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ABSTRACT

Title: Tensor Based Machine Learning Frameworks for Intrusion Detection in the Physical
and Network Layers of Cyber-Physical Systems
Author: João Paulo Abreu Maranhão
Supervisor: João Paulo C. Lustosa da Costa, Prof. Dr.-Ing.
Co-Supervisor: Rafael Timóteo de Sousa Júnior, Prof. Dr.
Graduate Program in Electrical Engineering
Brasília, April 19th, 2021

Cyber-Physical Systems (CPS) are physical and engineered systems used to control and
monitor the physical environment by integrating sensors, control processing units and com-
munication devices. Usually, CPS are applied on safety-critical applications, such as de-
fense systems, manufacturing and traffic control, as well as critical control infrastructures,
for instance, electric power, water resources and communication systems. In this sense, the
development of highly accurate intrusion detection systems applied to CPS is crucial, such
that these critical applications can be efficiently managed and controlled. The scope of this
thesis is the security of CPS at the physical and network layers, particularly regarding the
localization and identification of Unmanned Aerial Vehicles in multipath environments, as
well as the Distributed Denial of Service attack detection.

Unmanned Aerial Vehicles (UAV) are remotely piloted aircrafts very popular for per-
sonal, comercial and public-safety applications. However, multiple drone-related acciden-
tal and intentional incidents have been increasingly reported, such as mid-air collisions in
airports, smuggling of illicit materials and illegal surveillance. Therefore, solutions for lo-
calizing and identifying UAVs have been intensively investigated in the literature. As a
first important contribution, a framework based on the joint application of multidimensional
signal processing and machine learning schemes is proposed in order to accurately local-
ize and identify intruding UAVs within a controlled air space. According to simulations,
the proposed approach considerably outperforms its competing schemes in terms of several
evaluation metrics.

In addition, the security of Cyber-Physical Systems at the network layer can be com-
promised by malicious activities, such as the Distributed Denial of Service (DDoS) attacks.
Machine learning (ML) based solutions have been intensively investigated in order to au-
tomatically identify malicious patterns in the incoming data traffic. Since supervised ML
approaches require training with large datasets, which present inherent multidimensional
structures, the development of a DDoS attack detection system which exploits both machine
learning and multidimensional signal processing techniques is crucial. As a second con-
tribution, we propose a novel framework for DDoS attack detection, applying the above-
mentioned techniques, where corrupted datasets are used during the training and testing
phases. Simulation results show that the proposed approach outperforms the competitor
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methods considering accuracy, detection rate and false alarm rate.

Still regarding DDoS attack detection when corrupted datasets are used for training and
testing, as a third contribution, a noise-robust multilayer perceptron (MLP) architecture
based on the Higher Order Singular Value Decomposition (HOSVD) algorithm is introduced.
In our proposed scheme, the average value of the common features among dataset instances
is iteratively filtered out via the HOSVD algorithm, providing more robustness against data
corruption. The effectiveness of our scheme is validated through comparison with state-of-
the-art methods. According to experiment results, the proposed approach outperforms its
competing techniques in terms of accuracy, detection rate and false alarm rate.

Due to the considerable results shown in multiple domains, Convolutional Neural Net-
works (CNN), one of the most popular and eficcient deep learning based techniques, present
an outstanding potential for detecting DDoS attacks. In this sense, as our last contribution,
two novel CNN based architectures for DDoS attack detection are introduced. The pro-
posed schemes have multiple parallel branches, each of which composed by several CNNs.
The CNN outputs from consecutive parallel branches are concatenated in order to enrich
feature diversity and, consequently, a better recognition ability is achieved by the detection
model. Experiment results confirm that the proposed approaches outperform their competing
schemes when several performance evaluation metrics are considered.

Keywords: Machine Learning, Deep Learning, Multidimensional Signal Processing, Drone
Localization, Distributed Denial of Service Attack Detection, Multilayer Perceptron, Con-
volutional Neural Networks, Multiple Denoising.
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Intrusão nas Camadas Física e de Enlance de Sistemas Ciber-Físicos
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Sistemas Ciber-Físicos (do inglês Cyber-Physical Systems, ou CPS) são sistemas físicos
e de engenharia usados para controlar e monitorar ambientes físicos, integrando sensores,
unidades de processamento de controle e dispositivos de comunicação. Geralmente, os CPS
são utilizados em aplicações críticas de segurança, tais como sistemas militares de defesa,
fábricas e controle de tráfego, bem como em infraestruturas críticas, por exemplo, usinas
para geração de energia elétrica, represas de abastecimento de água e sistemas de teleco-
municações. Nesse sentido, o desenvolvimento de sistemas de detecção de intrusão de alta
precisão para Sistemas Ciber-Físicos é fundamental, de modo que tais aplicações críticas
possam ser gerenciadas e controladas com eficiência e confiabilidade. O escopo desta tese é
a segurança das camadas física e de rede de CPS, particularmente em relação à localização e
identificação de Veículos Aéreos Não Tripulados não autorizados, bem como à detecção de
ataques de Negação de Serviço Distribuídos.

Veículos Aéreos Não Tripulados (VANTs) são aeronaves pilotadas remotamente muito
populares em aplicações pessoais, comerciais e de segurança pública. No entanto, vários
incidentes acidentais e intencionais relacionados com VANTs têm sido cada vez mais rela-
tados, por exemplo, em colisões aéreas em aeroportos, contrabando de materiais ilícitos e
espionagem. Portanto, soluções para localização e identificação de VANTs têm sido inten-
samente investigadas na literatura. Como uma primeira contribuição, uma arquitetura ba-
seada na aplicação conjunta de técnicas de processamento de sinais multidimensionais e de
aprendizado de máquina é proposta com a finalidade de localizar e identificar, com precisão,
VANTs intrusos no interior de espaços aéreos controlados. De acordo com as simulações,
a abordagem proposta supera consideravelmente seus esquemas concorrentes em termos de
várias métricas de avaliação.

Além disso, a segurança na camada de rede em Sistemas Ciber-Físicos pode ser compro-
metida por diversas atividades maliciosas, como ataques de negação de serviço distribuídos
(do inglês Distributed Denial of Service, ou DDoS). As soluções baseadas em aprendizado de
máquina (ML) têm sido intensamente investigadas para identificar automaticamente padrões
maliciosos no tráfego de entrada de dados. Como as abordagens de ML supervisionadas
exigem treinamento com grandes conjuntos de dados, os quais apresentam estruturas ineren-
temente multidimensionais, o desenvolvimento de um sistema de detecção de ataques DDoS
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explorando técnicas de aprendizado de máquina e de processamento de sinais multidimen-
sionais é fundamental. Como uma segunda contribuição, propomos uma nova arquitetura
para detecção de ataques DDoS, utilizando as referidas técnicas, onde conjuntos de dados
corrompidos são utilizados durante as fases de treinamento e teste. Resultados de simulação
mostram que a abordagem proposta supera os métodos concorrentes em termos de acurácia,
taxa de detecção e taxa de falso alarme.

Ainda em relação à detecção de ataques DDoS, como uma terceira contribuição, este tra-
balho propõe uma nova arquitetura de Multilayer Perceptron (MLP), robusta à presença de
dados de treinamento corrompidos, baseada na técnica Higher Order Singular Value Decom-
position (HOSVD). Em nosso esquema proposto, o valor médio dos atributos comuns entre
as amostras do conjunto de dados é filtrado iterativamente por meio do algoritmo HOSVD,
fornecendo mais robustez contra a presença de dados corrompidos. A eficácia do esquema
proposto é validada por meio da comparação com métodos do estado da arte equivalentes. A
abordagem proposta apresenta desempenho superior em comparação às técnicas do estado
da arte concorrentes em termos de acurácia, taxa de detecção e taxa de falso alarme.

Por fim, devido aos excelentes resultados mostrados em vários domínios do conheci-
mento, as Redes Neurais Convolucionais (do inglês Convolutional Neural Networks, ou
CNN), uma das técnicas de aprendizado profundo mais populares e eficientes, apresentam
um excelente potencial para detecção de ataques DDoS. Nesse sentido, como nossa última
contribuição, duas novas arquiteturas baseadas em CNNs para detecção de ataques DDoS são
apresentadas. Tais esquemas apresentam múltiplos ramos em paralelo, onde cada um deles
é composto por várias CNNs em série. As saídas de CNNs pertencentes a ramos paralelos
consecutivos são concatenadas com a finalidade de enriquecer a diversidade de atributos e,
consequentemente, uma melhor capacidade de reconhecimento é alcançada pelo modelo de
detecção. Resultados de simulações confirmam que as abordagens propostas superam os es-
quemas concorrentes quando várias métricas de avaliação de desempenho são consideradas.

Palavras-chave: Aprendizado de Máquina, Aprendizado Profundo, Processamento de Si-
nais Multidimensionais, Localização de Drones, Detecção de Ataques de Negação de Ser-
viço Distribuída, Perceptron Multicamadas, Redes Convolucionais Neurais, Atenuação de
Ruído Múltipla.
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INTRODUCTION

1.1 OVERVIEW OF CYBER-PHYSICAL SYSTEMS

Cyber-Physical Systems (CPSs) consist of a set of networked components including sen-
sors, control processing units and communication devices applied on the physical infrastruc-
ture monitoring and management [18]. CPSs are typically used on safety-critical applica-
tions, such as avionics, instrumentation, defence systems and controlling of critical infras-
tructures, for instance, electric and nuclear power plants, water resources and telecommuni-
cations systems [19]. Consequently, severe consequences can be imposed due to potential
cyber and physical attacks, such as customer information leakage, extensive damages to the
economy and destruction of infrastructures, endangering human lives [20].

As depicted in Fig. 1.1, typically a CPS architecture is composed by five layers, namely:
physical layer, sensor/actuator layer, network layer, control layer, and information layer.
First, the physical layer consists of the physical objects or processes monitored by CPSs.
Next, the sensor/actuator layer is composed by sensors, which measure data obtained from
the physical layer, and by actuators, which execute specific actions under the control of
the above layers. For example, in the air traffic control, sensors receive measurement data
collected from a sensor array based localization system, whereas actuators are used to neu-
tralize unmanned aerial vehicles detected within the controlled airspace [21]. Following,
the network layer is responsible to network sensors and actuators, as well as to connect the
sensor/actuator and control layers through communication devices and protocols. Then, the
control layer, through intelligent electronic devices, programmable logic controllers and re-
mote terminal units, is responsible for the local distributed control action level. In addition,
control layer forwards the measurement data to human operators in the information layer,
which monitor the system and take actions whenever required [18].
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Figure 1.1 – Typical CPS architecture

1.2 MOTIVATION

Due to the reasons presented in Section 1.1, it is crucial to develop highly reliable In-
trusion Detection Systems (IDSs) for CPSs such that safety-critical applications can be con-
trolled and protected in an efficient way. Currently, IDSs present highly sophisticated de-
signs, involving advanced signal processing techniques [8–10], as well as Machine Learning
(ML) and Deep Learning (DL) based solutions [15, 22, 23]. Particularly considering the
physical layer security of a CPS, a complex issue is the localization of unauthorized Un-
manned Aerial Vehicles (UAVs) in controlled airspaces. UAVs are remotely piloted aircrafts
very popular for personal, commercial, public-safety and military applications, including
photography, delivery services, traffic monitoring, disaster monitoring, border patrol and
intelligence gathering. Nonetheless, several drone-related accidental and intentional inci-
dents have been increasingly reported, such as mid-air collisions in airports, smuggling of
illicit materials, illegal surveillance and terrorist attacks [24]. Consequently, several strate-
gies have been released by governments in order to prevent and combat security threats
posed by UAVs, for example, by regulating drone activities or by investing in counter-drone
technologies [25]. Table 1.1 summarizes some recent incidents involving UAVs around the
globe from 2015 to 2021. Note that most of the reported incidents were related to unautho-
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Table 1.1 – Incidents involving UAVs between 2015 and 2021 over the world.

Victim Date Characteristics

White House, Washington D.C., USA [33] Jan., 2015
An inebriated off-duty employee for a government intelligence
agency lost control of a drone, which crashed on the grounds
of the White House, in Washington D.C., USA.

Power lines in West Hollywood, USA [34] Oct., 2015
A drone crashed into power lines, causing a three-hour blackout
of several hundred houses in West Hollywood, USA

Dubai Airport, United Arab Emirates [26] Oct., 2016

Four drones invaded the Dubai International Airport, the third
busiest in the world, causing an estimated loss of one million
dollars after several flights were cancelled or diverted to other
airports.

Space Needle, Seattle, USA [31] Dec., 2016
A drone crashes into the Space Needle observation tower during
New Year’s Eve fireworks setup in Seattle, USA.

Golden State Race Series, USA [35] May, 2017
A drone hits a tree and crashes into a cyclist’s wheel during the
Golden State Race Series in Rancho Cordova, USA.

Aircraft in Quebec, Canada [27] Oct., 2017
An aircraft with eight people on board, heading to Quebec,
Canada, was hit by a UAV at an altitude of 450 meters.

Shenzen, China [37] Mar., 2018
Criminals busted by custom officers for using drones to smuggle
$79.8 million worth in smartphones to Shenzen, China.

Prisons across England [38] Mar., 2018
Ten people were charges for using drones to smuggle drugs and
phones into prisons across England.

Gatwick Airport, Sussex, England [30] Dec., 2018

Two drones were reportedly hovering near the Gatwick Airport in
Sussex, England. Moreover, the drones mysteriously appeared
whenever the airport tried to reopen. The airport was closed for 33
hours and more than 1,000 flights were cancelled.

Congonhas Airport, São Paulo, Brazil [29] Jan., 2019
An unauthorized drone paralyzed the Congonhas Airport in São
Paulo, Brazil, interrupting the landings and take-offs.

McCarran Airport, Las Vegas, USA [28] Dec., 2019
Unauthorized drone imposes hazard to aircraft when landing at
McCarran Airport in Las Vegas, USA.

US military drones, Syria [36] Aug., 2020
Two US MQ-9 Reaper drones apparently collided and crashed in
Syria, but possibly they were shot down by militants on the ground.

High-rise building, Sydney, Australia [32] Jan., 2021
Drone used on a commercial photography job crashed into a high
rise building in Sydney, Australia, after the pilot reportedly lost
control of the drone.

rized flights near airports [26–30], accidental collisions [31–36] and smuggling [37, 38]. An
important drone-related incident occurred in 2015, when an off-duty employee for a govern-
ment intelligence agency lost control of a drone, which accidentally landed near the White
House [33]. Such fact raised serious questions about security, since small UAVs could po-
tentially be operated by terrorists against the President of the USA. In addition to the UAV
localization task, the correct identification of intruding drones is also fundamental, since spe-
cific counter-measures can be more efficiently developed according to the drone brand and
its flight mode at the time of the detection/localization.

On the other hand, Distributed Denial of Service (DDoS) attacks are considered a major
security threat at the network layer level. In DDoS attacks, available resources of target sys-
tems are rapidly exhausted by extremely large volume of traffic launched by attackers in or-
der to intentionally disrupt network services [39]. Consequently, the victim is forced to slow
down, crash or shut down due to multiple connection requests during a period of time [40].
Nevertheless, since networks and servers became more robust in identifying network layer
DDoS attacks, hackers responded by moving up the Open Systems Interconnection (OSI)
model stack to higher layers [41]. For instance, several DDoS attacks exploit vulnerabili-
ties present in the application layer, reproducing the behavior of legitimate customers and,
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consequently, are not detected by most of the conventional IDSs [42]. In this context, sev-
eral researches in the literature broadly classify DDoS attacks into three types: application
layer attacks, resource exhaustion attacks, and volumetric attacks [43], which are described
as follows.

• Application Layer Attack: in this type of attack, vulnerabilities present in the ap-
plication are used by an attacker, making it inaccessible by legitimate users [43]. In-
stead of depleting the network bandwidth, the server resources, such as CPU, database,
socket connections or memory, are exhausted by application layer attacks. In addition,
such attacks present some subtleties which make them harder to detect and mitigate:
they can be performed, for instance, through legitimate HyperText Transfer Proto-
col (HTTP) packets, with a low traffic volume, presenting high resemblance to flash
crowds [41]. HTTP and Domain Name System (DNS) based DDoS attacks are exam-
ples of application layer attacks.

• Resource Exhaustion Attack: Similarly to the application layer attacks, hardware re-
sources of servers, such as memory, CPU, and storage, are also depleted in this cate-
gory. Nonetheless, resource exhaustion attacks are protocol-based malicious activities,
since vulnerabilities in protocols are exploited. For example, in a SYN flood attack,
a hacker exploits the Transmission Control Protocol (TCP) three-way handshake pro-
cess. After receiving a high volume of SYN packets, the targeted server responds
with SYN/ACK packets and leaves open ports to receive the final ACK packets, which
never arrive. This process continues until all ports of the server are unavailable.

• Volumetric Attack: In this type of attack, the bandwidth of the target system is ex-
hausted by a massive amount of traffic. Since such attacks are launched by using
amplification and reflection techniques, they are considered as the simplest DDoS at-
tacks to be employed [42]. User Datagram Protocol (UDP) flood and Internet Control
Message Protocol (ICMP) flood can be cited as volumetric attacks.

According to the Cisco Annual Internet Report (2018–2023) [44], the total number of
DDoS attacks will reach 15.4 million in 2023 globally, as it can be seen in Fig. 1.2. In addi-
tion, according to statistics generated by honeypots from the global cybersecurity company
Kaspersky [45], in the last quarter of 2020 (Q4), the top 3 countries by number of DDoS
attacks were China (58.95%), United States (20.98%) and Hong Kong (3.55%), as shown
in Fig. 1.3a. Moreover, the top 10 countries list by number of DDoS targets was similar to
the ranking by number of attacks, as it can be seen in Fig. 1.3b. China (44.49%), United
States (23.57%) and Hong Kong (7.20%) once again held the top 3 positions. Still in ac-
cordance with [45], most of the command and control (C&C) servers used to master botnets
in Q4 were located in the United States (36.30%), followed by Netherlands (19.18%) and
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Figure 1.2 – Number of DDoS attacks through the forecast period of 2018-2023 [44].

Germany (8.22%), whereas the three main types of DDoS attack launched during the period
were SYN flooding (78.28%), UDP flooding (15.17%) and TCP (5.47%). Such statistics
are shown in Fig. 1.4a and 1.4b, respectively. Furthermore, the world’s most recent DDoS
attacks with the highest impacts on the victim organizations, from 2012 to 2020, are illus-
trated in Table 1.2. Note that, in 2016, several massive DDoS atacks were launched by the
Mirai botnet [46–48], composed by thousands of Internet of Things (IoT) devices infected
by the Mirai malware. Moreover, it can be seen that most of the DDoS attacks targeted well-
known information technology companies, including OVH [47], Dyn [48], CloudFlare [49],
GitHub [50] and Amazon [51]. The largest DDoS attack recorded so far was carried out
against the Google Cloud Team [52] in 2017, with a volume of 2.54 Tbps, but such attack
was publicly revealed only in Oct., 2020.
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1.3 RESEARCH AIM, OBJECTIVES AND CONTRIBUTIONS

The research aim of this thesis is to develop multiple Intrusion Detection Systems (IDS),
based on the joint application of multidimensional signal processing techniques and machine
learning/deep learning algorithms, in order to detect potential threats on the physical and
network layers of Cyber-Physical Systems.

To accomplish such general aim, this thesis addresses several research objectives, which
are restructured into the following research questions:

1. How to efficiently localize and identify UAVs in multipath environments by jointly
applying multidimensional signal processing techniques and machine learning (ML)
algorithms?

2. How to efficiently detect DDoS attacks in a CPS network by jointly applying multi-
dimensional signal processing techniques and machine learning algorithms, assuming
that a noisy dataset is used for training and testing?

3. Following the same idea of the previous question, how to efficiently detect DDoS
attacks in a CPS network, still applying multidimensional signal processing techniques
on noisy datasets, but now using deep learning algorithms instead of ML techniques?

4. How to efficiently detect DDoS attacks in a CPS network by jointly applying multidi-
mensional feature map concatenation based techniques and deep learning algorithms,
but now assuming that a noiseless dataset is used for training and testing?
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Table 1.2 – The world’s largest DDoS attacks between 2012 and 2020.

Victim Date Characteristics

U.S. banks [53] Sept., 2012

Multiple DDoS attacks were launched against the websites of six U.S. banks,
severely disrupting online and mobile banking services. A botnet called Brobot
was used to carry out such attacks, which achieved a traffic load of up to 60
Gigabits per second (Gbps).

Occupy Central’s campaign [54] Oct., 2014
Massive DDoS attacks with approximately 500 Gbps were launched against
Occupy Central’s web hosting services in Hong Kong, as well as two independent
sites, PopVote and Apple Daily, which supported Occupy Central’s cause.

CloudFlare cybersecurity provider [49] Feb., 2014
With approximately 400 Gbps, the DDoS attack exploited a vulnerability in the
Network Time Protocol (NTP). Despite it was launched at a single CloudFlare’s
customers, such attack significantly degraded CloudFlare’s own network.

KrebsOnSecurity blog [46] Sept., 2016
The 623 Gbps DDoS attack was launched by the Mirai botnet, which was
composed by 600,000 compromised Internet of Things (IoT) devices.

OVH web hosting provider [47] Sept., 2016
The DDoS attack was driven by 145,000 bots from a Mirai botnet, and
overwhelmed an OVH customer with a volume of 1.1 Terabits per second (Tbps)
during seven days.

Dyn DNS service provider [48] Oct., 2016

Multiple high-profile Dyn’s client websites, such as GitHub, HBO, Twitter,
Reddit, PayPal, Netflix, and Airbnb, were rendered after Dyn’s DNS infrastructure
was knocked offline. A DDoS attack of 1.5 Tbps was launched by millions of
IP addresses associated to the Mirai botnet.

Google Cloud Team [52] Sept., 2017

With a volume of 2.54 Tbps, the DDoS attack was carried out by four Chinese
internet service providers, targeting thousands of Google’s IP addresses. It is
the largest DDoS attack recorded to date, but it was publicly revealed by
Google only in Oct., 2020.

GitHub [50] Feb., 2018
A massive DDoS attack was launched from a thousand different autonomous
systems across tens of thousands of unique endpoints by using vulnerable
memcached servers, with a volume of 1.35 Tbps during about 20 minutes.

U.S. based service provider
customer [55] Feb., 2018

A 1.7 Tbps reflection/amplification DDoS attack was targeted at a customer of
a U.S. based service provider and reported by NETSCOUT Arbor’s DDoS
mitigation service providers.

Amazon’s AWS shield service [51] Feb., 2020
Based on CLDAP reflection, the DDoS attack caused three days of elevated
threat during a single week in Feb., 2020, with a traffic load of up to 2.3 Tbps.

In this sense, the aforementioned reasons motivated us to find an appropriate solution
for efficiently detecting the threats posed by unauthorized UAVs and Distributed Denial of
Service attacks on the physical and network layers of Cyber-Physical Systems, respectively.
By taking several novel and different approaches, based on tensor signal processing and
machine learning techniques, this thesis can be used as a reference to design state-of-the-
art intrusion detection systems by organizations and governments in order to prevent such
threats.

Each chapter of this thesis is presented as self-contained as possible such that each re-
search question is presented and discussed independently, allowing more freedom to the
reader. At the beginning of each chapter, an overview as well as a detailed list of the contri-
butions are introduced. In addition, Appendices A to E present basic concepts related to the
schemes proposed in Chapters 2 to 5.

The first question is addressed in Chapter 2, where the problem of UAV localization and
identification in multipath environments is discussed. Usually, a sensor array based localiza-
tion system is composed by several antenna arrays, where each array receives line-of-sight
and non line-of-sight signals emitted from UAVs positioned within the system coverage area.
The main goal of such system is to blindly provide the position coordinates of each UAV by
applying signal processing techniques on the measurement data collected by its antenna ar-
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rays. There are two main issues in this approach. First, since multipath environments are
considered, each antenna array receives correlated signals, which reduces the rank of the re-
ceived signal matrix. Second, antenna arrays must apply denoising schemes on the incoming
signals such that the UAV position coordinates are computed more accurately. Therefore, a
multidimensional antenna array based framework is proposed such that the structure inher-
ently multidimensional of the data is better exploited by adopting the tensor representation.
In addition, a multiple denoising preprocessing scheme is included in order to decorrelate
and increase the signal-to-noise ratio of the received signals more efficiently. In summary,
the four major contributions of Chapter 2 are:

1. A tensor based framework for localizing multiple UAVs randomly positioned within a
region of interest. Since tensors provide a more natural approach to store and manipu-
late multidimensional data, their UAV localization performance outperforms its matrix
based counterpart.

2. The inclusion of a recent denoising preprocessing scheme known as Multiple Denois-
ing (MuDe). Such technique drastically attenuates the noise present in the signals
received by each antenna array, which improves the UAV localization performance in
terms of the estimated spatial frequency and estimated position coordinates.

3. The inclusion of a machine learning based UAV identification module in order to iden-
tify the drone model and its flight mode at the time of the detection/localization. Sev-
eral ML algorithms are trained and tested by using the recent DroneRF dataset for
validation.

4. The performance of the proposed UAV localization and identification model is eval-
uated using numerical simulations. According to the obtained results, the proposed
scheme outperforms state-of-the-art localization techniques.

Next, Chapter 3 deals with the second research question. In order to obtain higher perfor-
mance, machine learning based Network Intrusion Detection System (NIDS) must be trained
with massive amount of data. Nonetheless, a potential drawback consists of the presence of
noise in such large datasets, which can be a consequence, for example, of false data injection
attacks performed on publicly available datasets. Such fact can degrade the performance of
the ML classifier, reducing its reliability and efficiency. In this regard, a novel noise-robust
architecture for DDoS attack detection is proposed in Chapter 3. First, the multiple denois-
ing preprocessing scheme is applied for noise attenuation of each dataset instance. In sequel,
low-rank approximation is performed in order to denoise the complete dataset. The three
major contributions of Chapter 3 are:

1. An extension of the recent MuDe algorithm in order to attenuate the noise present in
the instances of DDoS attack detection datasets. Given the outstanding performance
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of MuDe to denoise measurement data collected in sensor arrays, such scheme shows
a good potential for DDoS attack dataset denoising.

2. The inclusion of a second denoising stage performed by a Low-Rank Approximation
(LRA) technique such that a higher degree of noise reduction is achieved, with signif-
icant gain on the overall DDoS attack detection performance.

3. The performance of the proposed scheme is validated through numerical simulations
by using samples extracted from the CIC-DDoS2019 and NSL-KDD benchmark datasets.
According to the obtained results, the proposed framework achieves satisfactory per-
formance, with considerable values of accuracy, detection rate and false alarm rate
compared with state-of-the-art low-rank approximation techniques.

The third research question is addressed in Chapter 4. Following the same idea of the
previous chapter, a noise-robust Multilayer Perceptron (MLP) based architecture is proposed
in order to efficiently detect DDoS attacks when NIDSs are trained with datasets corrupted
by Gaussian noise. The research contributions presented in Chapter 4 are:

1. A novel feature extraction method applied on data classification is proposed such that
the average value of the common features among dataset instances is iteratively filtered
out via the HOSVD algorithm, providing to the NIDS more robustness against data
corruption.

2. A noise-robust MLP architecture for DDoS attack detection which applies the tech-
nique cited in the previous item is also introduced. The best parameters used for
dataset filtering are dynamically computed in order to minimize the errors between
the expected and predicted classifications.

3. The performance of the proposed MLP is validated through numerical simulations by
using samples extracted from the CIC-DDoS2019, CIC-IDS2018 and CIC-IDS2017
benchmark datasets. According to the simulation results, the proposed scheme outper-
forms state-of-the-art low-rank approximation techniques in terms of accuracy, detec-
tion rate and false alarm rate.

Finally, the fourth research question is dealt in Chapter 5. Two novel tensor feature
map concatenation based Convolutional Neural Network (CNN) architectures for DDoS at-
tack detection are proposed. Such schemes present multiple parallel branches, which are
composed by several CNNs. The CNN outputs from consecutive parallel branches are con-
catenated in order to enrich feature diversity and, consequently, a better recognition ability
is achieved by the NIDSs. Chapter 5 presents the following research contributions:

9



1. A tensor feature map concatenation based CNN architecture for DDoS attack detec-
tion is proposed. In this approach, multiple branches, composed by CNN basic build-
ing blocks alternately positioned with concatenation modules, are placed in parallel
such that the outputs from CNNs of consecutive branches are concatenated and sent
to the following CNN within each branch. Finally, the outputs from all branches are
concatenated and forwarded to the same flattening and multilayer perceptron blocks,
where samples are classified as legitimate traffic or DDoS attack.

2. A second improved feature map concatenation based CNN architecture is also intro-
duced. In this scheme, instead of the Flatten and MLP blocks in common for all of
the branches, each branch is followed by its respective Flatten and MLP blocks, whose
outputs are forwarded to a simple majority voting module in which the final classifica-
tion is computed.

3. Numerical simulations are conducted in order to validate the proposed schemes by us-
ing the CIC-IDS2017 and CIC-DDoS2019 benchmark datasets. The results show that
the proposed approaches outperform their competing techniques in terms of several
performance evaluation metrics.

Fig. 1.5 presents an overview of the complete network infrastructure depicting the DDoS
attack detection and the UAV localization/identification at the network and physical layer
levels of a CPS, respectively. In Fig. 1.5a, the DDoS attack infrastructure is represented by
three components: attackers, handlers and bots. Attackers send command and control in-
structions to handlers and bots in order to launch attacks. In addition, handlers are malicious
programs installed on compromised hosts which are used to send instructions to the bots
through instant messaging or internet relay chat, for instance. Finally, bots are compromised
hosts which carry out the large scale distributed attacks [56]. Next, in Fig. 1.5b, the Local
Area Network (LAN) of the victim and its internal components, such as computers, LAN
servers, Demilitarized Zone (DMZ) servers, routers and firewalls, are represented. In order
to efficiently detect and prevent DDoS attacks from the Internet, the proposed models for
DDoS attack detection, introduced in Chapters 3 to 5, must be positioned between the router
and the firewall. Furthermore, the proposed antenna array based UAV localization and iden-
tification system, detailed in Chapter 2, is represented in Fig. 1.5c. Note that such system
can be controlled by the LAN administrator via command and control server, which directly
communicates with the LAN through the router.
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Figure 1.5 – Overview of the complete solution for intrusion detection in CPSs proposed
in this thesis. (a) DDoS attack infrastructure. (b) Local Area Network (Target). (c) UAV
localization and identification system.

1.4 NOTATION

In this subsection, the mathematical notation used along this thesis is presented. Italic
letters (x, y, z) denote scalars, lowercase bold letters denote column vectors (x,y, z) and
uppercase bold letters denote matrices (X,Y,Z). Higher order tensors are represented by
uppercase bold calligraphic letters (XXX,YYY,ZZZ). The superscript {.}C is used for concatenation
of matrices and tensors. Further, the superscripts {.}T and {.}H are used for transposition
and Hermitian of a matrix, respectively. Moreover, the operator diag{·} transforms its ar-
gument vector into the main diagonal of a diagonal matrix, whereas vec{·} transforms its
argument into a vector. The big O operatorOOO[·] returns the order of magnitude of the number
of steps in an algorithm computation, whereas EV{·} returns the eigenvalues of a matrix.
The Khatri-Rao product, outer product, Kronecker product and Hadamard product are rep-
resented by operators �, ◦, ⊗ and �, respectively. The matrix [XXX](r) corresponds to the r-th
mode unfolding of the tensorXXX and can be obtained by varying the r-th index along the rows
and stacking all other indices along the columns of [XXX](r). Finally, the r-mode product be-
tween XXX and Z is given by YYY = XXX ×r Z, which can also be expressed in a matricized fashion
as [YYY](r) = Z[XXX](r).
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1.5 THESIS ORGANIZATION

The remainder of this thesis is divided as follows. Chapter 2 introduces a tensor based
framework for localizing and identifying multiple UAVs randomly positioned within a region
of interest considering multipath environments. Next, in Chapter 3, a novel noise-robust ar-
chitecture for DDoS attack detection based on the Multiple Denoising technique when intru-
sion detection systems are trained with corrupted datasets is presented. Following the same
idea of Chapter 3, a noise-robust multilayer perceptron scheme for DDoS attack detection
once again considering corrupted datasets is proposed in Chapter 4. Then, differently from
the models presented in Chapters 3 and 4, two novel tensor feature map concatenation based
CNN schemes for DDoS attack detection considering noiseless datasets are introduced in
Chapter 5. Finally, conclusions are drawn in Chapter 6.

12



TENSOR BASED FRAMEWORK FOR
UAV LOCALIZATION AND
IDENTIFICATION IN MULTIPATH
ENVIRONMENTS

In this chapter, the following research question is addressed: How to efficiently localize

and identify UAVs in multipath environments by jointly applying multidimensional signal

processing techniques and machine learning (ML) algorithms?

The remainder of this chapter is organized as follows:

• Motivation: in this section, an introduction to UAV localization and identification in
multipath environments is presented.

• Data Model: this section defines the data model used throughout this chapter.

• Proposed Tensor Based Framework for UAV Localization and Identification: in
this section, the proposed tensor based framework for UAV localization and identifi-
cation in multipath environments is presented and discussed. A tensor representation
to better exploit the multidimensional nature of the data is adopted, and a denoising
preprocessing scheme is included to increase the signal-to-noise ratio (SNR) of the
received signal.

• Computational Complexity: this section introduces the computational complexity of
the proposed approach.

• Simulation Results: the performance of the proposed framework is assessed through
numerical simulations. In this section, the improvements introduced by the tensor
approach and the multiple denoising scheme are illustrated.

The research contributions presented in this chapter are:

1. A tensor based framework for localizing multiple UAVs randomly positioned within a
region of interest. Since tensors provide a more natural approach to store and manipu-
late multidimensional data, their UAV localization performance outperforms its matrix
based counterpart.
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2. The inclusion of a recent denoising preprocessing scheme known as Multiple Denois-
ing (MuDe). Such technique drastically attenuates the noise present in the signals
received by each antenna array, which improves the UAV localization performance in
terms of the estimated spatial frequency and estimated position coordinates.

3. The inclusion of a machine learning based UAV identification module in order to iden-
tify the drone model and its flight mode at the time of the detection/localization. Sev-
eral ML algorithms are trained and tested by using the recent DroneRF dataset for
validation.

4. The performance of the proposed UAV localization and identification model is eval-
uated using numerical simulations. According to the obtained results, the proposed
scheme outperforms state-of-the-art localization techniques.

2.1 MOTIVATION

Originally developed for military purposes, Unmanned Aerial Vehicles (UAVs), com-
monly known as drones, are remotely piloted aircrafts which present several applications
such as photography, agriculture, surveillance, search and rescue, traffic monitoring and fire
fighting [57, 58]. However, UAVs can also be used for evil purposes, such as espionage,
drug cartels and terrorism-related activities [59]. For example, recently UAVs have been
used to transport drugs, carry explosives, steal personal privacy and impose serious threats
to airplanes taking off and landing in airport zones.

In this sense, in order to deal with such security threats, the development of accurate
UAV localization and identification systems is fundamental. Such systems can be consisted
of two modules: (i) localization, and (ii) identification. In the former module, a set of an-
tenna arrays are used to estimate the position of a UAV through the application of Direction
of Arrival (DoA) techniques. On the other hand, in the latter module, machine learning algo-
rithms are applied on the estimated transmitted signals in order to identify the detected UAV.
Additionally, the data captured by the antenna arrays can be processed by some state-of-
the-art DoA scheme, such as the Estimation of Signal Parameters via Rotational Invariance
Techniques (ESPRIT) [11, 60], which estimates the angle of arrival of the received signals.
However, the accuracy of DoA techniques is severely degraded in multipath environments
since the antenna arrays receive highly correlated copies of a signal [12, 16, 17]. Thus, ad-
ditional preprocessing techniques should be applied to remove the effects of coherency and
perform the DoA estimation [5, 6]. The spatial smoothing (SS) scheme [61], for example,
is a well-known technique used to decorrelate the sources while increasing the number of
available snapshots [62].
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Several works in the literature propose different solutions for the problem of signal emit-
ter localization. Marinho et al. proposed different solutions regarding localization and track-
ing. First, in [63], instead of relying on antenna arrays, the authors proposed an alternative
to relative sensor localization by employing a crossed dipole antenna in the reception with a
known polarization in the transmission. Next, in [64], they proposed the usage of DoA esti-
mation tools to provide continuous authentication such that the user localization and tracking
can be determined by using triangulation techniques, whereas the movement patterns are an-
alyzed in order to identity potential fraud indicators. Following, Marinho et al. also proposed
a localization and tracking method based on joint DoA, time delay, and range estimation us-
ing the Space Alternating Generalized Expectation Maximization (SAGE) algorithm, where
no location-based data is exchanged [65]. Finally, the same authors presented a fully pas-
sive vehicle localization and tracking method based on DoA estimation which can be used
to mitigate the possibility of spoofing or to provide a second independent source of position
estimation [66]. In line with the ideas of Marinho et al., a high resolution framework with
multipath mitigation for detecting and locating a signal emitter randomly positioned within a
region of interest was proposed by Maranhão et al. in [5]. Moreover, in [6], the same authors
presented an antenna array based framework for detection and localization of correlated sig-
nals, with low average localization errors and average angle of arrival errors. Finally, in [67],
Gomes et al. proposed a tensor-based method for joint Direction of Departure (DoD) and Di-
rection of Arrival (DoA) estimation in bistatic Multiple Input Multiple Output (MIMO) radar
systems, providing a highly-accurate localization of multiple targets in real-world scenarios
when compared to state-of-the-art tensor-based solutions.

Particularly considering researches of UAV localization, several recent works in the lit-
erature can be cited. Nam and Joshi [68] presented an approach in which image sensors
measure the azimuth and elevation angles of a UAV and send such information to a collector
node, where the UAV position is estimated based on the collected samples. Moreover, Chang
et al. [59] proposed a Time Difference of Arrival (TDoA) estimation algorithm to improve
the accuracy of UAV localization and real-time tracking. Furthermore, an anti-drone sys-
tem which combines multiple passive surveillance technologies to perform drone detection,
localization and radio frequency jamming is proposed by Shi et al. in [69]. In addition,
in [70], Miranda et al. proposed an enhanced framework using arrays of directional antennas
for DoA estimation in order to localize drones by exploiting their transmitted NTSC signal
for different angular spacing between the array antennas. Besides, a similar approach was
proposed by Ando et al. [71], in which drones were localized by a DoA estimation algorithm
based on the Received Signal Strength (RSS) at the antenna array. At last, Oliveira et al. [72]
presented a low cost antenna array based UAV tracking device for outdoor environments,
composed by hardware and software parts, which exploits tensor-based techniques.

A number of recent works about UAV identification based on Radio Frequency (RF) sens-
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ing approaches can be cited. In [73], Saria Allahham et al. introduced a RF based dataset of
UAVs, composed by multiple RF segments collected from three different commercial drones.
The recorded segments contain data of five different drone functioning modes, namely, off,
on and connected, hovering, flying, and video recording. Additionally, in [25], Al-Sa’d et
al. proposed a technique for identifying drones by using the frequency content of the UAV
received signals. The Discrete Fourier Transform (DFT) of the RF signal with a fixed win-
dow size is used in order to generate several frequency segments, which are forwarded to a
deep neural network to detect the UAV and identify its model. Moreover, Saria Allahham
et al. [74] proposed an extension of [25] by introducing a deep learning based technique for
detecting and identifying UAVs. The recent DroneRF dataset introduced in [73] was used to
validate the proposed model. Differently from [25], a multi-channel one-dimensional convo-
lutional neural network was used to detect the drones and recognize their models, such that
data channelization combined with feature extraction techniques improved the UAV detec-
tion and identification performance. Table 2.1 summarizes the main approaches and draw-
backs of each related work, separated by research area, as well as the weaknesses addressed
by this chapter.

The high resolution framework proposed by [6] is applied for localizing multiple emit-
ters randomly positioned within a region of interest. However, the authors adopted a classical
matrix technique by considering correlated sources in 2-D scenarios. Since tensors provide
a more natural approach to store and manipulate multidimensional data, an extension of that
work is proposed in this chapter by adopting a tensor representation to localize UAVs in
R-D scenarios as well as by including a recent denoising preprocessing scheme known as
Multiple Denoising (MuDe) [75]. Additionally, an UAV identification module is added to
the framework such that the drone types are recognized through machine learning classifi-
cation algorithms. The recent DroneRF dataset is used to validate the proposed framework
when identifying UAV types. Simulation results confirm that our scheme outperforms both
matrix-based and tensor-based approaches, which adopted spatial smoothing preprocessing
scheme to decorrelate the signals received at each antenna array. Additionally, our technique
showed an outstanding performance for UAV identification when considering different ML
classifiers.
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Table 2.1 – Related works summary.

Research Area Ref. Main Approach Drawback

Signal Emitter
Localization

[5]
- Detection and localization of signal emitters
with multipath mitigation.

- Lack of UAV identification module.
- The proposed solution is not specifically
designed for localizing UAVs.

[6]
- Detection and localization of signal emitters
considering correlated multipath components.

- Lack of UAV identification module.
- The proposed solution is not specifically
designed for localizing UAVs.

[63]
- Localization and tracking of signal emitters by
using crossed dipole antennas in the reception.

- Lack of UAV identification module.
- The proposed solution is not specifically
designed for localizing UAVs.
- Multipath mitigation is not considered.
- Localization of a single emitter.

[64]
- Localization and tracking of signal emitters by
using continuous authentication and triangulation.

- Lack of UAV identification module.
- The proposed solution is not specifically
designed for localizing UAVs.
- Multipath mitigation is not considered.
- Localization of a single emitter.

[65]
- Localization and tracking of signal emitters based
on joint DoA, time delay and range estimation
using on the SAGE algorithm.

- Lack of UAV identification module.
- The proposed solution is not specifically
designed for localizing UAVs.
- Localization of a single emitter.

[66]
- Passive vehicle localization and tracking based
on DoA estimation to prevent spoofing.

- Lack of UAV identification module.
- The proposed solution is not specifically
designed for localizing UAVs.
- Multipath mitigation is not considered.
- Localization of a single emitter.

[67]
- Localization of multiple targets by using tensor
based methods for joint DoD and DoA estimation
in MIMO radar systems.

- Lack of UAV identification module.
- The proposed solution is not specifically
designed for localizing UAVs.

UAV
Localization

[59]
- UAV localization and tracking by using the TDoA
estimation algorithm based on Gauss priori probability
density function and acoustic arrays.

- Lack of UAV identification module.

[68]
- UAV localization based on the measurement of
azimuth and elevation angles through image sensors.

- Lack of UAV identification module.
- Localization of a single UAV.
- Multipath mitigation is not considered.

[69]
- UAV detection and localization based on multiple
passive surveillance technologies.

- Lack of UAV identification module.
- Localization of a single UAV.

[70]
- UAV localization by exploiting the transmitted
NTSC signals for different angular spacing
between array antennas.

- Lack of UAV identification module.
- Localization of a single UAV.
- Multipath mitigation is not considered.

[71]
- UAV localization based on DoA estimation
using directional antenna arrays via RSS.

- Lack of UAV identification module.
- Localization of a single UAV.
- Multipath mitigation is not considered.

[72]
- UAV localization and tracking devices
based on tensor techniques for outdoor environments.

- Lack of UAV identification module.
- Localization of a single UAV.

UAV
Identification

[25]
- Construction of a database containing the RF signals
of several UAVs under different flight modes. - Lack of UAV localization module.

[74]
- Extension of [25] by including a deep learning
based algorithm (CNN). - Lack of UAV localization module.

UAV Localization
and Identification This chapter - Tensor based framework for UAV localization

and identification in multipath environments.

Addressed drawbacks:
- The proposed solution is specifically
designed for localizing and identifying UAVs.
- Localization of multiple UAVs.
- Multipath mitigation is considered.

2.2 DATA MODEL

In this section, the data model used throughout this chapter is presented. Let us consider
a multidimensional antenna array based localization system composed by U R-D antenna
arrays with size M1 ×M2 × · · · ×MR containing M =

∏R
r=1 Mr antennas, where Mr for

r = 1, · · · , R is the number of antennas in the r-th spatial dimension. The goal of such
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system is to estimate the coordinates (x̂q, ŷq, ẑq) of the q-th UAV for q = 1, . . . , Q within
the system coverage region by performing, at the u-th antenna array, a triangulation of the
Line-of-Sight (LOS) of the signals emitted from such drone. To accomplish this, the u-th
antenna array must estimate the elevation and azimuth angles θ̂qu,los and φ̂qu,los from the LOS
of the q-th UAV.

The data matrix Xu ∈ CM×N received at the u-th antenna array for u = 1, . . . , U from
the superposition of Q far-field narrowband LOS signals sampled on N subsequent time
instants is given by

Xu = Alos
u Slos

u + Nu, (2.1)

where Alos
u ∈ CM×Q, Slos

u ∈ CQ×N and Nu ∈ CM×N are, respectively, the array steering
matrix, symbols matrix and noise samples matrix. The LOS components correspond to the
direct signals received at the u-th antenna array from each UAV localized within the system
coverage region. In this sense, the array steering matrix Alos

u ∈ CM×Q, as well as the symbols
matrix Slos

u and the noise samples matrix Nu, are defined as follows

Alos
u =[klos

u1 alos
u1 , · · · , klos

uQalos
uQ]

=


klos
u1



1

ej·µ
los
u1

ej·2µ
los
u1

...
ej·(M−1)µlos

u1


, . . . , klos

uQ



1

ej·µ
los
uQ

ej·2µ
los
uQ

...
ej·(M−1)µlos

uQ




,

(2.2)

Slos
u =


slos
u1(1) slos

u1(2) · · · slos
u1(N)

slos
u2(1) slos

u2(2) · · · slos
u2(N)

...
... . . . ...

slos
uQ(1) slos

uQ(2) · · · slos
uQ(N)

 , (2.3)

Nu =


nu1(1) nu1(2) · · · nu1(N)

nu2(1) nu2(2) · · · nu2(N)
...

... . . . ...
nuM(1) nuM(2) · · · nuM(N)

 , (2.4)

where µlos
uq is the spatial frequency and klos

uq is a constant which controls the power of the LOS
signal received from the q-th UAV at the u-th antenna array.

If the multidimensional antenna array based localization system is positioned within a

18



multipath environment, the data matrix Xu in (2.1) must be rewritten as the sum of the LOS
plus Non Line-of-Sight (NLOS) terms as follows

Xu = Alos
u Slos

u +

Q∑
q=1

Aq,nlos
u Sq,los,C

u + Nu, (2.5)

where Sq,los,C
u ∈ CG×N contains G copies of the symbols vector of the q-th UAV, Slos

u (q, :

) = [slos
uq (1), · · · , slos

uq (N)], stacked along the 1st dimension. In this chapter, it is assumed
that the delay between the LOS signal and each one of the NLOS components is negligible.
Therefore, Aq,nlos

u ∈ CM×G, which is the array steering matrix corresponding to the G non
line-of-sight signals received from the q-th UAV at the u-th antenna array, can be denoted as

Aq,nlos
u =[kq,nlos

u1 aq,nlos
u1 , · · · , kq,nlos

uG aq,nlos
uG ]

=


kq,nlos
u1



1

ej·µ
q,nlos
u1

ej·2µ
q,nlos
u1

...
ej·(M−1)µq,nlos

u1


, . . . , kq,nlos

uG



1

ej·µ
q,nlos
uG

ej·2µ
q,nlos
uG

...
ej·(M−1)µq,nlos

uG




,

(2.6)

where aq,nlos
ug = [1, ej·µ

q,nlos
ug , · · · , ej·(Mr−1)µq,nlos

ug ]T is the array response, µq,nlos
ug is the spatial

frequency and kq,nlos
ug is a constant which controls the power of the g-th multipath signal.

The values of klos
uq and kq,nlos

ug in (2.2) and (2.6), respectively, can be defined according to
a frequency-flat Rician environment such that a wireless channel with different degrees of
scattering richness can be represented [76]. Further, the symbols matrix Sq,los,C

u ∈ CG×N in
(2.5) can be expressed as

Sq,los,C
u =


slos
uq (1) slos

uq (2) · · · slos
uq (N)

slos
uq (1) slos

uq (2) · · · slos
uq (N)

...
... . . . ...

slos
uq (1) slos

uq (2) · · · slos
uq (N)

 . (2.7)

Since the u-th antenna array receives one direct signal plusGmultipath components from
each one of the Q UAVs, the total number of received signals is given by D = Q(G+ 1). In
this sense, the data matrix Xu ∈ CM×N defined in (2.5) for multipath environments can be
rewritten as a superposition of D far-field narrowband signals, i.e.,

Xu = AuSu + Nu, (2.8)
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where Au ∈ CM×D and Su ∈ CD×N are, respectively, the array steering matrix and the
symbols matrix related to the D LOS plus NLOS received signals, whose structures are
similar to the ones shown in (2.2) and (2.3).

Additionally, if the signal presents a multidimensional structure, the received data matrix
in (2.8) can be denoted as

Xu = (A(1)
u �A(2)

u � · · · �A(R)
u )Su + Nu, (2.9)

where Au = A
(1)
u �A

(2)
u � · · · �A

(R)
u , and A

(r)
u = [a

(r)
u1 , · · · , a

(r)
uD] corresponds to the array

steering matrix of the r-th array dimension at the u-th antenna array. The array response a
(r)
ud

of the d-th received signal for d = 1, · · · , D presents the following structure

a
(r)
ud = [1, ej·µ

(r)
ud , ej·2µ

(r)
ud , · · · , ej·(Mr−1)µ

(r)
ud ]T, (2.10)

where µ(r)
ud is the spatial frequency of the d-th wavefront in the r-th array dimension at the

u-th antenna array.

