−6

, 4.03 × 10−5 and 1.61 × 10−4. Figure (36b) presents the same results, but obtained for a
condition of a much intenser magnetic field, with intensity 𝐻 of 1.92 × 105 A/m (related
to a current of 4A).
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Figure 36 – EFH3: Nondimensional stress relaxation Φ̃ as a function of 𝑠 for different
values of 𝛾0: (∘) - Pe= 4.03×10−6 (𝛾0 = 0.02), (∙) - Pe= 4.03×10−5 (𝛾0 = 0.2),
(�) - Pe= 1.61 × 10−4 (𝛾0 = 0.8).

Figures (35) and (36) shows that for the two conditions of fixed magnetic field
intensity, the shear stresses applied to both ferrofluids did not relaxes for zero as the
time passes. The reasons behind this behavior have been extensively discussed on section
(6.2.1). The new information comes from the fact that the constant non-zero plateau, to
which the stress relaxation function tends for high time intervals, presents a dependence
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on Pe. The referred constant value defines the Pe-dependent residual stress relaxation
parameter ̃︀Φ𝑅, which, as a result, can be used to determine the Pe-dependent residual
stress ̃︀𝜎𝑅, by applying equation (4.37):

̃︀𝜎𝑅 = ̃︀Φ𝑅𝛾0. (6.30)

For the ferrofluid EFH1, the dependence of its ̃︀𝜎𝑅 on Pe is shown, for the two
conditions of external magnetic field intensities, in the graphs of figure (37). The same
is depicted for the ferrofluid EFH3 in the graphs of figure (38). The data displayed on
figure (37a) and (38a) are obtained by maintaining the intensity of the magnetic field
constant at 𝐻 = 1.18 × 105 A/m, whereas the ones displayed on figures (37b) and (38b),
by maintaining 𝐻 = 1.92 × 105. It can be observed in both figures that there are two
distinct behaviors of the residual stress as a function of Pe. For small values of Pe, the
residual stress is found to increase as Pe enhances, until a critical value of Pe is achieved,
from which, the residual stress starts to decrease when Pe is further increased. The second
behavior, that is, the decrease of the residual stress as the flow gets more intense is in
qualitative agreement with the results presented on Borin et al. (2014). According to those
authors, this rheological behavior is motivated by the fact that an increase on shear-rate in
this regime leads to a break-up process of the field-induced structures, resulting on lower
values of �̃�𝑟. The authors punctuate that their methodology did not permit the application
of much lower flow intensities, however, they argue that it would be expected that the
value of the residual stress stayed saturated and constant on this regime. Nonetheless,
the results obtained in this work strongly disagree with the last assumption. As stated
previously, the experiments carried out in this dissertation showed that, in regimes of very
small Pe, the residual stress increases following increments on Pe.
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Figure 37 – EFH1: nondimensional residual stress �̃�𝑅 as a function of Pe for two intensities
of the external magnetic field: (a) 𝛼 = 8.37 × 100 and (b) 𝛼 = 1.14 × 101.
In the inserts is shown a detailed view of the experimental data in the range
of small Pe. The lines are fits of experimental data concerning the range of
small Pe to �̃�𝑟 = 𝑐1Pe The constant is, for (a), 𝑐1 = 5.74 × 103 and, for (b),
𝑐1 = 2.49 × 104.
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Figure 38 – EFH3: nondimensional residual stress �̃�𝑅 as a function of Pe for two intensities
of the external magnetic field: (a) 𝛼 = 8.37 × 100 and (b) 𝛼 = 1.14 × 101.
In the inserts is shown a detailed view of the experimental data in the range
of small Pe. The lines is are fit of experimental data concerning the range of
small Pe to �̃�𝑟 = 𝑐1Pe. The constant is, for (a), 𝑐1 = 5.32 × 105 and, for (b),
𝑐1 = 9.06 × 105.

In order to explain this behavior, firstly, it is important to note that the experi-
mental methodology applied, in this work, to measure the residual stress dependence on
the flow intensity, the step-strain, permits the achievement of extreme low values of Pe
and, also, the measurement of the shear stress related to it, with good precision. The
ascending behavior of the residual stress, in the regime of low values of Pe, indicates
that the flow is not strong enough to promote plastic deformations or, even, to breakup
magnetic field-induced structures. That is, the shear stress is inferior than the yield stress
of the microstructure, which results from the action of the dipolar interactions between
the magnetic particles. As a result, in this regime, the effect of the flow is resumed to
promote elastic deformations of the elements that compose the microstructure, being the
magnetic dipolar interaction the main restoration mechanism. However, when the flow
reaches an intensity the produces shear stresses strong enough to surpass the yield stress,
the microstructure starts to experience plastic deformations and, as a result, the residual
stress is observed to start to decrease. Further increments on Pe lead to the break-up of
structures, followed by a strong decrease on �̃�𝑅. In a limit where Pe→ ∞, the residual
stress would became zero, as the field-induced microstructure would vanishes, due to the
high intensity of the shearing flow.

