
Conformal solitons to the mean

curvature flow: minimal submanifolds

and stability

George Demetrios Fernandes Leitão Kiametis

Advisor: Dr. João Paulo

dos Santos

Department of Mathematics

University of Brasília

Dissertation submitted in partial fulfillment of the requirements for the degree

of

Master/Doctor in Mathematics

October 2020



Universidade   de   Brasília  

Instituto   de   Ciências   Exatas  

Departamento   de   Matemática  

 
 

Conformal   solitons   to   the   mean   curvature   flow,  
minimal   submanifolds   and   stability  

 
por  

 

George   Demetrios   Fernandes   Leitão   Kiametis*  
 

 DiVVeUWaomR  aSUeVenWada  aR  DeSaUWamenWR  de  MaWemiWica  da         

UniYeUVidade  de  BUaVtlia,  cRmR  SaUWe  dRV  UeTXiViWRV  SaUa         

RbWenomR   dR   gUaX   de  

 
MESTRE   EM   MATEMÁTICA  

 
 

Brasília,   17   de   setembro   de   2020.  
 
 
 

Comissão   Examinadora:  
 
 
 
 
__________________________________________________________________________________________________________  

Prof.    Dr.   João   Paulo   dos   Santos-    MAT/UnB   (Orientador)  
 

 
 
_______________________________________________________________  

Prof.    Dr.   José   Luís   Teruel   Carretero–    MAT/UnB   (Membro)  
 

 
 
_______________________________________________________________________  
            Prof.    Dr.   Benedito   Leandro   Neto–   UFG    (Membro)  
 
 
 
*O   autor   foi   bolsista   do   CNPq   e   CAPES   durante   a   elaboração   desta   dissertação.  



Acknowledgements

I would like to thank to God who gave me forces to finish the master’s.

I would like to thank my family for their support during my master’s and for the compre-

hension when I could not be with them to dedicate my time to the master’s studies.

I would like to thank my friends from school for the comprehension of my absence during

the master’s and for friendship despite my absence during that time.

I would like to thank my advisor professor João Paulo dos Santos for his patience, dedication

to advise me and for his companionship throughout undergraduate and master’s and to believe

in me to carry out this dissertation.

I would like to thank the professors José Luís Teruel Carretero and Benedito Leandro Neto

for their valuable suggestions for this work.

I would like to thank professor Luciana Ávila for the opportunity to participate in the PET

program that contributed a lot to my training and facilitated my trajectory in the master’s. I also

would like to thank my friends of the PET program for the good times and for the interesting

discussions about mathematics. I would like thank specially Deivid Rodrigues do Vale for

helping me a lot throughout my academic trajectory in many aspects (studies, LaTeX, ...) and

for his friendship!

I would like to thank my friends of the master’s for the friendship, the good times and the

discussions in the courses which are very useful.

I would like to thank the professors of the department of mathematics at UnB that con-

tributed a lot in my undergraduate and master’s training.

I would like to thank CNPq and CAPES for supporting my master’s.



Abstract

Estudamos o artigo [2] por C. Arezzo e J. Sun. Apresentamos uma correspondência entre

sólitons conformes para o fluxo da curvatura média em uma variedade Riemanniana ambiente N

e subvariedades mínimas em um produto warped N ×R. A demonstração dessa correspondên-

cia nos fornece uma função potencial para o campo vetorial conforme do sóliton conforme, que

nos possibilita apresentar uma correspondência entre estabilidade de subvariedades mínimas

associadas aos sólitons conformes em um produto warped e estabilidade de subvariedades

mínimas como pontos críticos para um funcional volume com peso, em que o peso é dado

em termos da função pontencial. Na sequência, apresentamos uma demonstração que os

self-shrinkers compactos em Rn+1 não são estáveis e, seguindo C. Arezzo e J. Sun, apresenta-

mos uma demonstração de que o cilindro grim reaper é um sóliton de translação estável em

Rn+1. Finalmente, apresentamos uma correspondência entre sólitons conformes em Rn+p e

subvariedades totalmente geodésicas em Rn+p+1 por C. Arezzo e J. Sun.

Palavras-chave: estabilidade, subvariedades mínimas, produto warped, fluxo da curvatura

média, sólitons conformes.



Abstract

We study the paper [2] by C. Arezzo and J. Sun. We present a correspondence between

conformal solitons to the mean curvature flow in a Riemannian ambient manifold N and

minimal submanifolds in a warped product N ×R. The proof of this correspondence provide

us a potential function for the conformal vector field of the conformal soliton, which enable us

to present a proof of a correspondence between stable minimal submanifolds associated to the

conformal solitons in a warped product and the stability of minimal submanifolds as critical

points to a weighted volume functional where the weight depends on the potential function. In

the sequence, we give a proof that compact self-shrinkers in Rn+1 are unstable and, following

C. Arezzo and J. Sun, we present a proof that the cylinder grim reaper is a stable translating

soliton in Rn+1. Finally, we present a correspondence between conformal solitons in Rn+p and

totally geodesic submanifolds in Rn+p+1 by C. Arezzo and J. Sun.

Keywords: stability, minimal submanifolds, warped products, mean curvature flow, con-

formal solitons.
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Introduction

One of the most amazing themes to work in geometry is the study of geometric flows. These

flows have shown themselves a powerful feature to answer big questions in topology, e.g., the

Ricci Flow was used by Hamilton and Perelman to prove the Poincaré’s conjecture, one of the

Millenium Prize Problems and one of the most difficult problems in topology which remained

open for almost one century.

The mean curvature flow stands out among the geometric flows for its various topological

consequences (see [6], [17], [18] and [22] for some examples) and its applications in other areas

outside of mathematics (see [5], [9], [13] and [24] for some examples). The first theoretical

mathematical approach to the mean curvature flow was developed by Brakke in a geometric

measure point of view in [4], but only with the advent of the Ricci Flow the mean curvature

flow gained more prominence when Huisken adapted the techniques of the Ricci Flow to the

mean curvature flow which culminated in his famous work [20]. Formally, the mean curvature

flow is a family of smooth immersions such that the initial Riemannian hypersurface M evolves

by its mean curvature over the time in the Riemannian ambient manifold N, i.e.,

F : M× [0,T )−→ N

such that 
∂F
∂ t

(p, t) = H(p, t)ν(p, t)

F(M,0) = M,

where ν(·, t) is the unit normal to F(·, t) pointing inward and H(·, t) its mean curvature.
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Intuitively, the mean curvature flow is a way to deform into its normal direction and with

velocity given by its mean curvature. For example, round spheres are deformed into "points"

and cylinders are deformed into "straight lines", both preserving their shape along with the

flow. On the other hand, planes are preserved by the mean curvature flow (see Fig. 1).

Fig. 1 Figure extracted from [10].

There are substantial works on the mean curvature flow when N = Rn+1. Among these

works, special solutions received a lot of attention recently. One of these special solutions are

the solitons solutions, associated to a given vector field X . Such solutions provides interesting

geometric structures on the initial data given by the hypersurface M. Following definition 1.1 in

[1], a hypersurface f : M −→ N is a soliton of the mean curvature flow with respect to a vector

field XXX on N if cXXX⊥ = HHH for some constant c and where HHH is the mean curvature vector field.

When N is the Euclidean space, we have interesting structures by taking particular cases of c

and [23]: when XXX is a constant vector field the soliton is called translating soliton. When [23]

is the position vector field, we have the self-shrinkers if c < 0 and the self-expanders if c > 0.

In a general setup, we say that the soliton is a conformal soliton if X is a conformal vector

field. Besides of being related with mean curvature flow, translating solitons, self-shrinkers

and self-expanders can also be view as weighted minimal surfaces or the so called f-minimal

surfaces, when we consider a conformal metric e f g in Rn, where g is the Euclidean metric. For
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this reason, such structures have also their own interest and have been intensively studied in the

last years (see [3], [7], [8], [23] and [26] for some examples).

Another motivation for the study of solitons is the close relation with singularities. If a

hypersurface develops a singularity under the evolution by the mean curvature flow such that

the norm of the second fundamental form has the growth rate

max
p∈M

|A(p, t)|2 ≤ C0

2(T − t)
, ∀t ∈ [0,T ), C0 > 0,

the singularity is called Type I singularity. Otherwise, the singularity is called Type II

singularity. Type I singularities are close related to self-shirinkers, as we can see in Huisken

[19], whereas a relation between translating solitons and Type II singularity was obtained by

Huisken and Sinestrari [21] (see also Corollary 9.4 in [28]).

These solutions motivate the study of self-similar solutions evolving by mean curvature

in a setting more abstract, by considering conformal solitons for the mean curvature flow in

arbitrary ambient spaces, as we can see in Smoczyk [30] and in Lira [1].

The present thesis is based in [2] by Arezzo and Sun, where the ideas of Smoczyk in

[30] are extended for the case of submanifolds and a study of stable self-similar solutions in

the sense of stability for conformal solitons is presented. As some proofs are extensions of

Smoczyk’s ideas for higher codimension, many of the proofs in [2] are omitted or not given in

details. We present full proofs of the results, including omitted proofs, e.g., the proof that grim

reaper cylinder in Rn+1 is stable. One of the main contributions of this dissertation was to fix a

mistaken computation of the curvature tensor component (2.8) in [2] and, consequently, the

computations of the components of the Ricci tensor were fixed. The results of the section 3

in [2] holds with some corrections in the sign of the conformal factor (see definition 1.3) and

in the sign of the last term in the right side of the equality in the lemma 2.4 as well as some

corrections in the tensor curvature in the definitions 2.1 and 3.1. Other important correction

is in the sign of the second derivative in the lemma 3.2 in [30] which is the lemma 2.2 in this

dissertation. These corrections have some interesting consequences listed below:
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1. there is only one stability operator and the notions of stability for submanifolds obtained

in the section 3 in [2] and by variational principle for the weighted volume are equivalent;

2. following Colding and Minicozzi [11], it is given a proof that that every compact self-

shrinker in Rn+1 is unstable, when considered as critical points for the weighted volume.

This result seems to contrast with Theorem 5.2 in [2], which states that a self-shrinker

is stable if and only if is the sphere Sn(
√

2n). However, it is important to note that such

Theorem is stated following the notion of stability with the wrong sign mentioned above.

Moreover, as observed in the beginning of the section 4 in [12], every critical point of

the F functional is unstable if you fix x0 and t0 and vary Σ alone, but the F functional

with x0 = 0 and t0 = 1 fixed is exactly the weighted functional. Therefore, we believe

that these observations help to clarify the stability of self-shrinkers considered in [2] and

[30].

This master thesis is organized as follows. The chapter 1 contains some preliminary results.

It is also given a geometric interpretation of the stability of minimal hypersurfaces with respect

to the functional volume to familiarize the reader with the notion of stability and the variational

principle that will studied in the chapter 3.

The first two sections of the chapter 2 is based on the ideas of Smoczyk in [30] and extended

for higher codimension as done in [2]. Some geometric quantities are computed for a warped

product metric that are useful to establish a correspondence between conformal solitons of

the mean curvature flow and minimal submanifolds in a warped Riemannian manifold. Also,

they are useful to establish a correspondence between minimal hypersurfaces in a warped

Riemannian manifold and an inequality of stability. Arezzo and Sun extend these results to

submanifolds and characterize conformal solitons in Rn+p endowed with the Euclidean metric

through tottaly geodesic submanifolds in Rn+p+1 endowed with a warped product metric in the

last section.

The first section of the chapter 3 provides the computations of the First and Second

Variations of a weighted functional volume following [2] and [11]. This motivates the definition

of a stability operator for conformal solitons and the local minimum of this functional provides

a different proof of the stability inequality for conformal solitons obtained in the chapter 3. It is
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presented a proof that the conformal solitons are the only one critical points of this functional

and some examples of stable conformal solitons are given. Finally, we present a proof that the

grim reaper in R2 and the grim reaper cylinders in Rn+1 are stable translating solitons given by

Arezzo and Sun.



Chapter 1

Preliminary results

In this chapter, we will introduce basic notions and results of smooth manifolds and

Riemannian geometry. We will also present a brief introduction to the variational approach

for minimal hypersurfaces, in order to familiarize the reader with the notion of stability. We

will end the chapter with some basic concepts on the mean curvature flow that will be useful

throughout this dissertation.

1.1 Tensors and Lie derivative

We give a short introduction to tensors following section 5 of the chapter 4 of [14] and

we introduce the Lie derivative as a consequence of the Corollary 12.33 in [25]. This is not

a geometric introduction to these concepts, but we do in this way to give an easy and quick

introduction to the structures to prove the proposition 1.1. The curious reader can read a

geometric introduction in the chapter 12 of [25].

Definition 1.1. A tensor T of order r on a Riemannian manifold M is a multilinear mapping

T : X(M)×·· ·×X(M)︸ ︷︷ ︸
r times

−→ C∞(M)

This means that given Y1, · · · ,Yr ∈ X(M), T (Y1, · · · ,Yr) is a differentiable function on M,

and that T is linear in each argument, that is,
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T (Y1, · · · , f X +gY, · · · ,Yr) = f T (Y1, · · · ,X , · · · ,Yr)+gT (Y1, · · · ,Y, · · · ,Yr)

for all X ,Y ∈ X(M), f ,g ∈ C∞(M).

A tensor T is a pointwise object in a sense that we now explain. Fix a point p ∈ M and let U

be a neighborhood of p ∈ M on which it is possible to define vector fields E1, · · · ,En ∈ X(M),

i.e., the vectors {Ei(q)}n
i=1 form a basis of TqM at each q ∈U ; we say, in this case, that {Ei}n

i=1

is a moving frame on U . Let

Y j =
n

∑
i j=1

yi jEi j , j = 1, · · · ,r.

be the restrictions to U of the vector fields Y1, · · · ,Yr expressed in the moving frame {Ei}.

By linearity,

T (Y1, · · · ,Yr) =
n

∑
i1,··· ,ir=1

yi1 · · ·yirT (Ei1 , · · · ,Eir).

The functions T (Ei1, · · · ,Eir) = Ti1···ir on U are called the components of T in the frame

{Ei}.

Example 1.1. The Riemannian metric is a tensor of order 2.

Definition 1.2. Let T be a tensor of order r. The Lie derivative L of T in the direction of a

vector field Z ∈ X(M) is a tensor of order (r+1) given by

(LZT )(Y1, · · · ,Yr) := Z(T (Y1, · · · ,Yr))−T ([Z,Y1], · · · ,Yr)−·· ·−T (Y1, · · · ,Yr−1, [Z,Yr]).

1.2 Basic results on Riemannian manifolds

We introduce the Einstein’s sum convention that will used throughout this work without

do mentions posteriori. The Einstein’s sum convention consists to omit the sum always that

appears upper and lower indexes repeated. See an example below.
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Example 1.2. Let M ⊂ Rn+1 be a hypersurface. The mean curvature of M is written as

H =
n

∑
i, j=1

gi jhi j.

The mean curvature of M is written in the Einstein’s sum convention as

H = gi jhi j.

Proposition 1.1 (The Lie derivative in terms of the connection). If (M,g) is a Riemannian

manifold, then

(LX g)i j = ∇iX j +∇ jXi,

where ∇ denotes the Levi-Civita connection of the metric g and X is any vector field defined

on M.

Proof. We follow the proof presented on page 14 of [29]. Let ω be an 1-form dual to the vector

field X , i.e., ω is an 1-form which satisfies ωp(Y ) = gp(X ,Y ) for each p ∈ M. Omitting p ∈ M

for simplicity, using the compatibility of the metric and the symmetry of the connection,

(LX g)(Y,Z) = g(∇XY,Z)+g(Y,∇X Z)−g([X ,Y ],Z)−g(Y, [X ,Z])

= g(∇XY − [X ,Y ],Z)+g(Y,∇X Z − [X ,Z])

= g(∇Y X ,Z)+g(Y,∇ZX)

= Y (g(X ,Z))−g(X ,∇Y Z)+Z(g(Y,X))−g(∇ZY,X)

= Y (ω(Z))−ω(∇Y Z)+Z(ω(Y ))−ω(∇ZY )

= (∇Y ω)(Z)+(∇Zω)(Y ),

which is free-coordinate, expressing the identity desired.
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Definition 1.3. A smooth vector field X on a Riemannian manifold (M,g) is said to be a

conformal vector field if there exists a smooth function λ on M, which is called the conformal

factor of the conformal vector field X, that satisfies LXg= 2λg, where LXg is the Lie derivative

of g with respect X.

