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A B S T R A C T

It has previously been established that the sp3/sp2 ratio influences the type of degradation (direct or indirect) as
well as the production of oxidants at boron-doped diamond (BDD) films. However, there are no published studies
on the effects achieved (in terms of degradation performance) when an ionic liquid is treated nor any evaluations
of effluent toxicity after treatment. For this reason, this study investigated the influence of the sp3/sp2 ratio of
BDD anodes on the degradation of the ionic liquid 1-butyl-3-methylimidazolium chloride. The presence of a
large fraction of C-sp3 favored more efficient mineralization (significant at high current densities); however,
phytotoxic analyses revealed a more toxic final effluent. Depending on the experimental conditions and the sp3/
sp2 ratio, smaller amounts of undesirable chlorate and perchlorate anions as well as different oxidation by-
products were detected, consequently affecting the toxicity level of the effluent. The results are discussed and
compared with the existing literature.

1. Introduction

Ionic liquids (IL) have attracted attention for industrial applications
due to their unusual intrinsic properties [1]. Some examples of their
applications include electrodeposition, electrosynthesis, capacitors, lu-
bricants, catalysis, plasticizers, solvents, batteries, fuel cells, solvents
for preparing nanomaterials, extraction, and gas absorption, among
others [2]. One family of ILs with wide application is the alkylimida-
zolium-based group. In particular, 1-butyl-3-methylimidazolium
chloride (BMImCl) is utilized as a thermal fluid for solar thermal col-
lectors [3], in the preparation of high performance fibers [4], for sol-
vent extraction [5,6], as a reaction medium [7,8], as a co-catalyst for
the degradation of lignin [9,10], as the supporting electrolyte in bat-
teries and supercapacitors [11,12], as a hydrogen storage material
[13,14], for azeotropic separations [15,16], as a support for electro-
catalysts [17], and for electrodeposition [18], among other applica-
tions. However, care in handling and adequate disposal are essential as
recent studies have demonstrated the high toxicity of IL wastes to
aquatic ecosystems [19–21] and their limited biodegradation potential
[22,23].

In this context, electrochemical technologies have emerged as a

possible approach for treatment of IL pollution [24]. In particular,
anodic oxidation with boron-doped diamond (BDD) electrodes has been
shown to be efficient in treating various organic pollutants [24], in-
cluding ionic liquids [25–29]. However, it has been reported that the
sp3/sp2 ratio (ratio of diamond to graphitic carbon forms) on the BDD
surface strongly influences the degradation processes. A high graphitic
content favors direct oxidation of the pollutant on the surface, leading
to the formation of many intermediates due to stronger adsorption on
these types of sites, while a high diamond content promotes complete
oxidation to CO2 by the electro-generation of OH% in the boundary re-
gion of the electrode [30]. Over recent years, the influence of this
parameter has been demonstrated in studies of the electrochemical
treatment of a variety of pollutants with BDD [31–34]. Moreover, the
sp3/sp2 ratio also influences the generation of bulk oxidants [35,36].
There have been no studies of the effect of this parameter on the
electrochemical treatment of BMImCl, which could help in under-
standing the efficacy of the process as well as the toxicity level of the
effluent. Therefore, an evaluation of toxicity reduction was conducted
through growth studies on Lactuca Sativa (lettuce) to determine the
depollution level of a BMImCl solution electrochemically treated using
BDD anodes with different sp3/sp2 ratios. The mechanism of the
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degradation of BMImCl was also investigated by monitoring its con-
centration and TOC abatement, as well as the evolution of oxidants and
oxychloro-species. The intermediates remaining after the treatment
process were also studied.

2. Materials and methods

The ionic liquid 1-butyl-3-methylimidazolium chloride, KClO3 and
NaClO4 were purchased from Sigma-Aldrich. The chemicals Na2SO4,
NaOH, H2SO4, H2SO4, Na2S2O3, KI, KH2PO4, H3PO4, CHCl3 and starch
were acquired from Vetec. BDD anodes were provided by Adamant
Technologies (Neuchatel, Switzerland). Two different anodes with dif-
ferent sp3/sp2 ratios were tested (BDD1 = 175 and BDD2 = 329). Both
possess a similar diamond coating (2–3 μm) deposited with a similar
boron content, approx. 500 ppm.