It is important to remark that, in all cases studied, the relation between �̃�𝑅 and
Pe was found to be linear in the regime of low Pe, that is, in the range lower than the
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yielding point. As Pe is directly related to the angular deformation 𝛾0, one can affirm
that, in the referred regime of Pe, the shear stress and the angular deformation presents a
linear dependence. This is another factor that speaks in favor of the argument that, in the
regime of low Pe, the elements of the magnetic field-induced microstructure experience
only elastic deformations.

6.2.3 Small amplitude oscillatory shear

The experimental test of small amplitude oscillatory shear is widely used in ex-
perimental rheology, because it allows the determination of the viscoelastic response of
the most diverse complex fluids, by evaluating the phase difference between the applied
oscillatory shear rate and its response, the oscillating stress. This permits, by perform-
ing a Fourier analysis of the input and output signals, the determination of viscoelastic
modules of the complex fluid.

6.2.3.1 experimental procedure

The experimental protocol is composed by two parts, a preliminary, which is essen-
tial for determining the right parameters to be used in the second part, which is effectively
the one in which the viscoelastic modules are measured. Both parts are carried out for
both ferrofluids at four different conditions of magnetic field intensity, which are: 6.85×104

(i=1A)5, 1.18×105 (i=2A), 1.61×105 and 1.93×105 A/m (i=4A). In the preliminary part,
it is the determined the angular strain, 𝛾0, which must be used to ensure that the test
will be performed under the regime of linear viscoelasticity. This process was carried out,
for each ferrofluid, according to the following experimental protocol:

1. According to the fluid and field intensity that will be, respectively, used and applied,
an optimized gap is chosen from table (6);

2. Using the value of the chosen gap, the needed volume of ferrofluid to fulfill the gap
is calculated. This quantity of ferrofluid is poured in the test area of the rheometer;

3. The upper disk is lowered down until it reaches the exactly prescribed optimal gap.
Possible leakages of ferrofluid from the gap are visually searched and, in case of
being found, they are trimmed and cleaned;

4. The ferrofluid is demagnetized, using the automatic function of the magnetic cell
"demagnetization". This process is essential for freeing the ferrofluid from possible
magnetic effects previous to the experiment;

5 In parenthesis is displayed the current applied to the coils underneath the bottom plate of the rheome-
ter to generate to referred magnetic field.
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5. The thermal bath is set to keep the temperature of the experiment controlled at
25∘C;

6. The magnetic field is applied and enough time is waited for the temperature rise,
occasioned by the field generation, to be compensated by thermal bath.

7. The execution steps are programmed in the software Rheoplus, composed by setting
a fixed value of angular frequency 𝜔 at the highest value that will be achieved in
the second part of the experiments, that is, the maximum value until which the
frequency will be varied in the frequency sweep experiments. This value was set to
be 100 rad/s for all the cases treated in this experimental work. Besides that, the
angular strain 𝛾 is programmed to vary from 1 × 10−5 to 1;

8. It is measured the dependence of the storage modulus 𝐺′ on 𝛾 for the fixed value of
𝜔 prescribed at each fixed condition of external magnetic field intensity;

9. The optimal angular strain, that is, the one that will guaranty that the experiments
of frequency sweep will be carried out in regime of linear viscoelasticity, is chosen
between the range of angular strains for which 𝐺′ is verified to be independent of 𝛾.

From this initial analysis, it has been verified that 𝛾 = 0.01 was sufficient to
ensure the linear viscoelastic regime, for both ferrofluids, in all conditions of magnetic
field intensity analyzed. After determining this essential parameter, the second part of
the experiments, which is focused on the measurement of the viscoelastic modules as
functions of frequency, for fixed conditions of magnetic field intensities, could be carried
out. The frequency sweep experiments, in the regime of linear viscoelasticity, were carried
out, for each condition of magnetic field intensity, through the following protocol:

1. The steps 1 to 6 were the same of the protocol presented above for the strain sweep;

2. In the software 𝑅ℎ𝑒𝑜𝑝𝑙𝑢𝑠, it is programmed a variation of the applied angular fre-
quency from 0.1 to 100 rad/s, according to a logarithmic ramp, with an increase
rate of 8 points per decade. During this process, the amplitude of angular strain
was held constant at 𝛾 = 0.01;

3. The software collects data for viscoelastic modules as functions of the angular fre-
quency and, indirectly, of the magnetic field intensity.

The experimental errors were calculated using the methodology presented on appendix
(A.1).

