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Resumo

Uma extensa investigação foi realizada a respeito do movimento de uma única gota em
escoamentos de convecção natural confinado. O estudo visa definir as trajetórias percorridas
pela gota em diferentes condições iniciais. Nesse sentido, foram investigados os efeitos dos
números de Rayleigh e Prandtl, da posição inicial das gotas e das propriedades térmicas
de ambos os fluidos na dinâmica do escoamento. Além disso, a influência da gota em
movimento nos processos de transferência de calor do sistema foi analisada usando o
número de Nusselt. Diferenças finitas foram utilizadas para discretizar o modelo contínuo,
as equações de Navier-Stokes foram resolvidas pelo método de projeção e a aproximação
de Bousssineq foi assumida. O modelo bifásico foi definido pelo método Level Set de alta
ordem. O escoamento pode ser caracterizado incialmente como um regime de movimento
linear ou não linear, de acordo com o número de Rayleigh. Em regimes de movimento
linear, a gota se move em trajetórias fechadas constantes, definindo em 𝑅𝑎 ∼ 102 uma
trajetória reversível que passa periodicamente pela posição onde foi liberada e em 𝑅𝑎 ∼ 103

o mesmo caminho estacionário independente do ponto inicial . Para números de Rayleigh
altos o suficiente, 𝑅𝑎 ≥ 104, as trajetórias se comportam de maneira não linear. Variando
a posição inicial, a gota pode se mover em um caminho helicoidal em direção ao centro do
invólucro ou se mover em um circuito fechado. O número de Prandtl afetou a amplitude do
movimento para valores de 𝑃𝑟 até aproximadamente 5. Dentro desse intervalo, à medida
que 𝑃𝑟 aumenta, o caminho descreve amplitudes mais curtas, mais perto da região central.
Quando definido por valores maiores, 𝑃𝑟 parece não afetar mais a dinâmica do escoamento.
Para dois valores distintos de 𝑃𝑟, foram consideradas diferentes razões de condutividade
térmica e capacidade calorífica. Os resultados destacam que as propriedades térmicas
podem não apenas afetar a transferência de calor, mas também o comportamento da gota.
Além disso, indetificou-se um aumento significativo na transferência de calor quando um
gota de alta condutividade térmica se move em trajetórias fechadas próximas às paredes.

Palavras-chaves: Escoamentos de Gota; Convecção Natural Confinada; Método Level
Set; Fluidos Binários; Transferência de Calor.
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Abstract

An extensive investigation was carried regarding the motion of a single droplet in confined
natural convection flows. The study aims to define the pathlines traveled by the drop within
different initial conditions. In that sense, the effects on flow dynamics of the Rayleigh
and Prandtl numbers, droplet’s releasing position and both fluids’ thermal properties
were investigated. Furthermore, the influence of the moving droplet on the system’s heat
transfer processes was analyzed using the Nusselt number. Finite differences were used to
discretized the continuum model, Navier-Stokes equations were solved by the projection
method and the Bousssineq approximation was assumed. The two-phase model was defined
using a high order Level Set method. The flow can be first characterized as either a
linear or non-linear motion regime, according to the Rayleigh number. Within linear
motion regimes, the droplet moves in constant closed paths, defining at 𝑅𝑎 ∼ 102 a
reversible trajectory that periodically passes by the releasing position and at 𝑅𝑎 ∼ 103 the
same stationary path regardless of the initial point. For high enough Rayleigh numbers,
𝑅𝑎 ≥ 104, the paths behave in a non-linear manner. By varying the releasing position,
the droplet can either move in a helical path towards the enclosure’s center or move in a
marginal closed path. The Prandtl number was found to affect the path’s amplitude for
values of 𝑃𝑟 up to approximately 5. Within that range, as 𝑃𝑟 increases, the path describes
shorter amplitudes, closer to the central region. When defined by larger values, 𝑃𝑟 seems
to no longer affect the flow’s dynamics. For two distinct values of 𝑃𝑟, different ratios
of thermal conductivity and heat capacity were considered. Results highlight that the
thermal properties can not only affect heat transfer but also the droplet’s behavior. Also,
significant heat transfer enhancement was detected when higher thermal conductivities
were considered for a droplet moving near the walls.

Key-words:Droplet flow, Confined natural convection, Level Set method, Binary fluids,
Heat Transfer.
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1 Introduction

1.1 Binary fluids, Emulsions and Droplet flows

Binary fluids and emulsions are vastly used as primary or auxiliary media in several
industrial processes. Because of their multiple applicability, those fluids can be found
within different industries, such as petrochemical, energy storage, pharmaceutical, and
food. In that sense, the literature indicates increasing interest in the topic over the past
thirty years. Though a consistent background on droplet and bubble rheology has already
been established, studies regarding binary fluids within non-isotherm systems are today
considerably limited.

There is a large number of technological applications of binary fluids in heat transfer
processes. Zhang et al. (2012) discussed the influence of the phase change process on the
natural convection of micro-encapsulated phase change material slurry (MPCMS). As
an emerging technology on latent heat storage, PCM can improve thermal storage speed
through natural convection. Also, the boiling of dilute emulsions has been studied as
a solution for heat transfer enhancement. Though heat transfer coefficients are usually
lower in miscible mixtures, when compared with the respective pure components, the
boiling of immiscible mixtures can result in larger coefficients (Shadakofsky; Kulacki,
2019). Additionally, Liu et al. (2019) indicated that, under certain conditions, the thermal
conductivity of oil-in-water emulsions can be significantly increased when considering
smaller droplets at low concentrations.

The thermocapillary migration of liquid droplets consists of a consolidated field of
binary fluids and heat transfer. Studied by several authors (Wu, 2017; Dai; Huang; Wang,
2018; Qiao et al., 2018), the phenomenon consists of driving forces arising from surface
tension variations due to temperature gradients in droplets/bubbles interfaces.

Furthermore, binary fluids have been emerging as a thriving field of active fluids
application. The droplets can be made of living or synthetic materials, resulting in a
non-newtonian anisotropic fluid, capable of converting chemical or electromagnetic energy
into mechanical work. Therefore, rheological properties might be, in some sense, controlled
by external means(Aursand et al., 2016; Cates; Tjhung, 2017; Khan et al., 2018). An
example of active fluids flow is presented by Cunha et al., in which the rheology of a
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ferrofluid droplet in a shear flow under the influence of a magnetic field was investigated
(Cunha et al., 2018).

1.2 Confined Natural Convection Flows

The Natural Convection of internal flows has been vastly studied for its complexity
due to the coupling between flow and transport (Ostrach, 1988). Important in different
technological fields, such as energy systems and geophysics, the topic is well-established
when considering monophase media. In 1994, Assimacopoulos, Barakos, and Mitsoulis
(1994) developed a numerical simulation of a natural convection flow confined in a square
enclosure. Considering both laminar and turbulent regimes, the authors varied 𝑅𝑎 and
calculated the system’s corresponding Nusselt number for each case. Recently, Xu, Shi,
and Zhao (2017) performed a similar case using high-speed accurate Lattice-Boltzmann
simulations for Rayleigh up to 108. Also, Pandey et al. (2019) have provided an extensive
review on the topic.

The fluid media can directly affect the system’s heat transfer rates. Therefore,
alternative fluids with increased thermal conductivity have been investigated as potential
high-performance media. In that sense, Kefayati (2016) has investigated the heat trans-
fer and the entropy generation by the laminar natural convection of a non-Newtonian
nanofluid in a porous square cavity. Using a nanofluid composed of water and high thermal
conductivity copper nanoparticles, the author identified that increasing volume fractions
can result in heat transfer and entropy generation intensification. Also, Gu et al. (2018)
measured how the heat flux in a dense particulate media, where a natural convection flow
develops, is decomposed into convection and conduction. Mehryan et al. (2019) developed
a numerical simulation to investigate the natural convection of a hybrid nanofluid in the
presence of an inclined magnetic field. Several other investigations were also carried within
the topic (Ma et al., 2019; Meng; Zhang; Li, 2016; Mohebbi; Rashidi, 2017; Siavashi;
Yousofvand; Rezanejad, 2018).

Currently, the use of binary fluids as a solution for heat transfer enhancement is
still understudied. Though a thriving field, investigations considering one single or multiple
droplets in non-isotherm flows are mostly concerned with thermocapillary convection
systems. In that sense, the present work aims to expand the understanding of droplet
motion and heat transfer rates in a two-phase confined natural convection flow.

1.3 Bibliometric Review

The present work concerns the investigation of dynamic and thermal aspects of a
two-phase flow driven by natural convection in a square enclosure. Aiming to investigate
the current impact of the study topic approached, a bibliometric review was conducted.
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As the conceptual problem was defined, a set of key-words was selected and displayed in
Table 1.

Table 1 – Key-words and synonyms used to define the data base of the bibliometric review
composed by 259 documents.

Key-words and Synonyms Number of
Documents

Droplet or Bubble
Droplet motion or Droplet path or Droplet migration
Multiphase flow or Two-phase flow or Binary fluid or Droplet flow
Heat transfer or Natural convection or Boiling or Evaporation

259

The analysis was divided into four periods, resulting in 259 documents produced
over 50 publishing years. The documents were divided into 22 main groups containing
similar terms. Table 2 indicates an expressive increase of documents over the periods. Half
the articles regarding the key-words proposed were published in the last period (4), which
indicates a current interest in the topic.

Table 2 – Number of publishing years and documents per period.

ID Period Publishing
years Documents

1 1980-1990 10 17
2 1991-2000 19 71
3 2001-2010 10 40
4 2011-2021 11 131

An overlapping map was generated to describe theme flux from one period to the
other. Figure 1.1 shows the map representing the word flux over the four periods defined.
The numbers inside the circles indicate the count of themes in each period, the inclined
arrows mark how many new topics were aggregated and how many were disposed of, and
the horizontal arrows indicate the number of topics transferred to the next period. The
numbers between parenthesis represent the Inclusion Index, determining the total amount
of themes kept between periods, divided by the number of terms in the period with fewer
topics.

4

0

16

12

4 (1)

2

14

0

14 (1)

1

17

4

13 (0.93)

Figure 1.1 – Terms overlapping map, defined to describe the word flux over the four
periods analyzed. Inclined arrows indicate the number of keywords included
or eliminated at each period. The number inside the circles represents the
count of relevant documents per period.
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Figure 1.2 shows the main terms evolution map over the periods. The connections
represent the evolution of the words into other terms. Solid lines represent the connection
between clusters that share the main item, while dotted lines indicate the themes share
elements, but not the main item. Line thickness is proportional to the Inclusion Index
and the green spheres’ size represents the number of documents. Conceptually, the words
evolve within the same field and keeping a connection with the previous ones.

No words were detected in period 1, and consequentially no clusters were constructed.
In period 2, both words appear in similar number of documents. Convection evolves towards
the correlated topic Heat transfer, which in turn evolves into Nanofluids and Multiphase
flows. The first evolution highlights the large number of studies on non-isotherm nanofluid
flows currently displayed in the literature, as mentioned in section 1.2. The other indicates
that an investigation field regarding both Heat transfer and Multiphase flows is not yet
consolidated. The dotted link that connects Convection and Droplets is based on secondary
related topics, which highlights the gap between both themes. Emulsions evolves towards
Droplets and Multiphase flows through solid connections.

Convection

Emulsions

Heat transfer

Droplets

Emulsions

Nanofluids

Multiphase flows

Droplet

Figure 1.2 – Main terms’ evolution map over the periods. Green spheres’ sizes represent
the document count and the line thickness is proportional to the Inclusion
Index. While solid lines indicate the themes share the main item, dotted ones
suggest some elements are shared.

Figure 1.3 presents the strategic diagrams of periods (a) 2, (b) 3 and (c) 4 considering
the respective documents count. The diagrams characterize the clusters accordingly to
their function in the network organization. The clusters are categorized according to the
density and centrality, which indicates their participation in the connection’s intensity
measurement and the strength of the connections, respectively.
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(b) Period 3

(c) Period 4

centrality

density
Convection

5

Emulsions

5 centrality

density Heat transfer
4

Droplets

4

Emulsions
1

centrality

density

Multiphase flows

19

Nanofluids8

Droplet
2

(a) Period 2

Figure 1.3 – Strategic diagrams of the three main periods (a) 2, (b) 3, and (c) 4. The
measures of centrality and density are indicated and the number of documents
is displayed for each theme.

Figure 1.3 (a) indicates that in the period between 1991 and 2000, the term
Convection was highly central and developed. Emulsions on the other hand, appears at the
intersection of the axis. In period 3, the term Heat transfer consists of a highly developed
central term. The theme Emulsions now appears as a central undeveloped topic and the
word Droplet is considered peripheral and developed. In the last period, 𝑀𝑢𝑙𝑡𝑖𝑝ℎ𝑎𝑠𝑒𝑓𝑙𝑜𝑤𝑠

is the most central term, found in the largest number of documents. 𝑁𝑎𝑛𝑜𝑓𝑙𝑢𝑖𝑑𝑠 is highly
developed, while 𝐷𝑟𝑜𝑝𝑙𝑒𝑡 was found to be undeveloped and peripheral.

The discussions brought up in the present work play an important role in helping
fill the gaps between droplet flows and heat transfer studies. Though the topic is still
rather unexplored in the literature, it consists of a current growing investigation field.

1.4 State of the Art

Classical literature is established on binary fluids under isotherm conditions. In
1973, Barthès-Biesel and Acrivos (1973) presented a theoretical methodology to predict
the deformation and breakup conditions of a liquid droplet suspended in a linear shear
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field. The method was developed by expanding the solution to creeping-flow equations in
powers of the deformation parameter. Nayfeh’s linear stability theory (1970) was applied
to determine the onset of bursting. In 1994, Stone presented a complete review including
theoretical, experimental, and numerical studies, that highlight the dynamics of droplet
deformation and breakup in viscous fluids.

