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Abstract

The objective the present work is to evaluate the effects of the stress invariants 𝐼1 and
𝐽3 on the mechanical behavior of metallic materials. In this regard, the Ductile Fracture
(monotonic), Ultra-Low (ULCF) and Low Cycle (LCF) fatigue behavior of SAE 1045
steel was analyzed supported by the experimental information furnished by Bai (2008)
and Leese and Socie (1989). Furthermore, a Gao-based model (Gao et al., 2011) with
mixed (isotropic and kinematic) hardening was proposed to capture 𝐼1 and 𝐽3 influences.
The numerical simulations conducted assuming von Mises behavior did not described
properly the mechanical response from Ductile Fracture, ULCF, and LCF data, which
demonstrated the SAE 1045 steel dependence on 𝐼1 and 𝐽3. After the calibration of Gao’s
𝑎 and 𝑏 parameters, the numeric responses provided better agreement with respect to
experiments. Interestingly, 𝑎 and 𝑏 were affected by the hardening type considered. In
particular, significant differences between Mises and Gao based constitutive modeling arose
in monotonic and ULCF conditions, while the discrepancies in LCF were less pronounced
in terms of stress amplitudes. Nevertheless, the evolution of the accumulated plastic strain
expected by Mises and Gao approaches deviated considerably, which suggests that stress
invariants formulations may be an attractive option for incremental techniques for fatigue
life assessments.

Key-words: Stress invariants, Ductile Fracture, Fatigue.
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1 Introduction

1.1 Motivation

Ductile fracture and Fatigue are major topics in engineering as they are fundamental
for the design of several components and structures. Both consist of the analysis of the
fracture behavior of a given material, differing only on the type of loading that the structure
experiences. The former focuses on monotonic loads while the latter on time-varying ones.

These phenomena have gained increasing importance in recent years due to in-
dustry demands for lighter structures, often with complex geometries, which are capable
of withstanding a number of loading conditions (monotonic and cyclic). The incorrect
description of the Ductile Fracture and Fatigue behavior can lead to catastrophic or failure.
For instance, in 2010 an explosion on the platform Deepwater Horizon provoked an oil
leak, which led to an environmental disaster on the Mexican Golf. One of the devices that
could have prevented this accident is a security valve called Blowout Preventer (BOP). A
report released in 2011 proved that this device did act to solve the problem, but it did not
work correctly (Veritas, 2011). More recently, the turbine of an Airbus A380 presented a
failure during a flight from Paris to Los Angeles, provoked by the fatigue fracture of one
of its blades. The aircraft needed to make an emergency landing and fortunately, there
were only material losses (BEA, 2020).

To properly predict the mechanical behavior of materials, one needs to use an
adequate constitutive model. For Ductile Fracture and Fatigue (especially the ultra low
and low cycle regimes), one is particularly interested in modeling the elastoplastic behavior
of metallic materials. Plasticity, being a classical engineering field, has been extensively
studied throughout the past century. The most well-known formulations are the ones
based on von Mises yield criterion (Mises, 1913), also called 𝐽2-based approaches. The
cornerstone of these models lays in the assumption that plastic flow occurs when the
elastic distortional strain energy reaches a critical level, which can be related to the second
invariant 𝐽2 of the deviatoric component S of the stress tensor 𝜎. Furthermore, plastic
flow is assumed to be volume-preserving, which means that it is insensitive to pressure
effects.

Mises-based approaches are widely employed by engineers and researchers to
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describe the elastoplastic behavior of metallic materials near to fracture and to obtain
stress amplitudes, which are vital for fatigue life assessments. Such observation can be
explained by two reasons. First, 𝐽2-formulations are relatively simple, they do not require
a complex mathematical framework. Second, most of the commercial simulation softwares
have von Mises models as a built-in option.

Despite the reasonable results obtained by the classical von Mises yield criterion in
given practical engineering applications, it does present limitations for a range of materials
and loading conditions. This is because 𝐽2-formulation neglects the first 𝐼1 and third 𝐽3

invariants effects, which are relevant in many applications (Bai, 2008; Driemeier et al.,
2015; Malcher et al., 2020). For instance, the BOP malfunction was related to the usage of
von Mises-based design calibrated in tension, while the load conditions experienced by the
BOP were shear predominant (Koutsolelos, 2012; Tekin et al., 2015; Zhu et al., 2020). In
this particular case, the third invariant 𝐽3 has a strong effect on the behavior of a range
of alloys, and hence 𝐽2-approaches may lead to inaccurate descriptions for this class of
materials.

The influence of the first 𝐼1 and third 𝐽3 invariants on the Ductile Fracture behavior
of metallic materials is acknowledged by researchers, and several studies demonstrate
that they do need to be incorporated into the constitutive modeling for a more accurate
mechanical behavior description (Bai and Wierzbicki, 2008; Driemeier et al., 2010; Gao
et al., 2011; Malcher et al., 2012; Brünig et al., 2013). Nevertheless, the incorporation of
these parameters into Fatigue analysis has not been extensively analyzed as in Ductile
Fracture (Pereira et al., 2016; Algarni et al., 2017; Xu et al., 2020; Li et al., 2021a),
especially within the ultra low (ULCF) and low cycle (LCF) regimes, which are the
conditions with the highest plastic strain levels in time-varying load situations. Besides,
the effects of these invariants on the different hardening types (Isotropic and Kinematic)
were broadly discussed in cyclic conditions.

1.2 Objectives

Within this context, the present work aims to show the influence of stress invariants
𝐼1 and 𝐽3 on the mechanical behavior of metallic materials. More precisely, the effects
provoked by these parameters on Ductile Fracture and Fatigue (ULCF and LCF conditions)
responses will be discussed, along with the consequences of incorporating 𝐼1 and 𝐽3 into
the constitutive modeling for engineering applications. Moreover, the coupling of these
invariants with kinematic and isotropic hardening will be analyzed. For this purpose, one
uses a Gao-based formulation (Gao et al., 2011) with kinematic and isotropic hardenings
to describe SAE 1045 steel behavior, and compares the results with the experimental data
of Bai (2008) and Leese and Socie (1989).

As far as the author is aware, there is a lack of works that demonstrate the role of
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the stress invariants in different situations and to what extent one needs to consider them
in practical situations. Within the context of this dissertation, the only study found and
worth mentioning is the one from Pereira et al. (2016).

1.3 Outline of the dissertation

This dissertation is composed of eight chapters: in Chapter 2, a literature outline is
presented, discussing the most relevant models that incorporate the stress invariants into
the constitutive modeling and the results achieved in past years in Ductile Fracture and
Fatigue fields; Chapter 3 is dedicated to introducing the basic concepts used throughout the
work and to presenting Gao-based elastoplastic model (Gao et al., 2011) which incorporates
stress invariant effects; in Chapter 4, the numerical implementation of the model in Chapter
3 for Finite Element calculations is developed; in Chapter 5, the material used in this work
is presented, along with the experimental data from Bai (2008) and Leese and Socie (1989),
as well as the calibration of the material parameters; in Chapter 6 the results obtained
in Monotonic and Ultra-Low Cycle Fatigue conditions are presented and discussed; in
Chapter 7 the results achieved in the Low Cycle regime are displayed and analyzed, then
compared with the observations made in Chapter 6; and in Chapter 8, the conclusions
and suggestions are presented.
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2 Literature Overview

2.1 Stress Invariants and Their Effects

The most well-known and used models for describing the elastoplastic behavior of
isotropic metallic materials are based on von Mises yield criterion (Mises, 1913). It can be
shown that for isotropic alloys, the yield criterion is a function of the principal invariants
𝐼1, 𝐼2, and 𝐼3 of the Cauchy stress tensor 𝜎. In this setting, von Mises’s approaches assert
that plastic flow is pressure insensitive and it occurs when the distortional elastic energy
reaches a critical value. The volume-preserving feature is a characteristic shared with other
plasticity models and it is supported by the experiments performed by Bridgman (Bridgman,
1923, 1931, 1949), which led to the conclusion that volume changes are reversible and hence
associated with elastic deformation. The previously mentioned energy can be related to the
second invariant 𝐽2 of the deviatoric part S of 𝜎, which is the reason why these models are
often called 𝐽2-formulations. Mises-based methodologies are the go-to techniques chosen by
engineers who wish to design a mechanical part or structure to withstand Ductile Fracture
and Fatigue. Two main reasons explain that: first, these approaches are mathematically
simple, the underlying fields are all smooth and hence, one can implement these models
with relative ease; second, most of the commercial Finite Elements Codes already possess
𝐽2-based models as built-in options, which is extremely convenient. Furthermore, these
formulations provide satisfactory results in many applications.

Regardless of the success of models based on von Mises yield criterion, they display
inconsistencies when used to describe a range of metallic materials, especially modern
alloys, under different loading scenarios (and consequently a range of stress states) (Bai,
2008; Driemeier et al., 2015; Malcher et al., 2020). Shear predominant loads are classical
examples in which 𝐽2-formulations do not capture properly the mechanical response. These
techniques require one calibration point to obtain the required material parameters, and
this is usually carried out via standard tensile tests. However, several metallic materials
deviate from the well-known

√
3 ratio between the normal 𝜎𝑦 and shear 𝜏𝑦 yield strengths

predicted by the Mises approach. The inaccuracies displayed can be explained by the fact
these formulations neglect the first and third invariants, which suggests that more accurate
constitutive models need to embody them. (Bai and Wierzbicki, 2008; Driemeier et al.,
2010; Gao et al., 2011; Malcher et al., 2012; Brünig et al., 2013)
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The stress state in a given material point can be characterized by a set of parameters.
In plasticity theory, researchers and authors often do this by informing the second invariant
𝐽2 of S, the hydrostatic stress 𝑝, and the third invariant 𝐽3 of S. Therefore, models
that account for effects provoked by the stress invariants incorporate these mentioned
stress-based variables in different ways.

The hydrostatic stress 𝑝 is related to 𝐼1, and hence some methodologies account
for this parameter by directly embodying this invariant into its mathematical framework.
Alternatively, some approaches prefer to use a normalized measure of 𝑝 to describe the
stress state and formulate the constitutive theory. The parameter commonly used in this
context is the triaxiality ratio 𝜂, which is defined as the ratio between the hydrostatic
stress and some equivalent stress (usually von Mises’s 𝑞). The effect caused by 𝑝 has been
investigated in depth in the past decades. Another set of tests carried out by Bridgman
(1953) showed that higher values of hydrostatic stress led to higher displacements at
fracture for some steel alloys. According to Rice and Tracey (1969), 𝑝 controls the rate
of void nucleation and growth for tensile loads, while in compressive cases it dictates
the closure of such voids. Furthermore, high triaxiality regions are hot-spots for crack
initiation and consequent growth (Hancock and Mackenzie, 1976; Lemaitre, 2012). From
the mathematical and constitutive point of view, 𝑝 controls the size of the yield surface,
and consequently, of the elastic domain. Nevertheless, 𝜂 (or 𝑝) alone does not describe
completely the material’s ductility, especially in shear conditions (Barsoum and Faleskog,
2007a,b). Several experiments were conducted to investigate in more detail the effects
of 𝜂. For instance, Bao and Wierzbicki (2004) performed a series of tests on aluminum
alloy AL2024-T351 with different specimen geometries to analyze a wide range of 𝜂 values.
The experiments showed that triaxiality affects the crack initiation spot and the failure
mechanism. Besides, following the works of Gao and Kim (2006) and Kim et al. (2007), it
was observed that despite presenting similar triaxiality, different stress-states displayed
different mechanical behavior. This further suggests that indeed 𝜂 is not enough for
modeling properly Ductile Fracture and Fatigue responses.

Thus, to cover a larger range of stress states, one needs to also consider 𝐽3,
especially in shear-predominant cases. In such situations, 𝐽3 has a strong influence and
hence provides better behavior predictions once incorporated into the formulation. One
way to account for this parameter is by directly considering 𝐽3 in the model, or through
related variables: the normalized third invariant 𝜉 or the Lode angle 𝜃, both functions of
𝐽3. The addition of 𝐽3 (or 𝜉 and 𝜃) in the constitutive model allows capturing different
failure mechanisms not captured by 𝜂, such as the formation of shear bands, changes in
ductility in shear/torsion loads, and the transition of failure modes (Bao and Wierzbicki,
2004; Brünig et al., 2013). Besides, 𝐽3 controls the shape of the yield surface (Bardet,
1990; Bai, 2008). Interestingly, according to Bai (2008), in shear-predominant scenarios,
𝐽3 is more relevant when describing a given material mechanical response than 𝜂. Similar
conclusions were achieved in recent works. (Malcher et al., 2020; Morales, 2020)
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The previous paragraphs indicate that indeed 𝑝 and 𝐽3 play important roles in the
mechanical behavior of metallic materials. In some situations, 𝑝 is more influential, while
in others 𝐽3 is the key factor, but, in general, both need to be considered. Within this
context, works have been carried out to investigate the effects of both variables and new
constitutive models were proposed to account for their influence. The first yield criteria
to account for stress invariants were Tresca (Tresca, 1869), Drucker-Prager (Drucker and
Prager, 1952), and Möhr-Coulomb (Mohr, 1900; Coulomb, 1776). The former depends on
the Lode angle (Nayak and Zienkiewicz, 1972), while the two-latter are pressure sensitive.
Nevertheless, only Möhr-Coulomb considers both 𝜂 and 𝐽3 (Bardet, 1990).

Moving to some years ahead, Hosford (1972) generalized von Mises equivalent
stress through a p-norm approach of 𝜎, which allows the incorporation of 𝐽3 effects,
besides being capable of recovering both Mises and Tresca yield criteria. In the ’90s,
Bardet (1990) proposed a formulation to account for both 𝜂 and 𝜃 for pressure-sensitive
isotropic alloys. Wilson (2002) performed tests on notched specimens of AA2024-T351 and
verified the importance of the Lode-angle for such materials. Brünig (1999) also proposed
a constitutive model embodying all stress invariants for Ductile Fracture applications. Bai
(2008) conducted many experiments with different loading paths and specimen geometries
that further showed the impact of these invariants on the fracture behavior of some alloys.
Besides, the 𝐽2-based simulations presented corroborated the limitations of this approach.
Thus, Bai proposed a model for the correction of the inaccuracies displayed by Mises
yield criterion. Mirone and Corallo (2010) performed numerical simulations and compared
them to data from smooth and notched specimens of some metallic materials and pure
copper. They confirmed that 𝜂 and 𝐽3 affect the mechanical behavior, which indicated that
accurate failure predictions indeed have to consider both variables. Driemeier et al. (2010)
carried out tests to study fracture in shear conditions that backed up all the observations
made in previous studies. At the beginning of the past decade, Gao et al. (2011) presented
a formulation incorporating all the three invariants in a new equivalent stress measure.
Cavalheiro and Malcher (2017) used Gao’s model to describe the mechanical response of
two metallic materials and showed that in some conditions there are non-convexity issues.
Malcher et al. (2012) analyzed the performance of three constitutive formulations that
considered 𝜂 and 𝜃 to predict fracture of ductile materials. Recently, Brünig et al. (2018)
furnished important experimental data for negative triaxiality situations. Other recent
works and models shed more light in the field, further corroborating the importance of
𝑝 and 𝐽3 (Pereira et al., 2016; Algarni et al., 2017; Wang and Qu, 2018; Yu et al., 2018;
Zhang et al., 2019; Rad and Zajkani, 2020; Tuo et al., 2021; Li et al., 2021b; Ganjiani and
Homayounfard, 2021; Li et al., 2021a).
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2.2 Ductile Fracture

Roughly speaking, Ductile Fracture can be understood as the study of the fracture
behavior of ductile materials under monotonic or quasi-static loading conditions, usually
with the presence of permanent deformation. In many engineering applications, mastering
this phenomenon is vital for the proper design of components and structures. For instance,
forming process on metal sheets relies on the knowledge of material ductility (Bao and
Wierzbicki, 2004; Bai et al., 2006; Bai, 2008). Furthermore, the force that the BOP needs
to apply on the riser to cease oil extraction is the key information sought by BOP designers
(Koutsolelos, 2012; Tekin et al., 2015; Zhu et al., 2020). To predict material ductility,
force levels required to generate specified displacements without failure, or crack sites,
engineers often perform their calculations and simulations on Mises-based analysis for
the reasons presented previously. However, it may not be a appropriate strategy as many
materials are not well described by 𝐽2-formulations, especially if the stress state considered
is not similar to the model calibration point. It is observed that the elastoplastic behavior
of several alloys lays within the Tresca’s and Mises’s yield surfaces. Supported by this
remark, modern formulations aim to describe this intermediate mechanical response by
incorporating the hydrostatic stress and third invariant (Bai and Wierzbicki, 2008).

From the phenomenological point of view, ductile failure in metallic materials can
be explained empirically by the nucleation, coalescence, and growth of micro defects and
shear bands (McClintock, 1968; Rice and Tracey, 1969; Hancock and Mackenzie, 1976).
Examples of such defects are voids generated by air bubbles formed during casting and
more brittle secondary phases present in the alloy (Brown and Embury, 1973). Since
constitutive theories are mathematical frameworks to describe the internal structure of
materials, researchers propose models that incorporate these empirical observations. Based
on the works presented previously, one way to accomplish this is by incorporating 𝑝 and
𝐽3 into the constitutive formulation. Authors have been doing this extensively in the past
years (Hosford, 1972; Bardet, 1990; Brünig, 1999; Bai and Wierzbicki, 2008; Gao et al.,
2011; Khan and Liu, 2012), and interesting results were obtained when stress-invariant
models were used with Damage Mechanics theories (Xue, 2008; Brünig et al., 2013; Malcher
and Mamiya, 2014; Cavalheiro and Malcher, 2017; Tuo et al., 2021). These approaches
satisfactorily described not only the failure moment but also the crack initiation spot.
Damage Mechanics formulations measure material degradation by directly defining an
internal damage variable in the constitutive formulation or by employing damage indicators.
Interested readers should refer to Bai (2008); Nahshon and Hutchinson (2008); Xue (2008);
Lemaitre (2012); Malcher et al. (2012); Malcher and Mamiya (2014); Cavalheiro and
Malcher (2017) for more detailed insights on Damage Mechanics.
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2.3 Fatigue: Ultra Low Cycle and Low Cycle Regimes

The fatigue phenomenon can be understood as the failure experienced by structures
and components when subjected to time-varying loads, which are common for engineering
applications. For instance, Fatigue design is essential in the aircraft, vehicle and power
generation industries (Fatemi and Shamsaei, 2011). Fatigue life assessment represents the
major concern when designing components to withstand such failure. Structures fatigue life
𝑁𝑓 is composed of two parts: crack initiation and crack propagation. In some situations,
the former comprises the majority of 𝑁𝑓 , while in others the latter is the longer period.
Regardless, proper durability predictions depend on the usage of good techniques supported
by experimental data (Dowling and Thangjitham, 2000). This work focuses on scenarios
in which crack initiation plays a key role, and thus attention will be dedicated to articles
and works that discuss this topic.