Remark 1.1. Although conformal vector fields are most commonly defined as above, proposition

1.1 give us an equivalent definition that can be stated as follows:

A smooth vector field X on a Riemannian manifold (M,g) is said to be a conformal vector

field if there exists a smooth function λ on M, which is called the conformal factor of the

conformal vector field X, that satisfies ∇iX j +∇ jXi = 2λg.

The advantage of see conformal vector fields in such way will be clear in the proof of the

theorem 2.1 and the lemma 2.3.

Definition 1.4 (Hodge star operation). Given a k-form ω in a smooth n-dimensional manifold

M, define an (n− k)-form ∗ω by setting

∗(dxi1 ∧·· ·∧dxik) := (−1)σ (dx j1 ∧·· ·∧dx jn−k)

and extending it linearly, where i1 < · · ·< ik, j1 < · · ·< jn−k, (i1 · · · ik j1 · · · jn−k) is a permuta-

tion of (1 2, · · ·n) and σ is 0 or 1 according to the permutation is even or odd, respectively.

Example 1.3. Let M = R3.

a) If ω = dx1, then the permutation (1 2 3) is even and ∗ω = dx2 ∧dx3;

b) If ω = dx2 ∧dx3, then the permutation (2 3 1) is even and ∗ω = dx1;

c) If ω = dx2, then the permutation (2 1 3) is odd and ∗ω =−(dx1 ∧dx3).

Definition 1.5. Let (M,g) be a n-dimensional Riemannian manifold, let ∇ be its connection

and let X(M) be the set of smooth vector fields defined on M. The Riemannian curvature tensor

is

R : X(M)×X(M)×X(M)−→ X(M)

(X ,Y,Z) 7−→ R(X ,Y )Z := ∇X ∇Y Z −∇Y ∇X Z −∇[X ,Y ]Z.
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Let us define the tensor

R(X ,Y,Z,W ) := g(R(X ,Y )Z,W )

and the Ricci tensor Ric as the trace of the map X 7→ R(X ,Y )Z. If {ei}n
i=1 is an orthonormal

basis, then

Ric (Y,Z) =
n

∑
i=1

g(R(ei,Y )Z,ei) =
n

∑
i=1

R(ei,Y,Z,ei).

Proposition 1.2 (Local expressions of the Riemannian connection and the Lie Bracket). Let

(M,g) be a n-dimensional Riemannian manifold and let X(M) be the space of smooth vector

fields defined on M, then


∇XY =

n

∑
k=1

(
X(Y k)+

n

∑
i, j=1

X iY j
Γ

k
i j

)
ek

[X ,Y ] =
n

∑
i, j=1

(
X i ∂Y j

∂xi
−Y i ∂X j

∂xi

)
e j,

where {ei}n
i=1 is a local coordinate basis.

Definition 1.6. Let (M,g) be a Riemannian submanifold immersed on a Riemannian manifold

(N,g). Let f : M −→ N be such immersion, let ∇ and ∇ be the connections of M and N

respectively. We denote by X(N) be the space of smooth vector fields defined on N and and

by X(N)⊥ be the space of smooth vector fields defined on N orthogonal to f (M). The second

fundamental form of M in N is the bilinear map

B : X(N)×X(N)−→ X(N)⊥

(X ,Y ) 7−→ B(X ,Y ) := ∇XY −∇XY.

Definition 1.7. A Riemannian submanifold M of N is totally geodesic provided its the second

fundamental form vanishes.

Proposition 1.3. For M ⊂ M the following are equivalent.

1. M is totally geodesic in M.

2. Every geodesic of M is also a geodesic of M.
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3. If v ∈ TpM is tangent to M, then the M geodesic γv lies initially in M.

4. If α is a curve in M and v ∈ Tα(0)M, then parallel translation of v along α is the same for

M and M.

Proof. See proposition 13 on page 105 of [27].

Lemma 1.1. Let M and N be complete, connected, totally geodesic Riemannian submanifolds

of M. If there is a point p ∈ M∩N at which TpM = TpN, then M = N.

Proof. See lemma 14 on page 105 of [27].

Remark 1.2. Although the last two results are proved for semi-Riemannnian manifolds, they

hold for Riemannian manifolds.

Theorem 1.1. The only one complete, connected and totally geodesic Riemannian submani-

folds of Rn are the linear subspaces of Rn and their translations.

Proof. From the first and second items of the previous proposition, linear subspaces of Rn

are totally geodesic and, consequently, their translations are also totally geodesic. Let M

be a complete, connected and totally geodesic Riemannian k-submanifold of Rn and N be a

k-linear subspace of Rn. Recalling that the spaces TpM, (Rk)′ and Rk are isomorphic for every

Riemannian k-submanifold M of Rn, we can suppose, applying rigid motions if necessary, that

the hypothesis of the previous lemma are fulfilled less isomorphism, then M = N, i.e., M is a

linear subspace of Rn.

Remark 1.3. The hypothesis of completeness and connectedness in the theorem can be removed

if we add in the theorem the possibility that the totally geodesic Riemannian submanifolds M

of Rn can be also linear subspaces of Rn or its translations in each connected component of M.

Theorem 1.2 (Inverse Function Theorem). Suppose M and N are smooth manifolds, and

F : M −→ N is a smooth map. If p ∈ M is a point such that dFp is invertible, then there are con-

nected neighborhoods U0 of p and V0 of F(p) such that F |U0 : U0 −→V0 is a diffeomorphism.

Proof. See theorem 4.5 on page 79 of [25].
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Theorem 1.3 (Stokes’s Theorem). Let M be an oriented smooth n-manifold with boundary,

and let ω be a compactly supported smooth (n−1)-form on M. Then

∫
M

dω =
∫

∂M
ω.

Proof. See theorem 16.11 on page 411 of [25].

Definition 1.8. Let {Ei}n
i=1 an orthonormal frame at a point p ∈ M of a n-dimensional Rieman-

nian manifold (M,g). The divergence of a smooth vector field V on M is

div V =
n

∑
i=1

⟨∇EiV,Ei⟩.

Theorem 1.4 (Divergence Theorem). Let (M,g) be an oriented Riemannian manifold with

boundary. For any compactly supported smooth vector field X on M,

∫
M
(div X)dVg =

∫
∂M

⟨X ,N⟩gdVg̃,

where N is the outward pointing unit normal vector field along ∂M and g̃ is the induced

Riemannian metric on ∂M.

Proof. See theorem 16.32 on page 424 of [25].

For our purposes in this work, we refere to the following corollary as the Divergence

Theorem.

Corollary 1.1. Let (M,g) be an oriented closed Riemannian manifold without boundary. For

any smooth vector field X on M,

∫
M
(div X)dVg = 0.

Definition 1.9. Let M be a smooth manifold and ω a n-form defined on M.
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a) ω is a closed form if dω = 0;

b) ω is an exact form if there exists a smooth function f : M −→ R such that ω = d f .

Theorem 1.5. On a simply connected smooth manifold, every closed 1-form is exact.

Proof. See Corollary 16.27 on page 421 of [25].

The next result will be necessary to prove theorems 3.4 and 3.5.

Proposition 1.4 (Wirtinger’s inequality). If f : [a,b] −→ R is differentiable on (a,b) with

f (a) = f (b) = 0, then

∫ b

a
( f (x))2dx ≤

(
b−a

π

)2 ∫ b

a
( f ′(x))2dx;

the constant
(

b−a
π

)2

is optimal.

Proof. See page 47 of [15].

1.3 Geometric interpretation of the stability of minimal hy-

persurfaces

We follow [16] in this section. Let (N,g) be a Riemannian manifold and M a Riemannian

submanifold of dimension n, with boundary and with the metric induced by N. Denote by ∇

and ∇ the connections of M and N, respectively. Consider a variation of M on N with fixed

boundary:

f : M× I −→ N, f0 = idM, f |∂M×{t} = id∂M,∀t ∈ I.

Assume that ft : M −→ N is an embedding for each t ∈ I and let Mt := ft(M), ωt the element

of volume induced on Mt and ω0 = dx1 ∧·· ·∧dxn the element of volume induced on M0, then

vol(Mt) =
∫

M
f ∗t ωt , vol(M) =

∫
M

ω0.
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The variational vector field associated is V =
∂ f
∂ t

. Observe that V |∂M ≡ 0 since the boundary

of M is fixed throught the variation.

1.3.1 The First Variational Formula for the functional area.

Lemma 1.2. Let E be a vector space of dimension n equipped with an inner product, oriented

and with a positive basis {v1, · · · ,vn}, then

det(v1, · · · ,vn) =
√

det(⟨vi,v j⟩).

Proof. Let {ei}n
i=1 be an orthonormal positive basis of E. Observe that the matrix in the left

of the equality of the lemma has entries ai j = ⟨v j,ei⟩, while the matrix P with the entries

pi j = ⟨vi,v j⟩ is P = AT A as verified below:

pi j = ⟨vi,v j⟩=
n

∑
k=1

⟨vi,ek⟩⟨ek,v j⟩=
n

∑
k=1

akiak j.

Thus,

detP = det(AT A) = (detAT )(detA) = (detA)2,

i.e.,

det(v1, · · · ,vn) =
√

det(⟨vi,v j⟩).

Lemma 1.3. If A(t) is a family of linear and invertible functions defined on a vector space E

of dimension n so that A(0) = Id, then

d
dt
(detA(t))

∣∣∣∣
t=0

= tr A′(0).

Proof. Writting as a n-form applied in vectors,

det(A(t)) = ω(A(t)e1, · · · ,A(t)en) with A′(0)ei =
n

∑
j=1

a j
i e j.
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Thus,

d
dt
(detA(t))

∣∣∣∣
t=0

=
n

∑
i=1

ω(e1, · · · ,A′(0)ei, · · · ,en) =
n

∑
i=1

ω

(
e1, · · · ,

n

∑
j=1

a j
i e j, · · · ,en

)

=
n

∑
i=1

ω(e1, · · · ,ai
iei, · · · ,en) =

n

∑
i=1

ai
iω(e1, · · · ,ei, · · · ,en)

=
n

∑
i=1

ai
i det(A(0)) =

n

∑
i=1

ai
i = tr A′(0).

Lemma 1.4. If α = ∗(V ∗) is the (n−1)-form defined on TpM where V ∗ is the 1-form dual to

the field V defined in the beginning of this section, then dα =
n

∑
i=1

ei(⟨V,ei⟩)ω0.

Proof.

α = ∗(V ∗) = ∗

((
n

∑
k=1

⟨V,ek⟩ek

)∗)
= ∗

(
n

∑
k=1

⟨V,ek⟩e∗k

)

= ∗

(
n

∑
k=1

⟨V,ek⟩dxk

)
=

n

∑
k=1

⟨V,ek⟩ ∗dxk

=
n

∑
k=1

⟨V,ek⟩(−1)k−1dx1 ∧·· ·∧ d̂xk ∧·· ·∧dxn,

which implies

dα = d

(
n

∑
k=1

⟨V,ek⟩(−1)k−1dx1 ∧·· ·∧ d̂xk ∧·· ·∧dxn

)

=
n

∑
k=1

(−1)k−1

(
n

∑
i=1

ei(⟨V,ek⟩)dxi ∧dx1 ∧·· ·∧ d̂xk ∧·· ·∧dxn

)

=
n

∑
k=1

(−1)k−1ek(⟨V,ek⟩)dxk ∧dx1 ∧·· ·∧ d̂xk ∧·· ·∧dxn

=
n

∑
k=1

ek(⟨V,ek⟩)dx1 ∧·· ·∧dxk ∧·· ·∧dxn =
n

∑
k=1

ek(⟨V,ek⟩)ω0.
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Theorem 1.6 (First Variational Formula for the functional area.). Considering the hypothesis

made in the beginning of this section, then

d
dt

vol(Mt)

∣∣∣∣
t=0

=−
∫

M
⟨V,−→H ⟩ω0.

Proof. Fix p ∈ M and a system of coordinates on a neighborhood of (p, t) ∈ M × I with

coordinate vector fields ∂t and ∂i|p = ei|p for each i = 1, · · · ,n where ei are orthonormal vector

fields and tangent to M in a normal neighborhood of p ∈ N and geodesic on p and we extend

they to be tangent to Mt , which imply ∇eie j(p) = 0.

Observe that [V,d f(p,t)(ei)] = [d f(p,t)(∂t),d f(p,t)(ei)] = d f(p,t)([∂t ,ei]) = d f(p,t)(0) = 0.

This imply, in p, that

1
2

∂gii

∂ t
(p, t)

∣∣∣∣
t=0

= ⟨∇V d f(p,t)(ei),d f(p,t)(ei)⟩
∣∣∣∣
t=0

= ⟨∇d f(p,t)(ei)V,d f(p,t)(ei)⟩
∣∣∣∣
t=0

= ei(⟨V,ei⟩)−⟨V,∇d f(p,t)(ei)d f(p,t)(ei)⟩
∣∣∣∣
t=0

= ei(⟨V,ei⟩)−⟨V,B(ei,ei)⟩−⟨V,∇eiei⟩

= ei(⟨V,ei⟩)−⟨V,B(ei,ei)⟩.

From Lemma 1.3,

1
2

dg
dt

(0) =
1
2

n

∑
i=1

∂gii

∂ t
(p, t)

∣∣∣∣
t=0

=−⟨V,−→H ⟩+
n

∑
i=1

ei(⟨V,ei⟩). (1.1)

Observing that

gi j(t) = ⟨d ft(ei),d ft(e j)⟩, g(t) = det(gi j(t)), d ft =
(

d ft(e1) · · · d ft(en)
)
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and using Lemma 1.2, we find det(d ft) =
√

g(t). From this and from (1.1),

d
dt

vol(Mt)

∣∣∣∣
t=0

=
∫

M

d
dt

det(d ft)
∣∣∣∣
t=0

ω0 =
∫

M

d
dt

√
g(t)

∣∣∣∣
t=0

ω0 =
∫

M

1
2
√

g(0)
dg
dt

(0)ω0

=
∫

M

1
2

dg
dt

(0)ω0 =
∫

M

(
−⟨V,−→H ⟩+

n

∑
i=1

ei(⟨V,ei⟩)

)
ω0.

Then, from Lemma 1.4 and the Stokes’ theorem we get

d
dt

vol(Mt)

∣∣∣∣
t=0

=
∫

M

(
−⟨V,−→H ⟩+

n

∑
i=1

ei(⟨V,ei⟩)

)
ω0 =

∫
M
−⟨V,−→H ⟩ω0 +dα

=−
∫

M
⟨V,−→H ⟩ω0 +

∫
∂M

α =−
∫

M
⟨V,−→H ⟩ω0,

where the last equality follows from the fact that α = ∗(V ∗) and V |∂M ≡ 0.

1.3.2 The Second Variational Formula for the functional area.

Theorem 1.7. Suppose H ≡ 0 on M and V = ∂t f = uν where u is a function with compact

support on M, then

d2

dt2 vol(Mt)

∣∣∣∣
t=0

=−
∫

M
(∆Mu+ |A|2u+RicNu)uω0,

where ∆M is the Beltrami-Laplace operator and RicN is the Ricci curvature of N in the direction

ν .

