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O homem é uma corda, estendida entre o animal e o

super-homem - uma corda por sobre um abismo.

Um perigoso atravessar, um perigoso olhar para trás,

um perigoso arrepiar-se e estacar.

O que é grandioso no homem é que ele seja uma ponte,

e não um fim: o que pode ser amado no homem é que

ele seja uma passagem e um ocaso.

Eu amo aqueles que não sabem viver a não ser como

poentes, pois eles são os que atravessam.

F.Nietzsche; Assim falou Zaratustra





Abstract

In this work we examine the abelian transitive state-closed subgroups of au-

tomorphisms groups of one-rooted regular trees. Its presentation, torsion sub-

group, and the case of cyclic groups are shown in detail. Also, when the group

of induced permutations is cyclic of prime order we obtain additional struc-

tural and topological properties. In the last section we study representations

of the free abelian group of countable infinite rank.



Resumo

Neste trabalho examinamos os subgrupos abelianos transitivos e fechados por

estado do grupo de automorfismos de árvores regulares unirraiz. Sua apresen-

tação, subgrupo de torção e o caso de grupos cíclicos são vistos em detalhe.

Ainda, quando o grupo de permutações induzidas é cíclico de ordem prima

obtemos propriedades estruturais e topológicas adicionais. Na última seção,

estudamos as representações do grupo abeliano livre de posto infinito enu-

merável.
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Introduction

The definition of state-closed groups of automorphisms of a rooted tree was inspired by

the interplay between the recursiveness of these automorphisms and Automata Theory,

which was anticipated by the fact that the Burnside p-groups of Aleshin, Grigorchuk and

Gupta-Sidki, among others, admit a faithful representation into the group of finite state

automorphisms of a regular tree. In this work we explore the case when the state-closed

groups are transitive and abelian, exploring its main features as we shall now describe in

detail.

An automorphism of a one-rooted regular tree of degree m is a graph bijection which

preserves vertex incidence. We can index the vertices of such tree by words on the alphabet

Y = {1, 2, ...,m}, where the words appearing in the first level are 1, 2...,m, the alphabet

itself. In this case our tree will be denoted by Tm. We notice that, an automorphism

of a subtree can also be seen as an automorphism of the entire tree, since the subtree is

isomorphic to Tm. This observation leads us to the fact that the group of automorphisms

of the tree, denoted by Am, can be written as Am = (Am ×Am × . . .×Am) o Sm, where

Sm is the symmetric group of degree m permuting the indexes of the copies of Am. Thus,

the elements α ∈ Am can be expressed as α = (α1, α2, ... , αm)σ. The automorphisms αi

are called the states of α.

We define three important subgroups of a group G ≤ Am: StabG(n), the stabilizer of

the n-th level, FixG(u) the fixator of the word u and P (G), the group of permutations

on Y induced by the automorphisms in G. The group G will be called transitive if P (G)

is transitive.

In our investigations some closure operations applied to a group G ≤ Am will be of

particular interest. First, we notice that the stabilizers StabAm(n) are normal subgroups
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and provide Am an inverse limit structure as Am ' lim←−
Am

StabAm (n)
; hence, the elements

of Am can be written as coherent infinite products. For a group G ≤ Am, we define its

topological closure, denoted byG, as the set of well-defined infinite products of its elements.

Now, consider a monomorphism defined recursively as α(0) = α, α(1) = (α, α, . . . , α) and

α(n+1) = (α(n))(1). This diagonal map in some sense exhausts all the possibilities of actions

of an automorphism α on every subtree. Then, the diagonal closure of G is the group

G̃ = 〈G(i) | i ≥ 0〉. At last, the state closure Ĝ will be the group generated by all states

of the elements of G. In the abelian and transitive case, when considering the diagonal-

topological closure A∗, writing α(i) as αxi allows us to express its elements as products of

expressions of the form

αa0(αa1)(1)(αa2)(2) . . . (αan)(n) . . . = αa0+a1x1+a2x2+...+anxn+...,

where the polynomial is in Zm[[x]], the ring of formal sums over a m-adic ring.

A central question in the theory of state-closed groups (also called self-similar, de-

pending on the approach) is whether a group G has a faithful representation in Am; i.e.,

if a group G acts on a one-rooted regular tree of some degree. One of the methods to

tackle this question is using virtual endomorphisms, that is, a homomorphism f : H → G

from a subgroup H ≤ G of finite index to G. In [NS04], the authors provide a method to

find a representation ϕ : G→ Am:

Given a transversal T = {t1, . . . , tm} of H in G, every element g ∈ G induces a

permutation σ(g) : Y → Y with respect to T , given by

iσ(g) = j ⇔ Htig = Htj, i, j = 1, . . . ,m.

Notice that tigt−1
j ∈ H, that is, tigt−1

iσ(g)
∈ H. Now define ϕ : G→ Am as:

g 7→ ((t1gt
−1
1σ(g)

)fϕ, (t2gt
−1
2σ(g)

)fϕ, . . . , (tmgt
−1
mσ(g)

)fϕ)σ(g).

14



The function defined above gives us the remarkable property that Gϕ is state-closed,

transitive and

ker(ϕ) = 〈K ≤ H | K C G,Kf ≤ K〉,

called the f -core(H). If f -core(H) = 1 we say that f is simple, G ' Gϕ and the

representation is faithful.

In possession of these tools, we proceed to investigate transitive abelian state-closed

groups considering their diagonal-topological closure A∗. Notice that in the theorem be-

low we give an explicit finite presentation for A∗ considered as a module, even when A is

not finitely presented:

Theorem A. ([BS10], p.460) Let A be a transitive abelian state-closed subgroup of degree

m. Then A∗ is additively a Zm[[x]]-module generated by {βi | 1 ≤ i ≤ k}, subject to the

set of relations {
ri =

∑
1≤j≤k

miβi − pijβjx = 0 | 1 ≤ i ≤ k
}
,

for some pij ∈ Zm[[x]]. Moreover, there exist r, q ∈ Zm[[x]] such that r = m − xq

and rA∗ = (0). The elements of A∗ can be represented additively as
∑

1≤i≤k piβi, where

pi =
∑

j≥0 pijx
j, with pij ∈ Z and 0 ≤ pij < m.

Following up our discussion, we study the classical theme of torsion in abelian groups.

The first step in this direction is proving that, if A is a transitive abelian state-closed

group, then tor(A) has finite exponent and is therefore a direct summand of A. Then,

we prove the following result that adds an important topological consideration to torsion

groups:

Theorem B. ([BS10], p.467) Suppose that A is a transitive state-closed abelian torsion

group of degree m. Then A is conjugate to a subgroup of the topological closure of

P̃ (A) = 〈σ(i) | σ ∈ P (A), i ≥ 0〉.

Next, the special case of cyclic Zm[[x]]-modules is studied. We show an explicit form
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for A∗ as a quotient module. The theorem confirms the example we provided of the

diagonal-topological closure of the binary adding machine.

Theorem C. ([BS10],p.468) i) The expression α = (αq1 , αq2 , ..., αqm)σ is a well-defined

automorphism of the m-ary tree;

ii) Let A be the state closure of 〈α〉. Then A∗ is abelian, isomorphic to the quotient ring

Zm[[x]]/(r), where r = m− qx and q = q1 + ...+ qm.

In the case where the group P (A) of induced permutations by elements of G has prime

order, we can choose a single automorphism β such that A∗ = 〈β〉∗ and A∗ is topologically

finitely generated.

Theorem D. ([BS10], p.470) Let m be a prime number. Let A be a torsion-free abelian

transitive state-closed subgroup of Am and let β ∈ A\StabA(1) such that ζ(β) is minimum.

Then A∗ = 〈β〉∗ and is topologically finitely generated.

Now, let α = (e, ...e, αx
j−1

)σ ∈ Am. Then αm = αx
j ; that is, αr = e where r = m−xj.

The states of α are α, αx, ..., αxj−1 and the group

Dm(j) = 〈α, αx, ..., αxj−1〉

is diagonally closed. Furthermore, the topological closure Dm(j) is isomorphic to the

quotient ring S = Zm[[x]]
(r)

, which is a free Zm-module of rank j.

With this special group in mind, we can state an extension of the previous theorem,

providing even more structure to A∗:

Theorem E. ([BS10], p.470) In the same conditions of the previous theorem, we have

that A∗ = 〈β〉∗ is conjugate to Dm(j) for some j ≥ 1.
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Then, we examine an open question that the authors state in [BS10], namely, whether

a free abelian group of infinite rank admits a faithful transitive state-closed representa-

tion, even of prime degree. An answer was given in [BS20]:

Theorem F. ([BS20], p.108) Let Z(ω) the restricted product of countably many copies

of the integers. Then there exists a faithful transitive state-closed action of Z(ω) into the

binary tree.

To bring our work to an end, we prove the case where is taken a direct sum of countably

many copies of an abelian transitive state-closed group L and concluding that L(ω) oC2 is

also transitive and state-closed:

Theorem G. ([DS18], p.1062) Let L be an abelian transitive state-closed group and Lω

an infinite countable direct sum of copies of L. Then L(ω) o C2 is also transitive and

state-closed.
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Chapter 1

Preliminaries

In this chapter we present some fundamental algebraic preliminaries for our work. In

the first section, definitions and examples about modules are established. They will play

a major role on understanding presentations of abelian self-similar groups, since these

groups will be seen as finitely presented modules over commutative rings, in contrast with

the group presentation that is not, in general, finite. Next, we proceed to define the p-adic

integers and profinite groups, as automorphism groups of trees inherit the topology of the

tree, being isomorphic to an explicit inverse limit. Ending the chapter, we state some

properties of abelian groups that will be used to investigate torsion elements in abelian

self-similar groups.

1.1 Modules

The intuitive way of seeing modules is taking a vector space and weakening the condition

on the field of coefficients; we only require the coefficients to be in a ring. We proceed

with some standard definitions and useful examples.

Definition 1.1.1. Let R be a ring (maybe not commutative nor having identity). A left

R-module or a left module over R is a set M together with:

i) a binary operation + : M ×M →M under which it is an abelian group;

18



ii) An action of R on M (that is, a map · : R×M →M), denoted by r ·m (or shortly,

rm), for all r ∈ R and for all m ∈M which satisfies

a) (r + s)m = rm+ sm, for all r, s ∈ R, m ∈M ;

b) (rs)m = r(sm), for all r, s ∈ R, m ∈M ;

c) r(m+ n) = rm+ rn, for all r ∈ R, m, n ∈M ;

If the ring has a 1 we impose the additional axiom:

d) 1m = m, for all m ∈M .

The definition of right R-modules is analogous.

Remark. If the ring R is commutative and M is a left R-module we can make M

into a right R-module by defining mr = rm. In general, if R is not commutative, all

the axioms for a right R-module are satisfied, with exception of the equivalent of axiom

(ii)(b), that reads m(rs) = (mr)s, m ∈M, r, s ∈ R.

More clearly: in a left R-module M , denote rm by mr, for m ∈ M, r ∈ R. Thus, we

can also write (sr)m = m(sr) and s(rm) = (mr)s. By the axiom (ii)(b) we have then

m(sr) = (mr)s.

Now, if R is commutative, it follows thatm(rs) = (mr)s, satisfying the required condition.

If R is a commutative ring, we shall omit the adjectives left and right, using only the term

R-modules.

Definition 1.1.2. Let R be a ring and M be an R-module. An R-submodule of M is a

subgroup N of M which is closed under the action of ring elements, i.e., rn ∈ N , for all

r ∈ R, n ∈ N .

