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RESUMO

Os Sistemas Avançados de Assistência ao Motorista (ADAS) são dispositivos automotivos de-
senvolvidas para auxiliar o motorista na condução, com intuito de melhorar o desempenho dos
veículos em diversos aspectos, incluindo segurança. Do ponto de vista da dinâmica veicular,
segurança diz respeito a como o veículo responde aos comandos do motorista em manobras ar-
riscadas. A melhoria de manobrabilidade em situações críticas pode ser obtida pela inclusão de
controladores eletrônicos de estabilidade (ESCs). Os ESCs são ADAS desenvolvidos para evitar
que o motorista perca o controle do veículo. Uma estratégia de atuação utilizada em ESCs é o
controle dos torques transferidso para as rodas, de forma que seja aplicado no eixo de guinada um
momento estabilizador resultante da diferença entre as forças geradas nos pneus. Essa estratégia
é denominada controle direto do momento de guinada (DYC). O ESCs que utilizam DYC po-
dem ser classificados em dois níveis: alto e baixo. O primeiro calcula o momento estabilizador,
sem especificar como deve ser feita a distribuição de torque entre as rodas. E o segundo calcula o
torque que deve ser transferido para cada roda, por isso é desenvolvido dedicado para o sistema de
atuação disponível no veículo. Nessa pesquisa são propostos DYCs de alto e baixo nível baseados
em controle preditivo (MPC). O MPC foi escolhido devido às suas capacidades de considerar os
limites do sistema de atuação e prever a desestabilização. Porém, a aplicação do MPC em sistemas
de controle em tempo real tem como desafio a obtenção de tempos de cálculo compatíveis com a
velocidade da dinâmica do processo controlado. Por isso, foram aplicadas parametrizações da for-
mulação do MPC que reduzem a sua complecidade computacional. E, para considerar a eficiência
computacional na validação dos controladores, os algoritmos propostos foram implementados em
ARM Cortex A8 e submetidos a um procedimento de sintonização, que define as configurações
ótimas e caracteriza os tempos de cálculo. Simulações model-in-the-loop e hardware-in-the-loop
foram realizadas para validação dos controladores. Os resultados dessas simulações mostram que
os ESCs são eficazes em evitar a desestabilização da condução, e que os algoritmos possuem efi-
ciência computacional para serem eficazes em tempo real, mesmo executando em um hardware
de baixo custo. A comparação entre os resultados obtidos com MPC e regulador quadrático linear
(LQR) mostrou que é mais vantajoso utilizar o MPC, mesmo seu tempo de cálculo sendo maior.
A comparação entre os desempenhos obtidos com diferentes modelos de predição mostrou que,
em manobras com maior risco de instabilidade, um melhor desempenho é obtido com o modelo
que considera a rolagem, mesmo que insto impacte no aumento do tempo de cálculo. Além disso,
dos resultados para veículos com parâmetros diferentes dos valores nominais assumidos na con-
figuração dos controladores, observou-se que os ESCs são sensíveis ao descasamento entre planta
e modelo, de forma que não são comprometidas suas eficácias em evitar que o motorista perca o
controle do veículo.



ABSTRACT

Advanced Driver Assistance Systems (ADAS) are automotive devices developed to assist the
driver, with the aim of improving vehicle performance in several aspects, including safety. From
the point of view of vehicle dynamics, safety concerns how the vehicle responds to the driver’s
commands in risky maneuvers. The improvement of maneuverability in critical situations can be
achieved by the inclusion of electronic stability controllers (ESCs). ESCs are ADAS designed
to prevent the driver from losing control of the vehicle. An actuation strategy used in ESCs is
to control the torques transferred to the wheels, so that a stabilizing moment resulting from the
difference between the forces generated in the tires is applied to the yaw axis. This strategy is
called direct yaw moment control (DYC). ESCs using DYC can be classified into two levels:
high and low. The first calculates the stabilizing moment, without specifying how to distribute
the torque between the wheels. And the second calculates the torque that must be transferred to
each wheel, so it is developed dedicated to the actuation system available in the vehicle. In this
research, high and low level DYCs based on Model Predctive Control (MPC) are proposed. The
MPC was chosen because of its ability to consider the limits of the actuation system and to predict
destabilization. However, the application of MPC in real-time control systems has the challenge of
obtaining calculation times compatible with the speed of the dynamics of the controlled process.
Therefore, parameterizations of the MPC formulation were applied to reduce the computational
complexity. And, to consider the computational efficiency in the validation of the controllers, the
proposed algorithms were implemented in ARM Cortex A8 and submitted to a tuning procedure,
which defines the optimum configurations and characterizes the calculation times. Model-in-the-
loop and hardware-in-the-loop simulations were performed to validate the controllers. The results
of these simulations show that the ESCs are effective in avoiding the destabilization of driving,
and that the algorithms have computational efficiency to be effective in real-time application,
even running on low-cost hardware. The comparison between the results obtained with MPC
and Linear Quadratic Regulator (LQR) showed that it is more advantageous to use MPC, even
though its calculation time is longer. The comparison between the performances obtained with
different prediction models showed that, in maneuvers with a higher risk of instability, a better
performance is obtained with the model that considers the roll motion, even though it leads to the
increase in calculation time. In addition, from the results for vehicles with different parameters
from the nominal values assumed in the configuration of the controllers, it was observed that the
ESCs are sensitive to the model-plant mismatch , however, their effectiveness in preventing the
driver from losing control is maintained.
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1 INTRODUCTION

1.1 CONTEXTUALIZATION

The increase in computational power and the reduction in the cost of digital circuits have
encouraged the use of embedded systems in the automotive industry. The vehicles which were
mechanical machines became mechatronics systems, such that the relative costs of electrical/elec-
tronic (E/E) devices have grown from 1% of vehicle cost in 1980 to some 30% to 40% in 2012
[1]. Current top-of-the-range vehicles have E/E architectures comprising up to 100 Electronic
Control Units (ECUs). Electronic Control Units are embedded systems composed of input and
output interfaces, and processor cores. The input and output interfaces access the sensing and
actuation systems, and the processor cores run the embedded software that performs the control
algorithm. Most innovations in the modern vehicles are driven by ECUs because the develop-
ment methods of embedded systems allow the rapid release of new technologies, and the same
embedded software may implement multiple features that share the same hardware [2, 1].

Important systems implemented with ECU are the Advanced Driver Assistance Systems (ADAS),
which are developed to help the driver in order to increase vehicle performance in several aspects.
Some ADAS are active safety systems, which means that they help in driving to improve the safety
performance. For vehicle dynamics, safety performance concerns the response of the movement
to the driver’s controls, i.e. how the vehicle behaves concerning the expected behavior when the
driver brakes, speeds up, or turns the steering wheel. The vehicle response in critical condition
may be the cause of traffic injuries. The handling becomes unstable when the vehicle responds to
commands differently from how it does in conditions in conditions that the driver is able to drive
[3]. In this sense, the active safety systems help in driving to keep the vehicle behavior close to
driver’s expectation, and thus contribute to avoid traffic accidents.

The development of these systems is a necessity because traffic accidents are the leading
cause of death for people aged 5-29 years, and the eighth leading cause of death for all the age
groups, according to the World Health Organization (WHO) [4]. In addition to deaths, the traffic
accidents generate expenses for treating their victims and can lead to inactivity of workers. So,
traffic safety is a public health problem, such that the legislation of some countries requires the
inclusion of Electronic stability controllers (ESC) in passenger vehicles, which is an effective
action to increase traffic safety, as has been shown by research based on traffic accident statistics
carried out in different countries [5, 6, 7, 8, 9, 10, 11]. Due to this effectiveness, The Global
Plan for the Decade of Action for Road Safety 2011-2020 implemented by WHO recommends
the global development of ESCs to achieve the goals of advances in traffic safety [12].

Electronic stability controllers are active safety devices developed to improve driving dynam-
ics and prevent accidents that result from loss of control. These systems enhance the maneuver-
ability of vehicles enabling the handling stability in critical conditions such as emergency maneu-
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ver, cornering at high speed, and low-friction conditions. They detect the movement expected by
the driver and the vehicle’s actual response and acts to approximate the vehicle movement to the
driver’s intention, by correcting undesired motion that may take the vehicle off the desired path
or cause the loss of driving control [8, 5, 6].

The ESC was first introduced in 1995 with the Vehicle Dynamic Control (VDC) of Bosch,
which determined the nominal vehicle behavior expected by the driver, from measurements of
the steering wheel angle, the throttle position, and the brake pressure, and it predicted the actual
vehicle response from measurements of the yaw rate, lateral acceleration, and wheel speed. A
state-feedback controller was used to compute the nominal yaw moment, and PIDs were used
to control the driveshaft and the braking systems to make the actual yaw moment to track the
nominal value [3].

Since VDC, several ESC designs have been published in the literature. Regarding the ar-
chitecture of the control systems, we may classify the ESC algorithms as upper or lower-level
controllers. The lower-level algorithms are developed to control the actuation systems, hence
their outputs are the inputs of the actuators. Whereas the upper-level algorithms calculate the
moments or forces that must be imposed on the vehicle body to improve the lateral stability per-
formance. The upper-level controllers have the potential to be applied to vehicles with different
actuation systems, however, it has the drawback of needing a low-level controller to command
the actuation system. The lower-levels algorithms may be self-sufficient, or they may be used in
hierarchical architectures to command the actuators to generate the moments or forces requested
by an upper-level algorithm. The Bosch’s VDC is an example of hierarchical architecture, where
the upper-level algorithm implements a state-feedback control, whose controlled states are the
side-slip angle and the yaw rate, and the control output is the yaw moment required to lead
the vehicle dynamics to the desired behavior, and the low-level algorithm controls the rotational
speed of the driveshaft and the differential speed of the driven wheels by using a Proportional-
Integral-Derivative (PID) controllers to command the torque transferred to the driveshaft and the
brake pressured on the wheels, aiming to make the actual yaw moment track the nominal value
computed by the upper-level controller [3].

In these designs presented in the literature, thanks to advances in computational power avail-
able for automotive systems, the researches have explored the benefits of modern control theories
such as Sliding Mode Control (SMC) [13, 14, 15, 16], backstepping technique [17] and robust
gain schedule [18, 19]. One of those theories is the optimal control theory, in which the con-
trol law is derived from the solution of an optimization problem. The Model Predictive Control
(MPC) is one of the optimal techniques, in winch optimization problem is to found the sequence
of commands that minimizes a cost function, which weights the control error and the actuation
effort, over a finite time interval known as prediction horizon. The prevision of system evolution
over the prediction horizon comes from defining the cost function based on a model of the con-
trolled system. The MPC solves this minimization once at each sampling time and applies the
first sample in the optimal sequence to the control signals [20, 21]. A strength of the MPC method
is the capability to handle constraints on the solution to ensure values compatible with the limita-
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tions of the actuation system, and to avoid commands that take the states of the controlled process
out of desired ranges. However, the computational power required to solve an optimization at
each sampling time is an implementation challenge.

In this sense, the computational efficiency is an important issue because it influences the calcu-
lation time and the hardware requirements to run the control algorithm in real-time applications,
hence it affects the cost, which is an important aspect because of the production volume of the
automotive industry.

Another important issue of ESC development is the quality assurance procedure. The grow-
ing complexity of ECUs increases the importance of testing their software components before
the ECU release in a commercial vehicle [22]. Therefore, the development process includes
several tests of the effectiveness of the control system along all stages. Useful methods are the
Model-in-the-Loop (MIL) and the Hardware-in-the-loop (HIL). The Model-in-the-Loop (MIL) is
a technique used to test the control algorithm on interaction with a model of the vehicle dynamics.
The engineers may perform MIL testing since the early design stages to verify if the specifications
met the requirements, even before the firmware and hardware implementation of the embedded
control system. Hardware-in-the-Loop (HIL) is a technique used to test the embedded control
systems on test benches that provide a real-time simulation of the automotive environment. The
HIL method enables the test of the control system in a real-time application in a controlled envi-
ronment, without damage risk in case of failure [22, 23, 24].

1.2 CONTRIBUTIONS

In this context, this research proposes the implementation of computational efficient MPC-
based ESCs for lateral stability control. These implementations use the MPC formulation pre-
sented by Alamir [25] with the exponential parameterization for reducing the complexity of the
optimization problem. To deal with the longitudinal steering angle, which is a command not con-
trolled by the MPC and assumed constant during the prediction horizon, changes are proposed
in this research for the MPC the exponential parameterization presented in [25]. An upper-level
control is proposed to compute the additional moment applied on the yaw axis to improve han-
dling stability. And a self-sufficient low-level DYC is developed to control the braking torque
transferred to the wheels.

Concerning the state-of-the-art, the current literature includes several MPC-based ESCs [26,
27, 28, 29], but none of these designs address strategies for the reduction of the computational
complexity of the ESC algorithm. A characteristic of MPC designs that affects the computational
complexity is the mathematical model used for prediction, a simple model increases efficiency,
however, the use of more representative models reduces the mismatch between the vehicle’s re-
sponse and that predicted by the model. The MPC-based ESCs proposed in the literature use
different prediction models, but not all the papers present the effects of the chosen model on sta-
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bility performances in comparison to other models. Also, the robustness of the proposed systems
to model uncertainties are not evaluated in all these studies. When a linear model is used to pre-
dict the vehicle response there are differences between the vehicle response and the calculated by
this model, since the vehicle motion is a nonlinear system.

In this research, strategies are used to reduce the calculation time of the MPC-based ESCs,
so that ESC implementation may run with a command update rate high enough to be effective
in real-time application. MIL and HIL simulations are performed to test the control algorithms,
taking into account the computational power of the embedded control system. The test cases
include a simulation performed to evaluate the effectiveness of the ESC in presence of model
uncertainties, in which the nonlinear model used to simulate the vehicle response is configured
with mass, position of the center of mass, tire-road friction coefficient, and speed different from
the nominal parameters considered in ESC design.

This research investigates the effects of considering, in the prediction model, the influence of
roll motion on the vehicle response. Also, the proposed MPC-based ESCs is implemented using
linear models with and without roll-degree-of freedom, and comparing the performance got in
each case.

This research also investigates the advantages of using MPC on stability control instead of
using the LQR. The LQR was chosen for this comparison because it has a calculation time shorter
than that presented by the MPC, but it does not have the same capabilities to deal with command
restrictions and to predict instability before it occurs and act to avoid it. In this investigation,
the proposed ESCs were implemented using the LQR instead of MPC, and the results got with
both control techniques were compared with each other to verify if the benefits of using the MPC
overcomes the negative effects of its long calculation time.

It was not found in the literature a work that brings together all these characteristics: use of
strategies to increase the command update rate, comparative study between the use of prediction
models with and without roll-degree-of-freedom, comparative study between addressing the MPC
and the LQR to vehicle stability control, evaluation of the proposed system taking into account
the computational efficiency of the embedded control system, and testing the robustness to the
uncertainties of the prediction model.

1.3 OBJECTIVES

1.3.1 General Objective

The development and evaluation of computation efficient Vehicle Stability Controllers based
on the Model-Based Predictive Control (MPC) concerning the real-time performance.
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1.3.2 Specific Objectives

• Obtain ESCs that use the MPC to compute the yaw moment required to improve lateral
stability and can handle with constraints of this corrective yaw moment.

• Obtain ESCs that use the MPC to compute the torques transferred to the wheels and can
consider the limits of the actuation system;

• Evaluate the proposed ESCs in MIL and HIL simulations of double lane change (DLC)
test of standard No. ISO 3888:1975, taking into account the computational power of the
embedded control system.

• Evaluate the performance of the proposed ESCs in the presence of disturbances of vehicle
response and that predicted by the linear model.

• Compare the performances obtained by addressing the MPC and the LQR to vehicle stability
control;

• Compare the performances obtained by using in control design linear models with and with-
out roll-degree-of-freedom.

1.4 OUTLINE OF THE DISSERTATION

The dissertation is organized in five chapters.

Chapter 2 presents a review of the main topics of this dissertation. First theoretical intro-
ductions to vehicle dynamics, MPC, and LQR are presented. Then, a literature review about the
state-of-art of MPC-based and LQR-based ESCs are presented.

Chapter 3 presents the methodology of the development process of the implementations pro-
posed in this research. This chapter shows the simulation scheme implemented for MIL and HIL
validation of proposed systems; The proposed control architecture, the design of MPC and LQR
controllers and the features of the control algorithm; And the procedures for tuning and evaluation
of proposed implementations.

Chapter 4 shows the results from the tuning and evaluation procedures described in chapter 3.
The discussion about these results includes the benefits of using the MPC method and the effects
of including the roll control.

Finally, Chapter 5 presents a general conclusion of this dissertation and suggestions for future
works.

5



2 THEORETICAL BACKGROUND

From the standpoint of vehicle dynamics, the vehicle performance concerns three major crite-
ria: safety, comfort and energy economy. Electronic stability controllers are ADAS developed to
improve the safety performance by ensuring good maneuverability in critical conditions. These
systems detect from driver’s commands the desired vehicle response and acts to make the ac-
tual response close to driver’s intention. Hence, the knowledge of driver behavior on steering
command and vehicle dynamics are necessary to analyze the control performance. Also, the
knowledge of vehicle dynamics is necessary to implement ESCs based on model-based control
techniques that derive the control law from a model of the controlled process. Which is the case
of the optimal control theories used in the ESCs designs proposed in this work.

An example of model-based control theory is the optimal control theory, in which the control
algorithm consist of solving an optimization problem defined based on the control objectives. The
ESCs designs proposed in this research use optimal techniques to find the actuation that reduces
the yaw-rate error, side-slip angle and roll angle.

In this sense, this chapter presents an overview of these major topics on this research: vehicle
dynamics focusing on aspects that matter to stability performance; ESC systems and their key
strategies; Optimal control theory with an emphasis on the model predictive control, which is
THE optimal control technique used on the ESCs designs developed in this research, and the
state-of-the-art for MPC-based ESC.

2.1 VEHICLE DYNAMICS

The vehicle movement can understand by mathematical models that express how the driver
interacts with the vehicle, how the automotive systems respond to the driver’s commands, and
which are the effects of this response on the vehicle movement. These dynamics can understand
by the behavior of each of its subsystems and the interaction between them [30, 31]:

• The vehicle-body movement in response to the forces generated on tires.

• The steering of each wheel commanded by the steering wheel angle.

• The vertical load transference between tires because of vehicle motion;

• The lateral and longitudinal slipping of the tires in response to the steering and rotation of
the wheels and the vehicle motion;

• The rotational motion of the wheels in response to the torque transferred to the wheels;
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• The forces generated on each tire by the deformation of its rubber in reaction to the tire
movement relative to the wheel (i.e the tire slip);

Hence the mathematical modeling may be simplified by using a model to each subsystem and
mapping the interfaces between them. The following sections present this modeling.

2.1.1 Vehicle-body movement

The vehicle-body is a system with six-degrees-of-freedom (6DOF), 3DOF of translation and
3DOF of rotation. The translation motion includes the longitudinal, lateral and vertical motions.
And the rotation motion includes the roll, pitch and yaw motions, which are the rotations around
the x-axis, y-axis, and z-axis of the vehicle-body coordinated system, respectively. Figure 2.1
presents the free body diagram of the vehicle model considered in this research.

(a) Top view with indexes for tire dynamics and
longitudinal and lateral translation of vehicle body.

(b) Front view with index for roll motion, adapted from [16].

Figure 2.1: Free body diagram of vehicle model.

In the model presented in Fig. 2.1, it is considered that the vehicle exhibits lateral and longi-
tudinal speeds (v and u), yaw rotation of vehicle body (ψ), and roll rotation of the sprung mass
(φ). The vertical translation and the pitch rotation are neglected since lateral stability controllers
are systems developed to control the vehicle at the ground, i.e. movements in which the vehicle’s
wheels leaves the ground are not within the scope of this research. In the translational motion and
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yaw rotation, the vehicle behaves roughly as a single solid body in which the yaw moment and the
force at the vehicle’s CG are generated only by the forces acting on the tires, which are decom-
posed in lateral components (Fwyfl, Fwyfr, Fwyrl, Fwyrr) and longitudinal components (Fwxfl,
Fwxfr, Fwxrl, Fwxrr). Whereas in the roll motion, the vehicle splits into sprung and unsprung
parts, as illustrated in Figure 2.1, in which the sprung part has roll-degree-of-freedom, while the
unsprung part is physically constrained to roll, such that the sprung part rotates towards a roll axis
that is not in the vehicle’s CG.