Proof. Let p ∈ M and consider {ei}n
i=1 a local frame on a neighborhood of p, orthonormal on

M and geodesic in p. Assume that {ei}n
i=1 is transportated by d ft and define gi j := ⟨ei,e j⟩, in

particular, [V,ei] = 0.
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From the First Variational Formula for the functional area,

d2

dt2 vol(Mt)

∣∣∣∣
t=0

=−
(∫

M

d
dt
⟨V,−→H ⟩

∣∣∣∣
t=0

ω0 + ⟨V,−→H ⟩dωt

dt

∣∣∣∣
t=0

)
=−

∫
M

d
dt
⟨V,−→H ⟩

∣∣∣∣
t=0

ω0

=−
∫

M

d
dt
⟨V,gi j

∇eie j⟩
∣∣∣∣
t=0

ω0

=−
(∫

M

〈
d
dt

∣∣∣∣
t=0

V,gi j
∇eie j

〉
ω0 +

〈
V,

d
dt
(gi j

∇eie j)

∣∣∣∣
t=0

〉
ω0

)
=−

(∫
M

dgi j

dt

∣∣∣∣
t=0

〈
V,∇eie j

〉
ω0 +gi j

〈
V,

d
dt

∣∣∣∣
t=0

∇eie j

〉
ω0

)
=−

(∫
M

dgi j

dt

∣∣∣∣
t=0

〈
V,∇eie j

〉
ω0 +gi j

〈
V,∇V ∇eie j

〉
ω0

)

Observing that gi j = δi j, we have, in t = 0 and in p

dgi j

dt
=−

dgi j

dt
=−V (⟨ei,e j⟩)

=−⟨∇V ei,e j⟩−⟨ei,∇V e j⟩=−⟨∇eiV,e j⟩−⟨ei,∇e jV ⟩

=−
(

ei(⟨V,e j⟩)−⟨V,∇eie j⟩
)
−
(

e j(⟨ei,V ⟩)−⟨∇e jei,V ⟩
)

=−
(

ei(⟨uν ,e j⟩)−⟨V,∇eie j⟩
)
−
(

e j(⟨ei,uν⟩)−⟨∇e jei,V ⟩
)

= ⟨V,∇eie j⟩+ ⟨∇e jei,V ⟩

= ⟨V,B(ei,e j)⟩+ ⟨B(e j,ei),V ⟩= 2⟨B(ei,e j),V ⟩,

where the penultimate equality is true because {ei}n
i=1 is geodesic in p. Thus,

dgi j

dt

∣∣∣∣
t=0

〈
V,∇eie j

〉
ω0 = 2

n

∑
i, j=1

⟨B(ei,e j),V ⟩2
ω0 = 2u2|A|2ω0 (1.2)

for normal variations of hypersurfaces.
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Recalling that [V,ei] = 0 and considering,

〈
V,∇V ∇eiei

〉
=
〈

V,∇ei∇V ei

〉
−RN(ei,V,ei,V )

= ei(⟨V,∇V ei⟩)−⟨∇eiV,∇V ei⟩+RN(ei,V,V,ei)

= ei(⟨V,∇eiV ⟩)−|∇eiV |2 +RN(ei,V,V,ei)

In the case that codimension is 1 with V = uν ,

|∇eiV |2 = |ei(u)ν +u∇eiν |
2 = ei(u)2 +u2|∇eiν |

2.

Taking the sum on i,

n

∑
i=1

|∇eiV |2 = |∇u|2 +u2
n

∑
i, j=1

⟨∇eiν ,e j⟩= |∇u|2 +u2
n

∑
i, j=1

B(e j,ei)
2 = |∇u|2 +u2|A|2,

while

ei(⟨V,∇eiV ⟩) = ei(⟨uν ,ei(u)ν +u∇eiν⟩) = ei(uei(u)) = ei(u)2 +uei(ei(u)),

then

n

∑
i=1

ei(⟨V,∇eiV ⟩)=
n

∑
i=1

uei(ei(u))+ei(u)2 =
n

∑
i=1

u(ei(ei(u))−(∇eiei)u)+ei(u)2 = u∆Mu+|∇u|2.

Combining the sums above, we get

n

∑
i=1

〈
V,∇V ∇eiei

〉
=

n

∑
i=1

ei(⟨V,∇eiV ⟩)−|∇eiV |2 +RN(ei,V,V,ei)

= (u∆Mu+ |∇u|2)− (|∇u|2 +u2|A|2)+
n

∑
i=1

RN(ei,V,V,ei)

= u∆Mu+
n

∑
i=1

RN(ei,uν ,uν ,ei)−u2|A|2

= u∆Mu+u2RicN −u2|A|2,
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i.e.,

n

∑
i=1

〈
V,∇V ∇eiei

〉
= u∆Mu+u2RicN −u2|A|2. (1.3)

Substituting (1.2) and (1.3) in the second derivative of vol(Mt) in t = 0,

d2

dt2 vol(Mt)

∣∣∣∣
t=0

=−
∫

M
(∆Mu+ |A|2u+uRicN)uω0.

Definition 1.10. A hypersurface is stable if it is a local minimum of vol(Mt), i.e.,
d2

dt2 vol(Mt)

∣∣∣∣
t=0

≥

0.

Corollary 1.2. Let M be a hypersuperface without boundary. M is stable if and only if

∫
M
(|A|2 +RicN)u2

ω0 ≤
∫

M
|∇u|2ω0.

Proof. From the previous theorem, the definition of stability and the Green’s identities over

Riemannian manifolds,

d2

dt2 vol(Mt)

∣∣∣∣
t=0

≥ 0 ⇐⇒ −
∫

M
(∆Mu+ |A|2u+uRicN)uω0 ≥ 0

⇐⇒
∫

M
(∆Mu+ |A|2u+uRicN)uω0 ≤ 0

⇐⇒
∫

M
(|A|2u+uRicN)uω0 ≤

∫
M
−u∆Muω0

⇐⇒
∫

M
(|A|2 +RicN)u2

ω0 ≤
∫

M
|∇u|2ω0.

1.4 Mean Curvature Flow

Definition 1.11. Let M be a smooth Riemannian hypersurface without boundary of Rn+1

endowed with a Riemannian metric. The mean curvature flow of M in Rn+1 is a family of
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immersions F : M× [0,T )−→ Rn+1 which satisfies


∂F
∂ t

(p, t) = H(p, t)

F(M,0) = M,

where H(·, t) = H(·, t)ν(·, t) denotes the mean curvature vector field of F(·, t)⊂Rn+1 for each

t ∈ [0,T ) and ν(·, t) is the unit normal to F(·, t) pointing inward.

Results regarding the existence of solutions of equation
∂F
∂ t

(p, t) = H(p, t) for a short time

are well known (see for example Theorem 3.1 in [20]). It may ocurrs that mean curvature flow

becomes singular at some time T . The study of singularities constitutes an important research

branch in mean curvature flow. When the flow develops a singularity in a time T such that the

norm of the second fundamental form has the growth rate

max
p∈M

|A(p, t)|2 ≤ C0

2(T − t)
, ∀t ∈ [0,T ), C0 > 0

we say that the singularity is a Type I singularity. Otherwise, the singularity is called Type II

singularity. Both Type I and Type II singularities are related to solutions of the mean curvature

flow called, self-similar solutions. Among such solutions we have the self-shrinkers, self-

expanders and the translating solitons. Type I singularities are close related to self-shirinkers,

as we can see in Huisken [19], whereas a relation between translating solitons and Type

II singularity was obtained by Huisken and Sinestrari [21] (see also Corollary 9.4 in [28]).

Roughly speaking, a self-similar solution of the mean curvature flow is a solutions that preserve

its shape along the flow, as we can see below in the description of self-shrinkers, self-expanders

and the translating solitons.

Definition 1.12. Let M−1 ⊂ Rn+1 be a Riemannian hypersurface evolving by mean curvature

such that the evolved hypersurfaces are

Mt :=
√
−tM−1, t ∈ [−1,0).

M−1 is said a self-shrinker.
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Proposition 1.5. A self-shrinker M−1 satisfies HM−1(x) =−1
2
⟨x,ν⟩, where HM−1 is the mean

curvature, x ∈ M−1 and ν is the unit normal.

Proof. Let {ei}n
i=1 be an orthonormal frame at x ∈ M−1. If F(x, t) =

√
−tx flow by mean

curvature, then

gi j(x, t) = ⟨
√
−tei,

√
−te j⟩=−tδi j =⇒ gi j(x, t) =−

δi j

t
,

HMt (x, t) =
n

∑
i, j=1

gi j(x, t)
〈

∂ 2F
∂xi∂x j

(x, t),ν(x, t)
〉

=
n

∑
i, j=1

−
δi j

t

〈√
−t

∂ 2F
∂xi∂x j

(x,−1),ν(x,−1)
〉

=
1√
−t

HM−1(x),

ν(x, t) = ν(x,−1)

and

1√
−t

HM−1(x) = HMt (x, t)

=

〈
∂F
∂ t

(x, t),ν(x, t)
〉

=

〈
∂

∂ t

(√
−tx
)
,ν(x,−1)

〉
=− 1

2
√
−t

⟨x,ν⟩.

Thus,

HM−1(x) =−1
2
⟨x,ν⟩.

Definition 1.13. Let M1 ⊂ Rn+1 be a Riemannian hypersurface evolving by mean curvature

such that the evolved hypersurfaces are
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Mt :=
√

tM1, t ∈ [1,+∞).

M1 is said a self-expander.

Proposition 1.6. A self-expander M1 satisfies HM1(x) =
1
2
⟨x,ν⟩, where HM1 is the mean

curvature, x ∈ M1 and ν is the unit normal.

Proof. Let {ei}n
i=1 be an orthonormal frame at x ∈ M1. If F(x, t) =

√
tx flow by mean curvature,

then

gi j(x, t) = ⟨
√

tei,
√

te j⟩= tδi j =⇒ gi j(x, t) =
δi j

t
,

HMt (x, t) =
n

∑
i, j=1

gi j(x, t)
〈

∂ 2F
∂xi∂x j

(x, t),ν(x, t)
〉

=
n

∑
i, j=1

δi j

t

〈√
t

∂ 2F
∂xi∂x j

(x,1),ν(x,1)
〉

=
1√
t
HM1(x),

ν(x, t) = ν(x,1)

and

1√
t
HM1(x) = HMt (x, t)

=

〈
∂F
∂ t

(x, t),ν(x, t)
〉

=

〈
∂

∂ t

(√
tx
)
,ν(x,1)

〉
=

1
2
√

t
⟨x,ν⟩.

Thus,

HM1(x) =
1
2
⟨x,ν⟩.
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Definition 1.14. Let M0 ⊂ Rn+1 be a Riemannian hypersurface evolving by mean curvature

such that the evolved hypersurfaces are

Mt := M0 + tT, t ∈ [0,+∞)

for some T ∈ Rn+1. M0 is said a translating soliton.

Proposition 1.7. A translating soliton M0 satisfies H = ⟨T,ν⟩, where H is the mean curvature,

x ∈ M0 and ν is the unit normal.

Proof. If F(x, t) = F(x,0)+ tT flow by mean curvature, then

HMt (x, t) =
n

∑
i=1

〈
∂ 2F
∂x2

i
(x, t),ν(x, t)

〉
=

n

∑
i=1

〈
∂ 2F
∂x2

i
(x,0),ν(x,0)

〉
= HM0(x,0).

and

HM0(x,0) = HMt (x, t)

=

〈
∂F
∂ t

(x, t),ν(x, t)
〉

=

〈
∂

∂ t
(x+ tT ),ν(x, t)

〉
= ⟨T,ν⟩.



Chapter 2

Conformal solitons and submanifolds

Let M be a smooth n-dimensional manifold without boundary and (N,g) a smooth n+ p-

dimensional Riemannian manifold. We are interesting in understand special solutions for the

mean curvature flow, i.e., a family of immersions F : M× [0,T )−→ N satisfying


∂F
∂ t

(p, t) = H(p, t)

F(M,0) = M,

where H(·, t) denotes the mean curvature vector field of F(·, t) for each t ∈ [0,T ).

This class of solutions was studied previously by Smoczyk in [30] and can be defined as

follows: given a conformal vector field X, M is a conformal soliton to the mean curvature flow

if M satisfies the following equation

H = X⊥, (2.1)

where H denotes the mean curvature vector of M and ⊥ denotes the projection on the normal

bundle. Recall that a vector field X is conformal if in local coordinate, ∇ jXi+∇iX j = 2λgi j for

some smooth function λ . Following the paper by Smoczyk, we consider the special conformal

vector fields X which satisfy

∇ jXi = ∇iX j



2.1 Warped product metric. 26

or, in other words,

∇ jXi = λgi j (2.2)

for some smooth function λ and where ∇ denotes the Levi-Civita connection on N.

As we will see in the next chapter (Proposition 3.2), this particular class of conformal

solitons generalizes a class of solutions of the mean curvature flow, namely, the self-similar

solutions. This fact is one of the motivations for studying the conformal solitons to the mean

curvature flow. This chapter is dedicated to obtain some correspondences for conformal solitons

and minimal submanifolds in a warped product Riemannian manifold as well as a notion of

stability for conformal solitons in higher codimensions.

2.1 Warped product metric.

Let (N,g) be a Riemannian manifold and f : N −→ R a smooth function. The warped

product metric g̃ on Ñ = R×N is defined by

g̃(s,x) := e2 f (x)ds2 +g(x), (2.3)

where x ∈ N and ds2 is the standard metric on R. The projection

π : Ñ −→ N

(s,x) 7→ π(s,x) := x

is a Riemannian submersion π : (Ñ, g̃)−→ (N,g) with fibers π
−1(x) =: [x] = R×{x}.

Consider now Mn ⊂ Nn+p a Riemannian submanifold. Denote by M̃ a submanifold on

Ñ given by M̃ = R×M the submanifold associated to M. Let {e1, · · · ,en,νn+1, · · · ,νn+p} be

such that {e1, · · · ,en} are in the tangent bundle of M and {νn+1, · · · ,νn+p} are in the normal

bundle of M. Throughout this dissertation, we are going to assume the following convention:

• 1 ≤ i, j, · · · ≤ n, n+1 ≤ α,β , · · · ≤ n+ p, 0 ≤ a,b, · · · ≤ n;
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• 1 ≤ A,B, · · · ≤ n+ p, 0 ≤ Ã, B̃, · · · ≤ n+ p.

Defining

ẽ0 :=
∂

∂ s
= (1,0), ẽi := (0,ei), ν̃α := (0,να), (2.4)

we see that {ẽ0, ẽ1, · · · , ẽn} spans the tangent space of M̃ and {νn+1, · · · ,νn+p} spans the

normal space of M̃ at every point of M̃. By the choice of the warped product metric (2.3),

g̃(ẽ0, ẽ0) = e2 f (x). Thus, {e− f (x)ẽ0, ẽ1, · · · , ẽn, ν̃n+1, · · · , ν̃n+p} is an orthonormal frame of Ñ.

From now on, Γ, Γ̃, Γ and Γ̃ are going to denote the Christoffel symbols on N, Ñ, M and M̃,

respectively. The Levi-Civita connection and the Laplacian operator on N will be denoted by ∇

and ∆.

Proposition 2.1. The mean curvature vector H[x] of [x] in Ñ at (s,x) is given by (0,−∇ f (x)).

Furthermore,

(g̃ÃB̃) =

e2 f 0

0 gAB

 , (g̃ÃB̃) =

e−2 f 0

0 gAB

 , (2.5)

Γ̃
A
BC = Γ

A
BC, Γ̃

0
BC = Γ̃

A
B0 = Γ̃

0
00 = 0, Γ̃

0
B0 =

∂ f
∂xB , Γ̃

A
00 =−e2 f gAD ∂ f

∂xD . (2.6)

R̃ABCD = RABCD, (2.7)

R̃0ABC = 0, (2.8)

R̃0A0B = e2 f
(

∇A∇B f +∇A f ∇B f
)
. (2.9)

The Ricci curvature tensor is given by

(R̃ÃB̃) =

−e2 f
(

∆ f + |∇ f |2
)

0

0 RAB −∇A∇B f −∇A f ∇B f

 (2.10)
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Proof. By (2.3), we compute the entries of (g̃ÃB̃).

g̃ÃB̃ := g̃(ẽÃ, ẽB̃) =


e2 f , if Ã = B̃ = 0

0, if Ã = 0 and B̃ ̸= 0 or Ã ̸= 0 and B̃ = 0

g(eA,eB), if Ã ̸= 0 and B̃ ̸= 0

,

We also compute the entries of (g̃ÃB̃).

a) 1 =
n+p

∑
Ã=0

g̃0Ãg̃Ã0 = g̃00g̃00 = e2 f g̃00, which implies g̃00 = e−2 f .

b) 0 =
n+p

∑
B=0

g̃0B̃g̃B̃A = g̃00g̃0A = e2 f g̃0A for A ̸= 0, which implies g̃0A = 0. Thus, g̃A0 = 0 by

the symmetry of the metric g̃.

c) δ
B
A =

n+p

∑
C̃=0

g̃AC̃g̃C̃B =
n+p

∑
C=1

gACg̃CB for A ̸= 0 and B ̸= 0, which implies g̃CB = gCB.

We obtain the relations for the Christoffel symbols in (Ñ, g̃) analyzing each case.

1. Case 1 ≤ Ã, B̃,C̃ ≤ n+ p:

Γ̃
Ã
B̃C̃ =

1
2

n+p

∑
D̃=0

(
∂ g̃D̃C̃
∂xB̃

+
∂ g̃D̃B̃
∂xC̃

−
∂ g̃B̃C̃
∂xD̃

)
g̃D̃Ã

=
1
2

n+p

∑
D=1

(
∂gDC

∂xB
+

∂gDB

∂xC
− ∂gBC

∂xD

)
gDA = Γ

A
BC,

where the second equality was obtained by the computations of the entries of the matrix

(g̃ÃB̃) did previously.