6.2.3.2 Discussion

The oscillatory experiments allows the perception of changes in the rheological
behavior of a given fluid complex fluid related to elastic effects arising from its microstruc-
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ture. In the experiments, it has been measured, as functions of the frequency of excitation
𝜔 and of the intensity of the magnetic field, the complex shear modulus 𝐺𝑐(𝜔,𝐻), with its
storage 𝐺′(𝜔,𝐻) and loss 𝐺′′(𝜔,𝐻) parts. Also, it has been measured the complex viscous
modulus 𝜂𝑐(𝜔,𝐻), with its viscous 𝜂′(𝜔,𝐻) and its complex 𝜂′′(𝜔,𝐻) parts. These quan-
tities were made nondimensional by using the following characteristic time and viscosity
scales:

𝑡* ∼ 𝜏𝑚, (6.31)

𝜂* ∼ 𝜂0, (6.32)

where 𝜏𝑚 is the principal time of relaxation for the condition obtained in the presence
of the lowest magnetic field intensity applied and 𝜂0 is the viscosity of the ferrofluid, at
25∘C, evaluated in a condition of no external magnetic field applied. Using those scales,
the typical scales of the referred viscoelastic modules are given by:

[𝐺𝑐]* ∼ [𝐺′]* ∼ [𝐺′′]* ∼ 𝜂0

𝜏𝑚

, (6.33)

and
[𝜂𝑐]* ∼ [𝜂′]* ∼ [𝜂′′]* ∼ 𝜂0. (6.34)

Therefore, the nondimensional form of those material functions are:

̃︀𝐺𝑐 = 𝐺𝑐

[𝐺𝑐]*
= 𝐺𝑐𝜏𝑚

𝜂0
, (6.35)

and ̃︀𝜂𝑐 = 𝜂𝑐

[𝜂𝑐]*
= 𝜂𝑐

𝜂0
. (6.36)

It is immediate that the nondimensional form of the material function ̃︀𝐺′and ̃︀𝐺′′ is the
same of ̃︀𝐺𝑐, what is also true for the functions ̃︀𝜂′ and ̃︀𝜂′′ in relation to ̃︀𝜂𝑐. In order to make
the frequency nondimensional, one defines its characteristic scale as:

𝜔* ∼ 1
𝜏𝑚

. (6.37)

As a result, the nondimensional frequency, also know as the Deborah number De, is given
by:

𝐷𝑒 = ̃︀𝜔 = 𝜔

𝜔* = 𝜔𝜏𝑚. (6.38)

It is important remark that for the ferrofluid EFH1, 𝜂0 = 0.94 × 10−2 Pa.s and 𝜏𝑚 =
1.24 × 10−1 s, while, for EFH3, 𝜂0 = 0.18 × 10−1 Pa.s and 𝜏𝑚 = 6.73 × 10−1 s.

Figures (39) and (40) present, for the fluid EFH1 and EFH3, the behavior of the
storage and the loss modulus as a function of De. Figures (39a) and (40a) present results
for a condition of weak magnetic field and figures (39a) and (40a) for a condition of strong
magnetic field intensity. Due to differences on the ferrofluids’ viscosity in the absence of
magnetic field 𝜂0 and on their magnetization of saturation 𝑀𝑠, the values of 𝛼 are different
for each ferrofluid, even though the same intensities of magnetic field H are applied. For
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EFH1, the conditions of weak and strong magnetic field are, respectively, 𝛼 = 4.85 × 100

and 1.36 × 101, whereas for EFH3, those conditions are defined by 𝛼 = 4.84 × 100 and
1.35 × 101.

Figures (39) and (40) show that the application of an external magnetic field
has changed completely the rheological behavior of both ferrofluids, due to the fact that
they presented, in all conditions of magnetic field applied, an elastic component 𝐺′(𝐷𝑒)
positive, which is an indication that those fluids are viscoelastic. As discussed earlier, this
effect is intrinsically related to the fact that both ferrofluids form chains and clusters of
particles. That is, the external magnetic field induces the formation of a microstructure
on both ferrofluids, via dipolar interactions, what, as a result, injects elasticity in the
system of the fluid. Other important observation is that 𝐺′(𝐷𝑒), for all the range of De, is
higher as intenser as the magnetic field intensity is. This can be easily seen by comparing
the values of this material functions, on figures (39) and (40), for the higher and lower
values of magnetic field intensity. This shows that the complexity of the microstructure
formed by strong magnetic fields is much grater than the one formed by weak fields, that
is, intense magnetic fields are able to induce the formation of bigger and stabler particle
agglomerates, leading to the more pronounced elastic response observe in the referred
figures.
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Figure 39 – EFH1: Nondimensional storage modulus �̃�′ (∘) and nondimensional loss mod-
ulus �̃�′′ (∙) as a function of De, for (a) 𝛼 = 4.89 and (b) 𝛼 = 13.5.
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Figure 40 – EFH3: Nondimensional storage modulus �̃�′ (∘) and nondimensional loss mod-
ulus �̃�′′ (∙) as a function of De, for (a) 𝛼 = 4.89 and (b) 𝛼 = 13.5.

