

PROVENIÊNCIA SEDIMENTAR DO GRUPO CUIABÁ NA FAIXA PARAGUAI MERIDIONAL

Bruno Rodrigo Vasconcelos

Tese n°: 150

Programa de Pós-Graduação em Geologia

Brasília-DF 2018

UNIVERSIDADE DE BRASÍLIA – UNB INSTITUTO DE GEOCIÊNCIAS – IG PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA

PROVENIÊNCIA SEDIMENTAR DO GRUPO CUIABÁ NA FAIXA PARAGUAI MERIDIONAL

Discente:

Bruno Rodrigo Vasconcelos

Tese n°: 150

TESE DE DOUTORADO APRESENTADA JUNTO AO CURSO DE PÓS-GRADUAÇÃO EM GEOLOGIA DO INSTITUTO DE GEOCIÊNCIAS DA UNIVERSIDADE DE BRASÍLIA PARA A DEFESA DA TESE DE DOUTORADO EM GEOLOGIA REGIONAL.

Orientador: Reinhardt Adolfo Fuck (UnB)

Co-Orientador: Amarildo Salina Ruiz (UFMT)

Comissão Examinadora:

Prof. Dr. Reinhardt Adolfo Fuck (UnB/IG)

- Prof^a. Dra. Maria Emilia Schutesky Della Giustina (UnB/IG)
- Prof^a. Dra. Marly Babinski (USP)
- Prof. Dr. Ginaldo Ademar da Cruz Campanha (USP)

Brasília-DF 2018 Pagina para Ficha Catalográfica UnB

UNIVERSIDADE DE BRASÍLIA – UNB INSTITUTO DE GEOCIÊNCIAS – IG PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA

Tese de doutorado apresentada ao Programa de Pós-Graduação em Geologia do Instituto de Geociências da Universidade de Brasília em cumprimento ao requisito parcial para a obtenção do Título de Doutor em Geologia, área de concentração geologia regional.

<u>Autor</u>

Bruno Rodrigo Vasconcelos

<u>Banca Examinadora</u>

Dr. Reinhardt Adolfo Fuck

(Orientador)

Examinador Interno

Examinador Externo

Dr. Maria Emilia Schutesky Della Giustina

Dra. Marly Babinski

Dr. Ginaldo Ademar da Cruz Campanha

Examinadora Externa

Brasília, Distrito Federal, 14 de Setembro de 2018.

Agradecimentos

À minha família por todo suporte e amor que tanto me fortalecem nos desafios.

À minha namorada por toda paciência e ajuda durante todas as fases do doutorado.

Aos velhos e novos amigos que contribuíram direta e indiretamente para este trabalho.

Ao professor Márcio Mártins Pimentel (*in memoriam*) pela orientação, ensinamentos e paciência durante toda execução do trabalho. Muito obrigado!

Ao orientador e co-orientador pela inestimável ajuda na finalização do trabalho.

Aos professores do Instituto de Geociências da UnB por todo o aprendizado.

A toda a equipe do laboratório de geocronologia da UnB pelo auxílio e aprendizado.

À banca do exame de qualificação pelas colaborações que tanto acrescentaram ao trabalho.

Ao Grupo de Pesquisa Guaporé e ao CNPq pelo auxílio na execução da pesquisa.

Muito obrigado!

Resumo

A Faixa Paraguai é um orógeno colisional que registra a aproximação entre o Cráton Amazônico, Bloco Paranapanema e Arco Magmático de Goiás, durante a fase final da amalgamação do Supercontinente Gondwana. Para esta aproximação duas interpretações são sugeridas, uma propondo relação com o fechamento do oceano Goiás-Farusiano no Criogeniano, outra atribuindo-a ao fechamento do oceano Clymene no Cambriano. Aqui apresentamos resultados U-Pb e Lu-Hf em zircão detrítico e Sm-Nd das unidades metassedimentares do Grupo Cuiabá e rochas metavulcânicas da Seguência Rio Bacuri. Nossos resultados mostram que o Grupo Cuiabá compreende uma sequência de margem passiva toniana, com área-fonte principal mesoproterozoica, com valores $\varepsilon_{Hf} \in \varepsilon_{Nd}$ e idades modelo T_{DM} indicando a Província Sunsás como principal área-fonte, e uma segunda sequência ediacarana de margem convergente e área-fonte principal neoproterozoica, com valores ɛHf e ɛNd e idades modelo TDM que indicam os terrenos da Faixa Brasília como áreafonte mais provável. Os grãos concordantes mais jovens analisados mostraram idade de 508±8 Ma, em rochas metassedimentares do Grupo Corumbá, indicando que a sedimentação final na Faixa Paraguai continuou até o Cambriano, tendo como áreas-fonte terrenos da Faixa Brasília e possivelmente da própria Faixa Paraguai. As unidades metavulcânicas da Sequência Rio Bacuri apresentaram idades modelo Nd T_{DM} tonianas e valores ε_{Nd} positivos, podendo representar magmatismo relacionado ao rifteamento e abertura da bacia de margem passiva. Esses resultados mostram que a Faixa Paraguai registrou mudança da sedimentação, de margem divergente para convergente, entre o Toniano e o Ediacarano. A fase final de sedimentação, em ambiente de antepaís, continuou até c. 500 Ma. Portanto, o oceano que separou o Cráton Amazônico dos terrenos brasilianos (~620 Ma) abriu-se no Toniano, recebeu sedimentos da Faixa Brasília e não se fechou até o Cambriano, desvinculando a evolução orogênica das faixas Brasília e Paraguai, sendo a última um dos cinturões orogênicos mais jovens da amálgama do supercontinente Gondwana.

Palavras-Chave: Geocronologia U-Pb; Proveniência sedimentar; Faixa Paraguai; Lu-Hf; Sm-Nd; Gondwana.

ABSTRACT

The Paraguay Belt is a collisional orogen that records the joining of the Amazonian Craton, the Paranapanema Block and the Goiás Magmatic Arc, during a final phase of the Gondwana Supercontinent amalgamation. Two interpretations were suggested for the collision, one proposing relation with the closing of the Goiás-Pharusian ocean in the Cryogenian, another argueing closure of the Clymene ocean in the Cambrian. Here we present U-Pb and Lu-Hf isotopic and geochronological data on detrital zircon and whole rock Sm-Nd isotopic results of Cuiabá Group and Rio Bacuri metavolcanic sequence samples. Our results show that the Cuiabá Group comprises a Tonian passive margin sequence with Mesoproterozoic main source área, with ε_{Hf} and ε_{Nd} values and T_{DM} model ages indicating the Sunsás Province as the main source area, and a second sequence deposited in an Ediacaran convergent margin showing a Neoproterozoic main source area, indicating the terrains of the Brasília Belt as the most probable source area. The youngest concordant grains analyzed showed an age of 508±8 Ma in Corumbá Group metassedimentary rocks, indicating that the final sedimentation in the Paraguay Belt continued until the Cambrian, having as source areas the terrains of the Brasília Belt, and possibly the Paraguay Belt itself. The metavolcanic units of the Rio Bacuri Sequence present Tonian T_{DM} model ages and positive ε_{Nd} values, suggesting that they represent magmatic activity related rifting and opening of the passive margin basin. The data show that the Paraguay Belt records a change of the sedimentation, from divergent to convergent margin between the Tonian and Ediacaran. The final sedimentation phase, in foreland setting, continued until c. 500 Ma. Therefore, the oceanic basin that separated the Amazonian Craton from the Brasiliano terrains (~620 Ma) opened in the Tonian and did not close until the Cambrian, which dissociates the orogenic evolutions of the Brasília and Paraguay belts, the latter being one of the young orogenic belts involved in the amalgamation of the Supercontinent Gondwana.

Keywords: U-Pb Geochronology, Provenance; Paraguay Belt; Lu-Hf; Sm-Nd; Gondwana.

SUMÁRIO

1. INTRODUÇÃO
2. REVISÃO BIBLIOGRÁFICA
3 ARTIGO CIENTÍFICO 1- Ediacaran detrital zircon grains in the Cuiabá Group, southern sector of the Paraguay Belt: tectonic implications for the final assembly of Western Gondwana
4 ARTIGO CIENTÍFICO 2- Ediacaran detrital zircon grains in the Cuiabá Group, southern sector of the Paraguay Belt: tectonic implications for the final assembly of Western Gondwana
5. CONCLUSÕES157
6. REFERÊNCIAS DA TESE
LISTA DE FIGURAS DA TESE
Figura 1. Mapa de localização da área no estado de Mato Grosso do Sul17
Figura 2. Mapa do Gondwana no final do Neoproterozoico (~540 Ma) mostrando o arranjo geral dos cinturões Pan-Africanos. (Extraído de Kröner e Stern, 2005)23
Figura 3. Mapa das províncias estruturais da América do Sul (Extraído de Almeida et al., 1981). 1-Rio Branco, 2- Tapajós, 3- São Francisco, 4- Tocantins, 5- Mantiqueira, 6- Borborema, 7- Amazônica, 8- Parnaíba, 10- Província Costeira e Margem Continental.
Figura 4. Mapa da Província Tocantins subdividida nas faixas Brasília, Araguaia e Paraguai. (Extraído de Hasui et al., 2012)
Figura 5. Mapa geológico simplificado da Faixa Brasília (Extraído de Pimentel et al., 2011).
Figura 6. Mapa geológico da Faixa Araguaia e seu embasamento (Extraído de Pinheiro et al. 2011)
Figura 7. Mapa geológico simplificado da Faixa Paraguai com sua divisão estrutural e principais unidades litológicas (modificados de Godoi et al., 1999)
Figura 8. Esquema da relação estratigráfica entre os setores norte e sul da Faixa Paraguai.
Figura 9. Mapa da divisão em domínios estruturais do setor sul da Faixa Paraguai (extraído de Campanha et al., 2011)

LISTA DE FIGURAS DO ARTIGO 1

- Figure 6. Plots for samples VSC37, VSC40 and VSC54 showing LA-MC-ICP-MS results.

Figure. 7. Plots for samples VSC58 and VSC81 showing LA-MC-ICP-MS results.70

Figure 11. Evolutionary model for Western Gondwana between the Tonian and Cambrian.

LISTA DE FIGURAS DO ARTIGO 2

- Figure 3. (A, B e C) Macroscopic and (D, E, and F) microscopic aspects of rock samples.
 (G) Cathodoluminescence images of representative grains from samples. Ages younger than 1.0 Ga correspond to ²⁰⁶Pb-²³⁸U while older ages correspond to ²⁰⁷Pb ²⁰⁶Pb.
- Figure 4. U-Pb plots for samples VSC22 and VSC31.....116

Figure 5. U-Pb plots for samples VSC42, VSC50, and VSC74......119

Figure 6. (A) εHf vs. crystallization age (Ma) plot for metasedimentary rocks from the Cuiabá Group in the Southern Paraguay Belt. The gray polygon represents the first quartile of εHf values of zircon grains collected from the Amazonas River (Likuza et al., 2010). The solid polygon encompasses εHf values for magmatic events of the Goiás Magmatic Arc in the Brasília Belt (Matteini et al., 2010). The dashed polygon presents data of εHf on zircon from Neoproterozoic to Cambrian granites placed along the TBL (Ferreira et al., 2009). Both figures show a dashed vertical line that marks the maximum limit of known ages for domains of the Amazonian Craton (B) Crystallization age (Ma) vs. TDM model ages (Ga) plot. Further information for comparison among domains of the Amazonian Craton, according to Tassinari and Macambira (1999) and Santos et al. (2000). Data from domains of the Brasília Belt by Pimentel (2016),

Pimentel et al. (2011) and references therein. Data from granite intrusions of the
Paraguay Belt published by Godoy et al. (2010)120
Figure 7. Simplified geological map of the main terranes likely to have been the source
areas of metasedimentary rocks of the Paraguay Belt in the study area122
Figure 8. Modelo of conceptual Evolution

LISTA DE TABELAS

Artigo 1

Table 1. Sm-Nd analytical data for metasedimentary rocks of the Cuiabá Group65								
Table 2. Nd-Sm analytical data of samples from the Rio Bacuri Metavolcanosedimentary Sequence. .65								
ÍNDICE								
1. INTRODUÇÃO								
1.1 Objetivos16								
Objetivos Gerais:								
Objetivos Específicos:16								
1.2 Localização e Acesso à Área de Estudo16								
1.3 Métodos18								
1.3.1. Etapa Pré-Campo:18								
1.3.2. Etapa de Amostragem:19								
1.3.3. Etapa de Preparação de Amostras:19								
1.3.4. Análises Isotópicas U-Pb:20								
1.3.5. Análises Isotópicas Lu-Hf20								
1.3.6. Análises Isotópicas Sm-Nd:21								
1.3.7. Etapa de Tratamento de Dados:22								
2. REVISÃO BIBLIOGRÁFICA								
2.1 Contextualização Tectônica23								
2.2 A Província Tocantins25								
2.2.1 Faixa Brasília27								
xi								

2.2.2 Eaiva Araquaia	28
	20
2.2.3 Faixa Paraguai	29
2.3 O Controverso Oceano Clymene	39
2.4 Fundamentos em Proveniência Sedimentar:	45
Geologia das Potenciais Áreas-Fonte	46
Geologia das Unidades/Sequências Amostradas	47
Zircão Detrítico e os Métodos U-Pb e Lu-Hf	47
Integração dos Dados	49
3 ARTIGO CIENTÍFICO 1	51
Abstract	52
3.1. Introduction	52
3.2. Geological Setting	53
3.3. Analytical Procedures	59
3.4. Sampling	60
3.5. Results	61
3.5.1. U-Pb LA-MC-ICP-MS geochronological results	62
3.5.1.1. Sample VSC37	62
3.5.1.2. Sample VSC40	63
3.5.1.3. Sample VSC54	63
3.5.1.4. Sample VSC58	64
3.5.1.5. Amostra VSC81	64
3.5.2. Sm-Nd isotopic results	64
3.6. Discussion	67
3.6.1. Likely Source Areas and Basin Tectonic Settings.	67
3.6.2. Maximum Depositional Ages and Evolutionary Model	77
3.6.3. Interpretation of Tectonic Settings for Amphibolites (Metabasalts) of the I Bacuri Sequence.	Rio 80

	3.7. Conclusions.	80
	Acknowledgment	81
	3.8. References	82
	Appendix 1: Table of the U-Pb results for the sample VSC37	93
	Appendix 2: Table of the U-Pb results for the sample VSC40	94
	Appendix 3: Table of the U-Pb results for the sample VSC54	96
	Appendix 4: Table of the U-Pb results for the sample VSC58	100
	Appendix 5: Table of the U-Pb results for the sample VSC81	101
4	4 ARTIGO CIENTÍFICO 2	105
	ABSTRACT	106
	4.1. INTRODUCTION	106
	4.1.1. REGIONAL GEOLOGICAL SETTING	107
	4.2. ANALYTICAL PROCEDURES	111
	4.3. SAMPLING	112
	4.4. RESULTS	113
	4.4.1. U-Pb LA-MC-ICP-MS GEOCHRONOLOGIC RESULTS	115
	Sample VSC22	115
	Sample VSC31	115
	Sample VSC42	116
	Sample VSC50	117
	Sample VSC74	117
	4.4.2. Lu-Hf ISOTOPIC RESULTS	117
	4.5. DISCUSSION	120
	4.5.1. Basin Tectonic Settings and Potential Source Regions	121
	4.5.2. Maximum and Minimum Depositional Ages and Evolutionary Model .	125
	4.6. CONCLUSIONS	128
	ACKNOWLEDGMENT	130

131	4.7. REFERENCES
samples136	Appendix 1 – U-Pb LA-MC-ICP-MS isot
samples151	Appendix 2 – Lu-Hf LA-MC-ICP-MS isot
157	5. CONCLUSÕES
	6. REFERÊNCIAS DA TESE

1. INTRODUÇÃO

A amalgamação do Gondwana ocorreu durante um período marcado por mudanças no clima e na vida no planeta (Hoffman et al., 1998; Valentine, 2002), que ao menos em parte estão ligadas à configuração dos continentes, à distribuição de cadeias de montanhas e oceanos, tornando importante a compreensão da paleogeografia neoproterozoica a cambriana deste supercontinente. Muitos trabalhos têm sido feitos para esclarecer a história da amalgamação do Gondwana (e.g. Stern, 1994; Meert, 2003; Collins e Pisarevisky, 2005; Pisarevisky et al., 2008), incorporando evidências indicativas de que colisões entre pequenos continentes neoproterozoicos durante o Ediacarano e Cambriano geraram uma rede de orógenos que registram a amalgamação final do Gondwana.

A Faixa Paraguai é parte dessa rede de orógenos e, junto com as faixas Araguaia e Brasília, teve por muito tempo sua evolução relacionada ao fechamento do oceano Goiás-Farusiano (Kröner and Cordani, 2003; Cordani et al., 2009, 2013a, 2014), em consequência da aproximação entre os crátons Amazônico, São Francisco-Congo, Rio de la Plata e Bloco Paranapanema em c. de 620 Ma. Este modelo foi proposto, usando dados geocronológicos do metamorfismo e magmatismo na Faixa Brasília (e.g. Pimentel et al., 2016) e a existência de um mar epicontinental ediacarano ao longo das margens dos crátons Amazônico e Rio de la Plata, registrado pela deposição principalmente de sedimentos carbonáticos (Gaucher et al., 2003). Um outro modelo de evolução integra dados paleomagnéticos do Gondwana e diversos eventos tectono-termais cronocorrelatos entre as faixas Araguaia, Paraguai e Pampeana, sugerindo o fechamento de oceano cambriano denominado Clymene, que separava os crátons ocidentais (Amazônico, Oeste África e Bloco Pampia), da margem oeste do "proto-Gondwana", representado pela Faixa Brasília, Bloco Paranapanema e Cráton Rio de la Plata (Trindade et al., 2003; 2006; Tohver et al., 2010, 2012; Tohver e Trindade, 2014). Juntas, essas faixas formam extenso cinturão orogênico, considerado ativo até o Cambriano, que divide o continente Sul-Americano desde a Amazônia no norte, até a Argentina no sul, configurando a sutura final do Gondwana ocidental.

O presente estudo de proveniência de rochas metassedimentares da zona interna da Faixa Paraguai meridional buscou evidências que contribuem para o conhecimento dessa evolução, buscando definir a idade da sedimentação das unidades mais intensamente deformadas e metamorfizadas da Faixa Paraguai. Além disso, buscou identificar as mais prováveis áreas-fonte e possíveis mudanças e/ou diferenças entre as unidades litológicas do domínio interno da Faixa Paraguai Sul.

1.1 Objetivos

OBJETIVOS GERAIS:

 Obter evidências sobre a existência ou não de oceano ediacarano a cambriano envolvido no desenvolvimento do Orógeno Paraguai e discutir suas implicações tectônicas no contexto da Orogenia Brasiliana-Pan-Africana na amalgamação do oeste do supercontinente Gondwana.

• Propor modelo geodinâmico para o Orógeno Paraguai, usando dados geológicos corroborados por dados geocronológicos e isotópicos.

OBJETIVOS ESPECÍFICOS:

• Definir a idade máxima de deposição e proveniência sedimentar de unidades litológicas do Grupo Cuiabá.

 Caracterizar o contexto deposicional e prováveis áreas-fonte de setores do Grupo Cuiabá.

• Integrar os dados obtidos ao final da pesquisa para definir como e quando evoluiu a bacia e o orógeno entre o Cráton Amazônico e o Bloco Paranapanema.

1.2 Localização e Acesso à Área de Estudo

A área de estudo foi definida com o intuito de abranger a faixa de dobramentos Paraguai no setor sul-mato-grossense, com foco nas rochas metassedimentares dobradas do Grupo Cuiabá (**Fig.1**).

O setor estudado localiza-se na região oeste de Mato Grosso do Sul, abrangendo os municípios de Miranda, Aquidauana, Rio Verde de Mato Grosso e Coxim. O foco da amostragem ocorreu na depressão do Rio Miranda e nas proximidades da borda oeste da Bacia do Paraná, conhecida como Serra de Maracaju. O acesso à área é feito a partir de Campo Grande pela rodovia BR-262, percorrendo cerca de 140 km na direção oeste até Aquidauana.

A partir de Aquidauana o acesso à parte central da área, depressão do Rio Miranda, é viabilizada pelas rodovias BR-262, percorrendo 70 km no sentido noroeste até Miranda, e rodovia MS-345, percorrendo 120 km no sentido sudoeste até Bonito. A partir dessas rodovias é possível acessar a parte central da área de estudo por meio de estradas vicinais e de servidão não pavimentadas.

Figura 1. Mapa de localização da área no estado de Mato Grosso do Sul.

O setor norte da área, na borda oeste da Bacia do Paraná, é acessado a partir de Aquidauana pelas rodovias não pavimentadas MS-419 no sentido norte, percorrendo cerca de 150 km até o entroncamento com a rodovia MS-228, conhecido como "Trevo do Corixão", às margens do Rio Negro. A partir daí acessa-se a rodovia MS-228 no sentido noroeste por 4 km até o entroncamento com a rodovia MS-427, pela qual se percorre 70 km na direção nordeste até Rio Verde de Mato Grosso. A partir de Rio Verde, acessa-se a rodovia pavimentada BR-163, percorrendo-se 2,5 km no sentido norte até a estrada de servidão não pavimentada que dá acesso à Serra do Pindaivão, situada 20 km a oeste, e

percorrendo-se 20 km também no sentido norte até o entroncamento com a rodovia não pavimentada MS-423, com direção oeste. A partir daí se acessa a chamada "Serra da Alegria". A partir do mesmo entroncamento percorre-se mais 30 km na direção norte, na BR-163, até Coxim. A partir de Coxim e Rio Verde o acesso à área estudada é feito por estradas de servidão não pavimentadas de direção oeste que acessam as unidades de interesse a aproximadamente 20 km, na região conhecida como Rita, às margens do Rio Taquari e Serra do Pindaivão, respectivamente.

1.3 Métodos

Os métodos utilizados para execução da etapa inicial da pesquisa foram compostos por atividades pré-campo, de amostragem, de preparação de amostras, de análises de amostras, de tratamento dos dados e apresentação dos dados.

1.3.1. ETAPA PRÉ-CAMPO:

Durante esta etapa foi feito o levantamento, compilação e interpretação de dados disponíveis que auxiliaram na definição dos alvos amostrais e técnicas a serem utilizadas, facilitando e direcionando a aquisição de dados e amostras que fornecessem respostas aos objetivos do projeto.

Foram compilados diversos textos sobre a geologia da área de estudo, utilizados para definição das diferentes unidades litológicas descritas na região, assim como os mapas geológicos disponíveis, que auxiliaram na localização das rochas e estruturas regionais já mapeadas. Tais informações foram utilizadas para a definição e seleção dos setores amostrados. Os mapas geológicos foram gerados, utilizando arquivos vetoriais (*shapefile*) para processamento em ambiente SIG (Sistema de Informações Geográficas) da base de dados da CPRM (Serviço Geológico do Brasil) em escala 1:1.000.000 (Lacerda Filho et al., 2006), do Programa de Integração, Atualização e Difusão de Dados da Geologia do Brasil, Geologia e Recursos Minerais do Estado de Mato Grosso do Sul. Para definições de unidades litológicas, divisões estratigráficas e localizações das principais estruturas geológicas foram também utilizados dados do Programa Levantamentos Básicos do Brasil, Aquidauana, Folha SF.21-X-A em escala 1:250.000 (Godoi et al., 1999) e também do mapa geológico apresentados por Campanha et al., (2011).

Imagens de satélite Landsat 8 (OLI8) pré-processadas foram adquiridas pelo sistema Earth Explorer da USGS (United States Geological Survey) e utilizadas como base para localização de acessos, interpretação de macroestruturas, definição de setores separados por extensos lineamentos estruturais, definição de possíveis áreas de exposições/afloramentos e como base para confecção dos mapas temáticos.

1.3.2. ETAPA DE AMOSTRAGEM:

Durante a etapa de campo foram coletadas amostras litológicas e dados de campo em 83 pontos de exposição de rochas do Grupo Cuiabá e da Sequência Rio Bacuri. Nesses pontos, sempre que possível, foram coletadas amostras para petrografia, geoquímica e geocronologia, além do registro fotográfico e de localização utilizando o Datum: WGS1984 zona 21S.

1.3.3. ETAPA DE PREPARAÇÃO DE AMOSTRAS:

Durante a etapa de preparação as amostras foram fotografadas e separadas em grupos litológicos com base em sua descrição macroscópica e localização. Amostras representativas das principais unidades litológicas e setores estruturais da Faixa Paraguai foram selecionadas. Das 81 amostras coletadas, foram selecionadas 45 para tratamentos posteriores, com base em sua representatividade e nível de alteração intempérica. Destas, 25 foram britadas e moídas em moinho de disco no laboratório de preparação de amostras da Companhia Mato-grossense de Mineração – METAMAT.

Após o processo de cominuição, foram separadas alíquotas para análise litoquímica e isotópica, e para concentração de grãos de zircão para análises isotópicas *in situ*. Desde a fase da coleta até a preparação das amostras, foram seguidos os procedimentos sugeridos pelo Guia de Procedimentos do Serviço Geológico do Brasil para Amostragem com finalidade Geocronológica (Silva, 2006). As alíquotas para concentração de minerais pesados foram posteriormente peneiradas no laboratório de sedimentologia da Faculdade de Geociências da UFMT, utilizando peneiras com abertura de 0,63 mm e 0,90 mm. Essas frações foram em seguida utilizadas para concentração e catação de minerais pesados em bateia, separador isodinâmico Frantz e lupas binoculares, instalados no Laboratório de Estudos Geodinâmicos e Ambientais da Universidade de Brasília, onde foram confeccionados os 10 *mounts* para análises U-Pb.

Os mounts confeccionados com os grãos de zircão foram imageados por cátodoluminescência (CL) e elétrons retro-espalhados (BSE), utilizando microscópio eletrônico de varredura instalado no Laboratório de Estudos Geodinâmicos e Ambientais da Universidade de Brasília, cujas imagens foram utilizadas para a seleção dos grãos analisados.

19

Devido à ausência de grãos de zircão, e impossibilidade de análises U-Pb *in situ*, as 5 amostras da Sequência Rio Bacuri descritas como rochas metavulcânicas foram pulverizadas em moinho de panelas de metal para análises isotópicas Sm-Nd realizadas no Laboratório de Estudos Geodinâmicos e Ambientais da Universidade de Brasília. Também foram selecionadas 5 amostras de rochas do Grupo Cuiabá, para estudos de proveniência e comparação com resultados isotópicos de Nd disponíveis para o Grupo Cuiabá no setor mato-grossense da Faixa Paraguai e das possíveis áreas-fonte.

Para confecção de lâminas delgadas foram selecionadas 10 amostras de unidades do Grupo Cuiabá e 5 da unidade metavulcânica, confeccionadas pelo Laboratório de Laminação da UnB.

1.3.4. ANÁLISES ISOTÓPICAS U-Pb:

As análises isotópicas U-Pb foram feitas em cristais detríticos de zircão de 10 amostras, usando o Thermo-Finnigan NEPTUNE MC-ICP-MS acoplado com o Laser Ablation New Wave YAG UP213, instalados no Laboratório de Estudos Geodinâmicos e Ambientais da Universidade de Brasília. As análises foram feitas utilizando feixe com diâmetro entre 25 e 30 µm e energia entre 4.1 e 4.3J/cm², posicionado preferencialmente no núcleo dos cristais, evitando locais que apresentassem características internas e/ou externas que indicassem alterações químicas que pudessem interferir na qualidade dos dados.

As condições de operação e ajustes do NEPTUNE e Laser Ablation New Wave durante as seções do processo analítico estão descritas em Matteini et al. (2010). Para correções de fracionamento usou-se o método de *standard-sample bracketing* (Albarède et al., 2004), analisando entre quatro e oito cristais desconhecidos entre os cristais de zircão padrão GJ-1 e 91500 (Jackson et al., 2004). Correções do Pb comum não foram necessárias devido a sinais baixos para ²⁰⁴Pb e altas razões ²⁰⁶Pb/²⁰⁴Pb, sendo necessária somente a seleção de resultados que produziram discordância inferior a 10% para confecção dos gráficos. Em gráficos que utilizam idades aparentes foram utilizadas idades ²⁰⁶Pb/²³⁸U para grãos mais jovens que 1000 Ma e ²⁰⁷Pb/²⁰⁶Pb para grãos mais antigos.

1.3.5. ANÁLISES ISOTÓPICAS LU-HÍ

As análises isotópicas *in situ* foram feitas em grãos previamente analisados para U-Pb, somente em grãos que apresentaram discordância inferior a 5%. O feixe para ablação durante a análise foi posicionado, sempre que possível, sobre o furo produzido pela análise U-Pb, ou em locais similares segundo as imagens de catodoluminescência. Antes das análises, a solução padrão JMC 475 100ppb, com Ub (Yb/Hf=0.02) foram executadas, gerando razão média de ¹⁷⁶Hf/¹⁷⁷Hf de 0.282171±20 (n=20), em acordo com os valores relatados na literatura (e.g. 0.282163±09; Blichert-Toft et al.,1997; 0.282162±24; Chu et al., 2002)). Durante a sessão analítica, o zircão GJ-1 (Jackson et al., 2004) foi monitorado como material de referência e forneceu valor médio de ¹⁷⁶Hf/¹⁷⁷Hf de 0.281983±21 (N=20), em acordo com Zeh et al. (2007; 0.282003±15), Morel et al. (2008; 0.282000±05) e Xie et al. (2008; 0.282028±34). A correção do desvio de massa considerou o sinal de ¹⁷¹Yb e ¹⁷³Yb e, adicionalmente, esses isótopos, assim como ¹⁷⁵Lu, foram aplicados na correção da interferência isobárica de Yb e Lu no sinal de ¹⁷⁶Hf (Matteini et al., 2010). O cálculo das idades modelo T_{DM} e de ϵ_{Hf} para cada análise baseou-se na idade ²⁰⁶Pb/²³⁸U para os grãos mais jovens que 1.0 Ga e na idade ²⁰⁷Pb/²⁰⁶Pb para os grãos mais antigos, previamente determinadas no mesmo grão. Erros para as razões isotópicas foram apresentados em 2 σ .

1.3.6. ANÁLISES ISOTÓPICAS Sm-Nd:

Foram feitas análises isotópicas pelo método Sm-Nd em 10 amostras, utilizando o método de preparação química descrito por Gioia e Pimentel (2000). Foram utilizadas cerca de 50 mg de amostras de rocha total, pulverizadas em moinho de anéis, misturadas a solução de spike ¹⁴⁹Sm-¹⁵⁰Nd, seguindo-se a técnica convencional de purificação de cromatografia de troca de cátions, com colunas de Teflon contendo resina LN-Spec (HDEHP – diethylhexil phosphoric acid supported on PTFE powder). As amostras de Sm e Nd foram depositadas em filamentos duplos e as medidas isotópicas foram feitas em espectrômetro TRITON (termal ionization mass spectrometer multicollector) em modo estático, instalado no Laboratório de Estudos Geodinâmicos e Ambientais da Universidade de Brasília. O grau de incerteza para as razões Sm/Nd e ¹⁴³Nd/¹⁴⁴Nd foi melhor que ±1% (2 standard Error) e $\pm 0015\%$ (1 σ), respectivamente, baseadas em repetidas análises dos padrões internacionais BHVO-1 e BCR-1. As razões ¹⁴³Nd/¹⁴⁴Nd foram normalizadas para ¹⁴⁶Nd/¹⁴⁴Nd=0,7129 e a constante de decaimento utilizada foi (λ) 6,54 x 10⁻¹². Valores T_{DM} foram calculados segundo método de De Paolo (1981). Para comparar a assinatura isotópica de Nd das diferentes amostras, valores de ENd foram calculados para idade de 600 Ma, que corresponde à idade utilizada também por Dantas et al. (2009) em amostras do setor norte da Faixa Paraguai.

1.3.7. ETAPA DE TRATAMENTO DE DADOS:

Esta etapa teve início com o tratamento e organização dos dados macroscópicos descritos em campo, classificação dos principais litotipos encontrados, descrição e organização dos dados estruturais e confecção do banco de dados utilizados nos mapas temáticos, tabelas e gráficos. Após a primeira etapa de sistematização, os dados foram compilados nos mapas temáticos, tabelas e textos, que auxiliaram na seleção das amostras a serem analisadas.

Os mapas confeccionados em ambiente SIG foram feitos, utilizando o software Quantum GIS (2.18 LasPalmas) e os dados estruturais foram tratados estatisticamente, utilizando o software OpenStereo 0.1.2 (Grohmann et al., 2011). Os dados isotópicos foram reduzidos, utilizando o software Chronus 2.0.0 Alpha (Oliveira, 2015) e o tratamento dos dados e apresentação gráfica dos resultados isotópicos foram feitos, utilizando o software Isoplot 3.7 (Ludwig, 2012), ambos instalados no editor de planilhas Microsoft Excel (2016). O acabamento de fotos, estereogramas, planilhas, gráficos, mapas e croquis foi feito utilizando o software CorelDraw X8, e a compilação dos dados em texto foi feito utilizando o software Microsoft Word (2016).

Para apresentação dos dados U-Pb foram construídos, para cada amostra, figuras que mostram à esquerda gráficos da curva da concórdia (Wetherill, 1956), indicando as idades concordantes (*Conc.Age*) e aparentes (*App.Age*) mais jovens obtidas, acrescidos de diagrama binário com as razões Th/U *vs* Idades, e diagrama de setores, com as porcentagens dos grãos de cada Era. À direita figuram histogramas de frequência (*Probabylity Density Plot*) acrescidos de gráficos binários das idades médias com as incertezas, mostrando quais grãos foram utilizados para cálculo das idades concordantes e gráficos de setores, apresentando as proporções de grãos de cada período das populações mais importantes.

Para apresentação dos dados de Sm-Nd, foram confeccionados gráficos de evolução de Nd no tempo, nos quais os campos de valores isotópicos padrões de diversas áreas e unidades que podem ter fornecido sedimentos foram representados por polígonos de cores diferentes, usando transparência para que sobreposições entre polígonos pudessem ser notadas, e sobre os quais foram plotados os dados isotópicos das amostras para comparação com as possíveis áreas-fontes.

2. REVISÃO BIBLIOGRÁFICA

2.1 Contextualização Tectônica

A Faixa Paraguai é parte de uma rede de orógenos produtos das colisões que aglutinaram o supercontinente Gondwana, no final do Proterozoico e início do Fanerozoico, evento este denominado por Kennedy (1964) com base em idades Rb-Sr e K-Ar na África de orogenia Pan-Africana. Este conceito foi estendido para os demais continentes que fizeram parte do Gondwana, adotando-se nomes regionais como Adelaideano na Austrália, Beardmore na Antártica, Cadomiano na Europa, Baikaliano na Ásia e Brasiliano na América do Sul (**Fig.2**). Segundo Kröner e Stern (2005), este evento foi mais tarde reconhecido como constituindo a parte final de um ciclo orogênico, resultado da fusão de domínios continentais entre 870 e 540 Ma. Atualmente o termo Pan-Africano descreve atividade tectônica, magmática e metamórfica neoproterozoica a paleozoica inferior nos domínios que fizeram parte do Gondwana. O sistema de cinturões do Pan-Africano na África, América do Sul e Antártida é interpretado como uma rede em torno de crátons mais antigos e resultado do fechamento, essencialmente no Neoproterozoico, de vários grandes oceanos abertos durante a tafrogênese toniana, que fragmentou o supercontinente Rodínia (Kröner e Stern, 2005).

Figura 2. Mapa do Gondwana no final do Neoproterozoico (~540 Ma) mostrando o arranjo geral dos cinturões Pan-Africanos. (Extraído de Kröner e Stern, 2005).

Os modelos iniciais da amalgamação do Gondwana baseavam-se na colisão entre os fragmentos oriental e ocidental do supercontinente (Stern, 1994), e evoluíram incorporando evidências de uma rede sutural entre continentes relativamente pequenos que se amalgamaram para formar Gondwana durante o Ediacarano (635-540 Ma) e Cambriano (540-485 Ma). A amalgamação final do Gondwana Ocidental tem sido interpretada como ocorrida no Pré-Cambriano, quando a Orogenia Brasiliana – Pan-Africana amalgamou os crátons Amazônico, São Francisco-Congo, Kalahari, Rio de la Plata, o metacraton do Sahara e os fragmentos cratônicos Paranapanema, Parnaíba e Luiz Alves. Este processo é considerado como ativo entre o Neoproterozoico e início do Paleozoico, e para a Província Tocantíns (Almeida et al., 1977) dois modelos são debatidos ainda hoje, um a atribui ao fechamento do grande oceano Goiás-Farusiano no Ediacarano (Kröner e Cordani, 2003; Cordani et al., 2009, 2013a, 2014), e outro relaciona as faixas Araguaia, Paraguai e Pampeana ao fechamento do oceano Clymene, já no início do Cambriano (Trindade et al., 2003, 2006; Tohver et al., 2010, 2012; Tohver e Trindade, 2014; McGee et al., 2015).

Para Cordani et al. (2009, 2013a) Gondwana já estaria formado em ca. 620 Ma, usando como evidência dados geocronológicos do pico metamórfico registrado na Faixa Brasília, relacionado à colisão em ca. 650-630 Ma (Della Giustina et al., 2009) e a existência de mar epicontinental ediacarano ao longo das margens dos crátons Amazônico e Rio de la Plata, representado pelos grupos Corumbá e Arroyo del Soldado (Gaucher et al., 2003) depositados em bacia de antepaís. Os autores relacionam as atividades tectônicas mais tardias, ediacaranas e cambrianas, com extensão, relacionada aos estágios finais da Orogenia Brasiliana, produto do colapso orogênico e/ou reflexo da orogenia Pampeana. Para estes autores são insustentáveis as afirmações de litosfera oceânica e sutura cambrianas no centro da América do sul.

Já para Trindade et al. (2003, 2006), Tohver et al. (2010, 2012) e Tohver e Trindade (2014), as faixas Paraguai, Araguaia e Pampeana são resultado do fechamento de um oceano (*Clymene*) a oeste da Faixa Brasília, Cráton Rio de la Plata e bloco Paranapanema, este último situado sob a Bacia do Paraná (Mantovani et al., 2005). Neste modelo o oceano *Clymene* teria se fechado após o Ediacarano, culminando no dobramento, cavalgamento e remagnetização das rochas dos cinturões no Cambriano inferior, e magmatismo póscolisional no Cambriano superior. Este intervalo de idade se sobrepõe à Orogenia Pampeana (535-520 Ma) a sul (Ramos, 1988; Rapela et al., 1998), ao longo da margem oeste do Cráton Rio de la Plata, e a eventos tectonotermais (550-500 Ma), registrados na

Faixa Araguaia (Gorayeb et al., 2013) a norte, ao longo da margem oeste do orógeno Brasília, o que sugere que o fechamento do Oceano Clymene se deu de forma contemporânea em toda sua extensão durante o Cambriano inferior a médio. Este modelo corrobora os trabalhos de Meert (2003) e Pisarevsky et al. (2008), que sugerem que as colisões entre continentes neoproterozoicos relativamente menores se deu durante o Ediacarano e Cambriano, representando as últimas atividades de coalescência do Gondwana.

2.2 A Província Tocantins

Na América do Sul, os domínios pan-africanos-brasilianos foram subdivididos em três províncias (**Fig.3**), de acordo com sua posição geográfica e em relação aos antigos crátons, as províncias Borborema e Mantiqueira no Escudo Atlântico e a Província Tocantins no Escudo Brasil Central (Almeida et al., 1981).

Figura 3. Mapa das províncias estruturais da América do Sul (Extraído de Almeida et al., 1981). 1-Rio Branco, 2- Tapajós, 3- São Francisco, 4- Tocantins, 5- Mantiqueira, 6- Borborema, 7- Amazônica, 8- Parnaíba, 10- Província Costeira e Margem Continental.

Estas províncias apresentam como características em comum a persistência de sua evolução até o final do Neoproterozoico, incluindo fenômenos termais, atividade tectônica, soerguimento, acumulação de molassas, vulcano-plutonismo, formação de pegmatitos, etc., alguns desenvolvidos já no Cambriano. Conforme apontado por Hasui et al. (2012), o sistema orogênico Borborema ocorre no nordeste da plataforma Sul-Americana, composto por porções do embasamento, microcontinentes e cinturões orogênicos, e apresenta clara correlação com o Cinturão Transahariano. O sistema orogênico Mantiqueira, composto por supracrustais neoproterozoicas, ocorre no sudeste da plataforma e tem correlação incerta com cinturões do sudoeste da África, por não serem reconhecidas suturas, ofiolitos ou assembleias de alto grau. O sistema orogênico Tocantins, desenvolvido entre os crátons Amazônico, São Francisco e Paranapanema, ocorre no centro da plataforma Sul-Americana (**Fig.4**) e é subdividido nas faixas Brasília, Araguaia e Paraguai.

Figura 4. Mapa da Província Tocantins subdividida nas faixas Brasília, Araguaia e Paraguai. (Extraído de Hasui et al., 2012).

2.2.1 FAIXA BRASÍLIA

A Faixa Brasília apresenta evidências inequívocas do fechamento do oceano Goiás a ca. 630 Ma. Segundo Pimentel et al. (2000, 2011) e Fuck et al., (2017), a faixa compreende as supracrustais metassedimentares neoproterozoicas, o Maciço de Goiás e formações proterozoicas associadas, e o Arco Magmático de Goiás (Fig.5). As sequências supracrustais, separadas por empurrões e falhas reversas regionais, são divididas em bacia sin-orogênica composta pelas rochas metassedimentares dos grupos Araxá, Ibiá e parte do Serra da Mesa, com idades deposicionais máximas em 640 Ma; seguências de margem passiva compostas pelos grupos Paranoá, Canastra e Vazante, e por partes dos grupos Araxá e Ibiá no setor sul, com idade deposicional máxima em ca. 940 Ma, compatíveis com fontes no Cráton do São Francisco. Estas cercam o núcleo metamórfico composto pelos complexos granulíticos Anápolis-Itauçu e Uruaçu, possíveis equivalentes de alto grau de rochas metassedimentares da faixa, com idade metamórfica obtida em zircão em ca. 630 Ma, representando a idade do pico metamórfico relacionado à colisão (Della Giustina et al., 2009). O Macico de Goiás, um microcontinente composto pelo terreno granito-greenstone argueano Crixas-Goiás e formações proterozoicas associadas é considerado como terreno siálico alóctone aglutinado à Faixa Brasília (Cordani et al., 2013a). O Arco Magmático de Goiás, uma crosta juvenil neoproterozoica, registra o fechamento de extenso domínio oceânico entre os paleocontinentes Amazônico e São Francisco-Congo entre 900 e 600 Ma (Pimentel e Fuck, 1992; Cordani et al., 2013a, 2013b, Fuck et al., 2017). É dividido nos arcos Mara Rosa e Arenópolis, compostos por suítes metaplutônicas cálcio-alcalinas formadas em dois períodos principais de intrusão - 860-800 Ma relacionadas ao arco intraoceânico primitivo, e 660-610 Ma relacionadas ao arco magmático continental evoluído, associações metavulcanossedimentares cálcio-alcalinas com idades entre ca. 900 e 620 Ma, granitos bimodais juvenis com idades entre ca. 600 e 500 Ma e idades modelo T_{DM} de 1.9 Ga a 0.9 Ga (Pimentel e Fuck, 1992; Della Giustina et al., 2011). O Grupo Bambuí, com idade deposicional máxima de ca. 600 Ma (Pimentel et al., 2011), representa bacia de antepaís, recobrindo extensa área do Cráton do São Francisco a leste. O embasamento exposto da Faixa Brasília é constituído por terrenos paleoproterozoicos, como o Bloco Natividade-Cavalcante, composto pela seguência vulcano-sedimentar Almas-Dianópolis, ortognaisses e intrusões graníticas, com idades siderianas a riacianas (Fuck et al., 1994; 2014), Sequência Campinorte (Della Giustina et al., 2009b) e o Arco Magmático Juvenil Silvânia (Fischel et al., 2001), ambos de idade riaciana, e granitos anorogênicos estaterianos da Província Estanífera de Goiás, correlatos aos riolitos do rifte Araí (Pimentel et al., 1991; 1999).

2.2.2 FAIXA ARAGUAIA

A Faixa Araguaia (Hasui et al, 1980), assentada sobre a margem leste do Cráton Amazônico, tem seu embasamento composto por domínios arqueanos е paleoproterozoicos (Fig.6). No oeste o embasamento é representado pelos terrenos granito-greenstone arqueanos (2.7-2.96 Ga, Macambira e Lafon, 1995) e terrenos paleoproterozoicos do Domínio Bacajá (2.26-1.99 Ga, Vasquez et al. 2008), na Província Amazônia Central (Tassinari e Macambira, 1999, 2004). Já na porção norte o embasamento é representado pelo Complexo Colméia (2.85 Ma, Dall'Agnol et al., 1988; Moura e Gaudette, 1999) na Província Maroni-Itacaiunas (Tassinari e Macambira, 1999; 2004). No sudeste, no

domínio do Maciço de Goiás expõe-se a Sequência Rio do Coco, anteriormente interpretada como argueana (2.61 Ga, Arcanjo et al., 2000), e atualmente datadas como neoproterozoica (893±35 Ma, Souza et al., 2018); o Complexo Rio dos Mangues (2.1-2.0 Ga, Arcanjo e Moura, 2000) e os terrenos de alto grau do Complexo Porto Nacional (2.14-2.13 Ga, Gorayeb et al., 2000). No Complexo Rio dos Mangues são reconhecidas rochas magmáticas alcalinas com idade de 1.0 Ga (Arcanjo e Moura, 2000), interpretadas como representantes da fase rifte que iniciou o embaciamento no Neoproterozoico. Segundo Abreu et al. (1978), a faixa se instalou em bacia formada por rifteamento restrito em uma crosta continental, sem formação expressiva de crosta oceânica, e foi posteriormente invertida, com transporte de massas de SE para NW (Gorayeb et al., 2008). As rochas supracrustais são reunidas no Supergrupo Baixo Araguaia, subdividido nos grupos Estrondo e Tocantins. Estudos de proveniência mostraram que na parte norte há predomínio de fontes argueanas, portanto cratônicas, enguanto no domínio sul, próximo do Maciço de Goiás, as rochas revelam fontes com idades meso- a neoproterozoicas e secundariamente paleoproterozoicas, sugerindo a participação de áreas-fonte jovens para o Cinturão Araguaia (Pinheiro et al., 2011; Moura et al. 2008). Associadas às supracrustais são reconhecidas intrusões magmáticas básicas, pré-metamorfismo regional, com ca. 804 Ma (Paixão et al. 2008; Barros et al., 2010). Alguns plútons graníticos sin a tardi-tectônicos com ca. 550 Ma, intrusivos no domínio de grau metamórfico mais alto, são interpretados como produtos da anatexia crustal durante o pico metamórfico e estruturação do cinturão (Gorayeb e Moura, 2008). Idades de resfriamento entre 560 e 520 Ma (Macambira et al., 1983), obtidas pelo método K-Ar em micas extraídas de xistos do Grupo Estrondo e gnaisse do Complexo Colmeia, assim como idades Rb-Sr de intrusivas graníticas entre 530-470 Ma (Lafon et al., 1990; Moura, 2002) relacionam a formação do cinturão à Orogenia Brasiliana.

2.2.3 FAIXA PARAGUAI

A Faixa Paraguai, edificada na borda sudeste do Cráton Amazônico, foi primeiramente estudada por Castelnau (1850), que relatou a existência de rochas carbonatadas muito deformadas próximas ao município de Miranda-MS. Posteriormente, Evans (1894) fez a primeira divisão estratigráfica, diferenciando as ardósias Cuiabá, calcários Araras e arenitos Raizama na região de Cuiabá-MT, reunidos por Lisboa (1909) na Série da Baixada Paraguaia e por Almeida (1945), trabalhando na região de Aquidauana-MS, na Série Cuiabá. O termo Grupo Cuiabá foi proposto por Almeida em 1965.

Tais trabalhos tornaram possível reconhecer a divisão da faixa em domínios litotectônicos mais ou menos paralelos à borda do Cráton Amazônico, variando desde coberturas sedimentares sobre o embasamento cratônico, passando por rochas anquimetamórficas suavemente dobradas, até as rochas metassedimentares intensamente dobradas na zona interna. Também reconheceram a relação entre unidades da faixa desde seu setor norte no estado de Mato Grosso, onde a faixa tem direção E-W e NE-SW, até o setor sul no estado de Mato Grosso do Sul, onde apresenta direção N-S, que Almeida (1965b) chamou de Geossinclíneo Paraguaio.

Figura 6. Mapa geológico da Faixa Araguaia e seu embasamento (Extraído de Pinheiro et al. 2011).

Estudos posteriores (Almeida 1984; Alvarenga, 1988, 1990; Alvarenga e Trompette, 1993), definiram tais setores como Bacia de Antepaís, representada por cobertura sedimentar de plataforma, composta por sucessão sedimentar detrítica sub-horizontal, cobrindo discordantemente o embasamento cratônico, Domínio Externo, representado principalmente por rochas carbonáticas anquimetamórficas dobradas, e Domínio Interno, representado por sedimentos turbidíticos-glaciogênicos intensamente dobrados, com metamorfismo regional e intrusões graníticas (**Fig.7**).

Falhas de empurrão e/ou cavalgamento marcam a passagem entre os domínios (Nogueira et al., 1978; Lacerda Filho et al., 2006; Campanha et al., 2011), interpretadas por Del'Rey Silva et al. (2016) como marcando os principais limites bacinais, provavelmente representando falhas normais da fase rifte, reativadas durante a inversão da bacia.

Rochas do embasamento não são reconhecidas no interior da faixa de dobramentos, porém dados geofísicos confirmam a presença do Bloco Paranapanema no setor mais interno, recoberto pela Bacia do Paraná (Mantovani et al., 2005). Rochas vulcanossedimentares são reconhecidas na região de Nova Xavantina-MT (Pinho 1990; Dantas e Martinelli, 2003), e também na região de Bonito-MS, onde são mapeadas metavulcânicas máficas (Nogueira et al., 1978; Lacerda Filho et al., 2006; Campanha et al., 2011), agrupadas na Sequência Metavulcano-sedimentar Rio Bacuri (Lacerda Filho et al., 2006). Na região de Cuiabá não são mapeadas tais unidades, porém Luz et al. (1980) sugerem sua possível existência, porém intensamente intemperizadas.

As unidades litológicas da faixa inicialmente eram divididas em três associações, mais ou menos similares às estabelecidas por Evans (1894), e quase sempre ocorrendo em domínio específico, denominadas de Inferior turbidítica-glaciogênica, no domínio interno; Média Carbonatada, no domínio externo e Superior Detrítica, restrita à cobertura cratônica no setor norte (Alvarenga e Saes, 1992; Alvarenga e Trompette 1992, 1993). Diversas colunas e subdivisões estratigráficas foram propostas, mostrando diferenças e similaridades entre os setores norte e sul da faixa (**Fig.8**). No setor sul a estratigráfia das rochas supracrustais é composta pela unidade turbidítica-glaciogênica representada pelos grupos Cuiabá e Jacadigo e Formação Puga, e pela unidade carbonatada representada pelo Grupo Corumbá; neste setor é ausente a unidade superior detrítica (Trompette et al., 1998; Alvarenga et al., 2000; Boggiani et al., 1997; Campanha et al. 2011). No setor norte a estratigrafia é composta também pelo Grupo Cuiabá no setor interno da faixa, e Formação Puga no setor externo, na parte cratônica, representando a unidade turbidítica-glaciogênica. A unidade carbonatada é representada pelo Grupo Araras, recoberto pelo

Grupo Alto Paraguai que representa a cobertura cratônica (Alvarenga 1988; Alvarenga e Saes 1992; Alvarenga e Trompette 1992, 1993) (**Fig.7**).

A mais recente proposta de empilhamento estratigráfico do Grupo Cuiabá, na Baixada Cuiabana, foi feita por Tokashiki e Saes (2008) no setor norte, dividindo-o, da base para o topo, em Formação Campina de Pedras, depositada em ambiente lacustre profundo e representando a fase rifte; Formação Acorizal, depositada em ambiente evoluindo de rifte para margem passiva sob influência glacial; e Formação Coxipó, depositada em plataforma pós-glacial e representando o início da inversão da bacia. Em trabalho de proveniência, Batalha (2016) definiu a idade máxima de deposição do Grupo Cuiabá em 923 Ma, com base no grão de zircão detrítico mais jovem encontrado na Formação Coxipó. O mesmo autor indicou as rochas magmáticas ácidas do Cráton Amazônico como fonte principal dos sedimentos, em ambiente de margem passiva. Conclusão similar foi alcançada por Dantas et al. (2009) com base em dados isotópicos de Nd, também no setor setentrional da faixa, apresentando razões isotópicas que indicam predomínio de fontes continentais antigas relacionadas ao Cráton Amazônico para as rochas do Grupo Cuiabá. Porém, Pelosi (2017) e Babinski et al. (2018) apresentaram idades máximas deposicionais de 601 Ma e 652 Ma, respectivamente, para rochas metassedimentares imaturas da Formação Coxipó, sugerindo fontes ediacaranas e deposição em ambiente de margem convergente.

No setor meridional da Faixa Paraguai não há trabalhos similares nas rochas metassedimentares do Grupo Cuiabá, sendo as principais referências os trabalhos de Noqueira et al. (1978), Lacerda Filho et al. (2006), Boggiani (1990) e Campanha et al. (2011), os dois últimos com foco principal nas unidades dos grupos Jacadigo e Corumbá. Campanha et al. (2011) agrupam os xistos e guartzo micaxistos do Grupo Cuiabá expostos na baixada do Rio Miranda, um dos setores mais deformados da faixa, nomeando-os Xistos Agachi. Além disso, inserem unidades anteriormente interpretadas como pertencentes ao Grupo Cuiabá nos grupos Jacadigo e Corumbá, referindo que suas estruturas sedimentares reliquiares são de difícil reconhecimento devido à intensidade e complexidade deformacional imposta. Reconhecem também os metabasaltos associados aos xistos, quartzitos e filitos agrupados na Sequência Metavulcano-sedimentar Rio Bacuri, antigamente considerada como pertencente ao Grupo Cuiabá (Nogueira et al., 1978) e interpretada como segmento de crosta oceânica, possivelmente correlacionável à Sequência Metavulcanossedimentar Nova Xavantina (Lacerda Filho et al., 2006). As rochas metassedimentares que compõem o Grupo Cuiabá no setor sul foram divididos por Lacerda

Filho et al. (2006) em quatro subunidades denominadas de conglomerática, psamítica, pelítica e carbonática, cujas relações de empilhamento não foram estabelecidas.

A Formação Puga (Maciel 1959), disposta abaixo das rochas carbonáticas dos grupos Araras e Corumbá, é interpretada como representante da glaciação marinoana (ca. 635 Ma, Alvarenga e Trompette 1992; Nogueira et al., 2003; Alvarenga et al., 2007), mostrando correlação lateral com unidades metassedimentares das porções média e superior do Grupo Cuiabá (Luz et al., 1980; Alvarenga 1988; Alvarenga e Saes, 1992; Alvarenga e Trompette 1993; Tokashiki e Saes, 2008). A Formação Puga compreende diamictitos, conglomerados, arenitos, siltitos e folhelhos depositados em ambiente plataformal glacio-marinho e parcialmente retrabalhados por fluxos gravitacionais (Alvarenga e Trompette, 1992; Alvarenga et al., 2000). Cabe registrar que, devido à ausência de seixos estriados e/ou facetados no setor sul da faixa, Maciel (1959) sugeriu a possibilidade de não representarem registro glacial e terem sido depositados por fluxos gravitacionais associados à abertura do rifte precursor da bacia.

Idades deposicionais máximas de 706 Ma (Babinski et al., 2013) e 696 Ma (McGee et al., 2018) para a Formação Puga no setor sul da Faixa Paraguai, são cerca de 70 Ma mais antigas que o zircão mais jovem da Formação Puga no setor norte, com idade de 627±7 Ma (Babinski et al., 2010), indicando participação de diferentes áreas-fonte nos distintos setores da bacia.

Na parte sul da faixa o Grupo Jacadigo (Lisboa 1909; Fonseca 1980; Trompette et al 1998) é correlacionado com a Formação Puga (Trompette et al., 1998; Alvarenga et al., 2000) e dividido da base para topo nas formações Urucum e Santa Cruz (Godoi et al. 1999). A Formação Urucum, composta por conglomerados, arcóseos, arenitos, grauvacas, siltitos e algumas camadas carbonáticas, mostra-se imatura, evidenciando rápida sedimentação em ambiente continental, possivelmente por leques aluviais com breves incursões marinhas. A Formação Santa Cruz, composta por arcóseos ferruginosos e manganesíferos, formações ferríferas bandadas e lentes de calcário, é interpretada como depositada em ambiente glacial a periglacial devido aos seixos e blocos caídos que ocorrem nas camadas de minério de Fe (Alvarenga e Trompette, 1992). Idades Ar-Ar obtidas na Formação Urucum indicam diagênese em 587 Ma e metamorfismo, deformação e resfriamento entre 547 e 513 Ma (Piacentini et al., 2013).

Figura 7. Mapa geológico simplificado da Faixa Paraguai com sua divisão estrutural e principais unidades litológicas (modificados de Godoi et al., 1999).

O Grupo Corumbá (Almeida 1965a, 1965b) é subdividido da base para o topo nas formações Cadieus, Cerradinho, Bocaina, Tamengo e Guaicurus (Boggiani et al., 1997), representadas por conglomerados, arenitos, arcóseos, pelitos, dolomitos, calcários, margas e cinzas vulcânicas (Boggiani et al., 1997). Os carbonatos do Grupo Araras no setor norte da faixa (Alvarenga et al., 2000), são divididos da base para o topo nas formações Mirassol d'Oeste, Guia, Serra do Quilombo e Nobres (Nogueira e Riccomini, 2006; Rudnitzki e Nogueira, 2012) compostas por dolomitos, calcários, conglomerados e arenitos. São interpretados como depositados em ambiente de plataforma carbonática com influência de

maré, e o aumento de sedimentos clásticos no topo é atribuído ao soerguimento das áreasfonte ligadas ao início do fechamento oceânico. As idades máximas deposicionais são estimadas em ca. 633 Ma para Formação Mirassol d'Oeste no setor norte (Babinski, 2011), e 543 Ma para Formação Tamengo no setor sul (McGee et al., 2018).

O Grupo Alto Paraguai (Almeida, 1964; Nogueira et al., 2007), no setor norte da faixa, é dividido nas formações Serra Azul, Raizama, Sepotuba e Diamantino (Alvarenga et al., 2007), compostas por rochas siliciclásticas depositadas em bacia de antepaís, que registram a exumação e erosão do orógeno. Com base em estudo de proveniência em zircão detrítico no Grupo Alto Paraguai, a idade máxima de deposição foi estimada em 560 Ma (McGee et al. 2015); o grão mais jovem (528 Ma) datado na Formação Diamantino é ca. 13 Ma mais jovem que a idade de 541 Ma obtida por Bandeira et al. (2012). Já o zircão detrítico mais jovem na Formação Serra Azul, foi datado em 596±26 Ma (Fiqueiredo, 2010), correlacionando-a com a glaciação Gaskier.

Devido às assinaturas isotópicas de Nd (Dantas et al., 2009) e Hf, McGee et al. (2015) inferiram contribuição de áreas-fonte jovens, relacionadas ao Arco Magmático de Goiás, Faixa Brasília ou à própria Faixa Paraguai, e deposição em bacia de antepaís, marcando os eventos finais de sedimentação na Faixa Paraguai.

						Northern Sector of the Paraguai Belt							
							Tokashiki & Saes (2008)		Rudnitzki & Nogueira (2012)	Alvarenga et al. (2007) Bandeira et al. (2012)			
											Diamantino Fm.	er	
						Uni	itical	Alto Paragu	ai	Alto Paraguai	Sepotuba Fm.	Co	
Southern Sector of the Paraguai Belt					Ippel	Detri	Group		Group	Raizama Fm.	atoni		
	Campanha et al. (2011)		Boggiani (1997)	Di Lacerda Filho) et al. (2004)				Serra ≝ Azul Fm.	ت ا				
dno	Guaicurus Fm.	dno	Guaicurus Fm	dno	Tamengo Fm.	Jnit:	s				Nobres Fm. _즉		
á Gro	Tamengo Fm.	Tamengo Fm. 5 gqun Bocaina Fm.	a Fm.	Tamengo Fm.	á Gr	Bocaina Fm.	iate (nate			Serra do ຊີ Quilombo Fm. ປັ	Araras	one
Corumb	Bocaina Fm.				med	arbo			Guia Fm.	Group	al Z		
	Cerradinho Fm.	Cor	Cerradinho Fm	Cor	Cerradinho Fm	Inter	Interi C	Interi C	Interi C	Coxipó Fm.	dno	Mirassol d'Oeste Fm.	
	Puga Fm.		Cadieus Fm. Puga Fm.	Jacadigo Group	Santa Cruz Fm. Urucum Fm.		enic		oá Gro	Puga Fr.			
d			dn	Carbonatic Subunit		Suial							
Cuiabá Grou	Agachi Schists	Agachi O Schists og	Gro	9 D	Pelitic Subunit	Lower U oiditic Gla		1			rnal		
			labá	iabá	Psamitic Subunit		Acorizal Fm.		Cuiabá Group				
		Cui		Cu Cu		Conglomeratic Subunit		Tur	Tur	Campina de Pedras Fm.			
	Rio Bacuri Sequence												

Figura 8. Esquema da relação estratigráfica entre os setores norte e sul da Faixa Paraguai.

