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RESUMO

Este trabalho é composto de dois capítulos, independentes entre si, que tem como ob-
jetivo aprofundar a literatura econômica que versa sobre escolhas individuais e coletivas.
O primeiro capítulo versa sobre o processo de racionalização de indivíduos que apresen-
tam um comportamento de escolhas não transitivo. Tomando como dada uma relação de
preferências completa, porém não necessariamente transitiva, é proposta uma família de
representações de escolha inspirada no procedimento king-chicken, de acordo com o qual
uma alternativa x é escolhida do conjunto de alternativas A se, para cada outra alternativa
y em A, ou x é preferido a y ou existe uma outra alternativa z em A tal que x é preferido a
z e z é preferido a y. Mostra-se que é possível generalizar este processo para permitir um
caminho com mais de uma alternativa entre x e y e caracteriza-se todas as correspondên-
cias de escolhas que emergem deste processo. Duas das mais proeminentes soluções de
torneios, o uncovered set e o top-cycle, são casos especiais deste procedimento de king-
chicken generalizado. Este trabalho, portanto, avança resultados anteriores da literatura de
teoria da escolha ao apresentar a axiomatização destes modelos em espaços de escolhas
genéricos, não necessariamente finitos. O segundo capítulo explora o processo de atu-
alização bayesiana de uma Random Choice Rule com representação por Finite Random
Expected Utility. O capítulo apresenta uma condição necessária e suficiente, chamada de
Random Consistency, para que uma Random Choice Rule seja a atualização bayesiana
de outra após o agente aprender novas informações e contrair ou expandir seu espaço de
estados subjetivo. É apresentada uma extensão a trabalhos já publicados através da car-
acterização da direção oposta da representação por unforeseen contingencies, quando o
espaço de estados subjetivos de uma representação por Finite Random Expected Utility
está contido no espaço de estados subjetivo da representação de uma preferência sobre
menus. O capítulo ainda apresenta uma discussão sobre as condições sob as quais uma
coleção de Random Choice Rules representa uma partição de uma Random Choice Rule
mais abrangente ou de uma preferência sobre menus.

Palavras-chave: Teoria da Decisão, microeconomia teórica, escolha social, preferên-

cias sobre menus, escolhas aleatórias.

Brasília
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ABSTRACT

This work is composed of two independent chapters that focus on deepening the economic
literature on individual and collective choice. The first chapter explores the process of ra-
tionalization for agents that reveal a nontransitive behavior. Given a complete, though not
necessarily transitive, preference relation, it is proposed a family of choice representations
inspired by the king-chicken procedure, according to which an alternative x is chosen among
a set of alternatives A if, for every other alternative y in A, either x is preferred to y or there
is another alternative z in A such that x is preferred to z, and z is preferred to y. It is shown
that it is possible to generalize this process by allowing the path from x to y to include more
than one alternative z and to fully characterize the choice correspondences that can be
achieved through it. Two of the most relevant tournament solutions, the uncovered set and
the top-cycle, are special cases of this generalized king-chicken choice procedure, so this
work improves previous results that have appeared in the choice theory literature by deliver-
ing axiomatizations for those models in generic (not necessarily finite) choice spaces. The
second chapter explores the process of bayesian updating of a Random Choice Rule with
a Finite Random Expected Utility representation. This chapter presents the necessary and
sufficient condition, which we call Random Consistency, for a Random Choice Rule to be a
update of another after the Decision Maker learns new information and contracts or expands
her subjective state spaces. It is also presented an extension to previous works by char-
acterizing the opposite direction of the unforeseen contingencies representation, when the
subjective states of the Finite Random Expected Utility representation of a Random Choice
Rule is contained in the subjective state space of the representation of a Preference Over
Menus. This chapter also presents a discussion on the conditions under which a collection
of Random Choice Rules represent a partition of a broader Random Choice Rule or of a
Preference Over Menus.

Keywords: Choice Theory, microeconomic theory, social choice, preferences over menus,

random choice.

