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ABSTRACT

Weld Bead Geometry Model in GMAW process by Machine Learning Techniques and Data
Mining Process
The GMAW process has a non-linear behavior and has led many researchers to develop several
studies on it. One of the main interests has been to optimize the process to develop better
performance in industrial processes. Thus, current advances in image processing, predictive
model, and intelligent modeling can help to optimize processes. These techniques can obtain
good results in welding analysis. These techniques can be grouped into, techniques of machine
learning, deep learning, and reinforcement learning, and data mining processes. They are
responsible for the current advances in prediction, real-time image classification, and intelligent
control. Its application in the welding area has the potential for a better study and analysis
of processes, optimization of welding technologies, and better process controls. This research
focuses on the objective of developing a weld bead geometry model in GMAW process by
applying machine learning techniques and data mining process. As a result of the research, a
deep learning model was obtained for the analysis of the arc, a predictive model of the process
behavior, and a mode to optimize it. The methodologies developed with these models demonstrate
a valid efficiency to be applied in real GMAW processes.

RESUMO

Modelamento da Geometria do Cordão da Solda no Processo GMAW Mediante Técnicas
de Aprendizado de Máquina e Processo de Mineração de Dados
O processo GMAW possui um comportamento não linear, e tem levado muitos pesquisadores
a desenvolverem diversos estudos sobre ele. Um dos principais interesses tem sido otimizar
o processo para desenvolver melhor desempenho nos processos industriais. Dessa forma, os
avanços atuais em processamento de imagem, modelo preditivo e modelagem inteligente podem
ajudar a otimizar processos. Essas técnicas podem obter bons resultados na análise de soldagem.
As técnicas se podem agrupar em: técnicas de aprendizado de máquina, aprendizado profundo,
aprendizado por reforço e processos de mineração de dados. Eles são responsáveis pelos avanços
atuais em predições, classificação de imagens em tempo real e controle inteligente. Sua aplicação
na área de soldagem tem como potencial um melhor estudo e análise de processos, otimização
de tecnologias de soldagem e melhores controles de processo. Esta pesquisa tem como objetivo
desenvolver um modelo de geometria do cordão de solda no processo GMAW através da aplicação
das técnicas de machine learning e do processo de mineração de dados. Como resultado da
pesquisa, foi obtido um modelo de deep learning para a análise do arco, um modelo preditivo
do comportamento do processo e um modo com o objetivo de otimizá-lo. As metodologias
desenvolvidas com esses modelos demonstram uma eficiência válida para serem aplicadas em
processos reais de GMAW.
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1 INTRODUCTION

Welding is considered one of the most important processes of joining metals used in industries.
It is used in the fabrication of simple structures, as well as components of a high degree of
responsibility in chemical, petroleum, and nuclear industries. One of the welding techniques
is Gas Metal Arc Welding (GMAW). This is a welding process in which heat is generated by an
electric arc incorporating a continuous-feed consumable electrode that is shielded by an externally
supplied gas. In addition, this welding technique can be applied in ferrous and non-ferrous
materials. This is due to its versatility, relatively high productivity, reliability, and automation.
GMAW is a stochastic process, and the interrelation between its inputs and outputs parameters
have a non-linear behavior. Then, this is one of the main problems that researchers find when
modeling a GMAW process. The balance between the initial parameters and metal transference
modes defines the shape of the weld bead geometry. However the difficulty to control the
relationship between these parameters has led to many studies that focus on making an analysis
based on only one metal transfer mode. Another problem is that many investigations do not get
a real-time analysis. Due to the slowness of the classic image processing techniques. Which, on
many experiments, does not guarantee a generalization of the analyzes.
In practical welding production, welding conditions are often changing, such as the errors of
pre-machining and fitting work-piece would result in differences of gap size and position, the
change of work-piece heat conduction and dispersion during welding process would bring on weld
distortion and penetration odds. The arc welding process contains complicated, stochastic and
uncertain information. Monitoring the state of arc welding process is very important for predictive
and controlling the welding process. Many sensing methods for welding process have been used
in consideration of the disturbance from arc, high temperature, vibration, electromagnetic fields
and the features of the process. Thus, in order to obtain the effectual features of arc welding
process for real-time control of weld quality, various signal processing methods have been applied
for information of welding process, such as processing algorithms for arc voltage, current, visual,
optical, mechanical information.
It is apparent that machine learning techniques help to analyze and find solutions to many
modeling problems. Machine learning uses the theory of statistics in building mathematical
models, making inferences from larges samples of data. Deep learning techniques obtain excellent
results in the classification of complex images. Further, other machine learning techniques, such
as reinforcement learning are being used in intelligent control processes. These techniques have
excellent performance in deployment environment after a hard model training. They, together,
can accomplish a weld bead geometry model of GMAW process in real-time.
Furthermore, small computers with graphic cards can execute the weld bead geometry model in
real-time. In addition to allowing the process to be faster than in a conventional computer, it will
also make the equipment cheaper and lower energy consumption.
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1.1 GENERAL OBJECTIVE

The aim of this work is to develop a weld bead geometry model of GMAW process by applying
techniques of machine learning, deep learning, and reinforcement learning.

1.2 SPECIFICS OBJECTIVES

• To develop a real-time detection model of short circuit and droplet detachment in GMAW
process using deep learning techniques.

• To develop a predictive model of the weld bead geometry of a GMAW process using
machine learning techniques.

• To develop the weld bead geometry model of a GMAW process in real-time by applying
reinforcement learning techniques.

1.3 SUMMARY OF CONTRIBUTIONS

This research contribute:

• In the proposal of two methodologies for weld bead geometry modeling of the GMAW
process.

• In a new GMAW arc images analysis with deep learning technique in real-time.

• In the integration of transfer modes in one computational model for GMAW process.

• In a comparison of predictive GMAW model.

• In a new intelligent modeling process with reinforcement learning for GMAW process.

1.4 POTENTIAL APPLICATIONS

The research developed shows a series of models that both individually and together can be
used for other studies of GMAW process. Also, the image processing techniques used can be
useful for monitoring short circuits and drop detachment in a GMAW process. The predictive
model represents a low-cost technique to identify the behavior of weld bead geometry of GMAW
process. That way, this quality allows its use in teaching processes and simulation tests in the
production industry. Indeed, the real-time modeling of the weld bead geometry to having the
same potentialities of a predictive model is a precedent to define an intelligent control of GMAW
process.
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1.6 DOCUMENT STRUCTURE

This work is organized in six chapters, the bibliography references, and annexes.
Chapter 1 explained the research problem, as well as the objectives and their possible
contribution.
Chapter 2 presents a conceptual analysis of the GMAW process, data analysis techniques, models
process, and the interdisciplinary that they may possess.
Chapter 3 presents a bibliographic review of data analysis techniques in welding.
Chapter 4 presents the equipment and materials used, as well as the experimental design.
Chapter 5 presents the methodology developed in research based on the stages of data mining
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processes. In each stage, the obtained results are explained.
Chapter 6 develops a proposal for the design of components necessary to apply the models
obtained in an experimental lab.
Conclusions and future works present the general results of research and potential researches
that can be developed from this one.
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2 GMAW PROCESS, DATA ANALYSIS AND MODELING
CONCEPTUALIZATIONS

This chapter describes the GMAW process, its characteristics, and fundamental parameters
that will be analyzed in this research. Also, it presents a conceptual analysis and potentialities of
an interdisciplinary area between welding processes, specifically the GMAW process, machine
learning, and data mining process techniques. Moreover, the chapter explains the possible
contributions of the computer science area in the welding process.

2.1 GAS METAL ARC WELDING (GMAW)

Welding is considered one of the most important processes of joining metals used in
industries as shown in (Villani, Modenesi and Bracarense 2016). Because, it is used in the
fabrication of simple structures, as well as components of a high degree of responsibility in
chemical, petroleum, and nuclear industries. In other words, one of the welding techniques
that contribute to the mentioned utilities is the Gas Metal Arc Welding (GMAW). It is a
consumable electrode welding process that produces an electric arc between a weld pool and
supplied electrode wire. The electric arc is its energy source to join metal pieces. The process
can be performed either as an automated, as a manual hand-held process, or semi-automatic
(Thomsen 2005). Furthermore, It can be applied to ferrous and non-ferrous materials. It is mainly
due to its versatility, relatively high productivity, reliability, and ease of use and automation
(ASM 1994, Scotti, A; Ponomarev, V 2008, Cary and Helzer 2005). This welding process is
considered a highly non-linear, multi-parameters and time-varying system (Yan 2011).
The basics equipment used for a typical GMAW semiautomatic setup is shown in Figure 2.1.

(1) Welding torch: It contains wire electrode and shielding gas supplied (Figure 2.2). The
electrode extension is the amount the end of the electrode wire sticks out beyond the end of
the contact tube.

(2) Workpieces: they are the metals to welding.

(3) Welding Source: It is a constant voltage power source whose one terminal is connected with
the welding torch and the other is connected to the workpiece through a clamping device.

(4) Wire feed unit: it is the control to wire supply.

(5) Electrode source: It is the metal wire which is used as the metal electrode in the GMAW
welding.

(6) Shielding gas supply: it provides a supply of shielding gas to the arc area.
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Figure 2.1: GMAW Circuit

Source: (The Welding Master 2017)

Figure 2.2: Welding torch

Source: (EuroTech 2019)
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2.1.1 GMAW parameters

GMAW parameters are the parameters involved in the welding process, whose changes have
influences on the characteristics of heat, metal transfer and welding bead geometry (Cayo 2013).
GMAW process offers some difficulty correcting welding parameters, this is mainly due to
the relatively high number of parameters and above all, a strong interrelation between them
(Scotti, A; Ponomarev, V 2008, Bingul and Cook 2006). In this research, some parameters are
selected for GMAW process analysis. It is valuable to note the parameters are those that can
be adjusted during the process, they are wire feed speed, welding velocity, and voltage. The
adjustable parameters are those that make it possible to control some of them in the process.
They are also known as input parameters. Add to this the arc parameters are constituted
by those phenomena produced by the electric arc. Some experiments are analyzed as output
parameters. These parameters were selected because they are those that can be estimated through
arc-image processing. Some arc parameters are unmelted wire length, drop volume, melted wire
volume, short circuit frequency, and drop frequency. Weld-bead parameters are weld-bead depth,
weld-bead width, and weld-bead height. The bead parameters consist of geometric characteristics
as shown in the Figure 2.3.

Figure 2.3: Welding bead

Source: (Pinto-Lopera et al. 2016)

GMAW process, being a process that uses consumable wire, is mainly characterized by metal
transfer modes. Thus the metal transfer modes are influenced by GMAW input parameters,
characteristics of materials, and components used. Metal transfer in the GMAW process can
be grouped into three modes:

(1) Short-circuiting metal transfer is a mode of metal transfer whereby a continuously fed
solid or metal-cored wire electrode is deposited during a repeated electrical short-circuiting.
The short-circuiting metal transfer mode is the low heat input mode of metal transfer for
GMAW. Then, the metal transfer occurs when the electrode is electrically shorted with
the base material or molten puddle. Central to the successful operation of short-circuiting
transfer is the diameter of electrode, the shielding gas type, and the welding procedure
employed (The Lincoln Eletric Company 2014).
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(2) Globular metal transfer is a GMAW mode of metal transfer whereby a continuously
fed solid or metal-cored wire electrode is deposited in a combination of short-circuits
and gravity-assisted large droplets. The larger droplets are irregularly shaped. During
the use of all metal-cored or solid wire electrodes for GMAW, there is a transition
between short-circuiting transfer ends and globular transfer begins. Globular transfer
characteristically gives the appearance of large irregularly shaped molten droplets that are
larger than the diameter of the electrode. The process at this current level is difficult to
control and spatter is severe. Gravity is instrumental in the transfer of the large molten
droplets with occasional short-circuits (The Lincoln Eletric Company 2014).

(3) Spray metal transfer is the higher energy mode of metal transfer whereby a continuously
fed solid or metal-cored wire electrode is deposited at a higher energy level, resulting in a
stream of small molten droplets. The droplets are propelled axially across the arc. For most
of the diameters of filler metal alloys, the change to spray transfer takes place at the globular
to spray transition current (The Lincoln Eletric Company 2014).

Indeed the variability of these modes and the inaccuracy of the values under which they occur are
important elements that define the complexity of GMAW process. This makes the analysis of the
arc a very important element that determines what can happen at the end of the process.

2.1.2 GMAW process as a complex system

Despite the great advantages of the GMAW process. It requires a careful setting of process
parameters to avoid fusion defects, especially on thicker base metals. Careful configurations are
ideal for a wide range of industrial welding requirements. Most common welding problems fall
into the category of improper weld bead profile, As was shown in diversifying investigations such
as (Moncayo Torres 2013, Giron Cruz 2014, Alvarez Bestard and Absi Alfaro 2018) exposed. In
certain industrial applications, it is required to obtain specific dimensions from the weld bead
geometry. Meeting these objectives requires an excellent understanding and enough experience,
which few specialists have, as (Scotti, A; Ponomarev, V 2008) said.
Welding defect is defined as any flaw compromises the usefulness of any products, the
irregularities in the weld metal produced due to incorrect welding parameters or wrong welding
procedures or wrong combination of metal and non-metal plates. In the welding process there
are many wear or defects occur. These wear factor may include oversize work piece, casting
blow holes in the work piece, thermal and mechanical properties, and variation of different
metal work piece hardness. The weld defects occur during welding due to the complexities
of the welding processes, moisture in the air and the unpredictable factors (Mathers 2002,
Rajeev Kumar and Dr. Vandana Somkuva 2015).
The welding process in general can be viewed as a complex system that has multiple inputs,
multiple outputs, and multiple disturbances. This kind of system adds difficulty in determining the
correct set of input values to achieve the desired outputs. The history of inputs to outputs can help
to optimize the adjustment of input values to improve the speed taken to converge at the desired
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levels of outputs. A non-linear model may be obtained to correlate outputs and inputs values as
was showed by (Zhang YuMing 2008). Hence, (Chen and Lv 2014) suggested a modern welding
manufacturing technology. The intelligentized welding manufacturing technology (IWMT) is
mainly related to key intelligent technical elements. The studies establish the foundation work
of intending researches and applications on intelligentized technologies for modern welding
manufacturing. IWNT promotes systematization research for forming an effective combination
of modern welding manufacturing, computer science, and artificial intelligence technology. In
addition, the development of modern welding technology is changing from traditional handicraft
to modern science manufacturing. They also show some key scientific and technical problems in
IWMT. Figure 2.4 shows three of them that will be analyzed in this research.

