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Abstract

This paper shows how to transform explosive many-valued systems
into paraconsistent logics. We investigate especially the case of three-
valued systems showing how paraconsistent three-valued logics can be
obtained from them.

1 Introduction

An explosive logic can be transformed into a non-explosive one by means of
methods of paraconsistentization. There are many ways which can be used
to perform this task of converting explosive into non-explosive logics. In gen-
eral, it is theoretically possible to paraconsistentize all non-paraconsistent
systems. Paraconsistent logics had the major philosophical impact of distin-
guishing explosive systems from systems that imply contradictions, making
it possible to infer whenever we face contradictory contexts.

In the history of paraconsistency, we can find three traditional accounts
used to give a paraconsistent dimension to an explosive system. The first
one developed by Stanis law Jaśkowski in [14] focuses in a way to define a
paraconsistent discussive logic from a standard modal logic, while the second
one proposed by Newton da Costa in [6] introduces a paraconsistent negation
using the notion of well-behavior in such a way that new properties of a
weaker negation not satisfying ex falso are generated. The third approach
suggested by Graham Priest in [18] considers a new logical designated value
besides truth and this gives rise to a paraconsistent logic. These three
traditional accounts can be seen as methods for paraconsistentizing classical
logic and, in some sense, they are mechanisms of paraconsistentization which
can be applied to a wide range of logics.

All previous techniques are not unified by a standard strategy to trans-
form a given logic into a paraconsistent one. Indeed, each one uses a partic-
ular procedure to formulate paraconsistency at the formal level. The initial
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concept and idea of paraconsistentization has been proposed in [5]. After-
wards, in two recent papers (cf. [8] and [9]), it has been showed how to turn
a given logic into a paraconsistent one by a very precise methodology which
works for a great variety of systems. In [8], the idea of paraconsistentization
is presented in the context of category theory and it uses abstract logic as
a main source. In this way, paraconsistentization appears as an endofunc-
tor in the category of logics preserving some basic properties of the initial
logic. In [9], considering notions of axiomatic formal systems and valua-
tion structures, the quest of paraconsistentization is introduced by means
of the concept of paradeduction in axiomatic formal systems and paracon-
sequence in valuation structures. Thus, it is possible to paraconsistentize
proof systems and semantics showing how some properties are invariant un-
der paraconsistentization. In this particular case, this method preserves
soundness and completeness.

The above papers settled the basic theory of paraconsistentization, up
to this level. Despite the fact the there are many unknown methods of
paraconsistentization, this article shows how to turn some explosive many-
valued logics into paraconsistent ones using the basic idea initially proposed
in [8], that is: given a logic L = 〈For,�L〉, the paraconsistentization of L
is a logic given by P(L) = 〈For,�P

L
〉 such that: Γ �P

L
α if, and only if,

there exists Γ′ ⊆ Γ, L-consistent such that Γ′
�L α. We deal mainly with

systems such as L3, G3 and K3 defined by means of logical matrices, though
it is obviously possible to extend the same approach to the whole hierarchies
Ln and Gn.1 We show what are the properties preserved or lost by the
paraconsistentized version of these systems. This paper attempts to explore
the universe of paraconsistent many-valued logics. Other studies on three-
valued paraconsistent logics worth mentioning are those of [1], [2] and [4].

The philosophical relevance of this investigation appears when we take
into account motivations and basic intuitions of the many-valued systems
considered here.

The logic L3, studied and examined by  Lukasiewicz in [16], was created
to deal with the problem of future contingents.  Lukasiewicz argued that
certain sentences, especially those about the future, are now neither true
nor false. In this sense, the third truth-value 1/2 receives an ontological
interpretation. Future contingents are indeed neither true nor false now.
But this is not the only possible interpretation for 1/2.

K3 was developed with another goal in mind. It was designed to deal
with the possibility of partial information concerning the truth value of
propositions. According to Kleene in [15], the truth-value 1/2 can be in-
terpreted as “undefined” or as “unknown”. The important concern here is
that it can be seen as a lack of information, that is, we say that a propo-

1In the case of the logic L3, the question of how to paraconsistentize it has been posed
by Walter Carnielli (personal communication, 2005) to the second author of this paper.
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sition has the value 1/2 when we do not know whether it is true or false.
Given this interpretation, it is possible that a proposition with an undefined
truth-value might became true or false, according to future information. So
we have now an epistemological account of the value 1/2.

