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SSuuppeerraaççããoo éé ppooddeerr ffaazzeerr aaccoonntteecceerr ccoomm aass ffeerrrraammeennttaass qquuee tteemmooss eemm mmããooss,,

SSuuppeerraaççããoo éé ttrraabbaallhhaarr ddaa mmeellhhoorr ffoorrmmaa ppoossssíívveell iinnddeeppeennddeenntteemmeennttee ddoo qquuee

ppeennsseemm oouu ffaalleemm..

SSuuppeerraaççããoo éé iirrmmooss aalléémm ddoo qquuee ooss oouuttrrooss aacchhaamm qquuee ssoommooss ccaappaazzeess!!!!!!

((AAuuttoorr ddeessccoonnhheecciiddoo))

VVeenncceerr aa ssii pprróópprriioo éé aa mmaaiioorr ddee ttooddaass aass vviittóórriiaass

PPllaattããoo

PPaarraa sseerr ffeelliizz bbaassttaa tteerr aammiiggooss,,

ffaammíílliiaa ee oorrgguullhhoo ddoo qquuee ssee ffaazz......

......ssoouu ffeelliizz!!

CCllaayyttiimm
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AAmmaarr éé sseennttiirr nnaa ffeelliicciiddaaddee ddoo oouuttrroo aa pprróópprriiaa ffeelliicciiddaaddee..

GGoottttffrriieedd WWiillhheellmm vvoonn LLeeiibbnniittzz

DDeeddiiccoo eessttee ttrraabbaallhhoo àà mmiinnhhaa ffaammíílliiaa::

AAoo mmeeuu ppaaii,, mmiinnhhaa rreeffeerrêênncciiaa ddee hhoonneessttiiddaaddee,, aammoorr ee ddeeddiiccaaççããoo;; ee qquuee

mmeessmmoo aauusseennttee sseemmpprree eesstteevvee ccoonnoossccoo;;

ÀÀ mmiinnhhaa mmããee,, qquuee sseemm mmeeuu ppaaii ee ggrráávviiddaa ddoo ccaaççuullaa ddaa ffaammíílliiaa,, nnããoo mmeeddiiuu

eessffoorrççooss ppaarraa nnooss ffoorrnneecceerr oo bbáássiiccoo ee oo mmaaiiss iimmppoorrttaannttee:: oo aammoorr..

ÀÀ mmiinnhhaa eessppoossaa,, vvooccêê éé oo mmaaiioorr eexxeemmpplloo ddee qquuee oo aammoorr ssuuppeerraa ttuuddoo.. VVooccêê

mmee eenntteennddee,, mmee aauuxxiilliiaa,, ffiiccaa ccoommiiggoo ee mmee ddeeiixxaa qquuaannddoo pprreecciissoo.. SSeemm vvooccêê eeuu nnããoo

tteerriiaa cchheeggaaddoo aaqquuii.. NNoossssaa uunniiããoo éé ppaarraa sseemmpprree!! AAmmoo vvooccêê!!

ÀÀ mmiinnhhaa ffiillhhaa,, qquuee mmee cchhaammoouu ttaannttaass vveezzeess ppaarraa bbrriinnccaarr,, jjooggaarr vvííddeeoo ggaammee

ee ppaasssseeaarr...... ddiiaannttee ddoo mmeeuu nnããoo ssoorrrriiuu ee mmee eenntteennddeeuu.. PPaappaaii ttee aammaa!!!!

AAooss mmeeuuss ttiiooss ((EEuurrííppeeddeess ee DDeessnnaaííddeess)),, mmeeuuss ““sseegguunnddooss ppaaiiss””;; vvooccêêss sseemmpprree

ffoorraamm uummaa rreeffeerrêênncciiaa ppaarraa mmiimm..

AAooss mmeeuuss ppaaddrriinnhhooss qquuee ““aannddaarraamm ssuummiiddooss”” ee rreettoorrnnaarraamm ppaarraa nnoossssoo

ccoonnvvíívviioo ffaammiilliiaarr.. QQuuee bboomm!!

AAooss mmeeuuss iirrmmããooss,, AAlleexxaannddrree ee LLeeoonnaarrddoo.. AAlleexxaannddrree,, vvooccêê éé mmeeuu eexxeemmpplloo ddee

sseerreenniiddaaddee ee ppaacciiêênncciiaa;; ee vvooccêê LLeeoo,, eexxeemmpplloo ddee iinntteelliiggêênncciiaa ee ddeeddiiccaaççããoo..

AAmmoo mmuuiittoo ttooddooss vvooccêêss !!!!!!
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oportunidade de convivermos para que pudesse aprender um pouco com você. Tenho orgulho de 

ser seu amigo Alex Betão!  

Às minhas filhinhas do coração... Elisa e Mirelle, com vocês aprendi mais do que ensinei; 
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AABBRREEVVIIAATTUURRAASS EE SSIIGGLLAASS

4-HPPD - 4-hidroxil-fenil-piruvato dioxigenase  

ACN - acetonitrila 

AD - domínio de ativação da transcrição 

Aox1 - oxidase alternativa 

APS1 - 5’adenilil sulfato quinase 

Atg4 - cisteína protease 

ATP - adenosina trifosfato 

BCIP - 5-bromo-4-chloro-3-indolil fosfato 

BSA - soro albumina bovina 

CTAB - brometo hexadecil trimetil amônio catiônico 

BD - domínio de ligação ao DNA 

cAMP - adenosina monofosfato cíclico 

Cap20 - fator de virulência cap20 

cDNA - DNA complementar 

CEK1 - proteína quinase ativada por mitose 

ClpA - chaperona ClpA 

Cne1 - calnexina 

CPP1 - fosfatase relacionada com formação de hifa 

CST20 - quinase relacionada com formação de hifa 

CTAB - brometo hexadecil trimetil amônio catiônico 

Ctf1b - fator de transcrição C6 1-b 

CTS - quitinase 

DDC - descarboxilase de aminoácidos aromáticos 

DDR48 - proteína relacionada ao estresse Ddr48 

Dfg5 - glicosil hidrolase 

DIP5 - permease de aminoácido ácido 

DNA - ácido desoxirribonucléico 

DTT - di-tiotreitol 

EBP – proteína que se liga ao estradiol 

EDTA - ácido etileno-diamino-tetra acético 

Eef1a - fator  de elongação da tradução, subunidade 1-alfa 

ERG 6 - esterol c-metil-transferase 
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ERG 9 - esqualeno sintetase 

ERG25 - C-4-esterol metil oxidase 

EST – etiqueta de seqüência expressa 

FKBP- peptidil prolil isomerase 

Fmd - formamidase 

GAPDH - gliceraldeído 3-fosfato desidrogenase 

GEL - glucanosil transferases 
GP - glicoproteína 
GLK - glucoquinase 

GLNA - glutamina sintase  

GPI - glicosil-fosfatidil inositol  
GST - glutationa S-transferase 
HSP - proteína de choque térmico 

IgG - imunoglobulina G 

IPTG - isopropil- -D-tiogalactopiranosídeo 

ITS - seqüência espaçadora interna – “internally transcribed sequence” 

Kb - Kilobases 

kDa - KiloDalton 

L-DOPA - L - Di-hidroxi fenil alanina 
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Pb – Paracoccidioides brasiliensis
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Pb Y20 – proteína homóloga à flavodoxina 

Pb M46 – homóloga à enolase 

PBS - solução de tampão fosfato 

PCM - paracoccidioidomicose 

PCR - reação em cadeia da polimerase 

PFGE - gel em eletroforese de pulso alternado 

pH - potencial hidrogeniônico 
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PKC - proteína quinase C  
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Rad6 - enzima E2 conjugada à ubiquitina 
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RDA - análise de diferença representacional 
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RNA - ácido ribonucleico 

RNAm - RNA mensageiro 
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Ubq10 - poli-ubiquitina 

UDP - uridina difosfato 

URE - urease 
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RREESSUUMMOO

Paracoccidioides brasiliensis é um fungo termodimórfico causador da paracoccidioidomicose, 
uma doença endêmica na America Latina. A transição da forma miceliana (22°C) para forma 
levedura (36 °C) é induzida pela mudança da temperatura do ambiente para aquela no 
hospedeiro mamífero. Genes que são diferencialmente expressos nas fases de P. brasiliensis
podem ser relevantes para o dimorfismo, e para o estabelecimento da infecção. No presente 
trabalho descrevemos a análise de genes diferencialmente expressos de P. brasiliensis. O gene 
da formamidase foi descrito como altamente expresso na fase miceliana de P. brasiliensis,
isolado Pb01. Formamida aminohidrolase (formamidase, EC 3.5.1.49) catalisa a hidrólise 
específica da formamida para produção de amônia e formato. Nós identificamos a formamidase 
de P. brasiliensis, a qual reage com anticorpos presentes em soro de pacientes infectados com P.
brasiliensis. O cDNA do gene foi clonado e a proteína heteróloga foi produzida e purificada. 
Adicionalmente, a proteína recombinante purificada foi reconhecida por soro de pacientes 
diagnosticados com paracoccidioidomicose e não reagiu com soro de indivíduos saudáveis. A 
proteína recombinante de 45-kDa foi cataliticamente ativa e sua atividade foi detectada em 
extratos protéicos das fases miceliana e leveduriforme de P. brasiliensis. A formamidase 
recombinante foi utilizada na produção de anticorpo policlonal em camundongos, que mostrou 
uma alta especificidade em ensaios de Western blot. A purificação da proteína nativa foi 
realizada em dois passos de cromatografia. As frações com atividade de formamidase foram 
selecionadas e analisadas por SDS-PAGE, o qual revelou uma proteína com massa molecular de 
180-kDa. A proteína nativa purificada foi submetida à espectrometria de massas e foi 
identificada como formamidase. Adicionalmente, ensaios de SDS-PAGE com extratos protéicos 
desnaturados por calor revelaram uma proteína com massa molecular de 45-kDa. Estes 
resultados sugerem que a formamidase de P. brasiliensis é uma proteína tetramérica. A 
localização celular da proteína nativa em células fúngicas leveduriformes foi realizada através de 
microscopia confocal e de transmissão. A formamidase de P. brasiliensis foi encontrada no 
citoplasma e parede celular. Com o objetivo de elucidar o papel desta molécula, o cDNA 
codificante para formamidase foi utilizado para rastrear uma biblioteca construída com cDNAs 
de leveduras de P. brasiliensis utilizando o sistema de duplo-híbridos em Saccharomyces 
cerevisiae. Proteínas relacionadas com enovelamento protéico, processamento e destinação 
foram encontradas, as quais podem estar relacionadas com a localização da formamidase na 
parede celular, bem como com seu envolvimento no metabolismo de nitrogênio de P.
brasiliensis. Um modelo das interações da formamidase foi construído. Nós avaliamos genes 
possivelmente envolvidos no estabelecimento da fase leveduriforme de P. brasiliensis.
Mudanças na expressão gênica na fase levedura foram analisadas por meio da comparação do 
isolado Pb01 com um isolado que mantém a forma miceliana a 37 °C, utilizando a estratégia 
metodológica subtrativa cDNA-RDA. Em esforço para ajudar a identificação dos produtos 
gênicos associados com a fase leveduriforme parasita, perfis de cDNAs foram gerados de células 
leveduras do isolado Pb01 e do isolado Pb4940, o último cresce in vitro como micélio na 
temperatura do hospedeiro. O isolado Pb01 induziu a expressão de uma variedade de transcritos 
codificantes para proteínas relacionadas com resposta ao estresse, composição da 
parede/membrana celular, quando comparado com o isolado Pb4940, provavelmente refletindo o 
estabelecimento e manutenção da fase leveduriforme parasitária de P. brasiliensis. 
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AABBSSTTRRAACCTT

Paracoccidioides brasiliensis is a thermally dimorphic fungus causing paracoccidioidomycosis, 
an endemic disease widespread in Latin America. The dimorphic transition from the mycelia (22 
ºC) to the yeast (36 ºC) form is induced by a shift from the environmental temperature to that of 
the mammalian host. Genes that are differentially expressed in phases of P. brasiliensis can be 
relevant to the dimorphism, and to the establishment of infection. Here we describe the analysis 
of differentially expressed genes of P. brasiliensis. The formamidase gene of P. brasiliensis was 
described as highly expressed in mycelia of P. brasiliensis, isolate Pb01. Formamide 
aminohydrolase (formamidase, EC 3.5.1.49) catalyzes the specific hydrolysis of formamide to 
produce ammonia and formate. We identified the formamidase of P. brasiliensis, which reacts 
with antibodies present in sera of P. brasiliensis infected patients. The cDNA of the gene was 
cloned and the heterologous protein was produced and purified. Also, the purified recombinant 
protein was recognized by sera of patients with proven paracoccidioidomycosis and not by sera 
of healthy individuals. The recombinant 45-kDa protein was shown to be catalytically active and 
formamidase activity was also detected in P. brasiliensis yeast and mycelium protein extracts. 
The recombinant formamidase was used to produce polyclonal antibody in mice, which showed 
high specificity in western blot assay. We also performed purification of the native protein in 
two steps of chromatography. Fractions with formamidase activity were selected and analysed 
by SDS-PAGE, which revealed a protein with molecular mass of 180-kDa. The purified native 
protein was submitted to mass spectrometry and was identified as formamidase. Additionally, 
SDS-PAGE assay with heat-denatured protein extracts revealed a protein with molecular mass of 
45-kDa. Those results suggest that P. brasiliensis formamidase is a tetrameric protein. The 
cellular localization of the native protein in fungal yeast cells was performed by confocal and 
transmission electron microscopy. The P. brasiliensis formamidase was found in cytoplasm and 
cell wall. In order to elucidate the role of this molecule, the cDNA encoding formamidase was 
used to screen a library constructed with P. brasiliensis yeast cells cDNAs using a 
Saccharomyces cerevisiae two-hybrid system. Proteins related with protein folding, processing 
and destination were found, which can be related to the cell wall localization of formamidase, as 
well as with the protein involvement in nitrogen metabolism of P. brasiliensis. A model for 
formamidase interactions is provided. We evaluated genes putatively involved in the 
establishment of yeast phase of P. brasiliensis. Changes in gene expression in the yeast phase 
were analyzed by comparison of the isolate Pb01 to a non-differentiating mycelia-like isolate 
using subtractive the  cDNA-RDA methodological strategy. In an effort to help identify gene 
products associated with the yeast parasitic phase, cDNAs profiles were generated from yeast 
cells of isolate Pb01 and from isolate Pb4940, the last growing as mycelia at the host 
temperature. The isolate Pb01 induced the expression of a variety of transcripts encoding some 
proteins related to stress response, cell wall/membrane composition, compared to isolate 
Pb4940, probably reflecting the establishment/maintenance of the P. brasiliensis yeast parasitic 
phase. 
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II.. IInnttrroodduuççããoo

II..11.. AAssppeeccttooss GGeerraaiiss

Paracoccidioides brasiliensis é um fungo termodimórfico, agente etiológico da 

Paracoccidioidomicose (PCM), doença endêmica na América Latina (Restrepo & Tobón, 

2005). O Brasil é responsável por 80% dos casos descritos na literatura, seguido por Colômbia 

e Venezuela (Coutinho et al., 2002). No Brasil, os estados das regiões Sul, Sudeste e Centro-

Oeste são os locais onde a doença tem mais casos relatados (Paniago et al., 2003).

O fungo cresce como levedura, a 36 ºC no hospedeiro humano ou quando cultivado in

vitro e como micélio, forma infectiva e saprobiótica, no ambiente em temperaturas inferiores a 

28 ºC (Bagagli et al., 2006). As leveduras de P. brasiliensis são caracterizadas por 

apresentarem múltiplos brotamentos formados por evaginações da célula-mãe, revelando uma 

célula central circundada por várias células periféricas, microscopicamente similar à roda de 

leme de navio, o que caracteriza a presença de P. brasiliensis em materiais biológicos. A forma 

miceliana pode ser identificada por filamentos septados com conídeos terminais ou intercalares 

(Queiroz-Telles, 1994; Restrepo-Moreno, 2003). 

II..22.. PPaarraaccoocccciiddiiooiiddoommiiccoossee

A PCM é uma micose humana sistêmica granulomatosa. P. brasiliensis infecta 

hospedeiros humanos usualmente pela inalação de propágulos do micélio, como artroconídeos 

(San Blas et al., 2002). A patogênese da paracoccidioidomicose ainda não está bem definida, 

embora, em animais experimentais infectados por via inalatória com conídeos, ocorra 

diferenciação destes para forma leveduriforme. Observa-se também invasão tecidual e 

disseminação pela via hematogênica ou linfática para órgãos e tecidos extrapulmonares como 

fígado, baço e sistema nervoso central (San-Blas, 1993; Camargo & Franco, 2000; Valera et 

al., 2008).

É possível que a inalação de propágulos de P. brasiliensis resulte na formação de um 

foco inflamatório nos pulmões, que geralmente regride com a imunidade do hospedeiro, 

constituindo a forma subclínica ou assintomática, conhecida como PCM infecção. A PCM 

pode ocorrer na forma juvenil, representando de 3 a 5% dos relatos descritos da doença, de 

desenvolvimento rápido e com o pior dos prognósticos, sendo a maioria de indivíduos 

constituída por crianças ou adultos jovens. Já a forma crônica ou adulta da doença acomete 

geralmente homens adultos, com idade entre 30 e 60 anos, progride vagarosamente, havendo 

comprometimento pulmonar evidente (Brummer et al., 1993). A evolução da patologia e a 
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manifestação das formas clínicas dependem de fatores imunológicos do hospedeiro (Franco, 

1987) e dos diferentes níveis de virulência de isolados do fungo (San-Blas & Nino-Vega, 

2001).

Estima-se que 10 milhões de indivíduos no mundo estejam infectados e que 2 % das 

pessoas acometidas possam desenvolver a doença (McEwen et al. 1995). No Brasil, em áreas 

classificadas como altamente endêmicas, presume-se que a taxa de incidência anual da doença 

seja de 1 a 3 casos por 100.000 habitantes (Restrepo-Moreno & Greer 1983, Londero & Ramos 

1990). Entre os anos de 1980 a 1995, a PCM foi descrita como a oitava causa de mortalidade 

por doença predominantemente crônica ou repetitiva, entre as infecciosas e parasitárias, e com 

a mais elevada taxa de mortalidade entre as micoses sistêmicas, apresentando uma taxa de 

mortalidade média anual de 1,45/milhão de habitantes, sendo que o estado de São Paulo 

apresentou maior freqüência (29,86 %), seguido por Paraná (14,52 %), Minas Gerais (12,51 

%), Rio Grande do Sul (8,80 %) e Rio de Janeiro (7,92 %) (Coutinho et al. 2002). A incidência 

da doença até a puberdade é a mesma em ambos os sexos, porém na fase adulta, mais de 80% 

dos pacientes são do sexo masculino na faixa etária entre 30 e 60 anos (Martinez, 1997). A 

maior prevalência da doença em indivíduos do sexo masculino pode ser justificada pela 

inibição da transição de micélio para levedura pelo hormônio feminino 17- -estradiol presente 

em mulheres em idade reprodutiva (Restrepo et al., 1984; Sano et al., 1999), ou pelo maior 

contato de indivíduos do sexo masculino com as fontes de infecção (Marques et al., 1983). 

Casos de PCM foram diagnosticados fora de áreas endêmicas como Europa, Estados 

Unidos da América e Ásia (Joseph et al., 1966; Chikamori et al., 1984; Ajello & Polonelli, 

1985). Estes relatos possibilitaram a determinação de um período assintomático médio de 15,3 

anos após o contato do paciente com a área endêmica até a manifestação da doença, o que 

dificulta a determinação do real período em que ocorreu a infecção (Brummer et al., 1993). 

II..33.. CCllaassssiiffiiccaaççããoo TTaaxxoonnôômmiiccaa

A primeira descrição da PCM foi realizada em São Paulo, em 1908, por Adolpho Lutz, 

com relatos das características do agente etiológico, previamente denominado de Zymonema 

brasiliensis por Splendore em 1912. Almeida (1930), após comparações com Coccidioides 

immitis, caracterizou o fungo como do gênero Paracoccidioides e da espécie brasiliensis. A

classificação de P. brasiliensis como pertencente ao Reino: Fungi; Divisão: Eumycota; Sub-

divisão: Deuteromycotina; Classe: Hyphomycetes; Ordem: Moniliales; Família: Moniliaceae; 

Gênero: Paracoccidioides; Espécie: brasiliensis, foi considerada devido ao não conhecimento 

de sua fase sexuada (Lacaz et al., 1991). A caracterização do fungo como pertencendo ao filo 
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Ascomycota, mesmo não se conhecendo a fase teleomórfica, foi realizada por Leclerc et al.

(1994) através de comparação entre seqüências de DNA da subunidade ribossomal 28S de 

dermatófitos e fungos dimórficos. Guého et al. (1997), realizaram posteriormente comparações 

entre seqüências parciais de rDNA de fungos dimórficos, classificando o fungo P. brasiliensis,

juntamente com os gêneros Histoplasma, Emmonsia e Blastomyces, como pertencentes à 

família Onygenaceae. Outras análises filogenéticas realizadas com seqüências da subunidade 

ribossomal menor de fungos corroboraram a inserção de P. brasiliensis na ordem Onygenales 

(Bialek et al., 2000). 

Atualmente, P. brasiliensis é classificado no reino Fungi, filo Ascomycota, subdivisão 

Euascomycotina, classe Plectomyceto, subclasse Euascomycetidae, ordem Onygenales, família 

Onygenaceae, subfamília Onygenaceae Anamórficos, gênero Paracoccidioides, espécie 

Paracoccidioides brasiliensis (San-Blas et al., 2002, Bagagli et al., 2006). Matute et al., (2006, 

2006a) descreveram a existência de três diferentes espécies filogenéticas de P. brasiliensis: S1 

(espécie 1), PS2 (espécie filogenética 2) e PS3 (espécie filogenética 3). A espécie filogenética 

PS3 está geograficamente restrita à Colômbia, enquanto S1 está distribuída no Brasil, 

Argentina, Paraguai, Peru e Venezuela. Alguns isolados da espécie filogenética PS2 foram 

encontrados na Venezuela e no Brasil, nos Estados de São Paulo e Minas Gerais (Matute et al., 

2006). Isolados classificados nas três espécies foram capazes de induzir a doença em 

hospedeiros humanos e animais; no entanto PS2 apresentou menor virulência (Matute et al.,

2006a). A fim de analisar as relações filogenéticas entre os isolados de P. brasiliensis, foi 

realizada a comparação de seqüências de regiões codantes, não codantes e ITS (seqüência 

espaçadora interna - “internally transcribed sequence”) de 7 novos isolados e 14 isolados já 

estudados de P. brasiliensis oriundos do Brazil, Colômbia e Venezuela. Vinte isolados se 

agruparam nos três grupos filogenéticos descritos anteriormente (S1, PS2 e PS3), com exceção 

do isolado Pb01 (objeto de nossos estudos). Este isolado claramente separa-se de todos os 

outros, apresentando uma alta variabilidade genética quando comparado com os outros isolados 

de P. brasiliensis, podendo constituir uma nova espécie no gênero Paracoccidioides (Carrero et

al., 2008; Theodoro et al., 2008).  

A análise da transmissão de genes, como o que codifica para a glicoproteína gp43 

(Travassos et al., 1995; Cisalpino et al., 1996), uma candidata a vacina (Buissa-Filho et al., 

2008; Travassos et al., 2008) e genes relacionados a fatores de virulência, foi realizada em 

isolados de P. brasiliensis, revelando que o gene que codifica para a glicoproteína gp43  está 

sobre seleção positiva dentre os isolados e apresentou pequena variação entre as seqüências 

codificantes, o que reforça a hipótese de utilização de marcadores moleculares para a 
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identificação de isolados de P. brasiliensis ou de grupos filogenéticos identificados no fungo. 

Além disso, esses estudos auxiliam na compreensão da patogênese e dos processos adaptativos 

dos grupos filogenéticos de P. brasiliensis (Matute et al., 2008; Puccia et al., 2008).

II..44.. BBiioollooggiiaa ddee PP.. bbrraassiilliieennssiiss

O fungo P. brasiliensis é encontrado em locais com características ambientais comuns 

denominados de reservárias, os quais apresentam peculiaridades microambientas, tais como 

condições do solo e clima (Restrepo-Moreno, 1994). O nicho ecológico de P. brasiliensis não 

está bem estabelecido em virtude de seu raro e não reprodutível isolamento do ambiente, o 

prolongado período de latência no hospedeiro humano, bem como indefinição do hospedeiro 

intermediário do fungo (Bagagli et al., 1998; Bagagli et al., 2003). Contudo, foi identificado o 

crescimento de P. brasiliensis em meio de cultura com amostras de solo de regiões endêmicas 

(Terçarioli, et al., 2007), em habitats exógenos ao homem (Borelli, 1972) como fezes de 

pingüim e de uma amostra comercial de ração canina (Gezuele, 1989; Ferreira et al., 1990), 

solo, água e plantas (Restrepo et al., 2001). O fungo foi isolado de tatus das espécies Dasypus 

novemcinctus, Dasypus septemcinctus, Cabassous centralis e de outros animais na natureza, 

mostrando que a infecção em animais silvestres é comum em áreas endêmicas (Bagagli et al.

2003, Corredor et al. 2005), assim como em animais domésticos, a qual deve se tratar de 

infecção acidental e não natural do fungo (Conti-Diaz, 2007). Através da técnica de PCR, 

utilizando-se amostras de tecidos de animais silvestres mortos acidentalmente, P. brasiliensis

foi identificado em porco-da-índia (Cavia aperea), porco espinho (Sphigurrus spinosus), 

guaxinim (Procyon cancrivorus) e furão (Gallictis vittata), retratando um novo perfil de 

prevalência do fungo em animais silvestres (Richini-Pereira et al., 2008). 

A organização genômica de P. brasiliensis era desconhecida pelo fato de não se 

conhecer a fase telemórfica do fungo. Estudos utilizando-se a técnica de gel em eletroforese de 

pulso alternado (PFGE), identificaram entre 4 ou 5 cromossomos com 2-10 Mb tanto de 

isolados do meio ambiente, quanto de isolados clínicos. P. brasiliensis apresentaria um genoma 

entre 23-31 Mb (Montoya et al., 1997, Feitosa et al., 2003). Estudos realizados utilizando-se 

citometria de fluxo em isolados de P. brasiliensis demonstraram que leveduras uninucleadas 

apresentam um genoma variando de 26,3 a 35,5 Mb. Quando foram considerados os conídios, 

nenhuma diferença significativa com a forma de levedura foi identificada (30,2 a 30,9 Mb) 

(Almeida et al., 2007). O genoma estrutural de três isolados de P. brasiliensis (Pb01, Pb03 e 

Pb18) foi realizado, confirmando a presença de 5 cromossomos em cada isolado. O genoma do 

isolado Pb01 apresentou 32,94 Mb, com um total de 9.132 genes. Essas informações auxiliarão 
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na compreensão das diferenças existentes entre os isolados, na caracterização de genes e suas 

regiões promotoras, e no desenvolvimento de novas ferramentas biomoleculares e genéticas 

importantes para a elucidação da biologia de P. brasiliensis. 

(http://www.broad.mit.edu/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html).

II..55.. DDiimmoorrffiissmmoo eemm PP.. bbrraassiilliieennssiiss

P. brasiliensis é fungo termodimórfico, pois tem como característica a alternância entre 

duas formas, micélio no ambiente e levedura quando submetido a ambientes hostis como o do 

hospedeiro humano (Kurokawa et al., 1998; San-Blas et al., 2002). A transição dimórfica é 

considerada parte importante na fase inicial da interação de fungos com o hospedeiro, sendo 

considerada etapa essencial para o estabelecimento de infecções (San-Blas et al., 2002; 

Nemecek et al., 2006). 

A temperatura é um dos estímulos ambientais mais notórios para o dimorfismo de P. 

brasiliensis, o qual cresce como micélio em temperaturas inferiores a 28 °C e como levedura a 

36 °C (Bagagli et al., 2006). Além da temperatura, fatores nutricionais podem interferir no 

processo dimórfico de P. brasiliensis. O crescimento a 25 °C em meio de cultura 

quimicamente definido adicionado de soro fetal de bezerro, permitiu preservar a expressão 

fenotípica de P. brasiliensis na forma de levedura (Villar et al., 1988). 

Outro fator relacionado ao dimorfismo de P. brasiliensis é a presença do hormônio 

feminino 17- -estradiol, o qual inibe a transição de micélio para levedura in vitro (Restrepo et

al., 1984) e in vivo (Sano et al., 1999), sendo esse fato relacionado como possível fator de 

proteção contra a infecção em mulheres. Uma proteína de ligação ao estradiol (EBP – Estradiol 

binding protein), cujo transcrito foi identificado como preferencialmente expresso no 

transcritoma de P. brasiliensis na fase leveduriforme (Felipe et al., 2005), foi anteriormente 

descrita como possuidora de sítio de ligação ao 17- -estradiol (Loose et al., 1983; Clemons et 

al., 1989). Acredita-se que a interação do hormônio 17- -estradiol com a EBP citoplasmática 

iniba a transição de micélio para levedura, explicando a diferença na incidência da PCM em 

mulheres. Aristizabal et al., (2002) observaram, in vivo, a participação do hormônio feminino 

na resistência de fêmeas de rato ao desenvolvimento inicial da PCM.  

Durante a transição de micélio para levedura, conversão morfogenética de P.

brasiliensis, ocorrem mudanças na composição da parede celular. Análises citoquímicas e 

estruturais da parede celular do fungo em suas duas formas foram realizados confirmando a 

presença de polímeros de -1,3-glicana em leveduras, prioritariamente, e -1,3-glicana em 

micélio (Paris et al. 1986). Durante a transição de micélio para levedura ocorre a mudança do 
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polímero de -1,3-glicana para -1,3-glicana (Kanetsuna et al. 1969). Como provável meio de 

defesa, fagócitos humanos produzem -1,3-glicanase capaz de digerir somente -1,3-glicana. 

Contudo, durante a diferenciação de micélio para levedura logo no início da infecção, há maior 

teor -1,3-glicana, a qual deve proteger o fungo contra a ação das enzimas -glicanases 

fagocitárias permitindo a instalação da forma patogênica do fungo. Quitina é encontrada em 

ambas as formas do fungo apresentando um maior teor em levedura quando comparado a 

micélio (San-Blas et al. 1987, Kurokawa et al. 1998).  

O gene codificante para a Dfg5, uma proteína de parede celular membro da família das 

glicosil hidrolases foi caracterizado. Ensaios de RT-PCR identificaram o transcrito como mais 

expresso na fase leveduriforme de P. brasiliensis. Ensaios de interação com proteínas de matriz 

extracelular (MEC) mostraram que a Dfg5 de P. brasiliensis interage com fibronectina, 

laminina e colágeno tipo I e IV. A interação de Dfg5 com proteínas da matriz extracelular deve 

estar relacionada com o provável papel da proteína na interação de P. brasiliensis com o 

hospedeiro (Castro et al., 2008).  Castro e colaboradores (2005) identificaram transcritos que 

codificam para proteínas potencialmente ancoradas na membrana/parede celular via âncora 

GPI (glicosil-fosfatidil inositol). Os transcritos que codificam para as enzimas glicanosil-

transferases (Gel1, Gel2 e Gel3) foram identificados no transcritoma de P. brasiliensis. A Gel3 

está relacionada à morfogênese da parede celular na forma miceliana (Castro et al., 2008, in

press).

Estudos de genes/proteínas, estágio específicos ou com expressão diferencial durante a 

transição dimórfica do fungo foram realizados por diferentes grupos de pesquisa. Alterações na 

expressão de proteínas em P. brasiliensis foram detectadas nos estágios iniciais do processo de 

diferenciação celular no isolado Pb01 (Silva et al. 1994). Utilizando técnicas de proteômica 

(eletroforese bidimensional), observou-se variação nos padrões de síntese protéica em 

diferentes isolados na fase miceliana e um perfil protéico mais similar de isolados na fase 

leveduriforme, mostrando que leveduras de diferentes isolados do fungo parecem apresentar 

um perfil protéico mais similar do que o perfil protéico presente em isolados da forma 

miceliana (Salem-Izacc et al., 1997).  

Cunha et al. (1999), detectaram, por meio de seqüenciamento aminoterminal, a proteína 

PbY20 similar à flavodoxinas, exclusiva da fase de levedura. O gene que codifica para a 

PbY20 foi caracterizado e apresenta baixos níveis de transcrito na fase miceliana do fungo, 

sendo induzido durante a diferenciação de micélio para levedura. A proteína foi detectada 

imunologicamente em extrato protéico total obtido de células em fase leveduriforme (Daher et 

al., 2005).
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O cDNA e o gene que codificam para a enzima formamidase de P. brasiliensis foi 

caracterizado. A Formamidase de P. brasiliensis é preferencialmente expressa na fase 

miceliana do fungo (Felipe et al., 2003; Borges et al., 2005). A proteína recombinante foi 

produzida, apresentando atividade enzimática de formamidase. A proteína recombinante 

mostrou-se reativa com soros de pacientes com paracoccidioidomicose. A formamidase de P.

brasiliensis deve ser importante para o metabolismo de nitrogênio e possivelmente deve estar 

relacionada com estratégias de sobrevivência e interação do fungo com o hospedeiro (Borges et 

al., 2005, 2008-presente trabalho). 

Antígenos de P. brasiliensis foram identificados por meio de imunobloting utilizando-

se soros de pacientes com PCM. As proteínas identificadas foram submetidas à 

seqüenciamento parcial de aminoácidos. Análises em banco de dados revelaram homologia 

com os antígenos catalase, malato desidrogenase, frutose-1-6-bifosfato aldolase (FBA), 

gliceraldeído-3-fosfato desidrogenase (GAPHD) e triose fosfato isomerase (TPI), 

preferencialmente expressos na fase leveduriforme de P. brasiliensis (Fonseca et al., 2001). Os 

genes codificantes dos antígenos foram caracterizados.  

O cDNA codificante para a catalase P (peroxissomal) foi caracterizado e análises por 

Northern blot e western blot revelaram que o RNAm e o produto protéico apresentaram menor 

expressão na fase miceliana quando comparada à fase leveduriforme de P. brasiliensis 

(Moreira et al., 2004). Dois cDNAs codificantes da FBA foram caracterizados e apresentaram 

diferenças significativas, o que sugere a ocorrência de duplicação gênica em gene ancestral em 

P. brasiliensis (Carneiro et al., 2005). O cDNA e o gene que codifica para a enzima da via 

glicolítica GAPDH foram caracterizados. A análise da expressão do gene e da proteína foi 

avaliada revelando que, em P. brasiliensis, há um aumento da expressão de GAPDH durante a 

diferenciação de micélio para levedura bem como no processo reverso (Barbosa et al., 2004). 

A proteína recombinante foi produzida em modelo heterólogo e o anticorpo policlonal contra 

GAPDH foi produzido. Por meio de imunocitoquímica a proteína GAPDH foi localizada tanto 

no citoplasma quanto na parede celular de leveduras de P. brasiliensis. A proteína GAPDH se 

liga à componentes matriz extracelular, o que sugere seu papel como uma adesina de P.

brasiliensis. A proteína recombinante e o anticorpo anti-GAPDH inibem a adesão e 

internalização de à pneumócitos cultivados in vitro, o que reforça o papel da GAPDH como 

molécula de interação P. brasiliensis-hospedeiro (Barbosa et al., 2006). O gene e o cDNA 

codificantes para TPI de P. brasiliensis foram caracterizados. A proteína, bem como o 

anticorpo policlonal produzido contra a proteína recombinante inibem a interação de P.

brasiliensis com células epiteliais (Pereira et al., 2004, 2007).  
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Proteínas de choque térmico provavelmente relacionadas com a sobrevivência do fungo 

no ambiente do hospedeiro foram descritas, tais como HSP70 (Silva et al., 1999), relacionada 

com a termotolerância de P. brasiliensis, porém, aparentemente sem correlação com virulência 

(Theodoro et al., 2008a). O cDNA codificante para a proteína de choque térmico HSP90 foi 

seqüenciado. Análises por northern blot revelaram que a HSP90 é mais expressa na fase 

leveduriforme e durante a transição dimórfica de micélio para levedura. A HSP90 deve estar 

relacionada com a transição dimórfica e com o estresse oxidativo de P. brasiliensis (Nicola et 

al., 2008). Outras proteínas de estresse como HSP60 (Salem-Izacc et al., 2001), ClpB (Jesuino 

et al., 2002) foram descritas, as quais apresentam baixos níveis de expressão na forma 

miceliana, quando comparado com a forma leveduriforme de P. brasiliensis. A expressão 

diferencial de tais moléculas pode estar relacionada com estratégias de sobrevivência, 

adaptação e diferenciação de P. brasiliensis no ambiente do hospedeiro. A proteína de choque 

térmico HSP60, um antígeno de P. brasiliensis (Cunha et al., 2002) apresenta efeito 

imunoprotetor em infecção experimental com dose letal de P. brasiliensis em camundongos 

(Soares et al., 2008).

Chagas e colaboradores (2008) analisaram três catalases (PbCatA, PbCatP e PbCatC), 

diferencialmente expressas nas fases de P. brasiliensis. Chagas e colaboradores (2008) 

identificaram atividades diferenciais em micélio e levedura das catalases A, P e C de P.

brasiliensis.  A espécie A predomina na fase miceliana e está associada ao estresse oxidativo 

endógeno. A espécie P predomina na fase leveduriforme de P. brasiliensis e está 

preferencialmente associada ao estresse oxidativo exógeno (Chagas et al., 2008). 

I.6 Projetos Transcritomas de P. brasiliensis

Pesquisadores da região Centro-Oeste do Brasil realizaram o Projeto Genoma 

Funcional e Diferencial de P. brasiliensis, o qual resultou no seqüenciamento de 6.022 genes 

expressos nas fases miceliana e leveduriforme do isolado Pb01, possibilitando a detecção de 

genes diferencialmente expressos (Felipe et al., 2003; 2005). A diferenciação celular em P.

brasiliensis requer mudança na temperatura, o que pode ser associado com a resposta ao 

estresse. Dessa forma, foram identificados 48 transcritos codificando chaperonas ou proteínas 

envolvidas no processo de estresse, sendo oito desses transcritos diferencialmente expressos. A 

análise do transcritoma também revelou alguns prováveis componentes das vias de sinalização 

e seqüências gênicas consideradas como potenciais alvos para drogas antifúngicas em P.

brasiliensis, não possuindo nenhum homólogo no genoma humano, como quitina deacetilase, 

isocitrato liase e -1,3-glicana sintase, todos preferencialmente expressas na fase 
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leveduriforme. A fase miceliana, infectiva, utiliza o piruvato no metabolismo aeróbio, uma vez 

que as enzimas relacionadas ao ciclo do ácido cítrico estão induzidas nesta fase. Já a fase 

leveduriforme, utiliza preferencialmente o piruvato para o metabolismo anaeróbio, 

evidenciando possivelmente a condição de baixo teor de oxigênio nos tecidos do hospedeiro. 

Pesquisadores do Estado de São Paulo realizaram o transcritoma do isolado Pb18, 

sendo identificados 4.692 genes (Goldman et al. 2003). Foram identificados potenciais fatores 

de virulência em P. brasiliensis, homólogos à Candida albicans. Genes da via de transdução de 

sinal foram implicados na transição dimórfica. A identificação de genes de P. brasiliensis,

homólogos aos envolvidos em vias de transdução de sinal em C. albicans, controlados por 

MAPK e cAMP, sugerem que possam estar também atuando em P. brasiliensis.  Uma quinase 

(CST20) homóloga à MEKK quinase e uma tirosina-fosfatase (CPP1) relacionadas com 

formação de hifa em C. albicans; e uma proteína quinase ativada durante a mitose (CEK1) 

homóloga a MAPK foram identificadas, o que sugere o papel dessas moléculas na mudança 

morfológica de P. brasiliensis.

Marques et al. (2004), identificaram, por meio de análises de ESTs, genes 

preferencialmente expressos na fase leveduriforme de P. brasiliensis (isolado Pb18). Dentre os 

genes identificados como diferencialmente expressos estão -1,3-glicana sintase, envolvida no 

metabolismo de parede celular. A mudança morfológica de P. brasiliensis é acompanhada pela 

mudança na composição de monômeros de glicana da parede celular que passam de -1,3-

glicana para -1,3-glicana, assim que o fungo adota a forma de levedura (San-Blas & Nino-

Vega, 2001). Outro gene preferencialmente expresso na fase leveduriforme de P. brasiliensis 

foi identificado como homólogo a uma C-4 esterol metil oxidase (ERG25), a qual realiza o 

primeiro passo enzimático da síntese de ergosterol de fungos. O aumento na expressão de 

ERG25 deve estar relacionado com a maior utilização de ergosterol na membrana celular, onde 

mudanças são fatores importantes na transição morfológica a 36 °C (Goldman et al., 2003). 

Também foram identificados como induzidos na fase leveduriforme, genes envolvidos na 

assimilação de aminoácidos que contêm enxofre, tais como metionina permease (Marques et 

al., 2004), o qual deve estar relacionado à manutenção no morfotipo de levedura, como 

descrito para Histoplasma capsulatum. Durante a transição de micélio para levedura em H.

capsulatum, grupos sulfidrílicos, principalmente na forma de cisteína parecem ser 

determinantes para o processo (Maresca & Kobayashi, 2000). Marques et al., (2004) 

confirmam, em seus experimentos, a auxotrofia do isolado Pb18 para o enxofre orgânico, 

sugerindo que o mesmo seja um importante estímulo para manter a fase leveduriforme 

patogênica de P. brasiliensis, isolado Pb18. O metabolismo de enxofre parece ser importante 
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para a transição dimórfica do isolado Pb01, visto que transcritos relacionados ao metabolismo 

e transporte de enxofre foram identificados. O transcrito que codifica para transportador de 

ferro/enxofre (isc) foi identificado como induzido em micélio. Transcritos que codificam para 

enzimas relacionadas à via de novo de biossíntese de cisteína tais como ATP sulfurilase, APS 

quinase e PAPS redutase, induzidas na fase leveduriforme e possivelmente relacionadas à 

transição dimórfica em P. brasiliensis (Andrade et al., 2006).  

A avaliação da expressão de genes de P. brasiliensis, isolado Pb18, durante a transição 

de micélio para levedura foi realizada por meio de microarranjos (Nunes et al. 2005) de DNA. 

Vários genes diferencialmente expressos durante a transição morfológica, como aqueles que 

codificam para enzimas envolvidas no metabolismo de aminoácidos, síntese de proteínas, 

proteínas de transdução de sinal, enzimas do metabolismo da parede celular, proteínas de 

resposta ao estresse oxidativo, controle do crescimento e desenvolvimento do fungo foram 

identificadas. Durante a transição da fase miceliana para a leveduriforme verificou-se alta 

expressão do gene que codifica para a 4-hidroxil-fenil-piruvato dioxigenase (4-HPPD), 

proteína envolvida no catabolismo de aminoácidos. Este gene pode ser inibido pela adição de 

NTBC [2-(2-nitro-4-trifluorometilbenzoil)-ciclohexano-1,3-diona], provocando bloqueio do 

crescimento e da diferenciação in vitro do fungo para a fase leveduriforme, o que indica papel 

da 4-HPPD na transição de micélio para levedura. 

A análise do perfil transcricional de P. brasiliensis durante a diferenciação morfológica 

de micélio para levedura foi realizada por Bastos et al. (2007), em nosso laboratório. Durante 

os estágios iniciais (22 horas) do processo de diferenciação, genes relacionados com a síntese e 

remodelamento de membrana e parede celulares são induzidos, bem como transcritos que 

codificam para enzimas relacionadas com a síntese e degradação de carboidratos de membrana 

e para transportadores de precursores para a síntese desses carboidratos de membrana. Genes 

codificantes de enzimas relacionadas com glicosilação de proteínas, síntese e correto 

enovelamento de proteínas (Parente et al., 2008) e síntese de lipídeos são também induzidos na 

diferenciação de micélio para levedura. Os dados sugerem ser o remodelamento da membrana 

e parede celulares os eventos mais evidentes no início da transição dimórfica, uma vez que 34 

genes relacionados à síntese/remodelamento da parede celular/membrana foram induzidos 

nesta condição (Bastos et al., 2007).  

Outros genes relacionados à enzimas da síntese de componentes da parede celular, 

como fosfoglicomutase, UDP-glucose pirofosforilase e alfa-1,3 glicana sintase, foram 

induzidos, assim como um novo transcrito que codifica para alfa-glicosidase, possivelmente 

relacionado ao processamento de beta-1,6 glicana. A quitina é o maior componente da parede 
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celular. Transcritos que codificam para quitinase 1 (CTS1) e 3 (CTS3) possivelmente 

relacionados ao remodelamento da parede celular na transição dimórfica, foram induzidos nos 

estágios iniciais da diferenciação de micélio para levedura, bem como um transcrito que 

codifica para amino ácido permease ácida, relacionada à captação de glutamato, precursor para 

a síntese de quitina (Bastos et al., 2007).   

Genes relacionados à proteínas/enzimas da síntese de lipídeos de membrana são 

induzidos durante a transição dimórfica (Bastos et al., 2007). Genes envolvidos na via de 

assimilação do enxofre como a sulfito redutase mostraram-se super expressos durante a 

transição. Foram identificados genes codificantes de enzimas que participam do ciclo do 

glioxalato, como a isocitrato liase, malato desidrogenase, citrato sintase e aconitase, sugerindo 

um ativo ciclo do glioxalato durante a transição dimórfica. Proteínas relacionadas com vias de 

transdução de sinal tais como MAPK e histidina quinase foram também identificadas, 

sugerindo que a transição morfológica em P. brasiliensis é mediada por vias de transdução de 

sinais que controlam a adaptação ao ambiente para a sobrevivência do fungo no hospedeiro.  

II..77.. GGeenneess ddiiffeerreenncciiaallmmeennttee eexxpprreessssooss nnoo pprroocceessssoo iinnffeecccciioossoo

A expressão de genes durante o processo infeccioso por P. brasiliensis tem sido 

investigada. Um projeto transcritoma de células leveduriformes de P. brasiliensis recuperadas 

de fígado de camundongos infectados foi realizado em nosso laboratório (Costa et al., 2007). 

Foram seqüenciadas 4.932 ESTs, as quais foram agrupadas num total de 1041 contigs e 561 

singletons, sendo do total, 35,47% relacionadas a novos genes e 23,75% pertencentes a genes 

induzidos durante o processo infeccioso em fígado de animais experimentais. Neste trabalho, 

Costa et al. (2007), identificaram genes super expressos codificantes de enzimas de várias vias 

metabólicas, como fermentação alcoólica, biossíntese de aminoácidos, metabolismo de 

nitrogênio e biossíntese de lipídeos e esteróis, importantes na biossíntese/remodelamento da 

membrana, que devem ser relevantes para o processo infeccioso.  

Foram identificados vários genes codificantes de enzimas do metabolismo de 

carboidratos, como aquele que codifica para álcool desidrogenase, a qual deve ser responsável 

por um comportamento anaeróbio de P. brasiliensis no tecido hepático (Costa et al., 2007). A 

enzima acilfosfatase, com papel ainda não estabelecido completamente, a qual é importante na 

regulação da via glicolítica e aumenta a taxa de fermentação em Saccharomyces cerevisiae

(Raugei et al., 1996), encontra-se altamente expressa durante o processo infeccioso. A indução 

da expressão de genes codificantes das enzimas glucoquinase (GLK), altamente induzida na 

presença de etanol (Herrero et al. 1999), glicogênio fosforilase I, requerida para mobilização de 
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glicogênio e fosfoglicerato mutase (GPM1P), sugerindo que o metabolismo de carboidratos é 

bastante ativo durante o processo infeccioso no fígado (Costa et al., 2007). O fungo P.

brasiliensis, no ambiente hepático, deve exacerbar o metabolismo de etanol dado o ambiente 

anaeróbio e rico em carboidratos, como descrito para C. albicans em infecção experimental em 

rim de camundongo (Barelle et al., 2006). 

Assim como para o metabolismo de carboidratos, a expressão coordenada de genes 

codificantes para enzimas da biossíntese de lipídeos foi evidente durante o processo infeccioso 

em fígado de animais (Costa et al., 2007). A indução de genes relacionados à biossíntese de 

ácidos graxos sugere um ambiente rico em carboidratos e energia, condição supostamente 

presente no tecido hepático. A enzima málica é regularória no metabolismo de lipídeos e foi 

induzida. Transcritos codificantes da enzima anidrase carbônica, bem como aqueles que 

codificam para enzimas relacionadas à biossíntese de ergosterol (ERG6, ERG9) e 

síntese/remodelamento de membrana (OLE1) devem estar relacionadas às prováveis 

modificações de membrana do fungo no processo infeccioso. Esses dados sugerem que a 

biossíntese de lipídeos deve ocorrer em P. brasiliensis nas condições de infecção experimental 

de fígado, dado o alto suprimento de carboidratos presente neste nicho de infecção (Costa et 

al., 2007). 

O ciclo do glioxalato é induzido em P. brasiliensis na condição experimental de 

infecção em fígado de camundongo. O ciclo do glioxalato é requerido para o crescimento de 

microrganismos em fontes de três carbonos, como etanol ou acetato. A enzima isocitrato liase, 

induzida em P. brasiliensis recuperado de fígado de camundongo infectado, é regulatória do 

ciclo do glioxalato, sugerindo regulação positiva dessa via metabólica. Os produtos de genes 

associados ao ciclo do glioxalato como o que codifica para hidroximetil glutaril-CoA liase, que 

fornece acetil CoA derivada de -hidroxi- -metilglutaril-CoA, um intermediário na biossíntese 

de esteróis, reforçam a relevância do ciclo do glioxalato no processo infeccioso por P.

brasiliensis.

Transcritos codificantes para glutamina sintase (GLNA), urease (URE), homocitrato 

sintase (LYS21), isopropilmalato desidrogenase (LEU2), cistationa B-sintase, assim como uma 

permease de alta afinidade para metionina (MUP1) são induzidos em células leveduriformes 

recuperadas de fígado de camundongos infectados. Costa et al., (2007) descreveram 14 genes 

novos/induzidos relacionados à biossíntese/assimilação de aminoácidos, sugerindo que este 

aspecto do metabolismo deva ser importante para a sobrevivência do fungo no ambiente 

hepático. Transcritos relacionados à patogênese de fungos também foram identificados, tais 

como aqueles relacionados com a síntese de melanina, de urease que alcaliniza os tecidos, 
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favorecendo a disseminação da infecção por Coccidioides posadassi (Mirbod-Donovan et al.,

2006) e uma proteína de resistência à oxidação (Oxr1) a qual protegeria o fungo contra 

peróxido de hidrogênio tecidual (Elliott & Volkert, 2004).  

O perfil de transcritos de P. brasiliensis internalizados em macrófagos murinos foi 

descrito (Tavares et al., 2007). Genes relacionados à biossíntese de aminoácidos, como 

metionina, e o gene codificante da proteína de choque térmico HSP60 foram induzidos nessa 

condição, sugerindo serem os processos de síntese de alguns aminoácidos e de resposta ao 

estresse, relevantes durante a fagocitose por macrófagos (Tavares et al., 2007). 

II..88.. RRDDAA ((AAnnáálliissee ddee DDiiffeerreennççaa RReepprreesseennttaacciioonnaall)) nnoo eessttuuddoo ddee ggeenneess ddiiffeerreenncciiaallmmeennttee

eexxpprreessssooss

Técnicas subtrativas têm sido utilizadas na identificação de genes diferencialmente 

expressos em condições experimentais (Diatchenko et al., 1996). Essas técnicas permitem a 

identificação de alterações no padrão de expressão gênica por meio de enriquecimento seletivo 

de genes (Pastorian et al., 2000). Dentre as técnicas mais utilizados podemos citar a Análise de 

Diferença Representacional (RDA) (Hubank & Schatz, 1994), a reação de PCR que utiliza 

pequenos oligonucleotídeos que se ligam arbitrariamente ao RNAm para a transcrição reversa 

(RAP-PCR) (Mathieu-Daude et al., 1999), e a hibridização subtrativa (SH) (Diatchenko et al.,

1996). Tais técnicas visam à identificação de seqüências de ácidos nucléicos presentes em uma 

condição e ausentes ou menos abundantes em outra e apresentam a vantagem de identificar 

genes novos/induzidos sem a necessidade de um grande número de reações de seqüenciamento 

de DNA.  

A análise de genes diferencialmente expressos através da técnica de RDA foi 

originalmente utilizada na identificação de diferenças entre populações de DNA (Lisitsyn, 

1995) e foi posteriormente adaptada para a identificação de genes diferencialmente expressos 

em amostras de RNAm (Hubank & Schatz, 1994). A técnica é baseada em etapas de 

hibridização subtrativa seguida de reações de PCR, nas quais os produtos diferenciais são 

amplificados (Pastorian et al., 2000). A Figura 1 ilustra as etapas experimentais da metodologia 

de RDA. 

Condições que mimetizam nichos de parasitas no hospedeiro têm sido utilizadas nestas 

análises subtrativas por meio de RDA. 
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Figura 1 – Esquema representativo das etapas da metodologia do RDA. RNA total de células de P. brasiliensis
driver e tester foram utilizados para a síntese de cDNA. Os cDNAs foram digeridos com a enzima de restrição 
Sau3AI. O primeiro par de adaptadores foi ligado aos cDNAs digeridos, na amostra Tester. As populações de 
cDNA foram misturadas para a realização de cada um dos dois ciclos de hibridização subtrativa com taxas de 
cDNAs tester: driver de 1:10 e 1:100, respectivamente. 

Dutra et al. (2004) identificaram, por meio da técnica de cDNA-RDA, 34 genes de 

Metarhizium anisopliae super expressos quando este organismo foi cultivado com carapaças de 

carrapato, o hospedeiro natural do fungo. O transcrito que codifica para a subtilisina protease, 

envolvida na degradação de proteínas da cutícula, na penetração do fungo e na obtenção de 

nutrientes. O transcrito que codifica para a GAPDH foi identificado. A GAPDH foi descrita 

como adesina em outros organismos e pode desempenhar o mesmo papel em M. anisopliae.

Transcritos que codificam para proteínas antioxidantes como catalases e HSP70 foram 

identificadas e devem estar envolvidas na patogênese de M. anisopliae (Dutra et al., 2004).   
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Bailão et al. (2006, 2007), em nosso laboratório, utilizaram a técnica de cDNA-RDA 

para identificar genes de P. brasiliensis induzidos durante o processo infeccioso, em condições 

que mimetizam a via hematogênica de disseminação fúngica e sítios de infecção com 

inflamação. A captação de micronutrientes, resposta ao estresse térmico, a degradação de 

lipídeos, através da -oxidação são presumivelmente induzidos. Todos os transcritos 

codificantes de enzimas da -oxidação foram induzidos em condições que mimetizam a via 

hematogênica de disseminação do fungo no hospedeiro e sítios de infecção com inflamação, 

sugerindo que P. brasiliensis nesta condição, desvie o seu metabolismo para a degradação de 

lipídeos (Bailão et al., 2006, 2007).  Em bactérias e fungos, propionil-CoA é assimilado através 

do ciclo do metilcitrato, onde o propionil-CoA é oxidado a piruvato (Brock et al., 2000). Os 

transcritos que codificam para a enzima 2-metil-citrato desidratase, que converte metil-citrato 

em metil-isocitrato, foram induzidos nos tratamentos com sangue e plasma, corroborando a 

relevância do metabolismo de lipídeos nesses possíveis nichos do hospedeiro (Bailão et al.

2006; 2007). 

Genes relacionados com a captação de ferro, importantes para a sobrevivência de 

patógenos nos tecidos do hospedeiro onde a quantidade de ferro deve ser limitante, foram 

induzidos durante a infecção em fígado de camundongos, como demonstrado por meio de 

análises dos experimentos de RDA (Bailão et al., 2006). A aquisição de ferro tem sido descrita 

como fator de virulência em patógenos (Ratledge & Dover 2000). Transcritos codificantes para 

transportadores de ferro de alta e baixa afinidade, para membros da família das cobre oxidases 

foram encontrados com alta redundância em ensaios de cDNA-RDA de células recuperadas de 

fígado de camundongo infectado (Bailao et al., 2006). Transportador de ferro de alta afinidade 

é requerido para virulência de C. albicans em infecção de camundongos (Ramanan & Wang 

2000). Os dados indicam a relevância da captação do micronutriente durante o processo 

infeccioso (Bailão et al., 2006). 

A síntese de melanina está implicada na patogênese de fungos (Hamilton & Gomez 

2002, Taborda et al., 2008). O crescimento de P. brasiliensis com L-DOPA (precursor da 

melanina) resulta na melanização das células fúngicas (Gomez et al., 2001), bem como a 

melanina protege P. brasiliensis de fagocitose (Silva et al., 2006). Os transcritos que codificam 

para L-amino ácido decarboxilase aromática, para tirosinase e para policetídeo sintase foram 

induzidos em células leveduriformes de P. brasiliensis recuperadas de fígado de camundongos 

e demonstram a relevância da síntese de melanina no processo (Bailão et al., 2006). 
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I.9. Formamidase: gene diferencialmente expresso em P. brasiliensis

A enzima formamidase, formamida amidohidrolase (EC 3.5.1.49), catalisa a hidrólise 

de formamida, produzindo formato e amônia (Hynes, 1975; Fraser et al., 2001). A hidrólise de 

amidas, através da atividade de amidases é importante para microrganismos na obtenção de 

nitrogênio do solo, como já caracterizado em Aspergillus nidulans (Hynes 1975) e é descrita 

em organismos que apresentam, pelo menos, uma etapa do seu ciclo de vida no ambiente 

(Bury-Moné et al., 2003).  

A atividade de amidases também é importante para a defesa de patógenos. Um dos 

produtos finais da ação da formamidase, a amônia, tem papel importante na patogênese de 

Helicobacter pylori, auxiliando na destruição tecidual e em sua resistência ao pH ácido 

estomacal (Bury-Moné et al., 2004). O outro produto, o formato, pode ser oxidado em dióxido 

de carbono, processo que utiliza o NAD+ produzindo NADH, o qual pode ser utilizado em 

etapas metabólicas e na cadeia respiratória.  

Formamidases são descritas como enzimas da família de amidases/nitrilases como 

enzimas homodiméricas, homotriméricas e homotetraméricas (Wyborn et al., 1996), bem como 

apresentando dois tetrâmeros ligados (O’Hara et al.1994). A cristalografia da formamidase de 

H. pylori revelou estrutura homo-hexamérica (Hung et al., 2007). 

O transcrito codificante da enzima formamidase de P. brasiliensis é altamente expresso 

na fase miceliana do fungo (Felipe, et al., 2003; Borges et al., 2005).  A proteína isolada por 

meio de focalização isoelétrica líquida é reativa com anticorpos presentes em soros de 

pacientes com PCM, sugerindo um papel potencial da proteína na interação do fungo com o 

hospedeiro.  A proteína purificada foi digerida por endoproteinase Lys-C, obtendo-se quatro 

fragmentos peptídicos internos, os quais foram seqüenciados através do método de degradação 

de Edman e caracterizados. O cDNA codificante da formamidase de P. brasiliensis foi

clonado, caracterizado e a expressão heteróloga da proteína foi obtida em modelo bacteriano. A 

proteína heteróloga purificada mostrou-se reativa com anticorpos presentes em soros de 

pacientes e apresentou atividade enzimática de formamidase. A atividade de formamidase 

também foi demonstrada em extrato protéico total de células leveduriformes e micelianas de P.

brasiliensis (Borges, et al., 2005). 

O papel desempenhado pela formamidase de P. brasiliensis ainda não é elucidado. O 

sistema de duplo híbrido em levedura (S. cerevisiae) é uma metodologia que foi desenvolvida 

para identificar genes que codificam proteínas (presas) que interagem com uma proteína alvo 

(isca) in vivo (Fields e Song, 1989; Chien et al., 1991; Fields e Sternglanz, 1994). A base para 

o sistema está na estrutura de um fator de transcrição que tem dois domínios fisicamente 
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separados: o domínio de ligação ao DNA (BD) e o domínio de ativação da transcrição (AD). 

Os genes codificantes para estes domínios estão presentes em plasmídeos diferentes onde são 

clonados genes de uma biblioteca de cDNA (presa) e o gene para o qual se deseja rastrear a 

interação (isca). Caso as proteínas façam interação in vivo o fator de transcrição atua sobre o 

promotor que se situa no início de um gene repórter, o qual determina o crescimento das 

leveduras em meio seletivo, onde crescem apenas as leveduras que apresentam proteínas que 

interagem. A Figura 2 ilustra o princípio da estratégia que caracteriza a metodologia de duplo 

híbrido. A identificação de proteínas que tenham interação in vivo com a formamidase no 

sistema de S. cerevisiae poderá auxiliar na compreensão do papel da proteína na biologia de P.

brasiliensis.

Figura 2 – Esquema da técnica do duplo híbrido em leveduras.  BD – Domínio de ligação à região promotora do 
DNA, o qual é fusionado à formamidase (isca).  AD – Domínio de ativação da transcrição, o qual é fusionado às 
proteínas (presas) de P. brasiliensis.   A interação de proteínas fusionadas aos domínios (BD e AD) compõe o 
fator de transcrição que ativa a expressão do gene repórter permitindo o crescimento das leveduras em meio 
seletivo.

Neste trabalho, o sistema de duplo híbrido em levedura foi utilizado para identificar 

proteínas que interagem com a formamidase de P. brasiliensis. Proteínas relacionadas com 

enovelamento, processamento e destinação de proteínas foram encontradas, as quais podem 

estar relacionadas com o correto enovelamento, com a localização da formamidase na parede 

celular, bem como com seu envolvimento no metabolismo de nitrogênio de P. brasiliensis. Um 

modelo das interações da formamidase com proteínas de P. brasiliensis foi construído.



Justificativa
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II.  Justificativas 

A capacidade de P. brasiliensis de provocar doença com grande variedade de 

manifestações clínicas depende da complexidade de interações entre P. brasiliensis e o 

hospedeiro humano. O laboratório de Biologia Molecular do Instituto de Ciências Biológicas 

da Universidade Federal de Goiás está inserido em um programa que visa à identificação e 

caracterização de moléculas potencialmente associadas à transição dimórfica e à interação do 

fungo P. brasiliensis com o hospedeiro humano. Neste contexto, moléculas diferencialmente 

expressas nas fases miceliana e leveduriforme, moléculas reconhecidas por anticorpos 

presentes em soro de pacientes com paracoccidioidomicose, assim como moléculas 

diferencialmente expressas em modelos experimentais de infecção são objeto de estudo, 

destacando-se como estratégias interessantes para o entendimento da biologia do fungo P.

brasiliensis.



Objetivos
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IIIIII.. OObbjjeettiivvoo GGeerraall

Caracterizar genes e proteínas diferencialmente expressas pelo fungo patogênico 

humano P. brasiliensis.

IIIIII..11.. OObbjjeettiivvooss EEssppeeccííffiiccooss

1. Caracterização da formamidase de P. brasiliensis:

Analise proteômica, localização celular e interações intermoleculares.

- Estratégias: 

Produção da proteína recombinante em sistema heterólogo; 

Produção de anticorpo policlonal em camundongo; 

Purificação da proteína nativa e identificação dos peptídeos obtidos por digestão 

tríptica utilizando-se espectrometria de massas; 

Citolocalização da proteína nativa por microscopia eletrônica de transmissão e 

microscopia confocal. 

Construção de biblioteca de duplo híbrido em S. cerevisiae;

Seqüenciamento dos produtos de PCR obtidos nas interações identificadas pela 

técnica de duplo híbrido; 

Confirmação das interações protéicas por meio de co-imunoprecipitação; 

2. Avaliação de transcritos potencialmente relevantes para o estabelecimento/manutenção 

da fase leveduriforme. 

Análise de ESTs diferencialmente expressas em isolados de P. brasiliensis com e sem 

capacidade de termo-dimorfismo in vitro.

- Estratégias: 

Microscopia eletrônica de varredura dos isolados; 

Construção de bibliotecas subtrativas de cDNA, por meio de RDA, e seqüenciamento 

de DNA; 

Análise de seqüências e geração de ESTs; 

Análises comparativas utilizando-se ferramentas de bioinformática; 

Confirmação dos resultados obtidos por meio de northern-blot reverso e RT-PCR.
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Abstract

Paracoccidioides brasiliensis is a well-characterized pathogen of humans. To identify proteins involved in the fungus–host interaction,
P. brasiliensis yeast proteins were separated by liquid isoelectric focusing, and fractions were subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis and Western blot analysis. Immunoreactive bands were detected with pooled sera of patients with P. bra-
siliensis infection. A protein species with a molecular mass of 45 kDa was subsequently purified to homogeneity by preparative gel electro-
phoresis. The amino acid sequence of four endoproteinase Lys-C-digested peptides indicated that the protein was a formamidase (FMD) (E.C.
3.5.1.49) of P. brasiliensis. The complete cDNA and a genomic clone (Pbfmd) encoding the isolated FMD were isolated. An open reading
frame predicted a 415-amino acid protein. The sequence contained each of the peptide sequences obtained from amino acid sequencing. The
Pbfmd gene contained five exons interrupted by four introns. Northern and Southern blot analysis suggested that there is one copy of the gene
in P. brasiliensis and that it is preferentially expressed in mycelium. The complete coding cDNA was expressed in Escherichia coli to produce
a recombinant fusion protein with glutathione S-transferase (GST). The purified recombinant protein was recognized by sera of patients with
proven paracoccidioidomycosis and not by sera of healthy individuals. The recombinant 45-kDa protein was shown to be catalytically active;
FMD activity was detected in P. brasiliensis yeast and mycelium.
© 2004 Elsevier SAS. All rights reserved.
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1. Introduction

Paracoccidioides brasiliensis is a dimorphic and thermo-
regulated fungal pathogen that infects the host by inhalation
of conidia and small mycelial fragments. Those inhaled ele-
ments convert to yeasts, which are responsible for the patho-
genesis of paracoccidioidomycosis (PCM). Although the
majority of individuals infected with fungus do not manifest
symptoms, severe and progressive infection does occur, with
both pulmonary and extrapulmonary involvement [1,2]. The
disease is endemic, primarily in Latin America, where up to
10 million individuals are infected. The disease may present
a prolonged asymptomatic latency period, followed by reac-
tivation, which suggests that the fungus is a facultative intra-
cellular pathogen which can persist dormant and clinically
silent in tissues. Acute and subacute PCM, also known as the
juvenile form of the disease, progresses rapidly and with dis-
semination through the lymphatic system. The chronic form
evolves gradually in the lungs and chiefly affects adult indi-
viduals [3,4].

Delineating the role of fungal antigens should facilitate
the elucidation of the pathogenesis of P. brasiliensis. Experi-
mental and clinical investigations have indicated the impor-
tance of humoral and cellular immune responses in the patho-
genesis of PCM [5,6]. Some antigens of P. brasiliensis have
already been identified: the glycoprotein gp43 [7,8], a 27-kDa
antigen [9], an 87-kDa antigen, characterized as a member of
the HSP70 family [10,11], and antigens FO and FII [12]. Our
laboratory has cloned and expressed the HSP60 of P. brasil-
iensis, and has proposed its utility as a serodiagnostic marker
[13,14]. Also, a homologue of mannosyltransferase has been
obtained, and this antigen is reactive to sera of patients with
PCM [15].