Comparing the figures (39a) and (39b) and, also, the figures (40a) and (40b),
which are, respectively, representatives of the viscoelastic behavior of the ferrofluid EFH1
and of EFH3, one can observe two slightly different regions at each graph. There is a
critic value of De below which, 𝐺′ < 𝐺′′ and above which, 𝐺′ > 𝐺′′. Such observation
confirms the fact that, at a range of low De, the viscoelastic solution has a more dissipative
character, behaving, predominantly, like a viscous liquid. Similarly, for frequencies above
the critical value of De, the opposite is true, indicating that the behavior of the solution
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is mostly elastic, but the dissipative effect should not be neglected, since the values of̃︀𝐺′′ are ̃︀𝐺′ very near. The fact that ̃︀𝐺′ is higher than ̃︀𝐺′, in the regime of high De, can
be understood by taking into account the relationship between the characteristic time
scale of the experiment 𝜏𝑓 , defined as the inverse of the excitation frequency, and the
one of the material 𝜏𝑚, which is characterized by its main time of relaxation. In a high
frequency regime, 𝜏𝑓 is small compared to 𝜏𝑚, making the flow perceive the field induced
microstructure already deformed, which results on a preponderance of the solid (elastic)
character on the dynamical response of the material, given that the field-induced structure
tries to relax but is impeded by the flow. Since ̃︀𝐺′ is an indicator of the elasticity of the
magnetic suspension, it is has a higher value in this situation. The reverse is also true,
implying that by subjecting a sample of the viscoelastic suspension to a small range of
De relative to the critical, the characteristic flow time will be much longer than that of
the fluid. In this condition, the field-induced microstructure is not affected by the flow,
that is, the microstructure stays relaxed and, therefore, without adding elasticity to the
solution. In this situation, the complex fluid behaves preponderantly like a viscous liquid.

As stated above, for both ferrofluids, at each condition of 𝛼, there is a critical
value of De in which the curves on ̃︀𝐺′ and ̃︀𝐺′′ intercept. It is immediate, from the graphs
on figures (39) and (40), that the critical value of De is a function of the intensity of
the applied magnetic field 𝛼. It is clear from those graphs that, for small values of 𝛼, i.e.
weak magnetic fields, the critical De is much higher than that observed for strong mag-
netic fields. Physically, this observation is explained by observing that, for weak magnetic
fields, the main relaxation time of the fluid is considerably shorter than the one observed
on stronger fields, given the small amount and length scales of the magnetic field induced
structures formed in this condition. Because of this, it is necessary to apply a high ex-
citation frequency in order to the experimental time scale 𝜏𝑓 to be of the same order of
magnitude as the fluid relaxation time 𝜏𝑚, due to the fact that, only after reaching this
condition, the microstructure of the complex fluid can interact with the flow and, thus,
enabling the alteration of the rheological behavior of the material.

As commented previously, the formation of chains and agglomerates of particles
by the action of the magnetic field is the key factor for the appearance of elastic effects on
ferrofluids. Regarding this context, (41) display the influence of the magnetic field intensity
on the nondimensional storage modulus of both ferrofluids. In order to allow comparison,
for each 𝛼, �̃�′ was evaluated for De=1. It is immediate that, for both ferrofluids, the elastic
component has increased as 𝛼 heightened. This can be explained, according to Borin et al.
(2014), by the fact that strong magnetic field induces the formation of larger and stabler
structures in the fluid, what, collaterally, means an intenser injection of elasticity in the
fluid. This effect is so intense in both ferrofluids that the dependence of �̃�′ on 𝛼 was found
to be exponential in the experiments described on this dissertation. Moreover, it can be
also observed that, for each value of 𝛼, the nondimensional storage modulus is higher for
the ferrofluid EFH3 in comparison to EFH1, what can be explained regarding the fact
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that the volume fraction of magnetic particles of EFH3 is bigger, which facilitates, due to
the bigger availability of particles per unit of volume in this fluid, the action of the dipolar
interactions. As a result, when an external magnetic field is applied, bigger and stabler
structures are formed in EFH3 in comparison to the ones formed on EFH1, also justifying
the faster increase experimented by its �̃�′ when the same variation of 𝛼 is applied to both
ferrofluids.
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Figure 41 – Non-dimensional storage modulus ̃︀𝐺′ evaluated at 𝐷𝑒 = 1 for different values
of 𝛼 for the ferrofluids EFH1 (∙) and EFH3 (∘). The curves are fits to the
experimental data to ̃︀𝐺′(𝐷𝑒 = 1, 𝛼) = 𝑐1 exp(𝑐2𝛼). The constants for the
dashed curve are 𝑐1 = 2.97 and 𝑐2 = 0.21. For the continuous curve, they are
𝑐1 = 1.39 and 𝑐2 = 0.15.

The nondimensional viscous modulus 𝜂′ also experimented an intense increase
when subjected to an enhancement of the magnetic field intensity. Figure (42) depicts that
this variation is exponential, according to our experiments. This is also a reflection of the
formation of larger and stabler structures in conditions of strong magnetic fields. Those
large structures cause a much intenser hindrance of rotation and also a higher localized
drag, which are mechanisms that result on severe local energy dissipation. The bulk effect
of those localized dissipation effects is the overall increase of the viscous behavior of the
suspension. The higher values obtained for 𝜂′ on EFH3, in comparison to EFH1, is due to
the difference of volume fraction of magnetic particles and of magnetization of saturation
between both ferrofluids.