Estruturalmente, a faixa é dividida em duas zonas orientadas paralelas aos limites do Cráton Amazônico (Fig.7), nomeadas por Almeida (1984) de Brasilides não-metamórfica

e Brasilides metamórfica, posteriormente chamadas de zona externa e zona interna, respectivamente (Alvarenga, 1988; Boggiani, 1990). A zona externa é caracterizada por camadas sub-horizontais na cobertura cratônica, passando a suavemente deformadas na zona externa propriamente dita, onde o dobramento das camadas gera o relevo do tipo apalachiano das regiões serranas da faixa. A zona interna é caracterizada por intenso dobramento e falhamento inverso e seu relevo é arrasado nas depressões dos rios Cuiabá e Miranda. Em seu setor mais interno, próximo aos limites com a Bacia do Paraná, diversos plútons graníticos são intrusivos nas unidades superiores da Formação Coxipó, anteriormente descrita como subunidade Indivisa (Luz et al., 1980).

Campanha et al. (2011) apresentam subdivisão estrutural do setor sul da faixa em 5 domínios estruturais, de oeste (zona externa) para leste (zona interna) (Fig.9). O Domínio I é representado pelo embasamento cratônico paleoproterozoico a oeste da Serra da Bodoquena, recoberto discordantemente pelos sedimentos do Grupo Corumbá. O Domínio Il compreende a região da Serra da Bodoquena, com as sequências neoproterozoicas discordantes sem deformação dúctil ou metamorfismo, apresentando mergulho de baixo ângulo para leste. O Domínio III, no centro-leste da Serra da Bodoguena, apresenta dobras abertas com clivagem ardosiana de plano axial mergulhando para leste, falhas inversas com transporte para oeste e metamorfismo na fácies xisto verde, zona da clorita. O Domínio IV, no extremo leste da zona externa, ainda na região serrana, apresenta o mesmo padrão estrutural do Domínio III, porém com deformação dúctil mais intensa. O Domínio V, na depressão do Rio Miranda e Serra de Maracaju, representa a zona interna da faixa, onde ocorrem xistos e filitos do Grupo Cuiabá metamorfizados na fácies xisto verde, zona da biotita. Este domínio apresenta a deformação mais intensa, cuja estrutura predominante é uma clivagem de crenulação associada a bandamento diferenciado, em que as estruturas primárias foram obliteradas pela deformação, sendo inferidas pela alternância litológica.

Nos domínios deformados da zona externa, Del'Rey Silva et al. (2016) identificaram 3 fases deformacionais co-axiais de direção norte-sul e uma ortogonal de direção noroeste, nomeadas D1, D2, D3p e D3t. A deformação D1 foi caracterizada pela orientação preferencial de micas e foliação S-C, indicando fluxo interestratal com movimento de topo para noroeste. Esta foliação é pouco penetrativa no Grupo Jacadigo e menos penetrativa no Grupo Corumbá, podendo não ser consequência de deformação regional. Dobras associadas a D1 são escassas, comumente intrafoliais e redobradas pela deformação D2. A deformação D2 foi caracterizada como clivagem ardosiana com ângulo de mergulho baixo a médio, plano axial de dobras assimétricas isoclinais suavemente inclinadas, indicando
vergência para NW. Esta fase é associada à intrusão dos corpos graníticos (Manzano et al., 2008), ressaltando o caráter sin- a pós-tectônico das intrusões. As deformações D3p e D3t são caracterizadas por clivagem espaçada anastomosada subvertical e associadas a produtos de dissolução sob pressão. Comumente cortam, e localmente crenulam, o acamamento e foliações anteriores; as dobras associadas são comumente abertas simétricas e mais frequentes no Grupo Corumbá. D3p indica encurtamento na direção NW-SE, coaxial a D1 e D2, e D3t indica encurtamento na direção NE-SW, relacionado à inversão do aulacógeno Tucavaca na Bolívia. O pico metamórfico deu-se na fase D1, atingindo a fácies xisto verde, registrado na recristalização de minerais micáceos paralelos à foliação. Já as fases D2 e D3 não apresentam minerais micáceos definindo foliação, mesma observação feita por Piacentini et al. (2013).

No setor norte o padrão deformacional é similar. Alvarenga e Trompette (1993) descrevem três fases coaxiais de direção nordeste, e uma fase ortogonal de direção noroeste para a zona interna da faixa. A fase inicial D1, principal fase deformacional, é marcada por clivagem de fluxo plano axial de dobras assimétricas isoclinais mostrando vergência para o Cráton Amazônico. As fases D2 e D3 têm caráter local, sendo observadas localmente como clivagem de crenulação plano axial de dobras assimétricas abertas.

D4 é ortogonal às fases anteriores e apresenta comportamento rúptil associado a dobras abertas regionais.

O metamorfismo na zona interna foi associado às fases iniciais de deformação, atingindo a fácies xisto verde, zona da biotita na fase D1 e xisto-verde, zona da clorita na fase D2. A fase final, ortogonal, não mostra metamorfismo associado às estruturas rúpteis (Vasconcelos et al., 2015). Indicadores cinemáticos de baixo ângulo, associados à fase deformacional D1, indicam movimento de topo para sudeste, e a fase deformacional D2 indica vergência para noroeste (Vasconcelos et al., 2015).

As idades do evento metamórfico obtidas pelo método Ar-Ar em biotita da Sequência Metavulcano-sedimentar Nova Xavantina (Geraldes et a., 2008; 2010) variam entre 541 e 531 Ma, próxima à idade de 544 Ma obtida em muscovita detrítica no Grupo Alto Paraguai (McGee et al., 2014), ambas no setor norte da faixa. Estas idades se situam no intervalo das idades obtida em muscovita da Formação Urucum, no setor sul, entre 547 e 513 Ma (Piacentini et al., 2013), as mais jovens próximas às idades obtidas em illita do Grupo Cuiabá, entre 484 Ma e 496 Ma (Tohver et al. 2010).

Figura 9. Mapa da divisão em domínios estruturais do setor sul da Faixa Paraguai (extraído de Campanha et al., 2011).

Tais idades são similares às obtidas pelo método U-Pb em intrusões graníticas no setor sul, entre 548 e 540 Ma, caracterizadas como sin-colisionais, interpretadas como produto de magmatismo de arco com fusão de materiais da crosta inferior (Godoy et al., 2007, 2010). Tratam-se de intrusões fissurais, representadas pelos granitos Taboco, Rio Negro, Coxim e Sonora, que apresentam valores $\varepsilon_{Nd}^{(0,54Ga)}$ negativos e idades modelo T_{DM} indicando retrabalhamento de crosta continental paleoproterozoica na construção do "Arco Magmático Neoproterozoico Paraguai" (Godoy et al., 2010).

O encerramento do evento orogênico é marcado pelas intrusões graníticas tardi- a pós-colisionais na parte norte, interpretadas como produtos de colisão continental e/ou descompressão pós-colisional entre 518 e 504 Ma (Godoy et al., 2007; McGee et al., 2012). São intrusões batolíticas rapakivíticas, representadas pelos granitos São Vicente,

Araguaiana e Lajinha, que apresentam valores $\varepsilon_{Nd}^{(0,50Ga)}$ muito negativos e idades modelo T_{DM} indicando retrabalhamento de crosta continental meso- a neoproterozoica.

2.3 O Controverso Oceano Clymene

A existência de oceano separando um bloco a oeste (Laurentia), composto pelos crátons Amazônico, Oeste Africano e Pampia, de um bloco a leste, composto pelos crátons São Francisco-Congo, Kalahari e Rio de La Plata foi sugerida por Trindade et al. (2003), com base em dados paleomagnéticos das rochas carbonáticas pós-glaciais do Grupo Araras, setor norte da Faixa Paraguai. Os dados mostraram que durante a deformação das rochas carbonáticas, estimada pelos autores como ocorrida entre 540 e 520 Ma, o Cráton Amazônico, plataforma cratônica da deposição desses sedimentos, estava em baixas latitudes (ca. 22°), posição diferente dos blocos a leste, que, segundo os modelos de reconstrução estavam em altas latitudes nesse período (Morel, 1981; D'Agrella Filho et al., 1998).

Em trabalho posterior Trindade et al. (2006) apresentam dados paleomagnéticos de intrusões máficas do Cambriano inferior (525 Ma) na borda norte do Cráton do São Francisco, a leste do suposto oceano *Clymene*, que apresentam polos (34.9°) próximos aos obtidos nas rochas carbonaticas pós-glaciais dos crátons do São Francisco e Amazônico para o mesmo período. Os autores inferem, portanto, que essas duas massas cratônicas já estavam próximas e em baixas latitudes nessa época, referindo resultados paleomagnéticos ediacaranos (616 Ma, Morel, 1981; 598 Ma, D'Agrella Filho et al., 1998) coincidentes para os crátons Oeste-Africano e Rio de La Plata, respectivamente (proto-Gondwana). Tais dados indicam que essas massas continentais já estavam reunidas nesse período, possivelmente em consequência das orogêneses Leste Africana (Brasiliana) (800-600 Ma) e Kuunga (570-530 Ma) (Meert, 2003), porém em posição polar e consequentemente distantes do Cráton Amazônico, em posição subequatorial. Assim, reafirmaram a existência do oceano *Clymene* entre estas duas massas cratônicas, que teria sido fechado no intervalo de 550-525 Ma, como produto da orogênese Pampeana-Araguaia (Meert, 2003). O fechamento teria ocorrido logo após a separação do Cráton Amazônico e outros blocos menores de Laurentia, marcada pelo vulcanismo associado à pluma no leste de Laurentia e abertura do oceano lapetus (Cawood et al., 2001). Dessa forma, Trindade et al. (2006) sugerem que o bloco Amazônico-Pampeano só colidiu com o proto-Gondwana no Cambriano, formando extensa zona de sutura composta pelos cinturões orogênicos Araguaia, Paraguai e Pampeano, destacando que, ao contrário dos modelos anteriores,

não interpretam esses eventos como de caráter local, mas sim como representantes da principal orogênese que modelou o Gondwana ocidental.

Após essas primeiras asserções quanto à existência de oceano ediacarano, Tohver et al. (2010) corroboram o modelo com dados paleomagnéticos e geocronológicos que indicam o fechamento do Oceano Clymene. Os autores demonstram que a remagnetização secundária dos calcários e dolomitos dos grupos Araras e Corumbá, na Faixa Paraguai, ocorreu após o dobramento, dadas as correlações positivas entre as direções dos dobramentos regionais e a declinação magnética. Os dados ⁴⁰Ar/³⁹Ar em illita mostram que a abertura do sistema ocorreu entre 496 e 484 Ma, durante o pico do metamorfismo regional, com a idade mais antiga encontrada em illita (528 Ma) interpretada como a idade máxima para remagnetização e, portanto, final do dobramento. Adicionalmente é observado que os polos obtidos para os depósitos carbonáticos da Faixa Paraguai se sobrepõem aos da remagnetização nos carbonatos neoproterozoicos que recobrem o Cráton do São Francisco (D'Agrella-Filho et al., 2000), correlata à abertura do sistema isotópico U-Pb a 530-500 Ma, e também aos obtidos nas intrusões máficas do Cambriano inferior (525 Ma) na borda norte do Cráton do São Francisco (Trindade et al., 2006). Assim, é inferida a proximidade entre essas massas cratônicas nesse período, com o dobramento, empurrão e remagnetização da Faixa Paraguai marcando o fechamento do Oceano Clymene. A inferência é corroborada também pela sobreposição das idades com as da orogênese Pampeana (550-525 Ma, Rapela et al., 2007), sugerindo o fechamento do oceano *Clymene* ao longo de seus mais de 3000 km de extensão no Cambriano superior a médio.

O fechamento oceânico foi reiterado por Tohver et al. (2012), relacionando dados geocronológicos das *Sierras Australes* (orogenia Pampeana), na margem sudoeste do Cráton Rio de La Plata, com dados das faixas Araguaia e Paraguai. Considerando idades de metamorfismo em ca. 540 Ma para a Faixa Araguaia (Teixeira et al., 2002), ca. 540 Ma para o extremo norte da Faixa Paraguai (Geraldes et al., 2008), ca. 528 Ma para o sul da Faixa Paraguai (Tohver et al., 2010) e descompressão em ca. 525 Ma para a Faixa Pampeana (Rapela et al., 1998), os autores inferem evolução geodinâmica compartilhada entre esses cinturões orogênicos, considerando-os como uma zona de sutura com direção aproximada N-S, que registra o fechamento do Oceano *Clymene*.

Tais asserções foram refutadas por Cordani et al. (2013a), que reafirmaram o fechamento do oceano Goiás-Farusiano em ca. 600 Ma, relacionando o fechamento do oceano à colisão entre o Cráton Oeste África e o Metacráton do Sahara, produzindo os domínios oceânicos representados pelos arcos magmáticos intra-oceânicos Iskel, Kabyé,

Tilemsi e Amalaoulaou com idades entre 900 e 700 Ma (Caby, 1989; Dostal et al., 1994), associações de UHP e HP com idade de ca. 620 Ma (Caby, 1994; Trompette, 1994; Attoh, 1998; Jahn et al. 2008), e retroeclogitos no Ceará com idade de ca. 640 Ma (Amaral et al., 2010). O fechamento do oceano Goiás, parte sul do oceano Farusiano teria sido consequência da colisão entre os crátons Amazônico e São Francisco-Congo, produzindo o Arco Magmático de Goiás com idades entre 900 e 600 Ma (Pimentel e Fuck, 1992), associações granulíticas Anápolis-Itauçu e Uruaçu com idades entre 650 e 630 Ma (Della Giustina et al., 2009). Tais episódios orogênicos representam o fechamento do oceano Goiás-Farusiano entre 650-600 Ma ao longo do Lineamento Tansbrasiliano-Kandi (Caby, 1989; Curto et al., 2014). Os granitos alto-K indeformados intrusivos no Domínio Ceará Central (Fetter et al., 2003; Castro et al., 2012), no Arco Magmático de Goiás (Pimentel et al., 1996) e Faixa Paraguai (Ferreira et al., 2008; Godoy et al., 2007, 2010) são atribuídos à atividade tectônica extensional entre 550 e 500 Ma ao longo do Lineamento Transbrasiliano (Cordani et al., 2013b). Os mesmos autores relacionam a evolução dos cinturões Brassarides, Rokelides, Araguaia e Gurupi, com idades tectono-termais similares e intrusões de granitos sin-tectônicos entre 650 e 550 Ma, ao fechamento do oceano Goiás-Farusiano. Um mar epicontinental ediacarano, representado pelos grupos Corumbá e Arroyo del Soldado (Gaucher et al., 2003), teria se estendido sobre o embasamento continental ao longo da margem leste dos crátons Amazônico e Rio de la Plata, indicando que estes já eram uma mesma plataforma nesse período. Os autores limitam deformação e metamorfismo em ca. 600 Ma, com base na idade das intrusões ultramáficas alto-K de Planalto da Serra (De Min et al., 2013), sendo as fases finais da orogênese marcadas pelas intrusões da suíte São Vicente em ca. 500 Ma (Ferreira et al, 2008; Godoy et al., 2010; McGee et al., 2012) e pelas rochas vulcânicas félsicas, intercaladas com sedimentos da Formação Tamengo, datadas em ca. 540 Ma (Boggiani et al., 2010). Aventam a possibilidade do paleopolo Puga, em altas latitudes, não distante de sua posição atual, representar remagnetização recente (Pisarevski et al., 2008). Também relacionam a deformação da Formação Puncoviscana (Escavola et al., 2011), ocorrida entre 560 e 520 Ma, com a orogenia Pampeana (Schwartz et al., 2008), interpretada como o início da orogenia Terra Australis. Desta forma, afirmam que esta orogenia não alcançou o centro da América do Sul, dado que as suturas brasilianas já estavam fechadas nesse período, separando-a da orogenia Brasiliana (ca. 620 Ma).

Em seus comentários sobre o trabalho de Cordani et al. (2013a), Tohver e Trindade (2014), apresentam novos dados e interpretações, reafirmando que a convergência entre o

Cráton Amazônico e outros blocos da América do Sul continuou durante o Ediacarano e Cambriano. São referidos dados geofísicos da Província Tocantins (Soares et al., 2006; Bologna et al., 2013; Assumpção et al., 2013), mostrando afinamento crustal, como assinaturas típicas de zonas de sutura (Scholl e von Huene, 2010), bem como dados magnetotelúricos e gravimétricos que indicam a continuidade dessa zona de sutura em direção ao cinturão Pampeano (Woldemichael, 2003; Bologna et al., 2011, 2013; Perarnau et al., 2012). São mencionados também dados isotópicos dos basaltos da Bacia do Paraná (Rocha et al., 2013), adjacentes à zona de sutura proposta, que sugerem a participação de um componente de subducção neoproterozoico na gênese do magma toleítico. Ao conjunto de dados geofísicos e geoquímicos os autores adicionam o fato de que a deformação na Faixa Paraguai afetou rochas sedimentares com fósseis ediacaranos, estabelecendo idade máxima para o tectonismo mais jovem que 600 Ma, seguido pela rotação do flanco E-W da faixa Paraguai após 528 Ma, atingindo o pico metamórfico entre 496 e 484 Ma (Tohver et al., 2012; Piacentini et al., 2013), em condições dificilmente encontradas no interior continental estável proposto por Cordani et al. (2013a). Aduzem que as bacias de antepaís, produtos do soerguimento dos cinturões, têm idade máxima de deposição em ca. 541 Ma (Dantas et al., 2009; Bandeira et al., 2012), que a atividade ígnea e metamórfica nos cinturões Paraguai (Godoy et al., 2010; Tohver et al., 2010) e Araguaia (Gorayeb et al. 2013; Teixeira et al., 2002) se sobrepõem às idades da orogenia Pampeana (Schwartz et al., 2008), e que os granitos com idade entre 550 e 520 Ma (Godoy et al., 2010) mostram assinatura geoquímica cálcio-alcalina a cálcio-alcalina alto-K (Godoy et al., 2007; Machado et al., 2009) e elementos traços indicativos de transição de granitos de arco vulcânico/colisional (550-520 Ma) para granitos intra-placa (520-500 Ma), evidenciando que o fechamento oceânico não estava completo até o final do Cambriano, e que alguns destes corpos apresentam trama deformacional bem desenvolvida (Manzano et al., 2008), em desacordo com a gênese anorogênica.

Quanto à ausência de litosfera oceânica, comentam que a ausência de ofiolitos não é prova da ausência do oceano Clymene, pois a preservação de ofiolitos em ambientes colisionais é rara. Citam o ofiolito Quatipuru (720 Ma – Paixão et al., 2008) como um remanescente oceânico acrescido à margem leste do Cráton Amazônico marcando a idade máxima da obducção e contradizendo o modelo da Faixa Araguaia como um aulacógeno em ambiente intra-continental. Também interpretam o LTB como uma zona de falha direcional tardia, somente em parte tão jovem quanto à sutura. Quanto à correlação entre os grupos Arroyo del Soldado e Corumbá baseados em dados isotópicos de Sr em

carbonatos e microfósseis ediacaranos (Gaucher et al., 2003), citam que a correlação é difícil devido a diferenças significativas no registro sedimentar, como glaciações, formações ferríferas e conglomerados, presentes em um grupo e ausentes em outro. Relatam ainda que tais conglomerados levaram Almeida et al. (2010) a concluir que o Grupo Arroyo del Soldado seja uma bacia transtensional ediacarana a cambriana. Comentam que se tal correlação de dados quimioestratigráficos for interpretada como indicativa de que estas sucessões estavam em uma mesma plataforma, todas as sucessões neoproterozoicas deveriam fazer parte de um mesmo continente, pois tal correlação já foi demonstrada e utilizada como base para a teoria da "Terra Bola de Neve" (Hoffman et al., 1998). Citam ainda que os diversos registros de sedimentos marinhos ediacaranos na América do Sul sugerem um significativo corpo d'água existindo no Paleozoico, difícil de conciliar com o interior continental proposto por Cordani et al. (2013). Com base nestas informações Tohver e Trindade (2014) reafirmam a contemporaneidade entre as atividades tectônicas nas faixas Araguaia, Paraguai e Pampeana, e afirmam que as diferenças litológicas e metamórficas entre elas é uma questão de perspectiva, similar às diferenças ao longo da direção no sistema Alpino-Himalaiano. Quanto ao paleopolo Puga, dizem não ser confiável e que não deve ser utilizado em reconstruções paleogeográficas, porém citam como evidências da amalgamação no início do Paleozoico os dados de deformação, magmatismo de subducção, metamorfismo e construção de montanhas apresentados.

Tal trabalho foi prontamente respondido por Cordani et al (2014), discutindo algumas afirmações feitas por Tohver e Trindade (2014). Quanto à idade do fechamento do oceano e amalgamação do Gondwana, comentam que os dados geológicos e geofísicos que reconhecem claras assinaturas de suturas são válidos, porém incapazes de afirmar qual a idade destas suturas. Dizem que a afirmação de que a deformação e metamorfismo da Faixa Paraguai seja evidencia da amalgamação cambriana é contestada devido às rochas ediacaranas do Grupo Corumbá serem indeformadas a suavemente dobradas, que na parte interna da faixa o Grupo Cuiabá é intensamente dobrado e metamorfismo (Tohver et al., 2010) são inconclusivas. Citam que idades metamórficas na Faixa Brasília indicam que o evento principal ocorreu entre 630-600 Ma (Pimentel et al., 1991; Della Giustina et al., 2011). Quanto ao ambiente das intrusões graníticas dentro da Faixa Paraguai, citam que são claramente não relacionadas à subducção e principalmente indeformados, indicando que a deformação é mais antiga que 550 Ma. Que granitos similares ocorrem em Goiás (Pimentel et al., 1996) e são interpretados como produtos de extensão e soerguimento ediacarano a

cambriano, e não relacionados à compressão e subducção. Que estes dados são ainda corroborados pelos digues ultramáficos indeformados de Planalto da Serra (600 Ma - De Min et al., 2013) e, portanto, indicando que a deformação seja mais antiga. Quanto à interpretação do LTB, explicam que não o veem como uma sutura neoproterozoica, e que ele provavelmente represente um corredor cisalhante transcontinental desenvolvido nos períodos finais da amalgamação no Neoproterozoico (Cordani et al., 2013b) muito ativo no Cambriano e períodos mais jovens. Quanto ao problema na correlação entre os grupos Corumbá e Arroyo del Soldado, explicam que tais diferenças citadas por Tohver e Trindade (2014) são esperadas em um mar epicontinetal com vários paleoambientes. Comentam que a correlação entre o Grupo Corumbá, indeformado, com o orógeno Pampeano é provável, porém litologia, deformação e metamorfismo têm histórias completamente diferentes. Desta forma afirmam que tais argumentos desafiam a existência do Oceano Clymene e amalgamação do Gondwana no Cambriano, e que as evidências geológicas nas faixas Paraguai e Brasília sugerem que a amalgamação final do Gondwana ocorreu entre 630-600 Ma. Aceitam um evento extensional no Ediacarano a Cambriano, correlato com a separação entre Laurentia e Gondwana ocidental, porém sem a existência de um arco intraoceânico, ofiolitos ou assembleias metamórficas de alto grau.

Após estas discussões McGee et al. (2015) voltam a debater sobre o oceano Clymene. Em estudo de proveniência no setor norte da Faixa Paraguai sugeriu fonte continental do Cráton Amazônico para a sequência inferior (Formação Puga) e fonte neoproterozoica continental ou mesmo da própria faixa para as sequências superiores (Grupo Alto Paraguai), estas com idade máxima de deposição já no Cambriano. Citam um modelo, baseado em dados geofísicos, proposto por Woldemichael (2003) com interação entre os blocos Rio Apa e o Paranapanema com geração de zona de subducção e um arco tipo andino entre 550-520 Ma situado atualmente abaixo da Bacia do Paraná. A influência deste arco estaria registrada nos sedimentos do Grupo Alto Paraguai, que mostram o gradual aumento da entrada de detritos da placa superior, bloco Paranapanema e Arco Magmático de Goiás, e a canibalização dos plútons no interior da faixa. Assim afirmam que a sedimentação final da Faixa Paraguai não começou antes de 560 Ma e possivelmente ocorreu até 528 Ma, corroborando a existência do oceano cambriano.

Porém este tema é ainda discutível, pois alguns dados que sustentam ambos os modelos são escassos, pouco robustos e passíveis de interpretações diversas.

Crátons: AM = Amazonian. CO = Congo. KA = Kalahari. RP = Rio de la Plata. SF = São Francisco. SM = Sahara Metacraton. WA = West African. **Fragmentos cratônicos menores:** AA = Arequipa Antofalla. BO = Borborema. GO = Goiás Massif. LA = Luis Alves. PA = Paranapanema. PB = Parnaíba. PP = Pampia. **Arcos Magmáticos Intraoceânicos:** A = Amalaoulaou. G = Goiás. I = Iskel. K = Kabyé. T = Tilemsi.

Figura 10. Modelos propostos para a orogênese que edificou a Faixa Paraguai. A esquerda, modelo proposto por Trindade et al., 2007, exemplificando o fechamento de um oceano cambriano no Gondwana ocidental. À direita, modelo proposto por Cordani et al., 2014, exemplificando o fechamento do oceano Goiás Farusiano, finalizado no ediacarano.

2.4 Fundamentos em Proveniência Sedimentar:

A proveniência sedimentar baseia-se na interpretação de dados que tornam possível relacionar similaridades entre sedimentos e suas áreas-fonte, buscando características comuns entre as margens geradoras dos detritos/sedimentos, as chamadas áreas-fonte, e a bacia. Tais estudos têm auxiliado na evolução do conhecimento de sequências sedimentares e, consequentemente, da evolução geodinâmica, refinando modelos de reconstrução paleogeográfica.

Estudos de proveniência sedimentar tornaram-se mais robustos a partir da utilização de dados isotópicos, principalmente nos últimos anos, com o emprego combinado dos métodos U-Pb e Lu-Hf em grãos detríticos de zircão de rochas siliciclásticas. Esses métodos analíticos têm fornecido informações que tornaram mais precisas as definições das áreas-fonte e, por consequência, também as ilações a respeito da evolução de diversos segmentos crustais ao redor do mundo.

Por buscar relacionar similaridades entre os dados do sedimento e suas potenciais áreas-fonte nas margens geradoras dos detritos, para interpretação efetiva dos dados adquiridos é importante conhecer os arranjos tectônicos propostos para o período de sedimentação da bacia, os blocos tectônicos (continentes) envolvidos, características geológicas das prováveis áreas-fonte, bem como os padrões geocronológicos, isotópicos e

geoquímicos para fundamentar a comparação e interpretações a respeito de sua proveniência. Igual importância deve ser conferida à evolução da sequência sedimentar estudada, dado que conhecer os diferentes pacotes estratigráficos, aumentando a representatividade amostral, auxilia as interpretações quanto à evolução da sequência sedimentar e, consequentemente, da bacia.

Nem sempre todas essas informações estão disponíveis, porém é importante conhecer as informações fundamentais a respeito das possíveis áreas-fonte e sequências sedimentares amostradas, estabelecendo, assim, melhor controle sobre interpretações e inferências. Estes elementos auxiliarão no estudo da evolução crustal, fornecendo subsídios para validação, reparação ou até mesmo anulação de ilações e interpretações anteriores, aprimorando o conhecimento sobre a evolução geológica na área estudada e até mesmo reconhecendo eventos desconhecidos.

GEOLOGIA DAS POTENCIAIS ÁREAS-FONTE

Grãos de zircão de uma sequência sedimentar são provindos de áreas-fonte em suas margens, portanto seu conteúdo isotópico registra as características geocronológicas, isotópicas e petrogenéticas de suas áreas-fonte. Salvo algumas exceções, o sistema isotópico permanece fechado desde a cristalização do cristal de zircão no ambiente magmático, registrando a idade e ambiente petrogenético em que ocorreu a cristalização do mineral e qual a época de sua diferenciação do manto. Por isso é indispensável o conhecimento prévio dos dados disponíveis a respeito da evolução crustal das possíveis áreas-fonte, identificando seus padrões de idade de cristalização e diferenciação do manto, conteúdo isotópico, ambientes de cristalização e possíveis eventos termo-tectônicos pós-cristalização magmática aos quais foram submetidos. Somente tal conhecimento prévio torna possível as correlações e interpretações a respeito de suas áreas-fonte.

Segundo diversos autores que trabalham com estudos de proveniência (Cawood et al., 2003, 2007; Collins et al., 2003; Darby e Gehrels, 2006; Howard et al. 2009, 2011; Escayola et al. 2007; Hu et al., 2014) o estudo da proveniência de rochas sedimentares, e seus equivalentes metamórficos, podem fornecer definições paleogeográficas se elas puderem ser conectadas com suas potenciais áreas-fonte. Tais conexões podem ser feitas usando similaridades de padrões geocronológicos, geoquímicos elemental e isotópico entre áreas-fonte e bacia.

GEOLOGIA DAS UNIDADES/SEQUÊNCIAS AMOSTRADAS

Assim como o conhecimento sobre as características geológicas das prováveis áreas-fonte, é importante conhecer o contexto sedimentar da bacia e/ou unidade litoestratigráfica amostradas. Conhecer o contexto estratigráfico em relação à fase da bacia, ambiente deposicional, grupo, formação ou membro, assim como o contexto estrutural que controla a posição da unidade, é determinante para correta correlação entre os dados obtidos e a evolução da bacia. Tais informações, em conjunto com os resultados analíticos, tornarão possível estabelecer idades máxima/mínima de deposição, ambiente deposicional e possíveis mudanças de área-fonte ocorridas durante a evolução da bacia e/ou orógeno.

Além do conhecimento sobre a evolução sedimentar da bacia, é importante saber as características dos eventos termo-tectônicos que atuaram sobre as unidades amostradas. Dependendo das condições de temperatura, alguns eventos podem reabrir o sistema isotópico do zircão, sobrepondo às feições geoquímicas registradas no momento da cristalização magmática características da recristalização metamórfica. Assim, a análise de grãos de zircão reconhecidamente metamórficos poderá representar características isotópicas e geocronológicas relacionadas à fase orogênica, fornecendo elementos para interpretações à cerca da evolução orogênica imposta à sequência sedimentar (e.g. Della Giustina et al., 2009 e referências contidas). Para tais interpretações, pode-se ainda utilizar outros minerais como monazita, xenotima, hornblenda entre outros, que fornecerão a idade do evento metamórfico imposto aos depósitos sedimentares (e.g. Matteini et al., 2012).

ZIRCÃO DETRÍTICO E OS MÉTODOS U-Pb E Lu-Hf

O zircão é um dos minerais mais utilizados em estudos de proveniência por meio de análises isotópicas, principalmente devido à sua presença em variados tipos de rocha e por ser resistente ao intemperismo, transporte e deposição, conservando as características isotópicas da época de sua cristalização magmática ou recristalização metamórfica.

O sistema isotópico U-Pb baseia-se no decaimento de U e Th para isótopos estáveis de Pb. A análise é feita em grãos individuais de zircão, por LA-ICP-MS e/ou SHIRIMP, o que aumenta a acurácia e o potencial interpretativo do método (Williams, 1998; Geraldes, 2010). Os resultados obtidos caracterizam a idade de cristalização do magma, com temperatura de bloqueio de zircão de ~800°C (Herman e Parrish, 1991). Devido ao grande número de idades, comumente os dados são apresentados em diagramas de concórdia e/ou histogramas de distribuição da porcentagem de densidade/frequência, cujos picos representam os maiores episódios de crescimento crustal ocorrido nas áreas-fonte.

Cawood et al. (2012) apresentam uma técnica para inferir o ambiente tectônico em que sedimentos foram depositados, comparando o espectro de idades U-Pb de cristalização (CA: Crystalization Ages) com a idade deposicional da sequência (DA: Depositional Age). Usa como exemplos bacias formadas em membros extremos dos ambientes tectônicos, como ambientes convergentes, agrupando as bacias da zona de supra-subducção, entre a fossa e o retro-arco, ambientes colisionais, agrupando bacias formadas durante e após a colisão continental, como bacias de antepaís; e ambientes extensionais, agrupando bacias relacionadas a riftes, pós-rifte (margem passiva) e intracratônicas. Os autores sugerem que bacias desenvolvidas em ambiente convergente tendem a apresentar grandes populações (>50%) de grãos tão jovens quanto a idade deposicional, refletindo magmatismo sin-sedimentar, com bacias ante-arco apresentando espectro unimodal com idade próxima à deposicional e bacias retro-arco apresentando sutil aumento na população de idades mais antigas. Bacias desenvolvidas em ambiente colisional tendem a apresentar menores conteúdos de idades próximas à deposicional, com variações entre 50% e 10% dos grãos com idades até 150 Ma mais antigas que a idade deposicional, refletindo magmatismo pré a sin-colisional de terrenos acrescidos ao orógeno. Bacias desenvolvidas em ambiente extensional tendem a apresentar espectro de idades muito mais antigas que a idade deposicional, com menos de 5% dos grãos apresentando idades até 150 Ma mais antigas que a idade deposicional. A presença ou ausência de grãos com idades próximas à deposicional reflete a proximidade ou não da bacia com a margem da placa (Cawood et al., 2012).

A interpretação da origem dos grãos de zircão com base somente em idades U-Pb é limitada, pois eventos de crescimento de zircão em um determinado período, comumente não ocorreram em um único terreno/continente, tornando as interpretações de proveniência baseadas somente em dados U-Pb limitadas (Moecher e Samson, 2006; Howard et al., 2009). Esta limitação pode ser superada, utilizando dados geoquímicos isotópicos de Lu-Hf e Sm/Nd, ou mesmo análises geoquímicas elementais que, pelo conteúdo de elementos maiores e traços, fornecem dados sobre o padrão crustal das áreas-fonte e o provável tipo de bacia em que a deposição ocorreu (Payne et al., 2006; Howard et al., 2011; Hu et al., 2014).

O sistema Lu-Hf vem sendo utilizado na datação de rochas desde as últimas décadas do século passado, com as análises sendo feitas em cristais de zircão já analisados pelo método U-Pb, cujos resultados mostram menos de 10% de discordância (Howard et al., 2009, 2011; Pimentel et al., 2011; Hu et al., 2014). A alta concentração em grãos de zircão

permite o cálculo de idades modelo T_{DM}, devido a razão ¹⁷⁶Hf/¹⁷⁷Hf sofrer modificação desprezível no tempo, desta forma preservando a composição isotópica do Hf no momento da cristalização do zircão a partir da fonte magmática original. Além disso, o zircão tem temperatura de bloqueio do sistema isotópico do Hf a aproximadamente 1100°C (Cherniak et al., 1997a; Cherniak e Watson, 2000), mantendo o sistema isotópico do Hf fechado durante a maioria dos eventos termo-tectônicos. Em virtude dessas propriedades, os sistemas isotópicos U-Pb e Lu-Hf passaram a ser utilizados conjuntamente, o primeiro fornecendo a idade de cristalização e o segundo a idade de diferenciação do manto e, consequentemente, o tempo de residência crustal. Os dados são comumente apresentados em gráficos binários com idade U-Pb de cristalização em um eixo e idade modelo T_{DM} de diferenciação do manto empobrecido em outro. Outra função importante do estudo isotópico do Hf é o parâmetro petrogenético EHf (partes por 10000 em relação ao CHUR), que caracteriza a diferença geoquímica da contribuição entre fonte mantélica e/ou crustal na geração do zircão (Blichert-Toft e Albarède, 1997; Amelin et al., 2000). Os valores ɛHf positivos são interpretados como de rochas manto-derivadas, juvenis, sem retrabalhamento crustal, e rochas formadas por fusão de crosta, evoluídas, apresentam EHf negativo. Variações na grandeza dos valores, tanto positivos quanto negativos, podem indicar misturas com maior ou menor contribuição de componentes crustais ou mantélicos na geração do magma no qual o cristal de zircão foi cristalizado, e assim estes valores são relacionados com os diferentes ambientes tectônicos responsáveis pela geração magmática, ou mistura de materiais provindos de diferentes ambientes. A integração dos dados possibilita distinguir grãos formados ao mesmo tempo, mas com diferentes contribuições de material mantélico ou crustal e, assim, diferenciar áreas-fonte.

INTEGRAÇÃO DOS DADOS

A datação do período de deposição dos sedimentos é muito importante para o estudo da evolução das bacias. Com base nos dados de cristalização obtidos pelo método U-Pb é identificada a idade mais jovem obtida na população dos grãos analisados, comumente utilizada para definir a idade máxima de deposição, que ocorreu necessariamente após a cristalização do grão. Normalmente o valor assumido não é a do grão individual mais jovem, mas sim o valor médio dos grãos mais jovens, ou o pico mais jovem no histograma de distribuição de frequência.

Em alguns casos outros métodos são utilizados para definição da idade de de deposição, como minerais autigênicos datáveis, que apresentam homogeneidade isotópica com o meio. Porém, nem sempre é possível encontrá-los com a mesma facilidade que os

grãos de zircão, principalmente devido ao reduzido número de minerais que apresentam homogeneização isotópica durante a sedimentação e diagênese, e também devido a esses minerais serem altamente suscetíveis a processos pós-deposicionais e raramente permanecerem como sistema isotópico fechado.

Outra forma de datar a deposição é pela datação de rochas vulcânicas eventualmente intercaladas nas rochas sedimentares. Idades de intrusivas caracterizadas como pós-deposicionais também são utilizadas para estabelecer a idade deposicional mínima, assim como minerais metamórficos ou bordas metamórficas em grãos de zircão.

A definição da fonte magmática por análises isotópicas envolve a integração dos dados U-Pb, Lu-Hf e idades modelo T_{DM}. Tais dados fornecem elementos para definição da época em que o magma se diferenciou do manto, o ambiente tectônico e a idade de cristalização, bem como se houve recristalização. Este último elemento, a recristalização metamórfica, deve ser interpretada levando-se em conta sua relação pré ou pósdeposicional. A integração do dados torna possível caracterizar a evolução tectonomagmática das fontes magmáticas, e conhecendo os padrões geocronológicos e petrogenéticos (juvenil vs crustal e idade modelo) das prováveis áreas-fonte dos sedimentos, inferir ou refutar а participação das possíveis áreas-fonte e, consequentemente, a configuração paleogeográfica e evolução tectônica da bacia e/ou orógeno.

Para uma área-fonte ser considerada plausível, Howard et al. (2009) sugerem que ela deve conter eventos de geração magmática com as mesmas idades dos picos das populações de zircão da sequência amostrada, bem como os dados isotópicos ϵ_{Hf} e T_{DM} devem corresponder aos eventos magmáticos de cada período representado nas populações.

Entretanto, estudos de proveniência sozinhos não podem provar a conexão fontesedimento, podem somente inferi-la, sugerindo as fontes mais plausíveis. Desta forma, a fonte real dos sedimentos pode estar em continentes atualmente fora dos modelos de reconstrução paleogeográfica. Por isso, o estudo de proveniência é atualmente integrado com as mais diversas técnicas, como dados paleomagnéticos, geoquímicos, petrológicos, estruturais, entre outros, visando refinar os modelos geodinâmicos e paleogeográficos. **3 ARTIGO CIENTÍFICO 1**

EDIACARAN DETRITAL ZIRCON GRAINS IN THE CUIABÁ GROUP, SOUTHERN SECTOR OF THE PARAGUAY BELT: TECTONIC IMPLICATIONS FOR THE FINAL ASSEMBLY OF WESTERN GONDWANA.

Ediacaran detrital zircon grains in the Cuiabá Group, southern sector of the Paraguay Belt: tectonic implications for the final assembly of Western Gondwana

Bruno R. Vasconcelos¹, Márcio M. Pimentel², Reinhardt A. Fuck¹, Amarildo S. Ruiz², Newton C. Nascimento³

¹Instituto de Geociências, Universidade de Brasília. ²Faculdade de Geociências, Universidade Federal de Mato Grosso. ³Instituto de Engenharia, Universidade Federal de Mato Grosso.

Abstract

The Cuiabá Group is a metasedimentary sequence comprising the inner and oldest units of the Paraguay Belt, a collisional orogen that records the final stages of the assembly of Western Gondwana. Its age is still debatable being attributed to the Cryogenian by some authors, and to the Ediacaran-Cambrian boundary by others, and ascribed to the closure of distinct oceans in each one of these interpretations. Previous sedimentary and provenance studies relate this unit to passive margin settings, with uncertain depositional age but considered to be younger than 900 Ma. Data provided herein by sedimentary provenance studies suggest an Ediacaran deposition in convergent margin, at least for part of the Cuiabá Group, which demonstrates that lithological units previously mapped as Cuiabá Group in the Brazilian state of Mato Grosso do Sul comprise more than one sedimentary sequence, all deformed and metamorphosed after 590 Ma. This evidences unlinks the tectonic evolution of the Paraguay and Brasília belts and raise the possibility of an oceanic basin of Ediacaran age formed in convergent margin settings in the center of South America.

Keywords:

Gondwana, Clymene Ocean, Paraguay Belt, Sedimentary Provenance, U-Pb, Sm-Nd.

3.1. Introduction

The Paraguay Belt is part of a chain of orogens resulting from collisions that assembled the Gondwana supercontinent in the Late Proterozoic and Early Paleozoic, an event named as Pan-African Orogeny (Kennedy, 1964). This concept has been extended to the continents that were part of Gondwana by adopting regional names, such as Brasiliano in South America, where the Brasiliano Orogeny is recorded by the Borborema, Mantiqueira and Tocantins provinces (Almeida et al., 1981).

In the Central Brazil Shield, center of South America, the Tocantins Province is formed by the Paraguay, Brasília and Araguaia belts, which are interpreted as products of the closure of the Goiás-Pharusian ocean in response to approximation of the Amazonian, São Francisco-Congo and Rio de la Plata cratons and the Paranapanema block, during the final amalgamation of West Gondwana.

Two evolution models were proposed for the Tocantins Province. One of them ascribes its evolution to the closure of the large Goiás-Pharusian ocean in the Ediacaran (Kröner and Cordani, 2003; Cordani et al., 2009, 2013a, 2014), based on geochronological data for the metamorphic peak recorded in the Brasília Belt, which is related both to the collision at ca. 620 Ma (Della Giustina et al., 2011) and to the existence of an Ediacaran epicontinental sea bordering the Amazonian and Rio de la Plata cratons (Gaucher et al., 2003). The other model relates the Araguaia, to the north, Paraguay and Pampean belts, to the south, to the closure of the Clymene Ocean in the Cambrian, westwards of the Brasília Belt, Rio de la Plata Craton and Paranapanema Block (Trindade et al., 2003, 2006; Tohver et al., 2010, 2012; Tohver and Trindade, 2014). This age interval overlaps in age with the Pampean Orogeny (535-520 Ma, Rapela et al., 1998) and tectono-thermal events recorded in the Araguaia Belt (550-500 Ma, Gorayeb et al., 2013), which suggests that the closure of the Clymene Ocean took place contemporaneously throughout its whole extension during Lower and Middle Cambrian times. This model corroborates the work of Meert (2003) and Pisarevsky et al. (2008), who suggest that collisions among relatively smaller continents during the Ediacaran and Cambrian comprise the final coalescence events to form Gondwana.

In order to look for evidence that rocks of the Cuiabá Group were deposited in an Ediacaran ocean sitting in the center of South America, whose closure succeeded the edification of the Brasília Belt, studies of sedimentary provenance were carried out on the deformed and metamorphosed lithologic units of the Cuiabá Group, internal domain of the Southern Paraguay Belt, near the boundary with the Paraná Basin, where geophysical studies inferred the existence of an Ediacaran magmatic arc developed on the western border of the Paranapanema Block (Woldemichael et al., 2003; Mantovani et al., 2005; Godoy et al., 2010; Bologna et al., 2011, 2013, 2014; Dragone et al., 2017) in response to its interaction with the Amazonian-Rio Apa Craton.

3.2. Geological Setting

The Paraguay Belt, located in the center of South America, establishes the limit between the Amazonian-Rio Apa Craton and the Paranapanema Block in the southwestern sector of the Tocantins Province (Almeida et al., 1981). The belt is divided into northern and sourthern sectors by Cenozoic sediments of the Pantanal Basin as well as into lithotectonic

domains, relatively parallel to the border of the Amazonian Craton (**Fig. 1**), by faults featuring the main basin limits that are interpreted as likely rift-phase normal faults reactivated during basin inversion (Campanha et al., 2011; Del'Rey Silva et al., 2016). These domains are classified as cratonic cover, represented by platform sedimentary cover, which is composed of clastic sedimentary and sub-horizontal carbonate successions that unconformably overlie the cratonic basement, and outcrops solely in the northern sector; external zone, mainly consisting of weakly folded, anchimetamorphic carbonate rocks, that also include glaciogenic detrital units; and internal zone, mostly composed of turbiditic-glaciogenic sediments and rare carbonate rocks, which are strongly folded, metamorphosed, and intruded by granites (Alvarenga and Trompette, 1993).

The lithological units of the belt are roughly grouped into three associations, each one usually exclusive of a specific domain, named lower turbiditic-glaciogenic, mainly in the internal domain, intermediate carbonate unit, mainly in the external domain and upper detritic association in the cratonic cover (Alvarenga and Saes, 1992; Alvarenga and Trompette, 1993). Several columns and subdivisions are proposed for these associations, highlighting the differences and similarities between the northern and southern sectors (**Fig. 2**). The stratigraphy of supracrustal rocks for the southern sector is made up of the lower turbiditic-glaciogenic unit, ascribed to the Cuiabá and Jacadigo groups and Puga Formation, as well as of the intermediate carbonate unit that is part of the Corumbá Group (Trompette et al., 1998; Alvarenga et al., 2000; Boggiani, 1997; Lacerda Filho et al., 2006; Campanha et al., 2011). The northern sector displays a stratigraphy also represented by the lower unit of the Alto Paraguai Group (Alvarenga 1988; Alvarenga and Saes, 1992; Alvarenga and Trompette, 1992, 1993).

The northern sector of the Cuiabá Group is stratigraphically divided into three formations, from bottom to top, Campina de Pedras Formation, deposited in rift settings, Acorizal Formation, deposited in a glacially influenced passive margin, and Coxipó Formation, deposited in a post-glacial platform (Tokashiki and Saes, 2008). The latter is interpreted as the onset of basin inversion (Batalha, 2016), with maximum depositional age estimated at 601 Ma (Pelosi, 2017) and 652 Ma (Babinski et al., 2018) as provided by provenance studies using detrital zircon U-Pb ages. It was deposited in convergent margin settings as suggested by the presence of grains not derived from the Amazonian Craton.

Figure 1. (A) Map of Brazil with location of the Tocantins Province. (B) Simplified geological map of the Paraguay Belt outlining its lithostructural division (modified from Lacerda Filho et al., 2006).

In the southern sector, there is no similar research on metasedimentary rocks of the Cuiabá Group, whose main regional scale studies were performed by Nogueira et al. (1978), Godoi et al. (1999), Lacerda Filho et al. (2006), Boggiani (1990) and Campanha et al. (2011), the last two focused on units of the Jacadigo and Corumbá groups. Campanha et al. (2011) group schists and phyllites of the Cuiabá Group exposed in the lower Miranda River area, internal zone of the southern sector, under the name of Agachi Schists, and ascribe them to the Jacadigo and Corumbá groups units previously interpreted as Cuiabá Group (Nogueira et al., 1978; Godoi et al., 1999, Lacerda Filho et al., 2006). These authors divide the sedimentary rocks of the Cuiabá Group into lithological associations, however stacking

patterns are not defined. Campanha et al. (2011) mention that their sedimentary structures are difficult to identify given the intense and complex deformation impressed on the rocks. Metabasalts of the Rio Bacuri Metavolcanosedimentary Sequence (Lacerda Filho et al., 2006; Campanha et al., 2011) are also recognized, comprising two subunits,: a volcanic unit of amphibolites and chlorite schists, and a sedimentary unit of phyllitic, schists, and quartzites. Lithochemical data for the volcanic subunit plot in oceanic floor tholleite field, and yield a REE pattern similar to that of E-MORB, which is also observed on the Nb/Yb x Th/Yb diagram (Lacerda Filho et al., 2006). Previously attributed to the Cuiabá Group (Nogueira et al., 1978), the Rio Bacuri sequence had its tectono-stratigraphic position reviewed (Lacerda Filho et al., 2006), and was therefore interpreted as an ocean crust segment comparable to the Nova Xavantina Volcanosedimentary Sequence exposed in the northern sector of the belt (Pinho, 1990; Lacerda Filho et al., 2004).

The Puga Formation encloses diamictites, conglomerates, sandstones and pelites ascribed to the Marinoan Glaciation (ca. 635 Ma; Nogueira et al., 2003; Alvarenga et al., 2007; Piacentini et al., 2007), and shows lateral correlation with the metasedimentary rocks of the Cuiabá Group (Alvarenga, 1988; Alvarenga and Saes, 1992). In the southern sector, Babinski et al. (2013) and McGee et al. (2018), estimate its maximum depositional age, on the basis of detrital zircon U-Pb ages, at 706 Ma and 696 Ma, respectively. On the other hand, in the northern sector, the youngest zircon age obtained in Puga Formation samples is ca. 627 Ma (Babinski et al., 2010).

The Jacadigo Group, in the southern sector, is correlated to the Puga Formation (Trompette et al., 1998; Alvarenga et al., 2000), and divided from bottom to top into Urucum Formation, composed of immature sediments deposited in continental settings, and Santa Cruz Formation, composed of clastic and chemical sediments deposited in periglacial settings (Godoi et al., 1999; Alvarenga and Trompette, 1992).

In the southern sector, the Corumbá Group, which is divided, from bottom to top, into Cadieus, Cerradinho, Bocaina, Tamengo and Guaicurus formations consisting of conglomerates, sandstones, arkoses, pelites, dolostones, limestones, marls, and volcanic ashes (Boggiani et al., 1997). McGee et al. (2018) provided a concordant age of 543±11 Ma for the youngest detrital zircon grains from metasedimentary rocks mapped as Cuiabá Group in the internal sector of the southern Paraguay Belt that are similar to the ages achieved by Babinski et al. (2008) for the Tamengo Formation (543±2 Ma), which allow these units to be reinterpreted as upper units of the Corumbá Group in agreement with the fine-grained rocks of the Guaicurus Formation (Almeida, 1965).

In the northern sector, the Araras Group is divided into Mirassol d'Oeste, Guia, Serra do Quilombo and Nobres formations (Alvarenga et al., 2000), which were likely deposited in a carbonate platform showing increasing volume of clastic sediments towards the top that is attributed to the beginning of ocean closure. Its depositional age is estimated at ca. 633 Ma, on the basis of younger zircon age of the Mirassol d'Oeste Formation (Babinski et al., 2011).

The Alto Paraguai Group, exclusive of the northern sector and divided into Serra Azul, Raizama, Sepotuba and Diamantino formations (Alvarenga et al., 2007), encompasses siliciclastic sediments deposited in a foreland basin that record exhumation and erosion of the orogen, and final sedimentation events in the belt. Its maximum depositional age is estimated at 560 Ma, based on the provenance study on the Diamantino Formation (McGee et al., 2015) that identified the youngest zircon with apparent age of 528 Ma, whose likely source area is the Goiás Magmatic Arc, Brasília Belt, or even the Paraguay Belt itself. The same assumption is made by Dantas et al. (2009) using Nd isotopes.

Structurally, the belt is divided into two zones parallel to the borders of the Amazonian Craton (Almeida, 1984; Alvarenga, 1988; Boggiani, 1990). The closest zone to the craton, known as external zone, is characterized by sub-horizontal layers overlying the cratonic basement that grade into weakly deformed and anchimetamorphic rocks towards inner

portions of the belt, where folding resulted in the Appalachian-like relief of mountain regions. The internal zone, further away from the Amazonian Craton, in the lower Miranda and Cuiabá rivers areas, and in the Maracajú and São Vicente ridges, at the western edge of the Paraná Basin, is characterized by strong deformation, including folding and reverse faulting, as well as greenschist facies metamorphism, biotite zone (Vasconcelos et al., 2015; Del'Rey Silva et al., 2016). In its inner sector, near the Paranapanema Block (Paraná Basin), several granitic intrusions are recognized and divided into two groups. The oldest intrusions (550-520 Ma), within the southern sector, consist of calc-alkaline fissural intrusions, whose trace element ratios resemble arc granite signature, that are interpreted as pre- to syncollisional. The younger intrusions (520-500 Ma) occur in the northern sector, where they form batholith-scale high-K calc-alkaline intrusions, with intra-plate granite signature, interpreted as post-collisional (Godoy et al., 2007, 2010; McGee et al., 2012).

Campanha et al. (2011) divide the southern sector into five structural domains. Domain I is represented by the Paleoproterozoic cratonic basement overlain by undeformed sedimentary rocks of the Corumbá Group, to the west of the Bodoquena ridge. Domain II comprises in the region of the Bodoquena ridge and includes Neoproterozoic sequences unconformably overlying the cratonic basement, without any evidence of ductile deformation or metamorphism. Domain III is located in mid-eastern Bodoquena ridge, showing open folds with slaty cleagave, reverse faults, and greenschist facies metamorphism, chlorite zone. Domain IV, farther east within the external zone, still in the mountain region, has the same pattern of domain III except for its more intense ductile deformation. Domain V, which comprises the Miranda River bottomland and the Maracaju ridge, in the internal zone, consists of schists and phyllites of the Cuiabá Group, metamorphosed under greenschist facies, biotite zone, with strong deformation, whose main structure is a crenulation cleavage developing from differential bands that obliterate primary structures.

Del'Rey Silva et al. (2016) propose three stages of north-south-trending coaxial ductile deformation in the southern sector, that are associated with the formation of the Paraguay Belt, as well as a northwest-trending brittle stage linked to inversion of the Tucavaca aulacogen (**Fig. 1**). The metamorphic peak was impressed on the rocks during the first deformation stage; later stages have no foliation defined by micaceous minerals, which is also observed by Piacentini et al. (2013). The deformation pattern is similar to the northern sector, where three phases of coaxial deformation as well as an orthogonal stage are described, recording stronger deformation and metamorphic grade in the first phase and brittle behavior in the last phase (Alvarenga and Trompette, 1993). Metamorphic ages

obtained through Ar-Ar analyses on micas vary between 541 and 531 Ma for the northern sector (Geraldes et al., 2008, 2010), and between 547 and 513 Ma for the southern sector (Piacentini et al., 2013), similar to the U-Pb ages resulting from syn-collisional granite intrusions.

3.3. Analytical Procedures

For U-Pb and Lu-Hf LA-MC-ICP-MS analyses, samples were crushed using a jaw crusher and sieved to the 500 µm size fraction. Heavy minerals were concentrated through panning and later magnetically separated using a Frantz isodynamic separator. Zircon grains were then handpicked from the non-magnetic fraction after separation using a binocular microscope to be mounted in epoxy resin, without selection, having their surface polished to expose the grains interiors. Backscattered electron and cathodoluminescence images were obtained with a scanning electron microscope in order to select the best targets for ablation spots.

The in-situ U-Pb analyses were carried out using a Thermo-Finnigan Neptune coupled to a Nd-YAG UP213 laser ablation system (New Wave) at the Laboratory of Geodynamic and Environmental Studies of the University of Brasília. Analytical procedures follow the procedures outlined by Bühn et al. (2009). Ablation was performed using a spot size of 25-30 µm, with energy pulses from 4.1 to 4.3 J/cm³ and repetition rates of 10 Hz operated on grain cores that were free of inclusions, fractures, or any other feature that could impair data accuracy. In order to correct fractionation, the sample-standard bracketing method was applied (Albarède et al., 2004) by analyzing four to eight unknown crystals between the standard zircon crystals GJ-1 and 91500 (Jackson et al., 2004). Corrections of common Pb were not necessary due to low signals of ²⁰⁴Pb and high ²⁰⁶Pb/²⁰⁴Pb ratios, but their values were taken into account to select only results with discordance of less than 10% for U-Pb plots. For plots of apparent ages, we used ²⁰⁶Pb/²³⁸U ages from grains younger than 1000 Ma, and ²⁰⁷Pb/²⁰⁶Pb ages from grains older than 1000 Ma. Raw data were reduced using Chronus version 2.0 (Oliveira et al., 2015), and geochronological plots were constructed using Isoplot version 4.15 (Ludwig, 2012) with errors for isotopic ratios given at the 1σ level.

Sm-Nd isotopic analyses followed the method described by Gioia and Pimentel (2000) and were carried out at the Laboratory of Geodynamic and Environmental Studies of the University of Brasília. Whole rock powders (ca. 50Mg) were then mixed with ¹⁴⁹Sm-¹⁵⁰Nd spike solution and dissolved in Savillex capsules. Sm and Nd extraction of whole rock

samples followed conventional cation exchange techniques by using Teflon columns containing Ln-Spec resin (HDEHP-diethylhexyl phosphoric acid supported on PTFE powder). Sm and Nd samples were loaded on Re double evaporation filaments assemblies and the isotopic measurements were carried out on a multi-collector Finningan TRITON mass spectrometer in static mode. Uncertainties for Sm-Nd and ¹⁴³Nd/¹⁴⁴Nd ratios are better than ±0.1% (2 standard error) and ±0.0015% (1 σ), respectively, based on repeated analyses of international rock standards, BHVO-1 and BCR-1. The ¹⁴³Nd/¹⁴⁴Nd ratios were normalized to ¹⁴⁶Nd/¹⁴⁴Nd ratio of 0.7219, and the decay constant used was 6.54x10⁻¹²a⁻¹. The T_{DM} values were calculated using the model of DePaolo (1981).

3.4. Sampling

Samples are representative of metasedimentary rocks of the Cuiabá Group along with metavolcanosedimentary rocks of the Rio Bacuri Sequence, units placed in the internal zone of the Southern Paraguay Belt (**Fig. 4**). Samples from the Cuiabá Group are strongly deformed pelites and psammites, metamorphosed under greenschist facies conditions (samples VSC37, VSC40, VSC42, VSC54, VSC58, VSC74 and VSC81). Amphibole and chlorite schists (samples VSC07, VSC18, VSC19, VSC20 and VSC26) are part of the Rio Bacuri Sequence (**Fig. 3**). Once the current subdivision for these units in the southern sector of the belt is based on lithological associations (Lacerda Filho et al., 2006) and disregards the relationship between different depositional sequences or hierarchy among formations or members, sampling focused on main associations of the different "sectors" (**Figs. 1**, 4 and 5) bounded by regional faults interpreted as significant basin and/or structural limits (Campanha et al., 2011; Del'Rey Silva et al., 2016).

Samples from the Cuiabá Group were grouped into three main lithological associations. The first association is composed of coarser-grained lithotypes, microscopically classified as quartz schists with muscovite and biotite, represented by samples VSC54 and VSC58. This association forms a north-south trending package in contact with a thrust fault, located to the east and southeast of Miranda (**Fig. 4**), along which the association was thrusted upon undivided schists, to the west (**Fig. 5A**). The second association chiefly consists of fine-grained mica schists displaying centimeter-thick compositional bands that are classified under the microscope as muscovite-quartz schists (samples VSC37, VSC40, VSC42 and VSC81). This association consists of slivers thrusted on top of the quartz schists with muscovite and biotite, to the east of Miranda, as well as on top of units of the Rio Bacuri Sequence, to the east of the Jabuti Anticline, and on the

surroundings of Coxim (**Figs. 4 and 5B, C**). The latter association is composed of strongly foliated phyllite, microscopically classified as muscovite-biotite phyllite (sample VSC74). This association occurs in the central sector of the Maracaju ridge, to the west of Rio Negro, near the homonymous granite intrusion (**Fig. 4**), as a sliver thrusted above the muscovite-quartz schists to the southwest, and under the sliver where sample VSC81 was collected (**Fig. 5C**), to the southeast.

3.5. Results

Samples VSC37, VSC40, VSC54, VSC58 and VSC81 were selected for U-Pb isotopic analyses. Zircon grains of all samples are mostly subrounded to prismatic, transparent to translucid, colorless to yellow, with sizes ranging between 500 and 800 µm. Some younger grains usually display a distinct morphology by having prismatic habit and moderately rounded crystal edges, which reflects erosion of proximal source area. CL images (Fig. 3G) reveal concentric oscillatory zoning with rare inherited cores and metamorphic overgrowth. Larger grains are an exception; they are bipyramidal, euhedral, and display clear concentric magmatic zoning. For Sm-Nd isotopic analyses, samples VSC42, VSC54, VSC74 and VSC81, representatives of schists and phyllites from the Cuiabá Group, were selected as well as samples VSC07, VSC18, VSC19, VSC20 and VSC26 from the Rio Bacuri Sequence, which under the microscope show groundmass consisting of subhedral to euhedral tremolite-actinolite varying from prismatic to fibrous habit, anhedral to subhedral plagioclase with irregular edges and up to 1.5 mm in size, commonly cloudy as a result of sericitization and saussuritization and recrystallized quartz displaying polygonized contacts, deformation lamellae, and wavy extinction. These oriented minerals define a schistosity overprinted by titanite porphyroblasts up to 3 mm in size that occur either sparse in the main fabric or giving rise to anhedral to subhedral aggregates, commonly with opaque mineral inclusions.

Figure 3. A, B, and C - Macroscopic features of analyzed samples. D, E, and F - Microscopic features of samples. G - Cathodoluminescence images of zircon crystals from the main populations

3.5.1. U-PB LA-MC-ICP-MS GEOCHRONOLOGICAL RESULTS

3.5.1.1. SAMPLE VSC37

The sample is muscovite-quartz schist, gray in color, exhibiting banding composed of centimeter-size strongly folded quartz and mica layers. Of the 100 grains analyzed, only 37 yielded discordance of less than 10% (**Appendix 1**). The main source of these grains is Mesoproterozoic and corresponds to 46% of the grains; Neoproterozoic grains represent 35% of the grains; Paleoproterozoic, 15%; and Cambrian and Archean grains make up 2% each (**Fig. 6A**). The major age peak is Neoproterozoic, 630 Ma, similar to the youngest

obtained age of 630±5 Ma. Of the Neoproterozoic grains, 48% are Tonian, 26% Cryogenian, and 21% Ediacaran, with minor peaks at 682 Ma, 719 Ma and 969 Ma (**Fig. 6B**). Mesoproterozoic grains form a minor Stenian-age peak at 1023 Ma. Paleoproterozoic grains show a small peak of Orosirian age at 1920 Ma. A single Mesoarchean grain with apparent age of 2949 Ma was identified; conversely, a single Cambrian grain returned an apparent age of 523 Ma, the youngest individual grain found. Of the analyzed grains, only an Orosirian grain shows Th/U ratio smaller than 0.1, while the remaining ratios vary from 0.2 to 1.4.