Example 1.1.3. a) Let R be a ring. Then M = R is a left R-module over itself with

the action being the multiplication in R. In this way, the left R-submodules are

precisely the left ideals of R. We observe however that, if R is not commutative,

M has both left and right R-module structures, but these may be different. For
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instance, consider the ring R of n × n matrices with entries from a field F . Now,

taking M to be the set of n × n matrices with arbitrary elements of F in the first

column and zeros elsewhere, we see thatM is a submodule of R when R is considered

as a left module over itself, but M is not a submodule of R when R is considered

as a right R-module.

b) Let R = Z and A be any abelian group with the operation denoted by +. Then we

make A into a Z-module by defining

na =


a+ a+ a+ ...+ a (n times), if n > 0

0 if n = 0

−a− a− a− ...− a (n times), if n < 0

(0 is the identity of A). This definition of action of Z into A makes A an Z-module;

in fact this is the only possible action of Z on A, what allows us to conclude that

Z-modules are the same as abelian groups.

c) If A is an abelian group containing an element x of finite order n then nx = 0. Thus,

a Z-module may have nonzero elements x such that nx = 0 for some nonzero ring

element n. In particular, if A has order m, then by Lagrange’s Theorem mx = 0,

for all x ∈ A. Note that in this case A is a module over Z/mZ.

d) More generally, if M is a R-module and for some two-sided ideal I of R we have

am = 0, for all a ∈ I and all m ∈M , we say thatM is annihilated by I. In this case

we can makeM into a R
I
-module by defining the action of R

I
onM as (r+I)m = rm,

for each m ∈M and r + I in R
I
.

e) Let R be a ring with 1 and n ∈ Z+. Defining Rn = {(a1, a2, ..., an) | ai ∈ R} with

addition defined componentwise and multiplication as in the case of vector spaces,

Rn is called the free module of rank n over R.

20



Definition 1.1.4. Let R be a ring and M and N be R-modules. A map ϕ : M → N is

an R-module homomorphism if it respects the R-module structures of M and N , i.e.,

i) ϕ(x+ y) = ϕ(x) + ϕ(y), for all x, y ∈M ;

ii) ϕ(rx) = rϕ(x), for all r ∈ R and x ∈M .

Additionally, we define ker(ϕ) = {m ∈M | ϕ(m) = 0}

Example 1.1.5. a) Let R be a ring, n ∈ Z+ and let M = Rn. For each i ∈ {1, ..., n}

the projection map

πi : Rn → R, πi(x1, ..., xn) = xi

is a surjective R-module homomorphism with kernel equal to the submodule of

n-tuples which have a zero in position i.

b) If R is a ring and M = R is a module over itself, then R-module homomorphisms

(even from R to itself) need not be ring homomorphisms and ring homomorphisms

need not be R-module homomorphisms. For example, when R = Z, the Z-module

homomorphism x 7→ 2x is not a ring homomorphism (1 does not map to 1). In the

other direction, when R = F [x], F a field, the ring homomorphism

ϕ : f(x) 7→ f(x2)

is not an F [x]-module homomorphism as,if it were, we would have

x2 = ϕ(x) = ϕ(x · 1) = xϕ(1) = x.

As one should expect, the definition of quotient modules, the Isomorphism Theorems

and analogous facts for other structures also exist for modules. For further information

the reader can consult [DF03].
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Definition 1.1.6. Let M be an R-module and let N1, ..., Nn be submodules of M .

i) For any subset A of M let

RA = {r1a1 + r2a2 + . . .+ rmam | r1, . . . , rn ∈ R, a1, . . . , am ∈ A, m ∈ Z+}

(we define RA = {0} if A = ∅); this is called the submodule of M generated by A.

If A = {a1, a2, . . . , an} is a finite set we shall write Ra1 + Ra2 + . . . + Ran for RA.

If N is a submodule of M (possibly N = M) with N = RA, A a subset of M , we

say that N is generated by A and A is a generating set for N .

ii) A submodule N of M (possibly N = M) is cyclic if there exists an element a ∈M

such that N = Ra, that is, N is generated by one element:

N = Ra = {ra | r ∈ R}.

It is assumed from now on that our modules are over commutative rings with identity 1.

We remark that, for a finitely generated module, its submodules are not necessarily finitely

generated. Consider for example R to be F [x1, x2, . . .] the polynomial ring in infinitely

many variables over some field F and the R-module M to be R itself (a cyclic module,

as M = R = R1). The submodule generated by {x1, x2, . . .} cannot be generated by any

finite set.

Now we present a broader definition of free modules than the one on the previous

Example 1.1.3. (e).

Definition 1.1.7. An R-module F is said to be free on the subset A of F if for every

nonzero element x ∈ F , there exist unique nonzero elements r1, r2, . . . , rn of R and unique

a1, a2, . . . , an in A such that x = r1a1 + r2a2 + . . . + rnan, for some positive integer n.

We say A is a basis or a set of free generators for F . If R is a commutative ring the

cardinality of A is called the rank of F .
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As in other categories, the free R-module on a subset A satisfies a universal property ,

as follows: if M is any R-module and ϕ : A → M is any map of sets, then there is a

unique R-module homomorphism Φ : F → M such that Φ(a) = φ(a), for all a ∈ A; i.e.,

the following diagram commutes:

A F

M

i

ϕ Φ

where i is the inclusion map.

Example 1.1.8. a) Any ring R is a free module over itself, having any unit element

as possible basis.

b) When R = Z, the free module on a set A is called the free abelian group on A. If

|A| = n, then it is called the free abelian group of rank n and is isomorphic as a

group to Z⊕ Z⊕ ...⊕ Z (n times).

1.2 The p-adic Integers

The p-adic integers play a major role on Number Theory, mainly motivated by the so-

called Local-Global Principle, attempting to find a solution to an equation "gluing" the

solutions modulo powers of primes. We give a naive definition and then proceed to illus-

trate them in more concrete ways.

Definition 1.2.1. The ring of p-adic integers Zp is defined as the set of formal power

series
∑

i≥0 aip
i with integral coefficients ai satisfying 0 ≤ ai ≤ p− 1.

With this definition, a p-adic integer a =
∑

i≥0 aip
i can be identified with the sequence

(ai)i≥0 of its coefficients; therefore Zp can be identified with the cartesian product

Zp =
∏
i≥0

{0, 1, . . . , p− 1} = {0, 1, . . . , p− 1}ω,

23



where ω stands for the cardinality of the integers.

To operate with these numbers, we consider the above formal sums paying attention

on how to carry coefficients during calculations to keep the coefficients within the range

0 ≤ ai ≤ p − 1. For example, in Z2 let a = 1 = 1 · 20 + 0 · 21 + 0 · 22 + . . . and

b = 1 · 20 + 1 · 21 + 1 · 22 + . . .. Then the addition a+ b is

1 + (1 + 2 + 22 + 23 + . . .) = 2 + 2 + 22 + 23 + . . .

= 22 + 22 + 23 + . . .

= 23 + 23 + . . .

= . . . = 0.

Now, more generally, let

a = 1 = 1 · p0 + 0 · p+ 0 · p2 + . . . and

b = (p− 1) + (p− 1)p+ (p− 1)p2 + . . . ;

The sum a + b has first component 0, since 1 + (p − 1) = p. As we have to carry the

coefficient 1 to the next component, we have that it is also 0. Continuing the process we

find that all components vanish, and the result is 1 + b = 0; therefore b is the additive

inverse of 1, namely, b = −1. Therefore, for some p-adic a =
∑

i≥0 aip
i, we define

µ(a) =
∑
i≥0

(p− 1− ai)pi

so that a+µ(a)+1 = 0, or even µ(a)+1 = −a, the additive inverse of a. The multiplication

is defined analogously using distributivity, paying the same attention on carrying the

coefficient during calculations.
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We can visualize the p-adic integers as infinite paths on a tree, where each vertex

represents the partial sum of the formal power series. In the following picture, with

p = 2, we illustrate the first levels of such tree:

0

0

0

0 4

2

2 6

1

3

7 3

1

5 1

An analogous way of defining the p-adic integers is using inverse limits:

Definition 1.2.2. The ring of p-adic integers Zp is defined as the inverse limit

Zp = lim←−
Z
pZ

= {(an) ∈
∏
n∈N

Z
pnZ

| am ≡ an (mod pm), if n ≥ m},

with respective transition maps ϕn : Z/pn+1Z→ Z/pnZ defined by

∑
i≤n

aip
i mod pn+1 7→

∑
i≤n

aip
i mod pn.

By this definition, the p-adic integers are the coherent sequences in
∏

Z/pnZ of partial

sums of the formal series
∑

i≥0 aip
i, with 0 ≤ ai ≤ p− 1.

For example, to see the p-adic number 1 + 2 + 22 + 23 + . . . in this context, observe

that

1 + 2 + 22 + 23 + . . . means (1 mod 2, 1 + 2 mod 22, 1 + 2 + 22 mod 23, . . . ).

In the next section we will see that the additive group of the p-adic integers have

important topological properties related to the inverse limit structure.
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Now we present a fundamental structure theorem for the ring of p-adic integers:

Proposition 1.2.3. Let p be a prime. Then

i) The group of units of Zp is

Z×p = {a0 + a1p+ a2p
2 + ... ∈ Zp | a0 6= 0, 0 ≤ ai < p},

that is, it is the subset of p-adic integers that are not divisible by p or with nonzero

"constant terms".

ii) Zp is a Unique Factorization Domain (in fact a Principal Ideal Domain) with a

unique irreducible p, except for associated elements. Every nonzero ideal of Zp is a

power of pZp, therefore pZp is the only maximal ideal of Zp and Zp/pZp = Fp.

Proof. i) It follows directly from the fact that a mod pn is a unit in Z/pnZ if and only if

a is not a multiple of p.

ii) Observe that every nontrivial element f ∈ Zp admits a factorization of the form

f = pn × (an + an+1p
n+1 + an+2p

n+2 + ...),

(0 ≤ ai < p, an 6= 0), where the term in parenthesis is a unit in Zp. This shows that p is

the only irreducible, except for associates. As the coefficients ai are in Z/pZ, which is in

particular a domain, Zp is also a domain. Now, given a nontrivial ideal I ⊆ Zp, let f ∈ I

with minimum n in the above factorization. We have that pnZp = (f) ⊆ I. To show that

in fact the equality holds, choose a nontrivial g ∈ I and write g = pm · u, with u ∈ Z×p .

As m ≥ n by the choice of n, we have that g is a multiple of pn and then g ∈ (pn), as

desired.

�
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The field of fractions of Zp is denoted by Qp and is called the field of p-adic numbers.

By the above proposition we see that every nonzero element f ∈ Qp can be written

uniquely as

f = u · pn; u ∈ Z×p , n ∈ Z.

Remark. In the case where p is not a prime, Zp and Qp will have zero divisors. This

case is discussed in detail in [Kat07], page 47.

1.3 Topological and Profinite Groups

Topological groups

Definition 1.3.1. A topological group is a set G that is a group and a topological space

and for which the map from G×G (with the product topology) to G, given by

G×G→ G

(x, y) 7→ xy−1

is continuous.

We collect in the following lemma some basic properties of these groups that give some

perspective on the topological aspects involved in our work:

Lemma 1.3.2. Let G be a topological group.

i) The map (x, y) 7→ xy from G×G to G is continuous and the map G→ G, x 7→ x−1

is a homeomorphism. For each g ∈ G the maps x 7→ xg and x 7→ gx are homeo-

morphisms.

ii) If H is an open (resp. closed) subgroup of G then every coset gH or Hg of H in G

is open (resp. closed).
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iii) Every open subgroup of G is closed, and every closed subgroup of finite index is open.