Nonetheless, notice that both proposals are not, at least in principle,
philosophically committed with the consistency of formulas with value 1/2.
But since explosion holds in these systems, a philosophical investigation on
the possibility of contradictory information or contradictory future contin-
gents is a priori excluded. By paraconsistentizing these logics, we provide a
formal framework in which these scenarios - contradictory information and
contradictory future contingents - can be investigated. In this sense, para-
consistentization of logics widens the scope of investigation of these logics.

Gödel intermediate logics have been developed with the aim of show-
ing that intuitionistic logic cannot be defined using “finitely many elements
(truth values)” (Gödel, page 225, [12]). Gödel discovered an infinite hierachy
of consistent systems between intuitionistic and classical logic. Paraconsis-
tentizing this hierarchy shows that there exists a whole new hierarchy of
paraconsistent many-valued systems which does not need, necessarily, to be
consistent. The problem of determining where is this new hierarchy (be-
tween which logics?) is still open.

It is important to stress two aspects of this proposal. First, since para-
consistentization preserves the consistent sets of formulas from the original
logic, if no contradiction arises, then the paraconsistent version of a logic is
equivalent to the original one. Second, paraconsistentization merely allows
reasoning with inconsistent sets, but does not impose a specific interpre-
tation of this inconsistency. In particular, paraconsistentization is neutral
with respect to the existence of true (or real) contradictions.

In what follows, we apply the standard methodology of paraconsistenti-
zation to precise many-valued systems. Using this technique we are able to
build paraconsistent many-valued systems on a very large scale.

2 Preliminaries

These preliminaries set the main terminology and concepts which are used
throughout the text. Standard notions and results on many-valued logics
can be found in [13], [17], [11], [3] and [19].

Let us consider an usual propositional language L with ¬ (negation sym-
bol), ∨ (disjunction symbol), ∧ (conjunction symbol), → (implication sym-
bol) and propositional letters: p, q, r, ..., p1, q1, r1, ... and so on. The set of
propositional letters is denoted by Prop and the set of formulas of L, defined
as usual, is denoted by For. We use α, β, γ,..., and Γ, ∆,... as syntactical
variables for formulas and sets of formulas, respectively.

A (logical) matrix for L is a 6-uple
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M = 〈V al,D, f¬, f∨, f∧, f→〉

such that V al is a non-empty set, D is a non-empty proper subset of V al,
f¬ is an unary function f¬ : V al → V al and f∨, f∧, f→ are binary functions
of the type f∨, f∧, f→ : V al× V al → V al. Elements of V al are called truth-
values (or simply values) and elements of D are called designated values.

A M -valuation for L is a function

v : Prop→ V al.

Every M -valuation v can be extended, in an unique way, to all elements of
For by the following recursive clauses:

i. v(¬α) = f¬(v(α));
ii. v(α ∨ β) = f∨(v(α), v(β));
iii. v(α ∧ β) = f∧(v(α), v(β));
iv. v(α→ β) = f→(v(α), v(β)).

We denote by VM the set of all M -valuation for L.
Let Γ be a subset of For and M a matrix for L. An element v ∈ VM is

a M -model of Γ iff (if and only if) v(γ) ∈ D, for all γ ∈ Γ. We denoted by
ModM (Γ) the set of all M -models for Γ. If Γ = {α} is an unitary set, we
denote the set ModM ({α}) by ModM (α).

Let Γ be a subset of For and α an element of For. We say that α
is a M -consequence of Γ, in symbols Γ �M ϕ, if every M -model of Γ is a
M -model of α, that is, ModM (Γ) ⊆ModM (α).

We have the following immediate properties:

I. If α ∈ Γ, then Γ �M α;
II. If Γ �M α, then Γ ∪ ∆ �M α;
III. If Γ �M α and ∆ �M γ, for all γ ∈ Γ, then ∆ �M α.

If Γ is a set of formulas, the set of M -consequences of Γ, denoted by
CnM(Γ), is such that:

CnM (Γ) := {α ∈ FOR : Γ �M α}.

CnM can be seen, therefore, as an operator on ℘(For), the set of all subsets
of For, and CnM satisfies the Tarskian axioms (cf. [20] and [21]) :

I’. Γ ⊆ CnM(Γ);
II’. CnM(Γ) ⊆ CnM(Γ ∪ ∆);
III’. CnM(CnM (Γ)) = CnM(Γ).

The pair 〈For,CnM 〉 is, therefore, a normal consequence structure in
the sense of [8] (see below).

