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RESUMO

Sistemas de Processamento de Imagem e Visão Computacional agora estão cada vez mais di-
fundidos na tecnologia, permitindo aplicações para Sistemas Ciberfı́sicos, a Internet das Coisas,
Realidade Aumentada, e Indústria 4.0. Essas aplicações trazem consigo a necessidade de Smart
Cameras para processamento de imagens e vı́deos localmente e em tempo real. No entanto,
soluções comerciais de câmeras não são capazes de lidar com a grande quantidade de dados
que precisa ser processada em curtos perı́odos de tempo nesses tipos de aplicação. Neste tra-
balho, mostramos o design e implementação de uma arquitetura multi-núcleo para ser usada nes-
sas Smart Cameras, podendo ser classificada como um processador de visão. Com exploração
massiva de paralelismo e caracterı́sticas especı́ficas para aplicações em Visão Computacional,
nossa arquitetura é composta de Elementos de Processamento distribuı́dos e memórias conec-
tadas via uma Rede Intra-chip. A arquitetura foi implementada como um FPGA overlay, fo-
cando na otimização do uso de hardware. A arquitetura parametrizada foi caracterizada por sua
ocupação do hardware, frequência máxima de operação, taxa de processamento de quadros e con-
sumo de energia. Configurações diferentes, de um até quatrocentos Elementos de Processamento,
foram implementadas e comparadas com diversos trabalhos da literatura. Uma cadeia completa
de Processamento de Imagens e Visão Computacional foi implementada para validar a arquitetura
proposta, incluindo um sistema de aquisição de imagens com câmera. Estimou-se o consumo de
energia da nossa arquitetura usando componentes próprios para medição de energia já presentes
no kit FPGA. Os resultados mostram que a arquitetura proposta foi bem-sucedida em aliar pro-
gramabilidade com performance, sendo uma alternativa adequada para futuras Smart Cameras.
Sendo este trabalho uma prova de conceito totalmente funcional, muitas melhorias podem ser
feitas, sendo sugeridas como trabalhos futuros.

Palavras-chave: Multiprocessadores em chip, Redes intra-chip, Processamento de Ima-
gens, Visão Computacional



ABSTRACT

Real-Time Image Processing and Computer Vision systems are now in the mainstream of
technologies enabling applications for Cyber-Physical Systems, Internet of Things, Augmented
Reality, and Industry 4.0. These applications bring the need for Smart Camera for local real-time
processing of images and videos. However, the massive amount of data to be processed within
short deadlines cannot be handled by most commercial cameras. In this work, we show the design
and implementation of a many-core vision processor architecture to be used in Smart Cameras.
With massive parallelism exploration and application-specific characteristics, our architecture is
composed of distributed Processing Elements and Memories connected through a Network-on-
Chip. The architecture was implemented as an FPGA overlay, focusing on optimized hardware
utilization. The parameterized architecture was characterized by its hardware occupation, maxi-
mum operating frequency, processing frame rate, and power consumption. Different configura-
tions ranging from one to four hundred Processing Elements were implemented and compared to
several works from the literature. A complete Image Processing and Computer Vision process-
ing chain is implemented to validate the proposed architecture, including a camera acquisition
scheme. This work also measures the power consumption of our architecture using built-in power
monitoring components. The results show that the proposed architecture successfully allies pro-
grammability and performance, being a suitable alternative for future Smart Cameras. As this
work is a functional proof of concept, there are many possible improvements suggested for future
works.

Keywords: Multiprocessor System-on-Chip, Network-on-Chip, Image Processing, Com-
puter Vision
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1 INTRODUCTION

This chapter presents an introduction concerning the main motivations, contributions and the
organization of this work.

1.1 MOTIVATION

The emergence of new trends in technology, like the Internet of Things and Industry 4.0, pulled
out several applications based on Image Processing and Computer Vision (IP/CV) techniques.
Cyber-Physical Systems, Augmented Reality, and Autonomous Machines, among others, all have
applications supported by the extensive use of cameras.

These data-intensive tasks like Image Processing (IP) became popular, with the development
of computers and its constant improvement, for Computer Graphics, Image Editing, Computer
Vision, and Robotics (1)(2). Hence, new hardware designs are important to fulfill these applica-
tions requirements. This work pays special attention to Image Processing and Computer Vision
(IP/CV) applications.

Human perception is capable of perceiving the 3D world around. How it looks, which objects,
things, and persons are there. Even tell the difference among details like flowers, the aspect
of petals, and its patterns, for example. Computer Vision (CV) uses mathematical models to
recognize aspects of a scene: create a 3D reconstruction using hundreds of photos, track a person’s
movement, find people in photos, and more. This field has multiple difficulties because it deals
with an inverse problem: recover unknown properties with insufficient information to specify a
solution to model the visual world (3).

Even though Vision is a complex job, a wide variety of applications use CV nowadays (3):

• Optical character recognition (OCR): automatic numbers and letters recognition;

• Machine inspection: use stereo vision (a combination of two or more cameras to get more
scene information) to measure tolerances and detect defects;

• Retail: to recognize automated products checkout;

• 3D model building: automated construction of 3D models from aerial photographs;

• Automotive safety: detecting unexpected objects in automobiles;

• Motion capture: use markers from multiple cameras to capture actors for computer anima-
tion;

• Surveillance: monitor for intrudes, analyze highway traffic, and detect social disturb.

1



Most of the conventional cameras are designed for the acquisition and transmission of images
and videos. These cameras are not able to support complete applications running under real-time
constraints. For these reasons, there is a need for devices capable of acquiring and processing
images and videos efficiently under specific time constraints. Such devices are usually called
Smart Cameras.

The design of such Smart Cameras is not a new topic, as seminal works have proposed the
concepts of Focal-Plane and Near-Sensor Image Processing, on which highly-optimized systems
would be able to integrate acquisition and processing on a single chip (4), like shown in Figure
1.1. Several works have been developed based on these concepts, spanning different areas, like
photonics, VLSI technology, parallel computing, among others(5)(6)(7)(8). In this scenario, ac-
quisition scheme plays an important role to optimize performance of Smart Cameras, because
better pixel distribution allows more parallelism exploration for these devices.

Figure 1.1: The focal plane Vision Processor concept (4)(5)(9).

There are different ways to distribute pixels from multiple CMOS sensors. Figure 1.2 shows
different stream architectures. Single Stream uses one ADC to convert all pixels to digital signals.
This is the most simple arrangement but the least efficient. On the other side, One Pixel per stream
has better throughput but is the most expensive. It requires one ADC per Pixel. Parallel Columns
and Region-based are flexible choices as they combine both previous schemes. As discussed in
(6), Region-based architecture provides better scaling integration for highly parallel architectures
in comparison with the others.
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Figure 1.2: CMOS pixel distribution: from single to multiple streams (6).

Historically, mainly due to costs and technological constraints in the VLSI design, the camera
organization is usually based on a single-pixel stream from the sensor to the processing systems.
Images are inherently parallel, and the single-stream is a bottleneck for the whole system, prevent-
ing the exploration of the natural pixel parallelism. Some recent studies show that the utilization
of multiple pixel streams can improve the overall performance of vision processors, offering an
attractive balance among cost and performance (10)(6).

Allied to the acquisition scheme, there was a need for efficient data communication infrastruc-
ture to process multiple pixel streams. Not only the acquisition scheme of Focal-Plane processors
demanded better communication architecture, but also most of the VLSI design were facing chal-
lenges. At that time, instead of measuring IC progress by improvements in speed and size, energy
efficiency started to predominate, leading to a new design paradigm (11). Therefore, the concept
of Network-on-Chip (NoC) emerged because of this new trend and advances in SoC designs, de-
manding a higher level of IP integration and granting a fully distributed communication pattern
with almost no global control needed (12).

Networks-on-chip were designed similarly to off-chip networks commonly available nowa-
days. It has fewer layers than a conventional TCP/IP stack, for example. According to (12), the
micro-network layers are composed by,

• Data link layer: the physical layer responsible for exchange packages in certain protocols.
It represents the protocol used at the hardware level and is very important to ensure reliable
data transmission;

• Network layer: connects the source from its destination, routing between different network
nodes if necessary. Multiple algorithms and methods can be used as real or design-time
tools to improve multiple parameters (13);

• Transport layer: break messages into packages at the top-level accordingly to the imple-
mentation. It is important because packet size represents a significant bottleneck in network
design.

Figure 1.3 pictures a simple 2-D mesh Network composed of 9 Intellectual Properties (IPs).
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Each IP is connected to the others by its own router (R). Routers can exchange all kinds of
messages, depending on the application and design decisions. Furthermore, IPs can be selected
to fulfill different tasks for Homogeneous or Heterogeneous computing systems. NoCs have
become popular because of their flexibility and scalability. Buses are possible alternatives to
NoCs, but their implementation for highly parallel systems become complex as they need an
arbiter to control multiple masters.

Figure 1.3: 2-D mesh grid Network-on-chip diagram.

There are several different approaches in both hardware and software for the processing part of
these new systems. In software, the typical approach is to explore data caching to avoid expensive
memory accesses, as well as redundant mathematical operations. Hardware architectures span
a broad diversity: ASICs, direct FPGA implementations, Application-Specific Instruction Set
Processors (ASIPs), Very-Large Instruction Word (VLIW) processors, Digital Signal Processors
(DSPs), Graphics Processing Units (GPUs), Multi-Processor System-on-Chip (MPSoCs), and
so on. Each approach is an attempt to explore data parallelism, higher processing frequencies,
pipelines, or complex instructions. The last one in special, can be combined with a multiple
stream acquisition scheme and NoCs to create a highly scaling architecture for IP/CV applications
(6).

In this new VLSI design paradigm, FPGAs became useful tools to prototype computing sys-
tems because enable the construction of accelerators to boost some tasks, instead of using general
purpose processors. They contain a large number of logic blocks that can be connected by a ma-
trix of switches (14), for example, flip-flops, look-up tables, I/O banks, DSPs, Block Memories,
and others depending on device family and vendor. FPGAs also represent a cheap option com-
pared to ASIC design. They offer more performance for application specific tasks and similar
flexilibity of general-purpose CPUs.

Xilinx devices play a special role in FPGA design, particularly the Zynq family. It connects
FPGA fabric and hardware processors in the same chip. (15)(16) explore multiple Programming
Systems (PS) and Programmable Logic (PL) interfaces in Zynq-7000 family chips. Their high
throughput, achieving GB/s magnitude from PS-PL transferences, is advantageous to process
data-intensive tasks in the FPGA fabric and control-intensive routines in the processor (16).

Most of these FPGAs IP/CV implementations explore optimizations at pixel-level operations
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to obtain better performance (17)(18)(19). Usually, in this kind of application, the algorithms
work in pixel level, transforming a given image in another. The IP/CV operations can be classified
in three types, as depicted in Figure 1.4, which is referred as Pixel level parallelism along this
work(6)(20)(21):

• Pixel operation: gets a single pixel as input and generates a single output pixel;

• Neighbourhood operation: gets a regular group or region of input pixels to produce a single
output pixel;

• Global operation: gets a whole image as input to create a single output pixel;

• Non-Regular operation: gets a set of input pixels that shares a common property to produce
a single output pixel.

Figure 1.4: Pixel level IP/CV operations (6).

1.2 CONTRIBUTION

Considering the Smart Camera context and FPGA IP/CV architectures, and based on the find-
ings of (21), that built a SystemC/TLM EDA tool to explore multiple design choices for IP/CV
Vision Processors. This work prototypes a Many-core Vision Processor in FPGA as a proof-of-
concept, and also evaluates multiple advantages of overlay architectures that combine the PL’s
performance enhancement to the flexibility and robustness of PS in a Zynq UltraScale+ device.

To integrate acquisition and processing, in this work, we build an architecture able to receive
multiple pixel streams and process them in parallel using an MPSoC (Multiprocessor System-on-
chip) based on a Network-on-Chip (NoC). All design decisions are based on IP/CV application-
specific needs, from the Processing Elements instruction set to the NoC flit composition.
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The Many-Core Vision Processor (MCVP) architecture, developed in this work, is responsible
for distributing the picture to the tiles and send them to a visualization scheme. Pixel distribution
uses a Region-based scheme, as depicted in Figure 1.5. Each region has its own Processing Ele-
ment inside the Tiles, which are responsible for one image region and share information with the
others through a NoC. The system encompasses a complete IP/CV pipeline, allowing a realistic
scenario to evaluate its performance.

Actual Scene Pixel Sensor Pixel Distribution Tiles

Figure 1.5: The proposed scheme of pixel distribution between Tiles.

The contribution of this work to the state-of-the-art is a programmable, NoC-based, highly
scalable and IP/CV targeted Many-core architecture for FPGAs. The results show that multiple-
level parallelism exploration improves the system’s capabilities and enables more flexible designs.

1.3 ORGANIZATION

The rest of this work is organized as follows:

• Chapter 2 depicts a literature review with the main drawbacks found and the proposals to
solve them;

• Chapter 3 explains the HW/SW organization and the main design decisions. The system is
depicted and described at a higher level;

• Chapter 4 shows the implementation details of each hardware block. The processor, mem-
ory, and network are explained;

• Chapter 5 discloses architectural aspects and implementation details of the toolset with a
parameterizable VHDL generator and an assembler designed to scale up the architecture;

• Chapter 6 describes the IP/CV applications, shows the results and comparison with related
works. Power consumption, FPGA resources, and timing performance are analyzed for
multiple algorithms;

• Chapter 7 presents the conclusion and future works.
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2 RELATED WORK

In the literature, there are plenty of works towards accelerating/optimizing IP/CV algorithms,
covering soft-related aspects, like algorithm rewriting (22), to hardware-related ones, like GPU
systems (23). This review covers recent approaches related to embedded IP/CV systems and
HW/SW architectures that implement common image processing tasks, focusing on the Harris
Detector algorithm, used in Chapters 6.1 and 6.

2.1 IP/CV SYSTEMS

As IP/CV techniques present massive data and operation parallelism, efficient parallelism
exploration is potentially a solution to optimize the performance of such techniques. VLIW pro-
cessors can perform several operations in parallel, offering a suitable approach. In (24), the
authors merge a scalable VLIW architecture with OpenCL parallelization capabilities to build a
NoC-based multiprocessor for medical applications on FPGAs. They prioritize better layout and
resource usage to model the network, in a data oriented approach, but lack performance for IP/CV
applications compared with similar works. Similar to our work, they slice the image in multiple
segments, demanding more from the network though.

Figure 2.1: Six-port Torus NoC for Image Processing (25).

The development of time-critical systems requires attention to all aspects of the HW/SW ar-
chitecture. The data transmission among processors represents one of the bottlenecks in any
parallel architecture. (26) implements an Image Processing four-port NoC architecture in Virtex
II family FPGA, capable of store memory and display results at the same time. (25) presents an
improved six-port Torus topology (Figure 2.1) architecture based on (26), each one with different
functions: from acquisition to display interfaces, passing through processing units (PUs). Each
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core interface is composed of FIFOs instead of Finite States Machines (FSMs), different from
our work. Even they present an early stage prototype, there is no parallelism exploration with
multitasking or image slicing. The authors separates the task in different sub-blocks and passes
the whole image data through a NoC instead, which simplyfies the architecture but reduces timing
performance.

(27) proposes a NoC for image processing algorithms, Figure 2.2. It is based on a ”token-
ring” approach, using one circular unidirectional network to transport commands and results data
via an asynchronous network. (26) (25) (27) work explore the scalability of NoC communication,
and each PU is responsible for specific parts of the desired IP/CV algorithm, differing mostly
by the six-port Torus and token-ring network types. This approach favors local optimization of
each PU; however, it does not explore the operation parallelism of the IP/CV data, which leads to
the need for much higher operating frequencies. Our architecture organization also explores the
NoC scalability features, but besides, by the exploration of pixel-level parallelism, we can operate
at lower frequencies, which could represent smaller power consumption. For further discussion
about power, read Subsection 6.4.3.

Figure 2.2: Proposed Token-Ring NoC architecture for image analysis algorithms (27).