If we wish to naturally explore the multidimensional structure of the data [8], the received
signal can be represented as a tensor XXXu ∈ CM1×M2×···×MR×N , which is given by

XXXu =XXXu0 +NNNu

=IIIR+1,D ×1 A(1)
u · · · ×R A(R)

u ×R+1 ST
u +NNNu,

(2.11)

where IIIR+1,D is the identity tensor of order R + 1 in which each dimension has size D, and
NNNu ∈ CM1×M2×···×MR×N is the noise samples tensor obtained by folding Nu as a tensor of
order R + 1 [75].

Finally, the r-th unfolding matrix [XXXu](r) ∈ CMr×
∏

j 6=rMjN can be expressed as

[XXXu](r) =[XXXu0](r) + [NNNu](r)

=A(r)
u (ST

u �A(R)
u � · · · �A(r+1)

u �A(r−1)
u � · · ·A(1)

u ) + [NNNu](r).
(2.12)

If the signals received by the u-th R-D antenna array are non correlated, the rank of the
signal subspace is equal to the number of sources. Otherwise, if two or more sources are
coherent or if not enough snapshots N are available, such condition is not fulfilled [62]. In
order to solve such problem, the well-known Spatial Smoothing (SS) preprocessing scheme
[61] can be applied to decorrelate the sources and increase N .

According to the SS approach, the r-th unfolding matrix [XXXu](r) given by (2.12) is divided
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into Lr subarrays of size M (sub)
r = Mr − Lr + 1 each. The r-th mode spatially smoothed

matrix X
(Lr)
SS,ur ∈ CM

(sub)
r ×

∏
j 6=rMjLrK for r = 1, · · · , R is defined as

X
(Lr)
SS,ur =[[XXXu]

(1)
(r), [XXXu]

(2)
(r), · · · , [XXXu]

(Lr)
(r) ]

=[J
(Nr)
1 [XXXu](r),J

(Nr)
2 [XXXu](r), · · · ,J(Nr)

Lr
[XXXu](r)],

(2.13)

where J
(Nr)
lr

= [0
M

(sub)
r ×(lr−1)

I
M

(sub)
r

0
M

(sub)
r ×(Lr−lr)

] is the selection matrix, whereas

[XXXu]
(lr)
(r) = J

(Nr)
lr

[XXXu](r) ∈ CM
(sub)
r ×

∏
j 6=rMjN for lr = 1, · · · , Lr is the output signal of the

lr-th subarray in the r-th dimension at the u-th antenna array.

2.3 PROPOSED TENSOR BASED FRAMEWORK FOR UAV LOCAL-
IZATION AND IDENTIFICATION

This section introduces the proposed tensor based framework for UAV localization and
identification in multipath environments. As mentioned in Section 2.1, the framework pro-
posed by [6] is extended in three aspects: (i) by adopting a tensor representation to better
explore the structure inherently multidimensional of the data, (ii) by including a denoising
preprocessing scheme to increase the signal-to-noise ratio of the received signal, and (iii) by
including a machine learning classification module for identifying the UAV type.

In this chapter, the following assumptions are made for deriving the proposed framework:

• The UAV localization system is composed by U antenna arrays and provides the posi-
tion coordinates of Q drones flying within its coverage region.

• The UAV localization system is placed within a multipath environment. In this sense,
the u-th antenna array for u = 1, . . . , U receivesD multiple delayed copies of the LOS
signal emitted from the q-th UAV for q = 1, . . . , Q, i.e., D > Q.

• The UAV localization system is composed by U antenna arrays, all of them positioned
along the xy-plane in a Cartesian coordinate system, i.e., with coordinates (xu, yu, 0)

for u = 1, . . . , U .

• The number of received signals D can be estimated by using Model Order Selection
(MOS) schemes [7,13,14], such as the Akaike’s Information Theoretic Criteria (AIC)
[77], Efficient Detection Criterion (EDC) [78], Minimum Description Length (MDL)
[79] or RADOI [80]. Nonetheless, the model order estimation is beyond the scope of
this chapter and, consequently, D is assumed to be known.

21



• The spacing between the antenna array elements is given by λ/2, where λ is the wave-
length of the radio signals transmitted by the detected drones.

Before introducing the proposed tensor based framework for UAV localization and iden-
tification in multipath environments, some important concepts regarding the azimuth and
elevation angles at an antenna array are discussed. Fig. 2.1a illustrates an overview of the
antenna array based UAV localization system used in our proposed framework. The system
is composed by U two-dimensional antenna arrays used to estimate the position coordinates
(x̂q, ŷq, ẑq) of the q-th drone within the system coverage region, which is delimited by the
black dotted lines along the xy-plane. Furthermore, the u-th antenna array for u = 1, . . . , U

receives a LOS signal emitted from the q-th UAV, represented by red color lines. In addition,
Fig. 2.1b illustrates the azimuth and elevation angles, φ̂qu,los and θ̂qu,los, respectively, at the u-
th antenna array. The azimuth angle corresponds to the acute angle between the y-direction
and the projection of the LOS onto the xy-plane. However, due to the different relative posi-
tions between each antenna array and the UAV, φ̂qu,los must be written as a function of ϕ̂qu,los,
which is the angle between the y-direction and the LOS projected onto the xy-plane in the
counterclockwise rotation, i.e.,

φ̂qu,los =



ϕ̂qu,los, 0◦ < ϕ̂qu,los < 90◦,

180◦ − ϕ̂qu,los, 90◦ < ϕ̂qu,los < 180◦,

180◦ + ϕ̂qu,los, 180◦ < ϕ̂qu,los < 270◦,

360◦ − ϕ̂qu,los, 270◦ < ϕ̂qu,los < 360◦,

u = 1, . . . , U.

(2.14)

This fact is detailed in Fig. 2.2, which shows four different relative positions between the
u-th URA and the q-th UAV. For example, in Fig. 2.2a, ϕ̂qu,los is acute and, consequently, it
coincides with the azimuth angle, i.e., φ̂qu,los = ϕ̂qu,los. On the other hand, in Fig. 2.2d, ϕ̂qu,los

is between 270◦ and 360◦ and, thus, the azimuth angle is adjusted to φ̂qu,los = 360◦ − ϕ̂qu,los

due to the new relative position between the UAV and URA.

After discussing the aforementioned concepts, the proposed tensor based framework for
UAV localization and identification in multipath environments is introduced. The proposed
approach, depicted by the diagram shown in Fig. 2.3, is composed by two main modules:
(i) localization, and (ii) identification. The former module contains five blocks, whereas the
latter is composed by two blocks, as detailed in Subsections 2.3.1 to 2.3.7
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Figure 2.1 – (a) Overview of the antenna array based UAV localization system. (b) The az-
imuth angle at the u-th antenna array corresponds to the acute angle between the y-direction
and the projection of the LOS onto the xy-plane, i.e, φ̂qu,los = 360◦ − ϕ̂qu,los.

2.3.1 Decorrelation and Multiple Denoising Preprocessing

Block 1.1 of Fig. 2.3 corresponds to the decorrelation and denoising preprocessing. In
this step, the Signal-to-Noise Ratio (SNR) of the received signals is increased by applying the
recent Multiple Denoising (MuDe) scheme, which is composed of three successive phases:
spatial smoothing, low-rank approximation and reconstruction [75].

Initially, the r-th mode spatially smoothed matrix X
(lr)
SS,ur is constructed according to

(2.13) for the lr-th subarray size in the r-th array dimension at the u-th antenna array. Next,
assuming that the number of received signal components D is known, the low-rank approxi-
mation X̃

(lr)
SS,ur of the spatially smoothed matrix X

(lr)
SS,ur is computed by truncating the Singular

Value Decomposition (SVD) of X
(lr)
SS,ur to the signal subspace with the conditionM (sub)

r ≥ D,
i.e.,

X̃
(lr)
SS,ur = [[X̃̃X̃Xu]

(1)
(r), [X̃̃X̃Xu]

(2)
(r), · · · , [X̃̃X̃Xu]

(lr)
(r) ] = U(lr)

s Σ(lr)
s V(lr)H

s , (2.15)

where the columns of U
(lr)
s ∈ RNr×D and V

(lr)
s ∈ R

∏
j 6=rMj×D correspond to the singular

vectors of X̃
(lr)
SS,r, whereas the diagonal of Σ

(lr)
s ∈ RD×D contains the singular values of

X̃
(lr)
SS,r.

Finally, the multiple denoised unfolding matrix [X̃̃X̃Xu](r) ∈ CMr×
∏

j 6=rMjN is obtained as
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(d) 

Figure 2.2 – Elevation and azimuth angles for four different relative positions between the
u-th URA and the q-th UAV: (a) 0◦ < ϕ̂qu,los < 90◦. (b) 90◦ < ϕ̂qu,los < 180◦. (c) 180◦ <
ϕ̂qu,los < 270◦. (d) 270◦ < ϕ̂qu,los < 360◦.

follows

[X̃̃X̃Xu](r) =


[X̃̃X̃Xu](r)(1, :)

[X̃̃X̃Xu](r)(2, :)
...

[X̃̃X̃Xu](r)(Mr, :)

 , (2.16)

[X̃̃X̃Xu](r)(n, :) =

(
1

l

) lr∑
i=1

[X̃̃X̃Xu]
(i)
(r)(n− i+ 1, :), (2.17)

where l corresponds to the number of times in which [X̃̃X̃Xu]
(i)
(r)(n− i+ 1, :) is a valid output in

the lr-th subarray of the r-th dimension at the u-th antenna array [75].

After covering all possible subarray sizes for each dimension, [X̃̃X̃Xu](r) is folded into the
multiple denoised tensor X̃̃X̃Xu ∈ CM1×···×MR×N with order R + 1.
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to  
Block 1.6 

Eq. (2.48) 
Step 38 of Alg. 1 

(a) 

(b) 

Figure 2.3 – Block diagram of the proposed framework, which is composed by two main
modules: (a) UAV localization, and (b) UAV identification. Each block presents the respec-
tive references to steps of Algorithm 1 as well as equations of Subsections 2.3.1 to 2.3.7.

2.3.2 Direction of Arrival Estimation

Block 1.2 of the diagram described in Fig. 2.3 corresponds to the DoA estimation. In
this chapter, the R-dimensional subspace method known as R-D Standard Tensor ESPRIT,
proposed by Haardt et al. [62], is considered.

The eigenvalues of the matrices Ψ
(r)
u are estimates of the spatial frequencies ej·µ̂

(r)
ud for

d = 1, · · · , D and r = 1, · · · , R, i.e., [eµ̂
(r)
u1 , . . . , eµ̂

(r)
uD ] = EV{Ψ(r)

u }. The values of Ψ(r) are
given by the following relationship

Ψ(r)T

u =
(
J̃1

[r] · [UUU[s]
u ]T(R+1)

)+

· J̃2
[r] · [UUU[s]

u ]T(R+1), (2.18)

where J̃i
[r]

= I
Γ

(r)
1
⊗ J

[r]
i ⊗ I

Γ
(r)
2

for i = 1, 2 are the selection matrices for the r-th mode,
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Γ
(r)
1 =

∏r−1
q=1Mq and Γ

(r)
2 =

∏R
q=r+1 Mq. The tensor UUU[s]

u is defined as follows

UUU[s]
u = GGG[s]

u ×1 U
[s]
u1 ×2 U

[s]
u2 · · · ×R U

[s]
uR, (2.19)

where U
[s]
ur ∈ CMr×pr and GGG

[s]
u ∈ Cp1×p2···×pR×D for r = 1, · · · , R are computed from

an “economy size" Higher Order Singular Value Decomposition (HOSVD) of the denoised
tensor X̃̃X̃Xu ∈ CM1×M2×···×MR×N obtained from Block 1 of Fig. 2.3, and pr = min{Mr, D}.

2.3.3 Multipath Components Grouping

Usually, the signals with the highest power received at an antenna array are considered
as the line-of-sight of their corresponding sources. However, this assumption is not always
valid, since NLOS signals from closer sources may be received with a higher power com-
pared to the LOS signals from distant sources. Such fact is exemplified in Fig. 2.4, which
depicts two different scenarios where the LOS plus NLOS signals from two UAVs are re-
ceived at an antenna array. The power of each signal is proportional to the thickness of the
arrows, such that, for a given UAV, the LOS signal has the highest power compared to the
multipath components and, consequently, it is represented by a thicker arrow. In Fig. 2.4a,
both UAVs are localized at similar distances from the antenna array and, consequently, the
received signals with the highest power, LOS1 and LOS2, coincide with the line-of-sight
of each UAV. Nonetheless, an exceptional situation is depicted in Fig. 2.4b. Since UAV
2 is closer to the antenna array, one of its non line-of-sight signals, NLOS2,2, is received
with a higher power compared to the line-of-sight signal from the UAV 1, LOS1, which is
much farther from the array. In this sense, by applying the multipath components grouping
method described in this chapter, the component with the highest power from a given UAV
necessarily corresponds to its line-of-sight.

Block 1.3 of Fig. 2.3 represents the multipath components grouping at the u-th R-D
antenna array, in which the signals emitted from the q-th UAV are grouped into a matrix.
First, the estimated array steering matrix Âu = Â

(1)
u � Â

(2)
u � · · · � Â

(R)
u ∈ CM×D is rebuilt,

where Â
(r)
u = [â

(r)
u1 , · · · , â

(r)
uD] for r = 1, . . . , R. Moreover, each vector â

(r)
ud is given by (2.10)

with the spatial frequencies µ̂(r)
ud for d = 1, · · · , D estimated from the previous block. Next,

the SVD-based low-rank approximation is applied on the received data matrix Xu ∈ CM×N

truncated to D singular values,

Xu = UuΣuV
H
u , (2.20)

where the columns of Uu ∈ CM×D and Vu ∈ CN×D correspond to the left singular vectors
and right singular vectors of Xu, respectively, and the diagonal of Σu ∈ CD×D contains the
singular values of Xu.
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UAV 2 

Figure 2.4 – LOS plus NLOS signals from two UAVs received at an antenna array. (a) UAVs
1 and 2 localized at similar distances from the antenna array. (b) UAV 2 is closer to the
antenna array than UAV 1.

Then, the estimated symbols matrix Ŝu ∈ CD×N is obtained through the following rela-
tionship

Ŝu =Â+
u (UuΣuV

H
u )

=


ŝu1(1) ŝu1(2) · · · ŝu1(N)

ŝu2(1) ŝu2(2) · · · ŝu2(N)
...

... . . . ...
ŝuD(1) ŝuD(2) · · · ŝuD(N)

 ,
(2.21)

where each row of Ŝu is a vector ŝud = [ŝud(1), ŝud(2), · · · , ŝud(N)] ∈ CN corresponding to
the estimated symbols received from the d-th direction of arrival at the u-th antenna array.

The next step is to compute the correlation coefficient ρij between each pair of estimated
symbol vectors ŝui, ŝuj for i, j = 1, · · · , D and i 6= j. If such coefficient is lower than
a given threshold, ŝui and ŝuj are assumed to be emitted from different sources, otherwise
we consider that both were transmitted from the same source. Typically, such threshold is
considered with values around 0.6 and 0.7 [81]. If we consider the Pearson’s correlation
coefficient [82], then ρij is given by

ρij =

∑D
i=1(̂sui − ŝui)(̂suj − ŝuj)√∑D

i=1(̂sui − ŝui)2
∑D

i=1(̂suj − ŝuj)2

, (2.22)

where ŝui and ŝuj for i = 1, . . . , D and j = 1, . . . , D are the average values of ŝui and ŝuj ,
respectively.

Since the u-th antenna array receives one direct signal plus G multipath components
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from the q-th UAV, the estimated symbol vectors ŝqug for g = 1, · · · , G+ 1 are stacked into a
matrix Ŝqu ∈ C(G+1)×(N+1) together with the index dqp which identifies the row of each vector
in the original estimated symbols matrix Ŝu ∈ CD×N in (2.21), i.e.,

Ŝqu =


ŝqu1(1) ŝqu1(2) · · · ŝqu1(N) dq1

ŝqu2(1) ŝqu2(2) · · · ŝqu2(N) dq2
...

... . . . ...
...

ŝqu(G+1)(1) ŝqu(G+1)(2) · · · ŝqu(G+1)(N) dqG+1

 . (2.23)

For the sake of illustration of the multipath components grouping scheme, let us consider
that a given antenna array receives six signals from two drones, labeled as UAV 1 and UAV
2, such that N = 3, Q = 2, G = 2 and, thus, D = Q(G + 1) = 6. In this example, the
estimated symbols matrix Ŝu ∈ C6×3 is given by

Ŝu =



0.4943− 0.0059i, 0.5050− 0.0138i, 0.4952− 0.0185i

0.6968 + 0.0067i, 0.7087− 0.0004i, 0.7017− 0.0093i

1.3909− 0.0685i, 1.2143 + 0.0701i, 1.3891− 0.2079i

1.2143 + 0.0276i, 1.3104 + 0.0538i, 1.3056 + 0.0143i

0.6855 + 0.0147i, 0.6989− 0.0064i, 0.6932 + 0.0018i

1.2718 + 0.0650i, 1.3023− 0.0334i, 1.2505 + 0.0862i


, (2.24)

whose data are reorganized in Table 2.2, where d indicates the row index of each symbol
vector Ŝu(d, :) for d = 1, . . . , 6.

Table 2.2 – Data from the estimated symbols matrix Ŝu ∈ C6×3.

d Ŝu(d, 1) Ŝu(d, 2) Ŝu(d, 3)

1 0.4943 - 0.0059i 0.5050 - 0.0138i 0.4952 - 0.0185i

2 0.6968 + 0.0067i 0.7087 - 0.0004i 0.7017 - 0.0093i

3 1.3909 - 0.0685i 1.2143 + 0.0701i 1.3891 - 0.2079i

4 1.2143 + 0.0276i 1.3104 + 0.0538i 1.3056 + 0.0143i

5 0.6855 + 0.0147i 0.6989 - 0.0064i 0.6932 + 0.0018i

6 1.2718 + 0.0650i 1.3023 - 0.0334i 1.2505 + 0.0862i

The next step is to compute the correlation coefficient ρij between each pair of estimated
symbol vectors Ŝu(i, :), Ŝu(j, :) for i, j = 1, · · · , 6 and i 6= j, which is illustrated in Table
2.3. The fifth column indicates whether ρij is greater than 0.7 and, if so, Ŝu(i, :) and Ŝu(j, :)

are considered to be emitted from the same source, as reported in the last column. Therefore,
from the results shown in Table 2.3, we conclude that the symbol vectors Ŝu(d, :), with row
indexes d given by (1,2,5) and (3,4,6), are emitted from the UAVs 1 and 2, respectively.

After grouping the multipath components according to their source, the matrices Ŝ1
u ∈
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Table 2.3 – Correlation coefficient between Ŝu(i, :) and Ŝu(j, :) for i, j = 1, · · · , 6 and i 6= j.

d Ŝu(d, 1) Ŝu(d, 2) Ŝu(d, 3) ρ > 0.7? Conclusion

1 0.4943 - 0.0059i 0.5050 - 0.0138i 0.4952 - 0.0185i
Y 1 and 2 from

the same source2 0.6968 + 0.0067i 0.7087 - 0.0004i 0.7017 - 0.0093i

1 0.4943 - 0.0059i 0.5050 - 0.0138i 0.4952 - 0.0185i
N 1 and 3 from

different sources3 1.3909 - 0.0685i 1.2143 + 0.0701i 1.3891 - 0.2079i

1 0.4943 - 0.0059i 0.5050 - 0.0138i 0.4952 - 0.0185i
N 1 and 4 from

different sources4 1.2143 + 0.0276i 1.3104 + 0.0538i 1.3056 + 0.0143i

1 0.4943 - 0.0059i 0.5050 - 0.0138i 0.4952 - 0.0185i
Y 1 and 5 from

the same source5 0.6855 + 0.0147i 0.6989 - 0.0064i 0.6932 + 0.0018i

1 0.4943 - 0.0059i 0.5050 - 0.0138i 0.4952 - 0.0185i
N 1 and 6 from

different sources6 1.2718 + 0.0650i 1.3023 - 0.0334i 1.2505 + 0.0862i

d Ŝu(d, 1) Ŝu(d, 2) Ŝu(d, 3) ρ > 0.7? Conclusion

2 0.6968 + 0.0067i 0.7087 - 0.0004i 0.7017 - 0.0093i
N 2 and 3 from

different sources3 1.3909 - 0.0685i 1.2143 + 0.0701i 1.3891 - 0.2079i

2 0.6968 + 0.0067i 0.7087 - 0.0004i 0.7017 - 0.0093i
N 2 and 4 from

different sources4 1.2143 + 0.0276i 1.3104 + 0.0538i 1.3056 + 0.0143i

2 0.6968 + 0.0067i 0.7087 - 0.0004i 0.7017 - 0.0093i
Y 2 and 5 from

the same source5 0.6855 + 0.0147i 0.6989 - 0.0064i 0.6932 + 0.0018i

2 0.6968 + 0.0067i 0.7087 - 0.0004i 0.7017 - 0.0093i
N 2 and 6 from

different sources6 1.2718 + 0.0650i 1.3023 - 0.0334i 1.2505 + 0.0862i

d Ŝu(d, 1) Ŝu(d, 2) Ŝu(d, 3) ρ > 0.7? Conclusion

3 1.3909 - 0.0685i 1.2143 + 0.0701i 1.3891 - 0.2079i
Y 3 and 4 from

the same source4 1.2143 + 0.0276i 1.3104 + 0.0538i 1.3056 + 0.0143i

3 1.3909 - 0.0685i 1.2143 + 0.0701i 1.3891 - 0.2079i
N 3 and 5 from

different sources5 0.6855 + 0.0147i 0.6989 - 0.0064i 0.6932 + 0.0018i

3 1.3909 - 0.0685i 1.2143 + 0.0701i 1.3891 - 0.2079i
Y 3 and 6 from

the same source6 1.2718 + 0.0650i 1.3023 - 0.0334i 1.2505 + 0.0862i

d Ŝu(d, 1) Ŝu(d, 2) Ŝu(d, 3) ρ > 0.7? Conclusion

4 1.2143 + 0.0276i 1.3104 + 0.0538i 1.3056 + 0.0143i
N 4 and 5 from

different sources5 0.6855 + 0.0147i 0.6989 - 0.0064i 0.6932 + 0.0018i

4 1.2143 + 0.0276i 1.3104 + 0.0538i 1.3056 + 0.0143i
Y 4 and 6 from

the same source6 1.2718 + 0.0650i 1.3023 - 0.0334i 1.2505 + 0.0862i

d Ŝu(d, 1) Ŝu(d, 2) Ŝu(d, 3) ρ > 0.7? Conclusion

5 0.6855 + 0.0147i 0.6989 - 0.0064i 0.6932 + 0.0018i
N 5 and 6 from

different sources6 1.2718 + 0.0650i 1.3023 - 0.0334i 1.2505 + 0.0862i
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C3×4 and Ŝ2
u ∈ C3×4 are obtained as follows

Ŝ1
u =

0.4943− 0.0059i 0.5050− 0.0138i 0.4952− 0.0185i 1

0.6968 + 0.0067i 0.7087− 0.0004i 0.7017− 0.0093i 2

0.6855 + 0.0147i 0.6989− 0.0064i 0.6932 + 0.0018i 5

 , (2.25)

Ŝ2
u =

1.3909− 0.0685i 1.2143 + 0.0701i 1.3891− 0.2079i 3

1.2143 + 0.0276i 1.3104 + 0.0538i 1.3056 + 0.0143i 4

1.2718 + 0.0650i 1.3023− 0.0334i 1.2505 + 0.0862i 6

 , (2.26)

where the indexes dqg for g = 1, . . . , 3, shown in the last column of Ŝ1
u and Ŝ2

u and highlighted
in red and blue colors, respectively, identify the rows of Ŝu where each vector Ŝqu(g, :) can
be found. Such fact is reinforced in the matrix Ŝu, reproduced below, whose rows are high-
lighted with the same colors of the indexes dqg in Ŝ1

u and Ŝ2
u.

Ŝu =



0.4943− 0.0059i, 0.5050− 0.0138i, 0.4952− 0.0185i

0.6968 + 0.0067i, 0.7087− 0.0004i, 0.7017− 0.0093i

1.3909− 0.0685i, 1.2143 + 0.0701i, 1.3891− 0.2079i

1.2143 + 0.0276i, 1.3104 + 0.0538i, 1.3056 + 0.0143i

0.6855 + 0.0147i, 0.6989− 0.0064i, 0.6932 + 0.0018i

1.2718 + 0.0650i, 1.3023− 0.0334i, 1.2505 + 0.0862i


. (2.27)

2.3.4 Line-of-Sight Estimation

Block 1.4 of Fig. 2.3 represents the LOS estimation. In this step, we assume that the LOS
signal from the q-th UAV presents the highest power among all ŝqup ∈ Ŝqu for g = 1, . . . , G+1.
As stated in the previous subsection, each vector ŝqup is stored together with the index dqg
which identifies its corresponding row in the original estimated symbols matrix Ŝu in (2.21).
Therefore, the index dq which corresponds to the LOS of the q-th UAV in Ŝu is given by

dq = argmax
dqg

N∑
n=1

|̂squg[n]|2, (2.28)

where argmax{·} returns the argument that gives the maximum value from a target function.

Next, given dq, the estimated spatial frequencies µ̂(r)
udq for r = 1, · · · , R corresponding to

the DoA of the UAV can be directly extracted from the respective eigenvalues of Ψ(r) given
by (2.18).
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The last step is to identify the Q rows of Ŝu that contain the signals transmitted by
the UAVs. After extracted from Ŝu, such vectors can be stacked along the 1st dimension,
generating the estimated UAV symbols matrix Ŝuav

u ∈ CQ×N as follows

Ŝuav
u =


ŝuav
u1 (1) ŝuav

u1 (2) · · · ŝuav
u1 (N)

ŝuav
u2 (1) ŝuav

u2 (2) · · · ŝuav
u2 (N)

...
... . . . ...

ŝuav
uQ (1) ŝuav

uQ (2) · · · ŝuav
uQ (N)

 . (2.29)

Furthermore, the matrix Ŝuav
u , which contains the RF signatures of the Q drones, is sent

to Block 1.6 where a trained machine learning classifier Clu(·), associated to the u-th URA,
identifies the UAV type.

Continuing with the same numerical example shown in Subsection 2.3.3, let us reproduce
the matrices Ŝ1

u and Ŝ2
u to improve readability,

Ŝ1
u =

0.4943− 0.0059i, 0.5050− 0.0138i, 0.4952− 0.0185i, 1

0.6968 + 0.0067i, 0.7087− 0.0004i, 0.7017− 0.0093i, 2

0.6855 + 0.0147i, 0.6989− 0.0064i, 0.6932 + 0.0018i, 5

 , (2.30)

Ŝ2
u =

1.3909− 0.0685i, 1.2143 + 0.0701i, 1.3891− 0.2079i, 3

1.2143 + 0.0276i, 1.3104 + 0.0538i, 1.3056 + 0.0143i, 4

1.2718 + 0.0650i, 1.3023− 0.0334i, 1.2505 + 0.0862i, 6

 . (2.31)

Next, data from the estimated symbols matrices Ŝ1
u ∈ C3×4 and Ŝ2

u ∈ C3×4 in (2.30) and
(2.31) are reorganized in Table 2.4 in order to determine the LOS index of the UAVs 1 and
2, given by dq for q = 1, 2.

Table 2.4 – Data from the estimated symbols matrices Ŝqu ∈ C3×4 for q = 1, 2.

q d Ŝu(d, 1) Ŝu(d, 2) Ŝu(d, 3) Power dq

1

1 0.4943 - 0.0059i 0.5050 - 0.0138i 0.4952 - 0.0185i 1.49

22 0.6968 + 0.0067i 0.7087 - 0.0004i 0.7017 - 0.0093i 2.10

5 0.6855 + 0.0147i 0.6989 - 0.0064i 0.6932 + 0.0018i 2.08

2

3 1.3909 - 0.0685i 1.2143 + 0.0701i 1.3891 - 0.2079i 4.01

34 1.2143 + 0.0276i 1.3104 + 0.0538i 1.3056 + 0.0143i 3.83

6 1.2718 + 0.0650i 1.3023 - 0.0334i 1.2505 + 0.0862i 3.82

Finally, the estimated UAV symbols matrix Ŝuav
u ∈ C2×3 is obtained by stacking, along
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the 1st dimension, the symbol vectors identified as LOS in Table 2.4 as follows

Ŝuav
u =

[
0.6968 + 0.0067i, 0.7087− 0.0004i, 0.7017− 0.0093i

1.3909− 0.0685i, 1.2143 + 0.0701i, 1.3891− 0.2079i

]
, (2.32)

where the estimated symbol vectors from the UAVs 1 and 2 are highlighted in red and blue
colors, respectively.

2.3.5 Triangulation

Finally, the estimated position coordinates of the UAV are provided by triangulation [64],
represented by Block 1.5 of Fig. 2.3. If we intend to localize Q UAVs localized within the
system coverage region, the triangulation process must be repeated for the positioning of
each UAV individually.

Without loss of generality, let us consider the antenna array based UAV localization sys-
tem composed by U two-dimensional URAs depicted in Figure 2.1a. Since the origin of the
Cartesian coordinate system (0, 0, 0) is known, two antenna arrays are required to estimate
the UAV position coordinates via triangulation. Fig. 2.5a to 2.5d illustrate the process of
localization of the q-th UAV considering four different relative positions between the u-th
and v-th URAs, as well as the detected drone. The LOS from the UAVs to the URAs are
represented by lines in red color, whereas the distances between the URAs and the projection
of the UAV coordinates onto the xy-plane are represented by dotted lines in black color.

The coordinates of the central element of the u-th and v-th URAs are (xu, yu, zu) and
(xv, yv, zv), respectively, whereas the lines-of-sight from the q-th UAV at both URAs present
elevation and azimuth angles given by the pairs (θ̂qu,los, φ̂

q
u,los) and (θ̂qv,los, φ̂

q
v,los). Such an-

gles can be directly extracted from the LOS spatial frequencies µ̂(r)
udq and µ̂(r)

vdq for r = 1, 2

estimated in the previous subsection,

µ̂
(1)
udq =

2π

λ
(lxsinθ̂

q
u,loscosφ̂qu,los), µ̂

(2)
udq =

2π

λ
(lysinθ̂

q
u,lossinφ̂

q
u,los), (2.33)

µ̂
(1)
vdq =

2π

λ
(lxsinθ̂

q
v,loscosφ̂qv,los), µ̂

(2)
vdq =

2π

λ
(lysinθ̂

q
v,lossinφ̂

q
v,los), (2.34)

where lx and ly are the spacing between the URA elements in x and y axes, respectively, and
λ is the center wavelength. In this chapter, the estimated elevation and azimuth angles θ̂qu,los

and φ̂qu,los for u = 1, . . . , U , respectively, are considered as random variables with standard
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Figure 2.5 – Localization of the q-th UAV via triangulation techniques, considering four
different relative positions between the u-th and v-th URAs, as well as the detected drone.

uniform distribution given by

θ̂qu,los ∼ U (i, j), i = 5◦, j = 85◦,

φ̂qu,los ∼ U (i, j), i = 5◦, j = 85◦,
(2.35)

where U (i, j) stands for a uniformly distributed random variable within the range [i, j].
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Furthermore, the coordinates of the q-th UAV estimated by the u-th and v-th URAs are
given by (x̂u,vq , ŷu,vq , ẑu,vq ), which correspond to the point of intersection between the DoAs
(θ̂qu,los, φ̂

q
u,los) and (θ̂qv,los, φ̂

q
v,los). Such point can be estimated by using trigonometric relations

referring to the coordinates of either the u-th or the v-th URA. Therefore, if the coordinates
of the u-th URA are used as a reference, the UAV positions depicted in Fig. 2.5a to 2.5d can
be computed, respectively, by either of the following systems of equations


x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂qu,los,

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂qu,los,

ẑu,vq = l̂qu cos θ̂qu,los,

(2.36)


x̂u,vq = xu − l̂qu sin θ̂qu,los sin(180◦ − ϕ̂qu,los) = xu − l̂qu sin θ̂qu,los sin ϕ̂qu,los,

ŷu,vq = yu − l̂qu sin θ̂qu cos(180◦ − ϕ̂qu,los) = yu + l̂qu sin θ̂qu,los cos ϕ̂qu,los,

ẑu,vq = l̂qu cos θ̂qu,los,

(2.37)


x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂qu,los) = xu − l̂qu sin θ̂qu,los sin ϕ̂qu,los,

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂qu,los) = yu + l̂qu sin θ̂qu,los cos ϕ̂qu,los,

ẑu,vq = l̂qu cos θ̂qu,los,

(2.38)


x̂u,vq = xu + l̂qu sin θ̂qu,los sin(ϕ̂qu,los − 180◦) = xu − l̂qu sin θ̂qu,los sin ϕ̂qu,los,

ŷu,vq = yu − l̂qu sin θ̂qu,los cos(ϕ̂qu,los − 180◦) = yu + l̂qu sin θ̂qu,los cos ϕ̂qu,los,

ẑu,vq = l̂qu cos θ̂qu,los,

(2.39)

where l̂qv and l̂qu are the distances between (x̂u,vq , ŷu,vq , ẑu,vq ) and the coordinates of each URA,
(xv, yv, zv) and (xu, yu, zu), respectively. Note that the azimuth angle φ̂qu,los is written as a
function of ϕ̂qu,los, as illustrated in Figure 2.2.

From (2.36) to (2.39), it can be seen that the coordinates of the q-th UAV obtained by
trigonometric relations present identical equations, regardless of the relative position be-
tween the URAs and UAV shown in Fig. 2.5a to 2.5d. Since xu, xv, yu and yv are known, the
distances l̂qv and l̂qu can be obtained from either of the above-mentioned systems of equations,
for example, (2.36), such that

l̂qv =
cos θ̂qu,los(xv − xu)

a− b
, (2.40)
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l̂qu =
cos θ̂qv,los(xv − xu)

a− b
, (2.41)

when the x-coordinates of both URAs are used as a reference, or

l̂qv =
cos θ̂qu,los(yv − yu)

c− d
, (2.42)

l̂qu =
cos θ̂qv,los(yv − yu)

c− d
, (2.43)

when, alternatively, the y-coordinates are used as a reference. In the above systems of equa-
tions, a = sin θ̂qv,los sin ϕ̂qv,los cos θ̂qu,los, b = sin θ̂qu,los sin ϕ̂qu,los cos θ̂qv,los, c = sin θ̂qu,los cos ϕ̂qu,los

cos θ̂qv,los and d = sin θ̂qv,los cos ϕ̂qv,los cos θ̂qu,los.

In this sense, the UAV coordinates (xu,vq , yu,vq , zu,vq ) estimated by the (u,v)-th pair of
URAs can be computed, for example, by substituting (2.41) into (2.36), i.e.,



x̂u,vq =
axu − bxv
a− b

,

ŷu,vq =
(a− b)yu + c(xv − xu)

a− b
,

ẑu,vq =
cos θ̂qu,los cos θ̂qv,los(xv − xu)

a− b
,

(2.44)

or, alternatively, by substituting (2.43) into (2.36), obtaining



x̂u,vq =
(c− d)xu − b(yv − yu)

c− d
,

ŷu,vq =
cyv − dyu
c− d

,

ẑu,vq =
cos θ̂qu,los cos θ̂qv,los(yv − yu)

c− d
.

(2.45)

This fact reflects the displacement invariance inherent to the proposed antenna array
based UAV localization system, since (2.44) and (2.45) estimate the UAV coordinates by
applying triangulation techniques on the LOS signals received by any pair of antenna arrays,
regardless of the relative position between such arrays and the detected drone. Appendix B
presents all of the possible different relative positions between a pair of URAs (u, v) and the
q-th UAV, showing that the estimated coordinates of the UAV have identical mathematical
formulas.

Finally, in order to obtain more accurate results, each pair of URAs (1,2),(2,3),. . . ,(U -
1,U ),(U ,1), placed along a common edge of the system border, can be used to estimate
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the drone coordinates. Therefore, the final estimated position (x̂q, ŷq, ẑq) of the q-th UAV
corresponds to the arithmetic mean of the coordinates computed in (2.44) or (2.45) related
to those pairs of URAs, i.e.,



x̂q =
1

U

U∑
u=1

x̂u,vq ,

ŷq =
1

U

U∑
u=1

ŷu,vq ,

ẑq =
1

U

U∑
u=1

ẑu,vq ,

u = 1, . . . , U,

v = u mod U + 1,

(2.46)

where mod stands for the modulo operation, such that u mod U returns the remainder of
the division of u by U .

2.3.6 UAV Identification

Following, Block 1.6 of Fig. 2.3 represents the process of UAV identification. In this
block, the symbols matrices Ŝuav

u ∈ CQ×N for u = 1, . . . , U estimated in Block 1.4 are
forwarded to a trained machine learning classification algorithm Clu(·).

In this chapter, the DroneRF dataset [73] is used for validation of the proposed frame-
work. More details regarding such dataset are shown in Appendix C. Table 2.5 details the
number of raw samples and segments for each drone model.

Table 2.5 – Number of raw samples and segments for each drone model present in the
DroneRF dataset.

Drone Model Nr Segments Nr Samples

Bebop 84 1.680 × 106

AR 81 1.620 × 106

Phantom 21 420 × 106

If Clu(·) represents a trained base classifier associated with the u-th antenna array, the
vector ĉu ∈ RQ containing the predicted drone model ĉuq of the q-th UAV for q = 1, . . . , Q

is given by

ĉu = Clu(Ŝ
uav
u ) = [ĉu1, . . . , ĉuQ]T. (2.47)
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2.3.7 Majority Voting

Finally, the majority voting of the drone models ĉuq for q = 1, . . . , Q predicted by all
of the U base classifiers is performed in Block 1.7. The final estimated model vector c∗ ∈
RQ contains the drone models c∗q for q = 1, . . . , Q estimated for the q-th UAV, which are
computed through the simple majority voting of ĉ1q, . . . , ĉUq, i.e.,

c∗ =


c∗1
...
c∗Q

 ,
with c∗q = mode{ĉ1q, . . . , ĉUq},

(2.48)

where mode{·} is the mode function, which returns the most frequent class predicted by the
U machine learning classification algorithms.

The proposed tensor based framework for UAV localization and identification in multi-
path environments is summarized in Algorithm 1.

Algorithm 1: The proposed algorithm for UAV localization and identification in
multipath environments.
1 Begin

Input:
- Received signal tensor: XXXu ∈ RM1×···×MR×N for u = 1, . . . , U
- Number of received signals: D
- Number of UAVs: Q
- Maximum number of subarrays in each spatial dimension: Lr

Output:
- Estimated position coordinates (x̂q , ŷq , ẑq) of the q-th UAV for q = 1, . . . , Q
- Estimated class label c∗q of the q-th UAV for q = 1, . . . , Q
Algorithm Steps:

2 for u = 1 to U do
3 for r = 1 to R do
4 for lr = 1 to Lr do

5 Compute the smoothed matrix X
(lr)
SS,ur ∈ RM

(sub)
r ×

∏
j 6=r MjLrN of the unfolding matrix

[XXXu](r) ∈ RMr×
∏

j 6=r MjN along the r-th mode for the lr-th subarray size as in (2.13)

6 Compute the SVD low-rank approximation X̃
(lr)
SS,ur ∈ RM

(sub)
r ×

∏
j 6=r MjLrN of

X
(lr)
SS,ur ∈ RM

(sub)
r ×

∏
j 6=r MjLrN along the r-th mode for the lr-th subarray size as in (2.15)

7 Reconstruct the matrix [X̃̃X̃Xu](r) ∈ RMr×
∏

j 6=r MjN as in (2.16) and (2.17)

8 Fold the matrix [X̃̃X̃Xu](r) ∈ RMr×
∏

j 6=r MjN into the denoised tensor X̃̃X̃Xu ∈ RM1×···×MR×N

9 for d = 1 to D do
10 Compute the estimated matrices Ψ

(r)
u as in (2.18) and (2.19)

11 Rebuild the estimated array steering matrix Âu = Â
(1)
u � Â

(2)
u � · · · � Â

(R)
u ∈ CM×D

12 Compute the SVD low-rank approximation of Xu ∈ CM×N truncated to D singular values as in (2.20)
13 Compute the estimated symbol matrix Ŝu ∈ CD×N as in (2.21)
14 P ← 1
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15
16 for i = 1 to D do
17 for j = 1 to D do
18 Compute the correlation coefficient ρij between ŝui and ŝuj as in (2.22)
19 if ρij > threshold and i 6= j then
20 ŝui and ŝuj are emitted from the same source
21 G← G+ 1

22 else
23 ŝui and ŝuj are emitted from different sources
24 end
25 end
26 end
27 for g = 1 to G do
28 for q = 1 to Q do
29 Stack the estimated symbol vector ŝqug into the matrix Ŝq

u ∈ C(G+1)×(N+1) along with dqg as in (2.23)
30 end
31 end
32 for q = 1 to Q do
33 Compute the index dq in Ŝu as in (2.28)
34 for r = 1 to R do
35 Compute the estimated spatial frequencies µ̂(r)

udq from the eigenvalues of Ψ(r)

36 end
37 end
38 Compute the estimated UAV symbols matrix Ŝuav

u ∈ CQ×N as in (2.29)
39 for u = 1 to U do
40 Compute the azimuth and elevation angles (θ̂qu, φ̂

q
u) and (θ̂qv , φ̂

q
v) as in (2.33) to (2.35)

41 Compute the estimated coordinates (x̂u,vq , ŷu,vq , ẑu,vq ) as in (2.36) to (2.45)
42 end
43 for u = 1 to U do
44 for q = 1 to Q do
45 Compute the final estimated coordinates (x̂q , ŷq , ẑq) as in (2.46)
46 Estimate the identification ĉuq of the q-th UAV as in (2.47)
47 end
48 end
49 Compute the estimated class label c∗q of the q-th UAV as in (2.48)
50 end

2.4 COMPUTATIONAL COMPLEXITY

In this section, the computational complexity of the proposed framework is presented
and discussed. The computational costs related to folding and unfolding of matrices and
tensors are not considered, since such functions are about data representations. Moreover, the
asymptotic time cost as a function of the largest contributions of the most important variables
is considered, namely, M =

∏R
r=1 Mr, Lr, N , R, G and D. As it can be seen in Section

2.5, the proposed framework is compared with state-of-the-art UAV localization schemes,
namely, matrix based ESPRIT with SS and tensor based ESPRIT with SS. Therefore, in this
section, the computational complexities of such competing techniques are also introduced.

First, the computational complexity of the traditional MuDe technique is presented. Such
scheme is described in steps 2 to 8 of Alg. 1. The time cost of the SVD low-rank approxi-
mation of a matrix with dimensions (Mr− lr + 1)× ((

∏
j 6=rMj)lrN) truncated to rank D is

given byOOO[(
∏

j 6=rMj)(Mr− lr + 1)Dlr] [83]. Since MuDe computes a total of Lr truncated
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SVDs for each dimension r = 1, . . . , R, its computational complexity can be expressed as

OOO[MuDe] = OOO

[
R∑
r=1

Lr∑
lr=1

(
∏
j 6=r

Mj)(Mr − lr + 1)DlrN

]
. (2.49)

Moreover, the direction of arrival estimation is performed by the R-D Standard Tensor
ESPRIT algorithm, as shown in steps 9 to 10 of Alg. 1. According to [62], its computational
complexity can be expressed as

OOO[T-ESPRIT] = OOO
[
ktMND(R + 1) +MNDR +MD2R

]
, (2.50)

where kt is a constant that depends on the design of the algorithm.

Furthermore, the proposed framework computes the SVD low-rank approximation of Xu

truncated to D in step 12 of Alg. 1, with complexity given by

OOO[SVD] = OOO [ktMND] . (2.51)

Besides, steps 16 to 26 of Alg. 1 compute the correlation coefficient between each pair
of vectors ŝui, ŝuj for i = 1, . . . , D and j = 1, . . . , D, with complexity

OOO[Corr] = OOO
[
D2N

]
. (2.52)

Next, the proposed algorithm performs the line-of-sight estimation, where the index dq

is computed in step 33 of Alg. 1. Its computational complexity can be expressed as

OOO[LOS] = OOO
[
(G+ 1)N log2(N)

]
, (2.53)

where G + 1 is the number of signal components received from the same UAV (one LOS
plus G NLOS signals).

In addition, step 35 of Alg. 1 computes the Eigenvalue Decomposition (EVD) of Ψ(r) in
order to obtain the estimated spatial frequencies µ̂(r)

udq . Such process presents complexity

OOO[EVD] = OOO
[
RD3

]
. (2.54)

Finally, the overall computational complexity of the proposed tensor based framework for
UAV localization in multipath environments corresponds to the sum of the aforementioned

39



complexities, i.e.,

OOO[Framework] =OOO[MuDe] +OOO[T-ESPRIT] +OOO[SVD]+

+OOO[Corr] +OOO[LOS] +OOO[EVD].
(2.55)

The time costs of the matrix based ESPRIT and spatial smoothing techniques are given
by OOO[M-ESPRIT] = OOO[ktDNM ] and OOO[SS] = OOO[(2F + 1)N + (F + 1)3], respectively,
where F corresponds to the degree of freedom of the antenna array [84]. Furthermore, the
computational complexity of the tensor based ESPRIT is shown in (2.50). Table 2.6 summa-
rizes the computational complexities of the proposed framework and its competing schemes.
The second column of Table 2.6 illustrates the total computational cost, whereas the last col-
umn shows the final complexities, corresponding to the asymptotic dominant terms. From
the results shown in Table 2.6, it can be seen that the proposed framework presents the high-
est computational complexity, which is composed by two dominant terms: OOO [ktRDNM ],
corresponding to the standard tensor ESPRIT algorithm, plus OOO [LRDNM ], related to the
MuDe technique. Therefore, the mean processing times are considerably impacted by the
MuDe algorithm, as shown in the numerical simulations of Section 2.5. Note that, among
the competing schemes, the lowest computational complexity is achieved by the M-ESPRIT
+ SS technique, which is a matrix based approach.

Table 2.6 – Computational complexity of the following models: (1) proposed framework, (2)
tensor based ESPRIT with SS, and (3) matrix based ESPRIT with SS.

Model Total Complexity Dominant Complexity

Proposed framework
OOO
[∑R

r=1

∑Lr
lr=1(

∏
j 6=rMj)(Mr − lr + 1)DlrN

]
+

+OOO
[
ktMND(R+ 1) +MNDR+MD2R

]
+

+OOO [ktMND] +OOO
[
D2N

]
+OOO

[
PN log2(N)

]
+OOO

[
RD3

] OOO [ktRDNM ] +OOO [LRDNM ]

T-ESPRIT + SS [6] OOO
[
ktMND(R+ 1) +MNDR+MD2R

]
+

+OOO[(2F + 1)N + (F + 1)3]
OOO [ktRDNM ]

M-ESPRIT + SS [62] OOO[ktDNM ] +OOO[(2F + 1)N + (F + 1)3] OOO[ktDNM ]

2.5 SIMULATION RESULTS

This section is divided into two subsections. First, Subsection 2.5.1 presents the simula-
tion results regarding UAV localization. Next, numerical simulations considering the UAV
identification are shown in Subsection 2.5.2. Finally, Subsection 2.5.3 discusses the obtained
results.

40



2.5.1 Localization Module

In this subsection, the improvements introduced by both the tensor approach and the
MuDe scheme for localizing UAVs are illustrated through computer simulations. The Root
Mean Square Error (RMSE) of the estimated spatial frequency and the estimated UAV
position coordinates are evaluated as a function of the following parameters: Signal-to-
Interference Ratio (SIR), number of signal samples (N ), number of antennas per dimension
(Mr) and number of UAVs within the system (Q). Moreover, three techniques are compared:
(i) the classical standard matrix ESPRIT with SS, which was adopted in [6]; (ii) the R-D
standard tensor ESPRIT with SS, developed by Haardt et al. in [62] and applied in [4]; and
(iii) the proposed framework, which adopts the R-D standard tensor ESPRIT with MuDe. A
third-order received signal tensor with two spatial dimensions and one temporal dimension
is considered in simulations. In addition, the experiments were executed on a desktop com-
puter with processor Intel Core i7-2600 3.40 GHz and 16 GB of Random Access Memory
(RAM). Further, MATLAB R2018a software was used in all simulations. The final results of
each metric correspond to the average value of 50 Monte Carlo simulation runs. The RMSE
of a given metric γ can be expressed as

RMSE(τ) =

√√√√ 1

R ·Q

(
R∑
r=1

Q∑
q=1

(γ
(r)
q,r − γ̂(r)

q,r )2

)
, (2.56)

where γ(r)
q,r and γ̂(r)

q,r denote, respectively, the real value and the estimated value of γ for the
q-th UAV in the r-th array dimension at the τ -th Monte Carlo run.