Brasília

Março de 2022
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Chapter 1

King-Chicken Choice Correspondences

1.1 Introduction

Tournaments, or complete and not necessarily transitive binary relations, are a matter of

great relevance in the context of the social choice literature. That is because, as discussed

in Miller [22], far above the implications for sports competition the name might suggest, tour-

naments represent the outcome of majority voting processes even when all individual voters

have complete and transitive preferences over the set of alternatives under consideration.

Since the lack of transitivity may imply the existence of preference cycles, a problem known

as the Condorcet Paradox referring to the early work of Condorcet [6], there may not exist

a maximal element in the consideration set, implying that the chosen outcome may depend

strongly on the voting process applied.

The study of nontransitive rationalization is also relevant in the context of individual

choice. Both in cases where the individual has multiple selves, understood as multiple

preferences over the same set of alternatives, or when the alternatives themselves vary

along multiple attributes, the individual choice procedure may give raise to the same voting

paradox mentioned above.

Several tournament solution concepts have been proposed seeking to narrow down

which alternatives in the feasible set could, or should, be deemed as possible winners.

Among them, two are of special relevance, both in general and to the scope of this paper:

the uncovered set and the top-cycle choice rules.

Given a set of available alternatives A, the covering relation, which has multiple closely

related definitions, usually states that an alternative x covers another alternative y if, and

only if, for every z such that y ≿ z, meaning that y is considered at least as good as z, we
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also have x ≿ z. The set of maximal elements of this relation is known as the uncovered set.

When the preference relation is antisymmetrical, the uncovered set may also be understood

as the set of alternatives that beat any other alternative in at most two steps, meaning that,

if x is in the uncovered set of A, then, for every other z ∈ A, either x ≿ z or there is some

y ∈ A such that x ≿ y and y ≿ z.

The top-cycle of a set A, usually defined as the minimal set of A for which every alter-

native in it beats every alternative outside of it, always includes the uncovered set and may

be quite bigger. In a similar way, when A is finite, the top-cycle may be defined as those

alternatives that beat any other alternative in a finite number of steps, meaning that alterna-

tive x is in the top-cycle of A if, and only if, for every z ∈ A there is a chain of alternatives

y0 ≿ y1 ≿ · · · ≿ yn, such that x = y0 and z = yn.

In this paper, we investigate the generalized king-chicken procedure, also known as k-

kings solution, and fully characterize the choice correspondences that can be represented

by it. Under the generalized king-chicken procedure, the winning alternatives, for a given

k, are those that beat any other available alternative in at most k steps. In this sense, we

show that this procedure encompasses both the uncovered set and the top-cycle tournament

solutions when k = 2 and k = ∞, respectively.

Our characterization is based on two known and fixed axioms, Sen’s Gamma, proposed

in Sen [33], and Tournament Consistency, discussed in Smith [34] and Fishburn [12], and

two axioms depending on k, (k+1)-Bounded Beta Plus, an adaptation of the Beta Plus axiom

from Bordes [3], and (k+1)-Bounded Weakened Chernoff, which is a version of a postulate

that has appeared in Lombardi [16]. Considering previous characterizations of choice cor-

respondences that represent the uncovered set and the top-cycle rules proposed in the

literature, we believe that the one presented here has some advantages. Firstly, because

it builds a stepping bridge between these two well known solution concepts, and secondly

because, as far as we know, it is the first general characterization for these concepts that

accommodate the possibility of infinite choice problems.

We dedicate the remainder of this section to presenting some of the related literature

and a discussion on the relevance of the generalized king-chicken procedure. In the second

section we present the setup that will be used for our results, while in the third we state

the main theorem and the axioms supporting the general king-chicken representation. In

Section 1.4, we explore the limit cases of k = 1 and k unbounded and in Section 5 we relate

our results to some other solution concepts that have previously appeared in the literature.

We conclude in Section 1.6. To improve readability we leave the proof of the theorems to

2



section 1.7.

1.1.1 Related Literature

The literature on tournaments begins with the very early work of Condorcet [6], which

points out the Condorcet Paradox, the possibility of cycles in the outcomes of a majoritarian

decision process even when all voters have transitive and complete preferences. McGarvey

[20] extends this point showing that for every complete binary relation there is a set of voters,

with complete and transitive preferences, for which the outcome of a pairwise majority voting

process is this given relation. Therefore, the study of the outcomes of voting procedures is

deeply connected to the study of tournament solutions.