In the past, researchers defined two types of fatigue regimes depending on the
number of cycles until rupture: High Cycle Fatigue (HCF) for 𝑁𝑓 above 100000 cycles,
and Low Cycle Fatigue (LCF) otherwise. Nevertheless, this life-based definition showed to
be inappropriate, as some materials possess LCF characteristics ( such as hysteresis loops)
even after a large number of cycles (see Bemfica et al. (2019)). In this regard, one can
outline more properly these two regimes by evaluating the presence (LCF) or not (HCF)
of perceptible levels of plastic strain (Dowling and Thangjitham, 2000). Furthermore, LCF
conditions with very high strain amplitude and that are within the large deformation
domain are called Ultra-Low Cycle Fatigue (UCLF), which is characterized by extremely
low lives and large amounts of plastic strain.

The first experiments to study fatigue behavior were conducted by Wöhler (1860),
who performed rotatory bending tests on train shafts, and the techniques proposed by
Goodman (1918), Basquin (1910), and Soderberg (1939) were pioneers in life estimation
under uniaxial loading conditions. Nevertheless, practical applications are multiaxial,
often with complex loading histories, and hence require more refined crack initiation
methodologies for proper assessments. Modern approaches widely employed are based on
Critical Plane and Stress Invariant formulations. In the former group, one highlights Smith
et al. (1970), Brown and Miller (1973), Matake (1977), Fatemi and Socie (1988), while
in the latter Crossland (1956), Dang (1971), Mamiya and Araújo (2002), Mamiya et al.
(2009). These previous techniques were constructed following empirical observations from
fatigue tests.

Fatigue cracks share common features with Ductile Fracture ones. Phenomeno-
logically, the failure mechanisms are similar, they can be explained for instance by the
formation of shear bands and void nucleation (Bannantine and Socie, 1988; Bemfica et al.,
2019; Castro and Jiang, 2016). Besides, crack formation depends on the material and stress
state. Nevertheless, Fatigue seems to possess a more intricate cracking process. Some works
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demonstrate that the same material, with the same values of 𝜂 and 𝜉, shows different crack
types depending on the loading amplitudes (Bannantine and Socie, 1988; Kalnaus, 2009;
Bemfica et al., 2019). Furthermore, fatigue cracks possess preferential propagation direc-
tions (interested readers can refer to Wilson et al. (2019) for a microstructure explanation
on this matter).

In LCF conditions, Critical Plane approaches are particularly interesting, as some
of them are stain-based methodologies. However, one needs to run a constitutive model to
extract the stress history, as in these types of problems the inputs are the strain amplitudes.
Therefore, the choice of a suitable constitutive formulation is vital for accurate fatigue life
assessments, as well as the correct calibration of material parameters. Since solving the
constitutive problem is inevitable, authors suggested the usage of incremental formulations,
such as Damage Mechanics models, as they have an internal damage variable and can be
useful for non-periodic cases (Lemaitre et al., 1999; Jiang et al., 2009; Lopes and Malcher,
2017; Araújo et al., 2020; Neves et al., 2020)

A good constitutive model for LCF applications is capable of furnishing stress
amplitudes close enough to the experimentally observed ones to be later used in Critical
Plane approaches, for instance. Besides, the predicted hysteresis loops should be similar
to the experimental loops. In this setting, the performance of the constitutive formulation
relies on suitable choices of i) yield criterion and ii) kinematic hardening law ( isotropic
hardening is not usually considered in such modeling). Regarding the latter, some common
opted proposals are Prager (1955), Armstrong and Frederick (1966), Chaboche (1989),
and Desmorat (2010). The yield criterion usually chosen is von Mises’s, but as discussed in
Ductile Fracture, several materials are not well described by Mises’s predictions. Therefore,
one may expect that the incorporation of 𝑝 and 𝐽3, as in Gao et al. (2011), may lead to
improved results.

The UCLF regime may be viewed as an intermediate case between Ductile Fracture
and LCF. In this regard, one can presume that UCLF will have features from both
phenomena. Ductile Fracture modeling usually accounts only for isotropic hardening, while
LCF models consider kinematic hardening. On the other hand, UCLF modeling requires
the incorporation of both hardening types (Bai, 2008; Pereira et al., 2016; Algarni et al.,
2017), because there is no reason to believe that there is enough time for cyclic stabilization
and due to the Bauschinger effect. Furthermore, traditional Critical Plane approaches are
not practical in UCLF applications, and Damage Mechanics become an attractive option
(Pereira et al., 2016; Algarni et al., 2017; Xu et al., 2020; Li et al., 2021a).
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3 Theoretical Framework

3.1 Stress State Characterization

The stress state in a given material point is determined by its stress tensor, more
precisely the Cauchy stress tensor in our context. Every second-order tensor admits a
unique decomposition into traceless (deviatoric) and spherical (volumetric) parts (Gurtin
et al., 2010). Thus:

𝜎 = S + 𝑝I , (3.1)

in which S and 𝑝I denote the deviatoric and volumetric parts of 𝜎 respectively. Fur-
thermore, second order tensors also possess principal invariants 𝐼𝑖, 𝑖 = 1, 2, 3, which are
quantities whose values do not depend on the particular frame chosen. It can be shown
that these invariants are the coefficients of the characteristic equation of the analyzed
tensor. In particular for 𝜎

𝜎3 − 𝐼1 (𝜎) 𝜎2 + 𝐼2 (𝜎) 𝜎 − 𝐼3 (𝜎) = 0, (3.2)

with 𝜎 representing the principal stresses. 𝐼1, 𝐼2, and 𝐼3 are defined as:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝐼1 (𝜎) = tr (𝜎) ,

𝐼2 (𝜎) = 1
2 [tr2 (𝜎) − tr (𝜎2)] ,

𝐼3 (𝜎) = det (𝜎) ,

(3.3)

where tr (·) and det (·) express the trace and determinant operations respectively. It is
worth noting that Eq.(3.3) leads to:

𝑝 = 1
3𝐼1 (𝜎) . (3.4)

In plasticity theory, the invariants of both 𝜎 and S are important, and, for notation
purposes, one denotes the principal invariants of 𝜎 by 𝐼, and by 𝐽 the ones of S. The
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deviatoric nature of S immediately leads to the conclusion 𝐽1 (S) = 0, and hence:

⎧⎪⎨⎪⎩
𝐽2 (S) = 1

2S : S

𝐽3 (S) = det (S) ,
(3.5)

in which : represents the double contraction product, commonly referred to as the inner
product between second order tensors.

Once these basic definitions are set, one can introduce formally the triaxiality ratio
𝜂, normalized third invariant 𝜉, and Lode Angle 𝜃. 𝜂 is defined and quotient between 𝑝

and some equivalent stress measure 𝜎𝑒𝑞. Based on this, 𝜂 can be expressed as:

𝜂 = 𝑝

𝜎𝑒𝑞

. (3.6)

Next, 𝜉 is a parameter that express 𝐽3 in a dimensionless way through the relation:

𝜉 =
(︃

𝑟

𝜎𝑒𝑞

)︃3

, 𝑟 =
(︂27

2 𝐽3

)︂ 1
3

. (3.7)

Moreover, 𝜉 is used on the definition of 𝜃:

𝜃 = 1
3 cos−1 (𝜉) . (3.8)

It is worth noting that 0 ≤ 𝜃 ≤ 𝜋/3, and thus −1 ≤ 𝜉 ≤ 1. The Lode Angle can be
also expressed in a normalized way as:

𝜃 = 1 − 6𝜃

𝜋
, (3.9)

which implies 1 ≤ 𝜃 ≤ 1. The triaxiality ratio and Lode Angle have interesting geometrical
interpratations. In this setting, consider Fig.3.1, which shows schematically the definitions
of 𝜂 and 𝜃
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Figure 3.1 – (a) Illustration displaying the stress vector −−→
𝑂𝐵 on the principal stress space

and (b) definition of the Lode angle on 𝜋 plane. Adapted from Bai (2008)
and Cavalheiro and Malcher (2017).

The illustration on the left in Fig.3.1 presents the stress vector −−→
𝑂𝐵 on the principal

stress space. −−→
𝑂𝐵 can be decomposed into two parts: a hydrostatic

−−→
𝑂𝑂′ and a deviatoric

−→
𝑂𝐴. The triaxiality ratio 𝜂 is the quotient between the lengths of these two components,
and it is associated with the so called elevator angle 𝜙 (Bai, 2008). 𝜙 controls the size of
the elastic domains. Figure 3.1b displays the geometrical interpretation of 𝜃. The Lode
angle is the angle formed by −→

𝑂𝐴 and one of the principal directions.

Table 3.1 displays the values of 𝜂, 𝜉, 𝜃, 𝜃 in some important loading scenarios:

Table 3.1 – Values assumed by the stress-based parameters in some common stress states.

Stress State Stress-Based Parameter
𝜂 𝜉 𝜃 ¯̄𝜃

Uniaxial Tension Loading ≥ 1
3 1 0 1

Uniaxial Compression Loading ≤ −1
3 −1 𝜋

3 −1

Pure Shear 0 0 𝜋

6 0

3.2 Hardening Types

Fundamentally, hardening may be defined ad the dependence of the yield stress
upon the history of plastic staining the material has experienced. From the yield surface
point of view, hardening is responsible for changes in the surface size, shape, and orientation.

12



In a thermodynamically consistent framework, hardening is associated with changes in the
hardening thermodynamic force (or power-conjugate) A in the presence of plastic flow
(Lemaitre and Chaboche, 1994; de Souza Neto et al., 2011).

3.2.1 Microscopic Nature

Despite the macroscopic models mentioned so far and the continuum level formula-
tion used in this work, plastic flow is a microscopic phenomenon (Lemaitre and Chaboche,
1994; Khan and Huang, 1995), closely linked with the crystalline structure of metallic
materials. Ewing and Rosenhain (1900) were the first to observe that plastic deformation
occurs by simple shearing provoked by the sliding of certain crystallographic planes in given
directions. Besides, permanent deformation may occur by twinning. Another important
source of plastic deformations are dislocations, more precisely their mobility within the
crystalline structure. The augmentation in the dislocation density produced by external
loads increases the number of blocking within the crystal, which manifests macroscopically
into material hardening.

These are brief explanations of how plastic flow strongly influences the alloy’s
microstructure. For more details and references on microscopic phenomenon during plastic
deformation, the reader is invited to refer to Lemaitre and Chaboche (1994); Khan and
Huang (1995); de Souza Neto et al. (2011)

3.2.2 Isotropic Hardening

Isotropic Hardening models are formulations that consider a uniform (isotropic)
expansion of the yield surface, without translation. Considering a Mises-based model with
isotropic hardening, the Mises cylinder in the principal stress space will increase its radius
in the presence of plastic flow, as depicted in Fig.3.2.
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Initial Surface 
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𝜋 − plane 

Figure 3.2 – Evolution of the Mises yield surface represented on the 𝜋-plane and the
predicted Mises-based model with isotropic hardening response for a uniaxial
cyclic test. Adapted from de Souza Neto et al. (2011).

Following the thermodynamic framework as in Lemaitre and Chaboche (1994) and
de Souza Neto et al. (2011), the choice of the set of hardening internal variables {𝛼𝑖}
depend on the specific characteristics of the phenomenon and material being studied. In
the case of isotropic hardening, the hardening variable is intrinsically connected with the
increase in dislocation density within the metal crystallographic structure, which leads to
the augmentation in the material yield strength. The classical constitutive formulations on
isotropic hardening often consider {𝛼𝑖} to be composed of a single scalar internal variable.
In this setting, two approaches are popular in the plasticity community for the modelling
of isotropic hardening of metallic materials: strain hardening and work hardening.

3.2.2.1 Strain Hardening Approach

As the name may suggest, strain hardening models are methodologies that consider
some suitably scalar measure of strain as the hardening internal variable. A widely used
example is von Mises’s accumulated plastic strain 𝜀𝑝:

𝜀𝑝 =
∫︁ 𝑡

0

√︃
2
3 �̇�𝑝 : �̇�𝑝 𝑑𝑡 =⇒ ˙̄𝜀𝑝 =

√︃
2
3 �̇�𝑝 : �̇�𝑝, (3.10)

in which ˙̄𝜀𝑝,𝑡, �̇�𝑝, represent the rate evolution of 𝜀𝑝, the (pseudo) time variable and the rate
evolution of the plastic strain tensor 𝜀𝑝. Therefore, a von Mises isotropic strain-hardening
model asserts that the uniaxial yield stress 𝜎𝑦 is a function of 𝜀𝑝:

𝜎𝑦 = 𝜎𝑦 (𝜀𝑝) , (3.11)

14



or alternatively:

𝜎𝑦 = 𝜎𝑦0 + 𝑅 (𝜀𝑝) , (3.12)

where 𝜎𝑦0, 𝑅 denote the initial yield stress and the power-conjugate of 𝜀𝑝 respectively.
Equation (3.11) defines the strain hardening law.

3.2.2.2 Work Hardening Approach

Before introducing formally work hardening models, it is worth considering first
Fig.3.3, which presents a hypothetical uniaxial tension test.

𝑊  = 𝑊𝑒 +  𝑊𝑝  

𝜎 

𝜀 

𝑊𝑝  

𝑊𝑒  

𝜀 𝜀𝑝  

𝑃 

Figure 3.3 – Schematic representation of uniaxial tension test, displaying the decompo-
sition of the total work 𝑊 into elastic 𝑊 𝑒 and plastic 𝑊 𝑝 . Adapted from
de Souza Neto et al. (2011).

The total work 𝑊 required to deform the material to point 𝑃 , followed by an
elastic unloading is determined by the computation of the area under the stress-strain
curve. Part of 𝑊 is fully recovered in the unloading stage, and it represents the elastic
work 𝑊 𝑒. The remaining part (shaded area) 𝑊 𝑝 consists of the dissipation provoked by
plasticity, and it is the plastic work, which cannot be recovered. Thus, 𝑊 𝑝 is defined by:

𝑊 𝑝 =
∫︁ 𝑡

0
𝜎 : 𝑑𝜀𝑝 =⇒ �̇� 𝑝 = 𝜎 : �̇�𝑝. (3.13)

For work-hardening isotropic models, 𝜎𝑦 is a function of 𝑊 𝑝:

𝜎𝑦 = 𝜎𝑦 (𝑊 𝑝) , (3.14)

or equivalently:

𝜎𝑦 = 𝜎𝑦0 + 𝑅 (𝑊 𝑝) . (3.15)

Therefore, Eq.(3.14) defines the work-hardening law.
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3.2.2.3 Equivalence Between Strain and Work Hardening

It can be shown (see de Souza Neto et al. (2011)) that for some situations, such as
associative plasticity models, strain and work hardening formulations are equivalent. This
equivalence is mathematically expressed by:

�̇� 𝑝 = 𝜎 : �̇�𝑝 = 𝜎𝑦 (𝜀𝑝) ˙̄𝜀𝑝, (3.16)

which enables a general definition for the evolution of the accumulated plastic strain:

˙̄𝜀𝑝 = 𝜎 : �̇�𝑝

𝜎𝑦 (𝜀𝑝) (3.17)

Finally, two important remarks follow from Eq.(3.16). First, for an isotropic hard-
ening von Mises formulation, Eq.(3.16) reduces to Prandtl–Reuss flow relation:

˙̄𝜀𝑝 = �̇�, (3.18)

with �̇� denoting the plastic multiplier. Second, Eq.(3.16) can be written in terms of 𝜎𝑒𝑞

by simple replacing 𝜎𝑦 by 𝜎𝑒𝑞 in 3.16. Nevertheless, the version displayed in Eq.(3.16) is
preferred in the present work.

3.2.2.4 Typical Isotropic (Strain) Hardening Laws

From this point forward and supported on the equivalence principle discussed
previously, the isotropic strain-hardening law will be referred to as hardening law or
hardening curve. One relatively simple hardening law is a linear relation between 𝜎𝑦 and
𝜀𝑝 (de Souza Neto et al., 2011):

𝜎𝑦 = 𝜎𝑦0 + 𝐻𝐼𝜀𝑝, (3.19)

where 𝐻𝐼 represents the isotropic hardening modulus. In spite of the simplicity of Eq.(3.19),
it is not in general suitable for describing metal plasticity, since this phenomenon is
nonlinear. Thus, nonlinear laws provide more realistic responses. In general, such relations
may be expressed by:

𝜎𝑦 = 𝜎𝑦0 + 𝐻𝐼 (𝜀𝑝) 𝜀𝑝. (3.20)

One notorious nonlinear proposal is the one due to Ludwik (1909):

𝜎𝑦 = 𝜎𝑦0 + 𝐻𝐼 (𝜀𝑝)𝑛 , (3.21)
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in which 𝑛 is the hardening exponent. Several other nonlinear laws are available in the
literature (see Lemaitre and Chaboche (1994), Khan and Huang (1995) and Hosford
(2013)). In this work, the four-parameter hardening law proposed by Kleinermann and
Ponthot (2003) is used due to its good results and flexibility on describing the elatoplastic
behavior of a range o materials in different geometries (Machado and Malcher, 2019):

𝜎𝑦 = 𝜎𝑦0 + 𝜔𝜀𝑝 + (𝜎∞ − 𝜎𝑦0) [1 − exp (−𝛿𝜀𝑝)] , (3.22)

with 𝜔, 𝜎∞ and 𝛿 material parameters that need to be calibrated based on experimental
data (e.g. tensile tests.).

3.2.3 Kinematic Hardening

Kinematic hardening was proposed to model the Bauschinger effect, which is the
empirical observation that materials after being loaded in one direction, often exhibit
reduced resistance to plastic flow in the opposite direction (Lemaitre and Chaboche, 1994).
In such experiments, isotropic hardening fails to predict this behavior.

From the yield surface perspective, kinematic hardening leads to a rigid translation
in the stress space. Figure 3.4 shows the evolution of a von Mises yield surface upon
kinematic hardening and the predicted response by Mises-based model with this type of
hardening.

Initial Surface 

𝜎1 

𝜎3 𝜎2 

𝜀 

𝜎 
Uniaxial Cyclic Test 

Translated Surface 𝜋 − plane 

𝜎𝑦  
𝜎𝑦  

𝜎𝑦  𝛽 

Figure 3.4 – Kinematic Hardening and the Bauschinger effect. Adapted from de Souza Neto
et al. (2011).