If G is compact then every open subgroup of G has finite index.

iv) If H is a subgroup containing a non-empty open subset U of G then H is open in

G.

v) G is Hausdorff if and only if {1} is a closed subset of G; if K is a normal subgroup of

G then G/K is Hausdorff if and only if K is closed in G. If G is totally disconnected,

then G is Hausdorff.

Proof. i) It follows immediately from the fact that a map from a space X to G × G is

continuous if and only if its product with each of the projection maps is continuous; thus

if θ : G → G and ϕ : G → G are continuous, so is the map x 7→ (θ(x), ϕ(x)) from G to

G×G.

ii) It follows directly from the continuity of the maps on item i).

iii) We have G\H =
⋃
{Hg | g /∈ H}. Hence, if H is open then so is G\H by ii), and

H is closed. If H has finite index then G\H is a union of finitely many cosets, and then

if H is also closed then so is G\H, and H is open. If H is open then the sets Hg are open

and disjoint and their union is G; thus it follows from the definition of compactness that

if G is compact then H must have finite index in G.

iv) This follows since by i) each set Uh = {uh | u ∈ U} is open and since

H =
⋃
{Uh | h ∈ H}.

v) Noticing that one-element subsets in Hausdorff spaces are closed, we must show

that if the set {1} is closed then G is Hausdorff. Let a, b be distinct elements of G. From

i), the set {ab−1} is closed, and so there is an open set U with 1 ∈ U and ab−1 /∈ U .

The map (x, y) 7→ xy−1 is continuous and so the inverse image of U is open. It follows

that there are open sets V,W containing 1 with VW−1 ⊆ U . Thus a−1b /∈ VW−1, and

so aV ∩ bW = ∅. Since aV, bW are open the first assertion follows. The second assertion

follow immediately from the definition of quotient topology. For the third, observe that

if G is a totally disconnected space, then {g} is closed in G, for each g ∈ G.

�
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Profinite Groups

The p-adic integers are the incarnation of a more general and useful construction,

which we now present.

Definition 1.3.3. Let C be a nonempty class of finite groups. Define a pro-C group G as

the inverse limit

G = lim←−
i∈I

Gi

of a surjective inverse system {Gi, ϕij, I} of groupsGi ∈ C, where each groupGi is assumed

to have the discrete topology.

For example, if C is the class of finite groups, G is called a profinite group; if C is the

class of finite p-groups, G is a pro-p group. Notice that all pro-C groups are profinite

groups. We think of pro-C groups as topological groups, whose topology is inherited from

the product topology on
∏

i∈I Gi.

Example 1.3.4. a) Any finite group is profinite, given the discrete topology;

b) The additive group of Zp is a pro-p group, as seen on the previous section;

c) The upper unitriangular group over Zp of degree n

UTn(Zp) =




1 a12 a13 . . . a1n

0 1 a23 . . . a2n

...
...

...
...

0 0 0 . . . 1

 ; aij ∈ Zp


is a pro-p group.

Now we state a standard result when dealing with profinite groups, which can be found

on [RZ00] or [Wil98].
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Theorem 1.3.5. Let C be a class of finite groups that is closed under taking subgroups,

quotients and finite direct products. Then the following conditions on a topological group

G are equivalent:

i) G is a pro-C group;

ii) G is compact, Hausdorff and totally disconnected, and for each open normal subgroup

U of G, G/U ∈ C;

iii) G is compact and the identity 1 of G admits a fundamental system U of open neigh-

borhoods U such that
⋂
U∈U U = 1 and each U is an open normal subgroup of G with

G/U ∈ C;

iv) The identity 1 of G admits a fundamental system U of open neighborhoods U such

that each U is a normal subgroup of G with G/U ∈ C, and

G = lim←−
u∈U

G/U.

1.4 Abelian Groups

Now we introduce some definitions and results that will be fundamental in the study of

torsion on abelian self-similar groups.

Definition 1.4.1. Let G be an abelian group. An element g of G is said to be divisible by

a positive integer m if g = mg1, for some g1 in G. An abelian group G is called divisible if

every element is divisible by every positive integer. If ph is the largest power of the prime

p dividing g, then h is called the p-height of g in G. If g is divisible by every power of p,

then is said that g has infinite p-height in G.

As immediate examples we have the additive group of Q and the multiplicative group

of C. Now, for a positive integer n, define the subgroup nG = {ng | g ∈ G}. Then we

have the following definition:
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Definition 1.4.2. Let G be an abelian group. A subgroup H is called pure if

nG ∩H = nH

for all integers n ≥ 1, i.e., H is pure if every element of H that is divisible by n in G is

divisible by n in H.

A immediate consequence is that if G is an abelian p-group, then a subgroup H is

pure if and only if pmG ∩H = pmH, for all positive integers m.

As an example, consider H a direct summand of G = H ⊕K. Then

nG ∩H = (nH + nK) ∩H = nH

by the modular law. It follows that every direct summand of G is pure. Pure subgroups

can be seen then as generalizations of direct summands.

In the case that H is a subgroup of G such that G/H is torsion-free, then H is pure;

in particular the torsion subgroup is pure. This gives us examples of pure subgroups that

are not direct summands.

Example 1.4.3. ([Rob12], 4.3.10) Let C be the cartesian (unrestricted) sum of cyclic

groups of order p, p2, p3, ... . Then, T = tor(C) is not a direct summand of C.

In fact, consider

C = Cr
i≥1
〈xi〉, where |xi| = pi,

and denote by y the element of C whose nonzero components are px2, p
2x4, p

4x8, etc.

Then y /∈ T and y ∈ pnC + T , for all n. Therefore y+ T is an element of infinite p-height

in C/T . Since C has no such elements, T cannot be a direct summand of C.

In the special case of bounded subgroups, that is, the elements of the subgroup have

a bound for its order, the concepts of pure subgroups and direct summands coincide. For

this, we have the following result:
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Proposition 1.4.4. A pure bounded subgroup H of an abelian group G is a direct sum-

mand.

Proof. Suppose that nH = 0. Let K = H + nG and consider the quotient G = G/K. By

[Rob12], Theorem 4.3.5, it follows that G is a direct sum of cyclic groups; denote them

by 〈xi + K〉, i ∈ I. If xi + K has order ni, then nixi = hi + ngi where hi ∈ H and

gi ∈ G. Now, ni divides n and then hi = ni(xi − (n/ni)gi) ∈ niG ∩ H = niH, by the

purity of H. Therefore we can write hi = nih
′
i with h′i in H. Setting yi = xi−h′i, we have

niyi = nixi − hi = ngi. Also, yi +K = xi +K.

Now, define L to be the subgroup generated by nG and the elements yi, i ∈ I. We will

prove that G = H⊕L. If x =
∑

imiyi+ng ∈ H, then
∑

imi(xi+K) =
∑

imi(yi+K) =

0G, which implies that ni divides mi since G is a direct sum. But we saw that niyi = ngi;

thus x =
∑

imiyi + ng ∈ nG ∩H = nH = 0. Hence H ∩ L = 0.

Finally, if g ∈ G and g + K =
∑

i li(yi + K), one has g −
∑

i liyi ∈ K and then

g −
∑

i liyi = h+ ng1, where h ∈ H, g1 ∈ G. Therefore,

g = h+ ng1 +
∑
i

liyi,

which belongs to H + L. Hence G = H ⊕ L.

�
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Chapter 2

Automorphism Groups of Trees

In this chapter we define the group Am of automorphisms of a tree, its main properties,

important subgroups and give some examples that will prepare us for the main results

in the next chapter. Also, we define the virtual endomorphisms; they will provide us a

method to investigate if a group can be represented as a subgroup of Am.

2.1 Trees and their automorphisms

Let m be a positive integer and Y be the set {1, ...,m}. Define M = M(Y ) by the

semigroup consisting of all finite words on the alphabet Y . The operation on M is the

concatenation of words and the identity is the empty word ∅.

Definition 2.1.1. The one-rooted m-regular tree is the graph Tm = (V (Tm), E(Tm)),

where V (Tm) =M and for an ordered pair (u, v), we have that (u, v) ∈ E(Tm) if and only

if v = uy, for some y ∈ Y , u, v ∈M.

In this definition we have a tree where all vertices have the same number of incident

vertices (m-regular), with the exception of one vertex (one-rooted); this vertex is called

the root of the tree.
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Thus, such tree has its vertices labeled by the words in M with increasing length

|u|, u ∈M. As an example, with Y = {0, 1}:

∅

0

00

...
...

01

...
...

1

10

...
...

11

...
...

Level 2

Level 1

Level 0

The set of all words of length n is called the n-th level of the tree Tm. In the above

example we have on level 0 only the root ∅, on level 1 the words {0, 1}, on level 2 the

words {00, 01, 10, 11} and so on; the n-th level is the set {u | |u| = n, u ∈M}.

Definition 2.1.2. An automorphism of the tree Tm is a graph bijection that preserves

vertex incidence (alternatively, preserves the length |u| of a vertex labeled by u ∈ M).

The set of all such automorphisms is a group with respect to function composition, and

will be denoted by Am.

Example 2.1.3. Let γ be a permutation of the alphabet Y . We can extend γ to an

automorphism σ of the entire tree by setting:

(∅)σ = ∅

(yu)σ = yγu, for all y ∈ Y, u ∈M.

On the other side, every automorphism α of Tm induces a permutation σ(α) on Y just

by considering σ(α) to be the restriction α∣∣
Y

: Y → Y .

Now, considering σ(α) to be the restriction on the above example (that is, we can see

the permutation as an automorphism of the tree), we have that the composition ασ(α)−1

has trivial action on the first level of the tree, i.e.,
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(y)ασ(α)−1 = y, for all y ∈ Y .

In this way, we can write the composition ασ(α)−1 as

ασ(α)−1 = (α1, ..., αm), (∗)

where each αy, y = 1, ...,m, is an automorphism of the tree rooted on y, which is

yTm = (yV (Tm), yE(Tm)),

where yV (Tm) = {yu | u ∈M} and yE(Tm) = {(yu, yv) | (u, v) ∈ E(Tm)}.

We can establish an isomorphism between Tm and yTm by setting yu 7→ u (simply

deleting the prefix y); so we can consider αy itself an automorphism of Tm. From this fact

and (∗) we conclude that α can be expressed as

α = (α1, α2, ..., αm)σ(α),

where αi ∈ Am, i = 1, ...,m. As the entries αi run over Am, we can identify Am as the

semidirect product

Am = (Am × ...×Am) o Sm,

where the action of Sm on (Am × ...×Am) is given by the permutation of the indexes.

Then, given σ ∈ Sm (again, σ is seen as an automorphism of the tree, σ = (e, e, . . . , e)σ)

and (α1, α2, ..., αm) ∈ (Am × ...×Am) it follows that

σ(α1, α2, ..., αm) = (α1σ , α2σ , ..., αmσ)σ

thus, for α = (α1, α2, ..., αm)σ(α) and β = (β1, β2, ..., βm)σ(β) in Am, the product and the

inverses are given by

αβ = (α1β1σ(α) , α2β2σ(α) , ..., αmβmσ(α))σ(α)σ(β)

α−1 = (α−1

1σ(α)
−1 , α

−1

2σ(α)
−1 , ..., α

−1

mσ(α)
−1 )σ(α)−1.