117



0

10

20

30

40

50

60

70

80

2 4 6 8 10 12 14

̃︀ 𝜂′ (𝐷
𝑒

=
1)

𝛼

Figure 42 – Nondimensional viscosity modulus 𝜂 evaluated at 𝐷𝑒 = 10 for different values
of 𝛼 for the ferrofluids EFH1 (∙) and EFH3 (∘).The curves are fits to the
experimental data to ̃︀𝜂′(𝐷𝑒 = 1, 𝛼) = 𝑐1 exp(𝑐2𝛼). The constants for the
dashed curve are 𝑐1 = 7.76 and 𝑐2 = 0.15. For the continuous curve, they are
𝑐1 = 1.85± and 𝑐2 = 0.15.

The determination of the viscoelastic modules of a given complex fluid through
experiments in the regime of linear viscoelasticity, which is the case of the small amplitude
oscillatory shear experiments carried out in this dissertation, allows the indirect determi-
nation of the first normal stress difference 𝑁1. It is important to remark that this material
function con be directly measured by experiments in the regime of simple shear, specifi-
cally on torsional rheometers of cone-and-plate geometry. In order to perform the indirect
determination of the referred material function, one can apply the empirical correlations
of Cox and Merz (1959) or the more general one of Laun (1986), which are detailed on
section (4.5). Both experimental correlations provide a link between the description of
the fluid’s material functions obtained by oscillatory experiments and those measured on
permanent shear experiments. A way to guarantee that the referred agreement is repre-
sentative of the reality is to verify if the modulus of the complex viscosity |𝜂𝑐(𝜔)| and the
apparent viscosity 𝜂(�̇�) are equal for correspondent values of 𝜔 and �̇�. This validation has
been carried out for both ferrofluids at all the applied magnetic field intensities 𝛼. How-
ever it was found to apply only for the ferrofluid EFH1, at the lowest value of magnetic
field intensity, what is shown on figure (43).
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Figure 43 – EFH1: Nondimensional apparent viscosity 𝜂 (∙) and nondimensional absolute
value of the complex viscosity |𝜂𝑐| (∘) as functions of Pe (calculated consid-
ering 𝜔 = �̇�) at 𝛼 = 4.85. In the insert is shown a detailed view of the zone
of agreement between the 𝜂 and |𝜂𝑐|.

As it can be seen from figure (43), |𝜂𝑐(𝜔)| and 𝜂(�̇�) present an excellent agreement,
which is better visualized in the insert of the referred figure. This validation allows the
application of Laun’s rule, equation (4.41), in order to compute the first normal stress
difference based on the measurements of 𝐺′(𝜔) and 𝐺′′(𝜔). The resulting values, that is,
𝑁1 as a function of �̇�, were made nondimensional, being displayed as �̃�1 as a function of
Pe on figure (44).
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Figure 44 – Nondimensional first normal stress difference �̃�1 as a function of Pe obtained
by applying Laun’s rule to the measured values of 𝐺′(𝜔) and 𝐺′′(𝜔). The
dashed curve, in the insert, is a fit of the experimental data for the range of
small Pe to �̃�1 = 𝑐1 + 𝑐2Pe, with 𝑐1 = 1.33 × 10−1 and 𝑐2 = 1.11 × 104. The
continuous curve is a fit of the experimental data for the complete range of
Pe to �̃�1 = 𝑐1Pe2 + 𝑐2Pe + 𝑐3, with 𝑐1 and 𝑐2 equals to the one determined
for the dashed line and 𝑐3 = 2.30 × 107.

Figure (44) shows a variation of several orders on �̃�1 as Pe heightens. This is
a confirmation of the fact that, under an influence of an external magnetic field, the
stresses in the fluid become anisotropic. This fact was first punctuated as a possibility in
the theoretical work of Zubarev (1992) and has been firstly observed experimentally by
Odenbach, Rylewicz and Rath (1999). In the referred figure, it is also depicted that ̃︁𝑁1 has
two different functional dependencies on Pe. In the range of low Pe, the first difference of
normal stresses displays a linear dependence on Pe, whereas, in a regime of medium/high
Pe, this dependence becomes quadratic. The linear behavior is possibly explained by col-
lisional effects between the magnetic field induced chains and agglomerates, that leads
to an initial anisotropy of the microstructure and, as a result, to the appearance of nor-
mal stresses. The quadratic dependence is generated, according to Zubarev (1992), by a
collective alignment of the field induced chains and structures within the fluid with the
direction of the magnetic field.
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7 Final Considerations