3.5.1.2. SAMPLE VSC40

The analyzed sample is muscovite-quartz schist, gray in color, exhibiting banding composed of folded centimeter-size quartz and micaceous layers. Of the 120 grains analyzed, 68 presented less than 10% discordance (**Appendix 2**). The main grain source is Neoproterozoic in age, comprising 46% of the grains, from which 42% are Cryogenian, 32% are Ediacaran, and 26% are Tonian. The youngest concordant age dated is 611±5 Ma (**Fig. 06C**), and the single youngest grain has an apparent age of 607 Ma. The spectrum yields a major age peak at 634 Ma (**Fig. 06D**), with a concordant age of 632±4 Ma; Neoproterozoic subordinate peaks are observed at 613 Ma, 690 Ma and 654 Ma. Mesoproterozoic grains make up 19% of the sample, Paleoproterozoic grains represent 25%, and Archean grains 10%, with small age peaks at 1554 Ma, 1888 Ma, 1997 Ma and 2631 Ma. A single Mesoarchean grain yielded a Th/U ratio lower than 0.1, the remaining grains provided ratios from 0.12 to 1.63.

3.5.1.3. SAMPLE VSC54

This sample is a quartz schist with muscovite, white to gray in color, exhibiting reorientation and recrystallization of both quartz grains and muscovite and chlorite, features that define the schistosity observed. Of the 109 grains analyzed, 105 returned ages with discordance less than 10% (**Appendix 03**). Only 2% of the grains yielded Neoproterozoic ages, exclusively Tonian, including the youngest grain dated at 991±15 Ma (**Fig. 6E**). Mesoproterozoic grains constitute 77% of the sample, from which 31% are Stenian, 39% are Ectasian, and 24% are Calymmian, with major Ectasian-age peak at 1218 Ma, and subordinate Calymmian-age peak at 1530 Ma (**Fig. 6F**). Minor peaks are revealed at 1084 Ma, 1338 Ma, 1392 Ma and 1579 Ma. Paleoproterozoic sources make up 20% of the grains and raise peaks at 1762 Ma, 1955 Ma, and 2108 Ma. A single Neoarchean grain was analyzed and returned an apparent age of 2670 Ma. Only three single Mesoproterozoic grains yielded Th/U ratios lower than 0.1, the remaining grains have ratios varying from 0.12 to 1.4.

3.5.1.4. SAMPLE VSC58

Zircon grains were extracted from quartz-muscovite schist, gray in color, formed by recrystallized quartz and mica grains parallel to the main foliation. Layering is obliterated by the foliation. Of the 60 grains analyzed, 21 returned ages with discordance less than 10% (**Appendix 4**). A single Neoproterozoic grain provided an apparent age of 915 Ma (**Fig. 7A**). 57% of the grains are of Mesoproterozoic age, yielding a major peak of Statherian age at 1530 Ma, and subordinate peaks at 1154 Ma, 1176 M and 1446 Ma (**Fig. 7B**). Paleoproterozoic sources correspond to 38% of the grains, displaying minor Statherian-age peaks at 1735 Ma and 1754 Ma, as well as an Orosirian peak at 1878 Ma, and a Siderian peak at 2035 Ma. A single Stenian grain shows a Th/U ratio lower than 0.1, the remaining grains present ratios from 0.2 to 0.9.

3.5.1.5. Amostra VSC81

The sample is a grayish quartz-muscovite schist, exhibiting banding composed of strongly folded centimeter-size quartz and micaceous layers. Of the 115 grains analyzed, 79 returned ages with less than 10% discordance (**Appendix 5**). The main grain source is Neoproterozoic in age making up 77% of the grains, from which 59% are Ediacaran, 36% Cryogenian, and 5% Tonian. The youngest concordant age obtained was Ediacaran, 591±5 Ma, and the single youngest grain revealed an apparent age of 582 Ma (**Fig. 7C**). This sample has a major peak at 634 Ma, with subordinate peaks at 619 Ma and 640 Ma; minor peaks are observed at 596 Ma and 652 Ma (**Fig. 7D**). The oldest Neoproterozoic grains have an apparent age of 792 Ma. Mesoproterozoic sources provided solely 4% of the grains, without raising a significant peak. Paleoproterozoic grains make up 15% of the sample, and provide very small and broad peaks between 1841 Ma and 2153 Ma. Neo- to Mesoarchean grains comprise solely 4% of the sample, without defining a significant peak. Only five grains returned Th/U ratios lower than 0.1, from which four are Neoproterozoic and one is Mesoproterozoic; the remaining grains have ratios varying from 0.13 to 1.47.

3.5.2. SM-ND ISOTOPIC RESULTS

Metasedimentary rock samples from the Cuiabá Group yielded similar values of 147 Sm/ 144 Nd ratios, which range from 0.10 to 0.11, with T_{DM} model ages between 1.39 and 1.72 Ga, and negative $\epsilon_{Nd(600)}$ values between -7.60 and -4.32 (**Table 1**).

Sample	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	E (0)	E (600)	Т _{DM} (Ма)
VSC-42	7.85	44.55	0.1065	0.512062	-11.24	-4.32	1.39
VSC-54	4.11	21.20	0.1173	0.511953	-13.36	-7.28	1.72
VSC-74	6.35	33.80	0.1137	0.512049	-11.49	-5.13	1.51
VSC-81	10.73	58.67	0.1105	0.511910	-14.20	-7.60	1.67

Table 1. Sm-Nd analytical data for metasedimentary rocks of the Cuiabá Group.

Samples from the Cuiabá Group cluster in a less evolved field of the isotope evolution of Nd against time plot, which falls out of the usual compositional range for the Amazonian and São Francisco cratons as well as for the Goiás Archean Block (**Fig. 8A**), yet plot in fields compatible with Nd isotopic composition of granulite terranes of Goiás and the Silvânia Magmatic Arc, near the field boundary with isotopic composition of ancient sialic basement of the Brasília Belt (**Fig. 8A**). When compared to isotopic compositions of Neoproterozoic terranes of the Brasília Belt and granite intrusions of the Paraguay Belt, these samples show very similar compositions, especially to those of the Goiás Magmatic Arc (**Fig. 8C**).

Samples from the Rio Bacuri Sequence cluster into two sets (**Table 2**), one of them providing ¹⁴⁷Sm/¹⁴⁴Nd ratios between 0.10 and 0.11, and T_{DM} model ages of 0.93 Ga, 0.96 Ga and 1.02 Ga, with positive $\varepsilon_{Nd(600)}$ values of 1.88, 1.92 and 1.57 for samples VSC18, VSC19 and VSC26, respectively. The second group comprises samples VSC07 and VSC20, whose ¹⁴⁷Sm/¹⁴⁴Nd ratios vary between 0.13 and 0.11, with T_{DM} model ages of 1.26 Ga and 1.91 Ga and negative $\varepsilon_{Nd(600)}$ values of -0.69 and -10.76, respectively; these values are similar to those of metasedimentary rocks from the Cuiabá Group.

Table 2. Nd-Sr	n analytical	data of	samples	from	the	Rio	Bacuri	Metavolcanosedimentary
Sequence.								

Sample	Sm (ppm)	Nd (ppm)	¹⁴⁷ Sm/ ¹⁴⁴ Nd	¹⁴³ Nd/ ¹⁴⁴ Nd	£(0)	E (600)	Т _{DM} (Ма)
VSC-07	6.49	30.82	0.1274	0.512330	-6.01	-0.69	1.26
VSC-18	29.61	175.85	0.1018	0.512361	-5.40	1.88	0.93
VSC-19	21.78	117.89	0.1117	0.512402	-4.60	1.92	0.96
VSC-20	12.61	69.00	0.1104	0.511748	-17.36	-10.76	1.91
VSC-26	32.17	164.01	0.1186	0.512411	-4.43	1.57	1.02

Results were compared to the values of mafic units from Neoproterozoic terranes of the Brasília Belt as well as to those of ultramafic intrusions of the Paraguay Belt (**Fig. 9**). The amphibolite samples VSC18, VSC19 and VSC26 have more primitive signatures, with T_{DM} model ages similar to those of ultramafic intrusions of the Planalto da Serra (De Min et al., 2013) and evolutionary trend similar to that of the Iporá Magmatic Arc (Rodrigues et al., 1999). On the other hand, samples VSC07 and VSC20 show a relatively more evolved signature, with T_{DM} model ages that fall within the age spectrum of mafic and ultramafic

rocks of the Anápolis-Itauçu Complex (Piuzana et al., 2003; Della Giustina et al., 2011) except for the samples with more evolved signature.

Figure 4. Simplified geological map of the Paraguay Belt showing a close-up view of its southern portion (after Godoi et al., 1999; Lacerda Filho et al., 2006; Campanha et al., 2011). A - Structural domains of northern and southern sectors of the Paraguay Belt. B - Simplified geological map of the sector of the Paraguay Belt. C and D - Features of sample locations in the Rio Bacuri Sequence.

Figure 5. Schematic cross-sections sketch of sampled sectors. Structures, contacts, and rocks inferred on the basis of field data survey and available maps (after Godoi et al., 1999; Lacerda Filho et al., 2006; Campanha et al., 2011).

3.6. Discussion

Based on U-Pb isotopic results including younger concordant ages and distribution patterns of age spectra, samples were divided into three groups according to the interpretative model of tectonic basin settings (Cawood et al., 2012). The first group is represented by samples whose youngest ages fall into the Tonian and present polymodal spectra (VSC54 and VSC58); the second group comprises samples with the youngest ages in the Ediacaran and Cambrian, and polymodal spectra (VSC37 and VSC40, respectively); and the third group contains one sample with the youngest age in the Ediacaran and unimodal spectrum (VSC81).

3.6.1. LIKELY SOURCE AREAS AND BASIN TECTONIC SETTINGS.

Samples **VSC54** and **VSC58** show a difference of ca. 260 Ma between the youngest ages (concordant age of 991 Ma, and apparent ²⁰⁷Pb^{/206}Pb age of 915 Ma, respectively), and the depositional age estimated for the Cuiabá Group (ca. 650 Ma - Babinski et al., 2018), and are therefore interpreted, following the Cawood et al. (2012) model, as deposited in intra-plate extensional settings of passive margin. This assumption is in agreement with the youngest ages recorded in the Amazonian Craton as well as with the settings already accepted for the Cuiabá Group in northern sector of the Paraguay Belt (Alvarenga and Trompette, 1992, 1993; Tokashiki and Saes, 2008; Dantas et al., 2009; McGee et al., 2015; Batalha, 2016). Taking into account this interpretation, the presumed source areas are Mesoproterozoic terranes of the Rondoniana-San Ignácio and Sunsás geochronological

provinces (Tassinari and Macambira, 1999, 2004), southwest of the Amazonian Craton (**Fig. 10**), along the southern sector of the Paraguay Belt.

The most likely Amazonian source areas for Tonian grains are the late- to posttectonic felsic magmatism developed during the Sunsás Orogeny in the Sunsás-Aguapeí Province (Teixeira et al., 2010), SW Amazonian Craton (**Fig. 10**), namely the felsic rocks emplaced into the Aguapeí and Nova Brasilândia belts (Rizzotto et al., 2014), the Guapé, São Domingos and Sararé plutons of the Guapé Intrusive Suite, dated at 940 Ma (Geraldes et al., 2001), the sub-alkaline granites of the Rondônia tin Province, such as the São Carlos and Santa Bárbara intrusions dated at ca. 970 Ma (Bettencourt et al., 1999; Sparrenberger et al., 2002), and the Maçaranduba and Pedra Branca plutons dated at ca. 990 Ma (Tosdal and Bettencourt, 1994; Bettencourt et al., 1999).

Mesoproterozoic grains, with major peaks at ca. 1218 Ma and 1530 Ma, probably derive from felsic igneous rocks of the Sunsás and Rondonian-San Ignácio provinces. The former is related to the Sunsás Orogeny (Santos et al., 2008), which is recorded by the Nova Brasilândia (1180-1110 Ma), Aguapeí and Sunsás belts, and represented by the San Andrés magmatism (1275 Ma). The latter is similar to rocks of the Cachoeirinha and Santa Helena accretionary orogens in the Jauru Terrane (1.56-1.42 Ga), to the Rio Crespo, Santo Antônio and Teotônio intrusive suites (1.5-1.36 Ga), to the Pensamiento Granitoid Complex (1.37-1.34 Ga) in the Paraguá Terrane, to the intra-oceanic arc magmatism of the Santa Rita Intrusive Suite, as well as to the volcanosedimentary rocks of the Rio Alegre Terrane (1.51-1.38 Ga) and Guaporé Belt (1.42-1.34 Ga), both products of the San Ignácio Orogeny (Bettencourt et al., 2010), which also gave rise to the late A-type magmatism of the Alto Candeias and São Lourenço-Caripunas suites (1.34-1.30 Ga). Furthermore, the hypothesis of Mesoproterozoic sediments deriving from the Rio Negro-Juruena Province as well as from anorogenic intrusions of the Serra da Providência (1.6-1.53 Ga; Bettencourt et al., 1999; Rizzotto et al., 2013; Scandolara et al., 2013) is also considered.

Minor peaks for Paleoproterozoic grains, varying from 1735 Ma to 2305 Ma, point to the basement of the Rondonian San-Ignácio Province and Rio Apa Block as the most probable Amazonian source areas. The former comprises the following likely sources: volcanic sequence of the Alto Jauru Group (1.76-1.72 Ga), Cabaçal Tonalite (1.78 Ga), plutonic rocks of the Figueira Branca Intrusive Suite, orthognaisses of the Alto Guaporé Metamorphic Complex (1.8-1.7 Ga) along with pre-San Ignácio units of the Paraguá Terrane (Santos et al., 2008), as well as Santa Rita (1729 Ma) and Rio Fortuna (1772 Ma) orthogneisses. The latter encompasses other probable sources: oceanic crust remnants of

the Alto Tererê Group (2.2-1.95 Ga), Rio Apa magmatic arc (1.95-1.87 Ga), calc-alkaline rocks of the Amoguijá Suite (1.87-1.75 Ga), and gabbro-anorthositic plutons of the Serra da Alegria Suite (Ruiz, 2005; Lacerda Filho et al., 2006).

Figure 6. Plots for samples VSC37, VSC40 and VSC54 showing LA-MC-ICP-MS results.

Figure. 7. Plots for samples VSC58 and VSC81 showing LA-MC-ICP-MS results.

Despite geographically far apart, the possibility of the Rio Negro-Juruena, Ventuari-Tapajós and Central Amazon provinces as source areas should also be considered. Plausible source areas in the Rio Negro-Juruena Province are metavolcanosedimentary rocks of the Roosevelt and Colíder groups, rocks of the Juruena Complex and Paranaíta Intrusive Suite, both in the Juruena Magmatic Arc, with ages between 1.82 and 1.74 Ga (Tassinari, 1996; Santos et al., 1999; Rizzotto et al., 2013; Scandolara et al., 2014, 2017). Granites, orthogneisses and basement rocks from the regions of Jauru and Porto Velho-Juruena, with ages between 1800 Ma and 1550 Ma (Tassinari, 1996; Geraldes et al., 1999), together with rocks of the Jamari Magmatic Arc whose ages range between 1.76 and 1.73 Ga (Rizzotto et al., 2013), are also likely source areas.

Figure 8. Sm-Nd plots for metasedimentary rocks of the Cuiabá Group in comparison with Nd values of likely source areas (A) Amazonian and São Francisco cratons, and Goiás Archean Block. (B) Meso- to Paleoproterozoic terranes of the basement and granulite complexes of the Brasília Belt. (C) Neoproterozoic terranes of the Brasília Belt and granite intrusions of the Paraguay Belt.

Figure 9. Plot showing Nd isotopic results in comparison with Nd values of terranes of the Tocantins Province with similar model ages.

In the Ventuari-Tapajós Province, the most likely source areas are the rocks of the Gorotire Group, with ages between 1800 Ma and 1600 Ma (Santos et al., 1997), Maloquinha granitoids and calc-alkaline volcanics of the Iriri Group, ranging in age between 1890 Ma and 1840 Ma (Santos et al., 1999; Vasquez et al., 1999; Moura et al., 1999), calc-alkaline tonalitic to granodioritic gneisses dated between 2000 Ma and 1850 Ma (Gaudette et al., 1996; Tassinari et al., 1996; Sato and Tassinari, 1997; Iwanuch, 1999), metavolcanosedimentary rocks of the Jacareacanga Sequence, with ages between 2100 Ma and 1920 Ma (Santos et al., 1999), as well as the Macabana and Minicia gneisses, and the Atabapo quartz diorite whose ages vary between 1850 Ma and 1830 Ma (Tassinari, 1996).

In the Central Amazon Province, the probable source areas are the Moderna Granite which dates back to 1810 Ma (Santos et al., 1997), the Água Boa and Madeira granites, 1830 Ma (Fuck et al., 1993), the subvolcanics of Rio Xingu, 1860 Ma (Sato and Tassinari, 1997), the Paleoproterozoic granites within the Itacaiúnas shear zone, ca. 1880 Ma (Machado et al., 1991; Dall'Agnol et al., 1994), the Parauari Granite, 1920 Ma (Macambira et al., 1992), the Iricoumé volcanics, 1960 Ma (Schobbenhaus et al., 1994), the Água Branca monzogranite with ages between 1960 Ma and 1940 Ma (Almeida et al., 1997), and the Surumu felsic volcanics, with ages varying between 2000 and 1950 Ma (Schobbenhaus et al., 1994).

A single Neoarchean grain found in sample VSC54, with apparent age of 2670 Ma, has the Plaquê Intrusive Suite (2700 Ma, Araujo et al., 1988), emplaced in the Carajás-Iricoumé Block of the Central Amazon Province, as possible source area that due to great distance from the basin, did not show important contribution.

Amazonian sources for samples interpreted as deposited in passive margin are also corroborated by Nd isotopic data from sample VSC54, whose T_{DM} model age of 1.72 Ga (**Table 1**) indicates a chiefly Mesoproterozoic contribution along with $\varepsilon_{Nd(600)}$ value of -7.28 that points to a mix of juvenile and evolved sources (**Fig. 8**). This scenario is plausible taking into account the mix of materials derived from Paleo- to Mesoproterozoic juvenile accretionary terranes, for instance the Ventuari-Tapajós and Rio Negro-Juruena provinces and part of the Maroní-Itacaiúnas and Rondonian-San Ignácio provinces, with Mesoproterozoic sialic terranes reworked up to early Neoproterozoic, such as part of the Rondonian-San Ignácio and Sunsás provinces.

Samples **VSC37** and **VSC40** display no difference between the youngest concordant ages (630 Ma and 634 Ma, respectively) and the depositional age estimated for the Cuiabá
Group (ca. 635 Ma), and respectively represent 35% and 46% of the Neoproterozoic grains along with polymodal age distribution spectrum which reveals the input of older grains into the basin. According to the model proposed by Cawood et al. (2012), such characteristics allow to classify the depositional settings of these samples as convergent margin, which differs from the passive margin settings so far proposed for the Cuiabá Group. This assumption is supported by major Ediacaran-age peaks that are not reported in the Amazonian Craton, and, therefore, allows to disregard it as the main source area. As a result, the more acceptable source areas for these precursor sediments refer back to the Ediacaran magmatism and high-grade metamorphism described for domains of Goiás Magmatic Arc and Goiás Massif that consist of granulite terrains, layered mafic-ultramafic intrusions, Paleoproterozoic basement rocks and Archean granite-greenstone terrains in the Brasília Belt (Pimentel et al., 2016) (**Fig. 10**), which suggest that the main source areas would sit on the east of the basin.

The more likely Ediacaran source areas in the Brasília Belt are the metarhyolites of the Iporá Metavolcanossedimentary Sequence with the youngest age of 597±5 Ma (Rodrigues et al., 1999), the Uruana Syenite and the Itapuranga Granite, with ages of 618±4 Ma and 624±10 Ma, respectively (Pimentel et al., 2003a), and the gabbronorite of the Taquaral Complex, with ages between 623 and 525 Ma (Della Giustina et al., 2011).

Both metavolcanosedimentary rocks of the Iporá Sequence and Itapuranga Granite are also possible sources for the Ediacaran grains in the main population, with ages varying from 630 Ma to 634 Ma, since a subordinate zircon population from metarhyolites of the Iporá Sequence returned an age of 636±6 Ma (Rodrigues et al., 1999), and, taking into account analytical errors, the Itapuranga Granite shows the same age as the major peak of sample VSC40. Other likely sources are orthogneisses of the Taquaral mafic-ultramafic complex that date back to 631 Ma (Della Giustina et al., 2011), and garnet gneisses and paragranulites of the Anápolis-Itauçu Complex, respectively 640±8 Ma and 639±9 Ma (Piuzana et al., 2003).

For the subordinate Cryogenian age peaks at 654 Ma, 682 Ma, 690 Ma and 719 Ma, the suggested source areas are syn-granulitization granites of the Bonfinópolis region, with ages between 653±13 Ma and 664±7 Ma (Piuzana et al., 2003); the amphibolite of the Taquaral Mafic-Ultramafic Complex, the leucogabbro and dioritic granulite of the Damolândia Mafic-Ultramafic Complex, ca. 670 Ma, and the paragranulites of the Anápolis-Itauçu Granulitic Complex, 680 Ma (Della Giustina et al., 2011). Granitic, granodioritic, and tonalitic rocks of the Iporá-Jaupaci arc, geochemically more evolved, whose ages vary

between 640 Ma and 760 Ma (Pimentel et al., 1999), comprise all the spectrum of Cryogenian ages for the samples studied and are therefore a likely source area.

Figure 10. Map of the main tectonic domains in South America, Amazonian craton subdivided into geochronological provinces as proposed by Tassinari and Macambira (1999, 2004), São Francisco and São Luís cratons, Neoproterozoic Tocantins, Borborema and Mantiqueira provinces, domains of the Brasília Belt (Heilbron et al., 2017), Phanerozoic sedimentary covers and the Andean Orogenic Belt (modified from Cordani et al., 2009).

The small peaks of Mesoproterozoic age at 1.02 Ga and 1.55 Ga may derive from the metasedimentary rocks deposited in passive margin settings of the Brasília Belt (Pimentel et al., 2011), as well as from the youngest A-type granites and rhyolites of the Goiás tin Province (Pimentel et al., 1991b, 1999), respectively.

Minor Paleoproterozoic peaks show ages at 1.88 Ga and 1.99 Ga having as presumed source areas the tonalitic rocks of the Caiçara Complex in the Goiás Archean Block (Tomazzoli, 1992), along with the less likely units of the São Francisco Craton, such as the post-collisional leucogranites of the Gavião Block that have similar ages (Heilbron et al., 2017).

For the small Archean peaks with ages between 2.6 Ga and 2.9 Ga, the indicated source areas are gneisses, tonalites, and granodiorites of the Uvá and Hidrolina complexes, both in the Goiás Archean Block (Montalvão, 1986; Tomazzoli, 1992; Pimentel et al., 1996, 2003b; Queiroz et al., 2008; Jost et al., 2005, 2010, 2012, 2013; Borges et al., 2017). Similar ages are reported for the São Francisco Craton, for example the Neoarchean rocks related to the Rio das Velhas Orogeny (late stage), and Mesoarchean units ascribed to the Campo Belo Orogeny (Heilbron et al., 2017).

In its turn, the apparent ²⁰⁶Pb^{/238}U age of 523 Ma raised for a single Cambrian zircon grain from sample VSC37 is similar to the age of post-orogenic bimodal magmatism emplaced into the Brasília Belt (Pimentel et al., 1999). Since this is the only grain found, the maximum depositional age cannot be estimated, however its presence may point to the existence of a unit younger than the Cuiabá Group.

The interpretation of younger sources for samples deposited in convergent margin (VSC42 and VSC74) is corroborated by isotopic Nd data that show T_{DM} model ages of 1.39 and 1.51 Ga, and $\varepsilon_{Nd(600)}$ values of - 4.32 and -5.13, respectively. This indicates the contribution of both very evolved ancient source areas and primitive young source areas (**Fig. 8**). Such configuration is consistent with the mix of materials deriving from areas, such as the Goiás Archean Block, Paleoproterozoic basement of the Brasília Belt, anorogenic granites of the Goiás tin Province, and supracrustal, granulitic and Neoproterozoic magmatic rocks of the Brasília Belt.

The sample **VSC81** shows a difference of ca. 50 Ma between the youngest ages (591 Ma concordant age, and 582 Ma apparent ²⁰⁶Pb/²³⁸U age) and depositional age estimated for the Cuiabá Group (ca. 650 Ma). 77% of the grains are Neoproterozoic in age, from which 59% are Ediacaran, 36% are Cryogenian, and only 5% are Tonian, yielding a characteristic unimodal distribution spectrum for apparent ages that reveal a limited input of older grains, with only 4% of Mesoproterozoic grains, 15% of Paleoproterozoic grains, and 4% of Archean grains. According to the model of Cawood et al. (2012), a unimodal age spectrum on which more than 50% of grains have ages close to that of the depositional age reflects tectonic convergent settings of basins sitting near magmatic arcs, where syn-sedimentary magmatism gives rise to grains with ages close to that of the depositional age. Such interpretation accounts for the existence of an active magmatic arc, between 630 and 580 Ma, near the eastern border of the Paraguay Belt, in the Paranapanema Block, that would be currently overlaid by Phanerozoic deposits of the Paraná Basin. Although less likely,

given the existence of selective erosion, the participation of source areas with ages similar to those found in the Brasília Belt is also a possibility (**Fig. 10**).

The youngest Ediacaran ages, ca. 580 Ma and 590 Ma, may have as source areas the Serra do Impertinente, Israelândia, Caiapó and Serra do Iran granites, high-K I-type of the Arenópolis region, and the felsic volcanic rocks of the Iporá Sequence, whose ages vary from 576 Ma to 597 Ma (Pimentel and Fuck, 1994; Pimentel et al., 1996a, b; Rodrigues et al., 1999).

For the main population of grains at ca. 634 Ma, with age dispersion between 620 Ma and 636 Ma, the source areas may have been syenites and granites of the Itapuranga Suite, with ages between 618 Ma and 624 Ma (Pimentel et al., 2003a), intrusive, gneissic and granulitic rocks of the Damolândia, Taquaral and Goianira-Trindade mafic-ultramafic complexes, 620 Ma and 631 Ma (Della Giustina et al., 2011), layered mafic intrusions of the Americano do Brasil Mafic-Ultramafic Complex, 612 Ma and 630 Ma (Nilson et al., 1997; Pimentel et al., 1999), felsic volcanic rocks of the Iporá Sequence, 636 Ma, and the Firminópolis gneiss, 630 Ma (Rodrigues et al., 1999).

For ages between 640 Ma and 650 Ma, the most likely source areas are granites and gneisses of the Anápolis-Itauçu and Uruaçu granulite complexes, whose ages range between 640 Ma and 664 Ma (Piuzana et al., 2003; Della Giustina et al., 2009).

However, for Mesoproterozoic grains, the suggested source areas are the supracrustal rocks of the Brasília Belt, whose detrital grains show a sparse age distribution between 1.07 and 1.57 Ga (Rodrigues et al., 2008; Dias et al., 2011; Pimentel et al., 2011), the paragranulites of the Anápolis-Itauçu and Uruaçu complexes (Piuzana et al. 2003; Della Giustina et al., 2009), and the A-type granites of the Goiás tin Province (Pimentel et al., 1999).

The Paleoproterozoic grains, with ages distributed between 1.85 Ga and 2.2 Ga, may have been sourced in supracrustal sequences of the Brasília Belt (Pimentel et al., 2011), the oldest granites of the Goiás tin Province, and tonalites of the Caiçara Complex in the Goiás Archean Block (Tomazzoli, 1992). Even the post-collisional granites of the Gavião Block have compatible ages (Heilbron et al., 2017), the São Francisco Cráton in an unlikely source due to great distance and position, since the nowadays eroded mountains of the Brasília Belt used to separate the craton from the Paraguay Belt precursor basin.

Source areas for the small amount of Archean grains, with ages between 2.6 Ga and 3.0 Ga, may have been the gneisses, tonalites, and granodiorites of the Uvá and Hidrolina

complexes, also in the Goiás Archean Block (Montalvão, 1986; Tomazzoli, 1992; Pimentel et al., 1996, 2003b; Queiroz et al., 2008; Jost et al., 2005, 2010, 2012, 2013; Borges et al., 2017). Similar ages are reported from the São Francisco Craton for the Guajeru and Rio Paraúna granite-greenstone terrains (Heilbron et al, 2017), yet they represent less favorable source areas.

Neoproterozoic sources for samples interpreted as deposited in basin of convergent margin with syn-sedimentary magmatism are also supported by Nd isotopic data from sample VSC81, whose T_{DM} model age of 1.67 Ga suggests a restrict participation of ancient sources as well as $\epsilon_{Nd(600)}$ value of -7.6 indicates a mix of juvenile and evolved materials (**Fig. 8**), a likely configuration with ca. 23% of dated grains provided by source areas, such as the Goiás Archean Block, Paleoproterozoic basement of the Brasília Belt, and anorogenic granites of the Goiás tin Province, and 40% of grains from source areas like the supracrustal, granulitic, and Neoproterozoic evolved magmatic rocks of the Brasília Belt. Nonetheless, the interpretation of proximal sources in an Ediacaran magmatic arc possibly developed above the Meso- to Paleoproterozoic sialic crust of the Paranapanema Block is supported by unimodal age spectrum, poorly rounded grains pointing to proximal source, and Nd data, which are also compatible with this type of depositional settings.

3.6.2. MAXIMUM DEPOSITIONAL AGES AND EVOLUTIONARY MODEL.

Based on the youngest age obtained from sample VSC81, a maximum depositional age of 590 Ma is estimated for sedimentary rocks of the Cuiabá Group in the southern sector of the Paraguay Belt.

Owing to age spectra patterns of samples VSC37 and VSC40, their depositional settings are ascribed to convergent margin as corroborated by unimodal spectrum with ca. 46% of Ediacaran grains in sample VSC81, which is likely related to syn-orogenic sedimentation on the western margin of the Paranapanema Block in the Ediacaran.

The difference among age spectra, main detrital age modes, and the youngest ages found in sample VSC58, interpreted as a passive margin sequence, indicates that precursor sediments of the Cuiabá Group likely represent several basin settings, partially deposited on the Amazonian continental platform, in passive margin settings, as well as partially deposited in syn-orogenic convergent settings on the western margin of the Paranapanema Block.

Given the strong deformation and greenschist facies metamorphism impressed on all samples, we assume that the convergent event giving rise to these features is younger than 590 Ma, which means that it represents an orogenic phase different and younger than the East African Orogeny or Brasiliano-Pan-African Orogeny (800-650 Ma; Meert et al., 2003; Cordani et al., 2013a) responsible for the closure of the Goiás-Pharusian ocean and edification of the Brasília Belt. This assumption is corroborated by age modes of the main detrital populations from samples indicative of convergent settings that point to Ediacaran domains recording the final edification stages of the Brasília Belt as the main source areas for the convergent margin sediments of the Cuiabá Group.

The minimum depositional age suggested for the Cuiabá Group is 540 Ma, with basis on fissural granite intrusions resulting from arc magmatism interpreted as pre- to syntectonic that outcrop in the Southern Mato Grosso sector (Godoy et al., 2007, 2010; Manzano et al., 2008), and by detrital zircon of ca. 543 Ma in the Cuiabá Group in southern sector of the belt (McGee et al., 2018). This age is also compatible with metamorphic peak ages dated in both sectors of the Paraguay Belt (Geraldes et al., 2008, 2010; Tohver et al., 2010; Piacentini et al., 2013; McGee et al., 2014) as well as with apparent ages of the youngest grains from samples of convergent margin that are correlated with the Kuunga Orogeny (570-530 Ma; Meert et al., 2003).

The results obtained allow some inferences to be made on the geodynamic evolution of the Paraguay Belt. The first inference is that its edification is not linked to the closure of the Goiás-Pharusian ocean and edification of the Brasília Belt (**Fig. 11**), between 850 and 620 Ma (Cordani et al., 2013a). The terrains recording the ocean closure were already built up and uplifted by then and providing sediments to the convergent margin sequence of the precursor basin of the Cuiabá Group. Uplifting is supported by data presented by Della Giustina et al. (2011) who correlate bimodal magmatism and high-grade metamorphism taking place between 630 and 620 Ma in the Brasília Belt along with crustal thickening and uplifting, which favored erosion, transport, and deposition of sediments that gave rise to the precursor Cuiabá syn-orogenic basin between 620 and 590 Ma, with deposition of the major and youngest grain populations (Fig. 11B).

The interval between 590 and 540 Ma was likely marked by intensification of convergence, ocean closure and onset of edification of the Paraguay Belt (**Fig. 11**), with active convergent tectonics up to, at least, 520 Ma, when the first post-collisional granite batholiths with intra-plate signature were emplaced (Godoy et al., 2007, 2010; McGee et al., 2012), and the youngest grain found in sample VSC37 was deposited, which reinforces the interpretation of deposition in syn-orogenic foreland basin for part of the sediments in the Paraguay Belt, developed until the Cambrian. This time interval is correlated with the

Kuunga Orogeny (Meert et al., 2003), probably responsible for convergence and magmatism on the border of the Paranapanema Block along with closure of the precursor basin of the Paraguay Belt.

This convergent event was proposed by Tohver and Trindade (2014) on the basis of interpretation of paleomagnetic, geochronological, seismic, magnetotelluric, gravimetric, and geochemical data (Rapela et al., 1998, 2007; D'Agrella-Filho et al., 1998, 2000; Teixeira et al., 2002; Woldemichael, 2003; Trindade et al., 2006; Soares et al., 2006; Geraldes et al., 2008; Tohver et al., 2010, 2012; Bologna et al., 2011, 2013; Perarnau et al., 2012; Assumpção et al., 2013; Rocha et al., 2013; Piacentini et al., 2013). According to Tohver and Trindade (2014), the convergence between the Amazonian-Rio Apa Craton and other blocks in South America would have continued throughout the Ediacaran and Cambrian, resulting in a suture zone along the Araguaia, Paraguay and Pampean belts, with subduction and development of Andean-type arc magmatism on the western margin of the Paranapanema Block and Rio de la Plata Craton, product of their interaction with the Rio Apa and Pampia blocks as also suggested by Woldemichael (2003), Mantovani et al. (2005), Escayola et al. (2011) and Godoy et al. (2010). The latter authors even proposed the name of "Neoproterozoic Paraguay Magmatic Arc".

At the end of edification of the Paraguay Belt, between 540 and 520 Ma, sedimentation of the upper Corumbá Group took place in the southern sector, with deposition of sediments and intercalation of Ediacaran felsic volcanic rocks within the Tamengo Formation showing an age of 542 Ma (Boggiani et al., 2010). The model is corroborated by increase in the input of clastic sediments towards the top, which demonstrates orogen uplifting as a result of ocean closure and weak folding provided by less intense late deformation phases (Campanha et al., 2011; D'el- Rey Silva et al., 2016). This is a similar scenario for the northern sector of the belt where sediments of the Alto Paraguai Group were deposited in a foreland basin, from which McGee et al. (2015) dated the youngest zircon grain extracted from the Diamantino Formation yielding an apparent age of 528 Ma as well as an estimated maximum depositional age of 560 Ma, that mark the final sedimentation of the Paraguay Belt (Dantas et al., 2009; Bandeira et al., 2012).

The end of the orogeny is marked by emplacement of late- to post-collisional granite intrusions into the northern sector of the belt that are interpreted as products of continental collision and/or post-collisional decompression between 518 and 504 Ma (Godoy et al., 2007, 2010; McGee et al., 2012). These are rapakivi batholiths with very negative $\varepsilon_{Nd(500)}$ values and T_{DM} model ages indicative of reworking of Meso- to Neoproterozoic continental

crust, which supports the inference of a Neoproterozoic arc on the border of the Paranapanema Block.

Figure 11. Evolutionary model for Western Gondwana between the Tonian and Cambrian.

3.6.3. INTERPRETATION OF TECTONIC SETTINGS FOR AMPHIBOLITES (METABASALTS) OF THE RIO BACURI SEQUENCE.

Rocks of the Rio Bacuri Metavolcanosedimentary Sequence are composed of oriented tremolite-actinolite, plagioclase, and quartz defining a schistosity that encompasses porphyroblasts of titanite, which is consistent with a basaltic protolith (Lacerda Filho et al., 2006). Given the T_{DM} model age of ca. 1.0 Ga and positive ε_{Nd} values, basalts may record rifting and basin opening. Regrettably, the isotopic data obtained did not yield an isochron age representative of rifting. Therefore, we infer that the onset of basin opening dates back to the Tonian, which is in agreement with the maximum depositional age obtained for passive margin samples from the Paraguay Belt.

3.7. Conclusions.

The combination of U-Pb and Sm-Nd provenance data with data available for the Paraguay Belt allow some conclusions to be drawn on the geodynamic evolution and tectonic settings of this belt. Data and interpretations deny some models previously proposed, in which the sedimentary units represent different phases of deposition in passive margin along the continental platform of the Amazonian Craton, by providing an alternative model to be considered and pointing to the need for reviewing the geodynamic evolution of the Paraguay Belt.

Based on discussed data, the Paraguay Belt can be divided into:

(i) Passive margin sequence, represented by coarser-grained sedimentary rocks deposited near the margin of the Amazonian Craton, whose depositional age remains uncertain yet younger than 900 Ma.

(ii) Convergent margin sequence, whose polymodal spectrum pattern for detrital zircon grains shows ages broadly distributed from the Ediacaran to the Archean and maximum depositional age at ca. 590 Ma indicate deposition in convergent settings, having as main source areas the Neoproterozoic terrains of the Brasília Belt, with contribution from ancient terranes of the Goiás Massif, and basement and supracrustal rocks of the Brasília Belt, as well as likely contribution from terrains of the São Francisco Craton.

(iii) Foreland basin sequence, whose available data suggest a maximum depositional age at ca. 540 Ma similar in age with the youngest zircon grain found in sample VSC37, that records the final sedimentation event and deformation at ca. 525 Ma.

These interpretations diverge from the evolutionary model for deformation and metamorphism of the Paraguay Belt, currently associated with the closure of the Goiás-Pharusian ocean at ca. 620 Ma (Kröner e Cordani, 2003; Cordani et al, 2009, 2013a, 2014), by associating Ediacaran and Cambrian events to the extension, a product of orogenic collapse. Our data appear to ratify the evolutionary model proposed for the Paraguay, Araguaia, and Pampean belts related to the closure of the Clymene Ocean at the Ediacaran-Cambrian boundary (Trindade et al 2003, 2006; Tohver et al. 2010, 2012, 2014; McGee et al., 2015), developed to the west of the Goiás Magmatic Arc, Paranapanema Block, and Rio de la Plata Craton, which was the last orogenic event to shape Western Gondwana.

Acknowledgment

BRV acknowledge the National Research Council (CNPq) for their support through the project 870607/1997-9, who provided the doctoral scholarship 163364/2015-5 enabling the development of the research. We are also grateful for the Faculty of Geosciences at Federal University of Mato Grosso for the assistance of personnel and materials for execution of the fieldwork. RAF acknowledges CNPq for research scholarship and CNPq and FAP/DF for research grant INCT Estudos Tectônicos.

3.8. References

- Albarède, F., Telouk, P., Blichert-Toft, J., Boyet, M., Agranier, A., Nelson, B., 2004. Precise and accurate isotopic measurements using multiple collector ICPMS. Geochimica et Cosmochimica Acta 68, 2725–2744
- Almeida F.F.M., 1984. Província Tocantins, setor sudoeste. In: Almeida, F.F.M. de; Hasui, Y. (Coord.). O Pré-Cambriano do Brasil. São Paulo, Edgard Blücher, 265-281.
- Almeida, F.F.M., 1965. Geossinclíneo Paraguai, in: Presented at the Semana de Debates Geológicos 1, Porto Alegre. 87-101.
- Almeida, F.F.M., Hasui, Y., Brito Neves, B.B., Fuck, R.A. Brazilian structural provinces: An introduction. Earth-Science Reviews 17(1), 1-29, 1981.
- Almeida, M.E., Fraga, L.M.B., Macambira, M.J.B., 1997. New geochronological data of calc-alkaline granitoids of Roraima State, Brazil. South American Symposium on Isotope Geology. Extended Abstracts, 34-35.
- Alvarega C.J.S., Trompette R., 1993. Evolução Tectônica Brasiliana da Faixa Paraguai: a estruturação da região de Cuiabá. Revista Brasileira de Geociências, 23, 18-30.
- Alvarenga C.J.S., 1988. Turbiditos e a glaciação do final do Proterozóico Superior no Cinturão Paraguai, Mato Grosso. Revista Brasileira de Geociências, São Paulo, 18, 323-327.
- Alvarenga C.J.S., 1990. Phénomènes sédimentaires, estructuraux et circulation de fluides developpés à la transition chaine-craton: exemple de la chaine Paraguai d'age protérozoique supérieur, Mato Grosso, Brésil. Tese Doutorado Faculté des Sciences et Techniques de St. Jérôme, Universithé d'Aix-Marseille II, Marseille.
- Alvarenga C.J.S., Figueiredo M.F., Babinski M. Pinho F.E.C., 2007. Glacial diamictites of Serra Azul Formation (Ediacaran, Paraguay belt): Eividence of the Gaskier glacial event in Brazil. Journal of South American Earth Science, 23, 236-241.
- Alvarenga C.J.S., Moura C.A.V., Gorayeb S.S.G., Abreu F.A.M., 2000. Paraguay and Araguaia Belts. In: Cordani U.S., Milani E.J., Thomas Filho A., Campos D.A. Tectônic Evolution of South América, Rio de Janeiro, 183-193.
- Alvarenga, C. J. S.; Saes, G. S.,1992. Estratigrafia e sedimentologia do Proterozóico Médio e Superior da região sudeste do Cráton Amazônico. Revista Brasileira de Geociências, São Paulo, 22, 493-499.
- Alvarenga, C.J.S. & trompette, R., 1992. Glacial influenced sedimentation in the later Proterozoic of the Paraguay belt (Mato Grosso, Brazil). Palaeogeogr. Palaeoclimatol. Palaeoecol, 92, 85-105.
- Araújo, O.J.B., Maia, R., Jorge João, X.S., Costa, J.B.S., 1988. A Megaestruturação arqueana da Folha Serra dos Carajás. VII Congresso Latino Americano De Geologia, Extended Abstracts. Anais, 324-333.
- Assumpção, M., Sacek, V., 2013. Intra-plate seismicity and flexural stresses in central Brazil. Geophysical Research Letters, 40, 487- 491.
- Babinski, M., Boggiani, P.C., Fanning, C.M., Fairchild, T.R., Simon, C.M., Sial, A.N., 2008. U–Pb SHRIMP Geochronology and Isotope Chemostratigraphy (C, O, SR) of the Tamengo Formation, Southern Paraguay Belt, Brazil. Short Paper Presented in the VI South American Symposium on Isotope Geology, Bariloche, Argentina. PDF file available in CD-ROM.

- Babinski, M., Boggiani, P.C., Trindade, R.I.F., Fanning, C.M., 2013. Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictite and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana, 23, 988–997.
- Babinski, M.; Figueiredo, M. F.; Fanning, M. . U-Pb SHRIMP geochronological constraints on Puga e Serra
 Azul glacial diamictites, Northern Paraguay belt. In: South American Symposium on Isotope Geology,
 2010, Brasilia, Brazil. Short Papers, 2010.
- Babinski, M.; Figueiredo, M. F.; Trindade, R. I. F.; FANNING, M. . Detrital zircon geochronology of the glacial deposits from the Northern Paraguay belt, Brazil: Paleogeographic implications.. In: Gondwana 14, 2011, Buzios, RJ. Abstracts, 2011. v. 1. p. 47-47.
- Babinski, M., McGee, B., Tokashiki, C.C., Tassinari, C.C.G., Saes, G.S., Pinho, F.E.C., 2018. Comparing two arms of an orogenic belt during Gondwana amalgamation: Age and provenance of the Cuiabá Group, northern Paraguay Belt, Brazil. Journal of South American Earth Sciences. In Press. DOI: 10.1016/j.james.2018.04.009.
- Bandeira, J., McGee, B., Nogueira, A.C.R., Collins, A.S., Trindade, R., 2012. Sedimentological and provenance response to Cambrian closure of the Clymene Ocean: the upper Alto Paraguay Group, Paraguay belt, Brazil. Gondwana, 21, 324–340.
- Batalha R.S., 2016. Estudo de Minerais Pesados, Análise Morfológica e Datação U-Pb por ICPMS-LA de
 Zircão Detrítico Proveniência dos Metassedimentos do Grupo Cuiabá, Faixa Paraguai Norte-MT.
 Master Dissertation, University Federal of Mato Grosso, Cuiabá.
- Bettencourt, J.A., Payolla, B.L., Leite Jr., W.B., Tosdal, R.M., Spiro, B., 1999. Mesoproterozoic Rapakivi granites of Rondonia tin province, SW border os Amazon Craton, Brazil. III-Reconnaissance Nd, Sr, O, Pb isotopic geochemistry and regional implications. In: Barbaran, B. (Ed.), Fourth Hutton Symposium Clermont Ferrand, France, 290, 132.
- Bettencourt, J.S., Leite Jr. W.B., Ruiz, A.S., Matos, R., Payolla, B.L., Tosdal, R.M., 2010. The Rondonian-San Ignacio Province in the SW Amazonian Craton: An overview. Journal of South American Earth Science. 29, 28-46.
- Boggiani P.C., Gaucher C., Sial A.N., Babinski M., Simona C., Riccomini C., Ferreira V.P., Fairchild T.R., 2010. Chemostratigraphy of the Tamengo Formation (Corumba Group, Brazil): contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Research, 182, 382-401
- Boggiani, P. C., 1990. Ambientes de sedimentação do Grupo Corumbá na região central da Serra da Bodoquena, Mato Grosso do Sul. Dissertation master, University of São Paulo, São Paulo.
- Boggiani, P. C., 1997. Análise Estratigráfica da Bacia Corumbá (Neoproterozóico) Mato Grosso do Sul. Doctoral Thesis- University of São Paulo, São Paulo.
- Bologna, M. S., Nunes, H. O., Padilha, A. L., Vitorello, I., and Pádua, M. B., 2013. Anomalous electrical structure in the northwestern Paraná Basin, Brazil, observed with broadband magnetotellurics. Journal of South American Earth Sciences, 42, 74–82.

- Bologna, M.S., Padilha, A. L., Pádua, M.B.,2014. Paraguay-Araguaia Belt Conductivity Anomaly: A fundamental tectonic boundary in South American Platform imaged by electromagnetic induction surveys. Geochemistry Geophysics Geosystems, 15, 509 -515. DOI: 10.1002/2013GC004970
- Bologna, M.S., Padilha, A.L., Vitorello, L. Pádua, M.B., 2011. Signatures od continental collisions and magmatic activity in central Brazil as indicated by a magnetotellutic profile across distinct provinces. Precambrian Research, 185, 55-64.
- Borges, C.C.A., Toledo, C.L.B., Silva, A.M., Chemale Jr. F., Jost, H., Lana, C.C., 2017. Geochemistry and isotopic signatures of metavolcanic and metaplutonic rocks of the Faina and Serra de Santa Rita greenstone belts, Central Brazil: evidences for a Mesoarchean intraoceanic arc. Precambrian Research. (in press)
- Bühn, B., Pimentel, M.M., Matteini, M., Dantas, E.L., 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Anais Academia Brasileira de Ciências, 81, 1-16.
- Campanha, G.A.C., Boggiani, P.C., Sallun Filho, W., Sá, F.S., Zuquim, M.P.S., Piacentini, T., 2011. The Paraguay Fold Belt in the Serra da Bodoquena and Miranda River Depression, Mato Grosso do Sul. Revista do Instituto de Geociências 11, 79–96.
- Cawood, P.A., Hawkesworth, C.J., Dhuime, B. 2012. Detrital zircon record and tectonic setting. Geology, 40, 875-878.
- Cordani U.G.; Pimental M.M.; Araújo C.E.G.; Basei M.A.S.; Fuck R.A.; Girardi V.A.V., 2014. Reply to the Comment by E. Tohver R. Trindade on "Was there a Clymene Ocean in Central South America?" 313, 517-539. Rev. American Journal of Science 314, 814-819 Doi: 10.2475/03.2014.04
- Cordani, U. G., Pimentel, M. M., De Araujo, C. E., Basei, M. a. S., Fuck, R. A., Girardi, V. A. V., 2013a. Was there na Ediacaran Clymene Ocean in central South America?. American Journal of Science, 313, 517-539.
- Cordani, U. G., Teixeira, W., D'Agrella-Filho, M. S., Trindade, R. I. 2009. The position of the Amazonian Craton in supercontinentes. Gondwana Research, 15, 396–407.
- Cuiabá Group: Implications for the Evolution of the Paraguai Belt. Master Dissertation. University of Mato Grosso.
- D'Agrella-Filho, M.S., Babinski, M., Trindade, R.I.F., Van Schmus, W.R. and Ernesto, M., 2000. Simultaneous remagnetization and U–Pb isotope resetting in Neoproterozoic carbonates of the Sao Francisco craton, Brazil. Precambrian Research, 99, 179–196.
- D'el Rey-Silva L.J.H., Walde D.H.G., Saldanha D.O., 2016. The Neoproterozoic-Cambrian Paraguay Belt, central Brasil: Part I New structural data and a new approach on the regional implications. Tectonophysics, 676, 20-41.
- D'agrella Filho M.S., Trindade R.I.F., Siqueira R., Ponte-Neto C.F., Pacca I.I.G., 1998. Paleomagnetic Constraints on the Rodinia Supercontinent: Implications for tis Neoproterozoic Break-up and the formation of Gondwana. International Geology Review, 40, 171-188.

- Dall'Agnol, R., Lafon, J.M., Macambira, M.J.B., 1994. Proterozoic anorogenic magmatism in the Central Amazonian Province, Amazonian Cráton: geochronological, petrological and geochemical aspects. Mineral. Petroleo, 50, 113-138.
- Dantas, E.L., Alvarenga, C.J.S. de, Santos, R.V., Pimentel, M.M., 2009. Using Nd isotopes to understand the provenance of sedimentary rocks from a continental margin to a foreland basin in the Neoproterozoic Paraguay belt, Central Brazil. Precambrian Research, 170, 1–12. (Doi:10.1016/j.precamres.2008.11.005)
- De Paolo D.J., 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291, 193-197.
- Della Giustina, M. E. S., Oliveira, C. G., Pimentel, M. M., and Buhn, B., 2009a., Neoproterozoic magmatism and high-grade metamorphism in the Goia's Massif: new LA-MC-ICMPS U–Pb and Sm–Nd data and implications for collisional history of the Brasília Belt. Precambrian Research, 172, 67–79. (Doi:10.1016/j.precamres.2009.03.012)
- Della Giustina, M.E.S., Pimentel, M.M., Ferreira Filho, C.F., Holanda, M.H.B.H., 2011. Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis Itaucú Complex, central Brazil. Lithos, 124, 82-201. (Doi:10.1016/j.lithos.2010.11.004)
- Dias, P.H.A., Noce, C.M., Pedrosa-Soares, A.C., Seer, H.J., Dussin, I.A., Valeriano, C.M., Kuchenbecker, M., 2011. O Grupo Ibiá (Faixa Brasília Meridional): evidências isotópicas Sm-Nd e U-Pb de bacia colisional tipo flysch. Geonomos, 19, 90-99.
- Dragone, G.N., Ussami N., Gimenez M.E., 2017. Western Parana suture/shear zone and the limits of Rio Apa, Rio Tebicuary and Rio de la Plata cratons from gravity data.: Precambrian Research, 291, 162 – 177.DOI:10.1016/j.precamres.2017.01.029.
- Escayola M.P., Van Staal C.R., Davis W.J., 2011. The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. Journal of South American Earth Sciences, 32, 438-459.
- Fuck, R.A., Pimentel, M.M., Machado, N., Daoud, W.K., 1993. Idade U-Pb do Granito Madeira, Pitinga (AM). 4 Congresso Brasileiro de Geoquimica, 246-248.
- Gaucher, C., Boggiani, P. C., Sprechmann, P., Sial, A. N., and Fairchild, T., 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumba´ groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120, 241– 278. Doi:10.1016/S0301-9268(02)00140-7
- Gaudette, H.E., Olszewski, W.J., Santos, J.O.S., 1996. Geochronology of Precambrian rocks from the northern part of the Guiana shield, state of Roraima, Brazil. Journal Of South American Earth Science 9, 183-196.
- Geraldes, M. C., Tassinari, C. C. G., & Onoe, A. T. (2010). 40 Ar/39 Ar metamorphic record of a collision related to the western Gondwana collage: the (541-531 MA) Paraguay belt in the Nova Xavantina (MT) region. In: Boletim de Resumos. Búzios: SBG-Núcleos Rio de Janeiro/ Espirito Santo.

- Geraldes, M. C.; Tassinari, C. C. G.; Babinski, M.; Martinelli, C. D.; Yer, S. S.; Barbosa, E. S.; Pinho, F. E. C., 2008. Onoe, A. T. Isotopic Evidence for the Late Brasiliano (500- 550 Ma) Ore-Forming Mineralization of the Araés Gold Deposit, Brazil. International Geology Review, 50, 177-190.
- Geraldes, M.C., Matos, J.B., Ruiz, A.S., Fetter, A.H., Kozuch, M., Van Schumus, W.R., Tassinari, C.C.G., Teixeira, W. 1999. U-Pb constrains on Proterozoic magmatic arcs in SW Amazonian craton, Brazil. II South American Symposium on Isotope Geology. Argentina.
- Geraldes, M.C., Van Schmus, W.R., Condie, K.C., Bell, S., Teixeira, W., Babinski, M., 2001. Proterozoic Geologic Evolution of the SW part of the Amazonian Craton in Mato Grosso State, Brazil. Precambrian Research, 111, 91-128.
- Gioia S.M.C.L. & Pimentel M.M., 2000. The Sm-Nd isotopic method in the Geochronology Laboratory of the University of Brasília. Anais da Academia Brasileira de Ciências, 72, 219-245.
- Godoi, H. O.; Martins, E. G., 1999. Programa de Levantamentos Geológicos Básicos do Brasil PLGB: Aquidauana, folha SF.21-X-A, Escala 1:250000: Estado de Mato Grosso do Sul. Brasília: CPRM.
- Godoy, A. M., Manzano, J. C., Ruiz, A. S., Araújo-Ruiz, L. M. B., 2007. Os Granitóides Brasilianos da Faixa de Dobramentos Paraguai, MS e MT. Geologia USP, Série Científica, 7, 29–44. (Doi: 10.5327/Z1519-874X2007000100003).
- Godoy, A. M., Pinho, F. E. C., Manzano, J. C., de Araújo, L. M. B., da Silva, J. A., Figueiredo, M., 2010.
 Estudos isotópicos das rochas granitóides neoproterozoicas da Faixa de Dobramento Paraguai.
 Brazilian Journal of Geology, 40, 380–391.
- Gorayeb, P. S. S., Lisboa Chaves, C., Moura, C. A. V., and da Silva Lobo, L. R., 2013. Neoproterozoic granites of the Lajeado intrusive suite, north-center Brazil: A late Ediacaran remelting of a Paleoproterozoic crust. Journal of South American Earth Sciences, 45, 278–292. (Doi: 10.1016/j.jsames.2013.04.001).
- Heilbron, M., Cordani, U.G., Alkmin, F.F., 2017. São Francisco Craton, Eastern Brazil. Tectonic Genealogy of a Miniature Continent. Regional Geology Reviews, 331. (Doi: 10.1007/978-3-319-01715-0).
- Iwanuch, W., 1999. Evolução geológica com base em dados geocronologicos da porção sudeste do Estado de Mato Grosso na região do baixo e médio Rio Juruena. VI Simpósio de Geologia da Amazônia, 467-470.
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.
- Jost H., Chemale Jr. F., Fuck R.A., Dussin I.A., 2013. Uvá complex, the oldest orthogneisses of the Archean-Paleoproterozoic terrane of central Brazil. Journal of South American Earth Sciences, 47, 201-212
- Jost, H., Chemale Jr, F., Dussin, I. A., Tassinari, C.C.G., Martins, R., 2010. A U-Pb zircon Paleoproterozoic age for the metasedimentary host rocks and gold mineralization of the Crixás greenstone belt, Goiás, Central Brasil. Ore Geology Reviews, 37,127-139. Doi: 10.1016/j.oregeorev.2010.01.003
- Jost, H., Fuck, R. A., Dantas, E. L., Rancan, C. C., Rezende, D. B., Santos, E., Portela, J.F., Mattos, L., Chiarini, M. F. N., Oliveira, R. C., Silva, S.E., 2005. Geologia e geocronologia do Complexo Uvá, Bloco Arqueano de Goiás. Rev. Bras. Geociências. 35, 559-572.
- Jost, H., Rodrigues, V. G., Carvalho, M. J., Junior, F. C., Marques, J. C., 2012. Stratigraphy and geochronology of the Guarinos greenstone belt, Goiás, Brazil. Geol. USP, Ser. cient. 12, 31-48.

- Kennedy, W.Q., 1964. The structural differentiation of Africa in the Pan-African (±500 m.y.) tectonic episode. Research Institute Afr. Geol. University. of Leeds, 48-49.
- Kröner, A. and Cordani, U., 2003. African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics, 375, 325–352. (Doi: 10.1016/S0040-1951(03)00344-5)
- Lacerda Filho J.V., Brito R.S.C., Silva M.G., Oliveira C.C., Moreton L.C., Martins E.G., Lopes R.C., Lima T.M., Larizzatti J.H., Valente C.R., 2006. Geologia e Recursos Minerais do Estado de Mato Grosso do Sul. Programa Integração, Atualização e Difusão de Dados da Geologia do Brasil. Esc. 1:1000000.
- Lacerda Filho, J. V. Filho, W. A., Valente, C. R., Oliveira, C. C., Albuquerque, M. C. 2004. Geologia e Recursos Minerais do Estado de Mato Grosso. Programa Integração, Atualização e Difusão de Dados da Geologia. Goiânia. Escala 1:1.000.000.: CPRM. 200p.
- Ludwig, K.R., 2012. User's Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, 75.
- Macambira, E.M.B., João, X.S.J., Lafon, J.M., Pereira, E.D., 1992. Aspectos geológicos e geocronológicos do Granito Parauari no domínio da Folha São Felix do Xingu (SB.22-y-B) Sul do Pará. XXXVII Congresso Brasileiro De Geologia. Anais, 2, 171-173.
- Machado, N., Lindenmayer, Z., Krogh, T.E., Lindenmayer, D., 1991. U-Pb geochronology of archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Research, 49, 329-354.
- Mantovani M.S.M., Quintas M.C.L., Shukowsky W., Brito Neves B.B., 2005. Delimitation of the Paranapanema Proterozoic block: A geophysical contribution. Epsodes 28.
- Manzano, J.C., Godoy, A.M., Araújo, L.M.B., 2008. Contexto tectônico dos granitóides neoproterozoicos da Faixa de Dobramentos Paraguai, MS e MT. UNESP, Geociências, 27, 493-507.
- McGee B., Collins A.S., Trindade R.I.F., Jourdan F., 2014. Investigation mid-Ediacaran glaciation and final Gondwana amalgamation using coupled sedimentology and 40Ar/39Ar detrital muscovite provenance from the Paraguay Belt, Brazil. Sedimentology, 62, 130-154.
- McGee, B., Babinski, M., Trindade, R.,Collins, A.S. 2018. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research. In Press. DOI: https://doi.org/10.1016/j.precamres.2017.12.030
- McGee, B., Collins, A. S., and Trindade, R. I. F., 2012, G'day Gondwana, the final accretion of a supercontinent: U/Pb ages for the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research, 21, 316–322.
- McGee, B; Collins, A.S; Trindade, R.I.F; Payne, J., 2015. Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. GSA Bulletin, 127, 76-86.
- Meert J.G., 2003. A synopsis of events related to the assembly of eastern Gondwana. Tectonophysics, 362, 1-40.

- Montalvão, R.M.G., 1986. Evolução geológica dos terrenos granitóides-greenstone belts de Crixás, Guarinos, Pilar de Goiás-Hidrolina (Goiás). Doctoral Thesis, University of São Paulo, São Paulo.
- Moura, C.A.V., Gorayeb, P.S., Matsuda, N.S., 1999. Geocronologia Pb-Pb em zircão do riolito Vila Raiol, formação Iriri, Sudoeste do Pará. VI Simpósio de Geologia da Amazônia, Extended Abstract Bulletin, 475-477.
- Nilson, A.A., Gioia, S.M., Pimentel, M.M., 1997. Idade Sm-Nd do complexo máfico-ultramáfico de Americano do Brasil, Goiás, e características isotópicas das rochas gnáissicas encaixantes. Congresso Brasileiro de Geoquímica.
- Nogueira A.C.R., Riccomini C., 2006. O Grupo Araras (Neoproterozoico) na parte norte da Faixa Paraguai e Sul do Cráton Amazônico, Brasil. Revista Brasileira de Geociências, 36, 576-587.
- Nogueira A.C.R., Riccomini C., Sial A.N., Moura C.A.V., Fairchild T.R., 2003. Sof-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth. Geological Society of America, 31, 613-616.
- Nogueira, V L.; oliveira, C. C.; Figueiredo, J. A.; Corrêa Filho, F. C. L.; Scoslewski, N. G.; Souza, M. R.; Moraes Filho, J. C. R.; Leite, E. A.; Souza, N. B.; Souza, J. O.; Cerqueira, N. L. S.; Vanderlei, A. A.; Takaschi, A. T.; Abreu Filho, W.; Rosito, J.; Olivatti, O.; Hausen, J. E. P.; Gonçalves, G. N. D.; Ramalho, R.; Pereira, L. C. B., 1978. Projeto Bonito-Aquidauana, relatório Final. Goiânia. DNPM. CPRM, 14, 2744.
- Oliveira F. V., 2015. Chronus: Um novo suplemento para a redução de dados U-Pb obtidos por LA-ICPMS. Dissertation Master. Brasília. University of Brasília.
- Pelosi, G. F. F., 2017. Age, Provenance and Tectonic Setting from Southern Portion of the
- Perarnau, M., Gilbert, H., Alvarado, P., Martino, R., and Anderson, M., 2012. Crustal structure of the Eastern Sierras Pampeanas of Argentina using high frequency local receiver functions. Tectonophysics, 580, 208–217, (Doi:10.1016/j.tecto.2012.09.021)
- Piacentini, T. ; Boggiani, P. ; Yamamoto, J. K. ; Freitas, B. T. ; Campanha, G. A. C. . Formação ferrífera bandada associada à sedimentação glaciogênica da formação Puga (Mariorano) na Serra da Bodoquena, MS. Revista Brasileira de Geociências, v. 37, p. 530-541, 2007.
- Piacentini, T., Vasconcelos, P.M., Farley, K.A., 2013. 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil. Precambrian Research 228, 48–62. (Doi: 10.1016/j.precamres.2013.01.002)
- Pimentel, M.M. 2016. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil: A geochronological and isotopic approach. Brazilian Journal of Geology, 46, 67-82. (Doi: 10.1590/2317-4889201620150004)
- Pimentel M.M., Heamen, L., Fuck, R.A., Marini, O.J., 1991. U-Pb zircon geochronology of precambrian tinbearring continental-type acid magmatism in central Brazil. Precambrian Research, 51, 321-335.
- Pimentel, M. M., Fuck, R. A., Alvarenga, C. J. S., 1996a. Post-Brasiliano (Pan African) high-K granitic magmatism in central Brazil: the role of late Precambrian/early Paleozoic extension. Precambrian Research, 80, 217–238. (Doi: 10.1016/S0301-9268(96)00016-2).