The top-cycle was originally proposed in Good [13], there called Condorcet Set, which

would be the minimal set of alternatives that dominates all the available alternatives outside

of it. Schwartz [31] is also concerned with the problem of nontransitive choice behaviors,

being them a consequence of pairwise majority voting or of individual choices, as found in

Tversky [35]. Though he does not assume the completeness of preferences, the solution

there proposed is equivalent to the top-cycle in the presence of completeness.

Smith [34] studies the ranking of alternatives in a voting procedure and its stability to vari-

ations in the body of voters. He proposes a point system procedure, in which the candidates

are ranked according to their positions in voters’ preferences. More relevant to the work

developed here, Smith proposes the Condorcet Criterion, according to which if every alter-

native in a set A is majority preferred to each alternative in a set B, disjoint of A, then every

alternative in A must be ranked above each alternative in B when A∪B is the set of feasible

candidates. This property is a ranking version of the axiom of Tournament Consistency used

in our theorems and is closely related to the definition of the top-cycle.

Bordes [3] presents the first proper characterization of the top-cycle choice rule using the

axioms Beta Plus and Minimality. Beta Plus is a strengthening of the well known axiom Beta

from Sen [33]. The (k+1)-Bounded Beta Plus axiom we present in this paper is a restriction

of Beta Plus to sets of k+1 or less elements. Minimality assures that only the alternatives in

the most preferred cycle are included in the choice from the tournament. Since this condition

is strongly related to the definition of the top-cycle itself, the characterization we present here

may be preferred to the original one from Bordes [3] to some readers.

The same might be said in favor of the more recent characterization of the top-cycle

proposed in Ehlers and Sprumont [9], where they use a weakened version of the classical
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WARP axiom introduced in Samuelson [30] to rule out context-dependence in choices. A

choice behavior is context-independent whenever the choice of x in detriment of y from a set

A containing both alternatives precludes the choice of y in detriment of x from any other set B

containing both alternatives. As we discuss in Section 1.5, combining Weakened WARP with

the axioms of Binary Dominance Consistency and Weak Contraction Consistency, Ehlers

and Sprumont [9] arrive at a characterization of the top-cycle tournament solution.

While the top-cycle tournament solution is always context-independent, the same is not

true for the uncovered set. The idea of uncovered set was first reached in Miller [22]. Study-

ing the process of pairwise majority voting with an uneven number of sophisticated voters

with transitive preferences, which leads to a strong (asymmetrical) tournament, they show

that the chosen alternatives must always be uncovered, in the sense that if y is the winning

alternative, there must not exist another alternative x such that y ≻ z implies x ≻ z, for any

z in the considered set. The sophistication of voters means that voters are aware of each

other’s preferences and can anticipate the result of the decision process given the order of

voting and act accordingly to adjust their votes in each step to achieve their preferred fea-

sible alternative. This discussion, including the formal definition of the uncovered set, was

further developed in Miller [23], where it is shown that a number of other voting processes

also arrive in decisions contained in the uncovered set.

McKelvey [21] works with a similar question to that of Miller [23], seeking to narrow down

the achievable outcomes of a social choice procedure. The fundamental difference is that

McKelvey studies an universe of infinite multi-dimensional alternatives. He shows that the

possible emerging choices in three different contexts of voting are contained in the uncov-

ered set, including an amendment procedure similar to that of Miller [23], but with endoge-

nous agenda formation. Although McKelvey also works with infinite choice problems, his

setup is fairly different from ours, as he imposes conditions of continuity and convexity over

his multidimensional alternative space.

Moulin [24] proposes an early characterization for the uncovered set solution when the

tournament relation is given. This characterization is based on the Gamma axiom, also

used in our results, and the well known social choice axioms of Neutrality, which implies the

nondiscrimination among outcomes, and Arrow’s Independence of Irrelevant Alternatives.