If α is an element of For, we say that α is a M -tautology iff ModM (α) =
VM , that is, every M -valuation v is such that v(α) ∈ D. Thus, every M -
valuation is a M -model of α. We use the notation �M α to indicate that α
is a M -tautology.
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It is easy to see that: �M α iff ∅ �M α. Therefore, the set of all M -
tautologies is the set CnM(∅). By monotonicity, the property (II’) above,
for all Γ ⊆ For, CnM(∅) ⊆ CnM(Γ), that is, the set of M -consequences of
a set Γ ⊆ For always contains all the M -tautologies.

3 Paraconsistentization of logics

We review some notions in the domain of paraconsistentization and we follow
the presentations in [8] and [9].

A pair L = 〈X,CnL〉 is a consequence structure iff X is a non empty set
and CnL is a mapping in ℘(X). (We have no axioms at all!)

In a consequence structure of the type L = 〈X,CnL〉, Γ ⊆ X is L-
consistent if and only if CnL(Γ) 6= X. Otherwise, Γ is said to be L-
inconsistent.

We say that a consequence structure L = 〈X,CnL〉 is normal iff CnL
satisfies the properties (I’)-(III’) above.

If L = 〈X,Cn〉 is a consequence structure, we define a P-transformation
of L, called a paraconsistentization of L, as a consequence structure P(L) =
〈X,CnP

L
〉 such that2: For all subset Γ of X we have

CnPL(Γ) =
⋃

{CnL(Γ′) ∈ ℘(X) : Γ′ ⊆ Γ and Γ′ is L-consistent}.

Therefore, we have that α ∈ CnP
L

(Γ) iff there exists Γ′ ⊆ Γ, L-consistent,
such that α ∈ Cn(Γ′).

Now, consider a matrix M for L. Thus, M yields a consequence structure
〈For,CnM 〉 as seen above. (We also will use M for the pair 〈For,CnM 〉,
in order to fit the notation above.) In this way, the paraconsistentization
(P-transformation) of M = 〈For,CnM 〉 is a consequence structure P(M) =
〈For,CnP

M
〉 such that: For all Γ ⊆ For and α ∈ For, we have that:

Γ �
P

M
α iff there exists Γ′ ⊆ Γ, M -consistent, such that Γ′

�M α.

Note that if M is a matrix for L such that M = 〈For,CnM 〉 is the conse-
quence structure associated to M , then we have: If Γ ⊆ For is M -consistent,
thenModM (Γ) 6= ∅. Because, ifModM (Γ) = ∅, thenModM (Γ) ⊆ModM (α),
for all α ∈ For. Therefore, Γ �M α, for all α ∈ For, that is, CnM(Γ) = For.
Thus, Γ is M -inconsistent.

On the other hand, the converse is valid only in special cases.

Lemma 1 Let M = 〈V al,D, f¬, f∨, f∧, f→〉 be a matrix such that f¬ satis-
fies the following condition:

(∗) if x ∈ D, then f¬(x) /∈ D.

Then, we have that if ModM (Γ) 6= ∅, then Γ is M -consistent.

2Notice that the domains of L and P(L) are the same set X.
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Proof. Suppose that ModM (Γ) 6= ∅ and let v ∈ ModM (Γ). Suppose, on
the contrary, that Γ is M -inconsistent. Then, CnM(Γ) = For, that is,
ModM (Γ) ⊆ModM (α), for all α ∈ For. Thus,

ModM (Γ) ⊆
⋂

α∈For

ModM (α).

Let p be propositional letter. Since f¬ satisfies (*), we have ModM (p) ∩
ModM (¬p) = ∅. Therefore,

ModM (Γ) ⊆
⋂

α∈For

ModM (α) = ∅.

But, v ∈ModM (Γ) (contradiction!). �

4 Paraconsistentizing the logic L3 of  Lukasiewicz

The logic L3 of  Lukasiewicz initially proposed in [16], and extensively studied
in the literature, is characterized by the matrix

L3 = 〈{0, 1/2, 1}, {1}, f¬ , f∨, f∧, f→〉

such that:

i. f¬(x) = 1 − x;
ii. f∨(x, y) = Max{x, y};
iii. f∧(x, y) = Min{x, y};
iv. f→(x, y) = Min{1, (1 − x + y)}.