An important variable of this model to analyze the lateral stability performance is the side-slip
angle of the vehicle body β, defined as the angle between the direction of motion and longitu-
dinal axis of the vehicle, it is a measure of how much the vehicle is slipping sideways, which is
calculated as follows:

β = arctan v/u (2.1)

Regarding the mathematical modeling, the equations of the translation motions are derived
from Newton’s law:

ma = F (2.2)

in which m is the vehicle total mass, and a denotes the acceleration vector and F the total force
vector. And the equations of the rotation motions are derived from the Euler’s law:

Ië + ë× (Ië) = M (2.3)

in which I is the inertia tensor of the vehicle body concerning its center of mass, M is the vector
torque, and e is the angular velocity vector.

Since this model includes the lateral and longitudinal translation and the yaw and roll rota-
tions, the acceleration and the angular velocity vectors are defined as follows:

a =
(
u̇ v̇

)T
ė =

(
ψ̇ φ̇

)T
(2.4)

in which u denotes the longitudinal speed, v denotes the lateral speed, ψ̇ denotes the yaw rate of
the vehicle-body, and φ̇ denotes the roll rate of the sprung mass towards the roll center.

From equations 2.2 and 2.4, the equations of translational motions are derived as follows
[28, 32, 33, 34]:
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Longitudinal motion

m
(
u̇− ψ̇v

)
+mshsψ̇φ̇ =

∑
Fx (2.5)

Lateral motion

m
(
v̇ + ψ̇u

)
−mshsφ̈ =

∑
Fy (2.6)

where ms denotes the is sprung mass, hs the height from the longitudinal axis of the vehicle to
the rolling axis. and

∑
Fy,
∑
Fx are the sums of the lateral forces generated by tires on vehicle-

body’s CG.

And from equations 2.3 and 2.4, the equations of rotational motions are derived as follows
[28, 32, 33, 34]:

Yawing motion

Izzψ̈ − Ixzφ̈ =
∑

Mz (2.7)

Rolling motion of sprung mass

Ixxφ̈− Ixzψ̈ = mshs

(
v̇ + ψ̇u

)
+mshsg sin(φ)− (kφf + kφr)φ− (cφf + cφr) φ̇ (2.8)

where ms denotes the sprung mass, hs the height from the longitudinal axis of the vehicle to
the rolling axis, kφf and kφr the front and rear roll stiffness coefficient, respectively, cφf and
cφr the front and rear roll dumping coefficient, respectively, Ixx and Izz the rolling and yawing
inertial moments, respectively, Ixz the product of inertia related to yawing and rolling, Mz the
total moment on vehicle’s yaw axis, and g the gravitational acceleration.

The relationship of the force and the yaw moment on the vehicle-body’s CG with the forces
generated in each tire is given by:

∑
Fy = Fyfl + Fyfr + Fyrl + Fyrr∑
Fx = Fxfl + Fxfr + Fxrl + Fxrr∑
Mz = a (Fyfl + Fyfr)− b (Fyrl + Fyrr)

+
tf
2

(Fxfr − Fxfl)−
tr
2

(Fxrr − Fxrl)

(2.9)

where a denotes the distance from the front axis to CG, b the distance from the rear axis to CG, tf
and tr the front and rear track width, respectively, and Fxi and Fyi are the resultant longitudinal
and lateral forces on vehicle’s CG generated by the forces acting on the i-th tire, respectively,
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which are obtained as follows:

(
Fxi
Fyi

)
=

(
cos(δi) sin(δi)

−sin(δi) cos(δi)

)(
Fwxi
Fwyi

)
(2.10)

where i ∈ fl, fr, rl, rr, in which fl, fr, rl, rr index the front-left, front-right, rear-left and rear-
right tires, respectively, and δi is the steering angle of i-th tire.

2.1.2 Tire dynamics

The forces are generated on the tire by the deformation of the rubber, in contact with the road,
which occurs when there is a relative speed between the tire and the road [31]. This relative
speed may be decomposed in longitudinal and lateral components. The longitudinal component
is observed by the tire slip ratio, which is the relative difference between the rolling speed of
the tire and the longitudinal speed of the vehicle. And the lateral component is observed by the
tire-slip angle, which is the angle between the tire longitudinal axis and its direction of motion,
i.e. the angle between the tire’s direction of motion and longitudinal axis. Figure 2.2 illustrate the
tire slip angle. The tire slip ratio λi and slip angle αi of each tire is given by [34]:

Figure 2.2: Illustration of the tire slip angle, which is the angle between the tire longitudinal axis and its direction of
motion

λi =


ωiReff − v
ωiReff

, if ωiReff > v

v − ωiReff

v
, otherwise

(2.11)
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Figure 2.3: Operating regions of lateral force generation on tyre: Linear, non-linear and saturation.

αfl = δf − arctan

(
v + aψ̇

u− tf
2
ψ̇

)
αfr = δf − arctan

(
v + aψ̇

u+
tf
2
ψ̇

)

αrl = − arctan

(
v − bψ̇
u− tr

2
ψ̇

)
αrr = − arctan

(
v − bψ̇
u+ tr

2
ψ̇

) (2.12)

where ωi is the angular speed of the i-th tire and R is the effective radius.

According to these slip values, the force generation on tires may be split into three regions
with distinct behavior: linear, nonlinear and saturation. Figure 2.3 presents these three regions in
the generation of lateral forces in response to the slip angle. The behavior for longitudinal force
generation in response to the slip ratio is analogous. For low tire slip, the tire dynamics is in the
linear region where the relations between the longitudinal force and the slip ratio and between the
lateral force and tire-slip angle are approximately linear.

As the slip increases, the tire dynamics enter the nonlinear region, in which the amount of
rubber element available to deform reduces, so the force becomes less responsive to the slip
changing, and the non-linearities of tire dynamics are more noticeable, such that the relation
between the forces generated and the slips are no longer approximately linear. In this condition,
the vehicle motion becomes less responsive to the acceleration, braking and steering commands.
When the force reaches the maximum, the treads start to saturate and the tire dynamics enter the
saturation region, in which then the force decreases until all elements become saturated.

The forces generated on tires are governed by complex rules that depend on many parameters,
e.g. tire-road friction, tire shape, inner pressure, vertical load, the side-slip angle. The Magic
Formula (MF) of Pacejka is an empirical formulation derived from experimental tests that can be
used to compute forces acting on tires, as shown in [31]. In the general formulation of MF, the
forces acting on a tire is obtained as follows:

F (κ) = D sin(SviC arctan(B(1− E)(κ+ Shi) + E arctan(B(κ+ Shi)))) (2.13)
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in which, for computation of the lateral force Fyi of i-th, the argument κ is the tire side-slip angle
αi and B, C, D, E, Shi, Svi are defined by MF coefficients an as follows:

C = a0

D = Fzi(a1Fzi + a2)

B =
a3 sin(2 arctan Fzi

a4
)

CD
(1− a5 |γi|)

E = a6Fzi + a7

Shi = a8γi + a9Fzi + a10

Svi =
(
a11F

2
zi + a12Fzi

)
γi + a13Fzi + a14

i = fl, fr, rl, rr

(2.14)

in which γi denotes the camber angle, which is the angle between the plane of rotation of the tire
and the normal axis of the track as shown in Figure 2.4.

Figure 2.4: Illustration of the tire camber angle, which is the angle between the plane of ration of the tire and axis
normal to the ground.

In addition to its influence on load transference, the roll motion also affects the camber angle
of the wheels, the camber response to the roll motion depends on the sprung system. However,
the study of the effect of specific sprung designs on stability performance is not included in this
research. Taking into account the effects of roll motion on tire dynamics, the camber angle of
four wheels are considered ideally the same, simplified as follows:

γ = Kγφ (2.15)

where φ is the roll angle, Kγ denotes the camber-by-roll gradient, which represents variation of
camber due to rolling given by Kγ = ∂γ

∂φ
[35].
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An important parameter of the vehicle dynamics is the cornering stiffness coefficient, which
is the variation of lateral force in relation to slip angles for small angles, i.e. the slope of the linear
approximation for small angles, obtained as follows [36, 31]:

Cα =
∂Fwy
∂α

∣∣∣∣
α,γ=0

= BCD. (2.16)

For computation of longitudinal force Fxi of i-th wheel, the argument x of Equation 2.13 is
the tire slip ratio λi and B, C, D,E, Shi, Svi are defined by MF coefficients bn, n = 0, 1 . . . 14

as follows:

C = a0

D = Fzi(b1Fzi + b2)

B =
b3 sin(2 arctan Fzi

b4
) exp(b5Fzi)

CD

E = b6F
2
zi + b7Fzi + b8

Shi = b9Fzi + b10

Svi = 0

i = fl, fr, rl, rr

(2.17)

Considering the wheel-tire set to be a solid body, the longitudinal force generated in the tire
is related to angular velocity of the wheel by the following equation or rotational motion:

Iwω̇ = T −ReffFx (2.18)

in which Iw is the moment inertia of the wheel about the axis of rotation, Reff is the effective
rolling radios, T is the torque transferred to the wheel and Fx is the longitudinal force in the tire.

The vertical load on each wheel is given by the vehicle weight transferred to it. When the
vehicle is moving, the vertical force in each wheel is given by [28, 34]:

Fzfl =
mgb

2l
− mu̇h

2l
− mv̇ah

ltf
− kφfφ

tf
− cφf φ̇

tf

Fzfr =
mgb

2l
− mu̇h

2l
+
mv̇ah

ltf
+
kφfφ

tf
+
cφf φ̇

tf

Fzrl =
mga

2l
+
mu̇h

2l
− mv̇ah

ltr
− kφrφ

tr
− cφrφ̇

tr

Fzrr =
mga

2l
+
mu̇h

2l
+
mv̇ah

ltr
+
kφrφ

tr
+
cφrφ̇

tr

(2.19)
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in the above equations, h denotes the height of the center of gravity, a the distance from longitu-
dinal track to vehicle’s CG, b the distance from lateral track to vehicle’s CG, u̇ the longitudinal
acceleration of vehicle-body, v̇ the lateral acceleration of vehicle-body, m the vehicle total mass,
tf the front track width, tr the rear track width, g the gravitational acceleration, and l the wheel-
base.

From Equation 2.19, one can see that the load transference between tires is affected by the
vehicle’s acceleration and roll motion.

The roll motion also affects the steering angle of wheels, which may be obtained by the sum
of a portion generated by the roll motion and a portion generated by the driver’s command. For
a passenger car, where only front wheels are controlled by the steering wheel, the front and rear
steer angles can be obtained as follows:

δfl
δfr

δrl

δrr

 = GδδD +


∂δf
∂φ
∂δf
∂φ
∂δr
∂φ
∂δr
∂φ

φ

Gδ =
(

1/Is 1/Is 0 0
)T

(2.20)

where δD is the steering wheel angle, Is is the steering coefficient, and ∂δr/∂φ and ∂δf/∂φ are
rear and front steer-by-roll coefficient, respectively.

2.1.3 Intelligent Driver Model

The lateral stability of the vehicle in a maneuver depends on how the driver behaves in the
steering control. The steering instability is not determined only by the vehicle dynamics, but it
occurs when the driver that is driving the vehicle loses the control, no matters if an ideal skill-
ful driver would be able to drive the same vehicle in the same condition. Therefore, the driver
behavior in the steering command should be considered in the lateral stability analysis.

By analyzing the model of vehicle dynamics presented, one can see that the driver input δD
has a strong influence on vehicle dynamics because it controls the steering angle of the wheels
(Eq. 2.20), which affects the tire slip angle (Eq. 2.12, which changes the lateral force generated
on the tire (Eq. 2.14), which influences the lateral and yaw motion of vehicle body (Eq. 2.6 and
2.7), which affects the roll motion of vehicle body and the load distribution between the wheels
(Eq. 2.8 and 2.19).

In [37], a model is proposed to simulate an intelligent human driver controlling the steering
wheel. This model considers that the driver controls the yaw rate to achieve a speed direction
for moving towards a target point A at a distance of La from the current position. The feedback
signals observed by this simulated driver are the current lateral position yos, the desired position
lateral yd and the yaw angle ψ. Figure 2.5b shows the block diagram of the control law used to
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simulate the driver behavior to obtain a steering wheel angle of δD. The parameters of this model
are the distance La from the vehicle position to target point, actuation delay Tk and steering gain
W that represents driver expertise. The Fig. 2.5a illustrates this model.

(a) Illustration of driver modeling.

(b) Block diagram of the driver model.

Figure 2.5: Intelligent driver model. Adapted from [37]

2.2 ELECTRONIC STABILITY CONTROL

Traffic fatalities are a concern of nations’ governments because of its consequences for mor-
tality rates, health, mobility, and economy. As the number of vehicles on the roads growths, the
need for actions to improve traffic safety increases as well. The development of safer vehicles
is an efficient action to enhance traffic safety. The automotive design can reduce risk factors
by including in commercial car features that reduce the probability of accident occurrence and
limit their effects when an accident happens. Automotive safety systems can be grouped into two
classes: passive safety and active safety:

Passive safety aims at reducing the damages of accidents. It includes mainly structural de-
signs and materials used to prevent or reduce injuries to passengers, during an accident, e.g.
mounting parts that are deformed by a collision in a controlled manner to prevent impact trans-
fer to passengers and limit deceleration. ECUs are primarily used in these systems for detecting
events such as collision and rollover to trigger actions like airbag activation.

Active safety aims at reducing the possibilities for an accident occurs. The safety performance
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may be increased by improving the driver and the vehicle behaviors. Active safety systems can
help the driver to exhibit a better response by providing useful information for accident avoidance,
(e.g vehicle or pedestrian alerts), and they can enhance the vehicle by directly controlling the
steering systems to increase the maneuverability or to reduce the accident risk (e.g electronic
stability controllers and anti-lock braking systems (ABS)). Due to the sensing, processing and
actuation requirements, active safety features are usually included in vehicles using electronic
systems.

Active safety systems have been proposed since the early 1980s [38]. Some of these are Anti-
lock braking system (ABS), which reduces the braking distance and prevent the wheels from
locking during the braking, [39, 40], Lane departure warning [41], which warns the driver about
the lane exiting risk, Adaptive Cruise Control (ACC), which controls vehicle speed to keep a safe
distance from a vehicle ahead [42], and Tyre Pressure Monitoring System (TPMS), which warns
the driver when the tire pressure is out of the safe range [43].

One of the main systems developed for vehicle directional control is the electronic stability
control (ESC), also known as the vehicle stability control (VSC) and lateral stability control, and
commercially labeled Electronic Stability Program (ESP). These systems assist in driving by con-
trolling the lateral motion to track the path commanded by the driver, based on their understanding
about the driver’s intention, the vehicle behavior and its current state. The knowledge of vehicle
dynamics is added to ESC by using model-based control techniques. However, there is always
a discrepancy between the actual vehicle behavior and the response predicted by mathematical
models. Hence, an issue to be considered in ESC design is the model used in control design and
the robustness of the control law to model uncertainties such as different road surface conditions,
varying vehicle parameters, and crosswind disturbance.

The ESC aims to help in driving to keep the directional motion stable by improving the vehi-
cle’s response to the driver’s command. From the driver’s point of view, the movement remains
stable while the vehicle behaves roughly as a linear system. Unfortunately, vehicle dynamics have
nonlinearities that can make the direction of movement differ from the driver’s intention. For this
reason, the ESC’s approach to action is to prevent vehicle dynamics from entering states where
these nonlinearities are most notable.

These nonlinearities come mainly from the limit for the generation of forces on tires in re-
sponse to the lateral sliding of the tires. Drivers are used to driving under normal conditions in
which the vehicle exhibits an approximately linear response. Steering becomes unstable as the
forces generated by the tires approach saturation limits. In this condition the vehicle movement
is less responsive to the driver’s commands, so the vehicle’s response to the driver’s commands is
very different from that expected by the driver, causing the driver to lose control of the steering
and the vehicle to get off track. Therefore, the correction of the lateral motion of the vehicle plays
a significant role in keeping the handling stability [44].
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2.2.1 Control objectives

The lateral stability performance is improved by control of vehicle yaw rate and vehicle body
side-slip angle denoted by ψ and β in Figure 2.1, respectively [45]. Since the yaw rate control
helps to maintain the rate and direction of yaw motion required to keep the vehicle properly
oriented on the road to follow the desired path. The desired yaw rate ψd tracked by the controller
is given by the following reference model [46]:

ψ̇d =min

(∣∣∣∣ uδf
l + lKuu2

∣∣∣∣ , ∣∣∣µgu ∣∣∣
)
sign(δf )

Ku =
m

l2

(
b

Cαr
− a

Cαf

) (2.21)

in which Cαf and Cαr denote the cornering stiffness coefficient of the front and rear track, respec-
tively.

However, maintaining the required orientation is not enough, the vehicle must maintain the
desired positioning on the road, which is achieved by the side-slip correction that helps to prevent
the vehicle from slip sideways from the desired path. For the steady-state condition, the desired
side-slip angle is always zero, that is, βd = 0 [46].

The side-slip control also helps prevent handling instability. As can be seen in Figure 4.11,
at a high side-slip angle, the forces generated on tires as a reaction to the lateral movement starts
to decrease with the increasing of the side-slip angle. In a dry asphalt, the handling becomes
unstable when the side-slip reaches ±12 degrees, and in a wet asphalt, this stability margin is
reduced to ±2 degrees [47, 38, 30, 3].

2.2.2 Actuation strategy

The ESC assists in driving by directly controlling the actuation system of vehicle chassis.
Regarding the actuation, there are two actuation strategies widely used in lateral stability control:
the Direct Yaw-moment Control (DYC) and Active Steering (AS) [46, 38].

Direct yaw control is an efficient method for lateral stability control [48, 47]. The DYC
strategy consists of acting on torque transferred to each wheel to change the forces generated on
tires, such that the corrective moment is generated on the yaw axis as a result of the differences
between the forces acting on the tires.

Active steering (AS) is another efficient method for lateral stability control [49, 50]. In AS,
extra steering input is added to the steering commanded by the driver, such that the resultant steer
angle drives the vehicle through the desired path. Active steering can be classified according
to the set of wheels in which it operates, that is active front steering (AFS) control, active rear
steering (ARS) control, and four-wheel active steering (4WAS) control.
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A disadvantage of the AS is the saturation of the forces acting on tires that become less re-
sponsive to the steering angle, at high tire slipping, which means the reduction of AS control
capability. Whereas, at high tire slipping, the forces acting on tires remain sensitive to the torque
transferred to the wheels. In this condition, the nonlinearities of the vehicle dynamics are more
influence on vehicle response, which makes the driving quite difficult for a not skillful driver.
The DYC remains effective in the nonlinear region of tire lateral force, the actuation by interfer-
ence on wheel rotation has undesired effects on the longitudinal vehicle motion. A few works
have proposed to integrate the DYC and AS strategy, this strategy can be referred to as integrated
vehicle dynamics control (IVDC).

2.3 CONTROL THEORIES

The vehicle model presented in the previous section is a highly coupled system with multiple
inputs and multiple outputs (MIMO), where there is a strong influence of the states on each other.
The control strategies for such systems are usually designed based on models that represent the
relationship between inputs and outputs by a set of equations.