- Pimentel, M.M., Dantas, E.L., Fuck, R.A., Armstrong, R. A., 2003a. Shrimp and conventional U-Pb age, Sm-Nd isotopic characteristics and tectonic significance of the k-rich Itapuranga Suite in Goiás, Central Brazil. Annals of the Brazilian Academy of Sciences. 75, 97-108.
- Pimentel, M.M., Fuck, R.A. 1994. Geocronologia Rb-Sr da porção sudoeste do Maciço Mediano de Goiás. Revista Brasileira de Geociências 24, 104-111.
- Pimentel, M.M., Fuck, R.A., Botelho, N.F., 1999. Granites and the geodynamic history of the neoproterozoic Brasília belt, Central Brazil: a review. Lithos 46: 463-483.
- Pimentel, M.M., Fuck, R.A., Silva, J.L.H., 1996b. Dados Rb-Sr e Sm-Nd da região de Jussara-Goiás-Mossâmedes (GO), e o limite entre terrenos antigos do Maciço de Goiás e o Arco Magmático de Goiás. Revista Brasileira de Geociências, 26, 61-70.
- Pimentel, M.M., Jost, H., Fuck, R.A., Armstrong, R.A., Dantas, E.L., Potrel, A., 2003b. Neoproterozoic Anatexis of 2.9 Ga Old Granitoids in the Goiás-Crixás Archean Block, Central Brazil: Evidence from new SHRIMP U-Pb data and Sm-Nd Isotopes. Geologia Série Científica USP, 3,1-12.
- Pimentel, M.M., Rodrigues, J.B., DellaGiustina, M.E.S., Junges, S.J., Matteini, M., Armstrong, R., 2011. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil, based on SHRIMP and LA-ICPMS U-Pb sedimentary provenance data: a review. Journal of South American Earth Sciences. 31, 345-357. (Doi: 10.1016/j.jsames.2011.02.001).
- Pinho, F. E. C. Estudo das rochas encaixantes e veios mineralizados a ouro do Grupo Cuiabá, na região denominada Garimpo do Araés, Nova Xavantina, Estado de Mato Grosso. 1990. 114p. Dissertação. Instituto de Geociências, Universidade Federal do Rio Grande do Sul, Porto Alegre - RS, 1990.
- Pisarevsky, S. A., Murphy, J. B., Cawood, P. A., and Collins, A. S., 2008, Late Neoproterozoic and Early Cambrian palaeogeography: models and problems, in Pankhurst, R. J., Trouw, R. A. J., de Brito-Neves, Region. Geological Society, London, Special Publications, 294, 9–31. (Doi: 10.1144/SP294.2)
- Piuzana, D. Pimentel, M.M., Fuck, R.A., Armstrong, R., 2003. Neoproterozoic granulite facies metamorphism and coeval magmatism in the Brasilia Belt, Central Brazil: regional implications of new SHRIMP U-Pb and Sm-Nd data. Precambrian Research 125, 245-273.
- Rapela, C. W., Pankhurst, R. J., Casquet, C., Baldo, E., Saavedra, J., Galindo, C., and Fanning, C. M., 1998.
 The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Co´rdoba, in Pankhurst, R. J., and Rapela, C. W., editors, The Proto-Andean Margin of Gondwana:
 Geological Society, London, Special Publications, 142, 181–217. (Doi: 10.1144/GSL.SP.1998.142.01.10)
- Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Baldo, E.G., González-Casado, J.M., Galindo, C., Dahlquist, J., 2007. The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews 83, 49–82.
- Rizzotto, G.J., Hartmann, L.A., Santos, J.O.S., McNaughton, N.J., 2014. Tectonic evolution of the southern margin of the Amazonian craton in the late Mesoproterozoic based on field relationships and zircon U-Pb geochronology. Annals of the Brazilian Academy of Sciences, 86,57-84. (Doi: 10.1590/0001-3765201404212)

- Rizzotto, G.J., Santos, J.O.S., Hartmann, L.A., Tohver, E., Pimentel, M.M., McNaughton, N.J., 2013. The Mesoproterozoic Guaporé suture in the SW Amazonian Craton: Geotectonic implications based on field geology, zircon geochronology and Nd-Sr isotope geochemistry. Journal of South American Earth Sciences. 48, 271-295. (Doi: 10.1016/j.james.2013.10.001).
- Rocha-Júnior, E. R. V., Marques, L. S., Babinski, M., Nardy, A. J. R., Figueiredo, A. M. G., and Machado, F.
 B., 2013. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil). Journal of South American Earth Sciences, 46, 9–25. (Doi: 10.1016/j.jsames.2013.04.004)
- Rodrigues, J.B., 2008. Proveniência de sedimentos dos grupos Canastra, Ibiá, Vazante e Bambuí Um estudo de zircões detríticos e Idades Modelo Sm-Nd. Doctoral Thesis, University of Brasília.
- Rodrigues, J.B., Gioia, S.M.L., Pimentel, M.M., 1999. Geocronologia e geoquímica de ortognaisses da região entre Iporá e Firminópolis: Implicações para a evolução do Arco Magmático de Goiás, Brazilian Journal of Geology, 29, 207-2016.
- Ruiz, A. S., 2005. Evolução geológica do sudoeste do cráton amazônico região limítrofe brasil-bolívia mato grosso. Tese de Doutorado. Rio Claro São Paulo.
- Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., 1997. Recoinnaissance U-Pb in zircon, Pb-Pb in sulfides and review of Rb-Sr geochronology in the Tapajós gold province, Pará/Amazonas States, Brazil. South American Symposium on Isotope geology. Extended Abstract, 280-282.
- Santos, J.O.S., Reis, N.J., Hartmann, L.A., MacNaugthon, N.J., Fletcher, I.R., 1999. Associação anostositocharnockito-rapakivi do Caliminiano do norte do Cráton Amazônico, Estado de Roraima: Evidencias obtidas por geocronologia U-Pb (SHRIMP) em zircão e baddeleyta. VI Simpósio de Geologia da Amazônia, Extended Abstract Bulletin, 502-505.
- Santos, J.O.S., Rizzotto, G.J., Potter, P.E., McNaughton, N.J, Matos, R.S., Hartmann, L.A., Chemale, F., Quadros, M.E.S., 2008. Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton based on mapping and U-Pb geochronology. Precambriam Research, 165, 120-152.
- Sato, K., Tassinari, C.C.G., 1997. Principais eventos de acreção continental no Cráton Amazônico baseados em idade modelo Sm-Nd, calculada em evoluções de estágio único e estágio duplo. In: Costa, M.L., Angélica, R.S. (Eds). Contribuições à Geologia da Amazônia, Belém, SBG, 91-142.
- Scandolara, J.E., Correa, R.T., Fuck, R.A., Souza, V.S., Rodrigues, J.B., Ribeiro, P.S.E., Frasca, A.A.S., Saboia, A.M., Lacerda Filho, J.V. 2017. Paleo-Mesoproterozoic arc-accretion along the southwestern margin of the Amazonian craton: The Juruena accretionary orogen and possible implications for Columbia supercontinent. Journal of South American Earth Sciences 73, 223-247.
- Scandolara, J.E., Fuck, R.A., Dall'Agnol, R., Dantas, E.L. 2013. Geochemistry and origin of the early Mesoproterozoic mangerite-charnockite-rapakivi granite association of the Serra da Providência suite and associated gabbros, central-eastern Rondônia, SW Amazonian Craton, Brazil. Journal of South American Earth Sciences 45, 166-193.
- Scandolara, J.E., Ribeiro, P.S.E., Frasca, A.A.S., Fuck, R.A., Rodrigues, J.B. 2014. Geochemistry and geochronology of mafic rocks from the Vespor suite in the Juruena arc, Roosevelt-Juruena terrain,

Brazil: Implications for Proterozoic crustal growth and geodynamic setting of the SW Amazonian craton. Journal of South American Earth Sciences 53, 20-49.

- Schobbenhaus, C., Hoppe, A., Lork, A., Baumann, A., 1994. Idade U-Pb do magmatismo Uatumã no norte do Cráton Amazônico, Escudo da Guianas (Brasil): primeiros resultados. XXXVIII Congresso Brasileiro Geolologia, Extended Abstract 2, 395-397.
- Soares, J. E., Berrocal, J., Fuck, R. A., Mooney, W. D., Ventura, D. B. R., 2006. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study. Journal of Geophysical Research, Solid Earth, 111, 12302. (Doi: 10.1029/2005JB003769).
- Sparrenberger, I., Bettencourt, J.S., Tosdal, R.M., Wooden, J.L., 2002. Datações U-Pb convencional versus SHRIMP do Maçico Estanífero Santa Bárbara; Suíte Granitos Últimos de Rondônia, Brasil. Revista Geologia USP, série científica, 2, 79-94.
- Tassinari, C.C.G., 1996. O Mapa geocronológico do Cráton Amazônico no Brasil. Revisão dos Dados Isotópicos. São Paulo, Tese de Livre Docência, Instituto de Geociências, Universidade de São Paulo.
- Tassinari, C.C.G., Macambira, M.J.B., 1999. Geocronological provinces of the Amazonian Craton. Episodes 22,174-182.
- Tassinari, C.C.G., Macambira, M.J.B. 2004. A evolução tectônica do Cráton Amazônico. In: Mantesso-Neto,V., Bartorelli, A., Carneiro, C.D.R. and Brito Neves, B.B. (Eds.) Geologia do continente Sul-americano:Evolução da obra de Fernando Flávio Marques de Almeida. pp. 471-485.
- Teixeira, K.S.L., Moura, C.A.V., Costi, H.T., Ramos, J.F.R., 2002. Utilização de MEV-EDS no apoio à seleção de monocristais de zircão para datação por evaporação de chumbo. Anais do Congresso Brasileiro de Geologia, 41, 128.
- Teixeira, W., Geraldes, M.C., Matos, R., Ruiz, A.S., Saes, G., Vargas-Mattos, G., 2010. A review of the tectonic evolution of the Sunsás belt, SW Amazon Craton. Journal of South American Earth Sciences. 29. 47-60. (Doi: 10.1016/j.jsames.2009.09.007)
- Tohver E., Trindade R.I.F., 2014. Comment on "Was there na Ediacaran Clymene Ocean in central South America?" By Umberto Giuseppe Cordani, Marcio Martins Pimentel, Carlos Eduardo Ganade de Araújo, Miguel Angelo Stipp Basei, Reinhardt Adolfo Fuck, and Vicente Antonio Vitório Girardi. American Journal of Science, 313, 517-539. (Doi: 10.2475/03.2014.03)
- Tohver, E., Cawood, P. A., Rossello, E. A., and Jourdan, F., 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research, 21, 394–405. (Doi:10.1016/j.gr.2011.04.001)
- Tohver, E., Trindade, R. I. F., Solum, J. G., Hall, C. M., Riccomini, C., and Nogueira, A. C., 2010. Closing the Clymene Ocean and Bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana from southeast Amazon Craton. Geology, 38, 267–270. (Doi: 10.1130/G30510.1)
- Tokashiki C. C. & Saes G. S., 2008. Revisão estratigráfica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabana, Mato Grosso. Revista Brasileira de Geociências, 38, 661-675.

- Tomazzoli, E.R., 1992. O greenstone belt de Goiás: estudos geocronológicos. Revista Brasileira de Geociências, 22, 56-60.
- Tosdal, R.M., Bettencourt, J.S., 1994. U-Pb zircon ages and Pb isotopic compositions of Middle Proterozoic Rondonian massifs, southwestern margin of the Amazon Craton, Brazil. Actas del 7 Congreso Geologico Chileno, Concepcion, 2, 1538-1541.
- Trindade, R. I. F., D'Agrella-Filho, M. S., Epof, I., and Brito Neves, B. B., 2006. Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth and Planetary Science Letters, 244, 361–377. (Doi: 10.1016/j.epsl.2005.12.039)
- Trindade, R. I. F., Font, E., D'Agrella-Filho, M. S., Nogueira, A. C. R., and Riccomini, C., 2003. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon Craton. Terra Nova, 15, 441–446. (Doi: 10.1046/j.1365-3121.2003.00510.x)
- Trompette, R., Alvarenga, C.J.S. de, Walde, D.H.-G., 1998. Geological evolution of the Neoproterozoic Corumbá graben system (Brazil). Depositional context of the stratified Fe and Mn ores of the Jacadigo Group. Journal of South American Earth Science, 11, 587–597.
- Vasconcelos, B.R., Ruiz, A.S., Matos, J.B., 2015. Polyphase deformation and metamorphism of the Cuiabá group in the Poconé region (MT), Paraguay Fold and Thrust Belt: kinematic and tectonic implications. Brazilian Journal of Geology 45, 51–63. (Doi: 10.1590/23174889201500010004)
- Vasquez, M.L., Klein, E.L., Quadros, M.L.E., Bahia, R.B.C., Santos, A., Ricci, P., Sachett, C.R., Silva, C.M.G.,
 Macambira, M.J.B., 1999. Magmatismo Uatumã, na Província Tapajós Novos dados geocronológicos.
 VI Simpósio de Geologia da Amazônia, Extended Abstract Bulletin, 471-474.
- Woldemichael, S. F., 2003. Estruturas geoelétricas crustais da bacia do Pantanal e Faixa Paraguai: Implicações Tectônicas. Doctoral Thesis, University of São Paulo, São Paulo.

U-Pb N	IC-LA-IC	P-MS : sample		Isoto	pic Ratios					Appare	nt A	ges			
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
112-ZR74	0.252	214115	0.05808	0.677	0.82	0.0845	0.57	0.70	533	20	523	6	525	7	2
083-ZR55	1.198	125693	0.06109	0.863	0.78	0.1025	0.52	0.67	642	19	629	6	632	7	2
030-ZR20	0.968	27313	0.06333	0.896	2.22	0.1025	1.60	0.72	719	63	629	19	649	21	13
090-ZR60	1.003	33205	0.06168	0.877	2.04	0.1031	1.55	0.76	663	54	633	19	639	19	5
106-ZR70	0.450	67533	0.06076	0.865	1.15	0.1033	0.80	0.70	631	32	634	10	633	11	0
129-ZR85	0.858	23822	0.06117	0.889	3.03	0.1054	2.16	0.71	645	89	646	27	646	29	0
052-ZR34	0.731	140309	0.06242	0.924	1.03	0.1073	0.82	0.79	688	21	657	10	664	10	5
150-ZR100	0.136	217233	0.06221	0.948	1.01	0.1105	0.77	0.76	681	23	676	10	677	10	1
078-ZR52	1.291	71640	0.06231	0.964	0.96	0.1122	0.66	0.69	685	25	685	9	685	10	0
102-ZR68	0.811	111476	0.06317	1.024	0.97	0.1175	0.69	0.71	714	24	716	9	716	10	0
054-ZR36	0.143	294226	0.06491	1.060	0.98	0.1184	0.78	0.80	772	19	721	11	734	10	7
123-ZR81	1.411	75029	0.06327	1.042	3.21	0.1194	3.04	0.95	717	40	727	42	725	33	-1
088-ZR58	0.354	78725	0.06871	1.288	1.70	0.1360	1.34	0.79	890	40	822	21	841	19	8
004-ZR02	0.360	96120	0.06844	1.358	1.09	0.1439	0.68	0.63	882	31	867	11	871	13	2
039-ZR25	0.781	202271	0.06969	1.487	0.97	0.1547	0.64	0.65	919	26	927	11	925	12	-1
064-ZR42	0.968	56979	0.07123	1.652	1.13	0.1682	0.77	0.68	964	30	1002	14	990	14	-4
142-ZR94	0.355	191720	0.07264	1.621	0.89	0.1618	0.60	0.68	1004	22	967	11	978	11	4
047-ZR31	0.475	54926	0.07638	1.729	1.47	0.1641	0.95	0.65	1105	42	980	17	1019	19	11
033-ZR21	0.567	91463	0.07384	1.690	1.21	0.1660	0.93	0.77	1037	27	990	17	1005	15	5
131-ZR87	0.892	105424	0.07315	1.712	0.95	0.1697	0.74	0.78	1018	19	1011	14	1013	12	1
132-ZR88	0.791	214842	0.07360	1.721	1.02	0.1696	0.80	0.79	1031	20	1010	15	1016	13	2
071-ZR47	0.582	31127	0.07618	1.946	1.81	0.1852	1.40	0.78	1100	43	1095	28	1097	24	0
042-ZR28	0.685	309769	0.07712	1.938	0.94	0.1823	0.71	0.76	1124	19	1079	14	1094	13	4
135-ZR89	0.307	133620	0.08291	2.202	0.95	0.1926	0.76	0.80	1267	17	1135	16	1182	13	10
094-ZR62	0.586	41989	0.08463	2.600	1.15	0.2228	0.70	0.61	1307	32	1296	16	1301	17	1
096-ZR64	0.968	30232	0.08573	2.708	1.88	0.2291	1.31	0.69	1332	50	1330	31	1331	28	0

Appendix 1: Table of the U-Pb results for the sample VSC37

099-ZR65	0.281	230121	0.08751	2.837	0.91	0.2351	0.63	0.69	1372	21	1361	15	1365	14	1
069-ZR45	0.447	297050	0.09089	3.173	0.83	0.2532	0.61	0.74	1444	16	1455	16	1451	13	-1
077-ZR51	0.459	155733	0.10889	4.769	0.86	0.3177	0.60	0.70	1781	18	1778	19	1780	14	0
029-ZR19	0.846	117689	0.11137	4.886	0.89	0.3182	0.63	0.72	1822	18	1781	20	1800	15	2
125-ZR83	0.992	145923	0.11177	4.735	3.60	0.3072	2.77	0.77	1828	81	1727	84	1773	59	6
075-ZR49	0.556	127286	0.11737	5.216	0.87	0.3223	0.64	0.73	1917	17	1801	20	1855	15	6
006-ZR04	0.450	71805	0.11787	5.591	0.90	0.3440	0.69	0.77	1924	16	1906	23	1915	15	1
022-ZR14	0.023	835401	0.11876	4.967	0.92	0.3033	0.78	0.84	1938	12	1708	23	1814	16	12
027-ZR17	0.559	4097	0.13804	7.058	1.04	0.3708	0.56	0.54	2203	28	2033	20	2119	18	8
048-ZR32	0.909	327978	0.16015	10.013	0.78	0.4534	0.57	0.73	2457	13	2411	23	2436	14	2
126-ZR84	0.361	289559	0.21571	16.857	1.23	0.5667	1.03	0.84	2949	18	2894	48	2927	23	2

Appendix 2: Table of the U-Pb results for the sample VSC40

U-Pb N	U-Pb MC-LA-ICP-MS : sample VSC40					pic Ratios					Appare	nt A	ges		
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
076-ZR60	0.768	115315	0.06070	0.826	1.03	0.0987	0.77	0.75	629	25	607	9	612	9	3
047-ZR37	1.217	79987	0.06073	0.832	1.49	0.0993	1.04	0.70	630	43	610	12	615	14	3
155-ZR123	0.763	98635	0.05954	0.819	1.23	0.0998	0.91	0.74	587	32	613	11	608	11	-5
166-ZR132	1.078	119209	0.06050	0.834	1.12	0.0999	0.86	0.77	622	26	614	10	616	10	1
020-ZR16	0.792	39556	0.06020	0.830	1.75	0.1000	1.24	0.71	611	50	614	15	614	16	-1
009-ZR07	0.763	47956	0.06051	0.834	1.55	0.1000	1.14	0.74	622	42	614	13	616	14	1
177-ZR141	0.620	34625	0.05982	0.847	2.27	0.1027	1.57	0.69	597	69	630	19	623	21	-6
007-ZR05	0.110	234783	0.06122	0.868	0.84	0.1028	0.60	0.71	647	20	631	7	635	8	2
084-ZR66	0.829	136812	0.06082	0.863	1.12	0.1029	0.75	0.67	633	32	631	9	632	10	0
139-ZR111	0.243	165119	0.06113	0.870	0.85	0.1032	0.60	0.71	644	20	633	7	636	8	2
060-ZR48	1.277	102715	0.06137	0.877	0.92	0.1037	0.64	0.70	652	23	636	8	639	9	3
073-ZR57	1.419	84324	0.06152	0.883	1.09	0.1041	0.72	0.66	657	31	638	9	642	10	3
023-ZR17	0.668	126412	0.06090	0.875	1.27	0.1041	1.02	0.80	636	28	639	12	638	12	0
074-ZR58	0.915	80864	0.06083	0.888	1.28	0.1058	0.88	0.69	633	36	648	11	645	12	-2

116-ZR92	0.299	198915	0.06224	0.916	0.78	0.1067	0.51	0.65	682	20	654	6	660	8	4
100-ZR80	1.318	41966	0.06125	0.906	1.47	0.1072	0.81	0.55	648	50	657	10	655	14	-1
024-ZR18	0.419	37557	0.06175	0.939	2.43	0.1103	1.87	0.77	665	64	675	24	673	24	-1
159-ZR127	0.301	56154	0.06231	0.957	1.36	0.1114	0.97	0.71	685	37	681	12	682	13	1
018-ZR14	0.354	106448	0.06137	0.951	1.32	0.1124	0.80	0.61	652	42	687	10	679	13	-5
004-ZR02	0.528	59710	0.06343	0.987	1.37	0.1128	1.00	0.73	723	36	689	13	697	14	5
097-ZR77	0.300	110248	0.06191	0.969	0.95	0.1135	0.66	0.70	671	24	693	9	688	10	-3
019-ZR15	0.556	168971	0.06312	0.989	0.95	0.1137	0.68	0.72	712	23	694	9	698	10	3
156-ZR124	0.732	106065	0.06206	1.005	1.23	0.1174	0.96	0.78	676	29	716	13	706	13	-6
154-ZR122	0.320	86756	0.06401	1.060	1.25	0.1201	0.93	0.74	742	31	731	13	734	13	1
169-ZR135	0.735	133330	0.06550	1.126	0.91	0.1246	0.60	0.66	790	24	757	9	766	10	4
069-ZR55	0.434	177447	0.06630	1.172	0.88	0.1282	0.60	0.69	816	21	778	9	788	10	5
113-ZR89	0.299	66293	0.06582	1.183	1.18	0.1303	0.75	0.64	801	34	790	11	793	13	1
048-ZR38	0.949	59724	0.07228	1.488	1.33	0.1493	1.03	0.77	994	30	897	17	925	16	10
056-ZR44	0.479	57100	0.07216	1.604	1.21	0.1612	0.84	0.69	990	32	964	15	972	15	3
175-ZR139	0.280	64785	0.07178	1.603	1.05	0.1619	0.72	0.68	980	28	967	13	971	13	1
010-ZR08	0.718	115705	0.07436	1.679	1.05	0.1638	0.82	0.78	1051	22	978	15	1001	13	7
080-ZR64	0.563	72607	0.07268	1.698	1.33	0.1694	0.97	0.73	1005	34	1009	18	1008	17	0
179-ZR143	0.827	255631	0.07358	1.769	0.80	0.1743	0.57	0.70	1030	18	1036	11	1034	10	-1
150-ZR120	0.829	120023	0.07417	1.806	1.13	0.1766	0.78	0.69	1046	29	1048	15	1048	15	0
099-ZR79	0.471	84637	0.07752	1.989	1.11	0.1861	0.80	0.72	1135	27	1100	16	1112	15	3
104-ZR82	1.163	403488	0.08002	2.281	0.91	0.2067	0.68	0.75	1198	18	1211	15	1206	13	-1
029-ZR23	0.443	41475	0.08397	2.361	1.74	0.2040	1.26	0.73	1292	44	1197	28	1231	25	7
078-ZR62	0.243	244438	0.08518	2.628	0.80	0.2238	0.54	0.67	1320	18	1302	13	1309	12	1
006-ZR04	0.623	111012	0.08744	2.801	1.02	0.2323	0.74	0.73	1370	23	1346	18	1356	15	2
016-ZR12	0.655	122394	0.09422	3.303	0.99	0.2542	0.77	0.77	1513	19	1460	20	1482	15	3
163-ZR129	0.221	1100770	0.09449	3.534	0.78	0.2712	0.53	0.68	1518	16	1547	15	1535	12	-2
128-ZR102	0.285	568307	0.09507	3.559	0.76	0.2715	0.50	0.66	1529	16	1548	14	1540	12	-1
170-ZR136	0.350	166434	0.09581	3.371	1.04	0.2551	0.69	0.66	1544	26	1465	18	1498	16	5
174-ZR138	0.314	5005	0.09742	3.425	0.82	0.2550	0.58	0.70	1575	17	1464	15	1510	13	7

013-ZR09	0.396	227395	0.10778	4.430	1.40	0.2981	1.27	0.90	1762	17	1682	37	1718	23	5
044-ZR34	1.631	160311	0.10859	4.785	1.32	0.3196	1.17	0.89	1776	17	1788	37	1782	22	-1
176-ZR140	0.581	430896	0.11526	5.305	0.73	0.3338	0.49	0.67	1884	14	1857	16	1870	12	1
087-ZR69	0.544	232876	0.11562	5.103	0.90	0.3201	0.67	0.74	1890	17	1790	21	1837	15	5
063-ZR49	0.861	108009	0.11563	5.367	1.01	0.3366	0.78	0.77	1890	19	1870	25	1880	17	1
034-ZR26	0.453	96361	0.11823	5.447	1.62	0.3341	1.41	0.87	1930	25	1858	45	1892	28	4
088-ZR70	0.733	68246	0.12112	6.104	0.96	0.3654	0.64	0.67	1973	22	2008	22	1991	17	-2
105-ZR83	0.242	171431	0.12206	6.045	0.70	0.3592	0.49	0.70	1986	12	1978	17	1982	12	0
145-ZR115	1.054	40700	0.12240	5.898	1.70	0.3494	1.35	0.80	1991	34	1932	45	1961	29	3
067-ZR53	0.859	204418	0.12299	6.264	0.77	0.3694	0.58	0.75	2000	13	2026	20	2013	13	-1
059-ZR47	0.496	403002	0.12329	5.990	0.85	0.3523	0.61	0.71	2004	17	1946	20	1974	15	3
028-ZR22	0.399	1899	0.12332	5.826	1.65	0.3426	1.33	0.80	2005	32	1899	44	1950	28	5
027-ZR21	0.359	25734	0.12475	5.668	2.78	0.3295	2.69	0.97	2025	22	1836	86	1927	47	9
075-ZR59	1.327	191438	0.12804	6.640	0.84	0.3761	0.57	0.68	2071	17	2058	20	2065	15	1
083-ZR65	0.541	390433	0.12990	6.859	0.81	0.3829	0.53	0.66	2097	17	2090	19	2093	14	0
158-ZR126	0.350	535977	0.15988	9.804	1.10	0.4447	0.94	0.85	2454	15	2372	37	2417	20	3
136-ZR108	0.555	81300	0.16310	10.855	3.35	0.4827	2.10	0.63	2488	86	2539	88	2511	61	-2
079-ZR63	0.569	3121	0.16556	9.948	1.28	0.4358	1.12	0.87	2513	17	2332	44	2430	24	7
035-ZR27	0.452	243666	0.16822	11.033	1.15	0.4756	0.69	0.60	2540	28	2508	29	2526	21	1
038-ZR30	1.204	180989	0.17571	11.040	1.39	0.4557	1.23	0.89	2613	17	2420	50	2527	26	7
066-ZR52	0.750	178912	0.17765	11.378	0.88	0.4645	0.74	0.84	2631	10	2459	30	2555	16	7
167-ZR133	0.269	570799	0.17950	11.738	1.38	0.4742	1.28	0.93	2648	12	2502	53	2584	26	6
143-ZR113	0.408	371462	0.18362	11.851	0.94	0.4680	0.78	0.83	2686	12	2475	32	2593	17	8
173-ZR137	0.099	781159	0.20622	16.074	1.15	0.5653	0.81	0.71	2876	23	2888	38	2881	22	0

Appendix 3: Table of the U-Pb results for the sample VSC54

U-Pb MC-L	A-ICP-MS	S : sample V	SC54		Isoto	pic Ratic	S				Apparer	nt A	ges		
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
068-ZR50	0.175	67505	0.07100	1.567	1.23	0.1600	0.83	0.68	957	33	957	15	957	15	0
036-ZR86	0.246	29576	0.07155	1.566	2.86	0.1587	1.88	0.66	973	85	950	33	957	35	2

049-ZR96	0.002	50580	0.07266	1.661	1.79	0.1658	1.23	0.69	1005	50	989	23	994	23	2
048-ZR95	0.237	42365	0.07322	1.664	1.73	0.1648	1.30	0.75	1020	43	984	24	995	22	4
010-ZR67	0.178	42354	0.07345	1.676	2.07	0.1655	1.31	0.63	1026	62	987	24	1000	26	4
020-ZR75	0.242	28565	0.07390	1.669	3.44	0.1638	2.43	0.71	1039	95	978	44	997	43	6
067-ZR49	0.742	57822	0.07413	1.813	1.20	0.1774	0.86	0.72	1045	30	1053	17	1050	16	-1
036-ZR26	0.377	46071	0.07417	1.700	1.21	0.1662	0.84	0.69	1046	32	991	15	1009	15	5
025-ZR17	0.299	9950	0.07478	1.826	4.69	0.1771	3.05	0.65	1063	139	1051	59	1055	61	1
008-ZR05	0.292	79741	0.07536	1.870	1.38	0.1800	0.97	0.70	1078	36	1067	19	1071	18	1
058-ZR43	0.557	32545	0.07536	1.853	1.63	0.1783	1.19	0.73	1078	42	1058	23	1064	21	2
027-ZR19	0.330	65543	0.07553	1.848	1.29	0.1774	0.97	0.75	1083	31	1053	19	1063	17	3
015-ZR70	0.279	88925	0.07592	1.936	1.19	0.1849	0.81	0.68	1093	32	1094	16	1094	16	0
035-ZR85	0.198	20185	0.07601	1.804	2.75	0.1721	1.75	0.64	1095	82	1024	33	1047	36	7
014-ZR09	0.235	90458	0.07807	1.993	1.22	0.1851	0.91	0.74	1149	29	1095	18	1113	16	5
055-ZR40	0.162	160409	0.07822	2.155	0.85	0.1998	0.60	0.70	1152	19	1174	13	1167	12	-2
006-ZR63	0.263	32264	0.07842	1.956	1.55	0.1809	1.16	0.75	1157	37	1072	23	1100	21	7
013-ZR08	0.330	45784	0.07885	2.156	2.06	0.1983	1.44	0.70	1168	56	1166	31	1167	28	0
054-ZR99	0.191	48796	0.07906	2.131	2.49	0.1955	1.94	0.78	1174	59	1151	41	1159	34	2
047-ZR34	0.261	113304	0.07914	2.262	1.05	0.2073	0.84	0.80	1176	20	1214	19	1201	15	-3
029-ZR81	0.291	16382	0.07946	2.301	3.86	0.2100	2.65	0.69	1184	108	1229	59	1213	54	-4
073-ZR53	0.264	89594	0.07950	2.011	1.32	0.1835	0.88	0.67	1185	36	1086	18	1119	18	8
024-ZR76	0.458	74637	0.07956	2.190	1.48	0.1996	1.17	0.79	1186	32	1173	25	1178	21	1
010-ZR07	0.279	101001	0.07992	2.203	1.07	0.1999	0.85	0.79	1195	21	1175	18	1182	15	2
005-ZR02	0.271	169839	0.07993	2.342	1.06	0.2125	0.84	0.79	1195	21	1242	19	1225	15	-4
030-ZR22	0.314	105887	0.07994	2.307	1.38	0.2093	1.19	0.86	1195	24	1225	26	1214	19	-2
075-ZR115	0.118	29922	0.08009	2.187	2.54	0.1981	1.63	0.64	1199	74	1165	35	1177	35	3
060-ZR45	0.252	39995	0.08014	2.123	1.52	0.1921	1.08	0.71	1200	39	1133	22	1156	21	6
056-ZR41	0.210	310438	0.08069	2.370	0.94	0.2130	0.74	0.78	1214	18	1245	17	1234	13	-3
076-ZR56	0.158	151583	0.08078	2.274	0.97	0.2042	0.70	0.73	1216	21	1198	15	1204	14	2
034-ZR24	0.478	47934	0.08106	2.317	1.53	0.2072	1.06	0.70	1223	40	1214	23	1217	22	1
046-ZR93	0.300	43419	0.08108	2.169	2.10	0.1940	1.42	0.68	1223	58	1143	30	1171	29	7

080-ZR120	0.152	73103	0.08119	2.297	2.54	0.2051	1.98	0.78	1226	60	1203	43	1211	36	2
077-ZR117	0.375	23427	0.08123	2.096	4.87	0.1871	3.68	0.76	1227	122	1106	75	1147	66	10
065-ZR107	0.152	26009	0.08123	2.218	2.50	0.1981	1.86	0.74	1227	64	1165	39	1187	35	5
075-ZR55	0.212	67023	0.08128	2.342	1.25	0.2090	0.92	0.73	1228	30	1223	21	1225	18	0
005-ZR62	0.520	31854	0.08130	2.231	2.74	0.1990	2.15	0.78	1229	65	1170	46	1191	38	5
009-ZR66	0.326	82191	0.08134	2.333	2.04	0.2080	1.54	0.75	1230	50	1218	34	1223	29	1
045-ZR32	0.137	62652	0.08140	2.313	1.00	0.2061	0.72	0.73	1231	23	1208	16	1216	14	2
070-ZR52	0.178	36649	0.08163	2.189	1.66	0.1944	1.08	0.65	1237	47	1145	23	1177	23	7
073-ZR113	0.271	52533	0.08187	2.352	1.82	0.2084	1.43	0.79	1242	41	1220	32	1228	26	2
026-ZR78	0.208	84332	0.08193	2.331	1.70	0.2063	1.32	0.78	1244	39	1209	29	1222	24	3
048-ZR35	0.156	77478	0.08221	2.438	1.06	0.2150	0.74	0.70	1251	26	1256	17	1254	15	0
074-ZR114	0.607	30840	0.08223	2.362	1.69	0.2083	1.18	0.70	1251	45	1220	26	1231	24	2
024-ZR16	0.300	59386	0.08256	2.273	1.57	0.1997	1.20	0.77	1259	36	1173	26	1204	22	7
013-ZR68	0.430	2877	0.08264	2.278	1.28	0.1999	0.94	0.74	1261	30	1175	20	1205	18	7
014-ZR69	0.455	60139	0.08291	2.274	1.68	0.1989	1.26	0.75	1267	41	1169	27	1204	24	8
029-ZR21	0.186	24190	0.08324	2.485	1.60	0.2165	1.19	0.74	1275	39	1263	27	1268	23	1
070-ZR112	0.240	53498	0.08348	2.441	1.72	0.2121	1.16	0.67	1280	47	1240	26	1255	25	3
007-ZR64	0.267	55905	0.08498	2.678	1.69	0.2285	1.37	0.81	1315	35	1327	33	1322	25	-1
046-ZR33	0.160	134872	0.08587	2.787	0.83	0.2354	0.60	0.73	1335	17	1363	15	1352	12	-2
065-ZR47	0.537	177718	0.08597	2.525	1.16	0.2130	0.93	0.81	1338	22	1245	21	1279	17	7
050-ZR97	0.307	43875	0.08628	2.803	2.17	0.2356	1.53	0.70	1345	57	1364	37	1356	32	-1
004-ZR01	0.203	127714	0.08658	2.846	0.91	0.2384	0.57	0.63	1351	23	1378	14	1368	14	-2
034-ZR84	0.525	111494	0.08663	2.783	1.55	0.2330	1.18	0.76	1352	36	1350	29	1351	23	0
025-ZR77	0.410	91801	0.08686	2.747	1.42	0.2294	1.12	0.78	1357	31	1331	27	1341	21	2
033-ZR83	0.217	63373	0.08771	2.919	2.16	0.2414	1.56	0.72	1376	55	1394	39	1387	32	-1
015-ZR11	0.367	28114	0.08791	2.619	3.03	0.2160	2.26	0.75	1381	75	1261	52	1306	44	9
054-ZR39	0.349	81537	0.08851	2.888	1.18	0.2367	0.82	0.70	1393	29	1369	20	1379	18	2
016-ZR71	0.004	93057	0.08858	2.953	1.35	0.2418	1.04	0.77	1395	30	1396	26	1396	20	0
053-ZR38	0.330	43679	0.08897	2.965	1.50	0.2417	1.00	0.67	1403	40	1395	25	1399	23	1
067-ZR109	0.327	26206	0.08962	2.898	3.22	0.2345	2.26	0.70	1418	85	1358	55	1381	48	4

018-ZR13	0.578	32713	0.08966	2.837	1.56	0.2295	1.07	0.69	1418	41	1332	26	1366	23	6
027-ZR79	0.446	26845	0.09126	2.903	1.44	0.2307	1.05	0.73	1452	35	1338	25	1383	22	8
015-ZR10	0.593	77257	0.09202	3.267	1.12	0.2575	0.86	0.77	1468	23	1477	23	1473	17	-1
030-ZR82	0.262	116587	0.09250	3.450	2.27	0.2705	1.56	0.69	1478	60	1543	43	1516	35	-4
020-ZR15	0.157	102326	0.09286	3.264	1.16	0.2549	0.90	0.78	1485	23	1464	24	1472	18	1
033-ZR23	0.152	21993	0.09290	3.041	3.38	0.2374	2.39	0.71	1486	88	1373	59	1418	51	8
064-ZR46	0.353	188013	0.09455	3.520	1.14	0.2699	1.00	0.88	1519	15	1541	27	1532	18	-1
056-ZR101	0.312	58800	0.09473	3.367	2.77	0.2578	2.18	0.79	1523	62	1478	58	1497	43	3
079-ZR59	0.216	203348	0.09478	3.425	1.11	0.2621	0.82	0.74	1524	24	1500	22	1510	17	2
080-ZR60	0.197	111913	0.09488	3.403	1.15	0.2601	0.85	0.74	1526	25	1490	23	1505	18	2
069-ZR111	0.209	60286	0.09495	3.359	1.71	0.2565	1.19	0.70	1527	44	1472	31	1495	27	4
026-ZR18	0.297	110939	0.09504	3.500	0.92	0.2671	0.68	0.74	1529	19	1526	18	1527	14	0
035-ZR25	0.611	70021	0.09511	3.549	1.23	0.2706	0.99	0.81	1530	23	1544	27	1538	19	-1
019-ZR14	0.222	211419	0.09517	3.689	1.12	0.2811	0.91	0.81	1531	20	1597	26	1569	18	-4
074-ZR54	0.320	87785	0.09539	3.327	1.06	0.2530	0.73	0.69	1536	25	1454	19	1488	17	5
049-ZR36	0.333	165730	0.09554	3.590	0.99	0.2725	0.69	0.70	1539	23	1553	19	1547	16	-1
064-ZR106	0.082	71163	0.09661	3.530	1.80	0.2650	1.36	0.76	1560	42	1515	37	1534	28	3
009-ZR06	0.141	355907	0.09724	3.895	1.02	0.2905	0.80	0.78	1572	19	1644	23	1613	16	-5
078-ZR58	0.563	69273	0.09765	3.650	1.16	0.2711	0.88	0.76	1580	24	1546	24	1561	18	2
068-ZR110	0.223	75607	0.09775	3.652	1.71	0.2710	1.27	0.75	1582	40	1546	35	1561	27	2
059-ZR44	0.545	111896	0.09826	3.822	1.16	0.2820	0.91	0.78	1591	23	1602	26	1597	19	-1
077-ZR57	0.210	20460	0.09967	3.932	1.03	0.2861	0.69	0.67	1618	25	1622	20	1620	17	0
044-ZR31	0.427	28377	0.09990	3.671	1.73	0.2665	1.40	0.81	1622	35	1523	38	1565	27	6
044-ZR91	0.410	24707	0.10057	3.644	2.54	0.2628	1.72	0.68	1635	67	1504	46	1559	40	8
057-ZR42	0.332	60547	0.10161	3.895	0.91	0.2780	0.65	0.72	1654	19	1581	18	1613	15	4
040-ZR30	0.583	1421642	0.10335	3.958	1.97	0.2777	1.26	0.64	1685	54	1580	35	1626	32	6
037-ZR87	0.716	69431	0.10722	4.467	1.71	0.3021	1.16	0.68	1753	44	1702	35	1725	28	3
018-ZR73	0.455	44727	0.10756	4.628	1.78	0.3120	1.28	0.72	1758	43	1751	39	1754	30	0
076-ZR116	0.341	98145	0.10788	4.586	2.87	0.3083	2.45	0.85	1764	53	1732	74	1747	47	2
060-ZR105	0.388	41785	0.10798	4.691	2.98	0.3151	2.18	0.73	1766	72	1766	67	1766	49	0

004-ZR61	0.427	53910	0.10810	4.659	1.27	0.3126	0.90	0.71	1768	30	1753	28	1760	21	1
066-ZR48	0.828	52041	0.11035	4.821	1.34	0.3169	0.99	0.74	1805	30	1774	31	1789	22	2
079-ZR119	0.555	40703	0.11097	4.896	3.13	0.3200	1.86	0.59	1815	89	1790	58	1802	52	1
008-ZR65	0.274	70815	0.11347	5.376	1.90	0.3436	1.53	0.81	1856	38	1904	50	1881	32	-3
019-ZR74	0.443	94076	0.11599	5.379	1.51	0.3363	1.08	0.71	1895	35	1869	35	1881	26	1
040-ZR90	0.667	39875	0.11709	5.571	1.72	0.3450	1.26	0.73	1912	40	1911	41	1912	29	0
057-ZR102	0.498	77882	0.11780	5.667	2.53	0.3489	1.63	0.65	1923	67	1929	54	1926	43	0
039-ZR29	1.419	35426	0.11952	5.503	1.81	0.3339	1.39	0.77	1949	39	1857	45	1901	31	5
017-ZR12	0.151	308126	0.12007	6.038	1.08	0.3647	0.89	0.83	1957	17	2004	31	1981	19	-2
038-ZR28	0.573	61746	0.12960	6.789	1.15	0.3799	0.95	0.82	2093	19	2076	34	2084	20	1
006-ZR03	0.480	217641	0.13078	6.963	0.80	0.3861	0.55	0.69	2109	15	2105	20	2107	14	0
069-ZR51	0.259	207907	0.15727	9.920	1.01	0.4574	0.72	0.71	2427	20	2428	29	2427	19	0
053-ZR98	1.282	74102	0.18187	12.834	1.91	0.5118	1.43	0.75	2670	40	2664	62	2668	36	0

Appendix 4: Table of the U-Pb results for the sample VSC58

U-Pb MC	U-Pb MC-LA-ICP-MS : sample VSC58					pic Ratic	S				Appare	nt A	lges		
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
016-ZR10	0.489	20472	0.06797	1.429	2.79	0.1524	2.26	0.81	868	65	915	39	901	33	-5
022-ZR14	0.951	281530	0.07525	1.831	2.09	0.1764	1.64	0.78	1075	50	1047	32	1057	27	3
054-ZR35	0.448	45451	0.07655	1.707	2.80	0.1617	2.27	0.81	1110	63	966	41	1011	35	13
012-ZR08	0.431	224635	0.07833	2.061	0.95	0.1908	0.81	0.85	1155	13	1126	17	1136	13	3
048-ZR31	0.266	78434	0.07849	2.413	2.08	0.2229	1.82	0.88	1159	37	1297	43	1246	30	-12
055-ZR36	0.261	456068	0.07920	2.237	0.87	0.2049	0.69	0.79	1177	15	1201	15	1193	12	-2
043-ZR28	0.033	70404	0.08003	2.273	1.38	0.2060	1.19	0.86	1198	23	1207	26	1204	19	-1
041-ZR26	0.725	115916	0.08098	2.198	1.19	0.1968	0.96	0.81	1221	23	1158	20	1180	16	5
060-ZR39	0.798	322261	0.08309	2.482	0.84	0.2166	0.66	0.79	1271	14	1264	15	1267	12	1
010-ZR06	0.355	2868	0.09004	2.627	1.03	0.2116	0.82	0.80	1426	19	1237	18	1308	15	13
011-ZR07	0.757	334170	0.09104	3.153	1.21	0.2512	1.12	0.93	1447	10	1445	29	1446	19	0
015-ZR09	0.530	130350	0.09468	3.657	2.29	0.2801	2.24	0.98	1522	13	1592	63	1562	36	-5

047-ZR30	0.280	155217	0.09520	3.733	0.93	0.2843	0.81	0.87	1532	10	1613	23	1578	15	-5
029-ZR19	0.364	80775	0.10274	4.572	3.21	0.3227	2.60	0.81	1674	67	1803	82	1744	53	-8
027-ZR17	0.603	149630	0.10468	4.798	2.05	0.3324	1.26	0.61	1709	57	1850	40	1784	34	-8
076-ZR49	0.635	8300	0.10517	4.222	4.27	0.2911	3.31	0.78	1717	97	1647	96	1678	69	4
006-ZR04	0.511	436927	0.10618	4.436	0.85	0.3030	0.67	0.79	1735	13	1706	20	1719	14	2
009-ZR05	0.924	8689	0.10733	4.425	1.17	0.2990	1.01	0.86	1755	17	1686	30	1717	19	4
005-ZR03	0.731	186635	0.11491	5.259	1.09	0.3319	0.89	0.82	1879	18	1848	29	1862	19	2
049-ZR32	0.428	93595	0.12114	5.950	1.15	0.3562	0.65	0.57	1973	31	1964	22	1969	20	0
024-ZR16	0.482	1912	0.14653	7.964	2.68	0.3941	2.56	0.96	2306	24	2142	93	2227	48	7

Appendix 5: Table of the U-Pb results for the sample VSC81

U-Pb MC-LA-ICP-MS : sample VSC81					Isotopic Ratios						Apparent Ages					
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc	
005-ZR62	0.449	28203	0.06120	0.797	1.75	0.0945	1.23	0.70	646	51	582	14	595	16	10	
009-ZR66	0.516	66116	0.06123	0.807	1.74	0.0956	1.27	0.73	647	48	588	14	601	16	9	
069-ZR51	0.466	65194	0.06162	0.822	0.87	0.0967	0.62	0.71	661	21	595	7	609	8	10	
053-ZR98	0.313	34912	0.06142	0.821	2.49	0.0969	1.82	0.73	654	70	596	21	609	23	9	
004-ZR61	0.583	68931	0.05960	0.798	1.60	0.0971	1.19	0.74	589	44	597	14	596	14	-1	
076-ZR116	0.433	30682	0.06133	0.829	2.55	0.0980	1.70	0.67	651	79	603	20	613	23	7	
046-ZR93	0.496	26448	0.06088	0.824	2.13	0.0982	1.55	0.73	635	60	604	18	611	19	5	
050-ZR97	0.570	46676	0.06192	0.844	2.56	0.0988	1.70	0.66	671	79	607	20	621	24	10	
048-ZR95	0.595	29792	0.06164	0.844	2.93	0.0992	2.37	0.81	662	71	610	28	621	27	8	
085-ZR122	0.599	29117	0.06097	0.835	2.57	0.0993	1.61	0.63	638	83	610	19	616	24	4	
039-ZR29	0.620	60864	0.06107	0.843	1.12	0.1000	0.80	0.72	642	30	615	9	621	10	4	
064-ZR46	0.495	322858	0.05999	0.828	1.56	0.1001	1.10	0.70	603	45	615	13	613	14	-2	
068-ZR50	1.471	74517	0.06071	0.839	1.39	0.1002	0.92	0.66	629	42	616	11	619	13	2	
073-ZR113	0.401	62507	0.06221	0.863	1.60	0.1006	1.08	0.67	681	48	618	13	632	15	9	
008-ZR65	0.138	98795	0.06026	0.836	1.04	0.1006	0.76	0.73	613	26	618	9	617	10	-1	
070-ZR52	0.662	104500	0.06149	0.853	1.34	0.1006	0.90	0.67	657	39	618	11	626	12	6	

0.543	16675	0.06082	0.847	1.61	0.1011	0.85	0.53	633	56	621	10	623	15	2
0.426	34183	0.06053	0.844	2.00	0.1012	1.61	0.80	623	48	621	19	622	19	0
0.589	22108	0.06059	0.846	1.62	0.1012	1.13	0.70	625	47	621	13	622	15	1
0.650	86612	0.05945	0.830	1.24	0.1012	0.94	0.76	583	31	622	11	613	11	-7
0.304	66128	0.06241	0.871	1.30	0.1012	1.14	0.88	688	21	622	14	636	12	10
0.844	44567	0.06092	0.857	1.37	0.1021	0.98	0.72	636	38	627	12	629	13	2
0.687	90474	0.06022	0.848	0.98	0.1021	0.65	0.66	612	27	627	8	623	9	-2
0.730	66062	0.06249	0.881	1.89	0.1022	1.41	0.75	691	51	627	17	641	18	9
0.618	53936	0.06012	0.849	1.44	0.1024	0.99	0.69	608	42	629	12	624	13	-3
0.643	70234	0.06033	0.853	1.08	0.1026	0.77	0.71	615	28	630	9	627	10	-2
0.521	42488	0.06115	0.867	1.53	0.1029	1.02	0.67	645	46	631	12	634	14	2
0.406	86422	0.06119	0.868	0.95	0.1029	0.70	0.73	646	23	632	8	635	9	2
0.480	49216	0.06018	0.855	1.49	0.1030	1.15	0.77	610	37	632	14	627	14	-4
0.240	11506	0.06280	0.892	1.70	0.1030	1.04	0.61	702	55	632	13	647	16	10
0.133	133253	0.05988	0.851	1.34	0.1030	1.02	0.76	599	34	632	12	625	12	-5
0.311	77906	0.06064	0.863	1.46	0.1032	1.04	0.71	627	41	633	13	632	14	-1
0.635	28833	0.06035	0.861	2.69	0.1034	1.93	0.72	616	78	634	23	631	25	-3
0.509	90702	0.06029	0.860	1.05	0.1034	0.76	0.72	614	27	635	9	630	10	-3
0.320	80769	0.06045	0.862	0.90	0.1035	0.69	0.77	620	19	635	8	631	8	-2
0.370	73810	0.06095	0.870	1.53	0.1035	1.10	0.72	637	42	635	13	636	14	0
0.061	101393	0.05973	0.854	1.25	0.1037	1.02	0.81	594	27	636	12	627	12	-7
0.581	64495	0.06089	0.872	1.91	0.1038	1.42	0.74	635	52	637	17	636	18	0
0.287	55107	0.06111	0.875	1.42	0.1038	0.90	0.64	643	44	637	11	638	13	1
0.356	71515	0.06015	0.862	1.49	0.1039	1.11	0.75	609	40	637	14	631	14	-5
0.665	27603	0.05968	0.856	2.67	0.1040	2.11	0.79	592	68	638	26	628	25	-8
0.736	35689	0.06017	0.863	2.47	0.1040	1.62	0.65	610	78	638	20	632	23	-5
0.500	26305	0.05997	0.860	2.27	0.1040	1.50	0.66	603	71	638	18	630	21	-6
0.007	93699	0.05991	0.860	1.15	0.1041	0.84	0.74	600	29	639	10	630	11	-6
0.257	44316	0.06191	0.890	1.24	0.1042	0.89	0.72	671	33	639	11	646	12	5
	0.543 0.426 0.589 0.650 0.304 0.844 0.687 0.730 0.618 0.643 0.521 0.406 0.480 0.240 0.133 0.311 0.635 0.509 0.320 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.370 0.356 0.665 0.736 0.500 0.007 0.257	0.543166750.426341830.589221080.650866120.304661280.844445670.687904740.730660620.618539360.643702340.521424880.406864220.480492160.240115060.1331332530.311779060.635288330.509907020.320807690.370738100.0611013930.581644950.287551070.356715150.665276030.736356890.500263050.007936990.25744316	0.543166750.060820.426341830.060530.589221080.060590.650866120.059450.304661280.062410.844445670.060920.687904740.060220.730660620.062490.618539360.060120.643702340.060330.521424880.061150.406864220.061190.480492160.060180.240115060.062800.1331332530.059880.311779060.060640.635288330.060350.509907020.060290.320807690.060450.370738100.060950.0611013930.059730.581644950.060890.287551070.061110.356715150.060150.665276030.059680.736356890.060170.500263050.059970.007936990.059910.257443160.06191	0.543166750.060820.8470.426341830.060530.8440.589221080.060590.8460.650866120.059450.8300.304661280.062410.8710.844445670.060920.8570.687904740.060220.8480.730660620.062490.8810.618539360.060120.8490.643702340.060330.8530.521424880.061150.8670.406864220.061180.8550.240115060.062800.8920.1331332530.059880.8510.311779060.060640.8630.635288330.060350.8610.509907020.060290.8600.320807690.060450.8620.370738100.060950.8700.06111013930.059730.8540.581644950.060150.8620.356715150.060150.8620.665276030.059680.8560.736356890.060170.8630.500263050.059970.8600.007936990.059910.8600.257443160.061910.890	0.543166750.060820.8471.610.426341830.060530.8442.000.589221080.060590.8461.620.650866120.059450.8301.240.304661280.062410.8711.300.844445670.060920.8571.370.687904740.060220.8480.980.730660620.062490.8811.890.618539360.060120.8491.440.643702340.060330.8531.080.521424880.061150.8671.530.406864220.061190.8680.950.480492160.060180.8551.490.240115060.062800.8921.700.1331332530.059880.8511.340.311779060.060440.8631.460.635288330.060350.8612.690.509907020.060290.8601.050.320807690.060450.8620.900.370738100.060950.8701.530.6611013930.059730.8541.250.581644950.060150.8621.490.287551070.061110.8751.420.356715150.060150.8621.490.665276030.059870.8602.270.00793699	0.543166750.060820.8471.610.10110.426341830.060530.8442.000.10120.589221080.059450.8301.240.10120.650866120.059450.8301.240.10120.304661280.062410.8711.300.10210.844445670.060920.8571.370.10210.687904740.060220.8480.980.10210.730660620.062490.8811.890.10220.618539360.060120.8491.440.10240.643702340.060330.8531.080.10260.521424880.061150.8671.530.10290.406864220.061180.8551.490.10300.240115060.062800.8921.700.10300.311779060.060640.8631.460.10320.635288330.060350.8612.690.10340.320807690.060450.8620.900.10350.370738100.060950.8701.530.10370.581644950.060170.8621.490.10380.356715150.060150.8621.490.10380.356715150.060150.8621.490.10380.5910.8601.490.10390.665276030.59970.8602.270.10	0.543166750.060820.8471.610.10110.850.426341830.060530.8442.000.10121.610.589221080.060590.8461.620.10121.130.650866120.059450.8301.240.10120.940.304661280.062410.8711.300.10121.140.844445670.060920.8571.370.10210.980.687904740.060220.8480.980.10221.410.618539360.060120.8491.440.10240.990.643702340.060330.8531.080.10291.020.406864220.061150.8671.530.10291.020.406864220.061190.8680.950.10290.700.480492160.060180.8551.490.10301.150.240115060.062800.8921.700.10301.020.311779060.606440.8631.460.10321.040.635288330.060350.8612.690.10341.930.509907020.060290.8601.050.10341.700.581644950.060950.8701.530.10351.100.6611013930.59730.8541.250.10371.020.581644950.060150.8621.490.1039	0.543166750.060820.8471.610.10110.850.530.426341830.060530.8442.000.10121.610.800.589221080.060590.8461.620.10121.130.700.650866120.059450.8301.240.10120.940.760.304661280.062410.8711.300.10121.140.880.844445670.060920.8571.370.10210.980.720.687904740.060220.8480.980.10221.410.750.618539360.060120.8491.440.10240.990.690.643702340.060330.8531.080.10211.020.670.406864220.061150.8671.530.10291.020.670.4480492160.060180.8551.490.10301.150.770.240115060.062800.8921.700.10301.020.760.311779060.060440.8631.460.10321.040.710.559907020.060290.8601.050.10341.930.720.320807690.060450.8620.900.10351.100.720.370738100.060950.8701.530.10371.020.810.551104390.59730.8621.910.10381.42 <td>0.543166750.060820.8471.610.10110.850.536330.426341830.060530.8442.000.10121.610.806230.589221080.060590.8461.620.10121.130.706250.650866120.059450.8301.240.10120.940.765830.304661280.062410.8711.300.10121.140.886880.844445670.060920.8571.370.10210.980.726360.687904740.060220.8480.980.10210.650.666120.730660620.062490.8811.890.10221.410.756910.618539360.060120.8491.440.10240.990.696080.643702340.060330.8531.080.10291.020.676450.406864220.061190.8680.950.10291.020.676460.480492160.060180.8551.490.10301.150.776100.240115060.062800.8921.700.10301.040.617020.311779060.060440.8631.460.10321.040.716270.535288330.060350.8701.530.10341.930.726160.509907020.06045</td> <td>0.543 16675 0.06082 0.847 1.61 0.1011 0.85 0.53 633 56 0.426 34183 0.06053 0.844 2.00 0.1012 1.61 0.80 623 48 0.589 22108 0.06059 0.846 1.62 0.1012 1.13 0.70 625 47 0.650 86612 0.05945 0.830 1.24 0.1012 1.14 0.88 688 21 0.844 44567 0.06092 0.857 1.37 0.1021 0.98 0.72 636 38 0.687 90474 0.06022 0.848 0.98 0.1021 0.65 0.66 612 27 0.730 66062 0.06249 0.881 1.89 0.1022 1.41 0.75 691 51 0.618 53936 0.06012 0.849 1.44 0.1024 0.99 0.69 608 42 0.643 70234 0.06033</td> <td>0.543166750.060820.8471.610.10110.850.53633566210.426341830.060530.8442.000.10121.610.80623486210.589221080.060590.8461.620.10121.130.70625476210.650866120.059450.8301.240.10120.940.76583316220.304661280.062410.8711.300.10121.140.88688216270.687904740.060220.8480.980.10210.650.66612276270.730660620.062490.8811.890.10221.410.75691516270.643702340.060330.8531.080.10240.990.69608426300.521424880.061150.8671.530.10291.020.67645466310.440492160.060180.8551.490.10301.150.77610376320.311779060.06040.8631.460.10321.040.61702556320.311779060.060450.8611.050.10341.020.76599346320.320807690.060450.8620.900.10350.690.77616786340.5</td> <td>0.543166750.060820.8471.610.10110.850.5363356621100.426341830.060530.8442.000.10121.610.8062348621190.589221080.060590.8461.620.10121.130.7062547621130.650866120.059450.8301.240.10120.940.7658331622110.304661280.062410.8711.300.10121.140.8868821627120.687904740.060220.8571.370.10210.980.72636638627120.687904740.060220.8480.980.10221.410.7569151627170.618539360.060120.8491.440.10240.990.6960842629120.643702340.060330.8531.080.10290.700.716152863090.521424880.061150.8671.530.10290.700.7364623632130.406864220.061180.8551.490.10301.150.7761037632130.433132530.059880.8511.340.10301.020.7659934632130.44049216<t< td=""><td>0.543 16675 0.06082 0.847 1.61 0.1011 0.85 0.53 633 56 621 10 623 0.426 34183 0.06053 0.844 2.00 0.1012 1.11 0.70 625 48 621 19 622 0.550 86612 0.06059 0.846 1.62 0.1012 1.14 0.86 623 31 622 14 636 0.304 66128 0.06241 0.871 1.30 0.1012 1.14 0.86 688 21 622 14 636 0.844 44567 0.06022 0.857 1.37 0.1012 1.41 0.86 688 21 627 72 627 8 623 0.844 44567 0.06022 0.848 0.98 0.022 1.41 0.75 691 51 627 17 641 0.618 0.850 1.49 0.1024 0.99 0.69 608 42 629 12 624 0.640 0.6015 0.857</td><td>0.543166750.060820.8471.610.10110.850.536335662110623150.426341830.060530.8442.000.10121.130.706254762113622150.589221080.060590.8461.620.10121.130.70625476211362211613110.50386120.059450.8301.240.10121.940.765833162214636120.304661280.062410.8711.300.10121.980.726363862712629130.687904740.060220.8480.980.10210.650.6661227627862390.730660620.062490.8811.890.10221.410.756915162717641180.618539360.060120.8491.440.10240.990.696084262912624130.643702340.060330.8531.080.10290.700.71615286309627100.521424880.061150.8680.950.10290.700.7364663112634140.40464220.061180.8551.490.10301.150.77610<td< td=""></td<></td></t<></td>	0.543166750.060820.8471.610.10110.850.536330.426341830.060530.8442.000.10121.610.806230.589221080.060590.8461.620.10121.130.706250.650866120.059450.8301.240.10120.940.765830.304661280.062410.8711.300.10121.140.886880.844445670.060920.8571.370.10210.980.726360.687904740.060220.8480.980.10210.650.666120.730660620.062490.8811.890.10221.410.756910.618539360.060120.8491.440.10240.990.696080.643702340.060330.8531.080.10291.020.676450.406864220.061190.8680.950.10291.020.676460.480492160.060180.8551.490.10301.150.776100.240115060.062800.8921.700.10301.040.617020.311779060.060440.8631.460.10321.040.716270.535288330.060350.8701.530.10341.930.726160.509907020.06045	0.543 16675 0.06082 0.847 1.61 0.1011 0.85 0.53 633 56 0.426 34183 0.06053 0.844 2.00 0.1012 1.61 0.80 623 48 0.589 22108 0.06059 0.846 1.62 0.1012 1.13 0.70 625 47 0.650 86612 0.05945 0.830 1.24 0.1012 1.14 0.88 688 21 0.844 44567 0.06092 0.857 1.37 0.1021 0.98 0.72 636 38 0.687 90474 0.06022 0.848 0.98 0.1021 0.65 0.66 612 27 0.730 66062 0.06249 0.881 1.89 0.1022 1.41 0.75 691 51 0.618 53936 0.06012 0.849 1.44 0.1024 0.99 0.69 608 42 0.643 70234 0.06033	0.543166750.060820.8471.610.10110.850.53633566210.426341830.060530.8442.000.10121.610.80623486210.589221080.060590.8461.620.10121.130.70625476210.650866120.059450.8301.240.10120.940.76583316220.304661280.062410.8711.300.10121.140.88688216270.687904740.060220.8480.980.10210.650.66612276270.730660620.062490.8811.890.10221.410.75691516270.643702340.060330.8531.080.10240.990.69608426300.521424880.061150.8671.530.10291.020.67645466310.440492160.060180.8551.490.10301.150.77610376320.311779060.06040.8631.460.10321.040.61702556320.311779060.060450.8611.050.10341.020.76599346320.320807690.060450.8620.900.10350.690.77616786340.5	0.543166750.060820.8471.610.10110.850.5363356621100.426341830.060530.8442.000.10121.610.8062348621190.589221080.060590.8461.620.10121.130.7062547621130.650866120.059450.8301.240.10120.940.7658331622110.304661280.062410.8711.300.10121.140.8868821627120.687904740.060220.8571.370.10210.980.72636638627120.687904740.060220.8480.980.10221.410.7569151627170.618539360.060120.8491.440.10240.990.6960842629120.643702340.060330.8531.080.10290.700.716152863090.521424880.061150.8671.530.10290.700.7364623632130.406864220.061180.8551.490.10301.150.7761037632130.433132530.059880.8511.340.10301.020.7659934632130.44049216 <t< td=""><td>0.543 16675 0.06082 0.847 1.61 0.1011 0.85 0.53 633 56 621 10 623 0.426 34183 0.06053 0.844 2.00 0.1012 1.11 0.70 625 48 621 19 622 0.550 86612 0.06059 0.846 1.62 0.1012 1.14 0.86 623 31 622 14 636 0.304 66128 0.06241 0.871 1.30 0.1012 1.14 0.86 688 21 622 14 636 0.844 44567 0.06022 0.857 1.37 0.1012 1.41 0.86 688 21 627 72 627 8 623 0.844 44567 0.06022 0.848 0.98 0.022 1.41 0.75 691 51 627 17 641 0.618 0.850 1.49 0.1024 0.99 0.69 608 42 629 12 624 0.640 0.6015 0.857</td><td>0.543166750.060820.8471.610.10110.850.536335662110623150.426341830.060530.8442.000.10121.130.706254762113622150.589221080.060590.8461.620.10121.130.70625476211362211613110.50386120.059450.8301.240.10121.940.765833162214636120.304661280.062410.8711.300.10121.980.726363862712629130.687904740.060220.8480.980.10210.650.6661227627862390.730660620.062490.8811.890.10221.410.756915162717641180.618539360.060120.8491.440.10240.990.696084262912624130.643702340.060330.8531.080.10290.700.71615286309627100.521424880.061150.8680.950.10290.700.7364663112634140.40464220.061180.8551.490.10301.150.77610<td< td=""></td<></td></t<>	0.543 16675 0.06082 0.847 1.61 0.1011 0.85 0.53 633 56 621 10 623 0.426 34183 0.06053 0.844 2.00 0.1012 1.11 0.70 625 48 621 19 622 0.550 86612 0.06059 0.846 1.62 0.1012 1.14 0.86 623 31 622 14 636 0.304 66128 0.06241 0.871 1.30 0.1012 1.14 0.86 688 21 622 14 636 0.844 44567 0.06022 0.857 1.37 0.1012 1.41 0.86 688 21 627 72 627 8 623 0.844 44567 0.06022 0.848 0.98 0.022 1.41 0.75 691 51 627 17 641 0.618 0.850 1.49 0.1024 0.99 0.69 608 42 629 12 624 0.640 0.6015 0.857	0.543166750.060820.8471.610.10110.850.536335662110623150.426341830.060530.8442.000.10121.130.706254762113622150.589221080.060590.8461.620.10121.130.70625476211362211613110.50386120.059450.8301.240.10121.940.765833162214636120.304661280.062410.8711.300.10121.980.726363862712629130.687904740.060220.8480.980.10210.650.6661227627862390.730660620.062490.8811.890.10221.410.756915162717641180.618539360.060120.8491.440.10240.990.696084262912624130.643702340.060330.8531.080.10290.700.71615286309627100.521424880.061150.8680.950.10290.700.7364663112634140.40464220.061180.8551.490.10301.150.77610 <td< td=""></td<>