2. Case Ã = 0, B̃ ̸= 0, C̃ ̸= 0 or Ã ̸= 0, B̃ ̸= 0, C̃ = 0 or Ã = B̃ = C̃ = 0:

Γ̃
Ã
B̃C̃ =

1
2

n+p

∑
D̃=0

(
∂ g̃D̃C̃
∂xB̃

+
∂ g̃D̃B̃
∂xC̃

−
∂ g̃B̃C̃
∂xD̃

)
g̃D̃Ã.

(a) Subcase Ã = 0, B̃ ̸= 0, C̃ ̸= 0:

g̃D̃Ã = 0
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for each D̃ ∈ {1, · · · ,n+ p} and

∂ g̃D̃C̃
∂xB̃

+
∂ g̃D̃B̃
∂xC̃

−
∂ g̃B̃C̃
∂xD̃

= 0

for D̃ = 0 by (2.5).

(b) Subcase Ã = B̃ = C̃ = 0:

g̃D̃Ã = g̃D̃C̃ = g̃D̃B̃ = g̃B̃C̃ = 0

for each D̃ ∈ {1, · · · ,n+ p} by (2.5) and

∂ g̃D̃C̃
∂xB̃

+
∂ g̃D̃B̃
∂xC̃

−
∂ g̃B̃C̃
∂xD̃

=
∂ (e2 f )

∂ s
+

∂ (e2 f )

∂ s
− ∂ (e2 f )

∂ s
= 0

for D̃ = 0 by (2.5) and from the fact that f is not defined on Ñ, but it is defined on

N.

In any of these subcases, Γ̃
Ã
B̃C̃ = 0.

(c) Subcase Ã ̸= 0, B̃ ̸= 0, C̃ = 0:

Γ̃
Ã
B̃C̃ =

1
2

n+p

∑
D̃=0

(
∂ g̃D̃C̃
∂xB̃

+
∂ g̃D̃B̃
∂xC̃

)
g̃D̃Ã,

but

g̃D̃Ã = g̃B̃C̃ = 0

for each D̃ ∈ {1, · · · ,n+ p} by (2.5) and

∂ g̃D̃C̃
∂xB̃

+
∂ g̃D̃B̃
∂xC̃

=
∂ (e2 f )

∂ s
+

∂ (e2 f )

∂ s
= 0.

for D̃ = 0 by (2.5) and from the fact that f is not defined on Ñ, but it is defined on

N. Thus, Γ̃
Ã
B̃C̃ = 0 also in this subcase.

3. Ã = C̃ = 0, B̃ ̸= 0:
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By (2.5), g̃D̃Ã = 0 for each D̃ ∈ {1, · · · ,n+ p} and g̃D̃B̃ = g̃B̃C̃ = 0 for D̃ = 0. Thus,

Γ̃
Ã
B̃C̃ =

1
2

n+p

∑
D̃=0

(
∂ g̃D̃C̃
∂xB̃

+
∂ g̃D̃B̃
∂xC̃

−
∂ g̃B̃C̃
∂xD̃

)
g̃D̃Ã =

1
2

∂ g̃00

∂xB̃
g̃00 =

1
2

(
2

∂ f
∂xB̃

e2 f
)

e−2 f =
∂ f
∂xB̃

.

4. Ã ̸= 0, B̃ = C̃ = 0:

By (2.5), g̃D̃Ã = 0 for D̃ = 0 and g̃D̃B̃ = g̃D̃C̃ = 0 for each D̃ ∈ {1, · · · ,n+ p}. Thus,

Γ̃
Ã
B̃C̃ =

1
2

n+p

∑
D̃=0

(
∂ g̃D̃C̃
∂xB̃

+
∂ g̃D̃B̃
∂xC̃

−
∂ g̃B̃C̃
∂xD̃

)
g̃D̃Ã

=−1
2

n+p

∑
D̃=1

∂ g̃B̃C̃
∂xD̃

g̃D̃Ã =−1
2

n+p

∑
D̃=1

∂ g̃00

∂xD̃
g̃D̃Ã

=−1
2

n+p

∑
D̃=1

[(
2e2 f ∂ f

∂xD̃

)
g̃D̃Ã
]

=−e2 f
n+p

∑
D̃=1

∂ f
∂xD̃

g̃D̃Ã =−e2 f
n+p

∑
D=1

∂ f
∂xD

gDA.

Rewriting in the Einstein’s sum convention, we obtain the expression desired for Γ̃
A
00.

We obtain relations for the curvature tensor analyzing each case, considering the definition

of the Riemannian tensor curvature in the beginning of the section 1.2 and keeping in mind the

local expressions of the connection and the Lie Brackets (see Proposition 1.2 for a reference).

1. A ̸= 0, B ̸= 0, C ̸= 0:

Since the Levi-Civita connection with respect to the orthonormal basis {ei}n
i=0 depends

only of the Christoffel symbols and Γ̃
Ã
B̃C̃ = Γ

A
BC, we have that Levi-Civita connection on

N and on Ñ coincide. Furthermore,

R̃ABCD = g̃
(

∇ẽA∇ẽB ẽC −∇ẽB∇ẽA ẽC −∇[ẽA,ẽB]ẽC, ẽD

)
=

(
∇ẽA∇ẽB ẽC −∇ẽB∇ẽA ẽC −∇[ẽA,ẽB]ẽC 0

)e2 f 0

0 gAB

 0

eD


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=
(

∇ẽA∇ẽB ẽC −∇ẽB∇ẽA ẽC −∇[ẽA,ẽB]ẽC 0
) 0

(gAB)eD


=

(
∇ẽA∇ẽB(0,eC)−∇ẽB∇ẽA(0,eC)−∇[ẽA,ẽB](0,eC) 0

) 0

(gAB)eD


=

(
∇(0,eA)∇(0,eB)eC −∇(0,eB)∇(0,eA)eC −∇[(0,eA),(0,eB)]eC 0

) 0

(gAB)eD


=

(
0 ∇eA∇eBeC −∇eB∇eAeC −∇[eA,eB]eC

) 0

(gAB)eD


=

(
∇eA∇eBeC −∇eB∇eAeC −∇[eA,eB]eC

)
(gAB)eD

= g
(

∇eA∇eBeC −∇eB∇eAeC −∇[eA,eB]eC,eD

)
= RABCD,

where the fifth and sixth equalities are true by the local representations of the connection

and of the Lie bracket.

2. A = 0, B ̸= 0, C ̸= 0, D ̸= 0:

Observe that ∇ẽB ẽC and ẽC do not depend of s, furthermore, [e− f ẽ0, ẽB] = 0 by its local

representation, therefore ∇e− f ẽ0
∇ẽB ẽC −∇ẽB∇e− f ẽ0

ẽC −∇[e− f ẽ0,ẽB]
ẽC = 0. From this, we

have

R̃0BCD = g̃
(

∇e− f ẽ0
∇ẽB ẽC −∇ẽB∇e− f ẽ0

ẽC −∇[e− f ẽ0,ẽB]
ẽC, ẽD

)
= g̃(0, ẽD) = 0.

3. A =C = 0, B ̸= 0, D ̸= 0:

Considering geodesic normal coordinates at a point of N and the Christoffel symbols

computed previously, we get
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R̃0B0D = g̃
(

∇̃e− f ẽ0
∇̃ẽB(e

− f ẽ0)− ∇̃ẽB∇̃e− f ẽ0
(e− f ẽ0)− ∇̃[e− f ẽ0,ẽB]

(e− f ẽ0), ẽD

)
= g̃

(
∇̃e− f ẽ0

(Γ̃
K̃
B0ẽK̃)− ∇̃ẽB(Γ̃

L̃
00ẽL̃), ẽD

)
= g̃

(
∇̃e− f ẽ0

(Γ̃
0
B0e− f ẽ0 + Γ̃

K
B0ẽK)− ∇̃ẽBΓ̃

L̃
00ẽL̃ − Γ̃

L̃
00∇̃ẽB ẽL̃, ẽD

)
= g̃

(
∇̃e− f ẽ0

(Γ̃
0
B0e− f ẽ0 + Γ̃

K
B0ẽK)− ∇̃ẽBΓ̃

L̃
00ẽL̃ − Γ̃

L̃
00Γ̃

P̃
BL̃ẽP̃, ẽD

)
= g̃

(
∇̃e− f ẽ0

(Γ̃
0
B0e− f ẽ0 + Γ̃

K
B0ẽK)− ∇̃ẽBΓ̃

D
00ẽD − Γ̃

L̃
00Γ̃

D
BL̃ẽD, ẽD

)
= g̃

(
∇̃e− f ẽ0

(Γ̃
0
B0e− f ẽ0 + Γ̃

K
B0ẽK)− ∇̃ẽBΓ̃

D
00ẽD − Γ̃

L̃
00Γ̃

D
BL̃ẽD, ẽD

)
= g̃

(
∇̃e− f ẽ0

(Γ̃
0
B0e− f ẽ0 + Γ̃

K
B0ẽK)− ∇̃ẽBΓ̃

D
00ẽD − Γ̃

0
00Γ̃

D
B0ẽD − Γ̃

L
00Γ̃

D
BLẽD, ẽD

)
= g̃

(
∇̃e− f ẽ0

Γ̃
0
B0e− f ẽ0 + Γ̃

0
B0∇̃e− f ẽ0

(e− f ẽ0)+ ∇̃e− f ẽ0
Γ̃

K
B0ẽK + Γ̃

K
B0∇̃e− f ẽ0

ẽK

−∇̃ẽBΓ̃
D
00ẽD, ẽD

)
= g̃

(
Γ̃

0
B0∇̃e− f ẽ0

(e− f ẽ0)− ∇̃ẽBΓ̃
D
00ẽD, ẽD

)
= g̃

(
Γ̃

0
B0Γ̃

P̃
00ẽP̃ − ∇̃ẽBΓ̃

D
00ẽD, ẽD

)
= Γ̃

0
B0Γ̃

D
00 − ∇̃ẽBΓ̃

D
00

= ∇eB f (−e2 f
∇eD f )− ∇̃ẽB(−e2 f

∇eD f )

= ∇eB f (−e2 f
∇eD f )+ e2 f 2∇̃ẽB f ∇eD f + e2 f

∇̃ẽB∇eD f

= ∇eB f (−e2 f
∇eD f )+ e2 f 2∇eB f ∇eD f + e2 f

∇eB∇eD f

= e2 f
(

∇eB∇eD f +∇eB f ∇eD f
)
,

where Γ̃
D
BL in the seventh equality vanishes by 2.6 and because we are considering

geodesic normal coordinates at a point of N.

Now we compute the Ricci tensor curvature.

R̃00 = g̃ÃB̃R̃Ã00B̃ =−g̃ÃB̃e2 f (∇̃Ã∇̃B̃ f + ∇̃Ã f ∇̃B̃ f ) =−e2 f (∆̃ f + |∇̃ f |2).
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R̃ÃB̃ = g̃C̃D̃R̃C̃ÃB̃D̃ = g̃00R̃0ÃB̃0 + g̃C̃D̃R̃C̃ÃB̃D̃

= e−2 f (−e2 f (∇̃Ã∇̃B̃ f + ∇̃Ã f ∇̃B̃ f ))+ g̃C̃D̃R̃C̃ÃB̃D̃

= RAB − ∇̃Ã∇̃B̃ f − ∇̃Ã f ∇̃B̃ f ,

R̃Ã0 = g̃B̃C̃R̃B̃Ã0C̃ = g̃B̃C̃R̃0C̃B̃Ã = g̃B̃C̃0 = 0.

R̃0B̃ = 0 is obtained similarly.

Finally, we compute the mean curvature vector of the fiber [x]. Considering (2.4), the

orthonormal frame of Ñ in the beginning of this section and the computation of the Christoffel

symbols done previously,

H[x] =
n+p

∑
α=n+1

⟨∇̃e− f ẽ0
(e− f ẽ0), ν̃α⟩ν̃α +

n

∑
i=1

⟨∇̃e− f ẽ0
(e− f ẽ0), ẽi⟩ẽi

= e− f

(
n+p

∑
α=n+1

⟨∇̃ẽ0(e
− f ẽ0), ν̃α⟩ν̃α +

n

∑
i=1

⟨∇̃ẽ0(e
− f ẽ0), ẽi⟩ẽi

)

= e− f

(
n+p

∑
α=n+1

〈
e− f

(
−∇̃ẽ0 f ẽ0 + ∇̃ẽ0 ẽ0

)
, ν̃α

〉
ν̃α +

n

∑
i=1

〈
e− f

(
−∇̃ẽ0 f ẽ0 + ∇̃ẽ0 ẽ0

)
, ẽi

〉
ẽi

)

= e−2 f

(
n+p

∑
α=n+1

〈
∇̃ẽ0 ẽ0, ν̃α

〉
ν̃α +

n

∑
i=1

〈
∇̃ẽ0 ẽ0, ẽi

〉
ẽi

)

= e−2 f

(
n+p

∑
α=n+1

Γ̃
α

00ν̃α +
n

∑
i=1

Γ̃
i
00ẽi

)

= e−2 f

(
n+p

∑
α=n+1

(
−e2 f ∂ f

∂xα

)
ν̃α +

n

∑
i=1

(
−e2 f ∂ f

∂xi

)
ẽi

)

=
n+p

∑
α=n+1

(
0,− ∂ f

∂xα

να

)
+

n

∑
i=1

(
0,− ∂ f

∂xi
ei

)
= (0,−∇ f ).

Lemma 2.1. The mean curvature vector HM̃ of M̃ on Ñ at (s,x) is given by

HM̃(s,x) = (0,HM(x))+H⊥
[x],
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where HM(x) denotes the mean curvature of M on N at x and ⊥ denotes the projection on the

normal bundle of M̃ on Ñ.

Proof. By the definition of the mean curvature vector and our choice of frame,

HM̃(s,x) =
n+p

∑
α=n+1

⟨∇̃e− f ẽ0
(e− f ẽ0), ν̃α⟩ν̃α +

n+p

∑
α=n+1

n

∑
i=1

⟨∇̃ẽi ẽi, ν̃α⟩ν̃α , (2.11)

HM(x) =
n+p

∑
α=n+1

n

∑
i=1

⟨∇eiei,να⟩να (2.12)

H[x] =
n+p

∑
α=n+1

⟨∇̃e− f ẽ0
(e− f ẽ0), ν̃α⟩ν̃α +

n

∑
i=1

⟨∇̃e− f ẽ0
(e− f ẽ0), ẽi⟩ẽi. (2.13)

By (2.3), (2.4), the local expression of the connection in local coordinates and the Christoffel

symbols computed previously,

HM̃(s,x)−H⊥
[x] =

n+p

∑
α=n+1

n

∑
i=1

⟨∇̃ẽi ẽi, ν̃α⟩ν̃α

=
n+p

∑
α=n+1

n

∑
i=1

⟨(0,∇eiei),(0,να)⟩(0,να)

=
n+p

∑
α=n+1

n

∑
i=1

(
0,⟨∇eiei,να⟩να

)
= (0,HM(x)).

As a direct consequence, we have

Corollary 2.1. The mean curvature vector of M̃ at (s,x) is given by

HM̃(s,x) = (0,HM(x)− (∇ f )⊥).

Proof. By Proposition 2.1, we have

HM̃(s,x) = (0,HM(x))+H⊥
[x] = (0,HM(x))+(0,(−∇ f )⊥).
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Now, we are able to prove a correspondence between conformal solitons and minimal

submanifolds, first proved by Smoczyk for hypersurfaces.

Theorem 2.1. Assume that X is a conformal vector field on a simply connected Riemannian

manifold (Nn+p,g) satisfying (2.2). Then there exists a warped product metric g̃ on Ñ =

R×Nn+p such that a submanifold Mn ⊂ Nn+p satisfies the soliton equation (2.1) if and only if

the associated submanifold M̃ = R×Mn ⊂ Ñ is a minimal submanifold in (Ñ, g̃).