For Mises formulations with kinematic hardening, the yield criterion is a function
of 𝜎 and the backstress tensor 𝛽:

𝜑 (𝜎, 𝛽) =
√︁

𝐽2 (𝜂 (𝜎, 𝛽)) − 𝜎𝑦0, 𝜂 (𝜎, 𝛽) := S − 𝛽. (3.23)
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where 𝜂 represents the relative stress tensor defined in this case as the difference between
S and 𝛽. In the particular model considered, both 𝜂 and 𝛽 are deviatoric tensors. The
backstress tensors is the thermodynamic force linked with kinematic hardening, and
represents the translation of the center of the yield surface. Besides, 𝜎𝑦0 is the radius of
Mises cylinder. It worth noting that at the imminence of plastic flow (𝛽 = 0), the yield
surface coincides with the one for isotropic hardening.

Kinematic hardening models are important for the description of cyclic plasticity,
and hence relevant for fatigue applications. In this setting, 𝜎𝑦0 is taken as the cyclic initial
yield strength, which is not in general equal to the monotonic yield stress. Phenomenologi-
cally, the backstress is related to the self-equilibrated residual stresses that remain after
unloading (de Souza Neto et al., 2011).

Formulations that account for kinematic hardening require a kinematic hardening
law to be well-posed. This equation is the evolution relation of 𝛽. In the next lines, one
presents the most used and classical kinematic hardening laws.

3.2.3.1 Prager’s Kinematic Hardening Law

Prager (1955) was the first to successfully capture Bauschinger behavior with the
linear kinematic hardening law:

�̇� = 2
3𝐻𝐾 �̇�𝑝, (3.24)

with �̇� and 𝐻𝐾 denoting the evolution rate of 𝛽 and the kinematic hardening modulus
respectively. Regardless of the capability of predicting decreased yield strength upon load
reversal, Prager’s relation does not capture the nonlinear effects often observed in cyclic
plasticity experiments (Chaboche, 1989).

3.2.3.2 Armstrong-Frederick Kinematic Hardening Law

Armstrong and Frederick (1966) proposed the addition of a nonlinear term to
Eq.(3.24) to describe the nonlinearities observed experimentally:

�̇� = 2
3𝐻𝐾 �̇�𝑝 − ˙̄𝜀𝑝𝑏𝐾𝛽, (3.25)

in which 𝑏𝐾 represents a material parameter, sometimes called saturation coefficient,
since the term �̇�𝑏𝛽 produces a saturation effect. Despite predicting nonlinear responses,
Eq.(3.25) possess some limitations. For instance, it overestimates ratchetting effects in
force-controlled situations (Chaboche, 1989).
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3.2.3.3 Chaboche’s Kinematic Hardening Law

To overcome the limitations of Armstrong-Frederick relation, Chaboche (1989)
proposed a kinematic hardening law generalizing Eq.(3.25) through a sum of 𝑚 Armstrong-
Frederick hardening terms:

�̇� =
𝑚∑︁

𝑖=1

(︂2
3𝐻𝐾

𝑖 �̇�𝑝 − ˙̄𝜀𝑝𝑏𝐾
𝑖 𝛽𝑖

)︂
, (3.26)

By the introduction of more material constants, Chaboche’s formulation allows
a greater fitting flexibility in addition to the desired nonlinear response. Regarding the
number backstress terms, Chaboche (1989) recommends 𝑚 = 3, as it provides satisfactory
correlations with experimental data.

3.2.4 Mixed Hardening

In general, real materials exhibit combined hardening behavior; that is, the yield
surface translates and increases its size at the same time in the presence of plastic flow.
Therefore, one may get more realistic models by mixing both kinematic and isotropic
hardening (de Souza Neto et al., 2011). For instance, formulations that consider Mises
yield criterion may accomplish this by letting:

𝜑 (𝜎, 𝛽, 𝜀𝑝) =
√︁

𝐽2 (𝜂 (𝜎, 𝛽)) − 𝜎𝑦0 − 𝑅 (𝜀𝑝) . (3.27)

and hence embodying the framework from both hardening types. It is worth mentioning that
isotropic and kinematic hardening may be used individually as approximations for material
mechanical responses in some situations. For instance, in Ductile Fracture applications,
models usually consider isotropic hardening, while LCF ones take into consideration only
kinematic hardening. Nevertheless, some cases require the incorporation of both hardenings,
such as ULCF regime.

3.3 Gao’s Equivalent Stress

As presented in Chapter 2, hydrostatic stress 𝑝 and third invariant 𝐽3 have a
strong influence on the behavior of metallic materials. In this regard, the present work
considers the model proposed by Gao et al. (2011), who proposed a new equivalent stress
𝜎𝑒𝑞 incorporating 𝐼1 and 𝐽3:

𝜎𝑒𝑞 = 𝑐
(︁
𝑎𝐼6

1 + 27𝐽3
2 + 𝑏𝐽2

3

)︁ 1
6 , (3.28)
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with 𝑎, 𝑏 and 𝑐 denoting material parameters. 𝑐 is constrained by 𝑎 and 𝑏 by the relation:

𝑐 =
(︂

𝑎 + 4
729𝑏 + 1

)︂−1
6

, (3.29)

which can be demonstrated by considering a uniaxial loading condition. Two remarks
should be noted. Firstly, Gao’s equivalent stresss reduces to von Mises’s when 𝑎 = 𝑏 = 0.
Secondly, under uniaxial loading conditions, the Gao’s and Mises yield surfaces coincide.

3.4 Gao-Based Model with Mixed Kinematic Hardening

3.4.1 Preliminary Aspects

In this dissertation, a Gao-based model with mixed hardening is proposed. One
opts for a mixed hardening approach because it not only comprises all the phenomenons
studied but also allows the particularization to one specific hardening type (isotropic and
kinematic) by simply setting to zero some material parameters. Furthermore, the model is
presented in small deformation context.

3.4.2 Thermodynamics: Basic Concepts

Within the context of thermodynamically consistent formulations, every constitutive
process must satisfy the free-energy imbalance (Gurtin et al., 2010). For purely mechanical
theories (e.g plasticity), this imbalance simplifies to a dissipation inequality. In general,
for plasticity models, the dissipation imbalance has the form

𝛿 = 𝜎 : �̇�𝑝 − A𝑖 * �̇�𝑖 ≥ 0 (3.30)

with 𝛿 and A𝑖 denoting the dissipation per unit volume and the set of thermodyncamic
forces respectively, while * represents the proper product between A𝑖 and �̇�𝑖. The convexity
of the yield surface is directly connected to Eq.(3.30).

The evolution equations of A𝑖 are determined by the specification of the dissipation
potential Ψ, while the state laws are given by the free-energy potential 𝜑. In associative
plasticity models, Φ is equal to model yield function.

Despite of being cited throughout the text, thermodynamics of continua framework
and concepts are not the aim of this work, and hence will not be discussed in full details.
They are presented in this section to provide a basic notion of what are the physical
constraints that plasticity ( and all constitutive modelling) is subjected. Interested readers
on this topics can refer to Gurtin et al. (2010) and Lemaitre and Chaboche (1994) for a
detailed explanations of the mechanics and thermodynamics of continua.
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3.4.3 Additive Strain Decomposition

The strain tensor 𝜀 is decomposed into an elastic 𝜀𝑒 and plastic 𝜀𝑝 parts:

𝜀 = 𝜀𝑒 + 𝜀𝑝 =⇒ 𝜀𝑒 = 𝜀 − 𝜀𝑝. (3.31)

3.4.4 Hooke’s Law

The Cauchy stress tensor 𝜎 is related with 𝜀𝑒 via Hoooke’s Law:

𝜎 = D𝑒 : 𝜀𝑒 = D𝑒 : (𝜀 − 𝜀𝑝) (3.32)

in which D𝑒 represents the the fourth order elasticity tensor. For isotropic materials and
with aid of the Representation Theorem for Isotropic Linear Tensor Functions (see Gurtin
et al. (2010), D𝑒 has the form:

D𝑒 = 2𝐺I𝐷 + 𝐾I ⊗ I , (3.33)

where 𝐺 and 𝐾 are the shear and bulk moduli respectively, while I𝐷 and I denote the
fourth order deviatoric projector and second order identity tensor respectively. I𝐷 is defined
as:

I𝐷 = I − 1
3I ⊗ I , (3.34)

with I and ⊗ respectively represening the fourth order identity tensor and the tensor
product operation.

3.4.5 Yield Criterion

Following a similar structure as displayed in Eq.(3.27), one proposes a yield function
based on Gao’s equivalent stress:

𝜑 = 𝜎𝑒𝑞 (𝜂) − 𝜎𝑦 (𝜀𝑝) ≤ 0. (3.35)

The notation 𝜎𝑒𝑞 (𝜂) in Eq.(3.35) is to emphasize that the invariants needed to
compute 𝜎𝑒𝑞 are the ones of 𝜂. Equation (3.35) also defines the elastic domain 𝜑 < 0 and
the yield surface 𝜑 = 0.
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Since the model is pressure sensitive, the definition of the relative stress tensor in
Eq.(3.23) cannot be used. Instead, a generalized definition is used:

𝜂 (𝜎, 𝛽) := 𝜎 − 𝛽. (3.36)

It is worth observing that in this case, neither 𝜂 nor 𝛽 are deviatoric due to model
pressure sensitivity. Therefore, 𝜂 may be expressed as the sum of a spherical 𝜂𝑉 I and
deviatoric 𝜂𝐷 components:

𝜂 = 𝜂𝑉 I + 𝜂𝐷, (3.37)

which further implies the relations:

⎧⎪⎨⎪⎩𝜂𝐷 = S − 𝛽𝐷,

𝜂𝑉 = 𝑝 − 𝛽𝑉 ,
(3.38)

where 𝛽𝐷 is the deviatoric component of 𝛽 and

𝛽𝑉 = 1
3tr (𝛽) , (3.39)

is related with the volumetric part of 𝛽.

3.4.6 Flow Law

The Flow Law is the evolution equation of 𝜀𝑝. Assuming an associative approach,
it follows:

𝜀𝑝 = �̇�
𝜕𝜑

𝜕𝜎
= �̇�N , (3.40)

with N denoting the flow vector. By the chain rule, it is possible to show that:

N = 𝜕𝜑

𝜕𝜎
= 𝜕𝜑

𝜕𝜂
. (3.41)

Next, by Eq.(3.35), one may conclude:

N = 𝑐

6Λ−5
6

[︂
6𝑎𝐼5

1 (𝜂) I + 81𝐽2
2

(︁
𝜂𝐷
)︁

+ 2𝑏𝐽3
(︁
𝜂𝐷
)︁

det
(︁
𝜂𝐷
)︁ (︁

𝜂𝐷
)︁−𝑇

: I𝐷
]︂

, (3.42)

where
(︁
𝜂𝐷
)︁−𝑇

is the inverse of the transpose of 𝜂𝐷 and :

Λ = 𝑎𝐼6
1 (𝜂) + 27𝐽3

2

(︁
𝜂𝐷
)︁

+ 𝑏𝐽2
3

(︁
𝜂𝐷
)︁

. (3.43)
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Since N is a second order tensor, it admits a decomposition as in Eq.(3.1):

N = 𝑁𝑉 I + N 𝐷, (3.44)

and hence by Eq.(3.42):

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N 𝐷 = 𝑐

6Λ−5
6

[︂
81𝐽2

2

(︁
𝜂𝐷
)︁

+ 2𝑏𝐽3
(︁
𝜂𝐷
)︁

det
(︁
𝜂𝐷
)︁ (︁

𝜂𝐷
)︁−𝑇

: I𝐷

]︂
,

𝑁𝑉 = 𝑎𝑐Λ−5
6 𝐼5

1 (𝜂) .

(3.45)

3.4.7 Accumulated Plastic Strain Evolution and Hardening Law

The evolution equation for 𝜀𝑝 presented in Eq.(3.17) needs to be adapted to account
for kinematic hardening. In this regard, ˙̄𝑝𝜀 is given by

˙̄𝜀𝑝 = �̇�
𝜂 : N
𝜎𝑦 (𝜀𝑝) . (3.46)

Equations 3.37 and 3.44 leads to alternative form of Eq.(3.46):

˙̄𝜀𝑝 = �̇�

𝜎𝑦 (𝜀𝑝)
(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁
. (3.47)

The hardening law chosen is the Kleinermann and Ponthot (2003) relation displayed
in Eq.(3.22).

3.4.8 Kinematic Hardening Law

The backstress tensor evolution is assumed to follow Armstrong-Frederick kinematic
hardening law as displayed in Eq.(3.25).

3.4.9 Complementary Conditions

The complementary conditions provide the constraints on the plastic flow. Basically,
the stress state can only be within the elastic domains or on the yield surface if yielding
takes place. Mathematically:

�̇� ≥ 0, , 𝜑 ≤ 0, �̇�𝜑 = 0 (3.48)
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3.4.10 Persistence Conditions

The persistence conditions assert that during plastic flow, the stress state must
remain on the yield surface. Theses conditions are expressed by the inequalities:

if 𝜑 = 0 =⇒ �̇� ≥ 0, �̇� ≤ 0, �̇��̇� = 0. (3.49)
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4 Numerical Methodology

The mathematical model presented in Chapter 3 is formed by a set of equations
needed to compute the history of the internal variables for a given loading path. However,
only a limited number of loading conditions have analytical solutions, and hence numerical
techniques must be employed in general cases.

The numerical methodology is divided into two parts(de Souza Neto et al., 2011) :

• First, the update of the internal variables is carried out at the Gauss point level for
each (pseudo) time increment. This is the local phase of the numerical solution,

• Second, the updated variables are used to calculate the consistent tangent operator,
which is required assemble the stofness matrix for the Finite Element Method (FEM).
This is the global phase of the numerical technique.

The local part of the numerical solution is based on the operator decomposition
procedure (Simo and Hughes, 1998) and it is addressed in the next section.

4.1 State Update Procedure-The Return Mapping Algorithm

The first step to numerically solve the local problem consists of using some numerical
scheme to discretize the constitutive equations. The problem can be summarized as follows:
given the total strain increment Δ𝜀 and the value of internal variables (*)𝑛 at the time
instant 𝑡𝑛(i.e at the beginning of the increment), one desires to compute the updated
internal variables (*)𝑛+1 at the end of the increment (i.e at 𝑡𝑛+1).

In this regard, the operator decomposition method, also called elastic predictor/-
plastic corrector algorithm, to obtain (*)𝑛+1 (Simo and Hughes, 1998; de Souza Neto et al.,
2011). This methodology consists of two steps: firstly, it is assumed that Δ𝜀 does not
cause yielding, and hence and elastic step. Next, supported by this assumption, the trial
state is constructed (*)𝑇

𝑛+1 and one evaluates the yield criterion 𝜑𝑇
𝑛+1 given in Eq.(3.35).

If 𝜑𝑇
𝑛+1 < 0 then Δ𝜀 is indeed purely elastic, (*)𝑛+1 = (*)𝑇

𝑛+1, and another increment is
performed. If 𝜑𝑇

𝑛+1 ≥ 0, plastic flow takes place and one activates the plastic corrector
to obtain (*)𝑛+1. This latter often is referred to as the Return Mapping Algorithm (see
de Souza Neto et al. (2011) for a geometrical explanation about this nomenclature).
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Euler’s discretization techniques are common options used in plastic corrector phase.
Within this methodology, three approaches are possible: explicit, mid-point (or trapezoidal)
and implicit Euler integration schemes (Simo and Hughes, 1998; de Souza Neto et al.,
2011). This work formulates its numerical strategy employing the latter strategy, due to
some of its advantageous features (de Souza Neto et al., 2011). In implicit frameworks,
the plastic corrector consists ,in general, of a set of nonlinear equations formed by the
evolution equations of the internal variables (or their power-conjugates), and the yield
function. To solve the nonlinear system, Newton-Raphson method is chosen due to its
quadratic convergence rate for good initial guesses (Simo and Hughes, 1998; de Souza Neto
et al., 2011). Particularly, the trial state is used as the initial guess in the iterative process,
which is carried out until some stop condition is satisfied.

This procedure was implemented in the academic Finite Element code HYPLAS(Simo
and Hughes, 1998; de Souza Neto et al., 2011) through a user defined State Update sub-
routine.

4.1.1 Trial State-Elastic Predictor

Assuming that Δ𝜀 has only elastic component Δ𝜀𝑒, it follows from Eq.(3.31):

⎧⎪⎨⎪⎩𝜀𝑒𝑇
𝑛+1 = 𝜀𝑒

𝑛 + Δ𝜀,

𝜀𝑝𝑇
𝑛+1 = 𝜀𝑝

𝑛,
(4.1)

with 𝜀𝑒𝑇
𝑛+1, 𝜀𝑒

𝑛,𝜀𝑝𝑇 𝑟𝑖𝑎𝑙
𝑛+1 and 𝜀𝑝

𝑛 respectively denoting the trial elastic strain tensor, the elastic
strain tensor at the 𝑡𝑛, the trial plastic strain tensor and the plastic strain tensor at 𝑡𝑛.
From this point forward, the upper script 𝑇 will always express a trial state variable,
unless specifically stated otherwise. Equation (4.1) in association with Eq.(3.32) lead to
the trial Cauchy stress tensor 𝜎𝑇

𝑛+1:

𝜎𝑇
𝑛+1 = D𝑒 : 𝜀𝑒𝑇

𝑛+1, (4.2)

which further enables of the computation of the trial deviatoric stress tensor S𝑇
𝑛+1 and

trial hydrostatic stress 𝑝𝑇
𝑛+1:

⎧⎪⎨⎪⎩S𝑇
𝑛+1 = 𝜎𝑇

𝑛+1 − 1
3tr

(︁
𝜎𝑇

𝑛+1

)︁
,

𝑝𝑇
𝑛+1 = 1

3tr
(︁
𝜎𝑇

𝑛+1

)︁
.

(4.3)

In the absence of yielding, there is no hardening-associated (𝜀𝑝 and 𝛽) variables
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evolution:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝜀𝑝𝑇

𝑛+1 = 𝜀𝑝
𝑛,

𝛽𝑇
𝑛+1 = 𝛽𝑛,

𝜎𝑇
𝑦 = 𝜎𝑦 (𝜀𝑝

𝑛) ,

(4.4)

and hence the trial relative stress tensor 𝜂𝑇
𝑛+1 is:

𝜂𝑇
𝑛+1 = 𝜎𝑇

𝑛+1 − 𝛽𝑛. (4.5)

The validation of the trial state depends on the evaluation of the yield criterion
(3.35):

𝜑𝑇
𝑛+1 = 𝜎𝑒𝑞

(︁
𝜂𝑇

𝑛+1

)︁
− 𝜎𝑇

𝑦 . (4.6)

If 𝜑𝑇
𝑛+1 < 0, the elasticity assumption is true, and the trial state is the actual

updated state. However, if 𝜑𝑇
𝑛+1 ≥ 0, the strain increment produces plastic flow and the

plastic corrector is activated.