The matrix Iu ∈ CM×N is the interference matrix, which corresponds to the sum of the
power of the other interfering signals. Thus, the signal-to-noise and signal-to-interference
ratios are defined as

SNR =
σ2

Xu

σ2
Nu

, (2.57)

SIR =
σ2

Xu

σ2
Iu

, (2.58)

where σ2
Xu

, σ2
Nu

and σ2
Iu

are the variances of Xu, Nu and Iu, respectively. Usually, both SNR
and SIR are expressed in decibels as follows

SNRdB = 10log10

(
σ2

Xu

σ2
Nu

)
, (2.59)
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SIRdB = 10log10

(
σ2

Xu

σ2
Iu

)
. (2.60)

First, the performance of the proposed framework is assessed for different number of
URAs. Four different configurations of the antenna array based UAV localization system,
depicted in Fig. 2.6, are considered in experiments, in which the total number of URAs
ranges from three (triangle-shaped) to six (hexagon-shaped). All of the URAs are symmet-
rically distributed along the xy-plane of the system coverage region, such that the distances
between two URAs positioned along a common edge of the system border are approximately
identical. For the triangle, square, pentagon and hexagon-shaped configurations, such dis-
tances are given by ∆t = ∆s = 400 m, ∆p = 280 m and ∆h = 240 m, respectively. Ad-
ditionally, in all simulation scenarios, the UAV moves within the following distance ranges:
120 < x < 280 meters, 140 < y < 260 meters, and 30 < z < 130 meters. The elevation
and azimuth angles, θ̂qu,los and φ̂qu,los for u = 1, . . . , U and q = 1, . . . , Q, are uniformly dis-
tributed random variables within the range [5◦, 85◦]. Further, the number of dimensions is
R = 2, SIR = SNR = 0 dB, N = 20, Q = 2 UAVs and λ = 0.125 m. The number of antennas
Mr is fixed in 50 and the subarray length Lr = 15 is constant for each spatial mode (r =
1,2). The spacing between URA antennas are lx = ly = λ/2, whereas each URA receives
two multipath signals from each UAV. Table 2.7 shows the RMSE of the spatial frequency,
considering different system configurations, of the proposed framework and its competing
schemes. In addition, in order to illustrate the benefits of adopting the MuDe algorithm on
the overall UAV localization performance, simulation results from a tensor based ESPRIT
model without denoising techniques are also included. From the results shown in Table 2.7,
it can be observed that the proposed framework outperforms its competitor methods in all
of the system configurations, as highlighted in bold. Note that the M-ESPRIT + SS scheme
presents the worst performance, especially for the triangle, pentagon and hexagon-shaped
scenarios. Moreover, by comparing our proposed scheme with the T-ESPRIT with no de-
noising scheme, we observe a considerable performance gain due to the inclusion of the
MuDe algorithm in Block 1.1 of Fig. 2.3. Finally, note that the tensor based schemes present
similar results for different UAV localization system configurations.

Table 2.7 – RMSE of the estimated spatial frequency, considering different configurations of
the antenna array based UAV localization system.

RMSE of the estimated spatial frequency
System Configuration

Model Triangle Square Pentagon Hexagon
Proposed Framework 0.0010 0.0014 0.0011 0.0012
T-ESPRIT + SS 0.0011 0.0015 0.0012 0.0015
T-ESPRIT (no denoising) 0.0015 0.0018 0.0016 0.0019
M-ESPRIT + SS 0.0452 0.0019 0.0718 0.0811

From this point on, the square-shaped UAV localization system is adopted in simulations,
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Figure 2.6 – Four different configurations of the proposed antenna array based UAV local-
ization system used in simulations. (a) triangle. (b) square. (c) pentagon. (d) hexagon.

with edge length ∆s = 400 meters and U = 4 URAs, such that a single URA is deployed at
each vertice. The system is the same depicted in Fig. 2.6b, in which URAs 1 to 4 are
positioned at the (0, ∆s, 0), (∆s, ∆s, 0), (0, 0, 0) and (∆s, 0, 0) coordinates, respectively.
Furthermore, as stated in Subsection 2.3.5, the UAV position is estimated by each pair of
URAs placed along a common edge of the system border. The number of spatial dimensions
is R = 2, the SIR ranges from 2 to 4 dB, N varies between 10 and 50 samples and λ =
0.125 m. The number of antennas Mr ranges from 20 to 50 and the subarray length Lr

= 15 is constant for each spatial mode (r = 1,2). The spacing between URA antennas are
lx = ly = λ/2. Each URA receives D = 3Q wavefronts (Q LOS plus 2Q multipath signals)
originated from Q UAVs placed at different position coordinates, such that Q varies between
2 and 5.

Fig. 2.7a and 2.7b illustrate, respectively, the RMSE of the estimated spatial frequencies
and estimated UAV position coordinates as a function of the SIR. In this first scenario, we
assume N = 20, Q = 2, SNR = 0 dB and M1 = M2 = 50. It can be observed that the

43



2 2.5 3 3.5 4

SIR (dB)

1

1.5

2

2.5

R
M

S
E

 o
f 
e
s
ti
m

a
te

d
 s

p
a
ti
a
l 
fr

e
q
u
e
n
c
y 10

-3

M-ESPRIT + SS

T-ESPRIT + SS

Proposed Framework

2 2.5 3 3.5 4

SIR (dB)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
M

S
E

 o
f 
e
s
ti
m

a
te

d
 p

o
s
it
io

n
 c

o
o
rd

in
a
te

s

M-ESPRIT + SS

T-ESPRIT + SS

Proposed Framework

Figure 2.7 – (a) RMSE of the estimated spatial frequency versus SIR (dB). (b) RMSE of the
estimated position coordinates versus SIR (dB).

proposed tensor-based framework with MuDe outperforms the tensor approach with SS when
SNR > 2 dB. As expected, the matrix-based approach with spatial smoothing presents lower
performance in most of the SIR range. Moreover, it is clear that all techniques deliver better
performance as the SIR is higher.

Next, Fig. 2.8a and 2.8b show the RMSE of the estimated spatial frequencies and esti-
mated position coordinates versus the number of antennas per dimension, respectively. Now
we consider SIR = 20 dB, SNR = 30 dB, Q = 2, D = 6 and N = 10. From the results,
it is evident that our proposed framework presents better performance compared to both
matrix-based SS and tensor-based SS techniques. Furthermore, note that all of the compet-
ing schemes deliver better results when the number of antennas is larger, which improves the
SNR in such case.

Following, the RMSE of the estimated spatial frequencies and estimated position coordi-
nates as a function of the number of samples is shown in Fig. 2.9a and 2.9b. In this scenario,
SIR = 20 dB, SNR = 30 dB, Mr = 50, Q = 2 and D = 6. Once again the proposed tensor-
based framework with MuDe outperforms both matrix ESPRIT SS and tensor ESPRIT SS
approaches. In addition, from the results shown in Fig. 2.9a and 2.9b, we observe that all of
the competitor techniques show better performance for larger number of samples.

Additionally, Fig. 2.10a and 2.10b illustrate, respectively, the RMSE of the estimated
spatial frequencies and estimated position coordinates versus the number of UAVs within
the system coverage region. Now we consider SNR = 30 dB, SIR = 20 dB, Mr = 50, N = 20
and 1 ≤ Q ≤ 4. As expected, our proposed framework outperforms the other approaches.
Moreover, note that all of the compared techniques show worse performance when the num-
ber of UAVs is higher. In such case, since the coverage area is fixed, there is a higher number
of signal emitters per area unit, implying in higher interference. In summary, from the results
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Figure 2.8 – (a) RMSE of the estimated spatial frequency versus number of antennas per
dimension. (b) RMSE of the estimated position coordinates versus number of antennas per
dimension.
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Figure 2.9 – RMSE of the estimated spatial frequency versus number of samples. (b) RMSE
of the estimated position coordinates versus number of samples.
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Figure 2.10 – RMSE of the estimated spatial frequency versus number of UAVs. (b) RMSE
of the estimated position coordinates versus number of UAVs.

shown in Fig. 2.7 to 2.10, it is clear that our proposed framework exploits the inherent tensor
structure present in the received signal and, consequently, outperforms all of the competing
schemes in simulations.

Finally, the mean processing times (in seconds) of the proposed framework as well as the
competing M-ESPRIT + SS and T-ESPRIT + SS schemes are evaluated. Fig. 2.11 illustrates
the processing times corresponding to the simulations shown in Fig. 2.9 and 2.10. From the
results shown in Fig. 2.11, it can be seen that the proposed framework is more computation-
ally expensive than the matrix-based approach, showing an increase in the mean processing
time. This fact is more evident especially for larger number of UAVs, where a higher com-
putational processing is required. In addition, note that our proposed framework slightly out-
performs the tensor based ESPRIT with SS, despite the inclusion of MuDe, which presents
a higher computational complexity. In such case, MuDe yields a more efficient noise atten-
uation, achieving a faster algorithm convergence and, consequently, compensating its higher
complexity. Moreover, as expected, all of the compared techniques present worse perfor-
mance for larger number of samples and UAVs, where a higher computational processing is
required. Thus, according to the results obtained in Fig. 2.11, this is the trade-off in order to
achieve a more accurate UAV localization compared to the M-ESPRIT + SS.

2.5.2 Identification Module

In this subsection, the performance of the UAV identification module is assessed through
numerical simulations. Accuracy (Acc), Detection Rate (DR) and False Alarm Rate (FAR),
defined in Eq. (D.1), (D.3) and (D.4) of Appendix D, are adopted as performance evaluation
metrics.
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Figure 2.11 – a) Mean processing time (s) versus number of samples. (b) Mean processing
time (s) versus number of UAVs.

In order to validate our scheme, we generated a dataset by using the RF signatures col-
lected from the DroneRF database [85], detailed in Table 2.5. Despite such database contains
samples from different drone functioning modes, as mentioned in Section C.1 of Appendix
C, only the identification of intruding UAVs operating in the “on and connected” mode is
assessed in this chapter. First, ten segments were extracted from each UAV model of the
DroneRF dataset, with number of time samples N fixed in 50. In order to simulate the sig-
natures corresponding to the Bebop, AR and Phantom drone models, the time samples ex-
tracted from the DroneRF dataset are used as the transmitted symbols [suq(1), . . . , suq(N)]

for q = 1, . . . , Q. Three drones (Q = 3) are randomly positioned within the system coverage
region, with two multipath components per drone and SNR = 30 dB. The number of antennas
Mr is fixed in 50, with L1 = L2 = 5, whereas the spacing between URA antennas is given
by lx = ly = λ/2.

As pointed out by [73], ML classification algorithms can benefit from the latent informa-
tion present in the RF signals and, consequently, show an improved performance for detect-
ing and identifying UAVs. To accomplish this, each vector ŝuav

uq = [ŝuav
uq (1), . . . , ŝuav

uq (N)] for
q = 1, . . . , Q in Ŝuav

u is converted to the frequency domain by applying the DFT as follows

wuq(h) =

∥∥∥∥∥
N∑
n=1

ŝuav
uq (n)exp

(
−j2πh(n− 1)

N

)∥∥∥∥∥ , (2.61)

where wuq(h) is the estimated symbols vector of the q-th UAV at the u-th URA in the fre-
quency domain, whereas h and n are the frequency and time domain indices, respectively.

After the simulation of 100 different experiments, 300 segments in the time domain,
estimated by each one of the four URAs, were converted into the frequency domain. The
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conversion was performed by applying the DFT in (2.61) such that each instance is composed
by 2048 frequency bins, which correspond to the dataset features. The class labels “Bebop”,
“AR” and “Phantom” were coded respectively as “0”, “1” and “2”. Moreover, at the u-th
URA for u = 1, . . . , U , the dataset was split into the training and testing sets, with proportion
50:50, which were sent to the base classifier Clu(·). Additionally, in order to increase the
training set size and reduce its class imbalance problem, minority samples were artificially
generated by applying the Synthetic Minority Oversampling Technique (SMOTE) on each
training set separately. Furthermore, seven different types of machine learning classification
algorithms are evaluated in this chapter, namely, Decision Trees (DT), Extra Trees (ET), k-
Nearest Neighbors (kNN), Linear Discriminant Analysis (LDA), Logistic Regression (LR),
Naïve Bayes (NB) and Random Forest (RFo). The predictions resulting from each classifier
are combined via simple majority voting in order to provide the final classification. The
main simulation parameters adopted for each ML classifier in Keras library are summarized
in Appendix E.

Table 2.8 presents the values of accuracy, detection rate and false alarm rate of the pro-
posed framework and its competitor schemes for identifying three different drone models
(Bebop, AR and Phantom) when considering the above-mentioned ML classification algo-
rithms. The best metrics for each ML classifier and for each SIR are highlighted in bold.
Here we consider macro-averaged metrics, i.e., each metric value corresponds to the aver-
age between the values computed for all classes. The SNR is fixed in 30 dB, whereas SIR
ranges from 0 dB to 20 dB. From Table 2.8, we observe that all schemes present very similar
performance, regardless of the SIR. Especially for SIR = 0 dB, a very poor performance is
shown by all approaches due to the high interference level present in the environment, with
detection rate around 33%. On the other hand, for SIR = 20 dB, all classifiers but LR and
NB presented detection rate higher than 90%. Despite the UAV identification performance
of the proposed framework is not the best for all SIR range, it still presents outstanding re-
sults compared to the other schemes, especially when SIR = 20 dB for ET, LDA, LR and NB
classifiers.

Table 2.9 presents the values of Acc, DR and FAR of the proposed framework and its
competing techniques for identifying Bebop, AR and Phantom UAVs. Since Extra Trees
and Linear Discriminant Analysis showed the best performance in UAV identification, here
only such algorithms are evaluated. Differently from Table 2.8, which presented the macro-
averaged metrics, Table 2.9 illustrates the metric values obtained for each class label. More-
over, the best metrics for each ML classifier and for each UAV are highlighted in bold. The
SNR and SIR are fixed in 30 dB and 20 dB, respectively. From Table 2.9, we observe that the
AR drone model is perfectly identified when Extra Trees are applied for classification in all
URAs, with Acc, DR and FAR of 100%, 100% and 0%, respectively, for all compared tech-
niques. Moreover, the proposed framework outperforms the competitor schemes for iden-
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Table 2.8 – Macro-averaged values of accuracy, detection rate and false alarm rate of the pro-
posed framework and its competitor schemes for identifying three different types of drones
(Bebop, AR and Phantom), considering SIR between 0 dB and 20 dB.

Accuracy

SIR Model DT ET kNN LDA LR NB RFo

Proposed Framework 0.5503 0.5507 0.5491 0.5573 0.5557 0.5557 0.5536

0 dB T-ESPRIT + SS [62] 0.5588 0.5559 0.5520 0.5578 0.5556 0.5556 0.5527

M-ESPRIT + SS [6] 0.5562 0.5600 0.5484 0.5552 0.5556 0.5556 0.5552

Proposed Framework 0.8981 0.9797 0.9462 0.9444 0.7223 0.7223 0.8941

10 dB T-ESPRIT + SS [62] 0.8973 0.9796 0.9471 0.9433 0.7222 0.7222 0.8934

M-ESPRIT + SS [6] 0.8980 0.9809 0.9484 0.9433 0.7222 0.7222 0.8940

Proposed Framework 0.9471 0.9913 0.9940 0.9940 0.7811 0.7779 0.9461

20 dB T-ESPRIT + SS [62] 0.9473 0.9897 0.9949 0.9927 0.7797 0.7778 0.9462

M-ESPRIT + SS [6] 0.9468 0.9866 0.9946 0.9936 0.7800 0.7778 0.9463

Detection Rate

SIR Model DT ET kNN LDA LR NB RFo

Proposed Framework 0.3255 0.3260 0.3237 0.3360 0.3334 0.3336 0.3303

0 dB T-ESPRIT + SS [62] 0.3382 0.3338 0.3280 0.3367 0.3333 0.3333 0.3290

M-ESPRIT + SS [6] 0.3343 0.3400 0.3227 0.3328 0.3333 0.3335 0.3328

Proposed Framework 0.8472 0.9695 0.9193 0.9167 0.5834 0.5834 0.8412

10 dB T-ESPRIT + SS [62] 0.8460 0.9693 0.9207 0.9150 0.5833 0.5833 0.8402

M-ESPRIT + SS [6] 0.8470 0.9713 0.9227 0.9150 0.5833 0.5833 0.8410

Proposed Framework 0.9207 0.9870 0.9910 0.9910 0.6717 0.6668 0.9192

20 dB T-ESPRIT + SS [62] 0.9210 0.9845 0.9923 0.9890 0.6695 0.6667 0.9193

M-ESPRIT + SS [6] 0.9202 0.9798 0.9918 0.9903 0.6700 0.6667 0.9195

False Alarm Rate

SIR Model DT ET kNN LDA LR NB RFo

Proposed Framework 0.3373 0.3370 0.3382 0.3320 0.3333 0.3333 0.3348

0 dB T-ESPRIT + SS [62] 0.3309 0.3331 0.3360 0.3317 0.3330 0.3330 0.3355

M-ESPRIT + SS [6] 0.3328 0.3300 0.3387 0.3336 0.3333 0.3333 0.3336

Proposed Framework 0.0764 0.0153 0.0403 0.0417 0.2080 0.2080 0.0790

10 dB T-ESPRIT + SS [62] 0.0770 0.0153 0.0397 0.0425 0.2083 0.2083 0.0799

M-ESPRIT + SS [6] 0.0765 0.0143 0.0387 0.0425 0.2083 0.2083 0.0795

Proposed Framework 0.0397 0.0065 0.0045 0.0045 0.1642 0.1660 0.0404

20 dB T-ESPRIT + SS [62] 0.0395 0.0077 0.0038 0.0055 0.1652 0.1667 0.0404

M-ESPRIT + SS [6] 0.0399 0.0101 0.0041 0.0048 0.1650 0.1667 0.0403

tifying the Phantom drone model with ET classifier, achieving Acc and DR of 98.70% and
96.45%, respectively. Further, the proposed approach also presents superior performance for
Bebop identification in terms of accuracy and false alarm rate, obtaining 98.70% and 1.78%,
respectively, when Extra Trees are used for classification. Regarding the LDA classification
algorithm, we observe that all of the competing approaches show false alarm rate of 0% for
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identifying the AR and Phantom UAV models. Furthermore, all techniques present the same
values of Acc and DR for the Phantom identification, whereas a detection rate of 100% was
achieved by all schemes for identifying the Bebop model. Additionally, note that the pro-
posed framework outperforms its counterpart methods when identifying AR drone model in
terms of Acc and DR, achieving 100% for both metrics with LDA classifier.

Table 2.9 – Values of accuracy, detection rate and false alarm rate of the proposed framework
and its competitor schemes for identifying three different drone models (Bebop, AR and
Phantom), considering ET and LDA classifiers.

ET LDA

Metric Model Bebop AR Phantom Bebop AR Phantom

Proposed Framework 0.9870 1.0000 0.9870 0.9167 1.0000 0.9167

Acc T-ESPRIT + SS [62] 0.9845 1.0000 0.9845 0.9150 0.9983 0.9167

M-ESPRIT + SS [6] 0.9798 1.0000 0.9798 0.9150 0.9983 0.9167

ET LDA

Metric Model Bebop AR Phantom Bebop AR Phantom

Proposed Framework 0.9965 1.0000 0.9645 1.0000 1.0000 0.7500

DR T-ESPRIT + SS [62] 1.0000 1.0000 0.9535 1.0000 0.9950 0.7500

M-ESPRIT + SS [6] 1.0000 1.0000 0.9395 1.0000 0.9950 0.7500

ET LDA

Metric Model Bebop AR Phantom Bebop AR Phantom

Proposed Framework 0.0178 0.0000 0.0178 0.1250 0.0000 0.0000

FAR T-ESPRIT + SS [62] 0.0232 0.0000 0.0000 0.1275 0.0000 0.0000

M-ESPRIT + SS [6] 0.0303 0.0000 0.0000 0.1275 0.0000 0.0000

2.5.3 Discussion

In this subsection, the results shown in Subsections 2.5.1 and 2.5.2 are discussed. First,
Fig. 2.7a and 2.7b illustrated the RMSE of the estimated spatial frequency and the esti-
mated UAV coordinates as a function of the SIR. The signal-to-interference ratio reflects a
relationship between the transmitted signal and the co-channel interference from other radio
transmitters. As expected, it was observed that the RMSE is higher as the SIR is diminished
due to the larger number of co-channel interfering transmissions, which impacts all com-
pared approaches. In addition, the proposed framework presents a higher robustness against
co-channel interference compared to M-ESPRIT + SS and T-ESPRIT + SS in most of the
SIR range, especially due to the MuDe module, which compensates the higher environment
interference level, outperforming the spatial smoothing denoising technique adopted by the
competitor methods.

Next, Fig. 2.8a and 2.8b showed the RMSE of the estimated spatial frequency and the es-
timated position coordinates versusMr for fixed values of SNR and SIR. In an antenna array,
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the higher number of antennas per dimension can improve the signal-to-noise ratio by ex-
ploiting redundancy across the multiple transmit and receive channels, as well as by reusing
spatial information in order to improve coverage. As observed in the above-mentioned fig-
ures, the accuracies of UAV position and spatial frequency are improved when the number
of antenna elements is increased, regardless of the considered scheme. Moreover, note that
the proposed framework considerably outperforms both competitor methods in all Mr range,
once again due to the MuDe algorithm. As the number of antennas is larger, the maxi-
mum number of subarrays in each spatial dimension is increased and, consequently, the
performance of MuDe is improved, which corroborates the outstanding results shown by our
proposed scheme, despite its higher computational complexity.

Then, the RMSE of the estimated spatial frequency and the estimated position coordi-
nates as a function of the number of samples were respectively shown in Fig. 2.9a and 2.9b.
Usually, in antenna array based systems, a higher number of time samples leads to a more
accurate performance, despite the trade-off between increased accuracy and processing time.
Such fact is clearly observed in Fig. 2.9a and 2.9b, where all of the compared schemes show
lower RMSE as the number of time samples is higher. Note that the proposed framework
outperforms both M-ESPRIT + SS and T-ESPRIT + SS, since MuDe benefits from the higher
values of N compared to spatial smoothing approach.

Following, the RMSE of the estimated spatial frequency and the estimated position co-
ordinates versus the number of UAVs were presented in Fig. 2.10a and 2.10b, respectively.
In communications systems, a higher number of co-channel transmitters reduces the SIR,
increasing the interference level and packet losses. Consequently, all of the competitor
schemes present worse performance as the number of drones per unit area is higher, since
high interference levels are achieved in such situation, impacting the accuracy of the antenna
array based localization system. Furthermore, note that the M-ESPRIT + SS and T-ESPRIT +
SS schemes are considerably outperformed by our proposed framework in all of theQ range,
presenting a lower robustness against co-channel interference in crowded environments.

Finally, Subsection 2.5.2 showed several experiments regarding the UAV identification.
The estimated drone signature is sent to a trained machine learning classification algorithm
at each URA, which classifies the UAV into one of three different models: Bebop, AR and
Phantom. In line with the findings in Fig. 2.7a and 2.7b, all of the competitor schemes
present better UAV identification performance as the SIR is higher. In such case, the drone
signatures estimated in each URA are more accurate, since the number of interfering sources
is lower, leading to improved results obtained by ML classification algorithms. Despite
slightly outperformed by the competing schemes when SIR = 0 dB for DT, ET, kNN, LDA
and RFo classifiers, our proposed approach showed considerable results for identifying UAVs
in low interference level conditions, especially when ET, LDA, LR and NB algorithms are
applied for classification, as shown in Table 2.8. Furthermore, it was observed that some
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drone models are more efficiently identified compared to other ones. For instance, consid-
ering a SIR of 20 dB, the AR drone was perfectly identified by all compared techniques
when Extra Trees were used for classification, achieving 100% of accuracy. Similarly, when
LDA was applied as ML classifier, all of the competitor schemes achieved a detection rate
of 100% for identifying the Bebop model. Moreover, still regarding the LDA algorithm, the
compared approaches identified the AR and Phantom models with a false alarm rate of 0%.

2.6 SUMMARY

In this chapter, the framework proposed in [6] is extended in three aspects: by adopting
a tensor representation to better explore the intrinsic multidimensional patterns present in
the data; by including a multiple denoising approach to increase the SNR of the received
signal; and by including a ML classification algorithm in each URA in order to identify the
intruding drone model. As shown in simulations, the proposed framework outperforms the
matrix-based and tensor-based ESPRIT solutions in which the spatial smoothing is adopted
as denoising technique. The evaluated metrics regarding the UAV localization are the RMSE
of the estimated spatial frequency and estimated UAV position as a function of several pa-
rameters. Moreover, our proposed approach presents lower processing time compared to
the tensor based ESPRIT with SS scheme. However, despite the higher processing time
compared to the matrix-based ESPRIT scheme, such difference is rather small, since our
proposed framework provides the best performance among all of the assessed methods.

With respect to the UAV identification module, the performance of all of the competing
schemes was assessed for different ML classification algorithms, namely, DT, ET, kNN,
LDA, LR, NB and RFo. The DroneRF dataset was used to simulate the signatures of three
well-known drone models, namely, Bebop, AR and Phantom. Further, each URA presents a
ML classification algorithm, and the predictions resulting from each classifier are combined
via simple majority voting such that the final estimated drone model is provided. From the
numerical simulations, it was observed that the proposed scheme outperforms the competitor
methods in terms of accuracy, detection rate and false alarm rate for identifying the drone
model in several scenarios, for different SIR values and ML classifiers. Additionally, the AR
drone model was perfectly identified by all of the compared approaches when Extra Trees
were used for classification, in which accuracy and detection rate of 100% were achieved.
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TENSOR MULTIPLE DENOISING BASED
FRAMEWORK FOR DISTRIBUTED
DENIAL OF SERVICE ATTACK
DETECTION

In this chapter, the following research question is addressed: How to efficiently detect DDoS

attacks in a CPS network by jointly applying multidimensional signal processing techniques

and machine learning algorithms, assuming that a noisy dataset is used for training and

testing?

The remainder of this chapter is organized as follows:

• Motivation: in this section, an introduction to DDoS attack detection models based
on signal processing and machine learning techniques is presented.

• Data Model: this section defines the data model used throughout this chapter.

• Proposed Tensor Multiple Denoising Based Framework for DDoS Attack Detec-
tion: this section introduces and discusses the proposed tensor multiple denoising
based framework for DDoS attack detection.

• Computational Complexity: the computational complexity of the proposed scheme
is presented and discussed.

• Simulation Results: the performance of the proposed framework is evaluated through
numerical simulations.

The research contributions of Chapter 3 are summarized as follows:

1. An extension of the recent MuDe algorithm in order to attenuate the noise present in
the instances of DDoS attack detection datasets. Given the outstanding performance
of MuDe to denoise measurement data collected in sensor arrays, such scheme shows
a good potential for DDoS attack dataset denoising.

2. The inclusion of a second denoising stage performed by a LRA technique such that a
higher degree of noise reduction is achieved, with significant gain on the overall DDoS
attack detection performance.
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3. The performance of the proposed scheme is validated through numerical simulations
by using samples extracted from the CIC-DDoS2019 and NSL-KDD benchmark datasets.
According to the obtained results, the proposed framework achieves satisfactory per-
formance, with considerable values of accuracy, detection rate and false alarm rate
compared with state-of-the-art low-rank approximation techniques.

3.1 MOTIVATION

Distributed Denial of Service (DDoS) attacks are one of the most harmful threats to
network security. Their main goal is to deny legitimate accesses to network services by
exhausting bandwidth and resources through massive volume of traffic, usually launched by
multiple compromised devices known as “bots” [86]. Such bots constitute a botnet, which is
remotely controled by an attacker in order to execute coordinated attacks against a specific
target.

DDoS attacks have become more hazardous and sophisticated, especially over the last
years. Due to their ease of organization and execution, such malicious activities have widely
been used by hackers in order to create chaos and disruption, with little sign of slowing
[87]. For instance, in October, 2020, the Google Cloud Team revealed that a 2.54 Tbps
DDoS attack had been mitigated by the organization in September, 2017 [52]. Performed by
Chinese Internet Service Providers, the attack targeted thousands of Google’s IP addresses
and lasted more than six months. It was four times larger than the 623 Gbps DDoS attack
launched by the Mirai botnet against the blog of cybersecurity KrebsOnSecurity one year
earlier [46]. Another recent massive DDoS attack occurred in February, 2020, when the
Amazon’s AWS Shield protection service mitigated an attack of 2.3 Tbps. Such attack was
based on Connectionless Lightweight Directory Access Protocol (CLDAP) reflection and
caused three days of elevated threat [51].

In this sense, it is fundamental that network administrators adopt accurate and efficient
schemes in order to detect and prevent DDoS attacks in their organizations. For instance,
tensor based signal processing techniques have attracted an increasing attention in the last
years since they allow us to better exploit the inherent multidimensional structure of large
datasets [75, 88]. Furthermore, supervised Machine Learning (ML) based methods can pro-
vide an efficient way to detect DDoS attacks [22, 23]. As ML algorithms can be trained on
benchmark datasets provided by cybersecurity institutes [89, 90], such schemes can be used
to identify, with high reliability, malicious patterns eventually present in the input network
traffic in an automated fashion.

In order to obtain higher performance, ML based NIDSs must be trained with massive
amount of data. Usually, large datasets present inherent multidimensional structure, which
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can be better explored by applying tensor signal processing techniques. However, a potential
drawback consists of the presence of noise in such large datasets. In this case, noise can
refer to uncalibrated measures occurred during the process of dataset creation [91], or due
to false data injection performed by attackers on publicly available datasets [92], leading
to data corruption. For example, Gaussian noise injection attacks are easy to implement in
practice and aim to fool machine learning classifiers during the training and testing phases.
Such facts can degrade the performance of the ML classifier and, consequently, reduce the
reliability of the DDoS attack detection model.

Schemes based on traditional signal processing techniques for DDoS attack detection
have attracted a great attention in the last decades. Model Order Selection (MOS) techniques
for blind automatic malicious activity detection in distributed honeypots were proposed by
David et al. in [93, 94], where human intervention or information about attacks were not
required. In line with the ideas of [94], Da Costa et al. proposed a blind automatic scheme
to detect malicious traffic in network data collected at honeypot systems [95] as well as the
R-D Akaike Information Criterion and the R-D Minimum Description Length to automat-
ically identify malicious activities in honeypots [96]. Moreover, Tenório et al. proposed a
solution where malicious traffic is blindly detected for any computer connected to the net-
work [97]. In addition, it is worth to mention the recent work of Vieira et al., which proposed
a framework in order to detect the number of port scanning and flood attacks by analyzing
the largest eigenvalues in time frames after applying MOS and similarity analysis on the
dataset [98]. More recently, Vilaça et al. presented a semi-supervised machine learning
model, named RPCA-MD, in order to identify anomalies on network traffic such that poten-
tial attacks can be detected in an automated way by using the Robust Principal Component
Analysis (RPCA) and Mahalanobis Distance [99]. However, since the approaches in [94]-
[99] are not tensor based solutions and do not consider automatic learning, we fill those gaps
by exploiting the inherent tensor structure present in large datasets as well as by applying
classic machine learning classification algorithms such that the proposed technique learns to
recognize patterns in multidimensional data.

Further, machine learning based schemes have also been successfully used for DDoS
attack detection. Osanaiye et al. [100] presented an ensemble based multi-filter feature se-
lection method for DDoS attack detection in cloud computing where the output of filter
methods are combined to achieve an optimum selection. Furthermore, a model based on
artificial neural networks and black hole optimization algorithm to detect DDoS attacks in
cloud computing was presented in [101]. Moreover, in [22], the authors proposed a hybrid
framework based on data stream approach for DDoS attack detection where the computa-
tional load is divided between the client and proxy side. Finally, Wang et al. [23] proposed
a method for DDoS attack detection in which feature selection is combined with multilayer
perceptron such that the optimal features are selected, and also designed a feedback mech-
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anism to dynamically perceive detection errors. Thus, despite the machine learning based
schemes proposed by [22], [23], [100] and [101] show high performance in terms of DDoS
attack detection, they did not exploit multidimensional techniques. Therefore, such research
gap is also filled by adopting and extending tensor based denoising approaches, particularly
the recent MuDe scheme, such that the inherent tensor structure of large datasets can be ex-
ploited more efficiently. The main approaches and drawbacks of each related work, as well
as the weaknesses addressed by this chapter, are summarized in Table 3.1.

Table 3.1 – Related works summary.

Ref. Main Approach Drawback

[22]
- Data stream based framework for DDoS attack
detection with load balancing.

- Benefits of tensor representation are not exploited.
- Outdated dataset (NSL-KDD) applied for model validation.
- Lack of analysis of the training and testing times.

[23]
- Feature selection based MLP for DDoS attack
detection with dynamic perceiving of detection errors.

- Benefits of tensor representation are not exploited.
- Lack of analysis of the training and testing times.

[94]
- MOS schemes for blind automatic
malicious activity detection in
distributed honeypots.

- Benefits of tensor representation are not exploited.
- Automatic learning is not considered.
- Not capable of handling large volumes of data.

[95]
- Modified EFT to automatically identify malicious
activities in honeypot networks.

- Benefits of tensor representation are not exploited.
- Automatic learning is not considered.
- Not capable of handling large volumes of data.

[96]
- R-D AIC and R-D MDL to automatically
identify malicious activities in honeypot networks.

- Benefits of tensor representation are not exploited.
- Automatic learning is not considered.
- Not capable of handling large volumes of data.

[97]
- Blind detection of malicious traffic for any
device connected to the network.

- Benefits of tensor representation are not exploited.
- Automatic learning is not considered.

[98]
- Detect the number of port scanning and flood
attacks by analyzing the largest eigenvalues in time
frames.

- Benefits of tensor representation are not exploited.
- Automatic learning is not considered.

[99]
- ML based model to identify anomalies on network
traffic by using RPCA and Mahalanobis distance.

- Benefits of tensor representation are not exploited.
- Automatic learning is not considered.

[100]
- Ensemble based multi-filter feature selection
for DDoS attack detection in cloud computing.

- Benefits of tensor representation are not exploited.
- Outdated dataset (NSL-KDD) applied for model validation.
- Lack of analysis of the testing times.

[101]
- Artificial neural network based model for
DDoS attack detection in cloud computing.

- Benefits of tensor representation are not exploited.
- Outdated dataset (NSL-KDD) applied for model validation.
- Lack of analysis of the training and testing times.
- Lack of important performance evaluation metrics.

This chapter
- Tensor based framework for DDoS
attack detection when NIDS is
trained with poisoned datasets.

Addressed drawbacks:
- Benefits of tensor representation are exploited.
- Recent dataset (CIC-DDoS2019) applied for model validation.
- Analysis of the training and testing times.

In this chapter, we propose a novel noise-robust framework for DDoS attack detection
which exploits tensor based signal processing techniques as well as ML based algorithms.
The proposed architecture is composed by four steps: data preprocessing, dataset splitting,
dataset denoising and machine learning classification. Moreover, in the third step, an ex-
tension of the recent Multiple Denoising (MuDe) technique is proposed, which attenuates
the noise present in the dataset instances. Experiments show that the proposed framework
achieves satisfactory performance, with outstanding values of accuracy, detection rate and
false alarm rate compared with traditional low-rank approximation techniques as well as
with related works.
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3.2 DATA MODEL

This section introduces the data model used throughout this chapter. First, the dataset
matrix X ∈ RM×N can be defined as follows

X = X0 + N, (3.1)

where X0 ∈ RM×N is the noise-free dataset matrix, N ∈ RM×N is the noise matrix, N
is the number of features and M is the number of instances. In this chapter, noise refers
to data corruptions as a consequence, for instance, of false data injection attacks performed
on publicly available datasets. Each column X(:, n) for n = 1, . . . , N corresponds to the
n-th dataset feature, while each row X(m, :) for m = 1, . . . ,M is the m-th dataset instance.
Moreover, y = [y1, . . . , yM ]T ∈ RM denotes the class label vector, where ym indicates if the
m-th instance X(m, :) for m = 1, . . . ,M is legitimate traffic or DDoS attack.

The dataset matrix X in (3.1) can be rewritten in tensor form. In this thesis, the vectors
X(m, :) ∈ RN for m = 1, . . . ,M are reshaped as a tensor with dimensions N1 × · · · ×NR,
with N =

∏R
r=1Nr, and stacked along the (R + 1)-th dimension, generating the dataset

tensor XXX ∈ RN1×···×NR×M given by

XXX = XXX0 +NNN, (3.2)

where XXX0 ∈ RN1×···×NR×M is the noise-free dataset tensor and NNN ∈ RN1×···×NR×M is the
noise tensor. The r-th mode unfolding matrix of XXX, denoted by [XXX](r) ∈ RNr×

∏
j 6=r NjM , can

be obtained by arranging its r-mode fibers as the columns of the resulting matrix. Note that
the (R+ 1)-th unfolding matrix [XXX](R+1) ∈ RM×

∏R
r=1 Nr corresponds to X ∈ RM×N in (3.1).

An example of the process of construction of a three-dimensional dataset tensor XXX ∈
RN1×N2×M from the dataset matrix X ∈ RM×N is represented in Fig. 3.1. In this case,
each row of the dataset matrix, X(m, :) ∈ RN for m = 1, . . . ,M , is folded as a two-
dimensional tensor (or matrix) XXX(:, :,m) ∈ RN1×N2 . Next, all of the M matrices are stacked
along the 3rd dimension, generating the three-dimensional tensor XXX. In addition, Figure 3.2
depicts another example containing five different tensor foldings of them-th dataset instance
X(m, :) ∈ RN , where N = 64. In each configuration, the instance is folded as an R-th
tensor XXX(:, . . . ,m) ∈ RN1×···×NR , with R varying between 2 and 6. The respective tensor
sizes are given by (8 × 8), (4 × 4 × 4), (4 × 4 × 2 × 2), (4 × 2 × 2 × 2 × 2) and (2 × 2 ×
2 × 2 × 2 × 2).
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Figure 3.1 – The process of construction of a three-dimensional dataset tensor XXX ∈
RN1×N2×M from the dataset matrix X ∈ RM×N .

  

𝓧(: , . . . , 𝑚) ∈ ℝ8×8  

        

        

        

        

        

        

        

        

 
𝓧(: , . . . , 𝑚) ∈ ℝ4×4×4  𝓧(: , . . . , 𝑚) ∈ ℝ4×4×2×2  

𝓧(: , . . . , 𝑚) ∈ ℝ4×2×2×2×2  𝓧(: , . . . , 𝑚) ∈ ℝ2×2×2×2×2×2  

Figure 3.2 – Different tensor foldings of the m-th dataset instanceXXX(:, . . . ,m) ∈ RN1×···×NR

for R=2,. . . ,6.
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3.3 PROPOSED TENSOR MULTIPLE DENOISING BASED FRAME-
WORK FOR DDoS ATTACK DETECTION

This section introduces the proposed tensor multiple denoising based framework for
DDoS attack detection, which is represented by the block diagram illustrated in Fig. 3.3.
Such framework is composed by four major blocks, namely: Data Preprocessing, Dataset
Splitting, Dataset Denoising and Machine Learning Supervised Classification. Particularly,
in the third block, we propose an extension of the recent MuDe technique for noise attenu-
ation. Data preprocessing and dataset splitting are detailed in Subsections 3.3.1 and 3.3.2,
respectively. Next, Subsections 3.3.3 and 3.3.4 present the proposed extended MuDe tech-
nique as well as an overview of machine learning supervised classification, respectively.
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Figure 3.3 – The proposed tensor multiple denoising based framework for DDoS attack de-
tection. The extended MuDe technique is detailed in Blocks 3.1 to 3.10 with the respective
references to steps of Algorithm 2 as well as equations of Subsection 3.3.3.
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3.3.1 Data Preprocessing

Initially, the DDoS attack dataset is sent to a data preprocessing unit, as depicted by Block
1 of Fig. 3.3, where some operations are performed, such as data cleansing, feature scaling
and label encoding. Data instances which contain only Not a Number (NaN) values as well as
zero-valued feature vectors are removed. Additionally, if the m-th instance X(m, :) contains
some element x(m,n) with a NaN value, such element is replaced by the mean value of the
n-th feature vector. Such method, known as “mean imputation”, is a common missing data
handling approach in the machine learning area such that missing values are eliminated from
the dataset while preserving the mean of the corresponding feature values. Moreover, all
features are re-scaled to the range [0,1], in a process called “normalization”, given by

x(m,n)← x(m,n)−min{X(:, n)}
max{X(:, n))−min(X(:, n)}

, (3.3)

where min{·} and max{·} return the minimum and maximum values of the vectors X(:, n)

for n = 1, . . . , N , respectively. Such feature scaling is done because a particular feature with
higher order of magnitude could dominate other dataset features, generating skewed results.

Finally, since most of the machine learning algorithms can only process numerical vari-
ables, class labels must be converted from categorical to numerical values. Since our frame-
work is developed only for binary classification, legitimate traffic is labeled as “0”, whereas
DDoS attacks are labeled as “1”.

3.3.2 Dataset Splitting

After the preprocessing step, the dataset is split into training and testing sets, as depicted
by Block 2 of Fig. 3.3. In this chapter, the k-fold cross validation technique is adopted,
where data are randomly partitioned into k equally sized samples. In the first iteration, one
sample is used for testing data, while the other k− 1 samples are used as training data. Such
process is repeated k times so that each instance is used once for testing and k − 1 times for
training. The final results correspond to the average of the results obtained for each round.

The value of k must be chosen such that both training and testing sets are large enough
to be statistically representative of the entire dataset. Empirically, the value of k is chosen
as 5 or 10. For larger values of k, the difference in size between the training set and the
resampling subsets becomes smaller, which reduces the biases, despite the higher computa-
tional cost [102]. Since we are dealing with large datasets, training and testing sets which
are statistically representative of the original dataset can be obtained even for smaller val-
ues of k. Consequently, throughout this chapter, k = 5 is adopted in order to obtain a more
computationally efficient framework.
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3.3.3 Proposed Extended MuDe Technique

After the dataset splitting, the training set is forwarded to the denoising module, as de-
picted by Block 3 of Fig. 3.3. Similar procedure is adopted for the testing set during the
testing phase. For the sake of simplicity, the dataset matrix is referred simply as X ∈ RM×N ,
which can be the training or testing set depending on the respective phase.

In the context of machine learning supervised classification, datasets are considered to be
noise free because we are not able to make assumptions about their base noise type and level
[1, 91]. However, several factors such as data source and how the information is collected
affect the data quality and, consequently, noise is introduced into the dataset. For example,
instances can be incorrectly labeled due to the subjectivity during the labeling process, or
dataset features can present corrupted values [103]. In this context, our idea is to apply the
Multiple Denoising technique directly on each dataset instance such that better classification
results can be achieved.

Since the MuDe algorithm is a fundamental part of our proposed framework, next we
briefly overview some of its main characteristics. The Multiple Denoising scheme was orig-
inally proposed by Gomes et al. in [75] in order to denoise measurement data collected
by multidimensional sensor arrays by applying successive Higher Order Singular Value De-
composition (HOSVD) low-rank approximations. Such algorithm achieves a higher noise
reduction by using a mean based reconstruction method where the output signals of several
subarrays are spatially smoothed and then averaged along the r-th spatial dimension. Given
the outstanding performance presented by MuDe in [75] and [4], such scheme shows a good
potential for dataset denoising in order to obtain more accurate attack detection techniques.
Nonetheless, MuDe cannot be directly applied to entire datasets because instances with dif-
ferent class labels would be averaged each other along the dataset dimensions, leading to
data corruption. Therefore, we include two more contributions on our work by extending
the original MuDe algorithm in two ways: (i) by applying the traditional multiple denoising
technique directly on each dataset instance, and (ii) by including a low-rank approximation
based denoising module. In the former case, we intend to attenuate noise from each in-
stance individually. Furthermore, in the latter case, we want to eliminate, from the entire
dataset, noise residuals not removed by MuDe scheme. Appendix A presents the mathemat-
ical concepts regarding the state-of-the-art low-rank matrix and tensor based approximation
techniques used throughout this chapter.

The proposed extended MuDe technique is composed by ten steps, as depicted by Blocks
3.1 to 3.10 of Fig. 3.3. Initially, in Block 3.1, the dataset matrix X ∈ RM×N is folded into
the (R+ 1)-dimensional tensorXXX ∈ RN1×···×NR×M . Next, Block 3.2 computes the unfolding
matrix [XXX](r),m ∈ RNr×

∏
j 6=r Nj of each dataset instance XXX:,...,:,m ∈ RN1×···×NR for m =

1, . . . ,M along the r-th mode for r = 1, . . . , R. Then, in Block 3.3, each unfolding matrix
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[XXX](r),m for m = 1, . . . ,M and r = 1, . . . , R goes through a process known as smoothing.
The r-th smoothed matrix X

(Lr)
SS,r,m ∈ RN

(sub)
r ×

∏
j 6=r NjLr of the m-th dataset instance can be

expressed as [104]

X
(lr)
SS,r,m = [[XXX]

(1)
(r),m, . . . , [XXX]

(lr)
(r),m], (3.4)

where [XXX]
(lr)
(r),m ∈ RN

(sub)
r ×

∏
j 6=r Nj for lr = 1, . . . , Lr corresponds to the output of the lr-th

subarray for the m-th instance in the r-th dimension, and N (sub)
r = Nr − lr + 1 is the size of

each subarray.

In the following, given X
(lr)
SS,r,m ∈ RN

(sub)
r ×

∏
j 6=r Nj lr from (3.4), Block 3.4 estimates the

model order d1 by using model order selection (MOS) schemes, such as the Minimum De-
scription Length (MDL) [79,105], Efficient Detection Criterion (EDC) [78], Akaike’s Infor-
mation Theoretic Criteria (AIC) [77, 105], Stein’s Unbiased Risk Estimator (SURE) [106]
and RADOI [80, 107]. Next, given d1, the Singular Value Decomposition (SVD) low-rank
approximation of the smoothed matrix X

(lr)
SS,r,m is computed in Block 3.5 as follows

X̃
(lr)
SS,r,m = [[X̃̃X̃X]

(1)
(r),m, . . . , [X̃̃X̃X]

(lr)
(r),m] = U(lr)

s Σ(lr)
s V(lr)H

s , (3.5)

where the columns of U
(lr)
s ∈ RNr×d1 and V

(lr)
s ∈ R

∏
j 6=r Nj×d1 correspond to the singular

vectors of X̃
(lr)
SS,r,m, whereas the diagonal of Σ

(lr)
s ∈ Rd1×d1 contains the singular values of

X̃
(lr)
SS,r,m.

In sequence, Block 3.6 of Fig. 3.3 reconstructs each dataset instance [X̃̃X̃X](r),m ∈ RNr×
∏

j 6=r Nj

for m = 1, . . . ,M and r = 1, . . . , R. The multiple denoised unfolding matrices [X̃̃X̃X](r),m as
well as their n-th row are given by [75]

[X̃̃X̃X](r),m =


[X̃̃X̃X](r),m(1, :)

[X̃̃X̃X](r),m(2, :)
...

[X̃̃X̃X](r),m(Nr, :)

 , (3.6)

[X̃̃X̃X](r),m(n, :) =
1

l

lr∑
i=1

[X̃̃X̃X]
(i)
(r),m(n− i+ 1, :), (3.7)

where l is the number of times in which [X̃̃X̃X]
(i)
(r),m(n − i + 1, :) is a valid output in the lr-th

subarray of the r-th dimension. After exploiting all possible subarrays lr = 1, . . . , Lr in
each dimension r = 1, . . . , R, the dataset tensor X̃̃X̃X ∈ RN1×···×NR×M is reconstructed by
arranging (3.6) as a tensor of order R + 1. Next, in Block 3.7, each m-th dataset instance
matrix [X̃̃X̃X](r),m ∈ RNr×

∏
j 6=r Nj for m = 1, . . . ,M and r = 1, . . . , R is folded back into the

tensor form X̃̃X̃X:,...,:,m ∈ RN1×···×NR , generating the dataset tensor X̃̃X̃X ∈ RN1×···×NR×M .
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The following step of the proposed extended MuDe technique is to compute the low-
rank approximation of the dataset tensor X̃̃X̃X, which is depicted in Block 3.9 of Fig. 3.3.
Here our main idea is to eliminate noise residuals which eventually were not removed by
the successive SVD low-rank approximations performed on the dataset instances. First, the
model order d2 is estimated in Block 3.8 by applying a given MOS technique on the dataset
instance [X̃̃X̃X](r),m ∈ RNr×

∏
j 6=r Nj for m = 1, . . . ,M and r = 1, . . . , R. Then, the low-rank

approximation of X̃̃X̃X is performed in Block 3.9 according to some state-of-the-art technique,
such as the Higher Order Orthogonal Iteration (HOOI) [108] or the Higher Order Singular
Value Decomposition (HOSVD) [62, 115]. More details regarding such LRA schemes are
shown in Appendix A.

Finally, according to Block 3.10 of Fig. 3.3, the denoised tensor X̃̃X̃Xfinal ∈ RN1×···×NR×M

is unfolded into the matrix form X̃final ∈ RM×N and can be forwarded to machine learning
algorithms for classification. The proposed extended MuDe denoising technique is summa-
rized in Algorithm 2.

Algorithm 2: The proposed extended Multiple Denoising (MuDe) algorithm
Input:
- Dataset matrix X ∈ RM×N

- Maximum number of subarrays in each instance dimension: Lr

Output:
- Denoised dataset matrix X̃final ∈ RM×N

Algorithm Steps:
1 Fold the dataset matrix X ∈ RM×N into the tensor XXX ∈ RN1×···×NR×M

2 for m = 1 to M do
3 for r = 1 to R do
4 for lr = 1 to Lr do
5 Compute the unfolding matrix [XXX](r),m ∈ RNr×

∏
j 6=r Nj of the m-th instance XXX:,...,:,m ∈ RN1×···×NR

along the r-th mode

6 Compute the smoothed matrix X
(lr)
SS,r,m ∈ RN

(sub)
r ×

∏
j 6=r NjLr of the unfolding matrix

[XXX](r),m ∈ RNr×
∏

j 6=r Nj along the r-th mode for the lr-th subarray size as in (3.4)
7 Estimate the model order d1 by using a MOS scheme

8 Compute the SVD low-rank approximation X̃
(lr)
SS,r,m ∈ RN

(sub)
r ×

∏
j 6=r NjLr of the smoothed matrix

X
(lr)
SS,r,m ∈ RN

(sub)
r ×

∏
j 6=r NjLr along the r-th mode for the lr-th subarray size as in (3.5)

9 Reconstruct the instance matrix [X̃̃X̃X](r),m ∈ RNr×
∏

j 6=r Nj as in (3.6) and (3.7)

10 Fold the instance matrix [X̃̃X̃X](r),m ∈ RNr×
∏

j 6=r Nj into the tensor X̃̃X̃X:,...,:,m ∈ RN1×···×NR

11 end
12 end
13 end
14 Estimate the model order d2 by using a MOS scheme
15 Compute the low-rank approximation X̃̃X̃Xfinal ∈ RN1×···×NR×M by using a LRA scheme
16 Unfold the denoised dataset tensor X̃̃X̃Xfinal ∈ RN1×···×NR×M into the matrix X̃final ∈ RM×N

3.3.4 Machine Learning Supervised Classification

The final step of the proposed tensor based framework for DDoS attack detection corre-
sponds to the machine learning supervised classification, which is represented in Block 4 of
Fig. 3.3. In general, classification algorithms are applied on an input dataset in order to build
a model that best fits a relationship between data instances and the respective class labels.
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The key idea is to correctly predict the class labels of previously unknown instances, with a
good generalization capability [109].