Proof. Let ω =
n

∑
i=1

Xidxi be a 1-form dual to the vector X defined on N. From the hypothesis

done in the beginning of this chapter, ∇ jXi = ∇iX j for each i, j = 1, · · ·n. This hypothesis, the

symmetry of the connection ∇ and as it was seen in the proof of the Proposition 1.1 provide

∇ jXi = ∇iX j ⇐⇒ (∇∂ jω)(∂i) = (∇∂iω)(∂ j)

⇐⇒ ∂

∂x j
(ω(∂i))−ω(∇∂ j∂i) =

∂

∂xi
(ω(∂ j))−ω(∇∂i∂ j)

⇐⇒ ∂

∂x j
(ω(∂i))−ω(∇∂ j∂i −∇∂i∂ j) =

∂

∂xi
(ω(∂ j))

⇐⇒ ∂

∂x j
(ω(∂i))−ω([∂ j,∂i]) =

∂

∂xi
(ω(∂ j))

⇐⇒ ∂

∂x j
(ω(∂i)) =

∂

∂xi
(ω(∂ j))

⇐⇒ ∂Xi

∂x j
=

∂X j

∂xi
.

Thus,

dω = d

(
n

∑
i=1

Xidxi

)

=
n

∑
i=1

n

∑
j=1

∂Xi

∂x j
dxi ∧dx j

= ∑
1≤i< j≤n

(
∂Xi

∂x j
−

∂X j

∂xi

)
dxi ∧dx j = 0.

Since ω is defined on a simply connected Riemannian manifold N and dω = 0, it follows

from the Theorem 1.5 the existence of a smooth map f : N −→ R such that ω = d f . By the
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duality between vector fields and 1-forms, X = ∇ f . Defining a warped metric by g̃(s,x) =

e2 f (x)ds2 +g(x), the result follows from the previous corollary.

2.2 Minimality and stability in arbitrary codimension

Lemma 2.2. The following equality holds on a hypersurface M̃ ⊂ Ñ:

|Ãα |2 + R̃ic(ν̃α , ν̃α) = |Aα |2 +Ric(να ,να)−∇να
∇να

f .

Proof. Recalling that ν̃α = (0,να), (2.10) implies

R̃ic(ν̃α , ν̃α) = Ric(να ,να)−∇να
∇να

f −⟨να ,∇ f ⟩2,

for each α ∈ {n+1, · · · ,n+ p} and where ⟨·, ·⟩ is the inner product on T N. The squared norm

of the second fundamental form of Ñ with respect to the normal ν̃α is

|Ãα |2 = g̃P̃Q̃g̃S̃T̃ h̃α

P̃S̃h̃α

Q̃T̃

= gPQgST hα
PShα

QT + g̃00g̃00h̃00h̃00

= |Aα |2 +(e−2 f )(e−2 f )
(
⟨∇ẽ0 ẽ0, ν̃α⟩

)(
⟨∇ẽ0 ẽ0, ν̃α⟩

)
= |Aα |2 +

(
⟨∇e− f ẽ0

(e− f ẽ0), ν̃α⟩
)(

⟨∇e− f ẽ0
(e− f ẽ0), ν̃α⟩

)
= |Aα |2 +

(
⟨H[x], ν̃α⟩

)2

= |Aα |2 +
(
⟨−∇ f ,να⟩

)2
.

Combining this identity and the previous identity, we proved the lemma.

Definition 2.1. If M̃ is the submanifold associated to M, then we call a deformation of M̃

symmetric, if it is constant along the fiber directions [x], i.e., |∇̃⊥
e− f ẽ0

S̃|2 = 0. A minimal
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submanifold M̃ in Ñ that is associated to a submanifold M ⊂ N is called symmetric stable if

∫
[0,1]×M

(
n

∑
i, j=1

⟨∇̃ẽiS̃, ẽ j⟩2 + ⟨∇̃e− f ẽ0
S̃,e− f ẽ0⟩2 +

n

∑
i=1

R̃(ẽi, S̃, S̃, ẽi)+ R̃(e− f ẽ0, S̃, S̃,e− f ẽ0)

)
dµ̃

≤
∫
[0,1]×M

(
n

∑
i=1

|∇̃⊥
ẽi

S̃|2 + |∇̃⊥
e− f ẽ0

S̃|2
)

dµ̃

for each S̃ ∈ Γ
∞
0,sym(ν([0,1]× M)) := {S̃ ∈ Γ(ν([0,1]× M)) ; S̃(s,x) = S̃(0,x) for all s ∈

[0,1] and S(x) := S̃(0,x) is a compactly supported smooth normal vector field on M in N}.

Γ(ν([0,1]×M)) is the normal bundle of [0,1]×M in Ñ.

In the next lemma, we consider the following set of functions:

C∞
0,sym([0,1]×M) := {ũ ; ũ(s,x) = ũ(0,x) for all s ∈ [0,1] and u(x) := ũ(0,x) ∈C∞

c (M)}.

Lemma 2.3. Assume that X is a conformal vector field satisfying (2.2) on a Riemannian

manifold simply connected (N,g). Further assume that M ⊂ N is a hypersurface that solves the

soliton equation (2.1). Then there exists a smooth function on N with ∇ f = X (unique up to

adding a constant) such that the associated minimal hypersurface M̃ ⊂ (Ñ,e2 f ds2 +g) is stable

under symmetric deformations if and only if

∫
M
(|A|2 +Ric(ν ,ν)−λ )u2e f dµ ≤

∫
M
|∇u|2e f dµ

for each test function u ∈C∞
c (M).

Proof. From the Theorem 2.1, there exists a smooth function on N with ∇ f = X and it is clear

that such f is unique up to adding a constant because if f1 and f2 are two functions with the

same property and such that f1− f2 is a constant, then ∇ f1 = ∇ f2 = X. A hypersurface M̃ ⊂ Ñ

is symmetric stable if and only if

∫
[0,1]×M

(|Ã|2 + R̃ic(ν̃ , ν̃)−λ )ũ2dµ̃(s,x)≤
∫
[0,1]×M

|∇ũ|2dµ̃(s,x)

for each ũ ∈C∞
0,sym([0,1]×M).
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Recalling that ∇ f = X, the proof of the Proposition 1.1 and considering an orthonormal

frame {eα}n+p
α=n+1,

∇β Xα = (∇eβ
ω)(eα)

=
∂

∂xβ

(ω(eα))−ω(∇eβ
eα)

=
∂

∂xβ

(g(X,eα))

=
∂

∂xβ

(g(∇ f ,eα))

=
∂

∂xβ

(∇α f )

= ∇β ∇α f

This and hypothesis (2.2) done in the beginning of this chapter give ∇ν∇ν f = λg(ν ,ν) = λ .

Therefore the previous lemma implies

∫
[0,1]×M

(|Ã|2 + R̃ic(ν̃ , ν̃))ũ2 −|∇̃ũ|2dµ̃(s,x) =
∫
[0,1]×M

(|A|2 +Ric(ν ,ν)−λ )ũ2 −|∇̃ũ|2dµ̃(s,x)

=
∫
[0,1]×M

(|A|2 +Ric(ν ,ν)−λ )ũ2 −|∇ũ|2dµ̃(s,x),

where the last equality follows from the fact that the connection ∇̃ on M̃ is induced by the

connection ∇ on M.

Defining ũ := u with u ∈ C∞
0,sym(M) and observing that dµ̃ = ds

√
det g̃ = dse f

√
detg =

dse f dµ by (2.5), we obtain the result.

The following lemma is necessary to prove the next lemma.
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Lemma 2.4.

n

∑
i, j=1

⟨∇̃ẽiS̃, ẽ j⟩2 + ⟨∇̃e− f ẽ0
S̃,e− f ẽ0⟩2 +

n

∑
i=1

R̃(ẽi, S̃, S̃, ẽi)+ R̃(e− f ẽ0, S̃, S̃,e− f ẽ0)

=
n

∑
i, j=1

⟨∇eiS, ẽ j⟩2 +
n

∑
i=1

R(ei,S,S,ei)−
n+p

∑
α,β=n+1

SαSβ
∇α∇β f ,

where S̃ = Sα
ν̃α = (0,Sα

να) = (0,S).

Proof. For each 1 ≤ i, j ≤ n, we have by (2.6) that

⟨∇̃ẽiS̃, ẽ j⟩=
n+p

∑
α=n+1

⟨∇̃ẽi(S
α

ν̃α), ẽ j⟩=
n+p

∑
α=n+1

Sα⟨∇̃ẽi ν̃α , ẽ j⟩

=
n+p

∑
α=n+1

Sα(−Γ̃
α

i j) =
n+p

∑
α=n+1

Sα(−Γ
α

i j) =
n+p

∑
α=n+1

Sα⟨∇eiνα ,e j⟩= ⟨∇eiS,e j⟩.

We also have

⟨∇̃e− f ẽ0
S̃,e− f ẽ0⟩= e−2 f

n+p

∑
α=n+1

Sα⟨∇̃ẽ0 ν̃α , ẽ0⟩= e−2 f
n+p

∑
α=n+1

Sα h̃α
00,

where h̃α
00 is the second fundamental form of M̃ in Ñ. Using (2.7) and (2.9), we have, for each

1 ≤ i ≤ n,

R̃(ẽi, S̃, S̃, ẽi) =
n+p

∑
α,β=n+1

SαSβ R̃(ẽi, ν̃α , ν̃β , ẽi) =
n+p

∑
α,β=n+1

SαSβ R̃iαβ i

=
n+p

∑
α,β=n+1

SαSβ Riαβ i =
n+p

∑
α,β=n+1

SαSβ R(ei,να ,νβ ,ei) = R(ei,S,S,ei)

and

R̃(e− f ẽ0, S̃, S̃,e− f ẽ0) =
n+p

∑
α,β=n+1

e−2 f SαSβ R̃0αβ0 =−
n+p

∑
α,β=n+1

e−2 f SαSβ R̃0α0β

=−
n+p

∑
α,β=n+1

SαSβ

(
∇α∇β f +∇α f ∇β f

)
.
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Thus,

⟨∇̃ẽiS̃, ẽ j⟩2 + ⟨∇̃e− f ẽ0
S̃,e− f ẽ0⟩2 +

n

∑
i=1

R̃(ẽi, S̃, S̃, ẽi)+ R̃(e− f ẽ0, S̃, S̃,e− f ẽ0) (2.14)

= ⟨∇eiS,e j⟩2 +
n

∑
i=1

R(ei,S,S,ei)−
n+p

∑
α,β=n+1

SαSβ
∇α∇β f + e−4 f

(
n+p

∑
α=n+1

Sα h̃α
00

)2

−
n+p

∑
α,β=n+1

SαSβ
∇α f ∇β f .

Now, we compute the last two terms. As f is independent of s, remains, by (2.13), that

H[x] =−
n+p

∑
α=n+1

e−2 f h̃α
00ν̃α +

n

∑
i=1

⟨∇̃e− f ẽ0
(e− f ẽ0), ẽi⟩ẽi,

then

⟨H[x], S̃⟩=−e−2 f
n+p

∑
α=n+1

Sα h̃α
00.

On the other hand,

⟨H[x], S̃⟩= ⟨(0,−∇ f ),(0,S)⟩=−⟨∇ f ,S⟩=−
n+p

∑
α=n+1

Sα
∇α f .

These two equalities provide

n+p

∑
α,β=n+1

SαSβ
∇α f ∇β f =

(
n+p

∑
α=n+1

Sα
∇α f

)2

= e−4 f

(
n+p

∑
α=n+1

Sα h̃α
00

)2

.

Substituting this last equality in (2.14), we have the result.

Lemma 2.5. Assume that X is a conformal vector field on a simply connected Riemannian

manifold (N,g) such that ∇iX j = λgi j for a smooth function λ . Further, assume that M ⊂ N

is a submanifold which satisfies H = X⊥, then there exists a smooth function on N with

∇ f = X, which is unique up to adding constant, such that the associated minimal submanifold

M̃ ⊂ (Ñ,e2 f ds2 +g) is stable under symmetric deformations if and only if
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∫
M

(
n

∑
i, j=1

⟨∇eiS,e j⟩2 +R(ei,S,S,ei)−λ |S|2
)

e f dµ ≤
∫

M

n

∑
i=1

|∇⊥
ei

S|2e f dµ (2.15)

for every normal vector field S with compact support on M, where ∇
⊥ is the induced normal

connection on the normal bundle of M.

Proof. By the Theorem 2.1, there exists a smooth function on N with ∇ f =X and it is clear that

such f is unique up to adding a constant because if f1 and f2 are two functions with the same

property, then ∇( f1 − f2) = ∇ f1 −∇ f2 = X −X = 0, which implies that f1 − f2 is a constant.

By the warped product metric (2.3) which we defined, it remains that dµ̃(s,x) = e f (x)dsdµ(x).

Arguing analogously the Lemma 2.3, ∇α∇β f = λgαβ , therefore

n+p

∑
α,β=n+1

SαSβ
∇α∇β f =

n+p

∑
α,β=n+1

SαSβ
λgαβ = λ |S|2.

As S̃ independent of s, ∇̃
⊥
e− f ẽ0

S̃ = 0. Now, observe that is suficient prove that |∇̃⊥
ẽi

S̃|2 = |∇⊥
ei

S|2

for each 1 ≤ i ≤ n. Indeed, if this holds, then the beginning of the demonstration, the previous

Lemma and the definition (2.1) imply that

∫
M

(
n

∑
i, j=1

⟨∇eiS,e j⟩2 +
n

∑
i=1

R(ei,S,S,ei)−λ |S|2
)

e f dµ

=
∫
[0,1]×M

(
n

∑
i, j=1

⟨∇eiS,e j⟩2 +
n

∑
i=1

R(ei,S,S,ei)−λ |S|2
)

e f dsdµ

=
∫
[0,1]×M

(
n

∑
i, j=1

⟨∇eiS,e j⟩2 +
n

∑
i=1

R(ei,S,S,ei)−λ |S|2
)

dµ̃

=
∫
[0,1]×M

(
n

∑
i, j=1

⟨∇eiS,e j⟩2 +
n

∑
i=1

R(S,ei,S,ei)−
n+p

∑
α,β=n+1

SαSβ
∇α∇β f

)
dµ̃

=
∫
[0,1]×M

(
n

∑
i, j=1

⟨∇̃ẽiS̃, ẽ j⟩2 + ⟨∇̃e− f ẽ0
S̃,e− f ẽ0⟩2 +

n

∑
i=1

R̃(ẽi, S̃, S̃, ẽi)+ R̃(e− f ẽ0, S̃, S̃,e− f ẽ0)

)
dµ̃

≤
∫
[0,1]×M

(
n

∑
i=1

|∇̃⊥
ẽi

S̃|2 + |∇̃⊥
e− f ẽ0

S̃|2
)

dµ̃
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=
∫
[0,1]×M

(
n

∑
i=1

|∇⊥
ei

S|2
)

e f dsdµ

=
∫

M

(
n

∑
i=1

|∇⊥
ei

S|2
)

e f dµ,

where the penultimate equality holds because the deformation is symmetric. This proves the

first part. By an analogous reasoning, the converse also holds, therefore the Theorem will be

proved. Thus, we will show that |∇̃⊥
ẽi

S̃|2 = |∇⊥
ei

S|2 for each 1 ≤ i ≤ n. By (2.6),

∇̃
⊥
ẽi

S̃ = ∇̃
⊥
ẽi

(
n+p

∑
α=n+1

Sα
ν̃α

)
=

n+p

∑
α=n+1

ẽi(Sα)ν̃α +Sα
∇̃
⊥
ẽi

ν̃α

=
n+p

∑
α=n+1

(0,ei)(Sα)ν̃α +Sα
∇̃
⊥
ẽi

ν̃α =
n+p

∑
α=n+1

ei(Sα)ν̃α +Sα
∇̃
⊥
ẽi

ν̃α

=
n+p

∑
α=n+1

(
ei(Sα)ν̃α +Sα

Γ̃
β

iα ν̃β

)
=

n+p

∑
α=n+1

(
ei(Sα)(0,να)+Sα

Γ
β

iα(0,νβ )
)

=

(
0,

n+p

∑
α=n+1

ei(Sα)να +Sα
Γ

β

iανβ

)
=

(
0,∇⊥

ei

(
n+p

∑
α=n+1

Sα
να

))
= (0,∇⊥

ei
S),

therefore |∇̃⊥
ẽi

S̃|2 = |∇⊥
ei

S|2 for each 1 ≤ i ≤ n.

Definition 2.2. A conformal soliton Mn on Nn+p is stable if it satisfies (2.15) for any compactly

supported normal vector field S on M.

2.3 Totally geodesic submanifolds.

As observed by Arezzo and Sun, the Theorem 2.1 indicates that it is natural find for special

minimal submanifolds in Ñ.

Proposition 2.2. Assume that X is a conformal vector field on a simply connected Riemannian

manifold (Nn+p,g) satisfying (2.2). Then there exists a warped product metric g̃ on Ñ =
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R×Nn+p such that a submanifold Mn ⊂ Nn+p is a totally geodesic submanifold in (N,g) if

and only if the associated submanifold M̃ = R×Mn ⊂ Ñ is a totally geodesic submanifold in

(Ñ, g̃).