These conditions give rise to the following three-valued truth-tables:

x y f¬(y) f∨(x, y) f∧(x, y) f→(x, y)

1 1 0 1 1 1
1 1/2 1/2 1 1/2 1/2
1 0 1 1 0 0

1/2 1 1 1/2 1
1/2 1/2 1/2 1/2 1
1/2 0 1/2 0 1/2
0 1 1 0 1
0 1/2 1/2 0 1
0 0 0 0 1

The consequence relation for L3 is defined as follows: Γ �L3
α iff for all

L3-valuation v such that v(γ) = 1 for all γ ∈ Γ, we have v(α) = 1. (Notice
also that 1 is the only designated value.)

In this precise way, if we apply a P-transformation on L3, we obtain the
following relation:
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Γ �
P

L3
α iff there exists Γ′ ⊆ Γ, ModL3

(Γ′) 6= ∅, such that Γ′
�L3

α.

Notice that, by Lemma 1, we have that Γ is L3-consistent iff ModL3
(Γ) 6=

∅, that is, there is a L3-valuation v such that v(γ) = 1 for all γ ∈ Γ. We
also have that Γ �L3

α iff ModL3
(Γ) ⊆ModL3

(α), by definition.
The paraconsistentization of L3 using the standard procedure was first

developed in [10]. In [8], we have presented a sufficient condition to the
P-transformation of a given logic L to be a paraconsistent logic. We have
to consider the following essential concepts (see [8], definition 4.1, p.246).

Let L = 〈X,CnL〉 be a consequence structure. We assume that X is
endowed with a negation operator ¬.

(a) L is explosive iff for all A ⊆ X, if x ∈ X is such that {x,¬x} ⊆
CnL(A), then A is L-inconsistent (CnL(A) = X). Otherwise, L is called
paraconsistent ;

(b) L satisfies joint consistency iff there exists x ∈ X such that {x} and
{¬x} are both L-consistent but {x,¬x} is L-inconsistent;

(c) L satisfies conjunctive property iff for all x, y ∈ X, there is a z ∈ X
such that CnL({x, y}) = CnL({z}).

Given the above definitions, we have some results.

Proposition 2 L3 satisfies explosion, joint consistency and it has the con-
junctive property.

Proof. (a) If {α,¬α} ⊆ Γ, we have that v(α) = 1 iff v(¬α) = 0, for
all L3-valuation v. So, ModL3

(Γ) = ∅ and CnL(Γ) = For, that is, Γ is
L3-inconsistent and L3 is explosive.
(b) In L3, for all propositional letters p we have that v1(p) = 1 and v2(¬p) =
1 for some v1, v2 ∈ VL3

, but ModL3
({p,¬p}) = ∅, that is, {p,¬p} is L3-

inconsistent.
(c) In L3, CnL3

({α, β}) = CnL3
({α ∧ β}). �

Theorem 3 If a consequence structure L = 〈X,CnL〉 is normal, explosive,
satisfies joint consistency and also the conjunctive property, then P(L) is
paraconsistent.

Proof. See [8], theorem 4.2, p.246. �

Corolary 4 P(L3) is paraconsistent.

Let us verify the idempotency of the P-transformation with respect to
L3. Notice that, in L3, we have that ModL3

(¬(α → α)) = ∅ and, then,
{¬(α→ α)} �L3

β, for all β ∈ For.

Proposition 5 If a consequence structure L = 〈X,CnL〉 is normal and
there is α ∈ For such that {α} is L-inconsistent, then in P(L) there is no
P(L)-inconsistent sets.
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Proof. See [8], proposition 3.6, p.245. �

Corolary 6 P(L3) = P(P(L3)).

Proof. Since L3 is a monotonic logic (that is,A ⊂ CnL3
(Γ)), if Γ ⊆ For

is L3-consistent, then CnL3
(Γ) = CnP

L3
(Γ). As ModL3

(¬(α → α)) = ∅,
by the proposition above, every Γ ⊂ For is P(L3)-consistent. Therefore,
CnP

L3
(CnP

L3
(Γ)) = CnP

L3
(Γ), for all Γ ⊆ For. �

We recall that a consequence structure L = 〈X,CnL〉 is normal iff L
satisfies the following properties:

i. Inclusion: A ⊆ CnL(A) for all A ⊆ X;
ii. Monotonicity : CnL(A) ⊆ CnL(A ∪B), for all A,B ⊆ X;
iii. Idempotency : CnL(A) = CnL(CnL(A)), for all A ⊆ X.

Proposition 7 P(L3) does not satisfy inclusion.