(28) presents a multi-processor architecture based on a Spidergon NoC topology, see Figure
2.3. It is a heterogeneous processing system, where each tile has its specialization: memory,
General-Purpose Processor (GPP), motion estimation, among others. Each tile can reach another
one through the NoC, and several different IP/CV algorithms can be implemented using or not
all the tiles. There is some task-level parallelism, since the processing tiles can work in parallel,
and high throughput is reached. That work could explore the pixel-level parallelism; however, the
authors did not consider that possibility.

A NoC-based MPSoC is explored for some IP/CV algorithms in (29), as shown in Figure
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2.4. The authors use MPI (Message Passing Interface) to parallelize the algorithms and distribute
the threads among the cores. It enables multiprocessing with high-level abstraction in tightly
constrained devices and, similar to our work, divides the image in slices and distribute them
inside processor’s memories. Our approach is also based on an NoC-based MPSoC, however, we
have all cores executing the same program in parallel, but over different data sets (pixel regions),
instead of the MPI model. We also use a FPGA based architecture instead of an ASIC like (29)
does.

Figure 2.3: Block diagram of the Spidergon NoC (28).

Another relevant architecture type for IP/CV implementations is the GPUs. A GPU is com-
monly able to explore vector operations efficiently. Several IP/CV algorithms can be expressed in
such a way that the compilers are effective in addressing the instruction-level parallelism. In (23)
(30), a soft-GPU architecture is presented. Similarly to our approach, the authors developed an
FPGA overlay exploring the platform features (DSP blocks, distributed memory, logic blocks, and
interconnects) to optimize the architecture design, showing the feasibility of FPGA overlays as an
end-user platform. It develops an FGPA GPU (called FGPU) architecture with Compute Units, a
basic processing block of the FGPU architecture with 8 custom processing elements to perform
SIMD instructions. It implements IP algorithms like Sobel, Compass Edge Detector, and fitler al-
gorithms for benchmarks. Different of our work, the authors develop a general purpose Graphics
Processing Unit for FPGAs, focusing on high performance gain and power consumption, instead
of an IP/CV specific solution.

The NVidia Tegra Tx1 is a heterogeneous architecture composed of an embedded GPU archi-
tecture with 256 CUDA cores and a quad-core ARM processor. In (31), that platform is used to
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develop a smart industrial camera able to perform real-time object recognition. The authors show
that an embedded GPU can efficiently explore the parallelism in IP/CV algorithms and provide
high throughput and flexibility.

A general-purpose pixel distributor for parallel processing in FPGAs is depicted in (32). The
authors address the importance of such architecture for real-time image processing and the de-
mand for an efficient parallel distribution system to reduce required memory. Stream processing
is the primary approach of their work, with specific processing units directly implemented in
FPGA, and also exploring the pixel-level parallelism. However, despite stream processors, tiny
processing elements based on RISC architectures are used, favoring the flexibility for any IP/CV
application.

Some authors explore the FPGA dynamic reconfiguration to improve online flexibility (33).
However, the reconfiguration time is way too time-consuming to be used in real-time applica-
tions. In our architecture, full flexibility is provided by the use of soft-programmable processing
elements.

Figure 2.4: 16 core Epiphany III architecture (29).

(6) (9) (34) propose a methodology for the design and programming of next-generation many-
core vision processors. The authors suggest new design architectures that optimize multi-cost
functions: memory and resource usage, communication cost, power consumption, and hardware
speed. Their work computes microarchitectures for the IP/CV applications that explore pixel
operation parallelism using multiple iterations and SystemC/TLM models to make better design
decision for this kind of applications. Besides, they analyse multiple parallelism aspects in many-
core vision processors based on algorithm characteristics, pixel-level, and multiple stages of de-
sign space. They explore various subsystems in the architecture to extract better parallelism,
develop a simulation tool using SystemC/TLM 2.0, and shows possible architectural choices to
improve this kind of processing system. Also, execute the Canny Edge Detector as a reference
algorithm, computes the number of operations and memory accesses necessary to the system. The
authors build the architecture for 16x16 pixels per tile prototype in FPGA, showing that its viable
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compared with other state of the art Canny Edge Detector (CED) implementations. In conclusion,
they obtain a many-core architecture based on simulations in SystemC/TLM 2.0 and other design
space exploration techniques. Our work concerns with practical implementation issues based on
their results to build a viable many-core vision processor on FPGAs based on their findings.

(35) presents a high-level synthesis tool to facilitate time-to-market Heterogeneous MPSoCs
design. The hardware architecture combines Microblaze softcore flexibility with HLS practicality
to implement multiple designs for different project constraints. Despite the MPSoC implemen-
tation in FPGA using the on-chip Network, our approach focuses on lower-level aspects instead
of the programming model and high-level synthesis. The choice from (35) reduces design effort
but has performance reduction compared to more specialized architectures like ours for IP/CV
applications, see Subsection 6.3.3 for details.

(36) sets up a method to program heterogeneous MPSoCs using the Xilinx SDSoC framework
and other open-source tools. The application profiles automatic instrumentation of the code to the
designer, who takes better decisions if necessary. This approach differs from our work because of
its focus on a high-level tool to ease rapid prototyping in Many-core systems. We provide design
choices for Homogeneous MPSoCs in Overlay Architectures implementing the same task for all
cores.

Reference PE Type Communication Programmable? Main feature

(24) VLIW NoC yes
FPGA overlay architecture
to explore PS-PL

(26), (25) Heterogeneous NoC no
Early NoC proposal for IP/CV
applications

(27) Heterogeneous NoC no
Multiple Processing Units in
asynchronous NoC

(29) RISC NoC yes
Proprietary MPSoC and use of
MPI model

(23) Soft-GPU Bus yes
FPGA overlay resources
optimization, use of soft-GPUs

(31) GPU Bus yes
Achieve real-time object recognition
with GPU/CPU combination

(6) RISC NoC yes
Spatial parallelism exploration
achieves high performance scaling

(35) RISC NoC yes
HLS synthesis tool for a
heterogeneous system built for FPGAs

(36) Heterogeneous Bus no
Method to explore HW/SW design
choices with few user interaction

Our work RISC NoC yes
Overlay architecture that explores spatial
parallelism with region-based processing

Table 2.1: IP/CV reference comparison.

Table 2.1 shows a comparison of different architectures cited in this section with our work in
terms of Processing Element type, communication structure, programmability, and main features.
Most of the work use NoC for communication, and have programmable devices. This shows the
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interest of recent IP/CV related architecture with programmability and high-level design, using
OpenCL, MPI and Vivado HLS in many of them as a possible way to improve performance and
time to market.

2.2 SPECIFIC HARRIS DETECTOR IMPLEMENTATIONS

Several approaches for FPGA direct implementation of IP/CV algorithms can be found in the
literature, and most of them are based on stream processing to reach high operating frequencies,
as seen in (37) for example. That implements a pipelined Harris Corner Detector architecture to
be used in mobile robots for colored stereo image processing. Then, it divides the algorithm into
three distinct parts: Cornerness Measures (CM), Sum of Gradient Products (SOGP), and Non-
Maximal Suppression (NMS). Like our work, it uses Block RAMs as frame buffers to store frame
data, instead of the conventional line buffer approach. The architecture is tested in a Virtex-5
series FPGA and achieve high throughput. However, it only works with HCD, not allowing other
algorithms or programmability. (37) builds a HCD specific architecture with no flexibility to
implement different algorithms.

(38) implements the Harris & Stephens corner detector in a Zynq-7000 FPGA. It proposes
a co-design using the PS for PL control and memory management. The logic design, which is
written in Vivado HLS, receives and processes the camera stream with fixed-point arithmetic.
The post-processing image is sent to an output HDMI port, forming a complete IP pipeline. The
resulting architecture is able to double the performance in comparison with similar work at the
publication time (37) (39). Different from our work, it builds an application-specific design using
HLS and OpenCV to reduce design-time complexity but lacks flexibility.

(40) builds a real-time pipelined Harris Coner architecture in Zynq-7000, see Figure 2.5. It
uses line buffers methodology to acquire, process, and display results. The work also presents the
whole CMOS sensor setup and image pre-processing chain and tests it using MATLAB tools. The
architecture is capable of performing the pipeline with 154 fps in VGA resolution. Different from
our approach, this paper deals with application-specific problems of the Harris Corner algorithm.
It implements a common line buffer system and is not programmable.

(18) proposes two pipelined architectures to compute the Harris Corner algorithm. One of
them uses one line buffer in the algorithm, while the other uses two in distinct parts. The work
utilizes FIFO line buffers and tests the application in Altera FPGAs. Different from our work
approach, their work does not develop a flexible design, which focused mostly on FPGA resources
trade-offs and not on programmability.

(17) presents an FPGA architecture targeted for real-time and multi-resolution Edge and Cor-
ners Detection applications. It compares the proposed FPGA architecture with CPU and GPU-
based systems in terms of performance and power consumption for the HCD. It proposes a com-
plete IP pipeline, from acquisition to visualization with an external monitor. Also, it builds the
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Figure 2.5: Complete Hardware implementation of HCD (40).

architecture on what it calls Neighborhood Extraction (NE) block, which provides a sliding win-
dow with a fixed dimension to the next processing block. The NE is made of register arrays that
store pixels to be processed and line buffers to store the actual and two or more store pixels in
the block. This structure is based on a Coordinate Counter to provide the correct output selection
based on the window position. It is also able to outperform CPU and GPU for timing and power
consumption for both Harris and Canny detectors. Different from the approach of our work, it
uses a fixed design specific to some detectors.

Figure 2.6: Dual core CSX Chip architecture (41).

(41) implements a real-time Harris Corner Detector implementation in a low-power SIMD ar-
chitecture named ClearSpeed CSX700. There are two cores, which have a RISC based processor
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coupled to what is called Poly Execution Unit: a highly parallel SIMD architecture consisting of
96 processing elements, refer to Figure 2.6. The work divides the image in two parts, one for
each core, and these subimages are also splitted in 96 rows to use all available cores. The ap-
proach can perform 142 fps for HD resolution, but different from our work, it shows an optimized
implementation of the HCD for the CSX700 chip.

(42) builds a mobile targeted HCD with a Tegra-based GPU. It implements the algorithm in
GPU-enabled functions of OpenCV and ArrayFire in Jetson TK1 and TX1 and only OpenCV for
Tegra X2. Also, the authors compare the results with MATLAB implementations for precision
checking. They evaluate multiple chessboards like images with multiple corners and HD, Full
HD, and 4k UHD. The device achieves real-time processing and up to 51.32 fps in 4k for Tegra
X2. While their work can achieve high performance, it is built on a fixed GPU architecture that
usually consumes more power than typical CPU applications (30).

Figure 2.7: NUMA configuration with 4 cores (43).

(43) uses a Non-Uniform Memory Access (NUMA) architecture to perform the HCD with a
serial combination of 3x3 derivatives and Gaussian filters, as shown in Figure 2.7. Optimizes the
algorithm with stencil computation, an algorithm class that maps a neighborhood of inputs on a
specific output. It utilizes two Intel Xeon processors to validate the proposed method. Similar to
our work, it performs memory aware parallelization, but does not concern with HW architectural
aspects and power-constrained systems, which is important for embedded applications. Instead,
(43) cares of software architectural aspects for High Performance Computing (HPC) and high end
computing systems.

Table 2.2 compares the HCD implementations with our work in terms of architecture type,
programmability and main features. It shows a predominance of non-programmable FPGA archi-
tectures for the Harris Detector. Most of these FPGA architectures use common Image Processing
structures, like line buffers. Non-FPGA implementations make use of software optimizations to
improve performance, as a differential.

Based on the presented analysis of the literature, our work designs an architecture to explore
the intrinsic spatial pixel parallelism using a Region-Based acquisition scheme (Fig. 1.5). As
seen, there is a lack of works that explore SW for specialized IP/CV HW to improve applications
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Reference Architecture Programmable? Main feature

(37) FPGA no Colored stereo HCD pipeline in a limited device
(38) FPGA no HLS tool to optimize performance
(40) FPGA no Complete pipeline implementation tested with MATLAB
(18) FPGA no Hybrid line buffers to reduce resource usage
(17) FPGA no Neighborhood Extration block and CPU/GPU comparison
(41) SIMD-ASIC yes Explore parallelism using multiple PEs available
(42) Embedded-GPU yes High-level libraries to simplify the implementation
(43) CPU yes Explore non-uniform memory with stencil computation
Our work MPSoC-FPGA yes Overlay architecture with region-based processing

Table 2.2: Comparison of different HCD implementations present in this work.

performance. Also, few works explore the use of manycores to enchance parallelism exploration
while keeping programmability. Combining these three aspects, we propose to build a FPGA
manycore architecture optimized for IP/CV applications. Every Tile of our architecture is respon-
sible for one image region and is composed of a Processing Element, a Router, and a Pixel Mem-
ory. To address communication issues, a Network-on-Chip handles data transmission among the
PEs using application-specific message packets. All PEs run the same binary code using Special
Registers (Sec. 4.2) to delimit the internal image of each Tile, also referred to as Tile’s sub-image.
Image parameters are static and defined during the design-time process.

The next chapter explains in-depth the HW/SW architecture developed for the FPGA overlay
and the complete IP/CV pipeline organization.
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3 THE HW/SW PLATFORM

This chapter explains the IP/CV pipeline implemented in this work, as depicted in Figure 3.1.
We selected a ZYNQ Ultrascale+ device (ZCU104 development kit from Xilinx), a state-of-art
SoC (7). It has a camera with an acquisition IP block, which stores pixel data in an acquisition
frame buffer (FB). After that, the Many-Core Vision Processor reads the frame from the acqui-
sition FB, processes it, and stores the final frame in the visualization frame buffer. Then, using
the AXI Stream interface, the final frame goes to an AXI DMA IP that saves the data in ARM’s
DRAM. This approach reduces the ARM processor load because it is only responsible for each
IP control but does not deal directly with the data transfer.

Camera
Acquisition

IP

Acquisition

Frame

Bu�er

Many-core

Vision

Processor

Visualization

Frame

Bu�er

AXI DMA

IP

ARM DRAM

ARM

Processor

Figure 3.1: The many-core architecture block diagram.

The manycore architecture proposed in our work is designed thinking on multiple pixel streams
being sent in parallel to each manycore tile. There is no comercial image sensor that provide
Region-based pixel streams. Due to its limitation in sensors manufacturing, we chose to make
a proof of concept using available and affordable image sensors. An FPGA is used as the base
platform since this work strives to validate the architectural concepts.

The ZYNQ Chip receives the pixel stream in the Acquisition Frame Buffer, which is respon-
sible for pixel distribution among the manycore tiles. After the image processing, the output
image is stored in the Visualization Frame Buffer, which is then read out by an ARM processor,
integrated into the SoC for algorithm validation.

Next sections break down each block of Fig. 3.1, except for the MCVP that is treated separetly
in Chapter 4. But before, a quick explanation about design parameters adopted along the work.

3.1 DESIGN PARAMETERS

A general IP/CV processing chain usually has multiple steps, where the initial image is ac-
quired, pre-processed and manipulated to obtain the desired final image for a specific application,
as shown in Figure 3.2. Some parameters are important no matter the algorithm or architecture in
use for these IP/CV applications. First, the common division of image size by width and height,
usually defined in pixels. They are important because give a raw estimative of the computational
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cost for a given chain. For example, considering a Harris Detector in stardard-definition compared
to an implementation using 4K resolution. Of course, the last one demands much more resources,
time and power.

Figure 3.2: General IP/CV processing chain and its complexity (4) (6).

Second, and Figure 3.2 even depicts it, are the different steps of a processing chain. In this
example, Acquisition is the first step of the application, Pre-processing the second, Segmentation
is the third, Feature Extraction the fourth and Interpretation the fifth and the last one. The amount
of information processed usually decreases for higher steps, while the complexity of their oper-
ations tends to increase. For general IP/CV chains, we defined the first step as the inital, the last
step as the final, and intermediary steps as the others (steps two, three and four in Figure 3.2).