Proof. Defining g̃ = e2 f (x)ds2 +g with f satisfying ∇ f = X. We will denote by h̃α
i j of M̃ in

(Ñ, g̃) and hα
i j the second fundamental form of M in (N,g). The hypothesis that F : M −→ N is

an immersion and the Inverse Function Theorem allow us write M locally as

F : U ⊂ M −→ N

x 7→ F(x),

then M̃ is given by

F̃ : R×U −→ Ñ

(s,x) 7→ (s,F(x)).

By the Gauss’ equation,

∂ 2FA

∂xi∂x j −Γ
k
i j

∂FA

∂xk +Γ
A
DE

∂FD

∂xi
∂FE

∂x j =−hβ

i jν
A
β

(2.16)

and

∂ 2F̃ Ã

∂xi∂x j − Γ̃
c
ab

∂ F̃ Ã

∂xc + Γ̃
Ã
D̃Ẽ

∂ F̃ D̃

∂xa
∂ F̃ Ẽ

∂xb =−h̃β

abν̃
Ã
β
. (2.17)

From the Gauss’ equation for F , we have

−hβ

i j = gACν
C
β

∂ 2FA

∂xi∂x j +gACν
C
β

Γ
A
DE

∂FD

∂xi
∂FE

∂x j . (2.18)

From the Gauss’ equation for F̃ , we have

−h̃β

ab = g̃ÃC̃ν̃
C̃
β

∂ 2F̃ Ã

∂xi∂x j + g̃ÃC̃ν̃
C̃
β

Γ̃
Ã
D̃Ẽ

∂ F̃ D̃

∂xa
∂ F̃ Ẽ

∂xb . (2.19)



2.3 Totally geodesic submanifolds. 44

By the definition (2.4) of ν̃α , we have

ν̃
A
β
= ν

A
β

for A ≥ 1 and ν̃
0
β
= 0. By (2.5), (2.6), (2.16) and the local expression of F̃ , we have, for i, j ≥ 1,

−h̃β

i j = g̃ÃC̃ν̃
C̃
β

∂ 2F̃ Ã

∂xi∂x j + g̃ÃC̃ν̃
C̃
β

Γ̃
Ã
D̃Ẽ

∂ F̃ D̃

∂xa
∂ F̃ Ẽ

∂xb (2.20)

= gACν
C
β

∂ 2FA

∂xi∂x j +gACν
C
β

Γ
A
DE

∂FD

∂xi
∂FE

∂x j = hβ

i j, (2.21)

i.e.,

h̃β

i j = hβ

i j,1 ≤ i, j ≤ n,n+1 ≤ β ≤ n+ p. (2.22)

Similarly, we have, for j ≥ 1,

−h̃β

0 j = g̃ÃC̃ν̃
C̃
β

∂ 2F̃ Ã

∂ s∂x j + g̃ÃC̃ν̃
C̃
β

Γ̃
Ã
D̃Ẽ

∂ F̃ D̃

∂ s
∂ F̃ Ẽ

∂x j = g̃ÃC̃ν̃
C̃
β

Γ̃
Ã
0Ẽ

∂ F̃ Ẽ

∂x j = 0,

i.e.,

h̃β

0 j = 0,1 ≤ j ≤ n,n+1 ≤ β ≤ n+ p. (2.23)

Finally, we have

−h̃β

00 = g̃ÃC̃ν̃
C̃
β

∂ 2F̃ Ã

∂ s2 + g̃ÃC̃ν̃
C̃
β

Γ̃
Ã
D̃Ẽ

∂ F̃ D̃

∂ s
∂ F̃ Ẽ

∂ s
= gACν

C
β

Γ̃
Ã
00

=−gACν
C
β

e2 f gAB ∂ f
∂xB =−e2 f

ν
B
β

∂ f
∂xB =−e2 f ⟨∇ f ,νβ ⟩,

i.e.,

h̃β

00 = e2 f ⟨∇ f ,νβ ⟩, n+1 ≤ β ≤ n+ p. (2.24)
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If M̃ is totally geodesic in (Ñ, g̃), then the second fundamental form of M̃ vanishes, i.e.,

h̃β

i j = 0 for 1 ≤ i, j ≤ n and n+1 ≤ β ≤ n+ p. From this and (2.22), follows that the second

fundamental form of M vanishes, which implies that M is totally geodesic in (N,g).

If M is totally geodesic in (N,g), then the second fundamental form of M vanishes and,

consequentely, M is a minimal submanifold. Thus, follows from the equation for the conformal

soliton that X⊥ = H ≡ 0. As seen in the proof of the Theorem 2.1, it must exists a potential

function f so that X = ∇ f , therefore (∇ f )⊥ ≡ 0 and, by (2.24),

h̃β

00 = e2 f ⟨∇ f ,νβ ⟩ ≡ 0, n+1 ≤ β ≤ n+ p.

This, (2.22) and (2.23), imply that the second fundamental form of M̃ vanishes, therefore M̃ is

totally geodesic in (Ñ, g̃).

Corollary 2.2. A conformal soliton M in (Rn+p,δ ) satisfying (2.2) is a linear subspace if and

only if its associated submanifold M̃ is totally geodesic in (Rn+p+1, g̃).

Proof. The previous Theorem combined with the Theorem 1.1 and the observation (1.3) gives

the result.

Remark 2.1. Roughly speaking, a linear subspace in the corollary is understood as a linear

subspace, its translation or a submanifold which is a linear subspace or its translation in each

connected component of the submanifold.



Chapter 3

Variational principle applied to conformal

solitons

The first and second variation’s formulas of a weighted functional are computed to show

that the conformal solitons to the mean curvature flow are the only critical points for such

functional. The second variation’s formula of the weighted functional gives a stability notion

for conformal solitons, which coincides with the stability derived in the previous chapter. Also,

we present some examples of hypersurfaces and submanifolds which are stable and a proof that

conformal solitons are related with singularities of the mean curvature flow. Finally, we present

a proof that compact self-shrinkers in Rn+1 are non stable as well as a proof that "grim reaper"

in R2 and the "grim reaper" cylinder in Rn+1 are stable.

3.1 A variational principle

Suppose that X is an arbitrary conformal vector field on a simply connected Riemannian

manifold (Nn+p,g) such that ∇iX j = λgi j for a smooth function λ , then there exists a smooth

function f on N such that ∇ f = X as we did see. Define the weighted volume functional G on

a submanifold M of N by

G(M) :=
∫

M
e f dµ,
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where dµ is the volume element induced on M.

Let F : M× (−ε,ε)−→ N be a variation with compact support, that is, F = Id outside of

some compact set and F(x,0) = x.

Let Fs restrict to M be the variational vector field. Let {xi}n
i=1 be local coordinates on M,

then the induced metric on F(M,s) is given by

gi j(s) = g
(
Fxi,Fx j

)
.

Denote by ∇ and ∇ the Levi-Civita’s connection of N and M, respectively. Define

ν(s) = e f

√
det(gi j(s))√
det(gi j(0))

.

The function ν is well-defined and independent of the choice of the coordinate system.

Furthermore,

G(M) =
∫

M
ν(s)

√
det(gi j(0)).

Lemma 3.1.
d
ds

ν(s)
∣∣∣∣
s=0

= ⟨X⊥−H,Fs⟩e f +divM(e f FT
s ).

Proof.

dν

ds
(s) = dν(Fs) = d f (Fs)e f

√
det(gi j(s))√
det(gi j(0))

+ e f 1√
det(gi j(0))

1
2
√

det(gi j(s))

n

∑
i=1

adj(gi j(s))dgi j(Fs)

= ⟨∇ f ,Fs⟩e f

√
det(gi j(s))√
det(gi j(0))

+ e f 1√
det(gi j(0))

1
2
√

det(gi j(s))

n

∑
i=1

adj(gi j(s))g′i j(s)

= ⟨∇ f ,Fs⟩e f

√
det(gi j(s))√
det(gi j(0))

+ e f 1√
det(gi j(0))

1
2
√

det(gi j(s))

n

∑
i=1

det(gi j(s))gi j(s)g′i j(s)

= ⟨∇ f ,Fs⟩e f

√
det(gi j(s))√
det(gi j(0))

+ e f 1√
det(gi j(0))

√
det(gi j(s))

2

n

∑
i=1

gi j(s)g′i j(s)

=

(
⟨∇ f ,Fs⟩+

1
2

n

∑
i=1

gi j(s)g′i j(s)

)
ν(s),
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where adj denotes the adjoint matrix. Thus,

dν

ds
(s) =

(
⟨∇ f ,Fs⟩+

1
2

n

∑
i=1

gi j(s)g′i j(s)

)
ν(s), (3.1)

where

g′i j(s) =
d
ds

⟨Fxi,Fx j⟩= ⟨∇FsFxi,Fx j⟩+ ⟨Fxi,∇FsFx j⟩= ⟨Fxis,Fx j⟩+ ⟨Fxi,Fx js⟩. (3.2)

Fixed x ∈ M, we can compute pointwise
dν

ds
(s)
∣∣∣∣
s=0

and choose a coordinate system at x so

that {Fxi(0)}
n
i=1 is an orthonormal basis of TxM with a induced metric g(0). Using the fact that

∇FsFxi −∇Fxi
Fs = [Fs,Fxi] = 0, we have at x that

1
2

n

∑
i=1

gi j(0)g′i j(0) =
1
2

n

∑
i=1

g′ii(0) =
n

∑
i=1

⟨∇FsFxi,Fxi⟩=
n

∑
i=1

⟨∇Fxi
Fs,Fxi⟩

=
n

∑
i=1

⟨∇Fxi
F⊥

s ,Fxi⟩+
n

∑
i=1

⟨∇Fxi
FT

s ,Fxi⟩

=−
n

∑
i=1

⟨F⊥
s ,∇Fxi

Fxi⟩+divMFT
s

=−⟨H,Fs⟩+divMFT
s .

Substituting this and X = ∇ f on (3.1), we have

d
ds

ν(s)
∣∣∣∣
s=0

=
(
⟨X,Fs⟩−⟨H,Fs⟩+divMFT

s
)

e f

=
(
⟨X⊥−H,Fs⟩+ ⟨XT ,Fs⟩+divMFT

s

)
e f

= ⟨X⊥−H,Fs⟩e f + ⟨XT ,Fs⟩e f +divM(FT
s )e f

= ⟨X⊥−H,Fs⟩e f + ⟨X,FT
s ⟩e f + e f

n

∑
i=1

⟨∇Fxi
FT

s ,Fxi⟩

= ⟨X⊥−H,Fs⟩e f + ⟨∇ f ,FT
s ⟩e f + e f

n

∑
i=1

⟨∇Fxi
FT

s ,Fxi⟩

= ⟨X⊥−H,Fs⟩e f +

〈
n

∑
i=1

⟨∇ f ,Fxi⟩Fxi,F
T
s

〉
e f + e f

n

∑
i=1

⟨∇Fxi
FT

s ,Fxi⟩
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= ⟨X⊥−H,Fs⟩e f + e f
n

∑
i=1

〈
Fxi,⟨∇ f ,Fxi⟩F

T
s

〉
e f + e f

n

∑
i=1

⟨∇Fxi
FT

s ,Fxi⟩

= ⟨X⊥−H,Fs⟩e f +
n

∑
i=1

〈
Fxi,d f (Fxi)e

f FT
s

〉
+ e f

n

∑
i=1

⟨∇Fxi
FT

s ,Fxi⟩

= ⟨X⊥−H,Fs⟩e f +
n

∑
i=1

〈
Fxi,∇Fxi

f e f FT
s

〉
+

n

∑
i=1

⟨e f
∇Fxi

FT
s ,Fxi⟩

= ⟨X⊥−H,Fs⟩e f +
n

∑
i=1

⟨∇Fxi
(e f FT

s ),Fxi⟩

= ⟨X⊥−H,Fs⟩e f +divM(e f FT
s ).

Theorem 3.1 (First Variation Formula of the weighted volume functional).

d
ds

G(F(M,s))
∣∣∣∣
s=0

=
∫

M
⟨X⊥−H,Fs⟩e f dµ.

Proof. Observe that

d
ds

G(F(M,s))
∣∣∣∣
s=0

=
∫

M

d
ds

ν(s)
∣∣∣∣
s=0

√
det(gi j(0)) (3.3)

From the Lemma 3.1,

∫
M

d
ds

ν(s)
∣∣∣∣
s=0

√
det(gi j(0)) =

∫
M

(
⟨X⊥−H,Fs⟩e f +divM(e f FT

s )
)√

det(gi j(0))

By the Divergence Theorem, ∫
M

divM(e f FT
s )dµ = 0.

Thus,

d
ds

G(F(M,s))
∣∣∣∣
s=0

=
∫

M
⟨X⊥−H,Fs⟩e f dµ. (3.4)



3.1 A variational principle 50

Corollary 3.1. M is a critical point for the G-functional if and only if X⊥ = H on M, i.e., M is

a conformal soliton for the mean curvature flow with conformal vector field X.

Proof. From (3.4), it is clear that every conformal soliton M is a critical point of the G-

functional. Reciprocally, suppose that M is a critical point of the G-functional. Once that

the normal variation F is arbitrary, we can choose F such that Fs = u(X⊥−H), where u is a

positive function with compact support on M, then M is a conformal soliton from this, (3.4)

and the hypothesis that M is a critical point of the G-functional.

Now, suppose that Mn ⊂ Nn+p is a conformal soliton, i.e., X⊥ = H. We will compute the

second variation of the G-functional for the normal variational F of M (FT
s ≡ 0) with compact

support.

As before, we will compute
d2

ds2 ν(s)
∣∣∣∣
s=0

pointwise so that, for a point x fixed, we have an

orthonormal coordinate system at x. Before that, we will need the following claim.

Claim 3.1.
n

∑
i, j=1

(gi j)′g′i j =−
n

∑
i, j=1

(g′i j)
2.

Proof. We will omit the point 0 for simplicity and we will consider normal coordinates.

Observe that

(gipgp j)
′ = (δ i

j)
′ =⇒ (gi j)′ =−g′i j

and

g′i j = ⟨Fxis,Fx j⟩+ ⟨Fxi,Fx js⟩=−2⟨A(Fxi,Fx j),Fs⟩.

The last equality implies that (g′i j) is diagonalizable. This and the first equality imply that

((gi j)′) is diagonalizable. If D is the diagonal matrix of (g′i j), then

n

∑
i, j=1

(gi j)′g′i j = tr ((G−1)′G′)
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= tr ((Q−1(−D)Q)(Q−1DQ))

= tr (Q−1(−D)DQ)

= tr ((−D)DQQ−1)

=−tr (D2)

=−tr ((G′)2)

=−
n

∑
i, j=1

(g′i j)
2,

where tr denotes the trace of a matrix.

We return to compute
d2

ds2 ν(s)
∣∣∣∣
s=0

.

Lemma 3.2.

d2

ds2 ν(s)
∣∣∣∣
s=0

=

(
|∇⊥

Fs|2 −
n

∑
i, j=1

⟨B(Fxi,Fx j),Fs⟩2 +λ ⟨Fs,Fs⟩

−
n

∑
i=1

⟨RN(Fs,Ei)Ei,Fs⟩

)
e f +(divMFss + ⟨∇ f ,Fss⟩)e f .