The use of simpler models can simplify the computational complexity of control algorithms.
For controllers with digital circuits that provide a periodic update of commands, discrete-time
modeling is used to simplify the mathematical representation of the control law and the controlled
process response to the periodic update of the commands. Another strategy is to simplify the
process in linear time-invariant (LTI) systems. A classical representation in control theory to
represent LTI systems is the state-space representation. Where each dynamics is represented by a
variable called state, and the model is composed of equations of the time variation of each state as
a function of the set of states. The generic discrete-time state-space representation of LTI systems
is:

x(k + 1) = Ax(k) + Bu(k)

y(k) = Cx(k) + Du(k)
(2.22)

where:

• k is the current discrete-time instant;

• x ∈ Rnx is the vector of system’s states, and nx is the number of states;

• u ∈ Rnu is the vector of control signals and nu is the number of inputs;

• y ∈ Rny is the vector of system’s output and ny is the number of outputs;

• A ∈ Rnx×nx is the state matrix;
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• B ∈ Rnx×nu is the input matrix;

• C ∈ Rny×nx is the output matrix;

• D ∈ Rny×nu is the feedward matrix.

This definition is a basic concept for the control theories applied in this research, where the
commands are calculated from the feedback of the output vector y, and the matrices A, B, C, and
D are inputs of the design of the control algorithms.

2.3.1 Optimal Control

The optimal control theory is a successful class of control techniques that have been applied
to several fields such as biology, economics, ecology, engineering, finance, management, and
medicine. In these techniques, the control signals are defined by solving an optimization problem
[51].

The optimization problem is a mathematical abstraction of the problem of search for the best
choice of values within a set of candidates, which has the form [52].

minimize or maximize J(s)

subject to fi(s) ≤ bi i = 1, . . . ,m
(2.23)

In Eq. 2.23, the vector s ∈ Rns is the optimization variable (model’s inputs) and ns is the
number of variables of the optimization, the function J : Rns → R is the objective function, also
known as cost function, and the inequations fi : Rns → R ≤ bi define the constraints imposed to
the solution.

In optimal control, s is the vector of controlled inputs, the cost function is a function of states
and inputs of controlled process, and the inequality equations fi(s) ≤ bi express the constraints
imposed on search space for the optimal solution to address limitations or to meet some control
requirements.

Optimization solving depends on the characteristics of the cost function and constraint set.
Only a few problems have a known analytical solution. Fortunately, some problems without an
analytical solution can be grouped into known classes that have an efficient numerical method
to solve them, and good software implementations available. Therefore, a useful strategy for
optimal control is the formulation of the problem in the form of a known class. Two important
and well-known examples are linear programming (LP) and quadratic programming (QP) [52].

The QP is characterized by a quadratic cost function and linear constraint function as follows
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J(s) =(1/2)sTPs + qT s + r

fi(s) =aTi s
(2.24)

where the vectors q, a1, . . . , am ∈ Rns , the matrix P ∈ Rns×ns and the constant r are the param-
eters of the quadratic programming.

The LP is the special case of the QP when the elements of vector q and the matrix Q are equal
to zero, such that the cost function and constraint function are linear as follows:

J(s) = cT s

fi(s) = aTi s
(2.25)

where the vectors c, a1 . . . , am ∈ Rns are the parameters of the linear programming.

There is no simple analytical solution for QP. Fortunately, there are some effective methods
for solving them. One of those methods is the active set method. It solves QP by estimating the
set of equality linear-constraints satisfied only at the optimal point so that these constraints form a
linear system of equations whose solution is equivalent to the QP solution. Its interactions consist
of solving a linear system composed of the estimated constraints equations and then updating the
estimate based on the value of the cost function for the linear system. This class of algorithms is
computationally efficient for small-to-medium scale QPs. An example of solver using this method
is the quadprog function provided by Matlab software. Another example is the qpOASES, which
is a C++ implementation presented in [53], popularly used in the implementation of embedded
applications for on-line solving optimizations.

2.3.2 Model Predictive Control

Model Predictive Control (MPC) is an optimal method, in which the control signals are ob-
tained from solution of an optimization problem, whose cost function is based on the open-loop
response of the controlled system over a finite horizon. The optimization is performed at each
sampling time to obtain the optimal sequence of periodic updates of the control sequence, whose
first value is applied to the control signals [20, 25, 54]. Figure 2.6 illustrate the MPC method.

The optimization problem is formulated by defining a cost function in terms of the control
performance over the prediction horizon, such that the solution is the sequence of periodic updates
of the control signals that minimize this function. The prediction of the control performance over
the prediction horizon comes from the definition of the cost function based on the open-loop
model of the controlled system. Constraints can be imposed on the optimization problem so that
only feasible commands that do not take controlled systems to the unstable zones are given as a
solution [25, 54, 20].
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Figure 2.6: Characteristic behavior of Model Predictive Control. Figure obtained from [55]

The control algorithm of the MPC method consists of performing the following steps at each
sampling instant:

1. Measure the states of the controlled system;

2. Update the constraints of the optimization problem;

3. Solve the constrained optimization problem to obtain the optimal sequence;

4. Update the control signals with the first element of the optimal sequence.

A benefit that justifies using MPC is its ability to handle constraints. The MPC is capable of
providing commands that respect the physical constraints of the actuation system and imposing
state constraints so that the command does not take states out of the restricted range. Another
reason for using MPC is its ability to adapt to process conditions. The QP and its constraints
can be updated at each sampling time so that control objectives are adapted to the current system
condition.

These benefits are the result of developments and research conducted in the field of control
theory and digital electronics. The following topic presents an introduction to the history of MPC
and then presents the theoretical aspects of the formulation used in this research.

2.3.2.1 MPC for linear time-invariant systems

In [25], an MPC formulation is presented for the control of systems represented by Linear
Time-invariant (LTI) models. In this formulation, the optimization problem is defined in the QP
form, whose cost function penalizes the mean square error of regulated outputs and the power of
control sequence over the prediction horizon. The search space is limited within a convex region
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by linear constraints imposed to avoid solutions that cannot be performed by the actuator system
or that drive states out of acceptable range.

This QP is defined based on the state-space model of the open-loop system to include the
prediction of states in response to the control sequence. The control sequence of N samplings of
control signal starting at the instant k is denoted by:

ũ(k) =


uc(k)

uc(k + 1)
...

uc(k +N − 1)

 ∈ RNnu (2.26)

where uc(k + i) ∈ Rnu is the command vector in the i-th instant after the instant k, and nu is the
number of system’s inputs controlled by the MPC. And the resultant sequence of states obtained
in response to the control sequence ũ(k) is denoted by:

x̃(k) =


x(k + 1)

x(k + 2)
...

x(k +N)

 ∈ RNnx (2.27)

where x(k+ i) ∈ Rnx is the state vector in the i-th instant after the instant k, and nx is the number
of system’s states.

The states at any sampling instant are predicted from the current states and the future control
sequence by the following equation derived from the state-space model:

x(k + i) = Θix(k) + Ξiũ(k)

Θi = Ai ∈ Rnx×nx Ξi =


Ai−1B

...
AB

B




Υ
(nu,N)
1

Υ
(nu,N)
2

...
Υ

(nu,N)
i

 ∈ Rnx×Nnu (2.28)

In Eq. 2.28, Θi and Ξi are the state and input prediction matrices, respectively, A and B are
the matrix of the discrete-time state-space model (Eq 2.22), and Υ

(n,N)
i is the selection matrix

defined as:

Υ
(n,N)
i =

(
On×n(i−1) In On×n(N−i)

)
∈ Rn×Nn (2.29)
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where On1,n2 ∈ Rn1×n2 is a zero matrix, and In ∈ Rn×n is a identity matrix. The matrix Υ
(n,N)
i is

called selection matrix because it selects the i-th n-dimension vector from the vector composed
by the concatenation of N n-dimension vectors, such that Υ

(nu,N)
i ũ(k) = uc(k + i − 1) and

Υ
(nx,N)
i x̃(k) = x(k + i).

This MPC formulation enables the control of outputs defined as a linear combination of the
states, so the regulated vector composed of the regulated outputs is defined as:

yr(k) = Crx(k) (2.30)

where yr ∈ Rnr is the regulated vector composed of nr regulated outputs, and Cr ∈ Rnr×nx is
the regulation matrix that relates the regulated outputs to the states.

The cost function of MPC formulation is updated dynamically at each sampling instant k
depending on current states x(k), desired regulated-output yd(k) ∈ Rnc and desired input ud ∈
Rnu , as follows:

J(k) =
N∑
i+1

|y(k + i)− yd(k + i)|2Qy
+

N∑
i+1

∣∣∣Υ(nu,N)
i ũ(k)− ũd

∣∣∣2
Qu

(2.31)

in which, Qu ∈ Rnu×nu is a symmetric positive weighting matrix that penalizes command’s
difference from its desired value, and Qy ∈ Rnc×nc is a symmetric weighting matrix that defines
the penalty of the tracking error of each controlled output. The Equation 2.31 can be expanded in
the QP representation whose decision variable is ũ(k):

J(k) =
1

2
ũT (k)Hũ(k) + FT (k)ũ(k)

H =2
N∑
i=1

[
ΘT
i C

T
rQyCrΞi + (Υ

(nu,N)
i )TQu(Υ

(nu,N)
i )

]
F (k) =

(
2

N∑
i=1

ΘT
i C

T
rQyCrΘi

)
x(k)

−

(
2

N∑
i=1

ΘT
i C

T
rQyCrΥ

(2,N)
i

)
yd

+

(
2

N∑
i=1

(Υ
(nu,N)
i )TQu

)
ud

(2.32)
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2.3.2.2 Constrains of MPC solution

Without constraints and with an infinite-prediction horizon, the quadratic problems have an
analytical solution determined by the Riccati equation. Using this solution to obtain the control
signals is what defines the LQR technique [56, 57]. In the MPC method, the commands are ob-
tained by solving an optimization problem for a finite-prediction horizon and constraints, which
can be updated dynamically depending on the current states of the controlled process [20, 54]. In
the MPC formulation presented in [25], the optimal command sequence ũ is obtained by minimiz-
ing the cost function (2.32) taking into account the constraints on the states and control signals,
or any linear combination of them, which are linear constraints represented by the following in-
equality:

Aineqũ ≤ Bineq (2.33)

where Aineq ∈ Rnconst×(nuN) is a constant matrix, and Bineq ∈ Rnconst is updated, at each sampling
instant, in function of the current states and control signals.

The output restriction, command restriction, and command variation restriction are applied to
the system in the formulation presented in [25]. Each of these constraints has a maximum and a
minimum limit, as follows:

ymin
c ≤ yc(k) ≤ ymax

c

δmin ≤ u(k + i)− u(k + i− 1) ≤ δmax

umin ≤ u(k) ≤ umax

(2.34)

where

• yc ∈ Rnr is the constrained output;

• ymin
c ,ymax

c ∈ Rnr are the minimum and maximum limits of the constrained output;

• δmin, δmax ∈ RnuN are the minimum and maximum limits of the commands between two
consecutive sampling instants;

• ũmin, ũmax ∈ RnuN are the minimum and maximum limits of the control sequence.

The constrained output vector at the i-th instant of the prediction horizon starting at the sam-
pling k is given by a linear combination of the states in the same instant and previous command
vector:

yc(k + i) = Ccx(k + i) + Dcuc(k + i− 1) = CcΥ
(nx,N)
i x̃(k) + DcΥ

(nu,N)
i ũ(k) (2.35)
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where Cc ∈ Rnr×nx is the restricted-output matrix, and Dc ∈ Rnr×nu is the feedward restricted-
output matrix.

From equations (2.28) and (2.35), the constrained output yc(k + i) in the i-th instant of the
prediction horizon starting in the instant k is given by:

yc(k + i) = CcΥ
(nx,N)
i Θix(k) +

(
CcΥ

(nx,N)
i Ξi + DcΥ

(nu,N)
i

)
ũ(k) (2.36)

So the set of output restriction for each instant in the prediction horizon is represented by:

ymin
c
...

ymin
c

 ≤
CcΥ

(nx,N)
1 Θ1

...
CcΥ

(nx,N)
N ΘN

 x̃(k)+

CcΥ
(nx,N)
1 Ξ1 + DcΥ

(nu,N)
1

...
CcΥ

(nx,N)
N ΞN + DcΥ

(nu,N)
N

 ũ(k) ≤

ymax
c
...

ymax
c

 (2.37)

which can be rewritten in the form:



+(CcΥ
(nx,N)
1 Ξ1 + DcΥ

(nu,N)
1 )

...
+(CcΥ

(nx,N)
N ΞN + DcΥ

(nu,N)
N )

−(CcΥ
(nx,N)
1 Ξ1 + DcΥ

(nu,N)
1 )

...
−(CcΥ

(nx,N)
N ΞN + DcΥ

(nu,N)
N )


︸ ︷︷ ︸

A
(1)

ineq

ũ(k) ≤



−CcΘ1

...
−CcΘN

+CcΘ1

...
+CcΘN


︸ ︷︷ ︸

G
(1)
1

x(k) +



+ymax
c
...

+ymax
c

−ymin
c
...

−ymin
c


︸ ︷︷ ︸

G
(1)
3

(2.38)

The set of constraints obtained from the command variation constraint for all sampling instant
within the prediction horizon can be written as follows:


δmin

δmin

...
δmin

 ≤


Inu Onu Onu . . . Onu Onu

−Inu Inu Onu . . . Onu Onu

...
...

...
...

...
...

Onu Onu Onu . . . −Inu Inu

 ũ(k) +


−Inu

Onu

...
Onu

u(k − 1) ≤


δmax

δmax

...
δmax


(2.39)

where Inu and Inu are the identity and zero matrices of the Rnu×nu space.

The Eq. 2.39 can be rewritten in the form:
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Inu Onu Onu . . . Onu Onu

−Inu Inu Onu . . . Onu Onu

...
...

...
...

...
...

Onu Onu Onu . . . −Inu +Inu

−Inu Onu Onu . . . Onu Onu

Inu −Inu Onu . . . Onu Onu

...
...

...
...

...
...

Onu Onu Onu . . . Inu −Inu


︸ ︷︷ ︸

A
(2)

ineq

ũ(k) ≤



Inu

Onu

...
Onu

−Inu

Onu

...
Onu


︸ ︷︷ ︸

G
(2)
2

u(k − 1) +



δmax

δmax

...
δmax

−δmin

−δmin

...
−δmin


︸ ︷︷ ︸

G
(2)
3

(2.40)

The set of constraints obtained from the command constraint for all sampling instant within
the prediction horizon starting at the discrete instant k can be represented as follows:

umin

...
umin


︸ ︷︷ ︸

ũmin

≤ ũ(k) ≤

umax

...
umax


︸ ︷︷ ︸

ũmax

(2.41)

which can be rewritten as:

(
INnu

−INnu

)
ũ(k) ≤

(
ũmax

−ũmin

)
(2.42)

where INnu is the identity matrix of the RNnu×Nnu space.

Combining the equations (2.38), (2.40) and (2.42), the constraints on the decision variable
ũ(k) can be express in the form of equation Eq. 2.33 with the matrix Aineq and Bineq defined by:

Aineq =


A

(1)
ineq

A
(2)
ineq

INnu

−INnu

 Bineq =
(
G1x(k) + G2uc(k − 1) + G3

)
(2.43)

G1 =

(
G

(1)
1

O4Nnu×nx

)
G2 =

O2Nnu×nu

G
(2)
2

O2Nnu×nu

 G3 =


G

(1)
3

G
(2)
3

ũmax

−ũmin

 (2.44)
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2.3.2.3 MPC parameterization

Alamir also presents in [25] an exponential parameterization of the MPC formulation to re-
duce the calculation time of the QP solving, by reducing the number of decision variables. In
this parameterization, each of the control signals is decomposed over the prediction horizon into
a linear combination of exponential signals as follows:

uj(k + i) =

n
(j)
e∑

n=1

e−η
(n)
j iτp(j)n (2.45)

where k is the sample instant in which the prediction horizon starts, i is the sample index within
the prediction-horizon, i.e. the number of sample periods since the prediction horizon start, τ
is the sampling period, uj is the jth control signal, i.e. the jth element of the control vector
uc, n

(j)
e is the number of exponential terms used in the parameterization of uj , pjn is the nth

parameter of the parameterization of uj , η
(n)
j is the time coefficient of the nth exponential term in

the parameterization of uj defined as fallows:

η
(n)
j =

ηj
(n− 1)ξ + 1

(2.46)

in which ηj and ξ are the tuning coefficients of the exponential parameterizations, which must
be defined to make the exponential terms met the slew rate of the actuators response. Since the
equation 2.45 is a linear combination, it can be write in the following compact form:

uc(k + i) =


u1(k + 1)

u2(k + 1)
...

unu(k + 1)

 = Υ(i)
e p(k) (2.47)

where Υ
(i)
e is the parameterization matrix that according the Equation 2.45 relates the command

vector uc(k + i) with the parameter vector p, which is defined as:

p =


p(1) ∈ Rn

(1)
e

...

p(nu) ∈ Rn
(nu)
e

 p(j) =
(
p
(j)
1 . . . p

(j)

n
(j)
e

)
(2.48)

In this way, from Equations 2.26 and 2.47, the parameterized command sequence ũ is give
by:
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ũ(k) = Υep(k) Υe =


Υ

(0)
e

Υ
(1)
e

...
Υ

(N−1)
e

 (2.49)

For fixed parameters ηj and ξ, the control sequence is profiled by the vector p. Therefore, the
objective of the optimization problem changes from founding the control sequence ũ to found-
ing the parameter vector p. As a result of this parameterization, the cost function presented in
Equation 2.31 comes down to a QP in terms of p, i.e:

J(k) =
1

2
pT (k)Hpp(k) + FT

p (k)p(k)

Hp = ΥT
eHΥe Fp(k) = ΥT

e F(k) (2.50)

and constraint inequality becomes:

Ap ineqp ≤ Bineq Ap ineq = AineqΥe (2.51)

The benefit of this technique is that instead of finding all the control signals for all the sampling
instants of the prediction horizon, the MPC needs to find only an optimal p(k).

2.3.3 Linear quadratic regulator (LQR)

The Linear Quadratic Regulator (LQR) is an optimal control with closed-loop stability, guar-
anteed levels of robustness to disturbances, and simple control law given by [58, 57]:

uc(k) = ud −KLQR(x(k)− xd(k)) (2.52)

and ud(k) ∈ Rnu and xd(k) ∈ Rnx are the desired values in the sampling instant k of the command
and the state vectors, respectively, in which KLQR ∈ Rnx×nx is the state-feedback matrix defined
by minimizing the fallowing cost function without constraints:

J =
inf∑
0

(xT (k)Qx(k) + uTc (k)Ruc(k)) (2.53)

in which the matrix Q ∈ Rnx×nx and R ∈ Rnu×nu weights the state error and the control energy,
respectively, in a infinite horizon, without imposing restrictions on states or command errors. Q
and R are weighting parameters for the tuning between the control effort and performance on
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control of each output.

Since Q is a symmetric positive semi-definite matrix, and R is a symmetric positive definite
matrix, the KLQR matrix that solves the minimization of the cost function (2.53) is given by the
solution of the Ricatti equation:

KLQR = (R + BT
d S(k + 1)Bd)

−1BT
d S(k + 1)Ad

S(k) = AT
d [S(k + 1)− S(K + 1)BdR

−1S(k + 1)]Fd + Q
(2.54)

which has an analytical solution for the S(k) matrix such as the closed-loop system is stable [59].

The LQR is a specific case of MPC when the prediction horizon tends to infinity and the
problem does not consider restrictions. In this case, the solution is analytical using the Ricatti
equation [57].

2.4 STATE OF THE ART

2.4.1 MPC-based ESCs

The capability to adjust the optimization problem based on the states feedback, to deal with
the limitations of the actuators, and to avoid commands that take the states out of the stability
margins, make the MPC an useful technique for ESC. From research in the Web of Science
website[60], which provides information from multiple databases of scientific publications, one
can see that the number of papers about MPC-based ESCs has been growing in the last years,
as shown in Fig. 2.7, but none of these papers propose designs concerning the computational
efficiency on low-cost hardware.

Figure 2.7: Rate of publications per year proposing MPC-based ESCs. Numbers obtained from Web of Science
website [60].