During the training phase, the denoised dataset matrix X̃final originated from Block 3.10
of Fig. 3.3 is used by a machine learning classification algorithm in Block 4 to build a given
classification model. Next, in the testing phase, the trained model is applied on an unseen
data instance in order to predict whether it is a legitimate traffic or a DDoS attack. In this
chapter, the following state-of-the-art classification algorithms are adopted: AdaBoost (AB),
Linear Discriminant Analysis (LDA), Logistic Regression (LR) and Random Forest (RFo).
For a more detailed explanation about such classifiers, we refer the reader to [109–111].

In summary, if Cl(·) represents a trained ML classification algorithm in Block 4 of Fig.
3.3, the vector ŷ ∈ RM containing the predicted class labels ŷm of the m-th dataset instance
X̃final(m, :) for m = 1, . . . ,M is given by

ŷ = Cl(X̃final) = [ŷ1, ŷ2, . . . , ŷM ]T. (3.8)

3.4 COMPUTATIONAL COMPLEXITY

This section discusses the computational complexity of the proposed extended MuDe
technique. Here the computational costs related to folding and unfolding of matrices and
tensors are not considered, since such functions are about data representations. For sim-
plicity, the total computational complexity is analyzed for a three-dimensional dataset tensor
XXX ∈ RN1×N2×M . In addition, an analysis of the asymptotic time cost is also provided as a
function of the largest contributions of the most important variables, namely,N ,M , d,R and
L, where N is the number of features, M is the number of instances, d is the model order, R
is the tensor order and L is the number of subarrays adopted in MuDe computations. Further,
the time complexity of the proposed extended MuDe technique is compared with three state-
of-the-art LRA schemes, namely, Higher Order Orthogonal Iteration (HOOI) [108], Higher
Order Singular Value Decomposition (HOSVD) [115] and Singular Value Decomposition
(SVD) [113, 114].

First, the computational complexity of the MuDe technique when applied to M dataset
instances is shown. The time cost of the SVD low-rank approximation of a matrix with
dimensions (Nr−lr+1)×(

∏
j 6=rNjlr) truncated to d is given byOOO[(

∏
j 6=rNj)(Nr−lr+1)dlr]

[75]. Since MuDe computes a total of Lr truncated SVDs for each dimension r, its overall
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computational complexity for all of the M dataset instances is given by

OOO[MuDe] = OOO

[
M

2∑
r=1

Lr∑
lr=1

Nj(Nr − lr + 1)dlr

]
, j 6= r. (3.9)

Finally, the overall computational complexity of the proposed feature extraction tech-
nique corresponds to the sum of the complexity in (3.9), plus the costsOOO[MOS] andOOO[LRA]

for the adopted MOS and low-rank approximation algorithms, i.e.,

OOO[Final] = OOO[MuDe] +OOO[MOS] +OOO[LRA]. (3.10)

The time cost of the SVD of X ∈ RM×N is given byOOO[SVD] = OOO [ktdNM ], where N =

N1 ·N2 and kt is a constant that depends on the design of the algorithm. Moreover, according
to [112], the overall computational complexity of HOOI can be expressed as OOO[HOOI] =

OOO[N3
maxdJ ] +OOO[N2

maxd
2J ] +OOO[N3

maxd] +OOO[Nmaxd
3], where Nmax = max{N1, N2,M} and

J is the number of iterations of the HOOI algorithm. In addition, the computational com-
plexity of the HOSVD low-rank approximation of XXX ∈ RN1×N2×M can be expressed as
OOO[HOSVD] = OOO[

∑3
j=1

(
Nj

∏3
k=1Nk

)
+
∑3

j=1

(∏j
k=1 d

∏3
k=j Nk

)
], where N3 corresponds

to M for simplicity. Table 3.2 summarizes the computational complexities of the proposed
extended MuDe technique as well as its competitor schemes. The second column illustrates
the total computational cost, whereas the last column shows the final complexities, corre-
sponding to the asymptotic dominant terms. From the results shown in Table 3.2, it is ob-
served that the proposed extended MuDe technique presents the highest computational com-
plexity, which composed by two dominant terms: OOO [dLRNM ], corresponding to the MuDe
algorithm, and either OOO [dJRM3] or OOO [RNM2], depending on the adopted LRA scheme,
i.e., HOOI or HOSVD, respectively. In this sense, the MuDe algorithm presents a consider-
able impact on the mean processing times, as it will be shown in the numerical simulations
of Section 3.5. Such fact reinforces the trade-off between the more accurate DDoS attack
detection and the computational complexity in our proposed scheme. In addition, note that,
among the competing schemes, the HOOI low-rank approximation technique presents the
highest computational complexity, especially due to the number of dataset instances raised
to the third power.
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Table 3.2 – Computational complexity of the following schemes: (1) proposed extended
MuDe technique with HOOI, (2) proposed extended MuDe technique with HOSVD, (3)
HOOI, (4) HOSVD, and (5) SVD.

Model Total Complexity Dominant Complexity

(1) OOO [MOS] +OOO
[
M
∑2

r=1

∑Lr
lr=1 Nj(Nr − lr + 1)dlr

]
+

+OOO(N3
maxdJ) +OOO(N2

maxd
2J) +OOO(N3

maxd) +OOO(Nmaxd3), j 6= r
OOO [dLRNM ] +OOO

[
dJRM3

]
(2)

OOO [MOS] +OOO
[
M
∑2

r=1

∑Lr
lr=1 Nj(Nr − lr + 1)dlr

]
+

OOO
[∑3

j=1

(
Nj
∏3

k=1Nk

)
+
∑3

j=1

(∏j
k=1 d

∏3
k=j Nk

)] OOO [dLRNM ] +OOO
[
RNM2

]
(3) OOO[N3

maxdJ ] +OOO[N2
maxd

2J ] +OOO[N3
maxd] +OOO[Nmaxd3] OOO[dJRM3]

(4) OOO
[∑3

j=1

(
Nj
∏3

k=1Nk

)
+
∑3

j=1

(∏j
k=1 d

∏3
k=j Nk

)]
OOO[RNM2]

(5) OOO [ktdNM ] OOO [ktdNM ]

3.5 SIMULATION RESULTS

This section is divided into three subsections. First, Subsection 3.5.1 presents details
about the features and samples extracted from the DDoS benchmark datasets used in this
chapter. Next, simulations results are shown and discussed in Subsections 3.5.2 and 3.5.3,
respectively.

3.5.1 DDoS Attack Datasets

This subsection describes the number of instances as well as the DDoS attack types
applied on numerical simulations. A subset of the CIC-DDoS2019 dataset is used to evaluate
the performance of the proposed framework for several configuration scenarios. However,
since CIC-DDoS2019 is a recent dataset, few related works have been found in the literature
for performance comparison. Therefore, as NSL-KDD has been extensively used for NIDS
validation, performance evaluation considering such dataset is also included. More details
about the CIC-DDoS2019 and NSL-KDD datasets can be found in Appendix C.

In this chapter, we use a subset of the CIC-DDoS2019 composed by 32,000 instances
and 64 features. Table 3.3 shows the types of DDoS attacks and their respective number of
samples extracted from the CIC-DDoS2019 dataset. Since DDoS attacks are not as frequent
as normal traffic, 80% of the dataset is represented by legitimate traffic. All of the DDoS
attack instances are labeled as “1”, whereas legitimate traffic is coded as “0”. In addition,
the 5-fold cross validation technique is applied for dataset splitting, i.e., at each round, 80%

of the dataset is used for training and 20% for testing. Consequently, each data instance is
used once for testing and four times for training.

Furthermore, the NSL-KDD dataset is applied only for comparison between our pro-
posed approach and related works which used the same data in their experiments. Table 3.4
details the types of DDoS attacks and their respective number of samples extracted from
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Table 3.3 – DDoS attack types used in this chapter as well as the corresponding number of
instances extracted from the CIC-DDoS2019 dataset.

Traffic Type Total

Legitimate 32,000

DNS-based DDoS 800

LDAP-based DDoS 800

MSSQL-based DDoS 800

NetBIOS-based DDoS 800

NTP-based DDoS 800

SNMP-based DDoS 800

SSDP-based DDoS 800

UDP flood 800

SYN flood 800

TFTP-based DDoS 800

Total Legitimate Traffic 32,000

Total DDoS Attack 8,000

Total Nr of Instances 40,000

the NSL-KDD dataset. Similarly to CIC-DDoS2019, all of the legitimate and DDoS attack
instances are labeled as “0” and “1”, respectively.

Table 3.4 – DDoS attack types used in this chapter as well as the corresponding number of
instances extracted from the NSL-KDD dataset.

Traffic Type Training Set Testing Set Total

Legitimate 67,343 9,710 77,053

Neptune 41,214 4,657 45,871

Teardrop 892 12 904

Smurf 2,646 665 3,311

Pod 201 41 242

Back 956 359 1,315

Land 18 7 25

UDPStorm 0 2 2

Apache2 0 737 737

ProcessTable 0 685 685

MailBomb 0 293 293

Total Legitimate Traffic 67,343 9,710 77,053

Total DDoS Attack 45,927 7,458 53,385

Total Nr of Instances 113,270 17,168 130,438

3.5.2 Results

This subsection presents the performance evaluation of the proposed tensor multiple de-
noising based framework for DDoS attack detection through simulations. All experiments
were executed on a desktop computer with processor Intel Core i7-2600 3.40 GHz and 16
GB of RAM. MATLAB R2018a software was used to simulate data preprocessing and ten-

67



sor decompositions, whereas machine learning classifier algorithms were implemented in
the Python Scikit-Learn and Keras libraries. In this chapter, Accuracy (Acc), Detection Rate
(DR) and False Alarm Rate (FAR), defined in Eq. (D.1), (D.3) and (D.4) of Appendix D, are
used as performance evaluation metrics. Further, AdaBoost (AB), Linear Discriminant Anal-
ysis (LDA), Logistic Regression (LR) and Random Forest (RFo) are used for classification.
Appendix E summarizes the main simulation parameters adopted for each ML classifier.

As described in Eq. (3.1), the dataset matrix is given by X ∈ RM×N , where N is the
number of features and M is the number of dataset instances. For CIC-DDoS2019 dataset,
all of the N = 64 features described in Table C.2 of Appendix C were considered. Moreover,
40,000 instances were collected from the CIC-DDoS2019 dataset, as shown in Table 3.3,
such that 32,000 training instances and 8,000 testing instances are taken in each iteration of
the 5-fold cross validation. Moreover, a similar procedure is adopted when the NSL-KDD
dataset is applied. All of the N = 36 features described in Table 3.4 are used in simulations.
Nonetheless, since NSL-KDD is composed by separate training and testing sets, there is no
need for dataset splitting. Thus, 113,270 training instances and 17,168 testing instances were
directly collected from the corresponding datasets, as shown in Table 3.4.

Additionally, the number of subarrays L1 = L2 = 2 is adopted in the MuDe computations
described in (3.4). The Multiple Denoising technique presents a higher noise reduction abil-
ity, which demands higher processing times due to its Lr for r = 1, . . . , R truncated SVD
computations [75]. Thus, Lr must be chosen such that a good trade-off between denoising
capability and computational cost is achieved, which is well accomplished when L1 = L2

= 2. Moreover, since the initial noise type and level present in the DDoS attack datasets
publicly available on the web are unknown, they are assumed to be noise free [91]. Conse-
quently, in all experiments, Signal-to-Noise Ratio (SNR) values are pre-defined by adding a
zero-mean white Gaussian noise into the dataset features in a supervised manner such that
the framework performance can be assessed for different noise levels. In this chapter, the
SNR is defined as follows

SNR =
σ2
XXX

σ2
NNN

, (3.11)

where σ2
XXX and σ2

NNN are the variances of the tensors XXX and NNN, respectively. Alternatively, the
SNR can be expressed in decibels as follows

SNRdB = 10log10

(
σ2
XXX

σ2
NNN

)
. (3.12)

First, the performance evaluation of our proposed framework is shown when two state-
of-the-art low-rank approximation algorithms are adopted in Block 3.9 of Fig. 3.3, namely,
HOSVD and HOOI. In simulations, the SNR is fixed in 10 dB, M = 40,000 and the dataset
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matrix X ∈ RM×N is folded into a three-dimensional tensorXXX ∈ RN1×N2×M , withN1 =N2 =
8. Moreover, the dataset is split using 5-fold cross validation and the model order selection is
performed by using the MDL [79,105] technique. Table 3.5 illustrates the values of Acc, DR
and FAR obtained by the proposed framework when HOOI and HOSVD are adopted as low-
rank approximation techniques, considering different ML classification algorithms. For each
SNR and ML classifier, the best metric value obtained by a given approach is highlighted in
bold. From the results shown in Table 3.5, it can be observed that the proposed approach with
HOSVD outperforms its HOOI based counterpart in some simulation scenarios, whereas
the opposite behavior is verified in other experiments. For example, considering SNR = 5
dB, the proposed framework with HOOI shows better DR and FAR, regardless of the ML
classifier. On the other hand, the HOOI based approach is outperformed by the proposed
scheme with HOSVD, in terms of detection rate and false alarm rate, when the SNR is
fixed in 0 dB. Additionally, when SNR = 15 dB, it can be seen that the assessed models
present better or worse performances, depending on the applied ML classifier. For instance,
in terms of detection rate, considering the AdaBoost and Logistic Regression classifiers,
the proposed framework with HOSVD achieves 92.10% and 95.49%, respectively, against
91.95% and 94.66% obtained by the HOOI based approach. Inversely, considering the same
metrics but now with LDA and RFo algorithms, the HOOI based scheme obtained 88.45%

and 96.96%, respectively, whereas the values of 85.74% and 96.89% are reported when
HOSVD is adopted as LRA scheme.

Table 3.5 – Performance evaluation, considering different LRA schemes, for the following
models: (1) proposed framework with HOOI, and (2) proposed framework with HOSVD.

SNR Model Accuracy Detection Rate False Alarm Rate

AB LDA LR RFo AB LDA LR RFo AB LDA LR RFo

-5 dB
(1) 0.8530 0.8676 0.8675 0.8532 0.7552 0.7328 0.7320 0.7339 0.4062 0.4897 0.4915 0.4630

(2) 0.8588 0.8572 0.8556 0.8605 0.7509 0.7549 0.7556 0.7253 0.4271 0.4138 0.4094 0.4977

0 dB
(1) 0.9005 0.8998 0.9051 0.9038 0.7613 0.7684 0.8097 0.7669 0.4685 0.4486 0.3477 0.4590

(2) 0.9058 0.9073 0.9008 0.9215 0.7896 0.7982 0.8363 0.8272 0.4021 0.3818 0.2701 0.3286

5 dB
(1) 0.9377 0.9340 0.9386 0.9638 0.9176 0.8797 0.9013 0.9281 0.1108 0.2101 0.1602 0.1307

(2) 0.9202 0.9363 0.9412 0.9616 0.8955 0.8673 0.8922 0.9124 0.1452 0.2467 0.1888 0.1687

10 dB
(1) 0.9672 0.9437 0.9621 0.9769 0.9375 0.8697 0.9156 0.9472 0.1116 0.2524 0.1611 0.1017

(2) 0.9716 0.9300 0.9563 0.9817 0.9325 0.8328 0.8976 0.9571 0.1320 0.3275 0.1993 0.0834

15 dB
(1) 0.9658 0.9446 0.9737 0.9862 0.9195 0.8845 0.9466 0.9696 0.1568 0.2145 0.0982 0.0579

(2) 0.9612 0.9370 0.9756 0.9863 0.9210 0.8574 0.9549 0.9689 0.1452 0.2740 0.0792 0.0598

In addition, Table 3.6 shows the mean training times, in seconds, obtained by the exper-
iments whose results are shown in Table 3.5. Note that, for a given SNR and ML classifier,
the mean training times of the proposed framework when HOOI is chosen as LRA scheme
are higher compared to those of the HOSVD based configuration. For instance, when SNR
= 15 dB, the proposed algorithm with HOSVD and AdaBoost classifier achieves 37.18 s,
against 137.13 s obtained when HOOI is used for dataset low-rank approximation. The re-
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sults shown in Table 3.5 are in line with the computational complexities reported in Table 3.2,
in which HOOI presents higher asymptotic complexity compared to HOSVD. The Higher
Order Orthogonal Iteration is an iterative alternating least-squares algorithm which estimates
the best rank-(d1, . . . , dR+1) approximation of the dataset tensor XXX ∈ RN1×···×NR×M . On
the other hand, the Higher Order Singular Value Decomposition computes the low-rank ap-
proximation of XXX through the singular value decompositions of each r-th unfolding matrix
[XXX](r) ∈ RNr×

∏
j 6=r NjM , truncated to the rank dr for r = 1, . . . , R + 1. In this sense, from

this point on the HOSVD algorithm is adopted as low-rank approximation technique in our
proposed framework, since low processing times are required in network intrusion detection
problems.

Table 3.6 – Mean training times (in seconds), considering different LRA schemes, for the
following models: (1) proposed framework with HOOI, and (2) proposed framework with
HOSVD.

SNR Mean Training Time (s)
(1) (2)

AB LDA LR RFo AB LDA LR RFo
-5 dB 98.16 82.14 81.94 105.22 36.69 21.24 21.07 41.41
0 dB 103.31 87.79 87.69 110.32 36.54 21.06 21.03 43.46
5 dB 113.59 97.12 97.02 122.53 36.71 21.14 21.10 43.99
10 dB 120.08 104.16 104.10 127.07 37.02 21.38 21.38 44.84
15 dB 137.13 120.31 120.43 141.80 37.18 21.79 21.88 44.93

Next, the performance evaluation of our proposed framework is shown for different ten-
sor sizes. In each configuration, the instance is folded as an R-th tensor XXX(:, . . . ,m) ∈
RN1×···×NR for R = 2, . . . ,6, with sizes given by (8 × 8), (4 × 4 × 4), (4 × 4 × 2 × 2), (4
× 2 × 2 × 2 × 2) and (2 × 2 × 2 × 2 × 2 × 2), respectively. The different tensor foldings
of the m-th dataset instance X(m, :) ∈ RN are illustrated in Figure 3.2. In all simulated
scenarios, SNR = 10 dB and M = 40,000. Further, the dataset is split using 5-fold cross val-
idation and the MDL [79, 105] is used for model order selection. Table 3.7 shows the values
of Acc, DR and FAR obtained for each tensor folding considering the AB, LDA, LR and
RFo classifiers. For each classifier, the best metric value obtained by a given tensor folding
is highlighted in bold. From Table 3.7, it can be observed that all classifiers showed different
behaviors, depending on the adopted tensor configuration. For example, in terms of detection
rate, the four-dimensional configuration outperforms the other schemes when LDA and LR
are adopted, showing values of 91.69% and 93.91%, respectively. Moreover, the accuracy of
the 6D configuration is also superior compared to its competitors when AdaBoost is used as
classifier, with a value of 97.41%. On the other hand, for RFo, the configuration 8 × 8 out-
performs the competing schemes in terms of Acc, DR and FAR, achieving 98.17%, 95.71%

and 8.30%, respectively. Furthermore, the mean training times (in seconds) of the proposed
framework considering the above-mentioned tensor foldings are shown in Table 3.8. Note
that the processing times are higher as the tensor order is larger, regardless of the classifier.
In this sense, despite larger tensor order configurations present better performance for some
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ML classification algorithms, from this point on the two-dimensional instance configuration,
8 × 8, is adopted in simulations due to its lower processing time, which is a fundamen-
tal requirement in intrusion detection problems. Thus, the dataset matrix X ∈ RM×N is
folded into a three-dimensional tensor XXX ∈ RN1×N2×M , where N1 = N2 = 8. Similarly, when
NSL-KDD is used for model validation, the configuration N1 = N2 = 6 is adopted.

Table 3.7 – Performance evaluation of the proposed framework for different instance config-
urations.

Tensor Size Accuracy Detection Rate False Alarm Rate
AB LDA LR RFo AB LDA LR RFo AB LDA LR RFo

8 × 8 0.9716 0.9300 0.9563 0.9817 0.9325 0.8328 0.8976 0.9571 0.1320 0.3275 0.1993 0.0830
4 × 4 × 4 0.9715 0.9380 0.9579 0.9782 0.9362 0.8564 0.9037 0.9483 0.1220 0.2782 0.1857 0.1012
4 × 4 × 2 × 2 0.9197 0.9410 0.9527 0.9594 0.9226 0.9169 0.9391 0.9388 0.0726 0.1230 0.0834 0.0952
4 × 2 × 2 × 2 × 2 0.9533 0.9285 0.9554 0.9648 0.9114 0.9159 0.9224 0.9272 0.1578 0.1050 0.1320 0.1348
2 × 2 × 2 × 2 × 2 × 2 0.9741 0.9383 0.9618 0.9808 0.9562 0.8571 0.9188 0.9567 0.0734 0.2769 0.1522 0.0835

Table 3.8 – Mean training times (in seconds) of the proposed framework for different instance
configurations.

Tensor Size Mean Training Time (s)
AB LDA LR RFo

8 × 8 37.13 21.50 21.49 43.95
4 × 4 × 4 71.45 54.41 54.49 78.63
4 × 4 × 2 × 2 89.95 61.85 62.14 101.79
4 × 2 × 2 × 2 × 2 110.37 94.67 94.84 124.21
2 × 2 × 2 × 2 × 2 × 2 131.36 115.38 115.42 136.96

Then, the performance evaluation of the proposed framework is presented for different
MOS schemes, namely, AIC [77, 105], EDC [78], MDL [79, 105], RADOI [80] and Stein’s
Unbiased Risk Estimator (SURE) [106]. Table 3.9 presents the experiment results for the
AB, LDA, LR and RFo classification algorithms, with SNR fixed in 10 dB. From the values
shown in Table 3.9, it can be observed that all of the MOS schemes present better per-
formance when random forest algorithm is applied for classification. Random forests are
composed by multiple combined decision trees, which can handle datasets with higher di-
mensionality, obtaining more stable and robust predictions. In addition, from the results
highlighted in bold in Table 3.9, it can be seen that RADOI outperforms the other MOS
techniques in terms of detection rate and false alarm rate. For example, considering the RFo
classification algorithm, RADOI achieves DR and FAR of 96.77% and 5.21%, respectively,
against 90.83% and 18.11% obtained by EDC. In this sense, from this point on, the RADOI
algorithm is adopted as the MOS scheme in our proposed framework, regardless of the ML
classifier.

Following, the proposed framework is compared to NIDS in which state-of-the-art low-
rank approximation techniques are previously applied to the dataset, namely, Higher Order
Orthogonal Iteration (HOOI) [108], Higher Order Singular Value Decomposition (HOSVD)
[62, 115] and Singular Value Decomposition (SVD) [113, 114]. In simulations, the SNR
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Table 3.9 – Performance evaluation of the proposed framework considering different MOS
techniques.

MOS Accuracy Detection Rate False Alarm Rate
AB LDA LR RFo AB LDA LR RFo AB LDA LR RFo

AIC [77, 105] 0.9679 0.9513 0.9676 0.9790 0.9364 0.9005 0.9364 0.9518 0.1155 0.1834 0.1149 0.0932
EDC [78] 0.9493 0.9261 0.9572 0.9624 0.8797 0.8301 0.9025 0.9083 0.2352 0.3283 0.1878 0.1811
MDL [79, 105] 0.9716 0.9300 0.9563 0.9822 0.9325 0.8328 0.8976 0.9571 0.1320 0.3275 0.1993 0.0830
RADOI [80] 0.9494 0.9511 0.9667 0.9817 0.9488 0.9108 0.9506 0.9677 0.0561 0.1557 0.0759 0.0521
SURE [106] 0.9691 0.9452 0.9674 0.9801 0.9466 0.8863 0.9433 0.9548 0.0906 0.2110 0.0967 0.0868

ranges from -5 dB to 15 dB. Additionally, since SVD is a matrix based denoising technique,
in this case the dataset is considered in its matrix form, X ∈ RM×N , with N = 64 fea-
tures. The accuracy, detection rate and false alarm rate as a function of the SNR are assessed
in Fig. 3.4 to 3.6 for the proposed framework, as well as the SVD, HOSVD and HOOI
schemes considering the AB, LDA, LR and RFo classifiers. As expected, all of the com-
pared techniques show better performance as the SNR is higher. Furthermore, especially for
the Linear Discriminant Analysis, Logistic Regression and Random Forest classifiers, the
proposed scheme outperforms its competitor methods in terms of DR and FAR for low SNR
values. Moreover, considering accuracy, our proposed approach with AB and RFo classifiers
deliver better results compared to the SVD, HOSVD and HOOI algorithms.

Then, the proposed framework is assessed against the SVD, HOSVD and HOOI low-
rank approximation techniques for different training dataset size proportions. The dataset is
split into training and testing sets, where the proportion of the training data ranges from 20%

to 70% of the original dataset, with SNR fixed in 10 dB. Fig. 3.7 to 3.9 show the accuracy,
detection rate and false alarm rate as a function of the Training Size Proportion (TSP) con-
sidering the AB, LDA, LR and RFo classification algorithms. Note that all of the compared
techniques present better performance as the training dataset size proportion grows. Further-
more, it can be seen that, in terms of DR and FAR, our proposed framework outperforms
the competitor methods in most of the training size proportion range, especially when AB,
LR and RFo are used as ML classifiers. In addition, the proposed scheme delivers better
accuracy, compared to the HOOI, HOSVD and SVD techniques, when adopting Logistic
Regression and Random Forest algorithms.

Next, experiment results obtained from the comparison between our proposed approach
and related works are introduced. Since CIC-DDoS2019 is a novel dataset, few related
works applying such data for NIDS validation have been found in the literature. In this
sense, as NSL-KDD has been widely applied to validate intrusion detection systems, perfor-
mance evaluation considering such dataset is also included. Furthermore, since the related
works consider noise-free datasets, the proposed scheme is simulated considering a very low
noise level, with SNR fixed in 40 dB. Table 3.10 shows the classification method and the
values of accuracy, detection rate and false alarm rate obtained by all of the compared ap-
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Figure 3.4 – Plots of accuracy, as a function of the signal-to-noise ratio (dB), considering:
(a) AB, (b) LDA, (c) LR, and (d) RFo classification algorithms.

proaches. Some metrics are represented as Not Available (N/A) because the corresponding
works did not present such values. Note that, when NSL-KDD is applied for validation, the
proposed framework presents outstanding results, outperforming the related works, in terms
of accuracy, when all of the ML algorithms but LDA are used for classification. However,
our approach with AdaBoost is outperformed by Gogoi et al. [116] in terms of DR, and
by Wang et al. [23] when considering FAR. Similarly, when CIC-DDoS2019 is applied on
simulations, the proposed scheme achieves considerable results, outperforming most of the
compared techniques, in terms of detection rate, when AdaBoost is adopted as ML classifier.

Finally, Fig. 3.10 illustrates the mean training times (in seconds) of the proposed frame-
work and the competing schemes as a function of the training size proportion, considering
the AB, LDA, LR and RFo classifiers. Note that the proposed framework is more compu-
tationally expensive than the competing approaches, showing a considerable increase in the
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Figure 3.5 – Plots of detection rate, as a function of the signal-to-noise ratio (dB), consider-
ing: (a) AB, (b) LDA, (c) LR, and (d) RFo classification algorithms.

mean training times.

3.5.3 Discussion

In this subsection, the results presented in Subsection 3.5.2 are discussed. First, Fig.
3.4 to 3.6 illustrate the values of Acc, DR and FAR as a function of the SNR for all com-
peting schemes considering the AB, LDA, LR and RFo classifiers. Since data corruption
in datasets can degrade the performance of ML classification algorithms, all compared ap-
proaches present better results for higher values of SNR. Furthermore, we observe that the
proposed framework delivers better detection rate and false alarm rate compared to its com-
peting schemes for almost all SNR range, for LDA, LR and RFo classification algorithms,
especially for low SNR values. In such cases, the benefits of our proposed extended MuDe
algorithm are more evident because it provides a higher noise reduction due to the multiple
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Figure 3.6 – Plots of false alarm rate, as a function of the signal-to-noise ratio (dB), consid-
ering: (a) AB, (b) LDA, (c) LR, and (d) RFo classification algorithms.

denoising performed along the r-th dimension of the m-th dataset instance for r = 1, . . . , R

and m = 1, . . . ,M . However, the proposed framework is outperformed by the competitor
methods in terms of accuracy, for low values of SNR, when the aforementioned classifiers are
used. In this situation, despite the superior performance in terms of detection rate and false
alarm rate, the proposed framework achieves a higher number of false negatives, i.e., true
attack traffic is wrongly classified as legitimate. In addition, note that the competing tech-
niques present slightly different performances, regardless of the classifier, for all SNR range.
Since the third dimension (corresponding to the number of instancesM ) of the dataset tensor
XXX is much larger than the first and second dimensions (corresponding to the number of fea-
tures N1 and N2), the competing multidimensional techniques, HOSVD and HOOI, do not
provide significant gain compared to the matrix based scheme, SVD. Therefore, the results
shown in Fig. 3.4 to 3.6 highlight the higher robustness of our proposed framework against
data corruptions. Further, the multiple denoising introduced by our approach along different
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Figure 3.7 – Plots of accuracy, as a function of the training dataset size proportion, consider-
ing: (a) AB, (b) LDA, (c) LR, and (d) RFo classification algorithms.

modes of the dataset instances provides a better classification performance compared to the
state-of-the-art low-rank approximation techniques.

Next, Fig. 3.7 to 3.9 illustrate the values of accuracy, detection rate and false alarm rate
as a function of the TSP for the AB, LDA, LR and RFo classification algorithms. Note that
all compared techniques present better performance as the training dataset size proportion
grows, since ML classifiers need more training samples when the dataset has a large num-
ber of features. In this case, the classification model is better fit to the training data after
adjusting several parameters such that the errors between the actual and predicted classes
are minimal, despite the higher risk of overfitting. Moreover, the difference in performance
between SVD and its multidimensional counterparts, HOSVD and HOOI, is more notice-
able in terms of detection rate, as shown in Fig. 3.8. Consequently, we conclude that matrix
based denoising techniques are more sensitive to the variation of training dataset size. On the
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Figure 3.8 – Plots of detection rate, as a function of the training dataset size proportion,
considering: (a) AB, (b) LDA, (c) LR, and (d) RFo classification algorithms.

other hand, tensor based schemes perform a more efficient noise attenuation through mul-
tiple SVDs along the dataset dimensions, which partially compensates the lack of training
data in machine learning classifiers. Finally, note that all of the compared techniques are
not so efficient in terms of network attack detection because we consider a high noise level
scenario, with SNR fixed in 10 dB. Our intent is to simulate an environment where dataset is
partially corrupted and, consequently, the performance of the machine learning classification
algorithm is degraded. Hence, from the results shown in Fig. 3.7 to 3.9, we conclude that our
proposed framework is very robust against the variation of the training dataset size propor-
tion, which once again highlights the benefits of the multidimensional denoising introduced
on the dataset by our proposed extended MuDe algorithm.

Following, in Table 3.10 the values of accuracy, detection rate and false alarm rate ob-
tained by the proposed framework and related works were shown. Despite the proposed
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Figure 3.9 – Plots of false alarm rate, as a function of the training dataset size proportion,
considering: (a) AB, (b) LDA, (c) LR, and (d) RFo classification algorithms.

approach does not outperform some works in terms of accuracy, detection rate and false
alarm rate, it still presents an outstanding DDoS attack detection performance. For instance,
considering the NSL-KDD dataset, despite the models of Wang et al. [23] presented a higher
Acc compared to the proposed scheme with LDA classifier, our approach is far superior is
terms of DR and FAR. The method proposed by Wang et al. reconstructs the detection model
by dynamically perceiving the occurrence of detection errors through a feedback mecha-
nism, which can explain its better accuracy. Nonetheless, its best detection rate was 94.88%,
whereas this current proposal obtained 99.05% with LR and RFo classifiers. Another exam-
ple is the work of Gogoi et al. [116], which provided a detailed analysis of the NSL-KDD
dataset and proposed two real life network intrusion datasets. Such method outperforms the
proposed framework with LDA classifier in terms of detection rate, but our approach shows
lower FAR, regardless of the classification algorithm. While the worst FAR presented by
our approach was 0.94% with AdaBoost, the model proposed by Gogoi et al. showed a false
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Table 3.10 – Performance comparison with related works, considering the NSL-KDD and
CIC-DDoS2019 datasets.

Dataset Work Classification Method Acc DR FAR

NSL-KDD

Proposed Tensor MuDe Based Framework AB 0.9859 0.9872 0.0094
Proposed Tensor MuDe Based Framework LDA 0.9694 0.9773 0.0004
Proposed Tensor MuDe Based Framework LR 0.9873 0.9905 0.0006
Proposed Tensor MuDe Based Framework RFo 0.9878 0.9905 0.0018
Hosseini and Azizi [22] NB 0.9310 N/A N/A
Hosseini and Azizi [22] DT 0.9820 N/A N/A
Hosseini and Azizi [22] MLP 0.9610 N/A N/A
Hosseini and Azizi [22] kNN 0.9770 N/A N/A
Wang et al. [23] SBS-MLP 0.9766 0.9488 0.0062
Wang et al. [23] SFS-MLP 0.9761 0.9471 0.0060
Wang et al. [23] CTSBS-MLP 0.9761 0.9478 0.0063
Kushwah and Ali [101] MLP 0.9630 0.9791 0.0500
Gogoi et al. [116] TUIDS 0.9655 0.9888 0.0112
Yusof et al. [117] ELM 0.9170 N/A N/A

CIC-DDoS2019

Proposed Tensor MuDe Based Framework AB 0.9817 0.9779 0.0286
Proposed Tensor MuDe Based Framework LDA 0.9588 0.9398 0.0916
Proposed Tensor MuDe Based Framework LR 0.9826 0.9617 0.0727
Proposed Tensor MuDe Based Framework RFo 0.9776 0.9435 0.1129
Maranhão et al. [2] MLP 0.9875 0.9746 0.0452
Maranhão et al. [3] DT 0.9754 0.9509 N/A
Shurman et al. [119] LSTM 1 layer 0.9154 N/A N/A
Shurman et al. [119] LSTM 2 layer 0.9674 N/A N/A
Shurman et al. [119] LSTM 3 layer 0.9919 N/A N/A
Sharafaldin et al. [120] ID3 N/A 0.6500 N/A
Sharafaldin et al. [120] RFo N/A 0.5600 N/A
Sharafaldin et al. [120] NB N/A 0.1100 N/A
Sharafaldin et al. [120] LR N/A 0.0200 N/A
Hussain et al. [121] ResNet N/A 0.8600 N/A
Aytac et al. [122] RFo 0.9840 N/A N/A
Aytac et al. [122] DT (Gini) 0.9934 N/A N/A
Aytac et al. [122] DT (Entropy) 0.9912 N/A N/A
Aytac et al. [122] Multinomial NB 0.9910 N/A N/A
Aytac et al. [122] Gaussian NB 0.9870 N/A N/A

alarm rate of 1.12%.

Finally, in Fig. 3.10 the mean training times as a function of the training size proportion
are illustrated for all of the competitor methods. It can be observed that HOOI shows higher
training times compared to HOSVD since it is an iterative alternating least squares based
method. Additionally, as expected, the SVD scheme presents the lowest training times due to
its low time costly matrix based decompositions. Further, note that the proposed framework
presents higher training times compared to the HOSVD, HOOI and SVD schemes in all
of the TSP range, especially due to the MuDe technique. Thus, according to the results
obtained in Fig. 3.4 to 3.9, this is the trade-off in order to achieve a more accurate DDoS
attack detection.
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Figure 3.10 – Plots of mean training time (s), as a function of the training dataset size pro-
portion, for AB, LDA, LR and RFo classification algorithms.

3.6 SUMMARY

In this chapter, we propose a novel tensor multiple denoising based framework for DDoS
attack detection which exploits both multidimensional signal processing techniques and ma-
chine learning based classification algorithms. The proposed framework is composed by four
main blocks: data preprocessing, dataset splitting, dataset denoising, and machine learning
supervised classification. Particularly considering the third block, an extension of the recent
MuDe technique is proposed, which was originally applied for denoising of measurement
data collected by multidimensional sensors arrays.

The proposed framework was validated in simulations through comparison with state-
of-the-art low-rank approximation techniques, namely, SVD, HOSVD and HOOI, by using
the CIC-DDoS2019 benchmark dataset. Nonetheless, since CIC-DDoS2019 is a very recent
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dataset, few works applying such dataset for NIDS validation have been found in the lit-
erature. Consequently, the well-known NSL-KDD dataset was also applied to validate the
proposed technique. According to the obtained results, our proposed scheme considerably
outperforms the competing techniques, showing outstanding values of accuracy, detection
rate and false alarm rate. Therefore, it can be concluded that the proposed extended MuDe
technique provides a considerable performance gain in terms of DDoS attack detection effi-
ciency.
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NOISE-ROBUST MULTILAYER
PERCEPTRON ARCHITECTURE FOR
DISTRIBUTED DENIAL OF SERVICE
ATTACK DETECTION

In this chapter, the following research question is addressed: Following the same idea of

the previous question, how to efficiently detect DDoS attacks in a CPS network, still apply-

ing multidimensional signal processing techniques on noisy datasets, but now using deep

learning algorithms instead of ML techniques?

The remainder of this chapter is organized as follows:

• Motivation: in this section, an introduction to DDoS attack detection models based
on multilayer perceptron based NIDSs is presented.

• Proposed Noise-Robust MLP Architecture for DDoS Attack Detection: this sec-
tion introduces and discusses the proposed noise-robust MLP architecture for DDoS
attack detection.

• Computational Complexity: the computational complexity of the proposed MLP is
presented and discussed.

• Simulation Results: the performance of the proposed MLP is evaluated through nu-
merical simulations.

The research contributions of Chapter 4 are summarized as follows:

1. A novel feature extraction method applied on data classification is proposed such that
the average value of the common features among dataset instances is iteratively fil-
tered out via HOSVD algorithm, providing to the NIDS more robustness against data
corruption.

2. A noise-robust MLP architecture for DDoS attack detection which applies the tech-
nique cited in the previous item is also introduced. The best parameters used for
dataset filtering are dynamically computed in order to minimize the errors between
the expected and predicted classifications.

82

4



3. The performance of the proposed MLP is validated through numerical simulations by
using samples extracted from the CIC-DDoS2019, CIC-IDS2018 and CIC-IDS2017
benchmark datasets. According to the simulation results, the proposed scheme outper-
forms state-of-the-art low-rank approximation techniques in terms of accuracy, detec-
tion rate and false alarm rate.

4.1 MOTIVATION

As pointed out in Chapter 3, Distributed Denial of Service (DDoS) attacks are one of
the most challenging threats to network security, especially after the emergence of new
computing paradigms such as Cloud Computing and Internet of Things, presenting very so-
phisticated and damaging attacks [123]. Typically DDoS attacks are launched from several
compromised machines known as “zombies”, which compose remotely controlled networks
called botnets to attack a specific victim. As a consequence of DDoS attacks, the target
resources are exhausted, affecting servers, network devices, computer systems and web ap-
plications, and preventing legitimate accesses [123, 124].

DDoS attacks can be efficiently detected by using supervised machine learning (ML)
techniques trained with large datasets such that malicious patterns present in the incoming
network traffic can be detected with high reliability. Nonetheless, the classifier performance
can be severely degraded if corrupted datasets are considered during the training and test-
ing phases and, consequently, it is fundamental to develop DDoS attack detection models
robust against noise present in data. Similarly to Chapter 3, uncalibrated measures during
the process of dataset creation or false data injection attacks performed on publicly available
datasets are considered as the main causes of data corruption in this chapter.

Deep learning based schemes have been successfully used for DDoS attack detection,
achieving great success in recent years. A lightweight deep learning based approach for
DDoS attack detection in online resource-constrained environments was presented in [125].
Furthermore, Roopak et al. [126] proposed several deep learning models for DDoS attack
detection in IoT networks, including MLP, CNN and LSTM based classifiers, which outper-
formed state-of-the-art ML algorithms. Additionally, Haider et al. [127] proposed a deep
CNN ensemble framework for efficient DDoS attack detection in Software Defined Net-
works (SDNs), presenting higher training and testing times, which was compensated by a
satisfactory performance detection. Moreover, a multi-channel CNN based detection and
early warning framework for DDoS attacks was proposed by Chen et al. [128], whose results
were based on real-time traffic and network package information. Finally, an intrusion de-
tection system against DDoS attacks in SDN environments was proposed in [118], in which
Recurrent Neural Networks are combined with autoencoders.
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In addition, multilayer perceptron based methods for DDoS attack detection are also
very popular nowadays. Saied et al. [129] proposed a framework where specific features are
used to separate DDoS attacks from legitimate traffic by using an artificial neural network
algorithm. Furthermore, Singh et al. [130] presented a novel technique where application-
layer DDoS attacks can be detected by computing the entropy of HTTP GET request count
per connection, the variance of the entropy per Internet Protocol (IP) address, and the number
of HTTP GET request counts. Besides, a model to detect DDoS attacks in cloud computing
based on artificial neural networks and black hole optimization algorithm was proposed by
Kushwah and Ali [101]. Moreover, Wang et al. [23] proposed a neural network based scheme
to detect DDoS attacks where the optimal features are selected during the training phase and
a feedback mechanism dynamically updates the detector according to detection errors.

Nonetheless, since the aforementioned proposed models are matrix based solutions and
do not consider corrupted training data, we fill those gaps by exploiting the benefits of mul-
tidimensional datasets as well as by applying noise-robust techniques. The main approaches
and drawbacks of each related work, as well as the weaknesses addressed by this chapter, are
summarized in Table 4.1.

Table 4.1 – Related works summary.

Ref. Main Approach Drawback

[23]
- Feature selection based MLP for DDoS attack
detection with dynamic perceiving of detection errors.

- Benefits of tensor representation are not exploited.
- Lack of analysis of the training and testing times.

[101]
- Artificial neural network based model for DDoS
attack detection in cloud computing.

- Benefits of tensor representation are not exploited.
- Outdated dataset (NSL-KDD) applied for model validation.
- Lack of analysis of the training and testing times.
- Lack of important performance evaluation metrics.

[118] - IDS for detecting DDoS attacks in SDN environments.
- Benefits of tensor representation are not exploited.
- Lack of analysis of the training and testing times.
- Lack of important performance evaluation metrics.

[125]
- Lightweight DL based approach for DDoS attack
detection in online resource-constrained environments.

- Benefits of tensor representation are not exploited.
- Lack of analysis of the testing times.

[126]
- DL based models for DDoS attack detection in
IoT networks.

- Benefits of tensor representation are not exploited.
- Lack of analysis of the training and testing times.

[127]
- Deep CNN ensemble framework for efficient
DDoS attack detection in SDNs.

- Benefits of tensor representation are not exploited.
- Higher training and testing times.

[128]
- Multi-channel CNN based detection and early
warning framework for DDoS attacks.

- Benefits of tensor representation are not exploited.
- Outdated dataset (KDDCUP99) applied for model validation.
- Focus only on the overall accuracy.

[129]
- Artificial neural network based scheme for
detecting DDoS attacks by using specific
data features.

- Benefits of tensor representation are not exploited.
- Lack of analysis of the training and testing times.

[130]
- Application-layer DDoS attacks detected by
computing entropy-related parameters. - Benefits of tensor representation are not exploited.

This chapter
- Tensor DL based framework for DDoS attack
detection trained with poisoned datasets.

Addressed drawbacks:
- Benefits of tensor representation are exploited.
- Recent dataset (CIC-DDoS2019) applied for model validation.
- Analysis of the training and testing times.

In this chapter, we propose a novel feature extraction method applied on data classifica-
tion in which the average value of the common features among dataset instances is iteratively
filtered out via HOSVD algorithm, providing more robustness against data corruption. Addi-
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tionally, a novel multilayer perceptron (MLP) architecture for DDoS attack detection which
applies such feature extraction technique is also introduced. Extensive experiments con-
ducted on a customized dataset containing samples extracted from the CIC-IDS2017 [131],
CIC-IDS2018 [132] and CIC-DDoS2019 [89] benchmark datasets showed that the proposed
scheme outperforms state-of-the-art low-rank approximation based MLPs in terms of accu-
racy, detection rate and false alarm rate.

4.2 PROPOSED NOISE-ROBUST MLP ARCHITECTURE FOR DDoS
ATTACK DETECTION

This section is divided into two subsections. First, Subsection 4.2.1 describes the pro-
posed feature extraction technique applied on data classification. Next, in Subsection 4.2.2
the proposed multilayer perceptron architecture for DDoS attack detection is introduced.

In this chapter, the proposed scheme is developed under two main assumptions:

• Similarly to Chapter 3, datasets are considered to be noise free because assumptions
about their base noise type and level cannot be made. In this sense, zero-mean white
Gaussian noise is added into the dataset features in a supervised manner such that the
DDoS attack detection performance of the proposed architecture can be assessed for
different noise levels.

• The Higher Order Singular Value Decomposition (HOSVD) technique is adopted in
our proposed scheme due to its lower processing time compared to state-of-the-art ten-
sor decomposition approaches, such as the Higher Order Orthogonal Iteration (HOOI).
This is a crucial requirement in real time network attack detection systems.

4.2.1 Proposed Feature Extraction Method Applied on Data Classification

Throughout this chapter, the dataset matrix X ∈ RM×N and its tensor counterpart XXX ∈
RN1×···×NR×M are defined by the data model shown in Section 3.2 of Chapter 3, particularly
in Eq. (3.1) and (3.2), respectively.

First, the concept of common and individual features of a given dataset is introduced.
Such concept is well-known in image classification problems, in which data share some
common variables while exhibiting their own features simultaneously [133]. Fig. 4.1 illus-
trates the intuition behind the idea of common features. The original tensor YYY ∈ RI1×I2×5, at
the left of Fig. 4.1, is composed of the slices YYY(:, :, s) for s = 1, . . . , 5 with the bright blue,
bright green, gray, orange and pink colors, respectively. Each slice YYY(:, :, s) is equivalent to
a combination of the three base colors, namely, green, red and blue, represented by the ma-
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trices BG ∈ RI1×I2 , BR ∈ RI1×I2 and BB ∈ RI1×I2 shown at the center of Fig. 4.1. Usually,
the base colors are obtained through tensor decompositions, such as the LL1 decomposition
with non-negativity constraint, such thatYYY = (BG×3 cG)+(BR×3 cR)+(BB×3 cB), where
cG ∈ R5, cR ∈ R5 and cB ∈ R5 contain the intensity values of the red, green and blue colors,
respectively [134]. Moreover, note that the original tensor presents rank three, which corre-
sponds to the number of base colors. Alternatively, the base colors can be stacked along the
3rd dimension, generating BBB ∈ RI1×I2×3, whereas the vectors cG, cR and cB can be grouped
into the matrix C ∈ R5×3, as depicted at the right of Fig. 4.1. The tensor BBB, known as the
common feature tensor, can also be represented as Ỹ̃ỸY, as a reference to the original dataset YYY.

 

𝐜B 
 
 
 
 
 
 
 
 

𝐜R 
 
 
 
 
 
 
 
 

𝐜G 
 
 
 
 
 
 
 
 

𝐁B 
 

𝐁R 
 

𝐁G 
 

𝐂 
 
 
 
 
 
 
 

𝓑 
 

𝓨 
 

×3 ×3 ×3 

+ + = 

×3 

= 

Figure 4.1 – The concept of common features for multidimensional data. The original tensor
YYY ∈ RI1×I2×5 consists of slices with the bright blue, bright green, gray, orange and pink
colors. Each slice YYY(:, :, s) ∈ RI1×I2 for s = 1, . . . , 5 corresponds to a combination of the
base colors green, red and blue, given by BG ∈ RI1×I2 , BR ∈ RI1×I2 and BB ∈ RI1×I2 , re-
spectively. Such base colors can be stacked along the 3rd dimension, generating the common
feature tensor BBB ∈ RI1×I2×3.

Applying such concepts to the DDoS attack detection problem, the following intuition
can be drawn. Let us consider a 3D network traffic dataset composed by legitimate and
DDoS attack sample matrices as its frontal slices. Although from different classes, these
samples may present some common features, such as source and destination IPs. Therefore,
the common features across all the samples can be removed and then the more discriminative
individual features can be applied for classification. The tensors X̂XX ∈ RN1×···×NR×dR+1 and
X̆XX ∈ RN1×···×NR×M are called the common and individual feature tensors, respectively. The
tensor X̂XX can be obtained after applying some tensor decomposition technique on XXX, such as
the Higher Order Singular Value Decomposition (HOSVD), which is a generalization of the
matrix SVD to tensors.

The HOSVD of XXX can be expressed as XXX = GGG ×1 A1 · · · ×R AR ×R+1 AR+1, where
GGG ∈ Rd1×···×dR+1 is the truncated core tensor, Ar ∈ RNr×dr for r = 1, . . . , R + 1 are the
truncated singular matrices and (d1, . . . , dR+1) is the multilinear rank of XXX. The number of
common features among dataset instances, given by dR+1, can be obtained empirically. In
addition, X̂XX ∈ RN1×···×NR×dR+1 is defined as the r-mode product between the core tensor
GGG and the first R factor matrices, i.e., X̂XX = GGG ×1 A1 · · · ×R AR. Then, the individual
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feature tensor X̆XX is computed by subtracting, from XXX, the weighted common features, i.e.,
X̆XX(:, . . . ,m) = XXX(:, . . . ,m) −

∑
k∈Kn

αk · X̂XX(:, . . . , k) for m = 1, . . . ,M , where Kn is a
subset of common features for XXX related to the values in the n-th row of Ar [134].