7.1 Conclusions

The viscosity of the ferrofluids EFH1 and EFH3 increased when they were sub-
jected to an strengthening external magnetic field. This behavior, called magnetoviscous
effect, has its origin in the fact that when a magnetic particle is subjected to an external
magnetic field, its moment of dipole aligns with the direction of the applied field, what
implies that the particle is no longer free to rotate with the vorticity of the flow. It was
observed that the increase of viscosity in both ferrofluids was much intenser than what is
predicted by the classical theory. This was attributed to the fact that the magnetic col-
loids have high volume fractions of magnetic particles, what leads to formation of chains
and aggregates of particles by the action of dipolar interactions. Moreover, this structures
provoke higher hindrances of rotation when aligned to the magnetic field and also, due
to its larger characteristic lengths, they increase the local drag. Both mechanisms induce
energy dissipation and are the motives behind the strong magnetoviscous effect observed.
It is important to remark that the magnetoviscous effect of the ferrofluid EFH3 was much
more pronounced than the one observed for EFH1, what comes the fact that all the en-
ergy dissipation mechanisms are stronger on EFH3, owing to the fact that this fluid has
a higher volume fraction of magnetic particles.

It has also been observed a pseudoplastic behavior for both ferrofluids when under
the action of a magnetic field. This shear-tinning behavior was characterized by the ob-
servation of a strong decrease of the apparent viscosity of the ferrofluids when they were
subjected to increasingly strong shear rates. This effect is associated to the fact that in
concentrated ferrofluids, like the ones treated in this work, the application of a magnetic
field, due to dipolar interactions, is followed by the formation of chains and aggregates of
particles. For weak flow conditions, the viscosity of both fluids was observed to reach high
values, what is a natural consequence of the magnetoviscous effect previously discussed,
however, when the flow starts to intensify, the viscosity starts to decrease rapidly, until a
constant plateau is observed. This behavior is explained by two process: the first one is
related to the weak flow region, in which the flow starts to induce an alignment of the field
induced microstructure with its streamlines, in a process that results on the reduction of
local drag and, as a result, of the suspension’s viscosity. Nontheless, the main process
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responsible for the reduction of viscosity is the breakup of the field induced microstruc-
tures, leading to chains and agglomerates with ever small length scales, that generate less
energy dissipation effects, leading to the strong reduction of the apparent viscosity. The
plateau of constant viscosity observed for high values of shear flow has its origin on the
fact that the flow is so strong that the magnetic field induced is almost vanished, and,
as a result, also its effects on the viscosity. Due to the formation of a microstructure, it
has also been verified the existence of yield stress for both fluids, when in the presence
of a magnetic field. All the effects describe for the shear-thinning behavior were observed
to be more intense the higher the intensity of the magnetic field, what is related to the
fact that stronger magnetic fields produce microstructures formed by stabler and larger
particle’s chains and agglomerates. The behavior of the apparent viscosity as a function
of the shear flow intensity was well modeled by Sisko’s viscosity model and the same
dependence for the shear stress was successfully described by Herschel-Bulkley’s model.
The last one permitted the obtainment of the yield stress, for each fluid, at each condition
of magnetic field intensity investigated.

It was also observed that, in the presence of a magnetic field, the ferrofluids EFH1
and EFH3 become viscoelastic liquids. This was first verified in the experiments of step-
strain, conducted with a small angular strain, for increasing values of magnetic field inten-
sity. In all field conditions, the fluids presented a delay on its process of stress relaxation,
which is a direct sign of the presence of elastic behavior. This elastic properties arise from
the formation of a microstructure, due to the action of the magnetic field. The process
of relaxation is generally characterized by a single time of relaxation, which traduces the
action of the main mechanism of stress relaxation acting in the fluid. In this case, the
shear stress relaxes to zero after the cessation of flow. Nonetheless, the relaxation process,
of the ferrofluids in analysis, was found to be highly complex, characterized by more than
one time of relaxation and by the relaxation of the shear stress for a non-zero value, after
the cessation of the flow. The residual stress can be understood as the yield stress of the
fluid, due to the fact that it represents the minimum stress to which the stress relax, or
from other point of view, the minimum stress that must be applied, in order for the fluid
starts to flow. This process of relaxation was found to be well modeled by an adaptation
of Maxwell’s viscoelastic constitutive model. The adaptation was the inclusion of a term
regarding the residual stress. Using this model it was possible to determine the times
of relaxation, of each fluid, at each condition of magnetic field intensity. The ferrofluid
EFH1 was well described by two relaxation times and EFH3 by three, for every condition
of field. The more complex stress relaxation of EFH3 rises from its bigger volume fraction
of particles in relation to EFH1. The main time of relaxation of both fluid, as well as their
residual stresses, were found to be exponentially related to the intensity of the magnetic
field, in the experiments reported on this dissertation.