080-ZR120	0.283	74573	0.06021	0.867	1.65	0.1045	1.16	0.70	611	48	641	14	634	16	-5
054-ZR99	0.158	64679	0.06227	0.897	1.59	0.1045	1.31	0.83	683	34	641	16	650	15	6
074-ZR114	0.489	67169	0.06040	0.871	1.66	0.1046	1.25	0.75	618	44	641	15	636	16	-4
079-ZR119	0.400	49570	0.05950	0.861	1.70	0.1049	1.19	0.70	585	49	643	15	631	16	-10
069-ZR111	0.165	89650	0.06028	0.874	1.54	0.1052	1.25	0.81	613	36	645	15	638	15	-5
060-ZR45	0.583	35767	0.06161	0.894	1.16	0.1053	0.78	0.67	660	33	645	10	649	11	2
025-ZR17	0.042	84871	0.06311	0.919	1.01	0.1056	0.64	0.63	712	29	647	8	662	10	9
026-ZR18	0.214	252653	0.06199	0.915	1.19	0.1070	0.99	0.83	674	23	655	12	660	11	3
048-ZR35	0.279	94338	0.06047	0.893	1.15	0.1071	0.82	0.72	620	30	656	10	648	11	-6
028-ZR20	0.380	43821	0.06172	0.935	0.98	0.1098	0.75	0.76	664	22	672	10	670	10	-1
056-ZR101	0.288	93512	0.06089	0.924	1.24	0.1100	1.05	0.85	636	23	673	13	664	12	-6
020-ZR15	0.217	166882	0.06087	0.938	0.86	0.1117	0.63	0.74	634	19	683	8	672	8	-8
044-ZR91	0.471	55278	0.06345	1.032	1.51	0.1180	1.12	0.74	723	40	719	15	720	16	1
029-ZR81	0.503	57680	0.06377	1.088	2.04	0.1237	1.42	0.70	734	59	752	20	748	21	-2
016-ZR11	0.174	65992	0.06619	1.157	1.55	0.1268	1.29	0.83	812	33	770	19	781	17	5
039-ZR89	0.078	99889	0.06445	1.162	1.47	0.1307	1.09	0.74	756	38	792	16	783	16	-5
009-ZR06	0.276	101481	0.08326	2.549	1.14	0.2220	0.89	0.78	1275	24	1292	21	1286	17	-1
076-ZR56	0.269	312185	0.09052	3.222	0.93	0.2582	0.78	0.84	1436	13	1481	21	1463	14	-3
055-ZR100	0.144	157191	0.09058	3.140	1.13	0.2514	0.92	0.81	1438	21	1446	24	1443	17	-1
044-ZR31	0.420	83811	0.11227	5.005	1.25	0.3233	1.08	0.86	1836	19	1806	34	1820	21	2
014-ZR09	0.040	396575	0.11791	6.261	1.86	0.3851	1.78	0.96	1925	14	2100	64	2013	32	-9
040-ZR90	0.465	118049	0.12001	5.802	1.31	0.3506	0.90	0.69	1956	31	1937	30	1947	23	1
059-ZR44	0.699	85914	0.12085	5.983	1.02	0.3590	0.73	0.72	1969	22	1978	25	1973	18	0
047-ZR34	0.257	267707	0.12430	6.491	1.60	0.3787	1.15	0.72	2019	37	2070	41	2045	28	-3
025-ZR77	0.259	212252	0.12688	6.922	0.91	0.3957	0.71	0.78	2055	15	2149	26	2102	16	-5
010-ZR67	0.384	135022	0.12955	6.712	1.10	0.3757	0.79	0.72	2092	23	2056	28	2074	19	2
037-ZR27	0.600	8132	0.13070	6.323	1.08	0.3509	0.94	0.87	2107	14	1939	31	2022	19	8
028-ZR80	0.236	268220	0.13262	7.815	1.12	0.4273	0.86	0.77	2133	21	2294	33	2210	20	-8
057-ZR42	0.240	158282	0.13463	7.567	1.03	0.4076	0.88	0.86	2159	13	2204	33	2181	18	-2

084-ZR121 0.618 62437 0.13770 7.402 1.70 0.3898 1.25 0.74 2122 45 2161 30 3 090-ZR127 0.302 291360 0.16074 10.183 1.40 0.4594 1.07 0.77 2437 43 2452 26 057-ZR102 0.167 105040 0.16461 10.622 1.19 0.4680 0.88 0.74 2491 22 049-ZR96 0.342 151160 0.17296 11.231 1.30 0.4709 1.06 0.82 2542 24 054-ZR39 0.249 99152 0.22481 17.500 1.03 0.5646 0.84 0.82 2885 39 2963 20 4 4 ARTIGO CIENTÍFICO 2

AGE AND PROVENANCE OF STRATIGRAPHIC UNITS OF THE SOUTHERN PARAGUAY BELT: EVOLUTION OF A YOUNG OROGENIC BELT IN THE FINAL WESTERN GONDWANA ASSEMBLY.

Age and provenance of stratigraphic units of the Southern Paraguay Belt: Evolution of a young orogenic belt in the final West Gondwana assembly.

Bruno R. Vasconcelos¹, Márcio M. Pimentel¹, Amarildo S. Ruiz², Newton C. Nascimento³, Reinhardt A. Fuck¹ ¹ Instituto de Geociências, Universidade de Brasília. ² Faculdade de Geociências, Universidade Federal de Mato Grosso. ³Instituto de Engenharia, Universidade Federal de Mato Grosso.

ABSTRACT

The Paraguay Belt is one of the orogens in South America that records the final amalgamation stages of the Gondwana Supercontinent, resulting from the collision of the Amazonian Craton, Paranapanema Block and Goiás Magmatic Arc. Two lines of interpretation were suggested for this assembly, one supporting the closure of the Goiás-Pharusian ocean in the Cryogenian, and another referring to the closure of the Clymene Ocean in the Cambrian. Here we present U-Pb and Lu-Hf data of detrital zircon grains of samples from the innermost units of the Southern Paraguay Belt, mapped as belonging to the Cuiabá Group. Our results show that sedimentation of the Paraguay Belt continued until c. 500 Ma, the age of the youngest concordant grains analyzed. Our results show that the Cuiabá Group represents both a passive margin sequence of Tonian age, whose source area is mainly Mesoproterozoic with ε_{Hf} and T_{DM} model ages pointing out to the Sunsás Province, Amazonian Craton as the main source, and a convergent margin sequence of Ediacaran age with a mainly Neoproterozoic source area, suggesting the Brasília Belt as the most likely source area. The data demonstrate that the Paraguay Belt records the transition of sedimentation from divergent to convergent margin settings in the Tonian and Ediacaran as well as that its sedimentation was in a foreland basin until the Cambrian. Therefore, the ocean that separated the Amazonian Craton from the typical Brasiliano terranes (~620 Ma) west of the São Francisco Craton lasted until the Cambrian.

Keywords:

Clymene Ocean, Orogenic Belts, Sedimentary Provenance, U-Pb, Lu-Hf.

4.1. INTRODUCTION

Amalgamation of Gondwana took place over a period of changes in life and climate on the planet (Hoffman et al., 1998; Valentine, 2002) that were at least in part linked to the configuration of continents, mountain chains and oceans. Therefore it is important to understand the Neoproterozoic to Cambrian paleogeography of this supercontinent. Many research works have been carried out on the amalgamation of Gondwana (e.g. Stern, 1994; Meert, 2003; Collins and Pisarevisky, 2005; Pisarevisky et al., 2008) by integrating evidence on the collision between small Neoproterozoic continents in the Ediacaran and Cambrian that would have formed a chain of orogens at the end of the supercontinent assembly.

The Paraguay Belt makes part of this chain of orogens that along with the Araguaia and Brasília Belt has its evolution associated with closure of the Goiás-Phaurusian Ocean (Kroner and Cordani, 2003; Cordani et al., 2009, 2013a; 2014) as a result from the amalgamation of the Amazonian, São Francisco-Congo, Rio de la Plata and Paranapanema cratons at ca. 620 Ma. This model was proposed based on geochronological data for metamorphism and magmatism of the Brasília Belt (e.g. Pimentel, 2016) as well as on the existence of an Ediacaran epicontinental sea along the borders of the Amazonian and Rio de la Plata cratons (Gaucher et al., 2003). Another evolutionary model, which integrates paleomagnetic data of Gondwana and several chronocorrelatable tectono-thermal events in the Araguaia, Paraguay and Pampean belts, supports the closure of the Clymene Ocean, taken as separating the western cratons (Amazon *cum* West Africa and Pampia Block) from the western proto-Gondwana represented by the Brasília Belt, Paranapanema block and Rio de la Plata Craton (Trindade et al., 2003; 2006; Tohver et al., 2010, 2012; Tohver and Trindade, 2014). These belts together form an extensive orogenic belt, which was likely active until the Cambrian, that cuts the South-American continent from the Amazon, to the north, up to Argentina, to the south, and represents the final assembly of West Gondwana.

This study on provenance of metasedimentary rocks from the inner zone of Southern Paraguay Belt provides data that contribute to understanding its evolution by showing that the final sedimentation of belt units took place up to ca. 500 Ma as well as to indicate that the Cuiabá Group is composed of, at least, two depositional sequences, one deposited in passive margin settings of the Amazonian Craton, and another Ediacaran unit deposited in convergent margin settings of the western proto-Gondwana.

4.1.1. REGIONAL GEOLOGICAL SETTING

The Paraguay Belt, located in the southwest of the Tocantins Province (Almeida et al., 1981), marks the boundary between the Amazonian Craton and Paranapanema block (**Fig. 1 A**). The belt is divided into northern and southern sectors by the Pantanal Basin, and into lithotectonic domains by thrust faults that are parallel to the border of the Amazonian Craton (**Fig. 1 B**). Such faults mark important basin limits and likely result from normal faults formed in a rift phase later reactivated during inversion of the precursor basin (Campanha et al., 2011; Del'Rey Silva et al., 2016). From the cratonic edge towards the belt interior,

lithotectonic domains are composed of a cratonic cover, in which platform sediments unconformibly overly the cratonic basement, an external structural zone, mainly represented by folded anchimetamorphic carbonate rocks, and an inner structural zone mainly composed of strongly folded sedimentary rocks, metamorphosed, and intruded by granites (Alvarenga and Trompette, 1993).

In lithological terms, the belt comprises three large stratigraphic groups: bottom sequence, glacial turbidites, carbonate rocks, and upper sequence (Alvarenga et al., 1990; Alvarenga and Saes, 1992). Several stratigraphic columns outlining differences and similarities within the belt sectors are proposed. The stratigraphy proposed for the southern Paraguay Belt shows a basal turbiditic-glaciogenic unit ascribed to both the Cuiabá and Jacadigo groups as well as to the Puga Formation, and an upper carbonate unit named Corumbá Group (Trompette et al., 1988, Alvarenga et al., 2000; Boggiani, 1997; Lacerda Filho et al., 2004; Campanha et al., 2011). Stratigraphy in the northern portion shows the carbonate unit named as Araras Group, which is overlain by the Alto Paraguay Group, the uppermost sequence (Alvarenga 1988; Alvarenga and Saes, 1992; Alvarenga and Trompette, 1992, 1993; Alvarenga et al., 2007).

Recent research carried out on the northern sector divides the Cuiabá Group into three formations, from bottom to top: Campina de Pedras, Acorizal and Coxipó formations, which are interpreted as deposited in rift settings, passive margin under glacial influence, and postglacial platform, respectively (Tokashiki and Saes, 2008). The latter unit marks the maximum depositional age of ca. 650 Ma as proposed for the Cuiabá Group in the northern sector (Babinski et al., 2018), and of ca. 601 Ma nearby the Paraná Basin (Pelosi, 2017).

There are no detailed lithostratigraphic data for the Cuiabá Group in the southern sector (**Fig. 1 C**), and regional maps comprise four lithological associations: conglomeratic, psammitic, pelitic, and carbonaceous (Lacerda Filho et al., 2004). Campanha et al. (2011) group schists and phyllites downstream the Miranda River under the name of Agachi Schists, as well as associate previously described metabasic rocks with the Rio Bacuri Metavolcanosedimentary Sequence and reclassify units previously assigned to the Cuiabá Group as part of the Jacadigo and Corumbá groups.

The Puga Formation shows lateral correlation with rocks of the Cuiabá Group (Alvarenga, 1988; Alvarenga and Saes, 1992), and is attributed to the Marinoan Glaciation (~635 Ma; Alvarenga et al., 2007). The maximum depositional age estimated for the Puga Formation in the southern sector is of 696 Ma (McGee et al., 2018) and 706 Ma (Babinski et al., 2013). The Puga Formation is compared to the Jacadigo Group (Trompette et al., 108

1998; Alvarenga et al., 2000), which comprises the Urucum and Santa Cruz formations, the former with Ar-Ar diagenesis age of 587 Ma (Piacentini et al., 2013).

Figure 1. (A) Location map of the Tocantins Province in South America. (B) Sectors and domains of the Paraguay Belt. (C) Sampling map for the southern sector of the Paraguay Belt.

The Corumbá Group is interpreted as deposited in a carbonate platform, showing increasing in clastic contribution towards the top as a result from ocean closure (Boggiani,

1997). Divided into Cadieus, Cerradinho, Bocaina, Tamengo and Guaicurus formations, this group correlates with the Araras Group in the northern sector, having an estimated depositional age of ca. 600 Ma (Alvarenga et al., 1990). Both units show correlation with Marinoan postglacial cap carbonates as determined through C, O, Sr and U-Pb isotopic analyses on the Mirassol d'Oeste and Tamengo formations (Nogueira et al., 2003; Nogueira and Ricomini, 2006; Babinski et al., 2008).

The Alto Paraguay Group, present only in the northern sector, is interpreted as deposited in foreland basin settings and records orogen uplift and exhumation as well as the final events of sedimentation in the Paraguay Belt. The group is divided into Serra Azul, Raizama, Sepotuba and Diamantino formations (Alvarenga et al., 2007). The latter has the youngest apparent zircon age of 528 Ma whose provenance may be the domains of the Brasília Belt or even the Paraguay Belt itself (McGee et al., 2015).

Structurally, the belt is divided into domains that are parallel to the craton boundaries (Almeida, 1984; Alvarenga, 1988, Boggiani, 1990). The closest domain to the Amazonian Craton, in the cratonic cover, is defined by subhorizontal layers unconformably overlying the cratonic basement without deformation or metamorphism. Towards inland of the orogen, in the external zone, the sequences grade from weakly deformed and anchimetamorphic nearby the craton into metamorphic rocks formed under greenschist facies, chlorite zone, showing open folds with slaty cleavage near the boundary with the inner zone, where strong ductile deformation and foliation marked by oriented metamorphic minerals formed under greenschist facies, biotite zone, are observed (Campanha et al., 2011; Del'Rey Silva et al., 2016). Ages of metamorphism recorded by the belt rocks range from 541 Ma to 531 Ma for the northern sector (Geraldes et al., 2003, 2008), and from 547 Ma to 513 Ma for the southern sector (Piacentini et al., 2013), which are compatible with the age of 525 Ma attributed to the onset of oroclinal buckling, and from 486 Ma to 484 Ma to the metamorphic peak (Tohver et al., 2010).

In the inner sectors, close to the boundary with the Paraná Basin, granites intrude metasedimentary rocks of the Cuiabá Group (**Figs. 1 B, C**). Older intrusions, interpreted as syn-collisional (550-520 Ma) and younger intrusions, interpreted as postcollisional (520-500 Ma) (Godoy et al., 2007; McGee et al., 2012), are exposed in the southern and northern sectors, respectively.

4.2. ANALYTICAL PROCEDURES

For U-Pb and Lu-Hf LA-MC-ICP-MS dating, samples were crushed by a jaw crusher and sieved to separate the fraction of approximately 500 µm. Heavy minerals were concentrated through panning and later separated using a Frantz isodynamic separator. Zircon grains were then handpicked from the non-magnetic fraction after separation using a binocular microscope to be mounted in epoxy resin, without selection, having their surface polished to expose the grain interiors. Backscattered electron and cathodoluminescence images (CL) were obtained with a scanning electron microscope to select the best targets for ablation spots.

In situ U-Pb dating was carried out using a Thermo-Finnigan Neptune coupled to a Nd-YAG UP213 laser ablation system (*New Wave*) at the Laboratory of Geodynamic and Environmental Studies of the University of Brasília. Analytical procedures follow the procedures outlined by Bühn et al. (2009). Ablation was performed using a spot size of 25-30 μ m, with energy pulses from 4.1 to 4.3 J/cm³, and repetition rates of 10 Hz operated on grain cores that were free of inclusions, fractures, or any other feature that could impair data accuracy. To correct fractionation, the sample-standard bracketing method was applied (Albarède et al., 2004) by analyzing four to eight unknown crystals between the standard zircon crystals GJ-1 and 91500 (Jackson et al., 2004). Corrections of common Pb were not required due to low signals of ²⁰⁴Pb and high ²⁰⁶Pb/²⁰⁴Pb ratios. Only results less than 10% discordant were selected for U-Pb plots. For plots of apparent ages, only ²⁰⁶Pb/²³⁸U ages of grains younger than 1000 Ma and ²⁰⁷Pb/²⁰⁶Pb ages of older grains were used. Raw data were reduced using Chronus version 2.0 (Oliveira et al., 2015), and geochronological plots were constructed using lsoplot version 4.15 (Ludwig, 2012) with errors for isotopic ratios given at the 1_σ level.

Hf isotopic measurements were performed on zircon grains previously analyzed by U-Pb, among which only grains with discordance of less than ± 5% were considered. Hf analyses were preferentially conducted on top of the U-Pb analysis pits or on similar locations of the grain according to CL images. Prior to laser ablation analyses, JMC 475 10 ppb standard solution, doped with Yb (Yb/Hf=0.02) was run yielding a mean ¹⁷⁶Hf/¹⁷⁷Hf ratio of 0.282171±20 (n=50), which agrees with the values reported in the literature (e.g. 0.282163±09, Blichert-Toft et al., 1997; 0.282162±24, Chu et al., 2002). During the analytical session, GJ-1 zircon (Jackson et al., 2004) was monitored with a reference material and provided an average ¹⁷⁶Hf/¹⁷⁷Hf ratio of 0.281983±21 (N=20) that corroborates the values found by Zeh et al. (2007; 0.282003±15), Morel et al. (2008; 0.282000±05) and Xie et al.

(2008; 0.282028±34). Mass bias correction considered the signal of ¹⁷¹Yb and ¹⁷³Yb that along with ¹⁷⁵Lu were later applied to remove isobaric interferences of Yb and Lu on ¹⁷⁶Hf signal (Matteini et al., 2010). The studied zircon grains provided very low Lu/Hf values (<0.0004), which indicate that the initial Hf isotopic composition was preserved and, consequently, no overcorrection was required. Calculation of ϵ_{Hf} and T_{DM} model ages for each single spot analysis was based on ²⁰⁶Pb/²³⁸U age for grains younger than 1000 Ma and on ²⁰⁷Pb/²⁰⁶Pb ages for older grains, previously determined in the same grain. Errors for isotopic ratios are given at the 2 σ level.

4.3. SAMPLING

Samples are representative of several associations of metasedimentary rocks mapped as Cuiabá Group in the southern sector of the Paraguay Belt, and are composed of deformed metapelites and metapsammites formed under greenschist facies conditions (samples VSC22, VSC31, VSC42, VSC50 and VSC74), exposed in the inner zone of the Southern Paraguay Belt.

Given the current subdivision into lithological associations for units in the southern sector, sampling focused on identifying the main associations in the different blocks/sectors (**Fig. 1C**) bounded by regional faults that are interpreted as important elements of basin and/or structural boundaries (Campanha et al., 2011; Del'Rey Silva et al., 2016).

Three main associations make up the Cuiabá Group in the sampled area. The first association is represented by samples VSC50, VSC54 and VSC58, which consist of coarser-grained lithotypes that were microscopically classified as quartz schists with micas. This association forms a north-south trending package located to the east of Miranda (**Fig.1**) in contact with a thrust fault along which the association was thrust upon other units to the west (**Fig.2**). The second association is represented by samples VSC22, VSC31, VSC37, VSC40, VSC42, and VSC81, which are composed of fine-grained mica schists that were classified under the microscope as muscovite-quartz schists. This association forms slivers thrusted upon one another, to the east of Miranda, as well as on top of units of the Rio Bacuri Sequence, to the east of the Jabuti Anticline, and on the surroundings of Coxim (**Fig. 1 and 2**). The latter association is represented by sample VSC74 which is a strongly foliated phyllite, microscopically classified as muscovite-biotite phyllite. This association occurs as a sliver thrust above the muscovite-quartz schist to the southwest, and under the sliver where sample VSC81 was collected from (**Fig.2**), to the southeast, in the central sector of the Maracaju ridge, near homonymous granite intrusion (**Fig.1**)

Figure 2. Schematic cross-sections sketch of sampled sectors. Structures, contacts, and rocks inferred on the basis of field data survey and available maps (after Godoi et al., 1999; Lacerda Filho et al., 2006; Campanha et al., 2011).

4.4. RESULTS

Five samples were selected for U-Pb and Hf isotopic analyses (**Table 1**): VSC22, VSC31, VSC42, VSC50 and VSC74. Other five samples (VSC37, VSC40, VSC54, VSC58 and VSC81), previously analyzed for U-Pb (Vasconcelos et al., submitted) were also selected for Hf isotopic analyses. These samples comprise mainly phyllites (**Fig. 3 A**) and fine-grained metasandstones (**Fig. 3 B**) with remarkable schistosity (**Fig. 3 A**) and folding (**Figs. 3 B, C**).

Under the microscope, a first deformation phase is recognized and likely was associated with a major metamorphic event, whose main mineral assemblage consists of biotite (bt), chlorite (chl), muscovite (ms), and quartz (qz) formed along the main foliation plane (S1), classified as slaty cleavage, displaying fine-grained granolepidoblastic texture (**Fig. 3 D**). The development mechanisms of this foliation were metamorphic crystallization of oriented minerals (micas), dynamic recrystallization, mostly of quartz, and recovery by intracrystalline deformation of blasts and clasts. Micas are subhedral with up to 0.5 mm in size in phyllites, and euhedral fine-grained lamellae smaller than 0.5 mm in metasandstones (**Fig. 3 F**). Quartz grains show features of dynamic recrystallization (**Fig. 3 F**) by bulging, subgrain rotation and intracrystalline deformation (Vernon, 2004; Passchier and Trouw, 2005).

A second type of foliation is commonly observed in the rocks, giving rise to weakly folded layers and S1 foliation (**Fig. 3 C**) without development of septa; however, smooth and parallel crenulation cleavage is also observed (**Figs. 3 B, E**).

Figure 3. (A, B e C) Macroscopic and (D, E, and F) microscopic aspects of rock samples. (G) Cathodoluminescence images of representative grains from samples. Ages younger than 1.0 Ga correspond to $^{206}Pb^{-238}U$ while older ages correspond to $^{207}Pb^{-206}Pb$.

Zircon grains are commonly subrounded to prismatic, transparent to translucid, colorless to yellow, and range from 50 to 200 μ m in size. The youngest grains of Cambrian, Ediacaran and Cryogenian ages are mostly prismatic, acicular, with moderate rounded edges. CL images (**Fig. 3 G**) display concentric magmatic zoning, seldom inherited cores or metamorphic overgrowth. Grains larger than 300 μ m are commonly bipyramidal, euhedral, and show rare yet noticeable concentric magmatic zoning.

4.4.1. U-PB LA-MC-ICP-MS GEOCHRONOLOGIC RESULTS

SAMPLE VSC22

This grayish quartz-muscovite-biotite schist exhibits weak banding between centimeter-thick layers of quartz and mica. Of the 120 grains analyzed, 56 resulted in values with less than 10% discordance. These grains source is mainly Neoproterozoic representing 79% of the grains, among which 27% are Ediacaran, 41% are Cryogenian, and 32% are Tonian (**Fig. 4** A). The youngest concordant age obtained is 621±5 Ma, and the youngest single grain yielded an apparent age of 603 Ma. The major peaks of Neoproterozoic age vary from 645 Ma to 630 Ma, with subordinate peaks at 664 Ma, 697 Ma, 779 Ma and 970 Ma (**Fig. 4** B). Mesoproterozoic and Paleoproterozoic grains represent a select population making up 14% and 7% of the total amount, respectively, with small concentrations of grains whose ages are close to 1375 Ma and 2079 Ma. The 56 grains show Th/U ratios varying between 0.2 and 1.2.

SAMPLE VSC31

This beige muscovite-biotite-quartz schist is strongly foliated (**Fig. 3 A**), and was collected from the westernmost area nearby the inferred tectonic contact with metasedimentary rocks of the Rio Bacuri Sequence at the boundary between the external and internal zones. Of the 119 grains analyzed, 85 resulted in values with less than 10% discordance. The main source of these grains is Neoproterozoic, making up 47% of the grains, among which 17% are Ediacaran, 30% are Cryogenian and 53% are Tonian (**Fig. 4 C**). The youngest concordant age obtained is 621±7 Ma and the youngest single grain yielded an apparent age of 609 Ma. Major peaks in the Neoproterozoic were at 617 Ma, 661 Ma, 786 Ma and 979 Ma, with subordinate peaks at 702 Ma, 733 Ma, 756 Ma and 810 Ma (**Fig. 4 D**). Mesoproterozoic grains make up 28% of the grains, with major peak at 1060 Ma and a lower peak at 1203 Ma. Paleoproterozoic grains, in turn, make up 19%, with main peak at 1885 Ma and a lower peak at 1958 Ma. Archean grains represent 6% of the grains, with a low peak at 2636 Ma. Of the 85 grains analyzed, only a Cryogenian grain and a Stenian grain returned Th/U ratios smaller than 0.1; the remaining grains display values between 0.1 and 1.5.

Figure 4. U-Pb plots for samples VSC22 and VSC31.

SAMPLE VSC42

This grayish crenulated muscovite-biotite-quartz schist shows centimeter-thick bands composed of quartz and micas (**Fig. 3 B**). Of the 119 grains analyzed, 90 yielded ages less than 10% discordant. The main sources of these grains are Neoproterozoic and make up 49% of the total, of which 36% are Ediacaran, 18% are Cryogenian, and 34% are Tonian. Cambrian sources make up 12% of grains yielding both the youngest concordant age of 508±8 Ma, and the youngest single grain apparent age of 493 Ma (**Fig. 5 A**). The main Ediacaran peak is at 564 Ma, preceded by an older Tonian peak at 992 Ma, with several lower peaks at 514 Ma, 596 Ma, 615 Ma, 669 Ma, 687 Ma, 722 Ma and 822 Ma (**Fig. 5 B**). Mesoproterozoic grains represent 22% and yield a lower peak of Stenian age at 1077 Ma. Paleoproterozoic grains make up 17% and give rise to a low peak of Orosirian age at 2048 Ma. Archean grains correspond to 5% of the total and yield ages that vary from Neoarchean to Paleoarchean. Of the 90 grains analyzed, only five resulted in Th/U ratios smaller than 0.1; one of them is Cambrian, three are Neoproterozoic, and one is Orosirian; the others present ratios varying between 0.12 and 1.1.

SAMPLE VSC50

This very fine-grained chlorite-biotite-quartz schist of reddish color is composed of centimeter-thick bands of quartz and mica. Layering is clearly visible in tight folds, whose subhorizontal axial plane is parallel to the main foliation. Refolding gave rise to open folds with subvertical axial plane (**Fig. 3 C**). Of the 117 grains analyzed, 93 returned ages less than 10% discordant. The main source of these grains is Mesoproterozoic, making up 62% of the total, amount among which 40% are Stenian, 28% are Ectasian, and 24% are Calymmian. Neoproterozoic sources provided only 6% of the grains, whose ages are essentially Tonian, including the youngest concordant age of 927±25 Ma; a single grain yielded a younger apparent age of 666 Ma (**Fig. 5 C**). The major peak of Mesoproterozoic age yields a Stenian age of 1176 Ma, with subordinate peaks at 1143 Ma and 1202 Ma, as well as lower peaks at 1445 Ma and 1530 Ma (**Fig. 5 D**). Paleoproterozoic sources provided 31% of the grains, with subordinate peaks at 1779 Ma, 1875 Ma and 1985 Ma. All grains analyzed display Th/U ratios higher than 0.1, ranging between 0.14 and 1.4.

SAMPLE VSC74

This very fine-grained biotite-quartz-muscovite schist displays a well-developed schistosity composed of strongly oriented flat quartz and mica, defining the main foliation. Of the 105 grains analyzed, 85 yielded ages less than 10% discordant. The main sources are Neoproterozoic, making up 47% of grains, of which 17% are Ediacaran, 25% are Cryogenian, and 58% are Tonian. The youngest concordant age obtained is 619±3 Ma, and the youngest single grain apparent age is 598 Ma (**Fig. 5 E**). The main peak of Tonian age is 795 Ma, with subordinate peaks at 618 Ma and 775 Ma, besides lower peaks at 644 Ma and 670 Ma. Mesoproterozoic sources compose 26% of the grains, showing lower peaks at 1346 Ma, 1365 Ma and 1507 Ma (**Fig. 5 F**). Paleoproterozoic sources comprise 22% of the grains, with peaks at 1850 Ma and 1980 Ma. In turn, Neoarchean sources make up 5% of the grains. Only five grains yielded Th/U ratios lower than 0.1, of which two are Tonian, two are Ectasian, and one is Stenian; the remaining grains show ratios varying between 0.12 and 0.85.

4.4.2. LU-HF ISOTOPIC RESULTS

Dated detrital zircon grains of ten representative samples from metasedimentary rocks of the so-called Cuiabá Group were selected for Lu-Hf analyses. Zircon grain ages of five of the samples (VSC37, VSC40, VSC54, VSC58 and VSC81) are presented by Vasconcelos et al. (submitted).

A total of 217 grains underwent analysis (Table 2), from which 8% are Archean, 16% are Paleoproterozoic, 32% are Mesoproterozoic, 42% are Neoproterozoic and 2% are Cambrian. Results are shown on a ε_{Hf} vs. Age plot (**Fig. 6 A**), in which fields are delimited on the basis of Hf constrained by the likely source areas, such as the Amazonian Craton that is represented by zircon grains sampled from the Amazonas River (Lizuka et al., 2010), the Goiás Massif (Matteini et al., 2010), and Neoproterozoic and Cambrian granites along the Transbrasiliano Lineament (Ferreira et al., 2009). Hf isotopic data are also presented on crystallization age vs. T_{DM} model ages plots (**Fig. 6 B**), in which intervals of crystallization ages and T_{DM} model ages (Hf and Nd) available for each domain of the Amazonian Craton (Tassinari & Macambira, 1999; Santos et al., 2000), Brasília Belt (Pimentel et al., 2011; Pimentel, 2016), and granites intruded into the Paraguay Belt are defined (Godoy et al., 2010).

Hf isotopic data display large dispersion of $\epsilon_{Hf}^{(t)}$ values, varying between +15.8 and -27.5 (**Fig. 6 A**). However, 85% of the grains result in $\epsilon_{Hf}^{(t)}$ values between +10 and -10, 54% of which are positive. The most significant differences in $\epsilon_{Hf}^{(t)}$ values are among the youngest Cambrian and Neoproterozoic grains, which correspond to 80% to 60% of negative values, while Mesoproterozoic grains correspond to 80% of positive values. Paleoproterozoic and Archean grains show a similar proportion for both positive and negative values.

Regarding the existing differences among samples, the most significative one is observed on samples with Tonian maximum depositional ages (VSC50, VSC54 and VSC58) that are interpreted as deposited in passive margin settings, with mainly positive $\epsilon_{Hf}^{(t)}$ values, varying from -3.2 to +15.8, while samples with Ediacaran to Cambrian maximum depositional ages (VSC22, VSC31, VSC37, VSC40, VSC42, VSC74 and VSC81), displaying values between -27.5 and +12.0, are interpreted as deposited in convergent margin settings.

T_{DM} model ages (**Fig. 6 B**) also show a difference related to depositional environment and, consequently, to source areas. The main differences are observed on grains of Neoproterozoic age, whose model ages are solely Mesoproterozoic in passive margin samples, and Neoproterozoic to Mesoproterozoic in convergent margin samples.

The grains from samples interpreted as deposited in passive margin show that Tonian grains yield only Mesoproterozoic model ages. In turn, 54% of Mesoproterozoic grains age yield Mesoproterozoic and 36% yield Paleoproterozoic T_{DM} ages. Paleoproterozoic grains yield only Paleoproterozoic T_{DM} ages. A single Neoarchean grain shows Mesoarchean T_{DM} model age.

The samples interpreted as deposited in convergent margin comprise Cambrian grains whose T_{DM} model ages vary between Mesoproterozoic (60%) and Paleoproterozoic (40%). Neoproterozoic grains show mainly Mesoproterozoic T_{DM} model ages (69%). Remaining grains display Neoproterozoic (13%), Paleoproterozoic (17%) and Archean (1%) T_{DM} model ages.

Mesoproterozoic grains yield exclusively Mesoproterozoic and Paleoproterozoic T_{DM} model ages. Paleoproterozoic grains have Paleoproterozoic (58%) and Archean (42%) T_{DM} model ages. The Archean grains display mainly Mesoarchean T_{DM} model ages (67%); remaining grains have Neoarchean (11%) and Paleoarchean (22%) T_{DM} model ages.

Figure 6. (A) EHf vs. crystallization age (Ma) plot for metasedimentary rocks from the Cuiabá Group in the Southern Paraguay Belt. The gray polygon represents the first quartile of EHf values of zircon grains collected from the Amazonas River (Likuza et al., 2010). The solid polygon encompasses EHf values for magmatic events of the Goiás Magmatic Arc in the Brasília Belt (Matteini et al., 2010). The dashed polygon presents data of EHf on zircon from Neoproterozoic to Cambrian granites placed along the TBL (Ferreira et al., 2009). Both figures show a dashed vertical line that marks the maximum limit of known ages for domains of the Amazonian Craton (B) Crystallization age (Ma) vs. TDM model ages (Ga) plot. Further information for comparison among domains of the Amazonian Craton, according to Tassinari and Macambira (1999) and Santos et al. (2000). Data from domains of the Brasília Belt by Pimentel (2016), Pimentel et al. (2011) and references therein. Data from granite intrusions of the Paraguay Belt published by Godoy et al. (2010).

4.5. DISCUSSION

Based on the youngest ages and age spectra, U-Pb zircon isotopic data obtained for samples of the Cuiabá Group were divided into three groups.

Group 1, represented by sample VSC50, shows a polymodal age spectrum, in which Tonian zircon grains are the youngest grains; the youngest concordant age is 927 Ma. This sample comes mainly from Mesoproterozoic sources, with lower contribution from Neoproterozoic and Paleoproterozoic sources, without evidence of contribution from Archean sources (**Figs. 5 C, D**).

The youngest grains of **Group 2**, which includes samples VSC31, VSC74 and VSC22, are of Ediacaran age. The first two samples, displaying polymodal age spectra, represent mostly Tonian sources. 80% of the zircon grains of the third sample are of Neoproterozoic ages, among which 41% are Cryogenian, showing a relatively unimodal spectrum. The youngest concordant ages calculated for these samples are 621 Ma, 619 Ma and 621 Ma, respectively. Mesoproterozoic to Paleoproterozoic grains represent a small population in the first two samples, of which only 5% are Archean (**Figs. 4 A**, **B**, **C**, **D**; **Figs. 5 E**, **F**).

In **Group 3**, represented by sample VSC42, the youngest grains are Cambrian, and the main sources are Neoproterozoic having a difference of 56 Ma between the youngest concordant age, 508 Ma, and the main peak, 560 Ma. The main difference between this sample and the samples in group 2 is the presence of Cambrian grains, once VSC42 also shows a small contribution of Mesoproterozoic and Paleoproterozoic grains, with only 5% of the grains being Archean in age (**Figs. 5 A**, **B**).

These results show similarity with the data presented by Vasconcelos et al. (submitted). Samples VSC54 and VSC58 compare with group 1, samples VSC40 and VSC81 with group 2, and sample VSC42 is similar to group 3, which justifies the interpretation of their Lu-Hf results in an integrated manner.

4.5.1. BASIN TECTONIC SETTINGS AND POTENTIAL SOURCE REGIONS

The sample in group 1 displays a difference of ca. 310 Ma between the youngest age and the maximum depositional age found into the Cuiabá Group (ca. 619 Ma, samples from Group 2), which, following the model of Cawood et al. (2012), is interpreted as representing deposition in intraplate extensional settings, more specifically, passive margin. Ages obtained from detrital zircon grains are consistent with Amazonian Craton sources, as supported by passive margin settings, the youngest ages and main peaks. Furthermore, such settings have been ascribed to units of the Cuiabá Group also in the northern sector (Alvarenga and Trompette, 1992; Dantas et al. 2009; McGee et al., 2015; Batalha, 2017; Babinski et al., 2018). The ages of main peaks shown by this sample represent events of crustal formation recognized in the Amazonian Craton (Tassinari and Macambira, 1999) including the Ventuari-Tapajós (1.95 to 1.8 Ga), Rio Negro-Juruena (1.8 to 1.55 Ga), Rondoniana-San Ignácio (1.5 to 1.3 Ga) and Sunsás provinces (1.25 to 1.0 Ga) (**Figs. 6 B and 7**), the first three in a far position from the basin, becoming less likely sources.

The nearby source area, whose age correlates with that of the main peak, is composed of felsic magmatic rocks of the Nova Brasilândia Belt (1180 to 1110 Ma), part of the Sunsás Orogen (Santos et al., 2008).

Figure 7. Simplified geological map of the main terranes likely to have been the source areas of metasedimentary rocks of the Paraguay Belt in the study area.

However, the youngest ages are assigned to late- to postmagmatic felsic magmatism of the Sunsás Orogeny, such as felsic plutons of the Guapé Intrusive Suite, ca. 940 Ma (Geraldes et al., 2001), and subalkaline granites of the Rondônia tin province, ca. 970 Ma (Bettencourt et al., 1999; Sparrenberger et al., 2002). Among the geochronological provinces of the Amazonian Craton (**Fig. 7**), the Amazônia Central/Carajás (>2.3 Ga) and Maroni-Itacaiúnas (2.2-1.95 Ga) provinces apparently did not contribute sediments to the southern Paraguay Belt, due perhaps to the long distance between these units, while the Sunsás Province, near the belt, is the main source. This interpretation is supported by Hf data yielding mainly $\epsilon_{Hf}^{(t)}$ positive values (**Fig. 6 A**) as well as Mesoproterozoic and Paleoproterozoic T_{DM} model ages (**Fig. 6 B**) for zircon grains of Mesoproterozoic main peaks and younger Tonian grains from samples ascribed to passive margin settings (VSC50, VSC54 and VSC58). These values are congruent with those known for the Rondoniana-San Ignácio and Sunsás provinces. The same appears to be true of Paleoproterozoic grains, of which $\epsilon_{Hf}^{(t)}$ values are less positive and T_{DM} model ages are solely Paleoproterozoic, therefore compatible with the values obtained for rocks formed during this time interval in the Amazonian Craton (Santos et al., 2000). Besides that, part of the grains plots exactly within the polygon of $\epsilon_{Hf}^{(t)}$ values for cratonic sediments (**Fig. 6 A**) as shown by Likuza et al. (2010).

The samples of group 2 show maximum depositional age only 30 Ma younger than that assumed for the top of the Cuiabá Group in the northern sector (Babinski et al., 2018), and for the Cuiabá Group in the southern sector (Vasconcelos et al., submitted), which are likewise interpreted as deposited in convergent margin settings according to the model proposed by Cawood et al. (2012). The fact that the maximum depositional age is close to that of the Marinoan Glaciation (ca. 635 Ma), with which the sedimentary rocks of the Puga Formation are associated (Nogueira et al., 2003; Alvarenga et al., 2007), allows its correlation with units of the Cuiabá Group that is laterally correlated with the Puga Formation (Alvarenga and Saes, 1992). Such interpretation diverges from the passive margin depositional model acknowledged for the Cuiabá Group, yet it is supported by the presence of major Ediacaran peaks that are so far unknown in the Amazonian Craton, leading to its exclusion as main source area. Besides that, Rhyacian, Siderian, and Archean grains are only in group 2 while Statherian grains are solely in group 1, indicating that samples from each group had distinct sediment sources. For that reason, source areas of group 2 may be located to the east, underlying the Paraná Basin (Paranapanema Block) and Brasília Belt, including Goiás Magmatic Arc, Goiás Massif and supracrustal units (Fig. 7), which together plot within the whole age spectra of these samples (Fig. 6 B). The concordant and apparent ages obtained for the youngest grains, ca. 620 Ma, as well as the ages of major peaks obtained for the three samples, between ca. 620 Ma and 660 Ma and at 795 Ma, correspond to magmatic events that took place during the development of the Brasilia Belt and are consistent with syn- to post-collisional granitic magmatism (Pimentel et al., 1999, 2003a; Rodrigues et al., 1999; Della Giustina et al., 2011; Pimentel, 2016). Ages within this spectrum are recognized both in the Dom Feliciano Belt (Noll Filho et al., 2018) and Sierras Pampeanas (Escayola et al., 2011). An older age spectrum identified in the eastern portion

is compatible with Mesoproterozoic ages obtained on zircon crystals from metasedimentary rocks formed in passive margin settings of the Brasília Belt, whose source area is the São Francisco Craton (Pimentel et al., 2011), as well as from A-type granites of the Goiás tin province (Pimentel et al., 1999). Paleoproterozoic grains may have originated from tonalites of the Caiçara Complex emplaced into Archean terranes in Goiás, from where the Archean grains may have come, with source areas chronocorrelatable to the Uvá and Hidrolina complexes (Montalvão, 1986; Tomazzoli, 1992; Pimentel et al., 1996, 2003b; Queiroz et al., 2008; Jost et al., 2005, 2010, 2012, 2013; Borges et al., 2017).

The hypothesis of Neoproterozoic sources sitting in domains of the Brasília Belt, as supported by Hf isotopic data, indicates that samples interpreted as deposited in convergent margins (VSC22, VSC,31, VSC40, VSC74 and VSC81) have Neoproterozoic sources with $\epsilon_{Hf}^{(t)}$ values between -15 and +10 and T_{DM} model ages between 750 Ma and 1.7 Ga, whose values are consistent with those of rocks from the Goiás Magmatic Arc (Matteini et al., 2010), mafic-ultramafic complexes and high-grade terranes of the Goiás Massif (Piuzana et al., 2003; Della Giustina et al., 2009, 2011), syn to post-collisional intrusive rocks, and metasedimentary sequences of the Brasília Belt (Ferreira et al., 2009; Pimentel et al., 2011) (**Figs. 6 A, B**). The spectra of $\epsilon_{Hf}^{(t)}$ values and T_{DM} model ages of Mesoproterozoic grains vary mainly between -7 and +8 and 0.85 Ga and 1.96 Ga, respectively. These values are consistent with those of zircon grains obtained from metasedimentary sequences and paragranulites of high-grade terranes of the Brasília Belt (Figs. 6 A, B). Paleoproterozoic grains show $\epsilon_{Hf}^{(t)}$ values between -9 and +5 and T_{DM} model ages between 2.3 Ga and 2.7 Ga, which are consistent with the source areas of metasedimentary sequences and Paleoproterozoic basement of the Brasília Belt (Piuzana et al., 2003; Della Giustina et al., 2009, 2011; Pimentel et al., 2011) (Figs. 6 A, B). Archean grains yielded EHf^(t) values mostly negative, -10 to +5, and T_{DM} model ages between 2.6 Ga and 3.3 Ga. These values are analogous to those of rocks from the Archean Block of Goiás as well as to those of zircon grains from metasedimentary sequences of the Brasília Belt (Pimentel et al., 2003) (Fig. 7).

The sample from group 3 returned a maximum depositional age of 508 Ma, ca. 100 Ma younger than that of samples from group 2, and much closer to the depositional ages attributed to units of the Corumbá Group (543 Ma, McGee et al., 2018) in the southern sector, and Alto Paraguay Group in the northern sector (528 Ma, McGee et al., 2015), both assumed as units deposited during the final sedimentation stage of the Paraguay Belt in foreland basin settings over the Amazonian Craton. Therefore, these samples represent a unit younger than the Cuiabá Group, which is likely the result from cannibalization of granite

intrusions in the Paraguay Belt along the Transbrasiliano Lineament (Ferreira et al., 2009; Godoy et al., 2010; McGee et al., 2012).

 $\epsilon_{Hf}^{(t)}$ values and T_{DM} model ages from Cambrian grains vary between -27 and +1.1, and 2.1 Ga and 1.1 Ga, respectively. Amongst the 8 youngest grains of sample VSC42, six plot within the area of ϵ_{Hf} values of post-collisional granites intruded into units of the Paraguay Belt and TBL (Ferreira et al., 2009; Godoy et al., 2010; McGee et al., 2012) (Figs. 6 A, B), which supports the model outlining cannibalization of granites, inner zone of the belt, and deposition in foreland basin settings. The remaining spectra of two samples with Cambrian grains (VSC37 and VSC42) present $\epsilon_{Hf}^{(t)}$ values and T_{DM} model ages compatible with those of samples in group 2, pointing out to similar source areas.

Ages similar to that of the main source of group 3, ca. 560 Ma, are also recognized in the Pampeano Orogen, where calc-alkaline volcanism yields ages between 555 Ma and 525 Ma, and peraluminous magmatism shows ages between 525 Ma and 515 Ma (Rapela et al., 2007). Ages of 560 Ma are also described for the Serro Partido volcanism in the Dom Feliciano Belt (Noll Filho et al., 2018). Regardless of the distance, both terranes may have contributed to sedimentation of groups 3 and 2, given that such terranes with similar ages, nowadays geographically apart, may have been close to each other prior to displacement along the Transbrasiliano Lineament, which limits the source areas to the eastern portion of the Paraguay Belt (**Fig. 7**).

4.5.2. MAXIMUM AND MINIMUM DEPOSITIONAL AGES AND EVOLUTIONARY MODEL

The maximum depositional age obtained for samples in group 1 is 927 ± 25 Ma, which overlaps, given the uncertainty, the maximum depositional age of 915 Ma shown by Vasconcelos et al. (submitted) for samples with similar age spectra. Crystallization age spectra, T_{DM} model ages, and ϵ_{Hf} values for these samples are compatible with data of the Amazonian Craton, supporting the hypothesis of Amazon-derived sources and deposition in passive margin settings on the edge of the Amazonian Craton for samples in this group (**Fig. 8 A**).

In the southern sector of the Paraguay Belt, McGee et al. (2018) report maximum depositional ages of 900 Ma for the Cerradinho Formation, basal unit of the Corumbá Group. In the northern sector of the Paraguay Belt, Batalha (2017) and Babinski et al. (2018) carried out provenance studies on the bottom units of the Cuiabá Group and report mostly Mesoproterozoic sources and maximum depositional ages between 905 Ma and 810 Ma for Campina de Pedras Formation and bottom of the Acorizal Formation, respectively. This

places samples in group 1 as part of the bottom units of the Cuiabá Group that were deposited in passive margin settings along the edge of the Amazonian Craton.

The maximum depositional age of samples in **group 2** was estimated at 619±3 Ma, overlapping, within uncertainty, the maximum depositional age of 611±5 Ma as demonstrated by Vasconcelos et al. (submitted) for samples with similar age spectra. Data show correlation with source areas that are part of domains of the Brasília Belt, which indicates a difference between source area and samples of passive margin as well as reinforces the depositional model of convergent settings, likely of back-arc settings for part of units of the Paraguay Belt (**Fig. 8 B**).

In the southern sector, McGee et al. (2018) report maximum depositional ages of 686±10 Ma for the Puga Formation, is only ca. 65 Ma younger than samples in group 2. Therefore, deposition in convergent margin in the Paraguay Belt may have started in the Tonian continuing up to lower Ediacaran, suggesting sources that are unknown in the Amazonian Craton. Similar age spectra are also reported by Pelosi (2017) for samples of the upper Cuiabá Group collected from the internal sector of the Paraguay Belt, near to Coxim in the extreme east of the belt, close to the boundary with the Paraná Basin. Such samples indicate a maximum depositional age of 601 Ma and mostly Neoproterozoic sources.

The results indicate that units formed in convergent settings are common in both sectors of the Paraguay Belt and compose the top units of the Cuiabá Group, always exposed closer to the limit with the Paraná Basin. However, these units in the northern sector have mainly Mesoproterozoic sources, while Neoproterozoic sources dominate in the southern sector. This fact may feature a gradational temporal/spatial change in sediment delivery, with restricted delivery of younger grains to units of the Cuiabá Group in the northern sector up to ca. 650 Ma, grading into delivery mainly of younger grains and main Neoproterozoic sources to units of the Cuiabá Group in the southern sector of the belt until ca. 600 Ma. This change is likely related to late stages of magmatism and uplift in the Brasiliano orogens to the east leading to an increase in sediment delivery to the Ediacaran basin formed in backarc convergent settings, located to the west of the domains of the Brasília Belt and Paranapanema Block.

The sample in **group 3** yielded a maximum depositional age of 508±8 Ma, 15 Ma younger than the apparent age obtained for a Cambrian grain from sample VSC37 reported by Vasconcelos et al. (submitted), and main source of ca. 560 Ma, ages that correlate with post-orogenic magmatism in the Paraguay and Brasília belts.

Ages of ca. 540 Ma of detrital zircon grains are described by McGee et al. (2017) for metasedimentary rocks previously mapped as Cuiabá Group nearby the localities of samples VSC37 and VSC42. Once such young ages are only recognized in upper units of the sequence, the rocks studied are interpreted as part of the Guaicurus Formation, top unit of the Corumbá Group (Boggiani, 1997). This group is interpreted as a sequence deposited in a post-Marinoan glaciation carbonate platform (Nogueira et al., 2003; Nogueira and Ricomini, 2006; Babinski et al., 2008), showing increasing clastic sediments towards the upper portions as a result of ocean closure. An interesting observation is that of Multidimensional Scaling Plots presented by McGee et al. (2018), comparing sample results with likely source areas, on which the samples interpreted as Guaicurus Formation share similarities with samples of the Diamantino Formation, top unit of the Alto Paraguay Group in the northern sector of the Paraguay Belt. This formation contains grains with ages similar to those of group 3, between 528 and 560 Ma (McGee et al., 2015), and records the events of exhumation, erosion, and final sedimentation in the Paraguay Belt in foreland settings.

Therefore, it is likely that samples in group 3 represent units that were deposited in a Cambrian foreland basin, later deformed and metamorphosed during ocean closure and edification of the Paraguay Belt, which most likely continued up to almost 500 Ma (**Fig. 8 C**). These ages are compatible with the Ar-Ar ages obtained for metamorphic peak at 528±36 Ma (Tohver et al., 2010) and 513±3 Ma (Piacentini et al., 2013) as well as for the youngest granites intruded into the Paraguay Belt between 518 and 504 Ma (Godoy et al., 2010; McGee et al., 2012), which may be considered the closest ages to the minimum depositional age of metamorphic units in the Paraguay Belt.

Regardless of the Guaicurus Formation being likely the best correlation, the quartzmica schists of group 3 are very distinct from those typical shales and pelites of the Guaicurus Formation and, thus, such correlation requires caution. An explanation for the lithological difference would be the difference of the metamorphic degree, which in the biotite zone of green schist facies gave rise to the schists of the group 3.

Figure 8. Modelo of conceptual Evolution.

4.6. CONCLUSIONS

- The maximum depositional ages provided by detrital zircon U-Pb analyses allowed to define that the final sedimentation of metamorphic units of the Paraguay Belt took place at ca. 510 Ma.
- The Paraguay Belt is not related to the shortening that gave rise to the typical Brasiliano orogens (~620 Ma), like the Brasília Belt exposed eastwards. These terranes possibly worked as source areas to some units of the Paraguay Belt becoming the main source areas during the upper Ediacaran in the southern sector.
- Metasedimentary rocks of the Cuiabá Group may be divided into two sequences:
- i Passive margin sequence of the Amazonian Craton, with maximum depositional age at ca. 900 Ma, located closer to the external domain of the orogen.
- ii Convergent margin sequence has a maximum depositional age of 620 Ma that is consistent with the Marinoan Glaciation. The youngest sequence outcrops in the domains of the Cuiabá Group closer to the limit with the Paraná Basin, in the internal

sectors of the orogen, where granite intrusions and the Transbrasiliano Lineament are exposed. Data available for samples of the Cuiabá Group located in the northern sector indicate that deposition took place in convergent margin with its onset in the Tonian.

 Units mapped as Cuiabá Group in the southern sector may represent sedimentary rocks placed higher in the stratigraphic column that were deposited in a foreland basin and record the regional metamorphic event under greenschist facies, therefore corroborating the metamorphic ages of 528±36 Ma available for metasedimentary rocks of the Paraguay Belt.

Late orogenic events that shaped Western Gondwana in the Cambrian are recorded by sedimentation and magmatism of the Araguaia and Paraguay belts in Central Brazil whose ages are correlated with the Pampean Orogeny in Argentina. Such data support the hypothesis of closure of the Clymene Ocean at the Ediacaran-Cambrian boundary, giving rise to the last orogenic belt assembling the Western Gondwana to the west of the Goiás Magmatic Arc, Paranapanema Block, and Rio de la Plata Craton.

ACKNOWLEDGMENT

BRV acknowledge the National Research Council (CNPq) for their support through the project 870607/1997-9, who provided the doctoral scholarship 163364/2015-5 enabling the development of the research. We are also grateful for the Faculty of Geosciences at Federal University of Mato Grosso for the assistance of personnel and materials for execution of the fieldwork. RAF acknowledges CNPq for research scholarship and CNPq and FAP/DF for research grant INCT Estudos Tectônicos.

4.7. REFERENCES

- Albarède, F., Telouk, P., Blichert-Toft, J., Boyet, M., Agranier, A., Nelson, B., 2004. Precise and accurate isotopic measurements using multiple collector ICPMS. Geochimica et Cosmochimica Acta 68, 2725– 2744
- Almeida F.F.M., 1984. Província Tocantins, setor sudoeste. In: Almeida, F.F.M. de; Hasui, Y. (Coord.). O Pré-Cambriano do Brasil. São Paulo, Edgard Blücher, 265-281.
- Almeida, F.F.M., Hasui, Y., Brito Neves, B.B., Fuck, R.A. Brazilian structural provinces: An introduction. Earth-Science Reviews 17(1), 1-29, 1981.
- Alvarega C.J.S., Trompette R., 1993. Evolução Tectônica Brasiliana da Faixa Paraguai: a estruturação da região de Cuiabá. Revista Brasileira de Geociências, 23, 18-30.
- Alvarenga C.J.S., 1988. Turbiditos e a glaciação do final do Proterozóico Superior no Cinturão Paraguai, Mato Grosso. Revista Brasileira de Geociências, São Paulo, 18, 323-327.
- Alvarenga C.J.S., 1990. Phénomènes sédimentaires, estructuraux et circulation de fluides developpés à la transition chaine-craton: exemple de la chaine Paraguai d'age protérozoique supérieur, Mato Grosso, Brésil. PhD thesis, University of Marseille
- Alvarenga C.J.S., Figueiredo M.F., Babinski M. Pinho F.E.C., 2007. Glacial diamictites of Serra Azul Formation (Ediacaran, Paraguay belt): Eividence of the Gaskier glacial event in Brazil. Journal of South American Earth Science, 23, 236-241
- Alvarenga C.J.S., Moura C.A.V., Gorayeb S.S.G., Abreu F.A.M., 2000. Paraguay and Araguaia Belts. In: Cordani U.S., Milani E.J., Thomas Filho A., Campos D.A. Tectônic Evolution of South América, Rio de Janeiro, 183-193.
- Alvarenga, C. J. S., Saes, G. S., 1992. Estratigrafia e sedimentologia do Proterozóico Médio e Superior da região sudeste do Cráton Amazônico. Revista Brasileira de Geociências, São Paulo, 22, 493-499.
- Babinski, M., Boggiani, P.C., Fanning, C.M., Fairchild, T.R., Simon, C.M., Sial, A.N., 2008. U–Pb SHRIMP Geochronology and Isotope Chemostratigraphy (C, O, SR) of the Tamengo Formation, Southern Paraguay Belt, Brazil. Short Paper Presented in the VI South American Symposium on Isotope Geology, Bariloche, Argentina.
- Babinski, M., Boggiani, P.C., Trindade, R.I.F., Fanning, C.M., 2013. Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictite and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana, 23, 988–997.
- Babinski, M., McGee, B., Tokashiki, C.C., Tassinari, C.C.G., Saes, G.S., Pinho, F.E.C. 2018. Comparing two arms of na orogenic belt during Gondwana amalgamation: Age and provenance of the Cuiabá Group, northern Paraguay Belt, Brazil. Journal of South American Earth Sciences. Doi:10.1016/j.sames.2018.04.009.
- Batalha, R.S. 2017. Estudo de minerais pesados, análise morfológica e datação U-Pb por ICPMS-LA de zircão detrítico – Proveniência dos metassedimentos do Grupo Cuiabá, Faixa Paraguai Norte-MT. Master dissertation. Federal University of the Mato Grosso, Cuiabá.
- Bettencourt, J.A., Payolla, B.L., Leite Jr., W.B., Tosdal, R.M., Spiro, B., 1999. Mesoproterozoic Rapakivi granites of Rondonia tin province, SW border os Amazon Craton, Brazil. III-Reconnaissance Nd, Sr, O, Pb isotopic geochemistry and regional implications. In: Barbaran, B. (Ed.), Fourth Hutton Symposium Clermont Ferrand, France, 290, 132.
- Blichert-Toft, J, Albarede, F., 1997. The Lu–Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle–Crust System. Earth and Planetary Science Letters 243–258.
- Boggiani, P. C., 1990. Ambientes de sedimentação do Grupo Corumbá na região central da Serra da Bodoquena, Mato Grosso do Sul. Dissertation master, University of São Paulo, São Paulo.
- Boggiani, P. C., 1997. Análise Estratigráfica da Bacia Corumbá (Neoproterozóico) Mato Grosso do Sul. Doctoral Thesis - University of São Paulo, São Paulo.