The proposed approach improves the DDoS attack detection performance due to two
factors: noise-robustness and dataset filtering. Noise-robustness is achieved through the
HOSVD of the dataset tensor. In HOSVD, the singular value decomposition (SVD) is
applied to each r-th unfolding matrix [XXX](r) = [XXX0](r) + [NNN](r) and is given by [XXX](r) =

UrΣrV
H
r , where Ur ∈ RNr×dr and Vr ∈ R

∏
j 6=r NjM×dr are the left and right singular ma-

trices, respectively, and Σr ∈ Rdr×dr is the singular values matrix. On the other hand, after
dataset filtering, ML algorithms can exploit the filtered features in order to identify each
dataset instance. In this approach, instead of obtained empirically, the number of common
features dR+1 can be approximated as the model order, which is a parameter computed from
classic model order selection (MOS) techniques. Thus, a more discriminative information is
present in each sample, which can be exploited by ML classifiers during the training phase.

Initially, three steps are necessary, namely, dataset splitting, dataset pre-processing and
minibatch splitting. First, the dataset XXX is split into the training and testing tensors XXXtr ∈
RN1×···×NR×Mtr and XXXte ∈ RN1×···×NR×Mte , where M tr and M te correspond to the total
number of training and testing instances, respectively, with M = M tr + M te. Next, a
preprocessing step is applied on each tensor as well, including data cleansing, feature scaling
and label encoding. Finally, XXXtr is split into S minibatches XXXs ∈ RN1×···×NR×Mmb for s =

1, . . . , S containing Mmb instances each, i.e., M tr = S · Mmb. If M tr is not a multiple
of Mmb, then random instances from XXXtr are added into the last minibatch such that the
condition M tr = S ·Mmb is satisfied.

Fig. 4.2 depicts the block diagram of the proposed feature extraction method applied on
the training and testing phases of the ML classification, which are described in the following
subsections.

4.2.1.1 Training Phase

First, given XXXs ∈ RN1×···×NR×Mmb , the model orders dsr for r = 1, . . . , R + 1 and
s = 1, . . . , S are estimated in Block 1.1 of Fig. 4.2a through multidimensional MOS
schemes, such as the R-D Minimum Description Length [107]. Further, Block 1.2 com-
putes the HOSVD of XXXs as follows

XXXs = GGGs ×1 As
1 · · · ×R As

R ×R+1 As
R+1, (4.1)

whereGGGs ∈ Rds1×···×dsR+1 is the core tensor, As
r ∈ RNr×dsr for r = 1, . . . , R+1 are the singular

matrices, and (ds1, . . . , d
s
R+1) correspond to the multilinear rank of XXXs, i.e., the r-tuple of the
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Figure 4.2 – Block diagram of the proposed feature extraction method applied on ML clas-
sification. (a) Training phase. (b) Testing phase.

mode-r ranks. Moreover, dsR+1 is interpreted as the number of common features among the
dataset instances.

Following, Block 1.3 computes X̃̃X̃Xs ∈ RN1×...NR×dsR+1 , which contains the common fea-
tures among the instances XXXs(:, . . . ,m) ∈ RN1×···×NR for m = 1, . . . ,Mmb. The tensor X̃̃X̃Xs

is defined as the r-mode product between the core tensor GGGs and the first R factor matri-
ces [135],

X̃̃X̃Xs = GGGs ×1 As
1 ×2 As

2 · · · ×R As
R. (4.2)

Next, X̄XXs ∈ RN1×···×NR is obtained in Block 1.4 of Fig. 4.2a and corresponds to X̃̃X̃Xs

averaged along the (R + 1)-th dimension, i.e.,

X̄̄X̄Xs =
1

dsR+1

dsR+1∑
d=1

X̃̃X̃Xs(:, . . . , d). (4.3)

Before subtracting the average common features from XXXs in Block 1.5, we have to mul-
tiply each one of the elements of X̄̄X̄Xs by a positive number smaller than 1. This can be done
by computing the Hadamard product between X̄̄X̄Xs and a weight tensor CCCs ∈ RN1×···×NR . The
tensor CCCs is obtained such that the errors between the expected and predicted classifications
during the training phase are minimized. Thus, Mmb copies ofCCCs are concatenated along the
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(R + 1)-th dimension, generating the tensor CCCs,C ∈ RN1×···×NR×Mmb . The same procedure
is adopted for X̄̄X̄Xs in order to obtain X̄̄X̄Xs,C ∈ RN1×···×NR×Mmb . Both computations can be
expressed as

X̄̄X̄Xs,C = [X̄̄X̄Xs | . . . | X̄̄X̄Xs]R+1. (4.4)

CCCs,C = [CCCs | . . . | CCCs]R+1, (4.5)

Thus, we compute the Hadamard product between CCCs,C and X̄̄X̄Xs,C such that the weights
are applied to each element of the average common feature tensor, i.e.,

WWWs = CCCs,C � X̄̄X̄Xs,C. (4.6)

Following, the filtered tensor XXXs,[f] computed in Block 1.5 is given by

XXXs,[f] = XXXs −WWWs. (4.7)

Alternatively, the filtered tensor XXXs,[f](:, . . . ,m) for m = 1, . . . ,Mmb can be computed
as a function of the m-th dataset instance as follows

XXXs,[f](:, . . . ,m) = XXXs(:, . . . ,m)−CCCs � X̄XX
s
, for m = 1, . . . ,Mmb. (4.8)

Furthermore, in Block 1.6 of Fig. 4.2a we compute the (R+1)-th mode unfolding matrix
of XXXs,[f], given by [XXXs,[f]](R+1) ∈ RMmb×N . In general, the r-th unfolding matrix [XXXs,[f]]r is
obtained after each element (x

s,[f]
1 , . . . , x

s,[f]
R+1) in XXXs,[f] is mapped to the element (x

s,[f]
r , j) in

[XXXs,[f]]r as follows

j = 1 +
R+1∑
k=1
k 6=r

(x
s,[f]
k − 1)Jk, with Jk =

k−1∏
m=1
m6=r

Nm. (4.9)

Next, [XXXs,[f]](R+1) is sent to Block 1.7 for machine learning classification. In summary,
if Cl(·) represents a trained ML classification algorithm, the vector ŷs ∈ RMmb containing
the predicted class labels ŷsm of the m-th dataset instance Xs,[f](m, :) for m = 1, . . . ,Mmb is
given by

ŷs = Cl(Xs,[f]) = [ŷs1, ŷ
s
2, . . . , ŷ

s
Mmb ]T. (4.10)
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At last, the error es between the expected and predicted class label vectors ys and ŷs,
respectively, is computed by using the binary cross-entropy cost function, given by

es = − 1

Mh

Mmb∑
m=1

[(ysmlog(P (ŷsm))) + (1− ysm)log(1− P (ŷsm))], (4.11)

where ysm and ŷsm are the true and predicted classes of the m-th instance in ys and ŷs, respec-
tively. In sequel, es is sent to Block 1.5, where CCCs is updated such that the error is minimized
for the next minibatch training.

The training phase of the proposed average common feature extraction technique applied
on ML classification is summarized in Algorithm 3 and depicted in Fig. 4.3 for a three-
dimensional dataset tensor XXXs ∈ RN1×N2×M .

Algorithm 3: Proposed feature extraction technique - training phase
Input:
- Training minibatch tensor XXXs ∈ RN1×···×NR×Mmb

- Expected class label vector ys ∈ RMmb

Output:
- Predicted training class label vector ŷs ∈ RMmb

Algorithm Steps:
1 Estimate the model order dsr for r = 1, . . . , R by applying an R-D model order selection scheme on XXXs

2 Compute the HOSVD of XXXs ∈ RN1×···×NR×Mmb
as in (4.1)

3 Compute the common feature tensor X̃̃X̃Xs ∈ RN1×···×NR×dsR+1 as in (4.2)
4 Compute the average common feature tensor X̄XXs ∈ RN1×···×NR as in (4.3)

5 Compute the concatenated dataset tensor X̄̄X̄Xs,C ∈ RN1×···×NR×Mmb
as in (4.4)

6 Compute the concatenated weight tensor CCCs,C ∈ RN1×···×NR×Mmb
as in (4.5)

7 Compute the Hadamard product between CCCs,C and X̄̄X̄Xs,C as in (4.6)

8 Compute the filtered dataset tensor XXXs,[f] ∈ RN1×···×NR×Mmb
as in (4.7)

9 Unfold XXXs,[f] into the matrix form [XXXs,[f]](R+1) ∈ RMmb×N as in (4.9)

10 Compute the predicted training class label vector ŷs ∈ RMmb
as in (4.10)

11 Compute the error es between ys ∈ RMmb
and ŷs ∈ RMmb

as in (4.11)
12 Update the weight tensor CCCs such that the error is minimized for the next minibatch training

4.2.1.2 Testing Phase

The testing phase is composed by three steps, as depicted in Boxes 2.1 to 2.3 of Fig.
4.2b. Instead of applying a scheme similar to the one described for the training set, we
simply apply a transformation to each testing instance by using information extracted from
the training phase. Since testing and training instances are extracted from the same dataset,
they have similarities and, consequently, we consider that the testing dataset presents the
same average common features of the training dataset.

First, the filtered testing dataset XXXte,[f] is computed in Box 2.1 by subtracting, from XXXte,
the weighted common feature tensor obtained from the training phase, i.e.,

XXXte,[f] = XXXte − Ĉ̂ĈCS,C � X̄XX
S,C
, (4.12)
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Figure 4.3 – Block diagram of the training phase of the proposed feature extraction technique
considering a three-dimensional dataset tensor XXXs ∈ RN1×N2×M . The diagram presents
references to steps of Algorithm 3 as well as equations of Subsection 4.2.1.1.

where Ĉ̂ĈCS,C and X̄XX
S,C are, respectively, the weight tensor and the average common feature

tensor, both obtained after the training of the S-th minibatch. Next, XXXte,[f] is converted to
the (R + 1)-th mode unfolding matrix [XXXte,[f]](R+1) ∈ RMte×N in Box 2.2 of Fig. 4.2b. The
r-th unfolding matrix [XXXte,[f]]r is obtained after each element (x

te,[f]
1 , . . . , x

te,[f]
R+1) in XXXte,[f] is

mapped to the element (x
te,[f]
r , j) in [XXXte,[f]]r as follows

j = 1 +
R+1∑
k=1
k 6=r

(x
te,[f]
k − 1)Jk, with Jk =

k−1∏
m=1
m 6=r

Nm. (4.13)

Finally, [XXXte,[f]](R+1) is applied on the trained machine learning classifier Cl(·) in Box
2.3 for testing purposes. The vector ŷte containing the predicted class labels ŷte

m of the m-th
testing dataset instance Xte,[f](m, :) for m = 1, . . . ,M te is given by

ŷte = Cl(Xte,[f]) = [ŷte
1 , ŷ

te
2 , . . . , ŷ

te
Mmb ]T. (4.14)

Algorithm 4 describes the testing phase of the proposed technique.
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Algorithm 4: Proposed feature extraction technique - testing phase
Input:
- Testing dataset tensor XXXte ∈ RN1×···×NR×Mte

- Weight tensor CCCS,C ∈ RN1×···×NR

- Average common feature tensor X̄XXS,C ∈ RN1×···×NR

Output:
- Predicted testing class label vector ŷte ∈ RMte

Algorithm Steps:
1 Compute the filtered testing dataset tensor XXXte,[f] ∈ RN1×···×NR×Mte

as in (4.12)

2 Unfold XXXte,[f] into the matrix form [XXXte,[f]](R+1) ∈ RMte×N as in (4.13)

3 Compute the predicted testing class label vector ŷte ∈ RMte
as in (4.14).

4.2.2 Proposed MLP Architecture

The training and testing phases of the proposed MLP architecture for DDoS attack de-
tection using the method presented in Subsection 4.2.1 are described as follows.

4.2.2.1 Training Phase

Multilayer perceptrons are fully connected feedforward neural networks where the output
of one layer is the input of the subsequent layer. If the MLP presents J layers, the output
vector z[j] ∈ RN [j] of the j-th layer after receiving the input vector z[j−1] ∈ RN [j−1] from the
(j − 1)-th layer is given by

z[j] = f [j](W[j,j−1] · z[j−1] + b[j]), (4.15)

where W[j,j−1] ∈ RN [j]×N [j−1] is the weight matrix, b[j] ∈ RN [j] is the bias vector, f [j](·) is
the activation function and N [j] is the number of neurons for j = 1, . . . , J .

The minibatch gradient descent is a well-known technique applied on multilayer percep-
tron optimization [2]. According to such approach, when the training of the s-th minibatch
for s = 1, . . . , S is finished, each weight ws between any two neurons of the MLP is updated
by a learning rate β in order to minimize the error function e(ws) as follows [109]

ws+1 = ws − β · ∂e(w
s)

∂ws
. (4.16)

Since the input data of MLPs is one-dimensional„ we have to matricize the input dataset
tensor such that each instance can be directly forwarded to the neural network. In this sense,
first we compute the (R + 1)-th mode unfolding of (4.7) as follows

[XXXs,[f]](R+1) = [XXXs](R+1) − [CCCs,C](R+1) � [X̄XX
s,C

](R+1), for s = 1, . . . , S. (4.17)
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The weight tensor CCCs,C is composed by Mmb identical tensors CCCs stacked along the
(R + 1)-th dimension. Consequently, the unfolded matrix [CCCs,C](R+1) ∈ RMmb×N presents
Mmb identical row vectors cs = [cs1, . . . , c

s
N ]T = vec{CCCs(:, ...,m)} for m = 1, . . . ,Mmb.

Alternatively, cs can also be written as a diagonal matrix Cs,diag = diag{[cs1, . . . , csN ]} ∈
RN×N .

Similarly, [X̄XX
s,C

](R+1) is composed by Mmb identical row vectors x̄s = [x̄s1, . . . , x̄
s
N ]T =

vec{X̄XXs
(:, ...,m)} for m = 1, . . . ,Mmb. If we represent the (R + 1)-th mode unfolding

matrices in (4.17) as a function of its rows and replace the Hadamard product by the dot
product, such equation can be rewritten as

[XXXs,[f]](R+1)(m, :) = −Cs,diag · x̄s + [XXXs](R+1)(m, :), for m = 1, . . . ,Mmb. (4.18)

Note the similarity between (4.18) and the argument of the activation function f [j](·)
in (4.15). In this sense, a new input layer is included on the traditional MLP architecture
where the computation described in (4.18) can be directly performed. Fig. 4.4 illustrates the
proposed MLP architecture for DDoS attack detection with the new input layer, labeled as
“layer 0”, in red color, placed at the left of the conventional input layer, referred as “layer 1”.
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Figure 4.4 – The proposed MLP architecture for DDoS attack detection.

In summary, the main contribution relative to the conventional MLP corresponds to the
inclusion of a new input layer, with the following parameters obtained from the comparison
between (4.15) and (4.18):

• the number of nodes of the proposed input layer is given by N [0] = N , i.e., the number
of dataset features;

• the weight matrix W[1,0] between the conventional and the proposed input layers is
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given by −Cs,diag;

• the input data vector z[0] at the proposed input layer corresponds to the average princi-
pal components vector x̄s; and

• the bias vector b[0] at the proposed input layer corresponds to the instance vector
[XXXs](R+1)(m, :) for m = 1, . . . ,Mmb.

Note that the weights in Cs,diag ∈ RN×N are iteratively updated during the MLP forward
and backward propagation in the training phase and, consequently, more accurate results can
be achieved. From (4.16), when the (s+ 1)-th minibatch training begins, each weight cn for
n = 1, . . . , N is updated as follows

cs+1
n = csn − β ·

∂e(csn)

∂csn
. (4.19)

4.2.2.2 Testing Phase

In this phase, each testing instance is feedforwarded through the trained MLP for classi-
fication. Consequently, the filtering operation on the testing vectors is given by

[XXXte,[f]](R+1)(m, :) = −ĈS,diag · x̄S + [XXXte](R+1)(m, :), for m = 1, . . . ,M te, (4.20)

where ĈS,diag is the weight diagonal matrix and x̄S is the average common feature vector,
both obtained after the training of the S-th minibatch.

4.2.2.3 Summary

As shown in the numerical simulations of Section 4.4, the proposed MLP is compared
with conventional MLPs in which state-of-the-art low-rank approximation techniques are
previously applied to the dataset, namely, HOSVD [62,115] and HOOI [108]. Fig. 4.5 illus-
trates the block diagram corresponding to the training and testing phases of the competing
LRA based MLPs. After the multilinear rank (d1, . . . , dR+1) is obtained in Block 1.1 by some
R-D MOS scheme, the dataset tensorXXX ∈ RN1×···×NR×M is denoised by state-of-the-art LRA
techniques, such as HOSVD or HOOI, generating the tensor X̃̃X̃X ∈ RN1×···×NR×M . Next, after
unfolding X̃̃X̃X into the matrix form in Block 1.3, the unfolded matrix X̃ ∈ RM×N is split, in
Block 1.4, into S minibatches X̃s ∈ RMmb×N for s = 1, . . . , S, which are then forwarded
to a conventional MLP for classification in Block 1.5. Further, Figs. 4.6 and 4.7 depicts the
training and testing phases of the proposed common feature extraction based MLP, respec-
tively. In Fig. 4.6, initially Block 2.1 splits the training dataset tensor XXXtr into S minibatches
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XXXs ∈ RN1×···×NR×Mmb for s = 1, . . . , S. Next, Block 2.2 estimates the multilinear rank of
XXXs, (d1, . . . , dR+1), by using anR-D MOS scheme, whereas Block 2.3 performs the low-rank
approximation of X̃s, obtaining GGGs ∈ Rds1×···×dsR+1 and As

r ∈ RNr×dsr for r = 1, . . . , R + 1.
Following, after computing the common feature tensor X̃̃X̃Xs ∈ RN1×···×NR×dsR+1 in Block 2.4,
Block 2.5 computes the average common feature tensor X̄XXs,C ∈ RN1×···×NR×Mmb . Finally,
the unfolded dataset matrices Xs ∈ RMmb×N and X̄s,C ∈ RMmb×N , obtained in Blocks 2.6
and 2.7, respectively, are sent to the proposed MLP for classification in Block 2.8. Finally,
the testing phase of the proposed common feature extraction based MLP is illustrated in
Fig. 4.7. First, the testing dataset tensor XXXte ∈ RN1×···×NR×Mte is unfolded into the matrix
Xte ∈ M te ×N in Block 3.1. Next, the unfolded matrices Xte and X̄s,C ∈ RMmb×N , where
the latter is computed in Block 2.7 of Fig. 4.6, are forwarded to the proposed MLP in Block
3.2 for classification tasks.
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Figure 4.7 – Block diagram of the proposed common feature extraction based MLP (testing
phase).

4.3 COMPUTATIONAL COMPLEXITY

This section discusses the computational complexity of the training phase of the proposed
feature extraction technique presented in Subsection 4.2.1. The computational cost related
to folding and unfolding of matrices and tensors is not considered, since such functions are
about data representations. For simplicity, the computational complexity is analyzed for a
three-dimensional dataset tensor XXXs ∈ RN1×N2×Mmb . We provide an analysis of the most
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costly calculations as a function of the largest contributions of the most important variables,
namely, N1, N2, S, Mmb, as well as the multilinear rank, (d1, d2, d3). Further, as it can
be seen in Section 4.4, the proposed framework is compared with state-of-the-art low-rank
approximation techniques, namely, Higher Order Orthogonal Iteration (HOOI) [108] and
Higher Order Singular Value Decomposition (HOSVD) [62, 115]. Thus, in this section, the
computational complexities of the competing schemes are also introduced.

In our proposed approach, the HOSVD is applied S times, one for each minibatch XXXs

for s = 1, . . . , S. Thus, the computational complexity of the proposed scheme related to the
HOSVD low-rank approximation technique can be expressed as [136]

OOO[ProposedHOSVD] = OOO

[
S

(
3∑
j=1

(
Nj

3∏
k=1

Nk

)
+

3∑
j=1

(
j∏

k=1

dk

3∏
k=j

Nk

))]
, (4.21)

where, for simplicity of notation, N3 corresponds to Mmb.

The computation of the common feature tensor as well as its average along the 3rd di-
mension require two tensor times matrix products plus the average calculation. The time cost
of this step can be denoted as

OOO[CF-AC] = OOO[N2
1N2d3] +OOO[N1N

2
2d3] +OOO[N1N2d3]. (4.22)

Finally, the overall computational complexity of the proposed feature extraction tech-
nique corresponds to the sum of the above mentioned complexities, plus the cost OOO[MOS]

related to the adopted MOS scheme, i.e.,

OOO[Proposed] = OOO[MOS] +OOO[ProposedHOSVD] +OOO[CF-AC]. (4.23)

Table 4.2 summarizes the computational complexities of the proposed feature extrac-
tion technique as well as its competing schemes. The second column illustrates the total
computational cost, whereas the last column shows the final complexities, corresponding to
the asymptotic dominant terms. The total complexity of the HOOI low-rank approximation
technique is given by OOO[HOOI] = OOO[N3

maxdJ ] + OOO[N2
maxd

2J ] + OOO[N3
maxd] + OOO[Nmaxd

3],
where Nmax = max{N1, N2,M} and J is the number of algorithm iterations [112]. Further-
more, the total complexity of the HOSVD low-rank approximation scheme can be expressed
as OOO[HOSVD] = OOO

[(∑3
j=1

(
Nj

∏3
k=1Nk

)
+
∑3

j=1

(∏j
k=1 dk

∏3
k=j Nk

))]
. In addition,

from the asymptotic complexities shown in Table 2.6, it is observed that the proposed fea-
ture extraction technique presents the highest dominant complexity, given by OOO[SRN2M2],
since tensor decompositions are applied S times, once for each minibatch. The numeri-
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cal simulations presented in Section 4.4 reinforces the trade-off between the more accurate
DDoS attack detection and the computational complexity. Moreover, note that the HOOI
approach also presents a high computational cost, especially due to the number of instances
raised to the cubic power. Finally, from Table 2.6, it can be seen that HOSVD shows the
lowest time cost, bounded by the square of the number of dataset instances.

Table 4.2 – Computational complexity of the following schemes: (1) proposed feature ex-
traction technique, (2) HOSVD, and (3) HOOI.

Model Total Complexity Dominant Complexity

(1)
OOO[MOS] +OOO[N2

1N2d3] +OOO[N1N2
2 d3] +OOO[N1N2d3]+

+OOO
[
S
(∑3

j=1

(
Nj
∏3

k=1Nk

)
+
∑3

j=1

(∏j
k=1 dk

∏3
k=j Nk

))]
OOO[SRN2M2]

(2) OOO
[∑3

j=1

(
Nj
∏3

k=1 Nk

)
+
∑3

j=1

(∏j
k=1 dk

∏3
k=j Nk

)]
OOO[RN2M2]

(3) OOO[N3
maxdJ ] +OOO[N2

maxd
2J ] +OOO[N3

maxd] +OOO[Nmaxd3] OOO[dJRM3]

4.4 SIMULATION RESULTS

This section is divided into three subsections. First, details about the features and samples
extracted from the DDoS benchmark datasets used in this chapter are shown in Subsection
4.4.1. Next, Subsections 4.4.2 and 4.4.3 present and discuss the simulation results, respec-
tively.

4.4.1 DDoS Attack Datasets

In this chapter, we customized a single dataset composed by legitimate and DDoS attack
samples extracted from the CIC-DDoS2019, CIC-IDS2018 and CIC-IDS2017 benchmark
datasets, which are detailed in Appendix C. Next, the customized dataset is split into training
and testing sets. Following, a 3-fold cross validation is performed on the training dataset
such that each fold contains samples from a given benchmark dataset. At each iteration, the
classifier is trained on samples from two benchmark datasets and validated on the third one.
Finally, the trained classifier is evaluated on the testing dataset. Table 4.3 details the number
of instances collected from the CIC-DDoS2019, CIC-IDS2018 and CIC-IDS2017 datasets
and their respective types. Note that M = 40,000 instances were extracted from each dataset,
of which 20% correspond to DDoS attacks.

4.4.2 Results

This subsection presents the performance and noise-robustness evaluation of the pro-
posed MLP architecture for DDoS attack detection through numerical simulations. The per-

98



Table 4.3 – DDoS attack types used in this chapter, as well as the corresponding number of
instances extracted from each dataset.

Dataset Traffic Type Total

Legitimate 32,000

DNS-based DDoS 800

LDAP-based DDoS 800

MSSQL-based DDoS 800

NetBIOS-based DDoS 800

CICDDoS2019 NTP-based DDoS 800

SNMP-based DDoS 800

SSDP-based DDoS 800

UDP flood 800

TCP SYN flood 800

TFTP-based DDoS 800

CICIDS2018
Legitimate 32,000

HTTP and UDP-based DDoS 8,000

CICIDS2017
Legitimate 32,000

HTTP and UDP-based DDoS 8,000

Total
Legitimate 96,000

DDoS attacks 24,000

formance is assessed through the accuracy (Acc), detection rate (DR) and false alarm rate
(FAR) metrics, whereas the Relative Loss of Accuracy (RLA) and Relative Loss of Detec-
tion Rate (RLDR) are adopted as noise-robustness evaluation metrics. Both performance and
noise-robustness evaluation metrics are defined in Appendix D.

All experiments were executed on a desktop computer with processor Intel Core i7-
2600 3.40 GHz and 16 GB of RAM. Data pre-processing and machine learning classifier
algorithms were implemented in the Python libraries Scikit-Learn and Keras, whereas Ten-
sorly [137] and HOTTBOX [135] were used to implement tensor computations. Addition-
ally, in order to simulate false data injection, noise is added to each dataset prior to the
pre-processing phase. As pointed out in [138], Gaussian noise is easy to implement and
more difficult to be detected in practice, successfully fooling machine learning classifiers
during the training and testing phases. Thus, x% of the instances of each feature X(:, n)

for n = 1, . . . , N are corrupted with Gaussian noise with mean zero and standard deviation
(max(X(:, n))−min(X(:, n)))/5. A total of 50 different experiments were simulated, with
a MLP containing number of hidden layers varying from 2 to 5 and noise level between 5%

and 30%. Additionally, the training dataset size ranges from 40% to 70% of all available
instances. The tensor multilinear rank is estimated by applying the R-D MDL scheme and
each experiment was trained for 100 epochs. The Rectified Linear Unit (ReLU) was selected
as the activation function for all hidden layers, whereas Softmax function was applied on the
output layer for classification tasks.

Initially, the proposed MLP is assessed for five different tensor foldings of the m-th
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dataset instance X(m, :) ∈ RN , as depicted in Figure 3.2 of Chapter 3. Since N = 64, each
instance is folded as an R-th tensor XXX(:, . . . ,m) ∈ RN1×···×NR for R = 2, . . . ,6, with sizes
given by (8 × 8), (4 × 4 × 4), (4 × 4 × 2 × 2), (4 × 2 × 2 × 2 × 2) and (2 × 2 × 2 ×
2 × 2 × 2), respectively. Moreover, the noise level is fixed in 10%. The values of Acc, DR
and FAR, as well as the training times (in seconds) obtained for each instance configuration
are shown in Table 4.4. Further, the best metric value obtained by a given tensor folding is
highlighted in bold. In terms of accuracy and detection rate, the two-dimensional configu-
ration outperforms the other schemes, showing values of 96.92% and 97.42%, respectively.
On the other hand, the lowest false alarm rate was obtained by the configuration 4 × 2 × 2
× 2 × 2, achieving 1.38%. Note that the mean training times are higher as the tensor order
is larger. In this sense, the two-dimensional instance configuration is adopted in simulations
due to two main reasons: the lower processing time, which is a fundamental requirement in
intrusion detection problems; and the higher performance regarding Acc and DR, despite its
FAR is not the best compared to the other tensor foldings. Therefore, from this point on, the
dataset matrix X ∈ RM×N is folded into a three-dimensional tensor XXX ∈ RN1×N2×M , where
N1 = N2 = 8.

Table 4.4 – Performance evaluation and mean training times (in seconds) of the proposed
technique for different instance configurations.

Tensor Size Accuracy Detection Rate False Alarm Rate Training time (s)
8 × 8 0.9692 0.9742 0.0155 461.9
4 × 4 × 4 0.9659 0.9719 0.0157 474.0
4 × 4 × 2 × 2 0.9684 0.9737 0.0153 487.2
4 × 2 × 2 × 2 × 2 0.9641 0.9712 0.0138 504.1
2 × 2 × 2 × 2 × 2 × 2 0.9639 0.9724 0.0097 520.8

Fig. 4.8a and 4.8b show the training and validation accuracies, as well as the training
and validation costs, as a function of the number of training epochs, for the proposed MLP
architecture. Such curves are very useful to diagnose problems, as well as to check the learn-
ing and generalization behavior of the model in order to avoid overfitting issues. From the
results, we observe that our approach obtained accuracy of 90% and cost of 6.4% just after
20 epochs, for both training and validation. Besides, after 60 epochs, the proposed scheme
achieves accuracy and cost of 99.5% and 3.4%, respectively. Therefore, these findings con-
firm that our proposed MLP architecture for DDoS attack detection presents good learning
and generalization behaviors, which can potentially reflect in good testing results.

Next, in Fig. 4.9a, we assess the mean value of the weights c1, . . . , cN , given by c̄ =

(1/N)
∑N

n=1 cn, as a function of the number of epochs. The mean weight c̄ corresponds to the
average value for 50 experiments. Our idea is to verify the average behavior of the weights
as the machine learning classification algorithm is trained after a given number of training
iterations. From the results shown in Fig. 4.9a, we observe that c̄ presents an exponential
growth until it reaches an approximately constant value, in which the model is theoretically
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Figure 4.8 – Plots of: (a) training and validation accuracy, and (b) training and validation
cost, as a function of the number of epochs, for the proposed MLP architecture.

fit to the training data. In Fig. 4.9b, we present a section of the proposed MLP architecture,
in which the weights are highlighted within the dotted red rectangle.
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Figure 4.9 – (a) Mean weight as a function of the number of epochs. (b) Section of the MLP
representing the proposed weights within the dotted red rectangle.

Throughout this section, the proposed approach is compared with conventional MLPs in
which the state-of-the-art HOSVD and HOOI low-rank approximation techniques are previ-
ously applied to the dataset. Fig. 4.10 shows the Acc, DR and FAR as a function of the Noise
Level (NL) and the number of Hidden Layers (HL). The learning rate β is 0.1, whereas the
number of hidden layers is fixed in 5, with layer configuration 100/80/60/40/20 neurons and
Mmb = 512. Moreover, in Fig. 4.10d to 4.10f, the NL is fixed in 10%. Note that the proposed
MLP outperforms its competitor methods, especially under high noise levels and larger num-
ber of hidden layers. Such results confirm that our scheme leads to better performance due
to the iterative updating of filtering weights.
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Figure 4.10 – Acc, DR and FAR as a function of the noise level and number of hidden layers.

Fig. 4.11 depicts the values of Acc, DR and FAR obtained for the noise-free case. The
proposed scheme is compared with a conventional MLP, with no denoising technique, for
different HL and TSP. The simulations present HL varying between 2 and 5, and Mmb =
512. The layer configurations for each scenario are, respectively: 100, 100/80, 100/80/60,
100/80/60/40 and 100/80/60/40/20. From the results shown in Fig. 4.11, we observe that all
techniques deliver significantly better performance for higher number of hidden layers and
higher training size proportions. Note that, considering Acc and DR, the proposed scheme
outperforms its competitors for all of the HL and TSP ranges, despite presenting a worse
performance of FAR for some metric values.

Following, the proposed MLP is assessed for detecting real time DDoS attacks. Three
IDSs trained and tested under noise levels between 10% and 30% are compared: the proposed
scheme, as well as the HOSVD and HOOI based MLPs. To simulate a small scale DDoS
attack, a virtual network was implemented, as depicted in Fig. 4.12. DDoS traffic included
TCP, UDP and HTTP GET flooding attacks generated by three attackers, whereas the victim
is a web server. The attacks were launched during a period of 60 minutes by using the Low
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Figure 4.11 – Acc, DR and FAR as a function of the number of hidden layers and training
size proportion under noise-free conditions.

Orbit Ion Cannon (LOIC) tool. Additionally, legitimate traffic was generated by two users
accessing the web server, and the IDS is positioned between the router and the victim. The
network traffic captured by the IDS is converted into Comma-Separated Values (CSV) files
for further processing. Table 4.5 shows the values of DR and FAR obtained for real time
detection. Note that the proposed scheme outperforms the compared approaches when NL
is higher than 20%, presenting considerable detection results.

Figure 4.12 – Network topology for simulating real time attacks.

Further, Fig. 4.13 presents the mean training and testing times (in seconds), considering
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Table 4.5 – Performance evaluation under real time attacks.

Model 10% 20% 30%
DR FAR DR FAR DR FAR

Proposed MLP 0.9967 0.0001 0.9661 0.0447 0.8373 0.1792
HOSVD + MLP 0.9413 0.1173 0.8485 0.1256 0.7697 0.3894
HOOI + MLP 0.9999 0.0000 0.8850 0.0659 0.7736 0.3088

different number of hidden layers. Three techniques are compared: the proposed scheme,
as well as the HOSVD and HOOI based MLPs. Since denoising and filtering are performed
through the MLP layers in our proposed scheme, its total time correspond to the MLP pro-
cessing time. On the other hand, since HOSVD and HOOI are preprocessing steps in their
respective MLPs, the total time correspond to the sum between the corresponding low-rank
approximation technique time and the MLP processing time. The training times refer to a
period of 100 epochs and NL is fixed in 10%. Note that, from Fig. 4.13a, the proposed tech-
nique is more computationally expensive than the competing approaches, showing higher
training times, which reflects the trade-off to achieve a more accurate detection. However,
this is compensated considering the testing times, as shown in Fig. 4.13b.
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Figure 4.13 – (a) Training time (s) versus number of hidden layers. (b) Testing time (s)
versus number of hidden layers.

Then, Table 4.6 shows the noise-robustness results of each compared technique. In this
case, the same simulation parameters adopted in the previous experiments (those whose re-
sults are shown in Fig. 4.10) are considered. The best values for each compared technique
and noise level are highlighted in bold letters. It can be observed that the proposed MLP out-
performs all competitor methods when NL≥ 20%, showing an outstanding noise-robustness.

Next, simulation results obtained from the comparison between the proposed MLP and
related works are shown in Table 4.7. Since CIC-DDoS2019 has been recently developed,
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Table 4.6 – Noise-robustness evaluation results.

NL RLA (%) RLDR (%)
Proposed HOOI + MLP HOSVD + MLP Proposed HOOI + MLP HOSVD + MLP

10% 0.68 0.38 0.33 0.72 0.53 0.82
20% 0.86 1.17 2.44 0.86 2.16 3.21
30% 1.03 2.62 2.99 1.73 4.40 5.29
40% 2.10 8.03 3.29 1.86 6.20 6.67
50% 2.76 8.60 7.46 4.09 6.29 8.63

few works applying such dataset for NIDS validation have been found in the literature.
Consequently, the CIC-IDS2017 benchmark dataset was also applied to validate the pro-
posed technique. Additionally, in Table 4.7, NL = 0 was adopted by our proposed scheme.
Despite the detection performance of the proposed MLP is not the best when considering
CIC-IDS2017, it still presents outstanding results, with Acc = 98.95%, DR = 98.31% and
FAR = 0.15%. Note that our scheme is outperformed by Doriguzzi-Corin et al. [125], in
which a CNN based IDS is proposed. In [125], DDoS attacks and legitimate traffic patterns
are learned by CNN through convolutional filters sliding over packet flow inputs to identify
anomalous characteristics, which may explain its higher Acc and DR results compared to our
MLP based solution. On the other hand, when CIC-DDoS2019 is considered for model vali-
dation, the proposed MLP outperforms the competitor works in terms of accuracy, achieving
98.75% against 98.70% obtained by Aytac et al. [122], which is the second best model among
the compared ones when considering accuracy values. Therefore, it can be observed that our
proposed scheme also presents considerable results with CIC-DDoS2019, although it is not
the best model in terms of detection rate, being outperformed by Elsayed et al. [118] in such
aspect.

4.4.3 Discussion

In this subsection, the simulation results presented in Subsection 4.4.2 are discussed.
From the results shown in Fig. 4.10, we observe that, when noisy datasets are considered,
the proposed approach is more efficient for detecting DDoS attacks compared to HOSVD
and HOOI based MLPs in most of the simulations. However, the accuracy of our scheme
is matched by HOOI based MLP in scenarios with low NL. In this case, the more accurate
core tensor and singular matrices generated through orthogonal iterations in HOOI lead to a
better dataset denoising. Moreover, the HOSVD based MLP presents the worst performance
in terms of accuracy, since a single tensor decomposition is performed on the whole dataset
during the preprocessing phase. For instance, when NL = 5%, the proposed scheme and the
HOOI based MLP present accuracy of 96.05% and 95.96%, respectively, against 95.60%

achieved by the HOSVD based MLP. On the other hand, under larger number of hidden
layers and higher noise level conditions, the proposed approach is far superior compared
to the HOOI and HOSVD based MLPs. For example, when NL = 30% and HL = 5, our
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Table 4.7 – Performance comparison with related works, considering the CIC-IDS2017 and
CIC-DDoS2019 datasets.

Dataset Work Classification Method Acc DR FAR

CIC-IDS2017

Proposed Scheme MLP 0.9895 0.9831 0.0015
Doriguzzi-Corin et al. [125] LUCID 0.9967 0.9994 0.0059
Roopak et al. [126] MLP 0.8634 0.8625 N/A
Roopak et al. [126] 1D-CNN 0.9514 0.9017 N/A
Roopak et al. [126] LSTM 0.9624 0.8989 N/A
Roopak et al. [126] 1D-CNN+LSTM 0.9716 0.9910 N/A
Aamir and Ali Zaidi [139] kNN 0.9500 N/A N/A
Aamir and Ali Zaidi [139] SVM 0.9200 N/A N/A
Aamir and Ali Zaidi [139] RFo 0.9666 N/A N/A
Lima Filho et al. [140] RFo N/A 0.8000 0.0020
Haider et al. [127] Ensemble CNN 0.9945 0.9964 N/A
Aksu et al. [141] kNN 0.9572 0.9589 N/A
Aksu et al. [141] SVM 0.6069 0.7142 N/A
Aksu et al. [141] DT 0.9900 0.9900 N/A
Chen et al. [128] CNN 0.9887 N/A N/A
Ustebay et al. [142] MLP 0.9100 N/A N/A
Yulianto et al. [143] AdaBoost+PCA+SMOTE 0.8147 0.9576 N/A
Zhu et al. [144] AMF-LSTM N/A 0.9800 N/A
Yao et al. [145] DeepGFL N/A 0.3024 N/A

CIC-DDoS2019

Proposed Scheme MLP 0.9875 0.9746 0.0452
Maranhão et al. [3] DT 0.9754 0.9509 N/A
Elsayed et al. [118] RNN-Autoencoder N/A 0.9900 N/A
Shurman et al. [119] LSTM 1 layer 0.9154 N/A N/A
Shurman et al. [119] LSTM 2 layer 0.9674 N/A N/A
Sharafaldin et al. [120] ID3 N/A 0.6500 N/A
Sharafaldin et al. [120] RFo N/A 0.5600 N/A
Sharafaldin et al. [120] NB N/A 0.1100 N/A
Sharafaldin et al. [120] LR N/A 0.0200 N/A
Hussain et al. [121] ResNet N/A 0.8600 N/A
Aytac et al. [122] RFo 0.9840 N/A N/A
Aytac et al. [122] Gaussian NB 0.9870 N/A N/A

scheme achieves detection rates equal to 92.71% and 96.13%, respectively. Considering
the same NL and HL values, the HOSVD based MLP presents DR of 89.74% and 93.08%,
respectively, whereas detection rates of 82.26% and 94.49% were achieved by the HOOI
based MLP. Note that the orthogonal iterations performed by HOOI during the process of
tensor decomposition are more sensitive to higher noise levels compared to HOSVD.

Next, Fig. 4.11 illustrates the comparison between the proposed scheme and a conven-
tional MLP under noise-free conditions. From the results shown in Fig. 4.11, it is observed
that the proposed approach outperforms the conventional MLP in terms of Acc and DR for
multiple HL and TSP configurations. For instance, considering HL = 5 and TSP = 0.4, the
proposed scheme achieves detection rates of 97.94% and 95.44%, respectively. On the other
hand, the conventional MLP presents DR equal to 97.63% and 95.26% for the same HL and
TSP configurations, respectively. However, our scheme is more prone to false positives and,
hence, legitimate traffic is wrongly classified as malicious activity. Therefore, the proposed
MLP presents a higher noise-robustness and efficiency due to two factors: the noise attenua-
tion provided by HOSVD and the more discriminative individual information resulting from
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dataset filtering.

Furthermore, a drawback of our approach is its higher training time, especially for larger
number of hidden layers, caused by multiple HOSVDs performed over training data batches.
From Fig. 4.13a, it can be observed that, when HL = 5, a training time of 153.82 s was
shown by our scheme, whereas the HOSVD and HOOI based MLPs presented 30.34 s and
32.19 s, respectively. On the other hand, the proposed MLP shows lower testing times,
since low cost computations are performed during the testing phase, in contrast to the tensor
decompositions executed in HOSVD and HOOI. Still regarding the same number of hidden
layers, our approach showed a testing time of 0.3272 s, whereas 1.04 s and 1.48 s were
achieved by the HOSVD and HOOI based schemes, respectively.

Moreover, the proposed MLP was assessed for detecting DDoS attacks under real time
conditions. From the results shown in Table 4.5, it is clear that our proposed scheme is more
accurate for detecting real time DDoS attacks in comparison with the HOOI and HOSVD
based MLPs when NL≥ 20%. For instance, when the noise level is fixed in 30%, a detection
rate of 83.73% was achieved by the proposed MLP, whereas detection rates of 76.97% and
77.36% were shown by the HOSVD and HOOI based approaches, respectively. Such results
reflect the superiority of our scheme due to a more efficient dataset filtering during the train-
ing phase. Nonetheless, the best performance for NL = 10% was shown by the HOOI based
MLP, in which orthogonal iterations provided a more accurate separation between signal
and noise subspaces and, consequently, better classification results. In this case, the HOOI
based MLP presented a detection rate of 99.99%, against 99.67% and 94.13% achieved by
the proposed scheme and the HOSVD based MLP, respectively.

Finally, the above-mentioned schemes were compared in terms of noise-robustness eval-
uation metrics, namely, relative loss of accuracy and relative loss of detection rate. From
the results shown in Table 4.6, it can be observed that our proposed scheme presents higher
noise-robustness compared to the competitor methods, especially under high noise level con-
ditions. For instance, when NL = 50%, the proposed MLP presents RLA = 2.76%, whereas
8.60% and 7.46% were shown by the HOOI and HOSVD based MLPs, respectively. Sim-
ilarly, for a noise level of 30%, our approach outperforms both HOOI and HOSVD based
schemes in terms of RLDR, achieving 1.73% against 4.40% and 5.29%, respectively. In this
sense, the results discussed so far reinforce the higher noise-robustness showed by our pro-
posed scheme, which is due to the more efficient HOSVD noise attenuation as well as the
more discriminative individual information resulting from dataset filtering.
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4.5 SUMMARY

Data corruption or “noise” present in datasets can lead to a performance degradation of
machine learning classification algorithms, depending on their degree of sensitiveness. Such
corrupted data can be generated, for example, after false data injection attacks performed on
publicly available datasets on the web. One of the easiest attacks to be implemented in prac-
tice is the Gaussian noise injection, which aims to fool machine learning classifiers during
the training phase and, consequently, can lead to misclassification results when applied on
real time detection.

In this chapter, concepts regarding common and individual feature extraction were bor-
rowed from image classification problems. Usually, ML algorithms present better perfor-
mance after extracting the common features, since the more discriminative individual infor-
mation is applied during the training phase. In this sense, we propose a novel technique in
which the average value of the common features among dataset instances is iteratively filtered
out via the Higher Order Singular Value Decomposition (HOSVD) algorithm. Moreover, we
also propose a novel MLP architecture for DDoS attack detection in which the cited tech-
nique is directly applied. The best MLP parameters used for dataset filtering are dynamically
computed such that the errors between the expected and predicted classifications are mini-
mized. According to the simulation results performed by using a customized dataset contain-
ing samples extracted from the CIC-IDS2017, CIC-IDS2018 and CIC-DDoS2019 bench-
mark datasets, the proposed scheme outperforms the state-of-the-art HOSVD and HOOI
based MLPs in terms of accuracy, detection rate and false alarm rate. Thus, our proposed
MLP shows a considerable potential for detecting DDoS attacks when NIDSs are trained
with corrupted data.
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TENSOR FEATURE MAP
CONCATENATION BASED
CONVOLUTIONAL NEURAL NETWORK
SCHEMES FOR DISTRIBUTED DENIAL
OF SERVICE ATTACK DETECTION

In this chapter, the following research question is addressed: How to efficiently detect DDoS

attacks in a CPS network by jointly applying multidimensional feature map concatenation

based techniques and deep learning algorithms, but now assuming that a noiseless dataset

is used for training and testing?

The remainder of this chapter is organized as follows:

• Motivation: in this section, an introduction to DDoS attack detection models based
on deep learning techniques is presented.

• Proposed Tensor Feature Map Concatenation Based CNN Schemes for DDoS At-
tack Detection: this section introduces and discusses the proposed tensor feature map
concatenation based CNN architectures for DDoS attack detection.

• Computational Complexity: the computational complexities of the proposed schemes
are presented.

• Simulation Results: the performance of the proposed approaches is evaluated through
numerical simulations.

The research contributions of Chapter 5 are summarized as follows:

1. A tensor feature map concatenation based CNN architecture for DDoS attack detec-
tion is proposed. In this approach, multiple branches, composed by CNN basic build-
ing blocks alternately positioned with concatenation modules, are placed in parallel
such that the outputs from CNNs of consecutive branches are concatenated and sent
to the following CNN within each branch. Finally, the outputs from all branches are
concatenated and forwarded to the same flattening and multilayer perceptron blocks,
where samples are classified as legitimate traffic or DDoS attack.
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2. A second improved feature map concatenation based CNN architecture is also intro-
duced. In this scheme, instead of the Flatten and MLP blocks in common for all of
the branches, each branch is followed by its respective Flatten and MLP blocks, whose
outputs are forwarded to a simple majority voting module in which the final classifica-
tion is computed.

3. Numerical simulations are conducted in order to validate the proposed schemes by us-
ing the CIC-IDS2017 and CIC-DDoS2019 benchmark datasets. The results show that
the proposed approaches outperform their competing techniques in terms of several
performance evaluation metrics.

5.1 MOTIVATION

Distributed Denial of Service (DDoS) attacks are bandwidth-saturating cyberthreats which
continuously trouble network operators and service providers in organizations over the world
[146]. Their main goal is to prevent legitimate users from accessing network services by
exhausting bandwidth and resources through huge volume of traffic, usually launched by
thousands or even millions compromised devices of unsuspecting users, known as “bots”
[86, 99, 147]. DDoS attacks can be classified as volumetric or flooding, and commonly use
layer 3 or layer 4 protocols, such as ICMP, UDP and TCP, to generate extensive volume
of traffic. In addition, application layer protocols, such as HTTP and DNS, can be used to
generate more sophisticated DDoS attacks in which lower network bandwidth is used for
starting. In this case, network resources are slowly depleted, since specific applications or
services are targeted. Moreover, by sending the requested data with a very small packet
window, attackers are able to keep the connection open as long as possible [118].

Several massive DDoS attacks have been launched on big organization’s networks in the
recent years. For example, in October 2016, an extensive DDoS attack of 1.5 Tbps was
executed against the Dyn DNS service provider. Multiple high-profile Dyn’s client websites,
such as GitHub, HBO, Twitter, PayPal, Netflix and others were rendered after Dyn’s DNS
infrastructure was knocked offline for several hours [148]. Furthermore, in October, 2020,
the Google Cloud Team revealed that a 2.54 Tbps DDoS attack had been mitigated by the
organization in September, 2017 [52]. Performed by Chinese Internet Service Providers, the
attack targeted thousands of Google’s IP addresses and lasted more than six months. It was
four times larger than the 623 Gbps attack launched by the Mirai botnet against the blog
of cybersecurity KrebsOnSecurity one year earlier [46]. Moreover, the most recent massive
DDoS attack occurred in February, 2020, when the Amazon’s AWS Shield protection service
mitigated an extreme attack of 2.3 Tbps, targeted against one of its customers [51].

Recently, DDoS attacks became harder to detect and prevent due to the evolution of attack
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approaches, which cannot be faced by traditional signature-based Network Intrusion Detec-
tion Systems (NIDS) [98]. In this sense, deep learning (DL) based solutions have been pro-
posed such that high level features can be derived from traffic data, improving the detection
performance [149]. Among the DL algorithms, one of the most popular is the Convolutional
Neural Network (CNN), which presents outstanding results in multiple research areas, such
as image classification [150], electroencephalography [151] and sentiment analysis [152].
In addition, CNNs have been successfully applied on the field of information security, in-
cluding network intrusion detection problems [153, 154], but the literature in which they are
specifically designed for detecting DDoS attacks is still limited.