The effect of the shear flow intensity in the stress relaxation of the ferrofluid
was also investigated. Step-strains with variable angular strains were performed for two
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conditions of constant intensity magnetic fields, a weak and a strong one. The stress
relaxation function was observed to reach ever lower plateaus as the intensity of the
applied flow was heightening. The residual stress, was calculated by multiplying the value
of this plateau by the angular strain applied. This analysis lead to the obtainment of
the dependence of the residual stress on the shear flow intensity, which has shown two
very distinct behaviors, depending on the range of the applied flow intensity. For very low
flow intensities, the residual stress was found to increase linearly with the flow intensity,
until it reaches a maximum and starts do decrease rapidly as the flow strengthens. The
first effect has not yet been covered in the specific literature of rheology of ferrofluids.
This work suggests that this behavior is associated to the fact that, for the low regime
of flow intensities, the shear rate is not strong enough to produce plastic deformations or
even breakups of the field-induced structures, being characterized by a regime dominated
by elastic (reversible) deformations, that are not able to change permanently the overall
topology of the microstructure. This behavior shifts when the yielding point is reached and
the flow starts to provoke plastic deformations, even leading to the breakup of the magnetic
field induced structures. For extremely high values of flow intensity, the structures are
supposed to break down completely leading to a vanish of the residual stress.

Dynamic rheological characterizations have been carried out for both ferrofluid
at several magnetic field conditions. It was verified, from the results obtained from the
experiments of small amplitude oscillatory shear, that both ferrofluids have a storage
modulus and a loss modulus different from zero in the complete range of frequencies
applied, when they are in the presence of an external magnetic field. This is another
strong confirmation that both fluids are viscoelastic. It is important to note that this
observation comes from the fact that the formation of structures of magnetic particles
by the action of the magnetic field increases the dissipation and, also, injects elasticity
in the system of the fluid. This effect is intenser the higher the magnetic field intensity
is, what justifies the observed exponential dependence of the storage modulus and of the
viscosity modulus on the intensity of the magnetic field, considering a fixed frequency of
excitation.

The storage and loss modulus have presented two behaviors dependent on the
excitation frequency. For low values of frequency, the loss modulus was found to be higher
than the storage modulus, which is explained by the fact that the characteristic flow
time is much longer than the one of the fluid in this case. Therefore, the field-induced
microstructure is not affected by the flow, staying relaxed, what implicated that in no
addition of elasticity to the suspension, that behaves, predominantly, like a viscous liquid.
For high values of frequency, the characteristic flow time is small compared to the time
of relaxation of the fluid, what makes the flow perceive the field induced microstructure
as already deformed. This indicates a dominance of the solid (elastic) character of the
material, given that the field-induced structure tries to relax but is impeded by the flow.
The frequency, in which the curves of the storage and loss modulus were found to intercept,
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decreases as the intensity of the magnetic field increases. That is, the predominant liquid-
like behavior changes to a dominant solid-like for a lower frequency value as the magnetic
field becomes more intense. This can be explained by the fact that the characteristic
time of the fluid increases when the magnetic field heightens, that is, its characteristic
frequency decreases and, thus, the fluid changes its predominant rheological behavior for
smaller frequencies of excitation.

A comparison between the complex viscosity and the apparent viscosity for com-
patible values of frequency and shear rate has been carried out for both ferrofluids in all
conditions of magnetic field studied. However, the agreement between the two sets of data
was just verified for the ferrofluid EFH1 at the lowest magnetic field intensity applied.
This compatibility validated the use of Laun’s rule to calculate, from the storage and the
loss modulus, the first normal stresses difference. The fact that the fluid, when subjected
to a magnetic field, presents a first normal stress difference is a solid indication that the
fluid become anisotropic. This material function presented two kinds of functional depen-
dencies on the shear rate. For weak flows, the first normal stresses difference displayed
a linear dependence on the shear rate. This is related to collisional effects between the
chains and particles of the magnetic field-induced microstructure. For medium-high flow
intensities, the first normal stresses difference was observed to depend quadratically on the
shear-rate, which is a straightforward consequence of the alignment of the field induced
microstructure of the fluid with the magnetic field direction.

7.2 Suggestions for future works

As possible future works, it can be pointed out:

∙ Carry out a thorough analysis of the validity, for ferrofluids, of the linear viscoelastic
flow regime based only on the choice of a small value of angular strain from a range
in which the storage modulus is independent of it. What can be done by using
the Kramers-Kronig and the Fourier transform of the stress relaxation function,
following the methodology discussed in Pereira (2017).

∙ Directly measure the normal stresses differences using a cone-and-plate rheometer
for various conditions of magnetic field intensity. Compare the values, obtained for
this material function, using this methodology to the ones calculated from data
obtained on oscillatory shear through empirical correlations, like the ones proposed
by Cox and Merz (1959) and Laun (1986).

∙ Perform experimental rheological studies, in the presence of external magnetic filed,
with samples of ferrofluids composed by the same base fluid and surfactant additives,
but varying on a wide range of volume fraction of particles. The characterization
of the dependence of the material functions on the volume fraction of magnetic
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particles is of high importance, due to the fact that, as shown in this dissertation, the
variation of this parameter has severe influence on the overall rheological behavior
of ferrofluids.