Classical approaches for the study of antigens include pro-
tein separation/purification and Western blot analysis. We have
previously used two-dimensional electrophoresis followed by
Western blotting as an approach to study antigens of P. bra-
siliensis and identified different proteins by Edman’s degra-
dation [16]. The proteins catalase, glyceraldehyde-3-
phosphate dehydrogenase, triosephosphate isomerase,
fructose 1,6 biphosphate aldolase and malate dehydrogenase
were characterized, and they were highly reactive with sera
of PCM patients [17–19].

The present report is a continuation of our work on the
identification and characterization of P. brasiliensis mol-
ecules potentially associated with the fungus–host interac-
tion. We obtained a highly expressed protein species that was
characterized by amino acid sequencing of peptide frag-
ments and identified the protein as a formamidase (FMD)
homologue of P. brasiliensis.

Formamide amidohydrolase (FMD, EC 3.5.1.49) medi-
ates the highly specific hydrolysis of formamide to produce
formate and ammonia [20]. FMDs are poorly characterized
proteins in fungi and in pathogenic microorganisms. In spite
of this scarce knowledge, ammonia has been described as
playing a central role in the pathogenesis of human patho-

gens such as Helicobacter pylori, since it contributes to epi-
thelial cell damage and apoptosis and is required for acid resis-
tance [21,22]. In addition, the amiF gene, encoding FMD of
H. pylori, is induced upon shift to acidic pH, as detected by
microarray analysis [23]. P. brasiliensis expresses high lev-
els of the transcript encoding the enzyme FMD, as we have
recently shown in the transcriptome of the fungus published
by the “P. brasiliensis Functional and Differential Genome
Project-Brazilian Middle West Network” [24].

In the present paper, we report the characterization of the
FMD from P. brasiliensis. The cDNA and the genomic
sequences encoding FMD (Pbfmd) were obtained. The
deduced protein contained putative antigenic epitopes located
in 17 regions of the molecule, reinforcing its potential as a
useful antigen in the serodiagnosis of PCM. We also evalu-
ated the enzymatic activity of the purified and native FMD.
This work provides initial data on a catalytically active FMD
of P. brasiliensis and supports the further analysis of this pro-
tein as an antigen candidate in studies concerning serodiag-
nosis and host–parasite interactions in PCM.

2. Materials and methods

2.1. Fungal isolate and growth conditions

P. brasiliensis isolate Pb01 (ATCC-MYA-826) has been
studied in our laboratory [13–19]. It is a commonly used labo-
ratory strain, initially isolated from a patient with the acute
form of PCM. It was grown as yeast at 36 °C, in Fava–
Netto’s medium (1% (w/v) peptone; 0.5% (w/v) yeast extract;
0.3% (w/v) proteose peptone; 0.5% (w/v) beef extract; 0.5%
(w/v) NaCl; 1% (w/v) agar, pH 7.2). The mycelium was grown
at 22 °C in this medium.

2.2. Antigen preparation

Yeast cells and mycelia were harvested and washed in cold
homogenization buffer (20 mM Tris–HCl pH 8.8, 2 mM
CaCl2) containing the protease inhibitors 50 μg/ml N-a-p-
tosyl-L-lysine chloromethylketone (TLCK); 1 mM 4-chloro-
mercuribenzoic acid (PCMB); 20 mM leupeptin; 20 mM phe-
nylmethylsulfonyl fluoride (PMSF); 5 mM iodoacetamide.
The mixture was frozen in liquid nitrogen, and the cells were
disrupted until a fine powder was obtained. A suspension was
made with the fine powder in 25 ml of the above buffer. The
insoluble debris was removed by centrifugation at 12,000 ×
g, at 4 °C for 10 min, and the supernatant was used for further
analysis. The Bradford [25] method was used to determine
the protein content of each preparation.

2.3. Liquid IEF of the antigens

Ten milligrams of cellular extracts in a total volume of
25 ml (obtained as above, after centrifugation) were dialyzed
for 18 h at 4 °C with several changes of ammonium bicarbon-
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ate buffer (5 mM ammonium bicarbonate). The sample was
then increased to 60 ml by the addition of the buffer indi-
cated above containing 1% (v/v) NP-40, 20 mM DTT, and
1% (v/v) ampholytes (pH range 4–7 and 5–8). The sample
was loaded onto a liquid isoelectric focusing (IEF) system
(Rotofor, BioRad, Hercules, CA), and separation was achieved
with a constant power supply of 15 W. The 15 fractions were
harvested after 4 h, when the voltage reading had been stabi-
lized. The pH of the fractions was measured, and the protein
content was determined [25]. Fractions were pooled and
loaded onto the IEF system for further separation. The frac-
tions were subsequently subjected to sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and West-
ern blotting with human immune sera.

2.4. Western blotting analysis

SDS-PAGE was performed with 12% polyacrylamide gels
according to Laemmli [26]. The proteins were electrophore-
sed in each lane and stained with Coomassie brilliant blue or
transferred to membranes. The membranes were incubated
in 0.05% (v/v) Tween-20 plus Tris-buffered saline (TBS) con-
taining 1% (w/v) skim milk and were then incubated with
sera from patients with proven PCM, tested by immunodif-
fusion against P. brasiliensis exocellular antigens and also
sera from healthy individuals. The secondary antibody was
anti-human IgG, coupled to alkaline phosphatase (SigmaAld-
rich, Co., St. Louis, MO). The reactions were developed with
5-bromo-4-chloro-3-indolyl phosphate and nitroblue tetrazo-
lium (BCIP/NBT). In some experiments, the chemilumines-
cent substrate CDP-star (Perkin–Elmer, Norwalk, CT) was
used, and bands were visualized by autoradiography.

2.5. Human sera

A total of 18 human serum samples collected at the time
of diagnosis from patients with confirmed PCM were pooled
and used in the Western blot assays with the purified IEF frac-
tions. Some of the serum samples were further utilized indi-
vidually in the Western blot assays with the recombinant FMD
of P. brasiliensis.

2.6. Purification of antigens and sequencing of the purified
protein

IEF fractions (9–12) were pooled and concentrated by ultra
filtration (Centricon-10,Amicon, Inc., Beverly, MA). The con-
centrated samples were then separated, based on size, by gel
electrophoresis, and the proteins were electrotransferred for
1 h at 400 mA to polyvinylidene difluoride membranes
(PVDF; Immobilon-P, Millipore Corp., Bedford, MA). A
serum reactive protein, molecular mass of 45 kDa, was manu-
ally excised from a single Coomassie-blue-stained gel (cal-
culated as 900 pmol of the target protein) and digested in situ
with lysyl endopeptidase (Lys-C). Peptides were purified by
reverse-phase high-performance liquid chromatography
(HPLC) and subjected to Edman’s degradation.

2.7. DNA extraction of P. brasiliensis

P. brasiliensis yeast cells were harvested, washed and fro-
zen in liquid nitrogen. Grinding with a mortar and pestle broke
the cells, and the genomic DNA was prepared by the cationic
hexadecyl trimethyl ammonium bromide (CTAB) method
[27]. The cell powder was suspended in 10 ml of extraction
buffer (2% (w/v) polyvinylpolypyrrolidone (PVP), 1.4 M
NaCl, 0.1 M Tris–HCl pH 8.0, 0.02 M ethylenediaminetet-
raacetic acid (EDTA), 2% (w/v) CTAB). The mixture was
incubated at 65 °C for 1 h, extracted with 50%
chloroform/50% isoamyl alcohol (v/v) and precipitated with
100% ethanol. After treatment with RNase I and ethanol pre-
cipitation, the DNA was resuspended in water.

2.8. Generation of DNA probe by PCR

P. brasiliensis genomic DNA was used as a template for
the PCR amplification of a partial fragment encoding the
FMD. Degenerate oligonucleotide primers were designed
based on the amino acid sequences of the internal peptides.
The degenerate sense S1 (5′-GARCCNATHAAYGTNC-
AYGC-3′) and the antisense At1 (5′-ACNGGNCCNGGR-
TGRAADATNGG-3′) primers were used in a PCR reaction
that was conducted in a total volume of 50 μl containing 50 ng
of DNA as template. The resulting 415-bp product was sub-
cloned into pGEM-T-Easy (Promega, Madison, USA). The
sequence was determined on both strands by automated DNA
sequencing, applying the DNA sequencing method of Sanger
et al. [28].

2.9. Cloning of the cDNA and genomic sequences
encoding FMD

A cDNA library from yeast cells has been constructed in
EcoRI and XhoI sites of Lambda ZapII (Stratagene Inc.,
LaJolla, CA, USA). Approximately 50,000 recombinant
phage plaques from the cDNA library were plated, according
to standard procedures [29]. Duplicate filters of the plates
were hybridized overnight with the 415-bp probe radiola-
beled with [a-32P]-dCTP at 45 °C, in solution containing 50%
formamide. The filters were extensively washed in 1× stan-
dard saline citrate (0.015 M sodium citrate, 0.15 M NaCl),
0.2% (w/v) SDS at 65 °C. Phages showing homology with
the probe were plaque purified. The in vivo excision of pBlue-
script SK+ phagemids in Escherichia coli XL1-Blue MRF’
was performed by using the exassist/SOLR protocol from
Stratagene (Stratagene).

The complete genomic sequence encoding FMD was
obtained by PCR amplification of the total DNA of P. brasil-
iensis. Primers were constructed based on the cDNA se-
quence. A 1622-bp PCR product was obtained by using sense
primer S2 (5′-ATGGGTCTCAAGGGAATTC-3′) and anti-
sense, At2 (5′-CATCCCCTACTTCATTC-3′). The PCR reac-
tion was performed with 50 ng of total DNA of P. brasilien-
sis, and the amplification conditions were an initial
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denaturation step at 94 °C for 1 min, 30 cycles at 94 °C for
1 min, annealing at 55 °C for 1 min and 45 s, and extension at
72 °C for 2 min. An amplified PCR product of 1622 bp was
gel purified, subcloned into pGEM-T-Easy vector (Promega)
and sequenced on both strands.

2.10. DNA sequencing and sequence analysis

DNA sequencing was performed by the double-strand
dideoxy-chain termination method by using a MegaBACE
1000 sequencer (Amersham Biosciences, Little Chalfont, UK)
for automated sequence analysis. Sequence homologies to
genes in the GenBank database were determined by using
the BLAST algorithm of the National Center for Biotech-
nology Information at the National Library of Medicine
(http://www.ncbi.nlm.nih.gov) [30]. The PROSITE (http:
//us.expasy.org/prosite) [31] and Pfam (http://www.sanger.
ac.uk/softwer/pfam/index.shtml) [32] databases were used for
the analysis of the deduced protein. The antigenic determi-
nants of the deduced protein were predicted by using the algo-
rithm described by Kolaskar and Tongaonkar [33] at
(http://www.bioweb.pasteur.fr/seganal/
interfaces/antigenic.html).

2.11. Southern blot analysis

Twenty micrograms of total DNA was digested with the
restriction enzymes DraI, XbaI and HindIII. The DNA was
electrophoresed on a 0.8% agarose gel and transferred to a
nylon membrane (Amersham Biosciences). The blot was
probed for the 1248-bp nucleotide sequence, including the
complete Pbfmd ORF, labeled with [a-32P] dCTP, by using
the random primers DNA labeling Kit RPN1604 (Amersham
Biosciences).

2.12. RNA isolation and Northern blot analysis

Total RNA was obtained from mycelium and yeast cells
grown in vitro at 22 and 36 °C, respectively, by using the
Trizol method (GIBCO™, Invitrogen, Carlsbad, CA). North-
ern hybridization was performed with 10 μg of total RNA
fractionated on a 1.2% (w/v) agarose–formaldehyde gel. The
RNA was transferred to a nylon membrane. The cDNA-
labeled probe was hybridized to the blot under high-stringency
conditions.

2.13. Expression of the recombinant FMD by E. coli
and purification of the recombinant protein

Oligonucleotide primers were designed to amplify the
1248-bp DNA containing the complete coding region of FMD.
The nucleotide sequences of the sense (S2) and antisense
(At2) primers were (5′-TCCTGTCGACATGGGTCT-
CAAGGGAATTC-3′) and (5′-CCCGCGGCCGCATCCC-
CTACTTCATTC-3′), which contained engineered SalI and
NotI restriction sites (underlined), respectively. Fifty micro-

grams of the cDNA (Pbfmd) was used as template. The ampli-
fication parameters were as follows: an initial denaturation
step at 94 °C for 1 min, followed by 30 cycles of denaturation
at 94 °C for 1 min, annealing at 55 °C for 1 min and 45 s, and
extension at 72 °C for 2 min. The PCR product was digested
with SalI and NotI, separated by agarose gel electrophoresis,
gel excised and subcloned into the SalI/NotI sites of pGEX-
4T-3 (Amersham Biosciences). The recombinant plasmid was
used to transform the E. coli XL1 Blue MRF’competent cells
using the heat shock method [29]. Complete sequencing of
the DNA was performed to confirm that it had been cloned
into pGEX-4T-3 and could produce an in-frame molecule
fused to glutathione S-transferase (GST).

2.14. Bacterial cell growth and induction conditions

All the cultures were grown in 1-liter batches of Luria–
Bertani (LB) broth containing 100 μg/ml of ampicillin for
plasmid maintenance. The cultures were incubated at 37 °C
until the A600 reached between 0.7 and 0.8, at which point
isopropyl b-D-thiogalactopyranoside (IPTG) was added to a
final concentration of 0.1 mM. The cells were incubated at
30 °C for 3 h and then harvested by centrifugation at 5000 ×
g for 10 min. Preparation and purification of the protein was
performed at 4 °C. The crude recombinant protein was
obtained by sonicating the bacterial pellet in 20 mM Tris–
HCl buffer (pH 7.6) containing 200 mM NaCl and 5 mM
EDTA, followed by centrifugation at 12,000 × g for 10 min.
Protein concentrations were determined [25]. The recombi-
nant FMD was expressed in the soluble form by the bacteria,
and the protein was purified by affinity chromatography under
nondenaturing conditions, as previously reported [14]. The
soluble fraction was applied to a Glutathione Sepharose™
4B Resin column (Amersham Biosciences) (bed volume,
1.0 ml). After the resin was washed three times with PBS 1×
(0.14 M NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, pH 7.3), the protein was cleaved with thrombin pro-
tease (50 U/ml) and collected after overnight incubation. The
purity and size of the recombinant protein were evaluated by
running the molecule on a 12% SDS-PAGE followed by Coo-
massie blue staining.

2.15. Measurement of FMD activity

FMD activity was measured by monitoring the appear-
ance of the ammonia, as described [34]. Samples of 50 μl
(0.48–0.7 μg of total protein) were added to 200 μl of forma-
mide substrate solution at a final concentration of 100 mM in
100 mM phosphate buffer, pH 7.4, and 10 mM EDTA. The
reaction mixture was incubated at 37 °C for 30 min; then
400 μl of phenol-nitroprusside and 400 μl of alkaline hy-
pochlorite (Sigma Aldrich, Co.) were added, and the samples
were incubated for 6 min at 50 °C. Absorbance was then read
at 625 nm. The amount of ammonia released was determined
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from a standard curve. One unit (U) of FMD activity was
defined as the amount of enzyme required to hydrolyze 1 μmol
of formamide (corresponding to the formation of 1 μmol of
ammonia) per min per mg of total protein. Protein concentra-
tion was determined [25].

2.16. Nucleotide sequence accession numbers

The P. brasiliensis nucleotide sequences reported have
been submitted to the GenBank database under accession
numbers AY163575 (cDNA) and AY600303 (genomic).

3. Results

3.1. Separation of P. brasiliensis antigenic proteins by IEF
and identification/characterization of the 45-kDa antigen

The P. brasiliensis yeast extracts were separated into
15 fractions with the Rotofor liquid IEF system. Four frac-
tions were pooled (pH from 4.0 to 7.0) and further fraction-

ated into 15 samples, as shown in Fig. 1A. Fractions 9–12 con-
tained the most detectable serum reactive protein with
apparent molecular mass of 45 kDa. SDS-PAGE and Western
blotting analysis of the individual fractions are depicted in
Fig. 1B, C, respectively. Based on the pH of the fractions
9–12 obtained with the Rotofor system, the 45-kDa protein
appeared to have an isoelectric point (pI) of approximately
6.0. After the last step of IEF separation, the samples (9–12)
were subjected to preparative electrophoresis, and the pro-
teins were transferred to PVDF membranes for further
sequencing of their amino acid residues.

Four endoproteinase Lys-C-digested peptides from the
45-kDa antigen were selected for sequencing by Edman deg-
radation (Fig. 1D). They were PASEQKGLHNRW-
HPDIPPCASIK, VVAKPPEPINVHAGSASDAIK, AR-
TIPGRPEHGGNCD and KSPIFHPGPVEPQFSPGRYLT
FEGFSVD. Comparative analysis was performed with the
four peptides and sequences at the database exhibited
homology (identity values of 100–66%) to FMDs from
several fungi.

Fig. 1. Identification and characterization of the P. brasiliensis FMD. A- Separation of P. brasiliensis proteins by liquid IEF. Bars indicate protein concentration
(in micrograms per microliter); black squares represent pH units. B- SDS-PAGE of four fractions (9–12). C- Western blot analysis of fractions 9–12 by using
sera of patients with proven PCM. The reaction was developed by using the chemiluminescent substrate CDP-star. D- Characterization of the 45-kDa antigenic
protein. Sequence of the amino acids obtained from 04 endoproteinase Lys-C-digested peptides (P1–P4) of the native FMD.
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3.2. Identification of the cDNA and the gene encoding
FMD

In order to isolate the complete gene and cDNA encoding
the 45-kDa FMD of P. brasiliensis, we obtained a 415-bp
PCR product using the primers S1 and AT1 (Fig. 2). This
PCR product manifested identity with sequences of FMDs
present in the database. The entire cDNA encoding FMD
(Pbfmd) was obtained by screening the cDNA library of the
yeast phase of P. brasiliensis. The cDNA sequence of 1711 bp
contained an open reading frame of 1248 bp, and the deduced
amino acid sequence had 415 residues with a predicted
molecular mass and pI of 45.6 and 6.3, respectively.

The complete genomic sequence was obtained by PCR by
using the S2 and At2 oligonucleotide primers and was com-
pared to the cDNA (Fig. 2). The cloned genomic sequence
exhibited five exons interrupted by four introns of 93, 103,
92, and 86 bp. The boundaries of introns/exons conformed to
the basic consensus GT/AG for eukaryotic splice donor and
acceptor sites [35]. The putative splice box matches the fila-
mentous fungi consensus sequence (NNCTPuAPy), located
at the 3′ terminus of the introns [36].

3.3. Characterization of the deduced amino acid sequence
and comparative analysis with sequences present at
databases

A FASTA search of the GenBank database revealed that
the deduced amino acid sequence of the Pbfmd gene product
displayed identity to FMDs of both prokaryotic and eukary-
otic origins. Alignment of the P. brasiliensis predicted pro-
tein sequence with reported sequences of FMDs performed
using the Clustal X program [37] is shown in Fig. 3. This
analysis revealed the existence of several conserved residues.
In particular, a conserved cysteine at position 229 in PbFMD
was identified in all sequences. This region of the gene is
essential to the catalytic activity of the enzyme, as described
for H. pylori amidases. In addition, a conserved aspartate resi-
due at position 230 in PbFMD may also be involved in the
enzyme activity, since it is reported to be essential for the
conformational stability of the AmiE and AmiF paralogues
of H. pylori [34].

The sequence alignment (Fig. 3) revealed a high degree of
homology. The highest sequence similarity and identity were
between the FMD of P. brasiliensis, Emericella nidulans,
Magnaporthe grisea and Podospora anserina (Table 1) and
were most apparent in the region encompassing approxi-
mately 350 amino acids of the protein. In addition, a search
for antigenic determinants was performed. The search delin-
eated 17 putative antigenic determinants in the FMD of P. bra-
siliensis. Several of the putative B cell epitopes were located
in unconserved regions of PbFMD (Fig. 3). Those epitopes
were present in hydrophilic regions of the deduced protein.
The profile defined on the DAS program [38] yielded an over-
all hydropathy index of 0.94, indicative of a strongly hydro-
philic protein. We observed, on examination of the second-

ary predicted structure performed by using the PHD program
(http://www.predictprotein.org) [39], that approximately 20%
of the amino acid residues of the PbFMD were in alpha helix
conformation, and these residues were located in the middle
region of the primary structure. b Sheets were not observed
in this simple prediction (data not shown).

3.4. Hybridization analysis

Southern blot analysis using the complete cDNA Pbfmd
as a probe detected a single DNA fragment in the P. brasil-
iensis DNA digested with the restriction enzymes DraI, XbaI
or HindIII (Fig. 4A). Northern blot analysis detected the pres-
ence of one mRNA species of 1.8 kb. Expression was more
pronounced in the mycelial phase than the yeast phase
(Fig. 4B). These data indicate the presence of a single fmd
gene in the P. brasiliensis genome.

3.5. Expression and purification of the recombinant
PbFMD and Western blotting analysis

The PbFMD protein was produced and purified from crude
extracts of E. coli. The expression of the pGEX-4T-3-FMD
produced about 5 mg of fusion protein in one liter of E. coli
culture. The predicted molecular size of the recombinant pro-
tein was 71 kDa, which included the vector-encoded fusion
peptide of 26 kDa at its N-terminus. SDS-PAGE was used to
verify the composition of the cell lysates obtained from E.
coli XL1-Blue, which had been transformed with either the
empty vector (lane 2) or the plasmid construct (lane 3), as
shown in Fig. 5A. The fusion protein was purified using
glutathione-sepharose 4B (lane 4) and was subsequently
cleaved by the addition of thrombin protease (lane 5). The
purified protein migrated on SDS-PAGE as a single band of
around 45 kDa.

Serum samples from P. brasiliensis-infected and control
individuals were tested in immunoblot assays with the recom-
binant PbFMD (Fig. 5B). Strong reactivity was observed with
sera of patients with PCM (Fig. 5B, lanes 1–4). No cross-
reactivity was observed with control sera (Fig. 5B, lanes 5–8).

3.6. FMD activity of P. brasiliensis cells
and of the recombinant protein

We investigated the FMD activity using extracts of yeast
and mycelium cells, as shown in Table 2. FMD activity, as
detected by ammonia production, was higher in mycelium
when compared with the yeast extracts. The activity of the
recombinant protein was around 2.2-fold that detected for
yeast and 1.5-fold that measured in the mycelium extracts.

4. Discussion

A new antigen, identified as a FMD, was purified from the
fungus yeast extracts. We cloned the fmd cDNA and gene
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Fig. 2. Nucleotide sequences of the cDNA, of the gene and the deduced amino acid sequence of Pbfmd. Nucleotide and amino acid numbers are shown on the
left. The introns are represented in lowercase. Nucleotides in bold italics represent the conserved 5′ and 3′ consensus of the introns. The putative splice boxes of
the intron sequences are marked by dashed rectangles. The putative poli-A signal is marked by a double rectangle. Primers S1, S2, At1 and At2 are underlined.
Numbering of the amino acid sequence begins at the methionine encoded by the first initiation codon and ends at the first termination codon, both in bold.
Amino acids inside gray boxes and in bold represent sequences identified by microsequencing of the endoproteinase Lys-C-digested peptides of the 45-kDa
protein purified by liquid IEF.
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and determined its entire sequence. This antigen may be use-
ful in detecting PCM.

Amino acid sequence is the most exclusive criterion for
the identification of proteins. The isolated protein (molecular
mass of 45 kDa) yielded four sequence tags which, when
matched against databases, revealed the protein to be a FMD.
The cloned cDNA and gene (Pbfmd) encoded peptides from
the native protein, thus suggesting that the protein we had
isolated was indeed the FMD from P. brasiliensis. The pat-
tern obtained in the Southern blot analysis suggests the pres-
ence of only one fmd gene in P. brasiliensis. The Northern
blot showed a single transcript migrating as an mRNA spe-
cies of 1.8 kb, reinforcing the presence of only one gene in
the fungal genome.

Comparison between PbFMD and other members of the
fungal FMDs showed a well-conserved primary structure.
However, we found three regions of the deduced PbFMD
(amino acid residues 177–193; 204–210; 396–402) that are
very divergent in the compared fungi sequences and which
had been predicted as B cell epitopes, raising the possibility
of exploring those regions to develop specific molecules for
diagnostic purposes.

The deduced FMD is a putative cytoplasmic protein, as
suggested by computational analysis. However, if FMD
induces antibody production in the infected host, it could be
a candidate as a diagnostic antigen. Results of theoretical
epitope mapping [33] showed that there were 17 presumed
regions in the molecule (60.7% of total molecule) that could
be antigenic. The recognition of amidases by sera of infected
patients had been previously reported. Immunoproteomic
studies have shown that sera of infected patients recognize
the AmiE of H. pylori [40,41].

We observed strong expression of the transcripts of Pbfmd
in vitro, and this gene is also probably strongly expressed in
vivo, since antibodies reacting with PbFMD are present in
sera of P. brasiliensis-infected patients. Also, the enzymatic
assay suggests a high expression of PbFMD, especially in
mycelium. Data obtained from the fungus transcriptome con-
firmed the high expression of FMD in mycelium [24]. The

role of the protein in vivo remains unclear. Due to its high
expression in P. brasiliensis, Pbfmd is likely to be involved
in the nitrogen metabolism of this fungus. A major physi-
ological role of FMD could be the hydrolysis of formamide
with the production of ammonia, which can be used as source
of nitrogen, and formate. This last product can be readily oxi-
dized to carbon dioxide by the action of an NAD+ linked for-
mate dehydrogenase, resulting in NADH, which can be avail-
able for oxidation by the respiratory chain, as described in
the P. brasiliensis transcriptome [24]. The source of forma-
mide, especially in mycelium, which expresses high levels of
the transcript, remains to be determined. It could be a
by-product in the decay of environmental organic matter
where the saprobic phase is found.Also, the presence of FMD
could account for the production of ammonia that could
induce tissue damage by yeasts during colonization. Rein-
forcing this hypothesis is the finding that several fungi utilize
formamide as a nitrogen source [42].

It is likely that PbFMD is not the only enzyme capable of
hydrolyzing formamide in P. brasiliensis. Indeed, analysis of
the yeast and mycelium transcriptomes of P. brasiliensis
(http://www.biomol.unb.br/Pb) identified some ESTs encod-
ing acetamidase and amidase that could degrade formamide
and could account for a small fraction of the FMD activity in
the mycelium and yeast cellular extracts. It has been observed,
however, that most of the purified acetamidase of bacteria
has well-defined substrate specificity, since they present much
higher activities with short-chain aliphatic amides than with
formamide [43,44]. In addition, most of the amidases exhibit
poor reactivity with formamide as substrate [45,46]. The high
expression of the Pbfmd 1.8-kb transcript as well as the high
level of enzymatic activity observed in the cellular extracts
suggests an active role for the enzyme in the P. brasiliensis
metabolism.

Data described herein report for the first time the purifica-
tion and characterization of a catalytically active FMD anti-
gen of P. brasiliensis. It is also the first description of the
overexpression of this recombinant molecule in a heterolo-
gous system and the analysis of its immunological reactivity

Fig. 3. Comparison of the deduced amino acid sequence of PbFMD with those of FMDs from eukaryotes. Asterisks indicate conserved amino acid residues.
Double and single dots denote a decreasing order of matching similarity between each corresponding amino acid pair. The residues of the four peptides of the
native FMD are in bold and marked in gray. The cysteine residue putatively related to the enzyme catalytic activity, as well as the aspartate residue described as
essential to the conformational stability, are marked with arrows. Brackets indicate predicted antigenic determinants. Accession numbers were as follows: E.
nidulans - XP_408714; P. anserina - CAD60770; N. crassa - XP_331137; M. grisea - EAA51938; G. zeae - XP_389218; S. pombe - NP_595015; C. albicans
- EAL02801.

Table 1
Summary of calculated values for amino acid similarities and identities between P. brasiliensis FMD and FMD sequences of other fungi

Organism GenBank accession number Identity (%) Similarity (%)
E. nidulans XP_408714 84 91
M. grisea EAA51938 77 89
P. anserina CAD60770 75 85
Neurospora crassa XP_331137 73 85
Schizosaccharomyces pombe NP_595015 70 83
Gibberella zeae XP_389218 69 81
Candida albicans EAL02801 66 79
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with sera of infected patients. The usefulness of the recom-
binant PbFMD in future diagnosis of PCM is promising, since

the recombinant molecule was able to react to antibodies
present in the sera of patients with PCM, and not in sera of
control individuals. Testing the usefulness of the FMD as a
tool for serodiagnosis will require studies with a larger num-
ber of patients and comparison with existing antigens.

Upon induction with IPTG, large amounts of a 45-kDa
protein, corresponding in molecular mass to purified native
FMD and also to the deduced PbFMD, were produced. The
recombinant protein displayed the ability to convert forma-
mide into ammonia.Availability of large quantities of the puri-
fied recombinant protein can facilitate detailed structural
analysis of the enzyme and its kinetics parameters. Future
work will focus on those subjects.
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Summary 

Paracoccidioides brasiliensis is a fungal human pathogen with a wide distribution in Latin 

America. It causes paracoccidioidomycosis, the most widespread systemic mycosis in Latin 

America. Formamidases (E.C. 3.5.1.49) are enzymes that hydrolyze formamide to produce 

formic acid and ammonia. The gene encoding formamidase in P. brasiliensis was previously 

characterized. The deduced protein presents 415 amino acids with a calculated molecular weight 

of 45-kDa. Also the purified molecule presented a molecular mass of 45-kDa. In this work, we 

identified a 180-kDa protein, reactive with the antibody produced in mice against the P.

brasiliensis recombinant purified formamidase. The heat-denatured species of 180-kDa rendered 

a species of 45-kDa recognized by the polyclonal antibody anti-formamidase, indicating that the 

fungal formamidase has most likely a homotetrameric strucutre. The 180-kDa protein was 

identified as formamidase by peptide mass fingerprinting using mass spectrometry. The cellular 

localization of formamidase was analyzed in P. brasiliensis yeast cells and the protein was 

detected in equivalent amounts in the cytoplasm and in the fungal cell wall. The search for 

protein-protein interactions performed using yeast two-hybrid system demonstrated cytosolic 

and cell-wall membrane proteins as interacting molecules with the fungal formamidase.  

Keywords: Paracoccidioides brasiliensis, formamidase, native protein, mass spectrometry, 

cellular localization, inter molecular interactions.  

1. Introduction 

Paracoccidioides brasiliensis, a dimorphic fungus of the phylum Ascomycota, is a major human 

pathogen with a broad distribution in Latin America (Restrepo et al., 2003). P. brasiliensis

grows as a saprophytic mould in the environment, but undergoes phase transition to a yeast form 
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at the mammalian physiological temperature. The fungus which is the etiologic agent of 

paracoccidioidomycosis (PCM) is primarily a respiratory pathogen, infecting the host through 

the inhalation of airborne propagules from the mycelia phase. In the pulmonary alveolar 

epithelium, through differentiation, the mycelia produce the parasitic yeast form that can spread 

to multiple organs and tissues (Franco, 1987; Restrepo et al., 2003).  

In a previous work we identified by liquid isoeletric focusing and sodium dodecyl sulfate 

electrophoresis (SDS-PAGE) a protein species with 45-kDa that was characterized by amino 

acid sequencing of endoproteinase Lys-C digested peptides as a formamidase of P. brasiliensis.

We also demonstrated the presence of antibodies reacting with the formamidase in sera of P. 

brasiliensis infected patients. Additionally, were demonstrated the enzymatic activity of cellular 

extracts from yeast and mycelium towards the substrate formamide, as well towards the 

recombinant formamidase, both displaying the ability of converting formamide into ammonia 

(Borges et al., 2005).  

The P. brasiliensis nitrogen metabolism presents the particularity of having a complete urea 

cycle, including an arginase catalyzing conversion of arginine to urea plus ornithine (Arraes et 

al., 2005). Additionally, the fungus overexpresses the gene encoding for formamidase, with 

higher amounts of transcripts and the cognate protein in the mycelia phase (Felipe et al., 2003; 

Borges et al., 2005). Formamide aminohydrolase (FMD, EC 3.5.1.49) catalyzes the highly 

specific hydrolysis of formamide to produce ammonia and formate (Skouloubris et al., 1997). 

Our previous data indicated that the P. brasiliensis formamidase presents high and specific 

affinity to formamide. These observations indicate that the P. brasiliensis formamidase play a 

role in the nitrogen metabolic pathway that may operate in this organism. Corroborating this 

suggestion, some species of microorganisms are able to use formamidase as a source of nitrogen 

for growth. In this way, the fungus Aspergillus nidulans possess a formamidase gene (fmdS),

acting in nitrogen metabolism and utilizing formamide as a sole nitrogen source. The fmdS gene 

is regulated by endogenous nitrogen metabolite repression, suggesting that nitrogen starvation 

can promote the fmdS expression and that formamidase of A. nidulans act in nitrogen 

metabolism (Fraser et al., 2001). 

The role of formamidase in P. brasiliensis biology is yet unknown. The protein was found to be 

highly expressed in P. brasiliensis mycelium (Borges et al., 2005), and analysis revealed that the 

cognate transcript represented a high proportion of the total sequenced ESTs of P. brasiliensis,

isolate Pb01 (Felipe et al., 2003). Also the formamidase of P. brasiliensis reacts with immune 

sera from patients with PCM providing an association of the protein with fungal pathogenesis 

(Borges et al., 2005). 
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In this study we set out to perform the characterization of a 180-kDa protein present in fungal 

cells and reactive with a polyclonal antibody produced against the recombinant formamidase, 

overproduced in a heterologous system. The native formamidase was purified in two steps of 

column chromatography and the protein was identified by mass spectrometry of the tryptic 

digested products. We also determined the cellular localization of the native protein in fungal 

yeast cells. The fungal formamidase was located in the cytoplasm and cell wall. The function of 

most proteins is dependent on their interaction with other molecules, including other proteins. In 

this way, we performed the screening of interaction of formamidase with P. brasiliensis proteins 

using the yeast two-hybrid system and co-immunoprecipitation assays. The identified interacting 

proteins may be highlighting the uncommon localization in the fungus cell wall, as well as the 

predicted function of the P. brasiliensis formamidase.

 2. Material and methods 

2.1. Maintenance of P. brasiliensis

P. brasiliensis isolate 01 (ATCC MYA-826) was used and previously described (Barbosa et al.,

2006). The yeast phase was grown at 36 ºC, in Fava-Netto´s medium [1% (w/v) peptone; 0.5% 

(w/v) yeast extract; 0.3% (w/v) proteose peptone; 0.5% (w/v) beef extract; 0.5% (w/v) NaCl; 4% 

(w/v) glucose, 1% (w/v) agar, pH 7.2] for 7 days. 

2.2. Preparation of mycelia and yeast cells protein extracts  

Yeast and mycelium protein crude extracts were obtained as described (Borges et al., 2005). For 

the preparation of total cell homogenate, mycelium and yeast cells were frozen and exhaustively 

ground with mortar and pestle in the presence of protease inhibitors: 50 g/mL N- - -tosyl-L-

lysine chloromethylketone (TLCK); 1 mM 4-chloromercuribenzoic acid (PCMB); 20 mM 

leupeptin; 20 mM phenylmethylsulfonyl fluoride (PSMF) and 5 mM iodoacetamide in 

homogenization buffer (20mM Tris-HCl, pH 8.8; 2mM CaCl2). The mixture was centrifuged at 

12000 x g at 4 °C for 10 min, and the supernatant was used. The protein content of samples was 

determined by the Bradford method (Bradford, 1976).  

2.3. Heterologous protein expression and generation of polyclonal antibody 

The production and purification of the recombinant formamidase was performed as described 

(Borges et al., 2005). In brief, the cDNA encoding formamidase (GenBank accession number 

AY63575) was cloned into the SalI/NotI restriction sites of pGEX-4T-3 (GE Healthcare ®, 
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Chalfont St Giles, UK). The recombinant protein was expressed in the soluble form by the 

bacteria and was purified by affinity chromatography under non-denaturing conditions. The 

soluble fraction was applied to a Gluthatione SepharoseTM 4B resin column (GE Healthcare ®). 

The resin was washed three times in PBS 1X (0.14 M NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 

mM KH2PO4, pH 7.4) and the recombinant protein was cleaved by addition of thrombin 

protease (50 U/mL). The purity and size of the recombinant protein was evaluated by running 

the molecule on a 12% SDS-PAGE followed by Coomassie blue staining.  

The recombinant formamidase was used to generate specific mice polyclonal antibody. The 

purified protein (300 g) was injected into mice with Freud’s adjuvant, three times at 2 weeks 

intervals. The obtained serum, containing specific anti-formamidase polyclonal antibody, was 

sampled and stored at –20 °C. The mice were also bled before immunization to obtain pre-

immune serum.  

2.4. Protein fractionation by electrophoresis and western blot analysis 

Total protein extract of P. brasiliensis yeast cells was submitted to isoelectric focusing, as 

described (O’Farrell, 1975). Gels were loaded with the proteins in sample buffer, containing 9.5 

M urea, 1.6% (v/v) ampholines 5.0–8.0, 0.4% (v/v) ampholines 3.5–10.0, 2% (v/v) non-ionic 

detergent Nonidet P-40, 5.0% (v/v) -mercaptoethanol. The strips were treated for 30 min with 

equilibration buffer [0.08M Tris–HCl pH 6.0, 5% (v/v) -mercaptoethanol, 2.3% (w/v) sodium 

dodecyl sulfate (SDS), 1% (v/v) glycerol, 0.01% (w/v) bromophenol blue]. The second 

dimension was performed on a 5–15% gradient polyacrylamide gel, as described by Laemmli 

(1970). Immunoblot reactions with sera from immunized or control mice were carried out for 2 

h at room temperature under shaking. The membranes were washed three times with 0.1% 

(vol/vol) Tween 20 in PBS and subsequently incubated for 1 h at room temperature with goat 

anti-mice IgG coupled to alkaline phosphatase (Sigma Aldrich, Co., St. Louis, MO). The 

reactions were developed with 5-bromo-4-chloro-3-indolylphosphate/ nitrobluetetrazolium 

(BCIP/NBT). 

2.5. Measurement of the formamidase activity 

The formamidase activity was measured by monitoring the appearance of ammonia, as described 

(Skouloubris et al., 1997). Protein samples (500 ng), were added to 200 L of formamide

substrate solution at a final concentration of 100 mM in 100mM phosphate buffer pH 7.4 and 10 

mM EDTA. The reaction mixture was incubated at 37 oC for 30 min. Subsequently it was added 

400 L of phenol-nitroprusside and 400 L of alkaline hypochlorite solution (Sigma Aldrich, 
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Co.). The samples were incubated at 50 oC for 6 min and absorbance was read at 625 nm. The 

amount of released ammonia was determined from a standard curve. One unit (U) of 

formamidase was defined as the amount of enzyme required to hydrolyze 1 mol of formamide 

per min per mg of total protein. 

2.6. Purification of the native formamidase 

Total protein extract of P. brasiliensis yeast cells was obtained as described above. The extract 

was ressuspended in buffer 25 mM Tris-HCl, pH 7.5, and applied onto a 10 mL DEAE 

Sepharose column (GE Healthcare®) previously equilibrated with the same buffer. The column 

was washed, and the proteins were eluted with a linear gradient performed for 30 min in the 

same buffer from 0.1 to 1 M NaCl and then with 1.0 M NaCl, for 10 min, at 0.5-mL/min flow 

rate. Fractions (2 ml) were collected and aliquots were tested for formamidase activity, as 

described above. The enzymatically active fractions, were applied onto a 10 mL Phenyl 

Sepharose column (GE Healthcare®), previously equilibrated with buffer 50 mM Na2HPO4, 0.5 

M (NH4)2SO4, pH 7.0. Protein flowing through the column was collected and assayed for 

formamidase activity. Fractions containing activity were pooled and stored for further analysis.  

2.7. Proteolysis and mass spectrometry 

Two protein bands separated by SDS-PAGE were excised from the gel and soaked in 50 µL 

acetonitrile (ACN). The solvent was dried under vacuum using a Speed Vac evaporator (Savant, 

Farmingdale, NY, USA), and incubated in 50 µL buffer containing10mM DTT in 100mM 

NH4HCO3 for 1h at 56 ºC under agitation. The DTT solution was removed and replaced by 55 

mM iodoacetamide in 100mM NH4HCO3 for 45 min at room temperature in the dark. The gel 

pieces were then subjected to alternate 5 min washing cycles with NH4HCO3 and ACN, dried 

down, reswollen in 50 µL of 50 mM NH4CO3 containing 12.5 ng/mL sequencing grade modified 

porcine trypsin (Promega, Madison, WI, USA), and incubated at 37ºC overnight. The resulting 

tryptic peptides were extracted with 20 µL 5% (v/v) acetic acid, followed by a second extraction 

with 20 µL 5% (v/v) acetic acid in 50 % (v/v) in a sonicator for 20 min each. The extracts were 

pooled, dried under vacuum, and then solubilized in 15 µL 0.1% TFA for MS analysis. The 

tryptic digest sample was analyzed by using a MALDI-TOF mass spectrometer (Reflex IV, 

Bruker Daltonics, Karlsruhe, Germany). The obtained peptide masses list was used for protein 

identification through MASCOT software (http://www.matrixscience.com) search against the 

SwissProt database (http://expasy.org/sprot). 
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2.8. Immunocytochemistry of formamidase 

For ultrastructural immunocytochemistry studies, yeast cells were fixed in a mixture containing 

4% (wt/vol) paraformaldehyde, 0.5% (vol/vol) glutaraldehyde, and 0.2% (wt/vol) picric acid in 

0.1 M sodium cacodylate buffer at pH 7.2 for 24 h at 4 °C. The cells were rinsed several times 

using the same buffer, and free aldehyde groups were quenched with 50 mM ammonium 

chloride for 1 h, followed by block staining in solution containing 2% (wt/vol) uranyl acetate in 

15% (vol/vol) acetone for 2 h at 4 °C (Berryman and Rodewald, 1990). Dehydratation was 

performed in a series of ascending concentrations of acetone (30 to 100%) (vol/vol) and 

subsequently the material was embedded in LR Gold resin (Electron Microscopy Sciences, 

Washington, Pa.). The ultrathin sections were collected on nickel grids, preincubated in 10 mM 

PBS containing 1.5% (wt/vol) bovine serum albumin (BSA) and 0.05% (vol/vol) Tween 20, 

(PBS-BSA-T), and subsequently incubated for 1 h with the polyclonal antibody to the 

recombinant formamidase (diluted 1:100). Cells were washed with PBS-BSA-T, and incubated 

for 1 h at room temperature with the labeled secondary antibody mouse IgG, Au conjugated (10- 

nm average particle size; 1:20 dilution; Electron Microscopy Sciences, Washington, USA). 

Subsequently, the grids were washed with PBS-BSA-T, washed with distilled water, stained 

with 3% (wt/vol) uranyl acetate, and lead citrate, and imaged with a Jeol 1011 transmission 

electron microscope (Jeol, Tokyo, Japan). Controls were incubated with mouse pre-immune 

serum at 1:100, followed by incubation with the labeled secondary antibody. The gold particles 

were quantified in three independent preparations of yeast cells. The particles were counted in 

total cell distribution, as well as in the cytoplasm and cell wall, as previously described (Barbosa 

et al., 2006). Results were expressed as the number of gold particles, represented as the means 

of the counts performed three times with standard deviations included.  

2.9. cDNA library construction and two -hybrid assays

A cDNA library was obtained by using RNA extracted from P. brasiliensis yeast cells. The 

cDNAs were synthesized by using the SMART PCR cDNA synthesis kit (Clontech 

Laboratories, Palo Alto, CA, USA) and were cloned into the prey vector pGADT7 in order to 

perform yeast two-hybrid screens using the Matchmaker Two-Hybrid System 3 (Clontech). To 

identify potential protein-protein interactions with formamidase, the cDNA encoding 

formamidase (Borges et al., 2005) was sub cloned into the bait vector pGBKT7. Briefly, the 

generation of transformants was obtained by introducing bait vector into Saccharomyces 

cerevisiae yeast strain Y187 (MAT , trp1-901), a tryptophan depleted strain and the prey vector 

into the S. cerevisiae strain AH109 (MATa, leu2-3), a leucine depleted strain. Experimental 
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procedures were conducted according to the Matchmaker GAL4 Two-Hybrid System 3 manual 

and the Yeast Protocol Handbook (Clontech). After cells mating, it was performed the selection 

of the S. cerevisiae diploids, which contains two vectors, through selection into plates with 

minimal media SD/–Leu/–Trp. To exclude false positive clones, the colonies were replicated to 

high stringency plates with minimal media SD-Ade /–His /–Leu/–Trp. The screening of positive 

clones included the presence of 5-Bromo-4-Chloro-3-indolyl- -D-galactopyranoside as the 

substrate that employs blue/white screening directly on the plate, since adenine and histidine are 

reporter genes which are expressed together with lacZ ( -galactosidase reporter gene). The 

positive clones were used to PCR colony assay using AD-LD 5' and AD-LD 3' supplied 

oligonucleotides for pGADT7-Rec bait plasmid. The PCR products of the identified 

transformants were submitted to DNA sequencing performed by the double-strand dideoxy-

chain termination method by using a MegaBACE 1000 sequencer (GE Healthcare ®) for 

automated sequence analysis. Search for sequence homologies to genes in the GenBank database 

were performed by using the BLAST algorithm (http://www.ncbi.nlm.nih.gov) as described by 

Altschul et al (1990). 

2.10. In vitro translation and co-immunoprecipitation assays

The cDNA encoding formamidase and the indentified cDNAs that potentially interact with 

formamidase were synthesized by using the TNT® Coupled Reticulocyte Lysate System 

(Promega, Madison, USA). The PCR products of selected colonies were used as template for the 

in vitro transcription/translation. The proteins were in vitro synthesized and labeled with 35S-

methionine (Perkin-Elmer, Wellesley, MA), using rabbit reticulocyte lysate. The reaction was 

incubated at 30 °C for 2 h, and 2.5 L of the translated samples were loaded onto a SDS-gel for 

the analysis of the translated products. 

For the co-immunoprecipitation experiments, the translated formamidase fused to c-myc epitope 

(c-myc-FMD) and the translated proteins fused to hemaglutinin epitope (HA-Prey) were mixed 

at 25 °C for 1 h. The mixture was incubated with protein A Agarose beads and with the

monoclonal c-myc antibody in PBS 1X at 25 °C for 1 h. After washing, the beads containing 

proteins were resuspended in SDS-loading buffer [50 mM Tris-HCl, pH 6.8; 100 mM 

dithiothreitol, 2% (w/v) SDS; 0.1% (w/v) bromophenol blue; 10% (v/v) glycerol], followed by 

boiling at 80 °C for 5 min. The proteins were separated on a SDS-PAGE 4–12 % linear gradient. 

The gel was fixed with 20% (v/v) ethanol and 10 % (v/v) acetic acid for 30 min, and incubated 

in 20 mL of fluorographic reagent NAMP 100 (Amplify Fluorographic Reagent - GE Healthcare 

®). The gels were dried at 80 °C for 90 min under vacuum and autoradiography was obtained. 
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Controls were performed. Each assay was repeated three times with a different batch of in vitro 

translated product to confirm the results. 

3. Results 

3.1. Mice immunization and western blotting 

Mice immunization was performed with the purified recombinant formamidase. Total protein 

extracts of P. brasiliensis yeast cells and mycelium, total protein extract obtained from E. coli

cells and the purified recombinant formamidase, were electrophoresed, blotted onto membranes 

and reacted with the polyclonal antibody (Figure 1A, lanes 1-4). A single protein species was 

detected in the total protein extract of yeast cells (Figure 1A, lane 1) and mycelium (Figure 1A, 

lane 2). Also, the recombinant purified formamidase was recognized as a single protein species 

by the polyclonal antibody (Figure 1A, lane 4). No reaction was observed with total protein 

extracts from E. coli (Figure 1A, lane 3). No cross-reactivity was detected when the same 

samples were incubated with the mouse pre-immune serum (Figure 1A, lanes 5-8). A single 

protein species was detected in two-dimensional western blot assays, with molecular mass of 45-

kDa, pI of 6.3 (Figure 1B, lane 1) and no reaction was detected in sample incubated with the 

pre-immune serum (Figure 1B, lane 2). 

3.2. Purification of the native formamidase of P. brasiliensis 

Protein fractionation was performed of yeast cells protein extracts non-denaturated by heat, 

depicting a 180-kDa protein species, as shown in Figure 2A. The protein species of 180-kDa 

was detected in western blot assay performed with the polyclonal antibody anti-formamidase, 

reacted with the total yeast cells protein extract non-denaturated by heat (Figure 2B, lane1). A 

protein species of 45-kDa was detected in the protein extract denaturated by heat, suggesting 

that the 180-kDa protein could represent a tetramer of units of the 45-kDa formamidase.  

In order to purify the high molecular weight protein of 180-kDa, reactive to the anti-

formamidase polyclonal antibody, we performed two steps of purification, subjecting the total 

protein extract of yeast cells to a combination of ion exchange and hydrophobic interaction 

chromatography (Figure 3A; Table 1). Each step of chromatography was assayed for enzymatic 

activity to formamidase (Figure 3A). By use of formamide as a substrate, the formamidase 

activity consistently eluted as a single peak in the two chromatographic steps. By this procedure, 

the formamidase could be purified approximately 1.7 fold, with a 65 % yield (Table 1) which 

yielded a homogenous preparation, as concluded by a single protein species on SDS-PAGE 
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(Figure 3B and 3C). The Phenyl Sepharose rescued fraction was loaded onto a SDS-PAGE gel 

(Figure 3B). A protein species of 180-kDa was evidenced in the heat non-denaturated (Figure 

3B, lane 1), whereas a protein of 45-kDa was obtained in the same sample denatured by heat 

(Figure 3B, lane 2). The results support the hypothesis that the purified 180- kDa protein is a 

tetrameric state of four same oligomers and that the temperature could interfere with this pattern. 

Western blot analysis of purified Phenyl Sepharose fraction was performed by using the 

polyclonal antibody anti-formamidase (Figure 3C). A single 180-kDa protein species was 

detected in the sample non-denatured by heat (Figure 3C, lane 1). The same sample heat-

denaturated depicts the 45-kDa protein species in this assay (Figure 3C, lane 2). 

3.3. Characterization of the purified native protein by peptide mass fingerprinting  

In order to characterize the purified 180-kDa protein species, the purified Phenyl Sepharose 

fraction (Figure 3B, lane 1) was digested with trypsin and the resulting peptides were submitted 

to mass spectrometry analysis. The identified peaks with the respective molecular masses are 

shown in Figure 3 (panel D). Mass values obtained for the detected peptides were compared to 

those theoretically deduced from sequences deposited in database. Ten peptides showed matches 

to peptides obtained by theoretical digestion of the predicted formamidase of P. brasiliensis

(Table 2; Figure 3, panel D). The analysis reveals that the purified 180-kDa protein is the P.

brasiliensis formamidase, and supports the concept that the 180-kDa species is the native 

formamidase of P. brasiliensis.

3.4. Cellular localization of P. brasiliensis formamidase 

We exploited the cellular localization of the formamidase by using the polyclonal antibody anti-

formamidase in immunoelectron microscopy. In yeast cells processed by the post embedding 

method, gold particles were present in both, cytoplasm and cell wall (Figure 4, panels B and D). 

Control sample exposed to the pre-immune serum was free of label (Figure 4, panel C). An 

additional control demonstrating the integrity of the cellular components is shown in Figure 4 

(panel A). The quantification of gold particles was performed and demonstrated that similar 

number of particles were present in the cytoplasm and cell wall (Figure 5).  

3.5. Screening for protein interactions with P. brasiliensis formamidase  

In an attempt to identify proteins putatively interacting with the P. brasiliensis formamidase, it 

was performed two-hybrid assays to screen interactions with proteins from a cDNA library 

constructed with RNAs obtained from P. brasiliensis yeast cells. The resulted mating clones 
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were used in PCR reactions, and the products were submitted to DNA sequencing. The obtained 

cDNAs encoding proteins that were putative interacting molecules with the P. brasiliensis

formamidase were summarized in the Table 3. Some cDNAs were redundant such as those 

encoding for the polyubiquitin (ubq10) homologue of Neurospora crassa, the FKBP-type 

peptidyl-prolyl isomerase homologue of Aspergillus clavatus and the Protein kinase C 

homologue of Aspergillus fumigatus. Also, the cDNAs encoding for the cell wall protein 

glycosyl hydrolase (dfg5 like), for the calnexin, homologues of P. brasiliensis, as well as for 2-

oxoglutarate dehydrogenase E1 of Ajellomyces capsulatus were detected. Some of the identified 

proteins were submitted to in vitro confirmation of the interactions by coupled 

transcription/translation followed by co-immunoprecipitation of the translated products. The 

Figure 6 presents the products of dfg5, ubq10 and fkbp, confirmed by the co-

immunoprecipitation assays. The co-immunoprecipitation was assayed utilizing the c-myc 

antibody that reacts with c-myc epitope fused to formamidase, which immunopreciptated linked 

with interacting proteins that were synthesized by in vitro translation. The immunopreciptated 

proteins species were identified in same lane. The Dfg5-like (Figure 6, lane 1), the Ubq10 

(Figure 6, lane 2) and the Fkbp (Figure 6, lane 3). Negative controls were performed by using 

the c-myc antibody with in vitro synthesizes proteins Dfg5-like, Ubq10 and Fkbp, to confirm the 

specific binding of c-myc antibody with formamidase (Figure 6, lanes 4 to 6).

3.6. A Model of how P. brasiliensis formamidase could interact with other P. brasiliensis 

proteins 

The most relevant proteins identified by yeast two- hybrid system were used to construct a 

model of how those interactions could occur in P. brasiliensis cells. The identified proteins that 

were described in Table 3, and depicted  in the model presented in Figure 7, are FKBP-type 

peptidyl-prolyl isomerase,  calnexin,  2-oxoglutarate dehydrogenase and the cell wall glycosyl 

hydrolase (PbDfg5-like). The unfolded cytosolic formamidase could interact with Fkbp and 

calnexin, both accelerating the formamidase folding. The PbDfg5, a cell wall protein could 

interact with formamidase on cell wall, since both are cell-wall molecules of P. brasiliensis

(present work; Castro et al., 2008) and may be responsible to the localization of formamidase at 

the fungal cell wall. Also the putative role of the formamidase in fungal nitrogen metabolism 

could be reinforced by its association with a subunit of 2-oxoglutarate dehydrogenase, a key 

enzymatic complex in nitrogen metabolism (Figure 7).  
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Discussion 

In a previous work we performed the characterization of the gene and cDNA encoding to the 

formamidase of P. brasiliensis. Also, it was performed the heterologous expression and 

purification of the recombinant protein. We also demonstrated that the P. brasiliensis

formamidase was catalytically active and could play a role in the host-parasite relationship, since 

the protein was recognized by sera of patients with proven paracoccidioidomycosis (Borges et 

al., 2005).  

In this study we sought to continue the characterization of the P. brasiliensis formamidase. The 

purified recombinant protein was efficiently used to produce polyclonal antibody in mice. The 

polyclonal antibody anti-formamidase presented high specificity, detecting only a protein 

species in P. brasiliensis total protein extracts of yeast cells and mycelium. No cross-reaction 

with P. brasiliensis proteins was detected utilizing pre-immune serum. 

The formamidase belongs to amidase/nitrilase family. The Methylophilus methylotrophus

formamidase probably have homotetrameric structure (O’Hara et al., 1994; Wyborn et al.,

1996). A homohexameric structure was showed in H. pylori crystallized formamidase (Hung et 

al., 2007). In order to have insights in the P. brasiliensis formamidase structure, studies were 

performed. Western blot analysis in reducing conditions revealed a 180-kDa protein species in 

P. brasiliensis yeast cells. Furthermore, heat-denatured protein samples revealed a protein 

species with 45-kDa. The formamidase of P. brasiliensis could be purified from the cell extract 

by a combination of ion exchange and hydrophobic interaction chromatography. This 

purification procedure yielded a homogenous preparation of the formamidase enzyme with a 

subunit molecular mass of 45-kDa and a native molecular mass of 180-kDa. These results 

suggest that this enzyme has a homotetrameric structure. 

Immunocitochemistry analysis identified the P. brasiliensis formamidase in the cytoplasm and 

at the cell wall of P. brasiliensis. The P. brasiliensis formamidase could be a cytoplasmic 

protein, as suggested by computational analysis (http://www.psort.org) of the deduced protein 

sequence, since it does not present a N-terminal signal peptide. The localization of some classic 

cytoplasmatic molecules lacking N-terminal signal peptide in other cellular compartments is not 

uncommon, as described in our laboratory to the P. brasiliensis glyceraldehyde-3-phosphate-

dehydrogenase  - GAPDH (Barbosa et al, 2006) and to the triosephosphate isomarase - TPI 

(Pereira et al., 2007) both, present in the cytoplasm and at the fungal cell wall. Molecules that 

lack an N-terminal signal peptide sequence have been described in cell wall of S. cerevisiae, in 

addition to the usual cytoplasmatic localization (Nombela et al. 2006). Many macromolecules 

have been described out of cytoplasm in extracellular vesicles secreted by Histoplasma 
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capsulatum (Albuquerque et al., 2008) and Cryptococcus neoformans (Rodrigues et al., 2008). 

Some of them are classic cytoplasmic molecules, such as GAPDH (Albuquerque et al., 2008; 

Rodrigues et al., 2008) TPI, as well as formamidase (Albuquerque et al., 2008).  The described 

data in other fungal species support our experimental results of double localization of P.

brasiliensis formamidase in the cytoplasm and in cell wall.  

Interactions of proteins are essential for all biological processes. The P. brasiliensis 

formamidase interacts with calnexin, involved in the correct folding (Pollock et al., 2004) and 

related to increase in the secretion of proteins in organisms by Hansenula polymorpha

(Klabunde et al., 2007). Additionally, the formamidase of P. brasiliensis interacts with FKBP-

type peptidyl prolyl isomerase, related to acceleration of folding of proteins (Solscheid and 

Tropschug 2000).  The Ubq10 related to the degradation of cytoplasmatic proteins was found to 

interact with formamidase. The monoubiquitylation of proteins is related to trafficking of 

membrane proteins between various cellular compartments, directing ubiquitin-conjugated 

membrane proteins mainly to endocytic machinery, like lysosome and vacuoles (Mosesson et

al., 2006). The Dfg5 cell wall protein of S. cerevisiae is related to resistence to alkaline 

environment. The dfg5 mutant cells grew very poorly at pH 7.8 (Serrano et al., 2006).  The cell 

wall Dfg5 (Castro et al., 2008) interacts with formamidase probably at the fungal surface, where 

both are located, probably acting in alkaline resistence. Other proteins such as protein kinase C 

and 2-oxoglutarate dehydrogenase could interact with the fungal formamidase. The predicted 

interaction of the E1 component of the 2-oxoglutarate dehydrogenase is particularly noteworthy, 

since the enzymatic complex activity play an important role in modulating the flux from 2-

oxoglutarate into amino acid metabolism (Araujo et al., 2008). Furthermore, some of these 

proteins that interacts with P. brasiliensis formamidase were found in the extracellular vesicles 

secreted by H. capsulatum, such as FKBP-type peptidyl-prolyl isomerase, 40S ribosomal protein 

S4, 2-oxoglutarate dehydrogenase (Albuquerque et al., 2008), as well as the calnexin protein 

found in the extracellular vesicles secreted by C. neoformans (Rodrigues et al., 2008), which can 

be related to the localization of P. brasiliensis formamidase in the cell wall of the fungus.

Regarding to the putative role of the antigenic formamidase in P. brasiliensis physiology, the

uncommon localization of this enzyme in the cell wall could highlight some metabolic features 

of this enzyme in P. brasiliensis cells, such as its antigenic property, as well as the putative role 

of this enzyme in nitrogen metabolism, producing ammonia. We can speculate that ammonia 

could be involved in tissue damage and in acid resistence in host tissues, as well as could be a 

source for nitrogen assimilation. Moreover, due to its characterized enzymatic activity in fungal 

cytoplasmic extracts (Borges et al., 2005), it could be speculated that the formamidase of P. 



46 

brasiliensis works in the nitrogen metabolism in the fungus cytoplasm, as described to H. pylori

(van-Vliet et al., 2003). The interaction of formamidase with the subunit of 2-oxoglutarate 

dehydrogenase could reinforce the protein role in the fungal metabolism of nitrogen (Araujo et 

al., 2008). 

The role of this high expressed molecule remains unclear; although this molecule was found in 

P. brasiliensis in vitro transcriptome of yeast cells (Felipe et al., 2003, 2005), in yeast cells 

recovered from infected mouse liver (Bailão et al., 2006; Costa et al., 2007), as well as in host 

mimicking conditions (Bailão et al., 2006, 2007).  If this molecule play a role in P. brasiliensis 

cells beyond the basic role in nitrogen metabolism, such as tissue damage and acid resistance, as 

described to H. pylori (Bury-Mone et al., 2004), its remains to be investigated.  

Acknowledgements 

The work at Universidade Federal de Goiás was funded by grants from Conselho Nacional de 

Desenvolvimento Científico e Tecnológico (CNPq –505658/ 2004 -6), Financiadora de Estudos 

e Projetos (FINEP – 0106121200 and 010477500), Fundação de Amparo a Pesquisa do Estado 

de Goiás and Secretaria de Ciência e Tecnologia do  Estado de Goiás.   C. L. Borges was a 

fellow from CNPq. 

References

ALBUQUERQUE, P.C., NAKAYASU, E.S., RODRIGUES, M.L., FRASES, S., 
CASADEVALL, A., ZANCOPE-OLIVEIRA, R.M., ALMEIDA, I.C., NOSANCHUK, J.D. 
Vesicular transport in Histoplasma capsulatum: an effective mechanism for trans-cell wall 
transfer of proteins and lipids in ascomycetes. Cell Microbiol., 10: 1695-1710, 2008.  

ALTSCHUL, S.F., W. GISH, W. MILLER, E.W. MYERS, D.J. LIPMAN. Basic local 
alignment search tool, J. Mol. Biol., 215: 403–410, 1990. 

ARAUJO, W.L., NUNES-NESI, A., TRENKAMP, S., BUNIK, V.I., FERNIE, A.R. Inhibition 
of 2-oxoglutarate dehydrogenase in potato tuber suggests the enzyme is limiting for respiration 
and confirms its importance in nitrogen metabolism. Plant Physiol., Epub ahead of print, 2008. 

ARRAES, F.B., BENOLIEL, B., BURTET, R.T., COSTA, P.L., GALDINO, A.S., LIMA, L.H., 
MARINHO-SILVA, C., OLIVEIRA-PEREIRA, L., PFRIMER, P., PROCÓPIO-SILVA, L., 
REIS, V.C., FELIPE, M.S. General metabolism of the dimorphic and pathogenic fungus 
Paracoccidioides brasiliensis. Genet Mol Res., 4: 290-308, 2005. 

BAILÃO, A.M, SCHRANK, A, BORGES, C.L., DUTRA, V., MOLINARI-MADLUM, E.E. 
W.I., FELIPE, M.S.S., MENDES-GIANNINI, M.J., MARTINS, W.S., PEREIRA, M.,  
SOARES, C.M.A. Differential gene expression by Paracoccidioides brasiliensis in host 
interaction conditions: Representational difference analysis identifies candidate genes associated 
with fungal pathogenesis. Microbes Infect., 8: 2686-2697, 2006. 



47 

BAILÃO, A.M., SHRANK, A., DUTRA, V., FELIPE, M.S.S., FIÚZA R.B., BORGES, C.L., 
PEREIRA, M., SOARES, C.M.A. The transcriptional profile of Paracoccidioides brasiliensis
yeast cells is influenced by human plasma. FEMS Immunol Med Microbiol., 51: 43-57, 2007. 

BARBOSA, M.S., BAO, N.S., ANDREOTTI, P.F., FELIPE, M.S.S., FEITOSA, L.S., 
MENDES-GIANNINI, M.J.S., SOARES, C.M.A. Glyceraldehyde 3-phosphate dehydrogenase 
of Paracoccidioides brasiliensis is a cell surface protein, involved in fungal adhesion to 
extracellular matrix proteins and interaction with cells. Infect. Immun., 74: 382-389, 2006. 

BERRYMAN, M.A. AND RODEWALD, R.D. An enhanced method for post-embedding 
immunocytochemical staining which preserves cell membranes. J. Histochem. Cytochem., 38: 
159–170, 1990. 

BORGES, C.L., PEREIRA, M., FELIPE, M.S.S., FARIA, F.P., GOMEZ, F.J., DEEPE JR, G.S., 
SOARES, C.M.A. The antigenic and catalytically active formamidase of Paracoccidioides 
brasiliensis: protein characterization, cDNA and gene cloning, heterologous expression and 
functional analysis of the recombinant protein Microbes Infect., 7: 66-77, 2005. 

BRADFORD, M.M. A rapid and sensitive method for quantitation of microgram quantities of 
protein utilizing the principle of protein-dye binding. Anal. Biochem., 72: 248-252, 1976. 

BURY-MONÉ, S.,THIBERGE, J.M., CONTRERAS, M., MAITOURNAM, A., LABIGNE, A., 
DE REUSE, H. Responsiveness to acidity via metal ion regulators mediates virulence in the 
gastric pathogen Helicobacter pylori. Mol Microbiol., 53: 623-638, 2004. 

CASTRO, N.S., BARBOSA, M.S., MAIA, Z.A., BÁO, S.N., FELIPE, M.S.S., SANTANA, 
J.M., MENDES-GIANNINI, M.J.S., PEREIRA, M., SOARES, C.M.A. Characterization of 
Paracoccidioides brasiliensis PbDfg5p, a cell-wall protein implicated in filamentous growth. 
Yeast, 25: 141-154, 2008. 

COSTA, M., BORGES, C.L., BAILAO, A.M., MEIRELLES, G.V., MENDONCA, Y.A., 
DANTAS, S.F., DE FARIA, F.P., FELIPE, M.S., MOLINARI-MADLUM, E.E., MENDES-
GIANNINI, M.J., FIUZA, R.B., MARTINS, W.S., PEREIRA, M., SOARES, C. M. A.
Transcriptome profiling of Paracoccidioides brasiliensis yeast-phase cells recovered from 
infected mice brings new insights into fungal response upon host interaction. Microbiology, 153: 
4194-4207, 2007. 

FELIPE, M.S.S., ANDRADE, R.V., ARRAES, F.B.M., NICOLA, A.M., MARANHÃO, A.Q., 
TORRES, F.A.G., SILVA-PEREIRA, I., POÇAS-FONSECA, M.J., CAMPOS, E.G., 
MORAES, L.M.P., ANDRADE, P.A., TAVARES, A.H.F.P., SILVA, S.S., KYAW, C.M., 
SOUZA, D.P., PBGENOME NETWORK, PEREIRA, M., JESUÍNO, R.S.A., ANDRADE, 
E.V., PARENTE, J.A., OLIVEIRA, G.S., BARBOSA, M.S., MARTINS, N.F., FACHIN, A.L., 
CARDOSO, R.S., PASSOS, G.A.S., ALMEIDA, N.F., WALTER, M.E., SOARES, C.M.A., 
CARVALHO, M.J., BRÍGIDO, M.M. Transcriptional profiles of the human pathogenic fungus 
Paracoccidioides brasiliensis in mycelium and yeast cells. J. Biol. Chem., 280: 24706-24714, 
2005. 