The previous semidirect product has great importance in the theory, so we make its

definition precise. Let {Gλ | λ ∈ Λ} be a family of groups, where Λ is an index set. We

denote the Cartesian Product of this family by
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Cr
λ∈Λ

Gλ = {(gλ)λ∈Λ |gλ ∈ Gλ},

endowed with coordinatewise multiplication (gλ)λ∈Λ(hλ)λ∈Λ = (gλhλ)λ∈Λ. This is a group

with identity denoted by (eλ)λ∈Λ, where eλ is the identity element in Gλ. Now, the Direct

Product Dr
λ∈Λ

Gλ is the subgroup of Cr
λ∈Λ

Gλ given by all elements (xλ)λ∈Λ where xλ 6= eλ for

a finite number of indexes λ. Notice that if Λ is finite we have Cr
λ∈Λ

Gλ = Dr
λ∈Λ

Gλ.

Consider a groupK, Λ an index set andH a group acting on Λ. Denote by ϕ : H → SΛ

the action of H on Λ, where SΛ is the set of all bijections of Λ. The Unrestricted Wreath

Product of K by H with respect to ϕ is defined by

KwrϕH = (Cr
λ∈Λ

K) oϕ H,

where (kλ)
h
λ∈Λ = (kλhϕ )λ∈Λ, for all h ∈ H and λ ∈ Λ.

Analogously, the Restricted Wreath Product of K by H with respect to ϕ is defined by

KoϕH = (Dr
λ∈Λ

K) oϕ H,

where (kλ)
h
λ∈Λ = (kλhϕ )λ∈Λ, for all h ∈ H and λ ∈ Λ.

The following example is classic in the theory and is known as the binary adding ma-

chine:

Example 2.1.4. (Binary Adding Machine) Let α = (e, α)σ be an automorphism in A2,

where e is the identity automorphism in A2 and σ = (01), the transposition in S2. Let

010 ∈M({0, 1}). Then

(101)α = (101)(e,α)σ = 1σ(01)α1 = 0(01)α = 0(0)σ(1)α0 = 01(1)e = 011

For our notation, we write the binary numbers/words backwards.

Definition 2.1.5. Given α = (α1, α2, ..., αm)σ(α) ∈ Am, the set of states of α is defined

recursively by

Q(α) = {α} ∪Q(α1) ∪ ... ∪Q(αm).

In the previous example we can see that the set of states of α is {α, e}.

Additionally, a group G ≤ Am will be called finite-state if Q(α) is finite, for all α ∈ G.
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2.2 Some Important Subgroups

Now we proceed to define some standard subgroups that will help us to study the auto-

morphism groups of trees.

Definition 2.2.1. Let G be a subgroup of Am. Then we define

StabG(n) = {α ∈ G | uα = u,∀u ∈M, |u| = n};

FixG(u) = {α ∈ G | uα = u, for a fixed u ∈M};

P (G) = {σ(α) ∈ Sm | α ∈ G}.

They are respectively the stabilizer of the level n, the fixator of the word u and the

subgroup of the permutations induced by the elements of G. We say that G is transitive

if P (G) is a transitive subgroup of Sm.

The topological closure

Given α ∈ StabAm(1), it follows that σ(α) = e (α acts trivially on the first level).

Then,

α = (α1, ..., αm), αi ∈ Am.

Thus, given β = (β1, ..., βm)σ(β) ∈ Am, we have

αβ = (αβ11 , ..., α
βm
m )σ(β) ∈ StabAm(1),

where we write (γ1, ..., γm)σ = (γ1σ , ..., γmσ) to ease the notation. Then, we have that

StabG(1) = G ∩ StabAm(1) is a normal subgroup of G, for all G ≤ Am. We can see that

StabG(n) is a normal subgroup of G in a similar way; also, we notice that StabAm(n) has

finite index in Am.

Using these facts we can express the elements of Am as infinite products of the form

β = α0α1α2 . . ., where each αi belongs to StabAm(i),

which is equivalent to say that
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Am ' lim←−
Am

StabAm (n)
.

With the above observation, we define a closure operation for G ≤ Am by taking all

well defined infinite products of elements of G. Such group is called the topological closure

of G, and will be denoted by G.

The diagonal closure

Let α ∈ Am be an automorphism. We define recursively the diagonal map by

α(0) = α, α(1) = (α, α, ..., α), α(n+1) = (α(n))(1), for i ≥ 0.

The diagonal closure, denoted by G̃, will be the group G̃ = 〈G(i) | i ≥ 0〉, where

G(i) = {g(i) | g ∈ G}, for a fixed positive integer i. Intuitively, we are taking an auto-

morphism of the tree Tm and making it act on every subtree, in order to "exhaust all

possibilities" for its actions.

Now, writing the diagonal map as x : Am → Am , α 7→ (α, α, ..., α) and α(i) as αxi we

can write

αa0(αa1)(1)(αa2)(2)...(αan)(n) = αa0+a1x1+a2x2+...+anxn ,

where ai ∈ Zm. We remark that, despite the above identification, it is possible that these

"powers" of a single element alpha do not commute; more precisely, the factors of the

polynomial in the exponent, do not commute if the states of alpha also do not commute.

This notation will ease our calculations in the next chapter.

The state closure

A group G ≤ Am is called state-closed if G contains all of its "possible states", i.e.,

Q(α) is a subset of G, for all α ∈ G. The state closure of G, denoted by Ĝ, is the group

generated by all states of all elements of G. We will call recurrent a transitive state-closed

group such that the projection π1 : FixG(1)→ G, defined by

απ1 = ((α1, ..., αm)σ(α))π1 = α1
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is surjective, where α ∈ G and 1σ(α) = 1.

The set of states of an automorphisms can be "tricky", in the sense that a simple

automorphism can have infinite states. To illustrate this we have the following

Example 2.2.2. Let α = (α, α2)σ be an automorphism in A2. Noticing that

α2 = (α3, α3), α3 = (α4, α5)σ, and so on,

we have

α2n = (α3n, α3n) and α2n+1 = (α3n+1, α3n+2)σ,

and thus α has infinite order and its set of states, Q(α) = {αn |i ≥ 1} is also infinite.

Another example that the state closure can get more complicated than the original

group is the following:

Example 2.2.3. Let A be the group generated by α = (e, (e, α))σ in A2. Its state closure

Â is the group 〈α, β〉, where β = (e, α). This group is known as the Basilica Group and

it has many interesting properties (see [GŻ02]).

Now we state important properties about the closures of abelian transitive state-closed

groups, that are our main interest in this work. The diagonal-topological closure of A,

denoted by A∗, is considered as the diagonal closure applied first and then the topological

closure is taken, i.e., A∗ = ¯̃A. Notice that these closure operations in general do not

commute. For example, consider σ = (12) = (e, e)(12) ∈ A2. Applying the topological

closure first there are no new elements different from σ; then the diagonal closure applied

next gives us elements of the form σ(n) and their finite products σ(i1)σ(i2) . . . σ(in). However

when we apply the diagonal and then the topological closure, we obtain also infinite

products of the terms σ(n).

Proposition 2.2.4. Let A be an abelian transitive state-closed group of degree m. Then

StabA(i) ≤ A(i) for all i ≥ 0. The diagonal closure Ã is an abelian transitive state-closed

group and is a minimal recurrent group containing A. The diagonal-topological closure

A∗ of A is also an abelian transitive state-closed group.
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Proof. Let α = (α1, ..., αm)σ and β = (β1, ..., βm) ∈ A. The conjugate of β by α is

βα = (βα1
1 , ..., βαmm )σ.

As αi, βi ∈ A, and A is abelian, it follows that β = (β1, ..., βm)σ. Furthermore, since A is

transitive, β = (β1, ...β1) = (β1)(1). Thus, StabA(i) ≤ A(i), for all i. A similar verification

shows that Ã = 〈A(i) | i ≥ 0〉 is abelian.

Let G be a recurrent group such that A ≤ G ≤ Ã. Given α ∈ G, as G is recurrent,

there exists β ∈ StabG(1) such that β = (β1, ..., βm) with β1 = α. Since G is transitive

and abelian, we have β1 = ... = βm = α; that is, β = α(1). Hence, A(i) ≤ G and G = Ã

follows.

Now, writing the elements of A∗ as products of elements of the form

α∗ = αa0(αa1)(1)(αa2)(2) . . . = αa0+a1x1+a2x2+...

the last assertion is proved.

�

Definition 2.2.5. Let G be a permutation group on an alphabet X. G is said to be

regular if it is transitive and StabG(x) is trivial, for all x ∈ X.

Proposition 2.2.6. i) Let A be a recurrent abelian group of degree m and let CAm(A) be

the centralizer of A in Am. Then CAm(A) = Ā.

ii) Let m be a prime number and A be an infinite abelian transitive state-closed group.

Then CAm(A) = Ā.

Proof. i) Let P = P (G) the permutation group on Y induced by G. Since P is an abelian

transitive permutation group of degree m, we have that it is also regular; furthermore,

the stabilizer in G of any y ∈ Y is the same as the stabilizer of the first level of the tree,

say H = StabG(1). By hypothesis the representation of G is recurrent, so the projection

πv : StabG(k) → G on any of its coordinates is surjective and therefore produces the

group G.

For every σ ∈ P , choose α0(σ) = (α0(σ)1, ..., α0(σ)m)σ ∈ G which induces σ on Y .

Let h = (h1, h2, ..., hm) ∈ H. Then, since hi and a0(σ)i are in G, which is abelian,
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hα0(σ) =
(
(h1)α0(σ)1 , (h2)α0(σ)2 , ..., (hm)α0(σ)m

)σ
= (h1, h2, ..., hm)σ.

By varying σ ∈ P we find that h = (h1, ..., h1). Now, for every σ ∈ P , there exists

α1(σ) = (α0(σ), ..., α0(σ)) ∈ H, which induces σ(1) modulo StabG(2). Thus, we produce a

sequence αi(σ) ∈ StabG(i) of elements in G such that αi(σ) = σ(i) modulo StabG(i+ 1).

Let γ ∈ C = CAm(G). Then,

γ = (γ1, ..., γm)σ,

γ′ = γ.α0(σ)−1 = (γ′1, ..., γ
′
m) ∈ StabC(1),

and γ′1 = ... = γ′m; say γ′1 induces a permutation σ′ on Y . Thus,

γ.α0(σ)−1.α1(σ′)−1 ∈ StabC(2).

We produce in this manner a sequence

α0(σ), α1(σ′), α2(σ′′), ...

of elements of G such that γ is equal to the infinite product of these elements. Hence,

CAm(G) = Ĝ.

ii) Let m = p be a prime number. The permutation group P induced on Y = {1, ..., p}

is cyclic, say generated by σ. Since G is infinite, there exists an h = (h1, ..., h1) ∈ H

such that h1 /∈ H and therefore we may assume h1 induces σ on Y . We produce elements

ai ∈ G such that ai = σ(i) modulo StabA(i+ 1) and the proof follows as in the first item.

�

2.3 Representations of groups as automorphism groups

of the tree

One of the main goals of the theory of groups acting on trees is to investigate if a given

group G can be represented in Am, that is, if G can be seen as a group of automorphisms

of a tree. One of the central tools for this purpose is the notion of virtual endomorphism,

that we will define in this section.
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Definition 2.3.1. We say that a group G has a representation of degree m if exists an

homomorphism ϕ : G → Am. If ϕ is a monomorphism, then the representation is called

faithful.

We will call both ϕ and Gϕ a representation of degree m of G. So, if Gϕ is state-closed,

finite-state or transitive, we say the same about the representation.

The coset tree

Let G be a group and a chain of subgroups such that

G = G0 ≥ G1 ≥ G2 ≥ ... ≥ Gn ≥ ...

with
⋂
Gi = {1}. Now, we take each of these subgroups as partitions of next subgroup

in the chain:

G =
⋃
G1hj,1 , G1 =

⋃
G2hj,2, and so on.