In 1972, Torza, Cox, and Mason conducted experiments on viscous droplets sus-
pended in a shear flow. The experimental results confirmed Taylor’s classical theory of
small drop deformations (1932) and suggested that interfacial tensions of viscous droplets
can be determined by varying drop shape oscillations in a time-dependent laminar flow.

Later on, relevant discussions on droplet deformation were brought up by Rallison in
a review article published in 1984, highlighting the theoretical predictions and experimental
observations available at the time. Ten years later, an updated review on the topic was
present by Stone (1994). According to the author, with exception of the work of Hakimi
and Schowalter (1980), which considered vorticity-dominated flows, all experimental works
published before 1986 were limited to either simple shear or two-dimensional extensional
flows.

Experimental investigations regarding deformation and burst of fluid droplets
within linear flows were also carried by Bentley and Leal (1986). The work consists of a
systematic investigation of vorticity effects in the imposed flow, where the magnitude of
the strain rates surpass that of the vorticity. Comparing experimental results with previous
theories, the authors indicated that over a wide range of viscous ratios, Capillary number,
and flow type, considerably adequate predictions can be delivered by the theoretical
knowledge consolidated so far.

Classical numerical studies on droplet shear and breakup can also be found within
the literature. In 1978, Rallison and Acrivos studied deformation and the breakup conditions
of a viscous droplet freely suspended in a shear flow. Numerical results showed good
agreement with Taylor’s small deformation (1932) and slender body (1966) theories, and
with Barthès-Biesel’s theory as well (1973). Later, Loewenberg and Hinch (1996) conducted
a three-dimensional study of a concentrated emulsion in shear flow for low Reynolds and
finite capillary number conditions. Results reveal complex rheology, as the alignment of
deformed drops in the flow’s direction results in an anisotropic microstructure. Pronounced
shear thinning and large normal stresses were observed on the investigations carried for
volume fractions up to 30%.

Due to its multiple applicability and relevant presence in the industry, a large
number of studies on oil-in-water emulsions have been developed over recent years (Wang
et al., 2021; Huyst et al., 2021; Liu et al., 2021; Zhou et al., 2021). Though most cases
consider isotherm systems, the field has been unraveling towards temperature-dependent
flows (Kempin et al., 2021; Fan et al., 2021; Khalid et al., 2020; Guo et al., 2021). Liu et al.
(2019) conducted an experimental study on non-Fourier heat conduction characteristics in
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oil-in-water emulsions prepared with different droplet sizes. The emulsions’ effective thermal
conductivity suffers non-linear variations with droplet size, fluid properties, concentration,
and temperature. Results have indicated that, at low concentrations, thermal conductivity
can be significantly enhanced.

Thermocapillary migration is a well-established field of binary fluids within non-
isotherm systems. In 1959, Young, Goldstein, and Block wrote the pioneering work on
the topic, in which they developed experiments and a linear model to predict a droplet’s
migration speed in a Stokes flow under the effect of a negative temperature gradient.
Later, the thermocapillary migration stability of a spherical buoyant droplet moving in an
unbounded quiescent fluid was analyzed by Ascoli and Lagnado (1992). More recently, Qiao
et al. (2018) coupled the lattice Boltzmann and finite differences to develop a numerical
scheme applied to interfacial droplets thermocapillary motion.

Furthermore, more recent work can be found on the matter of heat transfer in
emulsions. Gasanov (2019) conducted an experimental work on the boiling of disperse-
phase droplets in a forced flow in a circular mini channel, considering water/PMS-20 and
n-pentane/glycerine emulsions with and without the use of surfactants. Results show that
depending on the mass flow, the boiling of a water/PMS-20 emulsion improves the heat
transfer rate at 20-35% in comparison with the monophase PMS-20. At high heating
temperatures of the channel wall, the heat transfer is also improved by the boiling of
n-pentane/glycerine emulsions. Also, Wenzel, Kulacki, and Garrick (2016) investigated
numerically a single droplet in the boundary layer flow developed near a flat heating plate.
The flow patterns as a consequence of the Reynolds, Weber, and Prandtl number were
studied, indicating that the temperature field near the droplet is significantly altered by
its rotation and that Magnus lift forces provoke the separation of the drop from the heated
surface.

Chen et al. (2020) investigated a bubble’s dynamic behavior rising near a vertical
wire-mesh, analyzing the effects of the initial wall distance. Finally, Yap et al. (2019) studied
the influence of particle deposition on heat transfer rates in a two-phase liquid-droplet
flow in the heat exchanger. Using two Level Set functions to capture both liquid-droplet
interface and liquid-deposit front, the authors observed that the deposit affects the flow
and heat transfer, blocking part of the fluid passage and introducing an extra thermal
resistance from the heat exchanger tube to the flow.

1.5 Objectives

The present work displays the results of a natural convection flow confined in a
square enclosure, where a droplet moves driven by buoyancy. The main goal is to identify
the two-dimensional drop motion patterns and their effects on heat transfer. Therefore,
the paths followed by the droplet were investigated considering the influence of several
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initial conditions. The study’s main contribution consists of displaying innovative insights
regarding the dynamics of non-isotherm binary fluids.

1.6 Objectives

The present work displays the results of a natural convection flow confined in a
square enclosure, where a droplet moves driven by buoyancy. The main goal is to identify
the two-dimensional drop motion patterns and their effects on heat transfer. Therefore,
the paths followed by the droplet were investigated considering the influence of several
initial conditions. The study’s main contribution consists of displaying innovative insights
regarding the dynamics of non-isotherm binary fluids.

1.6.1 Specific Objectives

• Define a numerical model to simulate a natural convection flow where a two-
dimensional droplet is released;

• Implement the model from scracht using Fortran language;

• Validate the thermal and dynamics aspects separately to assure the good agreement
of the simulation developed with results available at the literature;

• As the droplet’s path observation is essential to the motion analysis proposed, the
interface’s center of mass must be defined and its position calculated, for every step;

• Simulate and display results for three distinct Rayleigh numbers, while the remaining
initial conditions stay unaltered. As one of the main non-dimensional parameters
of natural convection flow, 𝑅𝑎 is expected to promote a significant influence on the
flow’s dynamics;

• Investigate the effects of the droplet initial position on the path, considering several
different releasing positions along both the x and y-axis;

• Promote qualitative and quantitative discussions on motion patterns, flow’s asym-
metries, droplet deformation, and motion’s turnover frequencies;

• Still varying the releasing position, the Prandtl number’s effects on the path patterns
must also be investigated separately. Afterward, the differences between 𝑃𝑟 and 𝑅𝑎

effects will be evaluated, associating the flow’s behavior with the physical phenomena
behind it;

• Identify the influence of the droplet’s thermal conductivity and heat capacity on the
system’s dynamics and heat transfer;
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• Finally, the effects of the moving droplet on the system’s heat transfer can be
observed by comparing the Nusselt number variations.

1.7 Scope

The present work has been organized as follows. Chapter 2 displays the com-
plete mathematical formulation used to define the physical problem, as well as the non-
dimensionalization terms applied to the equations. After establishing the set of equations
to be numerically solved, chapter 3 brings the numerical methods applied to assure a
satisfactory implementation of the mathematical model. Then, the results and discussions
are presented along with chapter 4, including a grid convergence analysis, numerical
validations of the code developed, and results regarding several essential aspects of the
flow. To conclude, chapter 5.1 shows the author’s final considerations.
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2 Mathematical Formulation

2.1 Problem Statement

A two-phase laminar flow inside a square bidimensional enclosure was considered,
as showed in Fig. 2.1. The ambient fluid’s thermal conductivity and constant volume heat
capacity are considered constant and represented by 𝜅𝑎𝑚𝑏 and 𝐶𝑎𝑚𝑏

𝑉 , respectively. For the
droplet, those properties are given respectively by 𝜆𝜅𝜅𝑎𝑚𝑏 and 𝜆𝐶𝐶𝑎𝑚𝑏

𝑉 , where 𝜆𝜅 is the
ratio of thermal conductivity and 𝜆𝐶 is the ratio of heat capacity between the droplet and
ambient fluid.

The left and right side walls are set respectively at 𝑇𝐻 > 𝑇𝐿 and 𝑇𝐿. Both upper
and bottom walls are thermally insulated. The display described results on a temperature
gradient that, in the presence of a gravitational field, induces density variations. Those
variations are responsible for the appearance of convective currents inside the enclosure.

L

λκκ
amb, λCCv

Ω

κamb, Cv

Γ
H L TL

amb

amb

x

y

T > T

Figure 2.1 – Droplet inside an enclosure where flow driven by thermal-gravitational buoy-
ancy develops. Left and right walls are at 𝑇𝐻 and 𝑇𝐿 respectively, such that
𝑇𝐻 > 𝑇𝐿, while the top and bottom walls are insulated. The ambient fluid
has thermal conductivity 𝜅 and heat capacity 𝐶𝑣. The droplet’s fluid has
thermal conductivity 𝜆𝜅𝜅𝑎𝑚𝑏 and heat capacity 𝜆𝐶𝐶𝑎𝑚𝑏

𝑣 .
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2.2 Initial Conditions

All the simulations begin with a resting flow, initially set at 𝑇𝐿. Both disperse
and ambient fluids are Newtonian and assumed to have the same density (𝜌), dynamic
viscosity (𝜇), and thermal expansion (𝛽). The flow is incompressible and the Boussinesq
approximation was assumed, which implies that the density is considered constant every-
where, with exception of the buoyancy term. The droplet radius at rest was defined as
𝐿
8 , where 𝐿 = 1 is the side of the enclosure, and the capillary number was set at 10−2 to
prevent droplet breakup, usually associated with large deformation flow regimes.

2.3 Flow Motion Governing Equations

The equations governing the flow are the mass conservation, the linear momentum
balance, and the energy conservation, given respectively by

𝜕𝑢𝑑

𝜕𝑥𝑑
+ 𝜕𝑣𝑑

𝜕𝑦𝑑
= 0, (2.1)

𝜌
𝜕𝑢𝑑

𝜕𝑡𝑑
+ 𝜌𝑢𝑑 𝜕𝑢𝑑

𝜕𝑥𝑑
+ 𝜌𝑣𝑑 𝜕𝑢𝑑

𝜕𝑦𝑑
= −𝜕𝑝𝑑

𝜕𝑥𝑑
+ 𝜇

(︃
𝜕2𝑢𝑑

𝜕𝑥𝑑2 + 𝜕2𝑢𝑑

𝜕𝑦𝑑2

)︃
− 𝜎ℋ𝛿(𝜑)𝑛𝑥, (2.2)

𝜌
𝜕𝑣𝑑

𝜕𝑡𝑑
+𝜌𝑢𝑑 𝜕𝑣𝑑

𝜕𝑥𝑑
+𝜌𝑣𝑑 𝜕𝑣𝑑

𝜕𝑦𝑑
= −𝜕𝑝𝑑

𝜕𝑦𝑑
+𝜇

(︃
𝜕2𝑣𝑑

𝜕𝑥𝑑2 + 𝜕2𝑣𝑑

𝜕𝑦𝑑2

)︃
+𝑔𝛽𝜌(𝑇𝐻 −𝑇𝐿)−𝜎ℋ𝛿(𝜑)𝑛𝑦, (2.3)

𝜕𝑇

𝜕𝑡𝑑
+ 𝑢𝑑 𝜕𝑇

𝜕𝑥𝑑
+ 𝑣𝑑 𝜕𝑇

𝜕𝑦𝑑
= 𝛼

(︃
𝜕2𝑇

𝜕𝑥𝑑2 + 𝜕2𝑇

𝜕𝑦𝑑2

)︃
, (2.4)

in which the dimensional parameters 𝑢𝑑 and 𝑣𝑑, 𝑇 and 𝑡𝑑 consist of the velocities, temper-
ature and time, respectively. Also, 𝑛𝑥 and 𝑛𝑦 are the outward normal vector components,
ℋ = ∇ · n is the local mean curvature, and 𝛿(𝜑) is a smoothed Dirac delta applied to the
signaled distance function 𝜑 in the Level Set numerical context. The last terms on the
RHS of equations 2.2 and 2.3 consist of the stress jump 𝐹𝑐 on the droplet’s interface, given
by the Young-Laplace equation in the form of

𝐹𝑐 = 𝜎ℋ𝛿(𝜑)n̂, (2.5)

where and 𝜎 is the surface tension coefficient.

The normalization was carried out by considering 𝐿, 𝐿2/𝛼, and 𝜌(𝛼/𝐿)2 as the
characteristics length, time, and pressure scales, respectively, where 𝛼 = 𝜅𝑎𝑚𝑏/(𝜌𝐶𝑎𝑚𝑏

𝑣 ) is
the ambient fluid thermal diffusivity. In that sense, the non-dimensional form of the flow
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governing equations is displayed next, where u = (𝑢, 𝑣), 𝑡, and 𝑝 are the non-dimensional ve-
locity vector, time, and pressure, respectively. The non-dimensional temperature difference
is defined by 𝜃 = (𝑇 − 𝑇𝐿)/(𝑇𝐻 − 𝑇𝐿).