FELIPE, M.S.S., ANDRADE, R.V., PETROFEZA, S.S., MARANHÃO, A.Q., TORRES, 
F.A.G., ALBUQUERQUE, P., ARRAES, F.B.M., ARRUDA, M., AZEVEDO, M.O., 
BAPTISTA, A.J., BATAUS, L.A.M., BORGES, C. L., CAMPOS, E. G., CRUZ, M. R., 
DAHER, B. S., DANTAS, A., FERREIRA, M.A.S.V., GHIL, G.V., JESUINO, R.S.A., KYAW, 



48 

C.M., LEITÃO, L., MARTINS, C.R., MORAES, L.M.P., NEVES, E.O., NICOLA, A.M., 
ALVES, E.S., PARENTE, J.A., PEREIRA, M., POÇAS-FONSECA, M.J., RESENDE, R., 
RIBEIRO, B.M., SALDANHA, R.R., SANTOS, S.C., SILVA-PEREIRA, I., SILVA, M.A.S., 
SILVEIRA, E., SIMÕES, I.C., SOARES, R.B.A., SOUZA, D.P., DE-SOUZA, M.T., 
ANDRADE, E.V., XAVIER, M.A.S., VEIGA, H.P., VENANCIO, E.J., CARVALHO, M.J.A., 
OLIVEIRA, A.G., INOUE, M.K., ALMEIDA, N.F., WALTER, M.E.M.T., SOARES, C.M.A., 
BRÍGIDO, M.M. Transcriptome characterization of the dimorphic and pathogenic fungus 
Paracoccidioides brasiliensis by EST analysis. Yeast, 20: 263-271, 2003. 

FRANCO, M. Host-parasite relationship in paracoccidioidomycosis. J. Clin. Microbiol., 25: 5-
18, 1987. 

FRASER, J.A., DAVIS, M.A., HYNES, M.J. The formamidase gene of Aspergillus nidulans:
regulation by nitrogen metabolite repression and transcriptional interference by an overlapping 
upstream gene. Genetics, 157: 119-131, 2001. 

HUNG, C.L., LIU, J.H., CHIU, W.C., HUANG, S.W., HWANG, J.K., WANG, W.C. Crystal 
structure of Helicobacter pylori formamidase AmiF reveals a cysteine-glutamate-lysine catalytic 
triad. J Biol Chem., 282: 12220-12229, 2007.  

KLABUNDE, J., KLEEBANK, S., PIONTEK, M., HOLLENBERG, C.P., HELLWIG, S., 
DEGELMANN, A. Increase of calnexin gene dosage boosts the secretion of heterologous 
proteins by Hansenula polymorpha. FEMS Yeast Res., 7: 1168-1180, 2007. 

LAEMMLI, U. K. Cleavage of structural proteins during the assembly of the head of 
bacteriophage T4. Nature, 227: 680–685, 1970. 

MOSESSON, Y., YARDEN, Y. Monoubiquitylation: a recurrent theme in membrane protein 
transport. Isr Med Assoc J., 8:233-237, 2006. 

NICOLA, A.M., ANDRADE, R.V., SILVA-PEREIRA, I. Molecular chaperones in the 
Paracoccidioides brasiliensis transcriptome. Genet Mol Res., 4: 346-357, 2005. 

NOMBELA, C., GIL, C., CHAFFIN, L. Non-conventional protein secretion in yeast. Trends 
Microbiol., 14: 15-21, 2006. 

O’FARRELL, P.H.. High resolution two-dimensional electrophoresis of proteins, J. Biol. 
Chem., 250, 4007–4021, 1975. 

O’HARA, B.P., WILSON, S.A., WYBORN, N.R., JONES, C.W.,  PEARL, L.H. Crystallisation, 
preliminary x-ray analysis and secondary structure determination of formamidase from 
Methylophilus methylotrophus, Protein Pept Lett., 1: 202-205, 1994. 

PEREIRA, L.A., BÁO, S.N., BARBOSA, M.S., SILVA, J.L., FELIPE, M.S.S., SANTANA, 
J.M., MENDES-GIANNINI, M.J., SOARES, C.M.A. Analysis of the Paracoccidioides 
brasiliensis triosephosphate isomerase suggests the potential for adhesin function. FEMS Yeast 
Res., 8: 1381-1388, 2007. 

POLLOCK, S., KOZLOV, G., PELLETIER, M.F., TREMPE, J.F., JANSEN, G., SITNIKOV, 
D., BERGERON, J.J., GEHRING, K., EKIEL, I., THOMAS, D.Y. Specific interaction of 



49 

ERp57 and calnexin determined by NMR spectroscopy and an ER two-hybrid system. EMBO J., 
23: 1020-1029, 2004. 

RESTREPO, A. Paracoccidiodomycosis. In: Dismukes, W.E., Pappas, P.G., Sobel, J.D. (Eds.), 
Clinical Mycology. Oxford University Press, Oxford, New York, NY. 2003. 

RODRIGUES, M.L., NAKAYASU, E.S., OLIVEIRA, D.L., NIMRICHTER, L., 
NOSANCHUK, J.D., ALMEIDA, I.C., CASADEVALL, A. Extracellular vesicles produced by 
Cryptococcus neoformans contain protein components associated with virulence. Eukaryot Cell., 
7: 58-67, 2008. 

SERRANO, R., MARTÍN, H., CASAMAYOR, A., ARIÑO, J. Signaling alkaline pH stress in 
the yeast Saccharomyces cerevisiae through the Wsc1 cell surface sensor and the Slt2 MAPK 
pathway. J Biol Chem., 281: 39785-39795, 2006. 

SKOULOUBRIS, S.A., LABIGNE, A., DE REUSE, H. Identification and characterization of an 
aliphatic amidase in Helicobacter pylori. Mol Microbiol., 25: 989-998, 1997. 

SOLSCHEID, B. AND TROPSCHUG, M. A novel type of FKBP in the secretory pathway of 
Neurospora crassa. FEBS Lett., 480: 118-122, 2000.  

Van VLIET, A.H., STOOF, J., POPPELAARS, S.W., BERESWILL, S., HOMUTH, G., KIST, 
M., KUIPERS, E.J., KUSTERS, J.G. Differential regulation of amidase and formamidase 
mediated ammonia production by the Helicobacter pylori fur repressor. J Biol Chem., 278: 
9052-9057, 2003. 

WYBORN, N.R., MILLS, J., WILLIAMS, S.G., JONES, C.W. Molecular characterisation of 
formamidase from Methylophilus methylotrophus. Eur J Biochem., 240: 314-322, 1996. 



50 

FIGURES 

Figure 1: Production and characterization of the polyclonal antibody anti-P. brasiliensis 
formamidase. A- Protein fractionation by one dimensional gel electrophoresis and western blot 
analysis. Protein extracts from yeast cells (lanes 1 and 5), from mycelium (lanes 2 and 6), total 
extracts of E. coli XL1-blue cells (lanes 3 and 7) and the purified recombinant formamidase 
(lanes 4 and 8) were fractionated and transferred to membrane. Western blot analysis was 
performed with the anti-formamidase antibody,1:1000 diluted (lanes 1-4) or mouse pre-immune 
serum,1:1000 diluted (lanes 5-8). After reaction with the anti-mouse IgG alkaline phosphatase 
coupled antibody (diluted 1:2000) the reaction was developed with BCIP/NBT. Molecular size 
markers are indicated. B- Fractionation of P. brasiliensis protein extracts by two-dimensional 
gel electrophoresis and western-blot analysis. 1-Protein extracts from yeast cells after reaction 
with the polyclonal anti-formamidase antibody. 2-The same extract as in 1 reacted with the pre-
immune serum. 

Figure 2: Fractionation of P. brasiliensis protein extracts and western-blot analysis. A –P.
brasiliensis total yeast cells protein extract non-denaturated by heat. The proteins were stained 
by Coomassie blue R-250. B- P. brasiliensis total yeast cells protein extract non-denaturated 
(lane 1) and denaturated by heat (lane 2), was fractionated and transferred to membrane. 
Western blot analysis was performed with the anti-formamidase antibody, 1:1000 diluted. After 
reaction with the anti-mouse IgG alkaline phosphatase coupled antibody (diluted 1:2000) the 
reaction was developed with BCIP/NBT (lanes 1 and 2). Molecular size markers are indicated. 
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Figure 3: Purification and characterization of the P. brasiliensis native formamidase.  A-
The purification of the native formamidase was performed in two steps of chromatography – 
Total yeast protein extracts (lane 1) the chromatographic fractions from DEAE Sepharose (lane 
2) and Phenyl Sepharose (lane 3) were assayed for formamidase activity. B- Polyacrylamide gel 
electrophoresis (12% SDS-PAGE) of: Phenyl Sepharose fraction non-denaturated (lane 1) or 
denaturated by heat (lane 2). The proteins on the gel were stained by Coomassie blue R-250. C- 
Reactivity of the protein fraction from Phenyl Sepharose to the polyclonal antibody, as 
determined by western blot analysis. The Phenyl Sepharose eluted fraction non-denatured (lane 
1) or denaturated by heat (lane 2) was fractionated, transferred to membrane and reacted to the 
anti-formamidase antibody. After reaction with the anti-mouse IgG alkaline phosphatase 
coupled antibody (diluted 1:2000) the reaction was developed with BCIP/NBT. Molecular size 
markers are indicated. D-Peptide mass fingerprinting of trypsin digested formamidase – Ten 
peaks were observed and the obtained sequences were submitted to analysis in database. 
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Figure 4: Immunoelectron microscopy detection of the formamidase in P. brasiliensis yeast 
cells by postembedding method. For ultrastructural immunocytochemistry studies, the ultrathin 
sections were incubated with the polyclonal antibody anti- formamidase (diluted 1:100). After, 
the cells were washed and incubated with the labeled secondary antibody anti-mouse IgG, Au 
conjugated, 1:20 dilution. Controls were incubated with mouse pre-immune serum at 1:100, 
followed by incubation with the labeled secondary antibody.  A- Transmission electron 
microscopy of P. brasiliensis yeast cells showing the nucleus (n), cytoplasmic vacuoles (v), 
mitochondria (m) and cell wall (w). B – The gold labeled particles were observed in the 
cytoplasm and in the cell wall of yeast cells. The arrowheads indicate gold particles.  C – 
Negative control is exposed to the pre-immune serum and is free of label.  D – Magnification of 
the cell wall/membrane.  Bars 1 m (A), 0,5 m (B and C) and 0,2 m (D). 

Figure 5: Quantification of gold particles in the P. brasiliensis yeast cells. The gold particles 
were quantified in three independent preparations of yeast cells. The particles were counted in 
total cell distribution, as well as in the cytoplasm and cell wall. Results were expressed as the 
number of gold particles, represented as the means of the counts performed three times with 
standard deviations included (P  0.05). 
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Figure 6: Co-immunopreciptation of P. brasiliensis proteins putatively interacting with P.
brasiliensis formamidase. The proteins were in vitro synthesized and labeled with 35S-
methionine.  The translated formamidase fused to c-myc epitope (c-myc-FMD) and the 
translated proteins fused to hemaglutinin epitope (HA-Prey) were mixed and the mixture was 
incubated with protein A Agarose beads and the monoclonal c-myc. The proteins were separated 
by SDS-PAGE. The gel was fixed, dried under vacuum and autoradiography was obtained. 
Dfg5-like protein (lane 1), Ubq10 (lane 2) and Fkbp protein (lane 3). Negative controls were 
performed; lanes 4-6, the same proteins as in 1-3.
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Figure 7: A model of how the P. brasiliensis formamidase could interact with other fungal 
proteins. FMD (formamidase), NH3 produced by formamidase, E1 (2-oxoglutarate 
dehydrogenase E1), Fkbp (Peptidyl-prolyl isomerase), Dfg5 (glycosyl hidrolase) and calnexin 
are some of the proteins that putatively interact with formamidase of P. brasiliensis identified by 
yeast two -hybrid assay.  
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TABLES 

TABLE 1 - Purification of the native formamidase of P. brasiliensis 

Protein source Specific 
activitya

Purification 
factorb

Yield 
(%) 

Total protein extract of yeast cells 1.7 1 100
DEAE – Sepharose purified fraction 2.2 1.3 73
Phenyl – Sepharose purified fraction 2.9 1.7 62
a Specific activity: mol of ammonia per min per mg of protein. 
b (specific activity of purified fraction) / (specific activity of total protein of yeast extract)  

TABLE 2 - Identification of P. brasiliensis formamidase by peptide mass fingerprinting 
Tryptic peptide mass (Da)

Identified amino acid sequenceExperimental data
(in-gel digestion)a

Expected data 
(in silico digestion) 

1,251.204 1,250.297 12VDLHKPASEQK22

1,420.000 1,418.993 46IECLDWTGGQIK57

1,600.123 1,599.116 116NGGGFLDEFYPNAAK130

1,588.132 1,587.125 131AIWDFEGIFCSSR143

2,579.118 2,578.110 150FAGLIHPGILGCAPSAEVLAEWNR173

2,100.763 2,099,755 188VVAKPPEPINVHAGSASDAIKA208

1,651.256 1,650.248 218TIPGRPEHGGNCDIK232

1,849.518 1,848.511 295SPIFHPGPVEPQFSPGR311

1,637.213 1,636.206 312YLTFEGFSVDHHGK325

1,320.977 1,319.969 326QHFLDATVAYR336

aThe formamidase was digested with trypsin, and masses of resulting peptides were determined 
by mass spectrometry and compared to the theoretical ones produced by in silico digestion of 
proteins found in the SwissProt databases (http://expasy.org/sprot/). Experimental mass was 
obtained with accuracy of 0.1 to 0.2 Daltons. 



56
 

TA
B

LE
 3

–c
D

N
A

s i
de

nt
ifi

ed
 in

 y
ea

st
 tw

o-
 h

yb
rid

 a
ss

ay
s f

or
 w

hi
ch

 th
e 

co
gn

at
e 

pr
ot

ei
ns

 p
ut

at
iv

el
y 

in
te

ra
ct

 w
ith

 th
e 

P.
 b

ra
si

lie
ns

is
 fo

rm
am

id
as

e.
 

G
en

e 
Pr

od
uc

t 
B

es
t b

la
st

 h
it/

A
cc

es
si

on
 n

um
be

ra  
R

ed
un

da
nc

y 
Pu

ta
tiv

e 
fu

nc
tio

n 
in

 o
th

er
 

or
ga

ni
sm

s

Po
ly

ub
iq

ui
tin

 (U
bq

10
) 

N
eu

ro
sp

or
a 

cr
as

sa
/ X

P_
95

88
03

.1
| 

3 
Pr

ot
ei

n 
de

gr
ad

at
io

n/
Tr

af
fic

ki
ng

 o
f 

m
em

br
an

e 
pr

ot
ei

ns
 

FK
B

P-
ty

pe
 p

ep
tid

yl
-p

ro
ly

l i
so

m
er

as
e 

(F
kb

p)
 

As
pe

rg
ill

us
 c

la
va

tu
s/

 X
P_

00
12

74
81

9 
5 

Pr
ot

ei
n 

fo
ld

in
g,

 a
ss

em
bl

y 
an

d 

tra
ff

ic
ki

ng
.

Pr
ot

ei
n 

ki
na

se
 C

 (P
kC

) 
As

pe
rg

ill
us

 fu
m

ig
at

us
 /X

P_
75

34
54

.1
 

5 
Si

gn
al

 tr
an

sd
uc

tio
n 

40
S 

rib
os

om
al

 p
ro

te
in

 S
4 

(R
ps

4)
 

Aj
el

lo
m

yc
es

 c
ap

su
la

tu
s/ 

X
P_

00
15

37
81

5 
2 

R
ib

os
om

e 
bi

og
en

es
is

 / 
Pr

ot
ei

n 

sy
nt

he
si

s 

2-
ox

og
lu

ta
ra

te
 d

eh
yd

ro
ge

na
se

 E
1 

co
m

po
ne

nt
, m

ito
ch

on
dr

ia
l p

re
cu

rs
or

  
Aj

el
lo

m
yc

es
 c

ap
su

la
tu

s/ 
X

P_
00

15
44

48
8 

2 
N

itr
og

en
 m

et
ab

ol
is

m
/ T

ric
ar

bo
xy

lic
 

ac
id

 c
yc

le
 

C
al

ne
xi

n 
(C

ne
1)

 
Pa

ra
co

cc
id

io
id

es
 b

ra
si

lie
ns

is
 /A

B
B

80
13

2.
1 

1 
Pr

ot
ei

n 
fo

ld
in

g 
in

 th
e 

en
do

pl
as

m
ic

 

re
tic

ul
um

 

C
ys

te
in

e 
pr

ot
ea

se
 (a

tg
4)

 
C

oc
ci

di
oi

de
s i

m
m

iti
s/

 X
P_

00
12

48
36

3 
1 

Pr
ot

ei
n 

de
gr

ad
at

io
n,

 p
ro

te
ol

ys
is

 a
nd

 

au
to

ph
ag

y 

C
el

l w
al

l g
ly

co
sy

l h
yd

ro
la

se
 D

fg
5 

(D
fg

5)
 

Pa
ra

co
cc

id
io

id
es

 b
ra

si
lie

ns
is

 / 
D

Q
53

44
95

   
   

 
1 

Pr
ot

ei
n 

pu
ta

tiv
el

y 
re

qu
ire

d 
fo

r c
el

l 

w
al

l b
io

ge
ne

si
s 

a  G
en

B
an

k 
ac

ce
ss

io
n 

nu
m

be
rs

 (h
ttp

://
w

w
w

.n
cb

i.n
lm

.n
ih

.g
ov

) 



Discussão



Genes diferencialmente expressos em Paracoccidioides brasiliensis 
Clayton L. Borges

_______________________________________________________________________________________ 57

Caracterização da enzima formamidase de Paracoccidioides brasiliensis

Discussão 

Estudos de genes/proteínas estágio específicos, com expressão diferencial durante a 

transição dimórfica do fungo (Silva et al. 1994) e de antígenos (Fonseca et al., 2001) são alvo 

de estudos em P. brasiliensis. Uma proteína de 45-kDa isolada por meio de focalização 

isoelétrica líquida demonstrou-se reativa com anticorpos presentes em soros de pacientes com 

PCM, sugerindo um potencial papel da proteína na interação do fungo com o hospedeiro. A 

proteína purificada de extrato total de células leveduriformes de P. brasiliensis, foi digerida e 

os peptídicos obtidos foram seqüenciados e caracterizados. O gene e o cDNA codificantes para 

formamidase de P. brasiliensis foram clonados, caracterizados e a expressão heteróloga da 

proteína recombinante foi obtida (Borges et al., 2005).  

O transcrito codificante para a enzima formamidase de P. brasiliensis é altamente 

expresso na fase miceliana do fungo (Felipe, et al., 2003; Borges et al., 2005), bem como a 

proteína apresenta expressão aumentada na fase miceliana quando comparada com a fase 

leveduriforme. Análises de Southern e northern blot revelaram que P. brasiliensis apresenta 

uma única copia do gene que codifica para formamidase (Borges et al., 2005). Esses dados 

foram confirmados por análises in silico do genoma estrutural de três isolados de P. 

brasiliensis (Pb01, Pb03, Pb18), 

(http://www.broad.mit.edu/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html).  

A comparação entre a seqüência deduzida da proteína formamidase com seqüências de 

outros organismos depositadas em banco de dados, revelou um alto índice de conservação na 

estrutura primária da proteína. Contudo, três regiões da seqüência deduzida da proteína não 

apresentaram conservação (177-193, 204-210, 396-402), as quais poderiam ser utilizadas para 

análises como candidatas para desenvolvimento de ensaios para diagnóstico. Além disso, a 

análise da seqüência deduzida da proteína revelou 17 regiões na molécula com potencial 

antigênico (Kolaskar et al., 1990). O reconhecimento de amidases por anticorpos presentes em 

soros de pacientes também foi descrito, por meio de estudos imunoproteômicos em H. pylori

(Haas et al., 2002; Bury-Moné et al., 2003). 

 A proteína heteróloga recombinante purificada apresentou reatividade com anticorpos 

presentes em soros de pacientes com PCM. A proteína recombinante não apresentou reação 

cruzada com anticorpos presentes em soros de indivíduos controle, sugerindo que a molécula 

poderia ser usada em estudos de proteínas candidatas à utilização em diagnóstico. A proteína 
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recombinante mostrou atividade enzimática de formamidase. A atividade de formamidase foi 

detectada em extrato protéico total obtido de células de leveduras e de micélio de P.

brasiliensis, com maior atividade em micélio quando comparada com a fase leveduriforme. 

Essas observações sugerem que a proteína possa apresentar papel diferencial nas fases de P.

brasiliensis (Borges, et al., 2005). 

A formamidase de P. brasiliensis não é, possivelmente, a única enzima capaz de clivar 

formamida, uma vez que amidases e acetamidases foram descritas no transcritoma de P.

brasiliensis oriundo de células micelianas e leveduriformes cultivadas in vitro (Felipe et al., 

2003). Contudo, a atividade da acetamidase purificada de bactérias é altamente específica, 

sendo maior para amidas de cadeia curta do que para formamida (Kobayashi, et al., 1993; 

Wyborn, et al., 1996). Amidases apresentam baixa atividade para formamida, como descrito 

em Pseudomonas aeruginosa (Clarke & Dew, 1988; Maestracci, et al., 1988). A atividade 

enzimática da formamidase de P. brasiliensis mostrou-se altamente específica para formamida, 

uma vez que a atividade é baixa quando se usa como substrato a uréia, reforçando a idéia de 

que a formamidase de P. brasiliensis deve desempenhar papel no metabolismo de nitrogênio 

do fungo (Borges et al., 2005). 

Em trabalho subseqüente, Borges e colaboradores (2008, manuscrito em anexo), 

realizaram estudos adicionais visando à caracterização da formamidase de P. brasiliensis. A 

proteína recombinante foi produzida, purificada (Borges et al., 2005) e utilizada eficientemente 

para a produção de anticorpo policlonal em camundongos. Análises realizadas por meio de 

immunobloting evidenciaram que o anticorpo reconhece a proteína recombinante purificada, 

bem como reconhece apenas uma espécie protéica em extrato total de P. brasiliensis obtido de 

células micelianas e leveduriformes. Além disso, o soro pré-imune obtido dos camundongos, 

não apresentou reação cruzada com nenhuma espécie protéica utilizando-se os mesmos 

extratos de P. brasiliensis (Borges et al., 2008, manuscrito em anexo). Esses dados reforçam 

aqueles obtidos nas análises anteriores, mostrando que a proteína formamidase de P.

brasiliensis é antigênica e pode ser considerada uma candidata para estudos de testes de 

diagnóstico da paracoccidioidomicose (Borges et al., 2005), especialmente se utilizada em 

conjunto com outras proteínas de P. brasiliensis (Correa et al., 2007; Carvalho et al., 2008). 

Formamidases são descritas como enzimas da família de amidases/nitrilases como 

enzimas homodiméricas, homotriméricas e homotetraméricas (Wyborn et al., 1996), bem como 

apresentando dois tetrâmeros ligados (O’Hara et al.1994). A cristalografia da formamidase de 

H. pylori revelou estrutura homo-hexamérica (Hung et al., 2007). Devido a essas diferenças 

encontradas na organização entre monômeros de formamidase, foram realizados ensaios de 
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Western blot, utilizando-se o anticorpo policlonal anti-formamidase. Extrato protéico total de 

células leveduriformes de P. brasiliensis não desnaturado por fervura, foi submetido à 

immunobloting utilizando-se o anticorpo policlonal anti-formamidase. Uma espécie protéica de 

180-kDa foi identificada nesta condição, assim como uma espécie protéica de 45-kDa foi 

identificada em extrato protéico total desnaturado por fervura. Esses resultados sugerem que a 

espécie protéica de 45-kDa seria a formamidase na forma monomérica, enquanto a espécie 

protéica de 180-kDa, a formamidase na forma homotetramérica (Borges et al., 2008). 

Com o intuito de se identificar a espécie protéica de 180-kDa detectada no ensaio de 

immunobloting, extrato protéico total de células leveduriformes de P. brasiliensis foi 

purificado, em dois passos de cromatografia, em uma combinação de cromatografia de troca 

iônica e de interação hidrofóbica. A fração purificada mostrou alta atividade de formamidase e 

revelou, por meio de fracionamento de proteínas em gel de poliacrilamida, uma espécie de 180-

kDa. A proteína de 180-kDa, foi analisada por meio de espectrometria de massas e identificada 

como formamidase de P. brasiliensis, reforçando a hipótese de que a proteína purificada de 

180-kDa, trata-se da formamidase na forma tetramérica. 

O anticorpo policlonal anti-formamidase foi utilizado em ensaios de imunolocalizacão 

da proteína em células leveduriformes. Análises computacionais da seqüência deduzida da 

formamidase, revelam uma proteína com localização citoplasmática. Nos ensaios de 

imunolocalização, por meio de microscopia eletrônica de transmissão, a proteína foi

encontrada em quantidades equivalentes, tanto no citoplasma quanto na parede celular de P.

brasiliensis. (Borges et al., 2008). Análise por microscopia confocal revelou a presença da 

formamidase de P. brasiliensis no citoplasma e na parede celular/membrana (Anexos: Figura 

1).

A presença de proteínas com localização predita no citoplasma em outros 

compartimentos celulares tem sido descrita, em nosso laboratório, para a gliceraldeído-3-

fosfato-desidrogenase - GAPDH (Barbosa et al, 2006) e para a triosefosfato isomarase - TPI 

(Pereira et al., 2007) ambas, localizadas no citoplasma e na parede celular. Em S. cerevisae,

moléculas que não apresentam peptídeo sinal N-terminal têm sido descritas na parede celular 

do fungo (Nombela et al. 2006). Várias moléculas, possivelmente citoplasmáticas, foram 

identificadas em vesículas secretadas por H. capsulatum (Albuquerque et al., 2008) e por 

Cryptococcus neoformans (Rodrigues et al., 2008). Várias dessas moléculas presentes nas 

vesículas são proteínas citoplasmáticas, como as enzimas da via glicolítica frutose 1,6-bifosfato 

aldolase, gliceraldeído-3-fosfato desidrogenase e triose fosfato isomerase. Algumas proteínas 

são reativas com soros de pacientes e descritas como fatores de virulência (Albuquerque et al., 
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2008; Rodrigues et al., 2008). A enzima formamidase foi encontrada em vesículas secretadas 

por H. capsulatum (Albuquerque et al., 2008), o que corrobora nosso resultado de dupla 

localização da formamidase de P. brasiliensis no citoplasma e na parede celular.  

A enzima formamidase (EC 3.5.1.49), catalisa a hidrólise de formamida produzindo 

formato e amônia (Hynes, 1975; Fraser et al., 2001). A amônia pode ser usada como fonte de 

nitrogênio e o formato pode ser oxidado e seus produtos utilizados na cadeia respiratória. A 

atividade de amidases na hidrólise de amidas tem sido descrita em microrganismos na obtenção 

de nitrogênio do solo, como já caracterizado em A. nidulans (Hynes, 1975) e em organismos 

que apresentam, pelo menos, uma etapa do seu ciclo de vida no ambiente (Bury-Moné et al.,

2003). A atividade de amidases é importante para a defesa de patógenos. Um dos produtos 

finais da catálise da enzima, a amônia, tem papel importante na patogênese de H. pylori, 

auxiliando na destruição tecidual e em sua resistência ao pH ácido estomacal (Bury-Moné et 

al., 2004).

O papel da formamidase em P. brasiliensis além da provável ação no metabolismo de 

nitrogênio permanece elusivo. A interação entre proteínas é importante para vários processos 

metabólicos. Utilizando-se o sistema de duplo híbrido em S. cerevisiae foi possível a 

identificação de várias proteínas que interagem com a formamidase de P. brasiliensis. Foram 

encontradas interações com proteínas relacionadas ao processamento/dobramento de proteínas 

como a calnexina, envolvida no dobramento correto de proteínas (Pollock et al., 2004) e no 

aumento da secreção de proteínas em Hansenula polymorpha (Klabunde et al., 2007) e a 

FKBP-peptidil prolil isomerase, a qual está envolvida na aceleração do dobramento de 

proteínas (Solscheid & Tropschug 2000). Proteínas relacionadas à degradação protéica como a 

poli-ubiquitina e a cisteína protease também foram identificadas. A ubiquitinação direciona as 

proteínas para o sistema de degradação do proteassoma o qual pode estar acoplado à cisteína 

protease na degradação final da formamidase de P. brasiliensis (Borges et al., 2008). A 

monoubiquitinação está relacionada com o tráfego de proteínas em compartimentos celulares, 

principalmente promovendo endocitose de proteínas de membrana conjugadas à ubiquitina, as 

quais podem ser direcionadas para lisossomos ou vacúolos, onde podem ser degradadas 

(Mosesson et al., 2006). A proteína Dfg5 de parede celular de P. brasiliensis (Castro et al.,

2008) interage com a formamidase e pode estar relacionada com a sua localização nesta região 

celular. Foi observada a interação da formamidase com a 2-oxoglutarato desidrogenase. A 2-

oxoglutarato desidrogenase é uma enzima do ciclo do ácido tricarboxílico e está envolvida na 

modulação do fluxo de 2-oxoglutarato no metabolismo de aminoácidos e de nitrogênio 

(Araujo, et al., 2008), o que reforça o papel da formamidase no metabolismo de nitrogênio de 
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P. brasiliensis. A interação da formamidase com algumas proteínas cujos homólogos são 

secretados em vesículas de H. capsulatum e ou C. neoformans, como FKBP-peptidil-prolil 

isomerase, proteína ribossomal 40S S4-Rps4, 2-oxoglutarato desidrogenase e calnexina 

(Albuquerque et al., 2008; Rodrigues et al., 2008), corrobora os resultados de localização da 

formamidase na parede celular. Ressalte-se que a formamidase de H. capsulatum é uma 

proteína de secreção vesicular (Albuquerque et al., 2008).  

A formamidase de P. brasiliensis deve desempenhar funções celulares relevantes, visto 

a alta expressão do transcrito e da proteína (Felipe et al., 2003, Borges et al., 2005),  e  a 

expressão diferencial em condições que mimetizam infecção em  nichos do hospedeiro (Bailão 

et al., 2006; Costa et al., 2007). A localização celular da formamidase na superfície de P.

brasiliensis poderia estar relacionada à destruição celular e resistência à ambientes ácidos, 

além de seu provável papel no metabolismo de nitrogênio do fungo. Nesse sentido, a 

formamidase em H. pylori, está relacionada à destruição tecidual e à resistência do 

microrganismo a ambientes ácidos (Bury-Moné et al., 2004).  

Conclusões

- Purificou-se um novo antígeno de 45-kDa de P. brasiliensis, o qual 

apresentou identidade com formamidases de diferentes organismos; 

- Foram caracterizados o cDNA e o gene codificantes para formamidase de 

P. brasiliensis, sendo que uma única cópia do gene  está presente no genoma do fungo; 

- O cDNA que codifica para formamidase foi clonado e a proteína 

heteróloga de 45-kDa foi purificada, a qual foi reconhecida por anticorpos presentes em 

soros de pacientes com PCM;

- A proteína recombinante purificada apresentou atividade enzimática de 

formamidase, assim como ocorreu em extratos protéicos de levedura e micélio, 

sugerindo que a enzima é funcional no metabolismo de P. brasiliensis;

- A proteína recombinante foi utilizada eficientemente na produção de 

anticorpo policlonal em camundongos, reconhecendo a formamidase recombinante e 

uma única espécie protéica em extrato protéico total de P. brasiliensis;

- Uma proteína de 180-kDa, reativa com o anticorpo policlonal anti-

formamidase, foi purificada e caracterizada como formamidase na forma 

homotetramérica;
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- A proteína formamidase de P. brasiliensis apresenta dupla localização 

celular, tendo sido identificada, por meio de imunolocalização, tanto no citoplasma 

quanto na parede celular; 

- Foram realizados estudos de interações da formamidase com outras 

proteínas de P. brasiliensis. Proteínas relacionadas ao metabolismo de nitrogênio, 

dobramento e degradação de proteínas foram caracterizadas.  Proteínas de superfície 

foram detectadas em experimentos de duplo-híbrido, reforçando a localização celular da 

formamidase. 

- Os resultados sugerem que a formamidase de P. brasiliensis deve 

desempenhar funções extras às relacionadas ao metabolismo de nitrogênio do fungo, 

tais como interações entre o fungo e o hospedeiro, resistência a ambientes hostis e papel 

antigênico, uma vez que anticorpos de pacientes com PCM reconhecem a formamidase 

de P. brasiliensis.
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Summary 

The mycelia propagules, the infective form of the fungal pathogen Paracoccidioides brasiliensis, are 

inhaled into the host lungs in which they differentiate to yield another form, the yeast fungal phase.  

Dimorphism results from a process termed phase transition which is regulated by temperature of 

incubation. At the room temperature P. brasiliensis grows filamentously, but at 36 ºC, the fungus 

develops as a multinucleated yeast form. We studied the changes in gene expression in the yeast phase 

by using subtractive cDNA methodological strategies. In an effort to help identify gene products 

associated with the yeast parasitic phase, cDNAs profiles were generated from yeast cells of isolate 

Pb01 and from isolate Pb4940, the last growing as mycelia at the host temperature.  

In this study, we attempted to characterize the physiological response of yeast cells growing at 36 ºC in 

isolate Pb01 comparing to the Pb4940 isolate. Transcripts exhibiting increased expression during 

development of the yeast parasitic phase comprised those involved mainly in response to stress, 

transcriptional regulation and nitrogen metabolism. In this way, the isolate Pb01 increased the 

expression of a variety of transcripts encoding cell rescue proteins such as the heat shock protein HSP30, 

alpha threalose phosphate synthase and DDR48 stress protein, suggesting the relevance of the defense 

mechanism against oxidative/heat shock stress in the fungal yeast phase. The transcripts encoding to the 

protein CLPA, to the plasma membrane ATPAse H+ (PMA1) and to the cell-wall protein SED1p were 

reduced in isolate Pb01 compared to the isolate Pb4940. Some of the transcripts with altered expression 

have no alignment to known genes. A great number of genes with differential expression between the 

two isolates code for cell/wall membrane related proteins suggesting the relevance of the fungal surface 

and its remodeling to the dimorphism. 
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Introduction 

Paracoccidioides brasiliensis is an important human pathogen causing paracoccidioidomycosis 

(PCM), a systemic mycosis with broad distribution in Latin America (Restrepo et al., 2001). Although 

the area of incidence spreads non-uniformly from Mexico to Argentina, the incidence of disease is 

higher in Brazil, Venezuela and Colombia (Blotta et al., 1999). The fungus is thermo-dimorphic, that is, 

it grows as a yeast-like structure in the host tissue or when cultured at 35-36 ºC, and as mycelium in the 

saprobic condition or when cultured at room temperature (18-23 ºC). The infection is caused by 

inhalation of airborne propagules of the mycelial phase of the fungus, which reach the lungs where it 

differentiates into the yeast parasitic phase (Lacaz, 1994). 

In the genome era, it has been common to use gene expression profiling of a microorganism 

under certain conditions to understand its biology. P. brasiliensis monitor the environment and alters 

gene expression in response to many factors, mainly temperature during the fungal conversion to the 

yeast phase (Felipe et al., 2005; Nunes et al., 2005; Bastos et al., 2007). Large, dynamic changes in 

expression of genes implicated in membrane/cell wall remodeling, metabolism, general adaptative 

responses had been reported during fungal phase transition. To enhance our understanding of the 

molecular events of P. brasiliensis to respond to temperature and establish the yeast phase, we used 

Representational Difference Analysis (RDA). Specifically, transcriptional profiles in the present study 

were generated by RDA from two fungal isolates presenting or not the ability of thermal dimorphism. 

Selected cDNAs were recovered to perform validation experiments by using reverse northern blot and 

RT-PCR analysis. We discovered that the yeast phase of P. brasiliensis over expresses genes related to 

the stress response, virulence and development. Those genes support the concept that the yeast phase can 

potentially respond to the attack by the host conditions. Additionally, some genes were down regulated 

in the yeast phase, such as those encoding for alternative oxidase, for the homologue for a structural 

protein Sed1p, required for compensating for cell wall instability in fungi. Key themes identified by our 

analysis included differential expression of genes encoding fungal surface proteins, stress related 

proteins, as well as proteins involved in morphogenesis and transcriptional control. The collective results 

of this study demonstrate the utility of RDA approaches to studying dimorphism in P. brasiliensis.

Materials and methods: 

P. brasiliensis growth conditions: 

P. brasiliensis isolate 01 (ATCC MYA-826) has been studied at our laboratory (Barbosa et al., 2006, 

Bailão et al., 2006). The isolate Pb4940 (ATCC MYA-3044) has been previously investigated by our 

group (Okamoto et al., 2006). The isolates of P. brasiliensis  were grown at 36 ºC, in Fava-Neto´s 
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medium [1% (w/v) peptone; 0.5% (w/v) yeast extract; 0.3% (w/v) proteose peptone; 0.5% (w/v) beef 

extract; 0.5% (w/v) NaCl; 4% (w/v) glucose, 1% (w/v) agar, pH 7.2] for 7 days.  

 Scanning electron microscopy: 

The P. brasiliensis cells of each isolate were fixed by immersion in a solution containing 2% (v/v) 

glutaraldehyde and 2% (w/v) paraformaldehyde in 0.05 M sodium cacodylate buffer, pH 7.4 for 12 h at 

room temperature. The material was washed with the same buffer and the cells were post-fixed in 1% 

osmium tetroxide (OsO4) and 0.8% (w/v) potassium ferricyanide in sodium cacodylate buffer. The cells 

were washed to remove excess of OsO4 and dehydrated in a graded acetone series from 30% to 100% 

(v/v). The specimens were mounted on stubs, dried by the critical point method (Lea and Ramjohn 1980) 

and gold-coated in a Sputter Coater Balzers SCD 050 before examination in a Jeol JEM 840A scanning 

electron microscope. 

DNA extraction and PCR analysis: 

P. brasiliensis yeast cells from isolates Pb01 and Pb4940 were harvested, washed and frozen in liquid 

nitrogen. Grinding with a mortar and pestle broke the cells, and the genomic DNA was prepared by the 

cationic hexadecyl trimethyl ammonium bromide (CTAB) method according to Del Sal et al. (1989). P.

brasiliensis genomic DNA was used as a template for the PCR amplification of a partial fragment 

encoding the gene encoding for the 43-kDa glycoprotein PbGP43 (Cisalpino et al., 1996). The

oligonucleotide primers for the PCR reaction are described in Table 1. The PCR reaction was conducted 

in a total volume of 25 L containing 20 ng of DNA as template. PCR conditions were 30 cycles at 95 

ºC for 1min; annealing at 58 ºC for 2 min; 72 ºC for 1 min. Amplicons were analysed by agarose gel 

electrophoresis (1%). The resulting 317 bp product was subcloned into pGEM-T-Easy (Promega) and 

sequenced. 

RNA extractions, subtractive hybridization and generation of subtracted libraries: 

Total RNA of the P. brasiliensis cells growing at 36 ºC, was extracted by the use of Trizol (GIBCOTM,

Invitrogen, Carlsbard, CA) according to the manufacturer’s instructions. The quality of RNA was 

assessed by use of the A260 /A280 and by visualization of rRNAs on 1.2% agarose gel electrophoresis. 

The RNAs were used to construct double-stranded cDNAs.  Subtractive hybridization and cDNA 

libraries construction was performed as previously described (Bailão et al., 2006; 2007). Briefly, for the 

subtractive hybridization, 1.0 g of total RNAs was used to produce double strand cDNA by using the 

SMART PCR cDNA synthesis kit (Clonetech Laboratories, Palo Alto, CA, USA). First-strand cDNA 

synthesis was performed with reverse transcriptase (RT Superscript II, Invitrogen, CA, USA) and it was 

used as template to synthesize the second-strand of the cDNA. The resulting cDNAs were digested with 

the restriction enzyme Sau3AI. Two subtracted cDNA libraries were made using driver and tester 
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cDNAs of both isolates, from 7 day-old-cultures at 36 ºC. The resulting products were purified using 

GFX kit (GE Healthcare, Chalfont St. Giles, UK). The tester-digested cDNA was bound to adapters (a 

24-mer annealed to a 12-mer). For the generation of the differential products, “tester” and “driver” 

cDNAs were mixed, hybridized at 67 °C for 18 h and amplified by PCR with the 24-mer oligonucleotide 

primer (Dutra et al., 2004, Bailão et al., 2006). Two successive rounds of subtraction and PCR 

amplification using hybridization tester-driver ratios 1:10 and 1:100 were performed to generate second 

differential products. Adapters were changed between cross-hybridization, and differential products 

were purified using the GFX kit (GE Healthcare ®). The adapters used on subtractive hybridizations 

were: NBam12, 5’ GATCCTCCCTCG 3’; NBam24, 5’AGGCAACTGTGCTATCCGAGGGAG 3’; 

RBam12, 5’ GATCCTCGGTGA 3’; RBam24, 5’ AGCACTCTCCAGCCTCTCTCACCGAG 3’. 

After the second subtractive reaction, the finally amplified cDNA pools were submitted to 

electrophoresis in 2.0% agarose gels and the purified cDNAs were cloned directly into the pGEM-T 

Easy vector (Promega, Madison, USA). Escherichia coli XL1 Blue competent cells were transformed 

with the ligation products. Selected colonies were picked and grown in microliter plates. Plasmid DNA 

was prepared from clones using standard protocols. In order to generate the ESTs, single-pass, 5´-end 

sequencing of cDNAs by standard fluorescence labeling dye-terminator protocols with T7 flanking 

vector primer was performed. Samples were loaded onto a MegaBACE 1000 DNA sequencer (GE 

Healthcare) for automated sequence analysis. 

Sequences, processing and EST database construction: 

EST sequences were pre-processed using the Phred (Ewing and Green, 1998) and Crossmatch programs 

(http://www.genome.washington.edu/UWGC/analysistools/Swat.cfm). Only sequences with at least 100 

nucleotides and Phred quality greater or equal to 20 were selected. ESTs were screened for vector 

sequences against the UniVec data. The resulting sequences were then uploaded to a relational database 

(MySQL) on a Linux (Fedora Core 2) platform, and processed using a modified version of the 

PHOREST tool (Ahren et al., 2004). To assign functions, the valid ESTs and the assembled consensus 

sequences were locally compared against a nonredundant protein sequence database with entries from 

GO (http://www.geneontology.org), KEGG (http://www.genome.jp.kegg) and NCBI 

(http://www.ncbi.nlm.nih.gov), using the BLASTX algorithm with an E value cut-off at 10–5. If the EST 

sequences did not match any database sequences, the BLASTN algorithm was used 

(www.ncbi.nlm.nih.gov/BLAST/) (Altschul et al., 1990). Also ESTs and assembled consensus 

sequences were compared to the P. brasiliensis genomic database at 

http://www.broad.mit.edu/annotation/genome/paracoccidioides_brasiliensis/MultiHome.html.

Sequences were classified into three categories: a) annotated, which corresponds to sequences 

showing significant matches with protein sequences with an identified function in databanks; b) 

hypothetical protein corresponds to sequences for which the E value was 10-5, or for which no match 
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was observed in databanks; c) conserved hypothetical corresponds to protein group sequences for which 

significant matches (e  10-5) and homology to a protein with no identified function was observed. 

ESTs were grouped in clusters, represented by contigs and singlets. Sequences were grouped in 

functional categories according to the classification of MIPS functional catalogue (Munich Center for 

Protein Sequences; http://www.mips.gst.de/).  

Reverse northern blot analysis: 

Plasmid DNAs of selected clones were obtained. Serial dilutions of DNAs were performed and the 

material was applied, under vacuum, on Hybond-N+ nylon membranes (GE Healthcare). The DNAs 

were hybridized to cDNAs, which were obtained from specific conditions, labeled by using the Random 

Primer labeling module (GE Healthcare). Detection was performed by using the Gene Image CDP-Star 

detection module (GE Healthcare ®). Probes were as follows: 30 kDa heat shock protein (hsp30);

GATA transcription factor (nsdd);  C6 transcription factor 1 beta (ctf1 ); predicted cell wall/membrane 

protein (cwp); alternative oxidase (aox1); translation elongation factor 1 alpha (eef1a); 40S ribosomal 

protein S27 (rps27); Plasma membrane ATPAse H+ (pma1).

RT-PCR analysis:

RT-PCR experiments were performed. Cells cultured at 36 ºC from both isolates, were used to obtain 

total RNAs. Those RNAs were obtained from experiments independent from those used in the cDNA 

subtractions. The single stranded cDNAs were synthesized by reverse transcription toward total RNAs, 

by using the Superscript II RNAse H – reverse transcriptase, and PCR was performed using the cDNA 

as the template in a 30 L reaction mixture.  Specific primers were used as described in Table 1. The 

reaction mixture was incubated initially at 95 ºC for 1 min, followed by 25 cycles of denaturation at 95 

ºC for 1 min, annealing at 55-64 ºC for 1 min, and extension at 72 ºC for 1 min. The DNA product was 

separated by electrophoresis in 1.0% agarose gel, stained, and photographed under ultraviolet light 

illumination. 

Results 

Analysis of fungal dimorphism in isolates Pb01 and Pb4940:

Cultures of both isolates were grown at 36 ºC by sub culturing at every 7 days. As demonstrated in Fig. 

1 A, both cultures exhibited distinct morphological patterns at this temperature. The isolate Pb01

exhibited the characteristic yeast morphology with cells presenting multiple buds, whereas the isolate 

Pb4940 presented typical mycelia at this temperature, with no conversion to the yeast phase. Both 

isolates were analyzed regarding to the presence of the gene encoding the glycoprotein Gp43 (Cisalpino 

et al., 1996), the most studied molecule in the pathogen. As demonstrated in Fig. 1B in both isolates it 

was amplified by PCR a genomic fragment of 317 bp, encoding to the gp43 gene.  



68

Description of the ESTs in the subtracted cDNA libraries:

We wished to determine the changes in gene expression that could be relevant in P. brasiliensis

yeast parasitic phase by subtracting cDNAs from isolates Pb01 and Pb4940, the latter a non-

differentiating isolate at the host temperature. The RDA approach was performed between the yeast cells 

of isolate Pb01 and the mycelia-like form of isolate Pb4940, both cultured at 36 ºC and used as drivers 

and testers in different subtraction reactions. Subtraction was performed by incubating the drivers and 

the testers. Selection of the cDNAs was achieved by construction of subtracted cDNA libraries in 

pGEM-T-Easy, as described earlier. Fig. 2 shows the RDA products of the two conditions of subtraction, 

using both isolates as testers and drivers. Different patterns of DNA amplification were observed after 

two cycles of RDA, as shown. 

A total of 427 clones were successfully sequenced. From them, 258 were obtained by using the 

isolate Pb01 as the tester, and comprehend predicted over regulated genes in the yeast phase of Pb01, 

compared to the mycelial form of isolate Pb4940, both cultivated at 36 ºC. A total 169 clones were 

obtained by using the isolate Pb4940 as the tester and corresponded to predictable down regulated genes 

in isolate Pb01, compared to the isolate Pb4940.  

The nature of genes differentially expressed, classified as up or down regulated in the isolate 

Pb01 , were inferred by classifying the ESTs into groups of functionally related genes (Tables 2 and 3). 

We interpreted these data with the perspective of seeking to understand the genes important for the 

establishment of the yeast phase. We analyzed the redundancy of the transcripts by determining the 

number of ESTs related to each transcript. The most redundant cDNAs appearing in the subtracted 

cDNA library using the isolate Pb01 as tester, and consequently designed up regulated transcripts, were 

those encoding for the following proteins: predicted cell wall/ membrane protein (151 ESTs); 30 kDa 

heat shock protein, Hsp30 (42 ESTs); C6 transcription factor 1 beta, Ctf1  (25 ESTs) and GATA 

transcription factor, Nsdd (18 ESTs), as shown in Table 2.  

By using the isolate Pb4940 as tester it was possible to identify genes putatively repressed in 

isolate Pb01, such as those encoding a hypothetical protein (58 ESTs); translation elongation factor 1 

alpha, Eef1  (32 ESTs); conserved hypothetical protein homologue to Giberella Zeae (24 ESTs); 

alternative oxidase, Aox1 (17 ESTs), as shown in Table 3.  

Transcripts predicted to be associated to stress response and to morphogenesis/ 

development/virulence, up regulated in isolate Pb01:

Table 4 describes some candidate homologs for stress response in the isolate Pb01, yeast phase, at 36 ºC, 

when compared to isolate Pb4940 cultured at the same temperature. We classified 03 induced genes, 

comprehending 47 ESTs, by homology to other organisms, as codifying for proteins with defined role in 
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stress response. TPS1 was catalogued as a potential stress related protein in P. brasiliensis, since it 

appears to increase resistance to heat. Trehalose acts primarily as stress protectant for proteins and 

membranes during exposure to high temperature (Petzold et al., 2006). The hsp30 gene was shown to be 

activated by several stresses including heat shock, ethanol shock, glucose starvation and sorbate 

exposure (Piper et al., 1997). The transcript encoding the DDR48p is over expressed upon exposure of 

Candida albicans to antifungals (Liu et al., 2005). 

Table 5 summarizes the transcripts detected with over expression in isolate Pb01, potential candidates to 

present roles in development/morphogenesis/virulence. A total of 3 genes, comprising 23 ESTs were 

reported here. TPS1 is associated to sporulation and pathogenesis of organisms including C. neoformans

and M. grisea (Petzold et al., 2006; Foster et al., 2003; Wilson et al., 2007). The Ddr48p is essential for 

C. albicans filamentation (Dib et al., 2008). The NsdD transcriptional factor is necessary for the sexual 

development of Aspergillus nidulans (Han et al., 2001). 

The putative cellular localization of the products of up and down regulated transcripts in isolate 

Pb01, yeast phase 

Table 1, supplementary material describes the putative localization on P. brasiliensis of some predicted 

proteins whose transcripts were up or down regulated in isolate Pb01, by comparison to the isolate 

Pb4940. Interestingly, a high percentage of induced/repressed genes (7 in the total of 23) codified for 

proteins with predictable localization at the fungal surface.  

Validation of the differentially expressed transcripts: 

We used reverse northern blot analysis in order to confirm the expression of 8 transcripts. The 

selected transcripts were identified as up (Table 2) or down regulated (Table 3) in isolate Pb01

compared to isolate Pb4940 (Fig. 3A and B). The data are in general agreement with the ESTs 

observations. In this way, corroborating the EST analysis genes encoding the proteins Hsp30, NsdD, 

Ctf1  and Cwp were demonstrated to be up regulated in isolate Pb01 (Fig. 3A ). The genes encoding for 

Aox1, Eef1 , Rps27 and Pma1 were demonstrated to be down regulated in isolate Pb01 (Fig. 3B).  

A total of 7 genes were further examined with RT-PCR using RNA harvested from different 

cultures, from those used in the RDA analysis. As shown in Fig. 4 the expression profiles confirmed the 

previous data indicating the presence of up regulated and down regulated transcripts in the yeast 

established fungal phase.  

Discussion 

A limited number of studies have focused on the molecular basis of the yeast phase establishment 

in P. brasiliensis. Some studies have employed genomic screening approaches to study patterns of 

differential gene expression (Felipe et al., 2003; 2005; Goldman et al., 2003). Those studies have 
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confirmed up regulation of genes in the yeast phase (Felipe et al., 2003; 2005), as well as during fungal 

transition from mycelium to yeast (Nunes et al., 2005; Bastos et al., 2007). 

 In the present investigation we used subtraction of cDNAs approach to identify transcripts 

differentially expressed by P. brasiliensis in the yeast fungal phase. We hypothesized that there are 

genes and gene products in P. brasiliensis yeast phase that play a role in the successful execution of that 

fungal phase. Several of these genes that were over expressed in the yeast established form of isolate 

Pb01 compared to the mycelia phase depicted by the isolate Pb4940 at 36 ºC, are involved in stress 

response such as those encoding to Hsp30, Ddr48p,Tps1. Transcription factors such as those encoding 

for NsdD and Ctf1  were observed. Additionally a predicted cell wall/membrane protein encoding 

transcript was the most over expressed in the yeast fungal phase of isolate Pb01 in comparison to the 

cells of isolate Pb4940. Confirmation that the RDA data presented that reliably identified up or down 

regulated genes, was obtained through independent reverse northern blot and RT-PCR analysis of a 

subset of genes.  

Among the up regulated transcripts in isolate Pb01, some had been functionally characterized in 

fungi. The Ddr48 protein was demonstrated to be essential in C. albicans, since only a heterozygote but 

not a homozygous null mutant was generated. Also the mutant was filamentation-defective evidencing 

that Ddr48p is essential to morphogenesis, as well to stress response in C. albicans (Dib et al., 2008). As 

might be expected we identified heat shock/stress related proteins that were preferentially expressed in 

the yeast fungal phase, including the Hsp30. Similar observations were previously noted in the 

establishment of the yeast phase in Penicillium marneffei (Chandler et al., 2008). Of special note, the 

stress responsive gene hsp30 encodes a plasma membrane protein that negatively regulates the plasma 

membrane ATPAse H+ (PMA1) in Saccharomyces cerevisiae (Piper et al, 1997); the transcript encoding 

Pma1 was down regulated in the isolate Pb01, yeast phase. Tps1 protein is a central regulator of 

infection-related processes in M. grisea. The importance of Tps1 to cellular differentiation and fungal 

virulence results from its wide ranging role as central regulator of both, sugar metabolism and nitrogen 

source utilization (Wilson et al., 2007). In this sense, the up regulation of genes encoding to acidic 

amino acid transporter simultaneously to the tps1 transcript seems relevant. The presence of the NsdD 

gene is necessary for full accumulation of the transcript encoding for a predictable -1,3-endoglucanase 

in A. nidulans at the fungal early sexual development, suggesting the NsdD relevance to fungal 

morphogenesis and cell wall remodeling (Choi et al., 2005). 

Some of the down-regulated transcripts in the yeast phase of isolate Pb01, compared to Pb4940, 

encoded for stress-related proteins such as Aox1 and ClpA. It is interesting to note that the transcript 

encoding to the alternative oxidase homologue was one of the most prevalent in the subtracted cDNA 

library obtained by using the isolate Pb4940 as the tester. In a previous study Felipe et al., (2005) 

suggested that the metabolism of the mycelium form is more aerobic that that of yeast cells. Some works 

have focused on alternative oxidase’s ability to prevent the production or damage of reactive oxygen 



71

species (ROS), by limiting their mitochondrial formation (Akhter et al., 2003). In this sense the 

existence of an alternative oxidase in P. brasiliensis has been recently described (Martins et al., 2008). 

Also the transcript encoding for a cell wall Sed1p protein was found which constitutes the most 

abundant protein in stationary phase of S. cerevisiae, being putatively related to cell defense mechanisms 

in the stationary phase (Shimol et al., 1998). Of special note, the transcript encoding Sed1p is required to 

reconstruct cell wall stability in S. cerevisiae mutants defective in multiple GPI-anchored proteins 

(Hagen et al., 2004).

Interestingly, a great percentage of up/down regulated transcripts encoded for surface associated 

proteins. Studies on the synthesis and control of expression of those cell surface proteins are needed to 

elucidate the detailed mechanism of cell surface reorganization that occurs in P. brasiliensis dimorphic 

process. 
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TABLES 

Table 1 - Gene-specific primers used in PCR and RT-PCR reactions 
Target Gene Sequence (5’  3’) directiona Sequence (5’  3’) directionb Amplicon

size (bp)
Glicoprotein 43 kDa (gp43) GGAATGGCTTTTTGGCGC GCTGAGCGGACAATTCGG 317 

DDR48 stress protein (ddr48) CCAGAGGAGCCGTGAGAG GATTCATACGGAGCTTCTGG 318 

GATA Transcription factor 1 beta 

(nsdd)
GAGGATCGATGAGCTTGCAC CTGCCAGCCAACTTCCGG 379 

C6 transcription factor (ctf1 ) CATCGCATGCCATAGTCCG CCAACGCCTCACTCCCTG 314 

Predicted cell wall/membrane 

protein (cwp)
GGGAGGATCAGGATAATAAAG CATACAACCTTATCGTACTATG 294 

Alternative oxidase (aox1) CTGTGCTATCCGAGGGAGG GCCGCAGAGAGTTCAGGTG 453 

Plasma membrane ATPase (pma1) GACCAGTGCCACCAGCGG GGTGTCATTTGCGGTCTCC 421 

Cell wall protein (sed1p) CCGAGGGAGGATCACTCAC GGACGGTGCCGTTGGTGTG 184 

L34 ribosomal protein (l34) CAAGACTCCAGGCGGCAAC GCACCGCCATGACTGACG 750 
a Forward; b Reverse 

Table 2- P. brasiliensis, up regulated genes of the yeast phase of isolate Pb01, identified by 
cDNA-RDA, by comparison to the isolate Pb4940

Functional gene classificationa Homologous Gene Product Best Hit/Accession 
numberb E-value

 EST 
Redundancy in 

isolate Pb01
Metabolism  

Alpha-trehalose-phosphate synthase 
(TPS1) 

Aspergillus clavatus/
XP_001273234          1e-37 02

Aromatic L-amino acid decarboxylase 
(DDC)

Paracoccidioides 
brasiliensis/ ABH03461 7e-113 03

Acidic amino acid permease (DIP5) Ajellomyces capsulatus/
XP_001543575          1e-13 02

Protein Synthesis 

CAP 20 virulence factor (CAP20) Aspergillus fumigatus/
XP_750384 8e-29 03

Cell Rescue, defense and 
virulence 

30 kDa Heat Shock Protein (HSP30) Ajellomyces capsulatus/
XP_001540271 1e-35 42

DDR48 stress protein (DDR48) Ajellomyces capsulatus/
XP_001539717 1e-25 03

Transcription 

GATA transcription factor (NSDD)  Aspergillus nidulans/
XP_660756 7e-28 18

C6 transcription factor 1 beta (CTF1 ) Aspergillus nidulans/
XP_747220 5e-41 25

Hypothetical proteins 
Predicted Cell Wall/Membrane Protein 

(CWP)* 
Paracoccidioides 

brasiliensis* 3e-23 151

PT repeat family protein Aspergillus fumigatus/
XP_756037             2e-44 07

Hypothetical protein -  02

a Annotation based on Saccharomyces cerevisiae functional catalogue.  
b Sequences identified on NCBI database (http://www.ncbi.nlm.nih.gov/blast) 
* Identified by Psort prediction analysis tool (http://www.psort.org). 
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Table 3- P. brasiliensis, down regulated genes of the yeast phase of isolate Pb01, identified by cDNA-
RDA, by comparison to the isolate Pb4940

Functional gene classificationa Homologous Gene Product Best hit/Accession 
numberb E-value  EST Redundancy 

in isolate Pb4940
Energy  

 Alternative Oxidase (AOX1) Neurospora crassa/
Q01355 2e-64 17

Protein Synthesis    

Translation elongation factor 
1 alpha (EEF1 )

Hypocrea jecorina/
P34825 2e-176 32

40S Ribosomal protein S27 
(RPS27) 

Neurospora crassa/
XP_366796 2e-35 07

 24S Ribosomal protein Neurospora crassa 4e-33 13

Protein Fate
Ubiquitin-conjugating enzyme 

E2 (RAD6) 
Podospora anserina/

XP_001910347 2e-41 1

Cell Rescue, defense and virulence

Heat shock protein CLPA 
(CLPA) 

Paracoccidioides 
brasiliensis/
AAO73810 

4e-54 02

Transport facilitation 

Plasma Membrane ATPase 
H+ (PMA1) Neurospora crassa/ 

AAA33563
6e-107 07

Control of cellular organization Cell wall protein (SED1p) Saccharomyces 
cerevisiae/AAU07726 2e-07 07

Hypothetical Protein Hypothetical protein - - 58

Conserved Hypothetical 
protein 

Gibberella zeae/
XP_390400            1e-12 23

 Hypothetical protein - - 01
Hypothetical protein - - 01

a Annotation based on Saccharomyces cerevisiae functional catalogue.  
b Sequences identified on NCBI database (http://www.ncbi.nlm.nih.gov/blast)  

Table 4: Candidate homologs for stress response factors induced in isolate Pb01 
Gene product Function in other fungi Reference 

Alpha- trehalose-phosphate synthase (TPS1) 
Required for high temperature (37 ºC) 

growth of Cryptococcus neoformans
Petzold et al., 2006. 

30-kDa heat shock protein (HSP30) 
Activated by several stresses including 

heat shock 
Piper et al., 1997. 

DDR48 stress protein  (DDR48p) 
Required for Candida albicans resistance 

to hydrogen peroxide 
Dib et al., 2008. 
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Table 5: Candidate homologs for morphogenesis/development/virulence factors induced in isolate Pb01
Gene product Function in other fungi Reference 

Alpha- trehalose-phosphate synthase (TPS1) 

Mutants tps1of Magnaporthe grisea are 

non-pathogenic and present poor 

sporulation; linked to sporulation in 

Cryptococcus neoformans

Foster et al., 2003; 

Wilson et al., 2007;  

Lin and Heitman, 2005. 

DDR48 stress protein (DDR48p) 
Essential for Candida albicans

filamentation  
Dib et al., 2008. 

GATA transcription factor (NSDD) 
Necessary for sexual development of 

Aspergillus nidulans
Han et al., 2001. 

Supplementary Table 1:  Possible distribution of the cognate products of the identified up and down 
regulated transcripts at the cell wall/membrane

Gene product Referencec

Acidic amino acid permeasea (Dip5) Regenberg et al., 1998 

30 kDa heat shock proteina  (HSP30) Piper et al., 1997 

DDr48 stress proteina  (Ddr48p) Dib et al., 2008 

Predicted cell wall proteina  (Cwp) As determined by Psort analysis 

Translation elongation factor 1 b (Tef1 ) Albuquerque et al., 2008; Rodrigues et al., 2008. 

Plasma membrane ATPaseb (PMA1) Serrano ,1988 

Cell wall membrane SED1pb (Sed1p) Shimol et al., 1998. 
a up regulated in isolate Pb01
b down regulated in isolate Pb01
c as determined in other fungi.
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Figures 

Figure 1: Morphological analysis of P. brasiliensis isolates and PCR amplification of the gene encoding 
the GP43 protein. A- The microscopic analysis was performed as described in Material and Methods.  B- 
PCR amplification of the DNA using oligonucleotides for the gene encoding the Gp43 protein. 

Figure 2: Agarose gel electrophoresis of subtracted differential cDNA pools derived from P.
brasiliensis, isolates Pb01 and Pb4940, used as testers and drivers. Panel A – Products of the first and 
second rounds of subtraction performed using as tester the cDNA obtained  from RNAs of  isolate Pb01.
Panel B - Products of the first and second  rounds of subtraction performed using as tester the cDNA 
obtained  from RNAs of isolate  Pb4940. The numbers on the left side are molecular size markers. 
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Figure 3: Validation of cDNA-RDA results. (A, B) Dot blot analysis of cDNA-RDA clones. Plasmidial 
DNA of individual clones was prepared and several dilutions were blotted. The individual blotted clones 
were hybridized to the labeled cDNAs obtained from P. brasiliensis isolate Pb01 and isolate Pb4940 
(Panel A and B). The clones were as follows: (A) 30 kDa heat shock protein (hsp30), GATA 
transcription factor (nsdd), C6 transcription factor 1 beta (ctf1 ), predicted cell wall/membrane protein 
(cwp). (B) Alternative oxidase (aox1), Translation elongation factor 1-alpha (eef1-a), 40S ribosomal 
protein S27 (rps27) and Plasma membrane ATPase H+ (pma1).  

Figure 4: Validation of RDA results by RT-PCR. RT-PCR analysis was carried out with specific 
primers, as described. The same amounts of cDNAs were used for all PCR reactions. The RNAs used for 
RT-PCR were obtained from independent samples, from those used for the RDA experiments. Clones 
names are written on the left side of the figure, and were as follows: Ddr48 stress protein (ddr48);
GATA transcription factor (nsdd), C6 transcription factor 1 beta (ctf1 ), Predicted cell wall/membrane 
protein (cwp). (B) Alternative oxidase (aox1), Plasma membrane ATPase H+ (pma1) and Predicted cell 
wall protein (sed1p). (C) L34 ribosomal protein as a positive control and the negative control is 
indicated (-). 
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Análises transcricionais no estudo de genes diferencialmente expressos em P. 
brasiliensis 

Discussão 

O fungo patogênico humano P. brasiliensis é um fungo termodimórfico, sendo que a 

transição de micélio para levedura é etapa importante para o estabelecimento da infecção (San-

Blas et al., 2002). Genes estágio específicos e genes diferencialmente expressos durante a 

transição dimórfica têm sido objeto de estudo de vários grupos de pesquisadores (Salem-Izacc 

et al., 1997; Felipe et al., 2003; Goldman et al. 2003; Marques et al., 2004; Nunes et al. 2005; 

Bastos et al., 2007). Alguns estudos têm ilustrado as bases moleculares da fase parasitária do 

fungo.

Neste trabalho, realizamos ensaios de RDA para a identificação de genes 

diferencialmente expressos em isolados que apresentam ou não a habilidade de transitar da 

forma miceliana para a forma leveduriforme.  O nosso objetivo foi identificar genes relevantes 

para a transição dimórfica e para o estabelecimento/manutenção da forma parasitária de P.

brasiliensis.

Genes relacionados à resposta a estresse foram induzidos no isolado Pb01 (forma 

leveduriforme) em relação ao isolado Pb4940 (forma miceliana), ambos cultivados in vitro a

36 ºC. Proteínas de choque térmico são induzidas em resposta à mudança de temperatura, tanto 

in vitro quanto no hospedeiro. O gene codificante da HSP30 foi induzido no isolado Pb01. A 

produção de HSPs está envolvida tanto na proteção celular quanto em reparos de danos 

relacionados ao estresse, além de outras funções importantes na divisão celular, transcrição, 

tradução de proteínas e transporte protéico (Mager & Ferreira, 1993; Liberek et al., 2008). No 

transcritoma de P. brasiliensis isolado Pb01, 51 ESTs codificantes para a proteína HSP30 

foram identificadas (Felipe et al., 2005). O transcrito hsp30 foi identificado com alta 

redundância em células leveduriformes de P. brasiliensis recuperadas de fígado de 

camundongo infectado (Bailão et al., 2006; Costa et al., 2007); a proteína foi descrita como 

importante no estabelecimento da fase leveduriforme em Penicillium marneffei (Chandler et

al., 2008). A HSP30 se localiza na membrana plasmática e está relacionada à modulação da 

fluidez e do estado físico da membrana em situações de choque térmico em bactérias (Seymour 

& Piper, 1999; Coucheney et al., 2005), além de regular negativamente a proteína de 

membrana plasmática PMA1 em S. cerevisiae (Piper et al., 1997). Essa descrição tem 
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relevância, pois corrobora aos nossos resultados, uma vez que a ATPase H+ de membrana 

plasmática (Pma1) foi descrita como regulada negativamente  no isolado Pb01.

O transcrito que codifica para a DDR48p, uma proteína relacionada ao estresse, foi 

induzido no isolado  Pb01. A proteína DDR48 é descrita como essencial em C. albicans, uma 

vez que somente mutantes heterozigóticos são formados. Mutantes homozigóticos não são 

formados. Além disso, mutantes são defectivos na filamentação e na resposta ao estresse em C.

albicans (Dib et al., 2008).  