The computational complexity is an issue for implementation of MPC based systems because
an optimization must be solved at each sampling period, so the sampling period is constrained to
the solver’s calculation time. Since the cost function is defined based on a prediction model, this
model has a strong influence on the calculation time. The use of a linear model for prediction helps
to fit the optimization into the quadratic programming (QP) form [25]. However, the complexity
of the QP problem is still a challenge for real-time MPC applications with low-cost hardware.
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This section presents the results from the literature review on MPC-based ESCs proposed in
the recent years (i.e. 2014-2019) that address practical implementation aspects. A summary table
of these articles is shown in Table 2.1.

Table 2.1: Summary table of the literature on MPC-based ESCs that address practical issues

Reference Description Strengths Weakness
Choi,2014[61] ESC based on Explicit

MPC formulation
Closed solution form to
avoid the QP solving.

Unconstrained optimiza-
tion problem that does not
handle the actuation limits.

Ataei,2018[62]
Ataei,2019[63]

ESC reconfigurable for
different actuation systems

Configuration for different
actuation systems.

The effects of the config-
uration on calculation time
is not presented.

Cheng,2019[26] ESC integrated with the
longitudinal collision
avoidance

The matrices of the QP
is configured according to
the driver conditions.

The effects of the config-
uration on the calculation
time is not included.

In [62],[63], reconfigurable MPC-based ESCs are proposed to vehicles with different actua-
tion systems. The MPC is designed based on a linear model that considers the roll motion and
can predict the response to different combinations of control inputs. The set-up is performed
by setting a selector matrix that makes the prediction model unresponsive to unavailable control
inputs, without taking off those inputs from the linear model, which does not affect the length
of the Hessian matrix of the QP problem. Simulations are performed with CarSim and Simulink
to demonstrate the effectiveness of proposed ESCs with different configurations. However, the
implementation of the embedded control system to execute the proposed algorithm is not pre-
sented, as well as no simplification of the optimization problem is applied to the QP to improve
the computation time required to solve it.

In [26], an MPC is designed to integrate the objectives of the longitudinal collision avoidance
and lateral stability. The proposed algorithm dynamically alters the weight matrices of the QP
problem according to driving conditions. An 2DOF model is used as prediction model that in-
cludes only the yaw rate and the side-slip of the vehicle body. HIL simulations are performed in
a platform where the vehicle motion and the control algorithm are simulated by computers that
access from a CAN bus a brake system, a yaw rate sensor and a wheel-speed simulator. The
embedded control system is also not presented in [26], and no method is presented to reduce the
computation time of MPC.

An MPC for yaw stability with practical concerns is presented in [61], where the cost function
of MPC is defined without inequality constraints such that a closed-form solution can be defined
as the optimization problem. Therefore, the computational efficiency of ESC is improved by
avoiding the QP solving. However, the proposed approach removes the MPC capability to handle
the constraints of the actuation system.
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2.4.2 LQR-based ESCs

The LQR is an optimal controller that in addition to its low computational cost, it has good
robustness properties when feedback of all states is available, due to its stability margins [57].

In [34], an LQR-based upper-level ESC is presented. The model used for control design
includes side-slip and yaw motion, without consideration of rolling effects on lateral stability.
Other LQR-based ESC design is presented in [64], where the LQR gain matrix is defined based
on a linear model that includes vehicle side-slipping, yawing and rolling of the vehicle body and
steering angle of front wheels. In [65], an LQR-based ESC design is presented, which uses a
linear model with roll degree-of-freedom for the definition of the gain matrix.

This chapter presented an introduction to the major topics of this research, which served as a
theoretical basis for the methodology presented in the following chapter. The nonlinear model of
vehicle dynamics is useful for implementation of the computational simulations, and to obtain the
linear models used in control design. Control theories are fundamental for the implementation
of the controllers. And the presentation on stability controllers and the state-of-the-art are im-
portant for understanding the goals of this research, which is the development of computationally
efficient ESC to run on a low-cost processor, capable of handling the limits performance system.
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3 METHODOLOGY

This chapter presents the development process of the ESCs proposed in this research, which
consist of the following stages:

• Definition of the mathematical models used in the implementation of vehicle dynamics
simulations and the development of control algorithms.

• Implementation of the mathematical models in Matlab and Simulink real-time to perform
MIL and HIL simulations for the evaluation of the control algorithms.

• Implementation the control algorithms.

• Implementation the control algorithms in Matlab.

• Evaluation of the control algorithms in MIL testing on control of the vehicle represented by
its simulation model running in Matlab.

• Implementation of the embedded control system

• Evaluation of the embedded control system in HIL testing on control of the vehicle repre-
sented by its simulation model running in Simulink real-time.

This chapter presents the methodology followed in this research. First, it presents the require-
ments and the architecture of the proposed ESCs. Following, it describes the simulation methods
used to test the these controllers, and the parameters of the models used in theses simulations.
Finally, it shows the application of vehicle dynamics and control theories in the development of
these systems.

3.1 CONTROL STRATEGY

The control strategy of the systems developed in this research is based on the following re-
quirements:

• The over-actuation is avoided to preserve passengers’ comfort and actuators’ integrity.

• The commands that greatly increase rollover risk as good solutions are not considered as
good solutions.

• For MPC-based ESCs that can handle constraints on actuation, the limits of actuation is
taking into account.
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The control architecture proposed to met this requirement is presented in Fig. 3.1. As the ob-
jectives of stability control can be summed up as improving the response of vehicle movements
to driver commands, the core of this architecture is a model-based control, to insert the existing
knowledge about vehicle dynamics into the control algorithm. This research is focused on the
implementation of these control algorithms and their computational efficiencies, the acquisition
strategies of the feedback signals are not included in the scope, therefore, we assume that mea-
sures of yaw rate, roll rate, and roll angle are available, whereas side-slip angle is calculated from
measures of lateral and front speed.

Figure 3.1: Block Diagram of the control systems proposed in this work.

The side-slipping and rolling angle are unwanted motions, not directly controlled by the driver
and that divert the vehicle from the driver’s intention. Therefore the desired value for the side-slip
angle β, roll rate φ̇ and roll angle φ states are as small as possible. To spare the computational
processing for dynamically calculating the minimum possible value, the desired value of these
states is assumed to equal to zero, as they are often assumed in ESC design [46].

The desired yaw rate depends on the steering wheel angle commanded by the driver in re-
sponse to vehicle movement. For a given vehicle, characterized by its geometric parameters and
cornering stiffness coefficients, the desired yaw rate can be computed using the Equation 2.21.

3.2 PROPOSED SYSTEMS

This research presents within its results the implementations of high-level and low-level MPC-
based DYCs. To compare the benefits of the MPC with another method that does not have the
same capabilities, but requires much less computational processing, high and low-level LQR-
based DYCs are also presented. In addition to the performance comparisons between MPC and
LQR, comparisons between MPCs with two prediction models are also presented. The first model
has 4DOF which includes lateral speed, yaw rate, roll rate and roll angle. The second model has
2DOF, including only lateral speed and yaw rate. The advantage of the first model is a prediction
closer to the vehicle’s response because it considers the effects of rollover. Whereas the second
model is simpler and therefore reduces the complexity of the MPC’s optimization problem, which
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lead to a shorter calculation time, i.e. it enables a higher sampling rate. Table 3.1 summarizes
all the systems developed in this research. The following sections of this chapter describe this
systems.

Table 3.1: Summary table of the ESCs developed in this research

Label Control Model Command Description
HL_LQR_4DOF LQR 4DOF Extra yaw moment High-level LQR-based ESC de-

rived from a linear model that in-
cludes the roll motion.

HL_MPC_2DOF MPC 2DOF Extra yaw moment High-level MPC-based ESC de-
rived from a linear model that does
not include the roll motion.

HL_MPC_4DOF MPC 4DOF Extra yaw moment High-level MPC-based ESC de-
rived from a linear model that in-
cludes the roll motion.

LL_LQR_4DOF LQR 4DOF Braking torque trans-
ferred to each wheel

Low-level LQR-based ESC derived
from a linear model that includes
the roll motion.

LL_MPC_2DOF MPC 2DOF Braking torque trans-
ferred to each wheel

Low-level MPC-based ESC derived
from a linear model that does not
include the roll motion.

LL_MPC_4DOF MPC 4DOF Braking torque trans-
ferred to each wheel

Low-level MPC-based ESC derived
from a linear model that includes
the roll motion.

3.2.1 High-level LQR-based ESC

The research begins with the literature review about the vehicle dynamics models used for
lateral stability control and analysis. To start prof-of-concept, no assumption about the actuation
system available on the vehicle was considered. The result of this review was the implementation
of the a simulation model for MIL and HIL testing, which is a 4DOF model including within
the states the lateral speed, yaw rate, roll rate and roll angle, that assumes a constant longitu-
dinal speed, and whose control input is the corrective yaw moment. This is a useful model for
evaluating high-level DYC algorithms that calculate corrective yaw momentum without explicitly
controlling the torque transferred to each wheel.

The next step was to define a reference control method for comparison with MPC to study the
advantages and weakness of using this control technique. The discrete-time LQR was chosen as a
reference method because it is also an computational and optimal control method, which does not
have the MPCs capabilities to deal with restrictions, but requires much less computational effort,
which allows to LQR a higher command update rate. Hence, the first ESC implemented was a
high-level DYC based on LQR. Figure 3.2 shows the block diagram of this system. The controller
computes the side-slip angle and desired states, then it compares the error between current states
and desired states, and the corrective is computed as a linear combination of states error, whose
coefficients are defined by the discrete-time LQR method.
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Figure 3.2: Block Diagram of the LQR-based high-level DYC.

In this development, the MIL and HIL simulation environments were implemented, and the
overall architecture of the control system was defined.

3.2.1.1 High-level MPC-based ESC

The second study and development was on the MPC-based high-level DYC. Since the inter-
face of this controller is the same as the LQR-based high-level DYC, the same MIL and HIL
simulation environments used to validate the LQR-based were used to validate the LQR-based.
Therefore, the development process followed consists only of the following steps:

• Implement the control algorithm based on the MPC.

• Evaluate the MPC-based algorithm in the same MIL environment implemented in case study
1.

• Change the LQR-based algorithm in the embedded control system implemented in case
study 1 with the MPC-based algorithm.

• Evaluate the embedded control system in the same HIL environment implemented in case
study 1.

Figure 3.3 shows the block diagram of the MPC-based high-level DYC. In this system, the
controller reads vehicle states, computes the side-slip angle and desired states, then the MPC
computes the corrective yaw moment from desired and current states.

Since the increase in the complexity of the QP reduces the MPC real-time performance, the
exponential parameterization of the MPC formulation proposed in [25] was used to reduce the
MPC computation time by reducing the QP complexity.

Another effort to reduce the MPC’s calculation time was the simplification of the vehicle
model used in control design by removing the roll-degree-of-freedom, to reduce the QP complex-
ity at the cost of disabling the ability to consider the roll motion influences on stability perfor-
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Figure 3.3: Block Diagram of the MPC-based high-level DYC.

mance. The MPC-based ESC with roll control off is designed using a linear prediction model that
does not include the roll angle and the roll rate withing the states.

3.2.1.2 Low-level LQR-based ESC

The research on low-level ESCs begins with the literature review of vehicle dynamics models
used to design and test these control systems. The result of this review was the definition of
a 4DOF simulation model including lateral, longitudinal, yaw and roll motion, whose control
signals are the corrective torques transferred to each wheel.

The Fig. 3.4 shows the block diagram of the LQR-based low-level DYC, in which the con-
troller reads the vehicle states, computes the side-slip angle and desired states, the error between
desired and current states, and calculates the torque transferred to each of the four wheels as linear
combinations of the states error, whose coefficients are defined by the discrete LQR method.

Figure 3.4: Block Diagram of the LQR-based low-level DYC.

The LQR-based low-level DYC was developed to test the simulation environment of low-level
ESC and to get a reference design to compare with the MPC-based low-level DYC. Since the LQR
is not able to handle constraints on command value, the LQR control law is manipulated to ensure
negative torque transferred to the fours wheels, such that it can be tested on control of a vehicle
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model that assumes that the differential braking system is available for actuation.

3.2.2 Low-level MPC-based ESC

And the last development performed in this research was the MPC-based low-level DYC.
Since the interface (input and output signals) of this controller is the same as the LQR-based
high-level DYC, the MIL and HIL simulation environments used to validate the LQR-based were
used to validate this MPC-based. Therefore, the development process consists of the following
steps:

• Implement the control algorithm based on the MPC.

• Evaluate the MPC-based algorithm in the same MIL environment implemented in case study
1.

• Change the LQR-based algorithm in the embedded control system implemented in case
study 1 with the MPC-based algorithm.

• Evaluate the embedded control system in the same HIL environment implemented in case
study 1.

The Fig. 3.5 shows the block diagram of the MPC-based low-level DYC, in which the con-
troller reads the vehicle states, computes the side-slip angle and desired states, the error between
desired and current states, then the torque transferred to each wheel is computed as linear combi-
nation of states error, whose coefficients are defined by the discrete LQR method.

Figure 3.5: Block Diagram of the MPC-based low-level DYC.

The same approaches used in the MPC-based high-level DYC to improve the computational
efficiency were also applied in the MPC-based low-level DYC:

• The formulation was changed to add the ability to handle the steering angle that is an un-
controlled input.
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• The exponential parameterization was used to reduce the number of decision variables of
the QP problem.

• MPC formulations with roll control on and off were tested to compare if the inclusion of
control at the cost of reducing the update rate of the control commands is something worth-
while.

3.3 QUALITY ASSURANCE METHODOLOGY

Tests with embedded controllers into real vehicles need a safe environment and a skill pi-
lot, which adds an extra cost for each test execution. To reduce the number of execution tests
and the damage risk of experiments, model-in-the-loop (MIL) and hardware-in-the-loop (HIL)
simulations are useful methodologies for control strategy validation.

In MIL simulations, the control algorithm and the vehicle dynamics are simulated in a com-
putational environment. This method allows testing without hardware design costs or material
damage risks. In case of failure, the algorithm model can be changed and tests can be repeated at
low cost, if compared to costs of hardware/software redesigning and experimental testing. In ad-
dition to that, the simulations may be performed for maneuvers that can not be safely performed
by a human driver driving a real car, and it is possible to observe the behavior of variables that
are difficult to be physically measured [23, 24].

The approval requirements of MIL tests are:

• The controller does not increase the maneuvering error that the driver is able to perform
without assistance.

• The controller is able to prevent destabilization in maneuvers as the driver loses control
without assistance.

Computational simulation can predict the performance of the control strategy before its im-
plementation, but it is not expected that these simulations can predict all the problems faced by
the embedded control system in a real-time application. Therefore, after the algorithm approval
on MIL tests, the embedded control system is implemented, and this implementation is evaluated
on HIL simulations, in which the controller is tested on interaction with a platform that runs a
real-time simulation of vehicle motion response to ESC command, supplying real-time updated
signals that are measured by the controller [22, 23, 24].

Therefore, once the controller’s effectiveness is validated by MIL simulations, the firmware
that implements the control algorithm is developed, and the hardware running this firmware is
subjected to HIL tests. The approval requirements in this stage is that the results from HIL test
are similar to the results from MIL simulation. Because large differences between the results can
indicate failures in the implementation of simulations or firmwares.
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When an implementation is not approved on HIL tests, an investigation is performed to indi-
cate if the fault is due to algorithm issues or implementation issues. If an implementation issue is
detected, the implementation is fixed and HIL tests are performed again. But, if algorithm issues
are detected, the algorithm is fixed, the MIL simulation is updated, and the development stages
since MIL tests are repeated. The whole procedure is repeated until the controller be approved on
HIL tests. The Figure 3.6 shows a flow char that describes the development process.

Figure 3.6: Flow chart of control development process adopted.

In this research, the vehicle simulation used in MIL and HIL testing was implemented as
Matlab/Simulink models. Later, these models were used for obtaining the discrete-time state-
space model required in the design of the model-based controllers developed in this work.

In the first simulation, the implementation of the vehicle model was tested in simulations of
open-loop (without stability control) scenarios presented in the literature. The validation consisted
of verifying if the simulated vehicle response was consistent with that presented in the literature.
After validating the open-loop model, the maneuvers tested in the open-loop simulation were
tested in closed-loop (with stability control) simulation for different speeds.

Fig. 3.7 shows the block diagram of the simulation implemented for MIL and HIL tests,
whose blocks are:

• Path generation: this block generates the longitudinal xd and lateral yd coordinates of the
desired path based on the vehicle’s dimension;

• Driver model: this block generate the steering angle from the feedback of vehicle states and
desired path by simulating the response of an intelligent driver;

• Vertical load: this block computes the vertical load on each tire;

• Tire slip-angle: this block computes the slip angle of each tire;

• Camber angle: this block computes the camber angle of each tire;

• Slip-ratio: this block computes the longitudinal slip-ratio of each tire;

• Pacejka’s MF: this block computes the forces acting on each tire;
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• Vehicle model: this block computes the states of the vehicle model;

• Rotation motion: this block computes the angular speed of each wheel;

• Control algorithm: this block performs the control algorithm to generate the control signals.

The symbols in Fig. 3.7 denote the variables of model presented in Section 2.1.

Figure 3.7: Block diagram of the nonlinear model implemented for MIL and HIL simulations, including a model of
vehicle dynamics and a model for intelligent driver behavior on the steering wheel command

In addition to detect implementation faults, the HIL simulation is used for fine-tuning of the
control coefficients taking into account the effects on real-time performance.

The HIL platform used in this research is based on the framework proposed by [66]. Fig.
3.8 illustrates this platform, which consists of a host computer, a digital-analog converter PCI-
DAC6703DA2 and Ethernet connection. The host runs under Simulink Real-Time environment
a real-time simulation of vehicle response to control yaw-moment command, providing real-time
updated signals read by the controller, which are longitudinal speed, lateral speed, yaw rate, roll
rate, roll angle, and front wheels steering angle. The PCI-DAC6703DA2 is used to send these
signals to the analog inputs of the controller, which in this work is the Beagle Bone Black. And
Ethernet connection is used to send over UDP the yaw-moment given as control input to host.

3.3.1 Test scenarios

The test cases are based on the double lane change (DLC) test of standard No. ISO 3888:1975
as presented in [37]. In the DLC test, the maneuver is approved if the vehicle does not cross
boundaries defined based on its track width. However, even if the maneuver is not successfully
performed, the test may confirm that the proposed ESC is effective to improve the lateral stabil-
ity, if the errors obtained with the proposed system are smaller than the obtained without ESC
assistance. The test cases performed for each of proposed ESC (Section 3.2) aims at:
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Figure 3.8: Hardware-in-the-loop setup Illustration.

• Test if the ESC shows unnecessary actuation when the driver can perform the maneuver
without assistance.

• Test if the ESC is effective to improve the maneuverability when there’s no instability risk.

• Evaluate the ESC on control of a vehicle whose response is close to the predicted by the
linear model used in control design.

• Evaluate The ESC on a vehicle with an initial speed greater than the constant assumed in
the linear model.

• Evaluate the ESC in the presence of model uncertainties, when the vehicle’s mass, posi-
tion of the center of mass, tire-road friction coefficient and velocity are different from the
nominal values assumed in the configuration of the linear model used in control design.

All the proposed systems were tuned and evaluated in MIL and HIL simulations DLC test,
which allows to observe the vehicle’s response when entering a curve, switching between curves
and when recovering the movement in a straight line. The nonlinear model of vehicle movements
presented in Section 2.1 is used to simulate the vehicle response. This scenario was performed
for each ESC with the vehicle at different initial speeds, and in presence of model uncertainties
due to differences between the parameters of the vehicle models used to simulation and to control
design. Table 3.2 provides a summary of the test cases described below.

Table 3.2: Summary table of the ESCs developed in this research

Label Method Stability without
ESC

Description

1 MIL Stable MIL simulation of high-level ESC on con-
trol of a vehicle at constant speed of 80km/h.
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Table 3.2: Summary table of the ESCs developed in this research. Continued from last page.