So, for some Gs, we can write its cosets in G as Gshjs,shjs−1,s−1...hj1,s, which will be the

vertices of the tree where the edges will be determined by set inclusion. Then G acts

(faithfully) on this resulting tree by right multiplication, say h : Gik 7→ Gikh.

In this action, the set of vertices fixed by h is a subtree, although it can be irregular.

But in the case Gi is a normal subgroup of G and h fixes some coset Gik, we have that h

fixes all such cosets of Gi on G (as in this case h ∈ Gik), and then it fixes all the vertices

of the tree down to the i-th level.

If we require a bound m for the indexes |Gi : Gi+1|, we can embed the coset tree into

the m-ary tree Tm; as the coset tree is possibly smaller than Tm, we can extend the action

of G fixing pointwise all the extra subtrees that may appear. In particular, if the indexes

|Gi : Gi+1| are constant, the coset tree is regular.

The following is an example with constant indexes |Gi : Gi+1| = 2:
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G

G1

G2

...
...

G2h2,2

...
...

G1h2,1

G2h2,1

...
...

G2h2,2h2,1

...
...

Lemma 2.3.2. Let G be a state-closed group of automorphisms of the tree Tm = T (Y )

and let X be a P (G)-invariant subset of Y . Then T (X) is G-invariant and for the

resulting representation µ : G→ A(X) the group Gµ is state-closed. If G is diagonally or

topologically closed then so is Gµ.

Proof. Let xu be a sequence in M(X) and let α ∈ G. Then (xu)α = xσ(α)uαx . As

xσ(α) ∈ X and αx ∈ G, it follows that (xu)α is a sequence in M(X) and then T (X)

is G-invariant. Also, for any sequence u from X, we have (αµ)u = (αu)
µ. Thus, Gµ is

state-closed.

�

Virtual Endomorphisms

Definition 2.3.3. Let G be a group and H a subgroup with finite index m. An homo-

morphism f : H → G is called a virtual endomorphism.

A subgroup U of G is called semi-invariant under the action of f , provided that

(U ∩H)f ≤ U . If U ≤ H and U f ≤ U , then U is called f -invariant. The largest subgroup

K of H which is normal in G and f -invariant is called the f − core(H). If the f -core(H)

is trivial then f and the triple (G,H, f) are said to be simple.

As a useful example for our purposes we consider G to be a transitive state-closed

subgroup of Am and FixG(1) our finite index subgroup. Then |G : FixG(1)| = m and the
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projection on the first coordinate produces a subgroup of G, i.e., π1 : FixG(1) → G is a

virtual endomorphism of G.

Given a triple (G,H, f) and given subgroups V ≤ G, U ≤ H ∩V such that (U)f ≤ V ,

we call (V, U, f |U) a sub-triple of G. If N is a normal semi-invariant subgroup of G, then

f̄ : HN
N
→ G

N
, Nh 7→ Nhf is well defined and (G

N
, HN
N
, f̄) is called a quotient triple.

Now, let (G,H, f) be a simple triple where G is abelian and |G : H| = m. Then

any sub-triple of G is simple. Let T = tor(G) denote the torsion subgroup of G and, for

l ≥ 1, define G(l) = {g ∈ T | o(g) | l }, H(l) = G(l) ∩ H. Then f : tor(H) → tor(G)

and f : H(l) → G(l). Then, it follows that tor(G) and G(l) are semi-invariant and

(tor(G), tor(H), f |tor(H)) and (G(l), H(l), f |H(l)) are simple sub-triples.

Lemma 2.3.4. Let (G,H, f) be a simple triple, with G abelian. The triple ( G
G(l)

, HG(l)
G(l)

, f̄)

is also simple.

Proof. Suppose that K ≤ H is such that G(l)Kf ≤ G(l)K. Then

(G(l)Kf )l = (Kf )l = (K l)f ≤ (G(l)K)l = (K)l;

that is, K l is f -invariant. Since f is simple, K l = {e} and so K ≤ G(l).

�

In [NS04] the authors establish a useful way to produce state-closed transitive repre-

sentations, which we now present.

Let G be a group, H a subgroup of finite index m and f : H → G a homomorphism.

Taking T = {t1, t2, ..., tm} as a tranversal of H in G, every element g ∈ G induces a

permutation on the alphabet Y = {1, ...,m}, σ(g) : Y → Y , given in terms of such

tranversal,

iσ(g) = j ⇔ Htig = Htj, i, j = 1, ...,m.

Now, having that tigt−1
j = tigt

−1
iσ(g) ∈ H we define a map ϕ : G→ Am by

g 7→ ((t1gt
−1
1σ(g)

)fϕ, (t2gt
−1
2σ(g)

)fϕ, ..., (tmgt
−1
mσ(g)

)fϕ)σ(g).
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Proposition 2.3.5. The map ϕ defined above is a homomorphism, where Gϕ is state-

closed, transitive and

ker(ϕ) = 〈K ≤ H | K C G,Kf ≤ K〉,

the f-core(H).

Proof. We will proceed by induction on the length |u| of u ∈ Tm. Let g, h ∈ G. We have

that

(gh)ϕ = ((t1ght
−1
1σ(gh)

)fϕ, (t2ght
−1
2σ(gh)

)fϕ, ..., (tmght
−1
mσ(gh)

)fϕ)σ(gh) =

((t1gt
−1
1σ(g)

t1σ(g)ht
−1
1σ(gh)

)fϕ, (t2gt
−1
2σ(g)

t2σ(g)ht
−1
2σ(gh)

)fϕ, ..., (tmgt
−1
mσ(g)

tmσ(g)ht
−1
mσ(gh)

)fϕ)σ(gh).

On the other hand,

gϕhϕ = ((tigt
−1
iσ(g)

)fϕ)i∈Y .σ(g).((tiht
−1
iσ(h)

)fϕ)i∈Y .σ(h) =

((tigt
−1
iσ(g)

)fϕ).((tiσ(g)ht
−1
iσ(h)σ(g)

)fϕ)i∈Y .σ(g)σ(h).

Having that σ(gh) = σ(g)σ(h), it follows, for all i ∈ Y , that

i(gh)ϕ = iσ(gh) = iσ(g)σ(h) = ig
ϕhϕ .

Now, suppose that the result is true for every word of length less or equal than k.

Then, for every i ∈ Y and every word u of length k it holds that

(iu)(gh)ϕ = iσ(gh)u(gh)ϕi , (iu)g
ϕhϕ = iσ(gh)u(gϕhϕ).

By hypothesis,

u(gh)ϕi = u
(tigt

−1

iσ(g)
t
iσ(g)

ht−1

iσ(gh)
)fϕ

= u
(tigt

−1

iσ(g)
)fϕ(t

iσ(g)
ht−1

iσ(g)σ(h)
)fϕ

= u(gϕhϕ)i .

Thus ϕ is a homomorphism. The other claims follow immediately by definition.

�

If f is simple we have G ' Gϕ and the representation is said to be faithful. Despite

the loaded notation of the definitions and propositions above, we illustrate the procedure

on a simple example:
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Example 2.3.6. Let G be the additive group of integers, H = (2Z) and Y = {0, 1};

then σ = (01). Define f : 2Z → Z by 2n 7→ n. Then, naming 1ϕ := α, we have

1ϕ = (0ϕ, 1ϕ)σ = (e, α)σ ∈ A2, which is none other than the binary adding machine.

An interesting feature of this representation is that changing the transversal of H in

G we obtain another representation of G, conjugate to the original one by an explicit

automorphism:

Proposition 2.3.7. Let (G,H, f) be a triple and

L = {x1, x2, . . . , xm}, L′ = {x′1 = h1x1, x
′
2 = h2x2, . . . , x

′
m = hmxm}

be right transversals of H in G, where hi ∈ H. Let ϕ = ϕxi , ϕ
′ = ϕhixi : G → Am be the

corresponding tree representations and define the following elements of Am,

γ = γhi,ϕ′ = ((hi)
fϕ′)1≤i≤m,

λ = λhi,ϕ′ = γγ(1)...γ(n)... .

Then

ϕhixi = ϕxi(λh−1
i ,ϕxi

).

Proof. The representations ϕ, ϕ′ : G→ Am are defined by

gϕ = ((xig.(x(i)gπ)−1)fϕ)1≤i≤m · σ(g)

gϕ
′
= ((x′ig.(x

′
(i)gπ)−1)fϕ

′
)1≤i≤m · σ(g).

The relationship between ϕ′ and ϕ is established as follows,

gϕ
′
= ((hixig.(h(i)gπx(i)gπ)−1)fϕ

′
)1≤i≤m · σ(g)

= ((hi(xig.x
−1
(i)gπ)h−1

(i)gπ)fϕ
′
)1≤i≤m · σ(g)

= ((hi)
fϕ′)1≤i≤m · ((xig.x−1

(i)gπ)fϕ
′
)1≤i≤m · ((h−1

(i)gπ)fϕ
′
)1≤i≤m · σ(g)

= ((hi)
fϕ′)1≤i≤m · ((xig.x−1

(i)gπ)fϕ
′
)1≤i≤m · σ(g) · ((hi)fϕ

′
)−1
1≤i≤m.
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Therefore,

gϕ
′
= γ · ((xig.x(i)gπ)fϕ

′
)1≤i≤m · σ(g) · γ−1,

where γ = ((hi)
fϕ′)1≤i≤m is independent of g. Repeating this development for each

gi = (xig · x−1
(i)gπ)f , we find that

gϕ
′
= γγ(1) · (((xjgi · x(j)gπi

)fϕ
′
)1≤i≤m · σ(g) · γ−(1)γ−1.

Thus in the limit we obtain λ = γγ(1)...γ(n)... such that

gϕ
′
= λgϕλ−1 for all g ∈ G

ϕ = ϕ′λ.

Introducing the explicit dependence of ϕ, ϕ′ and λ on the transversals, the previous equa-

tion becomes

ϕxi = (ϕhixi)(λhi,ϕhixi ).

On replacing hi by h−1
i and denoting h−1

i xi by x′i we obtain

ϕhix′i = (ϕx′i)(λh−1
i ,ϕx′

i

).

�

Example 2.3.8. Let G = C = 〈a〉 be the infinite cyclic group, let H = 〈a2〉 and let

f : H → G be defined by a2 7→ a. Given l, k ≥ 0, σ = (01), then on choosing the

transversal Lk,l = {a2k, a2l+1} for H in G, we obtain the representation ϕ = ϕk,l : G→ A2,

given by

a 7→ α = aϕ = ((a2kaa−2l−1)fϕ, (a2l+1aa−2k)fϕ)σ

= ((a2(k−l))fϕ, (a2(−k+l+1))fϕ)σ

= ((ak−l)ϕ, (a−k+l+1)ϕ)σ

= ((aϕ)k−l, (aϕ)−k+l+1)σ = (αk−l, α−k+l+1)σ.

The next proposition is a simple result that gives us a glance of the importance of
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virtual endomorphisms.

Proposition 2.3.9. A group G is state-closed transitive of degree m if, and only if, there

exist a subgroup H of index m in G and f : H → G a simple endomorphism.

Proof. If G is a transitive state-closed group, then

π1 : FixG(1)→ G; α 7→ α1

is a simple virtual endomorphism and |G : FixG(1)| = m. The reciprocal follows from

the previous proposition.

�

48



Chapter 3

Abelian State-closed Representations

Now we proceed to explore the main properties of abelian state-closed subgroups of Am,

e.g., its presentation and torsion subgroup. Then we analyse the special cases where the

subgroup A ≤ Am is cyclic and when the induced permutation group P (A) is cyclic of

prime order. We also show an answer to a problem left open in [BS10], namely, whether a

free abelian group of infinite rank admits a faithful transitive state-closed representation,

with a proof provided in [BS20]. To conclude our work, we prove that if L is an abelian

transitive state-closed group, the wreath product L(ω)oC2 is also transitive and state-closed

([DS18]).