Proof. It is enough to see that {¬(α→ α)} 2
P

L3
¬(α→ α). �

In L3, the transitivity property holds: If ∆ �L3
α and Γ �L3

δ, for all
δ ∈ ∆, then Γ �L3

α.

Proposition 8 P(L3) does not satisfy transitivity.

Proof. In L3, we have that {α} �L3
α∨ β. Let p, q be propositional letters.

Since {p} and {¬p} are L3-consistent, it follows that {p} �
P

L3
p∨ q and also

{¬p} �
P

L3
¬p. Thus, if ∆ = {p ∨ q,¬p} and Γ = {p,¬p}, then it follows

that Γ �
P

L3
δ, for all δ ∈ ∆. On the other hand, if v ∈ VL3

is such that
v(p ∨ q) = v(¬p) = 1, we have that v(p) = 0 and then v(q) = 1. Therefore,
∆ �L3

q. Thus, ∆ �P

L3
q since that ∆ is L3-consistent. Moreover, the only

L3-consistent subsets of Γ are: ∅, {p} and {¬p}. But ∅ 2L3
q, {p} 2L3

q and
{¬p} 2L3

q. So, Γ 2
P

L3
q. �

Corolary 9 P(L3) does not satisfy idempotency.

Proof. Consider Γ = {p,¬p} (p is a propositional letter). Then, p∨ q,¬p ∈
CnP

L3
(Γ) and q ∈ CnP

L3
(CnP

L3
(Γ)) but q /∈ CnP

L3
(Γ). �

Proposition 10 P(L3) is monotonic.

Proof. In fact, if L = 〈X,CnL〉 is a consequence structure, then P(L) is
monotonic. See [8], proposition 3.4, p.245. (Paraconsistentization enforces
monotonicity.) �

Despite the fact that P(L3) does not satisfy transitivity in its full form,
a weak form of transitivity holds.
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Proposition 11 (Weak transitivity) If {α} �
P

L3
β and {β} �

P

L3
γ, then

{α} �P

L3
γ.

We postponed the proof and consider a previous lemma. We say that
α ∈ For is a L3-contradiction iff for every v ∈ VL3

we have that v(α) = 0.
(We use this definition always when the matrix has a truth-value 0 ∈ V al
such that 0 /∈ D.) Moreover, we recall that a formula α ∈ For is a L3-
tautology iff for every v ∈ VL3

we have that v(α) = 1. (1 is the only
designated value.)

Lemma 12 It holds that:
i. If β is a L3-contradiction, then for all Γ ⊆ For, Γ 2

P

L3
β;

ii. If β is a L3-tautology and {β} �
P

L3
γ, then γ is a L3-tautology and

for every Γ ⊆ For, Γ �P

L3
γ;

iii. If {α} �
P

L3
β, then β is a L3-tautology or {α} is L3-consistent and

{α} �L3
β.

Proof. i. Suppose that β is a L3-contradiction and there is a Γ ⊆ For such
that Γ �P

L3
β. So, there is a Γ′ ⊆ Γ with ModL3

(Γ′) 6= ∅ such that Γ′ �L3
ψ.

But, for v ∈ModL3
(Γ′) we have v(β) = 0 (contradiction!).

ii. Suppose that β is a L3-tautology and there is a v ∈ VL3
such that

v(γ) 6= 1. Since {β} �
P

L3
γ, we have ∅ �L3

γ or {β} �L3
γ. In both cases,

γ has to be a L3-tautology. Further, if γ is a L3-tautology, then it is clear
that Γ �P

L3
γ, for all Γ ⊆ For.

iii. Immediate from i. and ii. �

Now, we prove weak transitivity.

Proof of proposition. Suppose that {α} �
P

L3
β and {β} �

P

L3
γ. By Lemma

(i), β is not a L3-contradiction. We have two cases:
(a) β is a L3-tautology. In this case, since {β} �

P

L3
γ, by Lemma (ii), we

have that {α} �P

L3
γ.