Figure 2.4: The key scientific and technical problems in IWMT.

Source: (Chen and Lv 2014)

As of present, computer science has the potentials to solve these three problems. Computer
science field had great results with the new technique applications of data analysis, learning
models, and intelligent control. Data analysis objectives indicate non-trivial features on amount
large data. Due to the increase and complexity data has been developed for more efficient data
analysis techniques. Welding process can be analyzed from this point of view. As a result,
welding process analysis with new techniques is nothing more than continuity in the development
of welding analysis processes. This interdisciplinarity is one of the necessary contributions
proclaimed by called industry 4.0, like (Haffner et al. 2017, Jiang, Zhang and Wang 2017,
Chong, Ramakrishna and Singh 2018) shown. The industrial 4.0 refers to the next manufacturing
generation, where automation technology will be improved by self-optimization and intelligent
feedback (Tuominen 2016). For this reason, the application of the most recent data analysis
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techniques and processes can contribute to better modeling and monitoring of welding processes.
This new data analysis technique can be groups in Data Mining process and machine Learning
techniques.
An inquiry conducted in the Web of Science from 2011 to October, 3rd 2018 shows that there
is a growing trend of these new data analysis techniques in welding process researches, Figure
2.5 shows this trend. Whereas when comparing with the investigations on the models welding
process, the growth is still very small, as appear in Figure 2.6. This confirmed a need to encourage
research among these areas and greater socialization of results.

Figure 2.5: Cited per year on welding ( Web of Science (Analytics 2018))

Source: Produced by author
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Figure 2.6: Cited per year on welding ( Web of Science (Analytics 2018))

Source: Produced by author

2.2 DATA ANALYSIS

From Shannon’s contributions to information theory (Weaver 1949), data analysis had
increasing importance for technological, social, and scientific processes. Information theory
is a branch of applied mathematics that involves the quantification of information as
expressed (Liu et al. 2012). Entropy and information-theory principles are still widely used
in data analysis in several areas as shows (Qi and Guo 2014, Varadan and Anastassiou 2006,
Wollstadt et al. 2014, Dishion et al. 2004, Rhea et al. 2011, Seyyed and Mohammad 2011). An
important objective of data analysis is to reveal and to indicate diverse, non-trivial features in
data. For this reason, welding process can be analyzed from this point of view.
The contemporary techniques of data analysis can join in machine learning techniques
as shown (Hernandez Orallo, Ramirez Quintana and Ferri Ramirez 2004, Yu and Deng 2011,
Marsland 2015, Bell 2015, Casalino 2018), in data mining process as shown (Hirji 1999,
Norton 1999, Olson and Delen 2008, Piatetsky 2014, Chambers, Doig and Stokes-Rees 2017)
and in intelligent control process by machine learning and reinforcement learning techniques
exemplified by (Chi et al. 2019, Huang et al. 2019, Woods and La 2019). The interrelation of
these areas and their origins are presented in Figure 2.7.
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Figure 2.7: Origin diagram of the new data analysis techniques

Source: Produced by author

2.3 MACHINE LEARNING TECHNIQUES

In 1959, Arthur Samuel defined machine learning as, field of study that gives computers
the ability to learn without being explicitly programmed (Bell 2015). Machine learning is
one of the fast-growing areas of computer science, with far-reaching applications for data
analysis. The term machine learning refers to the automated detection of meaningful patterns
in data (Shalev-Shwartz and Ben-David 2014). Machine learning helps to find solutions to many
problems in vision, speech recognition, and robotics. Thus, this uses the statistics theory in
building mathematical models making inferences from a data sample. The role of computer
science is twofold by (Alpaydin 2010). First, in training, we need efficient algorithms to solve
the optimization problems, to store and process the massive amount of data we generally have.
Second, once a model is learned, its representation and algorithmic solution for inference need to
be efficient as well. The model may be predictive to make predictions in the future, or descriptive
to gain knowledge from data or both. As an interdisciplinary field, machine learning shares
common threads with the mathematical area of statistics, information theory, game theory, and
optimization. It is naturally a subfield of computer science. Its goal is to program machines to

12



learn. In this sense, machine learning can be view as a branch of artificial intelligence (AI) since
the ability to turn the experience into expertise or to detect meaningful patterns in complex sensory
data is a cornerstone of human (and animal) intelligence (Shalev-Shwartz and Ben-David 2014).
Two classification of machine learning algorithms are supervised learning and reinforcement
learning. Supervised learning use a training set of examples with the target responses is provided.
Based on this training set, the algorithm develops a model to respond correctly to all possible
inputs. Reinforcement learning is used to solve interacting problems where the info observed up
to time t is taken into account to decide which action to require at time t + 1. The algorithms
that are categorized in this group can be used in optimization and intelligent control tasks
(Marsland 2015). Some famous and best-used supervised machine learning techniques are:

• Linear discrimination: is a common statistical tool for modeling the relationship between
some explanatory variables and some real-valued outcome. It is a discriminant based
approach that estimates the parameters of the linear discriminant directly from a given
labeled sample. A example of this technique is Linear Regression (LR) (Alpaydin 2010,
Shalev-Shwartz and Ben-David 2014).

• Support vector machine (SVM): is one of the most popular algorithms in modern machine
learning. It was introduced by Vapnik in 1992. It provides a very impressive classification
performance on reasonably sized data sets. It consists of a vector representation of records,
with a real component for each attribute (Marsland 2015).

• Nearest neighbor algorithms: are among the simplest of all machine learning algorithms.
The idea is to memorize the training set and then to predict the label of any
new instance on the basis of the labels of its closest neighbors in the training set
(Shalev-Shwartz and Ben-David 2014).

• Bayesian networks: based on a set of variables or parameters, it is possible to predict
outcomes based on probabilities. These variables are connected to each other that the
resulting value of one variable will influence the output probability of another, hence the
use of networked nodes. A Bayesian Network manages to combine probability theory with
graph theory and provides a handy method for dealing with complexity and uncertainty
(Bell 2015).

• Artificial neural network: is a computation model inspired by the structure of neural
networks in the brain. In simplified models of the brain, it consists of a large number of basic
computing devices (neurons) that are connected to each other in a complex communication
network, through which the brain is able to carry out highly complex computations.
Artificial neural networks are formal computation constructs that are modeled after this
computation paradigm (Shalev-Shwartz and Ben-David 2014). Artificial neural networks
(ANN) are the most popular artificial learning tool in computer science and other research
disciplines (Casalino 2018).
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These techniques have great applicability in the development of predictive models. They can be
used in the development of a predictive model of the weld bead geometry of GMAW process.
Consequently, for a good analysis of welding arc images, other techniques with better results in
the image processing area would be necessary.

2.3.1 Deep Learning

Machine learning technicians are instrumental in signal processing investigations, although in
2006 a new area has emerged in automatic learning called deep learning (Yu and Deng 2011).
Deep learning allows computer models to be composed of multiple-layers processing
to represent the learning of these data with several layers of abstraction like it is
shown in Figure 2.8. These methods are essential part of the research on speech
recognition in states-of-the-arts (Mesnil et al. 2013), image recognition (Zhu et al. 2014,
Pachitariu et al. 2013), object detection (Pachauri et al. 2014) and other domains as the human
genome (LeCun, Bengio and Hinton 2015).

Figure 2.8: Deep learning vs Neural network architecture

Source: (Gill 2018).

2.3.1.1 Deep Learning in vision system

In past decades, traditional image-processing techniques were considered computer vision
systems, but that is not accurate. A machine processing an image is completely different from
that machine understanding what’s happening within the image, which is not a trivial task. At
the highest level, vision systems are pretty much the same for humans, animals, insects, and
most living organisms. In the same way, they consist of a sensor or an eye to capture the image
and a brain to process and interpret the image (Elgendy 2020), like is shown in Figure 2.9.
Scientists were inspired by the human visual system and in recent years have done amazing
research on visual ability with machines. Its works were initialized by Yann LeCun’s paper in
1998 (Lecun et al. 1998). This paper reviews various methods applied to handwritten character
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recognition and compares them on a standard handwritten digit recognition task.

Figure 2.9: The human vision system uses the eye and brain to sense and interpret an image

Source: (Elgendy 2020).

This new architecture is shown to outperform all other techniques. Convolutional neural networks
(CNN), as is called, are specifically designed to deal with the variability of 2D shapes, like
show the Figure 2.10. The convolutional and pooling layers have the objective of extracting
the patterns that identify a group of images concerning others. The objective of the full connected
layers is to transform these patterns to the corresponding classification, like it was expressed in
(Krizhevsky, Sutskever and Hinton 2017).

Figure 2.10: Architecture of Convolutional neural networks

Source: Produced by author.

2.3.1.2 Residual Neural Network (ResNet)

Deeper neural networks are more difficult to train. Residual Neural Network (ResNet)
is to ease the training of networks that are substantially deeper than those used previously
(He et al. 2015). ResNet is based on deep residual learning. It explicitly reformulates the layers as
learning residual functions concerning the layer inputs, instead of learning unreferenced functions
(He et al. 2015). The idea behind the above block is, instead of hoping every few stacked layers
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directly fit a desired underlying mapping say H(x), It explicitly lets these layers fit a residual
mapping F (x) = H(x) − x. Thus original mapping H(x) becomes F (x) + x, like it shows in
Figure 2.11.

Figure 2.11: Building block of residual learning

Source: (He et al. 2015).

The advantage of adding this type of skip connection is because if any layer hurt the performance
of architecture then it will be skipped by regularization. So, this results in training very
deep neural network without the problems caused by vanishing/exploding gradient. In fact,
the ResNet models were extremely successful. It won 1st place in the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) 2015 classification competition with a error
rate of 3.57% (Sik-Ho Tsang 2018). These advantages could be exploited in a model to detect
short circuit and droplet detachment, which can help in obtaining arc parameters, like droplet
frequency, short-circuit frequency, and an estimate of the molten-wire volume of GMAW process.
Furthermore, these parameters can be input parameter for the predictive model of weld bead
geometry.

2.3.2 Intelligent Modeling

The definition of intelligent modeling is very associated with reinforcement learning.
Intelligent Modeling is a heuristic, autonomous, non-linear, and adaptive (with learning)
controller. Intelligent Modeling is born with the intention of applying a control technique in
information theory, computer science, artificial intelligence, in order to obtain good results
in complex systems modeling and consolidated as a discipline (Santos 2011). Likewise, an
application advantage of this control strategy, the mathematical model can be obtained with the
techniques mentioned in the previous sections. As an optimization-based method, the q-learning
algorithm can be applied. It can be used to solve optimal control problems (Li et al. 2018).
Q-learning has shown a good control performance when exposed to time-varying external
disturbances (Yin, Yu and Zhou 2018). Q-learning is an effective scheme for unknown dynamical
systems because it does not require any knowledge of the system dynamics to solve optimal

16



control problems (Chun, Park and Choi 2018, Li et al. 2018). The q-learning algorithms are
important pieces for reinforcement learning (RL) techniques. RL is a machine learning paradigms
concerned with how software agents ought to take actions in an environment, so as to maximize
some notion of cumulative reward (Sutton and Barto 2017). The decision-maker is an agent that
interacts with the environment it’s placed in, as shown in Figure 2.12. This process of selecting an
action from a given state, transitioning to a new state, and receiving a reward happens sequentially
over and over again, which creates something called a trajectory that shows the sequence of states,
actions, and rewards (Deeplizard 2019).

Figure 2.12: Reinforcement Learning diagram

Source: (Sutton and Barto 2017)

• State: The states are the values that must be controlled. These are the processes results that
occur in the environment.

• Action: The actions are the agent executions to reach the control objective. the actions are
the control variables.

• Reward: The reward is the prize value to reach the control objective.

The q-learning algorithm goal is to learn a policy, which tells an agent what action to take and
under which circumstances(present state). Then, this algorithm can be used to model the weld
bead geometry, using like environment the model predictive of weld bead geometry.
With only a good machine learning algorithm, you do not get a good learning model. Some
analytic functions are often automated, but human setup prior to implementing procedures is
required. Proper selection of data to include in searches is critical. Similarly, data transformation
is often required. Too many variables produce too much output, while too few can overlook key
relationships in the data (Olson and Delen 2008). Therefore, to obtain a good learning model, it
is necessary to use a good data analysis process. Data mining is one of them. Data mining is
defined as the process of discovering patterns in data (Witten and Frank 2005). Machine learning
provides algorithmic techniques for data mining process.
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2.4 DATA MINING PROCESS

Data mining is an interdisciplinary field that brings together techniques from machine
learning, pattern recognition, statistics, databases, and visualization to address the issue of
information extraction from large dataset (Hirji 1999). Data mining is a field of the intersection
of computer science and statistics, used to discover patterns, prediction, and classification
in the information bank. The main aim of the data mining process is to extract useful
information from the dossier of data and mold it into an understandable structure for future use
(Agarwal 2013). It has proven to be extremely effective in improving research in many areas.
These articles (Pan and Yang 2010, Felzenszwalb et al. 2010, Shaw, Sicree and Zimmet 2010,
Tamura et al. 2011), are the most cited articles in the area, with more than 2000 time citations
from Web of Science. This demonstrates that the potentialities of data mining techniques can
be applied in any area since its raw materials are given. Data mining requires a problem
identification, along with a collection of data that can lead to better understanding, and computer
modeling to provide statistical or other means of analysis (Olson and Delen 2008). All these
requirements are defined in many similar processes and methodologies like:

• Knowledge Discovery in Databases: refers to the broad process of finding knowledge in
data, and emphasizes the "high-level" application of particular data mining methods. It
is of interest to researchers in machine learning, pattern recognition, databases, statistics,
artificial intelligence, knowledge acquisition for expert systems, and data visualization
(Piateski and Frawley 1991, Fayyad et al. 1996, Norton 1999).

• SEMMA Methodology: The SEMMA process was developed by the SAS Institute. The
acronym SEMMA stands for Sample, Explore, Modify, Model, Assess, and refers to the
process of conducting a data mining project (Olson and Delen 2008).