∇ · u = 0, (2.6)

𝜕𝑢

𝜕𝑡
+ u · ∇𝑢 = −𝜕𝑝

𝜕𝑥
+ 𝑃𝑟𝑎𝑚𝑏∇2𝑢 − 𝑃𝑟𝑎𝑚𝑏

𝐶𝑎
ℋ 𝑛𝑥𝛿(𝜑), (2.7)

𝜕𝑣

𝜕𝑡
+ u · ∇𝑣 = −𝜕𝑝

𝜕𝑦
+ 𝑃𝑟𝑎𝑚𝑏∇2𝑣 + 𝑅𝑎𝑃𝑟𝑎𝑚𝑏𝜃 − 𝑃𝑟𝑎𝑚𝑏

𝐶𝑎
ℋ𝑛𝑦𝛿(𝜑), (2.8)

𝐶𝑣(𝜑)
(︃

𝜕𝜃

𝜕𝑡
+ u · ∇𝜃

)︃
= ∇ · (𝜅(𝜑)∇𝜃). (2.9)

In Eq. 2.9, 𝐶𝑣(𝜑) and 𝜅(𝜑) are the non-dimensional heat capacity and non-
dimensional thermal conductivity, normalized by 𝜅𝑎𝑚𝑏 and 𝐶𝑎𝑚𝑏

𝑣 , given in the entire
flow domain by

𝐶𝑣(𝜑) = 𝜆𝐶 + (1 − 𝜆𝐶) 𝐻(𝜑), and (2.10)

𝜅(𝜑) = 𝜆𝜅 + (1 − 𝜆𝜅)𝐻(𝜑), (2.11)

where 𝐻(𝜑) is a smoothed Heaviside function, applied to the signaled distance. Using
smoothed versions of the Dirac delta and Heaviside is in the core of the Level Set method,
allowing the description of sharp variation quantities by continuum functions (Sussman et
al., 1998). More details on the Level Set method will be given in section 2.4.

The dimensionless groups emerging from the normalization of the conservation equa-
tions are Prandlt (𝑃𝑟𝑎𝑚𝑏), Rayleigh (𝑅𝑎), and Capillary (𝐶𝑎) numbers, given, respectively,
by

𝑃𝑟𝑎𝑚𝑏 = 𝜈

𝛼
, 𝑅𝑎 = 𝑔𝛽(𝑇ℎ − 𝑇𝑙)𝐿3𝑃𝑟𝑎𝑚𝑏

𝜈2 , and 𝐶𝑎 = 𝛼𝑎𝜇

𝐿2𝜎
. (2.12)

In the non-dimensional parameters defined in Eq.(2.12), 𝜈 = 𝜇/𝜌 is the kinematic viscosity
of the fluids and 𝑔 is the gravitational acceleration. The capillary number is the ratio
between the shear stress acting to deform the droplet and the surface tension restoring its
circular (or spherical, when in 3D) rest shape.
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2.4 Level Set Method

The Level Set method defines a signed distance function 𝜑 for every point in the
domain to capture the drop interface Γ, given by

𝜑(x, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−𝑑, x ∈ Ω,

0, x ∈ Γ,

𝑑, x /∈ Ω
(2.13)

where d is the distance between a point x and the interface, and Ω is the interior of the
drop. Figure 2.2 illustrates the procedure, in which the distance between xΓ, placed on the
interface, and 𝑥 /∈ Γ is defined. The function 𝜑(x) will be positive if x is placed outside the
domain Ω and negative within Ω. At the interface, 𝜑(xΓ) = 0. The geometric properties
of the droplet are also given in terms of 𝜑, being the outward normal function and the
average local curvature defined respectively by n̂ = ∇𝜑

|∇𝜑| and 𝜅 = ∇ · n̂.

Ω

Г

x
(x)

xГ

Figure 2.2 – Representation of how the Level Set function was defined. The function 𝜑(x)
defines the distance between the droplet’s interface and the remaining points
of the domain. The distance is considered positive when x is placed at the
ambient fluid and negative when at the droplet’s fluid. At the interface (Γ),
𝜑(x) = 0.

As the function is not supposed to differ from 𝜑 = 0 in the interface, 𝜑 must be a
conservative function of the points in Γ. In that sense, the evolution equation is given by

𝜕𝜑

𝜕𝑡
+ u · ∇𝜑 = 0, (2.14)

However, as the flow develops, the distance between the remaining points in the
domain (x /∈ Γ) and the interface should not be conserved. Those points end up deviating
from their correct value as time evolution advances, causing miscalculations to the system.
In order to correct that issue, one can apply a re-distancing procedure periodically. Adopting
the methodology used by Sussman et. al (Sussman et al., 1998), a re-initialization equation

𝛿𝜑

Δ𝜏
+ 𝑆(𝜑)[|∇𝜑| − 1] = 𝜆𝛿(𝜑)|∇𝜑|, (2.15)
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was solved between three subsequent time steps, for every iteration. In Eq. 2.15, Δ𝜏 = Δ𝑥
4

is the virtual time and 𝑆(𝜑) is a sign function. The RHS of the equation is a volume
correction term, added to guarantee droplet area conservation. The Lagrange multiplier 𝜆

is given by

𝜆 =
∫︀

𝑉 𝛿(𝜑)(𝜑𝑛+1−𝜑𝑛

Δ𝑡
)𝑑𝑥∫︀

𝑉 𝛿2(𝜑)‖∇𝜑‖𝑑𝑥
, (2.16)

where the integration should be made over the fluid domain 𝑉 .

The method considers a smoothed interface of width 2𝜖. That being so, smoothed
versions of the Heaviside and Dirac Delta functions are also used. In that sense, 𝐻𝜖 and 𝛿𝜖

are given respectively by

𝐻𝜀(𝜑) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, 𝜑 < 𝜀,

1
2

[︃
1 + 𝜑

𝜀
+ 1

𝜋
sin

(︃
𝜋𝜑

𝜀

)︃]︃
, ‖𝜑‖ ≤ 𝜀,

1, 𝜑 > 𝜀

(2.17)

and

𝛿𝜀(𝜑) = 𝑑𝐻𝜀(𝜑)
𝑑𝜑

=

⎧⎪⎪⎨⎪⎪⎩
0, ‖𝜑‖ > 𝜀,

1
2𝜀

[︃
1 + cos

(︃
𝜋𝜑

𝜀

)︃]︃
, ‖𝜑‖ ≤ 𝜀.

(2.18)

The half interface width was set at 𝜀 = 3
2Δ𝑥, as it should be a small length,

comparable to the grid norm.
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3 Numerical Methodology

3.1 Staggered Grid

Finite differences are used to approximate all the spatial operators in an uniform
rectangular cartesian staggered grid, as illustrated in Fig. 3.1. Velocity components
(including the trial velocities) are stored in the grid cell faces, while the scalar quantities
(𝑝, 𝜒, 𝜃, 𝜑) are stored in the grid cell center. The normal vector components, the curvature
and the components of ∇𝜑 are also stored in the cell center.

0.35

0.50

0.45

0.40

0.50 0.55 0.60

(a) (b)

v

u
p, ϕ, θ

Figure 3.1 – (a) Staggered grid composed of 3842 nodes, highlighting the actual refinement
of the interface. (b) Grid cell with variables in their respective storing positions.
Scalar quantities 𝑝, 𝜃 and 𝜑 are stored in the center of the cell, while 𝑢 and
𝑣 are stored respectively in the vertical and horizontal cell faces. The trial
variables 𝑢*, 𝑣* and 𝜒 are stored in the analogous positions, and the normal
vector components, the curvature and ∇𝜑 components are stored in the cell
center as well.

3.2 Crank-Nicolson Method

While finite differences were used to approximate all spacial operators, the temporal
approximation of all governing equations was done by applying the second-order Crank-
Nicolson method. It consists of an implicit method in which all terms of the equation,
with exception of the temporal derivative, are calculated on time 𝑡 + Δ𝑡

2 . To illustrate the

15



method, the discretization of Equation 2.9 is showed next, given by

𝐶𝑛+1/2
𝑣

(︃
𝜃𝑛+1 − 𝜃𝑛

Δ𝑡

)︃
= ∇ℎ · (𝜅∇ℎ𝜃)𝑛+1/2 − [u · ∇ℎ𝜃]𝑛+1/2, (3.1)

where ∇ℎ is a discrete version of the ∇ operator. For the extrapolation of the Laplacian
term, a arithmetic average value was taken, while for the convective term the second order
Adam Bashforth was applied, resulting respectively in

∇ℎ · (𝜅∇ℎ𝜃)1/2 = ∇ℎ · (𝜅𝑛+1∇ℎ𝜃𝑛+1 + 𝜅𝑛∇ℎ𝜃𝑛)
2 (3.2)

and
[u · ∇ℎ𝜃]𝑛+1/2 = 3

2[u · ∇ℎ𝜃]𝑛 − 1
2[u · ∇ℎ𝜃]𝑛−1. (3.3)

3.3 Projection Method

A challenge faced when solving the Navier-Stokes equations consists of separating
the velocity from the pressure, as both must be calculated within the same equation. In
that sense, the fractional projection method of Kim and Moin (Kim; Moin, 1985) was used
to solve the mass and momentum equations, following the procedure presented in (Brown;
Cortez; Minion, 2001). Equation 2.7 was discretized by

u* − u𝑛

Δ𝑡
= 𝑃𝑟𝑎𝑚𝑏

2 ∇2
ℎ (u* + u𝑛) + ℱ𝑛+1/2

𝑢 , (3.4)

in which u* is the trial velocity, used as an auxiliary variable. The term ℱ𝑛+1/2
𝑢 stands for

all the remaining terms of the equation extrapolated to 𝑡 + Δ𝑡/2. The second term of the
RHS of 3.4 is an approximation of the laplacian in 𝑡 + Δ𝑡/2. The method also introduces a
trial pressure 𝜒, defined to assure that the Navier-Stokes formulation will stay unchanged
after all equations are computed. The trial pressure equation is given by

∇2
ℎ𝜒𝑛+1 = −∇ℎ · u*

Δ𝑡
, (3.5)

where u* = (𝑢*, 𝑣*). The procedure consists of first calculating the trial velocities and then
the trial pressure. With these results in hand, one can now apply the variables on the final
velocity and pressure equations, given respectively by:

u𝑛+1 = u* − Δ𝑡∇ℎ𝜒𝑛+1 (3.6)

and
𝑝𝑛+1/2 = 𝜒𝑛+1 − 𝑃𝑟𝑎𝑚𝑏

2 ∇ℎ · u*. (3.7)
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3.4 Upwind Scheme

According to the convention adopted, when 𝑢 > 0, the flow is moving from the left
to right sides. In that sense, when considering the convective term 𝑢 · (𝜕𝜑/𝜕𝑥) of the Level
Set evolution equation 2.14, one can conclude that the approximation of the derivative of 𝜑

at 𝑥 should be carried within the same direction. Analogously, when 𝑢 < 0, the derivatives
should be calculated from the right to left sides. That being so, the Upwind method states
that the backward derivatives 𝜑−

𝑥 should be used to compute 𝜕𝜑/𝜕𝑥 when 𝑢 > 0, and the
forward derivatives 𝜑+

𝑥 should be chosen when 𝑢 < 0 (Osher; Fedkiw, 2006).

3.5 Hamilton-Jacobi ENO

In the present work, the Hamilton-Jacobi ENO was implemented to help calculate
the convective terms of equations 2.7 and 2.8. The method was applied to extend the
Upwind to a second-order scheme. It consists of the extension of essentially nonoscillatory
(ENO) polynomial interpolations, used to provide the smoothest polynomial interpolants,
to Hamilton-Jacobi equations. The procedure allows the improvement of the first-order
accurate upwind scheme, by delivering better numerical approximations to the spatial
derivatives.

Considering that

𝐷−u = u(𝑖) − u(𝑖 − 1)
Δ𝑥

, (3.8)

𝐷+u = u(𝑖 + 1) − u(𝑖)
Δ𝑥

, (3.9)

the first divided differences can be defined as

𝐷1
𝑖+ 1

2
u = (𝐷+u), (3.10)

𝐷1
𝑖− 1

2
u = (𝐷−u). (3.11)

Analogously, second divided differences are defined as

𝐷2
𝑖 u =

𝐷1
𝑖+ 1

2
u − 𝐷1

𝑖− 1
2
u

2Δ𝑥
. (3.12)

Using both first and second divided differences, one can reconstruct a second-order
polynomial

u(𝑥) = 𝑄0(𝑥) + 𝑄1(𝑥) + 𝑄2(𝑥), (3.13)
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in which 𝑄0(𝑥), 𝑄1(𝑥) and 𝑄2(𝑥) represent constant, first-order and the second-order
terms, respectively. Differentiating Eq. 3.13 in 𝑥𝑖 = 𝑥(𝑖), it results on the final derivative
equation

u𝑥(𝑥𝑖) = 𝑄′
1(𝑥𝑖) + 𝑄′

2(𝑥𝑖). (3.14)

With Eq. 3.14, one can calculate the smoother values of u+
𝑥 (𝑥𝑖) and u−

𝑥 (𝑥𝑖), consid-
ering that

𝑄′
1(𝑥𝑖) = 𝐷1

𝑘+ 1
2
u, (3.15)

𝑄′
2(𝑥𝑖) = 𝐷2

𝑘u, (3.16)

in which 𝑘 = 𝑖 for (u+
𝑥 )𝑖 and 𝑘 = 𝑖 − 1 for (u−

𝑥 )𝑖.