O transcrito que codifica para a alfa-trealose fosfato sintase (TPS1) foi induzido no 

isolado Pb01. Em M. grisea, TPS1 é uma proteína central reguladora dos processos de infecção 

do fungo, sendo importante para a diferenciação celular e desempenha um papel global na 

regulação do metabolismo de carboidratos e na utilização de fontes de nitrogênio (Wilson et 

al., 2007). Essa descrição parece relevante, uma vez que o transcrito que codifica para a DIP5 

está induzido no isolado Pb01, onde ambas DIP5 e TPS1 devem participar do metabolismo de 

nitrogênio. Ainda com relação à DIP5, o transcrito cognato é super expresso em várias 

condições experimentais de infecção (Bailão et al., 2006; 2007), assim como durante a 

transição micélio-levedura no isolado Pb01 (Bastos et al., 2007). A DIP5 está possivelmente 

relacionada à captação de glutamato, precursor da síntese de glutamina. A quitina é detectada 

em ambas as formas do fungo apresentando um maior teor em formas leveduriformes quando 

comparado a  micélio (San-Blas et al. 1987, Kurokawa et al. 1998). A expressão maior do 

transcrito dip5 no isolado Pb01 pode estar relacionada à maior deposição de quitina na forma 

parasitária do fungo. 

O transcrito que codifica para a proteína decarboxilase para aminoácidos aromáticos

(DDC) foi induzido no isolado Pb01. A síntese de melanina está implicada na patogênese de 

fungos (Hamilton & Gomez 2002, Taborda et al., 2008). O crescimento de P. brasiliensis com 

L-DOPA, resulta na melanização das células fúngicas (Gomez et al., 2001), bem como a 

melanina protege P. brasiliensis de fagocitose (Silva et al., 2006). Além disso, o transcrito que 

codifica para a DDC foi induzido em células de P. brasiliensis recuperadas de fígado de 

camundongo infectado, corroborando a idéia que a DDC deva ser importante na fase 

leveduriforme de P. brasiliensis, especialmente durante o processo infectivo (Bailão et al.,

2006; Costa et al., 2007). 

Foi descrito também no isolado Pb01 o transcrito que codifica para o fator de 

transcrição Nsdd, o qual está relacionado à formação correta de hifas e com a reprodução 

sexual de ascomicetos. A presença do gene que codifica para NSDD é necessária para a 

acumulação do transcrito que codifica para uma provável -1,3-endoglucanase em A. nidulans,
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sugerindo que NSDD é relevante para morfogênese e para o remodelamento da parede celular 

(Choi et al., 2005). Além disso, o fator de transcrição foi induzido nos estágios iniciais de 

diferenciação de micélio para levedura (Bastos et al., 2007), sugerindo sua importância no 

processo de diferenciação para a fase leveduriforme. 

Foram identificados transcritos regulados negativamente em Pb01, quando comparado 

com Pb4940. Foi identificado o transcrito que codifica para a proteína AOX1. Na forma 

miceliana, P. brasiliensis parece apresentar metabolismo predominantemente aeróbico, quando 

comparado à forma leveduriforme (Felipe et al., 2005). Embora a função da AOX1 não tenha 

sido definida em P. brasiliensis, em C. neoformans, a proteína auxilia na destruição ou na 

prevenção da produção de espécies reativas de oxigênio (ROS), limitando sua formação 

mitocondrial (Akhter et al., 2003).  Ressalte-se que função de uma oxidase alternativa foi 

recentemente descrita em P. brasiliensis (Martins et al., 2008).

O transcrito que codifica para a SED1p, uma provável proteína de membrana, foi 

regulado negativamente em Pb01. Em S. cerevisiae, SED1p é a proteína mais abundante 

descrita na fase estacionária do fungo, possivelmente relacionada a mecanismos de defesa, 

importantes nessa fase (Shimol et al., 1998).  Além disso, SED1p é requerida para a 

reconstrução da parede celular em linhagens mutantes para proteínas GPI-ancoradas de S.

cerevisiae (Hagen et al., 2004). 

Os resultados descritos sugerem que alguns dos genes identificados, possivelmente 

devem estar relacionados com a transição dimórfica e/ou a manutenção de P. brasiliensis na 

fase leveduriforme. Além disso, vários dos transcritos identificados, estão entre os 

identificados em situações que mimetizam nichos do hospedeiro (Bailão et al., 2006; 2007; 

Costa et al., 2007) e durante os estágios iniciais de diferenciação de micélio para levedura 

(Bastos et al., 2007). Transcritos que possivelmente codificam para proteínas hipotéticas, 

foram encontrados como induzidos nos dois isolados. Em Francisella tularensis, uma bactéria 

patogênica humana, a análise diferencial de genes expressos a 36 ºC revelou uma alta 

expressão de proteínas hipotéticas possivelmente relacionadas com a patogênese e virulência 

(Horzempa et al., 2008). Além disso, uma grande porcentagem de transcritos induzidos 

positiva/negativamente codificam para proteínas associadas à superfície celular. Estudos 

relacionados a essas moléculas são necessários para elucidar os mecanismos de organização da 

parede/membrana celular de P. brasiliensis, possivelmente relacionados à transição dimórfica.

A comprovação experimental e o melhor entendimento dos papéis desempenhados pelos 

transcritos identificados deverão ser objeto de estudo, o que requer o desenvolvimento de 

ferramentas genéticas eficientes para estudos funcionais em P. brasiliensis.
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Conclusões

- P. brasiliensis apresentou expressão diferencial de genes entre os dois isolados 

analisados (Pb01 e Pb4940), que transitam ou não da forma miceliana para a forma 

leveduriforme por alteração da temperatura. Os resultados evidenciam que a técnica de RDA 

pode ser utilizada com eficiência na identificação de genes diferencialmente expressos; 

- Transcritos possivelmente relacionados à transição dimórfica e/ou 

estabelecimento de fase leveduriforme foram identificados, como por exemplo: proteínas 

relacionadas ao estresse, à membrana/parede celular e metabolismo de nitrogênio e 

carboidratos; 

- Transcritos não identificados em bancos de dados e altamente expressos, 

reforçam o conhecimento ainda incipiente sobre os mecanismos moleculares relacionados à 

transição dimórfica e o estabelecimento de fases em P. brasiliensis.
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74001-970, Goiânia, Goiás, Brazil
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Paracoccidioides brasiliensis is a fungal human pathogen with a wide distribution in Latin America.

It causes paracoccidioidomycosis, the most widespread systemic mycosis in Latin America.

Although gene expression in P. brasiliensis had been studied, little is known about the genome

sequences expressed by this species during the infection process. To better understand the

infection process, 4934 expressed sequence tags (ESTs) derived from a non-normalized cDNA

library from P. brasiliensis (isolate Pb01) yeast-phase cells recovered from the livers of infected

mice were annotated and clustered to a UniGene (clusters containing sequences that represent a

unique gene) set with 1602 members. A large-scale comparative analysis was performed between

the UniGene sequences of P. brasiliensis yeast-phase cells recovered from infected mice and a

database constructed with sequences of the yeast-phase and mycelium transcriptome (isolate

Pb01) (https://dna.biomol.unb.br/Pb/), as well as with all public ESTs available at GenBank,

including sequences of the P. brasiliensis yeast-phase transcriptome (isolate Pb18) (http://

www.ncbi.nlm.nih.gov/). The focus was on the overexpressed and novel genes. From the total, 3184

ESTs (64.53%) were also present in the previously described transcriptome of yeast-form and

mycelium cells obtained from in vitro cultures (https://dna.biomol.unb.br/Pb/) and of those, 1172

ESTs (23.75% of the described sequences) represented transcripts overexpressed during the

infection process. Comparative analysis identified 1750 ESTs (35.47% of the total), comprising

649 UniGene sequences representing novel transcripts of P. brasiliensis, not previously described

for this isolate or for other isolates in public databases. KEGG pathway mapping showed that the

novel and overexpressed transcripts represented standard metabolic pathways, including

glycolysis, amino acid biosynthesis, lipid and sterol metabolism. The unique and divergent

representation of transcripts in the cDNA library of yeast cells recovered from infected mice

suggests differential gene expression in response to the host milieu.

Abbreviations: EST, expressed sequence tag; KEGG, Kyoto Encyclopedia of Gene and Genomes; sqRT-PCR, semiquantitative RT-PCR.

3These authors contributed equally to this work.

The GenBank/EMBL/DDBJ accession numbers for the ESTs of Paracoccidioides brasiliensis identified in this study are EST1487–EST6420.

Two supplementary tables listing the overexpressed and novel genes identified during this study and supplementary material describing the EST dataset
analysed are available with the online version of this paper.
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INTRODUCTION

The dimorphic pathogenic fungus Paracoccidioides brasi-
liensis, the aetiological agent of paracoccidioidomycosis,
undergoes a complex transformation; the fungus switches
from the mycelial infective form, growing at environmental
temperatures, to the yeast form, growing at the mammalian
host temperature. The fungus is a pathogen that infects
around 10 million individuals in the regions where it is
endemic, distributed from Mexico to Argentina (Restrepo
et al., 2001). During infection, the host inhales spores from
the mycelial form that convert to the budding-yeast form
within hours. The disease is characterized by a chronic
granulomatous inflammation, and patients may present a
broad spectrum of clinical manifestations (Montenegro &
Franco, 1994).

Analysis of the response of P. brasiliensis during infection
provides a window into the alterations required for the
organism to survive in the host milieu. Transcriptional
profiles of fungal cells, as well as the relative expression of
transcripts in each P. brasiliensis phase, have been
examined previously (Felipe et al., 2003; Goldman et al.,
2003; Marques et al., 2004; Felipe et al., 2005).
Transcriptional responses to temperature, mimicking the
events of differentiation upon fungal inhalation by the
host, have also been studied (Nunes et al., 2005; Bastos et
al., 2007). Regarding the isolate Pb01, the subject of the
present work, previous in silico electronic subtraction and
cDNA microarray studies have provided a view of the
fungal metabolism, demonstrating upregulated transcripts
and differential expression patterns in yeast phase and
mycelium (Felipe et al., 2005).

We have been studying differentially expressed genes in P.
brasiliensis yeast-form cells upon exposure to host-like
conditions. We have previously investigated, by cDNA-
representational difference analysis (cDNA-RDA), the genes
overexpressed by P. brasiliensis upon infection in a mouse
model, as well as upon incubation of yeast cells with human
blood (Bailão et al., 2006). Genes putatively related to fungal
transport, cell defence and cell wall synthesis/remodelling
were particularly upregulated under the host-like conditions
analysed. In the present work we sought to amplify our
studies of genes potentially related to fungal–host inter-
action by analysing the transcriptome of yeast-phase cells
recovered from livers of infected mice. We analysed 4934
expressed sequence tags (ESTs) generated from a cDNA
library. Novel genes as well as upregulated genes, compared
to the in vitro transcriptome (https://dna.biomol.unb.br/Pb/)
and to the GenBank (http://www.ncbi.nlm.nih.gov/) ESTs,
provided insights into metabolic adaptations performed
by P. brasiliensis during infection. The yeast-phase cells
significantly overexpress genes related to glycolysis and
ethanol production, fatty acid synthesis and nitrogen
metabolism, suggesting a nutrient-rich microenvironment.
The overproduction of transcripts from genes represented
by these pathways also indicates metabolically active
fungal cells that can utilize carbohydrate, lipid and

nitrogen sources to generate the necessary compounds
and energy for carrying on cellular processes or respond-
ing to the surrounding microenvironment.

METHODS

Maintenance of P. brasiliensis and animal infection. P.
brasiliensis (ATCC MYA-826) was grown for 7 days in BBL Mycosel

Agar (Becton Dickinson), supplemented with 10% fetal calf serum, at
36 uC for the yeast phase (control cells). Infection of mice was
performed as previously described (Bailão et al., 2006). P. brasiliensis
yeast-phase cells were harvested from 7-day-old cultures, suspended
in sterile PBS (7 mM Na2HPO4, 1.5 mM KH2PO4, 0.137 mM NaCl,

2.7 mM KCl, pH 7.4). Male B.10A mice, 8–12 weeks old, were
infected intraperitoneally with 56106 yeast-phase cells. Animals were
sacrificed 7 days after infection; livers were removed and homo-
genized in 5 ml sterile PBS. The cellular suspensions were washed
three times, centrifuged at 1000 g and resuspended in 1 ml PBS.

Aliquots (100 ml) of the suspension were plated onto BBL Mycosel
Agar, supplemented with 10% fetal calf serum. After 14 days
incubation, the cells were recovered and total RNA was extracted.
Procedures involving animals and their care were conducted in
conformity with the rules of the local ethics committee and

international recommendations. Control yeast-phase cells and those
recovered from infected tissue were used for RNA extraction.

RNA extractions. Total RNA was extracted under all experimental
conditions by the use of Trizol reagent (Invitrogen) according to the
manufacturer’s instructions. RNAs were used to construct double-
stranded cDNAs.

Construction of the cDNA library. The P. brasiliensis cDNA library
was constructed following the protocols of the SUPERSCRIPT
plasmid system with GATEWAY technology for cDNA synthesis

and cloning (Invitrogen).

DNA sequencing. The cDNA library was plated to approximately
200 colonies per plate (150 mm Petri dish). The colonies were

randomly selected and transferred to a 96-well polypropylene plate
containing LB medium and grown overnight. Plasmid DNA was
isolated and purified. cDNA inserts were sequenced from the 59 end
by employing a standard fluorescence labelling DYEnamic ET dye

terminator kit (Amersham Biosciences) with the M13/pUC flanking
vector primer. Automated sequence analysis was performed in a
MegaBACE 1000 DNA sequencer (GE Healthcare).

EST processing pipeline, annotation and differential expres-

sion analysis. EST sequences were pre-processed using the Phred
(Ewing & Green, 1998) and Crossmatch (http://www.genome.
washington.edu/UWGC/analysistools/Swat.cfm) programs. Only
sequences with at least 100 nucleotides and a Phred quality greater
than or equal to 20 were considered for further analysis. ESTs were

screened for vector sequences against the UniVec data. The resulting
sequences were uploaded to a relational database (MySQL) on a
Linux (Fedora) platform, and processed using a modified version of
the PHOREST tool (Ahren et al., 2004). The filtered sequences were

compared against the GenBank non-redundant (nr) database from
the National Center for Biotechnology Information (http://
www.ncbi.nlm.nih.gov/), the Gene Ontology database (http://www.
geneontology.org/GO) and InterPro’s databases of protein families
(http://www.ebi.ac.uk/InterProScan/). The Munich Information

Center for Protein Sequences (MIPS) (http://mips.gsf.de/) database
was used to assign functional categories and Kyoto Encyclopedia of
Gene and Genomes (KEGG) (http://www.kegg.com/) was used to
assign Enzyme Commission (EC) numbers and metabolic pathways.
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The database sequence matches were considered significant at E-

values ¡1025. The clusters were compared to the P. brasiliensis
transcriptome database (https://dna.biomol.unb.br/Pb/), to select

novel and overexpressed genes. For the description of novel genes,

sequences were also compared to sequences in GenBank (http://

www.ncbi.nlm.nih.gov/) that also included the ESTs reported
previously by Goldman et al. (2003) available in the NCBI database.

BLASTX analysis (http://www.ncbi.nlm.nih.gov/BLAST/) (Altschul

et al., 1997) was used to find matching sequences with E-values

¡1025. With CAP3 assembly (Huang & Madan, 1999) information
stored in the relational database, SQL queries were performed to

identify transcripts unique to a specific EST library and/or present in

two or more libraries. We have constructed a database to host all the

sequence data and the analysis results obtained from this study. The
database can be accessed through a web interface at http://

www.lbm.icb.ufg.br/phorestwww/index.php. All the ESTs were sub-

mitted to GenBank under accession numbers EST1487–EST6420.

In silico determination of upregulated genes. To assign a

differential expression character, the contigs formed with mycelium,

control yeast-phase cells and yeast-form cells recovered from infected

mice ESTs were statistically evaluated using the method of Audic &
Claverie (1997). Overexpressed genes, compared to the P. brasiliensis

transcriptome database (https://dna.biomol.unb.br/Pb/), were deter-

mined with a 95% confidence rate.

Infection of Vero cells with P. brasiliensis. Cultures of Vero cells
(ATCC CCL81) were maintained in Medium 199 (Sigma–Aldrich)

supplemented with 10% (v/v) heat-inactivated fetal calf serum. The

cells were washed three times in 199 medium and 108 yeast-form cells

of P. brasiliensis were added and incubated for 48 h at 36 uC, as
described previously (Mendes-Giannini et al., 2006). The cells were

washed three times in PBS followed by incubation in PBS containing

trypsin (0.2%) and EDTA (0.02%) for 30 min for total monolayer

removal. The cells were centrifuged (1400 g, 5 min) and the pellet was
recovered for further RNA extraction.

PCR analysis of genomic DNA of P. brasiliensis. The presence of
novel genes was initially assayed by PCR of genomic DNA of P.
brasiliensis yeast-form cells, prepared according to standard methods.

PCR of selected genes was performed with specific sense and antisense

primers, as described in Table 1.

Semiquantitative RT-PCR analysis of P. brasiliensis regulated

genes. Total RNAs were obtained from control yeast-form cells from
a different batch of infected animals to those used for the construction
of the cDNA library and from fungal yeast forms infecting Vero cells.
Single-stranded cDNAs were synthesized. PCRs were performed using
cDNAs as templates in 30 ml reaction mixtures containing specific
primers (Table 1). PCR conditions were: 95 uC for 1 min, 95 uC for
30 s, annealing at 55–65 uC for 2 min, 25–35 cycles at 72 uC for 1 min,
final extension at 72 uC for 7 min. The annealing temperature and the
number of PCR cycles were optimized for each experimental condition
to ensure exponential amplification in semiquantitative RT-PCR
(sqRT-PCR) analysis. Amplicons were analysed by agarose gel
electrophoresis (1%). The analyses of relative differences were
performed using Scion Image Beta 4.03 software (http://www.
scioncorp.com/pages/scion_image_windows.htm).

RESULTS

Overview of ESTs from P. brasiliensis yeast-form
cells recovered from infected mice

The purpose of this study was to identify a set of upregulated
genes, as well as novel genes, expressed by P. brasiliensis in a
mouse model of infection, as a first step towards a large-scale
screen for genes associated with fungal pathogenesis. A total
of 4934 high quality sequences were obtained and used to
establish an EST database consisting of 1602 unique
sequences from P. brasiliensis yeast-phase cells recovered
from livers of infected mice (http://www.lbm.icb.ufg.br/
phorestwww/index.php). A total of 1172 sequences (23.75%
of the total) corresponded to overexpressed sequences when
compared to the transcriptome of in vitro-cultivated P.
brasiliensis yeast-form cells. A total of 1750 sequences
(35.47% of the total) had no homology to sequences found
previously in P. brasiliensis, as demonstrated by compar-
ative analysis to the ESTs from the P. brasiliensis
transcriptomes described elsewhere (Felipe et al., 2005;
Goldman et al. 2003). All sequences were arranged into

Table 1. Oligonucleotide primers used in PCR and or sqRT-PCR

Sequence name Forward primer (5§A3§) Reverse primer (5§A3§) Size of amplified

product (bp)

Indigoidine synthase A-like protein (indA) ATAGCCGACCTGACTGAACT CCCTCTCTTGAATGCCGTAT 323

Oligopeptide transporter protein (opt) CAAGCGACTGGAGCAACCGA CTGCGTTGTGTATTGAAGCCG 228

Rho guanyl nucleotide exchange factor (gef) TCTCCCAAACGCTGAACACT ATCAATCGTCCAGAGGGTAG 325

Oxidation resistance 1 protein (oxr1) TCCCAGTCCGAATCTCAATC CTGCTCGCAAATGCCTTACA 410

Glucokinase (glk) GGTCTGGCGTAAATGTGCAC GGCTGGTGAATTTGTATCGC 368

Carbonic anhydrase (ca) ACACGGGACGAAAGCACTAT AAACCTGCTGGCATTGTGGC 322

Myosin 2 isoform (myo2) TGGCGAAATCATGAAAGCGG GGCGGGCACAGCATGGTAA 291

Telomerase reverse transcriptase (tert) TGGGAACATCATCGACACGT GGCTGCCATAGTCCGAATAA 343

Poly(A) polymerase 1 (pap1) TCGCGATCCCATACAACCTT GACGAGTTGGACCTTCACCT 345

Orotate phosphoribosyltransferase (ura5) CAGCTGCAGTCGTTACAACA GGGTTGGAGGAGAGGAAAG 249

Patatin-like serine hydrolase (pat) GGATCATGTGTCTGCGCTAC GGGAAGAGATCGATTTGAGG 468

Squalene synthase (erg9) GCTGACTATTGCCGAAAGG GTTCGAGGGTTGCAATGGC 460

Ribosomal L34 protein (l34) ATTCCTGCCCTCCGACCC CCCGCCATTCTCGTCCCGC 750

Glyceraldehyde 3-phosphate dehydrogenase

(gapdh)

CAGACAGCTGCATCTTCT TCTCTCTCTTCCTCTTGCG 1106
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1041 contigs and 561 singletons that represented different
transcripts. The complete dataset is available as supple-
mentary material with the online version of this paper.

Functional annotation and analysis of sequences

The EST sequences were compared to the non-redundant
database from NCBI using the BLASTX algorithm (Altschul
et al., 1997). ESTs and UniGenes (clusters containing
sequences that represent a unique gene) were given a
putative assignment according to the classification
developed by MIPS (Fig. 1). The major MIPS categories
represented included metabolism, cellular transport,
energy, cell cycle and DNA processing, cell rescue and
virulence, protein synthesis and protein fate. A high
proportion of the ESTs (41.12%) exhibited sequence
similarity only to genes of unknown function or encoding
hypothetical proteins, which may reflect the specialization
of these structures in P. brasiliensis.

Identification of overexpressed genes by in silico
EST subtraction and of novel transcripts in yeast-
form cells recovered from infected mice

To select transcripts upregulated during the infection
process of P. brasiliensis isolate Pb01, we performed

comparative analysis of the ESTs with the transcriptome
database generated previously with in vitro-grown
mycelium and yeast-phase cells (Felipe et al., 2005). The
distribution of the overexpressed ESTs, representing 1172
sequences, is presented in Supplementary Table S1,
available with the online version of this paper. Analysis
of the MIPS categories showed a statistically significant
difference between the in vitro-cultured cells and the
infectious library for several biological processes. The
results indicated that the overexpressed genes identified by
comparative analysis encoded enzymes from several
metabolic pathways, transcription factors and membrane
transporters, among other protein. The data illustrate the
functional diversity of these overexpressed ESTs, with
particular functional categories dominating the analysis.

To identify novel transcripts expressed during the infection
process of P. brasiliensis we performed comparative analy-
sis of the generated ESTs (http://www.lbm.icb.ufg.br/
phorestwww/index.php) with the transcriptome database
(https://dna.biomol.unb.br/Pb/) and with the ESTs and
complete sequences in GenBank (http://www.ncbi.nlm.nih.
gov/). The distribution of the novel ESTs, representing 1750
sequences, is presented in Supplementary Table S2, available
with the online version of this paper. The ESTs were
classified into 16 groups of functionally related genes, with
sequences encoding enzymes involved in cell metabolism

Fig. 1. Overview of ESTs from the P. brasiliensis transcriptome. Classification of the ESTs based on E-value and according to
the functional categories of the MIPS functional annotation scheme.
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and energy, transport facilitators and transcription factors
dominating the analysis.

Highly redundant genes

Table 2 lists the 50 most abundant ORFs in the EST
collection in the present transcriptome. A total of 50 contigs
containing 892 ESTs were highly redundant. This accounted
for 18.08% of the total high-quality ESTs. The minimum
number of ESTs that made up these most highly redundant
contigs was 10. A large number of ESTs encoded membrane
transporters, stress-related proteins, molecules related to
nitrogen metabolism or enzymes of carbohydrate and lipid
metabolism. Most of the abundant transcripts represent
overexpressed genes. Included in the highly abundant
transcripts are some that have been described previously as
upregulated in yeast-form cells when compared to mycelia,
such as those encoding alcohol dehydrogenase, aromatic-L-
amino acid decarboxylase and isocitrate lyase (Felipe et al.,
2005). The presence of novel P. brasiliensis genes in the
highly abundant category, such as those encoding carbonic
anhydrase and glucokinase, was noted.

Overview of P. brasiliensis infective
transcriptome: pathway analysis based on the
KEGG classification

EC numbers were used to judge which sequences pertained
to a specific pathway. A total of 320 unique sequences
including 265 contigs and 55 singlets accounted for
19.97% of unique sequences and matched enzymes with
an EC number. The distribution of novel and upregulated
ESTs was examined (Table 3). Based on the KEGG
classification, it was observed that novel and overexpressed
transcripts were predominantly involved in carbohydrate,
amino-acid, energy and lipid metabolism.

Most relevant aspects of metabolic pathways
upregulated during the infection process

Analysing the data presented in Tables 1 and 2, and
supplementary material, some insights were obtained into
the metabolic features of P. brasiliensis yeast-form cells
during the infection process. The metabolic features are
summarized in Table 4. Among the processes that appear
to be increased in yeast-form cells during the infection
process, carbohydrate, lipid and nitrogen metabolism
showed the most significant changes.

Metabolism of carbohydrates

Homologues of nine genes related to carbohydrate
synthesis/degradation were identified as novel or over-
expressed in the UniGene set (Table 4). Transcripts
encoding acylphosphatase, quinoprotein alcohol dehydro-
genase, glucokinase and phosphoglycerate mutase, poten-
tially related to the anaerobic metabolism of glucose, were
identified. Glycogen phosphorylase I might be required for

the mobilization of glycogen, providing glucose for energy
production. D-Ribose-5-phosphate ketol isomerase would
allow oxidative reactions to continue by the production of
hexose phosphates. Systems for the transport of sugars,
MFS1, MFS2 and PTS, are also overexpressed, putatively
providing additional fuel for the oxidative reactions.

Lipid metabolism

Genes involved in lipid metabolism that were over-
expressed or represented novel transcripts in P. brasiliensis
are summarized in Table 4. The overexpressed malic
enzyme is required for the transport of acetyl groups to the
cytosol and provides NADPH for lipid synthesis. Carbonic
anhydrase, which could provide bicarbonate for the
synthesis of malonyl-CoA by acetyl-CoA carboxylase and
is a key regulatory enzyme in fatty acid metabolism, is
overexpressed during the infection process. Fatty acyl CoA
synthase is also overexpressed in the transcriptome
analysed, reinforcing the suggestion of active synthesis of
lipids by yeast cells during infection.

The synthesis/remodelling of membrane components,
including ergosterol, might be induced. Transcripts encod-
ing MBOAT, a putative acetyltransferase involved in
phospholipid biosynthesis/remodelling, a patatin-like pro-
tein with putative phospholipase A2 activity and a
phospholipase A1 are overexpressed under infection condi-
tions. Delta-9 fatty acid desaturase (Ole1), an overexpressed
gene, could introduce a double bond into saturated fatty
acyl-CoA substrates, giving rise to monounsaturated fatty
acids. The transcript encoding sterol C-methyltransferase,
ERG6, which is related to the biosynthesis of ergosterol, is
upregulated; a novel transcript encoding a homologue of
squalene synthase, ERG 9, catalysing the first committed
step in the sterol biosynthesis pathway, was also detected.
The synthesis of sphingolipids could be increased by
overexpression of delta-8-sphingolipid desaturase.

TCA and the glyoxylate cycle and energy
production

The glyoxylate cycle could be induced in yeast-form cells
during the infection process. The isocitrate lyase gene is
upregulated. Genes with functions associated with the
glyoxylate cycle were also induced, such as the gene
encoding hydroxymethyl glutaryl-CoA lyase, which could
provide acetyl-CoA. The transport of acetyl-CoA into the
mitochondria might be upregulated. Carnitine acetyltrans-
ferase and carnitine/acylcarnitine translocase are required
for the transport of acetyl-CoA from the peroxisomes into
the mitochondria. Components of the classical pathway of
oxidative phosphorylation are also induced.

Nitrogen metabolism

Comparison of our EST data with KEGG revealed that
many overexpressed transcripts encode proteins that are
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Table 2. Identification of the highly abundant clusters (¢10 reads) of P. brasiliensis transcripts

50 ORFs representing the highest number of ESTs in the cDNA library are listed.

Gene product Best hit/Accession no. E-value EC no. Redundancy Metabolic role

ADP-ribosylation factor (ARF) Ajellomyces capsulata/D49993 4e–67 – 13 Protein trafficking in the Golgi

apparatus

ADY2 – protein essential for the

acetate permease activity

Aspergillus nidulans/XP_409363.1 3e–47 – 12 Acetate transmembrane transport

Coatomer zeta subunitD Aspergillus nidulans/XP_410217.1 1e–67 – 14 Protein transport to Golgi

Copper transport protein* Aspergillus nidulans/XP_407254.1 4e–56 – 55 Copper transport

GTP-binding protein of the Rab

family (YPT1)

Neurospora crassa/gi|384298 1e–22 – 10 ER to Golgi secretory pathway

High-affinity methionine

permease*

Yarrowia lipolytica/XP_505883.1 8e–52 – 11 Methionine transport

Lipocalin-1-interacting

membrane receptor (LMBR1L)*

Aspergillus nidulans/XP_408348.1 2e–36 – 12 Transport of small hydrophobic

molecules

MFS peptide transporter (PTR2)* Aspergillus nidulans/XP_407545.1 3e–63 – 14 Peptide transport

Mitochondrial

succinate–fumarate transporter*

Aspergillus nidulans/XP_411424.1 9e–28 – 15 Succinate and fumarate transport

Heat-shock protein 30 (HSP30) Aspergillus oryzae/BAD02411.1 5e–47 – 18 Stress related

Heat-shock protein 70 (HSP70) Paracoccidioides brasiliensis/

AAK66771.1

6e–74 – 16 Stress related

Heat-shock protein 90 (HSP90) Paracoccidioides brasiliensis/

AAX33296.1

0.0 – 10 Stress related

Heat-shock-inducible inhibitor

of cell growth (HMF1)*

Aspergillus nidulans/XP_413217.1 6e–46 – 14 Stress related

Rho1 GTPase* Paracoccidioides brasiliensis/

AAQ93069.2

2e–78 – 13 Stress related

3-Isopropylmalate

dehydrogenase*

Aspergillus nidulans/gi|50083229 2e–80 1 . 1 . 1 . 85 10 Nitrogen metabolism/Leucine

biosynthesis

Aromatic-L-amino-acid

decarboxylase (DDC)

Gibberella zeae/XP_385471.1 5e–46 4 . 1 . 1 . 28 23 Nitrogen metabolism/Melanin

biosynthesis

Cystathionine beta-synthase

(CYS4)*

Aspergillus nidulans/XP_409957.1 9e–87 4 . 2 . 1 . 22 11 Nitrogen metabolism/Cysteine

biosynthesis

Formamidase Paracoccidioides brasiliensis/

gi|47118080

3e–94 3 . 5 . 1 . 49 10 Nitrogen metabolism/Production

of ammonia

Glutamine synthetase* Aspergillus nidulans/XP_408296.1 3e–64 6 . 3 . 1 . 2 11 Nitrogen metabolism/Glutamine

biosynthesis

Homocitrate synthase* Aspergillus fumigatus/XP_751780.1 0.0 2 . 3 . 3 . 14 26 Lysine biosynthesis

Alcohol dehydrogenase I Neurospora crassa/gi|7800883 2e–47 1 . 1 . 99 . 8 27 Anaerobic respiration

GlucokinaseD Escherichia coli/NP_288958.1 9e–82 2 . 7 . 1 . 2 45 Carbohydrate metabolism/

Glycolysis

Phosphoglycerate mutase* Aspergillus nidulans/XP_406010.1 1e–40 5 . 4 . 2 . 1 13 Carbohydrate metabolism/

Glycolysis

Isocitrate lyase 2* Paracoccidioides brasiliensis/

AY350913.2

7e–51 4 . 1 . 3 . 1 13 Glyoxylate cycle

Chitinase family 18* Paracoccidioides brasiliensis/

AAQ75798

7e–55 3 . 2 . 1 . 14 10 Cell wall metabolism/Hydrolysis of

chitin

UDP-glucose

pyrophosphorylase*

Aspergillus nidulans/XP_413285.1 6e–70 2 . 7 . 7 . 9 12 Carbohydrate metabolism/

Biosynthesis of cell wall

components

ATP synthase F0F1 subunit 9* Aspergillus nidulans/XP_408635.1 2e–44 3 . 6 . 3 . 14 88 Aerobic respiration

Flavodoxin-like protein Aspergillus nidulans/XP_404434.1 3e–54 – 17 Aerobic respiration

Choline sulfatase Aspergillus nidulans/XP_409586.1 1e–53 3 . 1 . 6 . 6 16 Sulfur metabolism

Sulfate adenylyltransferase Aspergillus niger/AF538692.1 4e–105 2 . 7 . 7 . 4 17 Sulfur metabolism/Sulfate

assimilation

Carbonic anhydraseD Magnaporthe grisea/XP_364389.1 4e–36 4 . 2 . 1 . 1 11 Lipid biosynthesis/HCO{
3

production

Transcriptome of P. brasiliensis during infection

http://mic.sgmjournals.org 4199



probably involved in amino acid pathways (Table 4).
Glutamine synthetase catalyses the ATP-dependent con-
version of glutamate and ammonium to glutamine. In this
context, urease in yeast-form cells could lead to the
overproduction of ammonia arising from urea. Analysis of
the amino acid metabolism pathways indicated that during
the infection process P. brasiliensis could independently
synthesize asparagine. Imidazole glycerol phosphate
synthase catalyses the closure of the imidazole rings within
the histidine biosynthesis pathway; this enzyme links amino
acid and nucleotide biosynthesis, providing the substrate

for de novo purine biosynthesis. 3-Isopropylmalate
dehydrogenase catalyses the last step in leucine biosynthesis.
The first and a key enzyme in the lysine biosynthesis
pathway, homocitrate synthase, is also upregulated. Also
lysine uptake should be increased by the overexpression of a
lysine-specific permease. Cysteine synthase B could promote
thiosulfate assimilation and cysteine could be overproduced
by the action of the upregulated transcript encoding
cystathionine b-synthase. The overexpression of the high-
affinity methionine permease could promote uptake of
methionine and cysteine. Aci-reductone dioxygenase could

Gene product Best hit/Accession no. E-value EC no. Redundancy Metabolic role

Delta-9-fatty acid desaturase

(OLE1)*

Ajellomyces capsulatus/gi|46395695 7e–102 1 . 14 . 19 . 1 22 Lipid metabolism/

Monounsaturated fatty acid

biosynthesis

Malic enzyme* Aspergillus nidulans/XP_410305.1 2e–89 1 . 1 . 1 . 40 11 Related to fatty acid biosynthesis

Long-chain base-responsive

inhibitor of protein kinases

Pkh1p and Pkh2p (PIL1)*

Aspergillus nidulans/XP_409354.1 7e–45 – 11 Protein activity regulation

Ornithine decarboxylase

antizyme*

Emericella nidulans/AF291577.1 1e–26 – 10 Proteasomal ubiquitin degradation

Protein-L-isoaspartate

(D-aspartate)

O-methyltransferase 1*

Aspergillus nidulans/XP_407601.1 5e–55 2 . 1 . 1 . 77 14 Protein fate/Repair of b-aspartyl

linkages

Peptidyl-prolyl cis–trans

isomerase

Neurospora crassa/gi|38567156 1e–61 5 . 2 . 1 . 8 17 Protein fate/Regulation of RNA

transcription and splicing

Polyubiquitin Schizosaccharomyces pombe/

AAC64787.1

3e–65 – 33 Protein degradation

Probable type-III integral

membrane protein (YTP1)D

Aspergillus nidulans/XP_406436.1 5e–25 – 10 Not defined

Serine proteinase* Paracoccidioides brasiliensis/

AAP83193

1e–85 3 . 4 . 21 . – 14 Protein degradation

Ubiquitin-conjugating enzyme

E2

Aspergillus nidulans/XP_407263.1 1e–64 6 . 3 . 2 . – 12 Protein degradation

3-Dimethylubiquinone-9,3-

methyltransferase*

Coccidioides immitis/

XP_001248608.1

6e–38 2 . 1 . 1 . 64 20 Ubiquinone biosynthesis

Ferrochelatase* Aspergillus nidulans/XP_411889.1 3e–76 4 . 99 . 1 . 1 10 Porphyrin metabolism/Insertion

of iron into haem

Elongation factor 1-alpha Coccidioides immitis/AAK54650 4e–80 – 13 Protein biosynthesis

Histone H2A* Aspergillus nidulans/XP_412176.1 3e–54 – 19 Nucleosome assembly

Nucleosome assembly protein* Gibberella zeae/XP_387643.1 5e–55 – 10 H2A and H2B nucleosome

assembly

Small nuclear ribonucleoprotein

U6 (Lsm3)*

Aspergillus nidulans/XP_404184.1 1e–33 – 10 RNA metabolism/RNA splicing

Transcription factor spt3

(SPT3)*

Aspergillus fumigatus/CAF32113 3e–48 – 16 Transcription/Assembly of RNA

polymerase

Translation initiation factor

subunit Sui1

Gibberella zeae/XP_389056.1 4e–49 – 12 Protein biosynthesis/Ribosomal

recognition of the initiation

codon

CAP20-virulence factor* Aspergillus nidulans/XP_408358.1 3e–38 – 40 Not defined

*Overexpressed in comparison to the transcriptome of the in vitro-cultured yeast-phase cells (https://dna.biomol.unb.br/Pb/).

DNovel genes of P. brasiliensis as defined by comparison to the transcriptome of in vitro-cultured yeast-form cells and to the NCBI database (http://

www.ncbi.nlm.nih.gov/).

Table 2. cont.
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promote the methionine salvage pathway (MTA). Adenylo-
succinate lyase, which encodes an enzyme involved in

adenylate synthesis, and orotate phosphoribosyltransferase,
involved in pyrimidine biosynthesis, are both novel genes.

Table 3. KEGG pathway mapping for novel and upregulated genes of P. brasiliensis yeast cells
recovered from infected mouse liver

KEGG pathway Number of sequences Percentage of total

Novel Upregulated Novel* UpregulatedD

Carbohydrate metabolism

Glycolysis/gluconeogenesis 53 – 3.03 –

Pyruvate metabolism – 32 – 2.73

Pentose phosphate pathway 3 – 0.17 –

Glycogen metabolism 2 – 0.11 –

Citrate cycle (TCA cycle) – 24 – 2.05

Amino sugar metabolism – 16 – 1.36

Glyoxylate and dicarboxylate metabolism – 13 – 1.11

Nucleotide sugar metabolism – 12 – 1.02

Energy metabolism

Nitrogen metabolism 8 – 0.46 –

Oxidative phosphorylation 9 99 0.51 8.45

Nucleotide metabolism

Purine and pyrimidine metabolism 5 4 0.28 0.34

Amino acid metabolism

Tryptophan metabolism 3 – 0.17 –

Alanine and aspartate metabolism 1 9 0.06 0.77

Glycine, serine and threonine metabolism – 11 – 0.94

Glutamate metabolism – 27 – 2.30

Valine, leucine and isoleucine degradation 2 4 0.11 0.34

Valine, leucine and isoleucine biosynthesis 1 10 0.05 0.85

Methionine metabolism – 4 – 0.34

Urea cycle and metabolism of amino groups – 7 – 0.60

Cysteine metabolism 1 – 0.06 –

Lipid metabolism

Fatty acid metabolism 1 8 0.06 0.68

Glycerophospholipid metabolism 4 7 0.23 0.60

Glycerolipid metabolism – 6 – 0.51

Linoleic acid metabolism 2 – 0.11 –

Biosynthesis of steroids 4 – 0.23 –

Metabolism of cofactors and vitamins

Ubiquinone biosynthesis – 40 – 3.41

Porphyrin and chlorophyll metabolism – 10 – 0.85

Nicotinate and nicotinamide metabolism 1 – 0.06 –

Folate biosynthesis – 8 – 0.68

Cell growth and death

Cell cycle 1 – 0.06 –

Transcription

RNA polymerase 8 5 0.46 0.43

Replication and repair

DNA polymerase – 4 – 0.34

Protein folding, sorting and degradation

Ubiquitin-mediated proteolysis – 14 – 1.19

Signal transduction

Calcium signalling pathway – 6 – 0.51

Phosphatidylinositol signalling system 1 – 0.06 –

*Percentage in relation to the total number of novel genes.

D Percentage in relation to the total number of overexpressed genes.
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Table 4. Overexpressed and novel genes involved in carbohydrate, lipid, amino acid and energy-yielding metabolism in the
transcriptome of P. brasiliensis yeast-phase cells recovered from livers of infected mice

Pathway Gene product Annotated function EC no. Redundancy

Carbohydrate synthesis

and degradation

Acylphosphatase (AcP)D Putative regulator of the glycolytic pathway 3.6.1.7 6

Quinoprotein alcohol dehydrogenase

family proteinD

Alcoholic fermentation 1.1.99.8 7

Glucokinase (GLK)D Carbohydrate metabolism/glycolysis 2.7.1.2 45

Phosphoglycerate mutase (GPM1P)* Carbohydrate metabolism/glycolysis 5.4.2.1 13

Glycogen phosphorylase 1 (GPH1)D Glycogen breakdown/glycogenolysis 2.4.1.1 2

D-ribose-5-phosphate ketol-isomerase

(RIP5)D

Pentose phosphate pathway 5.3.1.6 3

Monosaccharide transporter (MFS1)* Transport of sugars – 9

Glucose transporter (MFS2)D Transport of sugars – 3

Phosphotransferase system,

phosphocarrier HPR protein (PTS)D

Transport of sugars 2.7.3.9 2

Lipid/phospholipid

synthesis and

degradation

Malic enzyme (ME)* Fatty acid biosynthesis/transfer of acetate

to cytosol

1.1.1.40 11

Carbonic anhydrase (CA)D Biosynthesis of bicarbonate 4.2.1.1 11

Acetyl-CoA carboxylase (ACC1)* Fatty acid biosynthesis 6.4.1.2 6

Fatty-acyl-CoA synthase (beta-subunit)* Fatty acid biosynthesis 2.3.1.86 8

Member of the MBOAT family of

putative membrane-bound

O-acyltransferases (Yor175cp)D

Acetyl transferase for phospholipid

biosynthesis

2.3.–.– 1

Patatin-like serine hydrolase

(phospholipase A2 activity)D

Hydrolysis of phospholipids – 2

Phosphatidic acid-preferring

phospholipase A1D

Hydrolysis of phospholipids 3.1.1.32 1

Delta-9-fatty acid desaturase (OLE1)* Biosynthesis of monounsaturated fatty

acids

1.14.19.1 22

Delta(24)-sterol C-methyltransferase

(ERG6)*

Biosynthesis of ergosterol 2.1.1.41 6

Squalene synthetase (ERG9)D Biosynthesis of ergosterol 2.5.1.21 1

Delta 8-sphingolipid desaturaseD Biosynthesis of membrane sphingolipids 1.14.99.– 1

TCA cycle and glyoxylate

cycle

Isocitrate lyase (ICL)* Glyoxylate cycle 4.1.3.1 13

Hydroxymethylglutaryl-CoA lyase

(HMGCL)*

Leucine degradation/acetyl-CoA

production

4.1.3.4 4

Carnitine acetyl transferase (CAT)* Transport of acetylcarnitine into

mitochondria

2.3.1.7 9

Carnitine/acylcarnitine translocase

(CACT)D

Transport of acetylcarnitine into

mitochondria

2.3.1.– 1

Oxidation of NADH and

energy generation

ATP synthase F0F1 J chain* Aerobic respiration 3.6.3.14 7

ATP synthase F0F1 subunit 9* Aerobic respiration 3.6.3.14 88

ATP synthase F0F1 subunit e (TIM11l)Dd Aerobic respiration 3.6.3.14 1

Cytochrome c oxidase subunit VIIa

(CCO)D

Aerobic respiration 1.9.3.1 6

Cytochrome c oxidase subunit I

(COX1)D

Aerobic respiration 1.9.3.1 4

Nitrogen/amino acid

metabolism

Glutamine synthetase (GLNA)* Conversion of ammonia and glutamate to

glutamine

6.3.1.2 11

Urease (URE)* Hydrolysis of urea to carbon dioxide and

ammonia

3.5.1.5 7

Asparagine synthase (AS)D Biosynthesis of L-asparagine from

L-aspartate

6.3.5.4 1

Imidazole glycerol phosphate synthase

HisHF (IGP synthase)D

Histidine biosynthesis/de novo purine

biosynthesis

2.4.2.– 1
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Validation of the ESTs by PCR analysis and
expression of selected genes in yeast-phase cells
recovered from infected mice and in an ex vivo
model

We initially validated five novel genes by PCR analysis of P.
brasiliensis genomic DNA, as shown in Fig. 2(a). The novel
genes encoding indigoidine synthase A-like protein (indA),
oligopeptide transporter protein (opt), Rho guanyl
exchange factor (gef), oxidation resistance protein (oxr1)
and glucokinase (glk) were demonstrated to be present in
the genome of P. brasiliensis. In the next series of
experiments, confirmatory data regarding the expression
levels from EST redundancy analysis were provided by
sqRT-PCR analysis. Transcripts encoding carbonic anhy-
drase (ca), myosin 2 isoform (myo2), telomerase reverse
transcriptase (tert), poly(A) polymerase (pap1), orotate
phosphoribosyltransferase (ura5) and patatin-like serine
hydrolase (pat) were confirmed as being present at higher
levels in yeast-form cells recovered from infected mouse
livers (Fig. 2b). Also, some novel transcripts were validated
by sqRT-PCR of RNAs obtained from yeast forms
interacting with in vitro-cultured Vero cells. The novel
transcripts encoding ca, myo2, tert, pap1, pat, squalene
synthetase (erg9), oxr1 and glk were present in yeast cells in
the ex vivo model (Fig. 3).

DISCUSSION

Here we report in silico analysis and comparison of ESTs
from yeast-form cells of P. brasiliensis recovered from
infected mouse livers with previously described P. brasi-
liensis transcriptomes. The expression profiles of genes

encoding enzymes involved in primary metabolism show
that there is a striking degree of coordinate regulation of
some of the genes in the same pathway. For example, genes
encoding enzymes, regulators and transporters in car-
bohydrate metabolism are significantly overexpressed in
fungal cells recovered from infected tissue. Transcripts of
genes involved in lipid synthesis are also expressed at high
levels.

A great number of induced and novel genes in yeast-form
cells recovered from liver were involved in carbohydrate
metabolism. In a previous study, comparing mRNA
expression of mycelia and yeast-phase cells, Felipe et al.
(2005) suggested that the metabolism of yeast-form cells is
more anaerobic than that of mycelium toward the
production of ethanol. Our data suggest that infection of
liver by P. brasiliensis yeast-form cells exacerbates their
anaerobic behaviour, when compared to in vitro-cultured
yeast-form cells. There is actually an increase in mRNA
expression of several genes involved in glycolysis.
Corroborating our data, a glucokinase gene of Sac-
charomyces cerevisiae has been shown previously to be
overexpressed under conditions of ethanol induction
(Herrero et al., 1999). Although the physiological role of
acylphosphatase is as yet unknown, the enzyme plays a part
in the regulation in the glycolytic pathway, by increasing
the rate of glucose fermentation in yeast (Raugei et al.,
1996). The predicted upregulation of glycolysis in P.
brasiliensis described here is corroborated by a previous
description of the predominance of glycolytic metabolism
in Candida albicans colonizing mouse tissues (Barelle et al.,
2006). Additionally, the emphasis on the overexpression of
these enzymes of carbohydrate metabolism suggests that the
milieu may provide an adequate nutritional environment

Pathway Gene product Annotated function EC no. Redundancy

3-Isopropylmalate dehydrogenase

(LEU2)*

Leucine biosynthesis 1.1.1.85 10

Homocitrate synthase (LYS21)* Lysine biosynthesis 2.3.3.14 26

Lysine-specific permease (LYP1)D Uptake of lysine – 8

Cysteine synthase B (CYSM)D Thiosulfate assimilation 2.5.1.47 1

Cystathionine b-synthase (CYS4)* Cysteine biosynthesis 4.2.1.22 11

High-affinity methionine permease

(MUP1)*

Uptake of methionine and cysteine – 11

Aci-reductone dioxygenase 1(ARD)D Methionine salvage pathway 1.13.11.54 1

Adenylsuccinate lyase (ADE13)D De novo purine nucleotide biosynthetic

pathway

4.3.2.2 1

Orotate phosphoribosyltransferase

(URA5)D§

De novo biosynthesis of pyrimidines 2.4.2.10 5

Nitrogen metabolite repression regulator

(NMRA)*

Part of a system controlling nitrogen

metabolite repression in fungi

– 5

*Overexpressed genes identified in P. brasiliensis transcriptome of yeast-phase cells recovered from infected mouse liver.

DNovel genes identified in P. brasiliensis transcriptome of yeast-phase cells recovered from infected mouse liver.

dGenes not described previously in P. brasiliensis isolate Pb01, but present in public databases.

§Novel transcripts also detected in a P. brasiliensis dimorphic transition transcriptome (Bastos et al., 2007).

Table 4. cont.
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to enable the the glycolytic pathway to be shifted toward
the production of ethanol, a metabolic pathway that should
be particularly important during liver infection because of
abundant glucose in this host milieu.

Ethanol could become a relevant carbon source by entering
the glyoxylate cycle, which has been previously described as
being upregulated in fungal yeast-phase cells (Felipe et al.,
2005). The cycle may be more active in yeast-form cells
infecting mouse liver, as demonstrated here by the

overexpression of the regulatory enzyme isocitrate lyase,
suggesting that some non-fermentable compounds are
important for energy production during infection as
described previousy for fungi such as Candida albicans and
Cryptococcus neoformans (Lorenz & Fink, 2001; Ramı́rez &
Lorenz, 2007; Rude et al., 2002). Interestingly, the isocitrate
lyase gene of Penicilliummarneffei has been shown previously
to be strongly induced at 37 uC, even in the presence of a
repressing carbon source, such as glucose (Cánovas &
Andrianopoulos, 2006), a condition occurring in liver.

Fig. 2. Validation of the cDNA library for the presence of genes and analysis of redundancy of some transcripts. PCR and
sqRT-PCR analysis were carried out with specific sense and antisense oligonucleotide primers, respectively, as described in
Table 1. (a) PCR of total genomic DNA of P. brasiliensis with specific primers. (b) SqRT-PCR of RNAs from yeast-phase cells.
The RNA samples were obtained from yeast-phase cells, in vitro cultured (Y); and yeast-phase cells recovered from livers of
infected mice (I). The bar diagrams indicate fold differences relative to the data for the reference in vitro-cultured yeast cells:
control reactions with the ribosomal L34 protein are indicated by grey bars; black bars indicate the reactions for the selected
genes. The sizes of the amplified products are listed in Table 1.

Fig. 3. Transcript analysis of the interaction of P. brasiliensis with Vero cells: sqRT-PCR analysis of selected transcripts in
yeast-phase cells in the ex vivo model of infection. Lane 1, detection of transcripts in control Vero cells; lane 2, detection of
transcripts in P. brasiliensis yeast forms infecting Vero cells.The sizes of the amplified products are given in Table 1. The gene
encoding GAPDH was used as an internal control for Vero cells.
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The biosynthesis of lipids may be upregulated during the
infection process. The overexpression of transcripts
encoding lipogenic enzymes corroborates this suggestion.
Fatty acid synthesis is maximal when carbohydrate and
energy are plentiful, a condition believed to occur in liver.
Regarding carbonic anhydrase, previous studies have
demonstrated that this enzyme’s activity is required for
C. neoformans fatty acid biosynthesis (Bahn et al., 2005). It
has not escaped our attention that the increase in carbonic
anhydrase mRNA may reflect the high CO2 levels in the
host tissue.

Membrane composition seems to change during infection.
Ergosterol is the major sterol in fungal membranes and
affects their fluidity and permeability. Transcripts encoding
ERG6 and ERG9 were differentially regulated. Also
increased were the mRNA levels for enzymes related to
the synthesis and remodelling of the cell membrane, such
as OLE1, involved in regulating membrane fluidity in
animal cells and micro-organisms (Gargano et al., 1995),
and responsible for the adjustments in the membrane
composition in response to nutritional change (Vigh et al.,
1998).

P. brasiliensis seems to perform oxidative phosphorylation
by classical pathways during infection. Of special note is
the huge overexpression of the ATP synthase F0F1 subunit
9, the relevance of which is not clear.

Nitrogen metabolism is one aspect of basic metabolism
which is still quite unknown in the field of pathogenesis.
The most critical genes for S. cerevisiae in vivo survival were
found to be those required for amino acid biosynthesis
(Kingsbury et al., 2006). We described here 14 novel/
overexpressed genes related to the metabolism of amino
acids, suggesting that this aspect of metabolism should
be very relevant to fungal survival in the host liver
environment. Among the genes were those encoding
several metabolic steps in biosynthesis of amino acids, as
well as the transcriptional regulator NMRA gene, encoding
a predictable nitrogen metabolite repressor, suggesting that
P. brasiliensis is subject to nitrogen metabolite repression
under host conditions, probably reflecting ammonia and
glutamine availability in liver.

It can be suggested, on the basis of the transcriptional data
provided by this study, that increased glutamine, aspar-
agine, histidine, lysine, cysteine and methionine biosyn-
thesis are important for the survival of P. brasiliensis during
infection. Glutamine formation plays a key role in nitrogen
metabolism, ensuring the reassimilation of nitrogen
released from cellular processes and providing the source
of amino groups in a wide range of biosynthetic processes.
Our analysis indicated that during infection P. brasiliensis
seems to be able to synthesize asparagine, providing, in
addition to glutamine, another site for transient storage of
nitrogen. The novel transcript encoding aci-reductone
dioxygenase suggests the presence of the methionine
salvage pathway cycle (Hirano et al., 2005) providing
additional methionine, which could be scarce in the host

environment. Overall, the presumed increase in synthesis
of the amino acids listed above implies that those
compounds are not present at sufficient levels in host
tissue to support growth of P. brasiliensis.

To obtain further corroboration of the validity of our EST
results, we performed RT-PCR analysis of some selected
transcripts in yeast cells recovered from infected tissue in a
different series of experiments from those used to construct
the cDNA library, as well as in an ex vivo model of
infection. Several novel transcripts, such as those encoding
glucokinase and carbonic anhydrase, were confirmed,
further corroborating the validity of our EST analysis and
suggesting the relevance of those transcripts in the
infectious process.

Importantly, several of the genes identified in this work
had previously been implicated in pathogenesis in other
organisms. The most important types of melanin in fungi
are DHN-melanin and DOPA-melanin, which have been
implicated in pathogenesis (Hamilton & Gomez, 2002).
Transcripts encoding aromatic L-amino acid decarboxylase
were abundant in yeast-phase cells under our experimental
conditions, reinforcing the relevance of DOPA-melanin in
infection, as suggested elsewhere (Gomez et al., 2001; Silva
et al., 2006; Bailão et al., 2006). Polyketide synthase is a
novel transcript, suggesting that P. brasiliensis could
synthesize melanin via the polyketide synthase pathway,
as described previously for other fungi (Paolo et al., 2006).
Candida albicans carbonic anhydrase mutants cannot
induce true hyphae in response to high CO2, a condition
of induction of filamentation (Klengel et al., 2005). Tissue
damage and dissemination by Coccidioides involve the
ammonia-based alkalinization of the host environment
through the activity of fungal urease (Mirbod-Donovan
et al., 2006). The oxidation resistance (OXR1) protein is
involved in protection of cells from oxidative hydrogen
peroxide damage (Elliott & Volkert, 2004). The gene
encoding orotate-5-monophosphate pyrophosphorylase in
Histoplasma capsulatum is essential for fungal virulence in a
mouse infection model (Retallack et al., 1999). These
findings further encourage the study of the relevance of
these genes to P. brasiliensis pathogenesis.

In summary our data suggest that P. brasiliensis probably
uses multiple carbon sources during liver infection,
including glucose and substrates of the glyoxylate cycle.
In addition, the metabolism of nitrogen can be very active
during the infection process, suggesting that, while some
nitrogenous compounds can be preferentially acquired
from the host, others must be supplemented by the
pathogen. Also, the biosynthesis of lipids appears to be very
active, suggesting the plentiful availability of carbohydrates
and energy.

ACKNOWLEDGEMENTS

This work was supported by grants from Conselho Nacional de

Desenvolvimento Cientı́fico e Tecnológico (CNPq). The authors

Transcriptome of P. brasiliensis during infection

http://mic.sgmjournals.org 4205
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Paracoccidioides brasiliensis is the causative agent of
paracoccidioidomycosis, a disease that affects 10 million
individuals in Latin America. This report depicts the
results of the analysis of 6,022 assembled groups from
mycelium and yeast phase expressed sequence tags, cov-
ering about 80% of the estimated genome of this dimor-
phic, thermo-regulated fungus. The data provide a com-
prehensive view of the fungal metabolism, including
overexpressed transcripts, stage-specific genes, and
also those that are up- or down-regulated as assessed by
in silico electronic subtraction and cDNA microarrays.
Also, a significant differential expression pattern in my-
celium and yeast cells was detected, which was con-
firmed by Northern blot analysis, providing insights
into differential metabolic adaptations. The overall
transcriptome analysis provided information about se-
quences related to the cell cycle, stress response, drug
resistance, and signal transduction pathways of the

pathogen. Novel P. brasiliensis genes have been identi-
fied, probably corresponding to proteins that should be
addressed as virulence factor candidates and potential
new drug targets.

The dimorphic human pathogenic fungus Paracoccidioides
brasiliensis is the etiological agent of paracoccidioidomycosis
(PCM)1 (1), a major health problem in Latin America. High
positive skin tests (75%) in the adult population reinforce the
importance of the mycosis in endemic rural areas, where it has
been estimated to affect around 10 million individuals, 2% of
whom will develop the fatal acute or chronic disease (2). The
acute form of PCM chiefly compromises the reticuloendothelial
system; the chronic form mainly affects adult males with a high
frequency of pulmonary and/or mucocutaneous involvement
(1). Chronic severe multifocal PCM may also cause granuloma-
tous lesions in the central nervous system (3). Regardless of the
affected organ, PCM usually evolves to the formation of fibrotic
sequelae, permanently hindering the patient’s health.

P. brasiliensis Undergoes a Dimorphic Process in Vivo—It is
assumed that the fungus exists as a soil saprophyte, producing
propagules that can infect humans and produce disease after
transition to the pathogenic yeast form (4). Pathogenicity has
been intimately associated with this process, since P. brasilien-
sis strains unable to differentiate into the yeast form are avir-
ulent (5). Mammalian estrogens inhibit dimorphism, explain-
ing the lower incidence of disease in females (6). The mycelium-
to-yeast transition in P. brasiliensis is governed by the rise in
temperature that occurs upon contact of mycelia or conidia
with the human host. In vitro, it can be reversibly reproduced
by shifting the growth temperature between 22 and 36 °C.
Molecular events related to genes that control signal transduc-
tion, cell wall synthesis, and integrity are likely to be involved
in this dimorphic transition.

* This work was supported by MCT, CNPq, CAPES, FUB, UFG, and
FUNDECT-MS.

□S The on-line version of this article (available at http://www.jbc.org)
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Lorena S. Derengowski, Luı́s Artur M. Bataus, Marcus A. M. Araújo,
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P. brasiliensis genome size was estimated to be �30 Mb (7).
A study of P. brasiliensis gene density suggests that this fun-
gus contains between 7,500 and 9,000 genes,2 which is in
agreement with the estimated gene number for ascomycete
fungi genomes.

Here are presented the results of an effort to achieve a
comprehensive metabolic view of the P. brasiliensis dimorphic
life cycle based on analysis of 6,022 groups generated from both
mycelium and yeast phases. This view arises from both a gen-
eral metabolism perspective and the identification of the pre-
cise metabolic points that distinguish both morphological
phases. Overexpressed genes and those that are up- or down-
regulated in both stages were identified. Expression levels
were assessed by cDNA microarrays and some were confirmed
by Northern blot. Drug targets and genes related to virulence
were also detected in several metabolic pathways. Finally, the
majority of genes involved in signal transduction pathways
(cAMP/protein kinase A, Ca2�/calmodulin, and MAPKs) possi-
bly participating in cell differentiation and infection were an-
notated, and now we are able to describe the corresponding
signaling systems in P. brasiliensis.

MATERIALS AND METHODS

Fungus—P. brasiliensis isolate Pb01 (ATCC MYA-826) was grown
at either 22 °C in the mycelium form (14 days) or 36 °C as yeast (7
days) in semisolid Fava Neto’s medium. Following incubation, cells
were collected for immediate RNA extraction with Trizol reagent
(Invitrogen).

Construction of cDNA Libraries and Sequencing—Poly(A)� mRNA
was isolated from total mycelium and yeast RNA through oligo(dT)-
cellulose columns (Stratagene). Unidirectional cDNA libraries were
constructed in �ZAPII following supplier’s instructions (Stratagene).
Phagemids containing fungal cDNA were then mass-excised and repli-
cated in XL-1 Blue MRF� cells. In order to generate ESTs, single pass
5�-end sequencing of cDNAs was performed by standard fluorescence
labeling dye terminator protocols with T7 flanking vector primer. Sam-
ples were loaded onto a MegaBACE 1000 DNA sequencer (Amersham
Biosciences) for automated sequence analysis.

EST Processing Pipeline and Annotation—PHRED quality assess-
ment and computational analysis were carried out as previously de-
scribed (8). EST assembly was performed using the software package
CAP3 (9) plus a homemade scaffolding program. Sequences of at least
100 nucleotides, with PHRED �20, were considered for clustering. A
total of 20,271 ESTs were selected by these exclusion criteria. Contam-
inant and rRNA sequences were then removed to generate a set of
19,718 ESTs, which was submitted to CAP3 clustering, generating
2,655 contigs and leaving 3,367 ESTs as singlets. Contigs plus singlets
comprise the base set of 6,022 P. brasiliensis assembled EST sequences
(PbAESTs) that underwent further analysis. Annotation was carried
out using a system that essentially compared these assemblies with
sequences available in public databases. The BLASTX program (10)
was used for annotation along with GenBankTM nonredundant (nr),
cluster of orthologous groups (COG), and gene ontology (GO) data
bases. The GO data base was also used to assign EC numbers to
assemblies. Additionally, we used the FASTA program (11) to compare
assemblies with Saccharomyces cerevisiae and Schizosaccharomyces
pombe predicted polypeptides. The INTERPROSCAN program (12) was
used to obtain domain and family classification of the assemblies.
Metabolic pathways were analyzed using maps obtained in the KEGG
Web site (13) with annotated EC numbers, and this information was
used to help in assigning function to PbAESTs.

Differential Expression Analysis in Silico by Electronic Subtrac-
tion—To assign a differential expression character, the contigs formed
with mycelium and yeast ESTs were statistically evaluated using a test
previously described (14) with a confidence of 95%.

cDNA Microarrays and Data Analysis—A set of two microarrays
containing a total of 1,152 clones in the form of PCR products was
spotted in duplicate on 2.5 � 7.5-cm Hybond N� nylon membranes
(Amersham Biosciences). Arrays were prepared using a Generation III
Array Spotter (Amersham Biosciences). Complementary DNA inserts of
both P. brasiliensis libraries were amplified in 96-well plates using

vector-PCR amplification with T3 forward and T7 reverse universal
primers. Membranes were first hybridized against the T3 [�-33P]dCTP-
labeled oligonucleotide. The amount of DNA deposited in each spot was
estimated by the quantification of the obtained signals. After stripping,
membranes were used for hybridization against �-33P-labeled cDNA
complex probes. The latter were prepared by reverse transcription of 10
�g of filamentous or yeast P. brasiliensis total RNA using oligo(dT)12–18

primer. One hundred microliters of [�-33P]cDNA complex probe (30–50
million cpm) was hybridized against nylon microarrays. Imaging plates
were scanned by a phosphor imager (Cyclone; Packard Instruments) to
capture the hybridization signals. BZScan software was employed to
quantify the signals with background subtraction. Spots were matched
with a template grid. The ratio between vector and cDNA complex probe
hybridization values for each spot was used as the reference normal-
ization value. Total intensity normalization using the median expres-
sion value was adopted as previously described (15). Gene expression
data analyzed here were obtained from three independent determina-
tions for each phase (filamentous or yeast). We used the significance
analysis of microarrays method (16) to assess the significant variations
in gene expression between both mycelium and yeast. Briefly, this
method is based on t test statistics, specially modified to high through-
put analysis. A global error chance, the false discovery rate, and a gene
error chance (q value) are calculated by the software.

Northern Blot Analysis—Total RNA (15 �g) was separated in a 1.5%
denaturing formaldehyde agarose gel and transferred to a Hybond-N
nylon membrane (GE Healthcare). Probes were radiolabeled with the
random primers DNA labeling system (Invitrogen) using [�-32P]dATP.
Membranes were incubated with the probes in hybridization buffer
(50% formamide, 4� SSPE, 5� Denhardt’s solution, 0,1% SDS, 100
�g/ml herring sperm DNA) at 42 °C overnight and then washed twice
(2� SSC, 1% SDS) at 65 °C for 1 h. Signal bands were visualized using
a Typhoon 9210 phosphor imager (GE Healthcare).

URLs—Details of the results and raw data are available for down-
load from the World Wide Web: Pbgenome project Web site (www.bi-
omol.unb.br/Pb); Gene Ontology Consortium (www.geneontology.org);
Cluster of Ortologous Genes (www.ncbi.nlm.nih.gov/COG); INTER-
PROSCAN (www.ebi.ac.uk/interpro/); National Center for Biotechnology
Information (www.ncbi.nlm.nih.gov/); Kyoto Encyclopedia of Genes and
Genomes (www.genome.ad.jp/kegg); BZScan Software (tagc.univ-mrs.fr);
Audic and Claverie statistical test (telethon.bio.unipd.it/bioinfo/
IDEG6_form/); Significance Analysis of Microarrays method (www-
stat.stanford.edu/�tibs/SAM/); Candida albicans data base (genolist.
pasteur.fr/CandidaDB/); genomes from Aspergillus nidulans and
Neurospora crassa (www.broad.mit.edu/annotation/fungi/aspergillus/).

RESULTS

Transcriptome Features—In sequencing the P. brasiliensis
transcriptome, EST data were generated from nonnormalized
cDNA libraries of mycelium and yeast cells. The size range of the
cDNA inserts ranged from 0.5 to 2.5 kb. Single pass 5� sequenc-
ing was performed on 25,598 cDNA clones, randomly selected
from both libraries. Upon removal of bacterial and rRNA contam-
inant sequences, a total of 19,718 high quality ESTs underwent
CAP3 assembly, yielding 2,655 contigs and 3,367 singlets, which
constitute the so-called 6,022 P. brasiliensis Assembled EST
(PbAEST) data base. Contigs presented an average size of 901 bp,
and the number of ESTs assembled into contigs varied from 2 to
657 in the largest one (PbAEST 1068), which corresponds to M51,
a previously reported P. brasiliensis mycelium-specific transcript
(17). Of the 6,022 PbAESTs, 4,198 (69.4%) showed a probable
homologue in GenBankTM, and 4,130 (68.3%) showed a fungus
homologue (Fig. 1A and Supplemental Table I). We had used
MIPS functional categories to classify 2,931 PbAESTs into 12
major groups. P. brasiliensis showed a slightly higher percentage
of PbAESTs (4%) related to cellular communication and signal
transduction (Fig. 1B) compared with S. cerevisiae functional
categorization (3.4%).