In [118], Elsayed et al. proposed an intrusion detection system against DDoS attacks
in Software-Defined Networking environments in which recurrent neural networks (RNN)
and autoencoders are combined. Despite the recently released CIC-DDoS2019 dataset was
applied in simulations, further considerations regarding training and testing times were not
reported. In addition, Yuan et al. [149] proposed a DL based scheme to detect DDoS attacks
from legitimate network traffic at the victim end, alleviating several issues, such as the vul-
nerability to slow attack rates. However, the model was validated by using an obsolete dataset
(ISCX2012) and presented a huge number of trainable parameters. This fact may indicate
higher processing times, which were not addressed by the authors. Furthermore, in [154],
a feature fusion based parallel cross convolutional neural network for detecting abnormal
network traffic was proposed, in which the CIC-IDS2017 dataset was used in simulations.
However, the authors did not mention the training times obtained during the experiments.
Moreover, in [155], Koay et al. proposed a DDoS attack detection approach using multi-
ple entropy-based features and machine learning (ML) classifiers. The solution consisted
of a voting system in which classification results provided by multiple ML algorithms were
compared, and an alternating decision tree was used as an arbiter. Nevertheless, outdated
datasets, such as DARPA98 and ISCX2012, were applied for validation. Additionally, the
proposed solution relies on a feature construction phase, in which raw features are extracted
from packet headers in order to build entropy variation features. Such fact may denote higher
preprocessing times, which were not reported in the research. Chen et al. [128] proposed a
multi-channel CNN based detection and early warning framework for DDoS attacks, whose
results were based on real-time traffic and network package information. The authors applied
the recent CIC-IDS2017 dataset in experiments, despite the obsolete KDDCUP99 was also
used for model validation. Further, in [125], Doriguzzi-Corin et al. proposed a lightweight
deep learning based approach for DDoS attack detection in online resource-constrained en-
vironments. In simulations, the authors used a customized dataset, composed by samples
extracted from outdated and recent datasets, such as ISCX2012, CIC-IDS2017 and CIC-
IDS2018. In [127], Haider et al. proposed a deep CNN ensemble framework for efficient
DDoS attack detection in SDNs validated on the CIC-IDS2017 dataset. Nonetheless, higher
training and testing times were reported in simulations, which was compensated by a sat-
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isfactory performance detection. At last, in [2], Maranhão et al. proposed a multilayer
perceptron (MLP) architecture for DDoS attack detection trained with corrupted data, which
can be resulting, for example, of false data injection attacks performed on publicly available
datasets. In simulations, the authors performed cross validation between samples collected
from the recently released CIC-IDS2017, CIC-IDS2018 and CIC-DDoS2019 datasets. Still,
a mentioned drawback is the higher training time due to the tensor decompositions performed
during the feedforward propagation.

Despite such related works showed satisfactory performance results in DDoS attack de-
tection, many of them [125, 128, 149, 155] applied obsolete datasets, often criticized and
considered by many researchers as outdated. Due to the increasing number of attack sce-
narios, as well as the more complex software and network infrastructures, datasets must
contain the most up-to-date traffic samples such that a more efficient attack detection can
be achieved [156]. Additionally, some of the obsolete datasets present drawbacks, such as
a large amount of redundancy (DARPA98) or low number of features (KDDCUP99), which
can hinder the NIDS performance. Moreover, most of the related works ignore key perfor-
mance evaluation metrics, such as precision [2], false positive rate [118,149,154,155], false
negative rate [2, 118, 125, 149, 154, 155] and F-score [2], whereas one of them focus only on
the final overall accuracy [128]. Table 5.1 summarizes the main approaches and drawbacks
of each related work, as well as the weaknesses addressed by this chapter.

Table 5.1 – Related works summary.

Ref. Main Approach Drawback

[2]
- Noise-robust MLP architecture
for DDoS attack detection.

- Higher training times.
- Lack of important performance evaluation metrics.

[118]
- Deep learning based model for
DDoS attack detection.

- Lack of important performance evaluation metrics.
- Lack of analysis of the training and testing times.

[125]
- Lightweight deep learning system
for DDoS attack detection. - Solution with fixed parameters.

[127]
- Deep CNN ensemble framework
for DDoS attack detection in SDNs.

- Solution with fixed parameters.
- Higher training and testing times.

[128]
- Multi-channel CNN based
framework for DDoS attack
detection.

- Outdated dataset (KDDCUP99) applied for model validation.
- Solution with fixed parameters.
- Focus only on the overall accuracy.

[149]
- Deep learning based approach
for DDoS attack detection.

- Outdated dataset (ISCX2012) applied for model validation.
- Lack of important performance evaluation metrics
- Lack of analysis of the training and testing times.

[154]
- Deep learning based architecture
for network intrusion detection.

- Solution with fixed parameters
- Lack of important performance evaluation metrics.
- Lack of analysis of the training time.

[155]
- Multi-classifier system using
entropy-based features for DDoS
attack detection.

- Outdated datasets (DARPA98 and ISCX2012) applied for model validation.
- Lack of important performance evaluation metrics.
- Lack of analysis of the preprocessing, training and testing times.

This chapter
- Tensor feature map concatenation
based CNN schemes for DDoS
attack detection.

Addressed drawbacks:
- Recent datasets (CIC-IDS2017
and CIC-DDoS2019) applied for model validation.
- Parameter-tuning based solution.
- Complete set of performance evaluation metrics.
- Analysis of the training and testing times.

To address the aforementioned weaknesses, the recently released CIC-DDoS2019 and
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CIC-IDS2017 datasets are applied for model validation in this work. Furthermore, several
important performance metrics are assessed, as it will be shown in Subsection 5.4, such that a
whole description of the model performance is shown to the reader. In addition, this chapter
proposes a DDoS attack detection system in which several model parameters, for instance,
number of parallel branches, number of CNNs and number of MLP dense layers, can be
tuned by the network administrator. In this sense, a better attack detection performance can
be achieved by tuning the model settings, in contrast to several deep learning NIDS with
fixed parameters usually found in the literature [125, 127, 128, 154].

In this chapter, two novel CNN architectures for DDoS attack detection based on multi-
dimensional feature map concatenation are proposed. In the first one, called Tensor Feature
Map Concatenation Based CNN (TFMCB-CNN), multiple branches, composed by CNN
basic building blocks alternately positioned with concatenation modules, are placed in par-
allel such that the outputs from CNNs of consecutive branches are concatenated and sent
to the following CNN within each branch. Finally, the branch outputs are concatenated and
forwarded to the Flatten and Multilayer Perceptron (MLP) blocks, in which samples are clas-
sified as legitimate traffic or DDoS attack. Additionally, a refined version of the first scheme,
known as Tensor Feature Map Concatenation Based CNN Improved via Majority Voting
(TFMCB-CNN-MV), is also introduced. In this second approach, instead of the flattening
and multilayer perceptron blocks in common for all of the branches, each branch is followed
by its respective Flatten and MLP blocks, whose outputs are sent to a Simple Majority Voting
(SMV) module, in which the final classification is computed. To evaluate the effectiveness of
the proposed TTFMCB-CNN-MV and TFMCB-CNN schemes, extensive experiments were
conducted by using the CIC-IDS2017 and CIC-DDoS2019 benchmark datasets for valida-
tion. The results confirm that the proposed schemes outperform state-of-the-art techniques
in terms of several performance evaluation metrics.

5.2 PROPOSED TENSOR FEATURE MAP CONCATENATION BASED
CNN SCHEME FOR DDoS ATTACK DETECTION

This section is divided into three subsections. First, Subsection 5.2.1 details the data
preprocessing steps. Next, the proposed TFMCB-CNN and TFMCB-CNN-MV schemes for
DDoS attack detection are shown in Subsections 5.2.2 and 5.2.3, respectively.

Throughout this chapter, the dataset can be represented as a matrix, denoted as X ∈
RM×N , where N is the number of features and M is the number of instances. Each column
X:,n for n = 1, . . . , N corresponds to the n-th dataset feature, whereas each row Xm,: for
m = 1, . . . ,M is the m-th dataset instance. Moreover, y = [y1, . . . , yM ]T ∈ RM denotes
the class label vector, where ym indicates if the m-th instance Xm,: for m = 1, . . . ,M is
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legitimate traffic or DDoS attack.

Furthermore, the dataset matrix X can also be represented in the tensor form. Each
Xm,: ∈ RN for m = 1, . . . ,M can be reshaped as an R-dimensional tensor with size N1 ×
· · · × NR, with N =

∏R
r=1Nr, and stacked along the (R + 1)-th dimension, generating

the dataset tensor XXX ∈ RN1×···×NR×M . Thus, the m-th dataset instance can be denoted as
XXX:,:,m ∈ RN1×···×NR .

5.2.1 Data Preprocessing

Previously to the proposed tensor feature map concatenation based CNN approaches for
DDoS attack detection, the dataset must be preprocessed so that it is suitable for using by
ML classification algorithms. The data preprocessing is composed by three steps: dataset
splitting, dataset preprocessing and minibatch splitting.

• Dataset Splitting: in this step, the dataset XXX ∈ RN1×···×NR×M is initially split into
training and testing data. Next, we perform the k-fold cross validation, in which the
training dataset is randomly partitioned into k equally sized sets such that, at each one
of its k iterations, one set is used for validation, whereas the other k−1 sets are used for
training. Finally, the trained model performance is assessed on the testing set, which
is used only once. Thus, the validation set is used for tuning model hyperparameters
during the training phase, whereas the testing set provides an unbiased evaluation of
the final trained model.

• Dataset Preprocessing: next, the training, validation and testing datasets are submitted
to a preprocessing step, which includes data cleansing, feature scaling and label en-
coding. In data cleansing, instances with missing/corrupted values (NaN) and infinity
values (Inf) are deleted from each dataset. Then, in feature scaling, dataset variables
are normalized to the range between 0 and 1 such that features with lower values are
not dominated by variables with higher order of magnitude. Finally, in label encoding,
“DDoS attack” and “legitimate” labels are converted from categorical variables to the
codes “1” and “0”, respectively.

• Minibatch Splitting: finally, the training dataset is split into H minibatches XXXh ∈
RN1×···×NR×Mh for h = 1, . . . , H containing Mh instances each. If the training dataset
size is not a multiple of Mh, random instances are selected from the training dataset
and added into the last minibatch until such condition is valid.
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5.2.2 Proposed TFMCB-CNN Scheme

This section presents the proposed Tensor Feature Map Concatenation Based CNN scheme
for DDoS attack detection, which is depicted by the block diagram shown in Fig. 5.1. The
architecture is composed by four blocks, namely, Proposed Tensor Feature Map Concatena-
tion Block, Final Concatenation, Flatten, and MLP. Such blocks are detailed in the following
subsections.
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Figure 5.1 – Block diagram of the proposed TFMCB-CNN scheme.

5.2.2.1 Proposed Tensor Feature Map Concatenation Block

The proposed Tensor Feature Map Concatenation block is represented by Box 1 of Fig.
5.1, highlighted in red color. In addition, Fig. 5.2 details the inner components of the pro-
posed block, which consists of multiple parallel branches Bl for l = 1, . . . , L. Each branch
is composed of K CNN basic building blocks, labeled as CNNl,k for l = 1, . . . , L and
k = 1, . . . , K, alternately positioned with K − 1 feature map concatenation blocks, denoted
as concl,k for l = 1, . . . , L and k = 1, . . . , K−1. The CNN blocks are represented by Boxes
a.1, . . . , a.K, whereas the concatenation blocks are depicted in Boxes b.1, . . . , b.(K − 1) of
Fig. 5.2. Additionally, a zoomed view of the inputs and outputs of the CNNl,k and concl,k

blocks is also shown at the bottom of Fig. 5.2. In our proposed Tensor Feature Map Con-
catenation block, the outputs from CNNs of consecutive branches are concatenated and sent
to the following CNN within each branch. At the end, the branch outputs are sent to Block 2
of Fig. 5.1 for concatenation. More details regarding the operations performed on the CNN
and concatenation blocks are shown in items a) and b) as follows.

a) CNN Basic Building Block, CNNl,k

The CNN basic building blocks, CNNl,k for l = 1, . . . , L and k = 1, . . . , K, are repre-
sented by Boxes a.1 to a.K of Fig. 5.2. Additionally, Fig. 5.3 illustrates the inner compo-
nents of the CNNl,k block, including their inputs and outputs. Such components, namely,
Convolution, Dropout, Batch Normalization, Activation and Pooling, are represented by

115



 

 

 

  

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

   

 

 

 

Eq. (5.1) to 
(5.6) 

Proposed Tensor Feature 
Map Concatenation Block 

𝓧:,:,𝑚 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝓧:,:,𝑚 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input 

⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 

to conc𝑙−1,𝑘 

 
to conc𝑙−1,2 

 
to conc𝑙−1,1 

 

to conc𝑙−1,𝐾−1 

 

⋯ 
 

from CNN𝑙+1,2 

 

from CNN𝑙+1,𝑘 

 

Branch B𝑙 

from CNN𝑙+1,𝐾−1 

 
from CNN𝑙+1,1 

 

b.k)conc𝑙,𝑘 

 
b.(K-1))conc𝑙,𝐾−1 

 
b.2)conc𝑙,2 

 
⋯ a.1)CNN𝑙,1 a.K) CNN𝑙,𝐾 a.2)CNN𝑙,2 a.k)CNN𝑙,𝑘 b.1)conc𝑙,1 

 

𝓧Dr,𝑚,(𝑙,𝐾) 

 

⋯ 
 

from CNN2,2 

 

from CNN2,𝑘 

 

Branch B1 

from CNN2,𝐾−1 

 
from CNN2,1 

 

b.k)conc1,𝑘 

 
b.(K-1))conc1,𝐾−1 

 
b.2)conc1,2 

 
⋯ a.1)CNN1,1 a.K) CNN1,𝐾 a.2)CNN1,2 a.k)CNN1,𝑘 b.1)conc1,1 

 

𝓧Dr,𝑚,(1,𝐾) 

 

to conc𝑙−1,𝑘 

 
to conc𝑙−1,2 

 
to conc𝑙−1,1 

 

to conc𝑙−1,𝐾−1 
 

⋯ 
 

from CNN1,2 

 from CNN1,𝑘 

 

Branch B𝐿 

from CNN1,𝐾−1 
 

from CNN1,1 

 

b.k)conc𝐿,𝑘 

 
b.(K-1))conc𝐿,𝐾−1 

 
b.2)conc𝐿,2 

 
⋯ a.1)CNN𝐿,1 a.K) CNN𝐿,𝐾 a.2)CNN𝐿,2 a.k)CNN𝐿,𝑘 b.1)conc𝐿,1 

 

𝓧Dr,𝑚,(𝐿,𝐾) 

 

ZOOM IN 
Eq. (5.7) 

𝓧C,𝑚,(𝑙,𝑘) 
 

𝓧Dr,𝑚,(𝑙,𝑘) 
 

𝓧Dr,𝑚,(𝑙+1,𝑘) 
 

𝓧Dr,𝑚,(𝑙,𝑘) 
 

𝓧C,𝑚,(𝑙,𝑘−1) 
 

a.k)CNN𝑙,𝑘 
 

b.k)conc𝑙,𝑘 
 

⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 ⋯
 

 

Figure 5.2 – Detailed view of the proposed Tensor Feature Map Concatenation block, in-
cluding a zoomed view of the inputs and outputs of the CNNl,k and concl,k blocks at the
bottom.

  

 

𝓧Af,𝑚,(𝑙,𝑘) 
 Eq. (5.3) 

Eq. (5.2) Eq. (5.1) 

Eq. (5.6) 
Eq. (5.4), 

(5.5) 

𝓧Po,𝑚,(𝑙,𝑘) 
 

𝓧Dr,𝑚,(𝑙,𝑘) 
 

𝓧Bn,𝑚,(𝑙,𝑘) 
 

𝓧Cv,𝑚,(𝑙,𝑘) 
 𝓧C,𝑚,(𝑙,𝑘−1) 

 a.k.1) Convolution a.k.3) Activation 

a.k.4) Pooling a.k.5) Dropout 

a.k.2) Batch 
Normalization 

CNN𝑙,𝑘 

Figure 5.3 – Inputs and outputs of the Convolution, Batch Normalization, Activation, Pooling
and Dropout blocks within CNNl,k.

Boxes a.k.1 to a.k.5 of Fig. 5.3 and described in the following items.

• Convolution: This operation is represented by Box a.k.1 of Fig. 5.3. Before detailing
the convolution operation performed on the input data, the concepts of padding and
stride should be introduced. In deep learning architectures, the usage of small convo-
lution filters lead to the lose of several data features, especially when a large number
of convolutional layers is applied. To avoid this, padding is applied such that extra
features are filled around each dataset matrix. Padding is represented by the parameter
p(l,k), which denotes the number of elements added on each of the four sides of the
data matrix at CNNl,k. On the other hand, stride, represented as s(l,k), is the step of the
convolutional product, i.e., the amount of shifts performed by the convolution window
over the input matrix.
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In this chapter, two-dimensional convolutional layers are considered due to the lower
processing time compared to higher order convolutional computations, which is a fun-
damental requirement for network intrusion attack detection. In this sense, the input
data at each branch Bl corresponds to the m-th dataset sample, i.e., XXX:,:,m ∈ RN1×N2

for m = 1, . . . ,M , where N1 · N2 = N . In addition, the input tensor at CNNl,k

is given by XXXC,m,(l,k−1) ∈ RN
(l,k−1)
1 ×N(l,k−1)

2 ×N(l,k−1)
c , where N (l,k−1)

1 and N (l,k−1)
2 are

the feature map dimensions, and N (l,k−1)
c is the number of channels. Furthermore, if

FFF(l,k) ∈ RF
(l,k)
1 ×F (l,k)

2 ×N(l,k−1)
c is the convolution kernel tensor, the (q, r, nc)-th element

xCv
q,r,nc

of the output tensor XXXCv,m,(l,k) ∈ RN
(l,k)
1 ×N(l,k)

2 ×N(l,k)
c is given by

xCv,m,(l,k)
q,r,nc

=

N
(l,k−1)
1∑
i=1

N
(l,k−1)
2∑
j=1

N
(l,k−1)
c∑
g=1

f
(l,k)
i,j,g x

C,m,(l,k−1)
q+i−1,r+j−1,g

+ b(l,k)
nc

, nc = 1, . . . , N (l,k)
c ,

(5.1)

where b(l,k)
nc is the bias, and NCv,(l,k)

1 = b(N (l,k−1)
1 + 2p(l,k) − F

(l,k)
1 )/s(l,k) + 1c and

N
Cv,(l,k)
2 = b(N (l,k−1)

2 + 2p(l,k) − F
(l,k)
2 )/s(l,k) + 1c are the height and width of the

feature map XXX
Cv,m,(l,k)
:,:,nc for nc = 1, . . . , N

(l,k)
c . Moreover, f (l,k)

i,j,g is the (i, j, g)-th ele-
ment of FFF(l,k) and is learned during the process of forward and backward propagation.
Particularly at the first CNN of each branch, i.e., CNNl,1 for l = 1, . . . , L, the input
data corresponds to the m-th dataset instance, i.e., XXXC,m,(l,1) = XXX:,:,m ∈ RN1×N2 for
m = 1, . . . ,Mh.

• Batch Normalization: this operation, represented by Box a.k.2 of Fig. 5.3, acts as
a regularizer and allows much higher learning rates without the risk of divergence
[157]. If XXXCv,(l,k),[h] = [XXXCv,1,(l,k)| . . . |XXXCv,Mh,(l,k)]4 is the h-th minibatch tensor com-
posed by Mh tensors XXXCv,m,(l,k) stacked along the 4th dimension, its mean and stan-
dard deviation tensors can be computed as µ̂µµh = (1/Mh)

∑Mh

m=1XXX
Cv,m,(l,k) and σ̂σσh =√

(1/Mh)
∑Mh

m=1(XXXCv,m,(l,k) − µ̂µµh)2, respectively. Thus, the batch-normalized tensor

XXXBn,(l,k),[h] ∈ RN
Cv,(l,k)
1 ×NCv,(l,k)

2 ×N(l,k)
c ×Mh can be expressed as

XXXBn,(l,k),[h] = γ(l,k),[h]

XXXCv,(l,k),[h] − µ̂µµh√
σ̂σσ2
h + ε

+ β(l,k),[h]

= [XXXBn,1,(l,k)| . . . |XXXBn,Mh,(l,k)]4,

(5.2)

where γ(l,k),[h] and β(l,k),[h] are the scaling and shifting parameters at CNNl,k for the
h-th minibatch, respectively, and ε is a constant included for numerical stability [157].
The variables γ(l,k),[h] and β(l,k),[h] are learned during the forward and backward prop-
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agation, jointly with the other parameters of the model.

• Activation: after the batch normalization, XXXBn,m,(l,k) ∈ RN
Cv,(l,k)
1 ×NCv,(l,k)

2 ×N(l,k)
c for

m = 1, . . . ,Mh is forwarded to the Activation block, represented by Box a.k.3 of Fig.
5.3. In this block, an activation function is attached to each neuron of the network.
Such function determines whether the neuron should be activated or not, based on the
relevance of each neuron input for the model prediction. In this chapter, the Rectified
Linear Unit (ReLU), defined as ψ(·) = max(0; ·), is chosen as activation function,
since it is computationally efficient and presents a derivative function, allowing back-
propagation.

Thus, the tensor XXXAf,m,(l,k) ∈ RN
Cv,(l,k)
1 ×NCv,(l,k)

2 ×N(l,k)
c obtained by applying ReLU on

XXX
Bn,m,(l,k)
:,:,nc for nc = 1, . . . , N

(l,k)
c is given by

XXXAf,m,(l,k) = [ψ(XXX
Bn,m,(l,k)
:,:,1 )| . . . |ψ(XXX

Bn,m,(l,k)

:,:,N
(l,k)
c

)]3. (5.3)

• Pooling: this block, represented by Box a.k.4 of Fig. 5.3, consists of a pooling window
slid over the input tensor XXXAf,m,(l,k) such that a single output is computed from the
elements within that window. Differently from the Convolution block, there are no
parameters in the pooling layer, and some specific function, for example the average
pooling (Avg Pool) or max pooling (Max Pool), is applied on the elements ranged
by the pooling window. The main advantage of pooling is to prevent overfitting by
reducing the spatial size of the CNN.

The tensor XXXPo,m,(l,k) ∈ RN
Po,(l,k)
1 ×NPo,(l,k)

2 ×N(l,k)
c obtained by applying the pooling

function φ(·) on XXX
Af,m,(l,k)
:,:,nc for nc = 1, . . . , N

(l,k)
c is given by

XXXPo,m,(l,k) = [φ(XXX
Af,m,(l,k)
:,:,1 )| . . . |φ(XXX

Af,m,(l,k)

:,:,N
(l,k)
c

)]3, (5.4)

whereNPo,(l,k)
1 = b(NCv,(l,k−1)

1 +2p(l,k)−E(l,k)
1 )/s(l,k)+1c andNPo,(l,k)

2 = b(NCv,(l,k−1)
2 +

2p(l,k)−E(l,k)
2 )/s(l,k) +1c are the height and width ofXXXPo,m,(l,k)

:,:,nc for nc = 1, . . . , N
(l,k)
c ,

and E(l,k)
1 and E(l,k)

2 denote the height and width of the pooling window.

If Avg Pool is considered as pooling function, the (q, r, nc)-th element of XXXPo,m,(l,k) ∈
RN

Po,(l,k)
1 ×NPo,(l,k)

2 ×N(l,k)
c can be expressed as

xPo,m,(l,k)
q,r,nc

=
1

E
(l,k)
1 E

(l,k)
2

E
(l,k)
1∑
i=1

E
(l,k)
2∑
j=1

x
Af,m,(l,k)
q+i−1,r+j−1,nc

,

q = 1, . . . , N
Cv,(l,k)
1 , r = 1, . . . , N

Cv,(l,k)
2 ,

nc = 1, . . . , N (l,k)
c ,

(5.5)
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where xAf,m,(l,k)
q+i−1,r+j−1,nc

is the (q+i−1, r+j−1, nc)-th element of the tensorXXXAf,m,(l,k).

On the other hand, if Max Pool is adopted, the (q, r, nc)-th element of XXXPo,m,(l,k) is
given by

xPo,m,(l,k)
q,r,nc

= max
E

(l,k)
1 ,E

(l,k)
2

i=1,j=1 (x
Af,m,(l,k)
q+i−1,r+j−1,nc

),

q = 1, . . . , N
Cv,(l,k)
1 , r = 1, . . . , N

Cv,(l,k)
2 ,

nc = 1, . . . , N (l,k)
c .

(5.6)

• Dropout: represented by Box a.k.5 of Fig. 5.3, it is a technique applied to each element
of the input tensorXXXPo,m,(l,k) to prevent overfitting. To accomplish this, some elements
are randomly set to zero, or dropped, with rate p. In order to keep the sum over all
of the components of XXXPo,m,(l,k) unchanged, elements not set to zero are scaled up by
1/(1− p). In addition, dropout is applied only during the training phase.

The tensorXXXDr,m,(l,k) ∈ RN
Po,(l,k)
1 ×NPo,(l,k)

2 ×N(l,k)
c obtained after applying dropout on the

elements of XXXPo,m,(l,k) can be expressed as

XXXDr,m,(l,k) = VVV(l,k) �XXXPo,m,(l,k), (5.7)

where VVV(l,k) is a tensor composed by independent Bernoulli random variables which
take the value 1 with probability p [158].

b) Concatenation Block, concl,k

The concatenation blocks, concl,k for l = 1, . . . , L and k = 1, . . . , K−1, are represented
by Boxes b.1 to b.(K − 1) of Fig. 5.2. Each concl,k concatenates the output tensors from
the CNNl,k and CNNl+1,k blocks for l = 1, . . . , L− 1 along the 3rd dimension. Particularly
when l = L, concL,k concatenates the outputs from CNN1,k and CNNL,k such that the
network forms a concatenation loop between consecutive branches. As pointed out by [150],
the main idea behind the concatenation process is to enrich feature diversity such that the
classifier can achieve better recognition ability. The concatenation process is adopted along
the channel dimension and, consequently, the feature maps generated by possibly different
filter sizes are concatenated such that the selection of an effective filter size is not needed.

The output XXXC,(l,k) ∈ RN
Po,(l,k)
1 ×NPo,(l,k)

2 ×(N
(l,k)
c +N

(l+1,k)
c ) from concl,k can be expressed as

XXXC,m,(l,k) = [XXXDr,m,(l,k)|XXXDr,m,(v,k)]3,

l = 1, . . . , L, v = l mod L+ 1,
(5.8)

where mod stands for the modulo operation.
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5.2.2.2 Final Concatenation

The final concatenation process is represented by Box 2 of Fig. 5.1. In this block, the
output tensors from each parallel branch, given by XXXDr,m,(l,K) for l = 1, . . . , L, are concate-
nated along the 3rd dimension into the tensor XXXOut,m ∈ RN

Po,(L,K)
1 ×NPo,(L,K)

2 ×
∑L

l=1N
(l,K)
c as

follows

XXXOut,m = [XXXDr,m,(1,K)| . . . |XXXDr,m,(L,K)]3. (5.9)

5.2.2.3 Flatten

Since the input data of multilayer perceptrons (MLP) is one-dimensional, the concate-
nated tensor XXXOut,m in (5.9) must be flattened into the vector form. Therefore, the flattening
operation, represented by Box 3 of Fig. 5.1, convertsXXXOut,m into the vector xOut,m as follows

xOut,m = vec(XXXOut,m). (5.10)

5.2.2.4 MLP

The multilayer perceptron, represented by Box 4 of Fig. 5.1, is the final step of the
feature map extraction and classification phase. Fig. 5.4 illustrates the inner components of
the MLP, namely, D + 1 fully connected dense layers and Softmax function, represented by
Boxes 4.1 to 4.(D+2). In an MLP, the output of the d-th layer, z[d] ∈ RN [d] , can be expressed
as

z[d] = ψ[d](W[d,d−1] · z[d−1] + b[d]), (5.11)

where W[d,d−1] ∈ RN [d]×N [d−1] is the weight matrix between the (d − 1)-th and d-th dense
layers. Furthermore, b[d] ∈ RN [d] , ψ[d](·) = max(0; ·) and N [d] are the bias vector, the
activation function and the number of neurons of the d-th dense layer, respectively.

The first dense layer corresponds to the MLP input layer, which receives the output vector
from Block 3, i.e., z[1] = xOut,m. Since we are dealing with binary classification, the number
of neurons of the (D+1)-th layer isN [D+1] = 2 and, consequently, z[D+1] = [z

[D+1]
1 , z

[D+1]
2 ]T,

as it can be seen in Box 4.(D + 1) of Fig. 5.4. In addition, the dataset instance XXX:,:,m is
classified as legitimate traffic or DDoS attack by applying the Softmax function, represented
in Box 4.(D + 2) of Fig. 5.4, on the input vector z[D+1].

Therefore, given z[D+1], the probability that XXX:,:,m is classified as ŷm = u can be ex-
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Figure 5.4 – Dense layers and Softmax function within the MLP block.

pressed as

P (ŷm = u|z[D+1]) = P (ŷm) =
ez

[D+1]
u+1

ez
[D+1]
1 + ez

[D+1]
2

,

u = 0, 1.

(5.12)

Finally, the predicted class ŷm corresponds to the class u for which P (ŷm = u|z[D+1]) is
maximum, i.e.,

ŷm = argmax
u
{P (ŷm = u|z[D+1])}. (5.13)

During the training phase, the aim is to minimize a cost function J by applying the gra-
dient descent method. At each iteration, the m-th training instance is feedforwarded through
the layers of the model and the error between the expected and predicted classes computed
over a batch ofMh instances is backpropagated through the network. The weights and biases
of the model are updated by the backpropagation algorithm according to the partial deriva-
tives of J [110]. Such process goes on until a predetermined number of epochs is reached, or
the computed error is below a given threshold [125]. Such error can be calculated by using
the well-known binary cross-entropy cost function, given by

J = − 1

Mh

Mh∑
m=1

[(ymlog(P (ŷm))) + (1− ym)log(1− P (ŷm))], (5.14)

where ym is the true class of the m-th instance.

On the other hand, during the testing phase, the m-th testing instance is feedforwarded
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through the layers of the trained model such that its predicted label ŷm is computed as in
(5.13).

5.2.3 Proposed TFMCB-CNN Scheme Improved Via Majority Voting

This section introduces a refined version of the technique proposed in Subsection 5.2.2,
called Tensor Feature Map Concatenation Based CNN scheme Improved via Majority Vot-
ing (TFMCB-CNN-MV), as depicted in Fig. 5.5. Differently from TFMCB-CNN, which
presented a final concatenation module followed by Flatten and MLP blocks in common for
all of the parallel branches, each branch Bl is followed by its respective flattening and mul-
tilayer perceptron blocks, Flattenl and MLPl for l = 1, . . . , L. At the end, the outputs from
each MLPl are sent to a Simple Majority Voting module for final classification.

Fig. 5.5 illustrates the block diagram of the proposed TFMCB-CNN-MV scheme for
DDoS attack detection. The architecture is composed by four blocks, namely, Proposed
Tensor Feature Map Concatenation Block, Flatten, MLP, and SMV, represented by Boxes 1
to 4. Since Box 1 is identical to the one described in Subsection 5.2.2.1, only the Flatten and
MLP blocks of each branch Bl for l = 1, . . . , L, as well as the SMV module, are detailed in
the following subsections.
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Figure 5.5 – Block diagram of the proposed TFMCB-CNN-MV scheme.

5.2.3.1 Flatten

The flattening operation is represented by Box 2 of Fig. 5.5. The output tensors from
each branch, denoted as XXXDr,m,(l,K), are sent to their respective flattening blocks Flattenl for
l = 1, . . . , L. In this sense, the outputs from each Flattenl block correspond to the tensor
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XXXDr,m,(l,K) in the vector form, i.e.,

xm,l = vec(XXXDr,m,(l,K)),

l = 1, . . . , L.
(5.15)

5.2.3.2 MLP

The MLP is represented by Box 3 of Fig. 5.5. Initially, the vectors xm,l from the flatten-
ing blocks are forwarded to each MLPl for l = 1, . . . , L. Similarly to the MLP block de-
scribed in Subsection 5.2.2.4, each MLPl contains D + 1 fully connected dense layers, plus
the Softmax function for classification. Therefore, the output of the d-th layer, z[d],l ∈ RN [d],l ,
can be denoted as

z[d],l = ψ[d],l(W[d,d−1],l · z[d−1],l + b[d],l), (5.16)

where W[d,d−1],l ∈ RN [d],l×N [d−1],l is the weight matrix between the (d− 1)-th and d-th dense
layers of MLPl. In addition, b[d],l ∈ RN [d],l , ψ[d],l(·) = max(0; ·) and N [d],l are the bias
vector, the activation function and the number of neurons of the d-th dense layer of MLPl,
respectively.

Analogously to (5.12), the probability that XXX:,:,m is classified as ŷm,l = u at the MLPl

block can be denoted as

P (ŷm,l = u|z[D+1],l) = P (ŷm,l) =
ez

[D+1],l
u+1

ez
[D+1],l
1 + ez

[D+1],l
2

,

u = 0, 1.

(5.17)

Further, the label ŷm,l predicted at MLPl corresponds to the class u for which P (ŷm,l =

u|z[D+1],l) is maximum, i.e.,

ŷm,l = argmax
u
{P (ŷm,l = u|z[D+1],l)}. (5.18)

The training and testing phases are similar to the ones described for the proposed TFMCB-
CNN scheme in Subsection 5.2.2.4. However, each MLPl for l = 1, . . . , L presents its
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respective binary cross-entropy cost function, given by

J l = − 1

Mh

Mh∑
m=1

[(ymlog(P (ŷm,l))) + (1− ym)log(1− P (ŷm,l))], (5.19)

such that the forward and backward propagations are independently performed through each
MLPl.

5.2.3.3 SMV Block

Finally, the predicted classes ŷm,l for l = 1, . . . , L are sent to the Simple Majority Voting
block, which is represented by Box 4 of Fig. 5.5. The final class label ŷm form = 1, . . . ,Mh

corresponds to the majority of the class labels predicted by all of the L MLPs, i.e.,

ŷm = mode{ŷm,1, . . . , ŷm,L}, (5.20)

where mode{·} is the mode function, which returns the most frequently predicted class
among the ŷm,l for l = 1, . . . , L.

Therefore, from the proposed schemes presented so far, it can be highlighted that a better
performance for DDoS attack detection can be achieved by tuning several model settings, for
example, number of parallel branches, number of MLP dense layers and convolution filter
size, in contrast to several deep learning NIDS with fixed parameters commonly found in the
literature.

5.3 COMPUTATIONAL COMPLEXITY

This section discusses the computational complexity of the proposed TFMCB-CNN and
TFMCB-CNN-MV schemes presented in Section 5.2. We provide an analysis of the most
costly calculations as a function of the largest contributions of the most important variables
of the models. Furthermore, for the L multiple parallel branches, it is considered a par-
allel computation, where np is the number of processors of the NIDS host machine. The
computational complexity related to the most time costly layers are shown in the following
items, namely, Convolution and Dense layers. Despite it presents low computational cost,
the Simple Majority Voting block is also evaluated.

• Convolution Layer: in this layer, a group of nf convolution filters of dimension f × f
are slid over nc feature maps with size n × n. If p and s are the padding and stride,
respectively, the dimensions of the output feature map are given by nout× nout, where
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nout = (n − f + 2p)/s + 1. To calculate the input to the activation function for each
element in the output feature maps, ncf 2 multiply-accumulate operations are required
[159]. Since there are K Convolution blocks within each branch, and considering a
batch size of Mh, the total computational complexity related to the Convolution layer
for the TFMCB-CNN and TFMCB-CNN-MV schemes are given by

OOO[TFMCB-CNNCv] = OOO
[
KMhncf

2nfn
2
out

]
, (5.21)

OOO[TFMCB-CNN-MVCv] = OOO
[
(L/np)KM

hncf
2nfn

2
out

]
, (5.22)

where (L/np) is the term corresponding to the parallel computation, defined as the
ratio between the number of branches and the number of processors.

• Dense Layers: each MLP is composed byD+1 dense layers, with complexity given by
OOO[
∑D

d=1 N
[d]N [d+1]], which is determined by the weight matrix W[d,d−1],l ∈ RN [d],l×N [d−1],l

between the d-th and (d + 1)-th layers. Thus, the total time complexity related to the
Dense Layers for the TFMCB-CNN and TFMCB-CNN-MV schemes can be denoted
as

OOO[TFMCB-CNNMLP] = OOO

[
Mh

(
D∑
d=1

N [d]N [d+1]

)]
, (5.23)

OOO[TFMCB-CNN-MVMLP] = OOO

[
(L/np)M

h

(
D∑
d=1

N [d]N [d+1]

)]
. (5.24)

• Simple Majority Voting: in this block, the mode{·} function is applied on the predicted
class labels ŷm,l for l = 1, . . . , L forwarded by all of the MLP blocks. Thus, the total
time complexity related to the SMV block in the TFMCB-CNN-MV scheme is given
by

OOO[TFMCB-CNN-MVSMV] = OOO
[
LMh

]
. (5.25)

In Section 5.4, the proposed schemes are compared with three different CNN based
models, namely, Parallel-CNN-MV, Parallel-CNN and Serial-CNN. The two first models
are similar to the TFMCB-CNN-MV and TFMCB-CNN schemes, but without the concl,k

blocks such that there is no concatenation between CNN outputs from consecutive branches.
Additionally, the third model, Serial-CNN, is equivalent to the Parallel-CNN scheme, but
composed by a single branch. More details regarding such competitor techniques are shown
in Section 5.4.
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Table 5.2 summarizes the computational complexity for each layer of the compared ap-
proaches. It can be observed that the parameter L/np is fundamental in schemes in which
parallel computations are performed. If L >> np, the computational complexity of the
model is increased, which reflects the importance of a higher number of processors in the
IDS host machine. Furthermore, the convolution filter size, as well as the number of CNNs,
present a direct impact on the time cost of the models. In this sense, a trade-off between
the more accurate DDoS attack detection provided by larger filter sizes and the computa-
tional complexity must be observed, as shown in Section 5.4. Moreover, the time cost also
depends on the number of input feature maps nc. In the proposed TFMCB-CNN-MV and
TFMCB-CNN schemes, nc is increased after each concatenation operation, since the number
of input feature maps at the CNNl,k+1 block corresponds to the sum between the number of
output feature maps from the CNNl,k and CNNl+1,k blocks. In this sense, the number of
feature maps in TFMCB-CNN-MV and TFMCB-CNN is represented by n∗c . On the other
hand, in the competitor methods, the number of input feature maps at the CNNl,k+1 block is
equal to the number of convolution filters of the previous CNN block, CNNl,k. Therefore,
the proposed TFMCB-CNN-MV and TFMCB-CNN schemes present higher computational
complexity compared to the other approaches especially due to the concatenation process,
which increases the number of feature maps throughout each branch Bl for l = 1, . . . , L.
Finally, from Table 5.2, it is clear that the Single-CNN scheme shows the lowest computa-
tional complexity among all of the compared architectures, since it is composed by a single
branch, without concatenation operations. Nonetheless, its lower time cost is accompanied
by a worse attack detection performance, which is reinforced in Section 5.4.

Table 5.2 – Computational complexity of the following schemes: (1) Proposed TFMCB-
CNN-MV, (2) Proposed TFMCB-CNN, (3) Parallel-CNN-MV, (4) Parallel-CNN, and (5)
Serial-CNN.

Model Convolution Dense Layers Simple Majority Voting

Proposed TFMCB-CNN-MV OOO[( L
np

)KMhn∗cf
2nfn

2
out] OOO[( L

np
)Mh(

∑D
d=1 N

[d]N [d+1])] OOO[LMh]

Proposed TFMCB-CNN OOO[( L
np

)KMhn∗cf
2nfn

2
out] OOO[Mh(

∑D
d=1N

[d]N [d+1])] –

Parallel-CNN-MV OOO[( L
np

)KMhncf2nfn
2
out] OOO[( L

np
)Mh(

∑D
d=1 N

[d]N [d+1])] OOO[LMh]

Parallel-CNN OOO[( L
np

)KMhncf2nfn
2
out] OOO[Mh(

∑D
d=1N

[d]N [d+1])] –

Serial-CNN OOO[KMhncf2nfn
2
out] OOO[Mh(

∑D
d=1N

[d]N [d+1])] –

5.4 SIMULATION RESULTS

This section is divided into four subsections. First, details about the features and samples
extracted from the DDoS benchmark datasets used in this chapter are shown in Subsection
5.4.1. Next, simulation results are introduced in Subsection 5.4.2. Following, Subsection
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5.4.3 presents considerations regarding the processing times of all of the compared schemes.
Finally, Subsection 5.4.4 discusses the obtained results.

5.4.1 DDoS Attack Datasets

Two subsets composed by legitimate and DDoS attack samples extracted from the CIC-
DDoS2019 and CIC-IDS2017 benchmark datasets are used in this chapter. Moreover, the-
oretical details about both datasets are shown in Appendix C. First, each subset is split into
training and testing sets, with proportion 80:20. Next, a 5-fold cross validation is performed
on the training dataset, as explained in Subsection 5.2.1. Finally, the trained classifier is eval-
uated on the testing set. The data customized from the CIC-DDoS2019 dataset is composed
by N= 64 features and M = 40,000 instances, of which 32,000 are legitimate and 8,000
are DDoS attacks, namely, DNS, LDAP, MSSQL, NetBIOS, NTP, SNMP, SSDP and TFTP
based attacks, as well as TCP SYN flood and UDP flood. Similarly, the data customized
from the CIC-IDS2017 dataset is composed by the same number of instances and features
as the subset created from the CIC-DDoS2019 dataset. Further, the features evaluated in this
chapter are the same as those used in Chapters 3 and 4, which are shown in Table C.2 of
Appendix C. In addition, details about the DDoS attack types and the corresponding number
of instances extracted from the CIC-DDoS2019 and CIC-IDS2017 datasets are presented in
Table 5.3. Finally, each customized dataset is folded as a three-dimensional tensor with size
N1 ×N2 ×M , and divided into minibatches with size Mh, where Mh = 128,. . . ,1024. For
simplicity, we set N1 = N2 = 8 such that the number of features is given by N1 · N2 = N =
64.

Table 5.3 – DDoS attack types used in this chapter, as well as the corresponding number of
instances extracted from the CIC-DDoS2019 and CIC-IDS2017 datasets.

Dataset Traffic Type Total

Legitimate 32,000

DNS-based DDoS 800

LDAP-based DDoS 800

MSSQL-based DDoS 800

NetBIOS-based DDoS 800

CICDDoS2019 NTP-based DDoS 800

SNMP-based DDoS 800

SSDP-based DDoS 800

UDP flood 800

TCP SYN flood 800

TFTP-based DDoS 800

CICIDS2017
Legitimate 32,000

HTTP and UDP-based DDoS 8000
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5.4.2 Results

This subsection presents the performance evaluation of the proposed TFMCB-CNN-MV
and TFMCB-CNN schemes for DDoS attack detection through numerical simulations. Ac-
curacy (Acc), Precision (Prec), Recall (Rec), False Positive Rate (FPR), False Negative Rate
(FNR), F-Score and Matthews Correlation Coefficient (MCC) are the performance evalua-
tion metrics used in this chapter, which are defined in Appendix D.

Simulations were executed on a desktop computer with processor Intel Core i7-2600
3.40 GHz, composed by 8 logic processors and 16 GB of RAM. Data preprocessing and
deep learning algorithms were implemented by using the Scikit-Learn and Keras Python
libraries. In addition, since the CIC-IDS2017 dataset is widely applied for NIDS validation
in several state-of-the-art researches in the literature, it was used only for comparison with
related works. On the other hand, the CIC-DDoS2019 dataset is extensively applied for
model validation throughout this subsection, since it is a recent dataset and contains the most
up-to-date DDoS attacks.

Tables 5.4 and 5.5 show the layer types, with their respective output shapes and sim-
ulation parameters, at each block of the proposed TFMCB-CNN-MV and TFMCB-CNN
schemes, respectively. The convolution filter size ranges from 2 × 2 to 5 × 5, the number of
branches ranges from 2 to 5, the pooling filter size is 2 × 2 and the dropout rate is fixed in
0.2. Further, the number of dense layers varies from 1 to 5, the minibatch size varies between
128 and 1,024 and Avg Pool is adopted as the pooling function. Note that, in Tables 5.4 and
5.5, the tensor output shape of the concl,1 block, given by 4 × 4 × 32, presents the double
of the number of channels of the Dropout layer output. In this case, the outputs from concl,1

and concl+1,1, each of which with 16 channels, are concatenated along the 3rd dimension,
generating a tensor with 32 channels. In addition, considering the CNNl,1 block, the tensor
output shape of the Pooling layer is 4 × 4 × 16, i.e., each tensor frontal slice presents 4 · 4 =
16 features, which is one fourth of the number of features after Activation, with shape 8 × 8
× 16, whose frontal slice has 8 · 8 = 64 features. Such fact is due to the Pooling Filter Size
of 2 × 2, which implies a feature reduction of 2 · 2 = 4 on the Activation layer output. In
this sense, since each Pooling layer performs a feature reduction of 2 · 2 = 4 and the number
of features of the input tensor is 8 · 8 = 64, we conclude that the maximum number of CNNs
allowed for both models is 3. In this situation, the tensor output shape after the last CNN is
given by 1 × 1 × 64, i.e., the number of features of the tensor frontal slice is 1. In simu-
lations, the number of CNNs is fixed in 3, whereas the number of convolution filters of the
CNNl,1, CNNl,2 and CNNl,3 blocks is given by 16, 32 and 64, respectively, as observed in
Tables 5.4 and 5.5. Finnaly, all of the compared schemes are trained during a period of 100
epochs.

As stated in Section 5.3, the proposed schemes are compared with three competing ap-
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Table 5.4 – Layer types, output shapes and simulation parameters at each block of the pro-
posed TFMCB-CNN-MV scheme for l = 1, . . . , L.

Block Layer Type Output Shape Simulation Parameters

Input Input 8 × 8 × 1 –

Convolution 8 × 8 × 16

Nr Filters: 16
Convolution Filter Size: from 2 × 2 to 5 × 5
Padding: “same”
Strides: 1

CNNl,1 Batch Normalization 8 × 8 × 16 –

Activation 8 × 8 × 16 Function: ReLU

Pooling 4 × 4 × 16
Functions: Avg Pool
Pooling Filter Size: 2 × 2

Dropout 4 × 4 × 16 Droprate: 0.2

concl,1 Concatenation 4 × 4 × 32 –

Convolution 4 × 4 × 32

Nr Filters: 32
Convolution Filter Size: from 2 × 2 to 5 × 5
Padding: “same”
Strides: 1

CNNl,2 Batch Normalization 4 × 4 × 32 –

Activation 4 × 4 × 32 Function: ReLU

Pooling 2 × 2 × 32
Functions: Avg Pool
Pooling Filter Size: 2 × 2

Dropout 2 × 2 × 32 Droprate: 0.2

concl,2 Concatenation 2 × 2 × 64 –

Convolution 2 × 2 × 64

Nr Filters: 64
Convolution Filter Size: from 2 × 2 to 5 × 5
Padding: “same”
Strides: 1

CNNl,3 Batch Normalization 2 × 2 × 64 –

Activation 2 × 2 × 64 Function: ReLU

Pooling 1 × 1 × 64
Functions: Avg Pool
Pooling Filter Size: 2 × 2

Dropout 1 × 1 × 64 Droprate: 0.2

Flattenl Flattening 64 –

Densel,1 70 Nr Neurons: 70

Densel,2 50 Nr Neurons: 50

MLPl Densel,3 30 Nr Neurons: 30

Densel,4 10 Nr Neurons: 10

Densel,5 2
Nr Neurons: 2
Classification Function: Softmax

proaches, namely, Parallel-CNN-MV, Parallel-CNN and Serial-CNN. The first two tech-
niques are similar to the TFMCB-CNN-MV and TFMCB-CNN schemes, respectively, but
without the concatenation blocks within each branch. Thus, by comparing each proposed
scheme with the Parallel-CNN-MV and Parallel-CNN approaches, we aim to show the ben-
efits of adopting feature map concatenation over the DDoS attack detection performance.
Fig. 5.6a to 5.6d illustrate an example of the TFMCB-CNN-MV, TFMCB-CNN, Parallel-
CNN-MV and Parallel-CNN schemes for detecting DDoS attacks, with L = 3 branches, K
= 3 CNN basic building blocks and D + 1 = 5 MLP dense layers. By comparing Fig. 5.6a
and 5.6c, as well as Fig. 5.6b and 5.6d, it is clear the absence of the concatenation blocks
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Table 5.5 – Layer types, output shapes and simulation parameters at each block of the pro-
posed TFMCB-CNN scheme for l = 1, . . . , L.