4.1.2 Plastic Corrector

Since plasticity takes place, it follows that Δ𝜀 possesses a plastic component Δ𝜀𝑝

and from Eq.(3.31) it is possible to show:

𝜀𝑒
𝑛+1 = 𝜀𝑒𝑇

𝑛+1 − Δ𝜀𝑝, (4.7)

and thus the updated Cauchy stress tensor 𝜎𝑛+1 is expressed by:

𝜎𝑛+1 = 𝜎𝑇
𝑛+1 − D𝑒 : Δ𝜀𝑝. (4.8)

Following an implicit integration scheme, one can compute:

Δ𝜀𝑝 = Δ𝛾N 𝑛+1 (4.9)

with Δ𝛾 denoting the plastic multiplier increment and N𝑛+1 representing the flow vector
evaluated at 𝑡𝑛+1. Therefore, one can rewrite Eq.(4.8) as:

𝜎𝑛+1 = 𝜎𝑇
𝑛+1 − Δ𝛾D𝑒 : N 𝑛+1. (4.10)
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It follows from Eq.(3.33) and (3.44) that:

D𝑒 : N 𝑛+1 = 2𝐺N 𝐷
𝑛+1 + 3𝐾𝑁𝑉

𝑛+1I , (4.11)

which finally leads to:

𝜎𝑛+1 = 𝜎𝑇
𝑛+1 − 2𝐺Δ𝛾N 𝐷

𝑛+1 − 3𝐾Δ𝛾𝑁𝑉
𝑛+1I . (4.12)

For implementation purposes, it is more convenient to decompose Eq.(4.12) in
spherical and deviatoric parts:

⎧⎪⎨⎪⎩S𝑛+1 = S𝑇
𝑛+1 − 2𝐺Δ𝛾N 𝐷

𝑛+1,

𝑝𝑛+1 = 𝑝𝑇
𝑛+1 − 3𝐾Δ𝛾𝑁𝑉

𝑛+1.
(4.13)

Next, by Eq.(3.47):

𝜀𝑝
𝑛+1 = 𝜀𝑝

𝑛 +
[︃

Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

. (4.14)

The yield criterion constitutes the update equation for Δ𝛾:

𝜑𝑛+1 = 𝜎𝑒𝑞

(︁
𝜂𝑛+1

)︁
− 𝜎𝑦 (𝜀𝑝

𝑛+1) . (4.15)

For Finite Element Calculations, Eq.(3.20) is used to approximate the calibrated
hardening curve based on Eq.(3.22), and hence:

𝜑𝑛+1 = 𝜎𝑒𝑞

(︁
𝜂𝑛+1

)︁
− 𝜎𝑦0 − 𝐻𝐼 (𝜀𝑝

𝑛+1) 𝜀𝑝
𝑛+1, (4.16)

where:

𝑑𝜎𝑦

𝑑𝜀𝑝

⃒⃒⃒⃒
𝑛+1

= 𝐻𝐼 (𝜀𝑝
𝑛+1) . (4.17)

The implicit integration of Eq.(3.25) associated with Eq.(3.47) and (4.9) leads to
the update equation for the backstress tensor:

𝛽𝑛+1 = 𝛽𝑛 + 2
3𝐻𝐾Δ𝛾N 𝑛+1 −

[︃
𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

𝛽𝑛+1, (4.18)

and hence the updated relative stress tensor 𝜂𝑛+1 is given by:

𝜂𝑛+1 = 𝜎𝑛+1 − 𝛽𝑛+1. (4.19)
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According to (3.38) and (4.18), the update equations for the deviatotric 𝛽𝐷
𝑛+1 and

volumetric 𝛽𝑉
𝑛+1 components of 𝛽𝑛+1 are then:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝛽𝐷
𝑛+1 = 𝛽𝐷

𝑛 + 2
3𝐻𝐾Δ𝛾N 𝐷

𝑛+1 −
[︃

𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

𝛽𝐷
𝑛+1,

𝛽𝑉
𝑛+1 = 𝛽𝑉

𝑛 + 2
3𝐻𝐾Δ𝛾𝑁𝑉

𝑛+1 −
[︃

𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

𝛽𝑉
𝑛+1.

(4.20)

Therefore the nonlinear system of equations is formed by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S𝑛+1 = S𝑇
𝑛+1 − 2𝐺Δ𝛾N 𝐷

𝑛+1,

𝜀𝑝
𝑛+1 = 𝜀𝑝

𝑛 +
[︃

Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

,

𝜑𝑛+1 = 𝜎𝑒𝑞

(︁
𝜂𝑛+1

)︁
− 𝜎𝑦0 − 𝐻𝐼 (𝜀𝑝

𝑛+1) 𝜀𝑝
𝑛+1,

𝑝𝑛+1 = 𝑝𝑇
𝑛+1 − 3𝐾Δ𝛾𝑁𝑉

𝑛+1,

𝛽𝐷
𝑛+1 = 𝛽𝐷

𝑛 + 2
3𝐻𝐾Δ𝛾N 𝐷

𝑛+1 −
[︃

𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

𝛽𝐷
𝑛+1,

𝛽𝑉
𝑛+1 = 𝛽𝑉

𝑛 + 2
3𝐻𝐾Δ𝛾𝑁𝑉

𝑛+1 −
[︃

𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

𝛽𝑉
𝑛+1.

(4.21)

The system (4.21) can be solved by the Newton-Raphson method, which in general
is expressed by:

J𝑘𝛿𝑘+1 = −𝑅𝑘, (4.22)

where J, 𝛿,𝑅 and 𝑘 respectively express the Jacobian matrix of the nonlinear system, the
variables increment and residual equations arrays, and the Newton-Raphson iteration
counter. It is worth noting that Eq.(4.22) represents a linear system. In this setting, system
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(4.21) need to be written in residual form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑅S = S𝑛+1 − S𝑇
𝑛+1 + 2𝐺Δ𝛾N 𝐷

𝑛+1 = 0,

𝑅𝜀𝑝 = 𝜀𝑝
𝑛+1 − 𝜀𝑝

𝑛 −
[︃

Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

= 0,

𝑅Δ𝛾 = 𝜎𝑒𝑞

(︁
𝜂𝑛+1

)︁
− 𝜎𝑦0 − 𝐻𝐼 (𝜀𝑝

𝑛+1) 𝜀𝑝
𝑛+1 = 0,

𝑅𝑝 = 𝑝𝑛+1 − 𝑝𝑇
𝑛+1 + 3𝐾Δ𝛾𝑁𝑉

𝑛+1 = 0,

𝑅𝛽𝐷 = 𝛽𝐷
𝑛+1 − 𝛽𝐷

𝑛 − 2
3𝐻𝐾Δ𝛾N 𝐷

𝑛+1 +
[︃

𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

𝛽𝐷
𝑛+1 = 0,

𝑅𝛽𝑉 = 𝛽𝑉
𝑛+1 − 𝛽𝑉

𝑛 − 2
3𝐻𝐾Δ𝛾𝑁𝑉

𝑛+1 +
[︃

𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁]︃ ⃒⃒⃒⃒
𝑛+1

𝛽𝑉
𝑛+1 = 0.

(4.23)

with 𝑅(·) representing the residual equation of the variable (·). Thus, the complete linearized
system is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑅S
𝜕S

𝜕𝑅S
𝜕𝜀𝑝

𝜕𝑅S
𝜕Δ𝛾

𝜕𝑅S
𝜕𝑝

𝜕𝑅S
𝜕𝛽𝐷

𝜕𝑅S
𝜕𝛽𝑉

𝜕𝑅𝜀𝑝

𝜕S
𝜕𝑅𝜀𝑝

𝜕𝜀𝑝
𝜕𝑅𝜀𝑝

𝜕Δ𝛾
𝜕𝑅𝜀𝑝

𝜕𝑝
𝜕𝑅𝜀𝑝

𝜕𝛽𝐷
𝜕𝑅𝜀𝑝

𝜕𝛽𝑉

𝜕𝑅Δ𝛾

𝜕S
𝜕𝑅Δ𝛾

𝜕𝜀𝑝

𝜕𝑅Δ𝛾

𝜕Δ𝛾

𝜕𝑅Δ𝛾

𝜕𝑝

𝜕𝑅Δ𝛾

𝜕𝛽𝐷

𝜕𝑅Δ𝛾

𝜕𝛽𝑉

𝜕𝑅𝑝

𝜕S
𝜕𝑅𝑝

𝜕𝜀𝑝

𝜕𝑅𝑝

𝜕Δ𝛾
𝜕𝑅𝑝

𝜕𝑝
𝜕𝑅𝑝

𝜕𝛽𝐷
𝜕𝑅𝑝

𝜕𝛽𝑉

𝜕𝑅
𝛽𝐷

𝜕S
𝜕𝑅

𝛽𝐷

𝜕𝜀𝑝

𝜕𝑅
𝛽𝐷

𝜕Δ𝛾

𝜕𝑅
𝛽𝐷

𝜕𝑝

𝜕𝑅
𝛽𝐷

𝜕𝛽𝐷

𝜕𝑅
𝛽𝐷

𝜕𝛽𝑉

𝜕𝑅
𝛽𝑉

𝜕S
𝜕𝑅

𝛽𝑉

𝜕𝜀𝑝

𝜕𝑅
𝛽𝑉

𝜕Δ𝛾

𝜕𝑅
𝛽𝑉

𝜕𝑝

𝜕𝑅
𝛽𝑉

𝜕𝛽𝐷

𝜕𝑅
𝛽𝑉

𝜕𝛽𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑘 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝛿S

𝛿𝜀𝑝

𝛿Δ𝛾

𝛿𝑝

𝛿𝛽𝐷

𝛿𝛽𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑘+1

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑅S

𝑅𝜀𝑝

𝑅Δ𝛾

𝑅𝑝

𝑅𝛽𝐷

𝑅𝛽𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝑘

, (4.24)

in which 𝛿(·) is the increment of the unknowns (·):

(·)𝑘+1 = (·)𝑘 + 𝛿𝑘+1
(·) . (4.25)

The linear system (4.24) is iteratively solved until a converge criterion is satisfied.
The stop condition chosen is based on the residuals norm:

Error =
𝑘∑︁

𝑖=1

⃦⃦⃦⃦
𝑅𝑥𝑖

𝑥𝑖

⃦⃦⃦⃦
, (4.26)

where 𝑥𝑖 represents the 𝑖 − th system unknown.

When Error is lesser or equal to a given tolerance 𝜖, convergence is achieved, the
internal variables and their power-conjugates are updated and the numerical methodology
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continues. The explicit computation of the derivatives present in the coefficient matrix in
Eq.(4.24) can be found on the appendix of this work.

4.2 Consistent Tangent Operator

To solve the global equilibrium equations generated by the Finite Element Method,
one needs to construct the elements stiffness matrix 𝐾𝑒𝑙, which is later used to assemble
global stiffness matrix 𝐾. The assembly of 𝐾𝑒𝑙 requires the computation of the consistent
tangent operator D :

D = 𝜕𝜎𝑛+1

𝜕𝜀𝑛+1
. (4.27)

Only a limited number of constitutive elastoplastic models possess a closed form
of D, and hence a numerical approach is advisable for more general formulations. In this
regard, one follows the framework presented in de Souza Neto et al. (2011).

First, if the elasticity assumption of the trial state is true, then no hardening takes
place, and D is simply the elasticity tensor D𝑒. Thus:

D = D𝑒. (4.28)

Nevertheless, if plastic flow occurred the derivative (4.27) is not easily computed. If
�̂� denotes the algorithmic stress update function in the plastic corrector phase, it follows:

D = D𝑒𝑝 = 𝜕𝜎𝑛+1

𝜕𝜀𝑛+1
= 𝜕�̂�

𝜕𝜀𝑛+1
, (4.29)

with D𝑒𝑝 representing the elastoplastic tangent. It is possible to show that (de Souza Neto
et al., 2011):

D𝑒𝑝 = 𝜕𝜎𝑛+1

𝜕𝜀𝑛+1
= 𝜕𝜎𝑛+1

𝜕𝜀𝑒𝑇
𝑛+1

. (4.30)

One way to calculate Eq.(4.30) is by a consistent linearization of the nonlinear
system (4.21) (de Souza Neto et al., 2011). Before that, it is important to observe the
following relation:

D𝑒𝑝 = 𝜕S𝑛+1

𝜕𝜀𝑒𝑇
𝑛+1

+ I ⊗ 𝜕𝑝𝑛+1

𝜕𝜀𝑒𝑇
𝑛+1

. (4.31)
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Further, the expressions:

⎧⎪⎨⎪⎩𝑑S𝑇
𝑛+1 = 2𝐺𝑑𝜀𝑒𝐷𝑇

𝑛+1 = 2𝐺I𝐷 : 𝑑𝜀𝑒𝑇
𝑛+1,

𝑑𝑝𝑇
𝑛+1 = 𝐾𝑑𝜀𝑉 𝑇

𝑛+1 = 𝐾I : 𝑑𝜀𝑒𝑇
𝑛+1,

(4.32)

are useful to determine D𝑒𝑝, with 𝜀𝑒𝐷𝑇
𝑛+1 and 𝜀𝑉 𝑇

𝑛+1I denoting the deviatoric and volumetric
parts of 𝜀𝑒𝑇

𝑛+1, while 𝑑 represents the differential operator.

The consistent linearization of Eq.(4.21) leads to the linear system:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑅S
𝜕S

𝜕𝑅S
𝜕𝜀𝑝

𝜕𝑅S
𝜕Δ𝛾

𝜕𝑅S
𝜕𝑝

𝜕𝑅S
𝜕𝛽𝐷

𝜕𝑅S
𝜕𝛽𝑉

𝜕𝑅𝜀𝑝

𝜕S
𝜕𝑅𝜀𝑝

𝜕𝜀𝑝
𝜕𝑅𝜀𝑝

𝜕Δ𝛾
𝜕𝑅𝜀𝑝

𝜕𝑝
𝜕𝑅𝜀𝑝

𝜕𝛽𝐷
𝜕𝑅𝜀𝑝

𝜕𝛽𝑉

𝜕𝑅Δ𝛾

𝜕S
𝜕𝑅Δ𝛾

𝜕𝜀𝑝

𝜕𝑅Δ𝛾

𝜕Δ𝛾

𝜕𝑅Δ𝛾

𝜕𝑝

𝜕𝑅Δ𝛾

𝜕𝛽𝐷

𝜕𝑅Δ𝛾

𝜕𝛽𝑉

𝜕𝑅𝑝

𝜕S
𝜕𝑅𝑝

𝜕𝜀𝑝

𝜕𝑅𝑝

𝜕Δ𝛾
𝜕𝑅𝑝

𝜕𝑝
𝜕𝑅𝑝

𝜕𝛽𝐷
𝜕𝑅𝑝

𝜕𝛽𝑉

𝜕𝑅
𝛽𝐷

𝜕S
𝜕𝑅

𝛽𝐷

𝜕𝜀𝑝

𝜕𝑅
𝛽𝐷

𝜕Δ𝛾

𝜕𝑅
𝛽𝐷

𝜕𝑝

𝜕𝑅
𝛽𝐷

𝜕𝛽𝐷

𝜕𝑅
𝛽𝐷

𝜕𝛽𝑉

𝜕𝑅
𝛽𝑉

𝜕S
𝜕𝑅

𝛽𝑉

𝜕𝜀𝑝

𝜕𝑅
𝛽𝑉

𝜕Δ𝛾

𝜕𝑅
𝛽𝑉

𝜕𝑝

𝜕𝑅
𝛽𝑉

𝜕𝛽𝐷

𝜕𝑅
𝛽𝑉

𝜕𝛽𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑S𝑛+1

𝑑𝜀𝑝
𝑛+1

𝑑Δ𝛾

𝑑𝑝𝑛+1

𝑑𝛽𝐷
𝑛+1

𝑑𝛽𝑉
𝑛+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝐺I𝐷 : 𝑑𝜀𝑒𝑇
𝑛+1

0
0

𝐾I : 𝑑𝜀𝑒𝑇
𝑛+1

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.33)

or equivalently:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑑S𝑛+1

𝑑𝜀𝑝
𝑛+1

𝑑Δ𝛾

𝑑𝑝𝑛+1

𝑑𝛽𝐷
𝑛+1

𝑑𝛽𝑉
𝑛+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 𝐶22 𝐶23 𝐶24 C25 𝐶26

C31 𝐶32 𝐶33 𝐶34 C35 𝐶36

C41 𝐶42 𝐶43 𝐶44 C45 𝐶46

C51 C52 C53 C54 C55 C56

C61 𝐶62 𝐶63 𝐶64 C65 𝐶66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2𝐺I𝐷 : 𝑑𝜀𝑒𝑇
𝑛+1

0
0

𝐾I : 𝑑𝜀𝑒𝑇
𝑛+1

0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4.34)

where:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C21 𝐶22 𝐶23 𝐶24 C25 𝐶26

C31 𝐶32 𝐶33 𝐶34 C35 𝐶36

C41 𝐶42 𝐶43 𝐶44 C45 𝐶46

C51 C52 C53 C54 C55 C56

C61 𝐶62 𝐶63 𝐶64 C65 𝐶66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝑅S
𝜕S

𝜕𝑅S
𝜕𝜀𝑝

𝜕𝑅S
𝜕Δ𝛾

𝜕𝑅S
𝜕𝑝

𝜕𝑅S
𝜕𝛽𝐷

𝜕𝑅S
𝜕𝛽𝑉

𝜕𝑅𝜀𝑝

𝜕S
𝜕𝑅𝜀𝑝

𝜕𝜀𝑝
𝜕𝑅𝜀𝑝

𝜕Δ𝛾
𝜕𝑅𝜀𝑝

𝜕𝑝
𝜕𝑅𝜀𝑝

𝜕𝛽𝐷
𝜕𝑅𝜀𝑝

𝜕𝛽𝑉

𝜕𝑅Δ𝛾

𝜕S
𝜕𝑅Δ𝛾

𝜕𝜀𝑝

𝜕𝑅Δ𝛾

𝜕Δ𝛾

𝜕𝑅Δ𝛾

𝜕𝑝

𝜕𝑅Δ𝛾

𝜕𝛽𝐷

𝜕𝑅Δ𝛾

𝜕𝛽𝑉

𝜕𝑅𝑝

𝜕S
𝜕𝑅𝑝

𝜕𝜀𝑝

𝜕𝑅𝑝

𝜕Δ𝛾
𝜕𝑅𝑝

𝜕𝑝
𝜕𝑅𝑝

𝜕𝛽𝐷
𝜕𝑅𝑝

𝜕𝛽𝑉

𝜕𝑅
𝛽𝐷

𝜕S
𝜕𝑅

𝛽𝐷

𝜕𝜀𝑝

𝜕𝑅
𝛽𝐷

𝜕Δ𝛾

𝜕𝑅
𝛽𝐷

𝜕𝑝

𝜕𝑅
𝛽𝐷

𝜕𝛽𝐷

𝜕𝑅
𝛽𝐷

𝜕𝛽𝑉

𝜕𝑅
𝛽𝑉

𝜕S
𝜕𝑅

𝛽𝑉

𝜕𝜀𝑝

𝜕𝑅
𝛽𝑉

𝜕Δ𝛾

𝜕𝑅
𝛽𝑉

𝜕𝑝

𝜕𝑅
𝛽𝑉

𝜕𝛽𝐷

𝜕𝑅
𝛽𝑉

𝜕𝛽𝑉

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

(4.35)

Therefore, it follows from Eq.(4.34):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕S𝑛+1

𝜕𝜀𝑒𝑇
𝑛+1

= 2𝐺C11 : I𝐷 + 𝐾C14 ⊗ I ,

𝜕𝑝𝑛+1

𝜕𝜀𝑒𝑇
𝑛+1

= 2𝐺C41 : I𝐷 + 𝐾𝐶44I ,

(4.36)
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which completes the computation of D𝑒𝑝 according to Eq.(4.31). At this point, two remarks
are important:

• the systems (4.24) and (4.33) share the same coefficient matrices. This feature
illustrates one of the benefits of the implicit scheme used, since the referf matrix is
computed in the state update phase;

• the assembly of the consistent tangent operator occurs after the state update
procedure, since D requires the updated internal variables for its calculation.