His characterization differs from ours as the tournament relation is given, while our results

focus on the choice correspondences that may emerge from an underlying, not previously

known, tournament. Moulin [24] also shows that the set of Copeland winners, the alterna-

tives that beat the largest number of other alternatives, is contained in the uncovered set.
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A full characterization of the uncovered set for finite choice problems is provided in Lom-

bardi [16]. As in this paper, his axiomatization, discussed in Section 1.5, is based only on

observed choices across feasible sets, meaning that it does not require a predefined tour-

nament relation.

Though the idea remains essentially unchanged, the literature on the uncovered set has

posed a few different definitions for the covering relation that converge or diverge depend-

ing on the asymmetry and completeness of the base relation considered. Penn [27] and

Duggan [8] bring forth a discussion on these definitions. Duggan [8], particularly, provides

exhaustive references to previous works and considers almost every imaginable extension

of the uncovered set, including two boundary concepts, the deep and the shallow uncovered

sets, that encompass the other uncovered set definitions in between them.

A recent development in nontransitive choice behavior was proposed in Nishimura [25],

where the violations of transitivity are understood as possible choice mistakes by the deci-

sion maker. He discusses the transitive core subrelation, where xtrancore(≿)y if, and only

if, y ≿ z implies x ≿ z and z ≿ x implies z ≿ y for every z ∈ X, as a way of extracting the

agent’s true preferences from observed choice. The transitive core is connected to the deep

covering relation from Duggan [8] as deep covering implies the transitive core when the base

relation is complete and the transitive core implies deep covering when the base relation is

anti-symmetric. In Section 1.5, we discuss the connection to our own results and argue that

the transitive core is equivalent to the covering relation in the presence of completeness and

anti-symmetry of the base relation.

The idea of a k -step procedure to choose the winner of a tournament, in which the winner

alternatives, or kings, are those that beat any other alternative in at most k steps, appears

in Maurer [19]. Maurer discusses the emergence of dominant chicken from a tournament

over an hypothetical flock of hens and calls the dominant chicken in a k -step procedure

as k-kings. In reference to Maurer’s work, we name this k-step approach, that bridges the

uncovered set to the top-cycle, as the generalized king-chicken procedure.

Saile and Suksompong [29] studies the decisiveness of the uncovered set and the top-

cycle solutions in a setup of large random tournaments, tournaments in which the binary

relation between each pair of alternatives has a probability of being reversed, and prove

that, for large enough tournaments and probabilities of reversion, even the uncovered set

is likely to include every alternative under consideration. Manurangsi and Suksompong [18]

extends this result to the k -kings approach and shows that in this random setting the 3-kings

solutions is already far more indecisive than the uncovered set (2-kings) and resembles more
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the top-cycle solution.

Another consideration on the k -kings approach as a social choice decision process, and

on any other tournament solution more encompassing than the uncovered set, is presented

in Brandt et al. [4], where the authors show that any alternative not included in the uncovered

set may be Pareto dominated in the voters’ underlying preference profile. This means that

for any k > 2, the generalized king-chicken procedure may arrive at inefficient outcomes.

Still, more indecisive approaches, as the top-cycle, remain of relevance in the literature on

collective and individual choice, as in the recent development of the concept of preference

structures presented in Nishimura and Ok [26] and Evren et al. [11]. Moreover, the guar-

antee that choices are going to belong to the uncovered set after a sequence of pairwise

majority voting contests only exists if voters are fully sophisticated. If voters are not entirely

sophisticated nor naive, it is conceivable that the possible choices belong to some k-king

class different from 2 and ∞. The consequences are twofold. First, whoever controls the

agenda may induce voters to choose inefficient outcomes. Second, it may be necessary

an agenda consisting of more than two majority voting contests in order to induce a given

option.

1.2 Setup

We will follow the setup and notation in Eliaz and Ok [10].

1.2.1 Choice Correspondences

Let X be an arbitrary nonempty set. We interpret X as the set of all (mutually exclusive)

alternatives.