Proof. By (3.1), the previous claim and considering normal coordinates,

d2

ds2 ν(s)
∣∣∣∣
s=0

=

(
⟨∇ f ,Fs⟩′+

1
2

n

∑
i, j=1

(
(gi j)′(0)g′i j(0)+gi j(0)g′′i j(0)

))
ν(0)

+

(
⟨∇ f ,Fs⟩+

1
2

n

∑
i, j=1

gi j(0)g′i j(0)

)
dν

ds
(s)
∣∣∣∣
s=0

=

(
⟨∇ f ,Fs⟩′+

1
2

n

∑
i, j=1

(
(gi j)′(0)g′i j(0)+gi j(0)g′′i j(0)

))
ν(0)

+

(
⟨∇ f ,Fs⟩+

1
2

n

∑
i, j=1

gi j(0)g′i j(0)

)2

ν(0)



3.1 A variational principle 52

=

(
⟨∇ f ,Fs⟩′+

1
2

n

∑
i, j=1

(
(gi j)′(0)g′i j(0)+gi j(0)g′′i j(0)

))
e f

+

(
⟨∇ f ,Fs⟩+

1
2

n

∑
i, j=1

gi j(0)g′i j(0)

)2

e f

=

(
⟨∇ f ,Fs⟩′−

1
2

n

∑
i, j=1

(g′i j(0))
2 +

1
2

n

∑
i=1

g′′ii(0)

)
e f

+

(
⟨∇ f ,Fs⟩+

1
2

n

∑
i, j=1

(gi jg′i j)(0)

)2

e f ,

i.e.,

d2

ds2 ν(s)
∣∣∣∣
s=0

=

(
⟨∇ f ,Fs⟩′−

1
2

n

∑
i, j=1

(g′i j(0))
2 +

1
2

n

∑
i=1

g′′ii(0)

)
e f (3.5)

+

(
⟨∇ f ,Fs⟩+

1
2

n

∑
i, j=1

(gi jg′i j)(0)

)2

e f

From the fact that M is a conformal soliton, that
1
2

n

∑
i=1

gi j(0)g′i j(0) =−⟨H,Fs⟩+divMFT
s

and that FT
s ≡ 0, follows that

d2

ds2 ν(s)
∣∣∣∣
s=0

=

(
⟨∇ f ,Fs⟩′−

1
2

n

∑
i, j=1

(g′i j(0))
2 +

1
2

n

∑
i=1

g′′ii(0)

)
e f . (3.6)

We will compute the three terms of the right side of the equality above separately. Recalling

that ∇iX j = λgi j, we see that ∇
2

f = ∇X = λg, therefore

⟨∇ f ,Fs⟩′ = ∇
2

f (Fs,Fs)+ ⟨∇ f ,Fss⟩= λ ⟨Fs,Fs⟩+ ⟨∇ f ,Fss⟩. (3.7)

Defining Ei := Fxi(0) for each i = 1, · · · ,n and considering (3.2),

g′i j(0) = ⟨Fxis,Fx j⟩+ ⟨Fxi,Fx js⟩=−2⟨B(Ei,E j),Fs⟩. (3.8)
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Recalling that {Fxi(0)}
n
i=1 is an orthonormal basis of TxM with a induced metric g(0),

n

∑
i=1

g′′ii(0) =
n

∑
i=1

(2⟨Fxis,Fxi⟩)
′

=
n

∑
i=1

(2⟨Fxiss,Fxi⟩+2⟨Fxis,Fxis⟩)

=
n

∑
i=1

(
2⟨∇Fs∇FsFxi,Fxi⟩+2⟨∇FsFxi,∇FsFxi⟩

)
=

n

∑
i=1

(
2⟨∇Fs∇Fxi

Fs,Fxi⟩+2⟨∇Fxi
Fs,∇Fxi

Fs⟩
)

=
n

∑
i=1

(
2⟨RN(Fs,Fxi,Fs)+2∇Fxi

∇FsFs,Fxi⟩+2⟨∇Fxi
Fs,∇Fxi

Fs⟩
)

= 2divM(Fss)+
n

∑
i=1

2⟨RN(Fs,Fxi,Fs),Fxi⟩+2⟨∇Fxi
Fs,∇Fxi

Fs⟩

= 2divM(Fss)+
n

∑
i=1

2⟨RN(Fs,Fxi,Fs),Fxi⟩

+
n

∑
i=1

2
〈(

∇Fxi
Fs

)T
+
(

∇Fxi
Fs

)⊥
,
(

∇Fxi
Fs

)T
+
(

∇Fxi
Fs

)⊥〉
= 2divM(Fss)+

n

∑
i=1

2⟨RN(Fs,Fxi,Fs),Fxi⟩

+
n

∑
i=1

2
〈(

∇Fxi
Fs

)T
,
(

∇Fxi
Fs

)T
〉
+2
〈(

∇Fxi
Fs

)⊥
,
(

∇Fxi
Fs

)⊥〉
= 2divM(Fss)+

n

∑
i=1

2⟨RN(Fs,Fxi,Fs),Fxi⟩

+
n

∑
i=1

2gii
(〈(

∇Fxi
Fs

)T
,
(

∇Fxi
Fs

)T
〉
+

〈(
∇Fxi

Fs

)⊥
,
(

∇Fxi
Fs

)⊥〉)
,

where gii = 1 for each i = 1, · · · ,n because {Fxi(0)}
n
i=1 is an orthonormal basis of TxM with an

induced metric g(0).

Observe that, on a normal coordinate system,

(
∇Fxi

Fs

)T
=

n

∑
j=1

〈(
∇Fxi

Fs

)T
,Fx j

〉
Fx j =

n

∑
j=1

⟨Fxis,Fx j⟩Fx j =
n

∑
j=1

−⟨B(Fxi,Fx j),Fs⟩Fx j ,

where the last equality follows from the fact that
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Fxi⟨Fs,Fx j⟩= 0 =⇒ ⟨Fsxi,Fx j⟩+ ⟨Fs,Fx jxi⟩= 0

=⇒ ⟨Fsxi,Fx j⟩=−⟨Fs,Fx jxi⟩

=⇒ ⟨Fsxi,Fx j⟩=−⟨Fs,∇Fx j
Fxi⟩

=⇒ ⟨Fsxi,Fx j⟩=−
〈

Fs,
(

∇Fx j
Fxi

)T
+
(

∇Fx j
Fxi

)⊥〉
=⇒ ⟨Fsxi,Fx j⟩=−

〈
Fs,
(

∇Fx j
Fxi

)⊥〉
=⇒ ⟨Fsxi,Fx j⟩=−⟨Fs,B(Fxi,Fx j)⟩.

Thus,

〈(
∇Fxi

Fs

)T
,
(

∇Fxi
Fs

)T
〉
=

n

∑
j=1

⟨B(Fxi,Fx j),Fs⟩2,

which provide us

n

∑
i=1

g′′ii(0) = 2divM(Fss)+
n

∑
i=1

2⟨RN(Fs,Fxi,Fs),Fxi⟩

+2gii
(〈(

∇Fxi
Fs

)T
,
(

∇Fxi
Fs

)T
〉
+

〈(
∇Fxi

Fs

)⊥
,
(

∇Fxi
Fs

)⊥〉)
= 2divM(Fss)+

n

∑
i=1

2⟨RN(Fs,Fxi,Fs),Fxi⟩+2
n

∑
i, j=1

⟨B(Fxi,Fx j),Fs⟩2 +2|∇⊥
Fs|2,

(3.9)

Recalling that (3.6), (3.7), (3.8) and (3.9), we obtain, at x, that

d2

ds2 ν(s) =

(
⟨∇ f ,Fs⟩′−

1
2

n

∑
i, j=1

(g′i j(0))
2 +

1
2

n

∑
i=1

g′′ii(0)

)
e f
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=

(
λ ⟨Fs,Fs⟩+ ⟨∇ f ,Fss⟩−

n

∑
i, j=1

⟨B(Fxi,Fx j),Fs⟩2

+|∇⊥
Fs|2 −

n

∑
i=1

⟨RN(Fs,Ei)Ei,Fs⟩+divMFss

)
e f

=

(
|∇⊥

Fs|2 −
n

∑
i, j=1

⟨B(Fxi,Fx j),Fs⟩2 +λ ⟨Fs,Fs⟩

−
n

∑
i=1

⟨RN(Fs,Ei)Ei,Fs⟩

)
e f +(divMFss + ⟨∇ f ,Fss⟩)e f .

Lemma 3.3. ∫
M
(divMFss + ⟨∇ f ,Fss⟩) = 0.

Proof. As H =
n

∑
i=1

∇EiEi, we get

divMFss =
n

∑
i=1

⟨∇EiFss,Ei⟩

=
n

∑
i=1

⟨∇Ei(Fss)
T ,Ei⟩+

n

∑
i=1

⟨∇Ei(Fss)
⊥,Ei⟩

= divMFT
ss −

n

∑
i=1

⟨(Fss)
⊥,∇EiEi⟩

= divMFT
ss −⟨(Fss)

⊥,H⟩

= divMFT
ss −⟨Fss,H⟩.

Recalling (2.1), we get

(divMFss + ⟨∇ f ,Fss⟩)e f = (divMFT
ss + ⟨X−H,Fss⟩)e f

= (divMFT
ss + ⟨XT ,Fss⟩)e f

= (divMFT
ss + ⟨∇ f ,FT

ss ⟩)e f
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=

(
n

∑
i=1

⟨∇EiF
T
ss ,Ei⟩+

〈
n

∑
i=1

⟨∇ f ,Fxi⟩Fxi,F
T
ss

〉)
e f

=

(
n

∑
i=1

⟨∇EiF
T
ss ,Ei⟩+

〈
n

∑
i=1

Fxi,⟨∇ f ,Fxi⟩FT
ss

〉)
e f

=

(
n

∑
i=1

⟨∇EiF
T
ss ,Ei⟩+

n

∑
i=1

〈
Fxi,d f (Fxi)F

T
ss
〉)

e f

=

(
n

∑
i=1

⟨∇EiF
T
ss ,Ei⟩+

n

∑
i=1

〈
Ei,d f (Ei)FT

ss
〉)

e f

=

(
n

∑
i=1

⟨∇EiF
T
ss ,Ei⟩+

n

∑
i=1

〈
Ei,∇Ei f FT

ss

〉)
e f

= divM(e f FT
ss ).

By the Divergence Theorem, ∫
M

divM(e f FT
ss ) = 0.

Lemma 3.4.

∫
M
|∇⊥

MS|2e f dµ =−
∫

M

(
⟨∆⊥

MS,S⟩+Sα⟨∇MSα ,∇M f ⟩
)

e f dµ, (3.10)

where ∇
⊥
MS = Ei(Sα)Ei ⊗να and

∆
⊥
MS =

n

∑
i=1

(
∇Ei (∇EiS)

⊥
)⊥

−
n

∑
i=1

(
∇∇EiEiS

)⊥
(3.11)

is the Laplacian on a normal bundle.

Proof.

Claim 3.2.

⟨∆⊥
MS,S⟩= 1

2
∆M|S|2 −|∇⊥

MS|2.
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Proof. Indeed, using geodesic normal coordinates, we get

∆M|S|2 =
n

∑
i=1

∇Ei∇Ei|S|
2

= 2
n

∑
i=1

∇Ei⟨∇EiS,S⟩

= 2
n

∑
i=1

∇Ei⟨(∇EiS)
⊥ ,S⟩

= 2
n

∑
i=1

⟨∇Ei (∇EiS)
⊥ ,S⟩+ ⟨(∇EiS)

⊥ ,∇EiS⟩

= 2
n

∑
i=1

⟨
(

∇Ei (∇EiS)
⊥
)⊥

,S⟩+ ⟨(∇EiS)
⊥ ,(∇EiS)

⊥⟩

= 2⟨∆⊥
MS,S⟩+2

∣∣∣(∇MS)⊥
∣∣∣2 .

If we use geodesic normal coordinates and the previous claim, we obtain

(
|∇⊥

MS|2 + ⟨∆⊥
MS,S⟩+Sα⟨∇MSα ,∇M f ⟩

)
e f

=
1
2
(
∆M|S|2 + ⟨∇M|S|2,∇M f ⟩

)
e f

=
1
2
(
div(∇M|S|2)+ ⟨∇M|S|2,∇M f ⟩

)
e f

=
1
2

(
n

∑
i=1

⟨∇Ei(∇Ei|S|
2),Ei⟩+

n

∑
i=1

⟨∇M|S|2,Ei⟩⟨∇M f ,Ei⟩

)
e f

=
1
2

(
n

∑
i=1

⟨∇Ei(∇Ei|S|
2),Ei⟩+

n

∑
i=1

⟨∇Ei|S|
2,Ei⟩d f (Ei)

)
e f

=
1
2

(
n

∑
i=1

⟨∇Ei(∇Ei|S|
2),Ei⟩e f +

n

∑
i=1

⟨∇Ei|S|
2,Ei⟩d f (Ei)e f

)

=
1
2

(
n

∑
i=1

⟨∇Ei(∇Ei|S|
2),Ei⟩e f +

n

∑
i=1

⟨∇Ei|S|
2,Ei⟩∇Eie

f

)

=
1
2

(
n

∑
i=1

⟨e f
∇Ei(∇Ei|S|

2),Ei⟩+
n

∑
i=1

⟨∇Eie
f
∇Ei|S|

2,Ei⟩

)
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=
1
2

(
n

∑
i=1

⟨∇Ei(e
f
∇Ei|S|

2),Ei⟩

)
=

1
2

div(e f
∇M|S|2).

Integrating it and using the Divergence Theorem, we get the result.

Theorem 3.2 (Second variation Formula of the weighted volume functional).

d2

ds2G(F(M,s))
∣∣∣∣
s=0

=
∫

M

(
|∇⊥

Fs|2 −
n

∑
i, j=1

⟨B(Fxi,Fx j),Fs⟩2 +λ ⟨Fs,Fs⟩

−
n

∑
i=1

⟨RN(Fs,Ei)Ei,Fs⟩

)
e f dµ

=−
∫

M
⟨Fs, L̃Fs⟩e f dµ,

where the stability operator L̃ is defined on a normal vector field S on M by

L̃S = ∆
⊥
MS+ ⟨∇⊥

MS,X⟩+
n

∑
i=1

(RN(S,Ei)Ei)
⊥+ B̃(S)−λS, (3.12)

and B̃ is the Simons’ operator defined by

B̃(S) =
n

∑
i, j=1

⟨B(Ei,E j),S⟩B(Ei,E j)

with S = Sα
να .

Proof. The second variation Formula of the weighted volume functional is

d2

ds2G(F(M,s))
∣∣∣∣
s=0

=
∫

M

d2

ds2 ν(s)
∣∣∣∣
s=0

√
det(gi j(0)) (3.13)

Using lemmas 3.2, 3.3 and 3.4 and (3.12), we get the formula desired.
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Observe that, in local coordinates, we have

n

∑
i, j=1

⟨B(Ei,E j),S⟩2 =
n

∑
i, j=1

(⟨B(Ei,E j),S⟩)(⟨B(Ei,E j),S⟩)

=
n

∑
i, j=1

(〈
B(Ei,E j),

n+p

∑
α=n+1

Sα
να

〉)(〈
B(Ei,E j),

n+p

∑
β=n+1

Sβ
νβ

〉)

=
n

∑
i, j=1

n+p

∑
α,β=n+1

⟨B(Ei,E j),Sα
να⟩⟨B(Ei,E j),Sβ

νβ ⟩

=
n

∑
i, j=1

n+p

∑
α,β=n+1

SαSβ ⟨B(Ei,E j),να⟩⟨B(Ei,E j),νβ ⟩

=
n

∑
i, j=1

n+p

∑
α,β=n+1

SαSβ hα
i jh

β

i j =
n

∑
i, j=1

⟨∇eiS,e j⟩2.

Based on the second variation of the G-functional, we define the stability of conformal

solitons

Definition 3.1. A conformal soliton Mn on Nn+p it is said G-stable if for every normal vector

field S with compact support on M,

∫
M

(
n

∑
i, j=1

⟨∇eiS,e j⟩2 +
n

∑
i=1

RN(ei,S,S,ei)−λ |S|2
)

e f dµ ≤
∫

M

n

∑
i=1

|∇⊥
ei

S|2e f dµ (3.14)

or, equivalently,

−
∫

M
⟨S, L̃S⟩e f dµ ≥ 0, (3.15)

where L̃ is defined by (3.12).

If M is a hypersurface on N, then (3.14) is simply

∫
M
(|A|2 +RicN(ν ,ν)−λ )u2e f dµ ≤

∫
M
|∇u|2e f dµ. (3.16)
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Indeed, S = uν when M is a hypersurface in N. Thus,

∫
M

(
n

∑
i, j=1

⟨∇eiS,e j⟩2 +
n

∑
i=1

RN(ei,S,S,ei)−λ |S|2
)

e f dµ ≤
∫

M

n

∑
i=1

|∇⊥
ei

S|2e f dµ

⇐⇒
∫

M

(
n

∑
i, j=1

⟨∇ei(uν),e j⟩2 +
n

∑
i=1

RN(ei,uν ,uν ,ei)−λ |uν |2
)

e f dµ ≤
∫

M

n

∑
i=1

|∇⊥
ei
(uν)|2e f dµ

⇐⇒
∫

M

(
u2

n

∑
i, j=1

⟨∇eiν ,e j⟩2 +
n

∑
i=1

u2RN(ei,νν ,ei)−λu2

)
e f dµ ≤

∫
M

n

∑
i=1

|∇eiu|
2e f dµ

⇐⇒
∫

M

(
|A|2 +RicN(ν ,ν)−λ

)
u2e f dµ ≤

∫
M
|∇u|2e f dµ.