Consider a simple application, with only a pre-processing routine to reduce some noise from
an acquired image and display it somewhere. Besides, in another application, consider the same
previous pre-processed image this time used to complete a Canny Edge Detector (44), leading to
segmentation and extraction steps. The last one has more phases to complete the IP/CV chain,
while the initial has fewer step. Thus, we conclude that processing chain steps are important
parameters when designing IP/CV applications.

Third, suppose that someone wants to implement a stereo vision visual odometry algorithm to
estimate the distance a robot has traveled (2). Figure 3.3 shows the example of feature correspon-
dence in highway pictures, from a stereo pair from current time (top), compared with a stereo pair
from previous time (bottom). Numbers in red are frame parameters for this application, endorcing
the need of this parameter to address different frames in multiple image applications. This appli-
cation needs two pair of stereo images, one pair of the previous time step (frames three and four)
other pair from the current one (frames one and two) to match features correspondence between
them. Therefore, there is a need for frame parameters in algorithms that require multiple images
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at the same step.

Figure 3.3: Feature correspondence for visual odometry. Stereo pair for current time at the top. Stereo pair for
previous time at the bottom. Numbers in red are frame parameters, based on (2) with modifications.

Finally, a fourth parameter type is the data type and size that concerns to a lower level pro-
cessing but has impact over computing architectures in general. Consider a 9 bits signed integer
corner detector implementation compared to a float 64 one. The first has better power and per-
formance but lacks precision compared to the last. Finally, we can summarize our architecture
design parameters as following:

• Image Width in pixels and in bits;

• Image Height in pixel and in bits;

• Step number of processing steps in the IP/CV chain;

• Frame number for algorithms that need multiple images in the same step;

• Pixel data size in bits, defined as 9 (8 bits to store pixel intensity and 1 for the signal) along
our work.

3.2 CAMERA

This work uses the OmniVision OV7670 CMOS sensor (45), with specs shown in Table 3.1.
The camera is set to QVGA resolution, 320x240 pixels, can achieve 60 frames per second in
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current setting. It outputs pixels in RGB444 encoding, which is therefore converted to grayscale
in a hardware IP.

Table 3.1: OmniVision OV7670 specifications (45).

Parameter Value

Resolution VGA, CIF and below
Optical format 1/6”
Pixel size 3.6 x 3.6 µ m
Frame rate 30 fps @ VGA
Output formats YUV

RGB
RGB Raw data

Colored yes
Power Consumption Active: 60 mW
Package 24-pin CSP2

The 24 pins are connected to the ZCU104 board through two PMOD interfaces, following
pinouts from Figure 3.4, using the LVCMOS33 I/O standard with primary power supply voltage
(VCCO) of 3.3V (46) for both input and ouput pins.

Figure 3.4: Camera pinout in ZCU’s PMOD interfaces.

3.3 ACQUISITION IP

Figure 3.5 shows what is called the Acquisition IP, which is a group of different modules: to
control the CMOS sensor, receive pixel data, and to store it in the Acquisition Frame Buffer. This
scheme uses an open-source project (47) as the main reference with modifications.

Five modules, i.e. AXI Camera Control IP, Debounce, OV7670 Capture, RGB444 to Grayscale
and OV7670 Controller, compose the IP, either for control or data sampling. OV7670 Controller
module is responsible for the CMOS initialization. Pins SIOC and SIOD sends data and clock to
an i2c like proprietary interface known as SCCB. The controller sets the image size, output data
format (RGB444 in this case), prescaler, contrast, gamma, UV auto adjust, image orientation,
color conversion, VSYNC/HREF setups, and other configurations. The RESET pin is responsible
for the camera reset. PWDN is an active-high pin to select power down or normal mode. XCLK
is the clock source responsible for synchronize control signals between the OV7670 Controller
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and the camera.

The SW pin is a hard-switch to enable the Debounce module and hard-reset the Controller, if
necessary. The Debouce block is a custom feature that enables external control over the acquisi-
tion scheme, resetting its settings when necessary. PCLK is the Pixel clock source to synchronize
pixel data with the Capture module. VSYNC is the vertical sync pin, which flags the end of a
frame. Similarly, HREF indicates when an image line ends. These two pins give information
about each pixel coordinate relative to the final picture. Finally, the DATA pin carries on pixel
data in 8 bits for processing in the OV7670 Capture module.

Figure 3.5: Acquisiton IP block diagram.

The OV7670 Capture gets RGB444 data from the camera and sends it to the RGB444 to
Grayscale module. It converts from RGB format to Grayscale accordingly to the equation,

gray = 5.1r + 10.2g + 1.74b (3.1)

where r, g, and b are intensity values of red, green, and blue lights measured by the CMOS sensor,
respectively. Their coefficients give appropriate weights for more important colors in the visible
spectrum. These values are get applying a commonly used RGB444 to Grayscale equation (48),
with approximations for hardware implementation. Also, the values were normalized to a 255
maximum intensity level because they have four bits and are limited to 16 (2 to the 4th power).

The pixel grayscale value is finally stored in the Acquisition Frame Buffer, refer to Section
3.4. Hence, the hardware architecture of the Acquisition IP is almost covered, missing the last
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module named AXI Camera Control IP. This entity is different from the others because it has
integration with the ARM processor and was implemented with the HW/SW integration in mind.
This IP has two functions: stop frame acquisition in the Capture module and inform the ARM
processor at the end of a frame using the VSYNC signal. Appendix A has the register space
description for the Acquisition IP.

3.4 ACQUISITION FRAME BUFFER

Acquisition Frame Buffer uses true dual-port block RAMs with two write ports in read-first
mode (49). It is responsible for interfacing the Acquisition IP with the Many-core Vision Proces-
sor. There is no need for any AXI port to control the module because it is simply the Dual-port
BRAM. The FB has three parameters modifiable in design time:

• Address Size: defines the bit length of the address field;

• Memory Size: sets total pixels storage capacity;

• Pixel Size: assigns pixel bit length, from design parameters in Section 3.1.

3.5 MANY-CORE VISION PROCESSOR
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Figure 3.6: The many-core hardware architecture designed in our work (7).

This section describes the big-picture of the Many-core Vision Processor architecture and its
HW/SW integration, as shown in Figure 3.6. Tile’s internal structure is described in Chapter 4.
Figure 3.7 depicts the Vision processor architecture. It is made of basic units, called Tiles, that
process, store pixel values in memory, and communicates with the other Tiles using a router. Mul-
tiple tiles form a 2D-mesh Network-on-Chip, which transmits pixel data and control messages,
forming a homogeneous many-core processing system. We decided to run the same binary code
in all Tiles to explore natural pixel parallelism, and because we identified that it fitted beter in a
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Region-based image division. What differs from each other are pixel parameters inside special
registers, accessible at programming time (see Section 4.2 for more details). These values are
stored in hardware, available after implementation, static for a specific architecture and image
size, and read-only during the run-time. We envision to create an application-time parameteriz-
able manycore to address the network and image sizes customization for future works.
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Figure 3.7: Pixel Interface that links the Many-core architecture, the Frame Buffers and the AXI4-Lite interface. It
is represented by arrows.

The ARM processor acts like a master from the manycore perspective. It controls the IP oper-
ation modes: writes programs in Tile’s Processing Elements, transfers pixels from Acquisition FB
to Visualization FB, and reads useful data from benchmarking registers when needed (explained
bellow). Because of the ARM processor importance to the manycore, we divided their interface
in two: the Pixel Interface, responsible for pixel transfers, and the General Purpose Interface, in
charge of Processing Elements programming and another useful data transmission. We aim to
simplify system understanding with this distinction, but the reader should keep in mind that both
use the same AXI interface and similar ARM firmware to control them.

Pixel Interface (PI) architecture appears in Figure 3.7, which has the function to transmit pixel
information to and from the Many-core and is a subset of the complete many-core from Figure 3.6.
Note that the Acquisition Frame Buffer interfaces with all tiles. There is a multiplexer inside the
MCVP logic that selects the correct tile with the desired pixel coordinate (x,y) of the Acquisition
FB. This is made by the Many-core’s Finite State Machine (FSM) and controlled by the ARM
processor. For example, for a 3x3 NoC (like the one in Figure 3.7) and 192x192 image, each tile
stores 64x64 pixels. Consider that the FSM wants a pixel from (2,2) coordinate. Then, it is going
to multiplex its input to connect the tile from top-left (responsible for this region) with the FB and
write the pixel inside the correct Pixel Memory.
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The same goes for Visualization Frame Buffer, but instead of writing pixels from FB in all
Pixel Memories, the FSM reads the final image and writes it in Visualization FB. An internal
demultiplexer, similar to the one used in Acquisition Frame Buffer, selects the desired tile, and
communicates with its PM. This is made using pixel coordinates (x,y) as reference. In both cases,
a Finite State Machine (FSM) controls the multiplexer. First, it reads the image from Acquisition
FB and stores inside the corresponding Pixel Memory. After the Many-core finishes to process
and generates the final image, the FSM transfers the final pixels to the Visualization FB.

Figure 3.8 pictures the second interface, with an internal bus, defined as the General Purpose
Interface (GPI). The ARM processor programs the Processing Elements using it. Also, GPI is
responsible for signal control (enabling/disabling memory interfaces), monitor task execution,
and access benchmarking counters. These counters belong to the tile’s internal structure and
measure: the Many-core execution time, Network overhead time, and Pixel Memories overhead
time. They yield information about memory access and network use. The GPI works like a JTAG
interface of common processors, in terms of usability.
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Figure 3.8: Internal bus to interface with the ARM processor. Defined as General Purpose Interface (GPI).

The ARM processor is used to configure and program the tiles, as well as for monitoring and
debugging. It communicates to the FPGA fabric through a single AXI4-Lite interface, with 56
configuration words, to transfer data to all tiles. This number of words is fixed and does not
change with the number of tiles. With this interface, it would be possible to support up to 65,535
(216− 1) tiles because of the address signal size (see Subsection A.2, SCR.MODE field) to select
each tile individually. The address of value 0 is reserved for use when the interface is idle, that
is the reason for the minus one in the total supported tiles. Through this interface, the ARM
processor has access to pixel memories (PMs), instruction memories (IMs), and special-purpose
registers for control and debug purposes. PMs and IMs are explained in Chapter 4.

There are some parameters in the MCVP IP to define important variables in design time,

23



including the design parameters from Section 3.1, there are also two related with AXI interface:

• Axi Address Width: AXI4-Lite interface address size in bits;

• Axi Data Width: AXI4-Lite interface data field size in bits;

The Appendix A explains the Many-core Vision Processor’s registers. It makes more clear
the limitations and function of this IP. It is relevant to highlight that both the ARM processor and
the AXI bus do not take part in image processing algorithms. The ARM processor access the
manycore, as well as all other IPs that use AXI4 interfaces (not including the Stream), as memory
mapped devices with specific base address and offsets to reach all registers. Hence, these registers
are nothing more than memory addresses from a hardware perspective, but we name them here
to ease explanation like usually appears in microcontrollers, IPs and peripherals in general (50)
(51).

3.6 VISUALIZATION FRAME BUFFER

Visualization Frame Buffer controls pixel transfer from the Many-core Vision Processor to the
ARM processor, after the MCVP ends the processing of a frame. It has one AXI4-Lite interface
to control and read relevant data from Visualization FB. Besides, a Memory interface, made of a
true dual-port block RAM with two write ports in read-first mode (49), stores pixels written by
the MCVP. This IP deals with two interfaces to link the manycore with the ARM processor: a
memory interface from the MCVP, and an AXI4 Stream interface to communicate with the AXI
DMA IP.

The Memory interface has memory address, data, control, and status signals. It connects
directly to the Pixel Interface, where a special control signal, called Stream Enable (SE), starts
the FSM. SE keeps low most of the time but gets a high logic level as soon as the MCVP ends
the algorithm processing. All Processing Elements need to finish the task to trigger the SE signal.
With this arrangement, there is no need for ARM intervention, even to initialize and start the
Visualization Frame Buffer.

An AXI4 Stream interface sends data without ARM direct intervention. This approach reduces
the processor load but demands a new IP to convert the stream to memory-mapped transfer (AXI
DMA IP) and a Finite State Machine to read pixels from the Block RAM and send it through AXI
Stream interface. Figure 3.9 depicts a diagram of the Frame Buffer.

The FSM also has a memory interface to connect to the other side of the Block Memory. It
is similar to the Pixel Interface’s FSM, in which signals scan all memory pixels, stores it one at a
time in an internal register, and sends the data to the Stream interface. The FB has multiple design
time parameters that allow different image resolutions, including all explained in Section 3.1 and
the following:
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Figure 3.9: Visualization Frame Buffer diagram.

• Axi Stream Start Count: number of clock cycles to delay the first stream data transmission,
the default value is 32 cycles;

A simple AXI4-Lite deals with the HW/SW integration. It has only one register, but it can
be upgraded if necessary in the future. Currently, this interface has one register to store a flag
from the FSM, named Stream Done (SD). This signal tells the processor that Visualization FB
finished transfering the image, and it is available in DRAM. Assuming the AXI overhead being
insignificant relative to the total time necessary to send the whole image, there is no significant
delay between SD and when DMA finishes its task. The Appendix A describes the Visualization
FB register space in detail.

3.7 AXI DIRECT MEMORY ACCESS IP

This work uses the AXI Direct Memory Access (DMA) IP version 7.1 (50) to write inside
ARM’s DRAM. Figure 3.10 illustrates the integration between AXI DMA and the ARM proces-
sor. DMA operates in Scatter Gather Mode, where descriptors changes the behavior of the DMA,
setting DRAM addresses and the number of bytes to transfer. These entities act like an instruction
memory for the DMA, controlling its functioning to behave as the designer wants. For this reason,
the diagram in Fig. 3.10 needs the Block Memory and BRAM generators. The ARM processor
writes these descriptors in Block Memory at initialization time and sets DMA registers through
an AXI slave interface, through the AXI Interconnect IP. The DMA runs in Scatter Gather mode
with ARM interruption if necessary.

After programmed and initialized, the DMA starts to operate: interprets the descriptors in
the Block Memory Generator IP, reads data from the AXI Stream input interface, and sends
pixels to the ARM processor via an AXI High-Performance Full Power Domain (HP FPD)(52)
slave port (red arrows path in Figure 3.10). The work uses this model to deal with the DMA

25



to reduce ARM’s load. Another way to use it is to interrupt the processor every time a DMA
iteration is complete. Them, the IP needs to be reprogrammed and so forth. Using descriptors,
there is no need to interrupt the processor and reprogram anything, although it is still possible to
interrupt the processor if necessary. However, a disadvantage of this approach is to depend on
Block Memories to store the descriptors, even not using much space. In cases where a board has
memory constraints, the interruption-only method is better. Otherwise, Scatter Gather mode is
usually the most common setting.

Figure 3.10: Diagram of AXI DMA and ARM processor connections, red arrows show data path during processing
time.

In practice, this work combines the interruption with the power and scalability of Scatter
Gather mode. The processor is interrupted every time the DMA ends an iteration. The descriptor
is very simple, containing just one Buffer Descriptor (the minimum size of this entity), can be used
to deal with more complex scenarios, sending data to different DRAM segments if necessary. In
the implemented design, one memory segment is reserved for the image, but the architecture
can handle even multichannel cases. This situation can deal with two distinct cameras for stereo
computer vision, for example. Appendix B presents the programming sequence for the complete
IP/CV processing chain architecture.

3.8 ARM PROCESSOR

This work uses a Zynq UltraScale+ XCZU7EV-2FFVC1156 MPSoC with an ARM Cortex-
A53 Based Application Processing Unit (APU) from the ZCU104 development kit, like shown
in Figure 3.11. It has four ARM Cortex-A53 processors with floating point, advanced single
instruction multiple data (SIMD), and cryptography extensions. Also, each A53 includes 32 KB
of Data and Instruction Cache, timers and debuggers peripherals.