• CRISP-DM Methodology: which stands for Cross-Industry Standard Process for Data
Mining, is an industry-proven way to guide your data mining efforts. As a methodology, it
includes descriptions of the typical phases of a project, the tasks involved with each phase,
and an explanation of the relationships between these tasks (Larose 2014, Piatetsky 2014).

• Data Science Process: is an agile, iterative data science methodology to deliver
predictive analytics solutions and intelligent applications efficiently (Stanton 2012,
Chambers, Doig and Stokes-Rees 2017).

Essentially, these processes and methodologies define some stages as shown in
(Marbán, Mariscal and Segovia 2009). These stages can resume to:

• Research understanding, it shows the research objective.

• Data acquisition. It starts with an initial data collection and proceeds with activities to get
familiar with the data.
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• Data preparation. It covers all the activities required to construct the final dataset from the
initial raw data for the model to develop.

• Modeling. Various modeling techniques are selected and applied. Their parameters are
calibrated to optimal values.

• Evaluation. It evaluates the different models obtaining to select the best from this objective.

• Deployment. The objective is to deploy and use the Discovered Knowledge.

Each of the stages contains a series of good practices that help us to obtain a better final result
(Chapman et al. 2000, Chambers, Doig and Stokes-Rees 2017). Interesting patterns come out
from data mining practice. That is, besides some common properties, different perspectives
of data mining put strong emphases on different aspects, like efficiency, effectiveness, and
validity of process (Zhou 2003). Data mining process in GMAW process analysis should help
to validate efficiency or effectiveness on data acquisitions, data preparations, and modeling. The
methodology proposed in this research must be closely related to the steps of the referenced
methodologies and processes. This will guarantee the tools for a better evaluation of each of the
defined methodological stages.

2.5 CHAPTER CONSIDERATIONS

The transversality of data analysis techniques allows its use in various areas. The use of these
analyses in welding processes is still new. Although, there are applications of these techniques
as this chapter demonstrates. This chapter presented how deep learning techniques, machine
learning, and reinforcement learning can solve technical problems of welding processes. The
stages developed by data mining processes can contribute in other areas to carry out an efficient
investigation of welding processes.
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3 DATA ANALYSIS AND MODELING TECHNIQUES OF
WELDING PROCESSES: THE STATES-OF-ARTS AND

METHODOLOGICAL PROPOSALS

The analysis of the State-of-the-art of welding processes will be developed according to some
stages mentioned in the section of Data Mining Processes (see chapter 2). This allows a better
understanding of possible applications of the new techniques and the most utilized at each stage
of welding investigations.

3.1 SENSORS

Several sensors have been applied in welding processes to obtain information as can
be seen in Figure 3.1. The utilization of infrared vision techniques has been applied in
researches on welding processes as shown in (Fidali and Jamrozik 2013, Sreedhar et al. 2012,
Bagavathiappan et al. 2013, Coniglio et al. 2016). Thus, one of the problems of this technique is
that the environment where it is applied can interfere with the precision of the data obtained from
the process. This may be due to the own heat emission of the technologies been utilized. Another
type of sensor with great potential in welding processes is the sound sensor.

Figure 3.1: Diagram of sensors

Source: (Bestard 2017)
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3.1.1 Vision sensor

Vision sensor is largely utilized in welding process to analyze welding pool (Xu et al. 2012,
Liu, Huang and Zhang 2015), welding arc (Fei Gao and Qinglan Chen 2015, Ogawa 2011) and
weld bead geometry (Günther et al. 2014, Günther et al. 2016). The high light generates by
arc becomes hard the images obtentions. In this case, some techniques are utilized. One of
them is utilized by (Chen and Farson 2010). This author made effective monitoring and control
of the hybrid laser/gas metal arc welding process quality with an economical sensor system.
A coaxial vision system for the hybrid process monitoring was integrated from a relatively
inexpensive industrial vision system and a personal computer (PC). Other visualization technique
is Shadowgraphy, applied in (Ramos, Carvalho and Absi Alfaro 2013) and (Siewert et al. 2014).
This is based on obtaining the shadow of the process through the utilization of a laser source.
With high-speed illumination laser, (Ma, Li and Chen 2017) obtained great quality images. This
technique is new but it needs a laser with more potential than the traditional Shadowgraphy
technique.

3.2 IMAGES PROCESSING

Some papers defined their structured light image processing technology into pipeline welding
automation projects. It develops a vision-based pipeline too, as shown in (Yue et al. 2009). Here,
Weld image processing adopts the base theory, including the Laplacian of a Gaussian filter, the
neighborhood mean filter, the largest variance threshold segmentation, and morphologic. Other
works like (Xu et al. 2014) applies the main characteristics of the gray gradient. A new improved
Canny edge detection algorithm was proposed to detect the weld-image edges and extract the
seam and pool characteristic parameters. (Wu et al. 2014) drove to find out the optimal noise
filtering algorithm. It made a comparison of three noise filters: Gaussian filter, Median filter,
and Wiener filter with welding seam image captured from the CCD camera. As a result, this
paper considers the Median filter to have a better enhancement effect than the other two filters. In
classic image processing, it difficult to generalize a filter or algorithm because it depends on the
conditions and characteristics of camera parameters and light. According (Redmon et al. 2016),
deep learning techniques have efficient result in real-time executions, while (Zhu et al. 2014)
and (Pachitariu et al. 2013) affirm that the classification is better. One example applied in
welding process is (Günther et al. 2014, Günther et al. 2016). It utilizes the autoencoder deep
learning technique to extract features of images process in laser welding. Hence, the deep
autoencoder features yielded a lower classification error when utilized as input for two Support
Vector Machine (SVM) classifiers. Not only focusing on welding arc analysis but with good
results, (Hou et al. 2018) propose an automatic detection for weld defects in x-ray images. It
is constructed based on a deep neural network and classification model which was trained and
tested by the patches cropped from x-ray images. Consequently, the proposed model obtains a
maximum classification accuracy rate of 91.84%. This was one more example of the potential of
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these techniques in welding area.

3.3 MODELING A WELDING PROCESS

Demand for quality products has led to the rapid advancement of today’s manufacturing
environments. Many techniques and methods are applied to correlate between process parameters
and bead geometry. One of them was the Response Surface Methodology (RSM). It was
applied by (Sen 2015), where he evaluated the correlations that occurred between double
pulsed gas metal arc welding (DP-GMAW) process parameters and weld bead geometry.
(Santhana Babu et al. 2016) have acquired good results with the same technique to predict and
control the weld bead quality in GTAW process. The problem of this method is that researchers
should find the equation called response surface by test and error which can be hard. Many
theoretical models have been defined to determine the process that occurs in the welding arc
including (Boutaghane et al. 2011). The main problem of these models was that they lose
precision because it was tricky to obtain a formula that contains all the complexity of the processes
as affirmed by (Dong et al. 2016).
Mathematical models based on machine learning techniques have better results in problems as
complex as this one. In the same paper, (Dong et al. 2016) expresses the potential of these
models. One of the well-known and utilized regression algorithms is the least-squares method.
It was utilized in (Gao et al. 2011) to predict the seam position directly under strong disturbing
influence from the arc light. (Li and Gao 2014) utilized a linear regression model between pool
image centroid deviation and the weld based for visual weld deviation measurement in GTAW
process. Another technique was Gaussian Process Regression(GP) utilized in (Dong et al. 2016)
to predict the characteristic performance of an arc welding process in GTAW.
One interesting method utilized in (Feng et al. 2012), is Mahalanobis Distance Measurement. It
was illustrated and employed to determine whether welding faults have occurred or not. The same
method was utilized in 2017 by Khairul Muzaka in his work (Muzaka et al. 2017) on GMAW
process to optimize welding current for A vertical-position welding. The worst thing with this
method is that it only correlates in the function of one input. (Bai and Lubecki 2016) proposed
an on-line analysis method based on Localized Minimum and Maximum (LMM) of the welding
process stability, for a welding monitoring system. The problem of LMM is to show a simple
function to quality measures, then not define the complexity of the system. And that is why this
work is limited only to the short circuit transfer mode.
(Park and Kim 2017) proposed an SVM with bootstrap aggregating to improve the prediction
accuracy on the noisy RSW data with computational efficiency. In this framework join other
technique as Generalized Regressive Neural Networks (GRNN) and Genetic algorithms for
optimization. This article demonstrates an increase in more complex computer science techniques
for better analysis of welding processes. Even though the only way to know if all this is the best
solution is by comparing with other techniques.
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3.3.1 Artificial Neural network models (ANN)

Some researchers already had references to these algorithm’s advantages. Like Bo Chen that
utilized ANN and Dempster-Shafer evidence theory, in (Chen, Wang and Chen 2010), to predict
the penetration status in GTAW process.
They have also been utilized for different purposes and in different welding processes like:

• In SAW process, to predicting weld bead geometry (Sarkar et al. 2016).

• In GMAW Cold Metal Transfer (CMT) process, to predicting weld bead geometry
(Pavan Kumar et al. 2017).

• In GTAW process, it is predicted the angular distortion considering the weld bead geometry
(Rong et al. 2016).

• In Girth Welded Pipes process, to predicting of residual stresses (Mathew et al. 2017).

• In Underwater Wet Welding Process, to predicting the weld seam’s geometric parameters
(Chen and Feng 2014).

ANNs have been mixed with other techniques to obtain better results. One example of this is
shown in (You, Gao and Katayama 2015), where it utilizes ANN and Support Vector Machine
(SVM) for monitoring a welding defect in a laser welding process. (Chen and Chen 2010)
predict the penetration in GTAW process, but used different ANNs to process information
from different sensors, and finally predictive fuzzy integral method. Another example is in
(Rios-Cabrera et al. 2016), where ANN Fuzzy ARTMAP was utilized to predict bead width and
height in GMAW process like monitoring task.
The increase in computational resources has allowed an increase in the complexity of ANN
architectures. These are called Deep Neural Networks (DNN). Bit by bit, they begin to be
applied in the welding process. One of them was utilized in (Keshmiri et al. 2015). The model
is based on a four-hidden-layer neural network architecture to make a study of the estimation
of weld bead parameters. This article mixed data from different welding processes. This is
a risk for results analysis since different processes can have different outcomes with the same
input parameters. (Rao, Srinivasa Rao and Deepak 2017) utilized the Generalized Regressive
Neural Networks (GRNN) technique, for estimating and optimizing the vibratory assisted welding
parameters, to produce quality welded joints. But in this case, it does not have a comparison with
other algorithms. (Wu et al. 2017) wrote a paper addressing “t-stochastic neighbor embedding”
and deep belief network (DBN), other DNN variant, to perform variable polarity plasma arc
welding (VPPAW) process monitoring and penetration status identification. Thus experimental
verification and comparisons show that the classification performance of DBN can reach 97.62%,
which indicates DBN outperforms ANN and support vector machine (SVM) models. This
reaffirms the good results offered by the learning models developed with these algorithms. This
work did not have as an objective the use of DNN algorithms to analyze images and sound in
real-time, which could have been very interesting in the research.
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Despite being the most used technique in welding processes analysis, Figure 3.2 presents that
the best results are not always obtained. This figure was created with the articles studied in this
review, and it proves that, with a comparative analysis, better models can be identified with a
lower computational cost.

3.3.2 Why is it necessary to test and compare different models?

As it has been expressed in the previous sections, there are new techniques to analyze
complex systems. But they require expensive computational resources for their construction and
sometimes for their execution. A comparison between models will allow knowing which model
has better results and which model can be the most effective to be utilized. This effectivity is
measured in function of problem necessity like it is shown in data mining (DM) methodologies
and processes (Piatetsky 2014, Chambers, Doig and Stokes-Rees 2017).

Figure 3.2: comparison between ANNs and ANN variations

Source: Produced by author

The best result, for weld deviation extraction and weld groove state in Rotating Arc Narrow Gap
MAG welding (RANGMW), was obtained by a comparison between Support Vector Machine
(SVM) and ANN model (Li et al. 2014). This showed that the SVM model’s predictive ability
was better than the ANN model because it adapts to the little sample problem and can avoid
the local extreme. One comparison with a focus on time optimized was (Kumar et al. 2014).
Here, it utilized an ANN and ANN with differential evolutionary algorithm (DEA) separately.
The results obtained were closer to ANN, but the computational time of ANN using DEA was
shorter than the other algorithm. In the article, (Escribano-García et al. 2014) Response Surface
Methodology (RSM) was compared with regression models based on DM (linear regression
(LR), isotonic regression (IR), GP, ANN, SVM and regression trees (RT)) to evaluate mechanical
properties in GMAW process. The results showed that the regression models obtained with DM
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generally have poorer generalization capacity than the regression model obtained with RSM.
Because DM techniques require a relatively large amount of data to obtain acceptable results. The
article (Sumesh et al. 2015) compared decision trees (DT), ANN, fuzzy logic, SVM, and random
forest techniques for weld quality monitoring in SMAW. It knows the importance of comparing
data mining techniques. The most efficient technique was the random forest. This shows that
not always the most complex techniques offer the best results. One of the few comparative
analyses algorithms was shown in (Kumar et al. 2016). This paper explores the self-organizing
maps(SOM) algorithm as a mechanism for performing unsupervised learning. It compared the
performance, characteristics of various welding parameters. The SOM result was compared with
the Probability Density Distributions (PDDs) obtained during statistical analysis. Finally, it is
shown that, in addition to PDD, analysis of voltage and current data using the SOM technique
can also be utilized to evaluate arc welding process. These studies demonstrate that there are
other potential algorithms for step analysis in welding process. And it is necessary to evaluate
and compare several of them to select the best upon in a real-time process.
Another comparison was done by (Wu et al. 2016). The article compared a prediction model
of Plasma Arc Welding based on the Extreme Learning Machine (ELM) technique with ANN
and SVN. This proposed model is faster and has better generalization performance. This
potentiality is established by (Nandhitha 2016). In this case, he utilized Radial Basis Networks
(RBN) and Generalized Regressive Neural Networks (GRNN) to torch current prediction in
GTAW process. GRNN outperforms RBN in predicting the torch current deviation with 98.95
% accuracy. (Kim, Park and Sohmshetty 2017) discusses the Resistance Spot Welding (RSW)
process. He examines the prediction performance of k-nearest neighbor (kNN) and GRNN.
The results indicate that using a smaller k on properly-inconsistent data increases the prediction
performance measured by mean acceptable error (MACE).
Another quality welding article was (Wan et al. 2017). A different neural network model was
proposed for weld quality prediction in large scale RSW process. In the research, a simple
ANN was more proper in failure load estimation. The probabilistic neural network model was
more appropriate to be applied in quality level classification. One of the few articles with DM
techniques mention in welding process was (Huang et al. 2017). This is an investigation of
porosity in pulsed Gas tungsten arc welding (P-GTAW) of aluminum alloys based on spectral
and x-ray image analyses. This made spectral analyses based on DM and empirical mode
decomposition (EMD) were proposed to detect porosity. (Petković 2017) predicted a laser
welding quality by training data for the computational intelligence methodologies and support
vector regression(SVR). Support Vector Regression is a novel variant of Support Vector Machine
usually for regression tasks. This article made a comparison between SVR, ANN, and GP. It is
another example that, in specific problems, less complex algorithms can offer better results. It
defines which of the techniques is most effective for solving the problem. Moreover, it helps in
the effectiveness of a future process of intelligent control.
Table 3.1 presents some articles that were based on quality monitoring of welding processes. The
preparation column defines the processing technique of data obtained by the sensors. The classic
value represents welding processes that do not use the newest techniques of image processing and
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DL for those who use them. The modeling column defines the algorithms used in the specific
article. The online column defines whether the proposed model was executed in real-time. The
compare column defines whether this paper made a comparison between several algorithms.
When there is a comparison, the first model before the comma is of the best quality result. As all
tables show (Table 3.1, Table 3.2 and Table 3.3), the best algorithm does not always be the same.