Highly and Differentially Expressed Genes—The 27 highly
transcribed genes found in the P. brasiliensis transcriptome,
using a cut-off of 50 reads, are shown in Supplemental Table II.
Some of them were previously reported (8). Also, up- and down-
regulated genes in mycelium and yeast cells were detected by
statistical comparison of the number of sequences in corre-

2 C. Reinoso, G. Niño-Vega, G. San-Blas, and A. Dominguez (2003) IV
Congreso Virtual de Micologia, personal communication.
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sponding PbAESTs (Table I). In order to support the electronic
subtraction data, cDNAs from each phase were used to probe
cDNA microarrays membranes containing 1,152 clones, which
were selected based on the following criteria: (i) ESTs exclusive
for a particular morphotype; (ii) ESTs corresponding to genes
more expressed in mycelium or yeast cells; and (iii) some ESTs
equally expressed in both cell types. From the 1,152 clones, 328
genes were up-regulated during the dimorphic transition: 58 in
mycelium and 270 in yeast (data not shown).

The cDNA microarray experiment confirmed most of the
electronic subtraction data and also points out to new differen-
tially expressed genes. Among them, a subclass of about 40
up-regulated genes in mycelium and yeast are described in
Table I, which includes M51, M32, hydrophobin 1/2, the highly
expressed yeast PbY20 protein, and some other genes that have
previously been described as differentially expressed in P. bra-
siliensis by different approaches (17–20). Other key up-regu-
lated genes related to the metabolism of P. brasiliensis (Table
I) are described and discussed elsewhere in this work. Inter-
estingly, we have found a yeast phase preferentially expressed
gene that possibly encodes a previously characterized P. brasil-
iensis estradiol-binding protein (21), also described in C. albi-
cans and in other fungi (22). It is speculated that the interaction
of the 17-�-estradiol hormone with a cytoplasmic protein inhibits
the mycelium-to-yeast transition, explaining the lower incidence
of PCM in females.

Metabolic Overview—P. brasiliensis seems to be capable of
producing ATP from the classical pathways of glycolysis, alco-
hol fermentation, and oxidative phosphorylation, since alcohol
dehydrogenase, cytochrome genes, ATP synthase subunits, and
pyrophosphatase genes were annotated. All genes encoding
glycolytic enzymes were identified in both mycelium and yeast.
Genes corresponding to the citrate cycle enzymes and to the
components of complexes I, II, III, and IV were found, reflecting
the ability of the fungus to perform complete aerobic pyruvate
degradation and oxidative phosphorylation. Its putative capac-
ity to also grow in anaerobiosis was evidenced by the alterna-
tive conversion of pyruvate to ethanol. Last, it may be able to
utilize two-carbon sources in the form of acetate and ethanol
through the glyoxylate cycle and obtain sulfite and nitrite from
the environment.

In order to validate the carbon source utilization profile
predicted by the transcriptome data, two P. brasiliensis isolates
(Pb01 and Pb18) were grown in McVeigh-Morton minimum

medium supplemented with different carbon sources and
growth patterns were qualitatively evaluated (Supplemental
Table III). We observed that, in accordance to the transcrip-
tome analysis prediction, several mono- and disaccharides,
such as D-glucose, D-fructose, D-galactose, D-mannose, D-sorbi-
tol, �-trehalose, maltose, and sucrose were indeed utilized. On
the other hand, the predicted assimilation of D-inositol was not
confirmed. Transcripts related to the consumption of L-sorbose
and L-lactose were not detected; in fact, P. brasiliensis was
unable to grown in L-sorbose as the sole carbon source. We
consider that the unpredicted fungal growth in L-lactose can be
explained by the fact that the P. brasiliensis cDNA libraries
were not constructed under induction conditions. The observa-
tion that fructose, galactose, and glycerol were only utilized by
Pb01 and not by Pb18 isolate may simply reflect strain biolog-
ical variability as previously observed (7). A detailed descrip-
tion of P. brasiliensis metabolism, including a list of PbAESTs,
is shown in Supplemental Table IV.

Differential Metabolism between Mycelium and Yeast—The
up-regulated genes encoding enzymes in mycelium and yeast
cells listed in Table I are highlighted in Fig. 2. The differential
expression pattern of these genes (with the exception of glucoki-
nase from mycelium cells) was confirmed by Northern blot anal-
ysis (Fig. 3). In general, the gene overexpression pattern suggests
that mycelium saprophytic cells possess an aerobic metabolism,
in contrast with yeast cells. Actually, mycelium up-regulated
genes correspond to the main regulatory points of the citrate
cycle, such as the genes coding for isocitrate dehydrogenase and
succinyl-CoA synthetase; this strongly suggests a metabolic
shunt to oxidative phosphorylation. Also, glucokinase is induced,
producing glucose 6-phosphate, which is possibly converted
through the oxidative pentose phosphate pathway to ribose
5-phosphate, and then to salvage pathways of purine and pyrim-
idine biosynthesis. In fact, this correlates well with the overex-
pression of adenylate kinase and uridine kinase genes. The ex-
cess of ribose 5-phosphate is probably converted to fructose
6-phosphate and glyceraldehyde 3-phosphate by the nonoxida-
tive pentose phosphate pathway catalyzed by the overexpressed
transaldolase. Those sugars are converted to pyruvate and
acetyl-CoA for the citrate cycle in aerobic conditions.

In contrast, P. brasiliensis yeast cells overexpress the genes
encoding alcohol dehydrogenase I and pyruvate dehydrogenase
E1 subunit (Table I and Fig. 3); the latter can be detected in
high levels in cultures of S. cerevisiae grown both anaerobically

FIG. 1. P. brasiliensis transcriptome characterization. A, distribution of blast best hit among organisms. Each PbAEST was tested against
the GenBankTM nr data base, and the best hit organism was computed. A PbAEST was considered as not assigned when the best hit exceed an
E value of 10�10. B, functional categorization of the PbAESTs using MIPS classification. We included 2931 curator-reviewed annotations in this
analysis.
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and aerobically in the presence of ethanol (23). The carbohy-
drate metabolism is probably shifted toward ethanol produc-
tion, reflecting the anaerobic behavior of the yeast form as
previously reported (24). Several pathways that provide sub-

strates for the glyoxylate cycle are up-regulated in the yeast
cells (Table I and Fig. 3). First, isocitrate lyase redirects the
metabolic flow using ethanol and acetate as two-carbon sources
and generating oxaloacetate, which can be reconverted to glu-

TABLE I
Differentially expressed genes in mycelium and yeast cells detected by electronic subtraction and cDNA microarray analysis

The PbAESTs were analyzed as to their differential expression by two methods: a statistical analysis of the number of mycelium and yeast ESTs
clustered in each PbAEST (14) and a cDNA microarray analysis of 1,152 PbAESTs, chosen according to the electronic subtraction criteria. A
differential pattern of genes encoding enzymes was used in the analysis of the differential metabolism.

PbAEST EC number Annotated function
Number of

readsa
p valueb -Fold changec Accession number/Best hit organism/

E value
M Y

Mycelium up-regulated genes
1068 M51d,e 653 4 0.000000 41666.0 BE758605/P. brasiliensis /0.0
2274 4.4.1.5 Lactoylglutathione lyasee 75 0 0.000000 7.0 NP_105614.1/Mesorhizobium loti/

1e-11
2521 Hydrophobin 1d,f 56 0 0.000000 AAM88289.1/P. brasiliensis/2e-51
1789 HSP90 co-chaperonef 19 10 0.018169 CAD21185.1/N. crassa/4e-48
2509 1.15.1.1 Copper-zinc superoxide dismutasef 14 5 0.010801 Q9Y8D9/A. fumigatus/1e-68
2458 Unknownf 13 6 0.025336
2478 Hydrophobin 2d,f 9 0 0.000951 AAR11449.1/P. brasiliensis/2e-70
1287 1.13.11.32 2-nitropropane dioxygenasef 8 1 0.008606 CAB91335.2/N. crassa/e-133
1318 Amino acid permeasee 8 0 0.001907 50.4 CAD21063.1/N. crassa/0.0
1470 Unknowne 8 2 0.021572 20.1
2269 2.7.4.3 Adenylate kinasef 5 1 0.046263 NP_011097.1/S. cerevisiae/1e-42
2364 Unknowne 5 1 0.046263 3.6
379 Unknowne 5 1 0.046263 4.9
1092 4.2.1.22 Cystathionine �-synthasef 4 0 0.030842 AAL09565.1/Pichia pastoris/4e-96
2356 2.2.1.2 Transaldolasef 4 0 0.030842 NP_013458.1/S. cerevisiae/e-108
2476 3.1.2.22 Palmitoyl-protein thioesterasef 4 0 0.030842 I58097/H. sapiens/8e-42
4135 1.1.1.41 Isocitrate dehydrogenaseg 1 0 0.248690 3.1 O13302/Acetobacter capsulatum/6e-

31
5530 6.2.1.5 �-Succinyl CoA synthetaseg 1 0 0.248690 2.7 T49777/N. crassa/9e-73
4749 2.7.1.2 Glucokinaseg 1 0 0.248690 1.7 Q92407/Aspergillus niger/2e-50
4246 2.7.1.48 Uridine-kinaseg 1 0 0.248690 2.7 T41020/S. pombe/3e-28

Yeast up-regulated genes
2536 Y20 proteine,d 27 88 0.000000 8.7 AAL50803.1/P. brasiliensis/e-106
2431 1.1.1.1 Alcohol dehydrogenase If 2 45 0.000000 P41747/Aspergillus flavus/e-129
737 3.5.1.41 Xylanase/chitin deacetylasee 8 33 0.000023 2.8 NP_223015.1/Helicobacter pylori/

e-113
201 Putative membrane protein Nce2e 0 27 0.000000 25.2 NP_015475.1/S. cerevisiae/5e-08
797 3.1.6.6 Choline sulfatasee 3 15 0.001602 4.8 NP_248721.1/P. aeruginosa/e-104
814 Glyoxylate pathway regulatore 0 15 0.000016 17.7 NP_009936.1/S. cerevisiae/4e-37
1704 60S ribosomal protein L19f 0 14 0.000032 NP_596715.1/S. pombe/6e-49
1585 1.8.4.8 PAPS reductasee 1 12 0.000815 5.1 AAG24520.1/Penicillium

chrysogenum/e-121
63 Putative methyltransferasee 3 11 0.011314 2.5 CAD21381.1/N. crassa/2e-46
778 Putative estradiol-binding proteine 3 11 0.011314 29.5 NP_012049.1/S. cerevisiae/1e-31
136 Unknownd,f 4 10 0.030950 3.9
767 Unknowne 3 10 0.017732 2.2
701 1.2.4.1 Pyruvate dehydrogenasef 1 9 0.004973 Q10489/ S. pombe/1e-72
1724 Putative sterol transportere 0 6 0.007915 29.3 NP_013748.1/S. cerevisiae/4e-12
171 2.6.1.42 Branched-chain aminotransferasef 0 5 0.015790 NP_012078.1/S. cerevisiae/7e-87
1983 1.6.5.3 NADH dehydrogenase (ubiquinone

reductase)f
0 4 0.031496 S47150/N. crassa/1e-19

244 1.1.1.69 Gluconate dehydrogenasef 0 4 0.031496 NP_471610.1/Listeria innocua/
1e-09

258 3.3.2.1 Isochorismatasef 0 4 0.031496 NP_436193.1/Sinorhizobium
meliloti/1e-20

279 2.5.1.15 Dihydropteroate synthasef 0 4 0.031496 T49535/N. crassa/1e-38
314 2.6.1.1 Aspartate aminotransferasef 0 4 0.031496 NP_509047.1/Caenorhabditis

elegans/4e-96
555 6.2.1.3 Acyl-CoA synthetasef 0 4 0.031496 NP_275799.1/Methanothermobacter

thermautotrophicus/9e-89
756 6.3.5.7 Glutamyl-tRNA amidotransferasef 0 4 0.031496 Q33446/A. nidulans/1e-15
865 4.1.3.1 Isocitrate lyasef 0 4 0.031496 AAK72548.2/Coccidioides

immitis/e-119
963 2.6.1.9 Histidinol-phosphate aminotransferasef 0 4 0.031496 P36605/S. pombe/4e-87
980 3.5.1.4 Acetamidasef 0 4 0.031496 AAK31195.1/Aspergillus terreus/2e-

09
3073 1.14.13.3 Phenylacetate hydroxylaseg 0 1 0.249998 2.3 AAF21760.1/P. chrysogenum/2e-48
a Number of mycelium (M)- and yeast (Y)-derived ESTs in the PbAEST.
b p value for the Audic and Claverie test.
c -Fold change found for the microarray experiments.
d Previously shown to be differential by Northern blot or proteome analysis.
e Electronic subtraction and cDNA microarray analysis; differential pattern in both analyses.
f Electronic subtraction differential pattern and not assayed in cDNA microarray analysis.
g Singlets that are differential in cDNA microarray analysis.
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cose. In addition, the branched-chain aminotransferase gene is
also overexpressed (as are other aminotransferase genes, such
as those of aspartate and histidinol-P) and converts valine,
leucine, and isoleucine to acetyl-CoA, which is then fed to the
cycle. The yeast differential acetamidase also contributes to
this pathway by deriving acetate from acetamide. Further-
more, the up-regulated acyl-CoA synthetase generates acetyl-
CoA in the first step of �-oxidation, which may also be taken up
by the cycle. Finally, the generation of sulfite by phospho-
adenylyl sulfate reductase provides acetate for the glyoxylate
cycle as mentioned above. The overall analysis suggests that
ATP production through alcohol fermentation and the respira-
tory chain occurs in a biased pattern, the former being prefer-
ential in the yeast form and the latter in mycelium.

Yeast cells are rich in chitin; the high expression of chitin
deacetylase reveals its possible involvement in cell wall loos-
ening, reorganization, and synthesis of newly components dur-
ing cell growth and budding of yeast cells. This enzyme is not

present in humans and thus represents a possible drug target.
In mycelium, overexpression of cystathionine �-synthase and
nitroalkane oxidase strongly suggests that mycelium cells take
up sulfite and nitrogen, respectively, from the environment for
metabolic processing. Finally, the probable role of the remain-
ing overexpressed gene encoding palmitoylthioesterase re-
mains unclear. In contrast, the enzymes isochorismatase and
ubiquinone-reductase are greatly up-regulated in the yeast
form, strongly suggesting a high production of ubiquinone by
P. brasiliensis, which could be involved in cellular oxidative
stress under anaerobic conditions. The high yeast expression of
dihydropteroate synthase produces, as a consequence, high
levels of tetrahydrofolate, which probably will increase the
metabolic flow toward purine biosynthesis. The meaning of the
high expression in yeast of choline sulfatase, gluconate dehy-
drogenase, glutamyl-tRNA amidotransferase, and phenylac-
etate hydroxylase also remains unclear.

Cell Cycle and Genetic Information—The main genes in-

FIG. 2. Comparison of the expression pattern of genes encoding for enzymes in mycelium-to-yeast cell differentiation of
P. brasiliensis. For the detailed metabolic comparison between mycelium and yeast metabolism, see Supplemental Table IV, since we have
presented in this figure only the central pathways for carbohydrate metabolism and citrate cycle. Genes that are overexpressed are boxed, either
in mycelium or yeast cells, according to the criteria described in Table I.

FIG. 3. Northern blot analysis of mycelium and yeast up-regulated genes of P. brasiliensis. Total RNA samples from both mycelium (M)
and yeast (Y) were blotted onto nylon membranes and hybridized against gene-specific radiolabeled probes. ICDH, isocitrate dehydrogenase; SCS,
�-succinyl-CoA-synthetase, TAL, transaldolase; ADK, adenylate kinase; UDK, uridylate kinase; ICL, isocitrate lyase; acyl-CS, acyl-CoA synthe-
tase; PDH, pyruvate dehydrogenase; ADH, alcohol dehydrogenase; PAPsR, phosphoadenylyl sulfate reductase; ACA, acetamidase; AMT, amino-
transferase. The constitutive 60 S ribosomal protein L34 was used as a loading control.
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volved in cell cycle and in the basic genetic information flow
machinery (DNA replication, repair, recombination, transcrip-
tion, RNA processing, translation, and post-translational mod-
ifications) are well conserved in comparison with their coun-
terparts from S. cerevisiae. Also, sequences related to
mitochondrial replication, budding, sporulation, and mating
were also annotated (Supplemental Table V).

From the cell cycle-related orthologues identified in P. bra-
siliensis, those related to the structure and assembly of the
cytoskeleton, chromatin structure, chromosome segregation,
cyclins, and cell cycle control genes were highlighted. Genes
related to the major DNA repair mechanisms found in yeast
(mismatch, base excision, and recombination systems) were
identified in P. brasiliensis, although not every component was
represented, since cells were not subjected to DNA-damaging
conditions. The RAD52 gene, which plays an essential role in
S. cerevisiae recombination, is also present in the P. brasilien-
sis transcriptome.

Among the identified transcription factors, the orthologues
for MAT, MCM1, and NsdD are of relevance, since they are
implicated in ascomycete sexual reproduction. These genes rep-
resent a strong evidence for mating in P. brasiliensis, so far not
yet described, which is reinforced by the detection of six tran-
scripts involved in meiotic recombination.

Stress Responses—Cell differentiation in P. brasiliensis re-
quires a temperature shift, which might be associated with a
stress response. We have found 48 sequences encoding molec-
ular chaperones and their associated co-chaperones in P. bra-
siliensis transcriptome (Supplemental Table VI). These se-
quences were divided into nine groups: small chaperones (four
genes), HSP40 (9), HSP60 (10), HSP70 (7), HSP90 (4), HSP100
(4), 14-3-3 (2), calnexin (1), and immunophilins (7). Eight of
these are differentially expressed: calnexin, cct7 (cytoplasmic
hsp60) and sba1 (HSP90/70 co-chaperone) for the mycelium
form and cpr1 (HSP90/70 co-chaperone), hsp42, hsp60, ssc1
(HSP70), and hsp90 for the yeast form. From these, hsp60 and
hsp70 had been previously characterized as differentially ex-
pressed in yeast (25, 26). cDNA microarray analysis confirmed
the differential expression pattern of sba1. Furthermore, the
number of chaperone and co-chaperone ESTs is 38% larger in
the yeast cDNA library than in the mycelium library. These
data represent an evidence of an altogether higher expression
of HSPs in yeast cells, compatible with growth at 37 °C.

Oxidative agents may cause stress and damage to P. brasil-
iensis cells. They may originate from the activity of host macro-
phages or from intracellular oxidative species. P. brasiliensis
contains several genes encoding enzymes with known or puta-
tive antioxidant properties, such as superoxide dismutases,
catalases (two isoenzymes), peroxiredoxins, and a novel cyto-
chrome c peroxidase (Supplemental Table VII). Homologues to
genes encoding secondary antioxidant enzymes belonging to
the glutathione S-transferase family were also found. Several
transcription factors may be involved in the induction of anti-
oxidant defenses in P. brasiliensis. Homologues to YAP1,
HAP3, and SKN7 from S. cerevisiae (27) were discovered in the
transcriptome, showing that the oxidative stress regulators
from P. brasiliensis and baker’s yeast might be conserved.

Signal Transduction Pathways—Transcriptome analysis
and reverse annotation revealed several putative components
of the biosignaling pathways in P. brasiliensis (Supplemental
Table VIII), such as (i) MAPK signaling for cell integrity, cell
wall construction, pheromone/mating, and osmotic regulation;
(ii) cAMP/protein kinase A, regulating fungal development and
virulence, and (iii) calcium-calmodulin-calcineurin, controlling
growth at high temperature. Furthermore, a ras homologue
sequence was detected raising the possibility of cross-talk

among the distinct signal transduction pathways (Fig. 4).
In budding yeast, the MAPK cascade responsible for cell

integrity mediates cell cycle regulation and cell wall synthesis,
responding to different signals including temperature, changes
in external osmolarity, and mating pheromone. Components of
this pathway identified in P. brasiliensis encompass the most
classical steps, with the exception of a cell surface tyrosine
kinase-like receptor that was not found in the transcriptome so
far analyzed. Rho1p is a small GTP-binding protein of the Rho
subfamily required for cell growth and coordinated regulation
of cell wall construction (28) through the synthesis of �-1,3-
glucan. It also activates Pkc1p, which in turn regulates the
MAPK pathway.

Transcripts related to the pathway for activation by mating
pheromone were identified in the P. brasiliensis transcriptome.
The intermediary components appear to be constitutively ex-
pressed in both mycelium and yeast forms. Intriguingly, mat-
ing has not yet been described in P. brasiliensis. Conversely,
the Hog1 MAPK cascade is activated when there is an increase
in the environment osmolarity. One of its targets, Glo1p, which
controls genes required for cell adaptation and survival upon
osmotic stress in S. cerevisiae (29), was also detected in
P. brasiliensis.

The cAMP/protein kinase A is a cascade known to regulate
fungal differentiation and virulence. From the genes identified
in P. brasiliensis, we highlight a homologue to several fungal
adenylate cyclases; the low affinity cAMP phosphodiesterase,
encoded by the gene Pde1; homologues to both the regulatory
and the catalytic subunits of protein kinase A, which is in-
volved in the regulation of the cell surface flocculin Flo11p/
Muc1p (30). In P. brasiliensis exogenous cAMP is known to
inhibit the process of filamentation (31). Both the catalytic
(CnaA) and the Ca�2-binding regulatory B (CnaB) subunits of
calcineurin were found in P. brasiliensis. In dimorphic fungi,
cAMP- and calcineurin-dependent pathways seem to be in-
volved in differentiation. As in the pathogenic fungus Crypto-
coccus neoformans (32), calcineurin might also play a role in
mating of P. brasiliensis. In several pathogenic and nonpatho-
genic fungi, RAS is involved in filamentation, pseudohyphal/
hyphal growth, and mating (33). A RAS-related transcript was
identified in P. brasiliensis, but further studies are required to
elucidate its function in mycelium-to-yeast transition and in
the mechanism of pathogenicity.

Virulence Genes, Drug Targets and Resistance—In order to
identify genes that could be related to P. brasiliensis virulence,
its transcriptome has been searched for orthologues assigned
as virulence factors in human pathogenic fungi, as defined by
Falkow’s postulate (34). Table II lists 28 P. brasiliensis se-
quences, which were previously experimentally established as
virulence or essential genes in C. albicans, C. neoformans, and
Aspergillus fumigatus. They were subdivided into four classes:
metabolism-, cell wall-, and signal transduction-related and
others. Some of these genes has been considered for antifungal
therapy and are also listed in Table III as potential drug
targets.

MAPK-related sequences, whose orthologues in C. albicans
were experimentally correlated to hyphal formation and viru-
lence, were also detected. The extrapolation to the P. brasilien-
sis model is not direct, since yeast, not hyphae, is the patho-
genic cell type, but several MAPK homologues are found in
species exhibiting diverse morphology and infection habits (35).
A cavps34 orthologue, identified in P. brasiliensis transcrip-
tome (vps34), is implicated in the protein/lipid transport from
the Golgi apparatus/endosome to the vacuole and has been
proved to be important to C. albicans virulence (36).

Noteworthy is the finding of glyoxylate cycle genes in
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P. brasiliensis, since its activity has been reported as a fungal
virulence requirement (37). The activity of the key enzymes
malate synthase and isocitrate lyase was reported to be up-
regulated in C. albicans upon phagocytosis (38). Both enzymes
were detected in the P. brasiliensis transcriptome, with isoci-
trate lyase being overexpressed in the yeast phase, as con-
firmed by Northern blot analysis (Fig. 3).

The cell wall, as the most obvious difference between human
and fungal cells, represents a prime target for antifungals.
Genes involved in its biogenesis and assembly can act as viru-
lence factors and therefore are putative drug targets. We have
identified orthologues to chitin synthase 3 (chs3), glucosamine-
6-phosphate acetyltransferase (gna1), mannosyltransferase
(pmt1), and �1,2-mannosyltransferase (mnt1) genes and glyco-
sidases Phr1p and Phr2p. The expression of the two last genes
in C. albicans is responsive to the product of prr2 (39), a
pH-related transcription factor also present in the P. brasilien-
sis transcriptome. The detection of chitin deacetylase, as an
overexpressed yeast gene confirmed by cDNA microarray and
Northern blot (data not shown), points out to a novel target for
drug research in P. brasiliensis.

Microbe resistance to reactive oxygen and nitrogen interme-
diates plays an important role in virulence (40). We were able
to identify sequences that are oxidative stress response ortho-
logues, including an alternative oxidase (aox1), a copper/zinc
superoxide dismutase (sod1), and two different catalase ortho-
logues, one of them a peroxisomal cat1, as recently described
(41).

The urate oxidase gene detected in the P. brasiliensis tran-
scriptome, but not in S. cerevisiae, C. albicans, and Homo
sapiens genomes, suggests that uric acid could be degraded to
allantoin. In addition, the presence of a C. neoformans urease

orthologue also probably reflects the degradation of urea to
ammonia and carbamate. A role in virulence and sporulation
has been assigned for both genes (42). The production of urea
has been involved in an improved in vitro survival for those
microorganisms exposed to an acidic environment. In this view,
it could be related to the survival of the fungus in the host cells.

The development of new drugs is crucial, considering the
problem of emerging drug resistance and toxicity (37). Novel
drug targets have been found through the analysis of genome
sequences. The genes listed in Table III have no homologues in
the human genome and therefore could be considered for the
development of new antifungal drugs. Most therapies designed
to treat fungal infections target the ergosterol biosynthetic
pathway (43). The orthologue of C-24 sterol methyltransferase
(ERG6) is present in P. brasiliensis. In addition, modulation of
sphingolipid metabolism exerts a deep impact on cell viability.
The synthesis of inositol-phosphoryl-ceramide from phytocer-
amide catalyzed by the product of the aur1 gene, present in
P. brasiliensis, corresponds to the first specific step of this
pathway (44). Translation elongation factors have also been
pointed out as drug targets (37). In the P. brasiliensis tran-
scriptome, we have found an elongation factor-3 sequence that
is absent in human genome (45) and thus can be addressed for
pharmaceutical purposes.

Twenty PbAESTs annotated as related to multiple drug re-
sistance genes were identified (Supplemental Table IX). They
include 12 S. cerevisiae orthologues, 10 of which are related to
the ABC transporter and two to major facilitator superfamilies
(46). One of them corresponds to Pfr1, a gene recently described
in P. brasiliensis (47), and another is related to the CDR1 gene
from C. albicans, which is up-regulated in the presence of
human steroid hormones (48). It has been speculated that

FIG. 4. Signaling pathways in P. brasiliensis. Shown are cAMP/protein kinase A regulating fungal development and virulence; MAPK
signaling for cell integrity, cell wall construction, pheromone/mating, and osmoregulation; calcium-calmodulin-calcineurin controlling cell survival
under stress conditions; and Ras allowing cross-talk of extracellular signals. For abbreviations of gene names see Supplemental Table VIII.
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steroid hormones are involved in morphological changes as well
as in pathogenicity in P. brasiliensis and also in drug resistance
in C. albicans. Interestingly, the process of infection of
P. brasiliensis is strongly biased toward males, albeit the role
of steroid hormones in the expression of ABC transporters in
this organism remains to be investigated.

DISCUSSION

The P. brasiliensis transcriptome described here is repre-
sented by 6,022 EST clusters that may cover about 80% of the

fungal total genome, whose gene number has been estimated to
be �8,000 genes.3 This number greatly exceeds the previous
EST studies in this fungus (8, 49). The analysis compares the
two fungal cell types as well as their metabolic behavior. The
results obtained probably reflect the adaptations associated
with the mycelium (soil) and yeast (human host) environments.
Most importantly, they provide new insights with respect to

3 G. San-Blas, personal communication.

TABLE II
Putative virulence or essential genes found in P. brasiliensis transcriptome related to the experimentally confirmed orthologues

of C. albicans, C. neoformans, and/or A. fumigatus

PBAEST Orthologue
name AC number/Organism E valuea Remarks

Metabolic genes
2403 ura3b DCCKA (C. albicans) 3e-41

O13410 (A. fumigatus) 2e-83
0670 nmtb AAA34351 (C. albicans) 8e-60 Lipid synthesis

AAA17547 (C. neoformans) 1e-60
3750 fas2b JC4086 (C. albicans) 7e-33
1224 hem3 094048 (C. albicans) 1e-58 Hemosynthesis
3819 tps1b CAA69223 (C. albicans) 1e-36 Glucose metabolism
1693 icl1 AAF34690 (C. albicans) 1e-112 Glyoxylate cycle
0831 mls1 AAF34695 (C. albicans) 1e-122 Glyoxylate cycle
1735 pabaAb AAD31929 (A. fumigatus) 1e-12 Purine synthesis

Cell wall genes
4346 chs3 P30573 (C. albicans) 7e-22 Potential drug targets
4968 gna1b BAA36496 (C. albicans) 4e-16
1067 mnt1 CAA67930 (C. albicans) 9e-49
2980 pmt1 AAC31119 (C. albicans) 4e-46
2382 phr1 AAF73430 (C. albicans) 2e-40*
1375 phr2 AAB80716 (C. albicans) 1e-114

Signal transduction
4452 cek1 A47211 (C. albicans) 3e-30 Hyphal formation
1110 cpp1 P43078 (C. albicans) 6e-16
267 cst20 AAB38875 (C. albicans) 6e-48
358 hog1b Q92207 (C. albicans) 2e-59 Osmoregulation
988 nik1b AAC72284 (C. albicans) 7e-37 Hyphal development

Other fungal virulence
determinant genes

623 cat1b CAA07164 (C. albicans) 1e-172 Peroxisomal catalase
3553 mdr1b CAA76194 (C. albicans) 2e-27
3306 plb1b AAF08980 (C. albicans) 2e-38 Important in host cell penetration
4267 top1b Q00313 (C. albicans) 4e-56
5012 vps34b CAA70254 (C. albicans) 2e-29 Vesicle trafficking
2516 sod1b AAK01665 (C. neoformans) 4e-51 Nitric oxide detoxification
2463 ure1b AAC62257 (C. neoformans) 6e-76
1102 aox1b AAM22475 (C. neoformans) 2e-48 Resistance to oxidative stress

a All P. brasiliensis assembled ESTs are BBH with C. albicans ortologues, except phr1 (marked with an asterisk).
b Putatively novel P. brasiliensis virulence genes.

TABLE III
Potential drug targets genes found in P. brasiliensis transcriptome with no homologues in the human genome

PbAEST Annotated function Orthologue accession
numbers E-value Remarks

Cell wall
5198 �-1,3-glucan synthase AAD37783 2e-108 Preferentially expressed in mycelium
4988 �-1,3-glucan synthase AAL18964 2e-70 Preferentially expressed in yeast
0265 Rho AAK08118 2e-92 Signal transduction
1147 Chitin synthase I AAF82801 2e-81
1927 Chitin synthase II Q92444 3e-66
4346 Chitin synthase IV AF107624 2e-65
3958 Chitin synthase asmA JC5546 1e-64
0737 Xylanase/Chitin deacetylase ZP_00126582 1e-12 Up-regulated in P. brasiliensis yeast cells
5473 Bud neck involved NP_014166 1e-12 Required to link CHS3p and CHS4p to the septins
1063 �-1,2-Mannosyltransferase NP_009764 1e-20 Involved in protein glycosylation

Glyoxylate cycle
2402 Malate synthase P28344 1e-37
1688 Isocitrate lyase AAK72548.2 1e-144 Up-regulated in P.brasiliensis yeast cells

Other targets
1959 �(24)-Sterol C-methyltransferase T50969 4e-44 Ergosterol biosynthesis
0200 Aureobasidin resistance protein AAD22750 1e-43 Sphingolipid synthesis
0845 Elongation factor 3 BAA33893 1e-142 Unique and essentially required for fungal

translational machinery
4129 Urate oxidase P33282 6e-77 Sporulation and pathogenesis
2456 Urease AAC49868 3e-94 Sporulation and pathogenesis
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signal transduction pathways, virulence genes, and drug tar-
gets for this pathogen.

The transcription profile of the mycelium infective phase
suggests the shunting of pyruvate into aerobic metabolism,
since the expression of the ESTs encoding enzymes of the
trichloroacetic acid cycle are up-regulated in this fungal phase.
In contrast, the yeast transcription profile evidenced the devi-
ation of pyruvate from the glycolytic pathway into anaerobic
metabolism; this observation is consistent with a lower oxygen
level in infected tissues. Its putative ability to produce ethanol
suggests a potential anaerobic pathway for P. brasiliensis,
which is dependent on the metabolic state of the cell. It seems
that the main regulatory effector on the shunting of the end
product of glycolysis into aerobic or anaerobic metabolism is
temperature; therefore, it can be hypothesized that this phys-
ical factor is the central trigger of all of these molecular events,
since it was the only parameter changed in the in vitro culti-
vation of yeast and mycelium of P. brasiliensis. Experiments
are currently being carried out in order to confirm the in vivo
expression profile of the differentially expressed genes in
macrophages and human pulmonary epithelial cells infected by
P. brasiliensis.

Since P. brasiliensis is a medical problem in Latin America,
the prediction of new drug targets from sequence information is
of great importance. Chitin deacetylase, which is absent in
humans and highly expressed in the parasitic yeast, could be a
specific drug target for PCM therapy if it is shown to play a key
role in the fungal metabolism during human infection. Func-
tional analysis of the P. brasiliensis genes described in this
work will lead to important information on cellular differenti-
ation, pathogenicity, and/or virulence. These issues can only be
addressed when molecular tools are developed for this orga-
nism. In conclusion, the knowledge of the transcribed se-
quences of P. brasiliensis will most likely facilitate the devel-
opment of new therapeutics to PCM and other medically
relevant mycosis.

Acknowledgments—We are grateful to Hugo Costa Paes and
Robert Miller for English text revision.

REFERENCES

1. Franco, M. (1987) J. Med. Vet. Mycol. 25, 5–18
2. Restrepo, A., McEwen, J. G. & Castaneda, E. (2001) Med. Mycol. 39, 233–241
3. de Almeida, S. M., Queiroz-Telles, F., Teive, H. A., Ribeiro, C. E. & Werneck,

L. C. (2004) J. Infect. 48, 193–198
4. San-Blas, G., Nino-Vega, G. & Iturriaga, T. (2002) Med. Mycol. 40, 225–242
5. San-Blas, G. & Nino-Vega, G. (2001) in Fungal Pathogenesis: Principles and

Clinical Applications, pp. 205–226, Marcel Dekker, New York
6. Salazar, M. E., Restrepo, A. & Stevens, D. A. (1988) Infect. Immun. 56,

711–713
7. Cano, M. I., Cisalpino, P. S., Galindo, I., Ramirez, J. L., Mortara, R. A. & da

Silveira, J. F. (1998) J. Clin. Microbiol. 36, 742–747
8. Felipe, M. S., Andrade, R. V., Petrofeza, S. S., Maranhão, A. Q., Torres, F. A.,

Albuquerque, P., Arraes, F. B., Arruda, M., Azevedo, M. O., Baptista, A. J.,
Bataus, L. A., Borges, C. L., Campos, E. G., Cruz, M. R., Daher, B. S.,
Dantas, A., Ferreira, M. A., Ghil, G. V., Jesuino, R. S., Kyaw, C. M., Leitao,
L., Martins, C. R., Moraes, L. M., Neves, E. O., Nicola, A. M. Alves, E. S.,
Parente, J. A., Pereira, M., Pocas-Fonseca, M. J., Resende, R., Ribeiro,
B. M., Saldanha, R. R., Santos, S. C., Silva-Pereira, I., Silva, M. A., Silveira,
E., Simoes, I. C., Soares, R. B., Souza, D. P., De-Souza, M. T., Andrade, E.
V., Xavier, M. A., Veiga, H. P., Venancio, E. J., Carvalho, M. J., Oliveira, A.

G., Inoue, M. K., Almeida, N. F., Walter, M. E., Soares, C. M. & Brigido,
M. M. (2003) Yeast 20, 263–271

9. Huang, X. & Madan, A. (1999) Genome Res. 9, 868–877
10. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W.

& Lipman, D. J. (1997) Nucleic Acids Res. 25, 3389–3402
11. Pearson, W. R. & Lipman, D. J. (1988) Proc. Natl. Acad. Sci. U. S. A. 85,

2444–2448
12. Apweiler, R., Biswas, M., Fleischmann, W., Kanapin, A., Karavidopoulou, Y.,

Kersey, P., Kriventseva, E. V., Mittard, V., Mulder, N., Phan, I. & Zdobnov,
E. (2001) Nucleic Acids Res. 29, 44–48

13. Kanehisa, M. & Goto, S. (2000) Nucleic Acids Res. 28, 27–30
14. Audic, S. & Claverie, J. M. (1997) Genome Res. 7, 986–995
15. Quackenbush, J. (2002) Nat. Genet. 32, (suppl.) 496–501
16. Tusher, V. G., Tibshirani, R. & Chu, G. (2001) Proc. Natl. Acad. Sci. U. S. A.

98, 5116–5121
17. Venancio, E. J., Kyaw, C. M., Mello, C. V., Silva, S. P., Soares, C. M., Felipe,

M. S. & Silva-Pereira, I. (2002) Med. Mycol. 40, 45–51
18. Albuquerque, P., Kyaw, C. M., Saldanha, R. R., Brigido, M. M., Felipe, M. S. &

Silva-Pereira, I. (2004) Fungal Genet. Biol. 41, 510–520
19. Cunha, A. F., Sousa, M. V., Silva, S. P., Jesuino, R. S., Soares, C. M. & Felipe,

M. S. (1999) Med. Mycol. 37, 115–121
20. Marques, E. R., Ferreira, M. E., Drummond, R. D., Felix, J. M., Menossi, M.,

Savoldi, M., Travassos, L. R., Puccia, R., Batista, W. L., Carvalho, K. C.,
Goldman, M. H. & Goldman, G. H. (2004) Mol. Genet. Genomics 271,
667–677

21. Loose, D. S., Stover, E. P., Restrepo, A., Stevens, D. A. & Feldman, D. (1983)
Proc. Natl. Acad. Sci. U. S. A. 80, 7659–7663

22. Madani, N. D., Malloy, P. J., Rodriguez-Pombo, P., Krishnan, A. V. & Feldman,
D. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 922–926

23. Pronk, J. T., Yde Steensma, H. & Van Dijken, J. P. (1996) Yeast 12, 1607–1633
24. Restrepo, A., de Bedout, C., Cano, L. E., Arango, M. D. & Bedoya, V. (1981)

Sabouraudia 19, 295–300
25. Izacc, S. M., Gomez, F. J., Jesuino, R. S., Fonseca, C. A., Felipe, M. S., Deepe,

G. S. & Soares, C. M. (2001) Med. Mycol. 39, 445–455
26. da Silva, S. P., Borges-Walmsley, M. I., Pereira, I. S., Soares, C. M., Walmsley,

A. R. & Felipe, M. S. (1999) Mol. Microbiol. 31, 1039–1050
27. Moradas-Ferreira, P. & Costa, V. (2000) Redox. Rep. 5, 277–285
28. Lengeler, K. B., Davidson, R. C., D’Souza, C., Harashima, T., Shen, W. C.,

Wang, P., Pan, X., Waugh, M. & Heitman, J. (2000) Microbiol. Mol. Biol.
Rev. 64, 746–785

29. Hohmann, S. (2002) Int. Rev. Cytol. 215, 149–187
30. Sonneborn, A., Bockmuhl, D. P., Gerads, M., Kurpanek, K., Sanglard, D. &

Ernst, J. F. (2000) Mol. Microbiol. 35, 386–396
31. Paris, S. & Duran, S. (1985) Mycopathologia 92, 115–120
32. Kraus, P. R. & Heitman, J. (2003) Biochem. Biophys. Res. Commun. 311,

1151–1157
33. Mosch, H. U., Kubler, E., Krappmann, S., Fink, G. R. & Braus, G. H. (1999)

Mol. Biol. Cell 10, 1325–1335
34. Falkow, S. (2004) Nat. Rev. Microbiol. 2, 67–72
35. Xu, J. R. (2000) Fungal Genet. Biol. 31, 137–152
36. Bruckmann, A., Kunkel, W., Hartl, A., Wetzker, R. & Eck, R. (2000) Microbi-

ology 146, 2755–2764
37. Wills, E. A., Redinbo, M. R., Perfect, J. R. & Del Poeta, M. (2000) Emerg.

Therap. Targets 4, 1–32
38. Lorenz, M. C. & Fink, G. R. (2001) Nature 412, 83–86
39. Muhlschlegel, F. A. & Fonzi, W. A. (1997) Mol. Cell. Biol. 17, 5960–5967
40. Nathan, C. & Shiloh, M. U. (2000) Proc. Natl. Acad. Sci. U. S. A. 97,

8841–8848
41. Moreira, S. F., Bailao, A. M., Barbosa, M. S., Jesuino, R. S., Felipe, M. S.,

Pereira, M. & de Almeida Soares, C. M. (2004) Yeast 21, 173–182
42. Cox, G. M., Mukherjee, J., Cole, G. T., Casadevall, A. & Perfect, J. R. (2000)

Infect. Immun. 68, 443–448
43. Onyewu, C., Blankenship, J. R., Del Poeta, M. & Heitman, J. (2003) Agents

Chemother. 47, 956–964
44. Dickson, R. C. & Lester, R. L. (1999) Biochim. Biophys. Acta 1426, 347–357
45. Kovalchuke, O. & Chakraburtty, K. (1994) Eur. J. Biochem. 226, 133–140
46. Perea, S. & Patterson, T. F. (2002) Clin. Infect. Dis. 35, 1073–1080
47. Gray, C. H., Borges-Walmsley, M. I., Evans, G. J. & Walmsley, A. R. (2003)

Yeast 20, 865–880
48. Krishnamurthy, S., Gupta, V., Prasad, R., Panwar, S. L. & Prasad, R. (1998)

FEMS Microbiol. Lett. 160, 191–197
49. Goldman, G. H., dos Reis Marques, E., Duarte Ribeiro, D. C., de Souza

Bernardes, L. A., Quiapin, A. C., Vitorelli, P. M., Savoldi, M., Semighini,
C. P., de Oliveira, R. C., Nunes, L. R., Travassos, L. R., Puccia, R., Batista,
W. L., Ferreira, L. E., Moreira, J. C., Bogossian, A. P., Tekaia, F., Nobrega,
M. P., Nobrega, F. G. & Goldman, M. H. (2003) Eukaryot. Cell 2, 34–48

P. brasiliensis Mycelium and Yeast Transcriptional Profiles24714

 at C
A

P
E

S
/M

E
C

 - U
F

M
T

 , U
N

IR
 , C

E
F

E
T

/B
A

 on M
arch 18, 2008 

w
w

w
.jbc.org

D
ow

nloaded from
 



Original article

Differential gene expression by Paracoccidioides brasiliensis in host
interaction conditions: Representational difference analysis identifies

candidate genes associated with fungal pathogenesis

Alexandre Melo Bail~ao a, Augusto Schrank b, Clayton Luiz Borges a, Valéria Dutra b,
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Abstract

Paracoccidioides brasiliensis causes infection by the host inhalation of airborne propagules of the mycelia phase of the fungus. These par-
ticles reach the lungs, and disseminate to virtually all organs. Here we describe the identification of differentially expressed genes in studies of
host-fungus interaction. We analyzed two cDNA populations of P. brasiliensis, one obtained from infected animals and the other an admixture of
fungus and human blood thus mimicking the hematologic events of the fungal dissemination. Our analysis identified transcripts differentially
expressed. Genes related to iron acquisition, melanin synthesis and cell defense were specially upregulated in the mouse model of infection. The
upregulated transcripts of yeast cells during incubation with human blood were those predominantly related to cell wall remodeling/synthesis.
The expression pattern of genes was independently confirmed in host conditions, revealing their potential role in the infection process. This work
can facilitate functional studies of novel regulated genes that may be important for the survival and growth strategies of P. brasiliensis in
humans.
� 2006 Elsevier Masson SAS. All rights reserved.

Keywords: Paracoccidioides brasiliensis; Representational difference analysis; Infection

1. Introduction

Paracoccidioides brasiliensis causes paracoccidioidomyco-
sis (PCM) the most prevalent systemic mycosis in Latin Amer-
ica. The infection occurs primarily in the lungs from where it

can disseminate via the bloodstream and or lymphatic system
to many organs systems rendering the disseminated form of
PCM [1].

In order to establish a successful infection, P. brasiliensis
that colonize within the dynamic substrate of a human host
must have the ability to adapt to and modify gene expression
in response to changes in the host environment. In recent
years, several approaches have been developed to identify
genes putatively related to the host- fungus interaction. The
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transcriptional profile of P. brasiliensis yeast cells and myce-
lium revealed genes that are potentially related to fungal
virulence, in addition to a comprehensive view of fungal
metabolism [2,3]. Despite those descriptions, a lack of infor-
mation exists regarding P. brasiliensis gene expression when
the organism interacts with the host.

Our aim is to uncover candidate genes that might contribute
to P. brasiliensis adaptation to and survival in the host milieu
during infection. The approach was the use of cDNA represen-
tational difference analysis (cDNA-RDA) [4] to identify P.
brasiliensis genes induced during the infective process in
a mouse model of infection and in conditions, which mimic
the hematologic route of fungal dissemination. Although fre-
quently employed in eukaryotes [5], this strategy has not
been applied to the investigation of differentially expressed
genes from human pathogenic fungi. Here we show the iden-
tification of candidate genes that P. brasiliensis may express as
an adaptation to the host. Our results provide the first view of
P. brasiliensis transcriptional response to hostepathogen
interaction.

2. Materials and methods

2.1. Maintenance of P. brasiliensis

P. brasiliensis isolate 01 (ATCC MYA-826) was used in all
the experiments. The yeast phase was maintained in vitro by
sub culturing and grown at 36 �C, in Fava-Netto’s medium
for 7 days, as described [6].

2.2. Preparation of inocula and infection of mice

Mice infection was carried out, as previously described,
with minor modifications [7]. Male B.10A mice (five animals)
were infected intraperitoneally with 5 � 106 yeast cells and
killed on the 7th day after infection; livers were removed
and homogenized. Aliquots (100 ml) of the suspension were
plated onto BBL Mycosel Agar (Becton-Dickinson, MD,
USA), supplemented with 10% fetal calf serum. After
14 days of plating, the yeast cells were used to extract total
RNA. As control, P. brasiliensis yeast cells from Fava-Netto
cultures were transferred to the medium above and taken to
prepare control cDNA samples. In additional experiments,
yeast cells of P. brasiliensis (108 cells in PBS) were inoculated
in the BALB/c mice by intravenous injection in the mouse tail.
Blood was obtained by intracardiac puncture after 10 and
60 min of the fungus injection. Blood of control animals
was obtained.

2.3. Treatment of P. brasiliensis yeast cells with human
blood

Human blood from 10 healthy donors was collected by
venipunctures using heparinized syringes. P. brasiliensis yeast
cells were harvested from 7-day-old cultures and washed once
with PBS. The fungal cells (5 � 106 cells/ml) were incubated
in 7.5 ml of fresh human blood for 10 or 60 min at 36 �C,

under shaking in the original blood collection tube. The fungal
cells were washed and collected by centrifugation. As control,
7.5 ml of the same fresh whole blood were taken to prepare
control cDNA samples.

2.4. Subtractive hybridization and generation of
subtracted libraries

Total RNAs was extracted from all experimental conditions
by the use of Trizol reagent (Invitrogen Life Technologies,
Carlsbad, CA). For subtractive hybridization, 1.0 mg of total
RNAs was used to produce double stranded cDNA by using
the SMART PCR cDNA synthesis kit (Clonetech Laborato-
ries, Palo Alto, CA, USA). First-strand synthesis was
performed with reverse transcriptase (Invitrogen Life Technol-
ogies) and used as template to synthesize double stranded
cDNA. The resulting cDNAs were digested with the restriction
enzyme Sau3AI. A subtracted cDNA library was constructed
using driver cDNA from 7 day old in vitro cultures of P. bra-
siliensis yeast cells grown in Fava-Netto’s medium and tester
cDNAs synthesized from RNAs extracted from P. brasiliensis
recovered from infected animals and of yeast cells after treat-
ment with human blood. The resulting products were purified
using a GFX kit (GE Healthcare, Chalfont St. Giles, UK).The
tester-digested cDNA was ligated to adapters (a 24-mer an-
nealed to a 12-mer). For the generation of the differential
products, tester and driver cDNAs were mixed, hybridized at
67 �C for 18 h and amplified by PCR with the 24-mer oligonu-
cleotide primer [5]. Two successive rounds of subtraction and
PCR amplification using hybridization tester-driver ratios 1:10
and 1:100 were performed. Adapters were changed between
cross-hybridization, and different products were purified using
the GFX kit.

The amplified cDNA pools were purified from the gels and
cloned into pGEM-T Easy vector (Promega, Madison, WI,
USA). In order to generate the ESTs, single-pass, 5 0-end
sequencing of cDNAs by standard fluorescence labeling dye-
terminator protocols with T7 flanking vector primer was per-
formed. Samples were loaded onto a MegaBACE 1000 DNA
sequencer (GE Healthcare) for automated sequence analysis.

2.5. EST processing pipeline, annotation and differential
expression analysis

EST sequences were pre-processed using the Phred and
Crossmatch (http://www.genome.washington.edu/UWGC/ana-
lysistools/Swat.cfm) programs. Sequences with at least 100
nucleotides and Phred quality greater or equal to 20 were con-
sidered for further analysis. The resulting sequences were
uploaded to a relational database (MySQL) on a Linux
(Fedora) platform, and processed using a modified version
of the PHOREST tool [8]. The filtered sequences were com-
pared against the GenBank non-redundant (nr) database
from National Center for Biotechnology Information
(NCBI), Gene Ontology (GO) besides InterPro’s databases
of protein families, domains and functional sites. MIPS
(http://mips.gsf.de/), GO and KEGG databases were used to
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assign functional categories, EC numbers and metabolic path-
ways, respectively. The clusters were compared with P. brasi-
liensis transcriptome database (http://www.biomol.unb.br/Pb),
using the BLAST program [9]. The ESTs have been submitted
to GenBank under accession numbers EB085196 to
EB086102.

2.6. Dot-blot and Northern-blot analysis

Serial dilutions of plasmid DNA were vacuum spotted in
nylon membrane and hybridized to the specific cDNAs labeled
by using the Random Prime labeling module (GE Healthcare).
Hybridization was detected by a Gene Image CDP-Star detec-
tion module (GE Healthcare). In the Northern experiments, the
RNAs were hybridized to correspondent cDNA probe in
Rapid-hyb buffer (GE Healthcare). Probes were radiolabeled
by using the Rediprime II Random Prime labeling System
(GE Healthcare). The analyses of relative differences were
performed by using the Scion Image Beta 4.03 program.

2.7. Semi-quantitative RTePCR analysis (sqRTePCR)
and RTePCR analysis of representative regulated genes

RNA used for sqRTePCR was prepared from independent
experiments and not from those used in the cDNA subtraction.
cDNAs were synthesized by reverse transcription using the
Superscript II RNAse H -reverse transcriptase (Invitrogen
Life Technologies). cDNAwas used for PCR in 30 ml reaction
mixture containing specific primers, sense and antisense, re-
spectively, as described in figure legends. PCR conditions
were: 25e35 cycles at 95 �C for 1 min; annealing 55e65 �C
for 2 min; 72 �C for 1 min. The annealing temperature and
the number of PCR cycles were optimized for each experimen-
tal condition to ensure linear phase of amplification. Ampli-
cons were analyzed by agarose gels electrophoresis (1%).
For RTePCR analysis the single stranded cDNAs were syn-
thesized as described above. PCRs were performed using
cDNAs obtained from P. brasiliensis contained in the blood
of infected mice, as template in a 30-ml reaction mixture con-
taining specific primers.

3. Results

3.1. Identification of P. brasiliensis genes with
differential expression in host interaction conditions

The RDA experimental design included three conditions:
(i) P. brasiliensis yeast cells from liver of B.10 A infected
mice; (ii) P. brasiliensis yeast cells treated with human blood;
and (iii) P. brasiliensis yeast cells grown in Fava Netto’s me-
dium. The two first conditions were used independently as tes-
ter populations and the latter as driver population. Subtraction
hybridization was performed and the cDNAs libraries were
constructed.

A total of 907 clones were successfully sequenced. From
them, 490 originated from the P. brasiliensis yeast cells de-
rived from infected mice and 417 from the fungus incubated

in human blood. Using the BLASTX program, 6.4% of the
ESTs corresponded to proteins of unknown function, with no
matches in databases. In addition, 93.6% of the ESTs dis-
played significant similarity to genes in the P. brasiliensis da-
tabase (http://www.biomol.unb.br/Pb), while 6.4% did not
exhibit similarity to P. brasiliensis known genes.

3.2. Characterization and hypothetical roles of the
subtracted cDNAs from P. brasiliensis isolated from
infected mice

Abroad view of the nature of the adaptationsmade byP. bra-
siliensis during host infection was obtained by classifying the
ESTs into nine groups of functionally related genes (Table 1).
The data illustrate the functional diversity of these highly
expressed ESTs, denoting particular functional categories
dominating the analysis. Noteworthy is the observedhigh redun-
dancy of transcripts encoding 30 kDa heat shock protein
(Hsp30), high-affinity zinc/iron permease (ZRT1), high-affinity
copper transporter (CRT3) and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) in the P. brasiliensis yeast cells
recovered from infected mice. The cellular machinery for pro-
tein synthesis including eukaryotic translation initiation factor
4A and 3b (eIF-4A and eIF-3b), translation elongation factor
1g (eEF-1g), as well as components of the pos-translational
machinery were upregulated in that condition. Transcripts
encoding tyrosinase and aromatic-L-amino acid decarboxylase
(DDC) were upregulated in cited condition, suggesting active
melanin synthesis during the infective process. A control
cDNA-RDA library was obtained from RNA of yeast cells
grown in the same medium used to recover P. brasiliensis
from infected liver, as the tester, and RNA from in vitro cultured
yeast cells grown in Fava-Netto’s medium as the driver. A total
of 120 clones were successfully sequenced, as controls. The
transcriptional profile did not manifest similarity to that
described for yeast cells recovered from the livers of infected
mice, thus excluding the possibility of the interference of growth
conditions in the expression profiles (data not shown).

3.3. Subtracted cDNAs isolated from P. brasiliensis
incubated in human blood

The nature of adaptations made by P. brasiliensis in this
condition can be inferred by classifying the ESTs into 11
groups of functionally related genes (Table 2). The most re-
dundant cDNAs appearing during human blood treatment for
10 min were as follows: Hþ/nucleoside cotransporter (cnt3)
and glutamine synthetase ( gln1). After 60 min treatment the
most abundant transcripts were those encoding 70 kDa heat
shock protein (Hsp70), acidic amino acid permease (DIP5),
eEF-1g, GLN1, eIF-4A and pyridoxamine 5 0-phosphate oxi-
dase (PPO1), as shown in Table 2. A control cDNA-RDA
library was obtained from human blood using RNA from in
vitro cultured yeast cells (Fava-Netto’s medium) as the driver,
and a total of 100 clones were successfully sequenced. All of
them corresponded to human genes, as demonstrated by
BLAST search analysis (data not shown).
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Table 1

ESTs with high abundance in the yeast cells recovered of liver of infected mice versus the in vitro condition

MIPS Category Gene product Best hit/accession numbera e-value Redundancy

Metabolism 2-Methylcitrate dehydratase Neurospora crassa/XP324860 3e-90 2

Aromatic-L-amino-acid decarboxylase Aspergillus nidulans/EAA64468 1e-57 1

Delta 8-sphingolipid desaturase Neurospora crassa/XP331184 2e-58 2

Dolichol-phosphate mannose synthase Paracoccidioides brasiliensis/AAR03724 9e-26 1

Formamidase Paracoccidioides brasiliensis/AAN87355 9e-40 1

Glutamine synthetasec Aspergillus nidulans/EAA59420 9e-86 1

Phosphoenolpyruvate carboxykinase Aspergillus nidulans/EAA65083 4e-43 1

Pyridine nucleotide-disulphide

oxidoreductase family protein

Aspergillus fumigatus/CAE47920 5e-09 1

RNA lariat debranching enzymeb Cryptococcus neoformans/EAL19833 1e-06 1

Trehalose synthase Aspergillus nidulans/EAA61099 1e-41 1

Tyrosinase Magnaporthe grisea/EAA48077 1e-42 3

Energy Acetate-CoA ligase Penicillium chrysogenum/JN0781 4e-91 2

Cell cycle and DNA processing Septin-1 Pyrenopeziza brassicae/CAB52419 8e-81 1

Protein synthesis 60s ribosomal protein L20 Gibberella zeae/EAA68901 1e-48 1

Eukaryotic translation initiation factor 3 Aspergillus nidulans/EAA65765 8e-63 3

Eukaryotic translation initiation factor 4Ac Aspergillus nidulans/EAA63503 2e-84 6

Eukaryotic translation elongation

factor 1, gamma chainc
Aspergillus nidulans/EAA57903 1e-48 6

Transport facilitation ATP-binding cassette ABC

transporter (MDR)

Venturia inaequalis/AAL57243 2e-74 1

High-affinity copper transporterc Gibberella zeae/EAA70719 5e-27 56

High-affinity zinc/iron permeasec Candida albicans/EAK96467 8e-57 140

Low-affinity zinc/iron permease Aspergillus nidulans/EAA60007 4e-24 3

Cellular communication/signal

transduction

Ras small GTPase, Rab type Aspergillus niger/CAC17832 1e-94 1

Rho1 GDP-GTP exchange protein Aspergillus nidulans/EAA61571 1e-55 1

Serine/threonine protein phosphatase Aspergillus nidulans/EAA59291 4e-10 1

Cell defense and virulence Glyceraldehyde 3-phosphate dehydrogenasec Paracoccidioides brasiliensis/AAP42760 1e-109 28

30 kDa heat shock protein 30-Hsp30c Aspergillus nidulans/EAA60998 2e-17 165

70 kDa heat shock protein 70-Hsp70c Paracoccidioides brasiliensis/AAK66771 7e-67 5

90 kDa heat shock protein 90-Hsp90 Ajellomyces capsulate/S21764 4e-77 1

Heat shock protein ClpA Paracoccidioides brasiliensis AAO73810 2e-58 1

Serine proteinasec Paracoccidioides brasiliensis/AAP83193 1e-94 3

Functional unclassified proteins NADP dependent oxidoreductase Aspergillus nidulans/EAA65924 2e-36 1

Unclassified protein Conserved hypothetical protein Neurospora crassa/XP323053 8e-11 8

Conserved hypothetical protein Aspergillus nidulans/EAA59203 2e-42 6

Conserved hypothetical protein Aspergillus nidulans/EAA59112 8e-13 2

Conserved hypothetical protein Cryptococcus neoformans/EAL22420 5e-23 1

Conserved hypothetical protein Aspergillus nidulans/EAA60590 2e-60 3

Hypothetical protein Aspergillus fumigatus/EAA66274 4e-06 2

Hypothetical proteinb e e 17

Hypothetical proteinb e e 1

Hypothetical proteinb e e 1

Hypothetical protein e e 1

Hypothetical protein e e 1

Hypothetical protein e e 3

Hypothetical protein e e 2

Hypothetical protein e e 1

a Accession number at GenBank (http://www.ncbi.nlm.nih.gov).
b Novel genes detected in P. brasiliensis.
c Validated upregulated transcripts (see Figs. 2 and 3).
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Table 2

ESTs with high abundance in the yeast cells during incubation in human blood versus the in vitro condition

MIPS Category Gene product Best hit/Accession numbera e-value Redundancy

B10b B60c

Metabolism 2-Methylcitrate dehydratase Neurospora crassa/XP324860 1e-53 e 1

Aldehyde dehydrogenase Aspergillus niger/AAA87596 1e-80 3 e

Aromatic-L-amino-acid decarboxylase Gibberella zeae/EAA75531 7e-49 e 2

C-5 sterol desaturase Aspergillus nidulans/EAA57846 2e-57 e 1

Delta-1-pyrroline-5-carboxylate dehydrogenase Magnaporthe grisea/EAA48531 2e-44 e 1

Dihydropteroate synthase Aspergillus nidulans/EAA58007 3e-31 e 1

Glutamine synthetasee Aspergillus nidulans/EAA59420 6e-98 29 21

Glutamine-dependent NAD synthetase Debaryomyces hansenii/

EAA58847

3e-43 1 e

Phosphoenolpyruvate carboxykinase Aspergillus nidulans/EAA65083 7e-16 e 1

Pyridoxamine 5 0-Phosphate oxidasee Aspergillus nidulans/EAA64421 1e-66 4 34

S-Adenosylmethionine synthetase Ascobolus immerses/AAB03805 5e-42 e 1

Energy Acyl CoA dehydrogenase Paracoccidioides brasiliensis/
AAQ04622

3e-98 3 4

ATP synthase gamma subunit Aspergillus nidulans/EAA66125 2e-67 3 1

Long-chain-fatty-acid-CoA-ligase Aspergillus nidulans/EAA57655 6e-62 6 2

Medium-chain-fatty-acid-CoA ligase Aspergillus nidulans/EAA59300 6e-59 e 1

Multifunctional beta-oxidation protein Gibberella zeae/EAA76166 6e-73 e 1

NADH-ubiquinone oxidoreductase Aspergillus nidulans/EAA64525 2e-87 e 1

Transaldolase Aspergillus nidulans/EAA66113 1e-66 1 e

Transketolase Aspergillus nidulans/EAA65464 7e-44 e 2

Transcription Ap-1-like transcription factor (MeaB protein) Aspergillus nidulans/EAA62122 2e-35 5 1

Cutinase like transcription factor 1 Aspergillus nidulans/EAA64555 5e-72 2 1

GATA zinc finger transcription factor Aspergillus nidulans/EAA63723 5e-28 e 1

Histone deacetylase RpdAd Aspergillus nidulans/EAA60836 4e-18 e 2

Related to heterogeneous nuclearribonucleoproteins Aspergillus nidulans/EAA63773 2e-19 e 1

Transcription factor HACA Aspergillus niger/AAQ73495 4e-43 1 2

Cell cycle and DNA processing Cell division cycle gene CDC48 Aspergillus nidulans/EAA61160 2e-27 e 1

Septin-1 Pyrenopeziza brassicae/AAK14773 1e-79 1 e

Shk1 kinase-binding protein 1 Emericella nidulans/AAR27792 2e-51 e 1

Protein synthesis Eukaryotic translation release factor 1d,e Aspergillus nidulans/BAB61041 3e-35 1 2

Eukaryotic translation initiation factor 2 beta subunit Aspergillus nidulans/EAA63563 3e-47 e 2

Eukaryotic translation initiation factor 4Ae Aspergillus nidulans/EAA63503 1e-74 3 43

Ribosomal protein S11 Gibberella zeae/EAA67332 1e-62 e 1

Ribosomal protein S1B Neurospora crassa/CAD70957 5e-32 e 1

Serine-tRNA synthetase Aspergillus nidulans/EAA60155 1e-39 1 e
Translation elongation factor 1 alpha chain Yarrowia lipolytica/CAG81931 4e-20 e 2

Translation elongation factor 3 Ajellomyces capsulatus/AAC13304 4e-70 e 2

Translation elongation factor 1, gamma chaine Aspergillus nidulans/EAA57903 5e-24 1 20

Translation elongation factor Tu, mitochondrial Aspergillus fumigatus/CAD27297 1e-90 2 1

Protein fate Intra-mitochondrial protein sorting (MSF1) Aspergillus nidulans/EAA60030 5e-80 1 2

Endoplasmic reticulum to Golgi

transport related proteind
Aspergillus nidulans/EAA60127 4e-22 4 3

Transport facilitation Acidic amino acid permeasee Aspergillus nidulans/EAA58093 4e-63 4 20

ATP-binding cassette ABC transporter (MDR) Aspergillus nidulans/AAB88658 2e-50 2 e
Endoplasmic reticulum calcium-transporting ATPase Aspergillus nidulans/EAA62836 6e-64 e 2

Ferric reductasee Aspergillus nidulans/EAA60984 2e-51 1 1

Glucose transporter Aspergillus nidulans/EAA60286 8e-61 1 e

Hþ-nucleoside cotransportere Aspergillus nidulans/EAA62653 8e-60 10 e
Mitochondrial substrate carrier family protein Aspergillus nidulans/EAA61338 4e-16 e 1

Multidrug resistance protein Trichophyton rubrum/AAG01549 9e-38 e 2

P-type calcium-transporting ATPase Aspergillus nidulans/EAA60998 1e-60 e 4

Putative major facilitator protein Aspergillus nidulans/EAA65241 8e-06 1 e
Putative membrane transporter Gibberella zeae/EAA78075 6e-50 2 e

Putative transmembrane Ca2þ transporter-protein CCC1 Aspergillus nidulans/EAA59889 1e-13 1 e
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3.4. Analysis of the genes upregulated in the mice
infection and human blood treatment

Fig. 1 depicts the classification of 131 clusters ofP. brasilien-
sis ESTs according to the classification developed at MIPS. As
observed, most of the ESTs in the infective process corre-
sponded to upregulated cDNAs related to transport facilitation
and to cell defense mechanisms (Fig. 1A). Incubation with
human blood, for 10 min, reveals that most of the upregulated
transcripts were related to the cell metabolism, followed by
the ESTs representing transport facilitation (Fig. 1B). The incu-
bation in human blood for 60 min, revealed the preferential ex-
pression of genes encoding factors related to protein synthesis.