(b) ψ is not a L3-tautology. In this case, by Lemma (iii), {α} is L3-consistent
and {α} �L3

β. On the other hand, since {β} �
P

L3
γ we have that γ

is a L3-tautology, and we have {α} �P

L3
γ; or {β} is L3-consistent and

{β} �L3
γ. Since {α} �L3

β and {β} �L3
γ, by transitivity in L3, we have

ModL3
({α}) ⊆ModL3

({β}) ⊆ModL3
({γ}) and then {α} �L3

γ. Therefore,
{α} �

P

L3
γ. �

It is a well known fact that the semantic deduction theorem does not hold
in L3. There is, however, the following version of the deduction theorem:

Γ ∪ {α} �L3
β iff Γ �L3

α→ (α → β). (∗)

In P(L3) we have only that:

Proposition 13 If Γ ∪ {α} �P

L3
β, then Γ �P

L3
α→ (α→ β).
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Proof. Suppose that Γ ∪ {α} �
P

L3
β. Then, there is Γ′ ⊆ Γ ∪ {α}, L3-

consistent, such that Γ′ �L3
β. We have then three cases:

(a) α ∈ Γ. In this case, Γ′ ⊆ Γ such that Γ′ ∪ {α} �L3
β (L3 is monotonic).

Then, by (*), Γ �L3
α → (α → β). Since Γ′ is L3-consistent, we have

Γ �
P

L3
α→ (α → β).

(b) α /∈ Γ and α /∈ Γ′. In this case, we have again that Γ′ ⊆ Γ and the same
argument shows that Γ �

P

L3
α→ (α→ β).

(c) α /∈ Γ and α ∈ Γ′. In this case, Γ′ − {α} ⊆ Γ is L3-consistent and
Γ′ − {α} ∪ {α} �L3

β. Given (*), Γ′ − {α} �L3
α → (α → β). However,

Γ′ − {ϕ} ⊆ Γ is L3-consistent, and we have Γ �
P

L3
α→ (α→ β). �

In order to see that the converse of the above proposition is not valid,
we consider α = β = ¬(p→ p) (p is a propositional letter). In this case, we
have that

Γ �
P

L3
¬(p→ p) → ((¬(p → p) → ¬(p→ p)))

because ¬(p→ p) → ((¬(p → p) → ¬(p→ p))) is a L3-tautology. But

Γ ∪ {¬(p → p)} 2
P

L3
¬(p→ p)

because ¬(p→ p) is a L3-contradiction.

5 Paraconsistentizing the system G3 of K. Gödel

The logic G3 of Gödel (originally developed in [12]) is characterized by the
matrix

G3 = 〈{0, 1/2, 1}, {1}, f¬ , f∨, f∧, f→〉

such that:

i. f¬(x) =

{

1 if x = 0
0 if x 6= 0;

ii. f∨(x, y) = Max{x, y};
iii. f∧(x, y) = Min{x, y};

iv. f→(x, y) =

{

1 if x ≤ y
y if x > y;

.

These conditions give rise to the following three-valued truth-tables:

x y f¬(y) f∨(x, y) f∧(x, y) f→(x, y)

1 1 0 1 1 1
1 1/2 0 1 1/2 1/2
1 0 1 1 0 0

1/2 1 1 1/2 1
1/2 1/2 1/2 1/2 1
1/2 0 1/2 0 0
0 1 1 0 1
0 1/2 1/2 0 1
0 0 0 0 1
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The difference between G3 and L3 remains in the definition of f→ and f¬.
In G3, f→(1/2, 0) = 0, while in L3, f→(1/2, 0) = 1/2. On the other hand,
f¬(1/2) = 0 in G3, and f¬(1/2) = 1/2 in L3. The consequence relations �G3

and �P

G3
are:

Γ �G3
α⇔ModG3

(Γ) ⊆ModG3
(α),

and, by Lemma 1,

Γ �
P

G3
α⇔ there exists Γ′ ⊆ Γ,ModG3

(Γ′) 6= ∅, such that Γ′
�G3

α.

It is easy to see that G3 satisfies explosive property, because if {α,¬α} ⊆
CnG3(Γ), then ModG3

(Γ) ⊆ ModG3
({α,¬α}) = ∅ and, therefore, Γ �G3

β
for all β ∈ For. Moreover, G3 satisfies joint consistency and conjunctive
property. Thus, we have:

Proposition 14 P(G3) is paraconsistent.

On the other hand, we have that α ∧ ¬α is a G3-contradiction and then
{α ∧ ¬α} is G3-inconsistent. So, by Proposition 5, we have:

Proposition 15 P(P(G3)) = P(G3).

Proposition 16 P(G3) does not satisfy inclusion.

Proof. {α ∧ ¬α} 2
P

G3
α ∧ ¬α. �

Proposition 17 P(G3) does not satisfy transitivity.

Proof. Analogous to the proof of proposition 8. �

Corolary 18 P(G3) does not satisfy idempotency.

Let us consider the weak transitivity. In this case, the Lemma 12 remains
valid for P(G3). Thus, we have:

Proposition 19 In P(G3), the weak form of transitivity is valid.