Table 3.1: Table articles with quality objective

author year welding process sensors Preparation Modeling Online compare
(Saini 1998) 1998 GMAW sound classic no yes no
(Yue et al. 2009) 2009 no speak visual classic theorical model no no
(Chen and Farson 2010) 2010 LBW/GMAW visual classic no yes no
(Horvat et al. 2011) 2011 GMAW sound classic no yes no
(Gao et al. 2011) 2011 GTAW visual classic LR-ANN no no
(Feng et al. 2012) 2012 GMAW standard classic MDM yes no
(Kalaichelvi, Karthikeyan and Sivakumar 2013) 2013 GMAW standard classic GA-Fuzzy yes no
(Fidali and Jamrozik 2013) 2013 GMAW infrared classic statistical analysis yes no
(Sreedhar et al. 2012) 2013 GTAW infrared classic statistical analysis yes no
(Kumar, Anand and Srivastava 2014) 2014 no speak visual classic ANN no no
(Kumar et al. 2014) 2014 GMAW visual classic ANN, ANN-DEA yes yes
(You, Gao and Katayama 2015) 2015 Laser welding Spectrometer classic FFANN-SVM yes no
(Sumesh et al. 2015) 2015 SMAW sound classic some DM (RF) yes yes
(Baraka, Panoutsos and Cater 2015) 2015 FSW standard classic ANN-Fuzzy, ANN yes yes
(Kumar et al. 2016) 2016 SMAW standard classic PDDs, SOM no yes
(Muzaka et al. 2017) 2016 GMAW standard classic MDM yes no
(Bai and Lubecki 2016) 2016 GMAW standard classic LMM yes no
(Park and Kim 2017) 2017 RSW standard classic GRNN-SVM yes no
(Wan et al. 2017) 2017 LSRSW standard classic ANN(BP), ANN(Prob) yes yes
(Huang et al. 2017) 2017 P-GTAW visual classic DM, EMD no yes
(Petković 2017) 2017 Laser welding multiples classic SVM, ANN, GP yes yes
(Muniategui et al. 2017) 2017 RSW visual DL, classic fuzzy yes yes

Table 3.2: Table articles with prediction objective

author year welding process sensors Preparation Modeling Online compare
(Chen, Wang and Chen 2010) 2009 GTAW multiples classic ANN-DS no no
(Chen and Chen 2010) 2010 GTAW multiples classic ANN-Fuzzy no no
(Seyyedian Choobi, Haghpanahi and Sedighi 2012) 2012 Butt welding standard classic ANN yes no
(Chiumenti et al. 2013) 2013 FSW standard classic math model no no
(Li and Gao 2014) 2014 GTAW visual classic LR no no
(Chen and Feng 2014) 2014 UWW visual classic ANN yes no
(Escribano-García et al. 2014) 2014 GMAW standard classic RSM, some DM yes yes
(Li et al. 2014) 2014 RANGMW visual classic SVM, ANN yes yes
(Sen 2015) 2015 DP-GMAW standard classic Taguchi-RSM no no
(Keshmiri et al. 2015) 2015 GMAW, GTAW standard classic DNN yes no
(Nandhitha 2016) 2016 GTAW thermografy classic ELM, RBN, GRNN yes yes
(Wu et al. 2016) 2016 VPPAW sound classic ELM, ANN, SVM yes yes
(Lv et al. 2016) 2016 GTAW sound classic BP-Adaboost yes yes
(Dong et al. 2016) 2016 GTAW standard classic GPR yes no
(Kim, Park and Sohmshetty 2017) 2016 RSW standard classic kNN, GRNN yes yes
(Sarkar et al. 2016) 2016 SAW standard classic MRA, ANN yes yes
(Rong et al. 2016) 2016 GTAW standard classic ANN yes no
(Rios-Cabrera et al. 2016) 2016 GMAW visual classic ANN-Fuzzy-ARTMAP yes no
(Aviles-Viñas, Rios-Cabrera and Lopez-Juarez 2016) 2016 GMAW visual classic ANN-Fuzzy yes no
(Pavan Kumar et al. 2017) 2017 GMAW CMT standard classic ANN yes no
(Mathew et al. 2017) 2017 Butt welding standard classic ANN yes no
(Wu et al. 2017) 2017 VPPAW visual, sound classic t-SNE and DBN no no
(Wan et al. 2017) 2017 RSW standard classic ANN, LR no yes

Table 3.1 and Table 3.2 also show a scarcity of comparative analysis, and little application of
these machine learning techniques, especially in the GMAW process. Most of these papers do not
take advantage of deep learning techniques in image processing. This highlights the innovative
potential of applying these techniques in welding processes.
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3.4 INTELLIGENT CONTROL

The intelligent control approach offers interesting perspectives since it can provide
methodologies that allow performing some of the tasks typically performed by humans
automatically (Santos 2011). This combines with data mining models.
One intelligent control tendency is to utilize fuzzy methods with an ANN model. An example of
this is shown in (Chen, Wang and Ma 2010). It predicted dynamical characteristics of the weld
pool during robotic welding in GTAW process. In (Hailin et al. 2012), GMAW pipe-line welding
is shown to improve the welding quality. (Cruz, Torres and Alfaro 2015) is another example of
modeling and control in GMAW process. Other fuzzy methods examples but a different technique
was shown in (Sharma, Maheshwari and Rathee 2016). This article proposes a response to a fuzzy
logic approach with surface methodology (RSM), demonstrating that, any model obtained from a
welding process can be integrated into a control system as long as it meets time demands.
An emerging control system was used by (Günther et al. 2016) for Laser welding Control.
This technique is called reinforcement learning (RL) and it is a branch of machine learning
and artificial intelligence. It is focused on goal-directed learning and decision making
(Sutton and Barto 2017). Integral to RL approach are methods for learning expectations of
future observations from samples of experience (prediction learning), and using samples of
experience to affect policy change (control learning) (Günther et al. 2016). Control learning
can be an optimization-based method like a q-learning algorithm. Also, it can be used
to solve optimal control problems (Li et al. 2018). (Günther et al. 2016) used reinforcement
learning to acquire generalized predictions for use as inputs to a laser welding system. This
makes this work an important contribution to welding process engineering. Likewise, RL is
a new technique open now in welding process with noble success in other areas like it shows
(Chincoli and Liotta 2018, Ramanathan, Mangla and Satpathy 2018, Yin, Yu and Zhou 2018).
Table 3.3 presents a summary of some welding area articles that apply intelligent control
techniques. In addition to showing the same pattern as the previous Table 3.1 and Table 3.2, it
exhibits a high application of fuzzy algorithms for process control. For this reason, the application
of reinforcement learning in a GMAW process can be considered innovative in this research.

Table 3.3: Table articles with control objective

author year welding process sensors Preparation Modeling Online compare
(Chen et al. 2000) 2000 P-GTAW doble-visual classic ANN-learning Control yes yes
(Chen, Wang and Ma 2010) 2009 GTAW visual classic ANN-Fuzzy yes no
(Malviya and Pratihar 2011) 2011 GMAW standard classic ANN-PSO yes no
(Hailin et al. 2012) 2012 GMAW visual classic ANN-Fuzzy yes no
(Wang 2014) 2014 GMAW visual classic ANN-Fuzzy yes no
(Cruz, Torres and Alfaro 2015) 2015 GMAW visual classic ANN-Fuzzy yes no
(Santhana Babu et al. 2016) 2016 GTAW standard classic RSM yes no
(Günther et al. 2016) 2016 Laser welding visual DL DL-RL yes no
(Santhana Babu et al. 2016) 2016 GTAW standard classic RSM yes no
(Sharma, Maheshwari and Rathee 2016) 2016 SAW standard classic RSM-Fuzzy yes no
(Azadi Moghaddam, Golmezergi and Kolahan 2016) 2016 GMAW visual classic ANN-PSO yes no
(Lv et al. 2017) 2017 GTAW sound classic ANN yes no
(Rao, Srinivasa Rao and Deepak 2017) 2017 Vibratory Welding standard classic GRNN yes no
(Hu, Huang and Zeng 2017) 2017 GMAW standard classic math-model-Fuzzy yes no
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3.5 FUTURE PERSPECTIVE

These data analysis techniques based on learning, as appear in this article, are not yet
widespread in welding process area. A bibliometric analysis among the authors studied in this
research presents a very little relationship between them. Figure 3.3 exposes this affirmation.

Figure 3.3: Bibliometric analysis: Authors interrelationship

Source: Produced by author

In this study, all the articles referenced in this research were analyzed. Through the
interrelationship between authors is validated with their participation in the same publication.
Consequently, in the articles analyzed, this interrelation did not go beyond level 2 (the authors
only participated jointly in 2 publications). In addition, this level 2 tends to be among the same
researchers. All these affirm, the small dimensions of the authors’ clouds (articles with welding
process and new data analysis techniques) and their small relationships (Author interaction by
publication), show little maturity in the interrelation of these areas. The cases that show a greater
cloud of relationship, is due to the participation of many authors in the same publication.
Some of the works demonstrate a small approximation between areas, fulfilling the
interdisciplinarity that industry 4.0 advocates. Achieving this interdisciplinarity implies new
study processes. For this reason, it defines new methodologies that unify the potential of these
two areas. The needs of the modern world are going to make this happen in a short time. The new
data analysis conception in welding processes area will be an acceleration in obtaining new and
better models more efficient predictions and controls.
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3.6 METHODOLOGIC DIAGRAMS

After the previous analysis on algorithms and techniques used for information acquisition,
prediction, and control in welding process. It can be observed that there are computer
science techniques little experienced in welding processes, and even more in GMAW process.
This research proposes the development of two methodologic diagrams with these techniques.
Diagram 1 (Drop-Volume Methodology), Figure 3.4, will be analyzed with some GMAW arc
parameters like unmelted wire length, drop volume, and melted wire volume. Diagram 2
(Drop-Frequency Methodology), Figure 3.5, will be analyzed with by GMAW arc parameters
of drop frequency and short circuit frequency.

Figure 3.4: Drop Volume Methodologic Diagram

Source: Produced by author

Drop Volume Methodologic will be analyzed with some GMAW arc parameters like unmelted
wire length, drop volume, and melted wire volume. This process has more parameters, which can
allow you more precision in the results, like show in (Thompson Martínez et al. 2021).

Figure 3.5: Drop Frequency Methodologic Diagram

Source: Produced by author

The drop frequency methodology accumulates the data processing values for a time interval
and then applies the predictive model. It will allow better computational performance than
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the drop volume methodology. Thereby, both methodologic diagram will be developed in
next chapters. All stages will be compared and evaluated to define better process. Both have
the same experiments and process, they only differ in the parameters obtained in the image
processing. The diagrams were developed with Integration Definition for Function Modeling
(IDEF0) (United States Air Force commissioned). Each box represents the processes that were
developed. Horizontal arrows mean inputs or outputs parameters. While, vertical bottom arrows
mean the mechanism needed to executed the function. Vertical top arrows mean the control
system.

• The first step is focused on the parameters acquisition of experimental from the GMAW
process with the help of power supply and welding table. This require the develop of
experimental plan.

• The second step aims to capture images of what is happening in the GMAW welding arc,
based on the parameters provided by initial step. The mechanism used to develop this
objective was a high speed camera.

• The third step aims to develop a deep learning model to detect the droplet detachment and
the occurrence of short circuit. This model will allow the calculation of unmelted wire
length and melted wire volume for drop volume methodology, short circuit and droplet
frequency for the drop frequency methodology.

• The fourth step aims to develop a predictive model, using machine learning techniques,
based on the parameters generated in the previous step and the input parameters of the
GMAW process. Predictive model will output parameters of the weld bead geometry.

• The fifth step aims to develop intelligent control, using a reinforcement learning model. This
model would have the ability to generate which are the most acceptable control parameters
to meet a requirement of weld bead geometry in GMAW process.

The developed diagrams can also be analyzed as the process flow of the system prototype, once
the models are satisfactorily validated. For these validations, the strategies and propositions of
the data mining process will be taken into account. As a consequence, the results will allow an
analysis and comparison of the two proposed methodologies.