3.5. Confirmatory differential expression of
P. brasiliensis identified sequences

To corroborate the RDA findings, we initially performed
dot blot analysis of P. brasiliensis cDNA-RDA clones. As
shown in Fig. 2A, the transcripts encoding GAPDH, ZRT1,
CTR3 and Hsp30 were confirmed to be upregulated in the
yeast cells recovered from liver of infected mice (Fig. 2A,
panel b). The transcripts encoding DIP5, eIF-4A, serine pro-
teinase (PR1H) and CNT3 were confirmed to be upregulated
during the 10 min of P. brasiliensis incubation in blood
(Fig. 2A, panel c). The blots also confirmed the upregulation
of the transcripts encoding GLN1, DDC, PPO1, eEF-1g,

Table 2 (continued )

MIPS Category Gene product Best hit/Accession numbera e-value Redundancy

B10b B60c

Cellular communication/

signal transduction

cAMP-dependent protein kinase Aspergillus nidulans/EAA60590 2e-100 6 e
Protein with PYP-like sensor

domain (PAS domain)

Neurospora crassa/XP326245 3e-38 6 6

Ras small GTPase, Rab type Aspergillus niger/CAC17832 2e-44 e 1

Serine/threonine-protein kinase SCH9 Aspergillus nidulans/EAA59337 6e-88 6 3

Transmembrane osmosensor SHO1d,e Gibberella zeae/EAA77427 4e-39 1 5

Cell defense and virulence Glyceraldehyde-3-phosphate dehydrogenasee Paracoccidioides brasiliensis/

AAP42760

3e-75 e 2

30 kDa heat shock protein-Hsp30e Aspergillus nidulans/EAA60998 7e-25 e 2

70 kDa heat shock protein-Hsp70e Paracoccidioides brasiliensis/

AAK66771

7e-80 e 14

90 kDa heat shock protein-Hsp90 Aspergillus nidulans/EAA59007 2e-30 e 4

Serine protease Paracoccidioides brasiliensis/

AAP83193

6e-90 4 5

Putative serine proteased,e Gibberella zeae/EAA75433 5e-14 e 2

Functional unclassified protein Pleckstrin-like protein Aspergillus nidulans/EAA59882 5e-40 e 3

Unclassified protein Conserved hypothetical protein Aspergillus nidulans/EAA62122 4e-17 1 e
Conserved hypothetical protein Aspergillus nidulans/EAA60590 8e-58 11 2

Conserved hypothetical protein Aspergillus nidulans/EAA64557 5e-48 1 e

Conserved hypothetical protein Aspergillus nidulans/EAA60610 3e-36 1 e

Conserved hypothetical protein Aspergillus nidulans/EAA62122 3e-17 1 e
Conserved hypothetical protein Aspergillus nidulans/EAA66204 4e-16 4 e

Conserved hypothetical protein Aspergillus nidulans/EAA61977 6e-55 e 1

Conserved hypothetical protein Aspergillus nidulans/EAA60127 4e-10 e 1

Conserved hypothetical protein Neurospora crassa/XP323499 5e-22 e 1

Conserved hypothetical protein Neurospora crassa/XP326245 5e-11 e 4

Hypothetical proteind e e 13 2

Hypothetical protein e e 1 e
Hypothetical protein Aspergillus nidulans/EAA61232 1e-12 1 e

Hypothetical protein e e 1 e

Hypothetical protein e e 1 e

Hypothetical protein Aspergillus nidulans/EAA59882 1e-10 e 3

Hypothetical proteind e e e 2

Hypothetical proteind e e e 1

Hypothetical protein Aspergillus nidulans/EAA61232 5e-11 e 1

Hypothetical protein e e e 1

Hypothetical protein e e e 1

Hypothetical protein e e e 1

a Accession number at GenBank (http://www.ncbi.nlm.nih.gov).
b Blood incubation of yeast cells for 10 and 60 min, respectively.
c Blood incubation of yeast cells for 10 and 60 min, respectively.
d Novel genes detected in P. brasiliensis.
e Validated upregulated transcripts (see Figs. 2 and 3).
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Hsp70 and ferric reductase (FRE2) in the yeast cells incubated
with human blood for 60 min (Fig. 2A, panel d).

Northern blot analysis was employed to evaluate the
expression of some upregulated genes. The transcripts of the
genes encoding GAPDH, ZRT1, Hsp30 and CTR3 were
more accumulated in yeast cells recovered from liver of
infected mice (Fig. 2B, panel a). The transcript encoding
GLN1 was confirmed as more abundant during incubation in
human blood (Fig. 2B, panel b).

3.6. Expression profiles of genes in P. brasiliensis
yeast cells

Further confirmatory data about the expression level from
EST redundancy analysis was provided by semi-quantitative
RTePCR (sqRTePCR) analysis. RNA was extracted from
P. brasiliensis yeast cells recovered from mouse liver and after
incubation in human blood in a new set of experiments. The
transcripts encoding Hsp30 and CTR3 were demonstrated in
P. brasiliensis yeast cells recovered from liver of infected
mice (Fig. 3A, panel a). On the other hand, the transcripts
encoding eukaryotic release factor 1 (eRF1), transmembrane
osmosensor (SHO1), PPO1 and serine protease (SP1) were
preferentially expressed during incubation in blood (Fig. 3A,
panel b). The accumulation of transcripts encoding eEF-1g,
GLN1, GAPDH and Hsp70 were detected in both conditions:
P. brasiliensis yeast cells recovered from liver of infected mice
and after incubation in human blood (Fig. 3A, panel c).

3.7. Expression profiles of genes in P. brasiliensis yeast
cells infecting blood of mice

We performed RTePCR analysis of the RNAs extracted
from P. brasiliensis fungal yeast cells infecting blood of

BALB/c mice (Fig. 3B). We detected the transcripts encoding
eRF1, SP1, SHO1, PPO1, GLN1, eEF-1g and Hsp70. Tran-
script encoding GAPDH was amplified as an internal control
for cDNAs synthesized from RNAs obtained from mouse
blood.

3.8. A model for the P. brasiliensis adaptation to the host

The most abundant ESTs listed in Tables 1 and 2 indicate
a possible strategy of P. brasiliensis to face the host.
Fig. 4A and B present a model of the adaptive changes of
P. brasiliensis to the host milieu. See Section 4 for details.

4. Discussion

We were able to associate the assembled expressed
sequences reported in the present work with different biolog-
ical processes using the MIPS categories. On the basis of
proven or putative gene functions we provide an interpretation
and speculate on a model to interpret the upregulated
transcripts.

4.1. Transport facilitators

During infection the level of available iron is significantly
limited and therefore, microbial mechanisms to acquire iron
are highly adaptive and important for successful virulence
[10]. It has been shown that iron overload exacerbates menin-
goencephalitis in a mouse model of cerebral infection by
Cryptococcus neoformans [11]. Ferrous ion uptake involves
both high- and low-affinity transporters; the first is accompa-
nied by a member of the copper oxidase family [12]. One of
the most abundant cDNAs encodes a predictable high-affinity

Fig. 1. Functional classification of P. brasiliensis cDNAs derived from RDA experiments using as testers. (A) cDNAs synthesized from the RNAs of yeast cells

recovered from infected mice. (B,C) cDNAs obtained from RNA of P. brasiliensis yeast cells after a 10-min (B) or 60-min (C) incubation with human blood. The

percentage of each functional category is shown (refer to Tables 1 and 2). Functional classification was based on BLASTX homology of each EST against the

GenBank non-redundant database at a significant homology cut-off of �1e-05 and the MIPS functional annotation scheme. Each functional class is represented

as a color-coded segment and expressed as a percentage of the total number of ESTs in each library.
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zinc/iron permease. The observed redundancy of this transcript
(zrt1) in P. brasiliensis was of 140 ESTs in our experimental
model of infection, and of 8 ESTs in the in vitro cultured fun-
gus [3].

The high-affinity iron uptake requires an efficient copper
uptake, since maturation of the copper protein in the secretory
apparatus requires acquiring of copper [13]. The redundancy
of the ctr3 transcript encoding a copper transporter of high af-
finity suggests the requirement for a coppereiron permease for
the iron transport. In agreement, the ctr3 transcript has been

described as highly expressed in the P. brasiliensis yeast phase
[2,3].

The zrt1 and ctr3 transcripts were not upregulated during
the incubation of P. brasiliensis yeast cells in human blood,
suggesting a no-iron-limitation condition in this treatment.
Iron acquisition could also include a ferric reductase to
remove iron from host-iron binding molecules such as heme.
Corroborating our finding, a glutathione-dependent extracellu-
lar ferric reductase activity was recently described in P. brasi-
liensis [14].

Fig. 2. Validation of the cDNA-RDA results. (A) Dot blot analysis of P. brasiliensis cDNA-RDA clones. DNA of individual clones was prepared and several di-

lutions were blotted (1e5). Individual clones were blotted and hybridized to the labeled cDNAs obtained from the control yeast cells (a); labeled cDNA obtained

from P. brasiliensis recovered from liver of infected mice (b); labeled cDNA obtained from P. brasiliensis after 10 min (c) or 60 min (d) incubation with human

blood. The clones were: ( gapdh) glyceraldehyde 3-phosphate dehydrogenase; (zrt1) high-affinity zinc/iron permease; (ctr3) high-affinity copper transporter;

(hsp30) 30 kDa heat shock protein; (dip5) acidic amino acid permease; (eIF-4A) eukaryotic initiation factor 4A; ( pr1H ) serine proteinase; (cnt3) Hþ/nucleoside
cotransporter; ( gln1) glutamine synthetase; (ddc) aromatic L-amino acid decarboxylase; ( ppo1) pyridoxamine phosphate oxidase; (eEF-1g) eukaryotic elongation
factor gamma subunit; (hsp70) 70 kDa heat shock protein; ( fre2) ferric reductase. (B) Expression patterns of genes obtained by cDNA-RDA analyzed by Northern

blot of total RNA of P. brasiliensis. Detection of transcripts overexpressed in yeast cells recovered from liver of infected mice (a) and of transcripts overexpressed

in the blood incubation (b). Total RNAwas fractionated on a 1.2% formaldehyde agarose gel and hybridized to the cDNA inserts of gapdh, zrt1, hsp30, ctr3, gln1.

L34 ribosomal protein (l34) is shown as the loading control. The RNAs were obtained from in vitro cultured yeast cells (Y); yeast cells recovered from liver of

infected mice (I); yeast cells after incubation with human blood for 10 min (B10). The RNA sizes were calculated using the 0.25e9.5 marker RNA ladder (GIBCO,

Invitrogen). The transcript sizes were as follows: gapdh (2 kb), zrt1 (1.4 kb), hsp30 (1 kb), ctr3 (1.4 kb), gln1 (1.9 kb) and l34 (0.75 kb). Numbers associated with

the bars indicate fold differences relative to the data for the reference in vitro cultured yeast cells, which were established by densitometry analysis by using Scion

Image Beta 4.03 program.
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Fig. 3. In vitro and in vivo validation of the RDA results by RTePCR analysis. (A) Validation of RDA results by semi-quantitative RTePCR of RNAs obtained

from yeast cells in host conditions. Semi-quantitative RTePCR analysis was carried out with specific primers, as described. Numbers associated with the bars

indicate fold differences relative to the data for the reference in vitro cultured yeast cells, which were established by densitometry analysis. Using varied cycle

numbers, the exponential phase of each primer was determined and used to allow semi-quantitative analysis of the respective reactions. The same amounts of

cDNAs were used for all PCRs. The RNAs used for RTePCR were obtained from independent samples of: in vitro cultured yeast cells, yeast cells recovered

from liver of infected mice and P. brasiliensis yeast cells incubated with human blood from those samples used for the RDA experiments. Clone names are written

on the left side of the figure. The primers sense and antisense, were as following: hsp30 5 0-GGCCTTGACAGCATTCTGG-3 0 and 5 0-CTGGCGATAAAGGGCA
GAAG-3 0; ctr3 5 0-ATGTGAAGCAGCGAGCGG-3 0 and 5 0-CATGGAATGCACGGCGGC-3 0; (eRF1) eukaryotic translation release factor 1 5 0-CAACGTT
GACTTTGTCATTGG-3 0 and 5 0-CCATGGACTTGTCATATACTG-3 0; (sho1) transmembrane osmosensor 5 0-CCACCACCGGCCACTGAC-3 0 and 5 0-
CCCGAAACAACTGTCTCCG-3 0; ppo1 5 0-CATCGACGACTGCCTCCTC-3 0 and 5 0-GGACGGCTTCTGGGTGCT-3 0; (sp1) putative serine protease 5 0-
CAATGGCTGCTCGTGCTGA-3 0 and 5 0-CCTACCAGGGGCATAAAGCT-3 0; eEF-1g 5 0-GGCTTGGAGAGGGAGTCG-3 0 and 5 0-CCCTTGTTGGACGA
GACCC-3 0; gln1 5 0-CGTTACCCTCACCGTAGAC-3 0 and 5 0-CATACGGCTGGCCCAAGG-3 0; gapdh 5 0-CAACGGATCCATGGTCGTCAAG-3 0 and 5 0-
GCTGCGAATTCCTATTTGCCAGC-3 0; hsp70 5 0-CATATGGTGCCGCCGTCC-3 0 and 5 0-GGGAGGGATACCGGTTAGC-3 0; l34 5 0-CAAGACTCCAGGCGG
CAAC-3 0 and 5 0-GCACCGCCATGACTGACG-3 0. The sizes of the amplified DNA fragments are as follows: hsp30 (221 bp); ctr3 (373 bp); eRF1 (392 bp);

sho1 (386 bp); ppo1 (394 bp); sp1 (319 bp); eEF-1g (438 bp); gln1 (494 bp); gapdh (1013 bp); hsp70 (295 bp). The RNAs samples were obtained from: yeast

cells, in vitro cultured (Y); yeast cells recovered from livers of infected mice (I); yeast cells treated with human blood for 10 min (B10) and 60 min (B60). Panel

a: genes upregulated in yeast cells recovered from the host tissue; Panel b: genes upregulated in the human blood incubation; Panel c: genes upregulated in both

conditions. L34 ribosomal protein was used as an internal control. Asterisks indicate new genes of P. brasiliensis. (B) Validation of the RDA-cDNA results by RTe

PCR of RNAs obtained from yeast cells present in blood of infected BALB/c mice. Samples were isolated after 10 or 60 min of intravenous infection of yeast cells

in BALB/c mice. RNAs from control BALB/c mice were used as references. The transcripts names listed on the left side of the panels are: eRF1 (392 bp); sp1

(319 bp); sho1 (386 bp); ppo1 (394 bp); gln1 (494 bp); eEF-1g (438 bp); hsp70 (295 bp) and gapdh (1013 bp). Asterisks indicate new genes of P. brasiliensis.

Control reactions with Mus musculus GAPDH are indicated by c þ . The primers sense and antisense, respectively 5 0-ATGTCGGCTCTCTGCTCCTC-3 0 and
5 0-GTAGGCCATGAGGTCCACC-3 0, amplified a DNA fragment of 1062 bp in the obtained RNA.



4.2. Stress response/cell wall remodeling/osmosensing/
protein synthesis

The production of Hsps may contribute to the protection of
cells from damage and to repair of cell following stress, which
may occur during infection. Noteworthy is the high expression
of the transcript encoding the Hsp30 in yeast cells recovered
from liver of infected mice. This observation is particularly in-
teresting as this Hsp is strongly induced by treatments that in-
crease membrane fluidity, in organisms [15]. A homologue of
the AP-1 like transcription factor was shown to be upregulated
in the blood incubation. Homologues of the mammalian pro-
tein are found in fungi and genetic analyses indicate that those
proteins can be involved in oxidative stress responses, as well
as in multidrug resistance [16].

The transcript encoding glutamine synthetase ( gln1) was
strongly induced in blood incubation, suggesting that the re-
modeling of the cell wall/membrane may be one of the ways
by which P. brasiliensis respond to changes in external osmo-
larity. Chitin synthesis has been shown to be essential in the
compensatory response to cell wall stress in fungi, preventing

cell death [17]. Similarly we speculate that P. brasiliensis in-
crease in glutamine synthetase transcript could be related to
chitin deposition in response to change in external osmolarity
faced by the fungus in the blood route of dissemination. We
cannot exclude the hypothesis that the increase in gln1 could
provide a mechanism for P. brasiliensis for ammonia reassimi-
lation and detoxification. However, it has to be pointed out that
in Saccharomyces cerevisiae just a small amount of ammonia
is incorporated into the amide group of glutamine [18].

Acidic amino acid permease can mediate the uptake of glu-
tamate and aspartate, resulting in chitin deposition. Glutamate
could also be required to keep the cell in osmotic balance with
the external medium. Septin modulates positively the activity
of a glutamate transporter in mammalian astrocytes [19]. Upon
incubation in blood the induction of the transcript encoding
a homologue of septin was detected in P. brasiliensis. Also,
the overexpression of the transcript encoding pyridoxamine
phosphate oxidase might enhance the production of glutamate
through amidotransferases, which requires the coenzyme PLP.

The HOG (high osmolarity glycerol) pathway senses os-
motic stress via two membrane-bound regulators, sln1 and
sho1. In Candida albicans, sho1 is related to the fungal mor-
phogenesis interconnecting two pathways involved in cell
wall biogenesis and oxidative stress [20]. Another class of sen-
sor molecules comprehends PAS domain superfamily [21]. We
observed preferential expression of the cited sensor transcripts
in yeast cells during blood treatment and in yeast cells present
in blood of infected mice, suggesting their involvement in the
osmolarity sensing during fungus dissemination through the
blood.

The high uptake of glutamate during P. brasiliensis yeast
cell incubation in human blood could also provide yeast cells
accordingly with the precursors to the increased rate in protein
synthesis. In agreement, enzymes involved in the synthesis of
the cofactors tetrahydrofolate and S-adenosylmethionine were
upregulated in the treatment. It has not escaped our attention
that the strong upregulation of genes involved in the protein
synthesis machinery may reflect the P. brasiliensis yeast cell
transfer from a nutrient-poor medium to a relatively nutri-
ent-rich medium. Similar results were described upon incuba-
tion of C. albicans in human blood [22]. However, it seems
that this should be the fungal condition entering the human
blood when leaving host compartments in its route of
dissemination.

4.3. Some putative virulence factors

Glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) is
upregulated mainly in fungi recovered from infected mice.
We have demonstrated that the GAPDH of P. brasiliensis is
a molecule located at the fungal cell wall. The protein is
a P. brasiliensis adhesin, which binds components of the extra-
cellular matrix and is capable of mediating the adherence and
internalization of P. brasiliensis to in vitro cultured cells, sug-
gesting its involvement in fungus pathogenesis [6].

Transcripts encoding tyrosinase and aromatic-L-amino acid
decarboxylase were upregulated in yeast cells recovered from

Fig. 4. Model of the adaptive changes of P. brasiliensis to the host milieu. (A)

Model of how P. brasiliensis could enhance its survival in host cells. (B)

Model of how P. brasiliensis enhance its survival during blood dissemination

to organs and tissues. See Section 4 for details.
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liver of infected B.10A mice. Tyrosinase, the enzyme respon-
sible for the first step in melanin synthesis, is a copper-
containing protein [23]. Melanin is implicated in the
pathogenesis of some microbial infections. Melanization of
C. neoformans was demonstrated to be dependent of several
genes, including homologues of the copper transporter and
the copper chaperone [24]. P. brasiliensis melanin-like pig-
ments were detected in cells growing in vitro and during infec-
tion [25]. The melanized fungal cells were more resistant than
nonmelanized cells to the antifungal activity of murine macro-
phages [26].

GATA-factors ensure efficient utilization of available nitro-
gen sources by fungi and have been associated with fungal vir-
ulence [27]. A transcript encoding D5,6-desaturase (ERG3)
was upregulated during incubation in blood; in C. albicans
a homologue has been associated with virulence and the abil-
ity of the organism to undergo the morphological transition
[28]. Also, a P. brasiliensis homologue of the histone deacety-
lase gene was described here. In Cochliobolus carbonum
a homologue of this gene affects virulence as a result of re-
duced penetration efficiency in plant tissues [29]. Future
work has to focus on those predictable virulence factors of
P. brasiliensis.
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Abstract

Paracoccidioides brasiliensis causes infection through host inhalation of airborne

propagules of the mycelial phase of the fungus, which reach the lungs, and then

disseminate to virtually all parts of the human body. Here we describe the

identification of differentially expressed genes in P. brasiliensis yeast cells, by

analyzing cDNA populations from the fungus treated with human plasma,

mimicking superficial infection sites with inflammation. Our analysis identified

transcripts that are differentially represented. The transcripts upregulated in yeast

cells during incubation in human plasma were predominantly related to fatty acid

degradation, protein synthesis, sensing of osmolarity changes, cell wall remodeling

and cell defense. The expression pattern of genes was independently confirmed.

Introduction

Paracoccidioides brasiliensis is an important human patho-

gen causing paracoccidioidomycosis, a systemic mycosis

with broad distribution in Latin America (Restrepo et al.,

2001). Although the area of incidence ranges nonuniformly

fromMexico to Argentina, the incidence of disease is higher

in Brazil, Venezuela and Colombia (Blotta et al., 1999). The

fungus is thermodimorphic; that is, it grows as a yeast-like

structure in the host tissue or when cultured at 35–36 1C,
and as mycelium in the saprobic condition or when cultured

at room temperature (18–23 1C). The infection is caused by

inhalation of airborne propagules of the mycelial phase of

the fungus, which reach the lungs and differentiate into the

yeast parasitic phase (Lacaz, 1994).

During infection, P. brasiliensis can be exposed to human

plasma. After host inhalation of mycelial propagules and

fungal establishment in the lungs, it can be disseminated

through the bloodstream. Additionally, the fungus can

promote infection in superficial sites that contain plasma as

a consequence of vascular leakage (Franco, 1987). We are

just beginning to understand the fungal adaptations to the

host during P. brasiliensis infection. We have previously

identified a set of candidate genes that P. brasiliensis may

express to adapt to the host conditions. We have demon-

strated that P. brasiliensis switches gene expression in

response to infection in mouse liver, resulting in the over-

expression of transcripts coding mainly for genes involved in

transport facilitation and cell defense. The yeast fungal cells

adapt to the blood environment by overexpressing tran-

scripts related to general metabolism, with emphasis on

nitrogen metabolism, protein synthesis, and osmosensing

(Bailão et al., 2006).

The present study examined the effects of human plasma

on the P. brasiliensis transcriptional profile using cDNA

representational difference analysis (cDNA-RDA), which is

a powerful application of subtractive hybridization and is

considered to reflect a large number of relevant gene

transcripts (Hubank & Schatz, 1994). The results show a

profound influence of plasma on P. brasiliensis gene expres-

sion, suggesting genes that could be essential for fungal

adaptation to this host condition.

Materials and methods

Paracoccidioides brasiliensis growth conditions

Paracoccidioides brasiliensis isolate 01 (ATCC MYA-826) has

been studied at our laboratory (Bailão et al., 2006; Barbosa

et al., 2006). It was grown in the yeast phase at 36 1C, in
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Fava-Neto’s medium [1% (w/v) peptone; 0.5% (w/v) yeast

extract; 0.3% (w/v) proteose peptone; 0.5% (w/v) beef

extract; 0.5% (w/v) NaCl; 1% (w/v) agar; pH 7.2] for 7 days.

Incubation of P. brasiliensis yeast cells in human
plasma

Human blood from 10 healthy donors was collected by

venepunctures using heparinized syringes, and centrifuged at

1000 g. Paracoccidioides brasiliensis yeast cells were harvested

from 7-day-old cultures, and washed twice with phosphate-

buffered saline (PBS) (NaCl 137mM, KCl 2.7mM, NaH2PO4

1.4mM, Na2HPO4 4.3mM, pH 7.4). The fungal cells

(5� 106 cellsmL�1) were inoculated into 7.5mL of human

plasma and incubated for several time intervals at 36 1C with

shaking. The fungal cells were collected by centrifugation for

5min at 1500 g, and washed five times with PBS. As controls,

P. brasiliensis yeast cells from Fava-Neto’s cultures washed five

times with PBS and 7.5mL of the same plasma were taken to

prepare control cDNA samples.

RNA extractions, subtractive hybridization and
generation of subtracted libraries

Total RNA of the P. brasiliensis control yeast cells and of yeast

cells incubated with human plasma for 10 and 60min was

extracted by the use of Trizol reagent (GIBCO, Invitrogen,

Carlsbard, CA) according to the manufacturer’s instruc-

tions. The quality of RNAwas assessed by use of the A260 nm/

A280 nm ratio, and by visualization of rRNA on 1.2%

agarose gel electrophoresis. The RNAs were used to con-

struct double-stranded cDNAs. For subtractive hybridiza-

tion, 1.0mg of total RNAs was used to produce double-

stranded cDNA using the SMART PCR cDNA synthesis kit

(Clonetech Laboratories, Palo Alto, CA, USA). First-strand

synthesis was performed with reverse transcriptase (RT

Superscript II, Invitrogen, CA, USA), and the first strand

was used as a template to synthesize the second strand of

cDNA. The resulting cDNAs were digested with the restric-

tion enzyme Sau3AI. Two subtracted cDNA libraries were

made using driver cDNA from 7-day-old-cultures of yeast

cells and tester cDNAs synthesized from RNAs extracted

from P. brasiliensis obtained from yeast cells after incubation

with human plasma for 10 and 60min. The resulting

products were purified using the GFX kit (GE Healthcare,

Chalfont St Giles, UK). The cDNA representational analysis

described by Hubank & Schatz (1994) was used, as modified

by Dutra et al. (2004). The tester-digested cDNAwas bound

to adapters (a 24-mer annealed to a 12-mer). For generation

of the differential products, ‘tester’ and ‘driver’ cDNAs were

mixed, hybridized at 67 1C for 18 h, and amplified by PCR

with the 24-mer oligonucleotide primer (Dutra et al., 2004;

Bailão et al., 2006). Two successive rounds of subtraction

and PCR amplification using hybridization tester/driver

ratios of 1 : 10 and 1 : 100 were performed to generate second

differential products. Adapters were changed between cross-

hybridizations, and differential products were purified using

the GFX kit. The adapters used for subtractive hybridiza-

tions were: NBam12, GATCCTCCCTCG; NBam24, AGGC

AACTGTGCTATCCGAGGGAG; RBam12, GATCCTCGGT

GA; and RBam24, AGCACTCTCCAGCCTCTCTCACCGAG.

After the second subtractive reaction, the final amplified

cDNA pools were submitted to electrophoresis in 2.0%

agarose gels, and the purified cDNAs were cloned directly

into the pGEM-T Easy vector (Promega, Madison, USA).

Escherichia coli XL1 Blue competent cells were transformed

with the ligation products. Selected colonies were picked

and grown in microliter plates. Plasmid DNA was prepared

from clones using standard protocols. In order to generate

the expressed sequence tags (ESTs), single-pass, 50-end
sequencing of cDNAs by standard fluorescence labeling

dye-terminator protocols with T7 flanking vector primer

was performed. Samples were loaded onto a MegaBACE

1000 DNA sequencer (GE Healthcare) for automated se-

quence analysis.

Sequences, processing and EST database
construction

EST sequences were preprocessed using the PHRED (Ewing &

Green, 1998) and CROSSMATCH programs (http://www.genome.

washington.edu/UWGC/analysistools/Swat.cfm). Only se-

quences with at least 100 nucleotides and PHRED quality Z20

were selected. ESTs were screened for vector sequences against

the UniVec data. The resulting sequences were then uploaded

to a relational database (MySQL) on a Linux (Fedora Core 2)

platform, and processed using a modified version of the

PHOREST tool (Ahren et al., 2004). PHOREST is a web-based tool

for comparative studies across multiple EST libraries/projects.

It analyzes the sequences by running the BLAST (Altschul et al.,

1990) program against a given database, and assembling the

sequences using the CAP (Huang, 1992) program. PHOREST has

been modified to store the BLAST results of many databases, to

query translated frames against the InterPro database (Mulder

et al., 2003), and to work with CAP3 (Huang & Madan, 1999)

instead of CAP.

To assign functions, the valid ESTs and the assembled

consensus sequences were locally compared against a non-

redundant protein sequence database with entries from GO

(http://www.geneontology.org), KEGG (http://www.genome.

jp.kegg) and NCBI (http://www.ncbi.nlm.nih.gov), using

the BLASTX algorithm with an e-value cut-off at 10�5. If the
EST sequences did not match any database sequences, the

BLASTN algorithm was used (www.ncbi.nlm.nih.gov/BLAST/)

(Altschul et al., 1990).

Sequences were placed into three categories: (1) anno-

tated, which corresponds to sequences showing significant
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matches with protein sequences with an identified function

in databanks; (2) hypothetical protein, which corresponds

to sequences for which the e-value was >10�5, or for which
no match was observed in databanks; or (3) conserved

hypothetical protein, which corresponds to protein group

sequences for which significant matches (eo 10�5) and

homology to a protein with no identified function was

observed.

ESTs were grouped into 99 clusters, represented by 63

contigs and 36 singlets. With CAP3 assembly information

stored in the relational database, SQL queries were per-

formed to determine transcripts unique to a certain EST

library and/or present in two or more libraries. Sequences

were grouped in functional categories according to the

classification of the MIPS functional catalog (Munich

Center for Protein Sequences; http://www.mips.gst.de/).

The clusters were compared with P. brasiliensis ESTs

upregulated during incubation of yeast cells with human

blood (Bailão et al., 2006) (GenBank accession numbers

EB085193–EB086102) and with the P. brasiliensis transcrip-

tome database (https://dna.biomol.unb.br/Pb/) using the

BLAST program (Altschul et al., 1990). The nucleotide

sequences reported here are available in the GenBank

database under the accession numbers EH643296–

EH643872.

In silico determination of overexpressed genes
in human plasma in comparison to human blood
incubation of P. brasiliensis yeast cells by
electronic Northern blotting

To assign a differential expression character, the contigs

formed with the human plasma and the human blood

treatment ESTs were statistically evaluated using the method

of Audic & Claverie (1997). Genes in the human plasma

treatment that were more expressed as determined with a

95% confidence rate compared to human blood were

considered overregulated. A website (http://igs-server.cnrs-

mrs.fr) was used to compute the probability of differential

regulation.

Dot-blot analysis

Plasmid DNAs of selected clones were obtained. Serial

dilutions of DNAs were performed, and the material was

applied, under vacuum, to Hybond-N1nylon membranes

(GE Healthcare). The DNAs were hybridized to cDNAs,

which were obtained under specific conditions, labeled

using the Random Prime labeling module (GE Healthcare).

Detection was performed using the Gene Image CDP-Star

detection module (GE Healthcare). The probes used were as

follows: aromatic L-amino acid decarboxylase (ddc); transla-

tion elongation factor 1, gamma chain (eEF-1g); serine

proteinase (pr1H); glutamine synthetase (gln1); ferric re-

ductase (fre2); transmembrane osmosensor (sho1); acidic

amino acid permease (dip5); and eukaryotic translation

initiation factor 4A (eIF-4A).

Semiquantitative reverse transcriptase
(RT)-PCR analysis

Semiquantitative RT-PCR experiments were also performed

to confirm the RDA results and the reliability of our

approaches. Yeast cells of P. brasiliensis treated with human

plasma, as well as control yeast cells, were used to obtain

total RNAs. These RNAs were obtained from experiments

independent of those used in the cDNA subtraction. The

single-stranded cDNAs were synthesized by reverse tran-

scription towards total RNAs, using the Superscript II

RNAseH reverse transcriptase, and PCR was performed

using cDNA as the template in a 30-mL reaction mixture

containing specific primers, sense and antisense, respec-

tively, as follows: endoplasmic reticulum to Golgi transport

vesicle protein (erv46), 50-CCTTATATGGGGTGAGTGGT-
30 and 50-CCTCTCGTTCGCACTGCTC-30; pyridoxamine

phosphate oxidase (ppo1), 50-CATCGACGACTGCCTCC
TC-30 and 50-GGACGGCTTCTGGGTGCT-30; putative

major facilitator protein (ptm1), 50-CGATTCCTCGCAA
TTGGTCA-30 and 50-CGTTGCGCCCAATGAGTTC-30;
eukaryotic release factor 1 (eRF-1), 50-CAACGTTGACTT
TGTCATTGG-30 and 50-CCATGGACTTGTCATATACTG-
30; eEF-1g, 50-GGCTTGGAGAGGGAGTCG-30 and 50-CC
CTTGTTGGACGAGACCC-30; gln1, 50-CGTTACCCTCA
CCGTAGAC-30 and 50-CATACGGCTGGCCCAAGG-30;
sho1, 50-CCACCACCGGCCACTGAC-30 and 50-CCCGAAA
CAACTGTCTCCG-30; and ribosomal L34 protein (l34), 50-
CAAGACTCCAGGCGGCAAC-30 and 50-GCACCGCCATG
ACTGACG-30. The reaction mixture was incubated initially

at 95 1C for 1min, and this was followed by 25–35 cycles of

denaturation at 95 1C for 1min, annealing at 55–65 1C for

1min, and extension at 72 1C for 1min. The annealing

temperature and the number of PCR cycles were optimized

in each case to ensure that the intensity of each product fell

within the exponential phase of amplification. The DNA

product was separated by electrophoresis in 1.5% agarose

gel, stained, and photographed under UV light illumination.

The analyses of relative differences were performed with the

SCION IMAGE BETA 4.03 program (http://www.scioncorp.com).

Protein extract preparation and Western blot
analysis

Protein extracts were obtained from P. brasiliensis yeast cells

incubated with human plasma for 1 and 12 h. Sodium

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-

PAGE) was performed with 12% polyacrylamide gels. The

protein extracts were electrophoresed and transferred

to membranes. The membranes were incubated in 0.05%
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(v/v) Tween-20 plus Tris-buffered saline containing 1%

(w/v) dry fat milk, and were then incubated with a poly-

clonal antibody raised to the recombinant formamidase of

P. brasiliensis (Borges et al., 2005). The secondary antibody

was alkaline phosphatase-conjugated anti-(mouse IgG).

Control reactions were performed with a primary antibody

to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of

P. brasiliensis (Barbosa et al., 2006). The secondary antibody

was alkaline phosphatase-conjugated anti-(rabbit IgG) (di-

luted 1 : 3000). Reactions were developed using 5-bromo-4-

chloro-3-indolyl phosphate and nitroblue tetrazolium

(BCIP/NBT).

Measurement of formamidase activity

Formamidase activity was measured by monitoring the

appearance of ammonia, as previously described (Skoulou-

bris et al., 1997; Borges et al., 2005). Briefly, samples of 50mL
(0.2mg of total protein) were added to 200 mL of formamide

substrate solution at a final concentration of 100mM in

100mM phosphate buffer (pH 7.4) and 10mM EDTA. The

reaction mixture was incubated at 37 1C for 30min; then,

400mL of phenol-nitroprusside and 400mL of alkaline

hypochlorite (Sigma Aldrich, Co.) were added, and the

samples were incubated for 6min at 50 1C. Absorbance was
then read at 625 nm. The amount of ammonia released was

determined from a standard curve. One unit (U) of for-

mamidase activity was defined as the amount of enzyme

required to hydrolyze 1mmole of formamide (corresponding

to the formation of 1 mmole of ammonia) per minute per

milligram of total protein.

SDS sensitivity tests

For SDS sensitivity assays, yeast cells were incubated with

human plasma for 1, 12 and 24 h. Cells were washed five

times in 1�PBS, and 102 cells were spotted in 5mL
onto Fava-Neto’s medium containing SDS at the indicated

concentration. Plates were incubated at 36 1C for 7 days.

Controls were obtained using 102 cells of yeast forms grown

for 7 days and subjected to the same washing conditions.

Results

Plasma incubation induces a specific
transcriptional response in P. brasiliensis
yeast cells

The RDA approach was performed between the yeast control

fungal cells (driver) and the yeast cells treated with human

plasma for 10 and 60min (testers). Subtraction was per-

formed by incubating the driver and the testers. Selection of

the cDNAs was achieved by construction of subtracted

libraries in pGEM-T Easy, as described earlier. Figure 1

shows the RDA products of the two conditions of subtrac-

tion. Different patterns of DNA amplification were observed

after two cycles of RDA, as shown.

In total, 577 clones were successfully sequenced. Of these,

303 were obtained from incubation of fungus in human

plasma for 10min, and 274 were obtained from yeast cells

after incubation in human plasma for 60min. Using the

BLASTX program, 2.25% of the ESTs would correspond to

proteins of unknown function, with no matches in data-

bases. In addition, 97.93% of the ESTs displayed significant

similarity to genes in the P. brasiliensis database (https://

dna.biomol.unb.br/Pb/), whereas 2.07% did not show simi-

larity to known P. brasiliensis genes.

The nature of adaptations made by P. brasiliensis during

treatment in human plasma can be inferred by classify-

ing the ESTs into 11 groups of functionally related genes

(Table 1). We analyzed the redundancy of the transcripts by

determining the number of ESTs related to each transcript.

The most redundant cDNAs appearing during human

plasma treatment for 10min were as follows: ddc (59 ESTs),

eEF-1g (38 ESTs), sho1 (18 ESTs), gln1 (18 ESTs), pr1H (13

ESTs), and Ap-1-like transcription factor (meab) (11 ESTs).

After 60min of incubation in human plasma, the most

abundant transcripts were those encoding eIF-4A (35 ESTs),

SHO1 (23 ESTs) eEF-1g (19 ESTs), PR1H (14 ESTs), FRE2

(12 ESTs), and DIP5 (12 ESTs), as shown in Table 1.

In addition, a comparison was performed between upre-

gulated transcripts appearing during human plasma incuba-

tion and those present during yeast cell incubation in

human blood (Bailão et al., 2006). The same batch of blood

was used to prepare human plasma and for the incubation

of yeast cells in total blood. Table 1 gives the genes

Fig. 1. Agarose gel electrophoresis of subtracted differential cDNA

pools derived from Paracoccidioides brasiliensis yeast cells incubated

with human plasma. Products of the first and second rounds of subtrac-

tion performed using as testers the cDNA obtained from RNAs of yeast

cells incubated with human plasma for 10min (lanes a and c, respec-

tively) or for 60min (lanes b and d, respectively). The numbers on the left

side are molecular size markers.
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Table 1. Annotated ESTs with high abundance in yeast cells during incubation in human plasma vs. control yeast cells

MIPS category Gene product Best hit/accession number e-value

Redundancy

P10 P60

Metabolism 2-Methylcitrate dehydratase (MCD) Neurospora crassa/EAA36584.1 1e�95 2 3

5-Aminolevulinic acid synthase� Aspergillus oryzae/AAD38391 6e�70 1 –

Acetolactate synthase (ILV2)� Aspergillus nidulans/XP_409093.1 3e�63 3 1

Adenine phosphoribosyltransferase� Aspergillus nidulans/XP_413220.1 1e�60 – 2

Aldehyde dehydrogenase Emericella nidulans/AAK18073 4e�42 – 1

Anthranilate synthase component II� Aspergillus fumigatus/CAF32024 1e�58 – 1

Aromatic L-Amino-acid decarboxylase (DDC)w Gibberella zeae/XP_385471.1 5e�63 59 16

Formamidase� P. brasiliensis/AAT11170.1 1e�82 – 3

Glutamine synthetase (GLN1) Aspergillus nidulans/XP_408296.1 1e�107 18 9

Inosine-5-monophosphate dehydrogenase� Gibberella zeae/XP_381037.1 1e�54 1 –

NADPH-quinone reductase� Aspergillus nidulans/XP_411331.1 6e�71 1 –

Oleate delta-12 desaturase� Aspergillus fumigatus/CAE47978 2e�81 – 1

Pyridoxamine 50-phosphate oxidase (PPO1) Aspergillus nidulans/XP406447.1 6e�85 3 –

Sphingosine-1-phosphate lyase� Aspergillus nidulans/XP406126.1 3e�90 5 1

Thiamine-phosphate diphosphorylase� Aspergillus nidulans/XP_408015.1 2e�43 3 1

Transglutaminase� Aspergillus nidulans/XP_405385.1 3e�33 4 –

Energy Acetyl-CoA synthetase (ACS)� Aspergillus nidulans/EAA62719 3e�90 – 9

Acyl-CoA dehydrogenase (FADE1) P. brasiliensis/AAQ04622 1e�100 1 4

Acyltransferase family protein (SMA1)� Aspergillus nidulans/XP_412367.1 6e�27 1 –

Cytochrome c oxidase assembly protein (COX15)� Aspergillus nidulans/XP406052.1 1e�70 – 3

Cytochrome c oxidase subunit V� Aspergillus niger/CAA10609 2e�17 1 2

Cytochrome P450 monooxygenase� Aspergillus nidulans/XP412215.1 1e�74 7 4

D-Lactate dehydrogenase� Aspergillus nidulans/XP413203.1 4e�76 1 –

Long-chain fatty-acid CoA-ligase (FAA1) Aspergillus nidulans/XP410151.1 1e�61 1 4

Multifunctional b-oxidation protein (FOX2) Aspergillus nidulans/XP411248.1 9e�83 – 2

NADH-fumarate reductase (CFR)� Aspergillus nidulans/XP405680.1 2e�82 4 8

Cell cycle Septin-1 Coccidioides immitis/AAK14772.1 8e�88 1 1

Transcription Ap-1-like transcription factor (meab protein) Aspergillus nidulans/XP_411679.1 2e�35 11 4

Cutinase-like transcription factor 1 Aspergillus nidulans/XP_405562.1 2e�37 3 2

Splicing factor U2 35-kDa subunit� Magnaporthe grisea/XP_365103.1 9e�64 1 –

Transcription factor HACA Aspergillus niger/AAQ73495 4e�59 6 3

Zinc finger (GATA type) family protein transcription

factor

Aspergillus nidulans/XP407289.1 3e�29 – 3

Protein synthesis 40S ribosomal protein S1B Aspergillus nidulans/XP_413007.1 2e�91 1 3

Eukaryotic release factor 1 (eRF1)w Aspergillus nidulans/EAA60141 8e�99 2 5

Eukaryotic translation elongation factor 1 g (eEF-1g)w Aspergillus nidulans/XP_410700.1 4e�56 38 19

Eukaryotic translation initiation factor 4A(eEIF-4A) Aspergillus nidulans/XP_407069.1 1e�79 16 35

Eukaryotic translation initiation factor 4E (eEIF-4E)� Aspergillus nidulans/XP_407548.1 1e�97 – 3

Translation elongation factor 1 a chain Ajellomyces capsulata/AAB17119 5e�24 – 2

Translation elongation factor 3 Ajellomyces capsulatus/AAC13304 1e�78 – 1

Translation elongation factor Tu, mitochondrial Aspergillus fumigatus/CAD27297 1e�68 – 2

Protein sorting/modification 26S Proteasome non-ATPase regulatory subunit 9� Kluyveromyces lactis/CAH00789.1 5e�12 – 1

Golgi a-1,2-mannosyltransferase� Aspergillus nidulans/XP_410994.1 1e�33 – 1

Mitochondrial inner membrane protease, AAA

family�
Aspergillus nidulans/XP_409725.1 2e�84 – 1

Probable protein involved in intramitochondrial

protein sorting

Aspergillus nidulans/XP_408432.1 2e�40 – 2

Cellular transport/transport

facilitation

Acidic amino acid permease (DIP5) Aspergillus nidulans/XP_410255.1 6e�73 6 12

ATP-binding cassete (ABC) transporter (MDR) Venturia inaequalis/AAL57243 5e�64 – 1

ABC multidrug transport protein Gibberella zeae/XP_382962.1 3e�43 – 2

Coatomer protein� Aspergillus nidulans/XP_405059.1 1e�74 1 –

Endoplasmic reticulum calcium-transporting ATPase Aspergillus nidulans/XP_409880.1 6e�78 5 1

Endoplasmic reticulum–Golgi transport vesicle

protein (ERV46)�
Gibberella zeae/XP_380545.1 2e�69 1 –

Ferric reductase (FRE2)w Aspergillus nidulans/XP_409043.1 8e�61 10 12

GDP-mannose transporter Cryptococcus neoformans/AAW44189 1e�35 2 1
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Table 1. Continued.

MIPS category Gene product Best hit/accession number e-value

Redundancy

P10 P60

H�/nucleoside cotransporter Aspergillus nidulans/XP_409630.1 7e�47 – 1

High-affinity zinc/iron permease (ZRT1) Candida albicans/EAK96396.1 6e�57 3 –

Major facilitator family transporter Magnaporthe grisea/XP_369043.1 5e�65 – 1

Major facilitator superfamily protein�,z Aspergillus nidulans/XP_410760.1 1e�51 2 –

Mitochondrial carrier protein Neurospora crassa/XP_328128 3e�76 4 1

Potential low-affinity zinc/iron permease� Aspergillus fumigatus/AAT11931 1e�41 2 1

Potential nonclassic secretion pathway protein� Aspergillus nidulans/XP_411820.1 1e�28 7 –

Putative major facilitator protein (PTM1) Neurospora crassa/EAA27169.1 3e�33 1 –

Putative transmembrane Ca21 transporter protein

CCC1

Aspergillus nidulans/XP_407818.1 1e�35 – 2

Signal transduction cAMP-dependent serine/threonine protein kinase

SCH9

Aspergillus nidulans/AAK71879.1 1e�86 – 1

Leucine zipper-EF-hand-containing transmembrane

protein 1�,z
Aspergillus nidulans/XP_407076.1 1e�76 – 1

Protein with PYP-like sensor domain (PAS domain) Neurospora crassa/EAA32992.1 4e�45 – 2

Putative cAMP-dependent protein kinase Aspergillus nidulans/XP_412934.1 2e�74 3 1

Ras small GTPase, Rab type Aspergillus niger/CAC17832 7e�80 2 –

Transmembrane osmosensor (SHO1)w Aspergillus nidulans/XP_411835.1 1e�38 18 23

Cell rescue and defense Catalase A� Ajellomyces capsulatus/AAF01462.1 2e�74 2 –

Chaperonin-containing T-complex� Aspergillus nidulans/XP_406286.1 3e�74 2 1

Heat shock protein 30 (HSP30) Aspergillus oryzae/BAD02411 7e�16 – 1

Serine proteinase (PR1H)w P. brasiliensis/AAP83193 6e�95 13 14

Cell wall biogenesis 1,3-b-Glucan synthase� P. brasiliensis/AAD37783 3e�96 – 1

Putative glycosyl hydrolase family 76�,z Aspergillus nidulans/XP_408641.1 1e�69 – 1

Putative glycosyl transferase� Aspergillus nidulans/XP_409862.1 3e�45 – 1

Unclassified Conserved hypothetical protein Aspergillus nidulans/XP_411679.1 5e�36 1 1

Conserved hypothetical protein Aspergillus nidulans/XP_405564.1 5e�53 1 –

Conserved hypothetical protein� Aspergillus nidulans/XP_412972.1 5e�41 1 1

Conserved hypothetical protein Aspergillus nidulans/XP_413281.1 7e�54 4 3

Conserved hypothetical protein Neurospora crassa/XP_323499 3e�25 1 1

Conserved hypothetical protein� Aspergillus nidulans/XP_405564.1 1e�30 – 2

Conserved hypothetical protein� Aspergillus nidulans/XP_404965.1 3e�43 4 –

Conserved hypothetical protein� Magnaporthe grisea/XP_365936.1 2e�41 1 –

Conserved hypothetical protein� Aspergillus nidulans/XP_407902.1 2e�35 – 5

Conserved hypothetical protein� Aspergillus nidulans/XP_407958.1 1e�10 – 1

Conserved hypothetical protein� Aspergillus nidulans/XP_410433.1 5e�46 1 –

Conserved hypothetical protein� Neurospora crassa/CAC28640.1 1e�49 – 1

Conserved hypothetical protein� Aspergillus nidulans/XP_410463.1 5e�34 1 –

Conserved hypothetical protein� Aspergillus nidulans/XP_407250.1 8e�24 – 2

Conserved hypothetical proteinz Aspergillus nidulans/XP_404476.1 1e�22 – 2

Conserved hypothetical proteinz Aspergillus nidulans/XP_408657.1 6e�27 – 2

Hypothetical protein No hits found – 1 1

Hypothetical protein Aspergillus nidulans/XP_410643.1 2e�10 1 –

Hypothetical protein Aspergillus nidulans/XP_407811.1 1e�10 1 1

Hypothetical protein No hits found – 2 2

Hypothetical protein� No hits found – 1 –

Hypothetical protein No hits found – – 1

Hypothetical protein� Candida albicans/EAK91016 1e�14 – 1

Hypothetical protein No hits found – 1 –

Hypothetical proteinz No hits found – 2 2

�Transcripts not detected during yeast cell incubation in human blood (Bailão et al., 2006).
wTranscripts overexpressed in human plasma when compared to human blood treatment (see Bailão et al., 2006).
zNovel genes detected in P. brasiliensis.
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upregulated in plasma as compared to human blood. It is of

special note that transcripts encoding several enzymes of

metabolic pathways and other categories, such as transglu-

taminase (EC 2.3.2.13), NADPH-quinone reductase (EC

1.6.5.5), acetolactate synthase (EC 2.2.1.6), D-lactate dehy-

drogenase (EC 1.1.2.4), acetyl-CoA synthetase (EC 6.2.1.1),

NADH-fumarate reductase (EC 1.3.99.1), cytochrome P450

monooxygenase (EC 1.14.14.1), eukaryotic translation fac-

tor 4E, catalase A (EC 1.11.1.6), and formamidase (EC

3.5.1.49), are among the upregulated genes.

We also performed a global analysis of our unisequence

set for homology against genes present in the P. brasiliensis

transcriptome database at https://dna.biomol.unb.br/Pb/

and at the EST collections present in GenBank (http://

www.ncbi.nlm.nih.gov). The analysis of generated ESTs

allowed for the identification of some new transcripts that

have not been demonstrated previously for P. brasiliensis, as

identified in Table 1.

Analysis of the upregulated genes in
P. brasiliensis yeast cells after human
plasma treatment

Figure 2 presents the classification of 99 clusters of

P. brasiliensis ESTs according to the classification developed

at MIPS. As observed, most of the ESTs generated in the

human plasma treatment for 10min corresponded to upre-

gulated ESTs related to cell general metabolism (33.00% of

the total ESTs), protein synthesis (18.81% of the total ESTs),

and facilitation of transport (14.52% of the total ESTs). Also

relevant is the abundance of transcripts related to signal

transduction (7.59% of the total ESTs) and transcription

(6.93% of the total ESTs), as shown in Fig. 2a. During the

incubation of yeast cells in human plasma for 60min, it was

observed that most of the upregulated transcripts are related

to protein synthesis (25.55% of the total ESTs) and cell

metabolism (14.23% of the total ESTs), followed by the

ESTs in the cellular transport (12.77% of the total) and

energy production (13.14% of the total ESTs) categories

(Fig. 2b).

The most redundant ESTs selected by RDA during human

plasma treatment for 10 and 60min are summarized in

Table 2. The encoded products showed similarity to various

proteins present in databases. The most upregulated tran-

scripts in the host-like conditions studied encoded the

following functional groups: eukaryotic translation factors,

cell transporters, enzymes involved in cell metabolism,

transcription regulators, factors involved in the response to

stress, and osmosensors. This suggests that these are general

phenomena associated with adaptation of the fungal cells to

the host milieu.

Among the upregulated transcripts, some were previously

shown to be also overexpressed during yeast cell treatment

with human blood (Bailão et al., 2006). Among those

transcripts were cDNAs encoding DIP5, DDC, translation

factors, FRE2, SHO1, and PR1H, as shown in Table 2. It

should be pointed out that among those transcripts, some

showed higher redundancy in the human plasma treatment

as compared to yeast cell incubation with human blood.

This is particularly the case for the transcripts encoding

DDC (EC 4.1.1.28), FRE2 (EC 1.16.1.7) and PR1H. Some

abundant transcripts were not previously described as being

upregulated during the incubation of yeast cells in human

blood, e.g. acetyl-CoA synthase (EC 6.2.1.1) and cyto-

chrome P450 monooxygenase (EC 1.14.14.1), as shown in

Table 2. Some upregulated transcripts, such as those coding

for eRF1, eEF1g, GLN1, PR1H and SHO1, have been

demonstrated previously to be overexpressed in yeast cells

during infection in the blood of experimental mice (Bailão

et al., 2006) (Table 2).

Energy 5.28%

Transcription 6.93%

Cell cycle 0.33%

Signal transduction 
7.59%

Cell defense 5.61%

Unclassified 7.92%

Metabolism 33.00%

Transport facilitation 
14.52%

Protein synthesis 
18.81%

Protein synthesis 
25.55%

Cell wallbiogenesis 
1.09%

Signal transduction 
10.22%

Unclassified 10.58%

Cell defense 5.84%

Transport facilitation 
12.77%

Protein fate 1.82%

Transcription 4.38%

Cell cycle 0.36%

Energy 13.14%

Metabolism 14.23%

(b)(a)

Fig. 2. Functional classification of Paracoccidioides brasiliensis cDNAs derived from RDA experiments using as testers the cDNAs obtained from RNA of

Paracoccidioides brasiliensis yeast cells after incubation with human plasma for 10min (a) or 60min (b). The percentage of each functional category is

shown (see Tables 1 and 2). The functional classification was based on BLASTX homology of each EST against the GenBank nonredundant database at a

significant homology cut-off of � 1e�05 and the MIPS functional annotation scheme. Each functional class is represented as a color-coded segment

and expressed as a percentage of the total number of ESTs in each library.
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Confirmation of the expression of selected
genes of P. brasiliensis

To further define gene response patterns and corroborate the

RDA findings, we initially performed dot-blot analysis of

P. brasiliensis cDNA-RDA clones. Individual plasmid cDNA

clones were blotted in serial dilutions and hybridized to

labeled cDNAs obtained from the condition in which the

transcript was indicated to be most upregulated. As shown

in Fig. 3, the transcripts encoding DDC, eEF-1g, PR1H and

GLN1 were confirmed to be upregulated during human

plasma incubation for 10min (Fig. 3b). The transcripts

encoding FRE2, SHO1, DIP5 and eIF-4A were upregulated

during P. brasiliensis incubation in human plasma for

60min (Fig. 3c).

Further confidence in our ability to infer relative expres-

sion-level data from EST redundancy analysis was provided

by semiquantitative RT-PCR analysis on independently

generated RNAs of yeast cells recovered after incubation

with human plasma. The upregulation of seven genes was

investigated. The transcripts encoding ERV46, PPO1 and

PTM1 were upregulated during 10min of incubation in

human plasma (Fig. 4a). The transcript encoding eRF-1 was

upregulated during 60min of treatment of yeast cells with

human plasma (Fig. 4b). On the other hand, transcripts

encoding eEF-1g, GLN1 and SHO1 were overexpressed in

both conditions, after 10 and 60min of incubation in

human plasma (Fig. 4c). Figure 4 presents a representative

profile of the RT-PCR experiments, confirming the upregu-

lation of genes in the cited conditions, as demonstrated in

the subtracted cDNA libraries.

Western blot analysis and an enzymatic activity assay were

employed to further validate the RDA findings at the protein

level. The formamidase protein was selected because it was

overexpressed in yeast cells after 1 h of incubation in human

plasma. As shown, formamidase can accumulate in yeast

cells after 1 and 12 h of incubation in human plasma

(Fig. 5a). The enzymatic activity of formamidase in yeast

cell extracts is compatible with the accumulation of the

protein detected in the Western blot assay, as demonstrated

in Table 3.

An overview of the metabolic adaptations of
P. brasiliensis upon incubation in human plasma

The most prominent adaptations undergone by P. brasilien-

sis during treatment with human plasma are summarized

in Fig. 6. As observed, the degradation of fatty acids through

b-oxidation, putatively generating acetyl-CoA and propio-

nyl-CoA, could be inferred, as several enzymes are upregu-

lated during the treatment. The flavoprotein dehydrogenase

that introduces the double bond passes electrons directly to

Table 2. The most abundant cDNAs expressed during yeast cell incubation in human plasma

Gene product Organism e-value

Redundancy

Incubation in human plasma

10min 60min

Acetyl-CoA synthetase� Aspergillus nidulans 3e�90 – 9

Acidic amino acid permeasew Aspergillus nidulans 6e�73 6 12

Ap-1-like transcription factor (meab protein) Aspergillus nidulans 2e�35 11 4

Aromatic-L-amino-acid decarboxylasew,z Gibberella zeae 5e�63 59 16

Cytochrome P450 monooxygenase� Aspergillus nidulans 1e�74 7 4

Endoplasmic reticulum calcium-transporting ATPase Aspergillus nidulans 6e�78 5 1

Eukaryotic release factor 1z,‰ Aspergillus nidulans 8e�99 2 5

Eukaryotic translation elongation factor 1 gamma chainw,z,‰,z Aspergillus nidulans 4e�56 38 19

Eukaryotic translation initiation factor 4Az Aspergillus nidulans 1e�79 16 35

Ferric reductasew,z Aspergillus nidulans 8e�61 10 12

Fumarate reductase (NADH)� Magnaporthe grisea 2e�82 4 8

Glutamine synthetasew,‰,z Aspergillus nidulans 1e�107 18 9

Potential nonclassic secretion pathway protein� Aspergillus nidulans 1e�28 7 –

Serine proteasew,z,‰ P. brasiliensis 6e�95 13 14

Sphingosine-1-phosphate lyase� Aspergillus nidulans 3e�90 5 1

Transcription factor HACA Aspergillus niger 4e�59 6 3

Transmembrane osmosensorw,z,‰,z Aspergillus nidulans 1e�38 18 23

�Transcripts not upregulated during yeast cell incubation with human blood (Bailão et al., 2006).
wTranscripts validated by dot blot.
zTranscripts more abundant in yeast cells during incubation in human plasma than during incubation in human blood (Bailão et al., 2006).
‰Transcripts detected in blood of infected mice, as previously demonstrated (Bailão et al., 2006).
zTranscripts validated by semiquantitative RT-PCR.
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O2 during b-oxidation in peroxisomes, producing H2O2, a

product that could be removed from peroxisomes by

catalase A, which is overexpressed in the subtracted cDNA

library. Additionally, the methylcitrate cycle could assimilate

propionyl-CoA, generating pyruvate. Also, the synthesis of

acetyl-CoA from pyruvate and acetate could be performed

by the overexpressed enzyme acetyl-CoA synthase. Addi-

tionally, soluble fumarate reductase in the cytoplasm could

catalyze the conversion of fumarate to succinate during the

reoxidation of intracellular NADH, thus providing addi-

tional succinate.

Sensitivity of yeast cells to SDS after incubation
with human plasma

We tested whether the incubation of yeast cells with human

plasma could be reflected in the relative sensitivity of cells to

SDS, an anionic detergent that destabilizes the cell wall at

ddc

eEF-1γ

pr1H

(a) (b) (c)(a)

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

gln1

fre2

sho1

dip5

eIF4a

Fig. 3. Dot-blot analysis of Paracoccidioides brasiliensis cDNA-RDA clones. DNAs of individual clones were prepared and blotted in several dilutions

(1–5). Individual clones were blotted and hybridized to the labeled cDNAs obtained from the control yeast cells (a), and labeled cDNAs obtained from

Paracoccidioides brasiliensis after 10min (b) or 60min (c) of treatment with human plasma. The clones were: aromatic L-amino acid decarboxylase (ddc);

eukaryotic elongation factor 1, gamma chain (eEF1-g); serine protease (pr1H); glutamine synthetase (gln1); ferric reductase (fre2); transmembrane

osmosensor (sho1); acidic amino acid permease (dip5); and eukaryotic initiation factor 4a (eIF-4a).

ppo1

L34

ptm1

L34

erv46

L34

Y P10

(a) (b) (c)

eRF1

L34

Y P60

gln1

L34

sho1

L34

eEF-1

L34

Y P10 P60

Fig. 4. Validation of RDA results by semiquantitative RT-PCR of RNAs obtained from yeast cells during incubation with human plasma. Semiquantitative

RT-PCR analysis was carried out with specific primers, as described. Numbers associated with the bars indicate fold differences relative to the data for the

reference in vitro cultured yeast cells, which were established by densitometry analysis. Using varied cycle numbers, the exponential phase of each

primer was determined and used to allow semiquantitative analysis of the respective reactions. The same amounts of cDNAs were used for all PCR

reactions. The RNAs used for RT-PCR were obtained from an independent sample of control yeast cells, and from an independent sample of the yeast

cell incubation with human plasma, from those samples used for the RDA experiments. Clone names are given on the left side of the figure. The sizes of

the amplified DNA fragments are as follows: erv46, 519 bp; ppo1, 394 bp; ptm1, 166 bp; eRF1, 392 bp; eEF-1g, 438 bp; gln1, 494 bp; sho1, 386 bp. The
RNA samples were obtained from: control yeast cells (Y); yeast cells treated with human plasma for 10min (P10) and 60min (P60). (a) Transcripts

overexpressed during human plasma incubation for 10min. (b) Transcripts overexpressed during human plasma incubation for 60min. (c) Transcripts

overexpressed in both conditions.
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very low concentrations. The yeast cells incubated with

human plasma show greater sensitivity to this osmotic de-

stabilizing agent when compared to the control cells (Fig. 7).

Discussion

Cellular organisms develop a myriad of strategies to main-

tain specific internal conditions when challenged by the host

environment. The complexity of the P. brasiliensis system

for detecting and responding to the host environment is

only beginning to come to light. Survival and proliferation

in the host are essential steps for P. brasiliensis to cause

infection. Paracoccidioides brasiliensis alters the transcrip-

tional profile in host-like conditions, as we have described

previously (Bailão et al., 2006). To elucidate the influence

of human plasma on transcript profiles, we attempted to

isolate differentially regulated genes expressed in this condi-

tion. The fungus can be constantly exposed to human

plasma during superficial infections, as a consequence of

the local inflammatory response, although the effect of

plasma on P. brasiliensis gene expression is not known.

Some metabolic enzymes were upregulated in the sub-

tracted libraries. During plasma treatment of P. brasiliensis,

the overexpression of transcripts encoding enzymes of

b-oxidation was observed. All the enzymes related to the

b-oxidation pathway are upregulated in the yeast cells of

P. brasiliensis upon incubation with human plasma. It is

of special note that a peroxisomal multifunctional enzyme

is probably a 2-enoyl-CoA hydratase/3-hydroxyacyl-CoA

36 kDa

45 kDa

C 1H 12H

C 1H 12H

0
0.5

1
1.5

Control 1H 12H

0
0.5

1
1.5

Control 1H 12H

(a)

(b)

Fig. 5. Validation of the RDA results by Western blot. Total cellular

extracts were obtained from yeast cells incubated with human plasma

for 1 and 12h. The proteins (25 mg) were electrophoretically transferred

to a nylon membrane and checked by Ponceau S to determine equal

loading. The samples were reacted with: (a) a polyclonal antibody

produced against the Paracoccidioides brasiliensis recombinant forma-

midase (dilution 1 : 1000); and (b) a polyclonal antibody raised to the

recombinant GAPDH. After reaction with alkaline phosphatase-

conjugated anti-mouse IgG (a) and alkaline phosphatase-conjugated

anti-rabbit IgG (b), the reaction was developed with BCIP/NBT. The

analyses of relative differences were performed with the SCION IMAGE BETA

4.03 program (http://www.scioncorp.com).

Table 3. Formamidase activity of yeast cell protein extracts

Treatment Specific activity�

Control 1.36� 0.0417

1h of incubation in human plasma 2.09� 0.0707

12h of incubation in human plasma 1.84� 0.0622

�One unit of FMD activity was defined as the amount of enzyme required

to hydrolyze 1 mmole of formamide (corresponding to the formation of

1mmole of ammonia) per minute per milligram of total protein.
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Fig. 6. Some metabolic pathways that are overexpressed during Paracoccidioides brasiliensis yeast cell incubation with human plasma. (A)Transcripts

that are not overexpressed during Paracoccidioides brasiliensis treatment with human blood. (B)Transcripts present in database. FAA1, long-chain fatty

acid-CoA ligase; FADE1, acyl-CoA dehydrogenase; FOX2, multifunctional b-oxidation protein; CATA, catalase A; SMA1, acyltransferase family protein;

ACS, acetyl-CoA synthetase; CFR, NADH-fumarate reductase; MCS, methylcitrate synthase; MCD, methylcitrate dehydroghenase; CAN, aconitase;

MCL, methylcitrate lyase; SDH, succinate dehydrogenase; FUM, fumarate reductase; MDH, malate dehydrogenase; ILV2, acetolactate synthase;

Mcitrate, methylcitrate; Misocitrate, methylisocitrate.
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dehydrogenase, as described in Saccharomyces cerevisiae,

Candida tropicalis and mammals (Moreno et al., 1985;

Hiltunen et al., 1992; Breitling et al., 2001). b-Oxidation of

even-chain-length fatty acids yields acetyl-CoA units exclu-

sively, whereas b-oxidation of odd-chain-length fatty acids

yields both acetyl-CoA and propionyl-CoA. In several

bacteria and fungi, propionyl-CoA is assimilated via the

methylcitrate cycle, which oxidizes propionyl-CoA to pyr-

uvate (Brock et al., 2000). The growth of fungi on gluconeo-

genic compounds such as acetate or fatty acids positively

regulates enzymes of the glyoxylate cycle, even in the

presence of repressing carbon sources such as glucose

(Cánovas & Andrianopoulos, 2006). Acetyl-CoA synthetases

(EC 6.2.1.1) have been detected as isoforms in microorgan-

isms such as the fungus Phycomyces blakesleeanus, in where

they can use acetate and propionate as substrates (De Cima

et al., 2005). Alternatively, conversion of pyruvate to acetyl-

coenzyme A can be accomplished by the concerted action of

the enzymes of the pyruvate dehydrogenase bypass: pyruvate

decarboxylase, acetaldehyde dehydrogenase, and acetyl-CoA

synthetase (van den Berg et al., 1996).

Mycobacterium tuberculosis genes involved in fatty acid

metabolism are upregulated during infection of macro-

phages and mice, and the methylcitrate cycle is also required

for growth of M. tuberculosis in murine bone marrow-

derived macrophages (Muñoz-Elias et al., 2006). It is of

special note that the methylcitrate dehydratase transcript is

upregulated during P. brasiliensis yeast cell treatment with

human plasma, and could provide pyruvate for the biosyn-

thetic processes through the methylcitrate cycle.

Acetolactate synthase (EC 2.2.1.6) catalyzes the first

common step in the biosynthesis of the branched amino

acids isoleucine, valine and leucine, starting from pyruvate.

Mutants for the homologous gene in Cryptococcus neofor-

mans are avirulent and unable to survive in mice (Kingsbury

et al., 2004). Also, fumarate reductase (EC 1.3.1.6) is

upregulated during human plasma incubation of yeast cells

of P. brasiliensis. In S. cerevisiae, two fumarate reductase

isoenzymes are required for the reoxidation of intracellular

NADH under anaerobic conditions (Enomoto et al., 2002).

Consistently, the yeast cells of P. brasiliensis produce ATP

preferentially through alcohol fermentation (Felipe et al.,

2005). In this sense, aldehyde dehydrogenase (EC 1.2.1.3)

can allow the conversion of ethanol into acetate via acet-

yldehyde, thus providing acetyl-CoA to the glyoxylate cycle.

In P. brasiliensis, alcohol dehydrogenase is upregulated

in the yeast cells, as previously demonstrated (Felipe et al.,

2005).

Plasma significantly upregulated the expression of tran-

scripts associated with protein biosynthesis. Among these

are, for instance, eukaryotic translation factors. The en-

hanced expression of those factors suggests a general in-

crease of protein synthesis in the plasma environment, as we

had previously described for P. brasiliensis yeast cells treated

with human blood (Bailão et al., 2006). This finding could

reflect fungal passage to a nutrient-rich medium, as de-

scribed for C. albicans (Fradin et al., 2003).

Plasma treatment also promotes upregulation of tran-

scripts encoding facilitators of transport in P. brasiliensis

yeast cells. The most upregulated transcripts encode for a

C

SDS
0.05%

SDS
0.1%

1h 12h 24h

Fig. 7. Phenotypic analysis of Paracoccidioides brasiliensis yeast cells after incubation in human plasma for different time periods. Approximately 102

cells were spotted onto Fava-Neto’s medium plates containing the indicated concentrations of SDS. Plates were incubated at 36 1C for 7 days.

Experiments were performed in triplicate.
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putative ferric reductase (FRE2) and for an acidic amino

acid permease (DIP5) of P. brasiliensis. During plasma

treatment, the overexpression of the transcript encoding

FRE2 could be related to the reduction of Fe(III), and the

Fe(II) thus formed could be bound to a transporter

permease, such as a zinc/iron permease (ZRT1), as suggested

previously (Bailão et al., 2006). The high level of uptake of

glutamate by DIP5 could result in chitin deposition, as will

be discussed below.

Signal transduction pathways play crucial roles in cellular

adaptation to environmental changes. The high-osmolarity

glycerol (HOG) pathway in S. cerevisiae and other fungi

consists of two branches that seem to sense osmotic changes

in different ways (Westfall et al., 2004). The SHO1 adapter

protein role was characterized in C. albicans, in which it is

related to the fungal morphogenesis interconnecting two

pathways involved in cell wall biogenesis and oxidative stress

(Román et al., 2005). We have previously demonstrated the

expression of the novel sho1 transcript homolog of

P. brasiliensis in yeast cells during human blood treatment,

as well as in P. brasiliensis yeast cells present in blood of

infected mice, suggesting its involvement in the osmolarity

sensing of P. brasiliensis yeast cells during fungus dissemina-

tion through the blood. It is of special note that the

transcript encoding this novel osmosensor of P. brasiliensis

(Bailão et al., 2006) is predominantly overexpressed in yeast

cells during incubation with human plasma, vs. the incuba-

tion with human blood. In C. albicans, the influence of

blood cells in the transcriptional response has been de-

scribed by Fradin et al. (2005).