3.1 Presentation for A∗

In this section we explore the diagonal-topological closure A∗ of an abelian transitive state-

closed group A. It turns out that A∗ is a finitely generated Zm[[x]]-module, where Zm[[x]]

stands for the formal sums in Zm (meaning that we are not interested in convergence of

such sums, i.e., if they in fact define a polynomial function Zm → Zm).

Such module has the following properties:

i) xα = 0 implies α = 0;

ii) mα = xγ for some γ ∈ A∗.
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In fact, the first says that the diagonal map x is a monomorphism. For the second, having

that α = (α1, ...αm)σ:

αm = (α1α1σ ...α1σm , ..., αmαmσ ...αmσm )σm.

But, as A∗ is abelian and transitive, we have that σm = e and by Proposition 2.2.4,

αm ∈ Stab(i) ≤ A(i), that is, α1α1σ ...α1σm = ... = αmαmσ ...αmσm ; defining γ as the latter

the equality follows.

Before the next theorem we establish the following notation. Let A be an abelian

transitive state-closed group and let

P (A) = 〈σi | σmii = e, 1 ≤ i ≤ k〉,

be its abelian group of induced permutations. Choose elements β[i] ∈ A∗ that induces σi
on Y , and write each β[i] as β(σi). Thus, the automorphism β(σi)

(n) is an element of Ã

that induces the permutation (σi)
(n) = (σi, ..., σi) on the (n + 1)-level of the tree. That

is, the index i is associating the automorphism with the permutation it induces.

Theorem A. Let A be a transitive abelian state-closed subgroup of degree m. Then A∗ is

additively a Zm[[x]]-module generated by {β[i] | 1 ≤ i ≤ k}, subject to the set of relations

{
ri =

∑
1≤j≤k

miβ[i] − pijβ[j]x = 0 | 1 ≤ i ≤ k
}
,

for some pij ∈ Zm[[x]]. Moreover, there exist r, q ∈ Zm[[x]] such that r = m − xq and

rA∗ = (0). The elements of A∗ can be represented additively as
∑

1≤i≤k piβ[i], where

pi =
∑

j≥0 pijx
j, with pij ∈ Z and 0 ≤ pij < m.

Proof. Let α ∈ A∗ and σ(α) =
∏

1≤i≤k σ
ri1
i , 0 ≤ ri1 < mi. Then either α(

∏
1≤i≤k β

ri1
[i] )−1
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is the identity or there exists l2 ≥ 1 such that

α
( ∏

1≤i≤k

βri1[i]

)−1

∈ Stab(l2) \ Stab(l2 + 1),

that is, in this product some permutations can be cancelled up to some level of the tree.

Therefore, α(
∏

1≤i≤k β
ri1
[i] )−1 = (γ)(l2) for some γ ∈ A∗. Repeating the same argument for

γ and so on, we have

α =
∏

1≤i≤k

βri1[i] (βri2[i] )(l2)...(β
rij
[i] )(lj)... =

∏
1≤i≤k

(β[i])
qi ,

where 0 ≤ rij < m, 1 ≤ l2 < l3 < ... < lj < ..., and qi = ri1 +
∑

j≥2 rijx
lj are formal power

series in x. Writing additively we have then

α =
∑

1≤i≤k

qiβ[i] ∈
∑

1≤i≤k

Zmi [[x]]β[i].

Each relation σmii = e of the permutations in P (A) produces in A∗ a relation of the form

βmi[i] =
∏

1≤j≤k

β
xpij
[j] ,

where the pij are formal power series; writing additively:

miβ[i] = x
(∑
i≤j≤k

pijβ[j]

)
.

Now, let F =
⊕

1≤i≤k Zm[[x]]ti be a free Zm[[x]]-module of rank k . Define the Zm[[x]]-

homomorphism

φ :
⊕

1≤i≤k

Zm[[x]]ti → A∗,
∑

1≤i≤k

piti 7→
∏

1≤i≤k

βpi[i] ,

and let R be the kernel of φ. Define J to be the Zm[[x]]-submodule of R generated by

r′i = miti − x
(∑
i≤j≤k

pijtj

)
, 1 ≤ i ≤ k.
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We will show that J = R. So let v ∈ R and write v =
∑

i≤j≤k viti, where

vi =
∑
j≥0

vijx
j, vij = vij,0 +mwij ∈ Zm.

Claim: mi | vi0,0. By definition,

vi = vi0x
0 + vi1x+ vi2x

2 + ...

= vi0 + vi1x+ vi2x
2 + ...

= (vi0,0 +mwi0) + vi1x+ vi2x
2 + ...

viti = ((vi0,0 +mwi0) + vi1x+ vi2x
2 + ...)ti

Then,

viti 7→ βvi[i] = β
vi0,0+mwi0
[i] .βvi1x[i] .βvi2x

2

[i] ... = 0, since viti ∈ kerφ.

But we have that only the term β
vi0,0+mwi0
[i] can act on the first level; but the above equation

gives us σ(β
vi0,0+mwi0
[i] ) = 0. Thus

σ(β
vi0,0+mwi0
[i] ) = 0⇒ mi | (vi0,0 +mwi0)⇒ mi | vi0,0.

Now, set vi0,0 = miv
′
i0,0 and factor m = mim

′
i. Therefore,

vi = vi0 +
(∑
j≥1

vijx
j−1
)
x,

vi0 = miv
′
i0,0 +mwi0 = (v′i0,0 +m′iwi0)mi

viti = (v′i0,0 +m′iwi0)(miti) +
(∑
j≥1

vijx
j−1
)
xti

≡ (v′i0,0 +m′iwi0)
(
x
∑

1≤j≤k

pijtj

)
+
(∑
j≥1

vijx
j−1
)
xti mod J

Hence

v =
∑

1≤i≤k

viti ∈ xµ+ J, µ =
∑

1≤i≤k

µiti ∈ R.
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By repeating the argument, we obtain

v ∈
(⋂
i≥1

xiR
)

+ J = J, J = R.

On rewriting the relations miβ[i] =
∑

1≤j≤k pijxβ[j] in the form

pi1xβ[1] + ...+ (piix−mi)β[i] + ...+ pkkxβ[k] = 0

we see that the k×k matrix of coefficients of these equations has determinant r = m−xq

for some q ∈ Zm[[x]] and thus r annihilates A∗.

�

Definition 3.1.1. A group G of automorphisms of the m-ary tree is said to satisfy

the m-congruence property provided that, given mi there exists l(i) ≥ 1 such that

StabG(l(i)) ≤ Gmi , for all i.

We observe that, if G satisfies the m-congruence property, the topology of G inherited

from Am coincides with the pro-m topology. Also, writing A∗ additively, for an abelian

transitive state-closed group A, we have StabG(l(i)) = xl(i)A∗, and them-congruence prop-

erty reads xl(i)A∗ ≤ miA∗.

Theorem 3.1.2. Let r = m − qxj ∈ Zm[[x]], with q ∈ Zm[[x]] and j ≥ 1. Let S be the

quotient ring Zm[[x]]
(r)

. Suppose that S is torsion-free. Then S is a finitely generated pro-m

group.

Proof. By [AF12], Proposition 6.18 and Corolary 6.19, we have the decomposition

Zm[[x]] =
⊕

1≤i≤s εiZpkii [[x]] corresponding to the prime decomposition m =
∏

1≤i≤s p
ki
i ,

where εi are the orthogonal idempotents. Thus, we obtain

r =
∑

1≤i≤s

ri,

ri = εir = pkii − qi(x)xj,

S =
∑

1≤i≤s

Si, Si =
Z
p
ki
i

[[x]]

(ri)
,
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where each Si is torsion-free. Thus, it is sufficient to address the case where m is a prime

power pk.

(1) First, we show that S is a pro-m group.

So let r = pk − qxj and decompose q = q(x) = s(x) + p · t(x), where each non-zero

coefficient of s(x) is an integer relatively prime to p. If s(x) = 0 then q(x) = p · t(x) and

r = pk − q(x)xj = pk − p · t(x)xj = p(pk−1 − t(x)xj) ∈ (r);

but since S is torsion-free by assumption, we have pk−1 − t(x)xj ∈ (r), which is not

possible.

Write s(x) = xlu(x), where l ≥ 0 and u(x) in invertible in Zm[[x]] with inverse u′(x).

Then q(x) = xlu(x) + p.t(x) and

r = pk − (xlu(x)xj + p · t(x)xj) = p(pk−1 − t(x)xj)− xj+lu(x).

Therefore, on multiplying by u′(x), we obtain

p(pk−1 − t(x)xj)u′(x) ≡ xj+l mod r.

It follows that

xj+lS ≤ pS, xn(j+l)S ≤ pnS.

(2) Now we show that S is finitely generated as a Zm-module.

By the previous step there exist l ≥ 1 and v(x) ∈ Zm[[x]] that

xl ≡ mv(x) mod r.

Decompose v(x) = v1(x) + v2(x)xl, where the degree of v1(x) is less than l. Then we
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deduce, modulo r:

v(x) ≡ v1(x) + v2(x)mv(x),

v2(x)v(x) ≡ w(x) ∈ Zm[[x]],

w(x) = w1(x) + w2(x)xl,

v(x) ≡ v1(x) +mw(x)

≡ v1(x) +mw1(x) +mw2(x)xl

...

v(x) ≡ a0 + a1x+ . . .+ al−1x
l−1, ai ∈ Zm.

We have shown that S is generated by 1, x, . . . , xl−1 as a pro-m group.

�

Corolary 3.1.3. Let A be an abelian transitive state-closed group of degree m. Suppose

that the group A∗ is torsion-free. Then A∗ is a finitely generated pro-m group.

Proof. With previous notation, the group A∗ is an Zm[[x]]-module generated by

{βi = β(σi) | 1 ≤ i ≤ k}

and is annihilated by r = m− qxj ∈ Zm[[x]], for some q ∈ Zm[[x]] and j ≥ 1.

It follows that A∗ is an S-submodule, where S = Zm[[x]]
(r)

. Since S satisfies them-congruence

property, it follows that A∗ is a pro-m group by Theorem 3.1.2. As S is a finitely generated

Zm-module, it follows that A∗ is a finitely generated Zm-module.

�

3.2 Torsion in state-closed abelian groups

In this section we explore the torsion subgroup of a transitive state-closed abelian group

A and infer properties about the exponent of A. The first step in this direction is the
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Proposition 3.2.1. Let A be a transitive state-closed abelian group of degree m. Then

tor(A) has finite exponent and is therefore a direct summand of A.

Proof. Let T = tor(A), A1 = StabA(1), T1 = T ∩ A1 and |T : T1| = m′. Then the

projection on the first coordinate of T1 is a subgroup of T and the triple
(
T, T1, π

∣∣
T1

)
is simple of degree m′ | m; let m = m′m′′. Hence in this representation T is a torsion

transitive state-closed subgroup of Am′ by Proposition 2.3.9.

Fixing this last representation of T , let Q = P (T ) and let σi, (1 ≤ i ≤ k) be a minimal

set of generators of Q and as before, let βi = β(σi) ∈ T be such that σ(βi) = σi. Let r be

the maximum order of the elements β1, ..., βk. As any α ∈ T can be written in the form

α =
∏

1≤i≤k

βri1i (βri2i )(l2) . . . (β
rij
i )(lj) . . . ,

by Theorem A it follows that αr = e. Since T has finite exponent, it is a pure bounded

subgroup of A and therefore it is a direct summand of A by Proposition 1.4.4.