∙ Compare the experimental results, described on this dissertation, with numerical
simulations.

∙ Perform the same experimental protocols define on this dissertation to analyze the
influence of the application of an external magnetic field and of the volume fraction
of magnetic particles on the rheology of magnetorheological suspensions. This study
is important due to the fact that this type of fluid presents much intenser dependence
of its material functions on the intensity of the magnetic field applied, owing to the
large characteristic length of its particles, which is around 100𝜇m.
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A Uncertainty analysis

The analysis of the experimental error associated to a measured variable follows, in
this dissertation, the protocol prescribe on Kline and McClintock (1953). In the referred
work, the experimental error of the measured variable 𝒱 , 𝐸(𝒱), is defined as:

𝐸(𝒱) = max (𝐸𝑖(𝒱), 𝐸𝑟(𝒱)), (A.1)

where, 𝐸𝑖(𝒱) is the instrumental error, linked to the intrinsic variabilities of the instru-
ments of measurement, and 𝐸(𝒱)𝑟 is the random error, which is associated to the fluc-
tuations of the measured value of the variable 𝒱 over a finite number of measurement
realizations.

Generally, if a variable is measured directly, the value of the instrumental er-
ror is the uncertainty of the instrument used to perform the measurement. However,
if the variable is measure indirectly, the estimative of the instrumental error can be
obtained by knowing the functional dependence between the indirectly measured vari-
ables and the directly measured ones. Regarding this context, consider an indirectly
measured variable 𝒱 , which was calculated based on the directly measures of 𝑛 quan-
tities 𝑞1, 𝑞2, ..., 𝑞𝑛−1, 𝑞𝑛, with instrumental uncertainties 𝐸𝑖(𝑞1), 𝐸𝑖(𝑞2), ..., 𝐸𝑖(𝑞𝑛−1), 𝐸𝑖(𝑞𝑛).
Thus, according to Kline and McClintock (1953), the instrumental error associated with
𝒱(𝑞1, 𝑞2, ..., 𝑞𝑛−1, 𝑞𝑛)is given by

𝐸𝑖(𝒱) =
⃒⃒⃒⃒
⃒ 𝜕𝒱
𝜕𝑞1

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑞1)| +

⃒⃒⃒⃒
⃒ 𝜕𝒱
𝜕𝑞2

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑞2)| + ...+

⃒⃒⃒⃒
⃒ 𝜕𝒱
𝜕𝑞𝑛−1

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑞𝑛−1)| +

⃒⃒⃒⃒
⃒ 𝜕𝒱
𝜕𝑞𝑛

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑞𝑛)| . (A.2)

Besides that, considering a process of measurement composed of n evaluations of
𝒱 , the random error associated with this quantity is defined as the standard deviation of
the measuments carried out over the realizations, SD(𝒱), which is calculated by:

𝐸𝑟(𝒱) = SD(𝒱) =
√︃∑︀𝑛

𝑘=1(𝒱𝑘 − 𝒱)2

𝑛− 1 , (A.3)

where 𝒱𝑘 is the value of the referred variable in the k-th realization and 𝒱 is the mean
value of 𝒱 , defined as:

𝒱 =
∑︀𝑛

𝑘=1 𝒱𝑘

𝑛
. (A.4)

It is important to remark that, when the relationship between the quantity being indi-
rectly measured and the ones that are actually being directly measured, is unknown, the
experimental error will be defined uniquely by the random error.
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In this dissertation, an experimental point, representing the measured variable 𝒱
is defined as: 𝒱 ± 𝐸(𝒱). This representation is used to display, in graphs and on tables,
the experimental uncertainty of the quantities measured in the experiments.

A.1 Uncertainty associated with the viscosity measured in simple
shear

The uncertainty of the viscosity 𝐸(𝜂), measured with the parallel disks rheome-
ter, was considered as the maximum of its random error 𝐸𝑟(𝜂) and instrumental error
𝐸𝑖(𝜂). The instrumental error is estimated here from the expression relating the viscosity
to the mechanic torque and the shear rate applied, equation (5.30). Based on this, the
instrumental error is given by:

𝐸𝑖(𝜂) =
⃒⃒⃒⃒
⃒ 𝜕𝜂𝜕𝒯

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝒯 )| +

⃒⃒⃒⃒
⃒ 𝜕𝜂𝜕𝑅

⃒⃒⃒⃒
⃒ |𝐸𝑖(𝑅)| +

⃒⃒⃒⃒
⃒𝜕𝜂𝜕�̇�

⃒⃒⃒⃒
⃒ |𝐸𝑖(�̇�)| . (A.5)

According to the manufacturer of the rheometer, the torque uncertainty is 0.2𝜇N,
and the one of the radius of the disk used in the experiment is 1 × 10−5. The uncertainty
associated with the shear rate is 1 × 10−3 s−1.
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