3.6 TVD Runge-Kutta

The third-order TVD Runge-Kutta was used for the temporal approximation of
the Level Set evolution and re-initialization equations 2.14 and 2.15. The method develops
according to five steps. The first consists of using Euler’s explicit method to provide an
initial trial value for 𝜑𝑛+1, as shown in Eq. 3.17. The procedure is carried as follows

𝜑𝑛+1 = 𝜑𝑛 − Δ𝑡 [u · ∇𝜑]𝑛 . (3.17)

𝜑𝑛+2 = 𝜑𝑛+1 − Δ𝑡[u · ∇𝜑]𝑛+1, (3.18)

𝜑𝑛+ 3
2 = 𝜑𝑛+ 1

2 − Δ𝑡[u · ∇𝜑]𝑛+ 1
2 . (3.19)

where 𝜑𝑛+ 1
2 is extrapolated to

𝜑𝑛+ 1
2 = 3

4𝜑𝑛 + 1
4𝜑𝑛+2. (3.20)

Finally, the distance function can be defined as

𝜑𝑛+1 = 1
3𝜑𝑛 + 2

3𝜑𝑛+ 3
2 . (3.21)

For the solution of the re-initialization equation, the same procedure can be
done, when adding the computed volume correction 𝜆𝛿(𝜑)|∇𝜑| to 𝜑𝑛+1 at the end of the
interpolations.
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3.7 Hamilton-Jacobi WENO

When calculating the convective terms of Level Set evolution and re-initialization
equations 2.14 and 2.15, the Hamilton-Jacobi WENO was used to extend the upwind
first-order accurate scheme to a fifth-order spatial interpolation. It consists of a weighted
combination of HJ-ENO derivatives, in which the sum of weights equals 1. According to
Osher and Fedkiw (Osher; Fedkiw, 2006), the formulation is given by

𝜑1
𝑥 = 𝑣1

3 − 7𝑣2

6 + 11𝑣3

6 , (3.22)

𝜑2
𝑥 = −𝑣2

6 + 5𝑣3

6 + 𝑣4

3 , (3.23)

𝜑3
𝑥 = 𝑣3

3 + 5𝑣4

6 − 𝑣5

6 , (3.24)

in which 𝑣1 = 𝐷−𝜑𝑖−2, 𝑣2 = 𝐷−𝜑𝑖−1, 𝑣3 = 𝐷−𝜑𝑖, 𝑣4 = 𝐷−𝜑𝑖+1 e 𝑣5 = 𝐷−𝜑𝑖+2, resulting in

𝜑−
𝑥 = 𝜔1𝜑

1
𝑥 + 𝜔2𝜑

2
𝑥 + 𝜔3𝜑

3
𝑥. (3.25)

For the computation of 𝜑+
𝑥 , the analogous procedure can be done considering

𝑣1 = 𝐷+𝜑𝑖+2, 𝑣2 = 𝐷+𝜑𝑖+1, 𝑣3 = 𝐷+𝜑𝑖, 𝑣4 = 𝐷+𝜑𝑖−1 and 𝑣5 = 𝐷+𝜑𝑖−2.

Finally, one can highlight that for obtaining optimum condition the values 𝜔1 = 0.1,
𝜔2 = 0.6 e 𝜔3 = 0.3 must be set.

3.8 Boundary Conditions

The boundary conditions are applied for the trial variables and the non-dimensional
temperature difference. Neumann boundary conditions were defined for 𝜒. As the flow is
surrounded by closed walls, there is no flux variation on the boundaries. In that sense,

∇𝜒𝑛+1 · n̂𝑤 = 0, (3.26)

where n̂𝑤 is the outward normal vector.

Dirichet boundary conditions were applied for the trial velocities, as the non-slip
condition is assumed in all four walls. Also, the implementation of the second order projec-
tion method requires corresponding adjustments on the boundary conditions. Therefore,
trial velocities boundary conditions were defined as

u* = u𝑛+1 + Δ𝑡∇𝜒𝑛+1. (3.27)
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To determine the conditions acting in the outward normal direction of the enclosure
walls, both sides of equation 3.27 were multiplied by the outward normal vector n̂𝑤, as
showed in Eq. 3.28.

u* · n̂ = u𝑛+1 · n̂𝑤 + Δ𝑡∇𝜒𝑛+1 · n̂𝑤. (3.28)

Eq. 3.33 shows that the last term of RHS of 3.28 equals zero, resulting in

u* · n̂ = u𝑛+1 · n̂𝑤. (3.29)

To determine the tangential boundary conditions, Eq. 3.27 is multiplied by the
tangential vector t̂𝑤, resulting in

u* · t̂ = u𝑛+1 · t̂ + Δ𝑡∇𝜒𝑛+1 · t̂𝑤. (3.30)

For both vertical walls

Δ𝑡∇𝜒𝑛+1 · t̂ = Δ𝑡(𝜕𝜒/𝜕𝑦)𝑛+1, (3.31)

and for both horizontal walls

Δ𝑡∇𝜒𝑛+1 · t̂ = Δ𝑡(𝜕𝜒/𝜕𝑥)𝑛+1. (3.32)

As the solution is limited to the boundaries, u𝑛+1 = u𝑤𝑎𝑙𝑙 = 0.

The values of 𝜃 on both vertical walls are known, therefore Dirichlet boundary
conditions were applied. On the left hand side, 𝜃 = 1 while on the right side 𝜃 = 0. On the
horizontal walls, Neumann boundary conditions were used, so that

∇𝜃𝑛+1 · n̂𝑤 = 0. (3.33)

3.9 Linear Systems Construction

For numerical computation of the motion governing equations, linear systems were
constructed according the stencil in Figure 3.1, and stored in the form

𝑎(𝑖, 𝑗) · 𝑥(𝑖 − 1, 𝑗) + 𝑏(𝑖, 𝑗) · 𝑥(𝑖, 𝑗 − 1) + 𝑐(𝑖, 𝑗) · 𝑥(𝑖, 𝑗)+

𝑑(𝑖, 𝑗) · 𝑥(𝑖 + 1, 𝑗) + 𝑒(𝑖, 𝑗) · 𝑥(𝑖, 𝑗 + 1) = 𝑓(𝑖, 𝑗). (3.34)
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For each equation, different values were defined for the system’s components,
assuring an agreement with the mathematical formulation. On equations 3.4 and 3.5, the
values of 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are constants calculated out of the main loop, and described as
follows

𝑎𝑢(𝑖, 𝑗) = 𝑑𝑢(𝑖, 𝑗) = 𝑎𝑣(𝑖, 𝑗) = 𝑑𝑣(𝑖, 𝑗) = Δ𝑡𝑃𝑟𝑎𝑚𝑏

2Δ𝑥2 , (3.35)

𝑎𝜒(𝑖, 𝑗) = 𝑑𝜒(𝑖, 𝑗) = −1.0
Δ𝑥2 , (3.36)

𝑏𝑢(𝑖, 𝑗) = 𝑒𝑢(𝑖, 𝑗) = 𝑏𝑣(𝑖, 𝑗) = 𝑒𝑣(𝑖, 𝑗) = Δ𝑡𝑃𝑟𝑎𝑚𝑏

2Δ𝑦2 , (3.37)

𝑏𝜒(𝑖, 𝑗) = 𝑒𝜒(𝑖, 𝑗) = −1.0
Δ𝑦2 , (3.38)

𝑐𝑢(𝑖, 𝑗) = 𝑐𝑣(𝑖, 𝑗) = 1.0 + Δ𝑡𝑃𝑟𝑎𝑚𝑏

Δ𝑥2 + Δ𝑡𝑃𝑟𝑎𝑚𝑏

Δ𝑦2 , (3.39)

𝑐𝜒(𝑖, 𝑗) = 2.0
Δ𝑥2 + 2.0

Δ𝑦2 . (3.40)

On the energy balance equation 3.1 however, the components vary with the distance
function 𝜑 as it depends on the values of thermal conductivity 𝐶𝑣(𝜑) and heat conduction
𝜅(𝜑). In that sense, 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 must be updated for every iteration and are give by

𝑎𝜃(𝑖, 𝑗) = − Δ𝑡

2𝐶𝑣(𝑖, 𝑗)𝑛+1/2
𝜅(𝑖, 𝑗)𝑛+1 + 𝜅(𝑖 − 1, 𝑗)𝑛+1

2Δ𝑥2 , (3.41)

𝑏𝜃(𝑖, 𝑗) = − Δ𝑡

2𝐶𝑣(𝑖, 𝑗)𝑛+1/2
𝜅(𝑖, 𝑗)𝑛+1 + 𝜅(𝑖, 𝑗 − 1)𝑛+1

2Δ𝑦2 , (3.42)

𝑐𝜃(𝑖, 𝑗) = 1.0 + Δ𝑡

𝐶𝑣(𝑖, 𝑗)𝑛+1/2
2𝜅(𝑖, 𝑗)𝑛+1 + 𝜅(𝑖 − 1, 𝑗)𝑛+1 + 𝜅(𝑖 + 1, 𝑗)𝑛+1

4Δ𝑥2

+ Δ𝑡

𝐶𝑣(𝑖, 𝑗)𝑛+1/2
2𝜅(𝑖, 𝑗)𝑛+1 + 𝜅(𝑖, 𝑗 − 1)𝑛+1 + 𝜅(𝑖, 𝑗 + 1)𝑛+1

4Δ𝑦2 , (3.43)

𝑑𝜃(𝑖, 𝑗) = − Δ𝑡

2𝐶𝑣(𝑖, 𝑗)𝑛+1/2
𝜅(𝑖, 𝑗)𝑛+1 + 𝜅(𝑖 + 1, 𝑗)𝑛+1

2Δ𝑥2 , (3.44)

𝑒𝜃(𝑖, 𝑗) = − Δ𝑡

2𝐶𝑣(𝑖, 𝑗)𝑛+1/2
𝜅(𝑖, 𝑗)𝑛+1 + 𝜅(𝑖, 𝑗 + 1)𝑛+1

2Δ𝑦2 . (3.45)
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The components 𝑓(𝑖, 𝑗) for all equations must be updated in the main loop for
every iteration, and are defined for trial 𝑢 and 𝑣 velocities, trial pressure and temperature
difference respectively as

𝑓𝑢(𝑖, 𝑗) = 𝑢(𝑖, 𝑗)𝑛 + Δ𝑡
(︁
−1.5(u∇𝑢)𝑛 + 0.5(u∇𝑢)𝑛−1

)︁
+ Δ𝑡𝑃𝑟𝑎𝑚𝑏

2 ∇2𝑢𝑛

− Δ𝑡𝑃𝑟𝑎𝑚𝑏

𝐶𝑎

(ℋ(𝑖, 𝑗) + ℋ(𝑖 + 1, 𝑗))
2 𝛿(𝜑)

(︁
𝜕𝜑
𝜕𝑥

(𝑖 + 1, 𝑗) + 𝜕𝜑
𝜕𝑥

(𝑖, 𝑗)
)︁

2 , (3.46)

𝑓𝑣(𝑖, 𝑗) = 𝑣(𝑖, 𝑗)𝑛 + Δ𝑡
(︁
−1.5(u∇𝑣)𝑛 + 0.5(u∇𝑣)𝑛−1

)︁
+ Δ𝑡𝑃𝑟𝑎𝑚𝑏

2 ∇2𝑣𝑛

+ Δ𝑡𝑅𝑎𝑃𝑟𝑎𝑚𝑏

4
(︁
𝜃(𝑖, 𝑗 + 1)𝑛 + 𝜃(𝑖, 𝑗)𝑛 + 𝜃(𝑖, 𝑗 + 1)𝑛+1 + 𝜃(𝑖, 𝑗)𝑛+1

)︁
− Δ𝑡𝑃𝑟𝑎𝑚𝑏

𝐶𝑎

(ℋ(𝑖, 𝑗) + ℋ(𝑖, 𝑗 + 1))
2 𝛿(𝜑)

(︁
𝜕𝜑
𝜕𝑦

(𝑖, 𝑗 + 1) + 𝜕𝜑
𝜕𝑦

(𝑖, 𝑗)
)︁

2 , (3.47)

𝑓𝜒(𝑖, 𝑗) = −1
𝑑𝑡

(︃
𝑢*(𝑖, 𝑗) − 𝑢*(𝑖 − 1, 𝑗)

Δ𝑥
+ 𝑣*(𝑖, 𝑗) − 𝑣*(𝑖, 𝑗 − 1)

Δ𝑦

)︃
, (3.48)

𝑓𝜃(𝑖, 𝑗) = 𝜃(𝑖, 𝑗)𝑛 + Δ𝑡
(︁
−1.5(u∇𝜃)𝑛 + 0.5(u∇𝜃)𝑛−1

)︁
+ Δ𝑡

𝐶𝑣(𝜑)𝑛+1/2 · [(𝜅(𝑖 + 1, 𝑗)𝑛 + 𝜅(𝑖, 𝑗))𝑛 · (𝜃(𝑖 + 1, 𝑗) − 𝜃(𝑖, 𝑗))𝑛

4𝑑𝑥2

− (𝜅(𝑖, 𝑗) + 𝜅(𝑖 − 1, 𝑗))𝑛 · (𝜃(𝑖, 𝑗) − 𝜃(𝑖 − 1, 𝑗))𝑛]
4Δ𝑥2

+ Δ𝑡

𝐶𝑣(𝜑)𝑛+1/2 · [(𝜅(𝑖, 𝑗 + 1) + 𝜅(𝑖, 𝑗))𝑛 · (𝜃(𝑖, 𝑗 + 1) − 𝜃(𝑖, 𝑗))𝑛

4Δ𝑦2

− (𝜅(𝑖, 𝑗) + 𝜅(𝑖, 𝑗 − 1))𝑛 · (𝜃(𝑖, 𝑗) − 𝜃(𝑖, 𝑗 − 1))𝑛]
4Δ𝑦2 . (3.49)

Within the formulations presented, boundary conditions were implemented ac-
cordingly to the linear system defined in Eq. 3.34. Ghost points were considered to help
determine border values. When necessary, interpolations were carried to assure that the
variables were calculated in the correct storage spot.