The ARM processor runs a bare-metal implementation, using only a single core from the four
available. Two High-Performance Full Power Domain (HPM FPD)(52) AXI Master interfaces
control the peripherals described in previous sub-sections. One High-Performance Full Power
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Figure 3.11: ARM Application Processing Unit (APU) block diagram (51).

Domain (HP FPD)(52) slave interface receives the data from DMA IP. The Coherency slave
port has worse performance because the application transfer more data than the cache supports.
Besides, this work does not deals with multiple cores in Programming System (PS) and does not
require complex coherency functionality.

For a task done by an accelerator, which is the case of this work, and for data larger than
the cache size, the HP slave interface is the better choice in terms of performance and power
consumption(15). Also, for PS-PL data transfer, (16) shows that bare-metal has a better perfor-
mance compared with OS using CPU.

The ARM has PL-PS interruption enabled to address DMA IP needs. Besides, the initial-
ization process and other low-level tools are all dealt with by Xilinx proprietary tools: Vivado
Design Suite to synthesize and implement the architecture, and Xilinx Software Development Kit
to handle software and FPGA setup. Appendix C shows the complete IP/CV architecture built in
this work in the Vivado Design Suite. All components of the hardware design, explained in this
chapter, are depicted there.
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4 TILE COMPOSITION

This chapter describes the implementation details and architectural aspects of the manycore
vision processor’s tile. Figure 4.1 shows the tile architecture composed mainly by PE, PM, and
Router. The blocks have specific characteristics to improve performance and resource usage
trade-off. The Pixel Memory is responsible for storing pixels of input/output images, as well as
all intermediate images generated in an IP/CV chain, as explained in Section 3.1. The Processing
Element performs arithmetic/logic operations over the pixels. The Router provides pixels to/from
neighbor tiles, composing a NoC with the other routers.
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East TileWest Tile
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Purpose
Interface

Glue Logic

Pixel
Interface

General

Figure 4.1: A single Tile’s architecture.

In this work’s architecture, each pixel can be addressed by a 5-tuple with the following pa-
rameters:

• value: the pixel intensity (one or more words, considering grayscale or colored images);

• x coordinate: the pixel horizontal coordinate;

• y coordinate: the pixel vertical coordinate;

• steps: the pixel step index;

• frames: the pixel frame index.

The architecture uses these pixel coordinates to know which pixel is transferred, also shown in
Section 3.1. The implementation details were refined to take advantage of FPGA building blocks
(DSPs, Block Memories, Logic Blocks), creating an efficient overlay described in the next topics.
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4.1 PIXEL MEMORY

The PM has to interface with the Router, the PE, and also interact with external components
like the ARM processor or the input/output image buffers. The PMs were mapped to the BRAM
blocks of the FPGA with a wrapper, to interface with the other components, as well as to deal
with address computation from the 5-tuple. Considering that UltraScale+ Block Memories limit
the maximum memory interfaces to two (four data ports in total, two for read and write), this
work organizes the PMs ports accordingly to Figure 4.2 using built-in BRAMs. The application
of this kind of memory optimizes FPGA resource usage, improves time performance, and chip
area efficiency.

There are multiple ways to access the PM according to Figure 4.1. The PE and Router need
to get its pixel data, to process the algorithm and deliver pixels to other Tiles, respectively. Then,
the Tile organization could connect the PM with PE and Router in three different ways:

1. The PM just connected to the PE. In this case, the Router needs to interrupt the PE to access
pixel data. Its not a good choice because the processor would waste time with interruptions,
and would need a complex interrupt system;

2. The PM just connected to the Router. This is a simpler solution because the PE would
not need any interruption. But the Router centralizes pixel transmission in this approach,
leading to network and PE data access delays;

3. The PM is connected to the PE and the Router. This is the faster approach, because the PE
and Router have direct data access, without the need of any interruption, and not adding
unnecessary delays, by the cost of designing a second interface.

Option 3 is the most interesting as the hardware already support a second memory interface,
it does not increase resource usage significantly, and presents better performance. We chose it
because of these reasons, and decided to validate our desing choice with option 2, the other possi-
ble alternative. Comparison results are shown in Subsection 6.2, but the dual-interface approach
increases almost two times the manycore performance (for the same manycore size) with no sig-
nificant rise in resource usage. Reserving one interface to the router guarantees better system’s
availability because the Network has considerable overhead compared with internal PE-PM com-
munication (read Section 6.3.4 for details). The router also has an exclusive interface because it
communicates with four neighbor tiles and the PE simultaneously and needs a faster connection
with the PM to increase time performance. This way, the router does not need to compete for data
with the PE.

Besides, shared PI and PE interface does not interfere in the processing time. The ARM
program is aware of the manycore working cycle and does not transfer pixels while executing a
task. The multiplexer logic and PE design gives priority to the Pixel Interface and prevents pixel
losses in both inputs. However, the system provides support for run-time intervention if necessary,
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but the designer has to be aware that the PE does not have a halt functionality. So, writing to the
PM through Pixel Interface while processing a task may cause undefined behavior.
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Figure 4.2: The Pixel Memory architecture.

The implementation uses VHDL code to generate true dual-port block RAMs with two write
ports in read-first mode (49). The read/write operations are based on the 5-tuple, with an address
conversion to assure efficient memory utilization. First equation bellow converts the 5-tuple to a
BRAM address, and the second one defines the Pixel Memory size, in number of addresses, as a
dependence of some pixel parameters (21),

addr(x, y, n steps, n frames) =subimg height ∗ n steps ∗ n frames ∗ (x− x init)
+ n steps ∗ n frames ∗ (y − y init)
+ n frames ∗ s+ f,

(4.1)

tile mem size =n steps ∗ n frames ∗ subimg width
∗ subimg height,

(4.2)

where:

• subimg width: the total number of rows in tile image;

• subimg height: the total number of columns in tile image;

• (x init, y init): tile’s initial image coordinates;

• n frames: the total number of frames in the IP/CV algorithm;

• n steps: the total number of steps in the IP/CV algorithm.

Address number is unique for a tile sub-image, and the region of the image stored in a tile depends
on its place in the network (refer to Fig. 1.5).
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Each Pixel Memory ideally stores a defined image region. In practice, there are some excep-
tions in border tiles, where it can have more storage than pixels in its sub-image. This happens
because pixels can not be equally divided in regions depending on the manycore size. Besides,
our automation tool has limitations and does not opitmize image slice for multiple architectures,
which is not possible depending on the image resolution and MCVP size. But for simplicity, these
exceeding addresses are not taken into account in the implemented algorithms. Besides, Vivado’s
block memory code generator cannot cut the exact BRAM slices depending on the architecture
and image configurations due to its physical limitations, but it does not affect the implementations.

4.2 PROCESSING ELEMENT

Processing Elements must be able to perform simple computations like basic arithmetic and
branch operations. Besides, they must be compliant with the application-specific needs of IP/CV
algorithms. With that in mind, a minimalist RISC processor, with only 16 instructions, was
designed. The PEs have access to the Register File and to the PM to use in tasks. Instruction
Memories store programming code for execution.

The PE was developed focusing on: basic arithmetic operations necessary to most image
processing algorithms, defined here as R-type instructions; branch and jump operations to control
flow, named as Branch and Jump instructions, respectively; pixel data communication (P-type)
and Control instructions. Those five constitute all instruction formats necessary for the PE to
implement any type of IP/CV algorithm, turning the PE in a Turing complete machine.

For a given Register Size (RS), Figure 4.3 depicts the generalized version of the instruction
formats. Fig. 4.4 is a subset of that image for RS equals to 64. Hence, Instruction size depends
on RS and has the length in bits given by the following equation,

instruction size =

32, if RS < 6

5RS + 3, if RS ≥ 6,
(4.3)

for RS ∈ N. For P-type instructions, the field at left before x pixel coordinate receives zeros
for RS < 6 and does not exist for RS ≥ 6. This happens because in the second case, the
Pixel instruction delimits the size of all formats, and was chosen because the address field need a
minimum length to work safely. By default, the address has 17 bits to ensure enough addressing
in the pixel memory for multiple applications.

Figure 4.4 shows all instruction formats for a register file with 64 addresses used in our work.
Note that pixel operations have to access five registers simultaneously, requiring 34-bits instruc-
tion length. Branch and jump instructions use 17-bits address field to guarantee enough Instruc-
tion Memory addressing. The PE does not have hardware for division and uses the shift-right
operation as an approximate method instead, with a previous multiplication to ensure the correct-
ness of the operation. Hence, instead of a hardware division, it performs a right-shift followed by
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Figure 4.3: Processing Element generalized instruction formats.

a software multiplication.

Figure 4.4: Processing Element instruction formats for a 64 addresses Register File.

With instruction formats explained, Table 4.1 shows the 16 operations implemented in our
work divided by type. There are two Control, two Pixel types, eight arithmetic types, three
branch, and one jump instructions. They can handle most IP/CV applications without hardware-
level optimizations, but the purpose is to have a simple instruction set to show the scalability of
our MCVP architecture.

On the other hand, the use of these limited sets combined with an assembly language al-
lows complete control of the operations and fine-grained optimizations. This is not an advantage
compared with modern compilers, but combined with our specialized HW enables much better
performance, as shown in Chapter 6. Below is the explanation about operands necessary for each
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Table 4.1: Instruction Set used in the Processing Element

Instruction Type Description
NOP Control Do nothing
GPX P-type Get a pixel value from address
SPX P-type Set a pixel value to address
ADD R-type Arithmetic addition of two integers
SUB R-type Arithmetic subtraction of two integers
MUL R-type Arithmetic multiplication of two integers
DIV * R-type Arithmetic division of two integers
AND1 R-type Bitwise AND operation of two binary
OR1 R-type Bitwise OR operation of two binary
XOR1 R-type Bitwise XOR operation of two binary
NOT1 R-type Bitwise NOT operation of two binary
BGT Branch Branch if bigger than
BST Branch Branch if less than
BEQ Branch Branch if equal to
JMP Jump Jump to
ENDPGR Control End Program
* in this version division was substituted by a shift-right hardware.

instruction and its result, which was inspired by the DLX instruction set (53), following the fields
in Figure 4.3. The explanation has similar sequence as the RISC-V instruction list in (54), which
serves as a reference for this part.

• NOP (Control Type): No Operation. Advances the PE’s Program Counter by one instruc-
tion, consumes one clock cycle to perform it.

• GPX x, y, s, f, px (Pixel Type): Get Pixel. R[px] = sext(M[addr(R[x], R[y], R[s], R[f])]),
where sext is the sign-extension, R the register file array and M the memory array.

Stores a pixel in the register given by px and based on pixel parameters x, y, step, and
frame stored in each register. Equation 4.1 transforms these parameters into effective Pixel
Memory’s address. The PE can read pixels from the local PM, using the PE-PM interface,
or use the router to communicate with other image regions.

• SPX x, y, s, f, px (Pixel Type): Set Pixel. M[addr(R[x], R[y], R[s], R[f])] = R[px].

Stores a pixel value in a Pixel Memory address given by addr function (Equation 4.1). The
PE can write pixels in the local PM, using the PE-PM interface, or use the router to access
other image regions.

• ADD rs, rt, rd (Arithmetic Type): Add. R[rd] = R[rs] + R[rt].

Add register R[rs] to R[rt] and stores the value in register R[rd].

• SUB rs, rt, rd (Arithmetic Type): Subtract. R[rd] = R[rs] - R[rt].

Subtract register R[rt] from R[rs] and stores the result in register R[rd].
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• MUL rs, rt, rd (Arithmetic Type): Multiply. R[rd] = R[rs] × R[rt].

Multiply register R[rs] by R[rt] and store the result in register R[rd].

• DIV rs, rt, rd (Arithmetic Type): Divide. R[rd] = R[rs] >>S R[rt].

Divides R[rs] by multiples of two, applying a shift right arithmetic operation. Shifts R[rs]
value to the right by R[rt] positions and stores the result in R[rd]. This operation copies
R[rs]’s MSB to the empty bits after shift. This means that the divide operation performs a
shift right one in the actual instruction set because it is easier to implement and scale in the
FPGA. But theoretically, this instruction should perform a hardware division.

• AND1 rs, rt, rd (Arithmetic Type): AND. R[rd] = R[rs] & R[rt].

Calculates the bitwise AND operation between R[rs] and R[rt], stores the result in R[rd].

• OR1 rs, rt, rd (Arithmetic Type): OR. R[rd] = R[rs] | R[rt].

Performs the bitwise OR operation between R[rs] and R[rt], stores the result in register
R[rd].

• XOR1 rs, rt, rd (Arithmetic Type): Exclusive-OR. R[rd] = R[rs] ∧ R[rt].

Calculates the bitwise Exclusive-OR operation between R[rs] and R[rt], stores the result in
R[rd].

• NOT1 rs, rd (Arithmetic Type): NOT. R[rd] = ∼ R[rs].

Writes the compliment of R[rs] in register R[rd].

• BGT rs, rt, address (Branch): Branch if Greater Than. if (R[rs] ¿ R[rt]) pc = address.

Program counter receives the address field value, which has to be multiple of 4 if register
R[rs] is greater than R[rt].

• BST rs, rt, address (Branch): Branch if Smaller Than. if (R[rs] ¡ R[rt]) pc = address.

Program counter receives the address field value, which has to be multiple of 4 if register
R[rs] is smaller than R[rt].

• BEQ rs, rt, address (Branch): Branch if Equal. if (R[rs] == R[rt]) pc = address.

Program counter receives the address field value, which has to be multiple of 4 if register
R[rs] is equal to R[rt].

• JMP address (Jump): Jump. pc = address.

Jump to address in the next clock cycle.

• ENDPGR (Control): End Program. ndn = ’1’.

Sets internal ndn signal to ’1’, gets ’0’ with the MCVP IP reset. It triggers the NDN flag in
Status and Control Register to ’1’ for a given tile addressed in SCR’s MODE signal if the
Many-core is finished to write the final image in the Visualization Frame Buffer.
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Table 4.2: Register File organization.

31 0
R0/a0 Zero hardwired
R1/a1 One hardwired
R2/a2 Function argument, return value
R3/a3 Function argument, return value

... Function argument, return value
R(RFS-9)/a(RFS-9) Function argument, return value
R(RFS-8)/a(RFS-8) Function argument, return value

R(RFS-7)/xi Tile’s x initial coordinate
R(RFS-6)/yi Tile’s y initial coordinate

R(RFS-5)/imw Image width
R(RFS-4)/imh Image height
R(RFS-3)/smw Sub-image width
R(RFS-2)/smh Sub-image height
R(RFS-1)/ssr Step Sync Register

PE’s Register File (RF) has two hardwired addresses to store 0 and 1 integer values for arith-
metic operations. Six Special addresses store sub-image coordinates corresponding to the initial
x and y Tile parameters, sub-image length, and total image size for each axis. Also, a Special
Register address called Step Sync Register (SSR) saves the last s pixel coordinate to ensure that
the Pixel Memory correctly reads and sends data to other tiles already processed from its PE.

It is important to emphasize that these six special registers are defined in design time and
statically (hard-wired) implemented during logic synthesis and implementation steps. Run-time
modifications acceptance is a possible improvement. Register File Size (RFS) depends on the
Register Size value, and most of the addresses stores data for general purpose use, from R2 to
R(RFS-8). Table 4.2 shows the Register File organization in terms of RFS, which is given by two
to the power of RS (RFS = 2RS).

The PE has a single-cycle microarchitecture, including its main datapath for R and P-type
instructions. The Instruction Memory is implemented as a modified single-port RAM with read-
first configuration (49). It can be configured as Block or Ultra RAM (the two types of distributed
memory blocks in the SoC used) depending on design constraints and programmed through an
External Interface by the ARM processor via the AXI bus.

The Register File stores pixel data from the Router or Pixel Memory transferences, while the
Glue Logic selects the correct output interface depending on the desired pixel location. The PE
interrupts clock cycles until the message arrival every time the RF requests pixel data. Figure
4.5 depicts a simple Processing Element diagram, showing the P-type and R-type instructions
microarchitecture.