- Borges, C.C.A., Toledo, C.L.B., Silva, A.M., Chemale Jr. F., Jost, H., Lana, C.C., 2017. Geochemistry and isotopic signatures of metavolcanic and metaplutonic rocks of the Faina and Serra de Santa Rita greenstone belts, Central Brazil: evidences for a Mesoarchean intraoceanic arc. Precambrian Research. (in press)
- Bühn, B., Pimentel, M.M., Matteini, M., Dantas, E.L., 2009. High spatial resolution analysis of Pb and U isotopes for geochronology by laser ablation multi-collector inductively coupled plasma mass spectrometry (LA-MC-ICP-MS). Anais Academia Brasileira de Ciências, 81, 1-16.
- Campanha, G.A.C., Boggiani, P.C., Sallun Filho, W., Sá, F.S., Zuquim, M.P.S., Piacentini, T., 2011. The Paraguay Fold Belt in the Serra da Bodoquena and Miranda River Depression, Mato Grosso do Sul. Revista do Instituto de Geociências 11, 79–96.
- Cawood, P.A., Hawkesworth, C.J., Dhuime, B., 2012. Detrital zircon record and tectonic setting. Geology, 40, 875-878.
- Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–1574.
- Collins, A.S., Pisarevisky, S.A., 2005. Amalgamating eastern Gondwana: The Evolution of the Circum-Indian Orogens. Earth-Science Reviews 71, 229-270. Doi: 10.1016/jearscirev.2005.02.004
- Cordani U.G.; Pimental M.M.; Araújo C.E.G.; Basei M.A.S.; Fuck R.A.; Girardi V.A.V., 2014. Reply to the Comment by E. Tohver R. Trindade on "Was there a Clymene Ocean in Central South America? 313, 517-539." American Journal of Science 314, 814-819. Doi:10.2475/03.2014.04
- Cordani, U. G., Pimentel, M. M., De Araujo, C. E., Basei, M. a. S., Fuck, R. A., Girardi, V. A. V., 2013. Was there na Ediacaran Clymene Ocean in central South America?. American Journal of Science, 313, 517-539. Doi:10.2475/06.2013.01
- Cordani, U. G., Teixeira, W., D'Agrella-Filho, M. S., Trindade, R. I. 2009. The position of the Amazonian Craton in supercontinentes. Gondwana Research, 15, 396–407. Doi:10.1016/j.gr.2008.12.005
- Dantas, E.L., Alvarenga, C.J.S. de, Santos, R.V., Pimentel, M.M., 2009. Using Nd isotopes to understand the provenance of sedimentary rocks from a continental margin to a foreland basin in the Neoproterozoic Paraguay belt, Central Brazil. Precambrian Research, 170, 1–12. (Doi:10.1016/j.precamres.2008.11.005)
- Della Giustina, M.E.S., Pimentel, M.M., Ferreira Filho, C.F., Holanda, M.H.B.H., 2011. Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis Itaucú Complex, central Brazil. Lithos, 124, 82-201. (Doi:10.1016/j.lithos.2010.11.004)
- Del'Rey Silva L.J.H., Walde D.H.G., Saldanha D.O., 2016. The Neoproterozoic-Cambrian Paraguay Belt, central Brasil: Part I New structural data and a new approach on the regional implications. Tectonophysics, 676, 20-41.
- Escayola M.P., Van Staal C.R., Davis W.J., 2011. The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. Journal of South American Earth Sciences, 32, 438-459.
- Ferreira, C.O., 2009. Constraints of the Neoproterozoic–Cambrian magmatism along the Transbrasiliano Lineament, central Brazil. Universidade de Brasília, Brasília.
- Gaucher, C., Boggiani, P. C., Sprechmann, P., Sial, A. N., and Fairchild, T., 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumba´ groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120, 241– 278. Doi:10.1016/S0301-9268(02)00140-7
- Geraldes, M. C., Tassinari, C. C. G., & Onoe, A. T. (2003). 40 Ar/39 Ar metamorphic record of a collision related to the western Gondwana collage: the (541-531 MA) Paraguay belt in the Nova Xavantina (MT) region. In: Boletim de Resumo, Búzios. SBG-Núcleos Rio de Janeiro/ Espirito Santo.
- Geraldes, M. C.; Tassinari, C. C. G.; Babinski, M.; Martinelli, C. D.; Yer, S. S.; Barbosa, E. S.; Pinho, F. E. C., 2008. Onoe, A. T. Isotopic Evidence for the Late Brasiliano (500- 550 Ma) Ore-Forming Mineralization

of the Araés Gold Deposit, Brazil. International Geology Review, 50, 177-190. (Doi:10.2747/0020-6814.50.2.177)

- Geraldes, M.C., Van Schmus, W.R., Condie, K.C., Bell, S., Teixeira, W., Babinski, M., 2001. Proterozoic Geologic Evolution of the SW part of the Amazonian Craton in Mato Grosso State, Brazil. Precambrian Research, 111, 91-128.
- Godoy, A. M., Manzano, J. C., Ruiz, A. S., Araújo-Ruiz, L. M. B., 2007. Os Granitóides Brasilianos da Faixa de Dobramentos Paraguai, MS e MT. Geologia USP, Série Científica, 7, 29–44. (Doi: 10.5327/Z1519-874X2007000100003).
- Godoy, A. M., Pinho, F. E. C., Manzano, J. C., de Araújo, L. M. B., da Silva, J. A., Figueiredo, M., 2010. Estudos isotópicos das rochas granitóides neoproterozoicas da Faixa de Dobramento Paraguai. Brazilian Journal of Geology, 40, 380–391.
- Hoffman, P.F., Kaufman, A.J., Halverson, G.P., Schrag, D.P., 1998. A Neoproterozoic snowball earth. Science 281, 1342–1346.
- lizuka, T., Komiya, T., Rino, S., Maruyama, S., Hirata, T., 2010. Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica et Cosmochimica Acta 74, 2450–2472. (Doi:10.1016/j.gca.2010.01.023)
- Jackson, S.E., Pearson, N.J., Griffin, W.L., Belousova, E.A., 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology, 211, 47-69.
- Jost H., Chemale Jr. F., Fuck R.A., Dussin I.A., 2013. Uvá complex, the oldest orthogneisses of the Archean-Paleoproterozoic terrane of central Brazil. Journal of South American Earth Sciences, 47, 201-212
- Jost, H., Chemale Jr, F., Dussin, I. A., Tassinari, C.C.G., Martins, R., 2010. A U-Pb zircon Paleoproterozoic age for the metasedimentary host rocks and gold mineralization of the Crixás greenstone belt, Goiás, Central Brasil. Ore Geology Reviews, 37,127-139. Doi: 10.1016/j.oregeorev.2010.01.003
- Jost, H., Fuck, R. A., Dantas, E. L., Rancan, C. C., Rezende, D. B., Santos, E., Portela, J.F., Mattos, L., Chiarini, M. F. N., Oliveira, R. C., Silva, S.E., 2005. Geologia e geocronologia do Complexo Uvá, Bloco Arqueano de Goiás. Rev. Bras. Geociências. 35, 559-572.
- Jost, H., Rodrigues, V. G., Carvalho, M. J., Junior, F. C., Marques, J. C., 2012. Stratigraphy and geochronology of the Guarinos greenstone belt, Goiás, Brazil. Geol. USP, Ser. cient. 12, 31-48.
- Kröner, A. and Cordani, U., 2003. African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics, 375, 325–352. Doi:10.1016/S0040-1951(03)00344-5
- Lacerda Filho J.V., Brito R.S.C., Silva M.G., Oliveira C.C., Moreton L.C., Martins E.G., Lopes R.C., Lima T.M., Larizzatti J.H., Valente C.R., 2006. Geologia e Recursos Minerais do Estado de Mato Grosso do Sul. Programa Integração, Atualização e Difusão de Dados da Geologia do Brasil. Esc. 1:1000000.
- Ludwig, K.R., 2012. User's Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, 75.
- Matteini, M., Junges, S.L., Dantas, E.L., Pimentel, M.M., Bühn, B., 2010. In situ zircon U–Pb and Lu–Hf isotope systematic on magmatic rocks: Insights on the crustal evolution of the Neoproterozoic Goiás Magmatic Arc, Brasília belt, Central Brazil. Gondwana Research 17, 1–12. (Doi:10.1016/j.gr.2009.05.008)
- McGee, B., Babinski, M., Trindade, R.I.F., Collins, A.S., 2018. Tracing final Gondwana assembly: Age and provenance of the southern Paraguay Belt Precambrian Research, in press. Doi: org/10.1016/j.precamres.2017.12.030.
- McGee, B., Collins, A. S., and Trindade, R. I. F., 2012, G'day Gondwana, the final accretion of a supercontinent: U/Pb ages for the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research, 21, 316–322. (Doi:10.1016/j.gr.2011.04.011)
- McGee, B; Collins, A.S; Trindade, R.I.F; Payne, J., 2015. Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. GSA Bulletin, 127, 76-86. (Doi:10.1130/B30842.1)
- Meert J.G., 2003. A synopsis of events related to theassembly of eastern Gondwana. Tectonophysics, 362, 1-40.

- Montalvão, R.M.G., 1986. Evolução geológica dos terrenos granitóides-greenstone belts de Crixás, Guarinos, Pilar de Goiás-Hidrolina (Goiás). Doctoral Thesis, University of São Paulo, São Paulo.
- Morel, M.L.A., Nebel, O., Nebel-Jacobsen, Y.L., Miller, J.S., Vroon, P.Z., 2008. Hafnium isotope characterization of the GJ-1 zircon reference material by solution and laserablation MC-ICPMS. Chemical Geology 255, 231–235.
- Nogueira A.C.R., Riccomini C., 2006. O Grupo Araras (Neoproterozoico) na parte norte da Faixa Paraguai e Sul do Cráton Amazônico, Brasil. Revista Brasileira de Geociências, 36, 576-587.
- Nogueira A.C.R., Riccomini C., Sial A.N., Moura C.A.V., Fairchild T.R., 2003. Sof-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth. Geological Society of America, 31, 613-616.
- Noll Filho, R.J., Sommer, C.A., Evandro, F.L., Philipp, R.P., Basei, M.A.S., 2018. High-silica Ediacaran volcanism in the Dom Feliciano Belt, southernmost Brazil. Geological Journal, 1-22. (Doi: 10.1002/gj.3239)
- Oliveira F. V., 2015. Chronus: Um novo suplemento para a redução de dados U-Pb obtidos por LA-ICPMS. Dissertation Master. Brasília. University of Brasília.
- Passchier C.W., Trouw R.A.J. (Eds 2)., 2005. Microtectonics. Berlin, Springer, 353 p.
- Pelosi, G.F.F., 2017. Age, Provenance and tectonic setting from southern portion of the Cuiabá Group: Implications for the Evolution of the Paraguay Belt. Master dissertation, Federal University of Mato Grosso, Cuiabá.
- Piacentini, T., Vasconcelos, P.M., Farley, K.A., 2013. 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil. Precambrian Research 228, 48–62. (Doi: 10.1016/j.precamres.2013.01.002)
- Pimentel, M. M., Fuck, R. A., and Alvarenga, C. J. S., 1996, Post-Brasiliano (Pan African) high-K granitic magmatism in central Brazil: the role of late Precambrian/early Paleozoic extension. Precambrian Research, 80, 217–238. (Doi: 10.1016/S0301-9268(96)00016-2)
- Pimentel, M.M. 2016. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil: A geochronological and isotopic approach. Brazilian Journal of Geology, 46, 67-82. (Doi: 10.1590/2317-4889201620150004)
- Pimentel, M.M., Dantas, E.L., Fuck, R.A., Armstrong, R. A., 2003a. Shrimp and conventional U-Pb age, Sm-Nd isotopic characteristics and tectonic significance of the k-rich Itapuranga Suite in Goiás, Central Brazil. Annals of the Brazilian Academy of Sciences, 75, 97-108.
- Pimentel, M.M., Fuck, R.A., Botelho, N.F., 1999. Granites and the geodynamic history of the neoproterozoic Brasília belt, Central Brazil: a review. Lithos, 46, 463-483.
- Pimentel, M.M., Jost, H., Fuck, R.A., Armstrong, R.A., Dantas, E.L., Potrel, A., 2003b. Neoproterozoic Anatexis of 2.9 Ga Old Granitoids in the Goiás-Crixás Archean Block, Central Brazil: Evidence from new SHRIMP U-Pb data and Sm-Nd Isotopes. Geologia Série Científica USP, 3,1-12.
- Pimentel, M.M., Rodrigues, J.B., DellaGiustina, M.E.S., Junges, J., Matteini, M., Armstrong, R., 2011. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil, based on SHRIMP and LA-ICPMS U-Pb sedimentary provenance data: a review. Journal of South American Earth Sciences. 31, 345-357. (Doi: 10.1016/j.jsames.2011.02.001).
- Pisarevsky, S. A., Murphy, J. B., Cawood, P. A., and Collins, A. S., 2008, Late Neoproterozoic and Early Cambrian palaeogeography: models and problems, in Pankhurst, R. J., Trouw, R. A. J., de Brito-Neves, Region. Geological Society, London, Special Publications, 294, 9–31. Doi:10.1144/SP294.2
- Rapela, C.W., Pankhurst, R.J., Casquet, C., Fanning, C.M., Baldo, E.G., González-Casado, J.M., Galindo, C., Dahlquist, J., 2007. The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews 83, 49–82.
- Rodrigues, J.B., Gioia, S.M.L., Pimentel, M.M., 1999. Geocronologia e geoquímica de ortognaisses da região entre Iporá e Firminópolis: Implicações para a evolução do Arco Magmático de Goiás. Brazilian Journal of Geology, 29, 207-2016.
- Santos, J.O.S., Hartmann, L.A., Gaudette, H.E., Groves, D.I., Mcnaughton, N.J., Fletcher, I.R., 2000. A new understanding of the provinces of the Amazon Craton based on integration of field mapping and U-Pb and Sm-Nd Geochronology. Gondwana Research, 3, 453-488.

- Santos, J.O.S., Rizzotto, G.J., Potter, P.E., McNaughton, N.J, Matos, R.S., Hartmann, L.A., Chemale, F., Quadros, M.E.S., 2008. Age and autochthonous evolution of the Sunsás Orogen in West Amazon Craton based on mapping and U-Pb geochronology. Precambriam Research, 165, 120-152.
- Sparrenberger, I., Bettencourt, J.S., Tosdal, R.M., Wooden, J.L., 2002. Datações U-Pb convencional versus SHRIMP do Maçico Estanífero Santa Bárbara; Suíte Granitos Últimos de Rondônia, Brasil. Revista Geologia USP, série científica, 2, 79-94.
- Stern, R.J., 1994. Arc Assembly and continental collision in the Neoproterozoic East African orogeny implications for the consolidation of Gondwana. Annual Review of Earth and Planetary Sciences 22, 319– 351.
- Tassinari, C.C.G., Macambira, M.J.B., 1999. Geocronological provinces of the Amazonian Craton. Episodes,
 - 22,174-182.
- Tohver E., Trindade R.I.F., 2014. Comment on "Was there na Ediacaran Clymene Ocean in central South America?" By Umberto Giuseppe Cordani, Marcio Martins Pimentel, Carlos Eduardo Ganade de Araújo, Miguel Angelo Stipp Basei, Reinhardt Adolfo Fuck, and Vicente Antonio Vitório Girardi. American Journal of Science, 313, 517-539. Doi: 10.2475/03.2014.03
- Tohver, E., Cawood, P. A., Rossello, E. A., and Jourdan, F., 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research, 21, 394–405. Doi:10.1016/j.gr.2011.04.001
- Tohver, E., Trindade, R. I. F., Solum, J. G., Hall, C. M., Riccomini, C., and Nogueira, A. C., 2010. Closing the Clymene Ocean and Bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana from southeast Amazon Craton. Geology, 38, 267–270. (Doi: 10.1130/G30510.1)
- Tokashiki C. C. & Saes G. S., 2008. Revisão estratigráfica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabana, Mato Grosso. Revista Brasileira de Geociências, 38, 661-675.
- Tomazzoli, E.R., 1992. O greenstone belt de Goiás: Estudos geocronológicos. Revista Brasileira de Geociências, 22, 56-60.
- Trindade, R. I. F., D'Agrella-Filho, M. S., Epof, I., and Brito Neves, B. B., 2006. Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth and Planetary Science Letters, 244, 361–377. Doi: 10.1016/j.epsl.2005.12.039
- Trindade, R. I. F., Font, E., D'Agrella-Filho, M. S., Nogueira, A. C. R., and Riccomini, C., 2003. Low-latitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon Craton. Terra Nova, 15, 441–446. Doi: 10.1046/j.1365-3121.2003.00510.x
- Trompette, R., Alvarenga, C.J.S., Walde, D.H.-G., 1998. Geological evolution of the Neoproterozoic Corumbá graben system (Brazil). Depositional context of the stratified Fe and Mn ores of the Jacadigo Group. Journal of South American Earth Science, 11, 587–597.
- Valentine, J.W., 2002. Prelude to the Cambrian explosion. Annual Review of Earth and Planetary Sciences 30, 285–306.
- Vernon R.H. (Eds 3). 2004. A Pratical Guide to Rock Microstructure. Cambridge, Cambridge, 594.
- Xie, L.W., Zhang, Y.B., Zhang, H.H., Sun, J.F., Wu, F.Y., 2008. In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopesin zircon and baddeleyite. Chinese Science Bulletin 53, 1565–1573.
- Zeh, A., Gerdes, A., Klemd, R., Barton Jr., J.M., 2007. Archaean to Proterozoic crustal evolution in the Central Zone of the Limpopo Belt (South Africa–Botswana): constraints from combined U–Pb and Lu–Hf isotope analyses of zircon. Journal of Petrology 48, 1605–1639.

Appendix 1 – U-Pb LA-MC-ICP-MS isotopic data of the samples.

U-Pb MC-L	A-ICP-MS	S : sample V	SC22		Isoto	pic Ratio	S				Appare	nt A	ges		
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
140-ZR112	0.522	142603	0.06148	0.831	1.48	0.0980	0.90	0.61	656	48	603	10	614	14	8
128-ZR102	0.717	115602	0.06056	0.826	0.97	0.0989	0.64	0.67	624	26	608	7	611	9	3
056-ZR44	0.744	76758	0.06113	0.847	1.27	0.1005	0.98	0.77	644	31	617	11	623	12	4
155-ZR123	0.983	188952	0.06094	0.849	0.77	0.1011	0.54	0.70	637	17	621	6	624	7	3
014-ZR10	0.645	204368	0.06222	0.871	0.77	0.1015	0.50	0.65	682	19	623	6	636	7	9
095-ZR75	0.814	41402	0.06026	0.847	1.73	0.1020	1.12	0.65	613	54	626	13	623	16	-2
118-ZR94	0.524	86032	0.06109	0.859	0.88	0.1020	0.68	0.77	643	18	626	8	630	8	3
109-ZR87	0.555	31964	0.06150	0.865	1.80	0.1020	1.59	0.88	657	33	626	19	633	17	5
068-ZR54	0.495	141703	0.06092	0.862	0.87	0.1026	0.55	0.63	636	24	630	7	631	8	1
086-ZR68	0.541	206062	0.06159	0.873	0.74	0.1028	0.50	0.67	660	17	631	6	637	7	4
060-ZR48	0.582	50573	0.06083	0.862	0.98	0.1028	0.75	0.76	633	22	631	9	631	9	0
145-ZR115	0.763	110288	0.06126	0.873	1.13	0.1033	0.75	0.67	648	32	634	9	637	11	2
084-ZR66	0.926	8598	0.06238	0.893	0.79	0.1038	0.48	0.61	687	22	637	6	648	8	7
053-ZR41	0.507	48678	0.06039	0.870	0.97	0.1045	0.61	0.64	618	28	641	7	636	9	-4
136-ZR108	0.265	242852	0.06100	0.883	0.65	0.1050	0.44	0.68	639	13	643	5	642	6	-1
126-ZR100	0.531	211087	0.06132	0.888	0.67	0.1051	0.43	0.65	650	15	644	5	645	6	1
073-ZR57	0.951	82966	0.06189	0.899	0.81	0.1053	0.49	0.60	670	23	645	6	651	8	4
083-ZR65	0.668	76265	0.06118	0.890	0.76	0.1055	0.51	0.67	645	18	647	6	646	7	0
070-ZR56	1.159	103162	0.06193	0.903	1.10	0.1057	0.67	0.61	672	34	648	8	653	11	4
124-ZR98	0.379	153772	0.06089	0.888	0.74	0.1058	0.55	0.74	635	14	648	7	645	7	-2
049-ZR39	0.645	117864	0.06148	0.901	0.99	0.1063	0.54	0.54	656	32	651	7	652	10	1
076-ZR60	0.563	7524	0.06121	0.910	3.26	0.1078	2.15	0.66	647	103	660	27	657	31	-2
148-ZR118	1.133	84033	0.06316	0.942	0.96	0.1082	0.66	0.69	714	25	662	8	674	9	7
028-ZR22	0.369	136509	0.06102	0.913	1.12	0.1085	0.59	0.53	640	37	664	7	658	11	-4
069-ZR55	0.468	16137	0.06182	0.932	1.32	0.1093	0.86	0.65	668	40	669	11	668	13	0

0.469	189460	0.06340	0.975	1.24	0.1115	0.77	0.62	722	38	681	10	691	12	6
0.559	56726	0.06291	0.977	0.93	0.1127	0.57	0.62	705	27	688	7	692	9	2
1.015	118409	0.06153	0.960	0.72	0.1132	0.50	0.69	658	16	691	7	683	7	-5
0.254	201691	0.06227	0.982	0.89	0.1143	0.52	0.58	683	26	698	7	694	9	-2
0.401	85506	0.06267	0.988	0.89	0.1144	0.53	0.59	697	26	698	7	698	9	0
0.357	35882	0.06682	1.151	1.21	0.1250	0.68	0.56	832	38	759	10	778	13	9
0.352	184208	0.06484	1.118	0.69	0.1250	0.53	0.76	769	11	759	8	762	7	1
0.458	67234	0.06533	1.145	1.00	0.1271	0.59	0.60	785	30	771	9	775	11	2
0.559	91947	0.06495	1.146	1.04	0.1280	0.66	0.64	773	30	776	10	775	11	0
0.370	170199	0.06523	1.154	0.79	0.1283	0.51	0.65	782	20	778	7	779	9	0
0.735	111088	0.06572	1.166	0.78	0.1286	0.53	0.68	798	18	780	8	785	8	2
0.732	102403	0.07038	1.464	0.74	0.1509	0.54	0.74	940	14	906	9	916	9	4
0.590	74093	0.06908	1.472	1.15	0.1545	0.71	0.62	901	34	926	12	919	14	-3
0.896	177859	0.07018	1.501	0.91	0.1551	0.62	0.68	934	23	930	11	931	11	0
0.884	253180	0.07046	1.571	1.10	0.1617	0.93	0.85	942	19	966	17	959	14	-3
0.404	87371	0.07271	1.621	0.75	0.1617	0.50	0.67	1006	17	966	9	978	9	4
0.373	195251	0.07198	1.613	0.73	0.1625	0.47	0.64	986	17	971	8	975	9	1
0.776	77219	0.07288	1.658	0.92	0.1650	0.69	0.74	1011	20	985	13	993	12	3
0.516	44871	0.07226	1.684	1.12	0.1691	0.75	0.66	993	30	1007	14	1003	14	-1
0.471	32296	0.07332	1.766	1.42	0.1747	0.95	0.67	1023	40	1038	18	1033	18	-1
0.327	130919	0.07921	2.158	0.77	0.1976	0.60	0.78	1177	12	1162	13	1168	11	1
0.277	181100	0.08058	2.403	0.78	0.2163	0.55	0.70	1211	16	1262	13	1244	11	-4
0.266	301663	0.08759	2.900	0.68	0.2401	0.54	0.78	1373	8	1387	13	1382	10	-1
0.454	47752	0.08894	2.927	1.09	0.2386	0.75	0.69	1403	27	1380	19	1389	16	2
0.543	172219	0.09017	3.058	0.89	0.2459	0.61	0.69	1429	20	1417	16	1422	14	1
0.370	467345	0.09535	3.546	0.84	0.2697	0.71	0.84	1535	10	1539	19	1538	13	0
0.495	207304	0.09744	3.691	0.96	0.2747	0.72	0.75	1576	19	1565	20	1569	15	1
0.916	232254	0.10890	4.663	0.82	0.3105	0.57	0.70	1781	17	1743	18	1761	14	2
0.666	562401	0.11571	5.228	0.75	0.3277	0.58	0.76	1891	11	1827	18	1857	13	3
	0.469 0.559 1.015 0.254 0.401 0.357 0.352 0.458 0.559 0.370 0.735 0.732 0.590 0.896 0.884 0.404 0.373 0.776 0.516 0.471 0.327 0.277 0.266 0.454 0.543 0.370 0.495 0.916 0.666	0.4691894600.559567261.0151184090.2542016910.401855060.357358820.3521842080.458672340.559919470.3701701990.7351110880.7321024030.590740930.8961778590.8842531800.404873710.3731952510.776772190.516448710.471322960.3271309190.2771811000.2663016630.454477520.5431722190.3704673450.4952073040.9162322540.666562401	0.4691894600.063400.559567260.062911.0151184090.061530.2542016910.062270.401855060.062670.357358820.066820.3521842080.064840.458672340.065330.559919470.064950.3701701990.065230.7351110880.065720.7321024030.070380.590740930.069080.8961778590.070180.8842531800.070460.404873710.072710.3731952510.071980.776772190.072880.516448710.072260.471322960.073320.3271309190.079210.2771811000.080580.2663016630.087590.454477520.088940.5431722190.090170.3704673450.095350.4952073040.097440.9162322540.108900.6665624010.11571	0.4691894600.063400.9750.559567260.062910.9771.0151184090.061530.9600.2542016910.062270.9820.401855060.062670.9880.35735820.066821.1510.3521842080.064841.1180.458672340.065331.1450.559919470.064951.1460.3701701990.065231.1540.7351110880.065721.1660.7321024030.070381.4720.8961778590.070181.5010.8842531800.070461.5710.404873710.072711.6210.3731952510.071981.6130.776772190.072881.6580.516448710.072261.6840.471322960.073321.7660.3271309190.079212.1580.2771811000.080582.4030.454477520.088942.9270.5431722190.090173.0580.3704673450.095353.5460.4952073040.097443.6910.9162322540.108904.6630.6665624010.115715.228	0.4691894600.063400.9751.240.559567260.062910.9770.931.0151184090.061530.9600.720.2542016910.062270.9820.890.401855060.062670.9880.890.357358820.066821.1511.210.3521842080.064841.1180.690.458672340.065331.1451.000.559919470.064951.1461.040.3701701990.065231.1540.790.7351110880.065721.1660.780.7321024030.070381.4640.740.590740930.069081.4721.150.8961778590.070181.5010.910.404873710.072711.6210.750.3731952510.071981.6130.730.776772190.072881.6580.920.516448710.072261.6841.120.471322960.073321.7661.420.3271309190.079212.1580.770.2771811000.080582.4030.780.454477520.088942.9271.090.5431722190.090173.0580.890.3704673450.095353.5460.840.4952073040.097443.6910.960.91623	0.4691894600.063400.9751.240.11150.559567260.062910.9770.930.11271.0151184090.061530.9600.720.11320.2542016910.062270.9820.890.11430.401855060.062670.9880.890.11440.357358820.066821.1511.210.12500.3521842080.064841.1180.690.12500.458672340.065331.1451.000.12710.559919470.064951.1461.040.12800.3701701990.065231.1540.790.12830.7351110880.065721.1660.780.12860.7321024030.070381.4640.740.15090.590740930.069081.4721.150.15450.8961778590.070181.5010.910.15510.8842531800.070461.5711.100.16170.404873710.072711.6210.750.16170.3731952510.071981.6130.730.16250.776772190.072881.6841.120.16910.471322960.073221.7661.420.17470.3271309190.079212.1580.770.19760.2771811000.080582.4030.780.24630.543172219 <td>0.4691894600.063400.9751.240.11150.770.559567260.062910.9770.930.11270.571.0151184090.061530.9600.720.11320.500.2542016910.062270.9820.890.11430.520.401855060.062670.9880.890.11440.530.35735820.066821.1511.210.12500.680.3521842080.064841.1180.690.12500.530.458672340.065331.1451.000.12710.590.559919470.064951.1461.040.12800.660.3701701990.065231.1540.790.12830.510.7321024030.070381.4640.740.15090.540.590740930.069081.4721.150.15150.620.8842531800.070461.5711.100.16170.930.404873710.072711.6210.750.16170.500.3731952510.071881.6580.920.16500.690.516448710.072261.6841.120.16910.750.3271309190.079212.1580.770.19760.540.2464307520.8942.9271.090.23860.750.266301630.87592.9000.680.2401<td>0.4691894600.063400.9751.240.11150.770.620.559567260.062910.9770.930.11270.570.621.0151184090.061530.9600.720.11320.500.690.2542016910.062270.9820.890.11430.520.580.401855060.062670.9880.890.11440.530.590.357358820.066821.1511.210.12500.680.560.3521842080.064841.1180.690.12710.590.600.458672340.065331.1451.000.12710.590.600.559919470.064951.1461.040.12800.660.640.3701701990.05231.1540.790.12830.510.650.735111080.06721.1660.780.12860.530.680.7321024030.070381.4640.740.15090.540.740.590740930.069081.4721.150.15450.710.620.8842531800.070461.5711.100.16170.930.850.404873710.072711.6210.750.16170.500.670.3731952510.071881.6580.920.16500.690.740.516448710.072661.6841.120.16910.</td><td>0.4691894600.063400.9751.240.11150.770.627220.559567260.062910.9770.930.11270.570.627051.0151184090.061530.9600.720.11320.500.696580.2542016910.062270.9820.890.11430.520.586830.401855060.062670.9880.890.11440.530.596970.357358820.066821.1511.210.12500.680.568320.3521842080.064841.1180.690.12500.530.767690.458672340.065331.1451.000.12710.590.607850.559919470.064951.1461.040.12800.660.647730.3701701990.065231.1540.790.12830.510.657820.7321024030.070381.4640.740.15090.540.749400.590740930.069081.4721.150.15450.710.629010.8842531800.070461.5711.100.16170.930.859420.404873710.072611.6210.750.16170.500.6710060.3731952510.07181.6130.730.16250.470.649860.77677219<td< td=""><td>0.4691894600.063400.9751.240.11150.770.62722380.559567260.062910.9770.930.11270.570.62705271.0151184090.061530.9600.720.11320.500.69658160.2542016910.062270.9820.890.11430.520.58683260.401855060.062670.9880.890.11440.530.59697260.357358820.066821.1511.210.12500.680.56832380.3521842080.064841.1180.690.12500.530.76769110.458672340.065331.1451.000.12710.590.60785300.559919470.064951.1461.040.12800.660.64773300.735110880.065721.1660.780.12830.510.65782200.735110880.060981.4721.150.15450.710.62901340.7301024030.070381.4620.16170.500.671006170.74030.060981.4721.150.15450.710.62934230.8842531800.070481.5711.100.16170.500.671006170.776772190.07</td><td>0.4691894600.063400.9751.240.11150.770.62722386810.559567260.062910.9770.930.11270.570.62705276881.0151184090.061530.9600.720.11320.500.69658166910.2542016910.062270.9820.890.11430.520.58683266980.401855060.062670.9880.890.11440.530.59697266980.35735820.06821.1511.210.12500.680.56832387590.3521842080.064841.1180.690.12500.530.76769117590.458672340.065331.1461.040.12800.666.64773307710.559919470.664951.1661.040.12800.550.68788207780.3701701990.065231.1660.780.12800.550.68788187800.7321024030.070381.4640.740.15900.540.74940149060.590740930.69081.4721.150.15450.710.62934239300.8842531800.070461.5711.100.16170.930.8594219966<t< td=""><td>0.4691894600.063400.9751.240.11150.770.6272238681100.559567260.062910.9770.930.11270.570.627052768871.0151184090.061270.9820.890.11430.520.586832669870.2542016910.062270.9820.890.11430.520.586832669870.357358620.066270.9880.890.11440.530.596972669870.357358620.066821.511.210.12500.680.5683238759100.3521842080.066831.1451.000.12710.590.607853077190.559919470.069531.1461.040.12800.660.6477330776100.3701701990.065231.1540.790.12830.510.657822077870.735110880.06721.1660.780.12860.530.687981878080.7321024030.070381.4640.740.15090.540.749401490690.590740930.66981.4721.150.1510.500.67100617966170.8842531800.</td><td>0.469 189460 0.06340 0.975 1.24 0.1115 0.77 0.62 722 38 681 10 691 0.559 56726 0.06211 0.977 0.93 0.1127 0.57 0.62 705 27 688 7 692 1.015 118409 0.06227 0.982 0.89 0.1143 0.52 0.58 683 26 698 7 693 0.401 85506 0.06267 0.988 0.89 0.1144 0.50 0.66 832 38 759 10 778 0.357 35882 0.06682 1.151 1.21 0.1250 0.53 0.66 785 30 771 9 775 0.458 67234 0.06533 1.145 1.00 0.1271 0.59 0.60 785 30 776 10 775 0.559 91947 0.06453 1.146 0.79 0.1280 0.56 782 20 778 7 779 0.735 11108 0.6523 1.64</td><td>0.4691894600.063400.9751.240.11150.770.627223868110691120.555567260.062910.9770.330.11270.570.6270527688769291.0151184090.061230.9600.720.11320.500.6965868326698769890.2542016910.062670.9820.880.11440.530.5969726698769890.35735820.066821.1511.210.12500.680.568323875910778130.3521842080.064841.1180.690.12710.590.607853077610775110.559919470.064951.1461.040.12800.667633077610775110.579919470.064951.1660.780.12800.6578220776777990.3701701990.065231.1660.780.12800.6676318780878580.7321024030.070381.4640.740.1500.671062913492612919140.8842531800.070461.5711.100.16170.930.859421996617959<!--</td--></td></t<></td></td<></td></td>	0.4691894600.063400.9751.240.11150.770.559567260.062910.9770.930.11270.571.0151184090.061530.9600.720.11320.500.2542016910.062270.9820.890.11430.520.401855060.062670.9880.890.11440.530.35735820.066821.1511.210.12500.680.3521842080.064841.1180.690.12500.530.458672340.065331.1451.000.12710.590.559919470.064951.1461.040.12800.660.3701701990.065231.1540.790.12830.510.7321024030.070381.4640.740.15090.540.590740930.069081.4721.150.15150.620.8842531800.070461.5711.100.16170.930.404873710.072711.6210.750.16170.500.3731952510.071881.6580.920.16500.690.516448710.072261.6841.120.16910.750.3271309190.079212.1580.770.19760.540.2464307520.8942.9271.090.23860.750.266301630.87592.9000.680.2401 <td>0.4691894600.063400.9751.240.11150.770.620.559567260.062910.9770.930.11270.570.621.0151184090.061530.9600.720.11320.500.690.2542016910.062270.9820.890.11430.520.580.401855060.062670.9880.890.11440.530.590.357358820.066821.1511.210.12500.680.560.3521842080.064841.1180.690.12710.590.600.458672340.065331.1451.000.12710.590.600.559919470.064951.1461.040.12800.660.640.3701701990.05231.1540.790.12830.510.650.735111080.06721.1660.780.12860.530.680.7321024030.070381.4640.740.15090.540.740.590740930.069081.4721.150.15450.710.620.8842531800.070461.5711.100.16170.930.850.404873710.072711.6210.750.16170.500.670.3731952510.071881.6580.920.16500.690.740.516448710.072661.6841.120.16910.</td> <td>0.4691894600.063400.9751.240.11150.770.627220.559567260.062910.9770.930.11270.570.627051.0151184090.061530.9600.720.11320.500.696580.2542016910.062270.9820.890.11430.520.586830.401855060.062670.9880.890.11440.530.596970.357358820.066821.1511.210.12500.680.568320.3521842080.064841.1180.690.12500.530.767690.458672340.065331.1451.000.12710.590.607850.559919470.064951.1461.040.12800.660.647730.3701701990.065231.1540.790.12830.510.657820.7321024030.070381.4640.740.15090.540.749400.590740930.069081.4721.150.15450.710.629010.8842531800.070461.5711.100.16170.930.859420.404873710.072611.6210.750.16170.500.6710060.3731952510.07181.6130.730.16250.470.649860.77677219<td< td=""><td>0.4691894600.063400.9751.240.11150.770.62722380.559567260.062910.9770.930.11270.570.62705271.0151184090.061530.9600.720.11320.500.69658160.2542016910.062270.9820.890.11430.520.58683260.401855060.062670.9880.890.11440.530.59697260.357358820.066821.1511.210.12500.680.56832380.3521842080.064841.1180.690.12500.530.76769110.458672340.065331.1451.000.12710.590.60785300.559919470.064951.1461.040.12800.660.64773300.735110880.065721.1660.780.12830.510.65782200.735110880.060981.4721.150.15450.710.62901340.7301024030.070381.4620.16170.500.671006170.74030.060981.4721.150.15450.710.62934230.8842531800.070481.5711.100.16170.500.671006170.776772190.07</td><td>0.4691894600.063400.9751.240.11150.770.62722386810.559567260.062910.9770.930.11270.570.62705276881.0151184090.061530.9600.720.11320.500.69658166910.2542016910.062270.9820.890.11430.520.58683266980.401855060.062670.9880.890.11440.530.59697266980.35735820.06821.1511.210.12500.680.56832387590.3521842080.064841.1180.690.12500.530.76769117590.458672340.065331.1461.040.12800.666.64773307710.559919470.664951.1661.040.12800.550.68788207780.3701701990.065231.1660.780.12800.550.68788187800.7321024030.070381.4640.740.15900.540.74940149060.590740930.69081.4721.150.15450.710.62934239300.8842531800.070461.5711.100.16170.930.8594219966<t< td=""><td>0.4691894600.063400.9751.240.11150.770.6272238681100.559567260.062910.9770.930.11270.570.627052768871.0151184090.061270.9820.890.11430.520.586832669870.2542016910.062270.9820.890.11430.520.586832669870.357358620.066270.9880.890.11440.530.596972669870.357358620.066821.511.210.12500.680.5683238759100.3521842080.066831.1451.000.12710.590.607853077190.559919470.069531.1461.040.12800.660.6477330776100.3701701990.065231.1540.790.12830.510.657822077870.735110880.06721.1660.780.12860.530.687981878080.7321024030.070381.4640.740.15090.540.749401490690.590740930.66981.4721.150.1510.500.67100617966170.8842531800.</td><td>0.469 189460 0.06340 0.975 1.24 0.1115 0.77 0.62 722 38 681 10 691 0.559 56726 0.06211 0.977 0.93 0.1127 0.57 0.62 705 27 688 7 692 1.015 118409 0.06227 0.982 0.89 0.1143 0.52 0.58 683 26 698 7 693 0.401 85506 0.06267 0.988 0.89 0.1144 0.50 0.66 832 38 759 10 778 0.357 35882 0.06682 1.151 1.21 0.1250 0.53 0.66 785 30 771 9 775 0.458 67234 0.06533 1.145 1.00 0.1271 0.59 0.60 785 30 776 10 775 0.559 91947 0.06453 1.146 0.79 0.1280 0.56 782 20 778 7 779 0.735 11108 0.6523 1.64</td><td>0.4691894600.063400.9751.240.11150.770.627223868110691120.555567260.062910.9770.330.11270.570.6270527688769291.0151184090.061230.9600.720.11320.500.6965868326698769890.2542016910.062670.9820.880.11440.530.5969726698769890.35735820.066821.1511.210.12500.680.568323875910778130.3521842080.064841.1180.690.12710.590.607853077610775110.559919470.064951.1461.040.12800.667633077610775110.579919470.064951.1660.780.12800.6578220776777990.3701701990.065231.1660.780.12800.6676318780878580.7321024030.070381.4640.740.1500.671062913492612919140.8842531800.070461.5711.100.16170.930.859421996617959<!--</td--></td></t<></td></td<></td>	0.4691894600.063400.9751.240.11150.770.620.559567260.062910.9770.930.11270.570.621.0151184090.061530.9600.720.11320.500.690.2542016910.062270.9820.890.11430.520.580.401855060.062670.9880.890.11440.530.590.357358820.066821.1511.210.12500.680.560.3521842080.064841.1180.690.12710.590.600.458672340.065331.1451.000.12710.590.600.559919470.064951.1461.040.12800.660.640.3701701990.05231.1540.790.12830.510.650.735111080.06721.1660.780.12860.530.680.7321024030.070381.4640.740.15090.540.740.590740930.069081.4721.150.15450.710.620.8842531800.070461.5711.100.16170.930.850.404873710.072711.6210.750.16170.500.670.3731952510.071881.6580.920.16500.690.740.516448710.072661.6841.120.16910.	0.4691894600.063400.9751.240.11150.770.627220.559567260.062910.9770.930.11270.570.627051.0151184090.061530.9600.720.11320.500.696580.2542016910.062270.9820.890.11430.520.586830.401855060.062670.9880.890.11440.530.596970.357358820.066821.1511.210.12500.680.568320.3521842080.064841.1180.690.12500.530.767690.458672340.065331.1451.000.12710.590.607850.559919470.064951.1461.040.12800.660.647730.3701701990.065231.1540.790.12830.510.657820.7321024030.070381.4640.740.15090.540.749400.590740930.069081.4721.150.15450.710.629010.8842531800.070461.5711.100.16170.930.859420.404873710.072611.6210.750.16170.500.6710060.3731952510.07181.6130.730.16250.470.649860.77677219 <td< td=""><td>0.4691894600.063400.9751.240.11150.770.62722380.559567260.062910.9770.930.11270.570.62705271.0151184090.061530.9600.720.11320.500.69658160.2542016910.062270.9820.890.11430.520.58683260.401855060.062670.9880.890.11440.530.59697260.357358820.066821.1511.210.12500.680.56832380.3521842080.064841.1180.690.12500.530.76769110.458672340.065331.1451.000.12710.590.60785300.559919470.064951.1461.040.12800.660.64773300.735110880.065721.1660.780.12830.510.65782200.735110880.060981.4721.150.15450.710.62901340.7301024030.070381.4620.16170.500.671006170.74030.060981.4721.150.15450.710.62934230.8842531800.070481.5711.100.16170.500.671006170.776772190.07</td><td>0.4691894600.063400.9751.240.11150.770.62722386810.559567260.062910.9770.930.11270.570.62705276881.0151184090.061530.9600.720.11320.500.69658166910.2542016910.062270.9820.890.11430.520.58683266980.401855060.062670.9880.890.11440.530.59697266980.35735820.06821.1511.210.12500.680.56832387590.3521842080.064841.1180.690.12500.530.76769117590.458672340.065331.1461.040.12800.666.64773307710.559919470.664951.1661.040.12800.550.68788207780.3701701990.065231.1660.780.12800.550.68788187800.7321024030.070381.4640.740.15900.540.74940149060.590740930.69081.4721.150.15450.710.62934239300.8842531800.070461.5711.100.16170.930.8594219966<t< td=""><td>0.4691894600.063400.9751.240.11150.770.6272238681100.559567260.062910.9770.930.11270.570.627052768871.0151184090.061270.9820.890.11430.520.586832669870.2542016910.062270.9820.890.11430.520.586832669870.357358620.066270.9880.890.11440.530.596972669870.357358620.066821.511.210.12500.680.5683238759100.3521842080.066831.1451.000.12710.590.607853077190.559919470.069531.1461.040.12800.660.6477330776100.3701701990.065231.1540.790.12830.510.657822077870.735110880.06721.1660.780.12860.530.687981878080.7321024030.070381.4640.740.15090.540.749401490690.590740930.66981.4721.150.1510.500.67100617966170.8842531800.</td><td>0.469 189460 0.06340 0.975 1.24 0.1115 0.77 0.62 722 38 681 10 691 0.559 56726 0.06211 0.977 0.93 0.1127 0.57 0.62 705 27 688 7 692 1.015 118409 0.06227 0.982 0.89 0.1143 0.52 0.58 683 26 698 7 693 0.401 85506 0.06267 0.988 0.89 0.1144 0.50 0.66 832 38 759 10 778 0.357 35882 0.06682 1.151 1.21 0.1250 0.53 0.66 785 30 771 9 775 0.458 67234 0.06533 1.145 1.00 0.1271 0.59 0.60 785 30 776 10 775 0.559 91947 0.06453 1.146 0.79 0.1280 0.56 782 20 778 7 779 0.735 11108 0.6523 1.64</td><td>0.4691894600.063400.9751.240.11150.770.627223868110691120.555567260.062910.9770.330.11270.570.6270527688769291.0151184090.061230.9600.720.11320.500.6965868326698769890.2542016910.062670.9820.880.11440.530.5969726698769890.35735820.066821.1511.210.12500.680.568323875910778130.3521842080.064841.1180.690.12710.590.607853077610775110.559919470.064951.1461.040.12800.667633077610775110.579919470.064951.1660.780.12800.6578220776777990.3701701990.065231.1660.780.12800.6676318780878580.7321024030.070381.4640.740.1500.671062913492612919140.8842531800.070461.5711.100.16170.930.859421996617959<!--</td--></td></t<></td></td<>	0.4691894600.063400.9751.240.11150.770.62722380.559567260.062910.9770.930.11270.570.62705271.0151184090.061530.9600.720.11320.500.69658160.2542016910.062270.9820.890.11430.520.58683260.401855060.062670.9880.890.11440.530.59697260.357358820.066821.1511.210.12500.680.56832380.3521842080.064841.1180.690.12500.530.76769110.458672340.065331.1451.000.12710.590.60785300.559919470.064951.1461.040.12800.660.64773300.735110880.065721.1660.780.12830.510.65782200.735110880.060981.4721.150.15450.710.62901340.7301024030.070381.4620.16170.500.671006170.74030.060981.4721.150.15450.710.62934230.8842531800.070481.5711.100.16170.500.671006170.776772190.07	0.4691894600.063400.9751.240.11150.770.62722386810.559567260.062910.9770.930.11270.570.62705276881.0151184090.061530.9600.720.11320.500.69658166910.2542016910.062270.9820.890.11430.520.58683266980.401855060.062670.9880.890.11440.530.59697266980.35735820.06821.1511.210.12500.680.56832387590.3521842080.064841.1180.690.12500.530.76769117590.458672340.065331.1461.040.12800.666.64773307710.559919470.664951.1661.040.12800.550.68788207780.3701701990.065231.1660.780.12800.550.68788187800.7321024030.070381.4640.740.15900.540.74940149060.590740930.69081.4721.150.15450.710.62934239300.8842531800.070461.5711.100.16170.930.8594219966 <t< td=""><td>0.4691894600.063400.9751.240.11150.770.6272238681100.559567260.062910.9770.930.11270.570.627052768871.0151184090.061270.9820.890.11430.520.586832669870.2542016910.062270.9820.890.11430.520.586832669870.357358620.066270.9880.890.11440.530.596972669870.357358620.066821.511.210.12500.680.5683238759100.3521842080.066831.1451.000.12710.590.607853077190.559919470.069531.1461.040.12800.660.6477330776100.3701701990.065231.1540.790.12830.510.657822077870.735110880.06721.1660.780.12860.530.687981878080.7321024030.070381.4640.740.15090.540.749401490690.590740930.66981.4721.150.1510.500.67100617966170.8842531800.</td><td>0.469 189460 0.06340 0.975 1.24 0.1115 0.77 0.62 722 38 681 10 691 0.559 56726 0.06211 0.977 0.93 0.1127 0.57 0.62 705 27 688 7 692 1.015 118409 0.06227 0.982 0.89 0.1143 0.52 0.58 683 26 698 7 693 0.401 85506 0.06267 0.988 0.89 0.1144 0.50 0.66 832 38 759 10 778 0.357 35882 0.06682 1.151 1.21 0.1250 0.53 0.66 785 30 771 9 775 0.458 67234 0.06533 1.145 1.00 0.1271 0.59 0.60 785 30 776 10 775 0.559 91947 0.06453 1.146 0.79 0.1280 0.56 782 20 778 7 779 0.735 11108 0.6523 1.64</td><td>0.4691894600.063400.9751.240.11150.770.627223868110691120.555567260.062910.9770.330.11270.570.6270527688769291.0151184090.061230.9600.720.11320.500.6965868326698769890.2542016910.062670.9820.880.11440.530.5969726698769890.35735820.066821.1511.210.12500.680.568323875910778130.3521842080.064841.1180.690.12710.590.607853077610775110.559919470.064951.1461.040.12800.667633077610775110.579919470.064951.1660.780.12800.6578220776777990.3701701990.065231.1660.780.12800.6676318780878580.7321024030.070381.4640.740.1500.671062913492612919140.8842531800.070461.5711.100.16170.930.859421996617959<!--</td--></td></t<>	0.4691894600.063400.9751.240.11150.770.6272238681100.559567260.062910.9770.930.11270.570.627052768871.0151184090.061270.9820.890.11430.520.586832669870.2542016910.062270.9820.890.11430.520.586832669870.357358620.066270.9880.890.11440.530.596972669870.357358620.066821.511.210.12500.680.5683238759100.3521842080.066831.1451.000.12710.590.607853077190.559919470.069531.1461.040.12800.660.6477330776100.3701701990.065231.1540.790.12830.510.657822077870.735110880.06721.1660.780.12860.530.687981878080.7321024030.070381.4640.740.15090.540.749401490690.590740930.66981.4721.150.1510.500.67100617966170.8842531800.	0.469 189460 0.06340 0.975 1.24 0.1115 0.77 0.62 722 38 681 10 691 0.559 56726 0.06211 0.977 0.93 0.1127 0.57 0.62 705 27 688 7 692 1.015 118409 0.06227 0.982 0.89 0.1143 0.52 0.58 683 26 698 7 693 0.401 85506 0.06267 0.988 0.89 0.1144 0.50 0.66 832 38 759 10 778 0.357 35882 0.06682 1.151 1.21 0.1250 0.53 0.66 785 30 771 9 775 0.458 67234 0.06533 1.145 1.00 0.1271 0.59 0.60 785 30 776 10 775 0.559 91947 0.06453 1.146 0.79 0.1280 0.56 782 20 778 7 779 0.735 11108 0.6523 1.64	0.4691894600.063400.9751.240.11150.770.627223868110691120.555567260.062910.9770.330.11270.570.6270527688769291.0151184090.061230.9600.720.11320.500.6965868326698769890.2542016910.062670.9820.880.11440.530.5969726698769890.35735820.066821.1511.210.12500.680.568323875910778130.3521842080.064841.1180.690.12710.590.607853077610775110.559919470.064951.1461.040.12800.667633077610775110.579919470.064951.1660.780.12800.6578220776777990.3701701990.065231.1660.780.12800.6676318780878580.7321024030.070381.4640.740.1500.671062913492612919140.8842531800.070461.5711.100.16170.930.859421996617959 </td

138-ZR110	0.730	287170	0.12862	6.835	0.98	0.3854	0.85	0.87	2079	11	2101	31	2090	17	-1
113-ZR89	0.322	488191	0.12983	6.356	0.95	0.3550	0.55	0.58	2096	24	1959	19	2026	17	7

U-Pb MC-	LA-ICP-M	IS : sample \	/SC31		Isoto	pic Ratic)S				Appare	nt A	ges		
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
053-ZR98	0.131	75201	0.06179	0.844	1.65	0.0990	1.32	0.80	667	39	609	15	621	15	9
056-ZR101	0.145	49077	0.06203	0.851	2.13	0.0995	1.51	0.71	675	62	611	18	625	20	9
058-ZR103	0.148	42659	0.06190	0.855	2.13	0.1002	1.44	0.68	671	65	615	17	627	20	8
079-ZR59	0.217	63773	0.06092	0.847	1.51	0.1008	0.99	0.66	636	46	619	12	623	14	3
034-ZR24	0.312	82410	0.06137	0.853	1.00	0.1008	0.75	0.75	652	23	619	9	627	9	5
078-ZR58	0.601	77826	0.06108	0.851	1.94	0.1010	1.24	0.64	642	62	621	15	625	18	3
046-ZR33	0.156	62253	0.06021	0.855	1.39	0.1030	1.01	0.72	611	38	632	12	628	13	-3
026-ZR78	0.304	60262	0.06196	0.892	1.54	0.1044	1.17	0.76	673	39	640	14	648	15	5
080-ZR60	0.378	44479	0.06218	0.909	1.19	0.1060	0.98	0.82	680	24	650	12	657	11	5
029-ZR21	0.342	69330	0.06071	0.891	1.37	0.1064	0.98	0.72	629	38	652	12	647	13	-4
070-ZR112	0.215	16212	0.06267	0.920	3.08	0.1065	2.08	0.68	697	94	652	26	662	30	6
090-ZR127	0.274	69921	0.06310	0.933	1.97	0.1072	1.13	0.58	712	66	657	14	669	19	8
055-ZR40	0.203	71610	0.06247	0.930	1.18	0.1080	0.87	0.73	690	30	661	11	668	12	4
039-ZR29	0.300	89441	0.06394	0.960	1.24	0.1089	0.91	0.74	740	31	666	12	683	12	10
078-ZR118	0.240	87877	0.06129	0.921	1.56	0.1089	1.19	0.76	649	40	667	15	663	15	-3
038-ZR88	0.084	3716	0.06401	0.972	1.60	0.1102	1.06	0.66	742	48	674	14	690	16	9
037-ZR27	0.233	79321	0.06337	0.978	0.96	0.1120	0.76	0.79	721	20	684	10	693	10	5
057-ZR42	0.266	121336	0.06311	0.998	1.07	0.1147	0.83	0.77	712	24	700	11	703	11	2
040-ZR30	0.479	15933	0.06422	1.030	1.93	0.1163	1.52	0.79	749	47	709	20	719	20	5
035-ZR85	0.554	82864	0.06461	1.068	1.71	0.1199	1.38	0.81	762	40	730	19	738	18	4
069-ZR111	0.265	77698	0.06459	1.074	1.69	0.1206	1.21	0.71	761	47	734	17	741	18	4
088-ZR125	0.311	41530	0.06677	1.143	1.71	0.1241	1.15	0.67	831	50	754	16	774	18	9
084-ZR121	0.222	57311	0.06711	1.165	1.85	0.1259	1.40	0.75	841	48	765	20	784	20	9

066-ZR48	0.436	69213	0.06652	1.187	0.97	0.1294	0.72	0.74	823	22	785	11	795	11	5
039-ZR89	0.143	118291	0.06530	1.167	1.61	0.1296	1.20	0.75	784	42	786	18	785	18	0
066-ZR108	0.321	93625	0.06545	1.172	1.40	0.1299	1.12	0.80	789	31	787	17	788	15	0
067-ZR109	0.263	30695	0.06528	1.183	2.86	0.1314	1.80	0.63	783	91	796	27	793	31	-2
018-ZR13	0.284	103468	0.06541	1.208	1.11	0.1339	0.84	0.76	788	26	810	13	804	12	-3
048-ZR95	0.337	48556	0.06846	1.267	2.05	0.1342	1.44	0.70	883	58	812	22	831	23	8
005-ZR02	0.330	41685	0.06633	1.298	1.76	0.1419	1.19	0.68	817	51	856	19	845	20	-5
067-ZR49	0.579	19956	0.07118	1.485	2.45	0.1514	1.86	0.76	962	63	909	31	924	30	6
080-ZR120	0.351	70521	0.07163	1.525	1.47	0.1544	1.14	0.78	975	34	925	20	940	18	5
037-ZR87	0.745	540763	0.07398	1.625	1.72	0.1593	1.33	0.77	1041	42	953	23	980	22	8
085-ZR122	0.507	95423	0.07098	1.581	1.63	0.1615	1.38	0.85	957	32	965	25	963	20	-1
035-ZR25	0.199	49455	0.07416	1.668	1.43	0.1631	1.02	0.71	1046	37	974	18	996	18	7
059-ZR44	0.358	122031	0.07123	1.605	1.02	0.1634	0.82	0.80	964	20	975	15	972	13	-1
004-ZR01	0.244	82066	0.07221	1.633	0.89	0.1640	0.66	0.74	992	19	979	12	983	11	1
015-ZR10	0.389	62506	0.07181	1.639	1.30	0.1655	1.08	0.83	981	25	987	20	985	16	-1
054-ZR99	0.445	76231	0.07381	1.716	1.65	0.1686	1.35	0.82	1036	35	1005	25	1015	21	3
020-ZR15	0.270	97909	0.07129	1.663	1.21	0.1692	0.75	0.62	966	35	1008	14	995	15	-4
033-ZR83	0.054	217086	0.07465	1.743	1.22	0.1693	1.02	0.83	1059	23	1008	19	1025	16	5
029-ZR81	0.214	39087	0.07555	1.778	2.70	0.1707	1.97	0.73	1083	72	1016	37	1038	35	6
056-ZR41	0.573	30573	0.07424	1.757	1.64	0.1716	1.26	0.76	1048	40	1021	24	1030	21	3
079-ZR119	0.325	132557	0.07276	1.727	1.51	0.1722	1.12	0.74	1007	38	1024	21	1019	19	-2
017-ZR12	0.299	33875	0.07417	1.765	1.92	0.1726	1.19	0.62	1046	58	1026	23	1033	25	2
027-ZR79	0.937	41916	0.07606	1.813	2.36	0.1729	1.73	0.73	1097	62	1028	33	1050	31	6
089-ZR126	0.305	56881	0.07210	1.734	1.93	0.1745	1.34	0.69	989	54	1037	26	1021	25	-5
076-ZR56	0.299	71639	0.07454	1.796	1.13	0.1748	0.79	0.70	1056	29	1038	15	1044	15	2
010-ZR07	0.348	36247	0.07488	1.808	2.07	0.1751	1.44	0.70	1065	57	1040	28	1048	27	2
025-ZR17	0.211	42950	0.07290	1.765	1.61	0.1756	1.12	0.69	1011	44	1043	22	1033	21	-3
068-ZR50	1.014	9288	0.07548	1.835	1.24	0.1763	0.92	0.74	1081	30	1047	18	1058	16	3
033-ZR23	0.437	48358	0.07372	1.812	1.28	0.1782	1.00	0.78	1034	29	1057	20	1050	17	-2

077-ZR117	0.488	79130	0.07658	1.940	2.04	0.1837	1.41	0.69	1110	57	1087	28	1095	27	2
049-ZR96	0.437	160119	0.07410	1.884	1.50	0.1843	1.17	0.78	1044	35	1091	23	1075	20	-4
045-ZR32	1.284	61084	0.07595	1.950	1.17	0.1862	0.78	0.66	1094	32	1101	16	1098	16	-1
028-ZR20	0.220	158031	0.07536	1.942	1.03	0.1869	0.78	0.76	1078	22	1105	16	1096	14	-2
048-ZR35	0.671	116303	0.07679	2.013	1.17	0.1901	0.96	0.82	1116	22	1122	20	1120	16	-1
046-ZR93	0.739	67903	0.08158	2.194	1.68	0.1951	1.38	0.82	1235	35	1149	29	1179	23	7
010-ZR67	0.137	65113	0.07660	2.125	3.97	0.2012	2.69	0.68	1111	113	1182	58	1157	54	-6
026-ZR18	0.553	141828	0.08025	2.269	1.05	0.2050	0.81	0.77	1203	22	1202	18	1203	15	0
007-ZR04	0.585	118063	0.08019	2.273	1.08	0.2056	0.82	0.76	1202	23	1205	18	1204	15	0
044-ZR91	0.440	182851	0.08192	2.416	1.45	0.2139	1.09	0.75	1244	35	1250	25	1247	21	0
047-ZR94	0.614	99367	0.08336	2.464	1.67	0.2144	1.29	0.77	1278	38	1252	29	1262	24	2
069-ZR51	0.683	72721	0.09273	3.318	1.10	0.2595	0.81	0.74	1482	24	1487	22	1485	17	0
020-ZR75	0.165	60234	0.10779	4.306	2.56	0.2897	1.64	0.64	1762	70	1640	48	1694	42	7
028-ZR80	0.623	41983	0.11539	4.969	2.31	0.3123	1.76	0.76	1886	52	1752	54	1814	39	7
086-ZR123	0.539	278174	0.11512	5.039	1.87	0.3174	1.35	0.72	1882	44	1777	42	1826	31	6
049-ZR36	0.419	188746	0.11902	5.402	1.04	0.3292	0.74	0.71	1942	22	1834	24	1885	18	6
024-ZR76	0.617	90303	0.11589	5.304	1.59	0.3319	1.26	0.79	1894	32	1848	41	1870	27	2
060-ZR105	1.511	78803	0.11643	5.387	1.58	0.3355	1.21	0.77	1902	34	1865	39	1883	27	2
013-ZR08	0.638	139606	0.11365	5.287	1.21	0.3374	0.89	0.74	1859	26	1874	29	1867	21	-1
040-ZR90	0.788	112549	0.11469	5.347	1.96	0.3381	1.43	0.73	1875	46	1877	47	1876	33	0
025-ZR77	1.227	226200	0.11530	5.406	1.22	0.3400	0.97	0.80	1885	23	1887	32	1886	21	0
053-ZR38	0.331	325030	0.12033	5.650	1.00	0.3405	0.73	0.73	1961	20	1889	24	1924	17	4
054-ZR39	0.383	34345	0.12077	5.821	1.44	0.3496	1.07	0.74	1968	32	1933	36	1950	25	2
016-ZR11	0.602	108656	0.11571	5.596	1.05	0.3507	0.75	0.72	1891	22	1938	25	1915	18	-2
044-ZR31	0.569	47427	0.11464	5.715	1.51	0.3615	1.37	0.91	1874	18	1989	47	1934	26	-6
006-ZR63	0.600	125127	0.12024	6.261	2.19	0.3776	1.61	0.74	1960	50	2065	57	2013	38	-5
047-ZR34	0.864	125767	0.12054	6.324	1.49	0.3805	1.10	0.74	1964	33	2079	39	2022	26	-6
014-ZR69	0.407	126372	0.13145	7.521	2.90	0.4149	2.12	0.73	2117	67	2237	80	2175	51	-6
059-ZR104	0.855	87764	0.17626	11.707	1.68	0.4817	1.23	0.73	2618	36	2535	51	2581	31	3