The trial velocity 𝑢* boundary conditions on upper and bottle enclosure walls were
discretized respectively as

𝑢*(𝑖, 1) + 𝑢*(𝑖, 0)
2.0 = 0 → 𝑢*(𝑖, 1) = −𝑢*(𝑖, 0), (3.50)

𝑢*(𝑖, 𝑛𝑗𝑢 + 1) + 𝑢*(𝑖, 𝑛𝑗𝑢)
2.0 = 0 → 𝑢*(𝑖, 𝑛𝑗𝑢 + 1) = −𝑢*(𝑖, 𝑛𝑗𝑢). (3.51)
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Substituting 𝑢*(𝑖, 1) = −𝑢*(𝑖, 0) and 𝑢*(𝑖, 𝑛𝑗𝑢 + 1) = −𝑢*(𝑖, 𝑛𝑗𝑢) in Eq. 3.34, 𝑐𝑢 is
defined on the bottom and upper walls respectively as

𝑐𝑢(𝑖, 1) = 𝑐𝑢(𝑖, 1) − 𝑎𝑢(𝑖, 1), (3.52)

𝑐𝑢(𝑖, 𝑛𝑗𝑢) = 𝑐𝑢(𝑖, 𝑛𝑗𝑢) − 𝑑𝑢(𝑖, 𝑛𝑗𝑢). (3.53)

The ghost points are given respectively by

𝑢*(𝑖, 0) = Δ𝑡

Δ𝑥

(︁
4.0(𝜒(𝑖 + 1, 1) − 𝜒(𝑖, 1))𝑛 − 2.0(𝜒(𝑖 + 1, 1) − 𝜒(𝑖, 1))𝑛−1

)︁
, (3.54)

𝑢*(𝑖, 𝑛𝑗𝑢 + 1) = Δ𝑡

Δ𝑥

(︁
4.0(𝜒(𝑖 + 1, 𝑛𝑗𝑝) − 𝜒(𝑖, 𝑛𝑗𝑝))𝑛 − 2.0(𝜒(𝑖 + 1, 𝑛𝑗𝑝) − 𝜒(𝑖, 𝑛𝑗𝑝))𝑛−1

)︁
.

(3.55)

On the left and right walls, no ghost points were defined for 𝑢*, as the trial velocity’s
known value is stored right in the border of the enclosure. In that sense, the boundary
conditions for each side are given respectively by

𝑢(0, 𝑗) = 0.0, (3.56)

𝑢(0, 𝑛𝑗𝑢 + 1) = 0.0. (3.57)

The analogous procedure was also done for 𝑣*, 𝜒 and 𝜃. For 𝜃 one must notice that
as the components 𝑎, 𝑏, 𝑐, 𝑑 and 𝑒 are not constants, the boundary conditions must be
recalculated for every iteration. For 𝑣*, the boundary conditions e ghost points are given
respectively by

⎧⎨⎩ 𝑐𝑣(1, 𝑗) = 𝑐𝑣(𝑖, 𝑗) − 𝑏𝑣(1, 𝑗),
𝑐𝑣(𝑛𝑖𝑣, 𝑗) = 𝑐𝑣(𝑛𝑖𝑣, 𝑗) − 𝑒𝑣(𝑛𝑖𝑣, 𝑗),

(3.58)

𝑣*(𝑖, 0) = Δ𝑡

Δ𝑦

(︁
4.0(𝜒(1, 𝑗 + 1) − 𝜒(1, 𝑗))𝑛 − 2.0(𝜒(1, 𝑗 + 1) − 𝜒(1, 𝑗))𝑛−1

)︁
, (3.59)

𝑣*(𝑖, 0) = 𝑑𝑡

𝑑𝑦

(︁
4.0(𝜒(𝑛𝑖𝑝, 𝑗 + 1) − 𝜒(𝑛𝑖𝑝, 𝑗))𝑛 − 2.0(𝜒(𝑛𝑖𝑝, 𝑗 + 1) − 𝜒(𝑛𝑖𝑝, 𝑗))𝑛−1

)︁
.

(3.60)

For the trial pressure

⎧⎨⎩ 𝑐𝜒(1, 𝑗) = 𝑐𝜒(1, 𝑗) + 𝑎𝜒(1, 𝑗),
𝑐𝜒(𝑛𝑖𝑝, 𝑗) = 𝑐𝜒(𝑛𝑖𝑝, 𝑗) + 𝑑𝜒(𝑛𝑖𝑝, 𝑗),

(3.61)
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⎧⎨⎩ 𝑐𝜒(𝑖, 1) = 𝑐𝜒(𝑖, 1) + 𝑏𝜒(𝑖, 1)
𝑐𝜒(𝑖, 𝑛𝑗𝑝) = 𝑐𝜒(𝑖, 𝑛𝑗𝑝) + 𝑒𝜒(𝑖, 𝑛𝑗𝑝)

(3.62)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜒(0, 𝑗) = 0.0,

𝜒(𝑛𝑖𝑝 + 1, 𝑗) = 0.0.

𝜒(𝑖, 0) = 0.0,

𝜒(𝑖, 𝑛𝑗𝑝 + 1) = 0.0,

(3.63)

Finally, the respective boundary conditions and ghost points of 𝜃 are

⎧⎨⎩ 𝑐𝜃(1, 𝑗) = 𝑐𝜃(1, 𝑗) − 𝑎𝜃(1, 𝑗),
𝑐𝜃(𝑛𝑖𝑡ℎ, 𝑗) = 𝑐𝜃(𝑛𝑖𝑡ℎ, 𝑗) − 𝑑𝜃(𝑛𝑖𝑡ℎ, 𝑗),

(3.64)

⎧⎨⎩ 𝑐𝜃(𝑖, 1) = 𝑐𝜃(𝑖, 1) + 𝑏𝜃(𝑖, 1),
𝑐𝜃(𝑖, 𝑛𝑗𝑡ℎ) = 𝑐𝜃(𝑖, 𝑛𝑗𝑡ℎ) + 𝑒𝜃(𝑖, 𝑛𝑗𝑡ℎ),

(3.65)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜒(0, 𝑗) = 2.0𝑇𝐻 − 𝜃(1, 𝑗),
𝜒(𝑛𝑖𝑝 + 1, 𝑗) = 2.0𝑇𝐿 − 𝜃(𝑛𝑖𝑝, 𝑗),

𝜒(𝑖, 0) = 0.0,

𝜒(𝑖, 𝑛𝑗𝑝 + 1) = 0.0.

(3.66)
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4 Results and Discussions

4.1 Grid Convergence Analysis

The grid convergence analysis was done considering the square enclosure filled with
both droplet and ambient fluid, the horizontal walls kept insulated and the vertical walls
set at different temperatures. The flow properties were set at 𝑅𝑎 = 104, 𝑃𝑟𝑎𝑚𝑏 = 0.7 and
𝑥0 = 0.25. The analysis’ reference parameters were the Nusselt number (𝑁𝑢) and the
position of the drop center of mass in the x-direction (𝑥𝑑), both registered in specified
time steps and calculated respectively by

𝑁𝑢 = −
∫︁ 1

0

(︃
𝜕𝜃

𝜕𝑥

)︃
𝑥=0

𝑑𝑦, (4.1)

𝑥𝑑 = 1
𝐴

∫︁
𝐴

x.𝐻(𝜑)𝑑𝐴. (4.2)

Table 3 – Grid convergence analysis for the Nusselt number (𝑁𝑢). Six distinct grids were
used in order to obtain the convergence rate. The ratio in the fourth column

relates to the 𝑁𝑢 rate of convergence by 2𝑝 = lim
𝑛→∞

𝑁𝑢ℎ − 𝑁𝑢ℎ/2

𝑁𝑢ℎ/2 − 𝑁𝑢ℎ/4 , 𝑝 is the
convergence rate.

ℎ 𝑁𝑢ℎ 𝑁𝑢ℎ − 𝑁𝑢ℎ/2 𝑁𝑢ℎ − 𝑁𝑢ℎ/2

𝑁𝑢ℎ/2 − 𝑁𝑢ℎ/4 Conv. rate (𝑝)
4 × 10−2 4.5164 -0.0519 1.3316 0.4131
2 × 10−2 4.5683 -0.0390 1.8264 0.8690
1 × 10−2 4.6073 -0.0214 1.9187 0.9394
5 × 10−3 4.6287 -0.0111 1.9565 0.9683

2.5 × 10−3 4.6398 -0.0057 – –
1.25 × 10−3 4.6455 – – –

𝑁𝑢 and 𝑥𝑑 were computed for progressively finer meshes, halving the grid norm
each time and keeping 𝑑𝑡 = 10−5 for all cases. The method’s order of accuracy was also
estimated. Tables 3 and 4 indicate 𝒪(Δ𝑥) rate of convergence. As all the spatial derivatives
in the numerical scheme are 𝒪(Δ𝑥2), and both 𝑁𝑢 and 𝑥𝑑, computed respectively by
Eq.4.1 and 4.2, are integral quantities, they are expected to converge at 𝒪(Δ𝑥).
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Table 4 – Grid convergence analysis for the position of the droplet center of mass (𝑥𝑑).
The same procedure used in Nusselt analysis was applied.

ℎ 𝑥ℎ
𝑑 𝑥ℎ

𝑑 − 𝑥
ℎ/2
𝑑

𝑥ℎ
𝑑 − 𝑥

ℎ/2
𝑑

𝑥
ℎ/2
𝑑 − 𝑥

ℎ/4
𝑑

Conv. rate (𝑝)

4 × 10−2 0.252258844 0.002897341 9.8072882906 3.2938
2 × 10−2 0.2493615033 -0.0002954273 5.2238368135 2.3851
1 × 10−2 0.2496569306 -0.0000565537 2.0264187586 1.0189
5 × 10−3 0.2497134843 -0.0000279082 2.0514399965 1.0366

2.5 × 10−3 0.2497413925 -0.0000136042 – –
1.25 × 10−3 0.2497549967 – – –

4.2 Numerical Verification

Willing to validate the governing equations’ numerical model implementation, a
mono-phase version of the problem was considered under the same boundary conditions.
Comparisons of 𝑁𝑢 for three values of 𝑅𝑎 were done regarding numerical results reported
by Barakos et al. (1994), Fusegi et al. (1991), Markatos & Pericleous (1984), and Davis
(1983). Table 5 brings the results, showing a good agreement between the present work
and the literature references.

Table 5 – The table shows the relation between Nusselt and Rayleigh numbers for the
physical model proposed, comparing the present work results with the ones in
four other papers collected on the literature.

Rayleigh Present
Work

Barakos
et al.
(1994)

Fusegi
et al.
(1991)

Markatos
and Pericleous

(1984)
Davis
(1983)

103 1.112 1.114 1.105 1.108 1.118
104 2.236 2.245 2.302 2.201 2.243
105 4.503 4.510 4.646 4.430 4.519

Using Barakos et al.(1994) as reference, a qualitative comparison of the iso-
temperature lines and flow streamlines was carried. The similarity of the results highlights
the reliability of the method implemented.
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Figure 4.1 – Iso-temperature lines at different Rayleigh numbers: (a) 𝑅𝑎 = 103, (b) 𝑅𝑎 =
104 and (c) 𝑅𝑎 = 105. Present work: (a1), (b1), and (c1). Reference work
(Assimacopoulos; Barakos; Mitsoulis, 1994): (a2), (b2), and (c2). Reproduced
with permission.

Figure 4.2 – Streamlines at different Rayleigh numbers: (a) 𝑅𝑎 = 103, (b) 𝑅𝑎 = 104 and (c)
𝑅𝑎 = 105. Present work: (a1), (b1), and (c1). Reference work (Assimacopoulos;
Barakos; Mitsoulis, 1994): (a2), (b2), and (c2). Reproduced with permission.

Figure 4.1 shows that at low Rayleigh numbers, vertical iso-temperature lines
indicate heat is mainly transferred by conduction. As 𝑅𝑎 enhances, convective currents
begin to form near the non-adiabatic walls. Meanwhile, within the enclosure’s central
region the heat evolves through horizontal-like iso-temperature lines. As a result, the
streamlines gradually lose their original circular shape, forming elliptical lines, as shown
in Fig. 4.2. At high enough Rayleigh numbers, a second circulation region appears.
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In order to guarantee that the Level Set Method was successfully implemented,
a single drop in an isothermal simple shear flow, defined accordingly to Fig. 4.3, was
analyzed. Considering the upper and lower walls moving with 𝑈 and −𝑈 , respectively,
periodic boundary conditions were applied on the side walls. In such a case, 𝐶𝑎 = 𝜇𝑎�̇�

𝜎
,

where �̇� = 2𝑈

𝐻
, 𝜇 is the dynamical viscosity of the droplet’s fluid, 𝐻 is the gap between

both plates, and 𝜎 the surface tension coefficient.

U

L

H

-U

Figure 4.3 – Physical scenario considered to allow the Level Set method validation. Two
equal flat plates, distanced by a lenght 𝐻, move with the same velocity 𝑈 in
opposite directions. A shear flow develops, occasioning droplet deformation.

Droplet deformation as a function of the capillary number was investigated and
compared with previous work on the literature. The droplet deformation parameter 𝐷 is
defined by

𝐷 = 𝐵1 − 𝐵2

𝐵1 + 𝐵2
, (4.3)

where 𝐵1 and 𝐵2 are the larger and the shorter lengths of the deformed droplet at stationary
regime, respectively.

Figure 4.4 shows that larger deformations are observed when higher Capillary num-
bers, and consequentially lower superficial tension coefficients, are considered, facilitating
shear stress deformation. Results indicate a good agreement with the reference works. Also,
the present methodology has been previously validated for the simple shear case on Cunha
et al. 2020. Considering that the present work is bidimensional and the reference works
are all 3D, the slight divergence between the results on higher values of 𝐶𝑎 is expected.
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Figure 4.4 – Droplet deformation as a function of the capillary number. ∙: present
work; �: Ioannou et al. (2016)(Ioannou; Liu; Zhang, 2016); H: Vanan-
roye et al. (2007)(Vananroye; Puyvelde; Moldenaers, 2007); �: Sibillo et
al. (2006)(Sibillo et al., 2006); J: Li et al. (2000)(Li; Renardy; Renardy,
2000); N: Kwak & Pozrikidis (1998)(Kwak; Pozrikidis, 1998); and ∙: Kennedy
et al. (1994)(Kennedy; Pozrikidis; Skalak, 1994).