Electrochemical characterization of the BDD anodes was carried out
by linear sweep voltammetry (LSV). For this, a three-electrode elec-
trochemical cell was used, with the BDD anode as the working electrode
(active area: 0.4 cm2), a platinum wire as the counter-electrode and Ag/
AgCl (3 mol L−1 KCl) as the reference electrode. The studies were
carried out using 0.1 mol L−1 Na2SO4 as supporting electrolyte. The
BMImCl degradation studies were carried out in a batch reactor. A
volume of 0.3 L of a 0.25 g L−1 of BMImCl, in 0.1 mol L−1 Na2SO4

solution as supporting electrolyte, was electrolyzed by applying 25, 50
and 100 mA cm−2 for 5 h. The concentration of BMImCl (monitored by
liquid chromatography, more details about the method elsewhere
[28]), the chemical oxygen demand (COD), the total organic carbon
(TOC, TOC-L Analyzer, Shimadzu), and chlorate and perchlorate con-
centrations [29] were monitored during the experiments. The de-
gradation by-products were identified by gas chromatography coupled
to a mass spectrometer (GC–MS 2010, Shimadzu – experimental con-
ditions described elsewhere [28]). Bioassays of acute toxicity with let-
tuce seeds Lactuca sativa were performed by estimation of the germi-
nation index (GI) (Eq. (1)), where RLS is the radicle length of the
sample, PGSS is the percentage of germinated seed in the sample, RLC is
the radicle length of the control and PGSC is the percentage of germi-
nated seed in the control. The methodology is described by Sobrero and
Ronco [37]. Assays were performed in duplicate for each current den-
sity studied with the effluent before and after treatment.

=GI RLS·PGSS·100
RLC·PGSC (1)

3. Results and discussion

Fig. 1 displays the linear sweep voltammograms (LSV) of the BDD
electrodes with different sp3/sp2 ratios. As can be observed in the blank
voltammograms, BDD1 has a lower onset potential for the oxygen
evolution reaction (OER). This is attributed to the presence of a higher
proportion of sp2-C in the BDD1 electrode compared to BDD2 [30]. sp2-
C is known to possess a higher adsorption strength and hydrophilicity,
favoring the formation of strong OHads species, and a lower over-
potential for OER [30,33]. In the presence of BMImCl, a decay in the
current can be observed for the electrode with highest sp2-C content
(BDD1). This behavior can be explained by a stronger interaction of
BMImCl with the BDD1 surface, blocking some of the active sites.
Furthermore, a peak is detected for BDD1 in the low potential region.
This can be attributed to the direct oxidation of BMImCl on the BDD
surface. Stronger adsorption can favor direct oxidation pathways, as
reported for other organics [32,34,38].

Fig. 2 shows the BMImCl, COD and TOC values during the BMImCl
electrolysis for both BDD anodes at different current densities. At
25 mA cm−2, no significant differences between BDD1 and BDD2 were
observed. However, BDD2 outperforms BDD1 at 50 and 100 mA cm−2.
The behavior at 25 mA cm−2 is rather unexpected since higher sp3-
loaded BDD is more effective for pollutant degradation due to more
efficient generation of OH% radicals compared with the indirect path-
ways of sp2-heavy BDD electrodes [39]. One possible reason could be
direct oxidation of BMImCl on BDD1, shown in Fig. 1b, whose con-
tribution at a low current density could be more significant. Further-
more, Barreto et al. [36], using the same pair of electrodes, showed that
a larger proportion of sp2 favors the formation of persulfate, which
plays a key role in the mediated oxidation pathway. The combination of
these two processes could explain the similar performance of the two
BDDs. At higher current densities, the more intensive generation of OH%

radicals, favored on the non-active surface of the sp3 diamond surface
[33], explains the better performance of BDD2. Indeed, the differences
between the electrodes intensify as the current density rises. In the case
of the COD, BDD1 is less effective in removing the COD regardless of the
current density. A decrease in the COD implies the effective oxidation of
the organic compounds (BMImCl and intermediates), which is more
efficient in sp3-C enriched BDD due to the larger proportion of OH%

radicals [30]. This species is especially effective in completely oxidizing
the organic compounds. The “final TOC remaining” ratio confirms the
better capacity of the BDD with a higher sp3 ratio for mineralization
with an enhanced overall current efficiency (see inset in Fig. 2c).
Moreover, the difference between the electrodes was intensified at
higher current densities, where more parasitic reactions are expected to