Since there is no compiler for the Processing Elements yet, all application algorithms were
implemented directly in assembly language, as explained in Chapter 5.
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Figure 4.5: Processing Element microarchitecture for P-type and R-type instructions.

4.3 ROUTER

The Router is the component responsible for exchanging pixels among the tiles. Its interface
consists of 6 ports, each one with one input and one output channel. All the channels are unidi-
rectional connected to the neighboring tiles (N, S, E, W) and the local PE and PM. Between each
tile pair, there are message buffers used to avoid network stalls. The size of these buffers is con-
figurable and depends on the algorithms used and the overall architecture configuration (image
resolution and number of tiles). Figure 4.6 shows router internal architecture, with its internal
buffers, interfaces and control unit.
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Figure 4.6: Router internal structure.
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Despite the step sync messages deployed by the PE for controlling purposes, only a single kind
of message can be traversed through the network. It contains the 5-tuple previously described,
the origin coordinates, and a flag to indicate if a message is a request for a pixel or the answer
for a request (forward/backward messages). Figure 4.7 illustrates a message and how it is routed
through the manycore.
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Figure 4.7: Message description and route.

For example, if a PE has to perform a Get Pixel instruction (GPX), which means that it needs a
specific pixel at the RF to process. The PE wrapper verifies if the pixel belongs to its image region
or another one. If it is a local pixel, the wrapper asks the local PM for the pixel value. In the case
that a pixel is in another image region, the wrapper asks the local router. The router has an arbiter
and, when it is the PE communication slot, the router decodes the destination and forwards the
message to a neighbor router. Take the Figure 4.7 as a sample, the top left tile requests a pixels
that belongs to the bottom right one. Because of this distribution, the forward massage passes
through all routers in the red arrow route until it gets to its destination. After getting the desired
pixel, the PM sends it to the nearest router, which passes the message (as shown in dashed blue
arrow) to neighbor routers until the pixel arrives to its origin.

The router consists of three logic units that perform different tasks along with the message
flow. The router has 6 input connections and 6 output connections. These connections are referred
to as links. Considering the 2D-mesh topology, the links tie the router within the tile (PM and
PE) and outside the tile (North, South, East, West). Figure 4.8 illustrates the router architecture
implemented in this work.

The message path initiates by storing the entire message at once in the Buffer (FIFO), which
has this name because of its changeable size in design time. At the end of the FIFO’s queue, there
is a unit named Decoder, that is responsible for deploying the routing algorithm. The Decoder
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will pull the necessary field to interpret the proper message direction, that is, origin coordinates,
the destination coordinates, and the tail field that informs whether the message is going back (to
the origin) or if the message is going forward (to the destination) and then the decoder issues a
request to the Flow Control Unit (FCU) for assigning the message to its respective channel.

FIFO DECODER

PIXEL VALUE

X-Y DESTINATION
X-Y ORIGIN DIRECTION

FORWARD 
BACKWARD

INPUT DATA

Figure 4.8: Router architecture.

A standard XY routing algorithm determines which output channel shall receive the message.
It basically calculates the number of hops1 to achieve the destination in each direction (XY), and
then it allocates to the Proper output channel. There are some situations, in which the decoder
will assign the message direction in observance of network congestion, given the history of the
previous message assigned in the same situations. The combination of Buffer and Decoder is
referred to as Input Channel.

Result: Message
if Output channel is idle then

Analyse all messages;
if Tied waiting time then

Arbitrates to all messages that go out of the network;
else

Older messages;
end

end
Algorithm 1: Injection controller arbiter.

The FCU is responsible to multiplex the input channels and assign to output channels. This
is done by submitting the “ready” input channels of which their respective output direction has
an output channel in idle state, to an arbiter. The arbiter priority is primary the longest message
waiting, in case of a tie, there are 2 options implemented: prioritize message from PE and PM
input channel or prioritize the messages from the neighboring tiles. Algorithm 1 is the algorithm
adopted by the arbiter.

In the first case, prioritizing the PM and PE input channels will work as a form to expand the
network load. Since the PEs are not able to issue more than one message at a time and waits in idle

1Number of links between origin and destination routers.
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state until a pixel arrival for GPX instructions, there is a limitation in network load. Prioritizing in
this case, the message injection will not have a significant impact and it will gather the messages
inside the tile that can possibly lead to deadlocks. The second case was adopted for our work. It
presents a better network load distribution.
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5 AUTOMATION TOOL

This chapter explains the software responsible for the manycore architecture generation and
other useful Vivado Project setups, called the Many-Core Vision Processor Architecture Automa-
tion Tool (MCVP-AT). The tool builds many-core vision processors for multiple 2-D mesh grid
NoC topology and the binary to run in its Processing Elements. Besides, the software design and
documentation were made thinking of future upgrades like assembly time optimizations, use of
pseudo-instructions, memory aware mapping, and OpenVX (55) standard implementation.

It is written in ANSI C (also known as C89) to increase its compatibility and maintainability,
as most embedded systems engineers work with C/C++. A previous assembler version written in
python was discontinued due to software maintaining difficulties within the research members.

Figure 5.1 depicts a diagram of the Automation Tool organization. The program takes a
JSON string file path as its single argument. It checks for the MCVP git project repository,
downloads it if needed, assemble PE’s binaries and build the many-core auxiliary files. These files
are integrated with the MCVP Vivado project automatically, where the user needs to re-generate
the bitstream (in the case of a new architecture) or compile and upload the ARM firmware in the
ZCU102 board.

Next sections explain the application blocks in details.

Figure 5.1: Automation Tool Diagram.
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5.1 JSON STRING

JSON (JavaScript Object Notation) is a text syntax that eases integration between all program-
ming languages. It provides a simple notation of expressing collections, a set of key and values,
similar to a C struct (56). It is used as an input method for the automation tool in this work.
Also, as a simple way of setting the program up without the need to write shell scripts or other
wrapper tools to set parameters. A JSON simplifies future integration with other programs, with
no need to modify the automation tool source code to use it with other applications. Below is
an example of the JSON string to run the MCVP-AT which all fields are mandatory to run the
program.

1 {

2 "manycore":

3 {

4 "imageWidth" : 256,

5 "imageHeight" : 256,

6 "pixelBitLength" : 9,

7 "manycoreWidth" : 40,

8 "manycoreHeight" : 40,

9 "maximumStep" : 6,

10 "maximumFrame" : 1,

11 "instructionMemorySize" : 1024,

12 "routerBufferLength" : 2,

13 "registerFileLength" : 64,

14 "ultraRamLimit" : 96.0,

15 "addressBitLength" : 17,

16 "registerFileBitSize" : 5

17 },

18 "vivadoProject":

19 {

20 "gitRepoUrl" : "https://gitlab.com/arctichopper/many-vp",

21 "gitFolderPath" : "/home/root/manycore_vision_processor",

22 "projectName" : "many_vp",

23 "outputFolderPath" : "/home/root/sbesc_2020/new/results/test"

24 },

25 "sdkApplicationProject":

26 {

27 "applicationName" : "many_vp_app"

28 },

29 "assemblyCode":

30 {

31 "assemblyPath" : "/home/root/smoothing_filter.asm",

32 "binaryName" : "smoothing_filter.bin",

33 "binaryPath" : "/home/root/fgcs_journal/smoothing_filter.bin"

34 }

35 }

JSON value is a field that, as the name suggests, holds a value or information. It can be of
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type object, array, number, string, true, false or null. An object is a set of name/value pairs
organized as a structure separated by curly brackets, where names are strings. A single comma
delimits a value to the following name (56). { "one" : 1, "two" : 2 } is an example
of JSON object, where "one" and "two" are names for integers 1, 2, respectively.

It is possible to relate the MCVP-AT JSON string with these definitions. There are four main
names in the string, concerning manycore settings, Vivado Project path and other information, the
SDK Application Project name, and PE’s Assembly Code location and binary name. Next is the
definition of each field:

• "manycore": name of the manycore parameters’ object;

– "imageWidth" (integer): the total number of image rows;

– "imageHeight" (integer): the total number of image columns;

– "pixelBitLength" (integer): number of bits in signals that carry pixel data;

– "manycoreWidth" (integer): number of rows in the manycore mesh grid;

– "manycoreHeight" (integer): number of columns in the manycore mesh grid;

– "maximumStep" (integer): the total number of steps in the IP/CV algorithm;

– "maximumFrame" (integer): the total number of frames in the IP/CV algorithm;

– "instructionMemorySize" (integer): number of instructions that can be stored
in Instruction Memory;

– "routerBufferLength" (integer): router Elastic Buffer length, refer to Section
4.3 for more information;

– "registerFileLength" (integer): number of addresses available in register file
as explained in Section 4.2;

– "ultraRamLimit" (float): maximum number of tiles using Ultra RAM in Instruc-
tion Memory;

– "addressBitLength" (integer): bit length of address field in Branch and Jump
instruction types (Figure 4.3);

– "registerFileBitSize" (integer): number of bits in register file registers, for
example, 5 means that all RF’s addresses have 25 = 32 bits;

• "vivadoProject": name of the Vivado Project object;

– "getRepoUrl" (string): the manycore vision processor git repository URL;

– "gitFolderPath" (string): complete path to git repository;

– "projectName" (string): Vivado Project name;

– "outputFolderPath" (string): complete folder path to store Vivado simulation
output;
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• "sdkApplicationProject": name of the Xilinx SDK application Project;

– "applicationName" (string): Xilinx SDK application name that holds the firmware
to run in ZCU’s ARM;

• "assemblyCode": Assembly code object name that refer to input/output files or paths to
run the PEs assembler;

– "assemblyPath" (string): complete path to the assembly source file;

– "binaryName" (string): name of the output binary file;

– "binaryPath" (string): complete path to the output binary string file.

This work uses an open-source JSON Parser written in ANSI C called cJSON (available at
〈https://github.com/DaveGamble/cJSON〉) to reduce efforts of interpreting the JSON file. The
software claims to be ultra-lightweight, and indeed, has good performance and usability for a
desktop application. Besides, cJSON is licensed under MIT, a short and permissive license that
eases its integration with other software.

5.2 GIT INTEGRATION

The git integration module is a simple shell command verification to check if the Many-core
repository is already downloaded in the current file system. If not, it downloads the data from
〈https://gitlab.com/arctichopper/many-vp”〉 using the following command,

git clone --recursive "getRepoUrl" "gitFolderPath".

5.3 ASSEMBLER

The assembler is related to the instruction formats from Section 4.2 and was designed for this
works’ ASIP architecture. It takes an Assembly source file and returns a binary string with the in-
structions, ready to be stored in Processing Elements. A custom assembly language was created to
accomplish this task, implementing the same instructions of Table 4.1. For future improvements,
new kinds o pseudo-instructions could also be implemented for code size reduction.

Assembly language follows the previously mentioned instructions rules and some additional
functions to simplify coding, readability, and maintainability. First, single-line comments can be
used with the character ; like other assembly languages, it only accepts single line and does not
have C-like comments (// or /* */).

Also, there is the concept of labels, any string at the beginning of a line terminated with a
colon (:). These labels can be used to substitute instruction address field and drastically eases
code writing. Automation tools automatically perform calculations to give proper label addressing
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during text parse and processing. Depending on the instruction and operands, the Processing
Element’s Program Counter branches to the first instruction after a given label.

The assembler has a feature to recognize special and regular arguments registers listed in Table
4.2. It is not case sensitive and accepts "_" to separate word in labels. Next is a sample assembly
code chunk of a Non-maximum suppression algorithm implemented in this work.

1 add a0, a25, ssr ; step sync register = 5

2

3 ; a55 and a56 will be used as tile delimiters

4 ; a55 - x delimiter

5 ; a56 - y delimiter

6 ; a53 and a54 will be used as tile initializers

7 ; a53 - x init

8 ; a54 - y init

9

10 add xi, smw, a5 ; a5 = xi + smw

11 sub a5, a0, a55

12 bst a5, imw, y_limiter_non_max

13 add imw, a0, a5

14 sub a5, a6, a55 ; subtract to assign x limit

15

16 y_limiter_non_max:

17 add yi, smh, a5 ; a5 = yi + smh

18 sub a5, a0, a56

19 bst a5, imh, x_init_non_max

20 add imh, a0, a5

21 sub a5, a6, a56 ; subtract to assign y limit

22

23 x_init_non_max:

24 add xi, a2, a53

25 beq xi, a0, y_init_non_max

26 sub xi, a0, a53

There is a use of the Step Sync Register (ssr) in the first line, which receives the value stored
in Register File address 25 (a25). Besides, line 16 presents a label separated by underlines and
finished by a comma. There is a branch type instruction in line 19 with the address field completed
by a label from line 23. It means that if the value of a5 is less than the value of Image Height
Register (imh), the next instruction to be fetched is an addition from line 24. In this example,
there are also many line comments to explain code behavior and improve readability.

5.4 MANY-CORE BUILDER

This part integrates directly with the git repository and overwrites four files. The first file,
named ”manycore.vhd”, is responsible for setting up the manycore size in a 2-D mesh grid NoC
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architecture. The second one, named ”manycore axi wrapper.vhd”, is a VHDL wrapper respon-
sible for instantiating the manycore, a memory, and AXI4-Lite interfaces. The third, named
”manycore tb”, is a testbench that takes an assembly binary file, reads it, and stores multiple
output images in the "outputFolderPath". The last, named ”noc.h”, is a C header file
containing architectural definitions for the firmware, like instruction properties, NoC, and image
sizes.

For every execution of the MCVP Automation Tool, these files are updated depending on
JSON string parameters. After that, the designer can directly update Vivado or SDK projects and
test new features or applications.

5.5 MCVP PROJECT FOLDER

The project folder has a common Vivado project organization. There are folders for the SDK
that stores the application firmware. Also, folders for hardware design sources and constraints.
There is an IP repository folder in the root path with all custom IPs used in the design. Project or-
ganization allows complete reproduction of the results in different machines for the same Vivado
2019.1 suite version. The automation tool modifies files from many_vp.sdk/many_vp_app

and many_vp.srcs/sources_1 folders. Figure 5.2 shows the git repository source tree.

Figure 5.2: MCVP project source tree.
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6 RESULTS AND ANALYSIS

This chapter describes the most significant results obtained using the Manycore Vision Proces-
sor architecture proposed and discussed in this work. It follows a logical path, from applications
description, investigations with Vivado Simulation and pitfalls that changed design decisions, to
final results using the complete IP/CV chain with acquisition and visualization scheme. All exper-
iments are explained and addressed to distinguish significant features and possible improvements
in the architecture.

It has the following organization: first, an explanation about implemented algorithms, next
there are initial results that motivated further experimental analysis, following is a performance
evaluation and comparison with the Manycore Vision Processor alone, and at last, there are results
of the complete architecture using the camera and the ARM processor.

6.1 APPLICATION: HARRIS CORNER DETECTOR

The architecture proposed in this work aims to implement any type of IP/CV applications. In
this context, we decided to show its flexibility with the implementation of an application suitable
to explore different types of IP/CV algorithms.

Corner Detectors are used in a wide range of applications: object tracking, stereo image corre-
spondence, reference for precise geometrical measurement, and camera calibration. While edge
detectors estimate high gradients in one direction, a corner detector computes gradient in multiple
directions (1). There are various corner detectors, but one of the most used is the Harris Corner
Detector (HCD) (57), which was selected as our demo application.
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Figure 6.1: Harris Corner Detector processing chain.