4.3 Influence of the Rayleigh number on the droplet’s motion

The paths followed by the droplet were investigated as a function of the Rayleigh
number, which can be considered as the ratio between a time scale for diffusive thermal
transport and a time scale for thermal transport by a buoyancy-driven velocity. Within
the analysis, the influence of the droplet’s releasing positions x0 = (𝑥0, 𝑦0) on the final
path patterns was also studied. The droplet‘s area variation was controlled and its center
of gravity was tracked for every iteration. All simulations start with a quiescent fluid and
circular drop and proceed until the path indicates no further changes.

Unitary thermal conductivity and heat capacity ratios (𝜆𝜅 = 𝜆𝐶 = 1) were
considered. The system’s Rayleigh number was set at values up to 𝑅𝑎 ∼ 104, and the
droplet was released from several distinct initial positions. Also, the Prandtl number of
both fluids was kept constant and set at 𝑃𝑟𝑎𝑚𝑏 = 0.70.

Accordingly to 𝑅𝑎, two distinct motion regimes were identified. Within linear
motion regimes, the droplet moves in closed paths passing periodically by its initial
position (𝑅𝑎 = 102) or towards a single marginal path, regardless of the releasing point
(𝑅𝑎 = 103). For the non-linear case at 𝑅𝑎 = 104, the droplet can either move in helical
motions towards the center or describe a single closed marginal path, depending on the
releasing position.

Figures 4.5(a) and 4.5(b) show snapshots of the droplet on different positions while
completing a cycle for 𝑅𝑎 = 102 and 𝑅𝑎 = 104, respectively. In both cases, the drop was
released from x0 = (0.25, 0.50). The figures also show that the motion regime directly
affects droplet deformation. Under the same conditions, at 𝑅𝑎 = 104 the droplet deformed
already during the first cycle, while at 𝑅𝑎 = 102 it conserved its circular shape, indicating
that for 𝐶𝑎 = 102, the shear stress caused by convective currents was not able to deform
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the droplet. Red lines represent the path traveled by the droplet’s center of mass.
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Figure 4.5 – Droplet snapshots at different positions in the first turn of its motion inside
the enclosure. (a) 𝑅𝑎 = 1×102 and 𝑥0 = 0.25. (b) 𝑅𝑎 = 1×104 and 𝑥0 = 0.25.
Droplet deformation was noticed for 𝑅𝑎 = 1 × 104, but not for 1 × 102. The
red line is the path of the droplet’s center of mass.

4.3.1 Varying the droplet’s releasing position in x

For all motion regimes described, the behavior patterns were first investigated
considering the nine distinct values of 𝑥0 showed in Fig. 4.6, all evaluated at 𝑦0 = 0.50.
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Figure 4.6 – Droplet initial positions for path patterns investigation. All resealing points
are set at 𝑦0 = 0.5, while 𝑥0 varies between 0.20, 0.25, 0.30, 0.35, 0.50, 0.65,
0.70, 0.75 and 0.80.

Figure 4.7 displays the paths observed at 𝑅𝑎 = 102 for eight releasing positions
placed on both halves of the enclosure. When released from 𝑥0 = 0.50, the droplet stands
still at the cavity center. For 𝑅𝑎 = 102, the droplet moves in closed symmetrical paths,
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passing periodically by its starting point. Results highlight that when released from
symmetrically placed initial positions, the droplet moves within the same path. This
behavior characterizes the regime as a linear flow, completely reversible in time.
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Figure 4.7 – Path patterns observed for 𝑅𝑎 = 102. The droplet moves in closed paths,
periodically passing through its releasing position. All starting points displayed
in Fig.4.6 were analyzed.

For 𝑅𝑎 = 103 a different motion pattern was observed. Regardless of the initial
position, the droplet travels in periodic paths reaching one single closed path at stationary
regime. Consequentially, the final distance from the droplet’s center of mass and the high
temperature wall (𝑥𝑤) is the same for all values of 𝑥0 evaluated. Figure 4.8 indicates that, in
this case, 𝑥0 only affects the time required to reach stationary regime. The motion begins in
an asymmetric manner, eventually reaching a symmetric path. This observation elucidates
that at 𝑅𝑎 = 103, flow asymmetries start to influence the droplet’s path patterns.
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Figure 4.8 – Motion patterns observed for 𝑅𝑎 = 103 at (a) 𝑥0 = 0.20, 𝑥0 = 0.25 and
𝑥0 = 0.30, and (b) 𝑥0 = 0.70, 𝑥0 = 0.75 and 𝑥0 = 0.80. Regardless of the
releasing position, the droplet moves towards a single marginal path.

When analyzing the motion regime at 𝑅𝑎 = 104, the influence of the droplet’s
initial position becomes more evident. In this case, depending on its starting point, the
droplet can display one of two completely distinct behaviors: tracing a helical path towards
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the enclosure’s center or moving in periodic motions until reaching a closed marginal path.
Having in mind that a droplet released from 𝑥0 = 0.25 and 0.30 displays its final position
at the enclosure’s center, the fact that a drop placed on 𝑥0 = 0.50 reaches a marginal
closed path indicates a non-linear behavior.
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Figure 4.9 – Droplet paths observed for (a) 𝑥0 = 0.25 and 𝑥0 = 0.30, and (b) 𝑥0 = 0.20,
𝑥0 = 0.35 and 0.50. At 𝑅𝑎 = 104, the droplet can either move in a helical
motion towards the enclosure’s center (a), or move in closed marginal paths
(b).

Figure 4.10 shows that for 𝑥0 ≥ 0.50 the motion results in the same single closed
path previously displayed in Fig. 4.9(b). In that sense, results indicate that none of the
releasing positions placed at the cold wall half of the enclosure drives the droplet towards
the central region.
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Figure 4.10 – Paths observed at 𝑅𝑎 = 104 for 𝑥0 = 0.65, 𝑥0 = 0.70, 𝑥0 = 0.75 and
𝑥0 = 0.80. When released from the right side half of the enclosure, the
droplet reaches a single closed marginal path at stationary regime for every
releasing position.

Figure 4.11 displays a diagram of the smallest distance of the droplet’s center of
mass from the hot wall on stationary motion 𝑥𝑤 as a function of the releasing position 𝑥0.
As specified in Fig. 4.11, 𝑥𝑤 = 0.50 implies the droplet is at the enclosure’s center and

32



𝑥𝑤 = 0.15 indicates it reached the closed marginal path near the wall region. Results for 11
equally spaced distinct values of 𝑥0 were computed. The closed marginal path is the same
for droplets released from 𝑥0 < 0.22 and 𝑥0 > 0.32, while in the range 0.22 ≤ 𝑥0 ≤ 0.32
the droplet always moves towards the enclosure’s center.
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Figure 4.11 – The diagram indicates the relation between the releasing position 𝑥0 and
the path’s shortest distance from the hot wall 𝑥𝑤. Setting 𝑅𝑎 = 104 and
𝑃𝑟𝑎𝑚𝑏 = 0.70, the droplet moves towards the enclosure’s center when 0.22 ≤
𝑥0 ≤ 0.32.

4.3.2 Varying the droplet’s releasing position in y

Previous results indicated that flow asymmetries along the 𝑥-axis have a significant
influence on defining the path at high enough Rayleigh numbers. That being so, the effects
of flow asymmetries along the 𝑦-axis were also investigated and the region inside the
enclosure from which the droplet travels towards the center was identified. The releasing
positions considered are showed in Fig. 4.12, 𝑅𝑎 was set at 1 × 104 and two distinct values
of 𝑥0 were investigated.
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Figure 4.12 – Droplet’s initial position along the 𝑦-axis. Simulations were carried consider-
ing 𝑥0 = 0.25 and 𝑥0 = 0.50. Analogously to the previous analysis, values of
𝑦0 varied between 𝑦0 = 0.20 and 𝑦0 = 0.80.

Figure 4.13 shows that for 𝑥0 = 0.50, the final path at stationary regime is the
same for all eight values of 𝑦0 analyzed. However, an evident behavior distinction can be
observed when considering 𝑦0 < 0.50 and 𝑦0 > 0.50. This fact highlights once again the
impact of flow asymmetries on the droplet’s path. Soon after released from the enclosure’s
bottom half, the droplet is convected by the currents emerging near the high-temperature
wall. On the other hand, for releasing positions defined at the upper enclosure half, the
droplet moves in periodical cycles towards the marginal path.
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Figure 4.13 – Path patterns for varying values of 𝑦0 evaluated for 𝑥0 = 0.50. For all eight
cases analyzed the droplet reaches the same marginal path.

For 𝑥0 = 0.25, releasing the droplet from upper and bottom enclosure halves
resulted in completely different motion behaviors. When released from the bottom half,
the droplet moves near the walls rapidly reaching stationary path, as showed in Fig. 4.14
(a). For releasing positions at the upper half, the droplet moves towards the center in
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helical motions. Figure 4.13 (b) shows the paths observed for 𝑥0 = 0.70 and 𝑥0 = 0.80,
indicating that motion amplitude has considerably changed within the distinct values of
𝑦0.
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Figure 4.14 – Path patterns for the enclosure’s bottom half values of 𝑦0, all evaluated at
𝑥0 = 0.25 and considering 𝑅𝑎 = 104. The droplet reaches the same closed
marginal path for each releasing position.

Within the results presented, it is possible to conclude that under the initial
conditions defined, the droplet will only move towards the enclosure’s when initially placed
at the upper half and at the values of 𝑥0 defined on Fig. 4.11.

4.3.3 Droplet’s turnover frequency analysis

In the cases in which the path follows a marginal closed path, the horizontal
coordinate of the center of mass 𝑥𝑑 describes a sinusoidal behavior on time. Figure 4.15
shows that 𝜔 is a growing function of the Rayleigh number.
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Figure 4.15 – Horizontal center of mass coordinate 𝑥0 evaluated through time 𝑡 for 𝑅𝑎 =
102 (blue line - inset), 103 (green line) and 104 (red line). The turnover
frequency seems to enhance with the Rayleigh number.
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At the stationary regime, as heat conduction balances the enthalpy advection, a
characteristic time of advection 𝑡𝑎𝑑 is given by

𝑡𝑎𝑑 ∼ 𝜈𝐿

𝑔𝛼𝛽Δ𝑇
. (4.4)

Assuming that droplets are convected in the characteristic time, normalized by

𝑡𝑐 ∼ 𝐿2

𝛼
, (4.5)

a non-dimensional turnover frequency scales with 𝑡𝑐/𝑡𝑎𝑑, such that

𝜔 ∼ 𝑅𝑎1/2. (4.6)

Figure 4.16 displays the non-dimensional turnover frequency as a function of 𝑅𝑎1/2,
analyzed for 𝑥0 = 0.20. For 𝑅𝑎1/2 ≤ 100 (𝑅𝑎 ≤ 104) the scaling law fits very well to the
simulations results. On the other hand, for 𝑅𝑎1/2 > 100, numerical results deviate from
the scaling law drastically, indicating that on this range 𝜔 becomes a noticeably non-linear
function of 𝑅𝑎.
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Figure 4.16 – Non-dimensional turnover frequency 𝜔 as a function of 𝑅𝑎1/2.

Based on the results presented in Figure 4.16, it is possible to associate the change
in the 𝜔 dependency on 𝑅𝑎 with the formation of a second vortex in the enclosure, as
shown in Fig.4.17. The second re-circulation, commonly related to high 𝑅𝑎 regimes, is
also associated with an increase on 𝑥𝑤, as smaller closed paths are formed near the central
region.
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Figure 4.17 – Non-dimensional temperature difference field and streamlines for (a) 𝑅𝑎 =
1 × 104 and (b) 𝑅𝑎 = 7.5 × 104. For both cases 𝑥0 = 0.20, and on (b) we
observe the formation of a second vortex, as a result of the Rayleigh number
enhancement.

4.4 Influence of the Prandtl number on the droplet’s path

To evaluate the effects of 𝑃𝑟𝑎𝑚𝑏 on droplet motion, investigations considering
𝑃𝑟𝑎𝑚𝑏 = 7.0 were carried. Within the analysis, the system was kept at 𝜆𝐶 = 𝜆𝜅 = 1.0,
while different values of 𝑥0 were investigated for 𝑦0 = 0.50.

At lower Rayleigh numbers, the droplet once again behaves within linear motion
regimes. Figure 4.18 (a) shows the reversible paths followed by the droplet at 𝑅𝑎 = 1 × 102

for both 𝑥0 = 0.25 and 𝑥0 = 0.65. At 𝑅𝑎 = 1×103, the motion reaches one single stationary
path for both releasing positions. The final path was defined by shorter amplitudes, resulting
in a larger 𝑥𝑤, as showed in Fig 4.18 (b).
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Figure 4.18 – Motion patterns registered for (a) 𝑅𝑎 = 102 and (b) 𝑅𝑎 = 103, both set at
𝑃𝑟𝑎𝑚𝑏 = 7.0.

For high enough Rayleigh numbers, two main aspects were noticeably affected by
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the Prandtl number. Though a non-linear motion regime was detected for 𝑅𝑎 = 1 × 104,
the range of releasing positions from which the droplet moves towards the enclosure’s
center has changed. Also, for the cases in which the droplet is convected by wall-region
currents, the shortest distance between the stationary path and hot wall 𝑥𝑤 has increased.

Figure 4.19 (b) indicates that the closed final path followed by the drop at stationary
regime is located closer to the center, and defined by a shorter amplitude. Figure 4.19
(a) shows that for 𝑥0 = 0.50 and 𝑥0 = 0.25 the droplet moves towards the enclosure’s
center. When compared to 𝑃𝑟𝑎𝑚𝑏 = 0.70, results indicate that the flow takes longer to
reach stationary regime, as the droplet moves within small amplitude variations.
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Figure 4.19 – Droplet’s paths for 104, considering 𝑃𝑟𝑎𝑚𝑏 = 7.0. Display (a) shows the
helical paths traveled by the droplet when released from 𝑥0 = 0.25 and
𝑥0 = 0.50. Display (b) shows the stationary path reached in cases where the
droplet is convected by the wall-region currents.