# Method Stability without
ESC

Description

2 MIL Unstable MIL simulation of high-level ESC on con-
trol of a vehicle at constant speed of
100km/h.

3 MIL Unstable MIL simulation of high-level ESC on con-
trol of a vehicle at constant speed of
120km/h.

4 HIL Unstable HIL simulation of high-level ESC on control
of a vehicle at constant speed of 100km/h

5 MIL Unstable MIL simulation of high-level ESC on con-
trol of a vehicle at constant speed of
100km/h, and in presence of model uncer-
tainties.

3.4 CONTROL DESIGN

This sections presents the application of the vehicle-dynamics and control theories in ESC
designs. The systems proposed in this research employ the LQR and MPC techniques, in which
the control equations are derived from a linear model of the controlled process. For this reason,
the application of this control methods starts the definition of the linear model used in control
design.

3.4.1 Linearization of vehicle model

The linear model of vehicle response is obtained from linearization of the non-linear dynamics
presented in the previous chapter (Section 2.1) for small angles, such that sin(φ) ≈ φ, sin(δi) ≈ 0,
cos(δi) ≈ 1, and β ≈ v/u. The obtained model is presented in Fig. and represented by the
following equation:

Kxẋ = Gxx + GFFY + Guuc

FY =
[
Fyfl Fyfr Fyrl Fyrr

]T (3.1)

in which x and uc denote the states and control inputs of the vehicle model. The vectors x and u,
and the matrices Gx, GF and Gu are:
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• For high-level ESC with roll control on

x =
[
β ψ̇ φ̇ φ

]T
uc = Mu

FY =
[
Fyfl Fyfr Fyrl Fyrr

]T

Kx =


mu 0 −mshs 0

0 Izz −Ixz (cφf + cφr)

−mshsu Ixz Ixx 0

0 0 0 1



Gx =


0 −mu 0 0

0 0 0 0

0 mshsu 0 (mshsg − kφf − kφr)
0 0 1 0



GF =


1 1 1 1

a a −b −b
0 0 0 0

0 0 0 0


Gu =

[
0 1 0 0

]T
(3.2)

• For low-level ESC with roll control on

x =
[
β ψ̇ φ̇ φ

]T
uc =

[
Tfl Tfr Trl Trr

]T
FY =

[
Fyfl Fyfr Fyrl Fyrr

]T

Kx =


mu 0 −mshs 0

0 Izz −Ixz (cφf + cφr)

−mshsu Ixz Ixx 0

0 0 0 1



Gx =


0 −mu 0 0

0 0 0 0

0 mshsu 0 (mshsg − kφf − kφr)
0 0 1 0



GF =


1 1 1 1

a a −b −b
0 0 0 0

0 0 0 0



Gu =


0 0 0 0

−tf
2

tf
2

−tr
2

tf
2

0 0 0 0

0 0 0 0


(3.3)

• For high-level ESC with roll control off

x =
[
β ψ̇

]T
uc = Mu

FY =
[
Fyfl Fyfr Fyrl Fyrr

]T
Kx =

[
mu 0

0 Izz

]

Gx =

[
0 −mu
0 0

]

GF =

[
1 1 1 1

a a −b −b

]

Gu =
[
0 1

]T

(3.4)

• For low-level ESC with roll control off

x =
[
β ψ̇

]T
uc =

[
Tfl Tfr Trl Trr

]T
FY =

[
Fyfl Fyfr Fyrl Fyrr

]T
Kx =

[
mu 0

0 Izz

]

Gx =

[
0 −mu
0 0

]

GF =

[
1 1 1 1

a a −b −b

]

Gu =

[
0 0 0 0

−tf
2

tf
2

−tr
2

tf
2

]

(3.5)

For smalls tire slip and camber angles, the lateral force generated by tires is approximated by [33]:
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FY = Gαα + Gγx

α =
[
αfl αfr αrl αrr

]T
Gα = diag (Cαfl, Cαfr, Cαrl, Cαrr)

Gγ = diag (Cγfl, Cγfr, Cγrl, Cγrr) Πφ

(3.6)

where Cαi and Cγi are the cornering and cambering stiffness coefficients, and Πφ is a selector matrix that
selects the roll angle within the states.

In models that do not include the roll motion, the camber angle should not be included as well, because
the camber angle is being considered as proportional to roll angle, given by Eq. 2.15. Therefore, the matrix
Πφ differs for models that include and do not include the roll angle in the state vector x:

Πφ =


[
04×3 14×1

]
, if x =

[
β ψ̇ φ̇ φ

]T
04×2, if x =

[
β ψ̇

]T (3.7)

The cornering stiffness and the cambering stiffness coefficients are the angular coefficients of the linear
approximation of the Pacejka’s Magic Formula (Eq. 2.14) [31], given by:

Cαi =
∂Fyi
∂αi

∣∣∣∣
ax,ay ,γ,α,φ,φ̇=0

Cγi =
∂Fyi
∂γi

∣∣∣∣
ax,ay ,γ,α,φ,φ̇=0

(3.8)

Fig. 3.9 shows the forces obtained from Pacejka’s Magic Formula and its linear approximation, where
one can see that for small angles the Equation 3.6 is a good approximation.

Figure 3.9: Lateral tire forces computed by the Magic formula of Pacejka and its linear approximation.

The front and rear wheels slip angle are approximated by linear functions of vehicle slip angle, yaw
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rate and wheels steer angle [27, 34]:

α =


−1 −a/u
−1 −a/u
−1 b/u

−1 b/u

Π(β,ψ̇)x +


δfl

δfr

δrl

δrr

 (3.9)

in which the matrix Π(β,ψ̇) extracts the vector
[
β ψ̇

]
from the vector state x. Therefore, the matrixΠ(β,ψ̇)

differs for models that include and do not include the roll angle in the state vector x:

Π(β,ψ̇) =


[
I2×2 02×2

]
, if x =

[
β ψ̇ φ̇ φ

]T
I2×2, if x =

[
β ψ̇

]T (3.10)

From Equation 3.9 and assuming that the steering control acts only on the front wheels (δrr = δrl = 0)
and that the left and right angles are the same (δfr = δfl = δf ), the following equations are obtained:

α = GAx +
[
1 1 0 0

]T
δf

GA =


−1 −a/u
−1 −a/u
−1 b/u

−1 b/u

Π(β,ψ̇) + diag
(
∂δf
∂φ

,
∂δf
∂φ

,
∂δr
∂φ

,
∂δr
∂φ

)
Πφ

(3.11)

The linear model of vehicle dynamics in the state space form can be obtained by combining the Equa-
tions from 3.1 to 3.11:

ẋ = Ax + Buc + Eδf

A = K−1x [Gx + GF (GαGA + Gγ)]

B = K−1x Gu

E = K−1x GFGαGγ

(3.12)

3.4.2 LQR-based ESC

The discrete-time LQR is used in the ESCs designs proposed in this research, such that it can be im-
plemented as software component of an ECU. The Matlab’s function lqrd is used to obtain the gain matrix
from the matrices of the continuous state-space model. In this model, the steering angle is considered as a
state whose desired value is equal to its current sampling, such that the error of this virtual state is always
equal to zero and thus does not interfere with the calculated command. The continuous state-space model
used in LQR design is obtained from the matrices of the Equation 3.12 as follows:
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xe =
[
x δf

]
ẋe = A′xe +Buc

A′ =
[
A E

] (3.13)

The LQR computes a control signal as a weighted sum of the error of the state without imposing
any constraint to handle the actuation limits. In the LQR-based ESCs proposed in this work, the control
algorithm outputs a control signal which is a constrained LQR result. For LQR-based high-level ESCs, the
corrective yaw moment Mu at the sampling instant n is computed as follows:

MLQR = K(xd(n)− xe(n))

Mu =


−Mth, if MLQR ≤ −Mth

Mth, if Mth ≤MLQR

MLQR otherwise

(3.14)

in which xd denotes the desired value of the states xe, K is the discrete-time LQR gain matrix and Mth is
the maximum allowable value of the corrective yaw moment.

For LQR-based low-level ESCs, the braking torques (i.e. negative torque) transferred to the wheels Tu

at the sampling instant n are obtained by manipulating the LQR output to ensure negative torques greater
than a threshold. This manipulation aims at preserving the moment generated in the yaw axis, considering
that the moment generated by accelerating a wheel is equivalent to the moment generated when braking
the wheel of the same axis on the opposite side. The braking torque transferred to the wheels are computed
as follows:

TLQR =


TLQR,fl

TLQR,fr

TLQR,rl

TLQR,rr

 = K(xd(n)− x(n)) (3.15)
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T ′fl =



TLQR,fl − TLQR,fr ifTLQR,fl ≤ 0, TLQR,fr > 0

TLQR,fl ifTLQR,fl, TLQR,fr ≤ 0

−TLQR,fr ifTLQR,fl, TLQR,fr > 0

0 ifTLQR,fl > 0, TLQR,fr ≤ 0

T ′fr =



TLQR,fr − TLQR,fl ifTLQR,fr ≤ 0, TLQR,fl > 0

TLQR,fr ifTLQR,fr, TLQR,fl ≤ 0

−TLQR,fl ifTLQR,fr, TLQR,fl > 0

0 ifTLQR,fr > 0, TLQR,fl ≤ 0

T ′rl =



TLQR,rl − TLQR,rr ifTLQR,rl ≤ 0, TLQR,rr > 0

TLQR,rl ifTLQR,rl, TLQR,rr ≤ 0

−TLQR,rr ifTLQR,rl, TLQR,rr > 0

0 ifTLQR,rl > 0, TLQR,rr ≤ 0

T ′rr =



TLQR,rr − TLQR,rl ifTLQR,rr ≤ 0, TLQR,rl > 0

TLQR,rr ifTLQR,rr, TLQR,rl ≤ 0

−TLQR,rl ifTLQR,rr, TLQR,rl > 0

0 ifTLQR,rr > 0, TLQR,rl ≤ 0

Ti =


−Tth, if T ′i ≤ −Tth
0, if T ′i ≤ 0

T ′i otherwise

i ∈ fl, fr, rl, rr

Tu =


Tfl

Tfr

Trl

Trr



(3.16)

in which Tth is the absolute value of the maximum braking torque that can be transferred to the wheels.

3.4.3 MPC-based ESC

The MPC formulation used in this work and presented in [25] does not consider the existence of com-
mands that are not controlled by the MPC, as it is the case with the steering angle. Then the development
stage following the definition of the prediction model was the definition of a strategy to deal with this
uncontrolled command. The first attempt was to change the state space model to include the steering angle
as a constant state. In this way, the prediction model is able to consider the effects of the steering angle on
vehicle’s response, assuming it remains constant over the prediction horizon. However, the increase in the
number of states makes the update of the vectorBineq more complex, such that this approach is not efficient
to be addressed to lateral stability control in real-time application. Therefore, another strategy is adopted
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to handle the steering angle, in which the state-space model is changed to include the steering angle within
the controlled states and, to prevent the MPC from searching for optimal solutions for this uncontrolled
command, the QP is constrained such that the only solution for the steering angle in the optimal control
sequence is constant equal to its measured value. In this way, the prediction model can consider the effects
of the steering angle on vehicle response, assuming it remains constant over the prediction horizon. This
approach is used in the MPC-based ESCs developed in this work because it is computational efficient to
be addressed to lateral stability control. The linear model used in MPC design is the discretization of the
state-space model presented in equation 3.12, with the steering angle included in the control vector uc. So
the control vector uc is :

• For high-level ESC:

uc =
[
Mu δf

]T
(3.17)

• For low-level ESC:

uc =
[
TT δf

]T
T =

[
Tfl Tfr Trl Trr

]T (3.18)

In addition to the equality constraint of the steering angle, the proposed MPC design considers the con-
straints on amplitude and slew rate of the controlled commands. Therefore, the constraint set is presented
by the following inequalities: 

Inu

−Inu

Inu

−Inu

uc(k) ≤


umaxc (k)

−uminc (k)

∆max
u − uc(k − 1)

−∆min
u + uc(k − 1)

 (3.19)

where umaxc (k) and uminc (k) define the maximum and minimum values of the control signals, and ∆max
u

and ∆min
u define the maximum and minimum variation of the control signals between consecutive sampling

instants. S

For the high-level control, the constraining vectors are given by:

umaxc (k) =
[
Mmax
u δf (k)

]T
∆max

u =
[
∆max
Mu

0
]T

uminc (k) =
[
Mmin
u δf (k)

]T
∆min

u =
[
∆min
Mu

0
]T (3.20)

where Mmax
u and Mmin

u are the maximum and minimum corrector moment applied on the vehicle’s yaw
axis, and ∆max

Mu
and ∆min

Mu
are the maximum and minimum variation of the corrector yaw moment between

consecutive sampling instants. And for the low-level control, the constraining vectors are given by:

umaxc (k) =
[
Tmaxfl Tmaxfr Tmaxrl Tmaxrr δf (k)

]T
∆max

u =
[
∆max
Tfl

∆max
Tfr

∆max
Trl

∆max
Trr

0
]T

uminc (k) =
[
Tminfl Tminfr Tminrl Tminrr δf (k)

]T
∆min

u =
[
∆min
Tfl

∆min
Tfr

∆min
Trl

∆min
Trr

0
]T

(3.21)
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where Tmaxi and Tmini are the maximum and minimum corrector torque transferred to the i-th wheel, and
∆max
Ti

and ∆min
Ti

are the maximum and minimum variation of the corrector torque transferred to the i-th
wheel between consecutive sampling instants.

In Equations 3.20 and 3.21, the variation of the steering angle between consecutive samples are con-
strained equal to zero because its value is constrained to a constant value over the prediction horizon.

The proposed MPC design uses the exponential parameterization presented in 2.3.2.3 to increase the
computational efficiency by reducing the number of variables of the QP solution. For the exponential
parameterization to provide results compatible with the imposed constraint that the frontal steering δf

must remain constant and equal to its value measured a priori, the η-coefficient associated with the steering
command must be equal to zero, and its respective element in the parameter vector p must be constrained
equal to the steer angle measured a priori, such that the only solution is a constant steering angle over the
prediction horizon equal to a priori measured value δf (k).

With this parameterization, for high-level controllers, the command vector in the i-th sampling instant
of the prediction horizon is given by:

uc(k + i) =

[
Mu(k + 1)

δf (k + 1)

]
= M(i)p

M(i) =

[
e−λτsi e−λτsi/(1+α) . . . e−λτsi/(1+(ne−1)α) 0

0 0 . . . 0 1

] (3.22)

whereas for low-level controllers the command vector in the i-th sampling instant of the prediction horizon
is given by:

uc(k + i) =


Tfl(k + 1)

Tfr(k + 1)

Trl(k + 1)

Trr(k + 1)

δf (k + 1)

 = M(i)p

M(i) =


e−λτsi e−λτsi/(1+α) . . . e−λτsi/(1+(ne−1)α) 0

e−λτsi e−λτsi/(1+α) . . . e−λτsi/(1+(ne−1)α) 0

e−λτsi e−λτsi/(1+α) . . . e−λτsi/(1+(ne−1)α) 0

0 0 . . . 0 1



(3.23)

in which ne is the number of exponential used in the parameterization of the controlled commands, λ and
α are the coefficients of the exponential parameterization, and τs is the sampling time.

The parameterization can be expressed in the compact form as follows:

ũ(k) = Πep Πe =


M(0)

...
M(N − 1)

 (3.24)
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3.4.4 ESC activation criteria

The ESC should not unnecessarily actuate when the driver is able to drive without assistance. To avoid
unnecessary actuation in the presence of states error that does not mean a risk of steering instability, the
ESC control is kept off while the following activation criteria are not satisfied:

|β| ≥ βonth and
∣∣∣ψ̇d − ψ̇∣∣∣ ≥ ψ̇onth (3.25)

in which βonth and ψ̇onth are thresholds of side-slip angle and yaw rate error, respectively, for activating the
lateral stability control.

And, once the ESC is off, it remains off while the following deactivation criteria is not satisfied:

|β| ≤ βoffth and
∣∣∣ψ̇d − ψ̇∣∣∣ ≤ ψ̇offth (3.26)

in which βoffth and ψ̇offth are thresholds of side-slip angle and yaw rate error, respectively, for deactivating
the lateral stability control.

To avoid excessive on-off switching, the ESC is turned on if the activation criteria are fulfilled for a
minimum period denoted by τon, and it is turned off if the deactivation criteria are fulfilled for a minimum
period denoted by τoff .

3.4.5 Tuning procedure

The ESC effectiveness depends on the coefficients of the control design, e.g. the weighting matrices
that define the penalty of state errors and control effort. For a properly observation of the benefits and the
limitations of the proposed designs, the coefficients of the control algorithm must be well fitted.

In this work, an optimal tuning based on Particle Swarm Optimization (PSO) is performed with MIL
simulations to define the configuration of the MPC and the LQR designs. Taking into account the efficiency
of the embedded control system, the control sampling time in MIL simulation is configured equally as the
computational time profiled in HIL simulation.

3.4.6 Tuning of the LQR-based ESC

The LQR configuration coefficients are the weighting matrices Q and R. The choice of these matrices
affects the gain matrix given as result of the discrete-time LQR method, but does not affect the number and
complexity of the algorithm’s operations, i.e. the configuration of the weighting matrices does not alter
the computation effort. However, the calculation time constraint the sampling rate, and the discrete-time
LQR’ gain matrix depends on the sampling time. Therefore, the configuration of the LQR starts with the
measurement of the minimum calculation time in which the embedded control system is able to execute

50



the algorithm. This calculation time is set as the sampling time of the control signals. And then MIL
simulations are performed to find out the optimal matrices that optimize the ESC performance.

The optimization method used to define the optimal weighting matrices Q and R are performed in the
MIL simulation environment. The problem is defined as the minimization of a cost function that penalizes
the states errors, trajectory error, and control energy, all accumulated from results of MIL simulations for
DLC maneuver at 80km/h, 100km/h, and 120km/h. This cost function is defined as follows:

JC =

∫ 10

0

(
|ye(t)|+

∣∣∣ψ̇e(t)∣∣∣+ 10 |β(t)|+ 10 |φ(t)|+ 0.01uT (t)u(t)
)

dt

ye(t) = yd(t)− y(t)

ψ̇e = ψ̇d − ψ̇

(3.27)

where t denotes the simulation time, ye the lateral position error, y the lateral position, yd the lateral
position in the ideal path, ψe the yaw rate error, ψ̇ the yaw rate, and ψ̇d is the desired yaw rate computed
by Equation 2.21.

The Matlab’s function particleswarm with the hybrid method fmincon enabled is used to solve the
optimization problem. It starts the optimization using the PSO method to perform a stochastic search for
Q and R values that minimizes the cost function (Eq. 3.27), then it continues the optimization from PSO
results by using the interior point method to found out the optimal values of Q and R.

3.4.6.1 Tuning of the MPC-based ESC

The MPC performance depends on the value of its parameters, such as the weighting matrices, the
coefficients of exponential parameterization λ and α and the prediction horizon N .

Theoretically, a long prediction horizon increases the capacity of ESC to act before a dangerous driving
condition happens, and also contributes to the stability of MPC [20]. But in practical terms, the increase
of the prediction horizon increases the latency of the QP solving to update the control command, i.g the
increasing of the prediction horizon decreases the command updating rate, which may decrease the stability
performance. Therefore, the sampling time of the control model in MIL simulation is configured equally
as the computational time profiled in HIL simulation for the configuration under test.

The weighting matrices Qu and Qy (Eq.2.31) and the coefficients η and ξ of the exponential parame-
terization (Eq. 2.45), and the prediction horizon N are defined by an iterative procedure described by the
following steps, starting with the prediction horizon N = 15.

1. Tuning of Qu, Qy, η, ξ:

The control model of MIL simulation is configured with the chosen horizon. The others parameters
are defined by the minimization of the accumulation of states square error, path square error and yaw
moment energy, obtained from results of MIL simulation for double lane change maneuver (standard
No. ISO 3888:1975 as presented in [37]) at 80km/h, 100km/h, and 120km/h.
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2. Profiling the command update times

The controller is configured with the optimum parameters found in the previous step. Than HIL sim-
ulations are performed for each horizon N ∈ [15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65]. The profiling
tool of GNU ARM embedded toolchain is used during these simulations to measure the calculation
time for each horizon. The HIL simulations are able to test only command update times that are
multiples of the HIL platform sampling time, which is 0.8ms. For this reason, the command update
time of each N is defined as the smallest multiple of 0.8ms greater than or equal to the calculation
time measured for this prediction horizon.