Proof. Analogous to the proof of proposition 11. �

It remains to consider the deduction theorem. It is well known that
the G3-matrix “involves all assertions of intuitionistic propositional calcu-
lus. Gödel’s axiomatization coincides with the usual axiom system of the
intuitionistic calculus with

(¬α→ β) → (((β → α) → β) → β))

added” (see Bolc & Borowik [3], p 84). Therefore, the deduction theorem is
valid in G3.

In P(G3) we have only that:

11



Proposition 20 If Γ ∪ {α} �
P

G3
β, then Γ �

P

G3
α→ β.

Proof. Suppose that Γ ∪ {α} �P

G3
β. Then, there is Γ′ ⊆ Γ ∪ {α}, G3-

consistent, such that Γ′
�G3

β. We have then three cases:
(a) α ∈ Γ;
(b) α /∈ Γ and α /∈ Γ′.
In these cases, Γ′ ⊆ Γ and Γ′ �G3

β. By monotonicity, Γ′ ∪ {α} �G3
β

and, since deduction theorem is valid in G3, we have Γ′
�G3

α → β. Thus,
Γ �P

G3
α→ β.

(c) α /∈ Γ and α ∈ Γ′. In this case, let Γ∗ = Γ′ − {α}. Since Γ∗ ⊆ Γ′, Γ∗ is
G3-consistent and Γ′ = Γ∗ ∪ {α} �G3

β. By deduction theorem for G3, we
have Γ∗ �G3

α→ β. Therefore, Γ �P

G3
α→ β. �

The converse of proposition above is not valid. It is enough to see that
(α∧¬α) → (α∧¬α) is a G3-tautology and we have �P

G3
(α∧¬α) → (α∧¬α),

but {α ∧ ¬α} 2
P

G3
α ∧ ¬α.

6 Paraconsistentizing the system K3 of S. Kleene

The system K3 of Kleene (see [15]) is very similar to L3. There is just one
difference in the definition of f→. In K3, f→(1/2, 1/2) = 1/2. Thus, K3 is
characterized by the matrix

K3 = 〈{0, 1/2, 1}, {1}, f¬ , f∨, f∧, f→〉

such that f¬, f∨, f∧ and f→ is given by the following truth tables:

x y f¬(y) f∨(x, y) f∧(x, y) f→(x, y)

1 1 0 1 1 1
1 1/2 1/2 1 1/2 1/2
1 0 1 1 0 0

1/2 1 1 1/2 1
1/2 1/2 1/2 1/2 1/2
1/2 0 1/2 0 1/2
0 1 1 0 1
0 1/2 1/2 0 1
0 0 0 0 1

Let α(p1, ...pn) be a formula such that α has p1, ...pn as propositional
letters. Let v ∈ VK3

be a K3-valuation such that V (p1) = ... = v(pn) = 1/2.
Then, it is easy to see that v(α) = 1/2. We conclude that: In K3, we have
neither tautologies nor contradictions.

We recall that 1 is the unique designated value and if Γ ⊆ For, then

ModK3
(Γ) = {v ∈ VK3

: v(γ) = 1 for all γ ∈ Γ}.

12



The consequence relations are defined as usual:

Γ �K3
α⇔ModK3

(Γ) ⊆ModK3
(α),

and

Γ �
P

K3
α⇔ there exists Γ′ ⊆ Γ,K3-consistent, such that Γ′

�K3
α.

But, by Lemma 1, in K3 we have: Γ ⊆ For is K3-consistent iff ModK3
(Γ) 6=

∅.
Although K3 has no contradictions, the set {α ∧ ¬α} is K3-inconsistent

(there is no K3-valuation v such that v(α ∧ ¬α) = 1), that is, ModK3
({α ∧

¬α}) = ∅ and CnK3
({α ∧ ¬α}) = For.

Since K3 was defined by means of a matrix, K3 is a normal logic, that
is, K3 satisfies inclusion, monotonicity and idempotency. Moreover, K3 sat-
isfies explosive property (if {α,¬α} ⊆ CnK3

(Γ), then ModK3
(Γ) = ∅ and

CnK3
({Γ) = For), joint consistency (by propositional letters) and conjunc-

tive property (CnK3
({α, β}) = CnK3

({α ∧ β})).

Proposition 21 P(K3) is paraconsistent.