�

The next two lemmas will establish the exponent of tor(A).

Lemma 3.2.2. Let m be a prime number and A a transitive state-closed abelian torsion

group of degree m. Then A is conjugate by a tree automorphism to a subgroup of the

diagonal-topological closure of 〈σ〉 and so has exponent m.

Proof. We observe that A(m) = {g ∈ A ; o(g) | m } is not contained in A1 = StabA(1).

For otherwise, A(m) would be invariant under the projection on the first coordinate.

Choose a ∈ A\A1 of order m. Therefore, A = A1〈a〉. On choosing {ai | 0 ≤ i ≤ m − 1}

as a transversal of A1 in A, the image of a acquires the form σ = (1 . . .m) in this tree

representation of A. Thus, we may suppose by Proposition 2.3.7 that σ ∈ A. Therefore,

Ã contains the subgroup 〈̃σ〉 = 〈σi | i ≥ 0〉. By Proposition 2.2.6, we have CA(〈̃σ〉) = 〈σ〉∗

and thereby A ≤ CA(A) ≤ 〈σ〉∗.

�
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Lemma 3.2.3. Suppose that A is a transitive state-closed abelian torsion group of degree

m. Then the exponent of A is equal to the exponent of P (A).

Proof. We will proceed by induction on |P (A)| = m. The exponent of A is a multiple of

the exponent of P (A). By the previous lemma, we may assumem to be composite; let p be

a prime divisor ofm. Then A(p) is a nontrivial subgroup and P (A(p)) ≤ {σ ∈ P | σp = e}.

By Lemma 2.3.4,
(

A
A(p)

, A1A(p)
A(p)

, π̄1

)
is simple. Also, P

(
A
A(p)

)
= P (A)

P (A(p))
.

Now assume the claim holds for every k ≤ m. Having that |P ( A
A(p)

)| = m
p
< m, by

induction hypothesis exp( A
A(p)

) = exp(P ( A
A(p)

)) ≤ m
p
. But, as

exp

(
P

(
A

A(p)

))
= exp

(
P (A)

P (A(p)

)
=

exp(P (A))

exp(P (A(p)))
=
exp(P (A))

p
,

we have that

exp(A) = p . exp

(
A

A(p)

)
= exp(P (A)).

�

Theorem B. Suppose that A is a transitive state-closed abelian torsion group of degree

m. Then A is conjugate to a subgroup of the topological closure of

P̃ (A) = 〈σ(i) | σ ∈ P (A), i ≥ 0〉.

Proof. Let P = P (A) have exponent r and let B be a maximal homogeneous subgroup

of P of exponent r (that is, B is a direct sum of cyclic groups of order r), minimally

generated by {σi | 1 ≤ i ≤ s}. Choose for each σi an element βi = β(σi) ∈ A and let

Ḃ = 〈βi | 1 ≤ i ≤ s〉. Then, as the order of each βi is a multiple of r, while the exponent

of A is r, we conclude from the previous lemma that o(βi) = o(σi) = r for 1 ≤ i ≤ s. Since

βi → σi defines a projection of Ḃ onto B we conclude that Ḃ ∼= B and Ḃ ∩ A1 = {e},

where A1 = StabA(1). As Ḃ is a pure bounded subgroup, by Proposition 1.4.4 it has a

complement L in A, which may be chosen to contain A1. Choose a right transversal W

of A1 in L. Then, the set WḂ is a right transversal of A1 in A. With respect to this

transversal, the triple (A,A1, π1) produces a transitive state-closed representation ϕ where

Ḃϕ = B. By Proposition 2.3.7, we may write A∗ as A. Then the diagonal-topological
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closure A∗ contains B∗. Let V be a complement of B in P , which exists by Proposition

1.4.4. Each α ∈ A∗ can be factored as α = βγ, where β ∈ B∗ and γ is such that each of

its states γu induces the permutation σ(γu) ∈ V . Therefore, the set of these γ′s is a group

Γ such that Γ = Γ∗ and A∗ = Γ ⊕ B∗. Then (Γ,Γ ∩ A1, π1) is a simple triple with P (Γ)

having exponent smaller than r. Using the same induction argument on the exponent of

the previous Lemma, the result follows.

�

Now we provide an example to show how the concepts discussed so far fit together in

practice.

Example 3.2.4. Let m = 4, Y = {1, 2, 3, 4} and let σ be the cycle (1234). Furthermore,

let α = (e, e, e, α2)σ ∈ A4 and let A = 〈α〉. Then

α2 = (α2, e, e, α2)(13)(24),

α4 = (α2)(1) = α2x,

(α2−x)2 = e.

Thus A is cyclic, torsion-free, transitive and state-closed; it is, however, not diagonally

closed because αx /∈ A. Even though A is torsion-free, its diagonal closure

Ã = 〈αxi | i ≥ 0〉 is not; for γ = α2−x has order 2. Let K = 〈γxi | i ≥ 0〉. Then

K ≤ tor(Ã) and Ã = 〈α,K〉. Therefore, K = tor(Ã) and Ã = tor(Ã)⊕ Ā.

Now, let Y1 = {1, 3}, Y2 = {2, 4}. Then {Y1, Y2} form a complete block system for the

action of α on Y . Also, α2 induces the binary adding machine on both T (Y1) and T (Y2).

The topological closure Ā of A is torsion-free and

tor(A∗) = tor(Ã), A∗ = tor(A∗)⊕ Ā.

Moreover, tor(A∗) induces a faithful state-closed, diagonally and topologically closed ac-

tions on the binary tree T (y1). Therefore, tor(A∗) is isomorphic to Z
2Z [[x]]. Furthermore,

α is represented as the binary adding machine on T ({Y1, Y2}) and Ā is represented on

this tree as the topological closure of the image of A.
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3.3 Cyclic Zm[[x]]-modules

We now make some considerations about the special case of cyclic groups of automor-

phisms of the tree. Given 〈α〉, for some α ∈ Am, its state-diagonal-topological clo-

sure is isomorphic to a cyclic Zm[[x]]-module of the form α = (αq1 , αq2 , ..., αqm)σ, where

qi ∈ Zm[[x]] for 1 ≤ i ≤ m, where

qi =
∑
j≥0

qijx
j, qij =

∑
u≥0

qij,um
u ∈ Zm.

For that we have the

Theorem C. i) The expression α = (αq1 , αq2 , ..., αqm)σ is a well-defined automorphism

of the m-ary tree;

ii) Let A be the state closure of 〈α〉. Then A∗ is abelian, isomorphic to the quotient ring

Zm[[x]]/(r), where r = m− qx and q = q1 + ...+ qm.

Proof. i) Let σ(l) denote the permutation induced by α acting on the tree truncated at

the l-th level. Then the expression α = (αq1 , ..., αqm)σ represents

σ(1) = σ, σ(l) = (σq1 , ..., σqm)σ,

where q̄i = qi0 + qi1x+ ...+ qi(l−1)x
l−1 and qij = qij,0 + qij,1m+ ...+ qij,l−im

l−1; looking

at qi and qij we see that there is a finite number of permutations acting on each level,

therefore the action of α is well-defined at each level.

ii.a) The states of α are words in αp, for p ∈ Zm[[x]]. Let v = αl1 ...αlb , w = αn1 ...αnb

elements in A∗. Then [v, w] ∈ StabA(1). Following this observation, we will prove that

the entries of [v, w] are products of conjugates of words in elements of the form [αs, αt],

where s, t ∈ Zm[[x]]. In this way the commutator will result in an automorphism with

trivial action on every level, i.e., the identity, and therefore A∗ will be abelian.

The commutator [v, w] can be developed into a word in the conjugates of some [αli , αnj ]
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with the usual commutator properties. Write p = p0 +p′x, n = n0 +n′x. Now, computing,

[αp, αn] = ([αp0 , αn
′x][αp0 , αn0 ]α

n′x
)α

p′x
[αp

′
, αn

′
]x[αp

′x, αn0 ]α
n′x

= [αp0 , αn
′x]α

p′x
[αp

′
, αn

′
]x[αp

′x, αn0 ]α
n′x
.

Therefore, we have to check [αξ, αnx], where ξ ∈ Zm, n ∈ Zm[[x]]. Write ξ = ξ0 + mξ′.

Then

[αξ, αnx] = [αξ0+mξ′ , αnx] = [αξ0 , αnx]α
mξ′

[αmξ
′
, αnx].

Now, with

αξ0 = (v1, v2, ..., vm)σξ0

where vi are words in αq1 , ..., αqm and

αm = (αq1 ...αqm , αq2 ...αqmαq1 , ..., αqmαq1 ...αqm−1).

Consequently,

[αξ0 , αnx] = ([v1, α
n], ..., [vm, α

n])

and similarly

[αmξ
′
, αnx] = ([(αq1 ...αqm)ξ

′
, αn], ..., [(αqmαq1 ...αqm−1)ξ

′
, αn]).

Now we write β = αq1 ...αqm . Then [βξ
′
, αn] can be developed further, as asserted. The

same applies to the other entries.

ii.b) First, we have rα = 0. Now let u = u(x) annihilate α; write u = u0 + u′x, where

u0 = u(0). Then m | u0 and so

u = mu0
m

+ u′x = (xq)u0
m

+ u′x+ vr = xw1 + vr

for some v = v(x) and w1 = q u0
m

+ u′. Then xw1 annihilates α and so does w1. By

repeating this argument, we find wi such that u ≡ xiwi mod r and wi annihilates α for

all i ≥ 1; that is,

u ∈
⋂
n≥1

xnZm + (r) = (r).

�
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Example 3.3.1. The above theorem generalizes the direct calculations with the binary

adding machine α = (e, α)σ. To ilustrate this, let A = 〈α〉. The set of states of A

are the powers of α, thus A is state-closed. Now, taking the diagonal and topological

closure A∗, its elements are of the form αq, where q ∈ Z2[[x]], subject to the relation

α2n = (αn, αn) = αnx, that is, αn(2−x) = e. Therefore A∗ is isomorphic to the ring

Z2[[x]]/(2− x).

3.4 The case P (A) cyclic of prime order

The group Dm(j)

Let α = (e, ...e, αx
j−1

)σ ∈ Am. Then αm = αx
j ; that is, αr = e where r = m−xj. The

states of α are α, αx, ..., αxj−1 and the group

Dm(j) = 〈α, αx, ..., αxj−1〉

is diagonally closed. The topological closure Dm(j) is isomorphic to the quotient ring

S = Zm[[x]]
(r)

, which is a free Zm-module of rank j.

For z ∈ A, define the function ζ : A → N as ζ(z) = j if zm ∈ Stab(j)\Stab(j + 1).

Intuitively, this function shows the maximum level that the m-th power of z stabilizes.

And, as A is torsion-free, ζ(z) is finite for all nontrivial z and zm = (v)(j), v ∈ A\StabA(1).

Now, choose β = (β1, β2, ..., βm)σ ∈ A\StabA(1) having minimum ζ(β) = j. If z ∈

StabA(1), z 6= e, then there exists l ≥ 0 such that zm = (c)(l) and c ∈ A\StabA(1).

Therefore, by minimality of β we have ζ(c) ≥ ζ(β) and ζ(z) > ζ(β).

Theorem D. Let m be a prime number. Let A be a torsion-free abelian transitive state-

closed subgroup of Am and let β ∈ A\StabA(1) such that ζ(β) is minimum. Then A∗ =

〈β〉∗ and is topologically finitely generated.

Proof. We start noticing that if z ∈ StabA(1), the composition with β does not stabilize

a level greater than j. That is,

61



Claim:(Uniform Gap) Let z ∈ StabA(1). Then ζ(zβ) = ζ(β).