Fig. 1. LSV profiles of the different BDDs in (a) 0.1 mol L−1 Na2SO4, and (b) in 0.25 g L−1 BMImCl + 0.1 mol L−1 Na2SO4 (scan rate: 0.05 V s−1).
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occur on the sp2-C enriched BDD.
Two secondary reactions on the BDD are the formation of toxic

chlorates and perchlorates in the presence of chloride. Chloride can
oxidatively aid the formation of ClO3

− and ClO4
− by reaction with the

OH% radicals on the surface of the BDD anode [35]. Fig. 3 shows the
concentrations of ClO3− and ClO4− at the end of the treatment pro-
cesses. BDD1 tends to produce a larger fraction of both oxyanions. The
stronger adsorption of the Cl species on the BDD1 surface favors the

consecutive reactions towards the formation of ClO3
− from ClO− or

ClO2
−, and the conversion of ClO3

− to ClO4
− [35]. In terms of current

density, the higher the current, the smaller the concentration of both
oxyanions. Chlorate behaves as an intermediate that more rapidly
transforms to perchlorate. Unexpectedly, the perchlorate has a similar
tendency. One possible explanation lies in the presence of two species:
(i) ammonium, and (ii) hydrogen peroxide. Both can ameliorate the
formation of more oxidized Cl-oxyanions by the formation of

Fig. 2. Evolution of the (a) BMImCl and (b) COD decay rate for the different electrodes at different current densities, (c) remaining TOC and overall current efficiency
after 5 h of electrolysis (subscript 0 indicates initial value, subscript f indicates final value).

Fig. 3. Final (a) chlorate and (b) perchlorate concentrations after 5 h of BMImCl electrolysis.
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chloramines [35], OH% scavenging and ClO−/HClO quenching [40].
Fig. 4 presents the germination index of Lactuca Sativa, a parameter

used to assess toxicity. Firstly, it is important to note the high toxicity of
the initial effluent, which has a GI of approx. 1.2%. Despite the treat-
ment, the effluent still has a high toxicity, although improvements are
observed in relative terms. At 25 and 50 mA cm−2, there are increases
in the GI which approximate to 6% and 2%, respectively. However,
treatment at a high current density produces a more phytotoxic ef-
fluent. This can be explained by the higher concentration of oxidants
detrimental to Lactuca Sativa germination [41]. The slightly higher
phytotoxicity observed for the higher sp3/sp2 ratio could also be at-
tributed to the more oxidative conditions of the resulting medium after
5 h of electrolysis. An oxidant especially harmful for Lactuca Sativa
germination is H2O2 [41]. Although H2O2 was not quantified, previous
studies of BMImCl degradation in similar operating conditions have
revealed its presence [28]. A higher concentration of H2O2 may be
expected in BDD2 from the recombination of OH% radicals, which are
produced in greater numbers on C-sp3 enriched BDD [33].

Finally, the products detected at the end of the electrolysis were
analysed. Table SM-1 (in the Supplementary Material) lists the species
detected. No difference in the intermediates was observed between
BDDs with different sp3/sp2 ratios. Thus, in overall terms, the de-
gradation mechanism can be assumed to be similar. Nevertheless, the
compounds detected at the end of the treatment processes differ.
Operating with a C-sp3 enriched BDD (BDD2) leads to more oxidized
and open-ring species compared with a C-sp2 rich anode (BDD1) at the
same current densities, to the point that no compounds are detected at
100 mA cm−2 with BDD2 at the end of the electrolysis.

4. Conclusions

BMImCl degradation is affected by the sp3/sp2 ratio of the BDD
electrode. A higher sp3/sp2 ratio results in a more efficient process. The
more intense non-active nature of the more C-sp3 loaded BDD favors
strong oxidative action instead of forming ineffective secondary com-
pounds such as chlorate and perchlorate. Furthermore, operation at
high current densities intensifies the enhanced performance of C-sp3

rich BDD, allowing almost complete mineralization at 100 mA cm−2

and a reduced amount of chlorate and perchlorate. Detection of inter-
mediates at the end of the treatment processes confirms this behavior.

Nonetheless, care must be taken when analyzing the final toxicity of the
treated effluents, since operation at higher current densities produces a
final effluent more toxic than the initial sample. Other treatments might
be required to further reduce the toxicity of the effluent. Special at-
tention should be paid to the removal of the oxidants and the correction
of the ionic strength, as both parameters can detrimentally influence
the phytotoxicity. These insights into the nature of the BDD surface
should make it possible to design efficient diamond-electrochemical
devices for use in specific wastewater situations, whether domestic or
industrial, to aid in the removal of polluting chemicals.
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