3. Measure of the stability performances

The mean square error (MSE) of the lateral displacement is measured, from results of MIL simula-
tions of the DLC maneuver at 120km/h, for the control model configured for each prediction horizon
and its effective update time measured in the previous step. The horizon that gets the smallest MSE
measured is the chosen one.

4. Completion and iteration

The procedure repeats while the chosen horizons does not change within consecutive iterations.
Since the intention is to test the proposed controllers with the best configuration, the optimal coef-
ficients obtained in the last iteration is used in MPC settings. The matrix Cr are defined such that
regulated states include only the states whose error is not zero-weighted in the optimal QY .

This chapter presented the specifications and procedures for implementation and validation of the ESCs
proposed in the research. The results obtained for the high and low level controllers, based on MPC and
LQR, with and without control of the roll motion are presented in the next chapter.
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4 SIMULATIONS AND RESULTS

This research on vehicle stability control resulted in the development of high-level and lower-level
DYC systems based on MPC technique. To study the advantages of MPC capabilities, reference designs
of the proposed control systems were implemented using LQR instead of MPC, to serve as a basis for
comparison with the MPC. The LQR was chosen for this purpose because it is an optimal method, whose
optimization problem is similar to that of MPC, its algorithm is more computationally efficient, which
means the LQR can achieve higher update rate of the control signals than the MPC running in the same
hardware, however, the LQR does not have the MPC’s capabilities to handle with constraints. Hence, the
comparison between LQR-based and MPC-based ESCs allows to observe the benefits of the MPC and the
effects of its low command update rate.

In the design of model-based controllers, such as LQR and MPC, the mathematical model used in
control design have a strong influence on control performance. According to the mathematical model of
vehicle dynamics (Section 2.1), rolling motion has a strong influence on lateral stability, so the inclusion of
roll-degree-of-freedom reduces the model uncertainties and enables some roll control. But using a simpler
model without roll-degree-of-freedom can simplify the control algorithm, which contributes to achieving
a high update rate of the control signals. To observe the effects of enabling the roll control, the control
systems proposed in this research were implemented with and without roll control, and the results obtained
with and without roll control were compared with each other.

The proposed control algorithms were implemented as software for an embedded Linux running on
ARM Cortex A8 of Beagle Bone Black board to be subject to HIL simulations. The BeagleBone’s analog
inputs were used to read the feedback signals: vehicle speeds, roll angle, roll rate, yaw rate, and front
wheels steer angle, and RJ45 Ethernet connection over UDP was used to send the yaw moment given as
control signal.

The performances of the proposed algorithms and their implementations were evaluated using the MIL
and HIL simulations as described in Section 3, in which the ESCs are tested on control of the nonlinear of

Table 4.1: Parameters of vehicle dynamics model used in MIL and HIL simulations performed to evaluate the pro-
posed ESCs. Values obtained in [34, 67]

Param. Value Param. Value Param. Value Param. Value
a 1.1m b 1.3m a0 1.3 a1 -49
tf 1.4m tr 1.41m a2 1216 a3 1632
hs 0.55m h 0.6m a4 11 a5 0.006
m 1070Kg ms 900Kg a6 -0.04 a7 -0.4
Izz 2100Kgm2 Ixx 500Kgm2 a8 0.003 a9 -0.002
Ixz 47.0Kgm2 Is 20 a10 0 a11 -11
cφf 1050Nms/rad cφr 1050Nms/rad a12 0.045 a13, a14 0
kφf 32795Nm/rad ∂δf/∂φ 0.1 kφr 32795Nm/rad ∂δr/∂φ -0.1
Cγfr -86340N/rad Cγfl -86340N/rad Cγrr -61455N/rad Cγrl -61455N/rad
Tk 0.2 µ 0.75 W 0.2 La 20
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vehicle dynamics, presented in Section 2.1. Table 4.1 show the parameters of the nonlinear vehicle model
used in MIL and HIL simulations.

The platform used for HIL testing can run the real-time simulation of vehicle response with a minimum
sampling time of 0.8ms. Since the command update time that can be tested in HIL simulation is limited
to multiples of the sampling time of the HIL platform, the minimum command update time that can be
tested is equal to 0.8s. The processing limits of the HIL platform do not limit the command update rates
that can be configured in MIL tests. But as the purpose of MIL testing is to evaluate in a computational
environment the expected behavior for the embedded control system, and the embedded control system will
be only evaluated in this research in HIL simulations, then the MIL tests were configured with a command
update rates equal to those that can also be configured in HIL tests.

In MIL and HIL simulations, the vehicle’s response to control signals is obtained from nonlinear mod-
els, whereas the proposed controllers are based on linear models. Thus, all simulations test the controllers
in the presence of divergences between the vehicle’s response and that predicted by the control algorithm.
The linear models used in the design of the controllers were obtained from simplifications for constant lon-
gitudinal speed. In the controllers evaluated in this chapter, this constant speed is equal to 100 km/h. So,
in simulations of maneuvers at speeds other than constant 100 km/h, in addition to the linearization errors,
there are divergences between the linear model response and the simulation model due to the difference in
vehicle speed, so these simulations evaluate in some way the robustness of the controller to the mismatch
between plant and model. To further inspect the robustness of the controller to model’s uncertainties,
simulations were also carried out in which the mass, the position of the center of mass and the friction
between the tire-road of the simulated vehicle are different from the values used in the configuration of
the controllers. Table 4.2 shows the parameter used in these simulations that differ from the nominal value
assumed in the ESC algorithms.

Table 4.2: Parameters used in the vehicle simulation to evaluate the proposed ESCs in the presence of model uncer-
tainties. This table shows the parameters that are different from the nominal values assumed in control design, which
are the vehicle mass m ,longitudinal distance a between center of mass and front wheels, longitudinal distance b, and
tire-road friction coefficient µ.

Parameter Value Divergence Parameter Value Divergence
a 1.04 m -5.4% m 1177 Kg +10%
b 1.36 m 4.6% µ 0.675 +10%

Following in this chapter, the results from the MIL and HIL simulations performed to evaluate the
proposed ESCs are shown.

4.1 RESULTS FOR THE HIGH-LEVEL DYCS

The high-level DYCs developed and studied in this research are systems that compute the corrective
yaw moment applied to the vehicle body without considering the change to be made in the torque trans-
ferred to the wheels to achieve this corrective yaw moment. The inputs of the model used to simulate the
vehicle movement are the steering angle and the corrective yaw moment. In the absence of inputs that
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control the rotation of the wheels, this model considers that the vehicle longitudinal speed is equal to the
initial speed through the simulation time.

4.1.1 LQR-based high-level DYC

The LQR-based high-level DYC were the first ESCs developed as a proof of concept of the control
architecture and simulation environment. This task contributed to the definition of the test environment
used in the validation of all the controllers proposed in this research, since it was during the MIL tests
of the LQR-based high-level DYCs that was detected the need for a simulation model to generate the
steering command in response to the trajectory error. That is why the intelligent driver model was added
to the simulation environment. This task also contributes to definition of the common control architecture
of the ESCs proposed in this research, because the activation criteria were included when the results of
simulations for low speed maneuvers show that the high-level DYCs based on LQR exhibit unnecessary
non-null commands whenever the state errors are different from zero, even though there is no significant
risk of handling destabilization or loss of maneuverability.

Table 4.3 shows the parameters of linear model used in control design, other parameters used in control
design and not shown in this table are equal to the values configured for vehicle simulation, presented in
Table 4.1. And Table 4.4 shows the value of the LQR weight matrices, which were defined following the
tuning procedure defined in Section 3.4.5.

Table 4.3: Parameters used in design of the LQR-based high-level DYC, the parameters of the linear model of vehicle
dynamics not shown in this table are equal to the nominal values shown on Table 4.1

Param. Value Param. Value Param. Value Param. Value
Cαfl 45292 N/rad Cαfr 45292 N/rad Cαrl 39018 N/rad Cαrr 39018 N/rad
Mth 200 Nm µ 0.75 βth 0.1 rad Ton 0.08 s
ψeth 0.1 rad/s Toff 0.8s

Table 4.4: Tuned weight matrices of LQR-based low-level DYC

Controller Q R

LQR 4DOF


66.0 0 0 0

0 248.9 0 0
0 0 9.6 0
0 0 0 374.2

 1e-5

LQR 2DOF
[
55.4 0

0 44.5

]
1e-5

According to Section 3.2, two LQR-based high-level DYCs were implemented: the HL_LQR_2DOF
and the HL_LQR_4DOF. In LQR 2DOF, the LQR is defined for the linear model for high-level ESC with
roll control off (Section 3.4.1), which is a 2DOF model whose states are the side-slip angle of the vehicle
body and the yaw rate. In LQR 4DOF, the LQR is defined for the linear model for high-level ESC with roll
control on (Section 3.4.1), which is a 4DOF model whose states are the side-slip angle of the vehicle body,
yaw rate, roll rate, and roll angle. The LQR 2DOF has a shorter calculation time because it calculates the
control signal from the weighted sum of two state erros, whereas the LQR 4DOF calculates the control
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signal from the weighted sum of four state erros. However, the calculation time of both algorithms is
shorter than the sampling time of the HIL platform, which is 0.8ms. Therefore, both systems were tested in
HIL and MIL simulations with the command update time equal to one sampling time of the HIL platform.
The following sections show the results of test scenarios simulated to evaluate these systems. Further
description of the test scenarios can be found in Section 3.3.1.

4.1.1.1 MIL simulation of DLC at 80km/h

The results from this test scenario are presented in Figures 4.1 e 4.2. One can confirm from the tra-
jectory obtained for a vehicle without ESC that the driver can perform successfully this maneuver without
assistance, such that the vehicle does not cross the DLC boundaries, and after the last lane changing the
vehicle follows an error-free straight path. By comparing the results for vehicle without ESC and with
ESCs, one can observe that both ESCs does not interfere significantly on steering, however the control
signals during the maneuver does not remain equal to zero, which means that these DYCs are not efficient
in saving energy and avoiding unnecessary stress on the actuators when no assistance is necessary to keep
the steering stable.

Regarding the model uncertainties, it is possible to observe that the side-slip and roll angles remain
below 5 degrees, therefore the vehicle’s response remains in the trust region of the linear approximations
for small angles applied to obtain the model used in the definition of the LQR gain factors.

Figure 4.1: Vehicle trajectory from simulation of DLC at 80km/h for vehicle without ESC, with LQR-based high-
level DYC based on 4DOF linear model and ESC based on 2DOF linear model
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Figure 4.2: Results from simulation of DLC at 80km/h for a vehicle without ESC, with LQR-based high-level DYC
based on 4DOF linear model and ESC based on 2DOF linear model

4.1.1.2 MIL simulation of DLC at 100km/h

Figures 4.3 and 4.4 show the results obtained from this simulation. One can confirm from the trajectory
obtained from MIL simulation for a vehicle without ESC, which is shown in Figure 4.3, that the driver is
not able to perform the maneuver without crossing the boundaries of lateral displacement. On the other
hand, with any of both LQR-based high-level DYCs, the DLC maneuver is performed successfully. The
results obtained with LQR 2DOF and LQR 4DOF is almost the same, no advantage of including the roll
control is perceived for this maneuver. Besides, to avoid the steering instability, The ESCs are efficient
to keep the sides-lip angle of the vehicle’s body and the tire-slip angle smaller than 5 degrees, such that
the vehicle response remains in the trust region of the linear model obtained from simplifications for small
angles.

Figure 4.3: Vehicle trajectory from simulation of DLC at 100km/h for vehicle without ESC, with LQR-based high-
level DYC based on 4DOF linear model and ESC based on 2DOF linear model
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Figure 4.4: Results from simulation of DLC at 100km/h for vehicle without ESC, with LQR-based high-level DYC
based on 4DOF linear model and ESC based on 2DOF linear model

4.1.1.3 MIL simulation of DLC at 120km/h

Figures 4.5 and 4.6 show the results obtained from this simulation. From the results for a vehicle
without ESC, one can confirm that the driver loses the vehicle control. None of the ESCs is capable of
allowing the maneuver to be performed successfully, since the trajectories obtained with both ESCs cross
the lateral displacement boundaries of DLC testing and they do not return to a straight movement after the
last lane change. Even so, an improvement in stability is achieved with both ESCs, since they prevent the
driver from losing vehicle control and reduce the side-slip angle and the yaw-rate error, which improves
maneuverability by keeping the vehicle’s dynamics closer to the linear region.

Figure 4.5: Vehicle trajectory from simulation of DLC at 120km/h for vehicle without ESC, with LQR-based high-
level DYC based on 4DOF linear model and ESC based on 2DOF linear model

The benefits of enabling roll control can be observed in this scenario by comparing the states shown
in Fig. 4.6, from where one can see that the side-slip angle of the vehicle body, the tire-slip angle, and
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Figure 4.6: Results from simulation of DLC at 120km/h for a vehicle without ESC, with LQR-based high-level DYC
based on 4DOF linear model and ESC based on 2DOF linear model

the roll rate obtained with the LQR 4DOF are smaller than those obtained with LQR 2DOF. The reduction
of slip contributes to an increase in lateral stability, as it reduces the slip of the vehicle out of the desired
trajectory. The reduction of tire slip leads to improving the lateral stability as it prevents the tire dynamics
from reaching the saturation region, in which the lateral force generated becomes less responsive to steering
wheel command and tire slip angle. And the reduction in the rollover rate means an improvement in
passenger comfort.

Another evidence of the benefits of enabling the roll control can be observed by comparing the trajec-
tory shown in Fig. 4.5. One can observe that the lateral displacement from the desired path obtained from
simulation for a vehicle with 4DOF ESC is smaller than the obtained from simulation for a vehicle with
2DOF.

4.1.1.4 DLC at 120 km/h with model uncertainties

Figures 4.7 and 4.8 show the results for the LQR 4DOF on control of a vehicle model whose param-
eters equals the nominal values in control design shown on Tabel 4.1, and on control of a vehicle whose
parameters are different from the nominal values used in the design of the controller (Table 4.2). By com-
paring these results, one can observe that the amplitude of states error, corrective yaw moment, steer wheel
angle, and lateral displacement from the desired path are similar. This means that the stability performance
is almost the same, which shows that the ESC robustness to model’s uncertainties.

4.1.1.5 HIL simulation of the DLC maneuver at 100km/h

Figures 4.9 and 4.10 show results obtained from HIL compared with those obtained from MIL. From
the results and the results of MIL simulation of DLC at 100km/h, one can note that the controller is efficient
in real-time application to avoid instability. Comparing the results from MIL and HIL, one can see that the
stability performance obtained in HIL simulation is better than the predicted by MIL simulation, since the
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Figure 4.7: Vehicle trajectory from MIL simulation to evaluate the LQR 4DOF on control of a vehicle performing
the DLC at 120km/h in presence of model uncertainties

Figure 4.8: Results from MIL simulation to evaluate the LQR 4DOF on control of a vehicle performing the DLC at
120km/h in presence of model uncertainties

amplitudes of lateral displacement from the desired path, side-slip angle and roll rate obtained from HIL
testing are quiet small than the predicted by results from MIL simulation. The reason for this is the fact
that, at the exit of the last curve, ESC is activated early in HIL due to errors in state measurements. Even
so, this result shows that the control algorithm has some undesired sensitivity to nonidealities of acquiring
system.
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Figure 4.9: Vehicle trajectory from HIL and MIL simulation of DLC at 100km/h for vehicle with LQR-based high-
level DYC designed based on a 4DOF linear model

Figure 4.10: Results from MIL and HIL simulation of DLC at 100km/h for vehicle with LQR-based high-level DYC
designed based on a 4DOF linear model

4.1.2 MPC-Based high-level DYC

After validating the proof of concept of the control architecture and the simulation environment, the
high-level DYC was changed by replacing the LQR controller with an MPC.

This development was useful for definition of the MPC formulation used in this research, which is the
formulation for LTI models presented in [25]. However the formulation presented in [25] does not support
commands that are not controlled by the MPC. Therefore, it was necessary to make changes to handle
commands not controlled by the MPC, such as the steering wheel angle, which is controlled by the driver.
Also, the software solutions used to implement the MPC algorithm were defined during this development.
The Eagle API is used for operations with matrices and vectors, and the qpOASES API is used for solving
the QP of MPC formulation.
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According to Section 3.2, two versions of this MPC-based high-level DYC were developed: the
H_MPC_2DOF, referred to in this topic as ESC with roll control off, and the HL_MPC_4DOF, referred
to as ESC with roll control on. Their implementations in Beaglebone Black were submitted to the tuning
procedure described in Section 3.4.5 for definition of the optimal configuration of the coefficients Qu, Qy,
η, ξ,N , and computation time τ . Figure 4.11 shows the minimum computation time and the corresponding
mean square error of the lateral displacement obtained in the tuning procedure of ESC with roll control on
for different prediction horizons. Its calculation time is monotonically increasing in relation to the predic-
tion horizon because the increase in the horizon makes the QP more computationally complex. Whereas
the MSE of the lateral displacement through the maneuver is decreasing in relation to the prediction hori-
zon for horizons up to 50 sampling times and increasing for horizons above it. This result means that, for
predictions horizons small than 50 sampling times, the benefits of increasing the predictability is greater
than the negative effects of reducing the command update rate and, for horizons grater than 50 sampling
times, the negative effects of reducing the command update rate is greater than the benefits of increasing
the predictability. Therefore, the configuration N = 50 was chosen for the tests presented in this section.

Figure 4.11: Minimum computation-time and mean square error of lateral displacement of trajectory from desired
path obtained to different prediction horizons, from the tuning of the MPC-based high-level DYC with roll control
enabled

The optimal coefficients obtained from the tuning procedure are shown in Table 4.6, the other param-
eters used in control design are shown in Table 4.5. An interesting detail of this result is that a better
performance is achieved when only the errors in the yaw rate and the roll angle are weighted in the opti-
mization problem to find the optimal control signals, i.e. when the MPC focuses the computational effort
to regulate only these states. This shows that the MPC’s ability to not necessarily regulate all states of the
prediction model is useful for lateral stability control.

The following sections present results from the tests performed to validate the MPC-based high-leve
DYCs. Further description of the test cases can be found in Section 3.3.1. In some scenarios, the results
obtained with MPC are presented in comparison with the results obtained with LQR (with roll control on).
For a fair comparison, the LQR coefficients are configured with the optimal values obtained from a tuning
procedure presented in Section 3.4.5, which is similar to that followed to define the MPC’s optimal con-
figuration. The computation time of the LQR-based algorithm is considered in MIL and HIL simulations
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Table 4.5: Configuration of the parameters used in the control algorithm of the MPC-based high-level DYC

Param. Value Param. Value Param. Value Param. Value
a 1.1m b 1.3m hs 0.55m ms 900Kg
Izz 2100Kgm2 Ixx 500Kgm2 Ixz 47.0Kgm2 cφf 1050Nms/rad
cφr 1050Nms/rad u 100km/h kφf 32795Nm/rad ∂δf/∂φ 0.1
kφr 32795Nm/rad ∂δr/∂φ -0.1 a 1.1 m b 1.3
Cαfl 45292µN/rad Cγfl −86340µN/radCαfr 45292µN/rad Cγfr −86340µN/rad
Cαrl 39018µN/rad Cγrl −61455µN/radCαrr 39018µN/rad Cγrr −61455µN/rad
Mth 200 Nm µ 0.75 βth 0.1rad Ton 0.08s
ψeth 0.1rad/s Toff 0.8s

Table 4.6: MPC settings obtained from the tuning procedure of MPC-based high-level DYCs

Coefficients of the MPC-based DYC with roll control on

Param. Value Param. Value Param. Value Param. Value

η 7050.9 N 50 ξ 6499.4 τ 11.2 ms

Qu 10−5 Qy

[
1.10 0

0 1.12

]
Cr


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


Coefficients of the MPC-based DYC with roll control off

Param. Value Param. Value Param. Value Param. Value

η 100000 N 50 ξ 8490 τ 10.6 ms

Qu 10−5 Qy 20000 Cr

[
0 0
0 1

]

equal to the sampling time of the HIL platform (0.8ms), which is the minimum computation time that can
be tested in HIL simulations.