057-ZR102 0.155 520242 0.17368 11.698 1.20 0.4885 0.99 0.82 **19** 2564 42 2581 22 1 2593 0.182 253932 0.17839 12.176 1.10 0.4950 0.81 0.74 019-ZR14 2638 21 2592 35 2618 21 2 065-ZR107 0.768 295984 0.17745 12.125 1.29 0.4955 1.03 0.79 2595 44 2614 24 2629 23 1 050-ZR37 0.418 296438 0.18690 13.322 1.02 0.5169 0.70 0.68 2715 21 2686 31 2703 19 1

U-Pb MC-L	A-ICP-MS	S : sample V	SC42		Isoto	opic Ratic)S				Appare	nt A	ges		
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
034-ZR84	0.360	38661	0.05707	0.625	2.21	0.0794	1.50	0.68	494	69	493	14	493	17	0
085-ZR122	0.561	20229	0.05859	0.661	3.43	0.0819	2.47	0.72	552	101	507	24	515	28	8
066-ZR48	0.789	43255	0.05780	0.663	1.64	0.0831	1.13	0.69	522	49	515	11	516	13	1
073-ZR53	0.373	35600	0.05813	0.668	2.78	0.0834	2.01	0.72	535	82	516	20	520	23	3
010-ZR07	0.082	54606	0.05750	0.678	1.32	0.0855	0.91	0.69	511	38	529	9	526	11	-4
046-ZR93	0.250	26456	0.05869	0.703	3.76	0.0869	2.67	0.71	556	112	537	27	541	31	3
015-ZR10	0.184	148637	0.05818	0.716	0.93	0.0893	0.74	0.80	536	18	551	8	548	8	-3
065-ZR47	0.297	66879	0.05920	0.740	1.29	0.0906	1.00	0.78	574	31	559	11	562	11	3
068-ZR50	0.754	138772	0.06029	0.757	1.91	0.0911	1.24	0.65	614	60	562	13	572	17	8
048-ZR35	0.677	67903	0.05915	0.744	1.40	0.0912	0.98	0.70	573	40	562	11	565	12	2
044-ZR31	0.160	128886	0.05889	0.742	1.24	0.0913	0.91	0.74	563	33	563	10	563	11	0
074-ZR54	0.291	29190	0.06057	0.771	2.55	0.0923	1.85	0.73	624	73	569	20	580	22	9
034-ZR24	0.137	132740	0.05891	0.750	1.30	0.0923	1.12	0.86	564	24	569	12	568	11	-1
090-ZR127	0.035	54859	0.05910	0.756	1.71	0.0928	1.27	0.74	571	47	572	14	572	15	0
057-ZR42	0.396	113972	0.06078	0.798	1.29	0.0952	0.98	0.76	632	33	586	11	596	12	7
020-ZR15	0.928	64819	0.06008	0.797	1.48	0.0962	1.12	0.76	606	39	592	13	595	13	2
080-ZR60	0.279	30024	0.06154	0.821	1.15	0.0968	0.85	0.74	658	29	596	10	609	11	9
035-ZR25	0.476	66965	0.05992	0.811	2.16	0.0981	1.43	0.66	601	68	604	16	603	20	0
089-ZR126	0.938	24775	0.06138	0.840	2.08	0.0993	1.49	0.71	653	60	610	17	619	19	6
005-ZR62	0.957	25757	0.06202	0.850	1.40	0.0994	1.04	0.74	675	37	611	12	625	13	9
037-ZR27	0.446	54497	0.06035	0.842	1.74	0.1011	1.26	0.73	616	49	621	15	620	16	-1
055-ZR100	0.300	89374	0.06136	0.856	1.91	0.1012	1.69	0.88	652	35	621	20	628	18	5

049-ZR36	0.801	34319	0.06092	0.860	1.94	0.1023	1.45	0.75	636	52	628	17	630	18	1
047-ZR94	0.244	38052	0.06038	0.862	2.57	0.1035	1.90	0.74	617	73	635	23	631	24	-3
098-ZR133	0.252	40296	0.06206	0.925	1.60	0.1080	1.09	0.69	676	47	661	14	665	16	2
053-ZR38	1.030	65522	0.06296	0.940	1.66	0.1082	1.18	0.71	707	47	663	15	673	16	6
053-ZR98	0.512	40590	0.06120	0.922	1.44	0.1093	0.99	0.69	646	42	669	13	663	14	-3
058-ZR43	0.454	71713	0.06296	0.955	1.18	0.1100	0.91	0.77	707	27	673	12	681	12	5
005-ZR02	0.806	103354	0.06181	0.956	1.03	0.1122	0.68	0.66	668	29	686	9	681	10	-3
076-ZR116	0.225	94047	0.06235	0.969	1.29	0.1127	0.89	0.69	686	36	688	12	688	13	0
045-ZR32	0.271	90041	0.06372	0.999	1.18	0.1137	0.94	0.79	732	26	694	12	703	12	5
037-ZR87	0.261	185683	0.06283	1.001	0.93	0.1156	0.71	0.77	703	20	705	10	705	9	0
007-ZR64	0.204	91187	0.06478	1.051	1.10	0.1176	0.84	0.76	767	26	717	11	729	11	7
006-ZR63	0.245	166064	0.06244	1.022	0.89	0.1188	0.71	0.80	689	17	723	10	715	9	-5
040-ZR30	0.041	190045	0.06583	1.080	2.08	0.1190	1.80	0.86	801	41	725	25	744	22	10
060-ZR105	0.210	40247	0.06590	1.157	2.19	0.1273	1.44	0.66	803	67	773	21	781	24	4
039-ZR89	0.105	62371	0.06596	1.165	1.55	0.1281	0.93	0.60	805	49	777	14	784	17	4
064-ZR46	0.597	171404	0.06575	1.221	1.32	0.1347	1.07	0.81	798	29	814	16	810	15	-2
059-ZR44	0.108	125104	0.06797	1.271	1.53	0.1356	1.20	0.79	868	36	820	18	833	17	6
070-ZR52	0.435	58434	0.06828	1.285	1.85	0.1365	1.37	0.74	877	49	825	21	839	21	6
027-ZR19	0.481	152082	0.06684	1.258	0.97	0.1365	0.72	0.74	833	22	825	11	827	11	1
088-ZR125	0.512	24363	0.07069	1.460	3.86	0.1498	2.54	0.66	948	115	900	43	914	46	5
086-ZR123	0.256	59454	0.07086	1.485	1.44	0.1520	1.14	0.79	953	33	912	19	924	17	4
017-ZR72	0.223	115069	0.07091	1.601	1.18	0.1637	0.88	0.74	955	28	977	16	970	15	-2
079-ZR59	0.035	98160	0.07223	1.641	1.37	0.1647	0.94	0.68	992	37	983	17	986	17	1
087-ZR124	0.475	70286	0.07593	1.729	1.67	0.1651	1.23	0.74	1093	42	985	23	1019	21	10
036-ZR26	0.371	148575	0.07269	1.667	0.99	0.1663	0.79	0.79	1005	19	992	14	996	13	1
024-ZR76	0.557	141742	0.07383	1.697	1.01	0.1667	0.75	0.74	1037	23	994	14	1008	13	4
040-ZR90	0.433	19909	0.07235	1.673	3.03	0.1677	2.17	0.72	996	84	999	40	998	38	0
004-ZR61	0.458	23667	0.07228	1.671	2.08	0.1677	1.23	0.59	994	66	999	23	998	26	-1
010-ZR67	0.392	110862	0.07281	1.754	1.08	0.1747	0.74	0.69	1009	28	1038	14	1029	14	-3
009-ZR06	0.492	161277	0.07367	1.772	1.03	0.1744	0.75	0.73	1032	24	1036	14	1035	13	0

038-ZR88	0.169	75479	0.07385	1.792	1.35	0.1759	1.11	0.82	1037	27	1045	21	1042	18	-1
066-ZR108	0.187	145338	0.07413	1.799	1.19	0.1759	0.86	0.72	1045	30	1045	17	1045	16	0
059-ZR104	0.365	44800	0.07417	1.917	1.44	0.1874	0.96	0.67	1046	40	1107	20	1087	19	-6
008-ZR65	0.247	54893	0.07440	1.811	1.41	0.1765	0.97	0.68	1052	39	1048	19	1049	18	0
077-ZR57	1.102	42458	0.07446	1.828	1.40	0.1781	1.05	0.75	1054	34	1056	20	1056	18	0
009-ZR66	0.205	69602	0.07475	1.744	1.32	0.1692	0.89	0.67	1062	36	1007	17	1025	17	5
077-ZR117	0.221	127015	0.07512	1.756	1.33	0.1695	1.07	0.81	1072	28	1010	20	1029	17	6
099-ZR134	0.255	62024	0.07526	1.897	1.69	0.1829	1.17	0.69	1075	46	1083	23	1080	22	-1
028-ZR20	0.282	198497	0.07529	1.950	0.94	0.1879	0.76	0.81	1076	16	1110	15	1099	13	-3
054-ZR39	0.376	97197	0.07550	1.892	1.05	0.1817	0.79	0.75	1082	23	1076	16	1078	14	1
013-ZR68	0.350	123202	0.07563	1.897	1.38	0.1819	1.02	0.74	1085	34	1077	20	1080	18	1
068-ZR110	0.493	63333	0.07575	1.830	1.34	0.1752	0.94	0.70	1088	35	1041	18	1056	18	4
018-ZR13	0.147	87253	0.07695	1.981	1.11	0.1867	0.84	0.76	1120	25	1103	17	1109	15	1
048-ZR95	0.421	41850	0.07777	1.991	1.95	0.1857	1.47	0.75	1141	48	1098	30	1112	26	4
065-ZR107	0.436	125510	0.08116	2.407	1.15	0.2150	0.77	0.68	1225	30	1256	18	1245	16	-2
015-ZR70	0.458	42258	0.09184	3.126	1.96	0.2469	1.40	0.71	1464	50	1422	36	1439	30	3
007-ZR04	0.220	302813	0.09327	3.402	0.77	0.2646	0.58	0.74	1493	14	1513	16	1505	12	-1
018-ZR73	0.488	59236	0.09547	3.607	1.98	0.2740	1.04	0.53	1537	61	1561	29	1551	31	-2
074-ZR114	0.279	48245	0.10533	4.249	1.10	0.2925	0.84	0.77	1720	22	1654	25	1683	18	4
019-ZR14	0.588	89390	0.10775	4.625	1.42	0.3113	1.06	0.75	1762	32	1747	33	1754	24	1
008-ZR05	0.484	144816	0.10885	4.781	1.05	0.3185	0.81	0.77	1780	20	1783	25	1782	18	0
030-ZR22	0.015	742305	0.11584	5.963	0.90	0.3733	0.66	0.72	1893	18	2045	23	1970	16	-8
093-ZR128	0.430	148744	0.12118	5.453	1.71	0.3263	1.15	0.67	1974	43	1821	37	1893	29	8
026-ZR18	0.513	98484	0.12202	5.913	1.07	0.3514	0.82	0.77	1986	20	1941	28	1963	19	2
075-ZR115	0.365	120794	0.12400	5.767	1.02	0.3373	0.79	0.77	2015	19	1873	26	1941	18	7
013-ZR08	0.662	111106	0.12595	6.570	1.17	0.3783	0.82	0.70	2042	26	2068	29	2055	20	-1
033-ZR23	0.257	455374	0.12600	6.468	0.89	0.3723	0.70	0.78	2043	15	2040	24	2042	16	0
017-ZR12	0.338	166232	0.12657	6.460	0.86	0.3701	0.66	0.77	2051	14	2030	23	2040	15	1
044-ZR91	0.363	154415	0.12666	6.561	1.01	0.3756	0.77	0.76	2052	19	2056	27	2054	18	0
029-ZR21	0.189	146616	0.12798	6.878	1.20	0.3898	1.00	0.84	2070	19	2122	36	2096	21	-2

020-ZR75	0.475	89825	0.13051	6.807	1.58	0.3783	1.14	0.72	2105	36	2068	40	2087	28	2
030-ZR82	0.793	1934	0.13536	6.991	1.52	0.3745	1.12	0.74	2169	33	2051	39	2110	27	5
050-ZR37	0.483	262872	0.16319	9.433	1.28	0.4192	0.99	0.77	2489	24	2257	38	2381	23	9
028-ZR80	0.104	256242	0.17368	12.107	0.94	0.5055	0.73	0.77	2593	16	2637	31	2613	18	-2
035-ZR85	0.696	127296	0.19288	14.015	1.15	0.5269	0.84	0.73	2767	22	2729	37	2751	22	1
100-ZR135	1.048	37057	0.20021	15.917	1.94	0.5765	1.44	0.75	2828	40	2935	68	2872	37	-4
056-ZR101	0.951	241028	0.22763	16.683	1.81	0.5315	1.26	0.69	3035	40	2748	56	2917	34	9
078-ZR58	0.128	72399	0.26689	22.836	1.67	0.6205	1.06	0.63	3288	39	3112	52	3220	32	5

U-Pb MC-L	A-ICP-MS	S : sample V	SC50		Isoto	pic Ratio	s				Appare	nt A	ges		
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
128-ZR102	0.387	127666	0.06252	0.938	1.20	0.1088	1.00	0.83	692	24	666	13	672	12	4
130-ZR104	0.304	145325	0.06962	1.466	1.03	0.1527	0.74	0.72	917	25	916	13	917	12	0
115-ZR91	0.317	94459	0.07112	1.532	1.07	0.1562	0.81	0.75	961	25	936	14	943	13	3
009-ZR07	0.256	54287	0.07221	1.690	1.21	0.1698	0.82	0.68	992	32	1011	15	1005	15	-2
047-ZR37	0.330	248419	0.07225	1.816	1.85	0.1823	1.56	0.84	993	37	1080	31	1051	24	-9
004-ZR02	0.547	200188	0.07297	1.713	0.79	0.1703	0.60	0.76	1013	14	1013	11	1013	10	0
135-ZR107	1.125	251491	0.07392	1.751	0.75	0.1718	0.52	0.69	1039	16	1022	10	1028	10	2
099-ZR79	0.230	118705	0.07415	1.730	1.06	0.1692	0.73	0.69	1045	27	1008	14	1020	14	4
059-ZR47	0.603	25191	0.07653	2.147	2.42	0.2034	1.73	0.72	1109	65	1194	38	1164	33	-8
118-ZR94	0.931	47657	0.07653	2.174	3.02	0.2060	2.19	0.73	1109	81	1207	48	1173	42	-9
107-ZR85	0.623	34175	0.07728	1.842	1.91	0.1729	1.41	0.74	1129	49	1028	27	1061	25	9
159-ZR127	0.475	128405	0.07766	2.160	1.72	0.2018	1.43	0.84	1138	34	1185	31	1168	24	-4
116-ZR92	0.306	79640	0.07769	2.144	1.11	0.2001	0.80	0.72	1139	26	1176	17	1163	15	-3
025-ZR19	0.239	375064	0.07771	2.125	0.74	0.1983	0.50	0.67	1140	16	1166	11	1157	10	-2
177-ZR141	0.382	156957	0.07772	2.210	1.71	0.2063	1.24	0.73	1140	44	1209	27	1184	24	-6
154-ZR122	0.552	113817	0.07818	2.325	3.03	0.2157	2.56	0.85	1151	62	1259	59	1220	43	-9
076-ZR60	0.425	22991	0.07828	2.228	3.65	0.2064	2.72	0.74	1154	94	1210	60	1190	51	-5
123-ZR97	0.266	189633	0.07873	2.186	0.89	0.2014	0.63	0.71	1165	20	1183	14	1177	12	-1
095-ZR75	0.609	39211	0.07878	2.056	1.54	0.1893	1.09	0.71	1167	40	1117	22	1134	21	4
-----------	-------	---------	---------	-------	------	--------	------	------	------	----	------	----	------	----	-----
133-ZR105	0.394	294154	0.07886	2.309	2.06	0.2123	1.85	0.90	1169	33	1241	42	1215	29	-6
094-ZR74	0.452	203936	0.07887	2.385	2.30	0.2193	1.77	0.77	1169	56	1278	41	1238	33	-9
124-ZR98	0.369	302551	0.07907	2.166	0.72	0.1987	0.52	0.72	1174	13	1168	11	1170	10	0
070-ZR56	0.261	227794	0.07910	2.214	0.91	0.2029	0.74	0.81	1175	15	1191	16	1185	13	-1
089-ZR71	0.638	47770	0.07912	2.218	1.44	0.2033	1.02	0.71	1175	37	1193	22	1187	20	-1
109-ZR87	0.323	142014	0.07931	2.187	0.93	0.2000	0.69	0.74	1180	20	1175	15	1177	13	0
113-ZR89	0.236	431864	0.07936	2.181	0.81	0.1993	0.62	0.77	1181	14	1171	13	1175	11	1
158-ZR126	0.338	193784	0.07984	2.338	0.85	0.2124	0.64	0.76	1193	16	1242	14	1224	12	-4
015-ZR11	0.712	33994	0.07986	2.483	1.51	0.2255	1.15	0.76	1194	35	1311	27	1267	22	-10
074-ZR58	0.312	114906	0.08001	2.174	1.71	0.1971	1.43	0.84	1197	34	1160	30	1173	24	3
086-ZR68	0.359	176781	0.08004	2.123	0.94	0.1924	0.70	0.74	1198	20	1134	15	1156	13	5
110-ZR88	0.363	75969	0.08024	2.296	1.11	0.2075	0.78	0.71	1203	27	1215	17	1211	16	-1
079-ZR63	0.464	640199	0.08038	2.337	0.84	0.2109	0.62	0.74	1206	17	1233	14	1224	12	-2
168-ZR134	0.443	81853	0.08057	2.389	1.33	0.2150	1.16	0.87	1211	21	1256	26	1239	19	-4
048-ZR38	0.267	184652	0.08068	2.384	1.09	0.2143	0.80	0.73	1214	25	1252	18	1238	16	-3
039-ZR31	0.588	105994	0.08075	2.245	1.03	0.2017	0.71	0.69	1215	25	1184	15	1195	14	3
105-ZR83	0.359	85195	0.08163	2.296	1.01	0.2039	0.70	0.69	1237	24	1196	15	1211	14	3
037-ZR29	0.362	6429	0.08194	2.280	1.09	0.2018	0.91	0.84	1244	18	1185	20	1206	15	5
148-ZR118	0.581	153877	0.08220	2.458	2.04	0.2168	1.85	0.91	1250	30	1265	43	1260	29	-1
174-ZR138	0.490	190573	0.08230	2.701	2.34	0.2380	2.08	0.89	1253	39	1376	52	1329	34	-10
126-ZR100	0.247	207145	0.08304	2.519	0.72	0.2200	0.49	0.68	1270	15	1282	11	1277	10	-1
035-ZR27	0.702	47988	0.08411	2.866	1.18	0.2472	0.88	0.75	1295	27	1424	22	1373	18	-10
169-ZR135	0.910	79284	0.08435	2.348	1.37	0.2019	1.11	0.81	1301	27	1185	24	1227	19	9
026-ZR20	0.221	306694	0.08511	2.879	0.84	0.2453	0.65	0.78	1318	15	1414	17	1376	13	-7
156-ZR124	0.357	393358	0.08629	2.855	0.72	0.2399	0.54	0.76	1345	11	1386	14	1370	11	-3
046-ZR36	0.143	1307311	0.08677	2.929	0.80	0.2448	0.64	0.81	1355	11	1412	16	1389	12	-4
134-ZR106	0.169	337840	0.08792	2.960	0.74	0.2441	0.50	0.67	1381	16	1408	13	1397	11	-2
145-ZR115	0.424	102424	0.08800	2.807	0.99	0.2313	0.77	0.78	1382	19	1341	19	1357	15	3
016-ZR12	0.320	199452	0.08873	3.105	1.07	0.2538	0.93	0.87	1398	15	1458	24	1434	16	-4

085-ZR67	0.244	281339	0.09074	3.025	0.99	0.2418	0.82	0.82	1441	16	1396	21	1414	15	3
017-ZR13	0.227	219982	0.09085	3.310	0.83	0.2642	0.60	0.73	1444	16	1511	16	1483	13	-5
146-ZR116	0.439	270001	0.09090	3.132	0.78	0.2499	0.57	0.74	1444	14	1438	15	1441	12	0
119-ZR95	0.281	132743	0.09132	3.143	0.80	0.2496	0.59	0.73	1453	15	1436	15	1443	12	1
088-ZR70	0.582	382875	0.09364	3.389	0.74	0.2625	0.53	0.72	1501	14	1503	14	1502	12	0
036-ZR28	0.162	74190	0.09388	3.388	1.07	0.2617	0.72	0.68	1506	26	1498	19	1502	17	0
108-ZR86	0.576	57320	0.09429	3.443	1.05	0.2648	0.59	0.56	1514	30	1515	16	1514	16	0
055-ZR43	0.241	219009	0.09480	3.430	0.81	0.2624	0.59	0.73	1524	16	1502	16	1511	13	1
093-ZR73	0.366	117978	0.09506	3.328	1.19	0.2539	1.00	0.84	1529	20	1459	26	1488	18	5
157-ZR125	0.392	405842	0.09514	3.435	0.76	0.2619	0.57	0.76	1531	12	1499	15	1513	12	2
163-ZR129	0.153	94841	0.09577	3.553	1.00	0.2690	0.76	0.76	1543	20	1536	21	1539	16	0
104-ZR82	1.004	86232	0.09578	3.585	1.08	0.2715	0.78	0.73	1543	24	1548	22	1546	17	0
098-ZR78	0.404	357543	0.09685	3.684	0.75	0.2759	0.56	0.74	1564	13	1571	15	1568	12	0
175-ZR139	0.315	237957	0.09846	3.726	0.84	0.2744	0.65	0.77	1595	14	1563	18	1577	13	2
106-ZR84	0.274	106006	0.09860	3.822	0.83	0.2811	0.57	0.68	1598	18	1597	16	1597	13	0
147-ZR117	0.832	11319	0.09947	3.680	2.65	0.2683	2.47	0.93	1614	33	1532	67	1567	42	5
096-ZR76	0.550	166004	0.10019	3.949	0.81	0.2858	0.55	0.68	1628	18	1621	16	1624	13	0
103-ZR81	0.649	3201	0.10180	4.140	2.95	0.2949	1.68	0.57	1657	88	1666	49	1662	48	-1
138-ZR110	0.586	132788	0.10251	4.159	1.34	0.2942	1.03	0.77	1670	29	1663	30	1666	22	0
043-ZR33	0.699	153627	0.10420	4.787	3.19	0.3332	3.02	0.95	1700	35	1854	97	1783	53	-9
120-ZR96	0.256	324264	0.10611	4.632	0.77	0.3166	0.52	0.68	1734	15	1773	16	1755	13	-2
083-ZR65	1.092	201321	0.10748	4.539	0.86	0.3063	0.64	0.75	1757	16	1722	19	1738	14	2
164-ZR130	1.183	1935	0.10785	4.551	3.14	0.3060	2.69	0.86	1763	57	1721	81	1740	52	2
100-ZR80	0.637	272974	0.10798	4.838	0.97	0.3250	0.78	0.80	1766	16	1814	25	1792	16	-3
155-ZR123	0.620	108197	0.10820	4.881	1.68	0.3271	1.55	0.92	1769	19	1825	49	1799	28	-3
114-ZR90	0.451	397927	0.10892	4.997	0.70	0.3327	0.49	0.70	1781	12	1852	16	1819	12	-4
019-ZR15	0.796	168298	0.10897	4.869	1.07	0.3241	0.79	0.73	1782	23	1810	25	1797	18	-2
038-ZR30	0.851	278803	0.10989	5.015	0.94	0.3309	0.77	0.82	1798	14	1843	25	1822	16	-3
160-ZR128	0.699	23230	0.11425	5.855	1.72	0.3717	1.57	0.91	1868	22	2037	55	1955	30	-9
058-ZR46	0.512	160141	0.11463	5.380	0.92	0.3404	0.68	0.73	1874	18	1888	22	1882	16	-1

014-ZR10	0.938	86488	0.11465	5.292	2.41	0.3348	2.29	0.95	1874	24	1861	74	1868	41	1
179-ZR143	0.507	240877	0.11489	5.594	0.93	0.3531	0.75	0.81	1878	14	1949	25	1915	16	-4
020-ZR16	1.308	309271	0.11547	5.810	2.33	0.3649	2.21	0.95	1887	23	2005	76	1948	40	-6
078-ZR62	1.427	41747	0.11730	5.530	2.98	0.3419	2.56	0.86	1915	53	1896	84	1905	51	1
084-ZR66	0.260	351864	0.11899	6.221	1.96	0.3792	1.81	0.92	1941	23	2072	64	2007	34	-7
144-ZR114	0.356	486470	0.11899	5.808	0.71	0.3540	0.49	0.69	1941	13	1954	17	1948	12	-1
049-ZR39	0.441	344595	0.12012	6.469	3.03	0.3906	2.93	0.97	1958	23	2125	106	2042	53	-9
056-ZR44	1.047	254578	0.12115	5.886	1.17	0.3523	1.08	0.92	1973	10	1946	36	1959	20	1
007-ZR05	0.931	198009	0.12176	6.422	4.56	0.3825	4.38	0.96	1982	43	2088	155	2035	79	-5
137-ZR109	0.373	233702	0.12177	6.098	0.76	0.3632	0.57	0.76	1982	11	1997	20	1990	13	-1
010-ZR08	0.445	284699	0.12196	6.062	0.79	0.3604	0.55	0.70	1985	15	1984	19	1985	14	0
153-ZR121	0.483	148152	0.12228	6.018	0.77	0.3570	0.56	0.72	1990	14	1968	19	1979	13	1
150-ZR120	0.495	327900	0.12300	6.149	0.81	0.3626	0.59	0.73	2000	15	1994	20	1997	14	0
013-ZR09	0.539	64190	0.12616	6.819	0.84	0.3920	0.67	0.80	2045	12	2132	24	2088	15	-4
075-ZR59	1.294	94049	0.13044	6.975	0.89	0.3878	0.69	0.78	2104	15	2113	25	2108	16	0

U-Pb MC-L	A-ICP-MS	S : sample V	SC74		Isoto	pic Ratio	S			Α	pparent /	Ages	5		
Spot/Grain	Th/U	²⁰⁶ Pb/ ²⁰⁴ Pb	²⁰⁷ Pb/ ²⁰⁶ Pb	²⁰⁷ Pb/ ²³⁵ U	1s	²⁰⁶ Pb/ ²³⁸ U	1s	Rho	²⁰⁷ Pb/ ²⁰⁶ Pb	2s	²⁰⁶ Pb/ ²³⁸ U	2s	²⁰⁷ Pb/ ²³⁵ U	2s	%Disc
013-ZR69	0.601	46860	0.06036	0.809	2.30	0.0973	1.63	0.71	616	67	598	19	602	21	3
015-ZR71	0.406	60088	0.06171	0.853	1.70	0.1003	1.24	0.73	664	47	616	15	626	16	7
074-ZR54	0.415	122325	0.06125	0.848	1.08	0.1004	0.79	0.73	648	27	617	9	624	10	5
053-ZR38	0.662	90219	0.06031	0.837	0.99	0.1007	0.70	0.70	615	26	618	8	618	9	-1
040-ZR30	0.401	56857	0.06230	0.876	2.36	0.1019	1.33	0.56	684	81	626	16	639	22	9
081-ZR61	0.527	70801	0.05990	0.843	1.26	0.1020	0.80	0.64	600	39	626	10	621	12	-4
071-ZR53	0.635	101344	0.06147	0.865	1.20	0.1021	0.89	0.75	656	30	627	11	633	11	4
059-ZR44	0.762	88162	0.06063	0.877	1.26	0.1049	0.86	0.68	626	36	643	11	639	12	-3
076-ZR56	0.499	114174	0.06119	0.888	1.11	0.1052	0.90	0.81	646	23	645	11	645	11	0
005-ZR63	0.234	67699	0.06167	0.895	1.71	0.1053	1.35	0.79	663	41	645	17	649	16	3
035-ZR86	0.528	89330	0.06167	0.902	1.82	0.1061	1.35	0.74	663	49	650	17	653	17	2

016-ZR72	0.373	68849	0.06235	0.930	1.37	0.1081	1.00	0.73	686	36	662	13	668	13	4
025-ZR17	0.553	151404	0.06084	0.914	1.16	0.1089	0.93	0.80	634	25	667	12	659	11	-5
004-ZR01	0.518	125329	0.06158	0.926	1.06	0.1091	0.78	0.74	659	26	668	10	666	10	-1
064-ZR46	0.255	67280	0.06172	0.936	1.07	0.1100	0.67	0.63	664	31	673	9	671	10	-1
024-ZR16	0.204	218110	0.06241	0.967	1.29	0.1124	1.14	0.88	688	20	687	15	687	13	0
078-ZR58	0.641	58206	0.06333	1.018	1.70	0.1166	0.89	0.52	719	59	711	12	713	17	1
055-ZR40	0.650	68040	0.06624	1.114	1.13	0.1220	0.77	0.68	814	31	742	11	760	12	9
036-ZR26	0.169	138975	0.06428	1.100	0.93	0.1241	0.72	0.77	751	19	754	10	753	10	0
020-ZR15	0.243	47995	0.06516	1.122	1.70	0.1249	1.23	0.72	780	46	759	18	764	18	3
057-ZR103	0.154	83378	0.06639	1.158	1.55	0.1265	1.20	0.78	819	37	768	17	781	17	6
040-ZR91	0.476	69217	0.06527	1.140	1.63	0.1267	1.09	0.67	783	48	769	16	773	18	2
079-ZR120	0.242	42663	0.06647	1.162	2.00	0.1268	1.34	0.67	821	60	769	19	783	22	6
066-ZR109	0.119	87101	0.06663	1.171	1.49	0.1274	1.15	0.77	826	36	773	17	787	16	6
056-ZR102	0.103	126186	0.06548	1.152	1.60	0.1276	1.07	0.67	790	47	774	16	778	17	2
005-ZR02	0.680	88308	0.06562	1.158	1.06	0.1280	0.81	0.77	794	24	777	12	781	12	2
076-ZR117	0.372	26478	0.06707	1.189	1.70	0.1286	0.91	0.53	840	57	780	13	795	19	7
030-ZR83	0.277	72793	0.06585	1.172	1.97	0.1291	1.44	0.73	802	54	783	21	788	21	2
007-ZR04	0.083	109625	0.06579	1.177	1.02	0.1297	0.76	0.74	800	24	786	11	790	11	2
004-ZR62	0.232	127868	0.06572	1.182	1.44	0.1304	1.02	0.71	797	39	790	15	792	16	1
013-ZR08	0.417	113944	0.06529	1.179	1.07	0.1309	0.75	0.70	784	28	793	11	791	12	-1
006-ZR03	0.447	280983	0.06524	1.183	0.84	0.1315	0.63	0.75	782	18	797	9	793	9	-2
030-ZR22	0.254	74732	0.06582	1.194	1.16	0.1315	1.00	0.86	801	19	797	15	798	13	0
017-ZR73	0.093	117473	0.06504	1.180	1.47	0.1316	1.07	0.73	776	39	797	16	791	16	-3
010-ZR07	0.311	53495	0.06687	1.217	1.30	0.1320	1.01	0.78	834	30	799	15	808	14	4
046-ZR33	0.301	2984	0.06434	1.177	2.37	0.1327	1.40	0.59	753	78	803	21	790	26	-7
027-ZR80	0.140	103657	0.06994	1.414	1.79	0.1466	1.36	0.76	927	45	882	22	895	21	5
014-ZR70	0.529	81958	0.07513	1.687	1.79	0.1629	1.31	0.73	1072	47	973	24	1004	23	9
008-ZR66	0.670	111951	0.07200	1.650	1.63	0.1662	1.14	0.70	986	45	991	21	989	20	0
057-ZR42	0.342	127568	0.07174	1.645	1.17	0.1663	0.83	0.70	979	30	992	15	988	15	-1
069-ZR112	0.198	84147	0.07662	1.992	1.37	0.1885	1.00	0.73	1111	34	1113	20	1113	18	0

039-ZR29	0.367	84741	0.07722	2.072	0.94	0.1946	0.66	0.71	1127	22	1146	14	1140	13	-2
045-ZR93	0.240	67077	0.07844	2.066	1.66	0.1910	1.33	0.80	1158	37	1127	27	1138	23	3
049-ZR97	0.382	50406	0.08026	2.072	1.91	0.1873	1.36	0.71	1203	50	1106	28	1140	26	8
038-ZR28	0.025	264994	0.08084	2.381	0.84	0.2136	0.62	0.74	1217	17	1248	14	1237	12	-3
048-ZR96	0.281	148963	0.08197	2.253	1.71	0.1993	1.23	0.72	1245	44	1172	26	1198	24	6
068-ZR50	0.290	282107	0.08260	2.614	0.97	0.2295	0.82	0.85	1260	14	1332	20	1305	14	-6
044-ZR92	0.237	218231	0.08465	2.644	1.38	0.2265	1.10	0.80	1308	29	1316	26	1313	20	-1
058-ZR104	0.449	47695	0.08478	2.540	1.94	0.2172	1.48	0.76	1310	46	1267	34	1283	28	3
080-ZR121	0.770	80899	0.08586	2.667	1.76	0.2253	1.21	0.69	1335	47	1310	29	1319	26	2
079-ZR59	0.176	475645	0.08622	2.741	0.80	0.2306	0.61	0.76	1343	14	1337	15	1340	12	0
025-ZR78	0.510	72508	0.08653	2.696	1.50	0.2260	1.12	0.75	1350	35	1313	27	1327	22	3
009-ZR06	0.194	94429	0.08681	2.766	1.16	0.2311	0.82	0.71	1356	28	1340	20	1347	17	1
026-ZR18	0.270	90986	0.08728	2.890	1.28	0.2401	1.04	0.81	1367	25	1387	26	1379	19	-2
044-ZR31	0.030	882344	0.08730	2.990	0.75	0.2484	0.54	0.72	1367	14	1430	14	1405	11	-5
037-ZR88	0.201	58797	0.08760	2.750	2.20	0.2277	1.79	0.81	1374	47	1322	43	1342	33	4
049-ZR36	0.433	82328	0.08767	2.833	1.28	0.2344	0.91	0.71	1375	31	1357	22	1364	19	1
028-ZR20	0.637	154022	0.08925	2.918	0.85	0.2371	0.65	0.76	1409	15	1372	16	1387	13	3
058-ZR43	0.127	314464	0.09387	3.558	0.78	0.2749	0.59	0.76	1506	13	1566	16	1540	12	-4
047-ZR34	0.183	109724	0.09389	3.197	0.90	0.2469	0.67	0.74	1506	18	1422	17	1456	14	6
026-ZR79	0.236	148908	0.09448	3.476	1.33	0.2668	1.05	0.79	1518	27	1525	29	1522	21	0
054-ZR100	0.233	366773	0.09584	3.575	1.28	0.2705	0.97	0.76	1545	28	1543	27	1544	20	0
067-ZR110	0.079	298385	0.10912	4.610	1.23	0.3064	0.97	0.79	1785	24	1723	29	1751	20	3
033-ZR84	0.355	59345	0.11015	4.500	1.93	0.2963	1.45	0.75	1802	44	1673	43	1731	32	7
014-ZR09	0.583	2473	0.11222	4.885	0.97	0.3157	0.75	0.78	1836	18	1769	23	1800	16	4
060-ZR106	0.515	142606	0.11259	4.800	1.34	0.3092	0.96	0.72	1842	31	1737	29	1785	22	6
008-ZR05	0.508	65403	0.11323	5.300	1.35	0.3395	1.18	0.88	1852	19	1884	39	1869	23	-2
066-ZR48	0.222	285729	0.11328	5.340	0.89	0.3418	0.75	0.84	1853	12	1896	25	1875	15	-2
010-ZR68	0.329	120656	0.12024	5.752	1.72	0.3469	1.17	0.68	1960	43	1920	39	1939	29	2
019-ZR75	0.750	42850	0.12084	5.739	2.04	0.3444	1.47	0.72	1969	48	1908	48	1937	35	3
036-ZR87	0.443	91125	0.12123	5.864	1.85	0.3508	1.56	0.84	1974	33	1938	52	1956	32	2

027-ZR19	1.827	616321	0.12172	6.031	0.99	0.3593	0.80	0.80	1982	16	1979	27	1980	17	0
039-ZR90	0.851	56953	0.12204	5.774	1.75	0.3431	1.25	0.71	1986	41	1902	41	1942	30	4
050-ZR98	0.457	118130	0.12439	5.982	1.60	0.3487	1.13	0.71	2020	37	1929	38	1973	28	5
015-ZR10	0.682	255499	0.12751	6.577	0.88	0.3741	0.70	0.79	2064	14	2049	25	2056	16	1
080-ZR60	0.805	3267	0.12924	6.207	1.66	0.3483	1.24	0.75	2088	37	1927	41	2005	29	8
038-ZR89	0.415	82410	0.13285	6.635	1.69	0.3622	1.19	0.71	2136	39	1993	41	2064	30	7
077-ZR118	0.236	108705	0.13580	7.172	1.38	0.3830	0.98	0.71	2174	31	2090	35	2133	24	4
054-ZR39	0.385	254198	0.13822	7.740	0.88	0.4061	0.67	0.76	2205	15	2197	25	2201	16	0
018-ZR74	0.315	79152	0.14880	8.240	1.44	0.4016	1.16	0.80	2332	26	2176	43	2258	26	7
034-ZR85	0.595	172323	0.16169	10.130	1.65	0.4544	1.30	0.79	2473	32	2415	52	2447	30	2
059-ZR105	0.530	102827	0.17086	11.679	1.25	0.4957	0.95	0.76	2566	24	2595	40	2579	23	-1
006-ZR64	0.328	29815	0.17946	11.870	1.74	0.4797	1.61	0.92	2648	18	2526	67	2594	32	5
024-ZR77	0.400	152161	0.18435	11.739	1.34	0.4618	1.04	0.78	2692	25	2448	42	2584	25	9
047-ZR95	0.476	71013	0.18619	13.085	1.55	0.5096	1.17	0.75	2709	31	2655	51	2686	29	2

Appendix 2 – Lu-Hf LA-MC-ICP-MS isotopic data of the samples.

Sample: VSC22

Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _(T)	2σ	ε Hf(t)	1σ	Т _{DM} (Ga)
ZR02	0.282022	0.000029	0.000626	0.000013	930	0.282011	± 0.2	-6.57	± 0.1	1.70
ZR36	0.282400	0.000046	0.000497	0.000003	698	0.282393	± 0.0	1.74	± 0.5	1.18
ZR39	0.281740	0.000044	0.001174	0.000023	651	0.281725	± 0.7	-22.97	± 0.5	2.11
ZR48	0.282338	0.000040	0.001177	0.000034	631	0.282324	± 0.1	-2.24	± 0.4	1.28
ZR54	0.282415	0.000050	0.000702	0.000008	630	0.282407	± 0.0	0.67	± 0.6	1.16
ZR65	0.282206	0.000044	0.000741	0.000016	647	0.282197	± 0.2	-6.37	± 0.5	1.45
ZR55	0.282355	0.000049	0.000559	0.000004	669	0.282348	± 0.0	-0.55	± 0.6	1.24
ZR27	0.281997	0.000039	0.001324	0.000002	1535	0.281958	± 0.0	5.33	± 0.0	1.76
ZR21	0.282033	0.000030	0.000557	0.000002	1373	0.282018	± 0.0	3.75	± 0.1	1.68
ZR22	0.282152	0.000034	0.000338	0.000009	664	0.282148	± 0.3	-7.71	± 0.3	1.51
ZR19	0.282119	0.000047	0.001056	0.000011	1023	0.282099	± 0.1	-1.35	± 0.4	1.58
ZR67	0.282237	0.000047	0.001904	0.000050	759	0.282210	± 0.1	-3.39	± 0.5	1.45
ZR75	0.282367	0.282367	0.000871	0.000019	626	0.282357	± 1.2	-1.16	± 0.5	1.23
ZR79	0.282001	0.000039	0.000321	0.000003	1429	0.281992	± 0.1	4.12	± 0.1	1.71
ZR81	0.282181	0.000041	0.001385	0.000051	776	0.282160	± 0.2	-4.75	± 0.4	1.51
ZR115	0.282456	0.000130	0.001085	0.000085	634	0.282443	± 0.2	2.04	± 4.1	1.12
ZR110	0.281592	0.000040	0.001368	0.000027	2079	0.281538	± 0.1	2.93	± 0.4	2.32
ZR103	0.282042	0.000044	0.000724	0.000009	993	0.282029	± 0.2	-4.52	± 0.7	1.67
ZR127	0.281297	0.000041	0.000707	0.000006	971	0.281284	± 0.5	-31.41	± 0.6	2.68

Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _(T)	20	σ	ε Hf(t)		1σ	Т _{DM} (Ga)
ZR01	0.282468	0.000053	0.001318	0.000050	979	0.282444	± (0.5	9.87	±	0.5	1.11
ZR04	0.281868	0.000028	0.000704	0.000029	1202	0.282444	± (0.4	-6.05	±	0.0	1.91
ZR08	0.281569	0.000024	0.000995	0.000004	1859	0.282444	± (0.0	-2.30	±	0.4	2.33
ZR11	0.281474	0.000019	0.000673	0.000007	1891	0.282444	± (0.1	-4.53	±	0.5	2.44
ZR10	0.282129	0.000028	0.001523	0.000055	987	0.282444	± (0.1	-2.10	±	0.1	1.59
ZR14	0.281037	0.000020	0.001292	0.000010	2638	0.282444	± (0.1	-4.17	±	0.8	3.07
ZR12	0.282386	0.000028	0.001406	0.000058	1046	0.282444	± (0.8	8.34	±	0.0	1.22
ZR15	0.281989	0.000021	0.000831	0.000008	966	0.282444	± (0.3	-7.10	±	0.0	1.75
ZR07	0.282317	0.000023	0.001168	0.000018	1065	0.282444	± (0.4	6.51	±	0.0	1.31
ZR17	0.282307	0.000026	0.000625	0.000013	1011	0.282444	± (0.3	5.33	±	0.0	1.31
ZR18	0.282283	0.000028	0.001030	0.000033	1203	0.282444	± (0.4	8.43	±	0.0	1.35
ZR21	0.282447	0.000026	0.000836	0.000052	652	0.282444	± (0.2	2.23	±	0.2	1.12
ZR77	0.281474	0.000037	0.001030	0.000020	1885	0.282444	± (0.2	-5.15	±	0.2	2.46
ZR24	0.282689	0.000048	0.001832	0.000083	619	0.282444	± (0.6	9.70	±	0.6	0.81
ZR33	0.282498	0.000027	0.000681	0.000010	632	0.282444	± (0.1	3.67	±	0.2	1.05
ZR32	0.282208	0.000024	0.001029	0.000013	1094	0.282444	± (0.1	3.37	±	0.0	1.46
ZR37	0.281162	0.000037	0.000323	0.000005	2715	0.282444	± (0.1	3.82	±	0.5	2.83
ZR40	0.282570	0.000033	0.001099	0.000044	661	0.282444	± (0.4	6.66	±	0.6	0.96
ZR39	0.281413	0.000023	0.000568	0.000020	1968	0.282444	± (0.3	-4.83	±	0.9	2.51
ZR122	0.282171	0.000026	0.001733	0.000006	965	0.282444	± (0.0	-1.22	±	0.1	1.54
ZR118	0.282629	0.000031	0.001893	0.000027	667	0.282444	± (0.3	8.53	±	0.6	0.89

ZR107	0.281091	0.000027	0.001279	0.000015	2629	0.282444	± 0.0	-2.43	± 1.3	3.00
ZR102	0.281089	0.000022	0.000308	0.000005	2593	0.282444	± 0.0	-1.56	± 1.5	2.93
ZR98	0.282545	0.000027	0.000975	0.000011	609	0.282444	± 0.2	4.69	± 0.4	0.99
ZR90	0.281396	0.000032	0.000789	0.000002	1875	0.282444	± 0.2	-7.80	± 0.5	2.55
ZR89	0.282513	0.000024	0.001484	0.000017	786	0.282444	± 0.2	7.18	± 0.2	1.05
ZR91	0.282136	0.000027	0.000374	0.000006	1244	0.282444	± 0.2	4.68	± 0.1	1.53

<u></u>	<u> </u>									
Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _(T)	2σ	ε Hf(t)	1σ	Т ()
ZR21	0.281828	0.000034	0.001015	0.000010	990	0.281809	± 0.3	-12.38	± 0.2	1
ZR04	0.281088	0.000030	0.001077	0.000010	1924	0.281048	± 0.3	-18.04	± 0.3	2
ZR42	0.281771	0.000037	0.000874	0.000012	964	0.281755	± 0.7	-14.88	± 0.3	2
ZR88	0.281828	0.000036	0.001576	0.000012	1031	0.281797	± 0.3	-11.89	± 0.2	2
ZR87	0.281900	0.000037	0.000783	0.000032	1018	0.281884	± 0.5	-9.07	± 0.2	1
ZR85	0.282206	0.000038	0.000561	0.000021	646	0.282200	± 0.5	-6.29	± 0.4	1
ZR84	0.281146	0.000049	0.000871	0.000033	2949	0.281096	± 0.3	7.58	± 0.4	2
ZR94	0.282165	0.000046	0.000532	0.000031	967	0.282155	± 0.0	-0.62	± 0.4	1
ZR64	0.281931	0.000041	0.000863	0.000002	1332	0.281909	± 0.0	-1.07	± 0.2	1
ZR52	0.282543	0.000056	0.001313	0.000006	685	0.282526	± 0.1	6.17	± 0.7	1
ZR68	0.282323	0.000036	0.000907	0.000003	716	0.282311	± 0.0	-0.77	± 0.3	1
ZR70	0.282430	0.000035	0.000532	0.000001	634	0.282424	± 0.0	1.38	± 0.3	1
ZR60	0.282177	0.000046	0.001743	0.000059	633	0.282156	± 0.5	-8.14	± 0.5	1
ZR74	0.281683	0.000034	0.000370	0.000007	523	0.281679	± 0.9	-27.48	± 0.4	2
ZR55	0.282369	0.000052	0.001492	0.000021	629	0.282351	± 0.0	-1.32	± 0.7	1

										-
Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _(T)	2s	ε _{Hf(t)}	1s	Г _{DM} (Ga)
ZR02	0.282498	0.000055	0.001798	0.000049	689	0.282474	± 0.2	4.41	± 0.	7 1.08
ZR05	0.282195	0.000025	0.000042	0.000000	631	0.282194	± 0.1	-6.82	± 0.	2 1.44
ZR07	0.282546	0.000045	0.001101	0.000003	614	0.282533	± 0.1	4.81	± 0.	5 0.99
ZR15	0.282316	0.000034	0.000410	0.000001	694	0.282310	± 0.0	-1.30	± 0.	3 1.29
ZR16	0.281985	0.000037	0.000334	0.000003	614	0.281981	± 0.5	-14.75	± 0.	4 1.73
ZR17	0.282274	0.000041	0.001461	0.000034	639	0.282256	± 0.2	-4.45	± 0.	5 1.38
ZR92	0.282426	0.000028	0.000756	0.000002	654	0.282417	± 0.0	1.57	± 0.	2 1.15
ZR64	0.282330	0.000042	0.001194	0.000014	1005	0.282308	± 0.3	5.64	± 0.	3 1.29
ZR66	0.282310	0.000042	0.001796	0.000027	631	0.282289	± 0.1	-3.46	± 0.	5 1.34
ZR70	0.281319	0.000041	0.000495	0.000004	1973	0.281301	± 0.2	-7.95	± 0.	1 2.63
ZR60	0.282300	0.000040	0.000658	0.000003	607	0.282292	± 0.1	-3.89	± 0.	5 1.32
ZR27	0.280897	0.000054	0.000950	0.000039	2540	0.280850	± 0.6	-10.77	± 0.	2 3.23
ZR30	0.280907	0.000035	0.000352	0.000002	2613	0.280889	± 0.1	-7.70	± 0.	5 3.17
ZR55	0.282055	0.000028	0.000382	0.000014	778	0.282050	± 0.4	-8.64	± 0.	2 1.64
ZR37	0.282033	0.000053	0.001018	0.000007	610	0.282021	± 0.4	-13.42	± 0.	7 1.70
ZR48	0.282663	0.000041	0.002187	0.000026	636	0.282637	± 0.2	8.96	± 0.	5 0.85
ZR49	0.281627	0.000055	0.001520	0.000026	1890	0.281572	± 0.0	-0.22	± 0.	2 2.28
ZR52	0.281045	0.000035	0.000604	0.000008	2631	0.281015	± 0.0	-2.80	± 1.	1 3.01
ZR120	0.282049	0.000050	0.001093	0.000102	1046	0.282027	± 0.4	-3.38	± 0.	9 1.68
ZR115	0.281491	0.000050	0.001261	0.000009	1991	0.281443	± 0.1	-2.46	± 0.	0 2.45

ZR137	0.280795	0.000033	0.000327	0.000007	2876	0.280777	± 0.2	-5.51	± 1.4	3.31
ZR102	0.282045	0.000038	0.000882	0.000001	1529	0.282020	± 0.1	7.38	± 0.0	1.68

Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _(T)	2s	ε Hf(t)		1s	Т _{⊅м} (Ga)
ZR61	0.281973	0.000054	0.000946	0.000056	999	0.281955	± 0.6	-6.97	±	0.5	1.78
ZR63	0.282470	0.000037	0.001342	0.000041	723	0.282452	± 0.2	4.39	±	0.4	1.10
ZR67	0.282356	0.000039	0.001310	0.000014	1009	0.282331	± 0.3	6.56	±	0.3	1.26
ZR68	0.281998	0.000042	0.000845	0.000009	1085	0.281981	± 0.2	-4.12	±	0.3	1.74
ZR70	0.281908	0.000053	0.000800	0.000006	1464	0.281886	± 0.0	1.14	±	0.3	1.86
ZR04	0.282076	0.000030	0.000852	0.000028	1493	0.282052	± 0.3	7.68	±	0.1	1.63
ZR12	0.281178	0.000036	0.000504	0.000008	2051	0.281158	± 0.3	-11.22	±	0.3	2.82
ZR93	0.282423	0.000035	0.000809	0.000023	537	0.282414	± 0.1	-1.13	±	0.4	1.15
ZR87	0.282571	0.000066	0.001358	0.000053	705	0.282553	± 0.4	7.54	±	0.9	0.96
ZR85	0.281023	0.000035	0.001079	0.000013	2767	0.280966	± 0.0	-1.34	±	0.6	3.07
ZR94	0.282487	0.000038	0.000578	0.000008	635	0.282480	± 0.2	3.39	±	0.4	1.06
ZR84	0.282285	0.000039	0.000600	0.000003	493	0.282279	± 0.2	-6.92	±	0.5	1.34
ZR07	0.282509	0.000043	0.002716	0.000102	529	0.282482	± 0.1	1.07	±	0.5	1.09
ZR80	0.281214	0.000034	0.001475	0.000112	2593	0.281141	± 0.1	0.82	±	0.5	2.84
ZR10	0.282299	0.000035	0.000042	0.000003	551	0.282299	± 0.4	-4.90	±	0.4	1.30
ZR19	0.282477	0.000039	0.001386	0.000013	825	0.282455	± 0.2	6.79	±	0.3	1.10
ZR20	0.281950	0.000034	0.000618	0.000001	1076	0.281938	± 0.1	-5.86	±	0.3	1.79
ZR110	0.282373	0.000028	0.000858	0.000016	1088	0.282356	± 0.5	9.24	±	0.1	1.22
ZR23	0.281521	0.000033	0.001096	0.000009	2043	0.281478	± 0.0	-0.02	±	0.6	2.40
ZR24	0.282105	0.000024	0.000287	0.000003	569	0.282102	± 0.4	-11.48	±	0.4	1.57
ZR27	0.282448	0.000038	0.000297	0.000001	621	0.282444	± 0.1	1.82	±	0.8	1.10
ZR116	0.282206	0.000046	0.001348	0.000017	688	0.282189	± 0.2	-5.72	±	1.0	1.47
ZR31	0.282195	0.000032	0.000162	0.000005	563	0.282193	± 0.4	-8.38	±	0.7	1.44
ZR35	0.282541	0.000053	0.001215	0.000007	562	0.282528	± 0.1	3.47	±	1.4	1.00
ZR36	0.282765	0.000040	0.001913	0.000019	628	0.282742	± 0.5	12.53	±	0.9	0.70
ZR58	0.280611	0.000033	0.000781	0.000011	3288	0.280562	± 0.1	-3.42	±	1.8	3.59
ZR48	0.281773	0.000028	0.000018	0.000000	515	0.281773	± 1.1	-24.34	±	0.5	2.00
ZR135	0.281226	0.000051	0.000632	0.000031	2828	0.281192	± 0.5	8.12	±	0.7	2.77

¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _(T)	2s	ε Hf(t)	1s	Т _{DM} (Ga)
0.281536	0.000035	0.000782	0.000054	1985	0.281507	± 0.0	-0.34	± 0.2	2.36
0.281774	0.000043	0.001027	0.000018	1782	0.281740	± 0.1	3.25	± 0.0	2.05
0.282037	0.000046	0.000686	0.000007	1444	0.282018	± 0.1	5.35	± 0.2	1.68
0.281676	0.000035	0.000878	0.000007	1874	0.281645	± 0.0	2.00	± 0.2	2.18
0.282072	0.000034	0.000724	0.000011	1441	0.282052	± 0.2	6.52	± 0.0	1.63
0.281797	0.000047	0.001437	0.000039	1982	0.281743	± 0.3	7.99	± 0.0	2.04
0.282479	0.000046	0.001539	0.000055	1214	0.282444	± 0.9	15.20	± 0.3	1.10
0.282048	0.000039	0.000487	0.000001	1140	0.282038	± 0.0	-0.87	± 0.2	1.65
0.282212	0.000059	0.001907	0.000019	1215	0.282168	± 0.2	5.48	± 0.5	1.49
0.282202	0.000039	0.000699	0.000030	916	0.282190	± 0.0	-0.54	± 0.3	1.45
	¹⁷⁶ Hf/ ¹⁷⁷ Hf 0.281536 0.281774 0.282037 0.281676 0.282072 0.281797 0.282479 0.282048 0.282212 0.282202	176Hf/177Hf ±2SE 0.281536 0.000035 0.281774 0.000046 0.282037 0.000035 0.281676 0.000035 0.282072 0.000034 0.282072 0.000047 0.282072 0.000047 0.282072 0.000047 0.282072 0.000047 0.282074 0.000047 0.282075 0.000047 0.282076 0.000047 0.282077 0.000047 0.282078 0.000047 0.282048 0.000039 0.282012 0.000059 0.282020 0.000039	176±2SE1761/170.2815360.000350.0007820.2817740.000430.0010270.2820370.0000460.0008780.2816760.0000350.0008780.2820720.0000340.0007240.2820720.0000470.0014370.2824790.0000460.0015390.2820480.000390.0004870.2822120.0000590.0019070.2822020.0000390.000699	176Hf/177Hf±2SE176Lu/177Hf±2SE0.2815360.000350.0007820.000540.2817740.000430.010270.000180.2820370.000460.0008780.000070.2816760.000350.0007240.0000110.2820720.000340.0014370.000310.2821790.000460.0015390.0000510.2824480.000390.004870.0000110.2822120.000390.0019070.0001910.2822020.000390.0006990.00030	176Hf/177Hf±2SE176Lu/177Hf±2SEAge(Ma)0.2815360.000350.0007820.00005419850.2817740.000430.0010270.0001817820.2820370.000460.0006860.0000714440.2816760.000350.0008780.00001114410.2820720.000340.0007240.00001114410.2821790.000470.0014370.0003919820.2824790.000460.0015390.00005512140.2820480.000390.001870.00001111400.2822120.000390.0019070.00030916	176±2SE176±2SEAge(Ma)176Hf/177Hf(T)0.2815360.000350.0007820.0005419850.2815070.2817740.000430.0010270.0001817820.2817400.2820370.000460.0006860.0000714440.2820180.2816760.000350.000740.00001114410.2820520.2820720.000340.0007240.0003114410.2820520.2817970.000470.0014370.0003919820.2817430.2820480.000390.0015390.00005512140.2820380.2820420.000390.0019070.0001114400.2820380.2820220.000390.0019070.0003012150.2821680.2820220.000390.0006990.000309160.282190	176 Hf/177 Hf ±2SE Age(Ma) 176 Hf/177 Hf(T) 2s 0.281536 0.00035 0.000782 0.00054 1985 0.281507 ± 0.0 0.281774 0.00043 0.001027 0.00018 1782 0.281740 ± 0.1 0.282037 0.00046 0.000686 0.00007 1444 0.282018 ± 0.1 0.281676 0.00035 0.000724 0.00007 1874 0.282052 ± 0.2 0.282072 0.00034 0.000724 0.00011 1441 0.282052 ± 0.2 0.282072 0.00047 0.001437 0.00039 1982 0.281743 ± 0.3 0.282079 0.00046 0.001539 0.00055 1214 0.282044 ± 0.3 0.282048 0.00039 0.001437 0.00001 1140 0.282038 ± 0.0 0.282048 0.00039 0.001907 0.00019 1215 0.282168 ± 0.2	176 Hf/177 Hf±2SEAge(Ma)176 Hf/177 Hf(T)2sεHf(t)0.2815360.000350.0007820.0005419850.281507±0.0-0.340.2817740.000430.0010270.0001817820.281740±0.13.250.2820370.000460.0006860.0000714440.282018±0.15.350.2816760.000350.0007820.0000718740.281645±0.02.000.2820720.000340.0007240.0001114410.282052±0.26.520.2817970.000470.0014370.0003919820.281743±0.37.990.2820480.000390.0014370.00005512140.282038±0.0-0.870.2820480.000390.0019070.0001911400.282038±0.0-0.870.2820220.000390.0019070.000309160.282108±0.0-0.54	176 Hf/177 Hf±2SEAge(Ma)176 Hf/177 Hf(T)2sEHf(t)1s0.2815360.000350.0007820.0005419850.281507±0.0-0.34±0.20.2817740.000430.0010270.0001817820.281740±0.13.25±0.00.2820370.000350.0008660.0000714440.282018±0.15.35±0.20.2816760.000350.0008780.0000718740.281645±0.02.00±0.20.2820720.000340.0007240.0001114410.282052±0.26.52±0.00.2817970.000470.0014370.0003919820.281743±0.37.99±0.00.2820480.000390.0004870.0000111400.282038±0.0-0.87±0.20.2820480.000390.0019070.0001912150.282168±0.25.48±0.50.2820200.000390.0006990.000309160.282190±0.0-0.54±0.3

ZR102	0.283624	0.000169	0.002173	0.000114	666	0.283597	± 3.1	43.63	± 2.7	-0.55
ZR87	0.282293	0.000032	0.001355	0.000019	1180	0.282263	± 0.3	8.01	± 0.1	1.35
ZR88	0.282189	0.000098	0.001642	0.000078	1203	0.282152	± 0.3	4.61	± 1.2	1.51
ZR89	0.282225	0.000038	0.000916	0.000017	1181	0.282204	± 0.2	5.97	± 0.2	1.43
ZR90	0.281637	0.000048	0.001426	0.000013	1781	0.281589	± 0.0	-2.14	± 0.1	2.26
ZR91	0.282241	0.000047	0.000737	0.000003	936	0.282228	± 0.0	1.24	± 0.4	1.40
ZR92	0.282549	0.000089	0.001887	0.000128	1139	0.282509	± 1.4	15.81	± 2.2	1.01
ZR98	0.282172	0.000029	0.000858	0.000005	1174	0.282153	± 0.1	3.99	± 0.0	1.50
ZR125	0.282136	0.000061	0.002868	0.000080	1531	0.282053	± 0.3	8.58	± 0.8	1.64
ZR80	0.281717	0.000042	0.000597	0.000089	1766	0.281697	± 0.2	1.34	± 0.0	2.11
ZR116	0.282115	0.000044	0.001176	0.000012	1444	0.282083	± 0.2	7.69	± 0.3	1.59

Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	$^{176}Hf/^{177}Hf_{(T)}$	2s	ε _{Hf(t)}	1	Ls	Т _{DM} (Ga)
ZR07	0.282200	0.000030	0.001056	0.000007	1195	0.282176	± 0.1	5.29	±	0.0	1.47
ZR12	0.281733	0.000040	0.002274	0.000009	1957	0.281649	± 0.1	4.05	±	0.1	2.18
ZR18	0.282220	0.000046	0.001715	0.000010	1529	0.282171	± 0.2	12.72	±	0.2	1.47
ZR64	0.282068	0.000038	0.001165	0.000005	1315	0.282039	± 0.1	3.16	±	0.1	1.66
ZR66	0.282050	0.000035	0.000461	0.000011	1230	0.282039	± 0.1	1.22	±	0.1	1.65
ZR67	0.282482	0.000044	0.001113	0.000032	1026	0.282461	± 1.0	11.55	±	0.3	1.08
ZR34	0.282398	0.000033	0.001633	0.000004	1176	0.282362	± 0.2	11.44	±	0.1	1.21
ZR33	0.282011	0.000042	0.001189	0.000015	1335	0.281981	± 0.0	1.56	±	0.2	1.74
ZR36	0.282029	0.000050	0.001007	0.000007	1539	0.282000	± 0.1	6.89	±	0.2	1.70
ZR29	0.281694	0.000047	0.002267	0.000042	1949	0.281610	± 0.1	2.48	±	0.0	2.23
ZR24	0.282170	0.000041	0.001016	0.000013	1223	0.282146	± 0.2	4.87	±	0.2	1.51
ZR22	0.281987	0.000053	0.000752	0.000005	1195	0.281970	± 0.1	-2.00	±	0.4	1.75
ZR25	0.282123	0.000060	0.001906	0.000064	1530	0.282067	± 0.4	9.09	±	0.4	1.61
ZR28	0.281458	0.000045	0.000665	0.000010	2093	0.281431	± 0.0	-0.54	±	0.1	2.46
ZR73	0.281756	0.000037	0.000775	0.000002	1758	0.281730	± 0.1	2.36	±	0.1	2.06
ZR87	0.281784	0.000047	0.001364	0.000013	1753	0.281738	± 0.1	2.52	±	0.1	2.06
ZR86	0.282208	0.000042	0.000529	0.000011	973	0.282198	± 0.1	1.02	±	0.7	1.44
ZR50	0.282246	0.000046	0.000769	0.000010	957	0.282232	± 0.1	1.86	±	0.8	1.40
ZR58	0.281882	0.000043	0.001118	0.000014	1580	0.281849	± 0.1	2.47	±	0.2	1.91
ZR56	0.282237	0.000034	0.000561	0.000002	1216	0.282224	± 0.2	7.47	±	0.2	1.40
ZR55	0.282051	0.000037	0.000652	0.000003	1228	0.282036	± 0.0	1.07	±	0.3	1.66
ZR105	0.281610	0.000043	0.001092	0.000033	1766	0.281573	± 0.2	-3.05	±	0.0	2.28
ZR98	0.281094	0.000033	0.000997	0.000007	2670	0.281043	± 0.0	-0.87	±	1.2	2.97
ZR96	0.282120	0.000028	0.000142	0.000001	1005	0.282118	± 0.1	-1.10	±	0.1	1.54
ZR110	0.282049	0.000042	0.000839	0.000007	1582	0.282024	± 0.3	8.72	±	0.1	1.67
ZR111	0.282067	0.000062	0.001170	0.000031	1527	0.282033	± 0.4	7.79	±	0.9	1.66

<u>Sample</u>	: VSC58									
Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	$^{176}\text{Hf}/^{177}\text{Hf}_{(T)}$	2s	ε _{Hf(t)}	1s	Т _{⊅м} (Ga)
ZR04	0.281779	0.000025	0.000869	0.000016	1735	0.281751	± 0.1	2.55	± 0.3	2.04
ZR07	0.282408	0.000057	0.003585	0.000033	1447	0.282310	± 0.3	15.79	± 0.4	1.27
ZR08	0.282124	0.000037	0.000745	0.000002	1155	0.282107	± 0.0	1.95	± 0.2	1.56
ZR09	0.281772	0.000037	0.001548	0.000033	1522	0.281728	± 0.1	-3.16	± 0.0	2.08

ZR10	0.282235	0.000041	0.000583	0.000015	915	0.282225	± 0.0	0.68	± 0.3	1.40
ZR14	0.282031	0.000044	0.000933	0.000024	1075	0.282012	± 0.2	-3.24	± 0.3	1.70
ZR32	0.281740	0.000032	0.001516	0.000048	1973	0.281683	± 0.3	5.63	± 0.3	2.13
ZR36	0.284506	0.000237	0.010372	0.000588	1177	0.284276	± 5.6	79.32	± 3.7	-2.42
ZR28	0.282171	0.000036	0.001022	0.000115	1198	0.282148	± 0.6	4.35	± 0.1	1.51
ZR39	0.282224	0.000048	0.000976	0.000035	1271	0.282201	± 0.4	7.89	± 0.3	1.43

Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _(T)	2s	ε Hf(t)		1s	
ZR95	0.280892	0.000021	0.000209	0.000005	2709	0.280881	± 0.2	-5.72	±	0.8	
ZR98	0.281258	0.000029	0.000704	0.000010	2020	0.281231	± 0.3	-9.33	±	0.4	
ZR100	0.281837	0.000026	0.000797	0.000026	1545	0.281814	± 0.0	0.42	±	0.2	
ZR104	0.281865	0.000035	0.000820	0.000009	1310	0.281845	± 0.2	-3.84	±	0.1	
ZR105	0.281179	0.000024	0.000778	0.000006	2566	0.281141	± 0.0	0.18	±	0.7	
ZR92	0.282208	0.000033	0.001843	0.000042	1308	0.282162	± 0.3	7.36	±	0.0	
ZR90	0.281647	0.000037	0.001344	0.000012	1986	0.281596	± 0.1	2.86	±	0.2	
ZR79	0.281907	0.000039	0.001483	0.000103	1518	0.281865	± 0.1	1.61	±	0.0	
ZR87	0.281492	0.000028	0.002092	0.000005	1974	0.281413	± 0.1	-3.90	±	0.4	
ZR73	0.282129	0.000023	0.001548	0.000011	797	0.282105	± 0.2	-6.23	±	0.1	
ZR69	0.282444	0.000026	0.001598	0.000007	598	0.282426	± 0.0	0.64	±	0.2	
ZR68	0.281594	0.000046	0.001725	0.000141	1960	0.281530	± 0.0	-0.11	±	0.0	
ZR63	0.282275	0.000062	0.001572	0.000119	645	0.282256	± 0.4	-4.32	±	0.8	
ZR62	0.282092	0.000032	0.001718	0.000032	790	0.282066	± 0.3	-7.77	±	0.2	
ZR58	0.282307	0.000030	0.001435	0.000022	711	0.282288	± 0.1	-1.72	±	0.2	
ZR59	0.282009	0.000027	0.000731	0.000003	1343	0.281991	± 0.0	2.09	±	0.1	
ZR61	0.282505	0.000032	0.001678	0.000024	626	0.282486	± 0.1	3.39	±	0.3	
ZR54	0.282526	0.000041	0.001393	0.000015	617	0.282510	± 0.1	4.04	±	0.9	
ZR53	0.282268	0.000033	0.001369	0.000010	627	0.282252	± 0.1	-4.87	±	0.6	
ZR56	0.282006	0.000034	0.000537	0.000019	645	0.281999	± 0.7	-13.42	±	0.7	
ZR31	0.282134	0.000024	0.002986	0.000004	1367	0.282056	± 0.1	4.97	±	0.3	
ZR38	0.282252	0.000038	0.001952	0.000090	618	0.282230	± 0.3	-5.84	±	0.8	
ZR43	0.282010	0.000023	0.001380	0.001380	1506	0.281971	± 5.2	5.11	±	0.4	
ZR44	0.282453	0.000031	0.001310	0.000021	643	0.282437	± 0.1	2.05	±	0.6	
ZR46	0.282572	0.000042	0.001175	0.000055	673	0.282558	± 0.4	6.99	±	0.9	
ZR48	0.281393	0.000033	0.000037	0.000000	1853	0.281392	± 0.1	-7.47	±	0.4	
ZR01	0.282364	0.000030	0.000825	0.000022	668	0.282353	± 0.0	-0.37	±	0.5	
ZR03	0.282005	0.000035	0.000964	0.000006	797	0.281990	± 0.2	-10.32	±	0.6	
ZR04	0.282081	0.000036	0.002092	0.000121	786	0.282050	± 0.6	-8.43	±	0.6	

Sample:	: VSC81									
Grain/Spot	¹⁷⁶ Hf/ ¹⁷⁷ Hf	±2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf	±2SE	Age(Ma)	¹⁷⁶ Hf/ ¹⁷⁷ Hf _(T)	2s	ε Hf(t)	1s	Т _{DM} (Ga)
ZR61	0.282332	0.000033	0.001762	0.000023	597	0.282312	± 0.1	-3.40	± 0.3	1.31
ZR13	0.282050	0.000030	0.000436	0.000011	635	0.282045	± 0.5	-12.03	± 0.3	1.65
ZR23	0.282122	0.000034	0.000305	0.000012	633	0.282118	± 0.6	-9.46	± 0.3	1.55
ZR25	0.282182	0.000029	0.000479	0.000009	639	0.282176	± 0.3	-7.27	± 0.2	1.47
ZR31	0.281791	0.000051	0.001051	0.000027	1836	0.281754	± 0.2	5.02	± 0.1	2.03
ZR33	0.282311	0.000051	0.001190	0.000035	632	0.282297	± 0.1	-3.18	± 0.6	1.32

ZR96	0.280890	0.000034	0.001114	0.000005	2586	0.280835	± 0.1	-10.24	±	0.5	3.25
ZR42	0.281506	0.000030	0.000696	0.000008	2159	0.281477	± 0.0	2.63	±	0.4	2.40
ZR43	0.282593	0.000069	0.001571	0.000072	635	0.282574	± 0.4	6.71	±	0.9	0.94
ZR51	0.282246	0.000043	0.001183	0.000027	595	0.282232	± 0.2	-6.28	±	0.5	1.41
ZR45	0.282344	0.000043	0.001543	0.000025	645	0.282325	± 0.1	-1.86	±	0.5	1.29
ZR89	0.282311	0.000038	0.003292	0.000032	792	0.282262	± 0.0	-0.81	±	0.3	1.40
ZR87	0.282130	0.000035	0.001551	0.000040	635	0.282111	± 0.5	-9.67	±	0.4	1.59
ZR82	0.282135	0.000041	0.000871	0.000033	634	0.282125	± 0.7	-9.21	±	0.5	1.55
ZR100	0.282069	0.000037	0.000902	0.000007	1438	0.282045	± 0.1	6.16	±	0.0	1.64
ZR102	0.281361	0.000034	0.000665	0.000002	2504	0.281329	± 0.1	5.39	±	0.5	2.59
ZR37	0.282189	0.000044	0.001010	0.000007	631	0.282177	± 0.2	-7.43	±	0.5	1.48
ZR39	0.280939	0.000034	0.000408	0.000003	3015	0.280915	± 0.0	2.71	±	1.5	3.13
ZR40	0.282232	0.000037	0.001158	0.000039	632	0.282218	± 0.3	-5.95	±	0.8	1.43
ZR120	0.282480	0.000040	0.000872	0.000029	641	0.282469	± 0.2	3.13	±	0.9	1.08

5. CONCLUSÕES

As idades máximas de deposição produzidas pelos resultados das análises U-Pb em zircão das amostras estudadas permitem estimar que a sedimentação final das unidades metamorfizadas da Faixa Paraguai ocorreu a c. de 510 Ma.

A Faixa Paraguai não teve seu desenvolvimento relacionado diretamente ao encurtamento que produziu os orógenos brasilianos (~620 Ma). Estes terrenos atuaram como aréas-fonte para algumas unidades da Faixa Paraguai, tornando-se as principais áreas-fontes no final do Ediacarano para unidades do setor meridional da faixa.

Rochas da Sequência Metassedimentar Rio Bacuri têm protólito basáltico, com idades modelo tonianas e valores ε_{Nd} positivos, indicando sua natureza juvenil. Idades isocrônicas destas rochas podem indicar sua relação com a abertura ou convergência do oceâno Clymene.

As rochas metassedimentares do Grupo Cuiabá podem ser divididas em duas sequências:

i – Sequência de margem passiva do Cráton Amazônico, com idade deposicional máxima em c. de 900 Ma, ocorrendo sempre mais próximas ao domínio externo do orógeno. Esta porém necessita de definição de sua idade deposicional mínima, ou idade da diagênese, para uma melhor definição de seu ambiente deposicional.

ii - Sequência de margem convergente, com idade deposicional máxima em cerca de 620 Ma. A sequência mais jovem está exposta nos domínios do Grupo Cuiabá mais próximos do limite com a Bacia do Paraná, nos setores mais internos do orógeno, onde ocorrem as intrusões graníticas e o Lineamento Transbrasiliano. Dados disponíveis de amostras do Grupo Cuiabá no setor setentrional indicam que a deposição das unidades em margem convergente pode ter sido iniciada no Toniano.

 Unidades mapeadas como Grupo Cuiabá no setor meridional podem na verdade representar unidades situadas mais acima na coluna estratigráfica, representando a deposição em bacia de antepaís cambriana, que registram o evento metamórfico regional na fácies xisto-verde, corroborando as idades metamórficas disponíveis para as rochas metassedimentares da Faixa Paraguai de 528±36 Ma.

 Os eventos orogênicos finais que modelaram Gondwana ocidental ocorreram no Cambriano, estando registrados na sedimentação e magmatismo nas faixas Araguaia e Paraguai no centro do Brasil, com idades correlatas na orogênese Pampeana, na Argentina. Tais dados reforçam a sugestão do fechamento do Oceano Clymene, no limite Ediacarano-Cambriano, edificando o último cinturão orogênico que amalgamou o Gondwana Ocidental a oeste do Arco Magmático de Goiás, Bloco Paranapanema e Cráton Rio de la Plata.

6. REFERÊNCIAS DA TESE

- Abreu F.A.M., 1978. Estratigrafia e evolução estrutural do segmento setentrional da Faixa de Dobramentos Paraguai-Araguaia. Dissertação de Mestrado. Centro de Geociências, Universidade Federal do Pará, Belém, 90.
- Albarède F., Telouk P., Blichert-Toft J., Boyet M., Agranier A., Nelson B., 2004. Precise and accurate isotopic measurements using multiple collector ICPMS. Geochimica et Cosmochimica Acta 68, 2725-2744.
- Almeida F.F.M., 1945. Geologia do Sudoeste mato-grossense. Boletim da Divisão de Geologia e Mineralogia, Departamento Nacional de Produção Mineral-DNPM, 116, 1-118.
- Almeida F.F.M., 1964. Geologia do Centro-Oeste Matogrossense. Rio de Janeiro, DNPM 7 DGM, 137. (Boletim 215).
- Almeida F.F.M., 1965a. Geologia da Serra da Bodoquena (Mato Grosso). Rio de Janeiro, DNPM/DGM, 96. (Boletim 219).
- Almeida F.F.M., 1965b. Geossinclíneo Paraguai. In: Semana de Debates Geológicos, 1, Porto Alegre, Centro Acadêmico dos Estudantes de Geologia, Universidade Federal do Rio Grande do Sul, Atas, 87-101.
- Almeida F.F.M., 1984. Província Tocantins, setor sudoeste. In: Almeida, F.F.M. de; Hasui, Y. (Coord.). O Pré-Cambriano do Brasil. São Paulo, Edgard Blücher, 265-281.
- Almeida F.F.M., Hasui Y., Brito Neves B.B., Fuck R.A., 1977. Províncias Estruturais Brasileiras.VIII Simpósio de Geologia do Nordeste, Campina Grande, Atas, 363-391.
- Almeida M.E., Fraga L.M.B., Macambira M.J.B., 1997. New geochronological data of calc-alkaline granitoids of Roraima State, Brazil. South American Symposium on Isotope Geology. Extended Abstracts, 34-35.
- Almeida R. P., Janikian L., Fragoso-Cesar A. R. S., and Fambrini G. L., 2010. The Ediacaran to Cambrian Rift System of Southeastern South America: Tectonic Implications: The Journal of Geology, 118, 145-161. (Doi: http://dx.doi.org/10.1086/649817)
- Alvarega C.J.S., Trompette R., 1993. Evolução Tectônica Brasiliana da Faixa Paraguai: a estruturação da região de Cuiabá. Revista Brasileira de Geociências, 23, 18-30.
- Alvarenga C. J. S., Saes G. S.,1992. Estratigrafia e sedimentologia do Proterozóico Médio e Superior da região sudeste do Cráton Amazônico. Revista Brasileira de Geociências, São Paulo, 22, 493-499.
- Alvarenga C.J.S. & trompette R., 1992. Glacial influenced sedimentation in the later Proterozoic of the Paraguay belt (Mato Grosso, Brazil). Palaeogeogr. Palaeoclimatol. Palaeoecol, 92, 85-105.
- Alvarenga C.J.S., 1988. Turbiditos e a glaciação do final do Proterozóico Superior no Cinturão Paraguai, Mato Grosso. Revista Brasileira de Geociências, São Paulo, 18, 323-327.

- Alvarenga C.J.S., 1990. Phénomènes sédimentaires, estructuraux et circulation de fluides developpés à la transition chaine-craton: exemple de la chaine Paraguai d'age protérozoique supérieur, Mato Grosso, Brésil. Tese Doutorado – Faculté des Sciences et Techniques de St. Jérôme, Universithé d'Aix-Marseille II, Marseille.
- Alvarenga C.J.S., Figueiredo M.F., Babinski M. Pinho F.E.C., 2007. Glacial diamictites of Serra Azul Formation (Ediacaran, Paraguay belt):Eividence of the Gaskier glacial event in Brazil. Journal of South American Earth Science, 23, 236-241.
- Alvarenga C.J.S., Moura C.A.V., Gorayeb S.S.G., Abreu F.A.M., 2000. Paraguay and Araguaia Belts. In: Cordani U.S., Milani E.J., Thomas Filho A., Campos D.A. Tectônic Evolution of South América, Rio de Janeiro, 183-193.
- Amaral W. S., Santos T. J. S., Wernick E., Matteini M., Dantas E. L., and Moreto C. P. N., 2010.
 U-Pb, Lu-Hf and Sm-Nd geochronology of rocks from the Forquilha Eclogite Zone, Ceara´
 Central Domain, Borborema Province, NE-Brazil: Brasilia, VII SSAGI South American
 Symposium on Isotope Geology.
- Amelin Y., Lee D-C., Halliday A. N., 2000. Early-Middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains. Geochim. Cosmochim. Acta 64, 4205-4225.
- Arcanjo S.H.S., Moura C.A.V., 2000. Geocronologia Pb-Pb em Zircão (Método de Evaporação de Pb) das rochas do embasamento do setor meridional do Cinturão Araguaia - região de Paraíso do Tocantins (TO). Revista Brasileira de Geociências, 30, 665-670.
- Arcanjo S.H.S., Moura C.A.V., Abreu F.A.M., Gorayeb P.S.S., 2000. Rio do Coco Group: a 2.6 exotic terrain in the paleoproterozoic Tocantins Shear Belt, Central Brazil. In: SBG, International Geological Congress, Anais, 31. 1 CD-Rom.
- Assumpção M., and Sacek V., 2013. Intra-plate seismicity and flexural stresses in central Brazil. Geophysical Research Letters, 40, 487- 491.
- Attoh K., 1998. High-pressure granulite facies metamorphism in the Pan-African Dahomeyide orogen, West Africa: The Journal of Geology, 106, 236-246. (Doi:http://dx.doi.org/10.1086/516019)
- Babinski M., Boggiani P.C., Fanning C.M., Fairchild T.R., Simon C.M., Sial A.N., 2008. U–Pb SHRIMP Geochronology and Isotope Chemostratigraphy (C, O, SR) of the Tamengo Formation, Southern Paraguay Belt, Brazil. Short Paper Presented in the VI South American Symposium on Isotope Geology, Bariloche, Argentina. PDF file available in CD-ROM.
- Babinski M., Boggiani P.C., Trindade R.I.F., Fanning C.M., 2013. Detrital zircon ages and geochronological constraints on the Neoproterozoic Puga diamictite and associated BIFs in the southern Paraguay Belt, Brazil. Gondwana, 23, 988–997.

- Babinski, M.; Figueiredo, M. F.; Fanning, M. . U-Pb SHRIMP geochronological constraints on Puga e Serra Azul glacial diamictites, Northern Paraguay belt. In: South American Symposium on Isotope Geology, 2010, Brasilia, Brazil. Short Papers, 2010.
- Babinski, M.; Figueiredo, M. F.; Trindade, R. I. F.; FANNING, M. Detrital zircon geochronology of the glacial deposits from the Northern Paraguay belt, Brazil: Paleogeographic implications.. In: Gondwana 14, 2011, Buzios, RJ. Abstracts, 2011. v. 1. p. 47-47.
- Babinski M., McGee B., Tokashiki C.C., Tassinari C.C.G., Saes G.S., Pinho F.E.C., 2018. Comparing two arms of an orogenic belt during Gondwana amalgamation: Age and provenance of the Cuiabá Group, northern Paraguay Belt, Brazil. Journal of South American Earth Sciences. In Press. (Doi: 10.1016/j.james.2018.04.009.)
- Bandeira J., McGee B., Nogueira A.C.R., Collins A.S., Trindade R., 2012. Sedimentological and provenance response to Cambrian closure of the Clymene Ocean: the upper Alto Paraguay Group, Paraguay belt, Brazil. Gondwana, 21, 324-340.
- Barros G.S., Gorayeb P.S.S., Moura C.A.V., Nascimento R.S., 2010. Petrografia e Geocronologia dos Escapolita Metagranitos e Anfibolitos do Cinturão Araguaia na Região de Xambioá-Araguanã. In: SBG, Congresso Brasileiro de Geologia, Anais, 45.
- Batalha R.S., 2016. Estudo de Minerais Pesados, Análise Morfológica e Datação U-Pb por ICPMS-LA de Zircão Detrítico - Proveniência dos Metassedimentos do Grupo Cuiabá, Faixa Paraguai Norte-MT. Dissertation master, University Federal of Mato Grosso, Cuiabá.
- Blichert-Toft J, Albarede F., 1997. The Lu–Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle–Crust System. Earth and Planetary Science Letters, 243-258.
- Boggiani P. C., 1990. Ambientes de sedimentação do Grupo Corumbá na região central da Serra da Bodoquena, Mato Grosso do Sul. Dissertation master, University of São Paulo, São Paulo.
- Boggiani P. C., 1997. Análise Estratigráfica da Bacia Corumbá (Neoproterozóico) Mato Grosso do Sul. Doctoral Thesis. University of São Paulo, São Paulo.
- Boggiani P.C., Gaucher C., Sial A.N., Babinski M., Simona C., Riccomini C., Ferreira V.P., Fairchild T.R., 2010. Chemostratigraphy of the Tamengo Formation (Corumba Group, Brazil): contribution to the calibration of the Ediacaran carbon-isotope curve. Precambrian Research, 182, 382-401.
- Bologna M. S., Nunes, H. O., Padilha A. L., Vitorello I., and Pádua M. B., 2013. Anomalous electrical structure in the northwestern Paraná Basin, Brazil, observed with broadband magnetotellurics. Journal of South American Earth Sciences, 42, 74–82.
- Bologna M.S., Padilha A.L., Vitorello L. Pádua, M.B., 2011. Signatures od continental collisions and magmatic activity in central Brazil as indicated by a magnetotellutic profile across distinct provinces. Precambrian Research, 185, 55-64.

- Caby R., 1989. Precambrian terranes of Benin Nigeria and Northeast Brazil and the Late Proterozoic South Atlantic fit: Geological Society of America Special Papers, 230, 145-158. (Doi: http://dx.doi.org/10.1130/SPE230-p145)
- Caby R., 1994. Precambrian coesite from northern Mali: first record and implications for plate tectonics in the Trans-Saharan segment of the Pan-African belt: European Journal of Mineralogy, 6, 235 244.
- Campanha G.A.C., Boggiani P.C., Sallun Filho W., Sá, F.S., Zuquim M.P.S., Piacentini T., 2011. The Paraguay Fold Belt in the Serra da Bodoquena and Miranda River Depression, Mato Grosso do Sul. Revista do Instituto de Geociências 11, 79-96.
- Castelnau F., 1850. Expédition dans les parties centrales de l'Amerique du Sud, de Rio de Janeiro a Lima, et de Lima ao Para. 15 vol. Em 7 partes. Chez p. Bertrand, Libraire-éditeur. Paris.
- Castro N. A., Ganade de Araujo C. E., Basei M. A. S., Osako L. S., Nutman A. A., Liu D., 2012.
 Ordovician A-type granitoid magmatism on the Ceara´ Central Domain, Borborema Province, NE-Brazil: Journal of South American Earth Sciences, 36, 18–31. (Doi:http://dx.doi.org/10.1016/j.jsames. 2011.11.007)
- Cawood P.A., Hawkesworth C.J., Dhuime B., 2012. Detrital zircon record and tectonic setting. Geology, 40, 875-878.
- Cawood P.A., McCausland P.J.A. Dunning G.R., 2001. Opening lapetus: constraints from the Laurentia margin in Newfoundland. Geol. Soc. Am. Bull., 113, 443–453.
- Cawood P.A., Nemchin A.A., Freeman, M., Sircombe, K., 2003. Linking source and sedimentary basin: detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth and Planetary Science Letters 210, 259– 268.
- Cawood P.A., Nemchin A.A., Strachan R., 2007. Provenance record of Laurentian passivemargin strata in the northern Caledonides: implications for paleodrainage and paleogeography. Geological Society of America Bulletin 119, 993–1003.
- Cherniak D. J, Hanchar J. M, Watson E. B., 1997a. Diffusion of tetravalent cations in zircon. Contrib.Mineral.Petrol. 127, 383-390.
- Cherniak D. J. and Watson E. B., 2000. Pb diffusion in Zircon. Chem. Geol. 172, 5-24.
- Chu N.C., Taylor R.N., Chavagnac V., Nesbitt R.W., Boella R.M., Milton J.A., German C.R., Bayon G., Burton K., 2002. Hf isotope ratio analysis using multi-collector inductively coupled plasma mass spectrometry: an evaluation of isobaric interference corrections. Journal of Analytical Atomic Spectrometry 17, 1567–1574.
- Collins A.S., Kroner A., Fitzsimons I.C.W., Razakamanana T., 2003. Detrital footprint of the Mozambique ocean: U–Pb SHRIMP and Pb evaporation zircon geochronology of metasedimentary gneisses in eastern Madagascar. Tectonophysics 375, 77-99.

- Collins A.S., Pisarevisk, S.A., 2005. Amalgamating eastern Gondwana: The Evolution of the Circum-Indian Orogens. Earth-Science Reviews 71, 229-270. (Doi: 10.1016/jearscirev.2005.02.004)
- Cordani U. G., Pimentel M. M., De Araujo C. E., Fuck R. A., 2013b. The significance of the Transbrasiliano-Kandi tectonic corridor for the amalgamation of West Gondwana. Brazilian Journal of Geology. 43, 583-597. (Doi: 10.5327/Z2317-48892013000300012)
- Cordani U. G., Pimentel M. M., De Araujo, C. E., Basei M. a. S., Fuck R. A., Girardi V. A. V., 2013. Was there na Ediacaran Clymene Ocean in central South America?. American Journal of Science, 313, 517-539.
- Cordani U. G., Teixeira W., D'Agrella-Filho M. S., Trindade R. I., 2009. The position of the Amazonian Craton in supercontinentes. Gondwana Research, 15, 396–407.
- Cordani U.G.; Pimental M.M.; Araújo C.E.G.; Basei M.A.S.; Fuck R.A.; Girardi V.A.V., 2014. Reply to the Comment by E. Tohver R. Trindade on "Was there a Clymene Ocean in Central South America? 313, 517-539." American Journal of Science 314, 814-819. (Doi:10.2475/03.2014.04)
- Curt J.B., Vidott R.M., Fuck R.A., Blakel R.J., 2014. The tectonic evolution of the Transbrasiliano Lineament in northern Paraná Basin, Brazil, as inferred from aeromagnetic data. J. Geophys. Res. 119, 1544–1562. (Doi: http://dx.doi.org/10.1002/2013JB010593)
- D'Agrella-Filho M.S., Babinski M., Trindade R.I.F., Van Schmus W.R. and Ernesto, M., 2000. Simultaneous remagnetization and U–Pb isotope resetting in Neoproterozoic carbonates of the Sao Francisco craton, Brazil. Precambrian Research, 99, 179–196.
- D'agrella Filho M.S., Trindade R.I.F., Siqueira R., Ponte-Neto C.F., Pacca I.I.G., 1998. Paleomagnetic Constraints on the Rodinia Supercontinent: Implications for tis Neoproterozoic Break-up and the formation of Gondwana. International Geology Review, 40, 171-188.
- Dall'Agnol R., Teixeira N.P., Macambira J.B., Kotschoubey B., Gorayeb P.S.S., Santos M.D. 1988. Geologia da Folha SC-22. Tocantins. Rio de Janeiro, DNPM, Projeto RADAMBRASIL, 196.
- Dantas E. L.; Martinelli C. C., 2003. Nd isotopes from the Araés Metavocano-sedimentary sequence in theParaguay Belt, Nova Xavantina, Mato Grosso, Central Brazil. In: South American Symposium On Isotope Geology, Salvador. Short Papers. Salvador: CBPM/IRD,1, 168-169.
- Dantas E.L., Alvarenga C.J.S. de, Santos R.V., Pimentel M.M., 2009. Using Nd isotopes to understand the provenance of sedimentary rocks from a continental margin to a foreland basin in the Neoproterozoic Paraguay belt, Central Brazil. Precambrian Research, 170, 1-12. (Doi:10.1016/j.precamres.2008.11.005)
- Darby B.J., Gehrels G., 2006. Detrital zircon reference for the North China block. Journal of Asian Earth Sciences 26, 637–648.

- De Min A., Hendriks B., Slejko F., Comin-Chiaramonti P., Girardi V., Ruberti E., Gomes C.B., Neder R.D., Pinho F.C., 2013. Age of Ultramafc High-K rocks from Planalto da Serra (Mato Grosso, Brazil). Journal of South American Earth Sciences, 41, 57-64.
- De Paolo D.J., 1981. Neodymium isotopes in the Colorado Front Range and crust-mantle evolution in the Proterozoic. Nature, 291, 193-197.
- Della Giustina M.E., Pimentel M.M., Ferreira Filho C.F., Holanda M.H.B.H., 2011. Dating coeval mafic magmatism and ultrahigh temperature metamorphism in the Anápolis Itaucú Complex, central Brazil. Lithos, 124, 82-201. (Doi:10.1016/j.lithos.2010.11.004)
- Della Giustina, M. E. S., Oliveira, C. G., Pimentel, M. M., and Buhn, B., 2009a. Neoproterozoic magmatism and high-grade metamorphism in the Goia's Massif: new LA-MC-ICMPS U–
 Pb and Sm–Nd data and implications for collisional history of the Brasília Belt.
 Precambrian Research, 172, 67-79. (Doi:10.1016/j.precamres.2009.03.012)
- Della Giustina, M.E., Oliveira, C.G., Pimentel, M.M., Melo, L., V., Fuck, R.A., Dantas, E.L., Buhn,
 B., 2009b. U-Pb and Sm-Nd constraints on the nature of the Campinorte sequence and related Palaeoproterozoic juvenil orthogneisses, Tocantins Province, central Brazil. In:
 Palaeoproterozoic Supercontinents and Global Evolution. Geological Society, London, 323, 255-269. (Doi: 10.1144/SP323.12)
- Del'Rey Silva L.J.H., Walde D.H.G., Saldanha D.O., 2016. The Neoproterozoic-Cambrian Paraguay Belt, central Brasil: Part I - New structural data and a new approach on the regional implications. Tectonophysics, 676, 20-41.
- Dostal J., Dupuy C., Caby R., 1994. Geochemistry of the neoproterozoic Tilemsi belt of Iforas (Mali, Sahara) a crustal section of an oceanic island-arc. Precambrian Research, 65, 55-69.
- Escayola M.P., Pimentel M.M., Armstrong R., 2007. Neoproterozoic back arc basin: Sensitive high-resolution ion microprobe U-Pb and Sm-Nd isotopic evidence from the Eastern Pampean Ranges, Argentina. Geology. 35, 495-498.
- Escayola M.P., Van Staal C.R., Davis W.J., 2011. The age and tectonic setting of the Puncoviscana Formation in northwestern Argentina: An accretionary complex related to Early Cambrian closure of the Puncoviscana Ocean and accretion of the Arequipa-Antofalla block. Journal of South American Earth Sciences, 32, 438-459.
- Evans J. W., 1894. The geology of Mato Grosso. Geol. Soe. London, 50, 85-104.
- Ferreira C.O., 2009. Constraints of the Neoproterozoic-Cambrian magmatism along the Transbrasiliano Lineament, central Brazil. Universidade de Brasília, Brasília.
- Fetter A.H., Santos T.J.S., Van Schmus W.R., Hackspacher, P.C., Brito Neves B.B., Arthaud M.H., Nogueira Neto J.A., Wernick E., 2003. Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of west Gondwana. Gondwana Research, 6, 265-273.

- Figueiredo, M. F. Quimioestratigrafia isotópica (C, O, S, Sr), Geocronologia (Pb-Pb, K-Ar) e Proveniência (Sm-Nd) das rochas da Faixa Paraguai Norte, Mato Grosso. Tese. Universidade de São Paulo, São Paulo. 2010.
- Fischel D.P., Pimentel, M.M., Fuck R.A., Armstrong R.A., 2001. U–Pb SHRIMP and Sm–Nd geochronology of the Silvania Volcanics and Jurubatuba Granite: juvenile Paleoproterozoic crust in the basement of the Neoproterozoic Bras´ılia Belt, Goiás, Central Brazil. Ann. Acad. Bras. Cienc. 73, 445-460.
- Fonseca, J.A.F., 1980. Classifcação de Carvões. In: Semana De Geologia, Rio de Janeiro. Ciclode Palestras sobre Carvão Mineral. (Contribuição da Companhia de Pesquisade Recuros Minerais).
- Fuck, R.A., Dantas, E.L., Pimentel, M.M., Botelho, N.F., Armstrong, R.A., Laux, J.H., Junges, S.L., Soares, J.E.P., Praxedes, I.F. 2014. Paleoproterozoic crust-formation and reworking events in the Tocantins province, central Brazil: a contribution for Atlantica supercontinent reconstruction. Precambrian Research 244, 53-74.
- Fuck, R.A., Pimentel, M.M., Alvarenga, C.J.S., Dantas, E.L. 2017. The Northern Brasília Belt. In: Heilbron, M., Cordani, U.G., Alkmim, F.F. (Org.). São Francisco Craton, Eastern Brazil. Zurich: Springer, p. 205-220,
- Gaucher C., Boggiani P. C., Sprechmann P., Sial A. N., and Fairchild T., 2003. Integrated correlation of the Vendian to Cambrian Arroyo del Soldado and Corumba groups (Uruguay and Brazil): palaeogeographic, palaeoclimatic and palaeobiologic implications. Precambrian Research, 120, 241-278. (Doi:10.1016/S0301-9268(02)00140-7)
- Geraldes M.C., Tassinari C.C.G., Onoe A.T., 2003. 40 Ar/39 Ar metamorphic record of a collision related to the western Gondwana collage: the (541-531 MA) Paraguay belt in the Nova Xavantina (MT) region. In: Boletim de Resumo, Búzios. SBG-Núcleos Rio de Janeiro/ Espirito Santo.
- Geraldes M.C., Tassinari, C.C.G., Babinski M., Martinelli C.D., Yer S.S., Barbosa E.S., Pinho F.E.C., Onoe, A.T. 2008. Isotopic Evidence for the Late Brasiliano (500-550 Ma) Ore-Forming Mineralization of the Araés Gold Deposit, Brazil. International Geology Review, 50, 177-190. (Doi:10.2747/0020-6814.50.2.177)
- Gioia S.M.C.L., Pimentel M.M., 2000. The Sm-Nd isotopic method in the Geochronology Laboratory of the University of Brasília. Anais da Academia Brasileira de Ciências, 72, 219-245.
- Godoi H. O., Martins E. G., 1999. Programa de Levantamentos Geológicos Básicos do Brasil -PLGB: Folha Aquidauana. SF.21-X-A – Escala 1:250.000. Estado de Mato Grosso do Sul. 72 p.
- Godoy A. M., Manzano J. C., Ruiz A. S., Araújo-Ruiz L. M. B., 2007. Os Granitóides Brasilianos da Faixa de Dobramentos Paraguai, MS e MT. Geologia USP, Série Científica, 7, 29–44. (Doi: 10.5327/Z1519-874X2007000100003).

- Godoy A. M., Pinho, F. E. C., Manzano, J. C., de Araújo, L. M. B., da Silva, J. A., Figueiredo, M.,
 2010. Estudos isotópicos das rochas granitóides neoproterozoicas da Faixa de Dobramento Paraguai. Brazilian Journal of Geology, 40, 380–391.
- Gorayeb P. S. S., Lisboa Chaves C., Moura C. A. V., and da Silva Lobo L. R., 2013. Neoproterozoic granites of the Lajeado intrusive suite, north-center Brazil: A late Ediacaran remelting of a Paleoproterozoic crust. Journal of South American Earth Sciences, 45, 278–292. (Doi: 10.1016/j.jsames.2013.04.001).
- Gorayeb P.S.S., Moura C.A.V., 2008. Investigation of magmatic events in the Tocantins Province-Northern Brazil using Sm-Nd TDM ages and Pb-evaporation zircon ages of granitic rocks.
 In: INGEIS/CIG, South American Symposium on Isotope Geology, 6, Book of Abstracts, 1 CD-Rom.
- Gorayeb P.S.S., Moura C.A.V., Abreu F.A.M., 2008. Geologia do Parque Estadual da Serra dos Martírios-Andorinhas e Região Adjacente. In: Gorayeb P.S.S. (ed.) Parque Martírios -Andorinhas: Conhecimento, História e Preservação. Belém, EDUFPA, 54-75.
- Gorayeb P.S.S., Moura C.A.V., Arcanjo S.H.S., 2000. Granitogenesis events in the Porto Nacional-Palmas Paraiso do Tocantins region, Tocantins Province, Brazil. In: SBG, International Geological Congress, 31, Anais, 1 CD-Rom.
- Grohmann C.H., Campanha G.A.C. and Soares Junior A.V., 2011. OpenStereo: um programa Livre e multiplataforma para análise de dados estruturais. In: XIII Simpósio Nacional de Estudos Tectônicos.
- Hasui Y., Dal Ré Carneiro, C., Almeida F.F.M., Bartorelli A., 2012. Geologia do Brasil. São Paulo, Beca, 900.
- Hasui Y., Tassinari C.C.G., Siga, Jr. O., Teixeira W., Almeida F.F.M., Kawashita K., 1980.
 Datações Rb-Sr e K-Ar do Centro Norte do Brasil e seu significado geológicogeotectônico. In: SBG, Congresso Brasileiro de Geologia, 31, 659-667.
- Heaman L., Parrish R., 1991. U-Pb geochronology of accessory minerals. In: Heaman L. and Ludden J.N. (eds.) Applications of radiogenic isotope systems to problems in geology. Min Assoc 20 Canada, Short Course Handbook 19, 59-102.
- Hoffman P.F., Kaufman A.J., Halverson G.P., Schrag D.P., 1998. A Neoproterozoic snowball earth. Science 281, 1342-1346.
- Howard K.E. Hand M., Barovich K.M., Payne J.L., Belousova E.A., 2011. U-Pb, Lu-Hf and Sm-Nd isotopic constraints on provenance and depositional timing of metasedimentary rocks in the western Gawler Craton: Implications for Proterozoic reconstruction models. Precambrian Res. 184, 43–62.
- Howard K.E., Hand M., Barovich K.M., Reid A., Wade B.P., Belousova E.A., 2009. Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data. Chem. Geol. 262, 293-308. (Doi:10.1016/j.chemgeo.2009.01.029)

- Hu G., Zhao T., Zhou Y., 2014. Depositional age, provenance and tectonic setting of the Proterozoic Ruyang Group, southern margin of the North China Craton. Precambrian Res. 246, 296–318.
- Jackson S.E., Pearson N.J., Griffin W.L., Belousova E.A., 2004. The application of laser ablationinductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.
- Jahn et al., 2008 Jahn, B., Caby, R., and Monie´, P., 2008. The oldest UHP eclogites of the World: age of UHP metamorphism, nature of protoliths and tectonic implications: Chemical Geology, 178, 143-158. (Doi: http://dx.doi.org/10.1016/S0009-2541(01)00264-9)
- Kennedy W. Q., 1964. The structural differentiation of Africa in the Pan-African (±500 m.y.) tectonic episode. Research Institute Afr. Geol. University of Leeds, 48-49.
- Kröner A., Cordani, U., 2003. African, southern Indian and South American cratons were not part of the Rodinia supercontinent: evidence from field relationships and geochronology. Tectonophysics, 375, 325-352. (Doi: 10.1016/S0040-1951(03)00344-5)
- Kröner A.; Stern R.J., 2005. Pan-African Orogeny. Encyclopedy of Geology. Geology of Africa. 01. Amsterdam, Elsevier, 1-12.
- Lacerda Filho J.V., Brito R.S.C., Silva M.G., Oliveira C.C., Moreton L.C., Martins E.G., Lopes R.C., Lima T.M., Larizzatti J.H., Valente C.R., 2006. Geologia e Recursos Minerais do Estado de Mato Grosso do Sul. Programa Integração, Atualização e Difusão de Dados da Geologia do Brasil. Esc. 1:1000000.
- Lafon J.M., Macambira J.B., Macambira M.J.B., Moura C.A.V., Gaudette H.E., Souza A.C.C., 1990. A Faixa de Dobramentos Araguaia (TO): novos dados geocronológicos. In: SBG, Congresso Brasileiro de Geologia, 34, 2.550-2.563.
- Lisboa M. A. R., 1909. Oeste de S. Paulo Sul de Mato Grosso. Comissao Schnoor, Rio de Janeiro.
- Ludwig K.R., 2012. User's Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 5, 75.
- Luz J.S.; Oliveira A.M.; Souza J.O.; Motta J.F.M.; Tanno L.C.; Carmo L.S.; Souza N.B., 1980. Projeto Coxipó. Relatório Final. Goiânia, DNPM/CPRM, 1, 136.
- Macambira J.B., 1983. Geologia e Ocorrências Mineraisdo Braquianticlinal do Lontra (Go). Dissertação de Mestrado, Centro de Geociências, Universidade Federaldo Pará, Belém, 108.
- Macambira M.J.B. & Lafon J.M., 1995. Geocronologia da Provincia Mineral de Carajás: síntese dos dados e novos desafios. Boletim do Museu Paraense Emílio Goeldi, série Ciências da Terra, 7,253-288.
- Machado R., Lana, C., Stevens G., Filho C. R. S., Reimold W. U., and McDonald I., 2009. Generation, mobilization and crystallization of impact-induced alkali-rich melts in granitic

target rocks: Evidence from the Araguainha impact structure, central Brazil: Geochimica et Cosmochimica, 73, 7183-7201. (Doi <u>http://dx.doi.org/10.1016/j.gca.2009.08.029)</u>

- Maciel P., 1959. Tilito cambriano no estado de Mato Grosso. Boletim da Sociedade Brasileira de Geologia, São Paulo, 8, 31-39.
- Mantovani M.S.M., Quintas M.C.L., Shukowsky W., Brito Neves B.B., 2005. Delimitation of the Paranapanema Proterozoic block: A geophysical contribution. Epsodes 28.
- Manzano J.C., Godoy A.M., Araújo L.M.B., 2008. Contexto tectônico dos granitóides neoproterozoicos da Faixa de Dobramentos Paraguai, MS e MT. UNESP, Geociências, 27, 493-507.
- Matteini M, Dantas E L, Pimentel M M, Alvarenga C J S, Dardenne M A., 2012. U-Pb e Hf isotope study on detrital zircons from the Paranoá Group, Brasília Belt, Brazil: Constraints on depositional age at Mesoproterozoic – Neoproterozoic transition and tectonomagmatic events in the São Francisco Cráton. Precambrian Research. 206-207, 168-181.
- Matteini M., Junges S.L., Dantas E.L., Pimentel M.M., Buhn B., 2010. In situ zircon U–Pb and Lu–Hf isotope systematic on magmatic rocks: insights on the crustal evolution of the Neoproterozoic Goiás Magmatic Arc, Brasília belt, Central Brazil. Gondwana Research 17, 1–12.
- McGee B., Babinski M., Trindade R., Collins A.S., 2018. Tracing final Gondwana assembly: Age and provenance of key stratigraphic units in the southern Paraguay Belt, Brazil. Precambrian Research. In Press. (Doi: https://doi.org/10.1016/j.precamres.2017.12.030)
- McGee B., Collins A. S., and Trindade R. I. F., 2012. G'day Gondwana, the final accretion of a supercontinent: U/Pb ages for the post-orogenic São Vicente Granite, northern Paraguay Belt, Brazil. Gondwana Research, 21, 316–322.
- McGee B., Collins A.S., Trindade R.I.F., Jourdan F., 2014. Investigation mid-Ediacaran glaciation and final Gondwana amalgamation using coupled sedimentology and 40Ar/39Ar detrital muscovite provenance from the Paraguay Belt, Brazil. Sedimentology, 62, 130-154.
- McGee B., Collins A.S., Trindade R.I.F., Payne J., 2015. Age and provenance of the Cryogenian to Cambrian passive margin to foreland basin sequence of the northern Paraguay Belt, Brazil. GSA Bulletin, 127, 76-86.
- Meert J.G., 2003. A synopsis of events related to theassembly of eastern Gondwana. Tectonophysics, 362, 1-40.
- Moecher D.P., Samson S.D., 2006. Differential zircon fertility of source terranes and natural bias in the detrital zircon record: implications for sedimentary provenance analysis. Earth and Planetary Science Letters 247, 252-266.
- Montalvão R.M.G., 1986. Evolução geológica dos terrenos granitóides-greenstone belts de Crixás, Guarinos, Pilar de Goiás-Hidrolina (Goiás). Doctoral Thesis, University of São Paulo, São Paulo.

- Morel M.L., Nebel O., Nebel-Jacobsen Y.J., Miller J.S., Vroon P.Z., 2008. Hf isotope characterization of the GJ-1 zircon reference material by solution and laser-ablation MC-ICPMS. Chemical Geology 255, 231-235.
- Morel P., 1981. Palaeomagnetism of a Pan-African diorite: a Late Precambrian pole for western Africa, Geophys. J. R. Astron. Soc. 65, 493-503.
- Moura C.A.V., Gaudette H.E., 1999. Zircon ages of the basement orthogneisses from the northern segment of the Araguaia belt, Brazil. In: Sinha A.K (ed.) Basement tectonics. New York, Kluwer Academic Plubischers, 155-178.
- Moura, C.A.V., Pionheiro, B.L.S., Nogueira, A.C.R., Gorayeb, P.S.S., Galarza, M.A. 2008. Sedimentary provenance and palaeoenvironment of the Baixo Araguaia Supergroup: constraints on the palaeogeographical evolution of the Araguaia Belt.. In: Pankhurst, R., Trouw, R.A.J., Brito Neves, B.B., De Witt, M.J. (Org.). West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region. Geological Society, Special Publication 294, 173-196.
- Moura C.A.V., Souza C.S., 2002. Idades Pb-Pb em zircão por evaporação no granito Santa Luzia: Implicações para a determinação da idade da Granitogênese Brasiliana Tardi-Tectônica no Cinturão Araguaia (TO). In: SBG, Congresso Brasileiro de Geologia, 4, 500.
- Nogueira A.C.R., Riccomini C., 2006. O Grupo Araras (Neoproterozoico) na parte norte da Faixa Paraguai e Sul do Cráton Amazônico, Brasil. Revista Brasileira de Geociências, 36, 576-587.
- Nogueira A.C.R., Riccomini C., Sial A.N., Moura C.A.V., Fairchild T.R., 2003. Sof-sediment deformation at the base of the Neoproterozoic Puga cap carbonate (southwestern Amazon craton, Brazil): Confirmation of rapid icehouse to greenhouse transition in snowball Earth. Geological Society of America, 31, 613-616.
- Nogueira A.C.R., Riccomini C., Sial, A.N., Moura C.A.V., Trindade R.I.F., Fairchild T.R., 2007. Carbon and strontium isotope fluctuations and paleoceanographic changes in the late Neoproterozoic Araras carbonate platform, southern Amazon craton, Brazil. Chemical Geology 237, 168-190.
- Nogueira V L., Oliveira C. C., Figueiredo J. A., Corrêa Filho F. C. L., Scoslewski N. G., Souza M. R., Moraes Filho J. C. R., Leite, E. A., Souza N. B.; Souza J. O., Cerqueira, N. L. S., Vanderlei A. A., Takaschi A. T., Abreu Filho, W., Rosito J., Olivatti O., Hausen J. E. P., Gonçalves G. N. D., Ramalho R., Pereira L. C. B., 1978. Projeto Bonito-Aquidauana, relatório Final. Goiânia. DNPM. CPRM, 14, 2744.
- Oliveira F. V., 2015. Chronus: Um novo suplemento para a redução de dados U-Pb obtidos por LA-ICPMS. Dissertation Master. Brasília. University of Brasília.
- Paixão M. A. P., Nilson A. A., and Dantas E. L., 2008. The Neoproterozoic Quatipuru ophiolite and the Araguaia fold belt, central-northern Brazil, compared with correlatives in NW Africa, In: Pankhurst, R. J., Trouw, R. A. J., De Brito Neves, B. B., and de Wit, J. J., editors, West Gondwana: Pre-Cenozoic correlations across the South Atlantic region: Geological

Society, London, Special Publications, 294, 297–318. (Doi http://dx.doi.org/10.1144/SP294.16)

- Payne J.L., Barovich K.M., Hand M., 2006. Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: Implications for Palaeoproterozoic reconstructions. Precambrian Res, 148, 275–291.
- Pelosi G. F. F., 2017. Age, Provenance and Tectonic Setting from Southern Portion of the Cuiabá Group: Implications for the Evolution of the Paraguai Belt. Master Dissertation. University of Mato Grosso.
- Perarnau M., Gilbert H., Alvarado P., Martino R., and Anderson M., 2012. Crustal structure of the Eastern Sierras Pampeanas of Argentina using high frequency local receiver functions. Tectonophysics, 580, 208-217. (Doi: 10.1016/j.tecto.2012.09.021)
- Piacentini T., Vasconcelos P.M., Farley K.A., 2013. 40Ar/39Ar constraints on the age and thermal history of the Urucum Neoproterozoic banded iron-formation, Brazil. Precambrian Research 228, 48-62. (Doi: 10.1016/j.precamres.2013.01.002)
- Pimentel M. M., Fuck R. A., and Alvarenga C. J. S., 1996. Post-Brasiliano (Pan African) high-K granitic magmatism in central Brazil: the role of late Precambrian/early Paleozoic extension. Precambrian Research, 80, 217–238. (Doi: 10.1016/S0301-9268(96)00016-2)
- Pimentel M. M., Fuck, R. A., Jost, H., Ferreira Filho C. F., Araújo S. M., 2000. The basement of the Brasília Fold Belt and the Goiás Magmatic Arc. In: Cordani U. G. Milani E. J. Thomaz Filho A., Campos D. A. (eds.) The tectonic evolution of South America. Rio de Janeiro, 195-229.
- Pimentel M.M., 2016. The tectonic Evolution of the Neoproterozoic Brasília Belt, central Brazil: A geochronological and isotopic approach. Brazilian Journal of Geology, 46, 67-82. (Doi: 10.1590/2317-4889201620150004)
- Pimentel M.M., Fuck R.A., 1992. Neoproterozoic crustal accretion in Central Brazil. Geology 20, 375-379.
- Pimentel M.M., Fuck R.A., Botelho N.F., 1999. Granites and the geodynamic history of the neoproterozoic Brasília belt, Central Brazil: a review. Lithos 46, 463-483.
- Pimentel M.M., Heamen L., Fuck R.A., Marini O.J., 1991b. U-Pb zircon geochronology of precambrian tin-bearring continental-type acid magmatism in central Brazil. Precambrian Research, 51, 321-335.
- Pimentel M.M., Rodrigues J.B., DellaGiustina M.E.S., Junges S., Matteini M., Armstrong R., 2011. The tectonic evolution of the Neoproterozoic Brasília Belt, central Brazil, based on SHRIMP and LA-ICPMS U-Pb sedimentary provenance data: A review. J. South Am. Earth 31, 345–357.

- Pimentel M.M., Rodrigues J.B., DellaGiustina M.E.S., Junges S.L., Matteini M., 2011. The Tectonic Evolution of the Neoproterozoic Brasília Belt, Central Brazil, based on SHRIMP and LA-ICPMS U-Pb sedimentary provenance data: a review. Journal of South America Earth Sciences, 31, 345-357.
- Pinheiro B.L.S., Moura C.A.V., Gorayeb P.S.S., 2011. Proveniência das rochas metassedimentares do Cinturão Araguaia com base em datações Pb-Pb em zircão e idades-modelo Sm-Nd. Revista Brasileira de Geociências 41, 304-318.
- Pinho F.E.C., 1990. Estudo das rochas encaixantes e veios mineralizados a ouro do Grupo Cuiabá, na região denominada "Garimpo dos Araés" Nova Xavantina, estado de Mato Grosso. PhD Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.
- Pisarevsky S. A., Murphy J. B., Cawood P. A., and Collins A. S., 2008. Late Neoproterozoic and Early Cambrian palaeogeography: models and problems, in Pankhurst, R. J., Trouw, R. A. J., de Brito-Neves, Region. Geological Society, London, Special Publications, 294, 9– 31. (Doi: 10.1144/SP294.2)
- Ramos V.A., Dallmeyer R.D., Vujovich G.I., 1998. Time constraints on the Early Palaeozoic docking of the Precordillera, central Argentina. In: Pankhurst, R.J., Rapela, C.W. (Eds.), The ProtoAndean Margin of Gondwana. Special Publication, Geological Society of London, 142, 143–158.
- Rapela C. W., Pankhurst R. J., Casquet C., Baldo E., Saavedra J., Galindo C., and Fanning C.
 M., 1998. The Pampean Orogeny of the southern proto-Andes: Cambrian continental collision in the Sierras de Co´rdoba. In: Pankhurst, R. J., and Rapela, C. W., editors, The Proto-Andean Margin of Gondwana: Geological Society, London, Special Publications, 142, 181–217. (Doi:10.1144/GSL.SP.1998.142.01.10)
- Rapela C.W., Pankhurst R.J., Casquet C., Fanning C.M., Baldo E.G., González-Casado J.M., Galindo C., Dahlquist J., 2007. The Río de la Plata craton and the assembly of SW Gondwana. Earth-Science Reviews 83, 49–82.
- Rocha-Júnior E. R. V., Marques L. S., Babinski M., Nardy A. J. R., Figueiredo A. M. G., and Machado F. B., 2013. Sr-Nd-Pb isotopic constraints on the nature of the mantle sources involved in the genesis of the high-Ti tholeiites from northern Paraná Continental Flood Basalts (Brazil). Journal of South American Earth Sciences, 46, 9–25. (Doi: 10.1016/j.jsames.2013.04.004)
- Rudnitzki I.D., Nogueira A.C.R., 2012. Reavaliação paleoambiental e estratigráfica da Formação Nobres do Grupo Araras, Neoproterozoico da Faixa Paraguai, região de Cáceres (MT). Revista Brasileira de Geociências. 42, 633-645.
- Scholl D. W., and von Huene R., 2010. Subduction zone recycling processes and the rock record of crustal suture zones: Canadian Journal of Earth Sciences, 47, 633–654.
- Schwartz J. J., Gromet L. P., and Miro' R., 2008. Timing and duration of the calc-alkaline arc of the Pampean Orogeny: Implications for the Late-Neoproterozoic to Cambrian evolution

of Western Gondwana: The Journal of Geology, 116, 39–61. (Doi:http://dx.doi.org/10.1086/524122)

- Silva L.C., 2006. Geocronologia aplicada ao mapeamento regional com ênfase na técnica U-Pb SHRIMP e ilustrada com estudo de casos brasileiros. Brasília: CPRM (Publicações Especiais do Serviço Geológico do Brasil. N°1) Disponível em:<u>www.cprm.gov.br</u>. 24/07/2018.
- Soares J. E., Berrocal J., Fuck R. A., Mooney W. D., Ventura D. B. R., 2006. Seismic characteristics of central Brazil crust and upper mantle: A deep seismic refraction study. Journal of Geophysical Research, Solid Earth, 111, 12302. (Doi:10.1029/2005JB003769).
- Souza, C. S. M., Hauser, N., Dantas, E. L., Reimold, W. U., Chaves, J. G. S., Osorio, L. F. B. 2018. Do the ultramafic rocks of Rio do Coco Group represent oceanization of the Araguaia basin at ~0.9 Ga? – Constraints from Sm-Nd isotope data. Annais of the 11Th South American Symposium on Isotope Geology. Cochabamba-Bolivia. p.121
- Stern R.J., 1994. Arc Assembly and continental collision in the Neoproterozoic East African orogeny implications for the consolidation of Gondwana. Annual Review of Earth and Planetary Sciences 22, 319- 351.
- Tassinari C.C.G., Macambira M.J.B., 1999. Geocronological provinces of the Amazonian Craton. Episodes, 22,174-182.
- Tassinari, C.C.G., Macambira, M.J.B. 2004. A evolução tectônica do Cráton Amazônico. In: Mantesso-Neto, V., Bartorelli, A., Carneiro, C.D.R. and Brito Neves, B.B. (Eds.) Geologia do continente Sul-americano: Evolução da obra de Fernando Flávio Marques de Almeida. pp. 471-485.
- Teixeira K.S.L., Moura C.A.V., Costi H.T., Ramos J.F.R., 2002. Utilização de MEV-EDS no apoio à seleção de monocristais de zircão para datação por evaporação de chumbo. Anais do Congresso Brasileiro de Geologia, 41, 128.
- Tohver E., Cawood P. A., Rossello E. A., and Jourdan F., 2012. Closure of the Clymene Ocean and formation of West Gondwana in the Cambrian: Evidence from the Sierras Australes of the southernmost Rio de la Plata Craton, Argentina. Gondwana Research, 21, 394-405. (Doi:10.1016/j.gr.2011.04.001)
- Tohver E., Trindade R. I. F., Solum J. G., Hall C. M., Riccomini C., and Nogueira A. C., 2010. Closing the Clymene Ocean and Bending a Brasiliano belt: Evidence for the Cambrian formation of Gondwana from southeast Amazon Craton. Geology, 38, 267–270. (Doi: 10.1130/G30510.1)
- Tohver E., Trindade R.I.F., 2014. Comment on "Was there na Ediacaran Clymene Ocean in central South America?" By Umberto Giuseppe Cordani, Marcio Martins Pimentel, Carlos Eduardo Ganade de Araújo, Miguel Angelo Stipp Basei, Reinhardt Adolfo Fuck, and

Vicente Antonio Vitório Girardi. American Journal of Science, 313, 517-539. (Doi: 10.2475/03.2014.03)

- Tokashiki C. C. & Saes G. S., 2008. Revisão estratigráfica e faciologia do Grupo Cuiabá no alinhamento Cangas-Poconé, baixada Cuiabana, Mato Grosso. Revista Brasileira de Geociências, 38, 661-675.
- Trindade R. I. F., D'Agrella-Filho M. S., Epof I., and Brito Neves B. B., 2006. Paleomagnetism of Early Cambrian Itabaiana mafic dikes (NE Brazil) and the final assembly of Gondwana. Earth and Planetary Science Letters, 244, 361–377. (Doi: 10.1016/j.epsl.2005.12.039)
- Trindade R. I. F., Font E., D'Agrella-Filho M. S., Nogueira A. C. R., and Riccomini C., 2003. Lowlatitude and multiple geomagnetic reversals in the Neoproterozoic Puga cap carbonate, Amazon Craton. Terra Nova, 15, 441–446. (Doi: 10.1046/j.1365-3121.2003.00510.x)
- Trompette R., 1994. Geology of Western Gondwana, Pan-African (2000-500 Ma)-Pan-African Brasiliano aggregation of South America and Africa: Rotterdam, A. A. Balkema, 350.
- Trompette R., Alvarenga C.J.S., Walde D.H.-G., 1998. Geological evolution of the Neoproterozoic Corumbá graben system (Brazil). Depositional context of the stratified Fe and Mn ores of the Jacadigo Group. Journal of South American Earth Science, 11, 587-597.
- Valentine J.W., 2002. Prelude to the Cambrian explosion. Annual Review of Earth and Planetary Sciences 30, 285-306.
- Vasconcelos B.R., Ruiz A.S., Matos J.B., 2015. Polyphase deformation and metamorphism of the Cuiabá group in the Poconé region (MT), Paraguay Fold and Thrust Belt: kinematic and tectonic implications. Brazilian Journal of Geology 45, 51- 63. (Doi:10.1590/23174889201500010004)
- Vasquez M.L., Klein E.L., Quadros M.L.E., Bahia R.B.C., Santos A., Ricci P., Sachett C.R., Silva C.M.G., Macambira M.J.B., 1999. Magmatismo Uatumã, na Província Tapajós - Novos dados geocronológicos. VI Simpósio de Geologia da Amazônia, Extended Abstract Bulletin, 471-474.
- Wetherill G.W. 1956. Discordant Uranium-Lead Ages, I. Eos Transactions American Geophysical Union. 37, 320-326.
- WilliamsIS.1998. U–Th–Pb geochronology by ion microprobe. In: McKibben MA, Shanks III WC and Rydley WI (Eds), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Rev Econ Geol 7: 1–35.
- Woldemichael S.F., 2003. Estruturas geoelétricas crustais da bacia do Pantanal e Faixa Paraguai: Implicações Tectônicas. Doctoral Thesis, University of São Paulo, São Paulo.
- Xie L.W., Zhang Y.B., Zhang H.H., Sun J.F., Wu F.Y., 2008. In situ simultaneous determination of trace elements, U–Pb and Lu–Hf isotopesin zircon and baddeleyite. Chinese Science Bulletin 53, 1565-1573