To define the region inside the enclosure from which the droplet moves to the
center, a diagram of 𝑥𝑤 as a function of the releasing position 𝑥0 was constructed. Figure
4.20 shows that for 𝑥0 < 0.21 and 𝑥0 > 0.58, the droplet moves in a closed limit cycle,
while for 0.22 ≤ 𝑥0 ≤ 0.57 it moves towards the center. Comparing Fig. 4.11 and Fig.
4.20, one can see that the range of releasing positions from which the droplet moves
towards the enclosure’s center has enhanced for 𝑃𝑟𝑎𝑚𝑏 = 7.0, being 3.5 times larger than
for 𝑃𝑟𝑎𝑚𝑏 = 0.70.
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Figure 4.20 – The diagram correlates the releasing position with the final path, indicating
whether the droplet moves towards the enclosure’s margin (𝑥0 = 0.26) or
center (𝑥0 = 0.50), when 𝑃𝑟𝑎𝑚𝑏 = 7.0.

The relation between 𝑃𝑟𝑎𝑚𝑏 and 𝑥𝑤 was also studied. Considering 𝑅𝑎 = 1 × 104

and 𝑥0 = 0.20, the values of 𝑥𝑤 were investigated within a range of 1 ≤ 𝑃𝑟𝑎𝑚𝑏 ≤ 20. Figure
4.21 shows that 𝑥𝑤 varies with 𝑃𝑟𝑎𝑚𝑏 for values up to approximately 𝑃𝑟𝑎𝑚𝑏 = 5.0. Within
values up to 𝑃𝑟𝑎𝑚𝑏 = 3, the variation is noticeably linear. For 5 ≤ 𝑃𝑟 ≤ 20, the closed
marginal path stays unaltered, as 𝑥𝑤 remains the same regardless of the Prandtl number.
Results indicate that droplet motion is only affected by lower values of 𝑃𝑟𝑎𝑚𝑏. For high
enough Prandtl numbers, 𝑥𝑤 = 0.26.
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Figure 4.21 – Shortest distance between the stationary path 𝑥0 and the hot wall as a
function of the Prandtl number 𝑃𝑟𝑎𝑚𝑏. For values of 𝑃𝑟 up to 3.0, 𝑥𝑤 varies
linearly. For high enough Prandtl numbers 𝑥𝑤 remains constant at 0.26,
regardless of 𝑃𝑟𝑎𝑚𝑏.
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4.5 Droplet motion and temperature field

In the present model, the temperature field evolves from the high-temperature wall,
as showed in Fig. 4.22. Therefore, a circulation region is formed at the enclosure’s left
side, moving towards the central region as the flow develops. Results have stated that
depending on its releasing position, the droplet is either convected by the currents near
the non-adiabatic walls or captured by that main circulation region. In that sense, for
both cases the temperature difference field, velocity streamlines and interface deformation
were investigated at the flow’s initial moments and at stationary regime. The following
analysis considers 𝑃𝑟𝑎𝑚𝑏 = 0.70 and unitary thermal properties.
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Figure 4.22 – Flow at the initial moments of the motion, considering a droplet released
from 𝑥0 = 0.50. The temperature difference field evolves from the high-
temperature wall towards the low-temperature one. A circulation region is
formed near the hot wall as the flow starts developing.

Considering the linear motion regimes, Figs. 4.23(a) and 4.23 (b) highlight the
flow’s divergences for 𝑅𝑎 = 1 × 102 and 𝑅𝑎 = 1 × 103, respectively. At 𝑅𝑎 = 1 × 102, the
vertical temperature lines indicate that heat is mainly transferred by conduction. In that
sense, no convective currents were developed near the non-adiabatic walls. The droplet
describes a reversible motion during which the interface suffers no noticeable deformation,
and the streamlines remain symmetrical, as the droplet performs no significant alterations
on neither the velocity or temperature fields. For 𝑅𝑎 = 1 × 103, on the other hand, the flow
starts to transition between conductive and convective regimes. Therefore, it is possible to
observe the formation of wall-region currents that affect droplet motion and deformation,
resulting in a symmetry rupture.
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Figure 4.23 – Snapshots of the flow at stationary regime are displayed for (a) 𝑅𝑎 = 102 and
(b) 𝑅𝑎 = 103. The interaction between the interface and both the velocity
streamlines and temperature difference field are presented, highlighting the
asymmetries caused by Rayleigh enhancement.

Figures 4.24 and 4.25 respectively display snapshots of the droplet’s first cycle for
𝑥0 = 0.20 and 𝑥0 = 0.50, considering 𝑅𝑎 = 1 × 104. When released from 𝑥0 = 0.20, the
droplet is initially placed between the core circulation and the hot wall currents, suffering
opposite efforts from both regions that result in a considerable interface deformation. As
the droplet moves driven by the convective currents, the interface is distanced from the
core circulation, moving towards the margin and considerably affecting the temperature
field evolution.
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Figure 4.24 – Droplet moving in the developing flow for 𝑅𝑎 = 104 and 𝑃𝑟𝑎𝑚𝑏 = 0.70,
considering 𝑥0 = 0.20. As the interface is convected by wall-region currents,
the streamlines and 𝜃 field are more affected by the motion.

Releasing the droplet at the center of the enclosure, where 𝑥0 = 0.50, results in
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the same stationary path, but in a different trajectory, as depicted previously in Fig. 4.9.
Figure 4.25 shows that, in this case, the droplet does not interact directly with the core
circulation, but moves around it instead. Also, the interface does not seem to suffer any
relevant attractive efforts by the core circulation. As the drop approaches the hot-wall
region, it is shortly convected by the currents, causing larger interface deformations and the
subtle displacement of the core circulation. Once again, the temperature field is influenced
by the droplet’s presence.
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Figure 4.25 – When released from the enclosure’s center, the interface moves around the
core circulation, displacing it towards the opposite direction. The same
happens when 𝑥0 > 0.50, which highlights the fact that when released from
the side where no circulation is initially developed, the droplet does not
interact with the core circulation. The snapshots represent a flow set at
𝑅𝑎 = 104 and 𝑃𝑟𝑎𝑚𝑏 = 0.70.

At stationary regime, the droplet moves near the walls, deforming continuously in
a non-linear manner. Figure 4.26 shows that the core circulation region is clearly displaced
by the passage of the interface. As it moves closer to the boundaries, the droplet can reach
higher or lower temperatures. In contrast, in the cases which it remains at the enclosure’s
center, the droplet’s 𝜃 stays constant at approximately the average temperature, as shows
Fig. 4.28.
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Figure 4.26 – At stationary regime, when released from 𝑥0 = 0.50, the droplet moves
within closed cycles near the walls suffering irregular deformations along the
path. The passage of the interface results on the displacement of the core
circulation, intensifying flow asymmetries.

Ɵ
0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15

0.05

 t=0.042 t=0.010

 t=0.060  t=0.120

Figure 4.27 – The droplet moves towards the enclosure’s center when released at the region
where the core circulation develops, but not close enough to the hot wall
where the convective currents are being formed. That being so, right at the
beginning of the simulation, the motion is defined by the core circulation
migration. The case presented consists of a droplet released at 0.25, in a
flow set at 𝑅𝑎 = 104 and 𝑃𝑟𝑎𝑚𝑏 = 0.70.
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In all cases which the droplet moves towards the enclosure’s center, the core
circulation displays an essential influence on the flow’s dynamics. It has become clear that,
under constant conditions, the initial position from which the droplet is released defines
whether it will be captured by the boundary region’s currents or the core circulation. This
phenomenon is directly related to the interface’s proximity to the developing circulation
region at the motion initial moments. Figure 4.27 shows the flow’s evolution when releasing
a droplet at 𝑥0 = 0.25. The interface is captured by the circulation core already in the
first cycle of its motion, displaying no relevant interaction with the convective currents
emerging near the hot wall.

As the droplet remains in the central region during the entire motion, the tempera-
ture field is barely influenced by its presence. Also, the droplet reaches lower temperatures,
settling at a constant temperature at stationary regime. Figure 4.28 shows that even
though the interface affects the streamlines, causing the inclination of the core circulation
towards the secondary diagonal, the flow recovers its symmetry. As the droplet stays still
and at constant temperature, suffering no further deformations nor provoking significant
changes to the flow, it is possible to conclude that the flow reaches steady state.
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Figure 4.28 – When the droplet settles at the center, the flows recovers its symmetry. As
the droplet stops deforming, the core circulation is shaped according to the
interface’s constant shape.

In conclusion, within the non-linear motion regime, droplet’s initial position will
define if and how the flow’s circulation core interacts with the interface at the beginning
of the motion. On its turn, the binary relation between the drop and main circulation
caused by flow asymmetries are responsible for the non-linear behavior observed at high
enough Rayleigh numbers.

4.6 Thermal properties influence on the droplet’s path

The investigation aims to highlight how a droplet of enhanced thermal properties
fluid can affect the system’s dynamics. In that sense, the effects of three distinct values of
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𝜆𝜅 and 𝜆𝐶 (1, 10 and 50) were considered within two distinct releasing positions for each
value of 𝑃𝑟𝑎𝑚𝑏 analyzed. Both thermal properties were studied separately.

By defining the thermal conductivity and heat capacity ratios, it is also possible to
determine the droplet’s Prandtl number. Equation 4.7 indicates there is a linear relation
between 𝜆𝐶/𝜆𝜅 and 𝑃𝑟𝑑𝑟𝑜𝑝, in which increasing values of 𝜆𝐶 define 𝑃𝑟𝑑𝑟𝑜𝑝 > 𝑃𝑟𝑎𝑚𝑏, while
increasing values of 𝜆𝜅 result in 𝑃𝑟𝑑𝑟𝑜𝑝 < 𝑃𝑟𝑎𝑚𝑏. The equation also suggests that by
considering 𝜆𝐶 = 𝜆𝜅 = 1.0, both fluids are assumed to have the same Prandtl number. In
that sense, the following results highlight the effects of 𝑃𝑟𝑑𝑟𝑜𝑝 on droplet motion as well.

𝑃𝑟𝑑𝑟𝑜𝑝 = 𝜆𝐶

𝜆𝜅

𝑃𝑟𝑎𝑚𝑏. (4.7)

Results displayed on Figure 4.29 show the analysis for 𝑃𝑟𝑎𝑚𝑏 = 0.70. On Figures
4.29(a) and (b), 𝜆𝐶 = 1 (red line), 𝜆𝐶 = 10 (green line) and 𝜆𝐶 = 50 (blue line) are
compared for 𝑥0 = 0.25 and 𝑥0 = 0.35, respectively. For higher values of the droplet’s fluid
heat capacity, on both cases, rotating short helical paths are described, leading the drop
towards the enclosure’s center. Although the motions end at the same stationary position
on the center, the paths described for 𝜆𝐶 = 10 and 𝜆𝐶 = 50 are noticeably different from
the one defined for 𝜆𝐶 = 1, under the same circumstances (See Figure 4.29(a)).
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Figure 4.29 – Motion patterns defined by different heat capacity, (a) and (b), and thermal
conductivity, (c) and (d), ratios varying between 1 (red lines), 10 (green
lines) and 50 (blue lines). Set at 𝑅𝑎 = 104 and 𝑃𝑟𝑎𝑚𝑏 = 0.70, (a) and (c)
represent 𝑥0 = 0.25, and (c) and (d) represent 𝑥0 = 0.35.
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For increasing values of 𝜆𝜅, on the other hand, the drop reaches a single closed
marginal path for both values of 𝑥0. Figure 4.29 shows the results for 𝜆𝜅 = 1 (red line),
𝜆𝜅 = 10 (green line) and 𝜆𝜅 = 50 (blue line). The stationary path is exactly the same
observed for 𝜆𝜅 = 1.

In analogy, investigations were also carried for 𝑃𝑟𝑎𝑚𝑏 = 7.0 considering the same
three ratios of heat capacity and thermal conductivity. The properties were investigated
for 𝑥0 = 0.20 and 𝑥0 = 0.35, as these releasing positions delivered different paths for
𝜆𝐶 = 𝜆𝜅 = 1.0.
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Figure 4.30 – Motion patterns defined by different heat capacity, (a) and (b), and thermal
conductivity, (c) and (d), ratios varying between 1 (red lines), 10 (green
lines) and 50 (blue lines). Set at 𝑅𝑎 = 104 and 𝑃𝑟𝑎𝑚𝑏 = 7.0, (a) and (c)
represent 𝑥0 = 0.20, and (c) and (d) represent 𝑥0 = 0.35.

Figure 4.30 shows that for 𝜆𝐶 variations, the droplet presented similar behaviors
for both releasing positions. Results indicated that for both 𝑃𝑟𝑎𝑚𝑏 = 0.70 and 𝑃𝑟𝑎𝑚𝑏 = 7.0,
enhanced values of 𝑃𝑟𝑑𝑟𝑜𝑝 result in this particular rotating motion, defined by short
decreasing amplitudes. The droplet moves pass the central region until being dragged
towards the enclosure’s center. As 𝑃𝑟𝑑𝑟𝑜𝑝 can be also defined as 𝜈𝑑𝑟𝑜𝑝/𝛼𝑑𝑟𝑜𝑝 and both fluids
are assumed to have the same viscosity, results lead to the conclusion that the droplet’s
thermal diffusion coefficient decrease is behind such behavior.

Increasing values of 𝜆𝜅 resulted in two different stationary motions, according to
the droplet’s initial position. When released from 𝑥0 = 0.20, the droplet travels towards a
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single closed marginal path that diverges from the one observed for 𝜆𝜅 = 1. The path is
described by larger amplitudes and an enhanced inclination. For 𝑥0 = 0.35, however, the
droplet travels in helical paths towards the center, highlighting that in cases which 𝜆𝜅 > 1,
the releasing position affects the final path.