4.1.2.1 MIL simulation of DLC at 80 km/h

The results from MIL simulation of DLC maneuver at 80 km/h are shown on Figures 4.12 and 4.13.
It is possible to observe that the extra yaw moment provided by the ESC remains null during the entire
maneuver, because the side- slip and the yaw rate errors do not satisfy the conditions for Esc activation. In
this way, the same result is obtained with roll control on or off, in which the driver is able to perform the
maneuver without ESC assistance. This is a desired performance because it indicates that the ESC does
not interfere unnecessarily in driving, even in the presence of an error between the target trajectory and that
traveled by the vehicle, since this error does not mean a risk of handling instability.
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Figure 4.12: Results from MIL simulation of DLC at 80km/h for MPC-based high-level DYC. Since the corrective
yaw moment given as control command remains equal to zero through the simulation time, this is the same result
obtained from the simulation of DLC at 80 km for a vehicle without ESC. The target yaw rates are computed by Eq.
2.21, which depends on the driver’s behavior in steering wheel control during the maneuver.

Figure 4.13: Vehicle trajectory from MIL simulation of DLC maneuver at 80 km/h for MPC-based high-level DYC.

4.1.2.2 MIL simulation of DLC at 100 km/h

The Figures 4.14 and 4.15 show the results obtained from the simulation of DLC at 100 km/h for ve-
hicles equiped with the MPC-based and the LQR-based high-level DYCs. From the vehicle’s trajectories
and the side-slip angles, one can see that the driver loses the control of the vehicle with ESC off. Whereas,
both ESCs succeed in preventing the steering instability, such that the driver does not lose the vehicle con-
trol with ESC assistance. However, only the MPC-based DYC allows the driver to perform this maneuver
without crossing the DLC boundaries of lateral displacement.

The benefits of using MPC for lateral stability can also be seen in the side-slip angles of vehicle body
and tires, in which these angles obtained with the MPC are lower than those obtained with the LQR.
Comparing the steering signal provided by the driver model, it is possible to observe that smaller oscillation
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Figure 4.14: Results from MIL simulation of DLC at 100km/h for a vehicle without ESC, with MPC-based high-level
DYC and with LQR-based high-level DYC. The target yaw rates are computed by Eq. 2.21, which depends on the
driver’s behavior in steering wheel control during the maneuver.

Figure 4.15: Vehicle trajectory from MIL simulation of DLC maneuver at 100 km/h for vehicles without ESC, with
MPC-based high-level DYC and with LQR-based high-level DYC.

amplitudes are obtained with the MPC, which indicates that less effort is required from the driver to perform
the maneuver with the vehicle equipped with the MPC-based ESC. And comparing the corrective yaw
moment, it can be observed that the LQR-based ESC switches on/off more times during the maneuver
than MPC-based ESC, which indicates that the MPC is more efficient in actuation, i.e. more stability
performance is achieved with less actuation.

The DLC at 100 km/h also was simulated for the MPC-based ESC with roll control disabled. The
Fig. 4.16 shows the trajectory obtained from the simulation of DLC at 100km/h performed for vehicles
with proposed MPC-based high-level DYC with roll control on and off. Comparing the results, a smaller
trajectory error is obtained with the scroll control off This is an interesting result, as it indicates that, in this
scenario, the benefits of the higher command update rate obtained when using a simpler prediction model
are greater than the benefits of a more accurate prediction obtained when using a more representative
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model. However, it is important to note that both controllers are efficient in improving stability so that the
maneuver is successfully performed.

Figure 4.16: Vehicle trajectory from MIL simulation of DLC maneuver at 100 km/h for vehicles with MPC-based
high-level DYC with roll control on and off.

4.1.2.3 MIL simulation of DLC at 120 km/h

The DLC at 120km/h was simulated to test the ESC on control of the vehicle at a higher speed than the
trim point of the prediction model. The Figures 4.17 and 4.18 show the results obtained for vehicles without
ESC assistance, and with LQR and MPC-based ESC. From the trajectory shown in Fig. 4.18, obtained for
the vehicle without ESC, one can see that the driver cannot perform the double lane changing at 120 km/h
without losing the vehicle control. The trajectories obtained with LQR and MPC-based ESCs have different
performances, but with both controllers, the results show that the driver does not lose vehicle control. The
vehicle with LQR-based ESC exhibits a higher trajecotory error, whereas the vehicle with MPC-based
ESC briefly crosses the bounds of DLC once at the exit of the second lane changing. In the results shown
4.17, the MPC-based ESC exhibits a smoother actuation on yaw moment input, and is still more efficient
in reducing of side-slip and roll angles error. With the MPC-base ESC, the side slip and roll angles of the
vehicle body and the tire slip angles remain smaller than 5 degrees, which means that the effectiveness of
the stability control keeps the vehicle states in the trust region of the vehicle-prediction-linear model.

The DLC at 120 km/h also was simulated for the MPC-based ESC with roll control disabled. Fig.
4.19 shows the trajectory obtained from this simulation, where one can see the benefits of inclusion of roll
control, because the trajectory error obtained without roll control on at the exit of the second lane changing
is smaller than the obtained with roll control off. And the Fig. 4.20 shows the results of vehicle dynamics
obtained from this simulation, in which the vehicle with MPC-based high-level DYC with roll control off
exhibits a higher roll rate, which means a higher risk of rollover and lower passenger conform. In addition
to the extra roll rate, higher yaw rate, side-slipping, and tire-slipping are obtained for ESC with roll control
off, which means a stability performance lower than the obtained with roll control on. And comparing steer
angle signal provided by the driver model model, the amplitudes obtained for ESC with roll control off is
greater than those obtained with roll control on, which means that without roll control the driver needs to
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Figure 4.17: Results from MIL simulation of DLC at 120km/h for vehicles without ESC, with MPC-based high-level
DYC and with LQR-based high-level DYC. The target yaw rates are computed by Eq. 2.21, which depends on the
driver’s behavior in steering wheel control during the maneuver.

Figure 4.18: Vehicle trajectory from MIL simulation of DLC maneuver at 120 km/h for vehicles without ESC, with
MPC-based ESC and with LQR-based ESC.

make an extra effort to maneuver. Based in these results, we can say that, in this scenario, the stability
performance is greatly improved by the inclusion of roll control.

The increased influence of roll motion on the vehicle at high speeds is theatrically expected, because,
at higher speeds, the roll rate has a stronger influence on yaw rate and tire dynamics. After all, it affects
the vertical load transference between tires, which changes the lateral force acting on tires.

4.1.2.4 MIL simulation of DLC at 110 km/h with of model’s uncertainties

The effectiveness of the proposed controller on a vehicle whose response is different from that predicted
by the linear model also is evaluated. MIL simulation of DLC at 110km/h was performed for the MPC-
based high-level DYC with roll control on. In addition to the speed higher than the trim point of the
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Figure 4.19: Vehicle trajectory from MIL simulation of DLC maneuver at 120 km/h for vehicles with MPC-based
high-level DYC with and with roll control on and off.

Figure 4.20: Results from MIL simulation of DLC at 120km/h for vehicles with MPC-based high-level DYC with
roll control on and off. The target yaw rates are computed by Eq. 2.21, which depends on the driver’s behavior in
steering wheel control during the maneuver.

linear model, the vehicle simulated in this scenario has mass, center of mass position and tire-road friction
different from the values used in configuration of the control algorithms. Parameters used in this simulation
are shown in Table 4.2, parameters not shown in this table are equal to parameters shown in Table 4.2. The
Fig. 4.21 shows results from this simulation, in which the side-slip angle of vehicle body, the roll rate,
and the errors of trajectory and roll rate obtained in presence of model uncertainties is higher than those
obtained for a vehicle whose parameters match the values used in the prediction model. This results
indicate a performance decreasing in presence of model uncertainties, however the ESC remains effective
to prevent the driver from losing vehicle control.
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Figure 4.21: Results from MIL simulation of DLC at 110km/h for MPC-based high-level DYC on control of a vehicle
model whose parameters are equal to the nominal values, and for MPC-based high-level DYC on control of a vehicle
whose CG position, mass and tire-road friction are different from the nominal value used in control design.

4.1.2.5 HIL simulation of DLC at 110 km/h

The Figure 4.22 shows the results obtained from MIL and HIL simulation of DLC at 110 Km/h for
the MPC-based high-level DYC with roll control on. In HIL simulation, in addition to the disturbances in
the acquisition of feedback signals read by the controller through analog inputs, it also tested the control
in presence of disturbances in vehicle response with respect to prediction model, due to the difference
between simulated vehicle speed and the constant speed assumed by the prediction model.

Figure 4.22: Results from HIL and MIL simulation of DLC at 110 km/h for MPC-based high-level DYC designed
based on a linear model that considers the roll motion influence on vehicle motion. The target yaw rates are computed
by Eq. 2.21, which depends on the driver’s behavior in steering wheel control during the maneuver.

Comparing the results in Figure 4.22 from MIL and HIL simulations, there is a difference in the cor-
rective yaw moments (i.e. control signals) that can be understood as consequence of the acquisition dis-
turbances on the control activation, when the state errors are close to the decision threshold, which causes
the ESC to activate at briefly different times in the MIL and HIL simulations. This difference in command
generates a lag between the oscillations of the states and the trajectory observed in MIL and HIL. However,
observing the amplitude of the oscillations of yaw and roll rates, side-slip angle and the trajectory during
the maneuver, one can see that performance of implementation tested in HIL is similar to that predicted in
MIL.
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4.2 RESULTS FOR LOW-LEVEL DYCS

After the development of high-level controllers, which do not consider the effects of the actuation
system on vehicle dynamics, the next stage of this research was the development of low-level controllers,
which instead of calculating the corrective yaw moment, calculate the corrective torque transferred to
each wheels. In this scenario, although the controllers are derived from linearized models for constant
longitudinal speed, the non-linear vehicle model used in MIL and HIL simulations includes the longitudinal
movement of the vehicle in response to the effects of the ESC’s actuation on rotation of the wheels. The
inputs of the vehicle model are the steering wheel angle provided by the intelligent driver model and
the corrective torque transferred to the wheels. The next sections present the results of the simulations
performed to evaluate the low-level DYCs developed in this research.

4.2.1 LQR-based low-level DYC

The first low-level ESC developed in this research is the LQR-based low-level DYC, presented in
Section 3.2, which employees the discrete LQR for continuous plant to compute the corrective braking
torque transferred to each wheel. In this system, the LQR is defined based on the linear model for ESCs
with roll control on, presented in Section 3.4.1. The sampling time and weighting matrices were tuned
following the procedure described in Section 3.4.5. The controller configuration used in the tests is shown
in Table 4.7 and Table 4.8. Since the measured calculation time is shorter than the minimum sampling time
of the HIL platform, the benefits of increasing the command update rate when disabling the roll control
could not be observed. Therefore, only the LQR-based low-level DYC with roll control on was evaluated in
this research. The results from this evaluation is presented in the following sections (Section 3.3.1 presents
further description of the test cases).

Table 4.7: Configuration of the LQR-based low-level design.

Param. Value Param. Value Param. Value Param. Value

Tth 200 Nm Ton 0.08s Q


0 0 0 0
0 337.9 0 0
0 0 34.2 0
0 0 0 9636.7


ψeth 0.1 rad/s Toff 0.8s R 10−5I4×4

Table 4.8: Parameters of the linear model used in LQR-based low-level design.

Param. Value Param. Value Param. Value Param. Value
a 1.1m b 1.3m hs 0.55m ms 900Kg
Izz 2100Kgm2 Ixx 500Kgm2 Ixz 47.0Kgm2 cφf 1050Nms/rad
cφr 1050Nms/rad u 100km/h kφf 32795Nm/rad kφr 32795Nm/rad
∂δf/∂φ 0.1 ∂δr/∂φ -0.1 Cαfl 45292µN/rad Cγfl −86340µN/rad
Cαfr 45292µN/rad Cγfr −86340µN/radCαrl 39018µN/rad Cγrl −61455µN/rad
Cαrr 39018µN/rad Cγrr −61455µN/rad βth 0.1 rad µ 0.75 s
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4.2.1.1 MIL simulations of DLC with initial speed of 80 km/h

The results obtained from simulation of DLC maneuver at 80 km/h are shown in Figures 4.24 e 4.23.
From these results, one can see that the driver does not lose vehicle control in this maneuver, even without
ESC assistance. The benefits of the ESC can be seen by comparing the trajectories presented in Figure 4.23,
in which the vehicle without ESC crosses the DLC boundaries of lateral displacement at the exit of the last
lane change, whereas the vehicle with ESC performs this maneuver successfully. The effectiveness of the
LQR-based low-level DYC in improving the lateral stability can also be seen in the yaw rate presented
in Figure 4.24, in which error amplitudes obtained with LQR-based ESC are smaller than those obtained
without it. In addition to improve the lateral performance, the proposed system reduces the roll rate, which
means an increase in passenger comfort, and it reduces the amplitude of the steering angle provided by
the driver, which means an improvement in maneuverability, since less effort is required from the driver to
perform the same maneuver. The efficiency of the ESC activation criterion to avoid unnecessary actuation
is noted by checking that the corrective torque transferred to the wheels remains equal to zero most of the
simulation time, even when there is an error in controlled states, since this error does not mean an risk of
lateral destabilization.

Figure 4.23: Trajectory obtained from simulation of DLC with initial speed of 80 km/h for vehicles with LQR-based
low-level ESC and without ESC.

4.2.1.2 MIL simulations of DLC with an initial speed of 100km/h

Figures 4.25 and 4.26 show the result for DLC with initial speed of 100km/h. From the results for
vehicle without ESC, one can see that driver loses the vehicle control. This steering destabilization occurs
because the lateral slip reaches values greater than 10 degrees, condition in which the forces generated on
tires become saturated, hence the yaw rate does not respond to the steering angle. Whereas, from results
for vehicle LQR-based DYC, the maneuver is performed almost successfully, such that the vehicle crosses
once the limits of lateral displacement. The ESC actuation on braking torque is efficient in keeping the side-
slip angle small than 5 degrees, so the forces on tires do not saturate, and therefore the yaw rate responds
to the steering wheel so that the driver is able to control the vehicle motion. The braking torque transferred
to the wheels remains equal to zero most of the simulation time, even when state errors are not equal to
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Figure 4.24: Results from simulation of DLC with initial speed of 80 km/h for vehicles with LQR-based low-level
ESC and without ESC

zero. This shows the effectiveness of the ESC activation/deactivation criterion to avoid unnecessary action
when the states errors do not mean a risk of the handling destabilization.

Figure 4.25: Vehicle trajectory from simulation of DLC with initial speed 100km/h for vehicles with LQR-based
low-level ESC and without ESC.

Comparing the results obtained for the DLC maneuver with an initial speed of 80 km/h and 100 km/h,
the control is activated more times at 100 km/h than at 80 km/h. This is an expected result because the
instability risk is higher at higher speeds, i.e. more ESC assistance is required to keep the handling stable
at higher speed.

4.2.1.3 MIL simulation of DLC with an initial speed of 120km/h

The Figure 4.27 and the Figure 4.28 show the results from the simulations of the DLC with initial speed
of 120 km/h. At this speed, the ESC is not efficient in allowing the maneuver to be performed without the
vehicle exceeding the limits of lateral displacement. Even so, the stability performance is still improved,
since the ESC prevents the driver from completely losing the vehicle control. In this scenario, the braking
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Figure 4.26: Results from simulation of DLC with initial speed of 100km/h for vehicles with LQR-based low-level
ESC and without ESC.

of the wheels prevents the side-slip angle from increasing until the forces generated in the tires become
saturated, however it does not prevent them from leaving the linear operating regime, so that the movement
of the vehicle still responds to the steering wheel commands, but not from usual way that the driver is able
to drive.

Figure 4.27: Vehicle trajectory from simulation of DLC at 120km/h for vehicles with LQR-based low-level ESC and
without ESC.

As in the results obtained for lower speeds, it is possible to observe the effects of the ESC activation
criterion on the brake control. Whenever the ESC is activated, the commands reach reach the maximum
available braking torque, since the LQR does not consider this limitation, the torque transferred to the
wheels is less than that calculated by the LQR. This demonstrates the potential for obtaining better results
with controllers capable of handling restrictions imposed on the control signal.
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Figure 4.28: Results from simulation of DLC at 120km/h for vehicles with LQR-based low-level ESC and without
ESC.

4.2.1.4 MIL simulation DLC with an initial speed of 120km/h and in presence of mode’s un-
certainties

Figures 4.29 and 4.30 show results of the simulations of DLC with initial speed of 120km/h performed
to test the LQR-based low-level DYC on control of a vehicle model whose parameters are different from
the values assumed in control design.

Figure 4.29: Trajectory from simulation of DLC with initial 120km/h performed to test the LQR-based low-level
DYC on control of vehicle whose parameters have nominal values used in control design, and on control of a ve-
hicle whose mass, position of the center of mass, and tire-road friction coefficient are different from the nominal
parameters.

Comparing trajectories obtained for vehicles with nominal and non-nominal parameters, the trajectory
obtained for the vehicle with non-nominal parameters is closer to the ideal. This is occurs because the state
errors in the first curve is greater than those obtained for the vehicle with nominal parameters, which leads
to earlier ESC activation, which improves performance in the following curves. Although a performance
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Figure 4.30: Results from simulation of DLC with initial 120km/h performed to test the LQR-based low-level DYC
on control of vehicle whose parameters have the nominal values used in control design, and on control of a ve-
hicle whose mass, position of the center of mass, and tire-road friction coefficient are different from the nominal
parameters.

was observed in presence of model uncertainties, this sensitivity of the controller to the effects of plant and
model mismatch is an undesirable characteristic.

4.2.2 MPC-Based low-level DYC

The ultimate system developed in this research is the MPC-based low-level DYC, which employees
the MPC to compute the corrective torque transferred to the wheels. To explore the MPC capability to
handle with constraints of the control signal, it is assumed that a differential braking system is used for
actuation, such that the torque transferred to each wheel is limited to negative higher than a threshold. And
to investigate the benefits of a shorter calculation time versus the benefits of a more accurate prediction,
two versions of this system were implemented based in different prediction models: the linear models for
low-level with roll on and off. The model with roll control off includes within the states only the side-slip
angle and the yaw rate, so it does not take into account the effects of the roll motion on vehicle motion,
however it leads to a simpler QP. Whereas, the model with roll control on includes within the states the
side-slip angle, the yaw rate, the roll rate and the roll angle, so it gives a more accurate prediction, on the
other hand, it takes a longer calculation time, i.e. it leads to lower command update rate. Table 4.1 shows
the nominal parameters used in MIL and HIL simulations performed to evaluate these systems.

The tuning of the MPC coefficients Qu, Qy, η, ξ, and N was performed as described in Section 3.4.5.
Figure 4.31 presents the best calculation time achieved with the ESCs running on ARM Cortex A8 and the
mean square error of lateral displacement, for different prediction horizons. As expected, the increase in
the prediction horizon leads to higher calculation times, because it makes the QP computationally more
complex. However, the error in the lateral displacement is decreasing for horizons up to 50 sampling times,
which means that, for this range, the benefits of extending the prediction capacity are greater than the
negative effects of decreasing the command update rate. A interesting feature is the fact that, for horizons
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up to 50 sampling times, the calculation time increases linearly, whereas the mean square error of lateral
displacement does not vary that much, because this result shows the possibility to save the processing time
without affecting significantly the ESC performance. For horizons longer than 50 sampling times, the
negative effects of reducing the command update rate outweigh the benefits of extending the prediction
capacity, such that the mean square error of lateral displacement is increasing in relation to the prediction
horizon. To test the controller with its best configuration, the prediction horizon is configured equal to
50 sampling times. Table 4.10 shows the coefficients obtained as a result of this tuning procedure, the
other parameters used in control design are shown in Table 4.9. The following sections presents the results
obtained from simulations. Further description of the test cases are present in Section 3.3.1.