The presented framework was also implement in HYPLAS via user defined subrou-
tine.

4.3 Meshes and Boundary Conditions

Mesh definition is vital for the numerical solution of the Boundary Value Problem
(BVP) since the mesh represents the spatial discretization of the BVP domain. In this
dissertation, the butterfly and smooth cylindrical specimens of SAE 1045 steel investigated
by Bai (2008) were simulated in HYPLAS. The meshing of these specimens was conducted
with aid of the Evaluation version of the software GiD®. In the next lines, one presents
the mesh options used for each geometry, as well as the boundary conditions applied in
the simulations.

4.3.1 Butterfly Specimen Mesh

After a preliminary analysis, one opts to use a mesh formed by quadratic 10-noded
tetrahedric elements to mesh the butterfly specimen. This decision was based on the
computational time spent during each simulation test. The best trade-off relation was
achieved with a mesh of 1654 quadratic 10-noded tetrahedral elements (TETRA10 in
HYPLAS) and 3588 nodes. Regardless of being relatively coarse, this mesh is suitable for
the purposes of this work. The mesh constructed is displayed in Fig.4.1.
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Figure 4.1 – Butterfly specimen mesh used in the Finite Elements simulations.

Figure 4.2 displays the location where boundary conditions are applied in the Finite
Elements simulations. The nodes on the top "shoulder" are subjected to some prescribed
horizontal and/or vertical displacement, while the nodes at the bottom are fixed.

Top Shoulder 

Bottom Shoulder 
Figure 4.2 – Location of the regions where the boundary conditions are applied on butterfly

specimens simulations.

Details about the geometry (e.g. dimensions) of the butterfly specimen can be found
in Bai (2008). According to Bai (2008), the crack initiation was experimentally observed
in the central region of the gauge section of the butterfly specimen for the majority of the
tests. Therefore, a node in the referred region is selected for extracting local quantities
(e.g accumulated plastic strain).

4.3.2 Smooth Cylindrical Specimen

Supported by previous works (see Malcher et al. (2020) and Morales (2020)), one
uses a mesh with 690 elements and 2177 quadratic 8-noded quadrilateral elements (QUAD8
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in HYPLAS). The resulting mesh is presented Fig.4.3, and further information about the
specimen dimensions can be found in Bai (2008).

Figure 4.3 – Smooth cylindrical specimen mesh used in the Finite Elements simulations.

As Fig.4.3 demonstrates, only one fourth of the specimen gauge section is modeled
due to its symmetry around its main axis. Figure 4.4 presents the boundary conditions
employed in the Finite Elements simulations.

𝑑 

Figure 4.4 – Boundary conditions applied on smooth cylindrical specimens simulations .

A vertical prescribed displacement 𝑑 is applied on the top nodes, while the nodes
at the bottom are only free to move on the horizontal direction to emulate Poisson’s effect.
The nodes on the left side of the boundary are horizontally constrained. This geometry
is important for the calibration of the hardening law, as it is used in the optimization
technique.
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4.4 Simulations at the Gauss Point

For some cyclic plasticity applications, such LCF regime, one can simulate the
stress-strain hysteris loop at the Gauss level, which makes modeling process much easier
as the complete FEM simulation. Low Cycle Fatigue data usually provide not only the
loading path tested (see Leese and Socie (1989) for instance), but also the strain and stress
amplitudes, and the fatigue life 𝑁𝑓 .

In this regard, these simplified simulations were performed by taking advantage of
the state update subroutine coded in HYPLAS. This code was adapted to MATLAB®, and
receives experimental strain amplitude applied, as well as the material parameters, to carry
out the calculations. The code accepts a number of proportional and non-proportional
loading paths, which must be informed by the user.

4.5 Material Parameters by an Optimization Technique

Any constitutive model performance depends to a great extent on how well-
calibrated its parameters are. This is especially critical for Ductile Fracture since the
material elastoplastic behavior prediction relies on the identification of the hardening
law parameters. One way to this is by conducting a standard tensile test on a smooth
cylindrical specimen and treat the force 𝐹 versus displacement 𝑑 data (also called reaction
curve) to extract the experimental hardening curve. With this information, one may carry
out some fitting method using the hardening law as the model function on this curve to
obtain the fitting parameters.

However, this approach shows limitations to describe the experimental reaction
curve notably after the specimen necking, which is a phenomenon characterized by a
dramatic reduction of the gauge cross-section. This inaccuracy is explained by the fact
that at the neck region, the material response deviates considerably from the average
cross-sectional behavior assumed by the previously mentioned calibration technique (Bai,
2008; Malcher et al., 2012; Machado and Malcher, 2019; Malcher et al., 2020).

Inverse methodologies are suitable options to overcome this issue (Kleinermann
and Ponthot, 2003; Machado and Malcher, 2019), as the nonlinearities and necking are
considered in the optimization procedure. In this regard, one uses such approach to
calibrate the four parameters of the Kleinermann and Ponthot (2003) hardening law. The
key idea of the performed technique is presented in Fig.4.5.
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Experiment 

𝐹 

Numerical Response 

𝑑 

𝑓 (  )𝒑 

𝐹𝑖
𝐸𝑋𝑃  

𝐹𝑖
𝑁𝑈𝑀  

𝑖 

Figure 4.5 – Difference between the numerical and experimental reaction curves and the
objective function.

The FEM method predicts the numerical force 𝐹 𝑁𝑈𝑀 versus displacement curve
based on a set of input parameters p, which will not in general accurately describe the
experimental curve. To correct this discrepancy, one needs to minimize the following
objective function 𝑓 (p):

𝑓 (p) =

⎯⎸⎸⎷ 1
𝑁

𝑁∑︁
𝑖=1

(︃
𝐹 𝑁𝑈𝑀

𝑖 (p) − 𝐹 𝐸𝑋𝑃
𝑖

𝐹 𝐸𝑋𝑃
𝑖

)︃2

, (4.37)

where 𝐹 𝐸𝑋𝑃 and 𝑁 denotes the experimental forces and number of data points, respectively.
It is worth observing that the objective function (4.37) chosen is a least-squares type. The
optimization problem consists of finding the optimal parameters set p* that minimizes 𝑓 .
To do so, one uses an optimization MATLAB code, linked with HYPLAS, developed by
Machado and Malcher (2019). The hardening law used in the Finite Elements simulation
is given in Eq.(3.22) and thus:

p =
[︁
𝜎𝑦0 𝜔 𝜎∞ 𝛿

]︁
(4.38)

To start the optimization iterations, an initial set p0 is needed, and one possible
initial guess is set obtained by the fitting approach. Finally, the calibration process is
conducted with 𝑎 = 𝑏 = 0, 𝐻𝐾 = 0 and 𝑏𝐾 = 0. In other words, it is an von Mises with
isotropic hardening based calibration.
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5 Material and Experimental Data

The SAE 1045 steel was the material chosen for the evaluation of the stress invariants
effects. This alloy possess a considerably large amount of Ductile Fracture, Ultra-Low and
Low Cycle Fatigue data available in the literature, besides from its industrial relevance.
For example, this alloy is important in machining process, both as a cutting tool and as
the machined material for engineering applications Courbon et al. (2013); Singh et al.
(2021). Moreover, SAE 1045 steel is widely used in the manufacture vehicle shafts and in
structural engineering (Leese and Socie, 1989; Thompson et al., 2021).

Regarding data on SAE 1045 steel, Bai (2008) performed monotonic and cyclic
tests on SAE 1045 steel butterfly specimens, while Leese and Socie (1989) provide an
extensive report with LCF data for this steel alloy. These 2 contributions were the base
for the experimental data used to evaluate the performance of the model presented in
Chapter 3 and for parameters calibration. In the next lines, one briefly details the main
features and information in each work. Finally, the material parameters obtained by the
data analysis will be presented.

5.1 Ductile Fracture and Ultra-Low Cycle Experiments from Bai
(2008)

Bai (2008) conducted a series of monotonic and ULCF tests on butterfly specimens
to investigate the effects of 𝜂 and 𝜃 on SAE 1045 steel behavior. All the tests were
displacement controlled and carried out until fracture. Figure 5.1 displays schematically
how these experiments were elaborated and some of the load conditions considered.
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Moving Part

Fixed Part

Gauge 
Section

Tension

Compression

Starting point
of moving part

+90°

+30°

+5°
+0°

-10°

-90°

-0°

Figure 5.1 – Experiments performed on SAE 1045 butterfly specimens. On the left, the
specimen regions that are fixed and where the prescribed displacement are
applied. On the right, the loading directions investigated. Adapted from Bai
(2008).

The butterfly geometry is especially useful for the study of materials pressure
and third invariant dependence because it allows covering a wide range of 𝜂 and 𝜉 (or 𝜃)
values with a single specimen shape. For instance, approximate uniaxial tensile conditions
(𝜂 ≥ 1/3 and 𝜉 = 1) can be obtained for vertical loads (±90∘ directions in Fig.5.1), and
shear (𝜂 ≥ 0 and 𝜉 = 0) with horizontal loads (±0∘ directions in Fig.5.1). Combined
scenarios can be achieved by varying the angle between the applied load direction and
specimens moving part (+30∘ direction in Fig.5.1 for example).

Besides the butterfly specimens, Bai (2008) performed similar experiments with
other geometries, one the them the standard smooth cylindrical specimen, which is
important to calibrate the hardening law. Table 5.1 presents the displacements to fracture
of the monotonic tests considered in this dissertation.

Table 5.1 – Experimental displacements to fracture of the monotonic tests conducted by
Bai (2008).

Test Vertical Displacement
to Fracture (mm)

Horizontal Displacement
to Fracture (mm)

Smooth Cylindrical 1.54 -
Butterfly +90∘ 0.10 -
Butterfly +0∘ - 1.15
Butterfly +30∘ 0.22 0.12
Butterfly +5∘ 0.40 0.04

Furthermore, Table 5.2 displays the displacement ranged of the cyclic tests (ULCF
regime) carried out by Bai (2008).
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Table 5.2 – Displacement ranges used in the cyclic tests conducted by Bai (2008).

Cyclic Test Minimum Displacement
(mm)

Maximal Displacement
(mm)

Compression-Tension 1
(−90∘to + 90∘) −0.06 0.01

Compression-Tension 2
(−90∘to + 90∘) −0.15 0.06

Shear-Shear 1
(−0∘to + 0∘) −0.50 0.81

Shear-Shear 2
(−0∘to + 0∘) −0.71 0.81

The data contained in Tables 5.1 and 5.2 are used to assemble the boundary
conditions for the Finite Elements simulations.

5.2 Low Cycle Fatigue Experiments from Leese and Socie (1989)

Leese and Socie (1989) performed a series of strain-controlled cyclic tests on SAE
1045 steel smooth cylindrical and thin walled specimens. This latter specimen allows to
compute an analytical estimation of the shear stress amplitude in pure torsion experiments.

A number of proportional and nonproportional loading paths with different loading
ratios 𝑅𝑎 were investigated, and the data (calculated stress amplitudes and crack initiation
fatigue life ) from each test recorded. Table 5.3 shows the axial strain amplitudes 𝜀𝑎, the
calculated axial stress amplitudes 𝜎𝑎 for each test performed at 𝜀𝑎, and the mean axial
stress amplitude �̄�𝑎 for the set of experiments carried out at 𝜀𝑎 for fully reversed 𝑅𝑎 = −1
axial tests.
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Table 5.3 – Data from the fully reversed cyclic axial tests conducted by Leese and Socie
(1989).

𝜀𝑎 (%) 𝜎𝑎 (MPa) �̄�𝑎 (MPa)
2.00 524.0 524.0

1.50 499.0 499.0

1.00 465.0 458.5452.0

0.80 440.0 442.5445.0

0.60 420.0 430.0440.0

0.50 372.0 372.0

0.40
353.0

354.7351.0
360.0

0.30 315.0 354.7

0.25 302.0 300.0298.0

0.2

269.9

273.2270.0
274.0
280.0

0.15 241.0 241.0

Table 5.4 displays the shear strain amplitudes 𝛾𝑎, the calculated shear stress
amplitudes 𝜏𝑎 for each experiment performed at 𝛾𝑎, and the mean axial stress amplitude 𝜏𝑎

for the set of experiments carried out at 𝛾𝑎 for fully reversed 𝑅𝑎 = −1 pure torsion tests.
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Table 5.4 – Data from the fully reversed cyclic torsion tests conducted by Leese and Socie
(1989).

𝛾𝑎 (%) 𝜏𝑎 (MPa) 𝜏𝑎 (MPa)

2.50
270.0

266.3270.0
259.0

1.73 251.0 249.5248.0

1.50
232.0

233.7237.0
232.0

0.82
194.0

197.3200.0
198.0

0.72 196.0 196.0

0.50
161.0

164.7168.0
165.0

0.40
160.0

156.0159.0
154.0

0.38
155.0

160.7164.0
163.0

0.30 148.0 148.0

5.3 Material Parameters Identification by Data from Bai (2008)

To properly run the numerical model presented in Chapter 4, one needs to calibrate
some material parameters namely: the Young or Elasticity Modulus 𝐸, Poisson’s ratio 𝜈,
the Kleinermann and Ponthot (2003) 𝜎𝑦0, 𝜔, 𝜎∞, 𝛿 and the kinematic hardening 𝐻𝐾 and
𝑏𝐾 parameters, as well as, Gao’s constants 𝑎 and 𝑏. All of them can be identified from the
monotonic and cyclic data from Bai (2008).
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5.3.1 Calibration of Elasticity and Isotropic Hardening Law Parameters

The identification of 𝐸, 𝜈, 𝜎𝑦0, 𝜔, 𝜎∞, and 𝛿 was conducted supported by the
monotonic data. In this regard, the reaction curve from the tension test on the smooth
cylindrical specimen is analyzed. It is assumed that 𝜈 = 0.3, which is a common assumption
for metallic materials (Leese and Socie, 1989; Lemaitre and Chaboche, 1994; Bai, 2008).
Next, one converts the force 𝐹 versus displacement 𝑑 curve into a engineering stress 𝜎

versus engineering strain 𝜀 graph. Carrying out a linear regression on linear portion of the
transformed plot, one obtains 𝐸 = 178.9 GPa.

To start the optimization process detailed in Chapter 4, one needs to extracts the
experimental hardening curve for the estimation of the initial guess p0. To do so, first the
initial monotonic yield stress 𝜎𝑦0 is estimated through the 0.2%-strain technique, which
furnishes, 𝜎𝑦0 = 813.9 MPa, enabling the extraction of the experimental hardening curve.
Further, this curve is transformed to true measures by the relations:

⎧⎪⎨⎪⎩𝜎𝑣 = 𝜎 (1 + 𝜀) ,

𝜀𝑣 = ln (1 + 𝜀) ,
(5.1)

with 𝜎𝑣 and 𝜀𝑣 respectively denoting the true stress and true strain. Equations (5.1) are
valid until necking, and hence the transformed curve starts from 𝜎𝑦0 to the last experimental
point prior to necking. Carrying out a nonlinear regression on the experimental 𝜎𝑣 versus
𝜀𝑣 hardening curve using Eq.(3.22) as the model function, one arrives at:

p0 =
[︁
813.9 289.0 887.3 291.1

]︁
(5.2)

By the end of the optimization process, the converged set p* is:

p* =
[︁
725.0 347.6 890.4 405.5

]︁
(5.3)

Figure 5.2 displays graphically the result from the opmization methodology.
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Figure 5.2 – Calibration of the hardening law parameters.

Since the accumulated plastic strain at the end of the simulation 𝜀𝑝
𝑓 = 0.49, the

hardening law defined by the set (5.3) is valid up this value.

5.3.2 Calibration of the Kinematic Hardening Parameters

The calibration of kinematic hardening parameters rely on the kinematic hardening
curve, which is obtained by performing a series of cyclic tests with different strain (or
displacement) amplitudes. Bai (2008) conducted this test and furnished the experimental
kinematic hardening curve for SAE 1045 Steel within the range of strain amplitudes
investigated.

The calibration of 𝐻𝐾 and 𝑏𝐾 can be accomplished by a nonlinear regression on
the experimental kinematic harderning curve, which is composed of set of pairs of stress
𝜎𝑎 and plastic strain 𝜀𝑝

𝑎 amplitudes. First, it is possible to show that Eq.(3.25) may be
redefined as:

𝜎𝑎 = 𝜎𝑦0 + 𝐻𝐾

𝑏𝐾
tanh

(︁
𝑏𝐾𝜀𝑝

𝑎

)︁
, (5.4)

where is this case 𝜎𝑦0 is the cyclic yield strength. It is assumed that the cyclic yield stress
is negligible with respect to the monotonic one in ULCF conditions, and hence can be
taken as 0 in Eq.(5.4). Figure 5.3 shows graphically the result of the calibration based on
Eq.(5.3).
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Figure 5.3 – Graphical result of the calibration of 𝐻𝐾 and 𝑏𝐾 in ULCF conditions.

The identified parameters were 𝐻𝐾 = 2319.1 MPa and 𝑏𝐾 = 16.4. Table 5.5
summarizes the material parameters identified.

Table 5.5 – Material parameters calibrated for the SAE 1045 in Monotonic and ULCF
conditions based on the data from Bai (2008).

Parameter Value
Elasticity Modulus 𝐸 178.9 GPa

Poisson’s Ratio 𝜈 0.3

Monotonic Yield Stress 𝜎𝑦0 725.0 MPa

𝜔 347.6 MPa

𝜎∞ 890.4 MPa

𝛿 405.5

Kinematic Hardening Modulus 𝐻𝐾 2319.1 MPa

Saturation Coefficient 𝑏𝐾 16.4
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5.3.3 Calibration of Gao’s 𝑎 and 𝑏 Parameters

The identification of 𝑎 and 𝑏 require two calibration points. First, to calibrate 𝑎

one uses a test in which the first invariant has an important influence, such as the tension
test in the butterfly specimen, identified as "Butterfly +90∘" in Table 5.1. Conversely, to
calibrate 𝑏, a shear-predominant experiment is suitable, such as the horizontal tension test
on the butterfly specimen, identified as "Butterfly +0∘" in Table 5.1.