3.7 CHAPTER CONSIDERATIONS

In this chapter, we carried out an analysis of several articles about the welding process. It
allowed determining for each data mining stage how it is possible to optimize the results to obtain
a good result of process analysis. Several analysis algorithms of the welding process were shown,
and it was demonstrated that the comparison between them can make the process analysis more
efficient and less expensive. The potential of learning-based techniques is described because
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computational resources are becoming cheaper and welding information can be obtained more
and more quality information. All these premises aligned with the so-called industry 4.0 where a
set of technologies that allow a fusion of the physical and digital world, to create more intelligent
systems.
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4 EQUIPMENT, MATERIALS AND DATA ACQUISITION
OF THE EXPERIMENTS

This chapter explains the equipment and materials used during the research development. The
strategy developed for data-acquisition through the experiments is also shown. The location of
these pieces of equipment is in the Automation and Control Group laboratory (GRACO) of the
University of Brasilia (UnB). They are:

• Welding supply: is a fully digitized microprocessor controlled inverter power sources. The
modular design and potential for system add-ons ensure a high degree of flexibility. The
device can be adapted to any specific situation (Fronius 2012).

• Welding Supplied Interface: A communication system was used between the
welding supply and the computer, which was developed by (Moncayo Torres 2013,
Giron Cruz 2014) in GRACO. It was developed to control the welding supply parameters
(voltage and wire-rate).

• Welding Table: The welding table used was developed by the research work
(Díaz Franco 2008) in GRACO, it is a linear table with one-dimensional movement. it has
a control system translation speed (welding speed) as shown in Figure 4.1.

• High-speed camera: the camera provides full mega pixel resolution, images at frame rates
up to 3,000 frames per second (fps), 512 x 512 pixels. This camera has e Gigabit Ethernet
and Optical interfaces available, as it is shown in figure 4.1. In these experiments, a frame
rate of 1000 fps and resolution of 1024 px were used.
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Figure 4.1: Welding table, camera and laser

Source: Produced by author

4.0.1 Materials

The materials used in this study are electrode wire copper with 1,2 mm of diameter.The base
material is a 1020 steel in flat sheet format, dimensions 6,35 mm thick, and 300 mm x 40 mm
long and width respectively. Shielding gas used 96% argon and 4% carbon dioxide.

4.0.2 Visualization technique

The technique used to visualize the welding arc is Shadowgraphy, it was also used
in (Mota et al. 2013, Ramos, Carvalho and Absi Alfaro 2013, Siewert et al. 2014). The term
Shadowgraphy has been used to refer to a projected shadow of several elements in the welding
region (torch, electrode, droplets, weld bead and plate) over a flat surface, technique also known
as Back-lighting (Figure 4.2). As the arc light is too intensive and it irradiates to all directions,
its use is not possible to obtain the shadow (Balsamo et al. 2000). This is achieved with laser of
633 nm, diverging lens, converging lens and bandpass filter of 500 nm - 700 nm as it is shown in
figure 4.1. To obtain the images, it was necessary to align the laser with a high-speed camera.
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Figure 4.2: The principle of Shadowgraphy Back-lighting applied to welding

Source: (Balsamo et al. 2000)

4.1 PLANNING OF EXPERIMENTS

The application used to configure the parameters of the welding supply and welding table. It
was developed by the investigations (Moncayo Torres 2013, Giron Cruz 2014) and modifications
of the doctoral student Jairo Muñoz Chavez. For this investigation, 3 data-acquisition experiments
are developed.

4.1.1 Experiments 1 and 2

Data experiments 1 and 2 were obtained with factorial design of Central Composite Design
(NIST), this is because it generates a reasonable data distribution with long possible distribution in
the data set. The objective here is to obtain the greatest possible variety of data for the predictive
model creation. In Table 4.1 and Table 4.2, it is shown, the experimental input parameters by
time.

Table 4.1: Experiment 1: input parameters by time

time(s) wire rate(m/min) voltage(v) welding speed(mm/s)
0 5.5 20 8
3 5.5 20 8
5 7.5 20 8
7 5.5 29 8
9 7.5 29 8
11 5.5 20 12
13 7.5 20 12
15 5.5 29 12
17 7.5 29 12

4.1.1.1 Results of experiments 1 and 2

As a result of the aforementioned experiments, the following were obtained: 24 578 and
24 577 welding arc images of the experiment 1 and experiment 2 respectively. Figure 4.5
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Table 4.2: Experiment 2: input parameters by time

time(s) wire rate(m/min) voltage(v) welding speed(mm/s)
0 4.8 24.5 10
3 4.8 24.5 10
5 8.2 24.5 10
7 6.5 17 10
9 6.5 32 10
11 6.5 24.5 6.6
13 6.5 24.5 13.4
15 6.5 24.5 10
17 6.5 24.5 10

and Figure 4.6 are two examples of welding arc images obtain by high-speed camera and
shadowgraphy technique.

Figure 4.3: Experiment 1: Example of Welding arc images No. 9608

Source: Produced by author
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Figure 4.4: Experiment 2: Example of Welding arc image No. 16458

Source: Produced by author

4.1.1.2 Parameters of weld bead geometry

The weld bead geometries ((width, depth, and height)) were obtained from the macrographic
analysis. The macrographic analysis was made in a longitudinal direction, this is in the direction
of the torch movement. In these cases, it is taken the maximum value in each measurement point,
as expressed in (Bestard 2017, Alvarez Bestard and Absi Alfaro 2018, Bestard et al. 2018). To
obtain weld bead geometry data was necessary polished and etched using 2.5% nital solution to
display the weld bead penetration. Figure 4.5 and Figure 4.6 show an example of the resulting
pieces. Thus, the dimensions were obtained using an image processing algorithm. This calculates
the geometric parameters from the horizontal line to find the parameters color by the vertical line.
The values were transformed to the corresponding scale.
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Figure 4.5: Experiment 1: Weld bead geometry

Source: Produced by author

Figure 4.6: Experiment 2: Weld bead geometry

Source: Produced by author

4.1.1.3 Output parameters

The dimensions of the weld bead geometry were obtained using an image processing
algorithm. They were painted on the image, the dimensions corresponding to weld bead geometry
like shown in Figure 4.5 and Figure 4.6. The algorithm is shown in annex A and diagram flow in
Figure 4.7. It was applied to convert the values in respective millimeters dimensions. Similarly,
for this algorithm is necessary to know the pixel relationships with millimeters dimensions, the
coordinates of the beginning and the end of the process, and the colors with which they were
drawn. Figure 4.8, Figure 4.9, and Figure 4.10 are the weld bead geometries dimension of
experiment 1. In addition, Figure 4.11, Figure 4.12, and Figure 4.13 are the weld bead geometries
dimension of experiment 2.
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Figure 4.7: Sequence diagram of weld bead geometry calc

(*) The equation for depth changes to y = yi − 1
Source: Produced by author
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Figure 4.8: Experiment 1: Width geometry vs time

Source: Produced by author

Figure 4.9: Experiment 1: Height geometry vs time

Source: Produced by author

Figure 4.10: Experiment 1: Depth geometry vs time

Source: Produced by author
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Figure 4.11: Experiment 2: Width geometry vs time

Source: Produced by author

Figure 4.12: Experiment 2: Height geometry vs time

Source: Produced by author

Figure 4.13: Experiment 2: Depth geometry vs time

Source: Produced by author
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4.1.2 Experiments 3

In the experiment, wire-rate speed and welding speed were constants. Voltage value is
increased 1,5 v every 2 s as shown in weld bead Table 4.3. The objective of this experiment was
to gather images of the three main transfer modes and to test the deep learning model proposal.

Table 4.3: Experiment 3: input parameters by time

time(s) wire rate(m/min) voltage(v) welding speed(mm/s)
0 6.8 19 9
2.5 6.8 19 9
4.5 6.8 20.5 9
6.5 6.8 22 9
8.5 6.8 23.5 9
10.5 6.8 25 9
12.5 6.8 26.5 9
14.5 6.8 28 9
16.5 6.8 29.5 9

4.1.2.1 Results of experiments 3

Figure 4.14: Experiment 3: Example of Welding arc image No. 20117

Source: Produced by author
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Figure 4.15: Experiment 3: Weld bead geometry

Source: Produced by author

4.2 CHAPTER CONSIDERATIONS

The planned experiments allowed compiling the necessary data in the analyses developed in
the following chapters. Therefore, images of the arc from the three experiments, as well as the
input, and output parameters, were collected. The final dataset preparation was carried out using
time as a reference and considering the response time of the equipment used and the process.
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5 RESULTS OF THE TWO METHODOLOGIES
PROPOSALS FOR WELD BEAD GEOMETRY MODELING

IN GMAW PROCESS

In this chapter, the two methodological diagrams proposed in Chapter 3 will be developed.
The objective of this chapter is to validate the results of the two methodological diagrams and
to carry out a comparative analysis between them. The data collected were those gathered
through the experimental designs shown in the previous chapter (Chapter 4). Thus, these data
are conformed by input parameters (wire-rate speed, voltage, welding speed, and process time)
of the process and by arc images obtained. The Welding arc image token contains information
like unmelted wire length and drops detachment. Others parameters can be taken into the analysis
of welding arc image are short circuit frequency and drop frequency. These data were correlated
with the parameters of the weld bead geometry for the development of the models.

5.1 DATA PREPARATION

The data preparation phase covers all the activities required to construct the final dataset from
the initial raw data. Data Preparation tasks are likely to be performed repeatedly and not in any
prescribed order (Chapman et al. 2000, Marbán, Mariscal and Segovia 2009).

5.1.1 Short circuit and drop detection

For application molten or drop volume equation shown by (Choi et al. 2001). It is necessary
to detect drop detachment or short circuit in a GMAW process by image sequence. In this process,
the background subtraction techniques help.
Background subtraction is a widely used approach for detecting moving objects in videos from a
static camera (Bouwmans et al. 2014). Frame differencing is the simple way to detect movement
like is showed by (Bouwmans et al. 2014, Bouwmans, Aybat and ZAHZAH 2016).
The frame differencing equation used in this work is:

F (t) = It−2 −
It
3

(5.1)

Where It is the image on same time t.

The division by 3 aims to keep visible image elements because the spatial patterns conformed
by the common elements and the movement produced allows a better classification analysis and
error reduction. The final pattern is showed in figures 5.1 and 5.2.
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Figure 5.1: Images example: short circuit(top) and drop detachment(bottom)

Source: Produced by author

As shown in Figures 5.1 and 5.2, F (I) is the result of applying the equation 5.1. As a
result of this, different patterns can be observed in short circuit and drop detachment, figure 5.1
compares F (I) result with figure 5.2. This pattern differences can be detected with deep learning
technique of Convolutional Neural Network.
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Figure 5.2: Images example: both no short circuit and no drop detachment

Source: Produced by author

5.1.1.1 Convolutional neural network model

The best result in image classification is a convolutional neural network (CNN). CNN is a
deep learning technique designed to work with two dimension patterns. It was the first successful
hierarchical learning algorithm. It is a topology trainer that balances the spatial relationship to
reduce the number of parameters that must be learned. Thus, virtually all feed-forward back
propagation formation better (Arel, Rose and Karnowski 2010). The CNN architecture selection
is ResNet (He et al. 2015, Szegedy et al. 2016).The code used is shown in annex B.
The architecture was defined with 18 hidden layers and adam optimization. Adam is an adaptive
learning rate optimization algorithm that is been designed specifically for training deep neural
networks (Kingma and Ba 2015). Deep learning models are model by learning. For this reason,
they need groups of train images, test images, and validation images. In this process, it is
necessary, a manual division of images into classes. These classes are the categories for the
model. In this research the classes are:

• Short circuit and drop-detachment images (SCDD), F (t) of figure 5.1.

• No short circuit and no drop-detachment images (no SCDD), F (t) of figure 5.2.
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This Table 5.1 show images distribution.

Table 5.1: Images distribution by class and process

SCDD no SCDD
Train 618 2783
Test 100 408
Validation 42 212

The model obtained shows 97,24% of correct test images group classification and loss value
of 0,10.Figure 5.3 show the ResNet-model confusion matrix analyzed with validation values.
It is a performance measurement for a machine learning classification problem where output
can be in two or more classes. In this case, it means that 206 no SCDD and 39 SCDD were
detected correctly. Only 7 no SCDD and 2 SCDD were incorrectly classified, which shows an
excellent proportion in the classification process and excellent detection of the short circuit, drop
detachment, and the contrary cases.

Figure 5.3: RestNet-model confusion matrix

Source: Produced by author

Up to this step, functionalities common to the two methodologies shown in the research have
been developed. The following stages develop topics that can be specific to some of the defined
methodologies.
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5.1.2 Drop Volume Methodology: calculate volume

Based on the obtained parameters, an analysis was made in which were used the volume
calculation methods. Due to the wide usage of GMAW in the industry, numerous models have
been presented to study the droplet transition process. Typical approaches include:

• Static Force Balance Model: it predicts drop detachment by comparing the surface tension
of the drop with the external forces exerted on the drop (Version 2004).

• Pinch Instability Theory(PIT): is a detachment criterion can be derived, that does not
rely on the balance of axial forces, but rather relies on radial forces (Version 2004,
Wang, Lü and Jing 2016).

• Mass-Spring Model: this has lead to simple calculation as well as reflected oscillation
during droplet growth as it is shown in (Wang, Lü and Jing 2016).

• Volume-of-Fluid (VOF) method: VOF method is based on the magnetohydrodynamic
analysis (Zhao and Chung 2018, Murphy 2013, Wang, Huang and Zhang 2004).

All these methods use equations in which they involve a spherical analysis of drop. But in
(Choi et al. 2001), based on VOF and PIT. It showed a good analysis that when the drop detaches.
The entire drop volume is assumed to be ejected from the wire tip. A drop detachment detection
by image processing would allow the use of simple equations that are proposed in this article.
The equations 5.2 and 5.3 was token of him.

dles
dt

= vf − vm (5.2)

dVd
dt

= (
π ∗D2

e

4
) ∗ vm (5.3)

Where les represents unmelted wire extension, vf the wire-feed rate, vm the wire-melting rate. Where Vd
the attached drop volume, and De the wire diameter. Uniting the two equations is obtain as a result the
equation 5.4

Vd = (
π ∗D2

e

4
)

∫
(vfdt− les) (5.4)

The unmelted wire length (les) necessary for volume calculation is obtained with classical images
processing. The method used is shown in annex C, and the algorithm has the flow shows in
Figure 5.4. The arc image is binarized and a pixel count is made vertically from the center of the
wire until a change in pixel colors occurs. This process is showed in figure 5.5.
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Figure 5.4: Algorithm for unmelted wire length calc

Source: Produced by author

Figure 5.5: Diagram of unmelted wire length calculation

Source: Produced by author
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5.1.2.1 Result of volume calculation

Figure 5.6 belonging to experiment number 3 shows a distribution of the largest volumes
and lower volume frequencies in the firsts seconds of GMAW process. In the middle, it shows a
decrease in the unmelted wire size, a greater frequency, and a decrease in the molten wire volume.
It characterizes the globular metal transfer mode in this process. In the last seconds, it shows the
spray transfer mode through the reduction of the unmelted wire length and increases in drops
frequency. This demonstrates a valid characterization of the process with these techniques.