Figure 4.31: Minimum computation-time and mean square error of lateral displacement of trajectory from desired
path obtained to different prediction horizons, from the tuning of the MPC-based high-level DYC with roll control
enabled

Table 4.9: Configuration of the parameters used in the control algorithm of the MPC-based low-level DYC

Param. Value Param. Value Param. Value Param. Value
a 1.1m b 1.3m hs 0.55m ms 900Kg
Izz 2100Kgm2 Ixx 500Kgm2 Ixz 47.0Kgm2 cφf 1050Nms/rad
cφr 1050Nms/rad u 100km/h kφf 32795Nm/rad ∂δf/∂φ 0.1
kφr 32795Nm/rad ∂δr/∂φ -0.1 a 1.1 m b 1.3
Cαfl 45292µN/rad Cγfl −86340µN/radCαfr 45292µN/rad Cγfr −86340µN/rad
Cαrl 39018µN/rad Cγrl −61455µN/radCαrr 39018µN/rad Cγrr −61455µN/rad
Mth 200 Nm µ 0.75 βth 0.1rad Ton 0.08s
ψeth 0.1rad/s Toff 0.8s

4.2.2.1 MIL simulation of DLC with an initial speed of 80 km/h

The results obtained from the simulation of DLC maneuver with initial speed of 80km/h are shown in
Figure 4.32 and Figure 4.33. The results for the vehicle without ESC confirm that the driver without ESC
assistance can not perform this maneuver successfully without exceeding the limits of lateral displacement
error. Even so, the steering remains stable, such that the vehicle returns to a straight movement after the
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Table 4.10: MPC settings obtained from the tuning procedure of MPC-based low-level DYCs

Coefficients of the MPC-based DYC with roll control on

Param. Value Param. Value Param. Value Param. Value

η 6717.2 N 50 ξ 680.1 τ 14.4 ms

Qu 10−5I4 Qy

[
325.2 0

0 1742.2

]
Cr


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


Coefficients of the MPC-based DYC with roll control off

Param. Value Param. Value Param. Value Param. Value

η 6632.0 N 50 ξ 583.7 τ 13.6 ms

Qu 10−5 Qy 1999.6 Cr

[
0 0
0 1

]

lane changes. Comparing the results with and without ESC, one can see that the proposed controller with
roll control on or off is efficient to enable the maneuver to be successfully performed. In this scenario, the
lateral performance is obtained by correcting mainly the yaw rate, which can be seen by checking that the
amplitude of the side-slip angle through obtained without ESC is similar to that obtained with both ESCs,
whereas the yaw rate error is reduced by ESC actuation. In addition to improve maneuverability, the ESC
enhances the passenger comfort by reducing the roll rate.

Figure 4.32: Vehicle trajectories from simulation of DLC with an initial speed of 80km/h performed by vehicle
without ESC; with MPC-based low-level DYC with roll control on; and with MPC-based low-level DYC with roll
control off.

Regarding energy savings and avoiding unnecessary action, it is possible to observe the benefits of the
ESC actuation criteria in the Figure 4.33, in which the corrective braking torque transferred to the wheels
remains equal to zero most of the simulation time, even at intervals where the state errors are not zero.
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Figure 4.33: Results from simulation of DLC with an initial speed of 80km/h performed by vehicles without ESC;
vehicle with MPC-based low-level DYC with roll control on; and vehicle with MPC-based low-level DYC with roll
control off.

4.2.2.2 MIL simulation of DLC with an initial speed of 100 km/h

The results obtained from the simulation of DLC maneuver with initial speed of 100 km/h are shown
in Figure 4.34 and Figure 4.35. In results obtained for vehicle without ESC assistance, it is possible to
see that the driver loses the vehicle control. This destabilization happens because the forces generate on
tires saturate at high side-slip angles (greater than 10 degrees) and thus the vehicle movement becomes non
responsive to the steering wheel command. Besides the lateral displacement due to the side-slipping, the
vehicle goes off the desired path due to the yaw error that causes the vehicle to not be properly oriented to
follow the desired direction of motion.

Figure 4.34: Vehicle trajectories from simulation of DLC with an initial speed of 100km/h performed by vehicle
without ESC; with MPC-based low-level DYC with roll control on; and with MPC-based low-level DYC with roll
control off.

From results for vehicle with ESCs, one can see that the ESCs with roll control on and off are efficient
to avoid the destabilization with similar performance, in which the maneuver is performed successfully
without exceeding the limits of lateral displacement error. This improvement in stability performance is
obtained by controlling the side-slip and yaw rate. In addition to avoid steering instability, the ESCs reduce
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Figure 4.35: Results from simulation of DLC with an initial speed of 100km/h performed by vehicles without ESC;
vehicle with MPC-based low-level DYC with roll control on; and vehicle with MPC-based low-level DYC with roll
control off.

the roll rate, which contributes to increasing the passenger comfort. The lateral displacement from the ideal
path obtained with the roll control off is smaller than that obtained with roll control on. The reason for that
is the fact that the corrective braking torques reduces the rolling movement and its effects on the vehicle
response. Therefore, in this scenario, it is more advantageous to reduce the calculation time, by using
a prediction model that does not include the roll motion, than to take into account the roll mition in the
predtion model.

Comparing the corrective braking torques obtained from simulations with initial speeds of 80 km/h
(Figure 4.33) and 100 km/h (Figure 4.35), the time in which the control signals are different from zero is
longer in the maneuver with initial speed of 100 km/h. This is a expected result because the instability risk
increases with the speed, so the state errors met the ESC activation condition more times at 100km/h than
at 80 km/h. Even so, there is in Figure 4.35 intervals in which the corrective braking torques remains equal
to zero while the state error are not equal to zero, which shows that the ESC activation criterion is efficient
to avoid unnecessary actuation when states errors do not mean a instability risk.

4.2.2.3 MIL simulation of DLC with an initial speed of 120 km/h

The results obtained from simulations of DLC maneuver with initial speed of 120 km/h are shown in
Figure 4.36 and Figure 4.37. In results for the vehicle without ESC, the driver loses the vehicle control,
which was expected since at 100 km/h the driver already loses control of the steering. In the results
obtained for vehicle with ESCs, both controllers (with roll control on and off) are efficient to avoid the
steering destabilization, which can be checked in Figure 4.36, in which the vehicle with any of the ESCs
returns to a straight movement after the lane changes. However, none of the ESCs enable the maneuver to
be performed without exceeding the limits of lateral displacement error.

Comparing the paths shown in Figure 4.36, the lateral displacement from the ideal path obtained with
the roll control enabled is better than that obtained with the roll control enabled. This means that, in
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Figure 4.36: Vehicle trajectories from simulation of DLC with an initial speed of 120km/h performed by vehicle
without ESC; with MPC-based low-level DYC with roll control on; and with MPC-based low-level DYC with roll
control off.

Figure 4.37: Results from simulation of DLC with an initial speed of 120km/h performed by vehicles without ESC;
vehicle with MPC-based low-level DYC with roll control on; and vehicle with MPC-based low-level DYC with roll
control off.

this maneuver, it is more advantageous to obtain a more accurate prediction from a model that takes into
account the effects of rolling motion, than to achieve a higher update rate by removing the effects of rolling
motion from the prediction model. This is different from what is observed in the maneuver with initial
speed of 100 km/h (Figure 4.34, in which a better performance is obtained without roll control. This is
justified because at higher speeds the roll motion has more influence on the vehicle’s response.

4.2.2.4 MIL simulation of DLC with an initial speed of 120 km/h in presence of model uncer-
tainties

The Figures 4.38 and 4.39 show the results from simulations of DLC, with initial speed of 120 km/h,
for a vehicle with parameters equal to the nominal values assumed in controller configuration, versus the
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results obtained for a vehicle whose mass, center of mass, tire-road friction coefficient are different from
the nominal values. In these scenario, the trajectory error is greater in the presence of model uncertainties,
although the amplitudes of the states errors are similar. This loss of performance is an issue in the the
calculation of the desired yaw rate, which depends on the distance from wheels to the center of mass,
such that the uncertainty generates an error in the reference yaw rate. Even so, these results attest to some
robustness to model uncertainties, since the proposed ESC maintains its effectiveness in preventing the
driver from losing control of the vehicle.

Figure 4.38: Trajectories obtained from MIL simulations of DLC maneuver with initial speed of 120 km/h for ESC
(MPC-based low-level DYC with roll control on) on control of a vehicle whose parameter are equal to the nominal
values assumed in configuration of the control algorithm, versus the results obtained for a vehicle whose mass,
longitudinal position of the center of mass, tire-road friction coefficient are different from the nominal values.

Figure 4.39: Results obtained from MIL simulations of DLC maneuver with initial speed of 120 km/h for ESC (MPC-
based low-level DYC with roll control on) on control of a vehicle whose parameter are equal to the nominal values
assumed in configuration of the control algorithm, versus the results obtained for a vehicle whose mass, longitudinal
position of the center of mass, tire-road friction coefficient are different from the nominal values
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4.2.2.5 HIL simulation of DLC with an initial speed of 120 km/h in presence of model uncer-
tainties

HIL simulations of DLC with initial speed of 120 km/h were performed to test the implementation
of MPC-based low-level DYC with roll control on, running in the ARM CORTEX A8, on control of a
vehicle with mass, center of mass, and road-tire friction coefficients different from the nominal values
assumed in configuration of the controller. So, this scenario tests the ESC robustness to disturbances in
vehicle response with respect to the prediction, in addition to errors in acquisition of the input signals (i.e.
longitudinal and lateral speeds, yaw rate, roll rate, roll angle and steering angle).

The results obtained from HIL versus those obtained from MIL simulation of the same scenario are
shown in Figure 4.40 and Figure 4.41, in which the lateral displacement error, side-slip angle, roll rate and
steering angle obtained from HIL and MIL are similar.

Figure 4.40: Trajectories obtained from MIL and HIL simulations of the DLC with initial speed of 120 km/h, per-
formed to evaluate the MPC-based low-level DYC (with roll control enabled) on control of a vehicle whose mass,
position of the center of mass, and the tire-road friction coefficient are different from the nominal values used in the
prediction model.

Figure 4.41: Results obtained from MIL and HIL simulations of the DLC with initial speed of 120 km/h, performed
to evaluate the MPC-based low-level DYC (with roll control enabled) on control of a vehicle whose mass, position of
the center of mass, and the tire-road friction coefficient are different from the nominal values used in the prediction
model.
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The effects of errors in acquisition of the input signals can be seen in the yaw rate and the corrective
braking torques. In the yaw rate, one can see that the desired values for MIL and HIL simulation are not
the same, however the yaw rate error is similar. The reason for that is the sensitivity of the calculation
of the desired yaw rate (Equation 2.21) to errors in acquisition of the longitudinal speed and the steering
angle. And the the differences in the corrective braking torque occurs because the errors in acquisition of
lateral speed, longitudinal speed and yaw rate affects the time in which the activation/deactivation criteria is
met. Even so, these results attest some robustness of proposed ESC, since the lateral stability improvement
obtained in MIL and HIL are similar and sufficient to prevent the driver from losing the steering control.

4.2.2.6 MPC effectiveness compared to LRQ

The figures 4.42 and 4.43 show the vehicle trajectories obtained from simulation of DLC maneuvers
with initial speeds of 100 km/h and 120 km/h performed to evaluate the LQR and MPC-based low-level
DYCs. As previously shown in the figures 4.25 and 4.35, these are maneuvers in which the driver loses
the control of vehicle without ESC assistance, and both ESCs are effective in avoiding this instability. The
commands update rate achieved with LQR is eighteen times greater than the achieved with MPC. Even so,
the MPC performance is better in both scenarios, in which the lateral displacement errors obtained with
MPC are smaller than those obtained with LQR. This result means that it is advantageous to spend more
processing time running the MPC algorithm, because the benefits of the MPC’s capabilities overcome the
negative effects of reducing the commands update rate.

Figure 4.42: Trajectories obtained from MIL simulations of the DLC with an initial speed of 100 km/h, performed
to evaluate the LQR and the MPC-based low-level DYC, with roll control enabled.

The performance advantage of the MPC over the LQR is more notable in the results obtained for DLC
with initial speed of 120 km/h. This is a more challenging maneuver for lateral stability control, in which
the side-slip angle, the yaw rate error and the roll rate are greater. As in LQR, the control signals are
obtained from a weighted sum of the states errors, without taking into account any restrictions, the braking
limits act as sources of disturbances between the vehicle’s response and that expected by the controller. So
that at higher speeds, due to greater errors in the states, the LQR commands tend to exceed the saturation
limits more times, making the ESC to face more model uncertainties. Whereas, the MPC-based ESC faces
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Figure 4.43: Trajectories obtained from MIL simulations of the DLC with an initial speed of 120 km/h, performed
to evaluate the LQR and the MPC-based low-level DYC, with roll control enabled.

less disturbances in vehicle response because it only provides feasible commands and, in addition to that,
it is more robust to these uncertainties than LQR, as can be seen by comparing the results presented in
Sections 4.2.1.4 and 4.2.2.4.

4.2.2.7 MIL simulations with side-slip angle constrained

The optimal configuration obtained from the tuning procedure (Table 4.10) do not include the side-slip
angle within the regulated states. As the increase of the side-slip angle lead to destabilization, efforts have
been made to propose a version of the low-level controller that uses the MPC’s ability to limit states to
restrict the absolute value of the side-slip angle below 5 degrees. Simulations with different maneuvers, at
different speeds, and different tire-road friction coefficient was performed to search for a scenario where
the MPC-based ESCs is effective to avoid the steering instability and the side-slip angle reaches the 5
degrees. The results from these simulations show that whenever the ESC succeeds to avoid the steering
destabilization, the side-slip angle remains below this limit. This threshold is only exceeded in very ag-
gressive conditions, 200 km/h with 0.1 of friction coefficient, in which the ESC is not able to maintain
stability. Then, to observe the controller’s effectiveness in restricting the side-slip angle, the constraint was
reduced to a value lower than the maximum side-slip angle obtained for scenarios in which the ESC is
effective to keep the steering stable. The result from this test is that when enabling the side-slip restriction,
the controller fails because there is no solution for the QP that satisfies the braking and sliding limits over
the prediction horizon.
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5 CONCLUSIONS

After all the presented results, it is possible to conclude that the objectives were achieved: MPC based
high-level and low-level DYCs were developed; results from MIL simulations show that these systems are
effective to avoid steering instability; the control algorithms was tested in HIL simulations and the results
show that these implementations are effective in improving the lateral stability in real-time application.
The robustness of the proposed ESCs to model uncertainties were evaluated in MIL simulations; LQR-
based ESCs were developed, and the results obtained with MPC were compared with those obtained with
LQR; the control algorithms were designed using linear models with and without roll-degree-of-freedom;
simulations were performed to compare their performances and to understand the effects of including the
roll-degree-of-freedom.

In MIL simulation, all proposed ESCs have proven their effectiveness in preventing steering destabi-
lization in DLC maneuver at different speeds. And the results from HIL simulations shows that the control
algorithms are computationally efficient, such that their implementation in low cost hardware achieve up-
date rates of the control signals high enough to keep the steering stable.

Higher stability performances were obtained with ESCs based on MPC than with those based on LQR,
which means that it is advantageous to spend more processing time running the MPC algorithm to explore
the benefits of its ability to predict the destabilization and handle constraints of control signals, even if it
means longer intervals between periodic command updates. Besides that, MPC-based controllers showed
more robustness to disturbances in the vehicle’s response in relation to the model used in control design, due
to linearization errors, variation between plant coefficients and nominal values assumed by the controller,
and errors in the acquisition of feedback signals.

The development of MPC-based ESCs using different linear models was performed to compare the
benefits of a more accurate prediction, obtained when using a model that considers the roll motion, with
the advantages of achieving a shorter calculation time, when using a simpler model that includes only the
yaw rate and the side-slip angle within the states.

For high-level DYC, the advantages of more accurate prediction outweigh the effects of increased
calculation time, so that the higher the speed, the greater the performance improvement obtained when
taking into account the roll motion on prediction. Which makes sense, since the roll influence on vehicle
movement increases with speed.

From results for MPC-based low-level DYC, it was observed that as the actuation through braking
system slows down the vehicle, the ESC reduces the roll influence on vehicle’s movement. In the DLC
with an initial speed of 100 km/h, a better performance was achieved using the prediction model that
includes only the yaw rate and the slip angle. This means that, in this scenario, it is better to use the
processing power to update the control signals more quickly than to calculate the roll effects on movement.
In other hand, in the DLC with initial speed of 120 km/h, a better performance was obtained using the
linear model with roll-degree-of-freedom. This indicates that, at higher speeds, the error of neglecting the
roll motion is greater, such that it is advantageous to use the processing time to consider the roll motion
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in prediction, even at the cost of reducing the update rate of the control signals. Since the risk of steering
destabilization is greater at higher speeds, the linear model that includes the roll movement is a better
choice for the MPC-based DYCs.

Regarding the relationship between the calculation time and the prediction horizon, an interesting result
observed in the tuning of the MPC-based low-level DYC is that, for prediction horizons less than 50
samples, the reduction of the prediction horizon improves the calculation time without greatly affecting the
stability performance. This characteristic can be useful in ECUs that implement other features besides the
lateral stability control

5.1 RESEARCH LIMITATIONS

The simulation environment developed in this research includes an intelligent driver model to calculate
the steering wheel angles over the maneuver. Unlike what is expected from a human driver, the driver
simulated by this model does not braking or accelerating during the maneuver. So, the observed results
allow analysis of the lateral stability performance, but they may be very representative of what would be
observed in a real vehicle. Another limitation of this driver model is that it supports only desired trajectories
in which the lateral position is a function of the longitudinal position, i.e. for each longitudinal position
there is only one desired lateral position. Because of this, some maneuvers useful for lateral stability
analysis were not tested in this research. Such that the proposed systems were tuned and tested only for
the DLC maneuver.

Another difference between the simulation environment and the real vehicle is in the interface between
the controller and the acquisition and actuation systems. In real vehicles, the ECUs access the input signals
and supplies the control signals through vehicle communication buses, in which there is a latency and a
limit for the update rate of these signals. In the HIL platform used in this research, the controller access
input signals through analog inputs and provides the control signals trough ethernet connection. Therefore,
the characteristics of the vehicle communication bus is not being considered.

The processing power of the computer used on the HIL platform imposes a limitation on the sampling
rate of the real-time simulation of the vehicle movement. The sampling achieved by the HIL platform was
equal to 0.8 ms. That is why the controllers based on LQR, even reaching smaller calculation times, were
tested with a sampling time of 0.8 ms. So, the performance comparisons between LQR and MPC based
ESCs are not entirely fair, because only MPC-based controllers could be tested with the highest command
update rate achieved by implementing hardware ESC.

5.2 FURTHER RESEARCH

This research shows the potential of the proposed ESC algorithms to be applied in real time application,
the benefits of using the MPC methods taking into account the calculation time, and the effects of using
different prediction models (with and without roll motion). The next steps should be towards validating the
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algorithms in a real vehicle. For that, the algorithms must be implemented in a hardware that follows the
standards of automotive ECUs, in which the interface with the acquisition and actuation systems is made
by vehicular communication networks.

Before testing the controllers in a real vehicle, further testing should be done in simulation environ-
ments that best represent the real scenario. A possibility of improvement for the simulation environment
developed in this research is the inclusion of a driver model that provides other commands besides steering
steering, and supports maneuvers in which the lateral position does not need to be a function of the longi-
tudinal position. Another improvement opportunity for the simulation environment is the inclusion of the
communication model between the controller and the acquisition and actuation systems, which emulates
the vehicular communication network.

Another issue to consider is that in a real vehicle there is competition for access to the braking system,
for example, in a critical maneuver, the conditions that activate ABS or ESC can be satisfied simultaneously.
So a suggested work is the development of a strategy to integrate these automotive control systems.
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