Since {α∧¬α} is K3-inconsistent, by Proposition 5, P(K3) has no P(K3)-
inconsistent sets, and we have:

Proposition 22 P(P(K3)) = P(K3).

Since K3 has no tautology, ModK3
(∅) = VK3

and CnK3
(∅) = ∅. Thus,

the unique K3-consistent subset of {α∧¬α} is ∅. So, {α∧¬α} 2
P

K3
α∧¬α,

and we have:

Proposition 23 P(K3) does not satisfy inclusion.

The same counter-example that shows that P(L3) does not satisfy tran-
sitivity (Proposition 8) can be used in P(K3). For propositional letters p and
q, {p∨q,¬p} �

P

K3
q, {p,¬p} �

P

K3
p∨q, {p,¬p} �

P

K3
p∨¬p, but {p,¬p} 2

P

K3
q.

Thus, we have:

Proposition 24 P(K3) does not satisfy transitivity.

Corolary 25 P(K3) does not satisfy idempotency.

Now, we consider the weak transitivity.

Lemma 26 In P(K3), if {α} �
P

K3
β, then {α} is K3-consistent and {α} �K3

β.

13



Proof. Suppose that {α} �
P

K3
β. Then, there exists Γ ⊆ {α}, K3-consistent,

such that Γ �K3
β. But Γ cannot be ∅ because ModK3

(∅) = VK3
and, in

this case, ModK3
(β) = VK3

and β would be a tautology. Therefore, {α} has
to be K3-consistent and {α} �K3

β. �

Proposition 27 P(K3) satisfies weak transitivity.

Proof. Suppose that {α} �P

K3
β and {β} �P

K3
γ. By Lemma, we have that

{α} and {β} are K3-consistent, {α} �K3
β and {β} �K3

γ. By transitivity
in K3, we have {α} �K3

γ. Therefore, {α} �P

K3
γ. �

It is easy to see that deduction theorem is not valid in K3. In this system,
we have {α} �K3

α (by inclusion), but 2K3
α → α. The same example, for

propositional letters, shows that deduction theorem is not valid in P(K3)
also.

Below we present a table containing a logic and its paraconsistentized
version. The reader can compare properties which the initial logic has and
what is preserved(or lost) in the paraconsistentized version of it.

Summary of results

L3 P(L3) G3 P(G3) K3 P(K3)

explosive property X × X × X ×
joint consistency X X X X X X

conjunctive property X × X × X ×
paraconsistent × X × X × X

inconsistent sets X × X × X ×
P(P(L)) = P(L) X X X X X X

inclusion X × X × X ×
monotonicity X X X X X X

idempotency X × X × X ×
transitivity X × X × X ×
weak transitivity X X X X X X

modus ponens X × X × X ×
full deduction theorem × × X × × ×
modified full deduction theorem X X X × × ×
weak deduction theorem (⇒) × × X X × ×
modified weak deduction theorem (⇒) X X X X × ×

A tick (X) means yes; a cross (×) means no.

7 Conclusion

The procedure used here to paraconsistentize some many-valued logics can
be applied to a wide range of logics independent of the fact that they are
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many-valued or not. Other procedures of paraconsistentization could also
be developed generating different systems.

One interesting case that we intend to investigate is what happens when
the P-transformation is applied to an already paraconsistent logic. Although
it seems unuseful to apply it to a logic which is already paraconsistent, it
is interesting to check whether the paraconsistent logic remains the same or
not. The case of the logic of paradox (designed by Priest in [18]) seems to
be of special interest as it is paraconsistent and many-valued. We let this as
an open research topic which we intend to pursue in the future, given that
the logic of paradox has very special and unique characteristics which make
it a rather complicated case.

Gödel in his note [12] showed that there is an infinite hierarchy between
Heyting’s intuitionistic logic H and classical logic, as we mentioned in the
introduction. This infinite hierarchy gives rise to Gödel intermediate log-
ics. We have produced a paraconsistentization of G3. Of course, the whole
hierarchy of Gödel’s logic could be paraconsistentized and a natural ques-
tion would be: are these paraconsistentized intermediate logics between a
paraconsistentized version of H and a paraconsistentized version of classical
logic? This topic will be developed in the future, when we intend to study
paraconsistentization of Heyting’s intuitionistic logic.

In [8], paraconsistentization has been studied in the realm of abstract
logic. In [9], it has been applied to axiomatic formal systems and valua-
tion structures, which are still general and abstract. In this paper, specific
many-valued systems were studied applying techniques and methodologies
of paraconsistentization.
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