Also, transcripts putatively related to cell defense are

upregulated during human plasma treatment of P. brasilien-

sis yeast cells. The gene encoding transglutaminase (TGAse)

has been reported to insert an irreversible isopeptide bond

within and or between proteins using specific glutamine

residues on one protein and the primary amide group on the

other molecule. The resultant molecules are resistant to

proteinases and denaturants (Greenberg et al., 1991). In

addition, a TGAse-like reaction has been associated with the

attachment of Pir proteins to the b-1,3-glucan in S. cerevi-

siae (Ecker et al., 2006). TGAse was found to be localized in

the cell wall of fungi. In C. albicans, TGAse was suggested to

be important in the structural organization of the fungus by

establishing crosslinks among structural proteins, and its

inhibition resulted in increased sensitivity of protoplasts to

osmotic shock (Ruiz-Herrera et al., 1995).

Glutamine synthetase is also upregulated in the human

plasma incubation condition. We had hypothesized that the

enzyme overexpression could be related to the chitin synth-

esis increase that could occur during osmotic stress (Bailão

et al., 2006). In this way, chitin synthesis has been shown to

be essential in the compensatory response to cell wall stress

in fungi, preventing cell death (Popolo et al., 1997). The

sugar donor for the synthesis of chitin is UDP-N-acetylglu-

cosamine. The metabolic pathway leading to the formation

of UDP-N-acetylglucosamine from fructose 6-phosphate

consists of five steps, of which the first is the formation

of glucosamine 6-phosphate from glutamine and fructose

6-phosphate, a rate-limiting step in the pathway. The cell

wall stress response in Aspergillus niger involves increased

expression of the gene gfaA, which encodes the glutamine:

fructose-6-phoshate amidotransferase, and increased depo-

sition of chitin in the cell wall (Ram et al., 2004). Similarly,

we speculate that the increase in the glutamine synthetase

transcript in P. brasiliensis could be related to chitin deposi-

tion in response to the change in external osmolarity faced

by the fungus in the superficial condition of infection as well

as during the blood route of dissemination. The glutamine

synthetase transcript was found to be expressed in

P. brasiliensis yeast cells infecting mice blood, reinforcing its

role in fungal infection (Bailão et al., 2006). Corroborating

our suggestion, fungal yeast cells were more sensitive to SDS

upon incubation with human plasma, suggesting changes in

the structural organization of the cell wall.

Also putatively related to the oxidative response stress,

NADPH-quinone reductase (EC 1.6.5.5) catalyzes a two-

electron transfer from NADPH to quinone, whose reduced

status is undoubtedly important for managing oxidative

stress. Oxidative stress resistance is one of the key properties

that enable pathogenic microorganisms to survive the effects

of the production of reactive oxygen by the host. In this

sense, a homolog of the protein in Helicobacter pylori is a

potential antioxidant protein and is related to its ability to

colonize mouse stomach (Wang & Maier, 2004). Catalase A

is another transcript upregulated during yeast cell incuba-

tion with human plasma. Catalases are described as impor-

tant factors conferring resistance to oxidative stress in fungi

(Giles et al., 2006).

Several lines of evidence suggest that serine proteinases

are required for the successful invasion of host cells by

pathogens. An extracellular SH-dependent serine proteinase

has been characterized from the yeast phase of P. brasiliensis;

it cleaves the main components of the basal membrane in

vitro, thus being potentially relevant to fungal dissemination

(Puccia et al., 1999). Serine proteinases could have an

important role in cleavage of host proteins, either during

the invasion of a host cell or during dissemination through

organs. It is of special note that a serine proteinase homolog

of Bacillus subtilis was able to facilitate siderophore-

mediated iron uptake from transferrin via the proteolytic

cleavage of the protein (Park et al., 2006). In addition, the

incubation of A. fumigatus in media containing human

serum greatly stimulated proteinase secretion, and the serine

proteinase catalytic class had the highest activity (Gifford

et al., 2002). The serine proteinase transcript overexpressed

during human plasma treatment of yeast cells was also
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present during blood infection of mice by P. brasiliensis, as

previously demonstrated (Bailão et al., 2006).

In fungi, several different types of melanin have been

identified to date. The two most important types are DHN-

melanin (named for one of the pathway intermediates, 1,8-

dihydroxynaphthalene) and DOPA-melanin (named for one

of the precursors, L-3,4-dihydroxyphenylalanine). Both

types of melanin have been implicated in pathogenesis

(Hamilton & Gomez, 2002). With regard to P. brasiliensis,

it has been demonstrated that growth of yeast cells in a

defined medium with L-DOPA resulted in melanization of

the cells (Gomez et al., 2001). Furthermore, it has been

reported that fungal melanin protects P. brasiliensis from

phagocytosis and increases its resistance to antifungal drugs

(Silva et al., 2006). Transcripts encoding DDC (EC 4.1.1.28)

were predominantly upregulated in yeast cells upon incuba-

tion with human plasma. This finding could reflect the high

levels of L-DOPA in human plasma, as previously described

(Machida et al., 2006), which can be converted to melanin

by the yeast cells of P. brasiliensis.

We compared the profiles of upregulated genes during the

present treatment (human plasma treatment of yeast cells)

with those described during incubation with human blood,

mimicking the effects of fungal dissemination through

organs and tissues (Bailão et al., 2006). Blood contains

different components, cellular and soluble, which have been

demonstrated to affect C. albicans to different extents

(Fradin et al., 2005). It has been demonstrated that neutro-

phils have the dominant influence on C. albicans gene

expression in blood. Our comparative analysis demon-

strated that 16.63% of the upregulated transcripts in

human plasma were not present in human blood, sug-

gesting the influence of blood cells in the transcriptional

profile, as previously described (Bailão et al., 2006). In this

sense, some genes are upregulated only during plasma

treatment.

To our knowledge, this study is the first to use cDNA-

RDA analysis to characterize changes in gene expression

patterns during human plasma treatment of P. brasiliensis.

The data that we have amassed are the first on the adapta-

tion of P. brasiliensis to numerous stresses during human

plasma treatment at the level of individual genes. The

establishment of genetic tools for P. brasiliensis, such as

DNA-mediated transformation and modulation of gene

expression by gene knockout or RNA interference techni-

ques, will be of great importance in establishing of the roles

of those genes that are highly expressed in response to host

conditions.
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Abstract
Background: Paracoccidioides brasiliensis is a human pathogen with a broad distribution in Latin America. The fungus is
thermally dimorphic with two distinct forms corresponding to completely different lifestyles. Upon elevation of the
temperature to that of the mammalian body, the fungus adopts a yeast-like form that is exclusively associated with its
pathogenic lifestyle. We describe expressed sequence tags (ESTs) analysis to assess the expression profile of the
mycelium to yeast transition. To identify P. brasiliensis differentially expressed sequences during conversion we performed
a large-scale comparative analysis between P. brasiliensis ESTs identified in the transition transcriptome and databases.

Results: Our analysis was based on 1107 ESTs from a transition cDNA library of P. brasiliensis. A total of 639 consensus
sequences were assembled. Genes of primary metabolism, energy, protein synthesis and fate, cellular transport,
biogenesis of cellular components were represented in the transition cDNA library. A considerable number of genes
(7.51%) had not been previously reported for P. brasiliensis in public databases. Gene expression analysis using in silico
EST subtraction revealed that numerous genes were more expressed during the transition phase when compared to the
mycelial ESTs [1]. Classes of differentially expressed sequences were selected for further analysis including: genes related
to the synthesis/remodeling of the cell wall/membrane. Thirty four genes from this family were induced. Ten genes
related to signal transduction were increased. Twelve genes encoding putative virulence factors manifested increased
expression. The in silico approach was validated by northern blot and semi-quantitative RT-PCR.

Conclusion: The developmental program of P. brasiliensis is characterized by significant differential positive modulation
of the cell wall/membrane related transcripts, and signal transduction proteins, suggesting the related processes
important contributors to dimorphism. Also, putative virulence factors are more expressed in the transition process
suggesting adaptation to the host of the yeast incoming parasitic phase. Those genes provide ideal candidates for further
studies directed at understanding fungal morphogenesis and its regulation.
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Background
Paracoccidioides brasiliensis is a dimorphic pathogenic asco-
myceteous fungus, endemic to the Latin America that can
cause primary disease in humans. In the soil the fungus
grows as saprobic mycelium, resulting in the formation of
propagules, which initiates the infection in humans when
inhaled into the respiratory tract. Subsequently, in the
lung, the mycelia propagules develop into yeast cells. The
mycelium to yeast transition can be replicated in vitro by
growing mycelia in conditions of elevated temperature.
The ability of P. brasiliensis to grow in the mycelia form in
the soil and shift to the yeast form in the host is important
for infection and disease. Once introduced into the host,
the mycelial propagules have to convert to yeasts, a condi-
tion essential for the fungus to survive and proliferate
[2,3].

The morphological transition in P. brasiliensis is governed
predominantly by the temperature and is preceded by sev-
eral molecular changes. The identification of genes specif-
ically involved in the mycelium to yeast transition in P.
brasiliensis has been subject of great interest, since patho-
genicity is intimately linked to the dimorphic transition in
some fungi [4]. Approaches used in the identification of
genes important for the transition process include, for
example, the differential expression of P. brasiliensis genes
in both fungal phases identified by electronic subtraction
and cDNA microarray hybridization, which were
employed to search for genes whose expression, displayed
statistically significant modulation during the mycelium
to yeast transition [5-8].

The biochemical processes that control the morphogene-
sis of P. brasiliensis are just coming to light. The dimorphic
transition involves alterations in the cell wall composition
and in the structure of carbohydrates polymers [9,10]. The
yeast cells exhibit an energy metabolism biased towards
ethanol production through fermentation, whereas myc-
elium metabolism tends to be more aerobic than that of
yeast cells. Also the glyoxylate pathway is more active in
the yeast form of P. brasiliensis [5]. Hyper expression of
some enzymes in the sulphur metabolism pathway in the
yeast phase of P. brasiliensis, as well as during the transi-
tion from mycelium to yeast have been reported, corrob-
orating previous descriptions of the importance of this
metabolic pathway to the dimorphic process [6,8,11].

Here, we have tested the concept that novel genes
involved in P. brasiliensis phase transition could be
described by applying a transcriptome analysis of cells
undergoing mycelium to yeast transition. In this manu-
script we describe EST analysis to assess the expression
profile of mycelium undergoing yeast transition. This
choice of approach distinguishes the present work from
previous recently published papers that employed micro-

array hybridization, electronic subtraction and suppres-
sive subtraction hybridization in order to assess
differences using differentiated yeast and mycelium cells
[5-8,12]. Using a custom analysis pipeline for sequences
of P. brasiliensis, isolate Pb01, yeast and mycelium forms
[1] we obtained an EST databank web interface [13].

In this study we report the in silico analyses and compar-
ison of ESTs from mycelium undergoing the early transi-
tion to yeast with mycelium differentiated cells. Our
analysis revealed 179 genes that are positively modulated
during the early transition process, when compared to
mycelia. Additionally 48 novel genes were described in
the P. brasiliensis transition cDNA library. Upon categori-
zation by known databases we have selected MIPS
(Munich Center for Protein Sequences) categories for fur-
ther analyses. Several ESTs were selected for semi-quanti-
tative and quantitative analysis to examine changes in
gene expression induced by the temperature induced tran-
sition of phases.

Results and Discussion
cDNA library construction, sequencing and sequence 
annotation
Transcriptome profiling of mycelium undergoing differ-
entiation to yeast cells in P. brasiliensis has directed our
studies to reveal several uncharacterized genes involved in
this process. We performed in this EST-based program the
sequencing 2880 randomly selected clones. Of these,
2666 gave readable sequences. 1107 sequences remained
after vector and low quality sequences were removed. Of
these, 166 consisted of singletons and 473 corresponded
to consensus with two or more ESTs. In total, 447761 bp
of assembled sequences were obtained corresponding to
an average consensus sequence length of 404 bp. The
1107 sequences were annotated. A total of 828 sequences
(74.8%) showed significant similarity to known protein
sequences (E value ≤ 10-4) based on BLAST searches and
433 ESTs (39.1%) had unknown function and were clas-
sified as hypothetical proteins. 992 sequences (89.6%)
gave significant hits to ESTs present in the P. brasiliensis
transcriptome database [1] or in the GenBank database. In
addition, 115 sequences (10.4% of the total) represented
novel genes of P. brasiliensis.

Description of the ESTs in the transition transcriptome
An overview of the probable adaptations made by P. bra-
siliensis mycelium during morphogenesis can be obtained
by analyzing the ESTs in this early stage of cellular differ-
entiation. As shown in Fig. 1, the ESTs were mainly repre-
sented as following: a total of 22.11% of the annotated
ESTs corresponded to the fungal metabolism; 17.06% of
the ESTs were related to the protein synthesis machinery;
10.83% of the transcripts corresponded to homologues
encoding transport facilitators; 10.24% corresponded to
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ESTs related to protein fate; 7.42% to energy; 7.27% to sig-
nal transduction proteins; 7.12% were related to the tran-
scription machinery; 6.68% corresponded to transcripts
related to the biogenesis of cellular components; 6.38%
corresponded to ESTs encoding cell rescue, defense and
virulence factors.

Comparison of P. brasiliensis ESTs present in the 
transition library to those described for yeast and 
mycelium stage specific phases: induced genes identified 
by in silico EST subtraction
We attempted to determine the putative function of the
set of 639 phrap unisequences by searching for homologs
in the GenBank non-redundant protein database using
BLAST X. We also compared the sequenced ESTs present
in the transition library to those present in the mycelium
transcriptome database. According to the subtractive anal-
ysis, the classification of induced genes was designed for
the ESTs that were not previously described in P. brasilien-
sis in databases or that manifested increased expression in
the transition library as compared to mycelia transcrip-
tome database [1]. This classification was performed
according to the statistical test described by Audic and
Claverie [14], with a 99% confidence rate. The compara-
tive analysis of all the ESTs annotated in the transition
library is available in Table 1, supplementary material.
From the 1107 ESTs identified in this work, 426 of the
total corresponded to induced genes in the transition
library. From the 426 annotated ESTs, 115 corresponded
to novel ESTs, representing 48 novel classified genes.
Table 2, supplementary material, summarizes the results
of such comparison. As shown, the majority of transition
induced genes (82.12%) was composed of unique
sequences or groups of two or three ESTs. Genes with
altered expression included those involved in metabolism
of amino acids, nitrogen, sulfur, nucleotides, carbohy-
drates, vitamins and lipids. In addition genes related to
energy generation, signal transduction and cell wall bio-
genesis, were increased. A small subset of genes with ele-
vated expression had unknown function. The largest
induced groups of sequences consisted of a total of 24
ESTs with homology to a histidine protein kinase sensor
for GlnG regulator, 18 ESTs exhibiting homology to ubiq-
uinone/menaquinone methyltransferase, 11 ESTs with
homology to arylsulfatase regulatory protein, 09 ESTs
with homology to acidic amino acid permease, 06 ESTs
with homology to a HSP 90 and 07 ESTs with homology
to aspartyl protease.

Genes involved in sulfur assimilation, have been
described as induced in P. brasiliensis transition from myc-
elium to yeast and in yeast differentiated cells [6,8]. Here,
we described in the transition transcriptome the induc-
tion of a set of genes related to sulphur metabolism, such
as, the transcript encoding sulfite reductase (E.C. 1.8.1.2)

an enzyme of the sulfur assimilation pathway, leading to
cysteine biosynthesis. Sulfite reductase contains a special
acidic heme group called siroheme. One of the novel
genes detected in the transiton library encodes for an uro-
phorphyrinogen III methylase (E.C 2.1.1.107) homo-
logue to the Met1p of Saccharomyces cerevisiae, related to
the sirohaem and cobalamin biosynthesis [15,16]. Also,
the transcript encoding sulfate permease was induced
compared to the mycelia transcriptome. Sulfate is co-
transported into the cells in an energy dependent process
catalyzed by specific plasma membrane permeases [17].
An arylsufatase regulatory protein probably involved in
the regulation of sulfatase genes was described in the tran-
sition transcriptome. The transcript in P. brasiliensis has
sequence identity to bacterial and fungal arylsulfatases
regulatory proteins. Sulfatases catalyze hydrolytic cleavage
of sulfate ester bonds, liberating sulfate and the corre-
sponding alcohol [18]. In Neurospora crassa arylsulfatase is
up regulated by sulfur starvation and appears to function
as a mechanism for sulfur scavenging [19]. Also, a thiosul-
fate sulphurtransferase (TST) (E.C. 2.8.1.1) putatively, a
mitochondrial matrix protein that plays roles in forma-
tion of iron sulfur proteins, as well as in modification of
iron-sulfur proteins [20] was induced in the transition
transcriptome. The increase in the expression of genes
related to the sulphur metabolism, including the descrip-
tion of novel transcripts corroborates the previous
descriptions of the involvement of sulphur metabolism in
the transition process of P. brasiliensis [6,8,11].

The list of induced genes also includes several ESTs encod-
ing proteins related to lipid metabolism, to signal trans-
duction and to carbohydrate metabolism that will be
referred below. Also proteases, such the Lon protease
putatively related to degradation of damaged or nonna-
tive proteins in the mitochondrial matrix are induced
[21]. An aspartyl protease and a zinc metalloprotease were
among the transcripts with increased expression. Of spe-
cial note molecules related to protein fate, such as to gly-
coslylation and degradation, are abundant in the
transition transcriptome, as shown in Table 2, supple-
mentary material.

An overview of genes related to the membrane/cell wall 
remodeling presenting increased expression in the 
transition library
We catalogued the ESTs potentially associated with fungal
cell wall/membrane synthesis/remodeling described dur-
ing the mycelium to yeast transition. Table 1 depicts the
ESTs predominantly related to the synthesis of those com-
ponents. The transcripts with increased expression
include those encoding enzymes related to the cell wall
carbohydrates biosynthesis and degradation, the trans-
porters of the precursors for the synthesis of such mole-
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cules, enzymes related to protein glycosylation and to the
synthesis of membrane lipids.

It is presumed that the dimorphic transition occurs simul-
taneously with changes in the fungal cell wall composi-
tion of such compounds as phospholipids and
carbohydrate polymers [3,10,22]. In P. brasiliensis, lipids,
chitin, glucans and proteins are the main constituents of
the cell wall in mycelium and yeast cells. The transition
transcriptome data suggest that P. brasiliensis favors the
membrane and cell wall remodeling in the early stages of
transition, from mycelium to yeast. Transcription of 34
cell wall/membrane related genes were induced upon
temperature shift (Table 1).

In Table 1 and Fig. 2A, an overview of the induced
enzymes and transporters putatively related to the biosyn-
thesis of the carbohydrate compounds of the cell wall, is
shown.

Many cell wall-related proteins were found among the
presently identified ESTs, including molecules related to
the chitin synthesis, alpha glucan synthesis and chitin
degradation. The main polysaccharide of the yeast cell
wall is alpha-glucan, whereas the mycelium contains pre-
dominantly beta-glucan [23]. Several genes related to the
synthesis of the carbohydrate components of the cell wall
were induced in the transition library, in comparison to
the mycelium transcriptome database [1]. Those genes
include phosphoglucomutase (pgm) UDP-Glucose pyro-

phosphorylase (ugp1), and alpha -1,3 glucan synthase
(ags1), (Table 1, Fig. 2A), putatively enabling the increase
in the synthesis of alpha-1,3 glucan in the yeast incoming
cell wall [10]. A novel transcript encoding an alpha glu-
cosidase 1 (GLCase I) was described. It has been suggested
that glucosidases are directly involved in the synthesis or
processing of beta-1,6 glucan in S. cerevisiae [24].

Chitin is the major component of yeast cells in which it
comprises (37% to 48%) of the total cell wall compo-
nents. Of special note is the detection of a novel transcript
encoding an UDP-N-acetyl glucosamine transporter
(MNN2), which has been described in S. cerevisiae. The
cytoplasm is the sole site of sugar nucleotide synthesis and
sugar nucleotides must be transported into various
organelles in which they are utilized as a donor substrate
for sugar chain synthesis. It has been demonstrated that
UDP-N-acetyl glucosamine transporter encoded by the
YEA4 gene in S. cerevisiae is located in the endoplasmic
reticulum and is involved in cell wall chitin synthesis in
this fungi [25]. GDA1 (guanosine diphosphatase) gener-
ates both GMP and UMP required as antiporters for gua-
nosine and uridine sugar transport into the Golgi lumen.
Deleted strains of Kluveromyces lactis for gda1 present
altered cell wall stability and composition [26]. Chitinase
1 (CTS1) and 3 (CTS3), the latter a novel gene, were
induced in the transition library suggesting their role in
the remodeling of the cell wall and providing N-acetyl glu-
cosamine for the synthesis of chitin. The DIP5 encoding
transcript (acidic amino acid permease) was increased in

Classification of ESTs from the transition cDNA library of P. brasiliensisFigure 1
Classification of ESTs from the transition cDNA library of P. brasiliensis. The classification was based on E value and 
performed according to the functional categories developed on the MIPS functional annotation scheme.
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the transition library and could provide the uptake of
glutamate, a precursor required for the synthesis of chitin.
We recently described that this transcript is up regulated in
P. brasiliensis yeast cells during incubation in human
blood and is hypothetically related to the cell wall remod-
eling supposed to occur during osmotic stress [27]. In
addition, the induced enzyme HPAT (histidinol phos-
phate aminotransferase) could also provide glutamate for
the synthesis of chitin precursors.

Sugar transporters MSTE (monosaccharide transport pro-
tein), STL (sugar transport protein), GTT (glucose trans-
porter) were present in the transition transcriptome; the
first two genes were present as increased transcripts. The
increased expression may permit the fungus to increase
uptake of carbohydrates, thus accelerating the synthesis of
glucan and chitin (Table 1, Fig. 2A). The mael (malate per-
mease) cDNA encoding the transporter for malate is an
induced gene in the transition library and could provide

the precursor for gluconeogenesis furnishing carbohy-
drate precursors to the cell wall components biosynthesis.
Also the availability of compounds to the glyoxalate cycle
seems to be favored during transition. The MAEL (malate
transporter) could provide malate for the glyoxylate cycle.
The enzymes (CITA) citrate synthase (E.C.2.3.3.1), (ACO)
aconitase (E.C.4.2.1.3), (ICL) isocitrate lyase
(E.C.4.1.3.1), and (MDH) malate dehydrogenase
(E.C.1.1.1.37) were present in the transition library, indi-
cating that the glyoxalate cycle is functional during the
transition from mycelium to yeast. Of note the transcrip-
tome analysis in P. brasiliensis showed several pathways
that provide substrates for the glyoxalate cycle that is up
regulated in the yeast cell, as described previously [5].

Induced transcripts in the transition library also involve
those related to the phospholipids synthesis, as well as to
ergosterol, as shown in Table 1 and Fig. 2B. The enzyme
GFDA (glycerol 3P dehydrogenase) converts DHCP (dihy-

Table 1: Induced P. brasiliensis transcripts potentially related to membrane and cell wall synthesis/remodeling.

Gene Product E.C. number Annotated function Predicted redundancy‡

M T

Alpha-glucosidase I* (glcase 1) 3.2.1.106 Single glucose residues remotion from oligossaccharides - 1
Phosphoglucomutase (pgm) 5.4.2.8 Synthesis of glucose - 1
UDP-glucose pyrophosphorylase (ugp1) 2.7.7.9 Synthesis of UDP-Glucose - 2
Alpha-1,3 glucan synthase (ags1) 2.4.1.183 Synthesis of α1–3-glucan - 1
Mannitol-1-phosphate dehydrogenase (mtld) 1.1.1.17 Synthesis of fructose 6-phosphate 2 3
Monosaccharide transport protein (mstE) - Low affinity glucose uptake - 1
Sugar transporter protein (stl1) - Uptake of hexoses 3 5
Chitinase 1(cts1) 3.2.1.14 Hydrolysis of chitin 1 2
Chitinase 3* (cts3) 3.2.1.14 Hydrolysis of chitin - 1
Acidic amino acid permease (dip5) - Acidic amino acid uptake 9 9
Histidinol phosphate aminotransferase (hpat) 2.6.1.9 Synthesis of L-histidinol phosphate/glutamate - 1
Malate permease (mael) - Uptake of Malate - 2
UDP-N-acetylglucosamine transporter* (mnn2) - Required for transport of the chitin precursor to Golgi and 

Endoplasmic reticulum
- 1

Glucanosyltransferase family protein (gel) 2.4.1.- Transglucosidase activity 1 3
Rho GTPAse activating protein* (bem3) - Regulation of the beta(1,3)-glucan synthase - 1
Mannosyltransferase (mnt1) 2.4.1.131 Mannosylation of proteins/lipids - 1
Alpha-1,2-mannosyltransferase (mnn5) 2.4.1.131 Mannosylation of proteins/lipids 3 3
Guanosine diphosphatase* (gdA1) 3.6.1.42 Synthesis of GMP - 1
Alpha-1,2 galactosyltransferase* (gma12) 2.4.1.- Galactose incorporation in N- and O-linked mannoproteins - 1
Lysophospholipase (lpb1b) 3.1.1.5 Hydrolysis of phospholipids - 1
Phospholipase A2 (plaA) 3.1.1.4 Hydrolysis of phospholipids - 1
Glycerol-3-phosphate dehydrogenase* (NADP) (gfdA) 1.1.1.94 Synthesis of Glycerol-3-phosphate. - 1
Glycerophosphodiester phosphodiesterase (gpdp) 3.1.4.46 Synthesis of choline and ethanolamine 1 4
Acyl-coenzyme A synthetase (acs) 6.2.1.3 Convertion of the fatty acid to acyl-coA for subsequent beta 

oxidation
- 1

Phosphatidylserine synthase* (pssA) 2.7.8.8 Glycerophospholipid metabolism/Phosphatidylserine synthesis - 1
Myo-inositol-1-phosphate synthase (ino1) 5.5.1.4 Synthesis of myo-inositol 1 phosphate - 1
Phosphatidylinositol transfer protein (pdr16) - Transport of phospholipids from their site of synthesis to cell 

membranes/Regulator of phospholipid biosynthesis
- 1

Lanosterol 14-alpha-demethylase (erg11) 1.14.13.70 Synthesis of ergosterol 3 4
Sterol delta 5,6-desaturase (erg3) 1.3.3.- Regulation of ergosterol biosynthesis - 1
Serine esterase (net1) - Catalysis of the cleavage of fatty acids from membrane lipids - 3
Peroxisomal hydratase dehydrogenase epimerase (hde) 4.2.1.- Beta oxidation - 4
Fatty acid desaturase (desA) 1.14.99.- Insaturation of acyl group of lipids 1 2
Carnitine dehydratase (caiB) 4.2.1.89 Transport of long-chain fatty acids - 1
Suppressor of anucleate metulae B protein* (samB) - Morphogenesis regulation - 1

‡ The predicted redundancy was obtained from the transition cDNA library in comparison to mycelia transcriptome database [1].
* Novel genes detected in P. brasiliensis.
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droxycetona phosphate) in G3P (glycerol 3P). The gfdA
null mutant of Aspergillus nidulans displays reduced G3P
levels and an osmoremediable growth defect, which is
associated with abnormal hyphal morphology [28]. G3P
can be produced by the action of the enzyme GDPD (glyc-
erophosphodiester phosphodiesterase) which promotes
the hydrolysis of phosphatidylethanolamine (G3PEtn).
Both enzymes are induced in the transition from myc-
elium to yeast cells, as shown in Table 1 and Fig. 2B. The
ACT (acyltransferase) promotes the addition of acyl
groups to G3P generating DG3P (diacylglycerol 3P); this

enzyme is described in P. brasiliensis in the public data-
bases. The acyl CoA required for the synthesis of DG3P is
produced by ACS (acyl-CoA synthetase) which can utilize
an acyl group that can be liberated by the action of phos-
pholipases A and B (PLAA LPB1B and respectively); all the
ESTs encoding those enzymes are induced in the transi-
tion from mycelium to yeast, as described in Fig. 2B and
Table 1. Also, DG3P can be produced by GDE1 (diacylgyc-
erol pyrophosphate phosphatase). CDP-diacylglycerol
(CDP-DG) produced from DG3P is the precursor of phos-
pholipids. PSSA (phosphatidylserine synthase) produce

Table 2: List of novel genes detected in the P. brasiliensis transition library.

Functional categories Gene Product Best hit/Accession number e-value E.C. number

Amino acid metabolism Diphthine synthase# Aspergillus fumigatus/CAF32112 1e-38 2.1.1.98
Acetylornithine deacetylase Arabidopsis thaliana/BP845946.1 1e-31 3.5.1.16
Histidine ammonia-lyase Dictyostelium discoideum/XP_636944.1 1e-16 4.3.1.3
Glutamate dehydrogenase (NADP(+)) Emericella nidulans/S04904 5e-06 1.4.1.4

Nucleotide metabolism Nudix hydrolase family protein Aspergillus nidulans/XP_409279.1 1e-19 -
Adenosine deaminase Aspergillus oryzae/BAE60718 2e-34 3.5.4.4
Orotate phosphoribosyltransferase Mortierella alpina/BAD29963.1 3e-45 2.4.2.10

Phosphate metabolism phnO protein Rhizopus oryzae/EE002192.1 4e-116 -
C-compound and carbohydrate 
metabolism

Chitinase 3# Coccidioides immitis/AAO88269 7e-40 3.2.1.14

Alpha-glucosidase I# Aspergillus fumigatus/AAR23808 3e-46 3.2.1.106
Glycerol-3-phosphate dehydrogenase (NAD(P)+) Cryptococcus neoformans/AAM26266.1 2e-14 1.1.1.94

Lipid metabolism Phosphatidylserine synthase# Neurospora crassa/EAA30566.1 6e-38 2.7.8.8
Metabolism of vitamins, cofactors and 
prosthetic groups

Uroporphyrinogen III methylase Rhizopus oryzae/EE010378.1 6e-109 2.1.1.107

Energy Xanthine dehydrogenase Gibberella zeae/XP_381737.1 9e-07 1.17.1.4
Acetyl CoA hydrolase Aspergillus nidulans/XP_405684.1 5e-42 3.1.2.1

Cell cycle and DNA processing Rad21 region protein Neurospora crassa/EAA34981.1 6e-17 -
Proliferating Cell Nuclear Antigen (PCNA) Aspergillus nidulans/XP_404552.1 3e-36 -
Uracil-DNA glycosylase Aspergillus fumigatus/XP_749743 3e-24 3.2.2.-
Chromosome segregation ATPase Coccidioides immitis/EAS30662 6e-52 -

Transcription DEAD-like helicases superfamily protein# Aspergillus nidulans/XP_410144.1 3e-55 -
Transcription factor, bromodomain Aspergillus nidulans/EAA60972 2e-55 -
GatB/YqeY domain protein Aspergillus nidulans/XP_410874.1 1e-22 -
Ring type Zinc finger protein Aspergillus nidulans/XP_411042.1 1e-12 -
Zinc finger domain protein Aspergillus nidulans/XP_405585.1 3e-14 -
Arylsulfatase regulatory protein Blastocladiella emersonii/CO964913.1 1e-138 -
Transcriptional activator protein Coccidioides immitis/EAS34609 8e-26 -

Protein Synthesis 14 kDa mitochondrial ribosomal protein Aspergillus nidulans/XP_408748.1 4e-46 -
Translation initiation factor 3 subunit 2 Aspergillus nidulans/XP_660601 6e-80 -

Protein fate Rab geranylgeranyl transferase Aspergillus nidulans/XP_412816.1 8e-13 2.5.1.60
Guanosine diphosphatase# Aspergillus nidulans/XP_405219.1 2e-15 3.6.1.42
Ubiquitin thiolesterase otubain-like protein Aspergillus nidulans/EAA60354 1e-28 3.4.-.-
Non-ATPase regulatory subunit of the 26S proteasome Aspergillus nidulans/XP_408912.1 2e-68 -
Peptidase M28 domain protein Coccidioides immitis/EAS33583 1e-22 3.4.11.15
Alpha -1, 2-galactosyltransferase# Aspergillus nidulans/XP_406106.1 3e-14 2.4.1.-

Transport Facilitation Uridine diphosphate N-Acetylglucosamine transporter# Neurospora crassa/T50997 9e-30 -
Nuclear pore protein 84/107 Coccidioides immitis/EAS31445.1| 2e-13 -
Regulator of V-ATPase in vacuolar membrane protein Aspergillus nidulans/XP_404840.1 9e-59 -
Tctex-1 family protein Aspergillus nidulans/XP_405470.1 6e-25 -
Importin-beta N-terminal domain Aspergillus nidulans/XP_410143.1 1e-44 -

Signal Transduction Two-component sensor kinase Anopheles gambiae/EAA02130.2 2e-38 -
Histidine protein kinase sensor for GlnG regulator# Tetrahymena thermophila/EAR83219.1 2e-04 2.7.3.13-
UVSB Phosphatidylinositol – 3 kinase# Aspergillus nidulans/XP_411112.1 1e-29 -
Rho GTPase activating protein Aspergillus nidulans/XP_407883.1 3e-49 -
Calcineurin subunit b Neurospora crassa/P87072 1e-77 -
Forkhead associated (FHA) protein Gibberella zeae/XP_389397.1 4e-10 -

Cell Rescue, Defense and Virulence Hemolysin like protein# Aspergillus nidulans/XP_406013.1 2e-70 -
Cell type differentiation Suppressor of anucleate metulae B protein# Aspergillus nidulans/XP_404215.1 6e-46 -
Unclassified Complex 1 protein (LYR family) Aspergillus nidulans/XP_408902.1 8e-32 -

#Transcripts confirmed by semi-quantitative RT-PCR.
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The synthesis of the cell wall components from glucose and lipidsFigure 2
The synthesis of the cell wall components from glucose and lipids. Induced transcripts (*), novel transcripts (+), tran-
scripts detected in the transition transcriptome without induction (#) and transcripts present at public databases (o). A – Some 
steps in the synthesis of glucan and chitin. GLCase 1: Alpha-glucosidase 1; HXK1: hexokinase; PGM: phosphoglucomutase; 
UGP1: uridine diphosphate glucose pyrophosphorylase; AGS1: alpha glucan synthase; MTLD: mannitol-1-phosphate dehydroge-
nase; MSTE: monosaccharide transport protein; GTT: glucose transporter protein; STL: sugar transporter protein; CTS 1: chi-
tinase 1; CTS 3: chitinase 3; DIP 5: acidic amino acid permease; MAEL: malate permease; MDH: malate dehydrogenase; CITA: 
citrate synthase; ACO: aconitase; ICL: isocytrate lyase; MLS: malate synthase; UDPNAG: uridine diphosphate N acetylglu-
cosamine; MNN2: UDPNAG transporter. B – The synthesis of some lipids from the cell membrane. LPL1B: Lysophospholipase; 
PLAA: phospholipase A2; DHCP: dihydroxycetone phosphate; GFDA: glycerol 3 phosphate dehydrogenase; G3P: glycerol 3 
phosphate; G3PEtn: Phosphatidyl ethanolamine; GDPD: glycerophosphodiester phosphodiesterase; ACT: acyltransferase; ACS: 
acyl-coenzyme A synthethase; Acyl-CoA: acyl-coenzyme A; DGPP: diacylglycerol pyrophosphate; GDE1: diacylglycerol pyro-
phosphate phosphatase; DG3P: diacylglycerol 3 phosphate; CTP: cytidine triphosphate; PPi: pyrophosphate; CDP-DG: cytidine 
diphosphate diacylglycerol; PSSA: phosphatidylserine synthase; PtdSer: phosphatidylserine; PSS2: phosphatidylethanolamine ser-
ine transferase; PSD: phosphatidylserine decarboxylase; PtdEtn: phosphatidylethanolamine; PEMT: phosphatidylethanolamine 
metyltransferase; PtdCho: phosphatidylcholine; INO1: myo-inositol 1 phosphate synthase; Myo-Inol1P: myo-inositol 
1phosphate; PtdIns: phosphatidylinositol; PDR16: phosphatidylinositol transfer protein; ERG 11: Lanosterol 14-alpha demety-
lase; ERG 3: sterol delta 5,6-desaturase.
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phosphatidylserine from CDP-DG, and is a novel tran-
script described in the present work. The induced tran-
script of INO1 (myo-inositol-1-phoshate synthase),
produces myo-inositol 1P the precursor for the synthesis
of phosphatidylinositol. The PDR16 (phosphatidylinosi-
tol transfer protein), also induced, transports phospholip-
ids from their site of synthesis in the endoplasmic
reticulum to the plasma membrane [29].

Polyunsaturated fatty acids (UFA) are major components
of the membranes and are produced from monounsatu-
rated fatty acids by several fatty acid desaturases in many
fungi. DESA (fatty acid desaturase) was demonstrated to
be induced in the transition library suggesting active
membrane remodeling during the morphogenetic event
in P. brasiliensis. The synthesis of ergosterol seems also to
be induced during the transition process. ERG 11 (lanos-
terol 14-alpha demetylase) and ERG 3 (sterol delta 5, 6-
desaturase) present transcripts induced in the transiton
library (Fig. 2B, Table 1).

An overview of induced genes putatively related to signal 
transduction
We also identified a variety of signal transduction systems
in P. brasiliensis ongoing differentiation to yeast cells, such
as MAPK, serine/threonine protein kinases, signal histi-
dine kinases and two component sensor kinases. The
most increased transcript encodes for a histidine protein
kinase sensor for GlnG regulator, which presented 24 ESTs
in the transition library (Table 2, supplementary material
and Table 3, supplementary material). Novel genes were
also those encoding for a two-component sensor kinase
(06 ESTs), calcineurin subunit b (02 ESTs), UVSB phos-
phatidylinositol-3-kinase (01 EST), forkhead associated
protein (01 EST), Rho GTPAse activating protein (01 EST).

Histidine kinases are signaling transduction proteins that
organisms in all three domains of life use to respond to
environmental signals and control developmental process
[30,31]. S. cerevisiae has a single hybrid histidine kinase,
sln1p, which regulates an osmosensing mitogen-activated
protein kinase (MAPK) cascade, an oxidative stress-
response pathway, and cell wall biosynthesis [32,33].
Blastomyces dermatitidis DRK1 (for dimorphism-regulating
histidine kinase) is a conserved hybrid histidine kinase
that is indispensable for dimorphism, virulence and path-
ogenicity [34]. The ESTs encoding the putative histidine
kinase induced in the transition library presents some
structure domains and sequence of histidine kinase, such
as the histidine-containing H-box and an aspartate-con-
taining D-box (data not shown).

The fungal cell wall is an essential cellular boundary that
controls many cellular processes. It allows cells to with-
stand turgor pressure preventing cell lysis. In S. cerevisiae a
MAPK cascade which is essential in transducing signals to
adapt cell wall biosynthesis under a variety of environ-
mental conditions, is activated by the protein kinase C,
constituting the PKC cell integrity pathway [35]. A MAPK
and PKC proteins were induced in the transition library
suggesting their involvement in the cell wall biosynthesis.
In addition, calcineurin has been proposed as essential for
survival during membrane stress in Candida albicans [36].
Also a FHA (forkhead associated) protein and an UVSB
phosphatidylinositol-3-kinase were increased in the tran-
sition library suggesting the requirement of DNA damage
checkpoint kinases in the dimorphic transition of P. bra-
siliensis [37,38].

In P. brasiliensis transition transcriptome it was detected
53 ESTs (4.78% of the total ESTS) encoding for potential

Table 3: Candidate homologs for virulence factors induced in the cDNA transition library.

Virulence determinant Function in other fungi Reference number

Alpha -1,3 glucan synthase (ags1) Reduction of AGS1 activity reduces the lung colonization by 
Histoplasma capuslatum

[40]

Glucanosyltransferase family protein (gel) Required for both morphogenesis and virulence in Aspergillus 
fumigatus

[41]

Calcineurin subunit B (canB) Required for Candida albicans virulence and stress resistance [42]
Para-aminobenzoic acid synthetase (paba) Essential for Aspergillus fumigatus growth in lung tissue [43]
Peroxisomal catalase (cat P) Putatively related to the P. brasiliensis protection against peroxides [44]
Aspartyl protease (asp) Facilitation of pathogenesis in Candida albicans [45]
Zinc metalloprotease (mp) A elastolytic metalloprotease of Aspergillus fumigatus is secreted 

during fungal invasion of murine lung
[46]

Phosholipase A2 (plaA) Gene inactivation attenuates virulence in Candida albicans [47]
Glyceraldehyde 3 phosphate dehydrogenase (gapdh) Recombinant GAPDH and antibodies to GAPDH diminish P. 

brasiliensis yeast binding to and infection of A549 pneumocytes
[49]

Alpha-1,2 mannosyltransferase (mnn5) Important for virulence of Candida albicans [50]
Hemolysin like protein (hlp) Phase specific gene regulated by phenotypic switching in Candida 

glabrata
[51]

Urease (ure) Required for Coccidioides posadasii virulence [52]
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signal transduction proteins (see Table 3, supplementary
material). From those, 10 are induced transcripts compre-
hending 06 novel genes, suggesting that the morphologi-
cal transition in P. brasiliensis is mediated by a series of
signal transduction systems that control the adaptation to
the environment to the fungus survive and proliferate
within the host.

Novel genes of P. brasiliensis detected in the transition 
library
Table 2 summarizes the transcripts detected in the transi-
tion library that were not present in the P. brasiliensis tran-
scriptome [1] or in public databases. A total of 48 novel
genes are reported here. Several enzymes related to the
general metabolism were described as novel genes. As
examples, the orotate phosphoribosyltransferase (URA5)
(E.C.2.4.2.10) was present in the transition library. Also a
phosphatidylserine synthase (E.C.2.7.8.8) putatively
related to the metabolism of phospholipids, as cited
above. Enzymes related to protein modification, transport
facilitators and signal transduction were also detected as
novel genes in the transition library and were discussed
before.

A novel transcript encodes for a homologue of SamB,
related to morphogenesis in ascomycetous fungi [39]. We
exploited sequence data to examine the presence of the
conserved Zn-finger like domain in the deduced homolog
of P. brasiliensis (data not shown). It was observed the
high conservation of the Zn finger-like domain in SamB,
crucial for fungal morphogenesis, as described [39].

Putative virulence factors
Expression analysis can be a valuable first step in virulence
genes discovery. Putative virulence factors were selected
on basis with homology in other pathogenic microrgan-
isms. With these criteria, we classified 12 induced genes as
putative virulence factors of P. brasiliensis. Table 3 presents
some induced genes, potential virulence factors in P. bra-
siliensis. AGS1 was catalogued as a potential virulence fac-
tor, since in Histoplasma capsulatum the reduction of its
activity by RNA interference or allelic replacement leads to
reduction in the fungal ability to colonize lung [40].
Mutants of Aspergillus fumigatus in glucanosyltransferases
1 and 2 (gel 1 and 2) have abnormal cell wall compositon
and conidiogenesis and reduced virulence in a murine
model of invasive aspergillosis, suggesting that beta(1–3)
glucanosyltransfease activity is required for both morpho-
genesis and virulence in this fungal pathogen [41]. Cal-
cineurin plays a global role in stress responses necessary
for fungal cell survival and in this sense can be defined as
a virulence factor [42]. Deleted para-aminobenzoic acid
synthetase (paba) strains of A. fumigatus present complete
inability in causing lethal infection in mice [43]. We pre-
viously described that the catalase P (CAT P) presents

canonical motifs of monofunctional typical catalases, as
well as the peroxisome PTS-1 targeting signal and its
expression was induced in cells treated with H2O2, sug-
gesting its involvement in protecting P. brasiliensis yeast
cells against exogenously produced peroxides [44].
Secreted products are a common means by which fungi
can promote virulence [45,46]. The aspartyl proteinase
(ASP) described in Table 3 is putatively a secreted protease
that may facilitate tissue invasion; the same could be
hypothesized to the transcript encoding a zinc metallo-
protease [46]. Phospholipases are critical for modification
and redistribution of lipid substrates, membrane remode-
ling and microbial virulence. The null mutants and rever-
tant strains for a phospholipase B gene of C. albicans
present reduced phospolipase A2 activity and attenuated
virulence [47]. In addition an inositol phosphosphingoli-
pid phospholipase C (PLC) gene of C. neoformans pro-
motes neurotropism of C. neoformans depending on the
immune status of the host by protecting the fungus from
the hostile intracellular environment of phagocytes [48].

Specific adhesins can enable fungal cells to adhere to host
cells or the ECM components. We previously demon-
strated that he fungal glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) is a potential virulence factor of P.
brasiliensis, since it can diminish the fungus yeast cells
ability to adhere and invade in vitro cultured pneumo-
cytes [49]. Also the mannosyltation of proteins can be
related to virulence. The mnn5 mutant of C. albicans
exhibited attenuated virulence in mice [50]. The tran-
scripts encoding for a hemolysin like protein of Candida
glabrata (HLP) and for urease (URE), are possible viru-
lence factors (Table 3). Switching in C. glabrata which may
provide colonizing populations for rapid response to the
changing physiology of the host regulates the hlp expres-
sion [51]. Urease which catalyzes the conversion of urea
into ammonia is described to contribute to alkalinity at
the sites of fungal infection, causing a great damage to the
host tissues [52]. Of special note, the up regulation of
those potential virulence factors in the transition of myc-
elium to yeast cells suggests the fungal adaptation to the
new conditions to be faced in the host milieu.

Expression profile
We validated the classification of induced transcripts by
northern blot analysis, as shown in Figure 3A. The tran-
scripts encoding aspartyl proteinase and sugar transporter
protein, were classified as induced in the transition library
by electronic northern and according to our experimental
northern blot data, were accumulated in mycelium during
transition to yeast cells. It has to be emphasized that the
in silico analysis of the ESTs redundancy revealed for the
transcripts encoding aspartyl protease and sugar trans-
porter protein, 3 ESTs in the mycelium transcriptome
database for both; 7 and 5 in the present transition library,
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Validation of the classification of induced transcripts in the transition libraryFigure 3
Validation of the classification of induced transcripts in the transition library. A – Analysis by northern blot was car-
ried out with RNA from mycelium during transition to yeast colleted at 22 h, 48 h and 6 days after the temperature shift. Total 
RNA was fractionated on a 1.2% formaldehyde agarose gel and hybridized to the cDNA inserts Aspartyl proteinase (asp) and 
Sugar transporter protein (stl). Ribosomal RNAs are shown as the loading control. The sizes of the transcripts are as follows: 
asp 1.7 kb; stl 2.65 kb. B – Validation of some novel genes of P. brasiliensis. Semi-quantitative RT-PCR of RNAs obtained from 
mycelium in transition to yeast. Semi-quantitative RT-PCR analysis was carried out with specific primers, as described. Gray 
bars indicate the transcript level for the L34 ribosomal protein and black bars refers to the described new transcript. Numbers 
associated with the bars indicate fold differences relative to the data for the reference mycelium, which were established by 
densitometry analysis. Using varied number of cycle numbers, the exponential phase of each primer was determined and used 
to allow semi-quantitative analysis of the respective reactions. The same amount of cDNA was used for all PCRs. The RNAs 
used for RT-PCR were obtained from samples of: mycelium (M) and mycelium in transition to yeast after 22 h of the tempera-
ture shift (T). Genes and sizes of the respective amplified fragments are as follows in bp: dead: 408; hlp: 274; uvsB: 318; cts3: 
268; gma12: 152; mnn2: 363; gdpase: 126; samB: 114; dphs: 284; pss: 281; glcaseI: 359; glnl: 368.
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respectively and 3 for both, ESTs in the yeast transcrip-
tome database. We also validated 12 novel genes identi-
fied in the transition cDNA library, by semi-quantitative
RT-PCR, and their expression profiles are shown in Figure
3B. All transcripts were induced upon transition, as dem-
onstrated.

Conclusion
The 1107 ESTs identified in this study represent the first
effort to define the P. brasiliensis genes present in a cDNA
library of the fungal RNA obtained during the transition
from mycelium to yeast. These data increase the number
of identified P. brasiliensis genes induced during the tran-
sition. Annotation of the unisequences revealed that 992
(89.6%) had homologues in the P. brasiliensis public data-
bases, and therefore about 115 (10.4%) represent novel
genes. Annotation of the ESTs revealed a great repertoire
of genes that could function in cell wall/membrane
remodeling during the transition process. Also, putative
virulence factors, novel transduction signal proteins,
novel enzymes related to sulphur metabolism, among
others, had been described. Overall these data can help in
accelerating research on this important human fungal
pathogen.

Methods
Fungal isolate, growth conditions and induction of 
mycelium to yeast transition
P. brasiliensis, isolate Pb01 (ATCC-MYA-826), has been
studied at our laboratory. It was grown in Fava-Netto's
medium [1% (w/v) peptone; 0.5% (w/v) yeast extract;
0.3% (w/v) proteose peptone; 0.5% (w/v) beef extract;
0.5% (w/v) NaCl; 4% (w/v) agar, pH 7.2], at 22°C, as
mycelium. The differentiation was performed in liquid
medium (Fava-Netto's medium) by changing the culture
temperature from 22°C to 36°C for the mycelium to yeast
transition, as we previously described [44]. The cells were
previously grown in liquid medium for 18 h before chang-
ing the incubation temperature, which was maintained
for 22 h.

RNA extraction and preparation of the cDNA library
Total RNA was purified from P. brasiliensis mycelium in
transition to yeast cells (see above) using TRIZOL
(GIBCO™, Invitrogen, Carlsbard, CA). The mRNA was
purified by using the Poly (A) Quick R mRNA isolation kit
(Stratagene, La Jola, CA). The cDNA library was con-
structed in the unidirectional pCMV.SPORT 6 (Invitro-
gen) according to the manufacturer's instructions,
exploiting the Not I and Sal I restriction sites. The cDNA
library was not normalized, i.e., no attempt was made to
reduce the redundancy of highly expressed transcripts.

Plasmid isolation and DNA sequencing of the cDNA library
Plasmids constructs were transformed into Escherichia coli
ElectroMAX™ DH10B cells (Invitrogen). The cDNA library
was plated to approximately 200 colonies per plate (150
mm Petri dish). The colonies were randomly selected and
transferred to a 96-well polypropylene plate containing
LB medium and grown overnight. Plasmid DNA was iso-
lated and purified using Millipore filters (MilliPore®).
cDNA inserts were sequenced from the 5' end by employ-
ing standard fluorescence labeling DYE namic™ ET dye
terminator kit with the M13 flanking vector primer. Sam-
ples were loaded onto a MegaBACE 1000 DNA sequencer
(GE Healthcare, Amersham Biosciences), for automated
sequence analysis.

EST Processing Pipeline, Annotation and Sequence 
Analysis
The resulting electropherograms were transferred to the
server where the pre-processing took place. ESTs were
screened for vector sequences against the UniVec data. The
sequences were assembled by using the PHRED/PHRAP/
CONSED [53]. EST sequences were pre-processed using
the Phred [54] and Crossmatch [55] programs. Only
sequences with at least 100 nucleotides and Phred quality
greater or equal to 20 were considered for further analysis.
A total of 1107 ESTs were selected by these inclusion cri-
teria. The resulting sequences were uploaded to a rela-
tional database (MySQL) on a Linux (Fedora Core 3)
platform, and processed using a modified version of the
PHOREST tool [56]. We modified PHOREST to the assem-
bling of the sequences using the CAP [57] and store the
BLAST results of many databases including GenBank non-
redundant (nr) database, Cluster of Orthologus Groups
(COG), Gene Ontology (GO), MIPS [58], KEGG [59] and
some fungi specific databases. In addition, an option to
automatically translate EST sequences and compare their
frames against the InterPro database [60] was imple-
mented. These modifications allowed easy identification
of homolog sequences, as well as the identification of
domains and functional sites, which improved the man-
ual annotation process. Similarities with E-values ≤ 10-4

were considered significant. For comparative analysis the
ESTs were grouped in 639 clusters, represented by 166
contigs and 473 singlets. The clusters were compared with
P. brasiliensis transcriptome database [1] and public data-
bases to identify new transcripts, by using the BLAST pro-
gram [61]. The ESTs had been submitted to GenBank,
under accession numbers EH040628 to EH041734.

In silico determination of induced genes in the mycelium to 
yeast transition by electronic northern
To assign a differential expression character, the contigs
formed with mycelium and the transition ESTs were statis-
tically evaluated using the Audic and Claverie's method
[14]. It were considered induced genes in the transition
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library those that were not previously described in the
mycelium transcriptome database [1], as well as those
more expressed as determined with a 99% confidence
rate. A web site [62] was used to compute the probability
of differential regulation.

Northern blot
Northern hybridization was performed with 10 μg of total
RNA fractioned on a 1.2% agarose-formaldehyde denatur-
ing gel and transferred to a Hybond-N+ nylon membrane
(GE Healthcare). The RNAs, corresponding to different
times of cellular differentiation, were hybridized to the
correspondent cDNA probes in Rapid-hyb buffer (GE
Healthcare) and washed according to the manufacturer's
instructions. Probes were radiolabeled by using
Rediprime II Random Prime labeling System (GE Health-
care).

Semi-quantitative RT-PCR analysis (sqRT-PCR)
Semi-quantitative RT-PCR was performed for 12 genes to
confirm the presence of new transcripts. Total RNA was
extracted from P. brasiliensis mycelium in transition to
yeast after 22 h of the temperature shift from 22°C to
36°C, as described. RNAs used for sqRT-PCR were from
independent experiments from those used in the cDNA
library construction. cDNAs were synthesized by reverse
transcription using the Superscript II RNAse H-reverse
transcriptase (Invitrogen™, Life Technologies). cDNAs
were used for PCR in 30 μl reaction mixture containing
specific primers, sense and antisense, as described in Table
4. PCR conditions were: 25–35 cycles at 95°C for 1 min;
annealing at 55–65°C for 2 min; 72°C for 1 min. The
annealing temperature and the number of PCR cycles
were optimized for each experimental condition to ensure
linear phase of amplification. Amplicons were analyzed
by agarose gels electrophoresis (1%). The analyses of rela-
tive differences were performed by using Scion Image Beta
4.03 program [63].
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Additional File 1
P. brasiliensis clusters annotated in the cDNA library. Table repre-
senting the annotated clusters that were generated by sequencing of the 
cDNA clones. For each cluster the table includes: the function as assigned 
by BLAST-based similarity, the BLAST subject species, the GenBank ID 
for the BLAST subject used for functional assignment and the Expect value 
obtained with each unisequence, the redundancy in the transition library 
and in the mycelium transcriptome database.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Table 4: Oligonucleotides primers related to new genes selected for sqRT-PCR analysis.

Sequence name Forward primer (5' → 3') Reverse primer (5' → 3')

DEAD-like helicases superfamily protein (dead) GGCCTTCTGAAACGGGGG GAGCTTCGCAATAGGCCAAG
Hemolysin like protein (hlp) GGCCTTCTGAAACGGGGG GAGCTTCGCAATAGGCCAAG
UVSB Phosphatidylinosytol-3-kinase (uvsB) CTAGCGAATGGCAATATCACT GATAATGAGGGCATGGTCTC
Chitinase 3 (cts3) GGAGGAGGATATGTCTCTTG CTGCTGCCCATCCCTCAG
Alpha 1,2 galactosyltransferase (gma12) GCTATGTCAACTTCTTCGCG GAGAGCATGGGCCGACAG
UDP-N-Acetylglucosamine transporter (mnn2) GCCCTCATTACGTTAACGCA CATGGATTTTCCTTTGGCACT
Guanosine diphosphatase (gdpase) GATCTTCCGCTTTCTCGCCA CTCCTTGACACGGCACTGC
Suppressor of anucleate metulae B protein (samB) CCAGTGCGCCTACTATAAATG CAGGCATTCTTCTGGCACTC
Diphitine synthase (dphs) CTGTTTCGCAGTGTGCCAG CGTTCCGTAATTGCTTTTCCA
Phosphatidylserine synthase (pss) GCTGCTCTCGGCGGACTC CGAAGGAGACCAGATCAGC
Alpha glucosidase I (glcaseI) CCAGCTGATAGTCCACGGC CTTGTCCATCCTGTGAAATGC
Histidine protein kinase sensor for GlnG regulator (glnL) CGTCTGTTGGGGCCGCAG CATCGGGTAAAACAGCGTATC
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Abstract

Mycoplasmas are the smallest known prokaryotes with self-replication ability. They are obligate parasites, taking up
many molecules of their hosts and acting as pathogens in men, animals, birds and plants. Mycoplasma
hyopneumoniae is the infective agent of swine mycoplasmosis and Mycoplasma synoviae is responsible for
subclinical upper respiratory infections that may result in airsacculitis and synovitis in chickens and turkeys. These
highly infectious organisms present a worldwide distribution and are responsible for major economic problems. Pro-
teins of the GTPase superfamily occur in all domains of life, regulating functions such as protein synthesis, cell cycle
and differentiation. Despite their functional diversity, all GTPases are believed to have evolved from a single com-
mon ancestor. In this work we have identified mycoplasma GTPases by searching the complete genome databases
of Mycoplasma synoviae and Mycoplasma hyopneumoniae, J (non-pathogenic) and 7448 (pathogenic) strains. Fif-
teen ORFs encoding predicted GTPases were found in M. synoviae and in the two strains of M. hyopneumoniae.
Searches for conserved G domains in GTPases were performed and the sequences were classified into families.
The GTPase phylogenetic analysis showed that the subfamilies were well resolved into clades. The presence of
GTPases in the three strains suggests the importance of GTPases in `minimalist’ genomes.

Key words: Mycoplasma, GTPase superfamily, genome.
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Introduction

Mycoplasmas are a genus of obligate parasites be-

longing to the Mollicutes class, the smallest known

prokaryotes with self-replication ability (Razin et al.,

1998). They present a very small genome evolved to the

minimalist status by losing non-essential genes, including

those involved in cell wall synthesis, as well those related

to catabolic and metabolic pathways (Himmelreich et al.,

1996). The two species, Mycoplasma hyopneumoniae and

Mycoplasma synoviae, are responsible for significant eco-

nomic impact on animal production. M. hyopneumoniae is

the infective agent of swine mycoplasmosis (DeBey and

Ross, 1994), which increases the susceptibility to second-

ary infections (Ciprian et al., 1988). M. synoviae is respon-

sible for subclinical upper respiratory infections, but may

also result in airsacculitis and synovitis in chickens and tur-

keys (Kleven, 1997; Allen et al., 2005).

Many crucial functions for life are provided by a sin-

gle versatile mechanism that has evolved to fulfill many

roles. A prime example is the GTPase superfamily of pro-

teins that occurs in all domains of life, regulating functions

such as protein synthesis, cell cycle and differentiation

(Bourne et al., 1990). Despite this extraordinary functional

diversity, all GTPases are believed to have evolved from a

single common ancestor, a fact which resulted in the con-

servation of their action mechanism, of the core structure

and of sequence motifs (Bourne, 1995).

GTPases are often described as molecular switch pro-

teins because of their particular mode of action. Each

GTPase specifically binds and hydrolyzes GTP in a cyclic

mechanism that activates and inactivates the GTPase pro-

tein (Bourne et al., 1991). In this cycle, a GTPase passes

through three conformational states. Initially, the GTPase

is inactive and is not bound to any nucleotide. After binding

GTP, the protein becomes active and changes its conforma-

tion, and as such its affinity to effector molecules or other

enzymes. GTP is then hydrolyzed simultaneously, with an

effect being generated in the GTPase target. Subsequently,

GDP is released from the inactive GTPase, returning the

protein to the empty state. This cycle allows the active

GTPase to interact periodically with a target and, in this
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way, to act as a timed switch in the cell (Bourne et al.,

1990).

That cyclic reaction usually involves several other

factors that either catalyze the hydrolysis step of the

GTPase cycle or catalyze the release of bound GDP from

the inactive state of the GTPase (Bourne, 1995). Each

GTPase cycle appears to be unique. The rate of switch turn-

over is dependent on specific interaction factors, as well as

on the intrinsic properties of each GTPase. Additionally,

some GTPases interact with many different effectors and

targets and, in that way, can coordinate cellular responses

(Bourne et al., 1990; Bourne, 1995). A core domain that is

able to bind either GTP or GDP confers the characteristic

switch mechanism of GTPases. The folding of this domain

is a defining feature of GTPases (Jurnak et al., 1990). In

fact, X-ray crystallography of diverse GTPases shows that

the folding of this G-domain is nearly invariant throughout

the GTPase superfamily. GTPases can consist solely of the

G-domain or may have additional domains on the amino-

and carboxyl-terminal ends of the proteins (Sprang, 1997).

Due to the importance of the mycoplasmas, complete

genome projects have been reported in the last years

(Himmelreich et al., 1996; Hutchison et al. 1999; Glass et

al., 2000; Chambaud et al., 2001; Papazisi et al., 2003;

Sasaki et al., 2002; Jaffe et al., 2004; Minion et al., 2004;

Westberg et al., 2004). Complete genomes of M. synoviae

(strain 53), M. hyopneumoniae pathogenic strain (7448)

and non-pathogenic strain (J [ATCC25934]) were recently

described (Vasconcelos, et al., 2005) and the data are avail-

able in databases. The objective of this work is the identifi-

cation and classification of the GTPase superfamily in the

three complete genomes of M. synoviae strain 53 and M.

hyopneumoniae (strains J and 7448).

Material and Methods

By using data from the complete genome of M.

synoviae and M. hyopneumoniae, strains J and 7448 associ-

ated to BLAST search tools we have identified 15 ORFs en-

coding GTPase superfamily homologs in M. synoviae, as

well as 15 ORFs in both strains of M. hyopneumoniae.

Classification of the GTPase families and their putative

function has been performed by using Pfam interface and

InterPro homepage. Search for G-domains in mycoplasma

GTPases was performed by alignment of described Esche-

richia coli GTPases sequences (Caldon et al., 2001) with

those of M. synoviae and M. hyopneumoniae (strains J and

7448). Multiple sequence alignments were generated using

the ClustalX 1.81 software (Thompson et al., 1997).

The phylogenetic relationships within the GTPase

superfamily were inferred from all 33 sequences from M.

synoviae strain 53 and M. hyopneumoniae strains J and

7448. A phylogenetic tree was constructed by multiple se-

quence alignments using the Clustal X program and visual-

ized by using the Tree View software. Trees were

constructed by using the neighbor-joining method (Saitou

and Nei, 1987). Robustness of branches was estimated by

using 100 bootstrap replicates.

Results and Discussion

Structural analysis of the GTPases superfamily

Searches for GTPases performed on M. synoviae and

M. hyopneomoniae strains J and 7448 genome databases re-

vealed the presence of 15 GTPase orthologs. These

GTPases were classified into subfamilies, and the results

are shown in Table 1. ORFs were classified as belonging to

the Elongation factor, the Era, the FtsY/Ffh and the

Obg/YchF subfamilies, or were annotated as unclassified

proteins related to GTPases or GTP binding proteins.

Searches for the G-domain, described in all GTPase

subfamilies, was performed by using the deduced protein

sequences encoded by the identified ORFs presented in Ta-

ble 1. Figure 1 presents the alignment of the G1-G4 motifs

of the cited GTPases. The G-domain is divided into four G

motifs: G1 (G/AXXXXGKT/S), G2 (not conserved), G3

(DXXG) and G4 (NKXD) sequence motifs, where X de-

notes any amino acid (Caldon, et al., 2001). The G1, G2

and G3 motifs were found in all mycoplasma GTPase

subfamilies (Figure 1). The G4 motif was found in the

EF-G, EF-Tu, IL-2, LepA, Era, EngA, ThdF/TmE, and

OBG subfamilies. In the YchF, FtsY and Ffh subfamilies,

the region of the G4 motif, although present, was not well

conserved (Figure 1).

Functions ascribed to G-motifs include the mediation

of interactions with the guanine nucleotides and effector

proteins. It has been suggested that G1, G3 and G4 motifs

could have evolved to bind and hydrolyze guanosine

triphosphate and also for interacting with the cofactor mg2+

(Bourne et al., 1991). The non conserved G2 motif is de-

scribed as the effector domain that undergoes a

conformational change necessary for GTPase function

(Bourne, et al., 1995, Sprang, 1997).

Elongation factor subfamily

The elongation factor subfamily (EF) is composed of

the Elongation factor - G (EF-G), Elongation factor-TU

(EF-TU), Initiation factor-2 (IF-2) and GTP-binding pro-

tein LepA (LepA), (Caldon, et al. 2001). The EF family

from bacteria is composed of multidomain GTPases with

essential functions in the elongation and initiation phases of

translation. EF-Tu catalyzes binding of aminoacyl-tRNA to

the ribosomal A-site, while EF-G catalyses the

translocation of peptidyl-tRNA from the A-site to the P-site

(Rodnina et al., 2000; Nilsson and Nissen, 2005). The initi-

ation factor-2 (IF-2) may be involved in introducing the ini-

tiator tRNA into the translation machinery and in

performing the first step in the peptide chain elongation cy-

cle (Kyrpides and Woese, 1998). ORFs encoding all elon-

gation factor members were present in M. synoviae and M.

hyopneumoniae J and 7448 (Table 1). All G1-4 motifs were
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found in the ORFs encoding EF GTPases from both

mycoplasma species (Figure 1), suggesting that the pro-

teins can be functional in these organisms. Two truncated

hypothetical EF-G proteins were also found in the M.

synoviae genome. The ORFs present high homology to the

3’ region of the complete EF-G ORF found in this organ-

ism, suggesting that they are not functional genes, in accor-

dance with the ‘minimal genome’ characteristic of

mycoplasmas.

Era subfamily

This family is comprised of the GTP binding protein

ERA (ERA), the GTP binding protein EngA (EngA), as

well as the Thiophene and furam oxidation protein (ThdF).

Both M. synoviae and M. hypneumoniae (J and 7448) pres-

ent ORFs related to the Era subfamily. The Era member of

the Era subfamily is an essential GTPase that probably reg-

ulates the cell cycle (Gollop and March, 1991; Britton et al.,

1998) and is involved in regulating carbon (Lerner and

Inouye, 1991) and nitrogen (Powell et al., 1995) metabo-

lism. A second member of this group, EngA, has been sug-

gested to be essential for growth in Neisseria gonorrhoeae

(Mehr et al., 2000). ThdF may be involved in tRNA modifi-

cation and in the direct or indirect regulation of ribosome

function (Caldon, et al., 2001). The presence of all Era

subfamily members (Table 1) with all G1-G4 motifs (Fig-

ure 1) in M. synoviae and M. hyopneumoniae (J and 7448)

suggests that those ORF products are active and play bio-

logical functions in the analyzed organisms.