First notice that

βm = (β1β2...βm)(1),

β1β2...βm = (γ)(j−1), γ ∈ A\StabA(1).

We have z = c(1) and zβ = (cβ1, cβ2, ..., cβm)σ, (zβ)m = (u)(1), where u = cmβ1β2...βm =

cm(γ)(j−1). Now, we have two possibilities for c: if c ∈ A\StabA(1) then ζ(c) = n ≥ j,

cm ∈ Stab(n)\Stab(n + 1), and so u ∈ StabA(j − 1)\StabA(j). If c ∈ StabA(1), then

ζ(c) > j and so cm ∈ StabA(k), where k > j and again u ∈ Stab(j− 1)\Stab(j), and then

in either way (zβ)m = (u)(1) ∈ StabA(j)\StabA(j + 1) and the claim is proved.

Now, note that

βm = (γ)(j), γm = (λ)(j),

βm
2

= (λ)(2j),

where, by the uniform gap claim above, γ, λ ∈ A\StabA(1). Therefore, repeating this

process, we find that βms induces σ(sj) on the (sj)-th level of the tree for all s ≥ 0. Now

given a level t ≥ 0, dividing t by j, we get t = sj + i with 0 ≤ i ≤ j − 1, and then

(β(i))m
s

= (βm
s
)(i) induces (σ(sj))(i) = σ(sj+i) = σ(t) on the t-th level of the tree. The last

equality says that, for any level t of the tree, the action on this level can be described

in terms of a finite number of elements β, β(1), ..., β(j−1). That being said, it follows that

the group A∗ is a subgroup of the topological closure of 〈β, β(1), ..., β(j−1)〉. The reverse

inclusion is immediate.

�

Theorem E. In the same conditions of the previous theorem, we have that A∗ = 〈β〉∗ is

conjugate to Dm(j) for some j ≥ 1.

Proof. We have for β = (β1, β2, ...βm)σ,

βi = βpi , pi = ri0 + ri1x+ ...+ ri(j−1)x
j−1 ∈ Zm[[x]],
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and

βm = (β1β2...βm)(1),

β1β2, ...βm = βp1+...+pm ,

p1 + ...+ pm = q . xj−1,

where q is an invertible element of Zm[[x]].

Claim: The element β = (β1, β2, ...βm)σ is conjugate in Am to α = (e, ..., e, αx
j−1

)σ. In

fact, let h = (h1, ..., hm) be an automorphism of the tree. Then

βh = (h−1
1 β1h2, h

−1
2 β2h3, ..., h

−1
m βmh1)σ.

Therefore βh = α holds if and only if

h2 = β−1
1 h1,

h3 = β−1
2 h2,

...

hm = β−1
m−1hm−1,

h1 = β−1
m hmα

xj−1

.

These conditions can be rewritten as

h2 = β−1
1 h1,

h3 = β−1
2 β−1

1 h1,

...

hm = β−1
m−1...β

−1
1 h1,

h1 = β−1
m β−1

m−1...β
−1
1 h1α

xj−1

,
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or as

h = (h1, β
−1
1 h1, β

−1
2 β−1

1 h1, . . . , β
−1
m−1...β

−1
1 h1)

= (e, β−1
1 , β−1

2 β−1
1 , . . . , β−1

m−1...β
−1
1 )h

(1)
1 ,

and

(β1β2...βm)h1 = αx
j−1

.

Thus, to determine h it is sufficient to determine h1. Since

β1β2...βm = βq·x
j−1
,

we repeat the above procedure by replacing β by βq and by replacing h1 by (h′1)x
j−1 . This

leads to the conjugation equation

(βq)h
′
1 = α.

In this manner we determine an automorphism h of the tree which performs the required

conjugation βh = α.

Finally, by Proposition 2.2.6, we have A ≤ 〈β〉∗ = (CAm(β))∗ and

Ah ≤ CAm(βh) = CAm(α) = Dm(j).

This completes the proof of the theorem.

�

Example 3.4.1. Let β = (e, βq)σ, where q = 1 + x. Then β is conjugate to the adding

machine α = (e, α)σ. Note that from Example 2.3.8, β is not obtainable from α simply

by choosing a different transversal. To exhibit the conjugator h : β → α constructed in

the proof, define the polynomial sequences

c0 = 1, c1 = q, cn = 2cn−2 + cn−1;

c′−1 = 0, c′0 = 0, c′n = cn−1 + c′n−1.

64



Then

h = (e, e)(0)(e, β−1)(1)(e, β−(1+q))(2) . . . (e, β−c
′
n)(n) . . .

3.5 On the self-similarity of the free abelian group of

infinite rank

To finish our work, we study direct products of abelian transitive state-closed groups, in

particular the case Z(ω). We prove a theorem about the non-abelian case L(ω) o C2 and

provide an example of an intransitive state-closed representation that is also finite-state.

Theorem F. Let Z(ω) the restricted product of countably many copies of the integers.

Then there exists a faithful transitive state-closed action of Z(ω) into the binary tree.

Proof. First of all, notice that the multiplicative group of Z2 is 1 + Z2. Choose any

2η ∈ 2Z×2 ; namely a 2-adic that is ≡ 2 mod 4. Every a ∈ Z2 admits then a unique base-η

representation:

a =
∑
i≥0

aiη
i, ai ∈ {0, 1}.

As we stated in the first chapter, there is an identification between the infinite paths on

the binary tree and Z2; in this way we have a natural action Z2 → T2 by translation. This

is equivalent to say that, identifying the infinite paths of the tree with the representation

of a above:

x0x1...←→
∑
i≥0

xiη
i,

we have an action of Z2 over itself; in fact this is a transitive state-closed action. For this,

consider the triple (Z2, 2Z2, f), where f : 2Z2 → Z2 is given by a 7→ a/η.

Consider now the additive subgroup G := Z[1/η]∩Z2 of Z2; we claim this is a transitive

state-closed subgroup. Let H = Z[1/η] ∩ 2Z2, with |G : H| = 2, and the map ḟ : H → G

is the restriction of f to the subgroup H. We have that H ḟ ⊆ G, since

H ḟ = (Z[1/η] ∩ 2Z2)ḟ = (Z[1/η] ∩ 2Z2)/η ⊆ Z[1/η] ∩ Z2 = G.
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This action does not leave any nontrivial subgroupK ≤ H invariant: for any nontrivial

element a ∈ H, applying f successively will eventually bring a nonzero entry to the first

coordinate; thus af /∈ H. Now, if we choose η to be transcendental, it follows that the

action is faithful. �

The construction in the theorem may be made explicitly as follows. Starting with

G = Z(ω), H = 2Z × Z(ω−{0}) and define the virtual endomorphism f : H → G by

(2a0, a1, a2, ...) 7→ (a0+α1a1+α2a2+..., a0, a1, a2, ...) for appropriate choices of αn ∈ {0, 1},

which we define below simultaneously with the embedding G ' Z(ω) ↪→ Z2:

First, the 0-th basis vector of G maps to 1; then, for n ≥ 1 the n-th basis vector of

G will map to pn(1/η), a integral polynomial of degree at most n in 2Z2. More precisely:

p0(t) = 2, and αn ∈ {0, 1} chosen in such a way that pn+1(t) := tpn(t)− αn+1 belongs to

2Z2.

Theorem G. Let L be an abelian transitive state-closed group and L(ω) an infinite count-

able direct sum of copies of L. Then L(ω) o C2 is also transitive and state-closed.

Proof. Let L be a transitive state-closed with respective simple triple (L,M, φ), where φ

is then a monomorphism. Define the direct sum B =
∑

i≥1 Li, with Li = L for each i.

Let X be the cyclic group of order 2 and G = B oX. Denote the normal closure of B in

G by A; then

A = BX =
(
L1 ⊕

∑
i≥2

Li

)
×B;

G = AoX.

Define the subgroup of G

H =
(
M ⊕

∑
i≥2

Li

)
×B;

an element of H has the form

β = (β1, β2)
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where

βi = (βij)j≥1, βij ∈ L,

β1 = (β1j)j≥1, β11 ∈M.

We note that |G : H| is finite; indeed,

|A : H| = |L : M | and |G : H| = 2|L : M |.

Define the maps

φ′1 : M ⊕
(∑
i≥2

Li

)
−→ B; φ′2 : B −→ B,

where for β = (β1, β2) = ((β1j), (β2j))j≥1, β11 ∈M ,

φ′1 : β1 7−→ (βφ11, β12, β13, . . .), φ′2 : β2 7−→ (β22, β23, β24, . . .).

Since L is abelian, φ′1 and φ′2 are both homomorphisms.

Now, define the homomorphism

f :
(
M ⊕

∑
i≥2

Li

)
×B −→ A

by

f : (β1, β2) 7−→ ((β1)φ
′
1 , (β2)φ

′
2).

By applying successively f and the permutation σ ∈ X is clear that no subgroup of

H is f -invariant and our result is proved.

�

In [BS20] the authors proved that there exist a transitive state-closed representation

for Z(ω); however they also show that there is no such action that is also finite-state. As

a final example, we apply the above theorem to present a state-closed representation of

degree 4 for Z(ω) that is also finite-state, but intransitive.
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Example 3.5.1. Let G = Z(ω) oC2, with C2 = 〈σ〉, B = Z(ω) × Z(ω) and consider H ≤ G

given by

H = 〈 ((2n1, n2, n3, . . .), e), (e, (m1,m2,m3 . . .)) 〉.

Denote the two generators of H by x and y, respectively. Notice that |B : H| = 2 and

|G : H| = 4. Then, define the endomorphism f as

f : H −→ G

x 7−→ ((n1, n2, n3, . . .), e)

y 7−→ (e, (m2,m3,m4, . . .))

Now, consider the following group G:

G = 〈 ((0, 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . .), e) , σ | i = 1, 2, 3, . . . 〉,

where we define xi = ((0, 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . .), e) and yi = (e, (0, 0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . .)), both with

the only nonzero entry on the i-th position.

Choose a transversal T = {e, σ, x1, x1σ} of H in G; observe that Hσx1 = Hy1σ = Hσ

and Hσy1 = Hx1σ. Now, calculating ϕ : G→ A4:

for i = 1:

xϕ1 = ((ex1x
−1
1 )fϕ, (σx1σ)fϕ, (x1x1e)

fϕ, (x1σx1σx
−1
1 )fϕ)(13)

= (e, e, xϕ1 , e)(13)

yϕ1 = ((ey1e)
fϕ, (σy1σx

−1
1 )fϕ, (x1y1x

−1
1 )fϕ, (x1σy1σ)fϕ)(24)

= (e, e, e, xϕ1 )(24);
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for i ≥ 2:

xϕi = ((exie)
fϕ, (σxiσ)fϕ, (x1xix

−1
1 )fϕ, (x1σxiσx

−1
1 )fϕ)

= (xϕi , y
ϕ
i−1, x

ϕ
i , y

ϕ
i−1)

yϕi = ((eyie)
fϕ, (σyiσ)fϕ, (x1yix

−1
1 )fϕ, (x1σyiσx

−1
1 )fϕ)

= (yϕi−1, x
ϕ
i , y

ϕ
i−1, x

ϕ
i ).

Defining xϕi = αi and yϕi = βi we have

α1 = (e, e, α1, e)(13), β1 = (e, e, e, α1)(24) and

αi = (αi, βi−1, αi, βi−1), βi = (βi−1, αi, βi−1, αi), for i ≥ 2.

Therefore we have that 〈αi, βj | i, j = 1, 2, . . .〉 ' Z(ω) × Z(ω) ' Z(ω) is a state-closed

and finite-state representation of Z(ω).
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