In conclusion, results indicate that, at 𝑅𝑎 = 104, larger values of 𝜆𝜅 and 𝜆𝐶 impact
directly the droplet motion and path patterns. Consequentially, the droplet’s fluid Prandtl
number affects significantly the flow’s dynamics.

4.7 Nusselt number and heat transfer variations

The Nusselt number represents the non-dimensional temperature gradient at the
wall, strictly related to the convective heat transfer coefficient. The effects of the droplet
on the system’s heat transfer coefficients were evaluated by examining 𝑁𝑢 variations when
setting 𝑅𝑎 = 1 × 104, for both 𝑃𝑟𝑎𝑚𝑏 = 0.70 and 𝑃𝑟𝑎𝑚𝑏 = 7.0.

Figure 4.31 shows 𝑁𝑢 variation in time for 𝑃𝑟 = 0.70, considering 𝑥0 = 0.25 and
𝑥0 = 0.35. Within these initial conditions, the releasing positions did not seem to play
a significant role when higher values of 𝜆𝐶 and 𝜆𝜅 were applied. For increasing values
of 𝜆𝐶 , as the motion reaches the center, the Nusselt number is stabilized at the average
value 𝑁𝑢𝑎𝑣𝑔. For higher conductivity ratios, 𝑁𝑢 varies in constant periodical cycles during
stationary regime.
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Figure 4.31 – Nusselt number (Nu) variation patterns over time (t), considering 𝑅𝑎 = 104

and 𝑃𝑟𝑎𝑚𝑏 = 0.70. Plots (a) and (b) show results for 𝜆𝐶 = 1 (red lines),
10 (green lines) and 50 (blue lines), when 𝑥0 = 0.25 and 0.35, respectively.
Plots (c) and (d) show results for 𝜆𝜅 = 1 (red lines), 10 (green lines) and 50
(blue lines), when 𝑥0 = 0.25 and 0.35, respectively.

The analogous case was analyzed for 𝑃𝑟𝑎𝑚𝑏 = 7.0, considering 𝑥0 = 0.20 and
𝑥0 = 0.35. Figures 4.32 (a) and (b) show that for both releasing positions, similar Nusselt
variation patterns were observed for the three values of 𝜆𝐶 . In contrast, higher thermal
conductivity ratios affected the system’s heat transfer rate in different manners for each
starting point. For 𝑥0 = 0.20, as the droplet moves towards the margin, the Nusselt number
varies continually until reaching a constant oscillation. This process results in a noticeable
𝑁𝑢𝑎𝑣𝑔 enhancement, as showed in Fig. 4.32 (c). For 𝑥0 = 0.35 the droplet causes similar
Nusselt variations for all values of 𝜆𝜅. At the begging of the motion, a slight oscillation is
observed before the system reaches 𝑁𝑢𝑎𝑣𝑔. The average Nusselt number did not suffer any
significant changes at the stationary regime.
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Figure 4.32 – Nusselt number variation patterns considering 𝑥0 = 0.35 at (a) and (c) and
𝑥0 = 0.20 at (b) and (d) in a flow set at 𝑅𝑎 = 104 and 𝑃𝑟𝑎𝑚𝑏 = 7.0. Plots
(a) and (b) show results for 𝜆𝐶 = 1 (red lines), 10 (green lines) and 50 (blue
lines). Plots (c) and (d) show results for 𝜆𝜅 = 1 (red lines), 10 (green lines)
and 50 (blue lines).

A quantitative evaluation of the average Nusselt number was also carried so that
the variation Δ𝑁𝑢 could be specified. The analogous monophase version of the flow was
used as reference, considering that for 𝑃𝑟𝑎𝑚𝑏 = 0.70, 𝑁𝑢𝑎𝑣𝑔 = 2.230 and for 𝑃𝑟𝑎𝑚𝑏 = 7.0,
𝑁𝑢𝑎𝑣𝑔 = 2.272. The values of Δ𝑁𝑢 indicate how much the droplet contributed to or
jeopardized the system’s heat transfer processes.

Initially, the investigations considered effects on 𝑁𝑢𝑎𝑣𝑔 caused by a moving droplet
when 𝜆𝐶 = 𝜆𝜅 = 1. Even though both phases are assumed to have the same thermal
properties, and consequentially the same 𝑃𝑟𝑑𝑟𝑜𝑝, Tab. 6 shows that the presence of the
moving droplet provoked small 𝑁𝑢 variations. In that sense, the heat transfer coefficient

Table 6 – Nusselt number variations when 𝜆𝐶 = 𝜆𝜅 = 1 is considered for four different
cases.

𝑃𝑟𝑎𝑚𝑏 𝜆𝜅 𝜆𝐶 𝑥0 𝑁𝑢𝑎𝑣𝑔 Δ𝑁𝑢

0.70 1 1 0.25 2.244 0.63%
0.35 2.211 -0.85%

7.00 1 1 0.20 2.262 -0.44%
0.35 2.254 -0.79%

Tables 7 and 8 display the values of 𝑁𝑢𝑎𝑣𝑔 and Δ𝑁𝑢 calculated for cases in which
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𝜆𝐶 > 1, and considering 𝑃𝑟𝑎𝑚𝑏 = 0.70 and 𝑃𝑟𝑎𝑚𝑏 = 7.0, respectively. At stationary regime,
the droplet remains still at the enclosure’s center for all cases in which 𝜆𝐶 ̸= 1. In that
sense, for enhanced 𝜆𝐶 , the droplet conserves part of the heat at the enclosure’s center.
As a result, considerably small 𝑁𝑢 variations were observed, indicating that for enhanced
𝜆𝐶 , the droplet has no significant effects on the system’s heat transfer processes.

Table 7 – Nusselt number variations observed when setting 𝜆𝐶 > 1 and 𝜆𝜅 = 1. The table
indicates how different thermal capacity ratios affect Δ𝑁𝑢 for each releasing
position considered when 𝑃𝑟𝑎𝑚𝑏 = 0.70. No relevant 𝑁𝑢 variations were detected.

𝑥0 𝜆𝐶 𝑁𝑢𝑎𝑣𝑔 Δ𝑁𝑢

0.25 10 2.230 0.00%
50 2.231 0.05%

0.35 10 2.229 -0.04%
50 2.231 0.05%

Table 8 – Nusselt number variations observed when setting 𝜆𝐶 > 1, 𝜆𝜅 = 1 and 𝑃𝑟𝑎𝑚𝑏 =
7.0. the average Nusselt decreases for 𝜆𝐶 > 1. Since the droplet performs similar
paths towards the same final position at the center, same values of 𝜆𝐶 result in
same Δ𝑁𝑢.

𝑥0 𝜆𝐶 𝑁𝑢𝑎𝑣𝑔 Δ𝑁𝑢

0.20 10 2.245 -1.19%
50 2.263 -0.4%

0.35 10 2.245 -1.19%
50 2.263 -0.4%

When considering 𝑃𝑟𝑎𝑚𝑏 = 0.70 for both releasing positions, the droplet affects the
temperature field while moving near the wall region. Results displayed in Tab. 9 indicate
a heat transfer enhancement when larger values of 𝜆𝜅 were considered. Therefore, the
system’s 𝑁𝑢𝑎𝑣𝑔 increased, as Δ𝑁𝑢 reached values up to 8.12%. As the final path is the
same for both releasing positions, within the same value of 𝜆𝜅, the average Nusselt number
and the respective variation rates are approximately the same.

Table 9 – Nusselt number variations observed when setting 𝜆𝜅 > 1 and 𝜆𝐶 = 1. By
enhancing the thermal conductivity, 𝑁𝑢𝑎𝑣𝑔 increases considerably regardless of
the releasing position.

𝑥0 𝜆𝜅 𝑁𝑢𝑎𝑣𝑔 Δ𝑁𝑢

0.25 10 2.363 5.96%
50 2.411 8.12%

0.35 10 2.372 6.37%
50 2.403 7.75%

For 𝑃𝑟𝑎𝑚𝑏 = 7.0, as the two analyzed values of 𝑥0 resulted in different stationary
paths, it is possible to affirm that the releasing positions affected the system’s average
Nusselt number. Table 10 shows that for 𝑥0 = 0.20, 𝑁𝑢𝑎𝑣𝑔 enhanced within both values
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of 𝜆𝜅. For 𝑥0 = 0.35, on the other hand, the droplet moves towards the center, resulting
in a decrease of 𝑁𝑢𝑎𝑣𝑔. In that sense, conclusions lead to the fact that increasing values
of 𝜆𝜅 will only result in relevant heat transfer enhancement when the droplet moves in
closed marginal cycles. Furthermore, it has become clear that for 𝑃𝑟𝑎𝑚𝑏 = 0.70, Δ𝑁𝑢

reached higher values. Since 𝑥𝑤 increases for 𝑃𝑟𝑎𝑚𝑏 = 7.0 as the droplet moves closer to
the enclosure’s center, one can also conclude that the stationary path’s distance from the
walls has a direct influence on the flow’s heat transfer rates.

Table 10 – Nusselt number variations observed when setting 𝜆𝜅 > 1, 𝜆𝐶 = 1 and 𝑃𝑟𝑎𝑚𝑏 =
7.0. Results indicated that when the droplet moves in closed paths near the
walls, Δ𝑁𝑢 > 0, and when it settles at the center, Δ𝑁𝑢 < 0.

𝑥0 𝜆𝜅 𝑁𝑢𝑎𝑣𝑔 Δ𝑁𝑢

0.20 10 2.328 2.46%
50 2.372 4.40%

0.35 10 2.224 -2.11%
50 2.241 -1.36%
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5 Final Remarks

5.1 Conclusion

The present work displayed an extensive investigation of droplet dynamics in
confined natural convection flows. Several aspects were analyzed, enabling the definition of
distinct behavior patterns. The work highlighted how the flow’s properties can affect both
droplet motion and heat transfer coefficients. Furthermore, the study provided important
and innovative insights on droplet motion in non-isotherm flows.

As in the monophase case, the Rayleigh number exerts significant influence on the
flow’s behavior, defining the droplet’s motion regime. Several different releasing positions
were investigated considering both 𝑥0 and 𝑦0. For lower values of 𝑅𝑎, the paths are described
by linear motion in which the releasing positions display no significant influence on the
stationary trajectory. For high enough Rayleigh numbers, on the other hand, non-linear
motions were detected, revealing that depending on its starting point, the drop can either
move in helical motions towards the center or define a closed marginal path. Also, in cases
where the droplet moves within the closed path, results indicated that for 𝑅𝑎 up to 104,
a scaling law can be applied to describe the relationship between the droplet’s turnover
frequency and the Rayleigh number.

The Prandtl number was only noticed to influence the flow’s behavior within a
defined range. While motion regimes were not affected, the relations between 𝑥𝑤 and 𝑥0

have slightly changed. Also, the path’s amplitude decreased linearly with 𝑃𝑟 enhancement,
keeping the droplet closer to the central region and increasing 𝑥𝑤. For high enough Rayleigh
numbers, 𝑥𝑤 becomes a constant, as Prandtl no longer affects the motion.

Investigating the mechanism behind the behaviors described, it is possible to state
that convective currents formed in the flow as a result of Rayleigh enhancement have a
considerable influence on the system’s non-linearity. The appearance of these currents is
responsible for causing noticeable asymmetries in the flow, which affect directly the binary
interaction between the velocity field and the interface. Also, the encounter between the
core circulation and the droplet at the beginning of the motion defines the helical motion
that reaches the enclosure’s center.

By varying the values of 𝜆𝜅 and 𝜆𝐶 , new motion patterns can be detected. For
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𝑃𝑟 = 0.70, increasing the droplet’s thermal conductivity and heat capacity results in the
interface migration towards the boundaries and the enclosure’s center, respectively. In this
particular case, no influence of the releasing position on the final path was observed. When
𝑃𝑟 = 7.0, increasing values of 𝜆𝐶 drive the droplet to the center, regardless of its starting
point. When higher values of 𝜆𝜅 are considered, the droplet behaves accordingly to Fig.
4.20, moving either towards the center or the margin for the specified releasing positions.
As explained in the discussion, both thermal properties’ ratios affect the droplet’s Prandtl
number. In that sense, when 𝜆𝐶 > 1, 𝑃𝑟𝑑𝑟𝑜𝑝 > 𝑃𝑟𝑎𝑚𝑏, while for 𝜆𝜅 > 1, 𝑃𝑟𝑑𝑟𝑜𝑝 < 𝑃𝑟𝑎𝑚𝑏.

In conclusion, the Nusselt number has been analyzed for several cases, representing
the influence of the moving droplet in the system’s heat transfer coefficients. Within both
Prandtl numbers considered, the system has only accused 𝑁𝑢 enhancement when, at
stationary regime, droplets with increased 𝜅 move in closed cycles near the enclosure.
The average Nusselt reached values up to 8.12% larger for 𝑃𝑟 = 0.70 and 4.40% for
𝑃𝑟 = 7.0, when 𝜆𝜅 = 50 was considered. These results represent a significant heat transfer
enhancement.

5.2 Future Works

In future works, several aspects that were not emphasized within the present work
will be further explored. Among the topics that will be approached next, are

• The effects of droplet’s viscosity and density on the flow’s dynamics and heat transfer
coefficients;

• High deformation regimes, in which Capillary number is enhanced to enable more
expressive deformations, and even droplet breakup;

• Resealing multiple smaller droplets at the system. As the dynamics of a single droplet
has become more clear after the presented insights, the motion patterns of several
moving interfaces should be the next step;

• Heat transfer enhancement and droplet interaction in a confined natural convection
flow where an emulsion moves driven by buoyancy.
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