In this regard, a trial an error methodology was used to identify this two parameters.
First, the horizontal tension test is analyzed to calibrate 𝑏, since the first invariant (and
hence 𝑎) has a minor influence in shear situations. Once set a 𝑏 value, the "Butterfly +90∘"
experiment is considered to identify 𝑎. The results are discussed in more details in Chapter
6.

Next, the values of 𝑎 and 𝑏 calculated via this process are used to simulate the ULCF
experiments. If the numerical responses describe properly the ULCF tests, then 𝑎 and 𝑏

monotonically calibrated are suitable for these load conditions, otherwise a recalibration is
conducted to compute new 𝑎 and 𝑏 following the same steps described previously for the
monotonic case.

5.4 Material Parameters Identification by Data from Leese and
Socie (1989)

In Low Cycle Fatigue conditions, only kinematic hardening is considered for mod-
eling purposes, and thus, the kinematic parameters need to be identified. However, one
cannot expect the values achieved for 𝐻𝐾 and 𝑏𝐾 in Table 5.5 to be same as if they
were obtained by the data in Tables 5.3 and 5.4 because LCF and ULCF are different
phenomenons. Therefore, one need to recalibrate 𝐻𝐾 and 𝑏𝐾 . Besides, the Young modulus
computed by Leese and Socie (1989) was 𝐸 = 202.0 GPa.

5.4.1 Calibration of the Kinematic Hardening Parameters

The strategy used was the same employed to identify 𝐻𝐾 and 𝑏𝐾 in previous the
section. The main difference consist of the data set considered to perform the nonlinear
regression with Eq.(5.4), and the cyclic initial yield stress cannot be neglected.

Firstly, the cyclic Ramberg-Osgood expression:

𝜎𝑎 = 𝐾 ′ (𝜀𝑝
𝑎)𝑛′

, (5.5)

with 𝐾 ′ and 𝑛′ are the cyclic hardening modulus and cyclic hardening exponent, is useful
to calibrate Eq.(5.4). The linearization of Eq.(5.5) followed by a linear regression on the
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data in Table 5.3 allows to compute 𝐾 ′ and 𝑛′. The values obtained were 𝐾 ′=1255.1 MPa
and 𝑛′=0.21, and Fig.5.4 illustrates the Ramberg-Osgood curve generated.

Figure 5.4 – Identification of the axial Ramberg-Osgood parameters 𝐾 ′ and 𝑛′.

The previously mentioned curve is then considered to identify 𝐻𝑘 and 𝑏𝐾 according
to Eq.(5.4), which furnishes and 𝜎𝑦0=268.6 MPa, 𝐻𝐾 = 32355.0 MPa, 𝑏𝐾 = 122.5. Fig.5.5
displays graphically the calibration result.

47



Figure 5.5 – Calibration of Armstrong-Frederick parameters based on the data in Table
5.3.

5.4.2 Calibration of Gao’s 𝑏 Parameter

The identification 𝑏 followed the same idea used previously in monotonic conditions.
In this regard, Table 5.4 contains the information required to compute 𝑏. First, Eq.(5.5)
can be extended to shear conditions:

𝜏𝑎 = 𝐾 ′
0 (𝛾𝑝

𝑎)𝑛′
0 , (5.6)

where 𝐾 ′
0,𝑛′

0 and 𝛾𝑝
𝑎 respectevely express the cyclic shear hardening modulus, cyclic shear

hardening exponent and plastic shear strain amplitude. Performing the same approach
to calculate 𝐾 ′ and 𝑛′, one obtains 𝐾 ′=614.4 MPa and 𝑛′=0.22. Figure 5.6 shows the
Ramberg-Osgood curve in shear conditions.
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Figure 5.6 – Identification of the shear Ramberg-Osgood parameters 𝐾 ′
0 and 𝑛′

0.

If Mises behavior is assumed, one can convert shear amplitudes into von Mises
equivalent measures and carry out the nonlinear regression of Eq.(5.4). The expressions
used in this transformation are:

⎧⎪⎪⎨⎪⎪⎩
𝜎𝑎 =

√
3𝜏𝑎,

𝜀𝑝
𝑎 = 𝛾𝑝

𝑎√
3

.
(5.7)

The analysis of the equivalent Ramberg-Osgood curve furnishes 𝜎𝑦0 = 244.2 MPa,
𝐻𝐾= 30741.0 MPa and 𝑏𝐾= 137.4. If the SAE 1045 steel behave as a von Mises material,
𝜎𝑦0 should be same ( or at least extremely close) independently of the loading conditions
considered. Since the values of 𝜎𝑦0 calculated with axial and torsion data are different,
SAE 1045 steel has 𝐽3 dependence. With this fact, one may estimate 𝑏 by plotting the
Mises yield surfaces calibrated in tension-compression and shear, and Gao’s surface with
different 𝑏 values. The results obtained are discussed in more details in Chapter 7. Fig.5.7
displays the comparison of the kinematic hardening laws identified based on the data in
Table 5.3 and 5.4.
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Figure 5.7 – Comparison between the kinematic hardening calibration results obtained by
the analysis on the fully reversed axial and shear data.

Table 5.6 summarizes the parameters calibrated supported by the data of Leese
and Socie (1989).

Table 5.6 – Material parameters calibrated for the SAE 1045 in LCF conditions based on
the data from Leese and Socie (1989).

Parameter Value
Elasticity Modulus 𝐸 202.0 GPa

Poisson’s Ratio 𝜈 0.3

Cyclic Yield Stress 𝜎𝑦0 268.6 MPa

Kinematic Hardening Modulus 𝐻𝐾 32355.0 MPa

Saturation Coefficient 𝑏𝐾 122.5

It is worth noting that, as mentioned previously, the kinematic hardening constants
in Tables 5.5 and 5.6 are not equal, not even approximately.
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6 Monotonic and Ultra-Low Cycle
Results

6.1 Gao’s 𝑎 and 𝑏 Parameters

As described in Chapter 5, Gao’s 𝑎 and 𝑏 constants are calibrated based on the
monotonic tests on the butterfly specimens in the vertical and horizontal directions.
Following the procedure detailed in Chapter 5, 𝑏 is the first to be identified based on
the horizontal tensile tests ("Butterfly +0∘" in Table 5.1). Only isotropic hardening is
considered in this case, and hence 𝐻𝐾 and 𝑏𝐾 are set as 0 in the mathematical and
numerical models presented in Chapter 3 and 4 respectively. Furthermore, the hardening
curve used in the the Finite Elements simulations is the defined by Eq.(3.22) with the
optimized parameters in Table 5.5.

6.1.1 𝑏 Estimation

A simulation with 𝑎 = 𝑏 = 0 (recovering von Mises) is conducted to evaluate the
influence of 𝐽3 on the Ductile Fracture behavior of SAE 1045 steel. The result of this
simulation enables to estimate a range of possible 𝑏 values. Based on works in the literature
(Gao et al., 2011; Cavalheiro and Malcher, 2017; Malcher et al., 2020) and on the predicted
von Mises numerical response, one tests different 𝑏 within the interval [−100.0, −10.0].
The lower bound of this range was chosen due convexity issues related with high negative
𝑏 values (see Cavalheiro and Malcher (2017)).

The best trade-off relation (with respect to computational time and convergence)
was achieved with 𝑏 = −60.0. When higher (in absolute value) 𝑏 were tested, convergence
issues were observed, possibly related to convexity loss. This latter implies on non-positive
dissipation 𝛿 in Eq.(3.30), which is reflected on the convergence problems of the numerical
solution. On the left of Fig.6.1, the numerical reaction curves obtained with 𝑎 = 𝑏 = 0
and 𝑎 = 0 (red star-dashed line), 𝑏 = -60.0 (blue square-dashed line) are displayed and
compared with the experimental data.
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𝐽3 𝐽3 +  𝐼1 

Isotropic𝑎, 𝑏 Isotropic𝑎, 𝑏 

Figure 6.1 – Comparison between the numerical responses of Mises and Gao based formu-
lations with the experimental reaction curve for the horizontal tension test
(+0∘ loading direction). On the left, only 𝑏 is activated, while on the left both
𝑎 and 𝑏 are considered.

It is noted from Fig.6.1 that the SAE 1045 steel is not a von Mises type material,
since the 𝐽2-formulation cannot describe its behavior in shear conditions. Therefore, this
material Ductile Fracture response has 𝐽3-dependence. Moreover, the blue square-dashed
curve furnished by the simulation with 𝑎 = 0 and 𝑏 = -60.0 presents better agreement with
the experimental reaction curve, which demonstrates that more accurate predictions are
indeed achieved by considering 𝐽3. The shaded region on the left portion of Fig.6.1 depicts
the differences between von Mises and Gao’s approaches due to the third invariant.

Interestingly, Fig.6.1 shows that the activation of 𝑏 lowers the numerical reaction
curve towards the experimental one. Actually, the higher 𝑏 (limited by the model convexity),
higher it is the downward movement produced.

6.1.2 𝑎 Estimation

With 𝑏 =-60.0, a similar analysis is used to compute 𝑎 by the experimental reaction
curve from the vertical tensile test ("Butterfly +90∘" in Table 5.1).

Thus, the Mises numerical response (𝑎 = 𝑏 = 0) is registered to analyze whether or
not 𝐼1 influences the material behavior. The red star-dashed lines in Fig. 6.2 represents
the referred numerical reaction curve.
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𝐽3 

Isotropic𝑎, 𝑏 Isotropic𝑎, 𝑏 Isotropic𝑎, 𝑏 Isotropic𝑎, 𝑏 

𝐽3 +  𝐼1 

Figure 6.2 – Comparison between the numerical responses of Mises and Gao based for-
mulations with the experimental reaction curve for the vertical tension test
(+90∘ loading direction). On the left, only 𝑏 is activated, while on the left
both 𝑎 and 𝑏 are considered.

From Fig.6.2, it is observed that von Mises approach does not correctly predict
the experimental behavior. One may wonder why the simulation with 𝑎 = 𝑏 = 0 and with
the optimized parameters in Eq.(5.3) does not accurately describe the tension test in the
+90∘ direction, if this test was supposed to be close to the uniaxial tensile conditions
found in smooth cylindrical specimen. This apparent contraction can be explained by the
butterfly specimen geometry. The (initial) uniaxial stress state on the smooth specimen
is characterized by 𝜂 = 1/3 and 𝜉 = 1. If notches are made in cylindrical specimens, the
triaxiality ratio increases with the reduction of the notch radius, and consequently, the
effect of 𝐼1 is enhanced (Gao et al., 2011; Bao and Wierzbicki, 2004; Bai, 2008; Driemeier
et al., 2010; Malcher et al., 2020). The curvature in the gauge section of the butterfly
specimen (see Bai (2008) and Fig.5.1) works as a notch, and hence the "Butterfly +90∘"
experiment has 𝜂 > 1/3 and 𝜉 ≠ 1, which is different from the calibration point (𝜂 = 1/3
and 𝜉 = 1).

Next, one performs a second simulation with 𝑎 = 0 and 𝑏 = −60.0 to evaluate the
contribution from 𝐽3 to the difference between the experimental and the red star-dashed
curves. The result is displayed on the left plot of Fig.6.2. One can observe that some
degree of correction is achieved, although less pronounced than in the similar simulation
in Fig.6.1. This indicates that 𝐽3 is not the most influential parameter in this loading
condition, and further suggests that 𝑎 need to be considered.

In this regard, one calibrates 𝑎 with an analogous strategy as utilized for estimating
𝑏. Several simulations were conducted with different 𝑎 values and keeping 𝑏 = -60.0 fixed.
The search interval was defined as [0.0001, 1.0], also based on works in the literature.
The best result was reached with 𝑎 = 0.0005, and the numerical reaction curve (green

53



triangle-dashed line) is shown on the right graph in Fig.6.2. The correction obtained by the
incorporation of 𝐼1 is substantial and demonstrates the strong influence of this parameter
in tensile (or compressive) conditions. The shaded region on the right plot in Fig.6.2
highlights the difference between von Mises and Gao’s reaction curves due to 𝐽3 and 𝐼1.

With the identified 𝑎 and 𝑏, a second simulation of the monotonic shear test with
these two parameters is carried out to investigate the effect of 𝐼1 in shear scenarios. The
response computed is represented by the green triangle-dashed curve in the right portion
in Fig.6.1. One notices that the usage of 𝑎 = 0.0005 in this second simulation leads to
a negligible effect, which corroborates to the empirical observation that the hydrostatic
stress has a minor influence on material behavior in shear-predominant loads (Bai, 2008;
Driemeier et al., 2010; Malcher et al., 2020; Morales, 2020).

At this point, some remarks based on the results so far can be made:

• In shear-predominant situations, 𝐽3 displays a more pronounced influence of the
Ductile Fracture Behavior of SAE 1045 steel;

• In tensile conditions, 𝐼1 has a stronger effect on the SAE 1045 steel mechanical
behavior.

6.1.3 Verification of The Mesh Used to Discretize the Butterfly Specimen

One simulated the monotonic shear test with a more refined mesh then the one
presented in Fig.4.1 to prove that, for purposes of this work, the coarse mesh in Fig.4.1 is
suitable. The refined mesh is formed my 1440 20-noded quadratic hexahedral elements
totalizing 7773 nodes, with smaller elements in the central region of the butterfly specimen.
More details of the refined mesh can be found in the work of Cavalheiro and Malcher
(2017). It is worth mentioning that the parameters used in this simulation are the same as
utilized to produce the red star-dashed reaction curves in Fig.6.1 and 6.2. Figure 6.3
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Figure 6.3 – Comparison between the numerical responses produced by FEM simulations
using the mesh in Fig.4.1 (red star-dashed curve) and a more refined one(cyan
diamond-dashed curve).

It is observed from Fig.6.3 that the numerical reaction curves are extremely
similar, which confirms the suitability of the mesh shown in Fig.4.1. Furthermore, Fig.6.3
corroborate the lack of accuracy of traditional 𝐽2-modeling for SAE 1045 steel. Finally, one
acknowledges that refined meshes must be used to properly capture local phenomenons,
such as crack initiation spot and damage, which are not the aim of this dissertation.

6.2 Combined Tension and Shear

With the model parameters fully identified, one analyzes the model performance
with other loading conditions rather the calibration points utilized to determine 𝑎 and
𝑏. In this setting, the monotonic tests on the +30∘ and +5∘ directions (see Fig.5.1) were
simulated. These experiments are particularly interesting because they are mix between
pure tension and pure shear situations, and thus have features from both. It is important
to notice that the closer to the 0∘ orientation, the close to shear the test is. Once more,
only isotropic hardening is considered.
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6.2.1 +30∘ Monotonic Tension

Three simulations of the +30∘ monotonic tension experiment were conducted:
first with 𝑎 = 𝑏 = 0 (red star-dashed line), second with 𝑎 = 0 and 𝑏 = −60.0 (blue
square-dashed line), and finally with 𝑎 = 0.0005 and 𝑏=-60.0 (green triangle-dashed line).
Figure 6.4 shows the results for each simulation.

𝐽3 +  𝐼1 

Isotropic𝑎, 𝑏 

𝐽3 

Isotropic𝑎, 𝑏 

𝐽3 

Isotropic𝑎, 𝑏 

𝐽3 +  𝐼1 

Isotropic𝑎, 𝑏 

Figure 6.4 – Comparison between the numerical responses of Mises and Gao based for-
mulations with the experimental reaction curve for the vertical tension test
(+30∘ loading direction). On the top row, the vertical reaction curves, and on
the bottom, the horizontal ones.

From the first row of images in Fig.6.4, one observers that the best description of
the vertical 𝐹 versus 𝑑 curve is achieved by incorporating both 𝐼1 and 𝐽3. Furthermore,
the top left plot suggests that 𝐽3 has a less strong influence on the SAE 1045 steel behavior
under +30∘ load than 𝐼1. This was expected, as this test is closer to the +90∘ experiment,
which is basically a monotonic load in the vertical direction. The bottom row further
corroborates this remark, since the incorporation of 𝐽3 does not produce a significant
change in the horizontal reaction curve, and when associated with 𝐼1, it remains unchanged.
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6.2.2 +5∘ Monotonic Tension

The same three simulation conditions mentioned previously were used out to
simulate the +5∘ monotonic tension experiment. Figure 6.5 displays the results obtained.
The color identification for +30∘ is the same for +5∘.

𝐽3 𝐽3 +  𝐼1 

Isotropic  Isotropic  𝑎, 𝑏 𝑎, 𝑏 

Figure 6.5 – Comparison between the numerical responses of Mises and Gao based for-
mulations with the experimental reaction curve for the vertical tension test
(+5∘ loading direction). On the top row, the vertical reaction curves, and on
the bottom, the horizontal ones.

Differently from what was observed in Fig.6.4, 𝐽3 is the most influential invariant
for the +5∘ loading direction. Moreover, the hydrostatic stress has a negligible effect, which
was feature shared with the monotonic shear case in Fig.6.1. This result was also foreseen
since the +5∘ tension is closer to the +0∘ orientation and hence shear predominant.

Overall, both Fig.6.4 and 6.5 demonstrate the Mises-based modeling fails to describe
the SAE 1045 steel Ductile Fracture behavior, which further corroborates the 𝐽3 and 𝐼1

dependence of this material.

6.3 Ultra-Low Cycle Results with 𝑎 and 𝑏 from the Monotonic Data

The Ultra-Low Cycles tests contained in Table 5.2 were simulated using the 𝑎

and 𝑏 values calibrated with the monotonic data. Thus, it is assumed at first that 𝑎

and 𝑏 obtained by considering isotropic hardening are suitable for Ultra-Low conditions.
On the other hand, mixed hardening is considered due to the presence of load reversals,
which requires kinematic hardening. The material parameters used in the simulations are
contained in Table 5.5. It is worth pointing that the initial yield stress is taken as the
monotonically calculated one for Ultra-Low simulations. This choice was made based on
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the fact that only 1 load reversal is applied, and hence it is assumed that there is not
enough time to cyclic (e.g. cyclic softening) effects to take place and modify 𝜎𝑦0.

6.3.1 Compression-Tension (−90∘ to + 90∘) Results

Figures 6.6 and 6.7 display the numeric reaction curves obtained from the Finite
Element simulations of the compression-tension tests (−90∘to + 90∘).