G-stability is the same notion that was proved in the Lemma 2.3 or the inequality (2.15) for the

case of hypersurfaces.

We need the two identities below to deduce the stability’s G-operator.

L u := ∆u+ ⟨∇u,∇ f ⟩= e− f div (e f
∇u)

and

Proposition 3.1. If M ⊂ N is a hypersurface, u is a C1 function with compact support and v is

a C2 function, then ∫
M

u(L v)e f dµ =−
∫

M
⟨∇u,∇v⟩e f dµ

Proof. The proposition follows immediately from the Stokes’ Theorem and the identity above.

The two identities above, the inequality (3.16) and the observation that X = ∇ f done in

the beginning of the section 3.1 provide us the operator of stability for conformal solitons (the

stability’s G-operator)

L̃u = ∆Mu+ ⟨∇u,X⟩+ |A|2u+Ric(ν ,ν)u−λu. (3.17)

We will see some examples.
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Example 3.1 (Self-shrinkers in Rn+1). Let (N,g) = (Rn+1,δ ) be the Euclidean space and

assume that X =−1
2

x, where x is the position vector on Rn+1, then X is a conformal vector

field with λ = −1
2

, because ∇iX j = −1
2

gi j. The potential function is f = −|x|2

4
once that

X = ∇ f as we saw in the proof of the Theorem 2.1. In this case, the conformal soliton for X is

the self-shrinker for the mean curvature flow which satisfies

H =−1
2

x⊥. (3.18)

Observe that Ric(ν ,ν) = 0 for the Euclidean metric, then follows from 2.3 that a self-shrinker

Mn in Rn+1 is stable if and only if

∫
M

(
|A|2 + 1

2

)
u2e−

|x|2
4 dµ ≤

∫
M
|∇u|2e−

|x|2
4 dµ (3.19)

for every test function u ∈C∞
c (M). The G-functional is

∫
M

e−
|x|2

4 dµ (3.20)

for this case. The operator of stability for conformal solitons L̃ is

L̃u = ∆Mu− 1
2
⟨∇u,x⟩+ |A|2u+

1
2

u. (3.21)

Example 3.2 (Self-shrinkers in Rn+p). Let (N,g) = (Rn+p,δ ) be is the Euclidean space and

assume that X = −1
2

x, where x is the position vector in Rn+p. Analogous to the previous

example, X is the conformal vector field in Rn+p with λ = −1
2

and the potential function

f = −|x|2

4
once that X = ∇ f as we saw in the proof of the Theorem 2.1. In this case, the

conformal soliton for the X is a self-shrinker for the mean curvature flow in Rn+p satisfying

(3.18). Observe that R(ei,S,S,ei) = 0 for the Euclidean metric. In this case, the operator of

stability for conformal solitons L̃ is

L̃S = ∆
⊥
MS− 1

2
⟨∇⊥

MS,x⟩+ Ã(S)+
1
2

S. (3.22)
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Example 3.3 (Translating solitons in Rn+1). Let (N,g) = (R,δ ) be the Euclidean space and

assume that X = T is a constant vector field on Rn+1, then X is a conformal vector field with

λ = 0 and the potential function is f = ⟨T,x⟩ once that X = ∇ f as we saw in the proof of the

Theorem 2.1. The conformal soliton for X is the translating soliton for the mean curvature flow

that satisfies

H = T⊥ (3.23)

in this case. Suppose that the tangential part of T is V so that

T =V +H. (3.24)

Observe that Ric(ν ,ν) = 0, because the metric is Euclidean, then follows from 2.3 that a

translating soliton Mn in Rn+1 is stable if and only if

∫
M
|A|2u2e⟨T,x⟩dµ ≤

∫
M
|∇u|2e⟨T,x⟩dµ (3.25)

for every test function u ∈C∞
c (M).

The operator of stability for conformal solitons L̃ is

L̃u = ∆M + ⟨V,∇u⟩+ |A|2u. (3.26)

Example 3.4 (Self-expanders in Rn+1). Let (N,g) = (Rn+1,δ ) be is the Euclidean space and

assume that X =
1
2

x, where x is the position vector in Rn+1, then X is a conformal vector field

with λ =
1
2

, because ∇iX j =−1
2

gi j. The potential function is f =
|x|2

4
once that X = ∇ f as

we saw in the proof of the Theorem 2.1. The conformal soliton for X is a self-shrinker for the

mean curvature flow that satisfies

H =
1
2

x⊥ (3.27)
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in this case. Observe that Ric(ν ,ν) = 0 for the Euclidean metric, then follows from 2.3 that a

self-shrinker Mn in Rn+1 is stable if and only if

∫
M

(
|A|2 + 1

2

)
u2e−

|x|2
4 dµ ≤

∫
M
|∇u|2e−

|x|2
4 dµ (3.28)

for every test function u ∈C∞
c (M). The operator of stability for conformal solitons L̃ is

L̃u = ∆Mu+
1
2
⟨x,∇u⟩+ |A|2u− 1

2
u. (3.29)

3.2 On the stability of conformal solitons in Rn+1.

In this section, we provide a description of conformal solitons satisfying ∇ jXi = λgi j for

some smooth function λ . We saw in the previous section that the self-similar solutions and the

translating solitons are conformal solitons on an Euclidean space. We show that theses solitons

are the unique conformal solitons in Rn+p. We also consider in this section the stability of

self-shrinkers and translating solitons.

Proposition 3.2. Every conformal soliton in Rn+p satisfying ∇ jXi = λgi j for some smooth

function λ must be a self-shrinker, self-expander or translating soliton.

Proof. Suppose that X =
n+p

∑
i=1

XAeA, where {eA}1≤A≤n+p is the canonical frame in Rn+p, then

∂XA

∂xB
= λδAB

by hypothesis which implies

XA = λxA +µA.

Thus, X = λx+µ on what µ = (µ1, · · · ,µn+p) ∈ Rn+p is a fixed vector.

If λ = 0, then X = µ is a fixed vector in Rn+p. As the conformal soliton satisfies the

equation X⊥ = H and µ is fixed, the soliton must be a translating soliton.
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If λ ̸= 0, then X = λ

(
x+

µ

λ

)
. The equation of the conformal soliton is

H = λ

(
x+

µ

λ

)⊥
.

This is an equation for a self-shrinker if λ < 0 or for a self-expander if λ > 0 centered in

−µ

λ
.

Theorem 3.3. Every compact self-shrinker M in Rn+1 is unstable.

Proof. We know from 3.1 that M is stable if and only if

∫
M

(
|A|2 + 1

2

)
u2e−

|x|2
4 dµ ≤

∫
M
|∇u|2e−

|x|2
4 dµ

for every test function u ∈C∞
c (M).

Suppose by contradiction that M is stable. Observe that constant functions defined on M

are test functions on M once that M is compact, but these functions do not satisfy the inequality

above, otherwise,

0 <
∫

M

(
|A|2 + 1

2

)
u2e−

|x|2
4 dµ ≤

∫
M
|∇u|2e−

|x|2
4 dµ = 0,

which is a contradiction, therefore M is unstable.

3.2.1 Stable translating solitons in Rn+1

The "grim reaper" in R2 is defined by

F :
(
−π

2
,
π

2

)
−→ R2

x 7→ (x,− log(cosx)).

Lemma 3.5. The "grim reaper" is the only translating soliton of the mean curvature flow in R2.
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Fig. 3.1 "Grim reaper" in R2.

Proof. Let I ⊂ R be an open set and f : I −→ R2 a curve. The curvature of the curve is

κ(x) =
f ′′(x)

(1+( f ′(x))2)
3
2

and its normal is

ν(x) =
(− f ′(x),1)

(1+( f ′(x))2)
1
2
.

Thus, if such curve is a translating soliton of the mean curvature flow, then it must satisfies

f ′′(x)

(1+( f ′(x))2)
3
2
=

〈
(u1,u2),

(− f ′(x),1)

(1+( f ′(x))2)
1
2

〉
,

where u = (u1,u2) ∈ R2 is a fixed vector.

Choosing u = (1,0),
f ′′(x)

1+( f ′(x))2 =− f ′(x)

and integrating it, we get

arctan( f ′(x)) =− f (x),

therefore

f ′(x) = tan(− f (x)) =− tan( f (x)) ⇐⇒ cos( f (x))
sin( f (x))

f ′(x) =−1.

Integrating it,

log(cos( f (x))) =−x, x ∈
(
−π

2
,
π

2

)
.
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Apply a rotation of
π

2
to the graph of f , followed by the change of variables x 7→ −x and the

fact that log(cosx) is an even function to get the "grim reaper".

The uniqueness of the "grim reaper" as a translating soliton of the mean curvature flow in

R2 follows from the Theorem of existence and uniqueness of ODEs.

Theorem 3.4. The "grim reaper" is a stable translating soliton in R2.

Proof. Let T = e2 be the direction of the translation. Keeping in mind the example 3.3,

f (F(x)) = ⟨T,F(x)⟩= ⟨(0,1),(x,− log(cosx))⟩=− log(cosx).

We do some computations in the sequence. The tangent vector is Fx = (1, tanx), the induced

metric is gxx = ⟨Fx,Fx⟩ = 1+ tan2 x =
1

cos2 x
and the induced volume form is dµ =

1
cosx

dx.

If ν = (sinx,−cosx), then hxx =−⟨Fxx,ν⟩=− 1
cosx

and |A|2 = H2 = (gxxhxx)
2 = cos2 x. As

observed previously, f (F(x)) =− log(cosx), i.e., e f (F(x)) =
1

cosx
, therefore

∫
M
|A|2u2e⟨T,x⟩dµ =

∫ π

2

− π

2

(cos2 x)u2 1
cosx

1
cosx

dx =
∫ π

2

− π

2

u2dx.

Observe that

|∇u|2 = gxx ∂u
∂x

∂u
∂x

= cos2 x(u′(x))2,

therefore

∫
M
|∇u|2e⟨T,x⟩dµ =

∫ π

2

− π

2

cos2 x(u′(x))2 1
cosx

1
cosx

dx =
∫ π

2

− π

2

(u′(x))2dx.

Thus, given u ∈ C∞
c

((
−π

2
,
π

2

))
,

∫
M
|A|2u2e⟨T,x⟩dµ =

∫ π

2

− π

2

(u(x))2dx ≤
∫ π

2

− π

2

(u′(x))2dx =
∫

M
|∇u|2e⟨T,x⟩dµ,

where the inequality follows from the Proposition 1.4. This shows (3.25), which is the stability

condition for translating solitons in Rn+1.
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The "grim reaper" cylinder is given by

F : Rn−1 ×
(
−π

2
,
π

2

)
−→ Rn+1

(x1, · · · ,xn) 7→ (x1, · · · ,xn−1,xn,− log(cosxn)).

Fig. 3.2 "Grim reaper" cylinder in Rn+1.

Lemma 3.6. The "grim reaper" cylinder Rn−1×Γ is a translating soliton of the mean curvature

flow in Rn+1, where Γ is the "grim reaper" in R2.

Proof. Let I ⊂R be an open set and f : I −→R2 a curve. We will show that the parametrization

given by

F : Rn−1 ×
(
−π

2
,
π

2

)
−→ Rn+1

(x1, · · · ,xn) 7→ (x1, · · · ,xn−1,xn, f (xn)).

is a "grim reaper" cylinder which is a translating soliton. Indeed, The normal of the hypersurface

at a point x = (x1, · · · ,xn) is

ν(x) =
1

(1+( f ′(xn))2)
1
2
(0, · · · ,0,0,− f ′(xn),1).
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We can see that 
gi j(x) = 0, 1 ≤ i < j ≤ n

gi j(x) = 1, 1 ≤ i = j < n

gi j(x) = 1+( f ′(xn))
2, i = j = n

and 

〈
∂ 2F

∂xi∂x j
(x),ν(x)

〉
= 0, 1 ≤ i ≤ j ≤ n−1〈

∂ 2F
∂xi∂x j

(x),ν(x)
〉

= 0, 1 ≤ i < j ≤ n−1〈
∂ 2F

∂xi∂x j
(x),ν(x)

〉
= 0, 1 ≤ i < j ≤ n〈

∂ 2F
∂xi∂x j

(x),ν(x)
〉

=
f ′′(xn)

(1+( f ′(xn))2)
1
2
, i = j = n.

Recalling that hi j =−
〈

∂ 2F
∂xi∂x j

(x),ν(x)
〉

, we get

H(x) = gnnhnn =− f ′′(xn)

(1+( f ′(xn))2)
3
2
.

Now, the proof follows from the previous lemma.

Next we consider the stability of the grim-reaper cylinder. The proof that this hypersurface

is a stable translating soliton (which was omitted in [2]) follows the previous results, with some

adaptations.

Theorem 3.5. The "grim reaper" cylinder Rn−1 ×Γ is a stable translating soliton in Rn+1,

where Γ is the "grim reaper" in R2.

Proof. Let x = (x1, · · · ,xn) and u ∈ C∞
c

(
Rn−1 ×

(
−π

2
,
π

2

))
. As u is a test function, we can

choose a (n−1)-cube Q which size has length l depending on u such that

supp u ⊂ Q×
(
−π

2
,
π

2

)
. (3.30)
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We do some computations for the "grim reaper" cylinder.
gi j(x) = 0, 1 ≤ i < j ≤ n

gi j(x) = 1, 1 ≤ i = j < n

gi j(x) = 1+ tan2(xn) = sec2(xn), i = j = n,

ν(x) =
1

sec(xn)
(0, · · · ,0,0,− tan(xn),1) .

and 

〈
∂ 2F

∂xi∂x j
(x),ν(x)

〉
= 0, 1 ≤ i ≤ j ≤ n−1〈

∂ 2F
∂xi∂x j

(x),ν(x)
〉

= 0, 1 ≤ i < j ≤ n−1〈
∂ 2F

∂xi∂x j
(x),ν(x)

〉
= 0, 1 ≤ i < j ≤ n〈

∂ 2F
∂xi∂x j

(x),ν(x)
〉

= sec(xn), i = j = n

Recalling that hi j =−
〈

∂ 2F
∂xi∂x j

(x),ν(x)
〉

, we get

|A|2 = (giqgp jhiqhp j)
2 = (gnnhnn)

2 = cos2(xn).

Let T = en+1 be the direction of the translation. Keeping in mind the example 3.3,

f (F(x)) = ⟨T,F(x)⟩= ⟨(0, · · · ,0,0,1),(x1, · · · ,xn−1,xn,− log(cosxn))⟩=− log(cosxn).

Arguing similarly to the previous theorem,

|A|2u2e⟨T,F(x)⟩dµ =
(
cos2(xn)

)
u2
(

1
cosxn

)(
1

cosxn
dx1 · · ·dxn

)
= u2dx1 · · ·dxn
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and

|∇u|2e⟨T,F(x)⟩dµ =

(
n−1

∑
i=1

(
∂u
∂xi

)2

+

(
cos(xn)

∂u
∂xn

)2
)(

1
cosxn

)(
1

cosxn
dx1 · · ·dxn

)

=

(
n−1

∑
i=1

(
sec(xn)

∂u
∂xi

)2

+

(
∂u
∂xn

)2
)

dx1 · · ·dxn.

Proposition 1.4 gives ∫ π

2

− π

2

u2dxn ≤
∫ π

2

− π

2

(
∂u
∂xn

)2

dxn.

Recalling (3.30) and integrating the inequality above,

∫
Rn−1×(− π

2 ,
π

2 )
|A|2u2e⟨T,F(x)⟩dµ =

∫
Q

∫ π

2

− π

2

u2dxndx1 · · ·dxn−1

≤
∫

Q

∫ π

2

− π

2

(
∂u
∂xn

)2

dxndx1 · · ·dxn−1

≤
∫

Q

∫ π

2

− π

2

(
n−1

∑
i=1

(
∂u
∂xi

)2

+

(
∂u
∂xn

)2
)

dxndx1 · · ·dxn−1

≤
∫

Q

∫ π

2

− π

2

(
n−1

∑
i=1

(
sec(xn)

∂u
∂xi

)2

+

(
∂u
∂xn

)2
)

dxndx1 · · ·dxn−1

=
∫
Rn−1×(− π

2 ,
π

2 )
|∇u|2e⟨T,F(x)⟩dµ.

This shows inequality (3.25), which is the stability condition for translating solitons in Rn+1.
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