Figure 6.1 shows the HCD processing chain based in common textbook implementations (1).
The smoothing filter first reduces edge intensities throught a mean filter that passes low frequen-
cies, it is also known as a box filter, given by the following equation,
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H =
1

9

1 1 1

1 1 1

1 1 1

 . (6.1)

Next step is a Sobel X (Ix) and Y (Iy) estimation, responsible for calculate image gradients
for x and y directions, respectively. It detects image edges according to these two convolutions,

Ix = I ∗HP
x = I ∗ 1

8

−1 0 1

−2 0 2

−1 0 1

 , (6.2)

Iy = I ∗HP
y = I ∗ 1

8

−1 −2 −10 0 0

1 2 1

 , (6.3)

where the division by 8 normalizes gradient values from −255 to 255, which is pixel value limits
acceptable in our implemented architectures. Then, with two gradient intermediary images, the
algorithm computes the structure matrix M , given by the following equation,

M =

(
I2x IxIy
IxIy I2y

)
=

(
A C

C B

)
. (6.4)

Next, images A, B, and C are filtered by convolution with a 5x5 Gaussian filter given by the
following mask,

HG =
1

57


0 1 2 1 0

1 3 5 3 1

2 5 9 5 2

1 3 5 3 1

0 1 2 1 0

 . (6.5)

HCD defines the function V = V (x, y),

V = AB − C2 − α (A+B)2 , (6.6)

for each image pixel, called corner value function, where α ∈ [0.00, 1.00] is the detector sen-
sitivity. With the image V computed, a threshold (tH ∈ [900, 10′000]) is applied, generating a
binary image with values to pixels that are higher than tH . Finally, a non-max suppression routine
removes non-maximum pixels in a 5x5 neighbourhood. The result is a binary image with only
the detected corners.

The HCD algorithm is composed of several smaller blocks, most of them performing a con-
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volution. To have different comparisons to the literature, we evaluated the performance of the
complete HCD, the convolution with sizes 3x3, 5x5, 7x7, and the Sobel Edge Detector. The last
one uses the edge stregth orientation equation,

E(u, v) = |Ix(u, v)|+ |Iy(u, v)| , (6.7)

to calculate, store and compute Sobel detector time.

6.2 INITIAL RESULTS

This section describes motivations for the MCVP architecture and the initial results that led
to its final version. Four different architectures are implemented with a different number of Pro-
cessing Elements: 1, 4, 9, and 16; in a 1x1, 2x2, 3x3, and 4x4 2-D mesh grid NoC, respectively.
Different from Figure 4.1, there is no direct connection between PM and PE, where the only pos-
sible link is through a Router. Figure 6.2 shows the initial Tile implementation without PE-PM
interface. The PE only has access to pixels through the Router.

Pixel Memory
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Glue Logic
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Figure 6.2: A initial Tile architecture without PE-PM interface. The PE only has access to pixels through the Router.

One core of the ARM Cortex processor is used as a standard embedded processor for perfor-
mance comparisons with the previous four designs. It is targeted for real-time applications and
was configured to run at 500MHz. The processor stores the initial and final image data in FPGA’s
Block RAMs to emulate a processing chain with an external acquisition and displaying scheme.
Figure 6.3 (left) depicts the Harris detector cycles per pixel results for these systems, considering
a 256x256 image and 9 bits pixels. The ARM processor takes more than 9 thousand cycles to
process a single pixel, most because of its non optimized memory access to the BRAMs (that
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Figure 6.3: Comparison between only PM-Router only interface (left) with PE-PM/PM-Router interfaces (right) for
the HCD at 100MHz.

works at 100 MHz), also due to its lack of SIMD instructions or similar hardware optimizations
(51). ARM results takes more than five times compared with other manycores, which decreases
linearly with the architecture size. Figure 6.3 (right) shows the HCD cycle per pixel data for the
MCVP final version, linking PM with PE directly. Again, the number of cycles decreases linearly
with the manycore size increase, similar to previous results. But newer architectures present less
than a half cycles to complete the same algorithm.

Table 6.1: Implementation report for a 256x256 image, 16 max. steps and 1 frame for previous Router only
interface.

Device ARM 1 PE 4 PEs 9 PEs 16 PEs

Proc. Freq. (MHz) - 500 100 100 100 100
PL Max. Freq. (MHz) - 118.72 99.87 102.12 115.73 115.53
LUT 230400 9011 6752 22172 48840 89770
LUTRAM 101760 1870 2274 8806 19686 35019
FF 460800 10789 2298 11344 25257 62148
BRAM 312 256 256 256 261 256
DSP blocks 1728 0 4 16 36 64
On-Chip Power (W) - 3.63 3.51 3.65 3.88 4.34

Table 6.1 has resource data for the Router only interface, while Table 6.2 with PE-PM interface
for the same sizes. The newer version has considerable improvements in terms of memory blocks,
including the use of Ultra RAM, which was not implemented previously. But, even with a new
memory interface, it is clear that it has no significant impact on resource usage and could be
suppressed with other memory optimizations. Hence, the PE-PM interface is an advantage with
no significant resource increase compared with its performance gains.

Concerning scalability, one initial question to ask was if the MCVP could achieve better per-
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formance for a larger number of tiles. We made a series of Vivado simulations to evaluate system
characteristics with the automation tool aid. Figure 6.4 shows time performance (in frames per
second) behavioral simulation results for different core sizes with the PE-PM interface and im-
plementing the HCD. There is a linear fps increase with manycore size, not showing signals of
performance saturation. This means that the architecture can scale for at least 400 tiles in physical
implementation, achieving more than 500 fps, according to Vivado Simulator. The automation
tool can generate bigger sizes, and the simulator also is able to handle them. We chose to simulate
a reasonable manycore size that could fit in bigger FPGAs, not intending to perform a complete
analysis of parallelism limits of our architecture, but to demonstrate that it can have performance
increase for bigger devices.
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Figure 6.4: Harris Corner Detector performance in frames per second per architecture in Vivado Simulator,
100MHz, 256x256 image.

The MCVP architecture proposed in this work has the potential to get good performance
considering the results above, even compared with other architectures and implementations, refer
to subsection 6.3.3 for details. Then, it is safe to continue with more analysis and experiments, to
evaluate other practical applications in FPGA and focusing on the final MCVP performance. The
next section depicts some meaningful results about it.

6.3 MANYCORE PERFORMANCE

All results obtained in this section use a Xilinx Zynq UltraScale+ MPSoC ZCU104 Evaluation
Kit. Nine different architectures are physically implemented with a different number of Process-
ing Elements: 1x1, 2x2, 3x3, 4x4, 5x5, 6x6, 7x7, 8x8, and 9x9 2-D mesh grid manycore. The
available FPGA size limited our work to 81 Processing Elements (9x9). However, we also com-
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pared implementation results with previous simulated performance data of 10x10, 11x11, 12x12,
13x13, 14x15, 15x15, 16x16, 17x17, 18x18, 19x19, and 20x20 (400 tiles) to show the speedup
and scalability of our architecture.

Experiments performed in this Section consider the time consumed by the manycore to pro-
cess an entire frame implementing different algorithms. Time starts when the initial frame is
written in PMs, and the signal SCR.NRST gets low. It ends when all Tiles finish processing and
set one to SCR.NDN bit.

We also considered only grayscale images (9 bits) and a 256x256 image resolution. Besides,
there is a reduction in the total amount of pixels per tile when we increase the manycore size.
This approach favors the speed since there are fewer pixels and more operations are performed
in parallel by the PEs. However, this also increases the communication overhead, so the speedup
is a linear function as the architecture increases exponentially in manycore sizes because of the
NxN 2-D mesh grid network.

6.3.1 Resources utilization

Table 6.2 shows FPGA resources and other parameters used in the implementations, consider-
ing a 256x256 image, a maximum of 8 processing steps, and one image frame. These parameters
are enough to run the HCD processing chain shown in Fig.6.1. Maximum frequency (in MHz)
is calculated from the Worst Negative Slack (WNS) obtained from synthesis and implementation
routines, and means the manycore maximum estimated working frequency in this specific FPGA
fabric. It also shows the total on-chip power consumption estimated by the Xilinx Vivado tool.
We must highlight that there was available space to insert more tiles. However, the synthesis/im-
plementation tool could not find a feasible place & route solution.

All architectures ran at 100MHz with at least 14MHz of margin compared to PL maximum
frequency, as described in Table 6.2. It means that RTL design fulfilled physical constraints, re-
flecting in calculation and results integrity achieved. Logic Cells occupation more than duplicated
for the 1 PE, 4 PEs, and 9 PEs, reducing the rate above 16 PEs. Network and external interface
signals have less impact on bigger architectures, resulting in this rate reduction. On-Chip power
shows a near 0.1W increase for smaller designs. After the 16 PEs many-core, there is an approx-
imately 0.3W growth until 81 PEs.

6.3.2 Performance analysis

Experiments in this section were computed using architecture special registers: Total Counter
Register (TCR), Network Counter Register (NCR), and Pixel Memory Counter Register (PMCR),
as described in Section 3.5. Time results only take the Manycore performance into account, not
considering image transfer to or from the IP. A chessboard picture is used as a benchmark because
it contains regular corner numbers for similar HCD execution timing. Data results are taken one
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Table 6.2: Implementation report for a 256x256 image, 8 max. steps and 1 frame at 100MHz.

Device 1 Tile 4 Tiles 9 Tiles 16 Tiles

PL Max. Freq. (MHz) - 119.72 130.17 126.04 123.00
LUT 230400 4084 9410 19543 31434
LUTRAM 101760 358 1126 2406 4198
FF 460800 3169 7934 16365 28014
BRAM 312 160 160 167 160
URAM 96 1 4 9 16
DSP Blocks 1728 4 16 36 64
Estimated Power (W ) - 3.470 3.545 3.680 3.852

25 Tiles 36 Tiles 49 Tiles 64 Tiles 81 Tiles

PL Max. Freq. (MHz) 123.35 123.50 117.36 120.06 114.63
LUT 50860 75991 101424 123399 168748
LUTRAM 6502 9318 12646 16486 20838
FF 43946 62914 86065 112091 142653
BRAM 182 176 179 160 194
URAM 25 36 49 64 81
DSP Blocks 100 144 196 256 324
Estimated Power (W ) 4.066 4.373 4.617 4.984 5.246

time for each algorithm and size.

Figure 6.5 shows the performance in frames per second per architecture for all implemented
algorithms. This scenario considers the processing time with the input image already distributed
inside the PMs and the final image stored in the PMs.

The many-core architecture presents an exponential speedup in all cases because of the expo-
nential size increase. But, there is an almost linear speedup in terms of performance per tile. The
3x3 Convolution and Sobel filters were able to achieve 909 and 1000 fps, respectively. Higher
performance denotes better parallelism exploration. Also, the speedup maintains linear for all
architectures, meaning that we should expect a constant performance growth for larger architec-
tures, until reaching the point that the communication overhead overcomes the parallelism speed
up (see Subsection 6.3.4), and the performance starts to degrade.

As expected, Harris Corner is the most time-consuming task from the graphic, followed by
7x7, 5x5, 3x3 convolutions, and Sobel filter, respectively. This order is maintained in all Many-
core sizes, despite similar values in cases where the parallelism is better explored. Comparing
HCD block diagram from Fig. 6.1 with Fig. 6.6, 5x5 Gaussian Filters from the algorithms takes
almost 75% of the time, comparing to 7x7 Convolution filter from the graphic. This happens be-
cause HCD performs 3 convolutions in the same step, using 50 pixels from Sobel X and Y, which
is close to 49 neighbor pixels from 7x7 Convolution. Other HCD steps are compared to 3x3 Con-
volution (Smoothing Filter) and Sobel from Fig. 6.6, taking about 25% of the execution time. The
Sobel algorithm takes less time compared to 3x3 Convolution because of branch optimizations.
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Figure 6.5: Performance in frames per second per architecture, all running at 100 MHz on the physical device.
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6.3.3 Architecture comparison

Table 6.3: Comparison of implementations of Sobel Edge Detector.

Reference Architecture No of cores cycles/ Programmable?
pixel

(36) 2019 * MPSoC-FPGA 4 1.06 no
Ours (81 PEs implementation) MPSoC-FPGA 81 1.52 yes
(29) 2015 MPSoC-ASIC 16 2.67 yes
(35) 2019 MPSoC-FPGA 4 64.13 yes
* includes the initial image transfer time.

A comparison, only for the Sobel Edge Detector against our 81 tiles implementation, is shown
in Tab.6.3. All related works involve Multiprocessor SoCs. (36) builds a method to program
heterogeneous MPSoCs using the Xilinx SDSoC framework. It implements an Edge Detec-
tion algorithm in multiple scenarios: software only, HW/SW with static and runtime task map-
ping/scheduling. (29) uses a 2D mesh NoC based 16 RISC core processor to implement different
image processing task for its parallel programming model called threaded MPI. (35) develops
a high-level synthesis tool to facilitate time-to-market Heterogeneous MPSoCs design, using a
MPI-based programming model and Vivado Tools for HLS and TCL scripting.

Table 6.4 compares our best timing performance MPSoC with related architectures for the
Harris Corner Detector application. We show in the table two results: the simulated one, with 400
tiles, and the implemented one (limited by the FPGA size), with 81 tiles. (42) utilizes a Jetson
(ARM and GPU) similar to this work, with a GPU instead of using programmable logic. (41)
implements HCD on a ASIC SIMD architecture. (29) uses an NoC-based MPSoC with 16 RISC
cores assisted by an external ARM CPU. (19) builds the application in a processor array using
VLIW PEs and point-to-point communication, building a tightly-coupled processor array. (37),
(40) (18), and (17) implements pipelined HCD architectures in FPGA.

It is not easy to compare different architecture types, as well as different VLSI systems. To
have a kind of normalization, we computed the cycles/pixel, which is a metric that shows how
efficiently a computing architecture implements an IP/CV application. This metric is independent
of the VLSI technology and the operating frequency. We believe that, with this normalization, we
can fairly compare the architectural designs from several years ago until now. Our architecture
achieves closer cycles per pixel compared to similar programmable devices.

In general, non-programmable pipelined FPGA architectures have better results but lacks flex-
ibility. However, other device types can also achieve similar performance, in terms of frames per
second, for ICs that can run at higher frequencies but consume more power. It is important to em-
phasize that this work explored the platform physical limits in the Zynq ZCU104 board and still
can reduce HCD execution time for larger FPGAs. Moreover, our solution brings full flexibility
with a performance close to non-programmable architectures. (29) is also a NoC-based MPSoC
with RISC processors, and the most similar implemetation to our architecture in Table 6.4. Our
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Table 6.4: Comparison of implementations of the HCD.

Reference Architecture cycles/ Programmable?
pixel

(17) 2014 ** FPGA 1.00 no
(18) 2014 FPGA 1.00 no
(19) 2013 FPGA 1.36 yes
(40) 2017 ** FPGA 2.11 no
Ours (400 PEs simulation) MPSoC-FPGA 3.02 yes
(37) 2013 ** FPGA 3.03 no
(41) 2010 SIMD ASIC 3.42 yes
(29) 2015 MPSoC-ASIC 7.07 yes
(42) 2018 * Embedded GPU 7.19 yes
Ours (81 PEs implementation) MPSoC-FPGA 11.61 yes
* includes the initial image transfer time.
** includes acquisition and visualization scheme.

Many-core performed more than two times faster compared with their work, considering the 400
PEs version.

6.3.4 Pixel Memory access

To check the architecture’s parallelism limit, Figure 6.7 shows the time the PE spent in pixel
accesses through the Router (using the NoC to request/receive pixels from other tiles), the local
PM, and total pixel access, as a percentage of the execution time. We can see that pixel accesses
represent from 26% to almost 35% of the application time. The rest of the execution time is
spent by the PE effectively processing data. Network overhead increases on a logarithmic scale
more than PE-PM usage decreases. It means more time is spent to access memory for larger
architectures and consequent reduction in performance gain with scalability. These results denote
that there will be no sensitive improvement after a specific many-core size and, from this point,
any increase in the number of Tiles would start to degrade the performance.

6.3.5 Parallelism preview

Fig. 6.8 depicts a comparison among implemented and simulated results for the HCD algo-
rithm. It gives a perspective of future performance and parallelism exploration for larger many-
core systems as we are limited to the FPGA fabric size in our implementations.

Both simulated and implemented data have similar results for all cases until 81 PEs, showing
that simulation can be a good estimator for our MPSoC real-world design. There is an increase
in performance for all simulated architectures after 81 PEs, achieving more than 500 fps. It
indicates that our many-core is capable of exploring until at least 400 PEs without performance
saturation. This graphic confirms suppositions in Section 6.2 that the architecture can scale.
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As expected, implemented designs present slightly better performance because of synthesis and
implementation optimizations.