𝐽3 

Isotropic 𝑎, 𝑏 

𝐽3 +  𝐼1 

Isotropic 𝑎, 𝑏 

Figure 6.6 – Comparison between the numerical responses of Mises and Gao based formu-
lations with the experimental reaction curve from the compression-tension
(−90∘ to + 90∘) test 1. On the left, only 𝑏 is activated, while on the left both
𝑎 and 𝑏 are considered. Gao’s parameters 𝑎 and 𝑏 calibrated on monotonic
conditions.
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𝐽3 

Isotropic 𝑎, 𝑏 

𝐽3 +  𝐼1 

Isotropic 𝑎, 𝑏 

Figure 6.7 – Comparison between the numerical responses of Mises and Gao based formu-
lations with the experimental reaction curve from the compression-tension
test (−90∘ to + 90∘) 2. On the left, only 𝑏 is activated, while on the left both
𝑎 and 𝑏 are considered. Gao’s parameters 𝑎 and 𝑏 calibrated on monotonic
conditions.

As observed in Fig.6.2, in either cases the first invariant is the key factor controlling
SAE 1045 ULCF behavior in compression-tension. This latter confirms the remarks pointed
out previously in Fig.6.2. Nevertheless, the Gao’s based simulations were not satisfactorily
close the experimental 𝐹 versus 𝑑 data, as in the monotonic case. This suggests that
perhaps a recalibration of 𝑎 and 𝑏 for ULCF applications is required. The shaded regions
on the left plots of Fig.6.6 and 6.7 represent the effect of 𝐽3, while on the left express the
effect of both 𝐼1 and 𝐽3.

6.3.2 Shear-Shear (−0∘ to + 0∘) Results

Figures 6.8 and 6.9 display the numeric reaction curves obtained from the Finite
Element simulations of the shear-shear tests (-0∘to + 0∘).
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𝐽3 

Isotropic 𝑎, 𝑏 

𝐽3 +  𝐼1 

Isotropic 𝑎, 𝑏 

Figure 6.8 – Comparison between the numerical responses of Mises and Gao based formula-
tions with the experimental reaction curve from the shear-shear (−0∘ to + 0∘)
test 1. On the left, only 𝑏 is activated, while on the left both 𝑎 and 𝑏 are
considered. Gao’s parameters 𝑎 and 𝑏 calibrated on monotonic conditions.

𝐽3 

Isotropic 𝑎, 𝑏 

𝐽3 +  𝐼1 

Isotropic 𝑎, 𝑏 

Figure 6.9 – Comparison between the numerical responses of Mises and Gao based formula-
tions with the experimental reaction curve from the shear-shear (−0∘ to + 0∘)
test 2. On the left, only 𝑏 is activated, while on the left both 𝑎 and 𝑏 are
considered. Gao’s parameters 𝑎 and 𝑏 calibrated on monotonic conditions.

Once more, one notices that the simulation response is more influenced by 𝐽3 and
indifferent to 𝐼1 for the reversed shear case. However, as observed in Fig.6.6 and 6.7, 𝑎

and 𝑏 calibrated with the monotonic data is not adequate for ULCF conditions. This gives
more support to the need to recalibrate these parameters. The shaded regions on the left
plots of Fig.6.8 and 6.9 represent the effect of 𝐽3, while on the left express the effect of
both 𝐼1 and 𝐽3.
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6.4 Ultra-Low Cycle Results After Recalibrating 𝑎 and 𝑏 in ULCF
conditions

The outcomes of the simulations presented in Fig.6.6, 6.7, 6.8 and 6.9 indicate that
a recalibration of Gao’s constants is needed. This is likely due to the presence of kinematic
hardening in the ULCF modeling, which is neglected on the monotonic case.

In this regard, one conducts an identification methodology following the same
steps utilized in monotonic conditions. First, based on the reversed shear tests, several
simulations are performed with different 𝑏 values within the range [−70.0, −10.0]. The
interval was narrowed compared to the one chosen previously because of the convexity
loss observed with a high negative 𝑏. The best result was achieved with 𝑏=-70.0. The left
plots in Fig.6.10 and 6.11 shows the numerical 𝐹 versus 𝑑 curves for 𝑎 = 0 and 𝑏 = −70.0
(blue square-dashed lines).

𝐽3 

Mixed 𝑎, 𝑏 

𝐽3 +  𝐼1 

Mixed 𝑎, 𝑏 

Figure 6.10 – Comparison between the numerical responses of Mises and Gao based
formulations with the experimental reaction curve from the shear-shear
(−0∘ to + 0∘) test 1 after recalibration. On the left, only 𝑏 is activated, while
on the left both 𝑎 and 𝑏 are considered.
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𝐽3 

Mixed 𝑎, 𝑏 

𝐽3 +  𝐼1 

Mixed 𝑎, 𝑏 

Figure 6.11 – Comparison between the numerical responses of Mises and Gao based
formulations with the experimental reaction curve from the shear-shear
(−0∘ to + 0∘) test 2 after recalibration. On the left, only 𝑏 is activated, while
on the left both 𝑎 and 𝑏 are considered.

Comparing Fig.6.10 and 6.11 to 6.8 and 6.9, there was a slight improvement in the
model’s mechanical response prediction. Approximating the blue square-dashed line to the
experimental curve would require to lower 𝑏 values, but as one is limited by the model
convexity, 𝑏=-70.0 was the lowest value possible.

The compression-tension experiments were simulated with 𝑎 = 0 and 𝑏 = −70.0,
and as observed previously, 𝐽3 has a minor influence in this conditions, which indicates
that ,once more, 𝐼1 is the factor controlling the mechanical response in vertical loading
situations. The left portion Fig.6.12 and 6.13 show the numeric 𝐹 versus 𝑑 from the
referred simulations.
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Mixed 𝑎, 𝑏 

𝐽3 

Mixed 𝑎, 𝑏 

𝐽3 +  𝐼1 

Figure 6.12 – Comparison between the numerical responses of Mises and Gao based
formulations with the experimental reaction curve from the compression-
tension (−90∘ to + 90∘) test 1 after recalibration. On the left, only 𝑏 is
activated, while on the left both 𝑎 and 𝑏 are considered.

𝐽3 

Mixed 𝑎, 𝑏 

𝐽3 +  𝐼1 

Mixed 𝑎, 𝑏 

Figure 6.13 – Comparison between the numerical responses of Mises and Gao based
formulations with the experimental reaction curve from the compression-
tension (−90∘ to + 90∘) test 2 after recalibration. On the left, only 𝑏 is
activated, while on the left both 𝑎 and 𝑏 are considered.

Therefore, the identification of 𝑎 was carried out with the same steps used previously
in monotonic conditions. The same search interval was used, and after many tests, the
best agreement was reached with 𝑎 = 0.5. The right plots on Fig.6.12 and 6.13 display
graphically the results from the Finite Element simulations with 𝑎 = 0.5 and 𝑏 = −70.0. As
highlighted by the shaded in regions in the latter graphs, 𝐼1 provokes a notable correction
in the green triangle-dashed reaction curves, further confirming the strong influence of
this parameter in this loading scenario.
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With the recalibrated 𝑎 and 𝑏, the reversed shear tests are simulated once again. The
outcome of such simulations are shown on the right plots in Fig.6.10 and 6.11. As noticed
in Fig.6.1, 6.8 and 6.9, 𝐼1 has negligible effect on reversed shear tests (shear-predominant
cases).

Overall, Fig.6.6, 6.7, 6.10, 6.9, 6.10, 6.11, 6.12 and 6.13 demonstrate that in all
cases, the von-Mises formulation fails to predict the SAE 1045 steel behavior in Ultra-Low
Cycle conditions. This latter gives more proof that this alloy is 𝐼1 and 𝐽3 dependent.

6.5 Summary

The results discussed in this chapter lead to following remarks:

• SAE 1045 steel Ductile Fracture and Ultra-Low Cycle behaviors display pressure
and third invariant dependence. Thus, one who wishes to predict the failure upon
these phenomenons of structures made of this material need to consider 𝐼1 and 𝐽3;

• In shear predominant conditions, the first invariant can be neglected without loss
of accuracy. Conversely, 𝐽3 produces less pronounced corrections than 𝐼1 on the
numerical reaction curves in tensile situations;

• Gao’s 𝑎 and 𝑏 parameters depend on the particular phenomenon considered, as
demonstrated by the calibrated values in monotonic (isotropic hardening) and ULCF
(mixed hardening) conditions.
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7 Low Cycle Fatigue Results

7.1 Gao’s 𝑎 and 𝑏 Parameters

One of conclusions of Chapter 6 asserted that, depending on the phenomenon
studied, 𝑎 and 𝑏 may have different values. More precisely, 𝑎 and 𝑏 apparently are function
of the hardening type considered. Thus, one expects that 𝑎 and 𝑏 will likely display different
values in Low Cycle Fatigue conditions than the calibrated 𝑎 and 𝑏 in Chapter 6, since the
LCF simulations were carried out considering kinematic hardening only.

7.1.1 𝑏 Estimation

The fully reversed torsion tests in Table 5.4 and the calibration of kinematic
hardening parameters 𝜎𝑦0, 𝐻𝐾 and 𝑏𝐾 displayed graphically in Fig.5.7 enable the estimation
of 𝑏. The technique used for this purpose is different from the methodology in Chapter 6.

The calibration strategy here is based on plotting on the principal stress space
the Mises’s yield surface calibrated with fully reversed tension and shear experiments,
and Gao’s for a given 𝑏. Since fully reversed tension and torsion loads are plane stress
situations, one may plot the yield surfaces on the 𝜎1

𝜎𝑦0
versus 𝜎2

𝜎𝑦0
plane, where 𝜎1 and 𝜎2

are the on-plane principal stresses. The 𝑏 value that provides the Gao’s surface closest
to Mises’s calibrated in torsion in the pure shear axis (𝜎2 = −𝜎1), is the calibrated 𝑏. It
worth noting that 𝑎 does not affect this calibration method, because the stress state in
pure shear case is deviatoric.

In this regard, one uses the same search range set for the ULCF case, and interest-
ingly, 𝑏=-70.0 furnished the best agreement with Mises’s shear yield surface, which is the
same value estimated for ULCF. Figure 7.1 shows Mises’s, Tresca’s and Gao’s surface on
the previously referred plane.
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Figure 7.1 – Yield surfaces of each yield criterion on the normalized principal stress space
for plane stress conditions. In blue, Mises’s surface obtained in axial conditions;
in Black Gao’s for 𝑏 =-70.0, in green; Mises’s identified in shear; and in red,
Tresca’s surface.

One notices some important remarks present in Fig.7.1. Firstly, as discussed in
Chapter 2, Mises’s (blue-solid line), Tresca’s, and Gao’s yield surfaces coincide in uniaxial
stress states. Secondly, Gao’s surface (black-solid line) with 𝑏 = −70.0 indeed touches the
shear Mises’s one in the pure shear line (𝜎2 = −𝜎1 axis). Thirdly, SAE 1045 steel displays
an elastoplastic behavior within Tresca’s Mises’s yield surfaces, another observation for
many metallic materials stated in Chapter 2. Finally, SAE 1045 steel Low Cycle Fatigue
behavior has 𝐽3 dependence.

7.1.2 𝑎 Estimation

The estimation of 𝑎 requires a data set in which 𝐼1 has a major influence, such as
LCF in cylindrical notched specimens (𝜂 > 1/3 and 𝜉 = 1). Nevertheless, the simulations
carried out in LCF conditions, being performed at the Gauss point level, do not allow the
incorporation of stress states with 𝜂 > 1/3. Therefore, one assumes 𝑎 = 0.
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7.2 Fully Reversed Axial Loading

With the material parameters in Table 5.6 and the estimated 𝑎 and 𝑏 for LCF
conditions, one conducts a series of Gauss point simulations (20 load cycles) with the axial
strain amplitudes 𝜀𝑎 in Table 5.3. Therefore, the isotropic hardening constants are set
to 0 in the numerical state update model depicted in Chapter 4. Figure 7.2 presents the
hysteresis loops predicted by von Mises’s (red circles) and Gao’s (blue solid line) based
formulations with Armstrong-Frederick kinematic hardening law.

The axial loops produced by the model presented in this work coincide with the
𝐽2 responses, which confirms the first observation made in the previous section. This was
foreseen result, as fully reversed axial loading is a uniaxial stress state (𝜂 = 1/3 and 𝜉 = 1).
The plots in Fig.7.2 are also evidence of the validation of the state update algorithm
implemented.

The inputs of many fatigue life estimation methods (e.g critical plane) are the stress
and strain histories, since they are needed to compute the stress and strain amplitudes
in a given material plane. In this context, Fig.7.3 displays a comparison between the
amplitudes predicted by each formulation and the average experimental normal stress �̄�𝑎

in Table 5.3.
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Figure 7.2 – Axial hysteresis loops predicted by von Mises’s (red circles) and Gao’s (blue
solid line) formulations for a range of 𝜀𝑎.
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Figure 7.3 – Comparison between normal stress amplitudes 𝜎𝑎 predicted by Mises’s(red
circles) and Gao’s (blues squares), and the mean experimental amplitudes
(black diamonds) in Table5.3.

From Fig.7.3, one observes that the normal stress amplitudes predicted by Mises’s
and Gao’s approaches are nearly identical, which confirms once again the first remark in
the previous section. Furthermore, there is a fairly agreement with respect to data for
low 𝜀𝑎, and some considerable deviation for the three highest normal strain amplitudes,
as highlighted by the big green circle in Fig.7.3. The extrapolation of the calibrated
kinematical hardening law for these 𝜀𝑎 is a possible explanation for that.

7.3 Fully Reversed Torsion Loading

The same simulations conducted for the axial case were carried out for torsion
loads, utilizing the shear strain amplitudes contained in Table 5.4. Figure 7.4 displays the
shear hysteresis loops produced.

One notices from Fig.7.4 that, in all cases, von Mises’s formulation exhibited higher
shear stress levels, differently from the results of Fig.7.2. Similarly to what was pointed
in Chapter 6 for the monotonic case, the activation of 𝑏 tends to uniformly contracts the
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hysteresis loops. Despite the disparities displayed by the numeric responses from the two
constitutive models, they were less pronounced than in monotonic and Ultra-Low Cycle
conditions.

Traditional fatigue life assessments depend on the calculation of the shear stress
amplitude 𝜏𝑎. In this dissertation, 𝜏𝑎 is simply defined as:

𝜏𝑎 = 1
2 [max𝑡𝜏 (𝑡) − min𝑡𝜏 (𝑡)] . (7.1)

It is worth stating that other definitions of 𝜏𝑎 are possible (see Mamiya et al.
(2009)). Based on Eq.(7.1), one computes 𝜏𝑎 for each simulation and compares to the mean
experimental shear stress amplitudes 𝜏𝑎 in Table 5.4. Figure 7.5 graphically displays this
comparison.
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Figure 7.4 – Shear hysteresis loops predicted by von Mises’s (red circles) and Gao’s (blue
solid line) formulations for a range of 𝛾𝑎.
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Figure 7.5 – Comparison between normal stress amplitudes 𝜏𝑎 predicted by Mises’s(red
circles) and Gao’s (blues squares), and the mean experimental amplitudes
(black diamonds) in Table5.4.

The shear stress amplitude computed ia Gao’s modeling were always closer to 𝜏𝑎 .
In particular, 𝜏𝑎 from the constitutive formulation of the present work satisfactorily agreed
with experimental data for low 𝛾𝑎. Nevertheless, the same problem in high 𝜀𝑎 noted in
Fig.7.3 is also present in Fig.7.5. The same reasons given in the axial case are applicable
for the inaccuracies depicted by the big green circle in Fig.7.5.

Therefore, the results in Fig.7.5 suggest that Gao’s based approach can be utilized for
more accurate fatigue predictions (at least in pure torsion) than traditional 𝐽2 constitutive
models.

7.4 Fatigue Life Assessment: A Qualitative Analysis

Supported by the cyclic plasticity outcomes of this Chapter, one may state some
qualitative remarks on the crack initiation fatigue life assessment by the proposed constitu-
tive model in this dissertation. Traditional life estimation techniques, such as critical plane
and stress-invariants methods, rely on the accurate description of the 𝜎𝑎 and 𝜏𝑎, along
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with a proper calibration methodology. For example, the Smith-Watson-Topper (SWT)
(Smith et al., 1970) criterion is expressed by:

𝐹𝑆𝑊 𝑇 = 𝜀𝑎𝜎𝑚𝑎𝑥
𝑛 = 𝑔 (𝑁𝑓 ) , (7.2)

where 𝐹𝑆𝑊 𝑇 and 𝑔 (𝑁𝑓 ) respectively denotes the SWT parameter and a function of the
the fatigue life 𝑁𝑓 . Before computing 𝐹𝑆𝑊 𝑇 , one needs to perform a material plane search
to identify which planes display the maximum normal strain amplitude 𝜀𝑎. From these
identified set, the material plane (or planes) with the highest maximum normal stress
𝜎𝑚𝑎𝑥

𝑛 is selected to compute the product 𝜀𝑎𝜎𝑚𝑎𝑥
𝑛 . The normal and shear stresses histories

affect the calculation of 𝜎𝑚𝑎𝑥
𝑛 , and hence accurate predictions of 𝜎𝑎 and 𝜏𝑎 lead to better

life estimations. This feature is shared by all critical plane methodologies.

Since 𝜎𝑎 from Mises’s and Gao’s based models are basically the same, critical
plane methods will predict the same life 𝑁𝑓 for fully reversed uniaxial loads on SAE 1045
steel. Nevertheless, for torsion and more complicated loading conditions, distinct 𝑁𝐹 will
be estimated depending on the constitutive formulation utilized. Based on Fif.7.5, more
accurate life estimations will likely be achieved by the usage of 𝐽3-sensitive approaches
(such as Gao’s with mixed hardening presented in Chapter 3). However, the 𝜏𝑎 differences
between the constitutive models are not dramatic to lead to substantial changes on critical
plane 𝑁𝑓 predictions. These life assessment techniques are not strongly influenced by the
loop shape and size (Jiang et al., 2009), and hence the modeling choice will not greatly
interfere if critical plane methods are used for durability estimations.

On the other hand, incremental approaches have gained substantial interest in
recent years (see Chapter 2), because they capture effects that traditional methodologies
are not capable of (Jiang et al., 2009), such as loop’s size and shape. Besides, incremental
techniques such as Damage Mechanics often consider a damage constitutive variable to
account for material degradation, and thus, allowing to compute fatigue life while running
the calculations.

The evolution of the accumulated plastic strain 𝜀𝑝 usually plays a key role in
incremental formulations. For instance, the evolution of the damage variable in Lemaitre
(1985) Continuum Damage Mechanics model is directly linked with ˙̄𝜀𝑝. The elastoplatic
constitutive model that will be used as the base for the incremental methodology affects
˙̄𝜀𝑝, and consequently the fatigue life estimation. To illustrate this, one simulates 100 cycles
with the highest and lowest strain amplitudes in Tables 5.3 and 5.4, and the evolution
of 𝜀𝑝 is plotted for each case. Figure 7.6 shows the outcome of these simulations for fully
reverse uniaxial load.
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Figure 7.6 – Predicted 𝜀𝑝 evolution by von Mises’s and Gao’s modeling. The red circles are
used to plot Mises’s response so one may distinguish it from the blue-solid
line. On the left the outcome for 𝜀𝑎 =2.0% and on the right for 𝜀𝑎 =0.15%.