Block Layer Type Output Shape Simulation Parameters

Input Input 8 × 8 × 1 –

Convolution 8 × 8 × 16

Nr Filters: 16
Convolution Filter Size: from 2 × 2 to 5 × 5
Padding: “same”
Strides: 1

CNNl,1 Batch Normalization 8 × 8 × 16 –

Activation 8 × 8 × 16 Function: ReLU

Pooling 4 × 4 × 16
Functions: Avg Pool
Pooling Filter Size: 2 × 2

Dropout 4 × 4 × 16 Droprate: 0.2

concl,1 Concatenation 4 × 4 × 32 –

Convolution 4 × 4 × 32

Nr Filters: 32
Convolution Filter Size: from 2 × 2 to 5 × 5
Padding: “same”
Strides: 1

CNNl,2 Batch Normalization 4 × 4 × 32 –

Activation 4 × 4 × 32 Function: ReLU

Pooling 2 × 2 × 32
Functions: Avg Pool
Pooling Filter Size: 2 × 2

Dropout 2 × 2 × 32 Droprate: 0.2

concl,2 Concatenation 2 × 2 × 64 –

Convolution 2 × 2 × 64

Nr Filters: 64
Convolution Filter Size: from 2 × 2 to 5 × 5
Padding: “same”
Strides: 1

CNNl,3 Batch Normalization 2 × 2 × 64 –

Activation 2 × 2 × 64 Function: ReLU

Pooling 1 × 1 × 64
Functions: Avg Pool
Pooling Filter Size: 2 × 2

Dropout 1 × 1 × 64 Droprate: 0.2

concOut Concatenation 1 × 1 × 320 –

Flatten Flattening 320 –

Dense1 70 Nr Neurons: 70

Dense2 50 Nr Neurons: 50

MLP Dense3 30 Nr Neurons: 30

Dense4 10 Nr Neurons: 10

Dense5 2
Nr Neurons: 2
Classification Function: Softmax

in the Parallel-CNN and Parallel-CNN-MV techniques. At last, the Serial-CNN approach,
represented in Fig. 5.6e, corresponds to the Parallel-CNN scheme with a single branch. By
confronting Serial-CNN with the proposed schemes, our idea is to illustrate the benefits of
adopting multiple parallel CNN branches. Throughout this section, all of the schemes are
compared for different simulation parameters, namely, number of branches, number of dense
layers, batch size and convolution filter size, as shown in Tables 5.6 to 5.9. Moreover, Tables
5.10 and 5.11 present the simulation results obtained from the performance evaluation of
state-of-the-art machine learning and deep learning algorithms, as well as related works in
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the literature, respectively. In each table, the best metric values for a fixed simulation param-
eter are highlighted in bold. Additionally, the performance evaluation metrics corresponding
to the second best results are underlined. Note that Tables 5.6 to 5.10 also include the train-
ing and testing times recorded for all of the compared schemes during the experiments. Such
processing times are detailed and discussed in Subsection 5.4.3.

Table 5.6 shows the simulation results of the proposed TFMCB-CNN-MV and TFMCB-
CNN approaches against their competitor techniques when the number of branches is varied
between 1 and 5. Furthermore, we consider a pooling filter size of 2 × 2, batch size of
128, convolution filter size of 3 × 3 and single MLP dense layer. Particularly, when the
number of branches is L = 1, only the Serial-CNN scheme is shown, since the other four
approaches boil down to the single branch model. Note that the Serial-CNN is outperformed
by almost all of the competing techniques, which shows the benefits of adopting multiple
parallel CNN branches. From the results shown in Table 5.6, it is clear that the proposed
TFMCB-CNN-MV scheme presents outstanding results, outperforming its competitors in all
of the assessed metrics when the number of branches is larger than or equal to 4. For instance,
when L = 4, the values of Acc, Prec and MCC of the TFMCB-CNN-MV scheme are given
by 99.67%, 99.43% and 0.9896, respectively, whereas its concurrent, Parallel-CNN-MV,
presented 99.55%, 99.21% and 0.9856 for the same metrics. On the other hand, the proposed
TFMCB-CNN scheme presents considerable results when 2 ≤ L ≤ 3, outperforming the
Parallel-CNN-MV and Parallel-CNN approaches in several metrics. For example, for L = 3,
the TFMCB-CNN model showed Prec, FNR, F-score and MCC of 99.36%, 0.26%, 99.39%

and 0.9878, against 99.25%, 0.33%, 99.38% and 0.9876 achieved by the Parallel-CNN.

Next, the values of Acc, Prec, Rec, FPR, FNR, F-score and MCC considering different
number of dense layers are shown in Table 5.7 for all of the compared approaches. The num-
ber of dense layers ranges from 1 to 5 and the parallel CNN based architectures are composed
by 3 branches. Moreover, the pooling filter size is 2 × 2, the convolution filter size is fixed
in 3 × 3 and the batch size is set to 128. Once again, it is observed that the Serial-CNN
approach is outperformed by all of the compared techniques in most of the evaluated met-
rics. Further, note that the proposed TFMCB-CNN-MV architecture outperforms the other
schemes in most of the assessed metrics, regardless of the number of MLP dense layers.
For example, when such model is composed by 5 dense layers, the TFMCB-CNN-MV ap-
proach showed Acc, Prec, Rec, F-score and MCC of 99.63%, 99.34%, 99.53%, 99.42% and
0.9883, respectively, against 99.48%, 99.04%, 99.32%, 99.18% and 0.9835 obtained when
Parallel-CNN-MV is applied. Additionally, for 3 dense layers, the proposed TFMCB-CNN
achieved Acc = 99.63%, Prec = 99.35%, Rec = 99.49%, F-score = 99.42% and MCC =
0.9885, whereas its concurrent, Parallel-CNN, presented 99.35%, 98.68%, 99.31%, 98.98%

and 0.9798 for the same metrics, respectively.

Following, Table 5.8 shows the metric values of the proposed TFMCB-CNN-MV and
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Figure 5.6 – Examples of block diagrams of the following models: (a) Proposed TFMCB-
CNN-MV, (b) Proposed TFMCB-CNN, (c) Parallel-CNN-MV, (d) Parallel-CNN, and (e)
Serial-CNN.

TFMCB-CNN schemes against their competitor techniques when the batch size ranges from
128 to 1,024. Furthermore, in simulations, we consider L = 3, pooling filter size of 2 ×
2, convolution filter size of 3 × 3 and single dense layer. It can be seen that the proposed
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Table 5.6 – Performance evaluation metrics of the proposed TFMCB-CNN-MV and
TFMCB-CNN schemes, as well as its competitor approaches, when the number of branches
ranges from 1 to 5.

Nr Branch Model Acc Prec DR FPR FNR F-Score MCC Tr T (s) Te T (s)

1 Serial-CNN 0.9939 0.9911 0.9898 0.0170 0.0034 0.9904 0.9808 270.38 0.4664

2

Proposed TFMCB-CNN-MV 0.9967 0.9951 0.9949 0.0094 0.0018 0.9947 0.9894 417.22 0.3670

Proposed TFMCB-CNN 0.9961 0.9926 0.9944 0.0070 0.0032 0.9937 0.9875 454.18 0.6812

Parallel-CNN-MV 0.9954 0.9936 0.9920 0.0138 0.0023 0.9928 0.9860 310.05 0.3472

Parallel-CNN 0.9960 0.9921 0.9952 0.0061 0.0035 0.9936 0.9873 414.33 0.6753

3

Proposed TFMCB-CNN-MV 0.9973 0.9958 0.9956 0.0073 0.0016 0.9957 0.9914 683.57 0.6331

Proposed TFMCB-CNN 0.9961 0.9936 0.9940 0.0095 0.0026 0.9939 0.9878 866.43 1.2772

Parallel-CNN-MV 0.9956 0.9910 0.9952 0.0055 0.0041 0.9931 0.9861 502.77 0.6653

Parallel-CNN 0.9960 0.9925 0.9950 0.0066 0.0033 0.9938 0.9876 811.30 1.3991

4

Proposed TFMCB-CNN-MV 0.9967 0.9943 0.9954 0.0069 0.0024 0.9948 0.9896 1191.00 1.1868

Proposed TFMCB-CNN 0.9953 0.9908 0.9946 0.0071 0.0041 0.9926 0.9852 1444.14 2.1366

Parallel-CNN-MV 0.9955 0.9921 0.9936 0.0094 0.0034 0.9928 0.9856 761.46 1.3391

Parallel-CNN 0.9960 0.9928 0.9944 0.0081 0.0030 0.9936 0.9872 1414.06 2.6483

5

Proposed TFMCB-CNN-MV 0.9970 0.9952 0.9955 0.0071 0.0019 0.9953 0.9906 1207.06 1.4001

Proposed TFMCB-CNN 0.9955 0.9929 0.9929 0.0113 0.0028 0.9929 0.9858 2175.12 3.1885

Parallel-CNN-MV 0.9962 0.9935 0.9944 0.0085 0.0027 0.9940 0.9879 966.35 1.6664

Parallel-CNN 0.9954 0.9928 0.9926 0.0120 0.0028 0.9927 0.9854 2133.57 3.9620

TFMCB-CNN-MV scheme delivers better results compared to the other techniques in most
of the assessed metrics, regardless of the batch size. For instance, when the batch size is
256, the values of Acc, Prec, Rec, F-score and MCC of the TFMCB-CNN-MV scheme are,
respectively, 99.66%, 99.43%, 99.50%, 99.47% and 0.9893, whereas the Parallel-CNN-MV
shows 99.44%, 98.92%, 99.32%, 99.12% and 0.9824 for the same metrics. Furthermore, it is
noted that the TFMCB-CNN approach shows outstanding results compared to Parallel-CNN
when the same batch size is considered. For instance, the TFMCB-CNN model showed
Acc, Rec, FNR, F-score and MCC of 99.55%, 99.48%, 0.40%, 99.30% and 0.9860, against
99.36%, 99.41%, 0.68%, 98.99% and 0.9801 achieved by the Parallel-CNN. Additionally, an
important finding is related to the Serial-CNN performance for larger batch sizes, especially
512 and 1,024. For example, when the batch size is 1,024, the Serial-CNN is outperformed
only by the proposed TFMCB-CNN-MV scheme, except for the false positive rate. The
values of Acc, Prec, Rec and MCC of the Serial-CNN are given by 98.98%, 97.89%, 98.98%

and 0.9686, respectively, whereas the proposed TFMCB-CNN scheme achieved 98.58%,
96.86%, 98.88% and 0.9571 when the same metrics are considered.

Then, the values of Acc, Prec, Rec, FPR, FNR, F-score and MCC when the convolu-
tion filter size ranges from 2 × 2 to 5 × 5 are shown in Table 5.9 for all of the compared
approaches. The number of branches is fixed in 3, the pooling filter size is 2 × 2 and the
batch size is set to 128, with a single dense layer. From the results shown in Table 5.9, it is
clear that the proposed TFMCB-CNN-MV scheme outperforms the other techniques in most
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Table 5.7 – Performance evaluation metrics of the proposed TFMCB-CNN-MV and
TFMCB-CNN schemes, as well as its competitor approaches, when the number of dense
layers ranges from 1 to 5.

Nr DeL Model Acc Prec Rec FPR FNR F-Score MCC Tr T (s) Te T (s)

Proposed TFMCB-CNN-MV 0.9973 0.9958 0.9956 0.0073 0.0016 0.9957 0.9914 683.57 0.6331

Proposed TFMCB-CNN 0.9961 0.9936 0.9940 0.0095 0.0026 0.9939 0.9878 866.43 1.2772

1 Parallel-CNN-MV 0.9956 0.9910 0.9952 0.0055 0.0041 0.9931 0.9861 502.77 0.6653

Parallel-CNN 0.9960 0.9925 0.9950 0.0066 0.0033 0.9938 0.9876 811.30 1.3991

Serial-CNN 0.9939 0.9911 0.9898 0.0170 0.0034 0.9904 0.9808 270.38 0.4664

Proposed TFMCB-CNN-MV 0.9964 0.9946 0.9944 0.0089 0.0023 0.9944 0.9887 688.12 0.6813

Proposed TFMCB-CNN 0.9961 0.9940 0.9942 0.0096 0.0021 0.9943 0.9885 858.00 1.2693

2 Parallel-CNN-MV 0.9947 0.9906 0.9928 0.0104 0.0040 0.9917 0.9833 508.12 0.6936

Parallel-CNN 0.9956 0.9917 0.9940 0.0074 0.0037 0.9930 0.9861 820.92 1.4283

Serial-CNN 0.9937 0.9886 0.9917 0.0115 0.0050 0.9901 0.9802 273.64 0.4761

Proposed TFMCB-CNN-MV 0.9967 0.9940 0.9955 0.0065 0.0026 0.9947 0.9894 707.27 0.6809

Proposed TFMCB-CNN 0.9963 0.9935 0.9949 0.0074 0.0027 0.9942 0.9885 895.12 1.2703

3 Parallel-CNN-MV 0.9960 0.9926 0.9946 0.0075 0.0032 0.9936 0.9872 552.99 0.6935

Parallel-CNN 0.9935 0.9868 0.9931 0.0076 0.0062 0.9898 0.9798 828.45 1.4550

Serial-CNN 0.9941 0.9876 0.9942 0.0058 0.0059 0.9908 0.9817 276.15 0.4850

Proposed TFMCB-CNN-MV 0.9961 0.9940 0.9939 0.0099 0.0024 0.9939 0.9878 710.01 0.7140

Proposed TFMCB-CNN 0.9957 0.9931 0.9932 0.0108 0.0028 0.9931 0.9863 898.88 1.3077

4 Parallel-CNN-MV 0.9948 0.9906 0.9929 0.0102 0.0040 0.9917 0.9835 519.02 0.7287

Parallel-CNN 0.9956 0.9916 0.9944 0.0075 0.0037 0.9930 0.9860 853.81 1.4905

Serial-CNN 0.9915 0.9831 0.9909 0.0102 0.0081 0.9868 0.9739 284.60 0.4968

Proposed TFMCB-CNN-MV 0.9963 0.9934 0.9953 0.0064 0.0030 0.9942 0.9883 717.30 0.6819

Proposed TFMCB-CNN 0.9960 0.9931 0.9935 0.0104 0.0026 0.9935 0.9870 922.17 1.2932

5 Parallel-CNN-MV 0.9948 0.9904 0.9932 0.0093 0.0042 0.9918 0.9835 532.36 0.7370

Parallel-CNN 0.9959 0.9922 0.9947 0.0071 0.0034 0.9934 0.9869 858.33 1.5131

Serial-CNN 0.9953 0.9919 0.9934 0.0099 0.0034 0.9926 0.9853 286.11 0.5044

of the assessed metrics, especially for larger convolution filter sizes. For instance, when the
convolution filter size is 5 × 5, the proposed TFMCB-CNN-MV scheme achieves Acc =
99.68%, Prec = 99.47%, Rec = 99.56%, F-score = 99.49% and MCC = 0.9898, whereas its
concurrent, Parallel-CNN-MV, presents 99.57%, 98.41%, 99.24%, 99.32% and 0.9864 con-
sidering the same metrics, respectively. Another important finding is related to the Serial-
CNN scheme, which showed considerable results when the convolution filter size is 2 × 2,
even outperforming the TFMCB-CNN-MV approach in terms of recall, presenting 99.29%

against 99.17% achieved by our proposed architecture.

Next, the proposed TFMCB-CNN-MV and TFMCB-CNN schemes are compared with
state-of-the-art machine learning and deep learning algorithms commonly used for DDoS at-
tack detection, namely, Convolution Neural Networks (CNNs), Gated Recurrent Unit (GRU),
Long Short-Term Memory (LSTM), Simple Recurrent Neural Network (SRNN), Multilayer
Perceptrons (MLPs), AdaBoost (AB), Decision Trees (DTs), Extra Trees (ETs), Linear Dis-
criminant Analysis (LDA), Logistic Regression (LR) and Support Vector Machines (SVM).
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Table 5.8 – Performance evaluation metrics of the proposed TFMCB-CNN-MV and
TFMCB-CNN schemes, as well as its competitor approaches, when the batch size ranges
from 128 to 1024.

Batch Size Model Acc Prec Rec FPR FNR F-Score MCC Tr T (s) Te T (s)

Proposed TFMCB-CNN-MV 0.9973 0.9958 0.9956 0.0073 0.0016 0.9957 0.9914 683.57 0.6331

Proposed TFMCB-CNN 0.9961 0.9936 0.9940 0.0095 0.0026 0.9939 0.9878 866.43 1.2772

128 Parallel-CNN-MV 0.9956 0.9910 0.9952 0.0055 0.0041 0.9931 0.9861 502.77 0.6653

Parallel-CNN 0.9960 0.9925 0.9950 0.0066 0.0033 0.9938 0.9876 811.30 1.3991

Serial-CNN 0.9939 0.9911 0.9898 0.0170 0.0034 0.9904 0.9808 270.38 0.4664

Proposed TFMCB-CNN-MV 0.9966 0.9943 0.9950 0.0076 0.0023 0.9947 0.9893 613.53 0.6516

Proposed TFMCB-CNN 0.9955 0.9912 0.9948 0.0065 0.0040 0.9930 0.9860 794.62 1.2896

256 Parallel-CNN-MV 0.9944 0.9892 0.9932 0.0086 0.0049 0.9912 0.9824 424.17 0.6783

Parallel-CNN 0.9936 0.9860 0.9941 0.0049 0.0068 0.9899 0.9801 755.83 1.4479

Serial-CNN 0.9917 0.9825 0.9920 0.0075 0.0085 0.9870 0.9744 251.94 0.4826

Proposed TFMCB-CNN-MV 0.9953 0.9917 0.9936 0.0093 0.0036 0.9926 0.9853 590.26 0.6604

Proposed TFMCB-CNN 0.9929 0.9852 0.9925 0.0079 0.0071 0.9888 0.9776 768.29 1.2565

512 Parallel-CNN-MV 0.9928 0.9857 0.9919 0.0096 0.0066 0.9887 0.9775 385.79 0.6692

Parallel-CNN 0.9910 0.9809 0.9917 0.0070 0.0095 0.9860 0.9725 724.82 1.4611

Serial-CNN 0.9934 0.9883 0.9911 0.0128 0.0051 0.9896 0.9793 241.60 0.4870

Proposed TFMCB-CNN-MV 0.9947 0.9891 0.9944 0.0060 0.0051 0.9917 0.9834 581.80 0.6520

Proposed TFMCB-CNN 0.9858 0.9686 0.9888 0.0061 0.0162 0.9781 0.9571 768.68 1.2975

1,024 Parallel-CNN-MV 0.9854 0.9710 0.9851 0.0153 0.0144 0.9775 0.9558 370.46 0.6691

Parallel-CNN 0.9755 0.9460 0.9835 0.0034 0.0297 0.9630 0.9286 729.20 1.4725

Serial-CNN 0.9898 0.9789 0.9898 0.0100 0.0103 0.9841 0.9686 243.07 0.4908

The parallel CNN based architectures are composed by 3 branches, pooling filter size of 2
× 2, convolution filter size of 3 × 3, batch size set to 128 and single dense layer. Table 5.10
shows the values of Acc, Prec, Rec, FPR, FNR, F-score and MCC of the proposed TFMCB-
CNN-MV and TFMCB-CNN schemes, as well as their competitor classifiers. Note that our
proposed techniques outperform the competing schemes for all of the performance evalua-
tion metrics. For example, the proposed TFMCB-CNN-MV achieved Acc = 99.73%, Prec =
99.58%, Rec = 99.56% and MCC = 0.9914. On the other hand, AdaBoost, which is the third
best compared classifier, showed the values of 99.58%, 99.22%, 99.47% and 0.9869 when
considering the same metrics, respectively.

Finally, Table 5.11 shows the comparison between the proposed schemes and several
state-of-the-art related works in the literature regarding DDoS attack detection. The evalu-
ated metrics are accuracy, recall and F-score. The proposed TFMCB-CNN-MV and TFMCB-
CNN approaches are configured with 3 branches, convolution filter size of 3 × 3, batch size
of 128, pooling filter size of 2 × 2 and single dense layer. Additionally, since the CIC-
IDS2017 dataset has been extensively applied for NIDS validation by several works in the
literature, the performance evaluation considering such data is also included. From the re-
sults shown in Table 5.11, we observe that the proposed TFMCB-CNN-MV scheme outper-
forms the compared techniques, regardless of the evaluated metric, when the CIC-IDS2017
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Table 5.9 – Performance evaluation metrics of the proposed TFMCB-CNN-MV and
TFMCB-CNN schemes, as well as its competitor approaches, when the convolution filter
size ranges from 2 × 2 to 5 × 5.

Filter Size Model Acc Prec Rec FPR FNR F-Score MCC Tr T (s) Te T (s)

Proposed TFMCB-CNN-MV 0.9945 0.9910 0.9917 0.0130 0.0037 0.9913 0.9827 640.86 0.6220

Proposed TFMCB-CNN 0.9924 0.9841 0.9925 0.0074 0.0077 0.9881 0.9764 754.14 1.0342

2 × 2 Parallel-CNN-MV 0.9900 0.9773 0.9920 0.0046 0.0113 0.9845 0.9692 469.97 0.5814

Parallel-CNN 0.9856 0.9694 0.9876 0.0090 0.0157 0.9779 0.9568 761.26 1.2671

Serial-CNN 0.9932 0.9861 0.9929 0.0076 0.0066 0.9894 0.9789 253.75 0.4224

Proposed TFMCB-CNN-MV 0.9973 0.9958 0.9956 0.0073 0.0016 0.9957 0.9914 683.57 0.6331

Proposed TFMCB-CNN 0.9961 0.9936 0.9940 0.0095 0.0026 0.9939 0.9878 866.43 1.2772

3 × 3 Parallel-CNN-MV 0.9956 0.9910 0.9952 0.0055 0.0041 0.9931 0.9861 502.77 0.6653

Parallel-CNN 0.9960 0.9925 0.9950 0.0066 0.0033 0.9938 0.9876 811.30 1.3991

Serial-CNN 0.9939 0.9911 0.9898 0.0170 0.0034 0.9904 0.9808 270.38 0.4664

Proposed TFMCB-CNN-MV 0.9970 0.9959 0.9946 0.0093 0.0014 0.9953 0.9905 752.00 0.7918

Proposed TFMCB-CNN 0.9962 0.9951 0.9929 0.0124 0.0018 0.9939 0.9878 1002.84 1.6330

4 × 4 Parallel-CNN-MV 0.9961 0.9949 0.9927 0.0128 0.0017 0.9938 0.9876 531.62 0.7142

Parallel-CNN 0.9959 0.9929 0.9943 0.0084 0.0030 0.9936 0.9872 902.02 1.5869

Serial-CNN 0.9958 0.9922 0.9944 0.0078 0.0034 0.9933 0.9866 300.67 0.5290

Proposed TFMCB-CNN-MV 0.9968 0.9947 0.9956 0.0064 0.0025 0.9949 0.9898 848.40 0.8621

Proposed TFMCB-CNN 0.9960 0.9927 0.9942 0.0074 0.0032 0.9937 0.9874 1158.18 1.8037

5 × 5 Parallel-CNN-MV 0.9957 0.9941 0.9924 0.0132 0.0020 0.9932 0.9864 577.13 0.7248

Parallel-CNN 0.9964 0.9945 0.9941 0.0098 0.0021 0.9943 0.9885 1018.33 1.9036

Serial-CNN 0.9957 0.9917 0.9946 0.0070 0.0037 0.9932 0.9863 339.44 0.6345

Table 5.10 – Performance evaluation metrics of the proposed TFMCB-CNN-MV and
TFMCB-CNN schemes against state-of-the-art ML and DL classification algorithms.

Alg. Type Model Acc Prec Rec FPR FNR F-score MCC Tr T (s) Te T (s)

DL

Proposed TFMCB-CNN-MV 0.9973 0.9958 0.9956 0.0073 0.0016 0.9957 0.9914 698.57 0.75

Proposed TFMCB-CNN 0.9961 0.9936 0.9940 0.0095 0.0026 0.9939 0.9876 889.98 1.31

CNN-1D 1 layer 0.9908 0.9902 0.9805 0.0365 0.0026 0.9852 0.9706 254.07 0.39

CNN-2D 1 layer 0.9868 0.9873 0.9708 0.0556 0.0028 0.9787 0.9579 540.53 0.63

CNN-1D 2 layer 0.9937 0.9898 0.9904 0.0151 0.0041 0.9901 0.9802 450.01 0.59

CNN-2D 2 layer 0.9935 0.9893 0.9903 0.0150 0.0044 0.9898 0.9796 780.18 0.74

GRU 2 layer 0.9749 0.9651 0.9550 0.0778 0.0122 0.9598 0.9200 2159.35 4.15

LSTM 2 layer 0.9550 0.9461 0.9094 0.1659 0.0153 0.9256 0.8543 2403.04 5.20

SRNN 2 layer 0.9781 0.9794 0.9511 0.0934 0.0044 0.9629 0.9291 895.22 2.23

MLP 5 layer 0.9943 0.9935 0.9879 0.0226 0.0018 0.9909 0.9819 153.82 0.13

ML

AB 0.9958 0.9922 0.9947 0.0071 0.0034 0.9934 0.9869 59.71 3.07

DT 0.9717 0.9769 0.9331 0.1306 0.0032 0.9472 0.9049 0.04 0.01

ET 0.9902 0.9898 0.9790 0.0393 0.0026 0.9843 0.9688 7.26 0.79

LDA 0.9179 0.8662 0.8196 0.3427 0.0181 0.8380 0.6927 0.46 0.01

LR 0.9854 0.9834 0.9701 0.0550 0.0047 0.9766 0.9534 0.65 0.01

SVM 0.9843 0.9813 0.9687 0.0571 0.0056 0.9748 0.9499 70.21 3.56

dataset was used for validation. For example, TFMCB-CNN-MV presented Acc, Rec, and F-
score of 99.79%, 99.74% and 99.67%, respectively, whereas the best competitor technique,
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Haider et al. [127], achieved 99.45%, 99.64% and 99.61% for the same metrics. However,
the proposed TFMCB-CNN approach was outperformed by the referred competing scheme
in some evaluated metrics. While 99.41% and 99.56% were achieved by TFMCB-CNN
in terms of Rec and F-score, respectively, that related work showed considerable values of
99.64% and 99.61% when the same metrics were considered. On the other hand, when the
CIC-DDoS2019 dataset was applied for validation, both proposed schemes outperformed all
of the competing techniques, regardless of the assessed metric. For instance, the best com-
petitor scheme in terms of accuracy, Maranhão et al. [3], achieved 99.55%, against 99.73%

and 99.61% showed by TFMCB-CNN-MV and TFMCB-CNN, respectively. In addition, the
proposed TFMCB-CNN-MV and TFMCB-CNN schemes presented 99.56% and 99.40% for
Rec, and 99.57% and 99.39% for F-score, respectively. The best competitor approach in
terms of recall and F-score, Elsayed et al. [118], achieved 99.00% for both metrics.

Table 5.11 – Performance comparison with related works, considering the CIC-IDS2017 and
CIC-DDoS2019 datasets.

Dataset Work Method Acc Rec F-score

CIC-IDS2017

Proposed TFMCB-CNN-MV CNN 0.9979 0.9974 0.9967
Proposed TFMCB-CNN CNN 0.9972 0.9941 0.9956
Maranhão et al. [2] MLP 0.9895 0.9831 N/A
Roopak et al. [126] MLP 0.8634 0.8625 0.8735
Roopak et al. [126] 1D-CNN 0.9514 0.9017 0.9399
Roopak et al. [126] LSTM 0.9624 0.8989 0.8959
Roopak et al. [126] 1D-CNN+LSTM 0.9716 0.9910 0.9825
Haider et al. [127] Ensemble CNN 0.9945 0.9964 0.9961
Chen et al. [128] CNN 0.9887 N/A N/A
Aamir and Ali Zaidi [139] kNN 0.9500 N/A N/A
Aamir and Ali Zaidi [139] SVM 0.9200 N/A N/A
Aamir and Ali Zaidi [139] RFo 0.9666 N/A N/A
Aksu et al. [141] kNN 0.9572 0.9589 0.9577
Aksu et al. [141] SVM 0.6069 0.7142 0.6463
Aksu et al. [141] DT 0.9900 0.9900 0.9900
Ustebay et al. [142] MLP 0.9100 N/A N/A
Yulianto et al. [143] AB+PCA+SMOTE 0.8147 0.9576 0.8817
Zhu et al. [144] AMF-LSTM N/A 0.9800 0.9000
Yao et al. [145] DeepGFL N/A 0.3024 0.4321

CIC-DDoS2019

Proposed TFMCB-CNN-MV CNN 0.9973 0.9956 0.9957
Proposed TFMCB-CNN CNN 0.9961 0.9940 0.9939
Maranhão et al. [3] DT 0.9754 0.9509 N/A
Maranhão et al. [3] RFo 0.9955 0.9896 N/A
Elsayed et al. [118] RNN-Autoencoder N/A 0.9900 0.9900
Shurman et al. [119] LSTM 1 layer 0.9154 N/A N/A
Shurman et al. [119] LSTM 2 layer 0.9674 N/A N/A
Shurman et al. [119] LSTM 3 layer 0.9919 N/A N/A
Sharafaldin et al. [120] ID3 N/A 0.6500 0.6900
Sharafaldin et al. [120] RFo N/A 0.5600 0.6200
Sharafaldin et al. [120] NB N/A 0.1100 0.0500
Sharafaldin et al. [120] LR N/A 0.0200 0.0400
Hussain et al. [121] ResNet N/A 0.8600 0.8600
Aytac et al. [122] RFo 0.9840 N/A N/A
Aytac et al. [122] DT (Gini) 0.9934 N/A N/A
Aytac et al. [122] DT (Entropy) 0.9912 N/A N/A
Aytac et al. [122] Multinomial NB 0.9910 N/A N/A
Aytac et al. [122] Gaussian NB 0.9870 N/A N/A

137



5.4.3 Processing time

This subsection introduces and discusses the performance evaluation of the proposed
TFMCB-CNN-MV and TFMCB-CNN schemes in terms of training times (Tr T) and testing
times (Te T), in seconds (s), which are also included in Tables 5.6 to 5.10. In DL based
models, the training times refer to a period of 100 epochs. As expected, the Serial-CNN con-
figuration presents the lowest processing times, since it is composed by a single branch, with
no concatenating operations. First, the processing times are assessed for different number of
parallel branches, as shown in Table 5.6. All of the compared schemes present higher train-
ing and testing times as the number of branches is larger. Such fact is more evident when
SMV and non SMV based schemes are compared each other. For instance, when L = 2, the
proposed TFMCB-CNN-MV and TFMCB-CNN schemes showed training times of 417.22 s
and 454.18 s, respectively. Nevertheless, when the number of branches is 5, the Tr T obtained
by each scheme are, respectively, 1207.06 s and 2175.12 s. In this sense, the difference in
training time between TFMCB-CNN-MV and TFMCB-CNN is increased from 37 s to 968 s,
approximately, when L goes from 2 to 5. Moreover, note that the Parallel-CNN-MV scheme
presents the lowest training times for a fixed number of branches, whereas the TFMCB-CNN
approach delivers the worst performance. For example, when L = 4, the Parallel-CNN-MV
showed Tr T = 761.46 s, against 1444.14 s achieved by the TFMCB-CNN. Additionally,
the Parallel-CNN-MV and Parallel-CNN schemes present lower training times compared to
their respective counterparts, TFMCB-CNN-MV and TFMCB-CNN. Such results reflect the
higher computational cost imposed by feature map concatenation processes. On the other
hand, considering testing times, the proposed TFMCB-CNN-MV scheme delivers the best
performance whenL ≥ 3. Such fact is crucial in real time network attack detection problems,
in which lower testing times are required for an efficient NIDS performance.

Next, Table 5.7 illustrated the processing times for different number of MLP dense layers.
From the results, it can be seen that all of the compared techniques present slightly higher
training and testing times when the number of dense layers is larger. Since the MLPs are
placed after the proposed tensor feature map concatenation block, the increasing in the num-
ber of dense layers has no significant impact on the model processing times. Following, for
a fixed number of dense layers, the Parallel-CNN-MV and TFMCB-CNN schemes achieved,
respectively, the highest and the lowest training times among the parallel CNN based tech-
niques. For instance, when the number of dense layers is 5, TFMCB-CNN presents a Tr T
of 922.17 s, whereas 532.36 s was achieved by the Parallel-CNN-MV. On the other hand,
for testing times, once again our TFMCB-CNN-MV technique delivers the best performance
when excluding the Serial-CNN technique. Such fact is very important for DDoS attack de-
tection under real time conditions. For example, for 5 dense layers, the TFMCB-CNN-MV
and Parallel-CNN-MV schemes achieved testing times of 0.68 s and 0.73 s, respectively.

Following, the training and testing times when the batch size is varied from 128 to 1024

138



are shown in Table 5.8. In terms of training time, all of the compared schemes deliver better
performance as the batch size is larger. For example, the proposed TFMCB-CNN-MV and
TFMCB-CNN techniques achieve Tr T of 683.57 s and 866.43 s, respectively, for a batch size
of 128. Nonetheless, when such parameter is increased to 1024, lower training times (581.80
s and 768.68 s) are observed in both techniques. Lower batch sizes imply a higher number of
batches and, consequently, the NIDS weights are updated more frequently during the process
of forward and backward propagation in the training phase, which increases the processing
time. In addition, for a fixed batch size, majority voting based schemes also achieve the best
performance when comparing parallel CNN based techniques. When the batch size is 256,
for instance, the Parallel-CNN-MV and TFMCB-CNN-MV schemes present training times
of 424.17 s and 613.53 s, respectively, against 755.83 s and 794.62 s achieved by their non
SMV based counterparts. Nevertheless, such fact is compensated considering testing times,
since the proposed TFMCB-CNN-MV delivers the best performance when Serial-CNN is
not taken in account. For example, for a batch size of 128, the Parallel-CNN-MV scheme
achieved a Te T of 0.66 s, against 0.63 s obtained by TFMCB-CNN-MV.

Then, Table 5.9 introduces the processing times for different convolution filter sizes. It
can be observed that the training and testing times are higher as the filter size grows for all
of the compared schemes. For instance, for a filter size of 2 × 2, the Tr T and Te T of
the proposed TFMCB-CNN-MV approach are given by 640.86 s and 0.62 s, respectively.
However, when the filter size is increased to 5 × 5, the respective processing times are
also increased to 848.40 s and 0.86 s. For higher filter sizes, more convolution operations are
performed between the filter and the data window and, consequently, higher processing times
are noticed. Furthermore, in line with the observed in the previous experiments, SMV based
techniques deliver the best performance for a fixed convolution filter size. For example,
for a filter size of 4 × 4, the TFMCB-CNN-MV and Parallel-CNN-MV schemes achieve
training times of 752.00 s and 531.62 s, respectively, against 1002.84 s and 902.02 s obtained
by TFMCB-CNN and Parallel-CNN. Additionally, considering testing times, the TFMCB-
CNN-MV scheme presents an outstanding performance and is outperformed only by the
Parallel-CNN-MV technique. For instance, for the convolution filter sizes of 4 × 4 and 5 ×
5, Te T of 0.79 s and 0.86 s were achieved by the TFMCB-CNN-MV, whereas 0.71 s and
0.72 s were reported by the Parallel-CNN-MV scheme.

Finally, the proposed TFMCB-CNN-MV and TFMCB-CNN schemes are compared with
several state-of-the-art ML and DL techniques in terms of processing time. From Table 5.10,
we observe that ML algorithms take much less training time compared to DL schemes, in
which a large number of parameters are learned during the forward and backward propaga-
tion. In our experiments, Decision Trees and Linear Discriminant Analysis showed the best
results in terms of training and testing times, since both algorithms have a smaller number of
parameters compared to the other assessed ML algorithms. In LDA, high-dimensional data is
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projected onto a lower dimensional space and, consequently, the separation of samples from
different classes is maximized, whereas the dispersion of samples within the same class is
minimized [1]. In addition, DT presents low computational cost and ease of understanding
and interpretation [3], such that a top-down divide-and-conquer approach is implemented
to supervised classification where a condition on the attribute value is used to divide the
data [160]. Among the compared DL algorithms, the five-layered MLP achieved the low-
est processing times, whereas the worst performance was delivered by the Long-Short Term
Memory (LSTM) algorithm. As detailed in Subsection 5.2.2.4, MLP is a feedforward neu-
ral network composed by input, hidden, and output layers in which several parameters are
learned during the training process. On the other hand, LSTMs use sequential processing
over time and are difficult to train since they require memory-bandwidth-bound computa-
tion. An LSTM unit is composed of a cell and three types of gate (input, output, and forget
gates), which regulate the input and output information flow in the cell. Moreover, note
that the proposed TFMCB-CNN-MV scheme delivers lower training times compared to the
two-layered CNN-2D, GRU, LSTM and SRNN algorithms, despite it is outperformed by the
other DL schemes.

5.4.4 Discussion

In this subsection, the simulation results presented in Subsection 5.4.2 are discussed
in detail. Table 5.6 shows the experiment results for the proposed TFMCB-CNN-MV and
TFMCB-CNN schemes, as well as their competing techniques, for different number of
branches. The benefits of adopting multiple parallel CNN branches are evident, since the
single-branch Serial-CNN approach is outperformed by most of the competing techniques.
Furthermore, the tensor feature map concatenation reduces the performance of the proposed
TFMCB-CNN scheme as the number of parallel branches is higher. However, the jointly us-
age of tensor feature map concatenation and majority voting techniques improves the DDoS
attack detection performance compared to the approaches in which only feature map con-
catenation is applied, especially for higher number of parallel branches. In addition, it is
observed that the inclusion of majority voting is advantageous, even for non feature map
concatenation based models, when the number of branches is higher. Such fact is evident
when the number of branches is 5, where both TFMCB-CNN-MV and Parallel-CNN-MV
schemes showed the best performance among all of the compared techniques.

Table 5.7 shows the simulation results for different number of MLP dense layers. It can
be observed that the proposed TFMCB-CNN-MV and TFMCB-CNN schemes outperform
the competitor methods in most of the assessed metrics, regardless of the number of dense
layers. Since the tensor feature map concatenation technique is performed between parallel
branches, i.e., before the MLP block, the proposed TFMCB-CNN approach is not very sensi-
tive to the variation of the number of dense layers. On the other hand, as the number of dense
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layers is lower, most of the TFMCB-CNN-MV evaluated metrics show better performance,
which reflects a higher sensitivity to the variation of the number of dense layers after the in-
clusion of the SMV block. In addition, from the results shown in Table 5.7, we observe that
the Serial-CNN approach is still outperformed by all of the parallel based schemes, which
once again reflects the benefits of adopting multiple parallel CNN based branches in DDoS
attack detection models.

Next, Table 5.8 shows the simulation results obtained for different batch sizes. It can
be seen that, regardless of the batch size, the proposed TFMCB-CNN-MV scheme outper-
forms the other techniques in most of the assessed metrics. On the other hand, the proposed
TFMCB-CNN scheme is also superior compared to the competing techniques, but only for
lower batch sizes. In this sense, we conclude that the tensor feature map concatenation tech-
nique is sensitive to the batch size increasing, but this fact is compensated by the inclusion
of the simple majority voting block. In addition, it was observed that the Serial-CNN ap-
proach benefits from larger batch sizes, outperforming the TFMCB-CNN scheme in most of
the evaluated metrics when the batch size is 512 or 1024. Moreover, from the results shown
in Table 5.8, it is clear that all of the compared schemes deliver better performance for lower
batch sizes. In this situation, the model weights are more frequently updated during the
forward and backward propagation in the training phase.

Following, Table 5.9 illustrates the experiment results for different values of convolu-
tion filter size. Note that the proposed TFMCB-CNN-MV scheme presents a considerable
performance for larger convolution filter sizes. In this case, the tensor feature map concate-
nation and majority voting techniques in TFMCB-CNN-MV benefit from a higher number
of neighboring features convolutioned across the filter. Moreover, we observe that the pro-
posed TFMCB-CNN scheme is outperformed by the Serial-CNN approach for the 2 × 2
convolution filter size in several metrics. In this sense, we conclude that single-branch CNN
based schemes present better performance compared to tensor feature map concatenation
based techniques when smaller convolution filter sizes are considered.

Then, Table 5.10 summarizes the comparison between the TFMCB-CNN-MV and TFMCB-
CNN schemes with state-of-the-art ML and DL algorithms. The best competing scheme,
AdaBoost, is a strong classifier generated from a combination of several weak learners and,
depending on the dataset as well as some adopted parameters, can yield more accurate results
compared to classic machine learning algorithms. In addition, the MLP 5 layer, CNN-1D 2
layer and CNN-2D 2 layer schemes, despite are not the best among the compared techniques,
showed considerable DDoS attack detection performance. The CNN-1D 2 layer scheme is
composed by two 1D CNN basic building blocks in series, whereas CNN-2D 2 layer presents
identical configuration, but with two 2D CNN blocks. Moreover, the MLP 5 layer is simply a
neural network composed by five hidden layers in which data feature extraction is performed.
In this sense, from the results shown in Table 5.10, we observe an outstanding performance
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gain provided by jointly applying the multidimensional feature map concatenation and ma-
jority voting techniques on the TFMCB-CNN-MV scheme, compared to the MLP 5 layer,
CNN-1D 2 layer and CNN-2D 2 layer approaches.

Further, a comparison between the proposed TFMCB-CNN-MV and TFMCB-CNN with
related works is shown in Table 5.11. When the CIC-IDS2017 dataset is used for validation,
it can be seen that all of the compared schemes are outperformed by our proposed TFMCB-
CNN-MV technique. Nonetheless, the TFMCB-CNN scheme is outperformed by Haider et
al. [127] considering recall and F-score. In [127], the authors proposed a deep CNN en-
semble framework for DDoS attack detection in Software Defined Networks (SDN). Such
model is composed by two parallel branches, each of which containing three 2D CNNs, two
max pooling layers, one flatten layer and two dense fully-connected layers. At the end, the
outputs of each branch are concatenated along the 3rd dimension, in a process similar to the
one adopted in our TFMCB-CNN scheme. In this sense, from the metric values presented
in Table 5.11, we observe that the simple majority voting in TFMCB-CNN-MV provides
a considerable gain in terms of DDoS attack detection performance. In addition, when the
CIC-DDoS2019 dataset is applied for validation, all of the competing approaches are outper-
formed by both TFMCB-CNN-MV and TFMCB-CNN schemes, regardless of the assessed
metric. Therefore, we conclude that the jointly applied tensor feature map concatenation and
majority voting techniques provided a significant performance gain compared to the related
works when the CIC-DDoS2019 dataset is used for validation.

Finally, Tables 5.6 to 5.10 also include the training and testing times for the proposed
TFMCB-CNN-MV and TFMCB-CNN schemes, as well as their competitor approaches,
when several simulation parameters are varied. It can be seen that feature map concate-
nation based approaches (TFMCB-CNN-MV and TFMCB-CNN) have higher processing
times compared to their counterparts with no concatenating operations (Parallel-CNN-MV
and Parallel-CNN), since data resulting from concatenation processes present higher number
of channels. In addition, non majority voting based schemes (TFMCB-CNN and Parallel-
CNN) are more time costly compared to the SMV based techniques (TFMCB-CNN-MV
and Parallel-CNN-MV). In the former, the outputs from each branch are concatenated into
a tensor whose number of channels corresponds to the sum of the number of channels of
the referred outputs. Consequently, a large vector is obtained after flattening, which in-
creases the processing time. On the other hand, in SMV based schemes, the feature map
concatenation takes places only between consecutive branches, whose outputs are forwarded
to their respective flattening and MLP blocks. In this sense, despite the higher number of
Flatten/MLP blocks, parallel computing allows a more efficient time processing compared
to the non SVM based techniques.
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5.5 SUMMARY

One of the most harmful threats to network security, Distributed Denial of Service attacks
aim to deny legitimate accesses to network services by exhausting bandwidth and resources
through huge volume of traffic launched by attackers. To face such challenge, deep learn-
ing based NIDSs, especially those using Convolutional Neural Networks, have been widely
proposed in order to extract high level features from input traffic data and, consequently,
improve the DDoS attack detection performance. In this chapter, two novel CNN architec-
tures for DDoS attack detection based on feature map concatenation between parallel CNNs
have been proposed, namely, TFMCB-CNN and TFMCB-CNN-MV. The second scheme is a
refined version of the first one, in which output data are sent to a simple majority voting mod-
ule for final classification. Extensive simulations were executed by using the CIC-IDS2017
and CIC-DDoS2019 benchmark datasets for validation, in which several performance eval-
uation metrics were assessed. According to the experiment results, the proposed schemes
outperform the state-of-the-art approaches in terms of several evaluation metrics, providing
an outstanding performance gain compared to those techniques. In addition, it can be con-
cluded that a better DDoS attack detection performance can be achieved by tuning several
model settings, such as number of parallel branches, number of MLP dense layers and con-
volution filter size, in contrast to deep learning NIDS with fixed parameters commonly found
in the literature.
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CONCLUSION

Cyber-Physical Systems are composed by networked components including sensors, control
processing units and communication devices, which are used for monitoring and manage-
ment of critical physical infrastructures. In this sense, it is crucial to develop high accurate
intrusion detection systems in order to protect CPSs and, consequently, offer high security
level to the protected structures. In this thesis, we focused on the security of the physical and
network layers of Cyber-Physical Systems. To face the challenges imposed by the former
case, we proposed a tensor based framework for UAV localization and identification in mul-
tipath environments. Additionally, to overcome the issues imposed by the latter case, three
different network intrusion detection systems for detecting Distributed Denial of Service
attacks were proposed.

The following research questions were tackled in this thesis:

1. How to efficiently localize and identify UAVs in multipath environments by jointly
applying multidimensional signal processing techniques and machine learning (ML)
algorithms?

2. How to efficiently detect DDoS attacks in a CPS network by jointly applying multi-
dimensional signal processing techniques and machine learning algorithms, assuming
that a noisy dataset is used for training and testing?

3. Following the same idea of the previous question, how to efficiently detect DDoS
attacks in a CPS network, still applying multidimensional signal processing techniques
on noisy datasets, but now using deep learning algorithms instead of ML techniques?

4. How to efficiently detect DDoS attacks in a CPS network by jointly applying multidi-
mensional feature map concatenation based techniques and deep learning algorithms,
but now assuming that a noiseless dataset is used for training and testing?

This chapter is organized as follows. In Section 6.1, the conclusion remarks are presented
in detail, whereas in Section 6.2 recommendations for future research are introduced.
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6.1 CONCLUSIONS

The first research question was addressed in Chapter 2, which introduced a tensor based
framework for UAV localization and identification in multipath environments. The proposed
scheme was an extension of the technique presented in [6] in three aspects: by adopting a
tensor representation to better explore the structure inherently multidimensional of the data;
by including a denoising preprocessing scheme to increase the signal-to-noise ratio of the
received signal; and by including a machine learning classification module for identifying
the UAV type. The proposed framework was compared with state-of-the-art localization
techniques, namely, M-ESPRIT + SS and T-ESPRIT + SS.

Initially, the performance evaluation of the compared schemes was made considering
the UAV localization. Extensive simulations were performed for different values of SIR,
number of URA antennas, number of samples and number of intruding drones. The root
mean square error of the estimated position coordinates and estimated spatial frequencies
were the assessed metrics. From the simulation results, it was observed that the proposed
framework presents a higher robustness against co-channel interference, especially due to
the MuDe module, which compensates the high interference level. In addition, when the
number of antennas was larger, the maximum number of subarrays in each spatial dimension
was increased and, consequently, the MuDe performance was improved, which corroborated
the considerable results shown by our proposed scheme, despite its higher computational
complexity. Moreover, regardless of the compared technique, it was also observed that a
higher number of time samples leads to a more accurate performance, despite the trade-off
between increased accuracy and higher processing time. Furthermore, all of the competitor
schemes presented worse performance as the number of intruding drones was higher, since
high interference levels were achieved in such situation, which impacted the accuracy of the
sensor array based localization system.

Next, in the context of drone model identification, the compared techniques were eval-
uated for different values of SIR. Several ML algorithms were analyzed, such as Decision
Trees, Extra Trees, k-Nearest Neighbors, Linear Discriminant Analysis, Logistic Regression,
Naïve Bayes and Random Forest. Further, three different drone models were considered: Be-
bop, AR and Phantom. From the results obtained in simulations, it could be seen that the
competitor techniques presented better performance for identifying UAVs as the SIR was
higher. Since the number of interfering sources was lower in this case, the drone signa-
tures estimated by each URA were more accurate, which leaded to improved classification
results. In addition, the proposed framework showed considerable results for identifying in-
truding drones under low interference level conditions, especially when ET, LDA, LR and
NB algorithms were applied for classification. Furthermore, it was also observed that some
drone types were more efficiently identified by specific ML algorithms, such as the AR drone
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model, which was recognized by the Extra Tress classifier with an accuracy of 100%.

The second research question was addressed in Chapter 3, which proposed a novel noise-
robust framework for DDoS attack detection which exploited tensor based signal processing
techniques as well as ML based algorithms. In addition, an extension of the recent Multi-
ple Denoising (MuDe) technique was presented, which attenuated the noise present in the
dataset instances. The proposed approach was compared with traditional low-rank approx-
imation techniques, namely, SVD, HOSVD and HOOI. Several ML algorithms were ana-
lyzed, such as AdaBoost, Linear Discriminant Analysis, Logistic Regression and Random
Forest. Extensive simulations were performed for different values of SNR and TSP, whereas
accuracy, detection rate and false alarm rate were the assessed metrics. The NSL-KDD and
CIC-DDoS2019 benchmark datasets were applied for model validation.

It was observed that the proposed framework outperformed its competing schemes in
terms of detection rate and false alarm rate for low SNR values, especially for the LDA, LR
and RFo classification algorithms. The benefits of our proposed extended MuDe algorithm
were more evident in low SNRs because it provided a higher noise reduction due to the
multiple denoising performed along the r-th dimension of the m-th dataset instance for r =

1, . . . , R and m = 1, . . . ,M . Furthermore, all of the compared techniques delivered better
performance as the training dataset size proportion increased, since ML classifiers need more
training samples when the dataset has a large number of features. Additionally, the proposed
scheme presented higher processing times compared to the competing techniques, especially
due to the MuDe algorithm. This is the trade-off in order to achieve a more accurate DDoS
attack detection when considering the multiple denoising technique.

The third research question was addressed in Chapter 4, which proposed a novel noise-
robust multilayer perceptron (MLP) architecture for DDoS attack detection. The average
value of the common features among dataset instances was dynamically filtered out through
the forward and backward propagation of the MLP, improving the model performance. The
proposed approach was compared with state-of-the-art low-rank approximation techniques,
namely, HOSVD and HOOI. Extensive experiments were conducted on a customized dataset
containing samples extracted from the CIC-IDS2017, CIC-IDS2018 and CIC-DDoS2019
benchmark datasets, considering different noise levels and number of hidden layers. More-
over, accuracy, detection rate and false alarm rate were the evaluated metrics.