FtsY/Ffh subfamily

The FtsY/Ffh subfamily is represented by the cell di-

vision protein FtsY, termed FtsY, and by the signal recog-

nition particle FFH/SRP54, termed Ffh. ORFs encoding for

the two proteins of this subfamily have been reported in the

M. synoviae strain 53 and M. hyopneumoniae strains J and

7448 (Table 1). The G1-G3 motifs were found in the de-

duced amino acid sequences for FtsY and Ffh of M.

synoviae strain 53 and M. hyopneumoniae strains J and

7448, when compared with E. coli FtsY/Ffh sequences

(Figure 1). The sequence corresponding to the G4 motif

was found in the three analyzed mycoplasmas, even though

this motif was not well conserved (NKXD). The amino ac-

ids K and D are present in mycoplasma FtsY and Ffh se-

quences in comparison to the E. coli ortholog predicted

proteins. These proteins are described as essential to E. coli

since Ffh/SRP mutants present a lethal phenotype and SRP

subunit mutants present growth defects (Lu, et al., 2001).

OBG and YchF subfamily

The comparative analysis of M. synoviae strain 53, M.

hyopneumoniae (strains J and 7448) showed the presence

of the same ortholog ORFs encoding OBG and YchF pro-

teins (Table 1). G1-G3 motifs were found in all ORF prod-

ucts. The G4 motif was found in the OBG member, but not

in the YchF ORF product (Figure 1). Similarly, this motif

was also not found well conserved in the E. coli YchF pro-

tein.

214 GTPases of mycoplasmas species

Table 1 - ORFs encoding GTPases and GTP binding proteins from M. synoviae strain 53 and M. hyopneumoniae strains J and 7448, with putative

functions.

GTPase Family ORF Product EC /Cellular process

involvement

ORFs encoding GTPases found in Mycoplasmas

Mycoplasma

synoviae 53

Mycoplasma

hyopneumoniae -J

Mycoplasma

hyopneumoniae -7448

Elongation factor subfamily

EF-G Elongation factor EF-G 3.6.1.48 / protein biosynthesis MS0047 MHJ0071 MHP0075

EF-TU Elongation factor Tu 3.6.1.48 / protein biosynthesis MS0667 MHJ0524 MHP0523

IF-2 Translation initiation factor

IF-2

- / Binding / protein biosynthesis MS0686 MHJ0585 MHP0584

LepA GTP-binding protein LepA - / Protein biosynthesis MS0489 MHJ0069 MHP0073

Era subfamily

Era GTP-binding protein Era - / ATP Binding / nucleic acid binding MS0387 MHJ0152 MHP0156

EngA GTP-binding protein EngA - / 70s ribosome stabilization MS0142 MHJ0066 MHP0070

ThdF/TrmE Thiophene and furan oxida-

tion protein ThdF

- / tRNA processing - indirect Ribo-

some function

MS0362 MHJ0205 MHP0209

FtsY/Ffh subfamily

FtsY Cell division protein FtsY - / Cell division MS0145 MHJ0008 MHP0008

Ffh Signal recognition parti-

cle, subunit FFH/SRP54

- / Protein targeting to membrane MS0021 MHJ0053 MHP0057

Obg and YchF

OBG GTP-binding protein Obg - / Ribosome maturation. MS0168 MHJ0037 MHP0041

YchF GTP-binding protein YchF - / Putative ATP Binding MS0663 MHJ0284 MHP0293

Unclassified GTP-binding protein

Cell division protein FtsZ

Probable GTPase EngC

Putative GTP-binding protein

- / Cell division

- / Cell division

EC 3.6.1.- / unknown

- / ATP Binding

MS0650 - YihA

MS0340 - FtsZ

MS0120 - EngC

MS0664 - YlqF

MHJ0446 - YihA

MHJ0406 - FtsZ

MHJ0148 - EngC

MHJ0083 - YlqF

MHP0449 - YihA

MHP0393 - FtsZ

MHP0152 - EngC

MHP0087 - YlqF



The function of the OBG subfamily remains elusive,

although there is evidence for its involvement in the initia-

tion of chromosome replication (Kok et al., 1994), in bacte-

rial sporulation (Trach and Hoch, 1989; Vidwans et al.,

1995), and in the activation of a transcription factor that

controls the general stress response (Scott and

Haldenwang, 1999). The YchF members of the OBG/YchF

subfamily are also distributed in all domains of life,

(Mittenhuber, 2001), but the biological function of this pro-

tein has not been elucidated.

Unclassified GTPases

The GTPases found in the genomes of mycoplasmas

which were not classified as belonging to one of the 11 uni-

versally conserved bacterial GTPases (Caldon, et al., 2001)

were described here as unclassified. Four ORFs from M.

synoviae strain 53 and M. hyopneumoniae strains J and

7448 were identified in this group: EngC, YlqF, FtsZ and

YihA. The E. coli ortholog EngC is a GTPase with a pre-

dicted role as a regulator of translation (Daigle and Brown,

2004). The putative GTP binding protein YlqF is described

as necessary for growth of Streptococcus pneumoniae and

Staphylococcus aureus and may be involved in ribosomal

assembly (Zalacain et al., 2003).

The cell division protein FtsZ was also found in M.

synoviae strain 53 and M. hyopneumoniae strains J and

7448. This protein appears to act at the earliest step in cell

septation and is required at the final steps of cytokinesis

(Ma, et al., 1996; Jensen, et al., 2005). The GTPase YihA

has been described as an essential gene of the bacterial

“minimal genome’ , even though it seems to be dispensable

in some organisms, as described for Mycobacterium tuber-

culosis, Chlamydia trachomatis, Treponema pallidum,

Borrelia burgdorferi and Synechocystis sp. (Dassain et al.,

1999).

GTPase amino acid sequence relationships

To visualize the amino acid sequence relationship of

Mycoplasma GTPase subfamilies, a phylogenetic tree was

constructed by using the neighbour-joining method (Saitou

and Nei, 1987). A total of 33 deduced amino acid sequences

encoding GTPases from M. synoviae, M. hyopneumoniae J

and M. hyopneumoniae 7448 were aligned using the

CLUSTAL X program (Thompson et al., 1997). Robust-
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Figure 1 - Alignment of G1, G2, G3 and G4 motifs of the GTPase subfamilies. Panel A: Elongation factor subfamily. Panel B: Era subfamily. Panel C:

FtsY/Ffh subfamily. Panel D: OBG YchF subfamily. The sequences used in the alignment are listed in Table 1 and were obtained from: M.

hyopneumoniae J (Mycoplasma hyopneumoniae J GenBank accession number NC-007295), M. hyopneumoniae 7448 (Mycoplasma hyopneumoniae

7448, GenBank accession number NC-007332), M. synoviae (Mycoplasma synoviae GenBank accession number NC-007294) and E. coli (Escherichia

coli, GenBank accession number NC-000913). The positions of the G1-G4 motifs were obtained by comparison with the most highly conserved regions

of E. coli orthologs.

*EngA1 and EngA2 refer to the two different G-domains found in all EngA orthologues.



ness of branches was estimated by using 100 bootstrap rep-

licates. By using the Tree View software a deduced

phylogeny was visualized and is shown in Figure 2. A close

relationship among amino acid sequences of proteins

which belong to the same subfamily can be observed in the

three Mycoplasma species. GTPases that have similar func-

tions were clustered into the same clade, suggesting a meta-

bolic conservation in reactions involving GTPases. The

bootstrap values reveal the high homology among the

subfamilies of proteins of M. synoviae strain 53 and M.

hyopneumoniae strains J and 7448. GTPases are classified

into subfamilies based on the presence of different

G-domains (G1, G2, G3 and G4). Since unclassified

GTPases do not present conserved G-domains, and were

not classified by Caldon et al. (2001), they were not in-

cluded in our phylogenetic analysis.

Concluding Remarks

The GTPase superfamily, present in all domains of

life, is related to many functions such as protein synthesis,

cell cycle and differentiation. The presence of orthologs for

all the subfamily members described in prokaryotes in the

complete genome of M. synoviae and M. hyopneumoniae

strains J and 7448, evidences the essential functions of

GTPases in these ‘minimalist’ organisms.
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a Laboratório de Micologia Clı́nica, Departamento de Análises Clı́nicas, Faculdade de Ciências Farmacêuticas,
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Abstract

Dermatophytes are adapted to infect skin, hair and nails by their ability to utilize keratin as a nutrient source. Trichophyton rubrum is an
anthropophilic fungus, causing up to 90% of chronic cases of dermatophytosis. The understanding of the complex interactions between the fun-
gus and its host should include the identification of genes expressed during infection. To identify the genes involved in the infection process,
representational difference analysis (RDA) was applied to two cDNA populations from T. rubrum, one transcribed from the RNA of fungus
cultured in the presence of keratin and the other from RNA generated during fungal growth in minimal medium. The analysis identified differ-
entially expressed transcripts. Genes related to signal transduction, membrane protein, oxidative stress response, and some putative virulence
factors were up-regulated during the contact of the fungus with keratin. The expression patterns of these genes were also verified by real-
time PCR, in conidia of T. rubrum infecting primarily cultured human keratinocytes in vitro, revealing their potential role in the infective pro-
cess. A better understanding of this interaction will contribute significantly to our knowledge of the process of dermatophyte infection.
� 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Trichophyton rubrum; Representational difference analysis; Infection; Dermathophytoses

1. Introduction

Dermatophytoses are among the few fungal diseases that
are directly communicable from person to person. Dermato-
phytes infect mainly healthy individuals, causing infections
of keratinized structures, including the skin, hair, and nails
[1]. Dermatophytes are not part of the normal human micro-
bial flora. They are, however, particularly well adapted to in-
fecting these tissues because, unlike most other microbial
pathogens, they can use keratin as a source of nutrients [2].

Trichophyton rubrum is the most frequently isolated agent of
dermatophytosis worldwide, accounting for approximately
80% of reported cases of onychomycosis [3]. Since 90% of
the chronic dermatophyte infections are caused mainly by
T. rubrum, this pathogen must have evolved mechanisms
that evade or suppress cell-mediated immunity [4].

Despite its prevalence, little is known about the molecular
basis of dermatophyte pathogenesis. Studies regarding the
structure, expression, and regulation of the genes of T. rubrum
have been relatively limited because of its unaggressive and
non-life-threatening nature. In hostepathogen interactions,
the gene expression of the pathogen is modulated by signals
from the host, and knowing the pattern of expression may

* Corresponding author. Tel.: þ55 (16) 3301 6556; fax: þ55 (16) 3301 6547.
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provide insights into the disease mechanisms [5]. Few poten-
tial T. rubrum virulence factors have been examined in detail,
and most of them are keratinolytic proteases.

The understanding of the complex interactions between
fungus and host must include the identification of genes
expressed during infection. An efficient approach to the iden-
tification of differentially expressed genes in T. rubrum in-
volves rapid series of subtractive hybridizations of cDNA
prepared from two cell populations. Representational differ-
ence analysis (RDA) is a powerful and sensitive tool for the
identification of differentially expressed genes and enables
the isolation of both up- and down-regulated genes expressed
in two different cDNA populations [6]. Recently, this strategy
was applied to the differentially expressed genes of the human
pathogenic fungus Paracoccidioides brasiliensis during the
host interaction, revealing a set of candidate genes that P. bra-
siliensis may express to adapt to the host conditions [7].

The aim of the present study was to identify genes differen-
tially expressed in T. rubrum, cultured in the presence and
absence of keratin to simulate the host infection. The role of
these genes was corroborated by confirming their induction
during the infective process in a primary keratinocyte cell
culture. Our studies provide the first view of the T. rubrum
transcriptional response to hostepathogen interaction.

2. Materials and methods

2.1. Strain and culture conditions

T. rubrum isolate ATCC 52021 (American Type Culture
Collection) was cultured for 10 days at 25e28 �C in Sabour-
aud’s liquid medium and transferred to two different culture
media: (i) a culture referred to as ‘‘tester’’ in liquid Cove’s
medium [8] supplemented with keratin (Sigma) 100 mg/mL, and
(ii) a culture named ‘‘driver’’ in Cove’s minimal medium, both
cultivated for 24 h at room temperature. As a control, a reverse ex-
periment was conducted in which the driver RNAwas extracted
from keratin culture and the tester RNA from minimal medium.

2.2. RNA isolation and cDNA synthesis

Total RNA was extracted from T. rubrum cultured under
each experimental condition by using the Trizol reagent (Invi-
trogen Life Technologies, Carlsbad, CA). First strand cDNA
synthesis was performed with reverse transcriptase (RT Super-
script III, Invitrogen, Life Technologies) using 1 mg of total
RNA. The first strand of cDNA was used as template to syn-
thesize the second strand, by using the SMART PCR cDNA
synthesis kit (Clontech Laboratories, Palo Alto, CA, USA).

2.3. Subtractive hybridization and generation of
subtracted libraries

The cDNA fragments were digested with Sau3AI restric-
tion enzyme (Promega, Madison, USA). A subtracted cDNA
library was constructed using driver cDNA synthesized from
RNA of T. rubrum cultured in minimal medium and tester

cDNA from RNA extracted from fungus cultured in the pres-
ence of keratin. The resulting products were purified using
a GFX kit (GE Healthcare, Chalfont St. Giles, UK). The
digested tester cDNA was ligated to adapters (a 24-mer
annealed to a 12-mer). To generate the differential products,
tester and driver cDNAs were mixed, hybridized at 67 �C for
18 h and amplified by PCR with the 24-mer oligonucleotide
primer. Two successive rounds of subtraction and PCR ampli-
fication were performed with hybridization testeredriver
ratios of 1:10 and 1:100, respectively. Adapters were changed
between these cross-hybridizations, and different products
were purified using the GFX kit [9,10].

After the second subtractive reaction, the finally amplified
cDNA pools were cloned directly into the pGEM-T Easy vec-
tor (Promega, Madison, USA). Escherichia coli XL1 Blue
competent cells were transformed with the ligation products.
Selected colonies were picked and grown in deep-well plates.
Plasmid DNAwas prepared from clones using standard proto-
cols. In order to generate the EST (expressed sequence tags)
sequences, single-pass, 50-end sequencing of cDNAs by stan-
dard fluorescence labeling dye-terminator protocols with T7
flanking vector primer was performed. Samples were loaded
onto a MegaBACE 1000 DNA sequencer (GE Healthcare)
for automated sequence analysis.

2.4. EST processing pipeline and differential
expression analysis

EST sequences were pre-processed using the Phred and
Crossmatch (http://www.genome.washington.edu/UWGC/ana-
lysistools/Swat.cfm) programs. Sequences with at least 100
nucleotides and Phred quality greater than or equal to 20
were considered for further analysis. ESTs were screened for
vector sequences against the UniVec data, and assembled
with the CAP3 program [11]. The filtered sequences were
compared against the GenBank (http://www.ncbi.nlm.nih.gov)
non-redundant (nr) database from the National Center for Bio-
technology Information (NCBI) using the BLASTX program
[12], Cluster of Orthologous Groups (COG) and Gene Ontol-
ogy (GO). MIPS (http://mips.gsf.de/) and InterPro databases
of protein families, domains and functional sites were used
to assign functional categories.

2.5. Assay of T. rubrumekeratinocytes interaction

Cultures of keratinocytes were isolated from human breast
skin obtained from routine plastic surgery, processed and
kindly supplied by the Tissue Bank of the Plastic Surgery
Department of the College of Medicine at the University of
S~ao Paulo (USP), S~ao Paulo, Brazil. The cells were main-
tained in DMEMeF12 (Dulbecco’s modified Eagle’s medium)
supplemented with 10% (v/v) heat-inactivated fetal calf serum
(Cult lab, Brazil), incubated at 37 �C with 5% CO2.

For adherence assays, cells were seeded (in the absence of
feeder fibroblasts, antibiotics, antimycotics and fetal calf
serum) into six-well plates at a density of 1.0� 106 cells/
well and grown to confluence in DMEMeF12 medium.
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Next, 1.0� 107 conidia/mL of T. rubrum was added to the ker-
atinocytes and incubated for 3 h, 8 h, 24 h and 48 h at 37 �C,
to follow the processes of adhesion. After the period of incu-
bation, the medium was discarded, the cells washed with phos-
phate-buffered saline (PBS), fixed with 4% paraformaldehyde
and stained by the MayeGrünwald (Giemsa) procedure. The
plates were examined by conventional microscopy to evaluate
the kinetics of interaction of T. rubrum with keratinocytes.

2.6. RNA extraction from keratinocytes

Keratinocytes were plated in 25-cm2 tissue culture flasks.
The conditions of cell culture and infection were as described
above, 24 h of infection being chosen for the RNA extraction.
After this period, the cells were washed three times in PBS,
and then incubated in PBS containing trypsin (0.2%) and
EDTA (0.02%) for total monolayer removal. The cells were
centrifuged at 5000g and the pellet was recovered for RNA
extraction, as described previously. RNA samples for experi-
ments of dot blot, northern blot and real-time PCR were
obtained from two independent extractions. Controls were ob-
tained from the uninfected in vitro cultured keratinocytes.

2.7. Dot blot and northern blot analysis

Serial dilutions of plasmid DNA were vacuum-spotted on
nylon membrane and hybridized to the specific cDNAs probes,
labeled with the Random-Prime DNA Labeling Kit (GE
Healthcare). Hybridization was detected by the Gene Images
CDP-Star Detection Kit (GE Healthcare). In the northern
blot experiments, the RNAs (20 mg) were fractionated by elec-
trophoresis in 1.2% agaroseeformaldehyde gels and trans-
ferred to nylon membrane. RNAs were hybridized to the
corresponding cDNA probe (Gene Images CDP-Star Detection
Kit, GE Healthcare). Probes were labeled with the Random-
Prime Labeling Kit (GE Healthcare).

2.8. Real-time PCR analysis of representative regulated
genes in T. rubrum

The reaction mixtures contained 2 mL of cDNA, 12.5 mL of
SYBR green ROX mixture (Applied Biosystems), and 400 nM
of each primer, and the volume was brought to 25 mL with
nuclease-free water. The reaction program was 50 �C for
2 min, 95 �C for 10 min, and 40 cycles of 95 �C for 15 s and
the annealing and synthesis at 60 �C for 1 min. Following
the PCR, melting-curve analysis was performed, which
confirmed that the signal corresponded to a single PCR prod-
uct. Reactions were performed in three PCR repeats with an
Applied Biosystems 7500 cycler. Data were analyzed by the
2�DDCT method [13]. The cycle threshold values for the dupli-
cate PCRs for each RNA sample were averaged, and then
2�DDCT values were calculated (chs1 e chitin synthase
1 was used as the reference). This was followed by normaliza-
tion to the value for RNA samples from T. rubrum cultured in
the absence of keratin. A negative-control sample was used
that contained all reagents except T. rubrum cDNA and

cDNA obtained from the keratinocyte culture. After 40 rounds
of amplification, no PCR products were detected in either
reaction.

3. Results

3.1. Identification of T. rubrum genes with
differential expression

RDA was performed on the fungus cultured in the absence
of keratin (driver) and the presence of keratin (tester). Differ-
ent patterns of DNA amplification were observed after two
rounds of subtractive hybridization, as shown in Fig. 1.

A total of 344 clones were successfully sequenced (Table 1).
The mean size of ESTs was 364 nucleotides. Using the
BLASTX program, 6.98% of the ESTs corresponded to pro-
teins of unknown function, with no matches in databases. In
addition, 94.7% of the ESTs had not been described in T. ru-
brum while 5.3% had been.

3.2. Characterization of the subtracted cDNAs from
T. rubrum cultured in the presence of keratin

The ESTs were classified into seven groups of functionally
related genes (Table 1). The data illustrated the functional di-
versity of these highly expressed ESTs, denoting particular

1 2 3 4 M

506/517

1018

1636

bp

Fig. 1. RDA products analyzed by gel electrophoresis. Lanes 1 and 3: products

of the first and second rounds of subtraction, respectively, performed by using

tester the cDNA obtained from RNA of T. rubrum cultured in the presence of

keratin. Lanes 2 and 4: products of the first and second rounds of subtraction,

respectively, performed by using tester the cDNA obtained from RNA of

T. rubrum cultured in Cove’s medium without keratin. M: molecular markers

1 kb (Invitrogen, CA, USA). Numbers on the right indicate size in bp.
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functional categories. The most redundant cDNAs appearing
during the contact with keratin were as follows: G-protein sub-
unit alpha ( gpa), ATP-dependent RNA helicase DED1 (ded1),
homeobox transcription factor (hxf ), catalase isozyme P (catP),
zinc finger protein (zfp) and membrane protein (memb), as
shown in Table 1. A reverse cDNAeRDA experiment was
conducted in which the driver was RNA from keratin culture
and the tester was RNA from minimal medium culture. A total
of 33 clones were sequenced, as control. The transcriptional
profile did not display any similarity with that described for
T. rubrum cultured in the presence of keratin (data not shown).

Fig. 2 depicts the classification of 19 clusters of T. rubrum
ESTs according to the classification developed at MIPS.

3.3. Confirmatory differential expression of T. rubrum
identified sequences

To corroborate the RDA findings, we initially performed
dot blot analysis of T. rubrum cDNAeRDA clones. Dot
blots displayed a differential hybridization pattern when indi-
vidual clones were hybridized to labeled cDNAs obtained
from the microorganism cultured in the presence and ab-
sence of keratin. The level of transcripts corresponding to
cDNA clones was altered in the presence of keratin, as
shown in Fig. 3A.

Northern blot analysis was employed to evaluate the
expression of some up-regulated genes. The transcripts of
the genes encoding GPA, CATP, ZFP and MEMB were found
to have accumulated more in the fungus cultured in the pres-
ence of keratin (Fig. 3B).

3.4. Quantitative analysis of genes in T. rubrum by
real-time PCR

The fungus showed high adhesion to the cell after all the
periods of time and conidial germination was observed in
24 h. This time of infection was thus chosen for RNA extrac-
tion during the infection (Fig. 4). To estimate the relative
transcript levels of the differentially expressed products,
a real-time PCR assay was performed. Fig. 5 shows quantifica-
tion of the transcript levels of several differentially expressed
genes. Among the six genes evaluated, the catP gene was
induced 3.8-fold in T. rubrum grown in the presence of keratin

Table 1

ESTs with high abundance in T. rubrum cultured in the presence of keratin

MIPS category Gene product Organism best

hit/accession numbera
E-value Redundancy

Transcription Zinc finger proteinc Aspergillus fumigatus/CAD29608 3E�10 19

Transcription factor bZIPb Aspergillus fumigatus/XP747348 3E�47 2

Transcription factor homeoboxb,c Aspergillus fumigatus/XP752424 9E�30 48

Cell rescue, defense and virulence Catalase isozyme Pb,c Ajellomyces capsulatus/AAN28380 1E�100 43

30 kDa heat shock protein Trichophyton rubrum/AAV33735 6E�14 3

Cellular communication/signal

transduction

G-protein subunit alphab,c Penicillium chrysogenum/ABH10690 3E�95 112

Metabolism Probable ATP-dependent RNA helicase DED1b,c Neurospora crassa/CAB88635 1E�84 51

Formate dehydrogenaseb Coccidioides immitis/EAS37296 1E�72 7

Cellular organization Membrane proteinb,c Cryptococcus neoformans/AAW43081 1E�12 16

Protein synthesis Nonribosomal peptide synthetaseb Aspergillus fumigatus/XP752404 3E�33 2

Unclassified protein Conserved hypothetical proteinb Aspergillus nidulans/XP661692 8E�39 10

Conserved hypothetical proteinb Aspergillus nidulans/XP680743 1E�30 2

Conserved hypothetical proteinb Aspergillus nidulans/XP662070 2E�07 5

Hypothetical proteinb e e 1

Hypothetical proteinb e e 3

Hypothetical proteinb e e 4

Hypothetical proteinb e e 3

Hypothetical proteinb e e 12

Hypothetical proteinb e e 1

a Accession number at GenBank (http://www.ncbi.nlm.nih.gov).
b Novel genes detected in T. rubrum.
c Validated up-regulated transcripts.

Cell defense
13.37%

Transcription
20.06%

Signal transduction 
32.56%

Metabolism
16.86%

Hypothetical
protein
6.98%

Conserved
hypothetical protein

4.94%

Protein synthesis 
0.58%

Cellular
organization

4.65%

Fig. 2. Functional classification of T. rubrum ESTs derived from RDA exper-

iment. This classification was based on BLASTX homology of each EST

against the GenBank nr database at a significant homology cut-off of

�1E�05 and MIPS functional annotation scheme. Each functional class is

represented as a color-coded segment and expressed as a percentage of the to-

tal number of ESTs in each library.
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and 16.3-fold after infection of keratinocytes, while, the ded1
gene was induced 1.3- and 8.2-fold, when the fungus was
grown in the presence of keratin and after infection of kerati-
nocytes, respectively.

4. Discussion

The initial steps in the pathogenesis of cutaneous infections
involve the capacity of the infecting microorganism to over-
come physical and innate resistance factors, allowing initial
adherence, followed by competition with the normal microbial
flora and subsequent colonization of the cell surfaces [2]. This
study is the first to use RDA analysis to characterize changes
in gene expression after contact of T. rubrum with keratin,
mimicking the infection in the host. The ability of RDA to
identify sets of differentially expressed genes allows the
gene expression to be compared in different culture condi-
tions. Our data could have a great impact in the establishment
of the role of the genes that are highly expressed in response to

host conditions. Many of the genes found here have already
been described in orthologous systems and some of them
have functional roles during the infection process.

In our study, we sequenced 344 clones, of which 181 were
ESTs identifying genes encoding proteins involved in tran-
scription processes and signal transduction. This abundance
of ESTs for transcription and signal transduction proteins
may be related to fungal growth in the keratin medium. We
also identified some virulence factors (catalase, 30 kDa heat
shock protein). Kaufman et al. [5] constructed a suppres-
sionesubtractive hybridization (SSH) cDNA library for T.
mentagrophytes cultivated on minimal medium with keratin;
the major up-regulated transcript was thioredoxin, consistent
with up-regulation of a catalase here.

On the other hand, Wang et al. [14] constructed 10 different
T. rubrum cDNA libraries and obtained 11,085 ESTs. The
identified ESTs encoded putative proteins implicated in pri-
mary metabolism, gene expression, post-translation processes
and cell structure. A significant proportion of the identified
ESTs were matched to genes involved in transcription and sig-
nal transduction, as found in any eukaryote.

The G-protein subunit alpha (gpa) transcript was the most
abundant (112 ESTs), in our experimental conditions, and it
was up-regulated both during the fungal contact with keratin
and during the interaction with keratinocytes. The over-
expression of gpa in T. rubrum in the host-like conditions
described here strongly suggests that GPA may play an

ded1

catP

memb

gpaA

act

hxf

zfp

hxf
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zfp

catP

memb

gpaA

act
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Fig. 3. Validation of the cDNAeRDA results. (A) Dot blot analysis of T.

rubrum. DNAs of individual clones were prepared and dilutions

(1:2000e1:64,000) were blotted (1e6). Panel a: individual clones hybridized

to the labeled cDNA obtained from T. rubrum cultured in the presence of ker-

atin. Panel b: individual clones hybridized to the labeled cDNA obtained from

T. rubrum cultured in the absence of keratin. The clones were as follows:

G-protein subunit alpha ( gpa), ATP-dependent RNA helicase DED1 (ded1),
homeobox transcription factor (hxf ), catalase isozyme P (catP), zinc finger

protein (zfp), membrane protein (memb), and actin (act) as control. (B) Expres-

sion patterns of genes obtained by cDNAeRDA analyzed by northern blot of

total RNA of T. rubrum extracted after culture in the presence (1) and absence

(2) of keratin. Total RNAwas fractionated on 1.2% formaldehydeeagarose gel

and hybridized to the cDNA inserts of gpa, catP, zfp, memb and actin (act) as

the loading control.

Fig. 4. Interaction between T. rubrum and keratinocytes. Cells were seeded

into six-well plates and incubated with conidia for 24 h. The wells were

washed and stained with the MayeGrünwald (Giemsa) for micrographs.
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important role in the modulation of virulence of this fungus.
Segers and Nuss [15] demonstrated that CPG-1 of Cryphonec-
tria parasitica (one of the three genes encoding G alpha sub-
units) was essential for regulated growth, pigmentation,
sporulation and virulence, indicating that tightly-controlled
expression of CPG-1 mediated by signaling is required to con-
trol these processes. Previous studies have shown that the G
alpha subunit GPA-1 in Cryptococcus neoformans regulates
a variety of cellular functions, including specialized processes
such as the production of the antioxidant melanin pigment and
the antiphagocytic capsule, and two well-established virulence
factors in this pathogen [16].

In particular, a zinc finger protein was up-regulated in the
analyzed conditions, presumably reflecting its role in fungal
infection. Most zinc-containing proteins are transcription fac-
tors capable of binding DNA and function in a wide range of
processes, including regulation of genes involved in the stress
response, as demonstrated in human fungal pathogens [17]. In
some fungi the ambient pH regulation is performed by zinc-
finger transcription factors [18].

Knowledge of the metabolic responses that govern homeo-
static pH and extracellular pH sensing is rather important,
since these mechanisms are possibly involved in the installa-
tion, development, and survival of dermatophytes in humans.

The over-expression of catalase isozyme P (catP) produced
by T. rubrum in the ‘‘tester’’ conditions strongly suggests its
role in the fungal infection. Catalase, which is a good scaven-
ger of H2O2, is considered a putative virulence factor of vari-
ous fungi that could counteract the oxidative defense reactions
of the host phagocytes [19]. Catalases are widespread in aero-
bic organisms such as Candida albicans, P. brasiliensis, Histo-
plasma capsulatum, and Aspergillus fumigatus.

Catalases take part in C. albicans survival from neutrophil
attack and within the host. Disruption of the C. albicans cata-
lase gene results in higher sensitivity to damage by neutrophils

and to exogenous hydrogen peroxide. The C. albicans cat1
gene, which encodes a protein with catalase activity, is in-
volved in oxidant susceptibility; its deletion generates cells
that are less virulent in the mouse model of acute systemic in-
fection [20]. Moreira et al. [21] isolated a complete cDNA en-
coding a peroxisomal catalase of P. brasiliensis (PbcatP).
PbcatP expression was induced in cells treated with H2O2,
and the authors speculated that the activity of this enzyme
was protective against endogenously produced oxygen radicals
and exogenous H2O2. The authors observed that the protein
and its transcript were regulated during P. brasiliensis devel-
opment, increasing during the mycelium-to-yeast transition
(to the pathogenic form). H. capsulatum yeast cells synthesize
catalases during exposure to the respiratory burst of neutro-
phils and macrophages [22]. Paris et al. [23] examined the
role of all of the conidial and mycelial catalases of A. fumiga-
tus in the pathogenicity of the fungus and observed the expres-
sion of three active catalases, one in conidia and two in
mycelium. The conidial catalase does not protect conidia
against the oxidative burst of macrophages, but it protects
against H2O2 in vitro.

To our knowledge, this study is the first to use cDNAeRDA
analysis to characterize changes in gene expression by com-
paring two populations of T. rubrum cDNA, one obtained
from fungus cultured in the presence of keratin and other gen-
erated during fungal growth in minimal medium. This work
can facilitate functional studies of novel regulated genes that
may be important during the infective process of
dermatophytes.
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Abstract The ascomycete Paracoccidioides bra-

siliensis is a human pathogen with a broad

distribution in Latin America. The infection process

of P. brasiliensis is initiated by aerially dispersed

mycelia propagules, which differentiate into the

yeast parasitic phase in human lungs. Therefore, the

transition to yeast is an initial and fundamental step

in the infective process. In order to identify and

characterize genes involved in P. brasiliensis tran-

sition to yeast, which could be potentially associated

to early fungal adaptation to the host, expressed

sequence tags (ESTs) were examined from a cDNA

library, prepared from mycelia ongoing differentia-

tion to yeast cells. In this study, it is presented a

screen for a set of genes related to protein synthesis

and to protein folding/modification/destination

expressed during morphogenesis from mycelium to

yeast. Our analysis revealed 43 genes that are

induced during the early transition process, when

compared to mycelia. In addition, eight novel genes

related to those processes were described in the P.

brasiliensis transition cDNA library. The types of

induced and novel genes in the transition cDNA

library highlight some metabolic aspects, such as

putative increase in protein synthesis, in protein

glycosylation, and in the control of protein folding

that seem to be relevant to the fungal transition to

the parasitic phase.

Keywords Dimorphic transition �
Induced transcripts � Paracoccidioides brasiliensis �
Protein synthesis � Protein folding/modification/

destination

Introduction

Paracoccidioides brasiliensis is a human pathogen

with a broad distribution in Latin America. The

fungus is thermally dimorphic. In the soil, the fungus

grows as saprobic mycelium and upon elevation of

the temperature to that of the mammalian body, the

fungus adopts a yeast-like phase [1]. A human host

through inhalation acquires the fungal pathogen. The

disease, paracoccidioidomycosis, is characterized by

a chronic granulomatous inflammation, and patients

might present a broad spectrum of clinical manifes-

tations ranging from a localized and benign disease to

a progressive and potentially lethal systemic mycosis.
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The severe nature of the disease and occurrence of

sequelae, frequently causing pulmonary dysfunction

or other disabilities, render it a pathogen of consid-

erable medical importance [2].

P. brasiliensis can successfully establish and cause

disease, highlighting the need to a better understand-

ing of the molecular mechanisms of pathogenesis.

Pathogenicity can be related to the factors associated

to the transition from the saprophytic phase to the

yeast parasitic phase, since fungal strains that are

unable to differentiate into yeast cells are not virulent

[3]. In this way, the characterization of genes/proteins

related to the differentiation to the parasitic phase

may bring insights to the fungal pathogenesis.

The morphological transition in P. brasiliensis is

governed predominantly by the temperature and is

preceded by several molecular changes. Some bio-

chemical processes related to the dimorphic transition

had been elucidated. In this way, the dimorphic

transition involves alterations in the cell wall com-

position and in the structure of carbohydrates

polymers [4]. Hyper expression of the enzymes of

the sulfur metabolism in the yeast phase during the

fungal transition to yeast reinforces previous findings

that this metabolic pathway could be important for

this differentiation process [5, 6]. Transcriptional

analysis of genes highly expressed during the mycelia

to yeast conversion identified the product 4-hydroxyl-

phenyl pyruvate dioxygenase (4-HPPD), predicted to

function in the catabolism of aromatic amino acids.

Inhibition of 4-HPPD by specific compounds impairs

the in vitro differentiation of mycelium to the yeast

phase [7]. Also, data indicate that P. brasiliensis

transition from mycelium to yeast is controlled by

changing cAMP levels, with the onset of transition

correlating with a transient increase in cAMP,

suggesting activation of the cAMP-signaling pathway

[8, 9].

A number of proteins and genes had been described

as potentially associated to the fungal transition

and putatively to the host invasion and host fungal

survival. Proteomics-based discovery approaches

have successfully identified potential candidates to

the dimorphic process. Proteomic analysis from

mycelium ongoing differentiation to yeast cells was

performed allowing the characterization of proteins

that could be relevant to the fungal differentiation. In

this sense, the proteins HSP70, HSP60, glyceralde-

hyde-3-phosphate dehydrogenase, catalase P and actin

were accumulated during the transition from myce-

lium to yeast [10–15].

A great amount of transcriptional data has been

obtained from P. brasiliensis [16–21]. Approaches

used in this fungus to identify phase-specific genes

and or genes important for the dimorphic process,

included microarray hybridization approaches [7,

16] and in silico EST subtraction [16]. Transcrip-

tional profiling of microarrays built with ESTs of

P. brasiliensis has identified 328 genes that are

differentially expressed upon the phase transition

[16]. In addition, constructed microarrays based on

yeast-phase genes and hybridized to RNAs isolated

from fungal cells at time points during the switch to

the yeast phase enabled the identification of tran-

scripts potentially associated to the fungal

morphogenesis [7].

In a previous work, we have tested the concept that

novel genes involved in P. brasiliensis phase transi-

tion could be described by applying a transcriptome

analysis of cells undergoing mycelium to yeast

transition. We reported the in silico analyses and

comparison of ESTs from mycelium undergoing the

early transition to yeast with mycelium differentiated

cells. According to our data, the developmental

program of P. brasiliensis is characterized by signif-

icant differential positive modulation of transcripts

related to cellular processes, predominantly to the cell

wall/membrane synthesis/remodeling, suggesting

their importance in dimorphism [21].

In this study, in order to advance our understand-

ing on the molecular mechanisms of dimorphic

transition and of the initial steps of the fungal

adaptation to the host, we sought to examine the

profile of transcripts related to protein synthesis/

processing/regulation/degradation in the ESTs gener-

ated from the cDNA library of mycelium undergoing

transition to yeast cells. Using comparative sequence

analyses, we could identify sequences, which were

absent in the P. brasiliensis yeast and mycelium

transcriptome and in public databases, as well as

sequences induced during the early fungal transition.

Through these approaches, it was found: (1) 54

possible homologues, including 18 induced/novel

homologues of genes previously described as related

to protein synthesis; and (2) 44 possible homologues,

including 25 induced/novel homologues to genes

related to protein folding/modification/destination.

Those novel/induced genes provide ideal candidates
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for further studies directed at understanding fungal

morphogenesis and its regulation.

Materials and methods

RNA extraction and preparation of the cDNA

library

The cDNA library was constructed, as previously

reported [21]. Briefly, P. brasiliensis, isolate Pb01

(ATCC-MYA-826), was grown in Fava-Netto’s

medium [1% (w/v) peptone; 0.5% (w/v) yeast

extract; 0.3% (w/v) proteose peptone; 0.5% (w/v)

beef extract; 0.5% (w/v) NaCl; 4% (w/v) agar, pH

7.2], at 22�C, as mycelium. The differentiation was

performed in liquid medium (Fava-Netto’s medium)

by changing the culture temperature from 22 to

36�C for the mycelium to yeast transition, as we

previously described [13]. The cells were previously

grown in liquid medium for 18 h before changing

the incubation temperature, which was maintained

for 22 h.

Total RNA was purified from P. brasiliensis

mycelium in transition to yeast cells using TRIZOL

(GIBCOTM, Invitrogen, Carlsbard, CA). The mRNA

was purified by using the Poly (A) QuickR mRNA

isolation kit (Stratagene, La Jola, CA). The cDNA

library was constructed in the unidirectional

pCMV.SPORT 6 (Invitrogen) according to the

manufacturer’s instructions, exploiting the NotI and

SalI restriction sites. The cDNA library was not

normalized, i.e., no attempt was made to reduce the

redundancy of highly expressed transcripts.

EST processing pipeline and annotation

The nucleotide sequences were uploaded to a rela-

tional database (MySQL) on a Linux (Fedora Core 3)

platform, and processed using a modified version of

the PHOREST tool [22]. The sequences generated

during dimorphic transition of P. brasiliensis [21]

were compared to sequences generated from yeast and

mycelium [16]. Transcripts classification was per-

formed by using the MIPS categorization (http://

www.mips.gsf.de/). Similarities with E-values £10–4

were considered significant.

In silico determination of induced genes in the

mycelium to yeast transition

In order to assign a differential expression character,

the contigs formed with mycelium and the transition

ESTs were statistically evaluated using the Audic and

Claverie’s method [23]. It were considered induced

genes in the transition library those that were not

previously described in the mycelium transcriptome

database (http://www.dna.biomol.unb.br/Pb), and

those more expressed as determined with a 99%

confidence rate. A web site (http://www.igs.cnrs-mrs.

fr/Winflat/winflat.cgi) was used to compute the

probability of differential regulation. The P. brasili-

ensis transcriptome database at (http://www.dna.

biomol.unb.br/Pb/) and public databases (http://www.

ncbi.nlm.nih.gov) were used to identify novel tran-

scripts, by using the BLAST program [24], as

described [21].

Results and discussion

cDNA library sequence annotation

The cDNA library was constructed in a non-

normalized primary library without amplification,

so the clone abundance presents the relative mRNA

population. The quality of the cDNA library was

checked by evaluating the presence of well-charac-

terized transcripts in the MIPS category, such as,

those encoding for energy and metabolism. The

results of computational homology search of the

genes related to protein synthesis/folding/modifica-

tion/destination obtained from the P. brasiliensis

mycelium undergoing differentiation to yeast cells

are shown in the supplementary material, Tables 1

and 2, respectively. A total of 200 ESTs (27.3% of

the total transition transcriptome) showed significant

similarity to sequences related to protein synthesis/

folding/modification/destination (E-value £10–4)
based on BLAST searches. A total of 184 ESTs

(25.12% of the total transition transcriptome) gave

significant hits to ESTs present in the P. brasiliensis

transcriptome database or in the GenBank database.

In addition, 16 ESTs (2.18% of the total transition

transcriptome) represented novel genes of P. brasil-

iensis regarding to the above processes.

Mycopathologia (2008) 165:259–273 261
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A broad view of the nature of the adaptations made

by P. brasiliensis concerning to protein synthesis

during early transition to yeast was obtained by

classifying the ESTs into 6 groups of functionally

related genes (Table 1, supplementary material).

Among the transcripts classified in the transition

cDNA library and related to protein synthesis, it was

found predominantly ESTs coding for ribosomal

proteins, comprehending 39 unigenes.

Regarding to protein folding/modification/destina-

tion, the ESTs were classified into 6 groups of

functionally related genes, as demonstrated in

Table 2, supplementary material. Most of the ESTs

represent unigenes related to the MIPS classification

of posttranslational modification of amino acids (18

unigenes), followed by transcripts related to protein

modification by ubiquitination (8 unigenes), prote-

asomal degradation (8 unigenes), protein processing

(6 unigenes), and protein folding (3 unigenes).

Description of the ESTs related to protein

synthesis and fate in the transition transcriptome

As shown in Fig. 1a, the ESTs related to protein

synthesis were mainly represented as following: a

total of 40.68% of the annotated ESTs corresponded

to the ribosomal proteins of the ribosome large

subunit; 24.58% in that category were related to the

ribosomal proteins of the ribosome small subunit;

15.24% of the transcripts corresponded to homo-

logues encoding translational initiation factors;

9.32% corresponded to ESTs related to the translation

elongation machinery. Other ESTs were related to

aminoacyl tRNA synthetases (1.69%), ribosome

biogenesis (7.64%) and translation termination

(0.85%). The Fig. 1b catalogues the ESTs related to

protein fate according to the MIPS categories. Most

of the transcripts were related to posttranslational

modifications of proteins (38.27%) and protein ubiq-

uitination (27.16%). Transcripts related to protein

processing and proteasomal degradation of proteins

represented 14.81 and 11.12 %, respectively. Classes

with lower number of transcripts comprehended those

related to protein folding (6.17%) and protein target-

ing (2.47%).

High abundant ESTs related to protein synthesis

and fate in the transition transcriptome

Table 1 shows the 10 most abundant ESTs related to

protein synthesis and folding/modification/destina-

tion in the transition transcriptome. The minimum

number of ESTs that made up these most highly

redundant contigs was 5. Eight out of the ten most

abundant ESTs were identified as induced sequences

according to the Audic and Claverie’s method and

one EST represented a novel transcript. Included

among the most abundant transcripts were ESTs

encoding for proteins related to ribosome assembly/

biogenesis [25–27] and translation [28–30]. More-

over, a transcript encoding a 14 kDa mitochondrial

ribosomal protein (mrps14) was detected as a novel

transcript. In the P. brasiliensis mitochondrial

genome, the mrps14 gene was not found [31],

suggesting, as described in Arabdopsis thaliana [32]

its possible transference to the nucleus.

Also, among the highly redundant transcripts, it

was detected homologues of proteins related to the

acceleration of the protein folding and ubiquitination

in many organisms [33, 34]. Transcript encoding

proteins related to stress conditions, such as the

homologue of the L-isoaspartate O-methyltransferase

(pcmt) that specifically recognizes and methylates

Fig. 1 Distribution of ESTs from P.brasiliensis mycelia

ongoing transition to yeast according to their cDNA products.

(a) Protein synthesis; (b) protein fate. The classification was

based on E-value and performed according to the functional

categories developed on the MIPS functional annotation

scheme. The percentage of ESTs classification is indicated
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isoaspartyl residues in a variety of proteins [35], thus

preventing the accumulation of deamidated proteins

under stressing conditions, was high abundant in the

morphological transition. Regarding to protein pro-

cessing, the transcript encoding aspartyl proteinase

(pep) was detected. Aspartic proteases are widely

distributed in all domains of life and are related to

cleavage of peptides in regions of hydrophobic amino

acids under acidic conditions. The S. cerevisiae

vacuolar Pep4p homologue to the P. brasiliensis

pep product has been described as required for the

turnover of damaged molecules during stress condi-

tions [36].

Induced genes related to protein synthesis

identified by in silico EST subtraction

We attempted to determine the putative function of

the set of 119 phrap unisequences by searching for

homologues in the GenBank non-redundant protein

database using BLAST X and by comparing the

ESTs in the transition library to those present in the

mycelium transcriptome database. The Fig. 2 pre-

sents the percentage of induced and novel genes

related to protein synthesis in comparison to the

total number of ESTs in the transition transcriptome,

as described [21]. As observed, from the 119 ESTs

related to protein synthesis (10.66% of the total),

3.97% were induced in the transition library

and 0.9% was described as novel genes in

P. brasiliensis.

The comparative analysis of all the induced ESTs

related to protein synthesis in the transition library is

available; Table 2 summarizes the results of such

comparison. In P. brasiliensis, induced transcripts,

putatively playing role in ribosomal biogenesis and

maturation were detected during dimorphic transi-

tion, such as 60S ribosome subunit biogenesis protein

(nip7), GTP-binding GTP1/OBG (ygr210) family

protein and ubiquitin fused to S27a protein (ubi/

crp-6). Proteins composing the small and large

ribosomal subunits, as well as translational initiation

factors, from both cytoplasmic and mitochondrial

ribosomes were over expressed in the transition

library; some represent novel genes (Table 2). Sim-

ilar results were described suggesting that the fungal

transition is likely to involve intense synthesis of new

ribosome particles, affecting the rate of proteinT
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synthesis [7]. In addition, some of the transcripts

encode for ribosomal proteins whose orthologues are

differentially regulated in organisms. In this sense,

the rps26 product which has no homologue among

prokaryotic ribosomal proteins [37] is differentially

expressed during environmental stress in plants [38].

Also, the developmental program of organisms seems

to include the differential expression of ribosomal

proteins; ribosomal protein rpl5 product was specif-

ically identified in schizonts and was undetectable in

oocysts in the organism Eimeria tenella [39], sug-

gesting its regulation under different life-cycle stages.

Induced genes related to protein fate identified by

in silico EST subtraction: ESTs relevant to

protein processing:

We also attempted to determine the putative function

of the set of 81 phrap unisequences by searching for

homologues in the GenBank non-redundant protein

database using BLAST X and by comparing the ESTs

in the transition library to those present in the

mycelium transcriptome database. The classification

of induced genes was designed as described. The

Fig. 2 presents the percentage of induced and novel

genes related to protein folding/modification/destina-

tion in comparison to the total number of ESTs in the

transition transcriptome as described [21]. As

observed, from the 81 ESTs (7.32% of the transition

transcriptome), 48 (4.43% of the total transition

transcriptome) were induced in the transition library

and 6 (0.54%) were described as novel genes in

P. brasiliensis.

The comparative analysis of the ESTs related to

protein folding/modification/destination is available;

Table 3 summarizes the results of such comparison.

A cyclophilin seven suppressor 1 (cns1) (HSP90

chaperone complex component) was detected. The

Hsp90 complex is one of the most abundant and

highly conserved chaperone preventing the aggrega-

tion of proteins in a folding-competent state and is

essential for cell viability in S. cerevisiae [40]. A

tailless complex polypeptide 1 chaperonin, subunit

epsilon (tcp-1) was also detected. The tcp-1 is

localized in the cytosol of higher eukaryotes and is

similar to prokaryotes GroEL. The tcp-1 product has

been related to protein folding in S. cerevisiae

playing role in cell development and cytoskeletal

organization [41]. The two ORFs encoding homo-

logues to the above proteins, presumably reflect the

heat shock condition experienced by mycelia in

transition to yeast cells.

Glycosyltransferases play vital roles in the biolog-

ical function of native proteins, as well as, in the

biosynthesis of numerous molecules within fungi,

including cell wall components and its induced

expression putatively reflect the cell wall remodeling

that occurs during P. brasiliensis morphological

transition [4, 21]. The novel/induced genes encode

glycosyltransferases that could be related to galac-

tosylation of N-and O-glycans, as described in

S. cerevisiae [42]. Mannosyltransferases (och1 and

Fig. 2 Prevalence distribution of ESTs from P. brasiliensis
mycelia ongoing transition to yeast. The percentage of ESTs

related to protein synthesis and fate in the total ESTs are

represented along with the percentage of over expressed

and novel genes of P. brasiliensis in the transition library

(http://192.168.0.5/phorestwww)
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Table 2 Novel and over expressed transcripts related to protein synthesis detected during dimorphic transition in P. brasiliensis

MIPS category Gene

name

Gene product Best hit/accession number E-value Enzyme

commission

Redundancyd

M T

Protein synthesis

Ribosome biogenesis

nip7 60S ribosome subunit

biogenesis protein NIP7b
Aspergillus fumigatus/
AAM08680

3e–14 – – 1

ygr210 GTP-binding GTP1/OBG

family proteinb
Aspergillus nidulans/
XP_404829

1e–70 – – 1

ubi/crp–6 Ubiquitin fused to S27a

proteina
Aspergillus nidulans/
XP_409009

2e–60 – 7 7

Ribosomal proteins

Small subunit

mrps14 14 kDa mitochondrial

ribosomal proteinc
Aspergillus nidulans/
XP_408748

4e–46 – – 7

rps13 40S ribosomal protein S13b Neurospora crassa/EAA34807 2e–37 – – 1

rps26 40S ribosomal protein S26b Neurospora crassa/CAA39162 3e–52 – – 1

rps5 40S ribosomal protein S5a Aspergillus nidulans/
XP_404980

8e–22 – 8 7

mrps19 Mitochondrial ribosomal

protein S19b
Aspergillus nidulans/
XP_404292

5e–19 – – 1

Large subunit

rpl20 60S ribosomal protein L20a Magnaporthe grisea/
XP_361110

3e–16 – 3 6

rpl27 60S ribosomal protein L27a Aspergillus nidulans/
XP_408359

4e–63 – 1 3

rpl5 60S ribosomal protein L2b Coccidioides immitis/
EAS30555

9e–54 – – 1

rpl3 60S ribosomal protein L3a Aspergillus fumigatus/
AAM43909

5e–85 – 1 2

rpl43 60S ribosomal protein L43Bb Ustilago maydis/XP_400133 1e–30 – – 1

Translation initiation

eif3 Translation initiation factor 3

subunit 2c
Aspergillus nidulans /
XP_660601

6e–80 – – 3

eif–5A Translation initiation factor

eIF–5Aa
Neurospora crassa/P38672 6e–06 – 4 4

– Translational machinery

component proteinb
Aspergillus nidulans/
XP_405417

1e–19 – – 1

sui1 Translation initiation factor

eIF1 subunit Sui1a
Gibberella zeae/XP_389056 2e–36 – 2 5

Aminoacyl-tRNA synthetase

ils1 Isoleucyl-tRNA synthetaseb Aspergillus nidulans/
XP_407499

1e–52 6.1.1.5 – 2

a Transcripts induced in the transition library in comparison to the mycelium transcriptome according to the Audic and Claverie’s

method
b Transcripts non detected in the mycelia transcriptome (http://www.dna.biomol.unb.br/Pb)
c Novel genes detected in P. brasiliensis
d M: Redundancy in P. brasiliensis mycelia transcriptome (http://www.dna.biomol.unb.br/Pb); T: Redundancy in P. brasiliensis
transition library (http://192.168.0.5/phorestwww/)
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Table 3 Novel and over expressed transcripts related to protein fate detected during dimorphic transition in P. brasiliensis

MIPS category Gene

name

Gene product Best hit/accession number E-value Enzyme

commission

Redundancye

M T

Protein fate

Protein folding

cns1 Cyclophilin seven

suppressor 1 (HSP90

chaperone complex

component)b

Aspergillus nidulans/
XP_409575

8e–12 – – 2

tcp–1 Tailless complex

polypeptide 1

chaperonin, subunit

epsilonb

Schizosaccharomyces
pombe/EAA65069

6e–16 – – 2

Posttranslational modification of amino acids

gma12 Alpha–1, 2-

galactosyltransferasec
Aspergillus nidulans/
XP_406106

3e–14 2.4.1.- – 1

mnt1 Alpha–1, 2-

mannosyltransferasea
Neurospora crassa/
CAC18268

1e–29 2.4.1.131 3 3

och1 Mannosyltransferaseb Paracoccidioides
brasiliensis/AAK54761

3e–70 2.4.1.130 – 1

swp1 Oligosaccharyltransferase

subunit ribophorin IId
Coccidioides immitis/
EAS29547

9e–37 2.4.1.119 – 1

rabggt Rab geranylgeranyl

transferasec
Aspergillus nidulans/
XP_412816

8e–13 2.5.1.60 – 1

cypb Peptidyl prolyl cis–trans

isomeraseb
Neurospora crassa/
CAD21421

8e–39 5.2.1.8 – 1

ppil1 Peptidyl-prolyl cis–trans

isomerase-like 4

(Cyclophilin RRM)a

Coccidioides immitis/
EAS29016

1e–46 5.2.1.8 1 5

pcmt Protein-L-isoaspartate (D-

aspartate) O-

methyltransferasea

Aspergillus nidulans/
XP_407601

5e–55 2.1.1.77 4 5

gmd1 Guanosine diphosphatasec Aspergillus nidulans/
XP_405219

2e–15 3.6.1.42 – 1

Proteasomal degradation

rpt6 26S proteasome regulatory

subunit proteinb
Aspergillus nidulans/
XP_411125

4e–23 – – 1

rpn12 26s proteasome regulatory

subunit rpn12b
Aspergillus nidulans/
XP_407156

5e–30 – – 1

rpn5; rpne 26S proteasome regulatory

subunit Non-ATPasec
Aspergillus nidulans/
XP_408912

2e–68 – – 1

csn5 COP9 signalosome

complex subunit 5a
Aspergillus nidulans/
XP_406266

1e–35 – 1 2

Modification by ubiquitination

ubp1 Ubiquitin-specific protease

(C19)b
Aspergillus nidulans/
XP_412211

7e–08 3.1.2.15 – 3

ubc–6 Ubiquitin conjugating

enzyme E2a
Gibberella zeae/
XP_388490

1e–29 6.3.2.19 6 7

ubq/rpl40 Ubiquitin fusion proteina Schizosaccharomyces
pombe/NP_593923

8e–67 – 3 3
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mnt1) could be putatively related to the O-linked

mannosylation of proteins, as observed in C. albi-

cans. C. albicans mutants to either mnt1 or och1

showed hypersensitivity to cell wall perturbing

agents, suggesting the proteins role in the cell wall

maintenance [43, 44]. Moreover, a novel transcript

encoding to guanosine diphosphatase (gmd1) was

detected during the dimorphic transition, whose

product is known to regulate mannosylation of N-

and O-linked oligosaccharides in Golgi complex [45].

Peptidyl-prolyl cis/trans isomerases (cyclophilins)

catalyze cis/trans isomerization of a prolyl bond and

this isomerization is a time limiting step in folding

of certain proteins [46]. Transcripts encoding to

two-peptidyl prolyl cis–trans isomerases (cypb and

ppil) were induced in P. brasiliensis during the

transition from mycelium to yeast. Aside from their

roles in cellular biochemistry, cyclophylins of

microorganisms are particularly interesting since

those proteins are found to have a key role in

pathogenicity [47]. The P. brasiliensis CypB

deduced amino acid sequence presents four con-

served amino acids: Arg, Phe, Trp and His (RFWH

motif, data not shown) described as involved in

peptidyl-prolyl cis–trans isomerase activity and

related to the activity of the protein in the folding

process as described [48].

Protein processingMIPS category is represented by

four unigenes induced in P. brasiliensis transition

library; some presents orthologues with function in

stress response and differentiation. The aspartic pro-

tease (pep) with seven ESTs, was also included with

the most abundant transcripts (see Table 1). The pep

product belongs to family A1 of aspartic protease,

related to pepsin and synthesized as a propeptide with

signal peptide. This peptidase family is related to stress

response in S. cerevisiae [36]. The deduced Lon

protease (lon) shows homology with family S16, class

001 in MEROPS database (http://www.merops.

sanger.ac.uk) and is induced in the transition tran-

scriptome sharing identity with its counterparts in

bacteria. The lon product was first identified in E. coli

Table 3 continued

MIPS category Gene

name

Gene product Best hit/accession number E-value Enzyme

commission

Redundancye

M T

ubp1; otub1 Ubiquitin thiolesterase

otubain like proteinc
Aspergillus nidulans/
EAA60354

1e–28 3.4.- – 1

rfn167 Ring (really interesting new

gene) type zinc finger

(C3HC4) protein (E3

complex)b

Schizosaccharomyces
pombe/CAB08748

5e–10 – – 1

fbl7 F-box/LRR-repeat protein 7

(E3 complex)b
Aspergillus nidulans/
XP_408647

8e–28 – – 3

Protein Processing

pep Aspartyl proteinasea Paracoccidioides
brasiliensis/AAP32823

3e–72 3.4.23.24 3 7

lon Lon proteaseb Pseudomonas fluorescens/
AF250140_1

1e–05 3.4.21.53 – 1

lap Peptidase M28 domain

proteinc
Coccidioides immitis/
EAS33583

1e–22 3.4.11.15 – 1

mde10 Zinc metalloprotease

(M12)b
Neurospora crassa/
CAD21161

3e–47 3.4.24.- – 1

a Transcripts induced in the transition library in comparison to the mycelium transcriptome according to the Audic and Claverie’s

method
b Transcripts non detected in the mycelia transcriptome (http://www.dna.biomol.unb.br/Pb)
c Novel genes detected in P. brasiliensis
d Genes not described previously in P. brasiliensis isolate Pb01, but present in public databases
e M: Redundancy in P. brasiliensis mycelia transcriptome (http://www.dna.biomol.unb.br/Pb); T: Redundancy in P. brasiliensis
transition library (http://192.168.0.5/phorestwww/)
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and its homologues were further discovered in many

organisms sometimes in multiple copies, playing

essential roles in protein quality control by destroying

unfolded proteins [49]. In P. brasiliensis, a gene

homologue encoding for a Lon protein of the S16

family, class 002 in MEROPS database (http://www.

merops.sanger.ac.uk), was described previously [50],

suggesting more than one Lon species in the fungal

pathogen. A metalloprotease M28 domain protein

(lap) was found as a novel gene in P. brasiliensis,

encoding for a leucyl aminopeptidase. In Thichoderma

harzianum, the M28 peptidase is induced during

nitrogen starvation suggesting its importance in the

amino acid acquisition [51]. Other metalloprotease

induced in P. brasiliensis dimorphic transition is the

zinc metalloprotease belonging to M12 family

(mde10), whosemembers were described in fungi [52].

Putative differentiation, virulence and stress

tolerance factors

Factors putatively related to the differentiation pro-

cess, fungal virulence and stress tolerance were

Table 4 Homologues for protein synthesis and fate ESTs putatively related to fungal differentiation/virulence or stress tolerance

Gene product Described role Redundancyd Reference

M T

Cyclophilin seven suppressor 1 (cns1)b Promotes increase in heat shock response

in Saccharomyces cerevisiae.
– 2 [40]

Alpha-1, 2-mannosyltransferase (mnt1)a Required for adhesion and virulence in

Candida albicans
3 3 [43]

Mannosyltransferase (och1p)b Required for cell wall integrity and

virulence in Candida albicans
– 1 [44]

Zinc metalloprotease (mde10)b Required for spore development in

Schizosaccharomyces pombe
– 1 [52]

GTP-binding GTP1/OBG family protein

(ygr210)b
Involved in regulation of differentiation

in Streptomyces coelicolor.
– 1 [53]

Peptidyl prolyl cis–trans isomerase

(cypb)b
Induced in heat shock response in

Aspergillus nidulans.
– 1 [54]

Peptidyl-prolyl cis–trans isomerase-like 4

(ppil1)a
Related to thermoresistance in

Paramecium sp
1 5 [55]

Peptidyl-prolyl cis/trans isomerase (ess1) Required for Cryptococcus neoformans
virulence

6 1 [56]

Peptidyl-prolyl cis–trans isomerase (mip) Required for Legionella pneumophila
survival into macrophages

2 2 [57]

Protein-L-isoaspartate (D-aspartate) O-

methyltransferase (pcmt)a,c
Promotes increase in heat shock survival

in Escherichia coli.
4 5 [58]

Ubiquitin conjugating enzyme E2 (ubc6)a Promotes enhanced in growth of

Saccharomyces cerevisiae at high

temperature.

6 7 [59]

Aspartyl proteinasea,c (pep) Secreted by Aspergillus fumigatus during
invasion of the host lung.

3 7 [60]

Lon protease (lon)b Required for cellular morphology and

virulence in Agrobacterium
tumefaciens

– 1 [61]

a Transcripts induced in the transition library in comparison to the mycelium transcriptome according to the Audic and Claverie’s

method
b Transcripts non detected in the mycelia transcriptome (http://www.dna.biomol.unb.br/Pb)
c Also over expressed in yeast cells recovered from liver of infected mice (Costa et al. unpublished)
d M: Redundancy in P. brasiliensis mycelia transcriptome (http://www.dna.biomol.unb.br/Pb); T: Redundancy in P. brasiliensis
transition library (http://192.168.0.5/phorestwww/)
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selected on basis with homology to other microor-

ganisms in which defined functions are available.

With these criteria, we classified some transcripts as

shown in Table 4. The cns1 product is an essential

component of the HSP90 complex, which is induced

in heat shock response [40]. Mannosyltransferases

(mnt1 and och1) orthologues are required for cell wall

integrity/virulence and adhesion/virulence, respec-

tively, in C. albicans [43, 44]. In S. pombe, the mde10

product is essential for development of spore

envelopes [52] evidencing its importance during

differentiation process in the cell. The GTP-binding

GTP1/OBG family product (ygr210) related to ribo-

some biogenesis has been described as a regulator of

differentiation in Streptomyces coelicolor, playing a

role in the onset of aerial mycelium formation and

sporulation [53]. In Aspergillus nidulans, CypB is

induced in response to heat shock indicating a

possible role of this protein during growth in stress

environments [54]. P. tetraurelia KIN241 homologue

to peptidyl-prolyl cis–trans isomerase-like 4 (ppil1) is

related to the organism thermoresistance [55]. A

parvulin type Ess1 of Cryptococcus neoformans

homologue to P. brasiliensis ppil1 product is required

for virulence, since Ess1 depleted strains are unable

to cause experimental infection [56]. The Mip protein

(macrophage infectivity potentiator) of Legionella

pneumophila is a cyclophilin FKBP-type homolog

which is related to bacterial virulence in intracellular

infection in guinea pig [57]. Escherichia coli trans-

formants over expressing L-isoaspartate (D-aspartate)

O-methyltransferase presented increase in the heat

shock survival rates [58]. Yeast strains over express-

ing ubiquitin conjugating enzyme E2 are more

tolerant to various stresses conditions, such as high

temperature [59]. The A. fumigatus aspartyl protease

(pep) is highly secreted during fungal invasion of host

lung [60]. The Lon protease of Agrobacterium

tumefaciens is required for normal growth, cellular

morphology and full virulence [61].

Concluding remarks

Molecular strategies relying on ESTs has proved to

be an efficient approach to identify genes expressed

under a variety of conditions. This study presents a

screen for genes related to protein synthesis/folding/

modification/destination expressed during mycelium

to yeast differentiation of P. brasiliensis through EST

analysis. By analysis of the induced and or novel

genes it was possible to infer some metabolic

adaptations of P. brasiliensis during early dimorphic

transition that could include the increased control in

the ribosome biogenesis and translation fidelity,

increase in protein glycosylation and in the control

of protein folding. In addition, the amino acids

capture from the medium could be favored during the

transition to the parasitic phase.
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15. Nino-Vega G, Pérez-Silva C, San-Blas G. The actin gene

in Paracoccidioides brasiliensis: organization, expression
and phylogenetic analysis. Mycol Res 2007;111:363–9.

16. Felipe MSS, Andrade RV, Arraes FB, Nicola AM, Ma-

ranhão AQ, Torres FA, Silva-Pereira I, Poças-Fonseca MJ,

Campos EG, Moraes LM, Andrade PA, Tavares AH, Silva

SS, Kyaw CM, Souza DP, Pereira M, Jesuı́no RS, Andrade

EV, Parente JA, Oliveira GS, Barbosa MS, Martins NF,

Fachin AL, Cardoso RS, Passos GA, Almeida NF, Walter

ME, Soares CMA, Carvalho MJ, Brı́gido MM. PbGenome

network. Transcriptional profiles of the human pathogenic

fungus Paracoccidioides brasiliensis in mycelium and

yeast cells. J Biol Chem 2005;280:24706–14.

17. Felipe MSS, Andrade RV, Petrofeza SS, Maranhao AQ,

Torres FA, Albuquerque P, Arraes FB, Arruda M, Azevedo

MO, Baptista AJ, Bataus LA, Borges CL, Campos EG,

Cruz MR, Daher BS, Dantas A, Ferreira MA, Ghil GV,

Jesuino RS, Kyaw CM, Leitao L, Martins CR, Moraes LM,

Neves EO, Nicola AM, Alves ES, Parente JA, Pereira M,

Pocas-Fonseca MJ, Resende R, Ribeiro BM, Saldanha RR,

Santos SC, Silva-Pereira I, Silva MA, Silveira E, Simoes

IC, Soares RB, Souza DP, De-Souza MT, Andrade EV,

Xavier MA, Veiga HP, Venancio EJ, Carvalho MJ, Oli-

veira AG, Inoue MK, Almeida NF, Walter ME, Soares

CMA, Brigido MM. Transcriptome characterization of the

dimorphic and pathogenic fungus Paracoccidioides bra-
siliensis by EST analysis. Yeast 2003;20:263–71.

18. Goldman GH, dos Reis Marques E, Duarte Ribeiro DC, de

Souza Bernardes LA, Quiapin AC, Vitorelli PM, Savoldi

M, Semighini CP, de Oliveira RC, Nunes LR, Travassos

LR, Puccia R, Batista WL, Ferreira LE, Moreira JC, Bo-

gossian AP, Tekaia F, Nobrega MP, Nobrega FG, Goldman

MH. Expressed sequence tag analysis of the human path-

ogen Paracoccidioides brasiliensis yeast phase:

identification of putative homologues of Candida albicans
virulence and pathogenicity genes. Eukaryot Cell 2003;2:

34–48.

19. Bailão AM, Shrank A, Borges CL, Parente JA, Dutra V,
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IV. Perspectivas 

1. Análise da expressão gênica da formamidase em meios de cultura com indução e 

limitação de nutrientes; 

2. Estudo de vias metabólicas envolvidas no metabolismo de nitrogênio em P.

brasiliensis;

3. Análises proteômicas de P. brasiliensis em meios de cultura com indução e limitação 

de nutrientes; 

4. Avaliação do potencial uso da proteína formamidase recombinante no diagnóstico da 

PCM;

5. Identificação, por meio de espectrometria de massas, de proteínas diferencialmente 

expressas nos isolados com e sem transição dimórfica em resposta à mudança de temperatura; 

7. Desenvolvimento e utilização de ferramentas genéticas para análise do papel 

funcional de genes diferencialmente expressos. 
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VI. Anexos 

VI.1. Figura 

Figura 1: Microscopia confocal de células leveduriformes de P. brasiliensis. (A-D) mostrando 

células leveduriformes de P. brasiliensis visualizadas por microscopia óptica. (E) controle com 

soro pré-imune; (F e H) mostrando localização celular da formamidase de P. brasiliensis na 

membrana/parede celular e em G no citoplasma, visualizadas por microscopia confocal. Barras 

5 m. 
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