Figure 5.6: Volume distribution on unmelted wire length vs time

Source: Produced by author

5.1.2.2 Volume dataset characteristics

After calculation of the molten volume( or drop volume ) and unmelted wire length. It was
started the correlation of all data on one dataset. This generated a dataset of 2170 records, taking
experiments 1 and 2 into account, figure 5.2 shows a summary of dataset formed. The column
main represents average values, column min and max are minimum and maximum values of
each parameters. Column std is standard deviation over requested parameters. The values of
standard deviation validate that there is a great diversity of values in the range of maximum and
minimum specified.
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Table 5.2: Volume dataset

main std min max
wirev(m/min) 6.38 1.06 4.80 8.20
voltage(volt) 26.09 3.63 17.00 32.00
weldv(mm/s) 9.99 1.90 6.20 13.40
wirel(mm) 13.78 1.12 9.00 15.00

volume(mm
3) 0.74 0.98 5.6 ∗ 10−5 10.54

depth(mm) 1.95 0.89 0.00 3.62
height(mm) 1.77 0.86 0.00 3.33
width(mm) 5.94 1.28 2.67 8.21

5.1.3 Frequency dataset characteristics

With the parameter dataset generated in the previous section, the frequency dataset was
generated removing some fields, like volume and unmelted wire length. Table 5.3 shows a
summary of dataset formed. The row dropfreq represent short circuit and drop frequency
detected on 50ms. It has 585 records.

Table 5.3: Frequency dataset

main std min max
dropfreq(unit) 3.68 3.82 1.00 24.00
wirev(m/min) 6.42 1.05 4.80 8.20
voltage(volt) 25.17 4.09 17.00 32.00
weldv(mm/s) 10.06 1.90 6.20 13.40
depth(mm) 1.97 0.86 0.00 3.62
height(mm) 1.97 0.74 0.00 3.33
width(mm) 5.91 1.29 2.67 8.21

The common parameters have similar behavior, which allows these two methodologies to be
compared. The differences in the drop frequency dataset are related to the sampling frequency.
This decreases the parameters for analysis.

5.2 PREDICTIVE MODEL FOR GMAW PROCESS

In the construction of this model, the scikit-learn library was used (INRIA). This library
contains several machine learning algorithms that allow making a comparison between them.
The selection of algorithms is based on those with good results in prediction tasks. They were:

• Lasso regression: is a type of linear regression that uses shrinkage. Shrinkage is where
data values are shrunk towards a central point, like the mean. The lasso procedure
encourages simple, sparse models (i.e. models with fewer parameters). (Tibshirani 1996,
Friedman, Hastie and Tibshirani 2010).
Meta-parameters selected: alpha = 1.802e − 01, fitintercept = True, normalize =
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False, precompute = False, copyX = True,maxiter = 1000, tol =

0.0001, warmstart = False, positive = False, randomstate = None, selection =′

cyclic′.

• Ridge regression: is a technique for analyzing multiple regression data that suffer from
multicollinearity (Fearn 2013, Breheny 2016). Ridge regression is like least squares but
shrinks the estimated coefficients towards zero (Tibshirani 2013).
Meta-parameters selected: alpha = 1.802e − 01, fitintercept = True, normalize =

False, copyX = True,maxiter = None, tol = 0.001, solver =′ auto′, randomstate =

None.

• Bayesian regression: Bayesian regression is one of the techniques widely used since 1960s
as shown in (Zellner and Chetty 1965, Currin et al. 1991, Sahu, Dey and Branco 2003,
Chan and Vasconcelos 2012). It is based on probabilistic Bayes’ Theorem with
excellent results in classification and prediction task as demonstrated by (Pawlak 2002,
Rudner and Liang 2002, McNamara, Green and Olsson 2006).
Meta-parameters selected: niter = 300, tol = 0.001, alpha1 = 1e − 06, alpha2 =

1e − 06, lambda1 = 1e − 06, lambda2 = 1e − 06, alphainit = None, lambdainit =

None, computescore = False, fitintercept = True, normalize = False, copyX =

True, verbose = False.

• Support vector machines (SVMs): are a set of supervised learning methods used for
classification, regression, and anomaly detection. They are effective in high dimensional
spaces and still effective in cases where a number of dimensions are greater than
the number of samples. Different Kernel functions can be specified for the decision
function. Common kernels are provided, but it is also possible to specify custom kernels
(Cortes and Vapnik 1995, Smola, Smola and Schölkopf 2004).
Meta-parameters selected: gamma =′ scale′, coef0 = 0.0, tol = 0.001, C =

1.0, epsilon = 0.1, shrinking = True, cachesize = 200, verbose = False,maxiter =

−1.

These algorithms, compared with ANN are less expensive in computational training process.
They need less time for the development and definition of the learning hyperparameters. All
these allow a reduction in research time, whether any of them offers a satisfactory result. Then it
possibly discarded the use of neural networks based on the previous arguments. All this allows
a reduction in research time if any of them show good results like it shows in table 5.4. The
technique column is some machine learning techniques used in this research, RMSE is root mean
square error. The grade represents the function grade for algorithms with polynomial functions.

5.2.1 Result of volume dataset

The best performance was obtained by SVM with radial basis function (RBF) kernel as can
be seen in table 5.4. The RMSE of this algorithm was 0.27. The code used is shown in annex D.
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Table 5.4: Minimus error calculation of each models(Volume dataset)

technique RMSE grade
Lasso regression 0.30 5
Ridge regression 0.36 3

Bayesian regression 0.31 4
SVM polinomial 0.67 1

SVM-RBF 0.27 -

5.2.2 Result of frequency dataset

The best performance was obtained by SVM with Radial Basis Function (RBF) kernel too,
like it shows in table 5.5.

Table 5.5: Minimum error calculation of each models(Frequency dataset)

technique RMSE grade
Lasso regression 0.61 3
Ridge regression 0.39 3

Bayesian regression 0.40 3
SVM polinomial 0.89 1

SVM-RBF 0.33 -

The margin error with the volume dataset is not very large. Therefore, based on better
performance, the SVM-RBF model of frequency dataset could be applied.

5.3 SIMULATION OF WELD BEAD GEOMETRY FOR GMAW PROCESS

The mathematical model was obtained in the previous section which characterizes the relation
of the selected input parameters and the weld bead geometry on GMAW process. As defined in
the section on intelligent modeling (chapter 2), the modeling can be defined as a reinforcement
learning technique with a q-learning algorithm. This technique was analyzed in chapter 3. In the
q-learning algorithm, it is necessary to define the states, actions, and rewards as is shown in figure
2.12 of chapter 2.
In this experiment, the state are going to be the vector of ’height’, ’width’, ’depth’ values. This
is because these are the parameters to be controlled and the interrelation between them makes it
impossible to control one without modified the others. The actions can be increased, decrease or
maintain the same for each value of vector ’voltage’, ’wire-rate’, ’welding velocity’. Based on the
experience and the experiments carried out, the increases or decreases have different values for
the vector. The reward is defined like distance-based in the manhattan distance between state to
reach and actual state vectors, because manhattan distance will allow simple and efficient distance
calculation between state vectors.
The ranges of minimum and maximum action values were also defined based on the
experiments carried out in the research presented in Table 5.2. As an optimization policy,
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the Bellman optimality equation was used for the learned value as in equation 5.5 cited by
(Sutton and Barto 2017).

q(s, a) = Rt+1 + γ ∗maxq(s′, a′) (5.5)

Where q is the function of any state-action pair (s, a) at time t. Rt+1 is the expected reward
we get from taking action a in state s plus the maximum expected discounted return that can be
achieved from any possible next state-action pair (s′, a′). γ is the discount rate constant andmaxq
is the function of maximum value for action a′ in state s′ and with the value 0.99 in this research.
It makes it possible to take into account the previous states, which will allow the algorithm to
select the path with the least loss. At that time, for a new qnew(s, a) is equal to a weighted sum of
the last value and the learned value as it is shown in equation 5.6.

qnew(s, a) = (1− α) ∗ qold(s, a) + α[Rt+1 + γ ∗maxq(s′, a′)] (5.6)

Where α is a learning rate with value 0.1 in this research

In the next stages, it is necessary to define a geometry modeling simulation to validate the
behavior of this technique.

5.3.1 Train weld bead geometry modeling

The training was carried out with the experimental data of the real GMAW process. The
equation 5.6 is used an iterative process to calculate the Q-values, which are stored in a matrix
table named Q-table with states x actions dimensions. Q-table guide to the best action for all
possible states to obtain the objective state, like Figure 5.7 shows. It was defined the weld bead
dimensions to goal, in this case (height = 2.20 mm, width = 7.73 mm, depth = -2.50 mm) The
start action parameters over control variables, in this case (voltage = 20.0 v, wire-rate = 5.8 mm/s,
welding velocity = 8.2 mm/s). The initial state for these parameters on stable situation are (height
= 2.18 mm, width = 5.48 mm, depth = -2.95 mm) The number of episodes was 100 and the
maximum steps by episode 100 to reach better control values. After obtaining Q-table can be
found the actions to goal the objective weld bead dimensions by initial parameters.
Once the training has been carried out, it is possible to apply the Q-Table obtained to optimize
the process, as shown in the Figure 5.8.
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Figure 5.7: Algorithm of reinforcement learning train

Source: Produced by author
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Figure 5.8: Algorithm of reinforcement learning model

E is the error allowed to the system.
Source: Produced by author.
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5.3.2 Drop Volume Methodology: simulation

The Figure 5.9 shows the simulation of the weld bead geometric parameters. It can be seen
how after the 4th iteration the model reaches the three optimal values. The three geometric values
obtain are the three minimums possible, permitted by the volume model, to goal the geometric
objective.

Figure 5.9: Drop Volume Methodology: modeling geometric parameters

The control error is: height = 0.68 mm, width = 0.76 mm and depth = 0.00 mm. Generating a
margin of less than a millimeter for width and height, an approximation to the objective for depth.
The Figure 5.10 shows control parameters. The variations of them in the firsts iterations do not
expose sufficient change to make the system unstable.
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Figure 5.10: Drop Volume Methodology: control parameters

5.3.3 Drop Frequency Methodology: simulation

The Figure 5.11 shows the geometric control process for drop frequency methodology. The
geometric parameters obtained are not better than in the volume model, except the depth.
The control error of this model is: height = 0.34 mm, width = 1.59 mm and depth = 0.32 mm,
with only geometric parameters greater than one millimeter.
The Figure 5.12 shows the values obtained by the control parameters of the frequency model.
Like the other model, this has small variations, so instability in the system should not be caused.
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Figure 5.11: Drop Frequency Methodology: modeling geometric parameters
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Figure 5.12: Drop Frequency Methodology: control parameters
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5.4 CHAPTER CONSIDERATIONS

After analyzing the results in this chapter, it can conclude that the error margins obtained in
the stages validate the methodologies and can be applied to a GMAW process with satisfactory
results. The deep learning model obtained, proved that images can be classified, calculate
unmelted wire length, the consumed wire volume, drop and short-circuit frequency in real-time
for a GMAW process. This allows the use of these parameters in predictive and control models
in real-time. The SVM algorithm is the one that offers the best results in the prediction of the
GMAW process these two methodologies. The weal bead geometry modeling of GMAW process
can be developed with the reinforcement learning technique due to the small margin of error that
the simulation returns.
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6 DESIGN AND DISCUSSIONS OF RESULTS

This chapter pretend shows the design proposed for the final system and the new technology
used them. An analysis of the response times of this system will also be carried out. his chapter,
the discussion of the results of this research work was developed.

6.1 DESIGN

The proposed design shows the equipment used for experiments in the GRACO laboratory of
Brasilia University. It was proposed to add Jetson nano to process all modeling information, pass
it to the computer, and communicate with the other equipment. It is shown in Figure 6.1. Jetson
nano is an embedded system-on-module (SoM) and developer kit. Useful for deploying computer
vision and deep learning, Jetson Nano runs Linux and provides 472 GFLOPS (floating-point
operations, per second) compute performance with 5-10W of power consumption (eLinux 2020).
The international cost is approximately 99 dollars.
This equipment reduces costs. It has excellent computational performance with low energy
consumption. The average response time for frequency models and volume models are 0.25
ms and 18.25 ms respectively. In future developments, it may be possible to place the desktop pc
functionalities in the Jetson nano. But for this, drivers of the welding source, the welding table,
and the high-speed camera must be developed.
According to this, it necessary an additional network interface card in the computer. This must
have the characteristics of maximum speed 1 Gps (gigabit per seconds), same as onboard. This
would allow image transmission less than 0,5 ms. These cards have an approximate price
of 7 dollars. The communication was developed through a web service, structured as shown
Figure 6.2.
In the computer container, the welding supply driver and welding table driver are software packets
developed in previous research. CxN packet is in charge gathers the image of the camera, sending
it to the selected model, receiving the control parameters, and passing them to the welding supply
and welding table. In jetson nano container, are both frequency-based models and volume-based
models for geometry modeling of GMAW process. This action is repeated until the process is
complete.
Based on the information placed, this entire process would have a minimum response time of
19.25 ms and an additional equipment cost less of 106 dollars. Therefore, the proposed design
meets the objectives of low computational cost and low monetary cost.
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Figure 6.1: Design of the proposed system

Source: Produced by author

6.2 DISCUSSIONS

The objective of this research was to develop a weld bead geometry model of GMAW process
by applying techniques of machine learning, deep learning, and reinforcement learning. The
use of these computer science algorithms in welding processes is still new, although there are
some applications. In the bibliographic review developed, the little presence of these practices in
the welding processes was demonstrated, as shown in Figure 2.5 and Figure 2.6. In contrast
to the advantages of these algorithms in various areas, solving problems similar to the main
problems in welding processes and lined with new objectives of modern welding manufacturing
presented by (Chen and Lv 2014). The potential of learning-based techniques was described
because computational resources are becoming cheaper and welding information can be obtained
more and more quality information. All these premises aligned with the industry 4.0, where a
set of technologies that allow a fusion of physical and digital world to create more intelligent and
dynamic systems, like (Brecher 2018) shown.
The articles analyzed where the presence of these algorithms is recognized, but sometimes they
do not categorize them as machine learning techniques. The problem is that another series of
similar techniques can be ignored and be optimal to generate a better result for a specific case. It
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Figure 6.2: PC and IA system communication