The same behavior in Fig.7.2 is once again observed in Fig.7.6: 𝜀𝑝 evolution
from either models are indistinguishable. Thus, as for the critical plane approach, the
coupled incremental method will furnish the same fatigue life estimation regardless of
the constitutive model choice. Considerable differences rise in the pure torsion case, as
depicted in Fig.7.7.

𝐽3 
𝐽3 

Figure 7.7 – Predicted 𝜀𝑝 evolution by von Mises’s and Gao’s modeling. On the left the
outcome for 𝛾 =2.5% and on the right for 𝛾 =0.3%.

In pure shear conditions, the shaded regions in Fig.7.7 demonstrate the effect of 𝐽3

on 𝜀𝑝. The red circle curve indicating the accumulated plastic strain evolution according to
the Mises-based model has a different growth rate than Gao’s blue-squared line. Therefore,
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damage mechanics formulations coupled with Mises-yield criterion, for example, expect
distinct material degradation, and consequently contrasting crack initiation life. Finally,
two features can be observed in Fig7.7: i) elevated shear strain amplitudes display slightly
bigger disparities regarding 𝜀𝑝 between the two constitutive approaches than lower 𝛾𝑎; ii)
apparently, overtime the discrepancies on the evolution of 𝜀𝑝 become more substantial.
This suggests that for low lives, the constitutive modeling option will have a strong effect
on the 𝑁𝑓 estimation via incremental approaches. This latter observation is interesting
because as 𝛾𝑎 grow, one comes closer to ULCF regime, a condition where 𝐽3 controls the
phenomenon behavior.

7.5 Overview

Supported by the results detailed in this Chapter, one points the following remarks:

• In uniaxial conditions, the models behavior coincide as expected. This further cofirms
that 𝐽3 becomes less relevant for tensile-compressive predominant situations;

• In pure torsion loads, the shear hysteresis loops predicted by the formulation utilized
in this work and 𝐽2 modeling display differences, although not as substantial as
notices in monotonic and ULCF conditions;

• Regarding fatigue life assessments, the feasibility of the proposed modeling for
practical applications depend on the life estimation methodology chosen. For critical
plane methods, it may not justifiable the usage of 𝐽3-sensitive models, while in
incremental approaches it can lead to improved results.
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8 Conclusion

8.1 Dissertation Conclusions

In this dissertation, the influence of the stress invariants (𝐼1 and 𝐽3) on the
Ductile Fracture, Ultra-Low and Low Cycle fatigue behavior of metallic materials was
investigated. The alloy analyzed was the SAE 1045 steel due to the vast experimental data
availability on this material, in addition to its industrial relevance. A Gao-based model
with mixed hardening was proposed to capture the pressure and third invariant effects,
whose parameters were calibrated based on data furnished by Bai (2008) and Leese and
Socie (1989). The modeling considered a mixed hardening approach because it recovers
isotropic and kinematic hardening as limiting cases. A numerical scheme is elaborated to
simulate the SAE 1045 steel response under different loading conditions . Furthermore,
an optimization technique is used to identify the isotropic hardening law based on the
standard smooth cylindrical tension test.

In Chapter 6, one demonstrates that traditional Mises constitutive modeling fails
to describe the monotonic behavior (𝜂 ̸= 1/3 and 𝜉 ̸= 1) other than the calibration point
(𝜂 = 1/3 and 𝜉 = 1), which indicates that SAE 1045 steel is 𝐼1 and 𝐽3 sensitive. In this
regard, one calibrates Gao’s 𝑎 and 𝑏 constants, and the numerical reaction plots obtained
satisfactorily agreed with the experimental 𝐹 versus 𝑑 curves, confirming that a proper
mechanical description needs account for 𝐼1 and 𝐽3. Moreover, one notices the influence
range of 𝐼1 and 𝐽3. For shear-predominant conditions, 𝐽3 affects the SAE 1045 steel
monotonic response the most, while 𝐼1 displays the strongest effect on tensile situations.

The Ultra-Low Cycle simulations confirmed once more the SAE 1045 steel 𝐼1 and 𝐽3

dependence. However, monotonically calibrated 𝑎 and 𝑏 did not lead to adequate corrections
on the numerical 𝐹 versus 𝑑 plots, and hence these parameters were recalibrated in ULCF
conditions. The recalibration process led to new 𝑎 and 𝑏 values and to better numerical
predictions. The former suggests that Gao’s constants depend on the hardening type
considered, since in the monotonic case only isotropic hardening is accounted for while
mixed hardening is present in ULCF. The remarks stated on the monotonic simulations
regarding 𝐼1 and 𝐽3 influence range are also applicable for ULCF conditions. In either
monotonic and Ultra-Low cycle situations, the tested 𝑏 values were limited by the model
convexity.
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In Chapter 7, the influence of the third invariant was shown in the Low Cycle
Fatigue SAE 1045 steel behavior by Gauss point level simulations. For uniaxial conditions,
the numerical responses from Mises and Gao-based models are indistinguishable, which is
something expected since several yield surfaces coincide in this stress state. Nevertheless,
the hysteresis loops from Mises’s and Gao’s formulation differed in pure torsion, although
less dramatically as observed in Chapter 6 for shear predominant loads. Compared to the
mean shear stress amplitudes, Gao’s predicted 𝜏𝑎 were always closer than Mises’s. One
may infer from this observation that better fatigue life estimation can likely be achieved in
shear-predominant fatigue loads by utilizing 𝐽3-sensitive formulations for materials whose
behavior is affected by this parameter.

The feasibility of the proposed constitutive model for LCF fatigue life assessment
purposes depends on the prediction technique chosen. Modelings that account for 𝐼1 and 𝐽3

are an attractive option to be used in incremental approaches because such methods often
rely on the evolution ˙̄𝜀𝑝 of the accumulated plastic strain 𝜀𝑝. One proved that considerable
different 𝜀𝑝 growth rates are predicted by Mises and Gao-based formulations, which will
lead to distinct fatigue life estimations via incremental techniques.

8.2 Suggestion for Future Works

Some suggestions for future works are:

1. The coupling of the proposed Gao-based constitutive model with Damage Mechanics
formulations to predict fracture moment and spot, as well as estimate fatigue life;

2. The utilization of more refined kinematic hardening laws, such as the proposal of
Chaboche (1989) and Desmorat (2010);

3. The evaluation of the model performance in LCF conditions under the proportional
and nonproportional loading paths in Leese and Socie (1989);

4. The analysis of other stress invariants dependent materials, as for instance the
aluminum alloy AA6101-T4 (see Malcher et al. (2020)) ;

5. The proposal of 𝑎 and 𝑏 as functions of the hardening types taking place in the
particular phenomenon analyzed.
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A Derivatives Required for
Newton-Raphson Method and

Consitant Tangent Operator

The following derivatives are present in the coefficient matrices in Eq.(4.24) and
(4.33).

A.1 Derivatives Associated with 𝑅S

𝜕𝑅S

𝜕S
= I + 2𝐺Δ𝛾

𝜕N 𝐷

𝜕S
, (A.1)
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Equations 3.5 and 3.43 imply:
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Define:
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Thus (omitting arguments):

L1 = 81
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If 𝜒 is tensor as:
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it follows them:
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From this point forward, the arguments of 𝐽2 and 𝐽3 will be always omitted as
they are always compute with respect to 𝜂𝐷. Based on Eq.(3.45), one arrives at:
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in which:
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the argument of 𝐼1 will also be omitted for the same reasons given previously. It can be
shown by Eq.(3.38) that:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕N 𝐷

𝜕𝛽𝐷 = −𝜕N 𝐷

𝜕S
,

𝜕N 𝐷

𝜕𝛽𝑉
= −𝜕N 𝐷

𝜕𝑝

(A.16)

A.2 Derivatives Associated with 𝑅𝜀𝑝

𝜕𝑅𝜀𝑝

𝜕S
= −Δ𝛾

𝜎𝑦

(︃
N 𝐷 + 𝜕N 𝐷

𝜕S
: 𝜂𝐷 + 3𝜂𝑉 𝜕𝑁𝑉

𝜕S

)︃
, (A.17)

𝜕𝑅𝜀𝑝

𝜕𝜀𝑝
= 1 +

Δ𝛾
(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁
𝜎𝑦

𝐻𝐼 , (A.18)

𝜕𝑅𝜀𝑝

𝜕Δ𝛾
= −

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁
𝜎𝑦

, (A.19)

𝜕𝑅𝜀𝑝

𝜕𝑝
= −Δ𝛾

𝜎𝑦

[︃
𝜕N 𝐷

𝜕𝑝
: 𝜂𝐷 + 3

(︃
𝜕𝜂𝑉

𝜕𝑝
𝑁𝑉 + 𝜂𝑉 𝜕𝑁𝑉

𝜕𝑝

)︃]︃
, (A.20)

𝜕𝑅𝜀𝑝

𝜕𝛽𝐷 = −Δ𝛾

𝜎𝑦

(︃
−N 𝐷 + 𝜕N 𝐷

𝜕𝛽𝐷 : 𝜂𝐷 + 3𝜂𝑉 𝜕𝑁𝑉

𝜕𝛽𝐷

)︃
, (A.21)

𝜕𝑅𝜀𝑝

𝜕𝛽𝑉
= −Δ𝛾

𝜎𝑦

[︃
𝜕N 𝐷

𝜕𝛽𝑉
: 𝜂𝐷 + 3

(︃
𝜕𝜂𝑉

𝜕𝑝
𝑁𝑉 + 𝜂𝑉 𝜕𝑁𝑉

𝜕𝛽𝑉

)︃]︃
, (A.22)

where:

𝜕𝑁𝑉

𝜕S
= 𝑎𝑐

(︂
−5

6Λ−11
6

)︂
𝜕Λ
𝜕S

𝐼5
1 , (A.23)

with 𝜕Λ
𝜕S given in Eq.(A.8). Next,

𝜕𝑁𝑉

𝜕𝑝
= 𝑎𝑐

(︃
−5
6 Λ−11

6 𝐼5
1

𝜕Λ
𝜕𝑝

+ Λ−5
6 5𝐼4

1
𝜕𝐼1

𝜕𝑝

)︃
, (A.24)

in which:

𝜕𝐼1

𝜕𝑝
= 3, (A.25)

91



and 𝜕Λ
𝜕𝑝

calculated in Eq.(A.15). It can be shown with Eq.(3.38):

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

𝜕𝑁𝑉

𝜕𝛽𝐷 = −𝜕𝑁𝑉

𝜕S
,

𝜕𝑁𝑉

𝜕𝛽𝑉
= −𝜕𝑁𝑉

𝜕𝑝

(A.26)

A.3 Derivatives Associated with 𝑅Δ𝛾

𝜕𝑅Δ𝛾

𝜕S
= 𝜕𝜎𝑒𝑞

𝜕S
, (A.27)

𝜕𝑅Δ𝛾

𝜕𝜀𝑝
= −𝐻𝐼 , (A.28)

𝜕𝑅Δ𝛾

𝜕Δ𝛾
= 0, (A.29)

𝜕𝑅Δ𝛾

𝜕𝑝
= 𝜕𝜎𝑒𝑞

𝜕𝑝
, (A.30)

𝜕𝑅Δ𝛾

𝜕𝛽𝐷 = 𝜕𝜎𝑒𝑞

𝜕𝛽𝐷 , (A.31)

𝜕𝑅Δ𝛾

𝜕𝛽𝑉
= 𝜕𝜎𝑒𝑞

𝜕𝛽𝑉
. (A.32)

Since 𝜎𝑒𝑞 can be written as 𝜎𝑒𝑞 = 𝑐Λ1/6, it follows:

𝜕𝜎𝑒𝑞

𝜕S
= 𝑐

6Λ−5
6

𝜕Λ
𝜕S

, (A.33)

and

𝜕𝜎𝑒𝑞

𝜕𝑝
= 𝑐

6Λ−5
6

𝜕Λ
𝜕𝑝

(A.34)

Once again, one can prove the relations:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝜕𝜎𝑒𝑞

𝜕𝛽𝐷 = −𝜕𝜎𝑒𝑞

𝜕S
,

𝜕𝜎𝑒𝑞

𝜕𝛽𝑉
= −𝜕𝜎𝑒𝑞

𝜕𝑝

(A.35)

92



A.4 Derivatives Associated with 𝑅𝑝

𝜕𝑅𝑝

𝜕S
= 3𝐾Δ𝛾

𝜕N 𝐷

𝜕S
, (A.36)

𝜕𝑅𝑝

𝜕𝜀𝑝
= 0, (A.37)

𝜕𝑅𝑝

𝜕Δ𝛾
= 3𝐾𝑁𝑉 , (A.38)

𝜕𝑅𝑝

𝜕𝑝
= 1 + 3𝐾Δ𝛾

𝜕𝑁𝑉

𝜕𝑝
, (A.39)

𝜕𝑅𝑝

𝜕𝛽𝐷 = 3𝐾Δ𝛾
𝜕𝑁𝑉

𝜕𝛽𝐷 , (A.40)

𝜕𝑅𝑝

𝜕𝛽𝑉
= 3𝐾Δ𝛾

𝜕𝑁𝑉

𝜕𝛽𝑉
. (A.41)

A.5 Derivatives Associated with 𝑅𝛽𝐷

𝜕𝑅𝛽𝐷

𝜕S
= −2

3𝐻𝐾Δ𝛾
𝜕N 𝐷

𝜕S

+ 𝑏𝐾Δ𝛾

𝜎𝑦

(︃
N 𝐷 + 𝜕N 𝐷

𝜕S
: 𝜂𝐷 + 3𝜂𝑉 𝜕𝑁𝑉

𝜕S

)︃
⊗ 𝛽𝐷,

(A.42)

𝜕𝑅𝛽𝐷

𝜕𝜀𝑝
= −𝑏𝐾Δ𝛾

𝜎2
𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁
𝐻𝐼𝛽𝐷, (A.43)

𝜕𝑅𝛽𝐷

𝜕Δ𝛾
= −2

3𝐻𝐾N 𝐷 + 𝑏𝐾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁
𝛽𝐷, (A.44)

𝜕𝑅𝛽𝐷

𝜕𝑝
= −2

3𝐻𝐾 𝜕N 𝐷

𝜕𝑝
+ 𝑏𝐾Δ𝛾

𝜎𝑦

[︃
𝜕N 𝐷

𝜕𝑝
: 𝜂𝐷 + 3

(︃
𝜕𝜂𝑉

𝜕𝑝
𝑁𝑉 + 𝜂𝑉 𝜕𝑁𝑉

𝜕𝑝

)︃]︃
𝛽𝐷, (A.45)

𝜕𝑅𝛽𝐷

𝜕𝛽𝐷 = I − 2
3𝐻𝐾Δ𝛾

𝜕N𝐷

𝜕𝛽𝐷

+ 𝑏𝐾Δ𝛾

𝜎𝑦

(︃
−N 𝐷 + 𝜕N 𝐷

𝜕𝛽𝐷 : 𝜂𝐷 + 3𝜂𝑉 𝜕𝑁𝑉

𝜕𝛽𝐷

)︃
⊗ 𝛽𝐷

+ 𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁
I,

(A.46)
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𝜕𝑅𝛽𝐷

𝜕𝛽𝑉
= −2

3𝐻𝐾 𝜕N 𝐷

𝜕𝛽𝑉
+ 𝑏𝐾Δ𝛾

𝜎𝑦

[︃
𝜕N 𝐷

𝜕𝛽𝑉
: 𝜂𝐷 + 3

(︃
𝜕𝜂𝑉

𝜕𝛽𝑉
𝑁𝑉 + 𝜂𝑉 𝜕𝑁𝑉

𝜕𝛽𝑉

)︃]︃
𝛽𝐷. (A.47)

A.6 Derivatives Associated with 𝑅𝛽𝑉

𝜕𝑅𝛽𝑉

𝜕S
= −2

3𝐻𝐾Δ𝛾
𝜕𝑁𝑉

𝜕S

+ 𝑏𝐾Δ𝛾

𝜎𝑦

(︃
N 𝐷 + 𝜕N 𝐷

𝜕S
: 𝜂𝐷 + 3𝜂𝑉 𝜕𝑁𝑉

𝜕S

)︃
𝛽𝑉 ,

(A.48)

𝜕𝑅𝛽𝑉

𝜕𝜀𝑝
= −𝑏𝐾Δ𝛾

𝜎2
𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁
𝐻𝐼𝛽𝑉 , (A.49)

𝜕𝑅𝛽𝑉

𝜕Δ𝛾
= −2

3𝐻𝐾𝑁𝑉 + 𝑏𝐾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁
𝛽𝑉 , (A.50)

𝜕𝑅𝛽𝑉

𝜕𝑝
= −2

3𝐻𝐾 𝜕𝑁𝑉

𝜕𝑝
+ 𝑏𝐾Δ𝛾

𝜎𝑦

[︃
𝜕N 𝐷

𝜕𝑝
: 𝜂𝐷 + 3

(︃
𝜕𝜂𝑉

𝜕𝑝
𝑁𝑉 + 𝜂𝑉 𝜕𝑁𝑉

𝜕𝑝

)︃]︃
𝛽𝑉 , (A.51)

𝜕𝑅𝛽𝑉

𝜕𝛽𝐷 = −2
3𝐻𝐾Δ𝛾

𝜕𝑁𝑉

𝜕𝛽𝐷 + 𝑏𝐾Δ𝛾

𝜎𝑦

(︃
−N 𝐷 + 𝜕N 𝐷

𝜕𝛽𝐷 : 𝜂𝐷 + 3𝜂𝑉 𝜕𝑁𝑉

𝜕𝛽𝐷

)︃
𝛽𝑉 , (A.52)

𝜕𝑅𝛽𝑉

𝜕𝛽𝑉
= 1 − 2

3𝐻𝐾 𝜕𝑁𝑉

𝜕𝛽𝑉
+ 𝑏𝐾Δ𝛾

𝜎𝑦

[︃
𝜕N 𝐷

𝜕𝛽𝑉
: 𝜂𝐷 + 3

(︃
𝜕𝜂𝑉

𝜕𝛽𝑉
𝑁𝑉 + 𝜂𝑉 𝜕𝑁𝑉

𝜕𝛽𝑉

)︃]︃
𝛽𝑉

+ 𝑏𝐾Δ𝛾

𝜎𝑦

(︁
𝜂𝐷 : N 𝐷 + 3𝜂𝑉 𝑁𝑉

)︁ (A.53)
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