The proposed approach was more efficient for detecting DDoS attacks compared to the
HOSVD and HOOI based MLPs when corrupted datasets were considered. Nonetheless,
the accuracy of our proposed technique was matched by the HOOI based MLP in scenarios
with low noise levels, since the more accurate core tensor and singular matrices generated
through orthogonal iterations in HOOI lead to a better dataset denoising. In addition, un-
der larger number of hidden layers and higher noise level conditions, the proposed scheme
was far superior compared to the HOOI and HOSVD based MLPs. Following, the proposed
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scheme was compared with conventional MLPs under noise-free conditions. Our proposed
approach outperformed the conventional MLP in terms of Acc and DR for multiple HL and
TSP configurations, despite it was more prone to false positives. In this sense, we conclude
that the noise attenuation provided by HOSVD and the more discriminative individual infor-
mation resulting from dataset filtering reflected in a higher noise-robustness and efficiency
of our proposed scheme.

However, an important drawback of our scheme in Chapter 4 was its higher training
time, especially for larger number of hidden layers, as a consequence of multiple HOSVDs
performed over training data batches. On the other hand, lower testing times were shown
by our approach, since low cost computations were performed during the testing phase,
in contrast to the tensor decompositions executed in HOSVD and HOOI. Additionally, the
proposed MLP outperformed the competing schemes for detecting DDoS attacks under real
time conditions, which reflected the superiority of our technique due to a more efficient
dataset filtering during the training phase. Finally, it was observed that our proposed MLP
presented higher noise-robustness compared to the competitor methods, especially under
high noise level conditions.

The last research question was addressed in Chapter 5, which proposed two novel tensor
feature map concatenation based CNN architectures for DDoS attack detection. The first
scheme, called TFMCB-CNN, has multiple parallel branches, each of which composed by
CNNs alternately positioned with feature map concatenation blocks. The outputs from CNNs
of consecutive branches are concatenated and sent to the next CNN within each branch. At
last, the branch outputs are concatenated and forwarded to a common flattening and mul-
tilayer perceptron blocks for final classification. The second scheme, known as TFMCB-
CNN-MV, is an improved version of the first one. Each one of its L parallel branches has
its respective flattening and multilayer perceptron blocks, whose outputs are sent to a sim-
ple majority voting module for final classification. The proposed schemes were compared
with state-of-the-art models, namely, Parallel-CNN-MV, Parallel-CNN and Serial-CNN. Ex-
tensive experiments were performed, considering different number of branches, number of
dense layers, convolution filter sizes and batch sizes. Moreover, accuracy, precision, recall,
false positive rate, false negative rate, f-score and Matthews correlation coefficient were the
evaluated metrics. The CIC-IDS2017 and CIC-DDoS2019 benchmark datasets were applied
for model validation in simulations.

The jointly usage of feature map concatenation and majority voting techniques improved
the DDoS attack detection performance compared to the approaches in which only feature
map concatenation was applied, especially for higher number of parallel branches. Further,
since the feature map concatenation technique is performed before the MLP block, the pro-
posed TFMCB-CNN approach was not very sensitive to the variation of the number of dense
layers. On the other hand, the TFMCB-CNN-MV scheme presented better performance as
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the number of dense layers was lower. Additionally, it was observed that the feature map
concatenation technique was sensitive to the batch size increasing, but this fact was compen-
sated by the inclusion of the simple majority voting block. As expected, all of the compared
schemes presented better performance for lower batch sizes, since the model weights were
more frequently updated during the forward and backward propagation in the training phase.
In addition, the proposed TFMCB-CNN-MV scheme presented an outstanding performance
for larger convolution filter sizes, where both feature map concatenation and majority voting
techniques benefited from a higher number of neighboring features convolutioned across the
filter.

In summary, this thesis aimed to bring multidimensional signal processing techniques
and machine learning/deep learning algorithms closer to real life problems, such as the in-
trusion detection in the physical and network layers of Cyber-Physical Systems. Both ap-
proaches can be jointly applied to solve the problem of localization and identification of
intruding UAVs in multipath environments, as well as the DDoS attack detection when ei-
ther noisy or noiseless benchmark datasets are used for NIDS training and testing.

6.2 FUTURE WORKS

This thesis addresses several problems, but some of them are still open, whereas others
are emerging from current results. Thus, the following issues should be investigated as future
works:

• Chapter 2:

– to incorporate a UAV tracking module into the proposed framework such that the
intruding UAVs can be tracked in real time.

– to incorporate a UAV detection module into the proposed framework such that the
intruding UAVs can be detected as soon as they invade the controlled air space.

– to incorporate a preprocessing multidimensional pre-whitening module into the
proposed framework in order to evaluate the UAV localization performance in
spatial colored noise environments.

– to improve the UAV identification module such that different flight modes present
in the DroneRF dataset can be identified, for instance, “off”, “on and connected”,
“hovering”, “flying” and “video recording”.

– to implement, in hardware, the proposed framework by using several devices,
such as multichannel Software Defined Radio (SDR) platforms and omnidirec-
tional antenna arrays. The objective is to collect, analyze and record raw RF
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signals emitted from different commercial UAV models, operating under several
flight modes, such that a novel drone RF sensing based dataset can be built up.

– to integrate the database developed in the previous item with UAV detection sys-
tems based on alternative technologies, such as acoustic recordings, radar echoes
and camera images, in order to improve the UAV identification performance.

• Chapter 3:

– to evaluate the performance of the proposed framework for detecting DDoS at-
tacks when the NIDS is trained and tested with datasets corrupted by different
types of false data injection attacks.

– to extend the proposed framework for detecting different types of network at-
tacks, such as brute force, web attack, infiltration attack and port scan.

– to implement distributed or parallel processing in order to analyze the scalability
and processing capacity of the proposed framework for monitoring high through-
put network traffic.

• Chapter 4:

– to evaluate the performance of the proposed MLP architecture for detecting DDoS
attacks when the NIDS is trained and tested with datasets corrupted by different
types of false data injection attacks.

– to extend the proposed MLP architecture for detecting different types of network
attacks, such as brute force, web attack, infiltration attack and port scan.

– to implement distributed or parallel processing in order to analyze the scalability
and processing capacity of the proposed MLP architecture for monitoring high
throughput network traffic.

– to apply the proposed feature extraction technique on alternative deep learning
classification algorithms, such as CNNs and Autoencoders.

• Chapter 5:

– to evaluate the performance of the proposed schemes for detecting DDoS attacks
when deeper network configurations are adopted, such that zero-day attacks can
be detected in real world traffic data.

– to extend the proposed schemes for detecting different types of network attacks,
such as brute force, web attack, infiltration attack and port scan.

– to extend the proposed schemes by using alternative feature map concatenation
based configurations for detecting DDoS attacks, including different deep learn-
ing classification algorithms, such as GRU, LSTM, SRNN and Autoencoders.
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LOW-RANK MATRIX AND TENSOR
BASED APPROXIMATION TECHNIQUES

In this appendix, we present the mathematical concepts regarding the low-rank matrix and
tensor based approximation techniques considered throughout this thesis, namely, SVD,
HOSVD and HOOI low-rank approximations. First, Section A.1 recapitulates the concepts
and properties of the SVD. Next, HOSVD is discussed in detail in Section A.2. Finally,
Section A.3 describes the HOOI low-rank approximation technique.

A.1 SINGULAR VALUE DECOMPOSITION (SVD)

Before introducing how the SVD low-rank approximation is applied for noise attenuation
in data matrices, let us first present some basic concepts regarding the Singular Value De-
composition. The dataset matrix can be expressed as X ∈ RM×N , where M is the number of
instances and N is the number of features, with N < M . According to the SVD technique,
X can be decomposed into the matrices U ∈ RM×M , Σ ∈ RM×N and V ∈ RN×N as follows

X = UΣVH, (A.1)

where U and V are the matrices containing the left singular vectors and right singular vec-
tors, respectively, whereas Σ = diag{σ1, . . . , σN} is a diagonal matrix containing the singu-
lar values σn for n = 1, . . . , N .

Since V is a unitary matrix, then VVH = IN , where IN ∈ RN×N is the identity matrix.
In this sense, V contains the eigenvectors of the matrix XHX, since

XHX = VΣH(UHU)ΣVH = V(ΣHΣ)VH = VΛVH, (A.2)

where Λ = ΣHΣ = diag{λ1, . . . , λN} is a diagonal matrix containing the eigenvalues
of XHX. Therefore, the singular values matrix Σ can be expressed as a function of the
eigenvalues λn for n = 1, . . . , N as follows

Σ = diag{[σ1, . . . , σN ]}

= diag{[
√
λ1, . . . ,

√
λN ]},

(A.3)

where σ1 ≥ · · · ≥ σN , i.e., the singular values are sorted in descending order.
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After the basic concepts discussed so far, the SVD based noise attenuation for matrices is
presented as follows. The dataset matrix can be modeled as X = X0+N, where X0 ∈ RM×N

is the noise-free matrix and N ∈ RM×N is the noise samples matrix. Assuming that the noise
and the signal are independent and zero-mean, the covariance matrix Rxx ∈ RN×N of X is
defined as [161]

Rxx = E{XHX}

= E{XH
0 X0}+ E{NHN}

= Rss + Rnn,

(A.4)

where E{·} denotes the expectation function. Moreover, Rss = E{XH
0 X0} ∈ RN×N is

the signal covariance matrix and Rnn = E{NHN} = σ2IN ∈ RN×N denotes the noise
covariance matrix, where σ2 is the noise power.

If the rank d of X is known, the eigenvalue decomposition of Rxx in (A.1) can be ex-
pressed as

Rxx = VsΛsV
H
s + VnΛnV

H
n

= VsΛsV
H
s + σ2VnV

H
n ,

(A.5)

where Λs = diag{λ1, . . . , λd} ∈ Rd×d and Λn = diag{σ2, . . . , σ2} = σ2IN−d ∈ R(N−d)×(N−d)

are diagonal matrices containing the signal eigenvalues and noise eigenvalues, respectively.
Furthermore, since the columns of Vs and Vn contain the signal eigenvectors and noise
eigenvectors of Rxx, they are known as signal subspace matrix and noise subspace matrix,
respectively.

Instead of computing the eigenvalue decomposition in (A.5), we can perform the SVD
of the dataset matrix X and, consequently, the signal subspace Vs can be obtained from the
d dominant left singular vectors [161]. In this sense, SVD performs the noise attenuation of
the dataset matrix X by truncating the matrices U ∈ RM×N , Σ ∈ RN×N and V ∈ RN×N

up to the signal subspace. Therefore, the SVD low-rank approximation of X, denoted as
X̃ ∈ RM×N , can be expressed as

X̃ = UsΣsV
H
s , (A.6)

where Σs = diag{σ1, . . . , σd} ∈ Rd×d is a diagonal matrix containing the singular values
σn for n = 1, . . . , d. Further, the columns of Us ∈ RM×d and Vs ∈ RN×d correspond to the
singular vectors of X̃.
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The connection between the singular values and the matrix rank is one of the most im-
portant properties of the SVD [162]. The rank d corresponds to the number of singular
values greater than or equal to a given threshold, which can be computed by state-of-the-art
model order selection techniques, such as AIC [77,105], EDC [78] and MDL [79,105]. Fig.
A.1 illustrates the best rank-d approximation of the dataset matrix X ∈ RM×N based on
the Singular Value Decomposition. First, X is decomposed into the matrices U ∈ RM×M ,
Σ ∈ RM×N and V ∈ RN×N , as it can be seen in Fig. A.1a. After truncating each matrix
to the signal subspace, according to the rank d, the denoised data matrix X̃ is computed by
(A.6), as shown in Fig. A.1b. For the sake of illustration, in Fig. A.1a, the singular value
profile σn is depicted by a bar plot above the matrix Σ. Note that the rank d is defined by the
number of singular values greater than or equal to the threshold th [162].
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Figure A.1 – (a) SVD of the dataset matrix X ∈ RM×N . The rank d is used to truncate the
matrices U ∈ RM×M , Λ ∈ RM×N and V ∈ RN×N to the signal subspace. (b) Denoised
dataset matrix X̃ ∈ RM×N , corresponding to the product UsΣsV

H
s , where Us ∈ RM×d,

Vs ∈ RN×d and Σs ∈ Rd×d.
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A.2 HIGHER ORDER SINGULAR VALUE DECOMPOSITION (HOSVD)

In this section, a multidimensional extension of the SVD low-rank approximation is de-
fined for higher order tensors. The dataset matrix X ∈ RM×N can be represented in the
tensor form, given by XXX ∈ RN1×···×NR×M , where N =

∏R
r=1 Nr. If the number of instances

M is written as NR+1 for simplicity, the Higher Order Singular Value Decomposition of XXX
can be expressed as

XXX = GGG×1 U1 · · · ×R UR ×R+1 UR+1, (A.7)

where GGG ∈ RN1×···×NR×NR+1 is the core tensor and Ur ∈ RNr×Nr for r = 1, . . . , R + 1 are
the factor matrices. Each matrix Ur is computed by applying the SVD on the r-th unfolding
matrix of XXX [162], i.e.,

[XXX](r) = UrΣrV
H
r , (A.8)

where Σr = diag{σ(r)
1 , . . . , σ

(r)
Nr
} ∈ RNr×Nr is a diagonal matrix containing the singular

values of [XXX](r).

Next, from Ur for r = 1, . . . , R + 1 computed from (A.8), the core tensor GGG can be
obtained as follows

GGG = XXX×1 UH
1 · · · ×R UH

R ×R+1 UH
R+1. (A.9)

Analogously to the SVD low-rank approximation, the core tensor GGG as well as the fac-
tor matrices Ur for r = 1, . . . , R + 1 can be truncated according to the multilinear rank
(d1, . . . , dR+1). Consequently, the core tensor truncated to the signal subspace is given by
GGG[s] ∈ Rd1×···×dR×dR+1 , whereas the truncated factor matrices are denoted as U

[s]
r ∈ RNr×dr

for r = 1, . . . , R + 1.

In this sense, the denoised data tensor X̃̃X̃X can be expressed as

X̃̃X̃X = GGG[s] ×1 U
[s]
1 · · · ×R U

[s]
R ×R+1 U

[s]
R+1, (A.10)

where the HOSVD low-rank approximation considers only the first dr left columns of Ur

corresponding to the dr largest singular values of [XXX](r). Fig. A.2 illustrates an example
of the HOSVD of a three-dimensional dataset tensor XXX ∈ RN1×N2×M . The tensor XXX is
decomposed into the core tensor GGG ∈ RN1×N2×N3 and the factor matrices Ur ∈ RNr×Nr for
r = 1, . . . , 3 in Fig. A.2a. Following, in Fig. A.2b, the core tensor and factor matrices
are truncated to the signal subspace according to the multilinear rank (d1, d2, d3), generating
GGG[s] ∈ Rd1×d2×d3 and U

[s]
r ∈ RNr×dr for r = 1, . . . , 3. Then, the denoised dataset tensor is
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given by X̃̃X̃X = GGG[s]×1 U
[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 . Note that the singular value profiles σ(1)

n , σ(2)
n and

σ
(3)
n , with thresholds th1, th2 and th3, are depicted above their respective factor matrices.
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Figure A.2 – (a) HOSVD of the dataset tensor XXX ∈ RN1×N2×N3 . The multilinear rank
(d1, d2, d3) is used to truncate the core tensor GGG ∈ RN1×N2×N3 and the factor matrices
Ur ∈ RNr×Nr for r = 1, . . . , 3. (b) Denoised dataset tensor X̃̃X̃X ∈ RN1×N2×N3 , corresponding
to the product GGG[s] ×1 U

[s]
1 ×2 U

[s]
2 ×3 U

[s]
3 , where GGG[s] ∈ Rd1×d2×d3 and U

[s]
r ∈ RNr×dr for

r = 1, . . . , 3.
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A.3 HIGHER ORDER ORTHOGONAL ITERATION

Similarly to the HOSVD, the Higher Order Orthogonal Iteration can be considered as a
multilinear generalization of the SVD low-rank approximation for matrices. However, HOOI
is an iterative technique which finds the best rank-(d1, . . . , dR+1) tensor X̃̃X̃X ∈ RN1×···×NR×M

such that the least squares cost function ‖XXX− X̃̃X̃X‖2 is minimal [108].

The HOOI algorithm estimates the singular matrices U
[s]
r for r = 1, . . . , R + 1 by se-

quentially applying the SVD at each iteration j until some stopping criterion is satisfied [88],
i.e.,

[XXX×2 U
(j)[s]H

2 ×3 U
(j)[s]H

3 · · · ×R+1 U
(j)[s]H

R+1 ](1) = U
(j+1)[s]
1 Σ

(j+1)[s]
1 V

(j+1)[s]H

1 ,

[XXX×1 U
(j+1)[s]H

1 ×3 U
(j)[s]H

3 · · · ×R+1 U
(j)[s]H

R+1 ](2) = U
(j+1)[s]
2 Σ

(j+1)[s]
2 V

(j+1)[s]H

2 ,

...

[XXX×1 U
(j+1)[s]H

1 ×2 U
(j+1)[s]H

2 · · · ×R U
(j+1)[s]H

R ](R+1) = U
(j+1)[s]
R+1 Σ

(j+1)[s]
R+1 V

(j+1)[s]H

R+1 ,

(A.11)

where, at j = 0, the HOOI is initialized with the factor matrices obtained from (A.8) through
HOSVD.

From the factor matrices U
(J)[s]
r for r = 1, . . . , R + 1 obtained after the J-th iteration

of the HOOI algorithm in (A.11), where J is the iteration in which the stop condition was
satisfied, the core tensor GGG[s] ∈ Rd1×···×dR×dR+1 can be computed as follows

GGG[s] = XXX×1 U
(J)[s]H

1 · · · ×R U
(J)[s]H

R ×R+1 U
(J)[s]H

R+1 . (A.12)

Finally, from the core tensor GGG[s] found in (A.12), as well as the factor matrices U
(J)[s]
r

for r = 1, . . . , R + 1 obtained from (A.11), the denoised dataset tensor X̃̃X̃X ∈ RN1×···×NR×M

computed via the HOOI algorithm is given by

X̃̃X̃X = GGG[s] ×1 U
(J)[s]
1 · · · ×R U

(J)[s]
R ×R+1 U

(J)[s]
R+1 . (A.13)
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TRIANGULATION

In this appendix, we illustrate how triangulation techniques can be used to derive the coor-
dinates of an intruding Unmanned Aerial Vehicle in a Cartesian coordinate system by using
the position coordinates of two antenna arrays.

Let us consider the antenna array based UAV localization system composed by U 2D
URAs depicted in Figure 2.1a of Chapter 2. By using the origin (0, 0, 0) of the Cartesian
coordinate system as reference, two URAs are sufficient to determine the UAV coordinates.
Fig. B.1a illustrates the localization of the q-th UAV, via triangulation, by using the u-th and
v-th URAs, whereas the same technique, projected onto the xy-plane, is shown in Fig. B.1b.
As mentioned in Chapter 2, the coordinates (x̂u,vq , ŷu,vq , ẑu,vq ) of the q-th UAV, estimated by
both URAs, are given by


x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂qu,los,

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂qu,los,

ẑu,vq = l̂qu cos θ̂qu,los,

(B.1)

if the u-th URA is used as a reference, or


x̂u,vq = xv − l̂qv sin θ̂qv,los sin ϕ̂qv,los,

ŷu,vq = yv + l̂qv sin θ̂qv,los cos ϕ̂qv,los,

ẑu,vq = l̂qv cos θ̂qv,los,

(B.2)

if, alternatively, the v-th URA is used as a reference, regardless of the relative position be-
tween the URAs and the UAV. In both systems of equations, θ̂qu,los and θ̂qv,los are the elevation
angles at the u-th and v-th URAs, respectively. Furthermore, ϕ̂qu,los and ϕ̂qv,los correspond
to the angles between the y-direction and the LOS from the UAV projected onto the xy-
plane in the counterclockwise rotation at the u-th and v-th URAs, as described in Section
2.3 of Chapter 2. Additionally, l̂qu and l̂qv are the distances between (x̂u,vq , ŷu,vq , ẑu,vq ) and the
coordinates of each URA, (xu, yu, zu) and (xv, yv, zv), respectively.

Since all of the URAs are positioned along the xy-plane, the triangulation process used
to estimate the coordinates of the q-th UAV can be projected onto the mentioned plane, as
shown in Fig. B.2 to B.5, in a process similar to the one performed in Fig. B.1. In each
figure, the xy-plane is divided into six regions, each of which corresponding to a different
relative position between the UAV and the URAs. The projection of the q-th UAV onto the
xy-plane is represented by cross markers in orange color, whereas URAs are represented by
circle markers in black color. Moreover, the lines-of-sight from the UAV to the u-th and
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v-th URAs, projected onto the xy-plane, are represented by lines in red color and denoted as
l̂qu sin θ̂qu,los and l̂qv sin θ̂qv,los, respectively.

In Fig. B.2 and B.3, the u-th URA is considered at a top position compared to the v-th
URA (xu < xv), whereas the opposite situation is shown in Fig. B.4 and B.5 (xu > xv).
Furthermore, the azimuth angles are written as a function of ϕ̂qu,los and ϕ̂qv,los. Tables B.1 and
B.2 present the coordinates of the q-th UAV, computed by using the u-th and v-th URAs, for
each region of the Cartesian coordinate system shown in Fig. B.2 to Fig. B.5. In each table,
after some mathematical operations, the results shown in rows 1 to 12 boil down to the same
coordinates presented in the last row. In this sense, we conclude that the coordinates of the
q-th UAV, obtained by triangulation techniques applied on the u-th and v-th URAs, generate
the same results, regardless of the relative positions between the UAV and URAs.
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Figure B.1 – (a) Triangulation technique used to localize the q-th UAV by using the u-th and
v-th URAs. (b) Triangulation technique, projected onto the xy-plane.
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Figure B.2 – Localization of the q-th UAV via triangulation, projected onto the xy-plane,
considering positions 1 to 6 (xu < xv).
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Figure B.3 – Localization of the q-th UAV via triangulation, projected onto the xy-plane,
considering positions 7 to 12 (xu < xv).
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Figure B.4 – Localization of the q-th UAV via triangulation, projected onto the xy-plane,
considering positions 1 to 6 (xu > xv).
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Figure B.5 – Localization of the q-th UAV via triangulation, projected onto the xy-plane,
considering positions 7 to 12 (xu > xv).
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Table B.1 – Coordinates of the q-th UAV, computed via triangulation with the u-th and v-th
URAs, according to the relative positions shown in Fig. B.2 and B.3.

Region UAV coordinates, computed via u-th array UAV coordinates, computed via v-th array

1
x̂u,vq = xu − l̂qu sin θ̂qu,los sin(180◦ − ϕ̂q

u,los)

ŷu,vq = yu − l̂qu sin θ̂qu,los cos(180◦ − ϕ̂q
u,los)

x̂u,vq = xv − l̂qv sin θ̂qv,los sin(180◦ − ϕ̂q
v,los)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(180◦ − ϕ̂q
v,los)

2
x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂q

u,los

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂q
u,los

x̂u,vq = xv − l̂qv sin θ̂qv,los sin(180◦ − ϕ̂q
v,los)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(180◦ − ϕ̂q
v,los)

3
x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂q

u,los

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂q
u,los

x̂u,vq = xv − l̂qv sin θ̂qv,los sin ϕ̂q
v,los

ŷu,vq = yv + l̂qv sin θ̂qv,los cos ϕ̂q
v,los

4
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂q

u,los)

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂q
u,los)

x̂u,vq = xv − l̂qv sin θ̂qv,los sin(180◦ − ϕ̂q
v,los)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(180◦ − ϕ̂q
v,los)

5
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂q

u,los)

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂q
u,los)

x̂u,vq = xv − l̂qv sin θ̂qv,los sin ϕ̂q
v,los

ŷu,vq = yv + l̂qv sin θ̂qv,los cos ϕ̂q
v,los

6
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂q

u,los)

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂q
u,los)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(360◦ − ϕ̂q
v,los)

ŷu,vq = yv + l̂qv sin θ̂qv,los cos(360◦ − ϕ̂q
v,los)

7
x̂u,vq = xu − l̂qu sin θ̂qu,los sin(180◦ − ϕ̂q

u,los)

ŷu,vq = yu − l̂qu sin θ̂qu,los cos(180◦ − ϕ̂q
u,los)

x̂u,vq = xv − l̂qv sin θ̂qv,los sin(180◦ − ϕ̂q
v,los)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(180◦ − ϕ̂q
v,los)

8
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(ϕ̂q

u,los − 180◦)

ŷu,vq = yu − l̂qu sin θ̂qu,los cos(ϕ̂q
u,los − 180◦)

x̂u,vq = xv − l̂qv sin θ̂qv,los sin(180◦ − ϕ̂q
v,los)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(180◦ − ϕ̂q
v,los)

9
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂q

u,los)

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂q
u,los)

x̂u,vq = xv − l̂qv sin θ̂qv,los sin(180◦ − ϕ̂q
v,los)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(180◦ − ϕ̂q
v,los)

10
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(ϕ̂q

u,los − 180◦)

ŷu,vq = yu − l̂qu sin θ̂qu,los cos(ϕ̂q
u,los − 180◦)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(ϕ̂q
v,los − 180◦)

11
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂q

u,los)

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂q
u,los)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(ϕ̂q
v,los − 180◦)

12
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂q

u,los)

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂q
u,los)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(360◦ − ϕ̂q
v,los)

ŷu,vq = yv + l̂qv sin θ̂qv,los cos(360◦ − ϕ̂q
v,los)

Final
x̂
u,v
q = xu − l̂

q
u sin θ̂

q
u,los sin ϕ̂

q
u,los

ŷ
u,v
q = yu + l̂

q
u sin θ̂

q
u,los cos ϕ̂

q
u,los

x̂
u,v
q = xv − l̂

q
v sin θ̂

q
v,los sin ϕ̂

q
v,los

ŷ
u,v
q = yv + l̂

q
v sin θ̂

q
v,los cos ϕ̂

q
v,los
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Table B.2 – Coordinates of the q-th UAV, computed via triangulation with the u-th and v-th
URAs, according to the relative positions shown in Fig. B.4 and B.5.

Region UAV coordinates, computed via u-th array UAV coordinates, computed via v-th array

1
x̂u,vq = xu − l̂qu sin θ̂qu,los sin(180◦ − ϕ̂q

u,los)

yu,vq = yu − l̂qu sin θ̂qu,los cos(180◦ − ϕ̂q
u,los)

x̂u,vq = xv − l̂qv sin θ̂qv,los sin(180◦ − ϕ̂q
v,los)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(180◦ − ϕ̂q
v,los)

2
x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂q

u,los

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂q
u,los

x̂u,vq = xv − l̂qv sin θ̂qv,los sin(180◦ − ϕ̂q
v,los)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(180◦ − ϕ̂q
v,los)

3
x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂q

u,los

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂q
u,los

x̂u,vq = xv − l̂qv sin θ̂qv,los sin ϕ̂q
v,los

ŷu,vq = yv + l̂qv sin θ̂qv,los cos ϕ̂q
v,los

4
x̂u,vq = xu − l̂qu sin θ̂qu,los sin(180◦ − ϕ̂q

u,los)

ŷu,vq = yu − l̂qu sin θ̂qu,los cos(180◦ − ϕ̂q
u,los)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

ŷu,vq = yv − l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

5
x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂q

u,los

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂q
u,los

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(ϕ̂q
v,los − 180◦)

6
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(ϕ̂q

u,los − 180◦)

ŷu,vq = yu − l̂qu sin θ̂qu,los cos(ϕ̂q
u,los − 180◦)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(ϕ̂q
v,los − 180◦)

7
x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂q

u,los

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂q
u,los

x̂u,vq = xv − l̂qv sin θ̂qv,los sin ϕ̂q
v,los

ŷu,vq = yv + l̂qv sin θ̂qv,los cos ϕ̂q
v,los

8
x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂q

u,los

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂q
u,los

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(ϕ̂q
v,los − 180◦)

9
x̂u,vq = xu − l̂qu sin θ̂qu,los sin ϕ̂q

u,los

ŷu,vq = yu + l̂qu sin θ̂qu,los cos ϕ̂q
u,los

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(360◦ − ϕ̂q
v,los)

ŷu,vq = yv + l̂qv sin θ̂qv,los cos(360◦ − ϕ̂q
v,los)

10
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(ϕ̂q

u,los − 180◦)

ŷu,vq = yu − l̂qu sin θ̂qu,los cos(ϕ̂q
u,los − 180◦)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(ϕ̂q
v,los − 180◦)

11
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂q

u,los)

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂q
u,los)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(ϕ̂q
v,los − 180◦)

ŷu,vq = yv − l̂qv sin θ̂qv,los cos(ϕ̂q
v,los − 180◦)

12
x̂u,vq = xu + l̂qu sin θ̂qu,los sin(360◦ − ϕ̂q

u,los)

ŷu,vq = yu + l̂qu sin θ̂qu,los cos(360◦ − ϕ̂q
u,los)

x̂u,vq = xv + l̂qv sin θ̂qv,los sin(360◦ − ϕ̂q
v,los)

ŷu,vq = yv + l̂qv sin θ̂qv,los cos(360◦ − ϕ̂q
v,los)

Final
x̂
u,v
q = xu − l̂

q
u sin θ̂

q
u,los sin ϕ̂

q
u,los

ŷ
u,v
q = yu + l̂

q
u sin θ̂

q
u,los cos ϕ̂

q
u,los

x̂
u,v
q = xv − l̂

q
v sin θ̂

q
v,los sin ϕ̂

q
v,los

ŷ
u,v
q = yv + l̂

q
v sin θ̂

q
v,los cos ϕ̂

q
v,los
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RF SENSING BASED DRONE
IDENTIFICATION AND DDoS ATTACK
DATASETS

In this appendix, details regarding the RF-based drone identification dataset used in Chapter
2 are introduced. Furthermore, the DDoS attack benchmark datasets used in Chapters 3 to 5
are discussed as well.

C.1 RF SENSING BASED DRONE IDENTIFICATION DATASET

This section details the main characteristics of the DroneRF database, which is the RF
sensing based drone identification dataset used in this thesis. The number of instances col-
lected from the DroneRF dataset and used for model validation are shown in Table 2.5 of
Chapter 2.

DroneRF is a novel radio frequency based dataset which contains 227 recorded segments
collected from three different types of commercial drones, namely, Parrot Bebop 1 [163],
Parrot AR 2.0 Elite [164] and DJI Phantom 3 [165]. Each segment is composed by two
equally sized parts containing 1 million samples each, with 454 record files in total. Such
samples correspond to the amplitude of the received RF signals in the time domain. The data
has been collected by RF receivers which intercepted communications between the UAV and
its flight controller. The DroneRF database is publicly available for students and researchers
in CSV format [85], and can be used to train and test machine learning based models for
detecting and identifying the three above-mentioned UAV models. Furthermore, the dataset
contains signatures of drones operating in different modes, organized into three identification
levels, as follows:

• Level 1: the intruding drone is detected as “on” or “off” by the IDS. In the former
case, the drone RF activities are recorded in the dataset, whereas only RF background
activities are recorded in the latter case.

• Level 2: once the intruding drone is detected as “on”, then the IDS identifies its model
as one of the following options: “Parrot Bebop 1”, “Parrot AR 2.0 Elite” or “DJI
Phantom 3”.

• Level 3: once the intruding drone model is identified, then the IDS identifies its flight
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mode as one of the following options: “on and connected to the controller”, “hovering
automatically”, “flying without video recording”, or “flying with video recording”.

C.2 DDoS ATTACK DATASETS

This section introduces the NSL-KDD, CIC-IDS2017, CIC-IDS2018 and CIC-DDoS2019
benchmark datasets, provided by the Canadian Institute for Cybersecurity (CIC) of the Uni-
versity of New Brunswick (UNB). The DDoS attack types and the corresponding number
of instances collected from each dataset and used for model validation are shown in the
respective Simulation Results sections of Chapters 3 to 5.

NSL-KDD is a benchmark dataset used to design network IDSs proposed by Tavallaee
et al. [166]. It is a distilled version of the well-known KDD Cup 99 dataset, which pre-
sented several redundant records and, consequently, biased evaluation results were shown
by NIDS trained with such data. The training and testing samples of the NSL-KDD dataset
are contained in two different sets called KDDTrain+ and KDDTest+, respectively. More-
over, NSL-KDD has 41 features and different types of network attacks divided into four
major categories: Probe, Denial of Service (DoS), User to Root (U2R) and Remote to Local
(R2L) [167]. In a probing attack, an attacker gathers information about a network in order
to find its vulnerabilities. On the other hand, in DoS attacks, legitimate users are prevented
from using a service after a massive attack is launched on the target server. Moreover, in
U2R attacks, an attacker with access to a normal user account exploits some vulnerabil-
ity in order to gain super-user privilege. Finally, in R2L attacks, an attacker tries to gain
access to the victim’s machine without having an account on it [116]. The DoS attacks
present in the NSL-KDD dataset and used in this thesis are: Neptune, Teardrop, Smurf, Pod,
Back, Land, UDPStorm, Apache2, ProcessTable and MailBomb. Further, five of the 41 fea-
tures of the NSL-KDD dataset were ignored, namely, count, protocol_type, service, flag and
num_outbound_cmds. The first and second one were neglected because they presented only
zero values, while the other three features were deleted because they were all nominal. Table
C.1 illustrates the NSL-KDD features used in Chapter 3. Further, all legitimate and DDoS
attack instances are labeled as 0 and 1, respectively.

CIC-IDS2017 is a completely labeled benchmark dataset provided by the Canadian In-
stitute of Cybersecurity for network intrusion detection models, with 87 network traffic fea-
tures. The dataset contains legitimate traffic and the most up-to-date common network at-
tacks, such as DDoS, Denial of Service (DoS), Brute Force, Cross-Site Scripting (XSS),
SQL Injection, Infiltration, Port Scan and Botnet [168]. All legitimate and malicious traffics
are stored in CSV and PCAP files, organized according to the date and time of the data cap-
turing, and are publicly available in [131]. Since this thesis focus on Distributed Denial of
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Table C.1 – NSL-KDD dataset features used in Chapter 3.

Nr Feature Name Nr Feature Name

1 duration 19 srv_count

2 src_bytes 20 serror_rate

3 dst_bytes 21 srv_serror_rate

4 land 22 rerror_rate

5 wrong_fragment 23 srv_rerror_rate

6 urgent 24 same_srv_rate

7 hot 25 diff_srv_rate

8 num_failed_logins 26 srv_diff_host_rate

9 logged_in 27 dst_host_count

10 num_compromised 28 dst_host_srv_count

11 root_shell 29 dst_host_same_srv_rate

12 su_attempted 30 dst_host_diff_srv_rate

13 num_root 31 dst_host_same_src_port_rate

14 num_file_creations 32 dst_host_srv_diff_host_rate

15 num_shells 33 dst_host_serror_rate

16 num_access_files 34 dst_host_srv_serror_rate

17 is_host_login 35 dst_host_rerror_rate

18 is_guest_login 36 dst_host_srv_rerror_rate

Service attack detection, only legitimate and DDoS instances are extracted.

Furthermore, CIC-IDS2018 is an updated version of the CIC-IDS2017 which presents
multiple network attack and legitimate traffic instances recorded in PCAP and CSV files
[168]. The dataset contains ten days of benign and malicious activities performed in a con-
trolled simulation environment, from Feb 14th, 2018, to March 2nd, 2018, and is publicly
available in [132]. Malicious samples include common network attacks, such as FTP-Brute
Force, DoS-Golden Eye, SQL Injection, DDoS-HOIC and Infiltration. In addition, since we
focus on DDoS attack detection, legitimate and DDoS attack samples were collected from
the traces captured in February 20th, 2018, and February 21st, 2018, respectively.

Finally, CIC-DDoS2019 is one of the most up-to-date DDoS attack datasets available
on the web [89]. It is completely labeled and contains more than 80 network traffic fea-
tures with millions of instances and different DDoS attack types. The authors divided the
DDoS attacks present in the CIC-DDoS2019 dataset into two categories: reflection-based
and exploitation-based [120]. In the first category, an attacker, using spoofed Internet Pro-
tocol (IP) addresses, sends several request packets to a server which replies directly to the
forged IPs, overwhelming the victim’s bandwidth or resources. Such attacks become more
efficient when traffic amplification is used, i.e., when the response size is much larger than
the request size. The reflection-based DDoS attacks used in this thesis include Domain Name
System (DNS), Lightweight Directory Access Protocol (LDAP), Microsoft Structured Query
Language (MSSQL), Network Basic Input/Output System (NetBIOS), Network Time Proto-
col (NTP), Simple Network Management Protocol (SNMP), Simple Service Discovery Pro-
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tocol (SSDP), Trivial File Transfer Protocol (TFTP) and DNS based attacks. On the other
hand, exploitation-based DDoS attacks usually consume server resources by exploiting pro-
tocol vulnerabilities. In this thesis, SYN flood and UDP flood are used as exploitation-based
attacks. Such attacks can also be performed by a reflection structure composed by several
compromised machines and spoofed IP addresses, similarly to the reflection-based category.
The capturing days of the training and testing sets are January 12th, 2019 and March 11th,
2019, respectively.

From the original features present in the CIC-IDS2017, CIC-IDS2018 and CIC-DDoS2019
datasets, only 64 are considered in this thesis. The feature selection process is summa-
rized as follows. Nine features were eliminated because they presented only zero values
and, consequently, would not provide any contribution to the machine learning classification
algorithms. Such features are: FwdURGFlags, BwdPSHFlags, BwdURGFlags, FwdAvg-
Bytes_Bulk, FwdAvgPackets_Bulk, FwdAvgBulkRate, BwdAvgBytes_Bulk, BwdAvgPack-
ets_Bulk and BwdAvgBulkRate. Moreover, one feature was wrongly written twice in the
dataset (FwdHeaderLength and FwdHeaderLength_1) and, consequently, one of such iden-
tical copies was ignored. Furthermore, as we intend to develop a DDoS attack detection
system regardless of IP addresses, protocols and date/time information, four more features
were neglected: Source IP, Destination IP, Protocol and Timestamp. Finally, the features
Unnamed_0, FlowID, SimilarHTTP, Inbound, FlowIATStdDev, FwdIATStdDev, BwdIAT-
StdDev, FwdPUSHFlag and StdDevTimeIdleFlow were also eliminated, since they did not
provide any useful information for our proposed technique. Table C.2 describes all the CIC-
DDoS2019, CIC-IDS2018 and CIC-IDS2017 dataset features used in Chapters 3 to 5. More
details about each feature can be found in [169]. In addition, the types of network traffic
present in the CIC-DDoS2019, CIC-IDS2018 and CIC-IDS2017 datasets, along their re-
spective capturing days, are summarized in Table C.3.
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Table C.2 – CIC-IDS2017, CIC-IDS2018 and CIC-DDoS2019 dataset features used in Chap-
ters 3 to 5.

Nr Feature Name Nr Feature Name Nr Feature Name

1 Source Port 23 Fwd IAT Max 44 CWE Flag Count

2 Destination Port 24 Fwd IAT Min 45 ECE Flag Count

3 Flow Duration 25 Bwd IAT Total 46 Download/Upload Ratio

4 Total Fwd Packet 26 Bwd IAT Avg 47 Avg Packet Size

5 Total Bwd Packet 27 Bwd IAT Max 48 Avg Fwd Segment Size

6 Total Length Fwd Packet 28 Bwd IAT Min 49 Avg Bwd Segment Size

7 Total Length Bwd Packet 29 Fwd Header Length 50 Subflow Fwd Packets

8 Fwd Packet Length Max 30 Bwd Header Length 51 Subflow Fwd Bytes

9 Fwd Packet Length Min 31 Fwd Packet/s 52 Subflow Bwd Packets

10 Fwd Packet Length Avg 32 Bwd Packet/s 53 Subflow Bwd Bytes

11 Fwd Packet Length Std Dev 33 Packet Length Min 54 Fwd Win Bytes

12 Bwd Packet Length Max 34 Packet Length Max 55 Bwd Win Bytes

13 Bwd Packet Length Min 35 Packet Length Avg 56 Fwd Active Data Packet

14 Bwd Packet Length Avg 36 Packet Length Std Dev 57 Fwd Min Segment Size

15 Bwd Packet Length Std Dev 37 Packet Length Var 58 Avg Time Active Flow

16 Flow Bytes/s 38 FIN Flag Count 59 Std Dev Time Active Flow

17 Flow Packets/s 39 SYN Flag Count 60 Max Time Active Flow

18 Flow IAT Avg 40 RST Flag Count 61 Min Time Active Flow

19 Flow IAT Max 41 PUSH Flag Count 62 Avg Time Idle Flow

20 Flow IAT Min 42 ACK Flag Count 63 Std Dev Time Idle Flow

21 Fwd IAT Total 43 URG Flag Count 64 Min Time Idle Flow

22 Fwd IAT Avg

Table C.3 – Capturing days and network traffic present in the CIC-IDS2017, CIC-IDS2018
and CIC-DDoS2019 datasets.

Dataset Days Captured Network Traffic

CIC-DDoS2019
Jan. 12th, 2019 PortMap, NetBIOS, LDAP, MSSQL, UDP, UDP-Lag, Syn

Mar. 11th, 2019
NTP, DNS, LDAP, MSSQL, NetBIOS, SNMP, SSDP, UDP,
UDP-Lag, WebDDoS, Syn, TFTP

CIC-IDS2018
Feb 20th, 2018 Legitimate

Feb 21st, 2018 HTTP and UDP-based DDoS

CIC-IDS2017
July 3rd, 2017 Legitimate

July 7th, 2017 HTTP and UDP-based DDoS

NSL-KDD
– Legitimate

–
Neptune, Teardrop, Smurf, Pod, Back, Land, UDPStorm,
Apache2, ProcessTable and MailBomb
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PERFORMANCE EVALUATION
METRICS

In this appendix, we present the main metrics adopted for performance and noise-robustness
evaluation of the NIDSs assessed throughout this thesis. All of the metrics can be extracted
from the well-known confusion matrix, represented in Table D.1. Such matrix allows us to
visualize all of the possible cases of classification. Based on the values of True Positives
(TPs), False Positives (FPs), True Negatives (TNs) and False Negatives (FNs) provided by
the confusion matrix, several metrics commonly used for performance evaluation can be
computed.

Table D.1 – Confusion matrix.

Predicted Class
Positive Negative

Actual Class Positive TP FN
Negative FP TN

Accuracy (Acc), Precision (Prec), Recall (Rec), False Positive Rate (FPR), False Nega-
tive Rate (FNR), F-Score and Matthews Correlation Coefficient (MCC) are the performance
evaluation metrics used in this work, which are defined as follows:

• Accuracy (Acc): the ratio between the correctly predicted instances and the total num-
ber of instances,

Acc =
TP + TN

TP + TN + FP + FN
. (D.1)

• Precision (Prec): the ratio between the correctly predicted positive instances and the
total number of predicted positive instances,

Prec =
TP

TP + FP
. (D.2)

• Recall (Rec) or Detection Rate (DR): the ratio between the correctly predicted positive
instances and the total number of actual positive instances,

Rec =
TP

TP + FN
. (D.3)

• False Positive Rate (FPR) or False Alarm Rate (FAR): the ratio between the number
of negative instances wrongly classified as positives and the total number of actual
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negative instances,

FPR =
FP

TN + FP
. (D.4)

• False Negative Rate (FNR): the ratio between the number of positive instances wrongly
classified as negatives and the total number of actual positive instances,

FNR =
FN

FN + TP
. (D.5)

• F-Score or F-Measure: corresponds to the harmonic mean of precision and recall,

F-Score =
2 · Prec · Rec

Prec + Rec
. (D.6)

• Matthews Correlation Coefficient (MCC): measures the quality of binary classifica-
tions. It ranges from −1 to +1 such that higher values represent better performance.
The MCC is defined as

MCC =
(TP · TN)− (FP · FN)√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
. (D.7)

In addition, the Relative Loss of Accuracy (RLA) and Relative Loss of Detection Rate
(RLDR) are adopted as noise-robustness evaluation metrics. Both can be expressed as fol-
lows:

• Relative Loss of Accuracy: measures the percentage of variation of the accuracy of
the classifiers at the noise level x%, Accx%, with respect to the original case with no
additional noise, Acc0%,

RLA =
Acc0% − Accx%

Acc0%

. (D.8)

• Relative Loss of Detection Rate: measures the percentage of variation of the detection
rate of the classifiers at the noise level x%, DRx%, with respect to the original case
with no additional noise, DR0%,

RLDR =
DR0% − DRx%

DR0%

. (D.9)
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SIMULATION PARAMETERS ADOPTED
FOR ML AND DL CLASSIFICATION
ALGORITHMS

In this appendix, we present the main simulation parameters adopted for state-of-the-art
machine learning and deep learning classification algorithms throughout this thesis, which
are summarized in Table E.1.

Table E.1 – Main simulation parameters adopted for the state-of-the-art ML and DL classifi-
cation algorithms used in this thesis.

ML/DL Classifier Parameters

Convolutional Neural Network-1D 1 layer

Batch size: 128, Nr epochs: 20, 1 X Conv1D, Nr conv filters: 16,
Conv filter size: 3, Stride: 1, Padding: “same”, Batch Normalization:
“yes”, Activation function: ReLU, Pooling function: Avg Pooling,
Pooling filter size: 2, Dropout: 0.2, Classification function: Softmax,
Loss function: categorical crossentropy, Optimizer: Adam

Convolutional Neural Network-2D 1 layer

Batch size: 128, Nr epochs: 20, 1 X Conv2D, Nr conv filters: 16,
Conv filter size: 3 × 3, Stride: 1, Padding: “same”, Batch Normalization:
“yes”, Activation function: ReLU, Pooling function: Avg Pooling,
Pooling filter size: 2 × 2, Dropout: 0.2, Classification function: Softmax,
Loss function: categorical crossentropy, Optimizer: Adam

Convolutional Neural Network-1D 2 layer

Batch size: 128, Nr epochs: 20, 2 X Conv1D, Nr conv filters: 16 and 32,
Conv filter size: 3, Stride: 1, Padding: “same”, Batch Normalization:
“yes”, Activation function: ReLU, Pooling function: Avg Pooling,
Pooling filter size: 2, Dropout: 0.2, Classification function: Softmax,
Loss function: categorical crossentropy, Optimizer: Adam

Convolutional Neural Network-2D 2 layer

Batch size: 128, Nr epochs: 20, 2 X Conv2D, Nr conv filters: 16 and 32,
Conv filter size: 3 × 3, Stride: 1, Padding: “same”, Batch Normalization:
“yes”, Activation function: ReLU, Pooling function: Avg Pooling,
Pooling filter size: 2 × 2, Dropout: 0.2, Classification function: Softmax,
Loss function: categorical crossentropy, Optimizer: Adam

Gated Recurrent Unit 2 layer

Batch size: 128, Nr epochs: 20, 2 X GRU, Nr Units: 20 and 10, Activation
function: tanh, Recurrent activation: sigmoid, Kernel initializer: glorot
uniform, Recurrent initializer: orthogonal, Dropout: 0.2, Classification
function: Softmax, Loss function: categorical crossentropy, Optimizer: Adam

Long Short-Term Memory 2 layer

Batch size: 128, Nr epochs: 20, 2 X LSTM, Nr Units: 20 and 10, Activation
function: tanh, Recurrent activation: sigmoid, Kernel initializer: glorot
uniform, Recurrent initializer: orthogonal, Unit forget bias: “true”, Dropout:
0.2, Classification function: Softmax, Loss function: categorical crossentropy,
Optimizer: Adam

Simple Recurrent Neural Network 2 layer

Batch size: 128, Nr epochs: 20, 2 X SimpleRNN, Nr Units: 20 and 10,
Activation function: tanh, Kernel initializer: glorot uniform, Recurrent
initializer: orthogonal, Dropout: 0.2, Classification function: Softmax,
Loss function: categorical crossentropy, Optimizer: Adam

Multilayer Perceptron 5 layer
Batch size: 128, Nr hidden layers: 5, Nr epochs: 20, Neuron config:
100/80/60/40/20, Activation function: ReLU, Classification function:
Softmax, Optimizer: Adam

AdaBoost
Base estimator: decision tree, Nr estimators: 100, Learning rate: 1, Algorithm:
SAMME.R, Random state: “none”

Continued on next page...
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Table E.1 – continued from previous page.

ML/DL Classifier Parameters

Decision Trees
Criterion: “gini”, Splitter: “best”, Max depth: “none”, Min samples spilt: 2,
Min samples leaf: 1, Max features: “None”, Max leaf nodes: “None”,
Min impurity decrease: 0, Class weight: “none”

Extra Trees
Nr estimators: 100, Min samples split: 2, Min samples leaf: 20, Max features:
“auto”, Max depth: 90, Criterion: “gini”

Gradient Boosting
Nr estimators: 100, Min samples split: 2, Min samples leaf: 20,
Max features: “auto”, Max depth: 90, Criterion: “friedman_mse”,
Loss: “deviance”, Learning rate: 0.1

k-Nearest Neighbors
Nr neighbors: 5, Weights: “uniform”, Algorithm: “auto”,
Leaf size: 30, Metric: “Minkowski”, Power parameter: 2

Linear Discriminant Analysis
Solver: “svd”, Shrinkage: “none”, Tol: 1e-4, Priors: “none”, Nr components:
min(Nr classes - 1, Nr features)

Logistic Regression
Solver: “lbfgs”, Max iter: 1000, Penalty: “l2”, Tol: 1e-4, C: 1.0, Intercept
scaling: 1, Class weight: “none”, Multi class: “auto”,
l1 ratio: “none”, Random state: “none”

Naïve Bayes Prior class probability: “default”, Var smoothing: 1e-9

Random Forest
Nr estimators: 100, Min samples split: 2, Min samples leaf: 20,
Max features: “auto”, Max depth: 90, Criterion: “gini”

Support Vector Machine
C: 1.0, Kernel: “rbf”, Probability: True, Gamma: “auto”, Degree: 3, Probability:
“false”, Tol: 1e-3, Class weight: “none”, Max iter: -1, Decision function
shape: “ovr”
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