Source: Produced by author

was obvious in the little presence of model comparisons and infrequent applications of ANN and
fuzzy techniques. In the paper’s analysis was found a low application of deep learning techniques
to process welding arc images. Reinforcement learning techniques have a low presence too.
In this way, the novelty of applying these techniques in this investigative work is highlighted.
In addition, the little interrelation between the nuclei authors and the few publications of these
(Figure 3.3), demonstrate how novel the research are linking these areas.
Consequently, the arc parameters of unmelted wire length, molten wire, short-circuit
frequency, droplet volume, and droplet frequency were selected. These parameters
can be captured through image processing, which would allow testing these new deep
learning techniques. To demonstrate these potentialities, a series of experiments was
developed. Experiments 1 and 2 were planned to obtain acceptable variances in the
welding parameters, which would allow obtaining a better predictive model. These
variances were validated with the statistical analysis of the parameters shown in Table 5.2
and Table 5.3. This requirement is basic to be able to perform optimal modeling
applying machine learning, like (Hernandez Orallo, Ramirez Quintana and Ferri Ramirez 2004,
Witten and Frank 2005, Marbán, Mariscal and Segovia 2009) exposed.
Experiment 3 was focused on supporting the validation of the deep learning model, plus the
approximate calculation of molten wire and droplet volume. The deep learning model was
validated with an accuracy of 97,24% that defines the effectiveness of the model in performing a
correct detection for both groups ("Short circuit and drop-detachment images" (SCDD) and "No
short circuit and no drop-detachment images" (no SCDD)). Another metric that can be calculated
with the data from the confusion matrix is Recall (95%). The recall measures the model’s ability
to detect positive samples. An important value for this research, since it performs the calculations
of drop volume and molten wire volume from this detection.
In continuity with the development of the research, the Equation 5.4 was selected to calculate
the volume. It is obtained as results of the equations presented by (Choi et al. 2001) and the
conditions of droplet detachment detection. This equation makes it possible to calculate, with the
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same formulation, the molten wire volume and the droplet volume. To allow the generalization
of a model (deep learning + volume calculation) in the GMAW process for volume analysis. It
is another novelty of this research since most of the volume calculations present in the literature
have as a requirement to separate the analyzes by transfer modes. The equation is not exempt
from calculation errors, as the author referenced. This error can be considered a systematic error
that must usually be estimated by educated guesswork (Mortimer 2013). In turn, this error is
assumed by machine learning models so that the permissible error of the model conceives the
systematic error of the system. An estimate of the proper functioning of the process (deep learning
+ volume calculation) is the Figure 5.6. She clearly shows how the unmelted wire length (inverse
of arc length) decreases and how the volume of molten wire decreases. It was the objective of
experiment 3, and the process (deep learning + volume calculation) captured this function.
Once the arc parameters, the input parameters, and the geometric output parameters have been
obtained, the tasks were started to obtain the predictive model. As the bibliographic analysis
showed, the predictive model is one of the three learning models presented, the most applied in
welding processes. But as a consequence, a generalized two models of the GMAW process were
obtained for all transfer modes. A comparison was also made between the two predictive models
developed. The Table 6.1 shows a summary of it.

Table 6.1: Comparison of the two methodologies

Drop Volume Methodology Drop Frequency Methodology

different parameters
unmelted wire length, melted wire
volume, droplet volume

short-circuit frequency, droplet
detachment frequency

Predictive-model
(SVM-RBF) RSME

0.27 0.33

Control error
height = 0.68 mm, width = 0.76
mm, depth = 0.00 mm

height = 0.34 mm, width = 1.59
mm, depth = 0.32 mm

Performance time
(Laptop)

130 ms 11 ms

Performance time (Jetson
nano)

18.25 ms 0.25 ms

As already expressed, this small difference in the RSME means that any of the two predictive
models can be used. Always taking into account the requirements of the system in which it will
be applied. Another relevance of this predictive model is that it was proposed to predict three
parameters of the geometry of the weld bead at the same time.
The processes, deep learning + (volume or frequency calculation) + predictive model, make up
the necessary environment for the reinforcement learning process. As result, the drop volume
methodology offers fewer error margins for each geometric parameters, like Table 6.1 shows. But
doing the comparison based on response time, the drop frequency methodology has 0.011 seconds
on average. Better than the drop volume methodology that has 0.13 seconds. These tests were
made on a laptop with RAM: 8 GB, processors: 1.70 GHz x 4, without a dedicated graphics card.
Another run test was performed on a Jetson nano. The result was the one shown in the Table 6.1.
These increased computational resources improve the run-time of the drop volume methodology.
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It would make it more feasible in a production environment but at the same time is less cheaper
than the drop frequency methodology. Conversely, the drop frequency methodology would be
cheaper by the industry but would have a margin of error that may not be accepted. Another
important analysis in drop volume methodology is the drop calculation. Despite being based on
formulations of a reference article, this article could introduce another possible errors due to the
complexity of the process that occurs in the welding arc.
Others intelligent control techniques, like ANN-fuzzy, has the problem that specialist has to
know and define the rules associated to process, which is few probable based on all geometric
parameters control and the complex relation between them. (Cruz, Torres and Alfaro 2015)
defined 12 fuzzy functions and 7 fuzzy rules for only width control. These fuzzy rules
complexities will rise with other control parameters. Q-learning has not this problem how was
exposed in this research. The ANN used on intelligent control increases the computational cost
compared to other machine learning techniques that can offer the better or same result. The
results obtained allow the use of these techniques with good computational performance in terms
of training and execution.
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7 CONCLUSION

• A bibliographic analysis was developed that showed the new requirements for an intelligent
welding process, and the potentialities of machine learning techniques to solve many of
these problems were demonstrated. Although this research focused on the GMAW process,
this research opens the door to these techniques in other welding processes.

• An efficient resnet model was developed that allows the detection of droplet detachment and
the occurrence of short circuits in real-time for a GMAW process. The use of background
subtraction technique allowed the visualization of the detachment pattern.

• Functionality was developed with a deep learning model and a physical analysis of the
GMAW process, which make it possible to calculate a droplet volume and a molten wire
in real-time. Despite the possible systematic error inserted by the deep learning model and
the physical formulation used, this analysis can be the beginning of several studies jointly
applying physical analyzes and deep learning techniques in the welding arc.

• Two models were developed with the Support Vector Machine algorithm with Radial
Basis Functionality kernel, giving a low root-mean-square error, showing the possibility of
predicting a GMAW process for all transfer modes.

• The two proposed methodologies are analyzed and compared. Its advantages and
disadvantages were shown according to its possible application in research and industrial
projects. The times obtained using a Jetson nano facilitate the application of either of the
two methodologies. In addition, the use of jetson nano potentiates the application of the
internet of things (IoT) associated with welding processes.

• A system design proposal was made based on the equipment used in the research, where
any of the two proposed methodologies can be applied. An analysis of the computational
cost of the entire system and the monetary cost was developed. In conclusion, the feasibility
of developing the system and the potential to carry out new research were demonstrated.
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8 FUTURE WORKS

• Perform laboratory tests of these methodologies in a GMAW process. It would also lead to
the development the proposed system and develop all control software on jetson nano.

• Applying these deep learning techniques and use more modern video sensors, a more
in-depth analysis of the arc can be carried out, deepening the studies of molten material,
drop analysis, and material losses.

• Extend the techniques analysis of arc welding to other welding processes, like Gas tungsten
arc welding (GTAW), Plasma arc welding (PAW), Shielded metal arc welding (SMAW),
Submerged arc welding (SAW).

• To develop a research in which all visual events of the welding arc are correlated with the
characteristic sound. It would later allow the development of models based on the arc sound.

• To develop other models with other parameters and make comparisons between them to
find the most efficient one. Approach the study of the rest of the parameters and their
interrelation by applying machine learning techniques.

• To develop other models of reinforcement learning. Compare them and the models
proposed in this research.

• To investigate real-time weld bead geometry sensors to be incorporated into intelligent
control research. It would simplify the applications of the models and could provide better
efficiency.

• To develop a study on the analysis and application of machine learning techniques in orbital
welding.

• To develop an investigation of potential internet of things (IoT) and their technologies that
can be applied to welding processes.

• To Develop an investigation applying the reinforcement learning technique with an online
training.
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A. WELD-BEAD GEOMETRY CALC CODE

1 import imageio

2 from matplotlib import pyplot as plt

3

4 # initial data depth high

5 #path_img = test2_pronta.png

6 #h_img = 310

7 #coord_left = (145, 155)

8 #coord_right = (3549, 74)

9 #pieceh_left_px = 125

10 #pieceh_right_px = 127

11 #pieceh_left_mm = 7

12 #pieceh_right_mm = 7

13 #width = False

14 #name_file = file_depth_high.csv

15 #color_high = [10, 54, 128]

16 #color_depth = [150, 6, 6]

17

18 # initial data width

19 path_img = test3_pronta.png

20 h_img = 432

21 coord_left = (90, 365)

22 coord_right = (3912, 268)

23 pieceh_left_px = 516

24 pieceh_right_px = 530

25 pieceh_left_mm = 23

26 width = True

27 name_file = file_width.csv

28 color_high = [150, 6, 6]

29

30 # initial data

31 img_solda = imageio.imread(path_img)

32

33

34 # all functions

35

36

37 def calc_funcline():

38 if coord_right[0] != coord_left[0]:

39 m = (h_img - coord_left[1] - (h_img - coord_right[1])) /\

40 (coord_left[0] - coord_right[0])

41 n = coord_left[1] - m * coord_left[0]

42 else:

43 print( error )

44 return m, n

45

46

47 def values_line(m, n):
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48 values = []

49 for x in range(coord_left[0], coord_right[0]):

50 # images coord are inverse

51 values.append(int(n - m * x ))

52 return values

53

54

55 def values_high(line):

56 values = []

57 values.append(0)

58 for i, pos in enumerate(line):

59 y_pos = pos

60 x_pos = coord_left[0] + i

61 while y_pos > 0 and not (img_solda[y_pos, x_pos] == color_high).all():

62 y_pos -= 1

63 if (img_solda[y_pos, x_pos] == color_high).all():

64 img_solda[y_pos - 1, x_pos] = color_high

65 img_solda[y_pos - 2, x_pos] = color_high

66 img_solda[y_pos - 3, x_pos] = color_high

67 values.append(pos - y_pos)

68 elif y_pos == 0:

69 values.append(0)

70

71 values.append(0)

72 plt.imshow(img_solda)

73 plt.show()

74 return values

75

76

77 def values_depth(line):

78 values = []

79 values.append(0)

80 for i, pos in enumerate(line):

81 y_pos = pos

82 x_pos = coord_left[0] + i

83 while y_pos < h_img and not (img_solda[y_pos, x_pos] == color_depth).all():

84 y_pos += 1

85 # print(y_pos)

86 if (img_solda[y_pos, x_pos] == color_depth).all():

87 img_solda[y_pos + 1, x_pos] = color_depth

88 img_solda[y_pos + 2, x_pos] = color_depth

89 img_solda[y_pos + 3, x_pos] = color_depth

90 values.append(pos - y_pos)

91 elif y_pos == h_img:

92 values.append(0)

93 # print(pos, y_pos)

94 values.append(0)

95 # plt.imshow(img_solda)

96 # plt.show()

97 return values

98

99
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100 def values_geo(line):

101 depth = []

102 if not width:

103 depth = values_depth(line)

104 high = values_high(line)

105 return depth, high

106

107

108 def calc_coef(index):

109 # pixcel ajust

110 coef = pieceh_left_px * (pieceh_right_px - pieceh_left_px) / (float(

111 (coord_right[0] - coord_left[0]) * index + pieceh_left_px *
112 (pieceh_right_px - pieceh_left_px)))

113 return coef

114

115 def calc_func_deformation():

116 if coord_right[0] != coord_left[0]:

117 m = (pieceh_right_px - pieceh_left_px) / ( coord_right[0] - coord_left[0])

118 else:

119 print( error )

120 return m

121

122 def calc_pieceh_px(m, n, index):

123 # pixcel ajust

124 pieceh_px = m*index + n

125 return pieceh_px

126

127 def calc_mm_ajust(value):

128 return value * pieceh_left_mm / pieceh_left_px

129

130 def calc_mm(value, pieceh_px):

131 return value * pieceh_left_mm / pieceh_px

132

133 def save_csv(depth, high):

134 m = calc_func_deformation()

135 n = pieceh_left_px

136 with open(name_file, w ) as f:

137 i = 0

138 if not width:

139 f.write( depth, high \n )

140 for v_depth, v_high in zip(depth, high):

141 pieceh_px = calc_pieceh_px(m, n, i)

142 mm_depth = calc_mm(v_depth, pieceh_px)

143 mm_high = calc_mm(v_high, pieceh_px)

144 f.write(str(mm_depth) + , +

145 str(mm_high) + \n )

146 i += 1

147 else:

148 f.write( width \n )

149 for v_high in high:

150 pieceh_px = calc_pieceh_px(m, n, i)

151 mm_width = calc_mm(v_high, pieceh_px)
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152 f.write(str(mm_width) + \n )

153 i += 1

154

155 f.close()

156

157

158 if __name__ == __main__ :

159

160 m, n = calc_funcline()

161 print(" calculated m and n")

162 print(m, n)

163 line = values_line(m, n)

164 plt.plot(line, r , linewidth=1)

165 plt.show()

166 print(" calculated line")

167 depth, high = values_geo(line)

168 print(" calculated geometry")

169 print(len(depth), len(high))

170 save_csv(depth, high)

171 print(" saved geometry")
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B. CONVOLUTIONAL NEURAL NETWORK CODE

1 from fastai.imports import *
2 from fastai.transforms import *
3 from fastai.conv_learner import *
4 from fastai.model import *
5 from fastai.dataset import *
6 from fastai.sgdr import *
7 from fastai.plots import *
8 from tqdm import tqdm

9 tqdm.monitor_interval = 0

10 PATH = "../../../metal_drop/data/"

11 sz=96

12 arch=resnet18

13 bs=64

14

15 augs = transforms_side_on + [AddPadding(pad=10, mode=cv2.BORDER_REPLICATE)]

16 tfms = tfms_from_model(arch, sz, aug_tfms=augs, max_zoom=1.1)

17 data = ImageClassifierData.from_paths(PATH, tfms=tfms, bs=bs)

18 learn = ConvLearner.pretrained(arch, data, precompute=False, ps=0.4)

19 learn.opt_fn=optim.Adam

20

21 %time learn.fit(1e-2, 3, cycle_len=1, cycle_mult=2)

22

23 learn.unfreeze()

24 lr = np.array([1e-3,1e-3,1e-2])

25 %time learn.fit(lr, 3, cycle_len=1, cycle_mult=2)
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C. UNMELTED WIRE CALC CODE

1 def calc_wire_width(image_array, x, y, xl_ant = 10, xr_ant=15):

2 """

3 User give coord(x, y) in the wire for algorithm search in the same line

4 wire init width and it value.