6.4 COMPLETE IP/CV PROCESSING CHAIN

This section has the results of the complete IP/CV processing chain, from the acquisition in the
OV7670 sensor to the ARM DRAM memory availability. All data use QVGA image resolution
with the PL running at 100MHz. We intend to address general characteristics of the Many-core,
discussing its advantages and disadvantages. Figure 6.9 shows a photography of the OV7670
CMOS sensor and Infineon power monitor device attached to the ZCU104 Development Kit,
used in this Section’s results.

Figure 6.9: Photography of the ZCU104 Development Kit with the OV7670 CMOS sensor and the Infineon power
monitor device.

6.4.1 Resource usage

Table 6.5 has resources usage of the complete chain, for different architecture sizes, until 81
PEs, which gets to the physical limit of the Xilinx Zynq UltraScale+ MPSoC ZCU 104 Evaluation
Kit. Compared to Table 6.2, there are more than 4 thousand LUTs for 1 PE on the final version,
mainly due to the increase in AXI Interconnect IPs that have five master and two slave interfaces.
These masters control the Visualization Frame Buffer, the Acquisition IP, the AXI DMA IP, a
BRAM Controller for the DMA Scatter Gather Mode, and the Many-core Vision Processor. Two
slave interfaces get two High-Performance Full Power Domain (HPM FPD) from the ARM pro-
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cessor. Also, there is a 307 % increase in FF usage, suggesting that the complete version has more
sequential logic components from these new IPs and interfaces.

Block Memories have no constant increase rate, even with the same image size, and consume
different units depending on sub-images size and distribution. For example, 25 PEs uses the same
number of memories as the 1 PE version because each tile receives a 64x48 sub-image, which
has optimal placement in the FPGA fabric. However, the sub-image has 40x30 size for the 8x8
manycore and presents the least optimized placement, and utilizes more resources.

Table 6.5: Resources for the complete IP/CV processing chain, QVGA image at 100MHz.

Device 1 Tile 4 Tiles 9 Tiles 16 Tiles

PL Max. Freq. (MHz) - 134.77 128.85 122.80 122.88
LUT 230400 9841 16057 26117 39765
LUTRAM 101760 789 1557 2837 4629
FF 460800 9733 15219 24164 36843
BRAM 312 195 197 198 205
URAM 96 1 4 9 16
DSP Blocks 1728 6 18 38 66
Estimated Power (W ) - 3.568 3.646 3.774 3.969

25 Tiles 36 Tiles 49 Tiles 64 Tiles 81 Tiles

PL Max. Freq. (MHz) 120.61 122.01 122.56 122.70 111.42
LUT 56837 80944 110941 141772 178582
LUTRAM 6933 9749 13077 16917 21269
FF 53240 73421 97350 124997 156400
BRAM 195 219 234 237 207
URAM 25 36 49 64 81
DSP Blocks 102 146 198 258 326
Estimated Power (W ) 4.198 4.444 4.742 5.077 5.401

Each tile uses an Ultra RAM block as in the previous case. Power consumption, using the
Xilinx Power Estimation tool, had approximately a 3 % increase. It shows that the off-chip
camera attached to the board does not demand significant power compared to the ZCU board.
Next, there are camera captured image results and analysis.

6.4.2 Performance evaluation

The performance experiment was set to capture 500 frames, where the camera is set to a free-
capture mode, saving all the frames in the Acquisition Frame Buffer. The ARM processor controls
the MPSoC to wait for the camera VSYNC signal and guarantee correct frame processing. As
image transfer time from the Acquisition FB to PMs takes about 1 ms, which is similar to the
DMA transfer time, there is no pixel loss in free-capture with the camera producing 60 fps1.

The timer starts to count when the ARM finishes to set up and initialize peripherals (the
1Chapter 3 explains these signals and IPs in details.
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Figure 6.10: Example of initial camera captured image of a chessboard (left) and the final Harris frame for the same
picture (right).

MCVP, DMA, camera, and Acquisition FB) and stops to count when the DMA IP sends the last
Descriptor high-level status bit (50), after writing the last pixel in ARM’s DRAM. We use the
APU MPCore System Counter, sometimes referred to as the global counter, as a clock counter to
compute performance in the current experiment. It is a 64-bit counter documented in the Cortex-
A53 MPCore Technical Reference Manual (51).

Five algorithms are implemented: the Harris, Sobel, 3x3, 5x5, and 7x7 Convolutions. Figure
6.10 (left) shows a chessboard captured image from the sensor and read from ARM DRAM
through a UART interface, for evaluation purposes. Figure 6.10 (right) depicts the final Harris
detector for the left image. Note that the algorithm detects corners even with our architecture
implementing an integer version of it, with pixel data precision limited to 9 bits. Hence, we can
conclude from visual inspection that the MCVP implementation produces valid output images in
the complete processing chain. It is not shown here, but this result is also achieved for the other
algorithms.

Figure 6.11 shows time performance results for the algorithms executed, from 1 to 81 PEs.
There are near linear performance improvements in all algorithms until 9 PEs, after that, Sobel
and 3x3 Convolution stopped at near 30 fps. These two just doubled performance after reaching
less than 16 ms per frame, where the architecture was able to overcome the camera VSYNC
limitation, and 49 tiles until to 81 could get maximum performance of 60 fps for the current
acquisition scheme.

More demanding algorithms, the HCD, 5x5, and 7x7 Convolutions, have performance gain but
do not achieve near linear speedup, keeping 30 fps after 49, 16, and 64 PEs, respectively. Even
with these inferences, the camera limits performance and increases the gaps between neighbor
architectures until its saturation. This is a pitfall of the VSYNC acquisition control scheme, which
has a performance reduction to guarantee frames coherency. Hence, a possible improvement is to
choose a camera able to produce more frames per second to improve performance and granularity.
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Figure 6.11: Execution time for multiple algorithms with acquisition and visualization scheme.

6.4.3 Power consumption

The ZCU104’s power system has components to monitor voltage and current on the power
rails by the Infineon manufacturer (58). Even though the board already has the components to
power monitoring, and they are linked to the internal I2C bus, we chose to use a commercial
solution to ease data acquisition and confidence. For this reason, an Infineon USB005 USB cable
(59) is used to get power results directly from an I2C pin connection from the board.

We used the PowIRCenter GUI application to get power results from all rails. Considering
that the ZCU104 development kit shares different peripherals in the same rail, mixing the FPGA
fabric with DRAM power supply (60), for example, it is not possible to separate FPGA from ARM
or other subsystems. For this reason, experimental power results concern the total instantaneous
consumption in Watts (W ) for all rails, which is also available in the desktop application.

As the PowIRCenter does not have a data logging system or any way to store the data from
power monitors ICs, we filmed the app screen to analyze its data using video editing tools. Similar
to precious timing results, this subsection also tests the Harris, Sobel, 3x3, 5x5, and 7x7 Convo-
lutions, varying the number of processing frames with the algorithm and manycore size. Table
6.6 shows base frames2 for each architecture used in the experiment. All algorithms process these
frames quantity except for the Sobel and 3x3 Convolution filters, that process base frames times
two. These last algorithms are faster than the others, that is why we decided to increase the frame
count, to take more time, and get more power measurements.

2Number of frames processed for most algorithms.
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Table 6.6: Power experiment base frames for each archtecture size.

Arch. size (Tiles) Base frames

1 50
4 200
9 500
16 500
25 500
36 500
49 500
64 500
81 500

Figure 6.12 has the power performance graphic for different algorithms and architecture sizes.
The programs have linear power consumption increase in most cases, except for the Harris de-
tector. Lines and points represent the measurements mean, and the shaded area is the 95 %
confidence interval based on the mean estimator (61). The power behavior relates to the whole
architecture components: the image capture system, DMA, MCVP, ARM processor, and other
internal board subsystems. The camera runs in free-capture, like in Subsection 6.4.2, with no
clock-gating or power shutoff features. The linear increase in mean power is most caused by the
FPGA fabric area usage, because the architecture components keep the same for all Many-core
sizes except for the PL part.

With more tiles, more instantaneous power consumption because there are more pixel trans-
mission between each of them. With more routers and memory in use, less predictable is the data
transferences between each tile and routers’ queues occupation. Besides, as we deal with a big
digital system, in terms of resource usage that consumes thousands of logic units, the Flip-Flops
clock distribution is not completely uniform, causing propagation delays. Combining the MCVP
behavior with the FPGA and physical characteristics, the system has variable and less predictable
instantaneous power consumption, leading to a standard deviation increase.

We explained the higher power demand but did not describe a reason for algorithm curve
differences. Memory write operation usually demands more power than memory read, write
can consume from 1.3 to 16.5 times more power for NAND flash (62) (63). We can infer that
FPGAs Block RAMs, even being a different type of memory, also demands more power for write
operations. The Harris algorithm is the only one that consumes more than 2 steps to finish. As
Sobel, 3x3, 5x5, and 7x7 Convolution filters have one initial step (the captured image) and the
final one (with the filtered image), the Harris has to write in four intermediary images, and finally
get the last one.

This would probably be the main reason for its higher power consumption, in addition to the
fact that 49 and 64 Tiles uses more BRAM units due to lack of optimization. More significant
are the write operations with more units working, because there are more logic elements to be
powered and maintained. A proof of the last argument is the reduction rate of the Harris for 81

61



1 4 9 16 25 36 49 64 81
Many-core size

6.4

6.6

6.8

7.0

7.2

7.4

7.6

7.8
Po

we
r (

W
)

Harris
Sobel
3x3 Conv.
5x5 Conv.
7x7 Conv.

Figure 6.12: Power consumed for different algorithms and architecture sizes.

Tiles because, according to Table 6.5, it uses fewer Block Memories and has better performance.

In addition to that, idle time can also influence power consumption. With the camera running
in free-capture and the MCVP waiting for the VSYNC signal, depending on the timing perfor-
mance, the manycore can wait longer for frames and consume less power.
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7 CONCLUSION

In this work, we developed a manycore architecture for real-time Image Processing and Com-
puter Vision applications. Our approach makes use of Region-based acquisition scheme and op-
eration level parallelism to optimize the processing time. Additionally, we designed a pixel distri-
bution and control unit utilizing an embedded processor commonly available in modern FPGAs.
All subsystems are addressed and explained with construction details, focusing on describing an
FPGA overlay to explore the platform design possibilities better.

As a proof-of-concept, we implemented some IP/CV algorithms: the Harris Corner Detector,
Sobel Edge Detector, and Convolution filters. The results show that our architecture is capable
of overcoming similar real-time architecture depending on the manycore size and application
demands. The architecture is also flexible and easy to scale for higher numbers of tiles. The
linear enhancement of processing speed while increasing the number of PEs shows that we could
achieve the aim of exploring the natural parallelism of IP/CV algorithms.

We built an automation tool to generate multiple architecture sizes and tested it in a complete
IP/CV processing chain, from acquisition with an OV7670 camera, to storing the final processed
image in ARM processor DRAM. Timing results showed that our architecture has increasing
performance with the size, but the camera system is a significant bottleneck. We concluded that
FPGA resource usage, memory write operations and idle time are the most significant variables
that impact power consumption.

We implemented an Application Specific Instruction Set Processor (ASIP) with 16 instruc-
tions for specific IP/CV applications needs. With the automation tool, we were able to produce
81 cores in the FPGA fabric and up to 400 in Vivado Simulator. Also, power results have li-
near increase with the manycore size, which usually presents exponential behavior, and means
that the architecture has efficient energy consumption considering the power differences between
manycore sizes.

As future works, we envision the development of an EDA tool, from our automation tool, to
provide better memory management and test different task mapping techniques (as in this work we
executed the same code in all Processing Elements). The architecture shall also be validated for
multiple-frames algorithms, like motion estimation, tracking, and pattern recognition. A custom
compiler using the LLVM is also another possible upgrade for this works’ ASIP architecture, as
shown in (64).

We also envision installing embedded Linux in the ARM Application processor, leaving the
Real-time one to deal with the MCVP and other time-constrained tasks. Linux is a good choice
because allows easy use of its drivers for WiFi connection, for example. In this case, the DMAC
referred in (16) can be a good option depending on the application demand. With this feature, we
could send a video stream with the post-processed images for an external computer or server, to
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enable remote control and monitoring.

Besides, we envision to optimize the PE and PM glue logic to reduce its size and complexity,
and to analyse and optimize (if necessary) overall memory access time. Also, we envision to
create a pipelined version of the PE and analyse its impact on the manycore performance and
resource usage. Adopt a wormwhole data flow in the Router is another idea for future scalability
improvements.

64



BIBLIOGRAPHY

1 BURGER, W.; BURGE, M. Digital Image Processing: An Algorithmic Introduction Using Java. [S.l.]:
Springer London, 2016. (Texts in Computer Science). ISBN 9781447166849.

2 CORKE, P. Robotics, vision and control: fundamental algorithms in MATLAB R© second, completely
revised. [S.l.]: Springer, 2017. v. 118.

3 SZELISKI, R. Computer vision: algorithms and applications. [S.l.]: Springer Science & Business
Media, 2011.

4 FORCHHEIMER, R.; ASTROM, A. Near-sensor image processing: A new paradigm. IEEE
Transactions on Image Processing, IEEE, 1994.

5 FOSSUM, E. R. Low power camera-on-a-chip using cmos active pixel sensor technology. In: IEEE.
1995 IEEE Symposium on Low Power Electronics. Digest of Technical Papers. [S.l.], 1995. p. 74–77.

6 YUDI, J.; LLANOS, C. H.; HUEBNER, M. System-level design space identification for many-core
vision processors. Microprocessors and Microsystems, 2017.

7 SILVA, B. A.; LIMA, A. M.; YUDI, J. A manycore vision processor architecture for embedded
applications. In: IEEE. 2020 X Brazilian Symposium on Computing Systems Engineering (SBESC). [S.l.],
2020. p. 1–8.

8 KOMURO, T.; KAGAMI, S.; ISHIKAWA, M. A dynamically reconfigurable simd processor for a
vision chip. IEEE journal of solid-state circuits, IEEE, v. 39, n. 1, p. 265–268, 2004.
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42 CHAHUARA, H.; RODRÍGUEZ, P. Real-time corner detection on mobile platforms using cuda. In:
IEEE. 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing
(INTERCON). [S.l.], 2018. p. 1–4.

43 HAGGUI, O.; TADONKI, C.; LACASSAGNE, L.; SAYADI, F.; OUNI, B. Harris corner detection
on a numa manycore. Future Generation Computer Systems, v. 88, p. 442 – 452, 2018. ISSN 0167-739X.
Available at: 〈http://www.sciencedirect.com/science/article/pii/S0167739X1732188X〉.

44 CANNY, J. A computational approach to edge detection. IEEE Transactions on pattern analysis and
machine intelligence, IEEE, n. 6, p. 679–698, 1986.

45 OMINIVISION. 2008 fall product guide. 2008.

46 XILINX. UltraScale Architecture SelectIO Resources v1.12 - User Guide. [S.l.], 2019. UG571.

67

http://www.sciencedirect.com/science/article/pii/S0167739X1732188X


47 KENDRI, D. Fpga camera system. Hackster.io, 2019. Available at: 〈https://www.hackster.io/dhq/
fpga-camera-system-14d6ea〉. Acessed on: 21 Oct 2020.

48 WIKIPEDIA, T. F. E. Grayscale. 2020. Available at: 〈https://en.wikipedia.org/wiki/Grayscale〉.
Acessed on: 24 Oct 2020.

49 XILINX. Vivado Design Suite User Guide - Synthesis. [S.l.], 2020. V2019.2.

50 XILINX. AXI DMA v7.1 - LogiCORE IP Product Guide. [S.l.], 2019. PG021.

51 XILINX. Zynq UltraScale+ Device v2.1 - Technical Reference Manual. [S.l.], 2019. UG1085.

52 ASHWORTH, M.; RILEY, G.; ATTWOOD, A.; MAWER, J. First steps in porting the lfric weather
and climate model to the fpgas of the euroexa architecture. Scientific Programming, IOS Press, out. 2019.
ISSN 1058-9244.