5

6 image_array: image for wire calc

7 x,y: coordenate between wire side

8 """

9 left = -1

10 right = 1

11 value_left = x

12 value_right = x

13 flag_left = False

14 flag_right = False

15 resized_image = cv2.resize(np.uint8(image_array), (32, 32))

16 thresh = edge_detect(resized_image)

17

18 while not(flag_left and flag_right):

19 if not flag_left:

20 left -= 1

21 if thresh[y, x + left] == 255:

22 value_left = x + left

23 flag_left = True

24 elif (x + left) == (xl_ant-2):

25 value_left = xl_ant

26 flag_left = True

27

28

29 if not flag_right:

30 right += 1

31 if thresh[y, x + right] == 255:

32 value_right = x + right

33 flag_right = True

34 elif (x + right) == (xr_ant+2):

35 value_right = xr_ant

36 flag_right = True

37 return value_right, value_left

38

39 def calc_unmelted_wire(image_array, h, xl, xr, base_h, e=1, wire_d=1.2, bico=15):

40 """

41 It detect and calc unmelted wire high dimention

42

43 image_array: image for wire calc

44 h: it is high init for search stick out (px)

45 xl: x left of wire (px)

46 xr: x right of wire (px)

47 base_h: high of base system(px)
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48 e: allowed error in width dimention

49 wire_d: wire diameter (mm)

50 bico: dimention base to bico (mm)

51 """

52

53 temp_xl = xl

54 temp_xr = xr

55

56 flag = True

57 thresh = edge_detect_resize(np.uint8(image_array))

58

59 while ((xr - xl) <= (temp_xr - temp_xl) + e) and h <= (base_h - 2) and flag:

60 h += 1

61 if thresh[h, temp_xl] != 0:

62 if thresh[h, temp_xl + 1] == 0:

63 temp_xl += 1

64

65 if thresh[h, temp_xr] != 0:

66 if thresh[h, temp_xr - 1] == 0:

67 temp_xr -= 1

68

69

70 # it detect if temp values worked

71 if thresh[h, temp_xl] != 0 or thresh[h, temp_xr] != 0:

72 flag = False

73

74 h_px = base_h - h-1

75 dx = xr - xl

76 if dx == 0:

77 dx = 1

78 h_mm = h_px * wire_d / dx

79 unmelted_wire = bico - h_mm

80

81 return h - 5, unmelted_wire
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D. PREDICTION CODE

1 import pandas as pd

2 from sklearn.cross_validation import train_test_split

3 from sklearn.metrics import mean_squared_error

4 # from fancyimpute import KNN

5 from knn_impute import knn_impute

6 from sklearn.externals import joblib

7 # algorithms

8 from sklearn.multioutput import MultiOutputRegressor

9 from sklearn.preprocessing import PolynomialFeatures

10 from sklearn.pipeline import make_pipeline

11 from sklearn.linear_model import Lasso

12 from sklearn.linear_model import ElasticNet

13 from sklearn.linear_model import LinearRegression

14 from sklearn.linear_model import Ridge

15 from sklearn.linear_model import LassoLars

16 from sklearn.linear_model import BayesianRidge

17 from sklearn.svm import SVR

18 from sklearn.neural_network import MLPRegressor

19

20 # load dataset

21 df_exp1 = pd.read_csv( parte 1/final/aws_a5_1_all.csv )

22 df_exp2 = pd.read_csv( parte 2/final/aws_a5_2_all.csv )

23 df_aws = pd.concat([df_exp1, df_exp2])

24 df_aws = df_aws.drop([ image , time , cputime_dif , num ], 1)

25

26

27 # loss data

28 if df_aws[ wire_l ].isna().any():

29 dfwire_l = knn_impute(target=df_aws[ wire_l ],

30 attributes=df_aws.drop([ wire_l , volume ], 1),

31 aggregation_method="median",

32 k_neighbors=10, numeric_distance= euclidean ,

33 categorical_distance= hamming

34 missing_neighbors_threshold=0.8)

35 df_aws[ wire_l ] = dfwire_l

36

37 dfvolume = knn_impute(target=df_aws[ volume ],

38 attributes=df_aws.drop([ volume ], 1),

39 aggregation_method="median", k_neighbors=10,

40 numeric_distance= euclidean ,

41 categorical_distance= hamming ,

42 missing_neighbors_threshold=0.8)

43 df_aws[ volume ] = dfvolume

44

45 # run model

46 X = df_aws.drop([ high , width , depth ], 1)

47 y = df_aws.drop([ tension , velocity , weld_velocity , wire_l , volume ], 1)
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48 # estimators

49 ESTIMATORS = {

50 "Linear regression": LinearRegression(),

51 "Ridge": Ridge(alpha=1.802e-01),

52 "Lasso": Lasso(alpha=1.802e-01),

53 "ElasticNet": ElasticNet(random_state=0, alpha=1.802e-01),

54 "LARS Lasso": LassoLars(alpha=1.802e-01),

55 "Bayesian Regression": BayesianRidge(),

56 "SVR poly": SVR(kernel= poly , C=1e3),

57 "SVR rbf": SVR(kernel= rbf , C=1e3),

58 }

59

60 # Create an empty dictionary to collect prediction values

61 y_test_predict = dict()

62 y_mse = dict()

63 mim_y = 2.0

64 df_model_error = pd.DataFrame(index=[*ESTIMATORS])

65

66 for i in range(1, 7):

67 iteration = iter +str(i)

68 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,

69 random_state=42)

70 for name, estimator in ESTIMATORS.items():

71 if name == SVR poly :

72 multiestimator = MultiOutputRegressor(SVR(kernel= poly ,

73 C=1e3, degree=i))

74 elif name == SVR rbf :

75 multiestimator = MultiOutputRegressor(estimator)

76 else:

77 multi = MultiOutputRegressor(estimator)

78 multiestimator = make_pipeline(PolynomialFeatures(i), multi)

79 # fit() with instantiated object

80 multiestimator.fit(X_train, y_train)

81

82 # Make predictions and save it in dict under key: name

83 y_test_predict[name] = multiestimator.predict(X_test)

84 y_mse[name] = float(mean_squared_error(y_test,

85 multiestimator.predict(X_test)))

86 print( RMSE for ,name, were ,y_mse[name])

87 y_round = round(y_mse[name],2)

88 filename = models/ +name+ _ +str(iteration)+ .model

89 # save model

90 joblib.dump(multiestimator, filename)

91

92 df_model_error[str(i)] = pd.Series(y_mse, index=df_model_error.index)

93

94 df_model_error.to_csv( model_error.csv )
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E. REINFORCEMENT LEARNING CODE

1 import random

2 import numpy as np

3 import pandas as pd

4

5 class Qtable:

6

7 num_episodes = 10000

8 max_step_per_episode = 100

9

10 learning_rate = 0.1

11 discount_rate = 0.99

12

13 exploration_rate = 1

14 max_exploration_rate = 1

15 min_exploration_rate = 0.01

16 exploration_decay_rate = 0.001

17

18 rewards_all_episodes = []

19

20 df_exp1 = pd.read_csv( parte 1/final/aws_a5_1_all.csv )

21 df_exp2 = pd.read_csv( parte 2/final/aws_a5_2_all.csv )

22 df_aws = pd.concat([df_exp1, df_exp2])

23

24 def __init__(self, state, init_action_values):

25

26 self.__obj_state = state

27 self.__values = init_action_values

28 self.__init = init_action_values

29 # values min and max tension , wire rate , welding velocity

30 self.__extrem_val =[(17,32),(4.8,8.2),(6.2,13.4)]

31 # making q-table

32 df_state = self.df_aws[[ high , width , depth ]]

33 # index states < high , width , depth >

34 self.state_list ={}

35

36 # columns actions < tension , wire rate , welding velocity >

37 self.action_list = [ +++ , --- , === , ++= , =++ , +=+ , -++ , +-+ ,

38 ++- , +-- , -+- , --+ , +== , =+= , ==+ , =-- ,

39 -=- , --= , -== , =-= , ==- , -+= , -=+ , +-= ,

40 =-+ , =+- , +=- ]

41

42 self.__q_table = pd.DataFrame(columns=self.action_list)

43

44 def calc_reward(self, state):

45 dif = 0

46 # permited error

47 e = 0
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48 for i in range(0, len(self.__obj_state)):

49 dif += abs(self.__obj_state[i]-state[i])

50 return -1*(dif - e) + 10

51

52 def get_action(self, state):

53 # get new action

54 return pd.Series.idxmax(self.__q_table.loc[state,:])

55

56 def get_weld_values(self, action):

57 # variation are values for eachs welding parameter variation

58 # variation = (3, 1, 2)

59 variation = (2, 1, 1)

60 result = [0, 0, 0]

61 for index, act in enumerate(action):

62 if act == + :

63 result[index] = self.__values[index] + variation[index]

64 elif act == - :

65 result[index] = self.__values[index] - variation[index]

66

67 if result[0] < self.__extrem_val[0][0]:

68 result[0] = self.__extrem_val[0][0]

69 if result[0] > self.__extrem_val[0][1]:

70 result[0] = self.__extrem_val[0][1]

71 if result[1] < self.__extrem_val[1][0]:

72 result[1] = self.__extrem_val[1][0]

73 if result[1] > self.__extrem_val[1][1]:

74 result[1] = self.__extrem_val[1][1]

75 if result[2] < self.__extrem_val[2][0]:

76 result[2] = self.__extrem_val[2][0]

77 if result[2] > self.__extrem_val[2][1]:

78 result[2] = self.__extrem_val[2][1]

79

80 self.__values = result

81 return result

82

83 def check_state_exist(self, state):

84 string = str(state[0])+str(state[1])+str(state[2])

85 if string not in self.state_list.keys():

86 # append new state to q table

87 self.state_list[string] = state

88 self.__q_table = self.__q_table.append(

89 pd.Series(

90 [-10]*len(self.action_list),

91 index=self.__q_table.columns,

92 name=string,

93 )

94 )

95 # method for offline train

96 def get_volume_wirel(self, tupla):

97 df_temp = self.df_aws.loc[(self.df_aws[ tension ] -

98 tupla[0]).abs().argsort()].dropna()

99 df_temp = df_temp.loc[(df_temp[ velocity ] -
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100 tupla[1]).abs().argsort()].dropna()

101 df_temp = df_temp.loc[(df_temp[ weld_velocity ] -

102 tupla[2]).abs().argsort(),

103 [ volume , wire_l ]].dropna()

104 return df_temp.iloc[0][ volume ], df_temp.iloc[0][ wire_l ]

105

106 def prox_value(self, tuple):

107 dict_list ={}

108 for index, row in enumerate(self.state_list):

109 dict_list[round(abs(row[0] - tuple[0]) + abs(row[1] - tuple[1]) + \

110 abs(row[2] - tuple[2]),2)] = index

111 sort_dic =sorted(dict_list)

112 return dict_list[sort_dic[0]]

113

114 def find_dict_key(self, state):

115 for key, val in self.state_list.items():

116 if state == val:

117 return key

118

119 def learn(self, name, env):

120 Q learning algorithm

121 # states ( high , width , depth )

122 state = (2.18, 5.48, -2.95)

123 self.check_state_exist(state)

124 for episode in range(self.num_episodes):

125

126 reward_current_episode = 0

127

128 for step in range(self.max_step_per_episode):

129 # exploration-explotation trade-off

130 exploration_rate_threshold = random.uniform(0, 1)

131 key_state = self.find_dict_key(state)

132 if exploration_rate_threshold > self.exploration_rate:

133 index = np.argmax(self.__q_table.loc[key_state,:])

134 action = self.__q_table.columns[index]

135 else:

136 index = np.random.choice(len(self.action_list))

137 action = self.action_list[index]

138

139 weld_parameters = self.get_weld_values(action)

140 # learning offline

141 vol, wire = self.get_volume_wirel(weld_parameters)

142 # tension velocity volume weld_velocity wire_l

143 weld_parameters.insert(2,vol)

144 weld_parameters.append(wire)

145

146 # return < depth , high , width >

147 new_state = env.predict([weld_parameters])

148 new_state = [round(new_state[0][1], 2),

149 round(new_state[0][2], 2),

150 round(new_state[0][0], 2)]

151 reward = round(self.calc_reward(state),2)
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152 # Update Q-table for Q(s, a)

153 print( step %s of %s ,(step, self.max_step_per_episode))

154 self.check_state_exist(new_state)

155 key_state_new = self.find_dict_key(new_state)

156 self.__q_table.loc[key_state, action] = self.__q_table.loc[key_state,

157 action] * \

158 (1 - self.learning_rate) + \

159 self.learning_rate * (reward +

160 self.discount_rate *
161 np.max(self.__q_table.loc[

162 key_state_new, :]))

163

164 state = new_state

165

166 reward_current_episode += reward

167

168 if reward >= 10:

169 break

170

171 # Exploration rate decay

172 self.exploration_rate = self.min_exploration_rate + \

173 (self.max_exploration_rate - self.min_exploration_rate) * \

174 np.exp(-self.exploration_decay_rate * episode)

175

176 self.rewards_all_episodes.append(reward_current_episode)
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