53 PRABHU, G. Dlx instruction set. Available at: 〈http://web.cs.iastate.edu/∼prabhu/Tutorial/
PIPELINE/DLXinstrSet.html〉. Acessed on: 9 Feb 2021.
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A THE HW/SW PLATFORM REGISTER SPACE

A.1 ACQUISITION IP

This section explains the AXI Camera Control IP organization in terms of register space. It
uses the AXI4-Lite interface with 32-bit wide registers to communicate with the ARM processor.

A.1.1 CCR: Camera Control Register

Figure A.1: Camera Control Register.

This register provides control to the Acquisition IP. Figure A.1 shows the Camera Control
Register (CCR) addresses, as following:

• STOP (undefined by default, read/write): when active, stops new frame acquisition by the
OV7670 Capture module. If this bit is zero, new frames are acquired following the camera
configuration.

A.1.2 CSR: Camera Status Register

Figure A.2: Camera Status Register.

This register gives the status of the Acquisition IP. Figure A.2 shows the Camera Status Reg-
ister (CSR) addresses, as follow:

• VSYC (undefined by default, read-only): gives the state of VSYNC pin. High indicates the
end of a frame, low elsewhere.
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A.2 MANY-CORE VISION PROCESSOR

There are fourteen registers to control the MCVP, read/write data in Pixel and Instruction
Memories, selects a tile in GPI, get timing performance, and store the final step image during
run-time. Each of them is explained below.

A.2.1 SCR: Status and Control Register

Figure A.3: Status and Control Register.

This register provides general purpose control and status signals in Pixel and General Purpose
Interfaces. Bits 0 to 4 are for control, 8 to 10 are for status and 16 to 31 are for mode control in
GPI. Figure A.3 shows the Status and Control Register (SCR) addresses, as following:

• PSEL (undefined by default, read/write): enables Pixel Selection from the ARM. If this
signal is high, the processor has exclusive access to Pixel Memories asynchronously. Oth-
erwise, Frame Buffers have access to PMs as the MCVP’s FSM controls pixel transfer,
without external intervension;

• PEN (undefined by default, read/write): Enables Pixel Memories by ARM side if equals to
’1’. Disables if ’0’;

• PWEN (undefined by default, read/write): Pixel Memories’ Write Enable by ARM side.
This registers allow the processor to write pixels if high. Else, it has no effect on PMs;

• IWEN (undefined by default, read/write): Instruction Memory Write Enable. As the name
refers, it lets IMs writing if high. Nothing happens if this bit is low. Note that IMs are
always enable, this design choice was made because these memories need to be on during
Processing Elements work (which occurs most of the time);

• NRST (undefined by default, read/write): Network Reset signal. If high resets all Process-
ing Elements, Routers and Pixel Memories in the Network. Otherwise, does nothing. When
PEs get the reset signal, they restart their Program Counter to run that program other time;

• PMF (undefined by default, read-only): Pixel Memory Flag, gives the state of a PM based
on Pixel Addresses inserted in XYR and SFR. If high, the PM finished its operation (read
or write), if low the memory is still processing or disabled;
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• IMF (undefined by default, read-only): Instruction Memory Flag, gives the state of a IM
based on MODE signal. If high, the IM finished its operation (read or write), if low the
memory is still processing or disabled;

• NDN (undefined by default, read-only): Network Done. If high, the tile given by MODE
signal in the Network have finished to process the task. Which includes: read initial image
from Acquisition FB, execute the program and write final image in Visualization FB;

• MODE (undefined by default, read/write, 16 bits): select a Tile to interface via GPI. Be-
cause of this, the Many-core is limited to 65, 535 cores: 1 address is exclusive for stand-by
mode, or no Tile selected, and others 216− 1 = 65, 535 can be used. Each Tile has a unique
address accordingly to the following equations,

x(mode) =

1, if mode mod xlim is 0

(mode mod xlim) + 1, otherwise,
(A.1)

y(mode) =

1, if mode/ylim is 0

mode/ylim + 1, otherwise,
(A.2)

where mode is MODE signal value, x(mode) and y(mode) are tile’s x and y coordinate
in 2D-mesh grid (starting from top left corner), xlim and ylim are Network’s x and y limits,
respectively. mod operator is modulo, equivalent to remainder of a division, and the %

operator in C programming language. This work treats the special occasion where xlim =

ylim.

A.2.2 XY Register

Figure A.4: X/Y Register.

This register provides control over x and y properties of Pixel Interface used in Pixel Mem-
ories addressing, Section 4.2 has more information about it. They represent discrete cartesian
coordinates corresponding to pixels in a given image. Figure A.4 shows the X/Y Register (XYR)
addresses, as following:

• X (undefined by default, read/write, 16 bits): set x image coordinate for PI, limited to a
216 = 65, 536 x image size. It is compatible with all comercial image resolutions available
in nowadays market, with a reasonable gap;
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• Y (undefined by default, read/write, 16 bits): set y image coordinate for PI, limited to
a 216 = 65, 536 y image size. Like X case, it is also compatible with comercial image
resolutions.

A.2.3 Step/Frame Register

Figure A.5: Step/Frame Register.

This register provides control over step and frame pixel parameters used in Pixel Interface,
refer to Section 4.2. Figure A.5 shows the Step/Frame Register (SFR) addresses, as following:

• S (undefined by default, read/write, 16 bits): set s (step) image coordinate for PI, limited
to 216 = 65, 536 steps. A step is a block, or unique image, in the processing pipeline that
serves as input for other image operations, or it is the final image itself;

• F (undefined by default, read/write, 16 bits): set f (frame) image coordinate for PI, limited
to 216 = 65, 536 frames. A frame is a different image of the same step, taken at a distinct
time or using other sensor. For example, some stereo vision algorithms need two different
cameras for the same step, in this context, one can address 0 and 1 to f to distinguish
between these two sensors.

A.2.4 Write Pixel Register

Figure A.6: Write Pixel Register.

This register stores the Pixel value to be written in Pixel Memories. PEN and PWEN enable
pixel transfer, while XYR and SFR address pixel parameters. Figure A.6 shows the Write Pixel
Register (WPR) addresses, as following:

• WPX (undefined by default, read/write, 32 bits): set Pixel value to be written in Pixel
Memory, depends on XYR, SFR, PEN, and PWEN (both from SCR).
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A.2.5 Instruction Address Register

Figure A.7: Instruction Address Register.

This register controls the address of the Instruction Memory through General Purpose Inter-
face. Depending on the MODE value from SCR, this register chooses which address the ARM is
going to write. Figure A.7 shows the Instruction Address Register (IAR) addresses, as following:

• IA (undefined by default, read/write, 32 bits): set Instruction Address value in a specific
Instruction Memory, defined by MODE value in SCR. Warning: IA has to be an unsigned
integer multiple of 4: 0, 4, 8, etc. This decision allows word memory addressing by IMs,
but until now, this feature was not released.

A.2.6 Instruction Data LSB Register

Figure A.8: Instruction Data LSB Register.

This register stores the first half of the data to be written in Instruction Memories. Figure A.8
shows the Instruction Data LSB Register (IDLR) addresses, as following:

• ID (undefined by default, read/write, 64 bits): set bits 31 to 0 (Least Significant Bytes)
of Instruction Data for an Instruction Memory defined by MODE value in SCR. ID holds
instruction for the Processing Element and has a total of 64-bit do guarantee enough space
for multiple Many-core settings, for example, 8k resolution processing.

A.2.7 Instruction Data MSB Register

This register stores the second half of the data to be written in Instruction Memories. Figure
A.9 shows the Instruction Data MSB Register (IDMR) addresses, as following:

• ID (undefined by default, read/write, 64 bits): set bits 63 to 32 (Most Significant Bytes)
of Instruction Data for an Instruction Memory defined by MODE value in SCR. ID holds
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Figure A.9: Instruction Data MSB Register.

instruction for the Processing Element and has a total of 64-bit do guarantee enough space
for multiple Many-core settings, for example, 8k resolution processing.

A.2.8 Read Pixel Register

Figure A.10: Read Pixel Register.

This register gets the Pixel value stored at a specific address in Instruction Memories. PEN
and PWEN enable pixel transfer, while XYR and SFR address pixel parameters. Figure A.10
shows the Read Pixel Register (RPR) addresses, as following:

• RPX (undefined by default, read-only, 32 bits): Read Pixel, gets Pixel value stored in Pixel
Memory, depends on XYR, SFR, PEN, and PWEN (both from SCR).

A.2.9 Total Counter Register

Figure A.11: Total Counter Register.

This register stores a counter value containing the Total execution time of a Tile, defined by
the MODE signal. Figure A.11 shows the Total Counter Register (TCR) addresses, as following:

• TC (undefined by default, read-only, 32 bits): Total Counter stores the number of clock
cycles when the Tile starts processing (its reset signal gets low) until the processor triggers
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the done flag. This counter measures the total execution clock cycles of a Tile. The MODE
signal from SCR controls the reception of TC using the General Purpose Interface.

A.2.10 Network Counter Register

Figure A.12: Network Counter Register.

This register stores a counter value containing the Network time spent of a Tile, defined by the
MODE signal. Figure A.12 shows the Network Counter Register (NCR) addresses, as following:

• NC (undefined by default, read-only, 32 bits): Network Counter stores the number of clock
cycles when the Tile starts processing (its reset signal gets low). It ends with the last pixel
transmission from the Network-on-Chip, made by the Tile’s Processing Element. This
counter measures the number of clock cycles spent in the network by a single Tile. The
MODE signal from SCR controls the reception of NC using the General Purpose Interface.

A.2.11 Pixel Memory Counter Register

Figure A.13: Pixel Memory Counter Register.

This register stores a counter value containing the Pixel memory access time of a Tile, defined
by the MODE signal. Figure A.12 shows the Pixel Memory Counter Register (PMCR) addresses,
as following:

• PMC (undefined by default, read-only, 32 bits): Pixel Memory Counter stores the number
of clock cycles when the Tile starts processing (its reset signal gets low). It ends with the
last pixel transmission from the Pixel Memory and Processing Element (PE-PM) interface
(read Chapter 4 for details). This counter measures direct Pixel Memory access time, in
clock cycles, spent by a single Tile. The MODE signal from SCR controls the reception of
PMC using the General Purpose Interface.
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A.2.12 Sensor Interface Counter Register

Figure A.14: Sensor Interface Counter Register.

This register stores a counter value with time spent by the CMOS Sensor Interface for the
entire MCVP. Figure A.14 shows the Sensor Interface Counter Register (SICR) addresses, as
following:

• SIC (undefined by default, read-only, 32 bits): Sensor Interface Counter stores the number
of clock cycles when the MCVP starts to receive camera pixels. It ends with the last pixel
transmission from the Acquisition IP. This counter measures time spent to get the complete
initial image, in clock cycles, by the manycore in the Pixel Interface.

A.2.13 Visualization Interface Counter Register

Figure A.15: Visualization Interface Counter Register.

This register stores a counter value with time spent by the Visualization Interface for the
entire MCVP. Figure A.15 shows the Visualization Interface Counter Register (VICR) addresses,
as following:

• VIC (undefined by default, read-only, 32 bits): Visualization Interface Counter stores the
number of clock cycles after the MCVP finishes processing the algorithms. It ends with
the last pixel transmission from the MCVP to the Visualization IP. This counter measures
time spent to write the complete final image, in clock cycles, by the manycore in the Pixel
Interface.

A.2.14 Final Step Register

This register stores the final step design parameter (from Section 3.1). Figure A.15 shows the
Final Step Register (FSR) addresses, as following:
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Figure A.16: Final Step Register.

• FS (undefined by default, read-only, 32 bits): gets the Final Step of the final image that the
MCVP has to read from PMs and store in the Visualization IP. It allows real-time selection
of desired step and the implementation of different algorithms (with different step number)
during programming time.

A.3 VISUALIZATION FRAME BUFFER

This section shows the register space for the Visualization Frame Buffer.

A.3.1 Visualization Frame Buffer Register

Figure A.17: Visualization Frame Buffer Register.

This register has the function of informing the ARM processor when Visualization Frame
Buffer finished transfering the final image and has sent it to AXI DMA via the AXI Stream
interface. Figure A.17 shows the Visualization Frame Buffer Register (VFBR) addresses, as
following:

• SD (undefined by default, read-only): Stream Done, gets active high when the Visualization
FB’s FSM finishes processing all pixels in the image, sending them to the ARM DRAM via
AXI DMA IP. Otherwise, the signal is always low.
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B PROGRAMMING SEQUENCE

This appendix presents an explanation about the complete Many-core Vision Processor pro-
gramming sequence, from the Acquisition to the AXI DMA IPs in Figure 3.1, to get the architec-
ture working in the same way used in our work.

First, the DMA IP should be initialized using the scatter-gather mode (50) using the Stream
to Memory Map (S2MM) interface. We assume the reader to have basic knowledge about AXI
DMA operation modes. Initially, the DMA descriptor is set up using the sequence:

1. Write S2MM NXTDESC withe the next descriptor address;

2. Store the initial DRAM data address to be written in the S2MM BUFFER ADDRESS;

3. Set the buffer length (S2MM CONTROL.BufferLength) in bytes of data that will be trans-
ferred in current desciptor, also S2MM CONTROL.RXSOF and S2MM CONTROL.RXSOF
fields if necessary;

4. Repeat first step until the last descriptor.

The DMA IP is configured following steps bellow:

5 Write the address of the starting descriptor for a 32 bit address space;

6 Start the S2MM channel by setting the run/stop bit (S2MM DMACR.RS = 1). The halted
bit (DMASR.Halted) has to be deasserted, indicating the channel is running;

7 Enable interrupts if desired setting the S2MM DMACR.IOC IrqEn and S2MM DMACR.Err IrqEn
registers;

8 Write a valid address to the tail descriptor, indicating the last descriptor in the chain. It trig-
gers the DMA to work, and stores data from the Stream interface directly in ARM DRAM.

Next, reset the Acquisition IP CCR.STOP to ensure the camera free-capture mode. Them,
initialize the Many-core as following:

9 Write final step image in FSR.FS;

10 Set SCR.NRST to ensure that the MCVP is not working during program upload.

After, begin the Processing elements programming as the sequence:

11 Select the target tile to write the program using the SCR.MODE field;
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12 Write IAR.IA with the instruction memory address that will receive IDLR.ID and IDMR.ID
data (and should also be written if necessary);

13 Set SCR.IWEN bit to start instruction memory write process;

14 Wait for SCR.IMF gets high logic level;

15 Repeat from twelfth step to fourteenth until finishes to write the last instruction in a spe-
cific tile. Change SCR.MODE from step eleven to reach all available tiles and write all
processors.

Wait for the next complete frame from the CMOS sensor, which occurs when CSR.VSYNC is
equal to 1. Next, re-initialize the Many-core to start processing by resetting the SCR.NRST field.
Wait the manycore finish its processing:

16 Select the target tile to get the done flag with the SCR.MODE field;

17 Get SCR.NDN signal. If its high, the tile finished, if not, it is still processing;

18 Repeat step 18th until all tiles have finished.

Get VFBR.SD value until it gets high logic level, meaning that the Frame Buffer finished to
send all pixels to the AXI DMA IP. Wait for S2MM STATUS.RXEOF triggers to ’1’ and flag the
last byte sent from DMA to ARM’s DRAM. Restart the process if needed by:

19 Reset S2MM STATUS.RXEOF (all bits to zero);

20 Write a valid address to the tail descriptor to start DMA;

21 Return to step 19th.
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C THE IP/CV ARCHITECTURE BLOCK DESIGN

Figure C.1 depicts the block diagram of the complete architecture based on the Vivado Block
Design.

Figure C.1: Complete IP/CV architecture block diagram.

Figure C.2 shows the complete IP/CV architecture Block Design built in this work and repre-
sented in Figure C.1. It was captured from Vivado Design Suite.
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Figure C.2: Complete IP/CV architecture developed in Vivado Design Suite.
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