Definition 1. A choice field on X, hereafter denoted by ΩX , is any subset of 2X\{∅} with

the following properties:

(I) {x} ∈ ΩX , for all x ∈ X;

(II)
⋃n

i=1Ai ∈ ΩX whenever Ai ∈ ΩX , i = 1, 2, ..., n, n ∈ N.

We interpret ΩX as the set of all possible choice problems. Note that the above definition

implies that all finite subsets of X are in ΩX . We refer to any pair (X,ΩX) as a choice space.

Definition 2. Given a choice space (X,ΩX), we define a choice correspondence on ΩX as

a correspondence c : ΩX ⇒ X which satisfies
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(I) c(S) ̸= ∅, for all S ∈ ΩX ;

(II) c(S) ⊆ S, for all S ∈ ΩX .

1.2.2 Binary Relations

Given any set X, a binary relation on X is simply a subset of X × X. We adopt the

standard notation x ≿ y to represent the fact that (x, y) ∈≿. We define the symmetric part of

a relation ≿ by ∽:= {(x, y) ∈ X ×X : x ≿ y and y ≿ x}. The asymmetric part of a relation

≿ is defined by ≻ :=≿ \ ∽ .

We say that a binary relation ≿ is reflexive when x ≿ x, for every x ∈ X, anti-symmetric

if ∼⊆ {(x, x) : x ∈ X}, and complete if x ≿ y or y ≿ x hold for every x, y ∈ X. Finally, if x ≿ y

and y ≿ z imply that x ≿ z, for every x, y, z ∈ X, then we say that ≿ is transitive.

The relation ≿ is a preorder when it is reflexive and transitive. If ≿ is a preorder and

∼= {(x, x) : x ∈ X}, we say it is a partial order.

For any relation ≿⊆ X × X and ∅ ≠ S ⊆ X, the set of ≿-maximal elements of S is

denoted by MAX(S,≿), that is

MAX(S,≿) := {x ∈ S : y ≻ x for no y ∈ S}.

Furthermore, the set of ≿-maximum elements of S will be denoted by max(S,≿), i. e.

max(S,≿) := {x ∈ S : x ≿ y, for all y ∈ S}.

Because we will mostly work with nontransitive binary relations, the composition of binary

relations will be helpful. We say x ≿n y, for some n ∈ N, if there exist x0, . . . , xn ∈ X such

that x = x0 ≿ x1 ≿ · · · ≿ xn = y. Given any binary relation ≿, we denote by tran(≿) the

transitive closure of ≿. That is, tran(≿) is the smallest relation ≿′ such that ≿⊆≿′ and ≿′ is

transitive. We note that tran(≿) =≿∞:= ∪∞
i=1 ≿

i.

Given a binary relation ≿ and a subset A of X, we define the restriction of ≿ to A by

≿A:=≿ ∩(A× A).

1.3 General Representation

Let (X,ΩX) be a generic choice space, c be a choice correspondence on (X,ΩX) and fix

some k ∈ N. We begin with a basic postulate.
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Axiom 1 (Tournament Consistency). If A and B are nonempty subsets of X such that A∪B ∈

ΩX and {x} = c({x, y}) for every x ∈ A and y ∈ B, then c(A ∪B) ⊆ A.

In the postulate above, when facing a choice between any alternative x from the set A

and any distinct alternative y from the set B, the individual always chooses x. It is only natu-

ral, then, that when making a choice from A∪B the individual chooses only alternatives that

belong to A. We label it Tournament Consistency because virtually all choice correspon-

dences rationalized by some tournament solution concept satisfy it. The idea of Tournament

Consistency was first presented in a setting of ranking of the alternatives in Smith [34] and

further developed, in the context of social choice functions, in Fishburn [12] and Moulin [24].

The following is a standard postulate in choice theory.

Axiom 2 (Gamma). If A ⊆ ΩX is such that ∪A ∈ ΩX and x ∈ c(A) for every A ∈ A, then

x ∈ c(∪A).

This is a very well known property presented in Sen [33]. The next two postulates make

use of the exogenous integer k we have fixed above.

Axiom 3 ((k+1)-Bounded Beta Plus). If A,B ∈ ΩX are such that |A| ≤ k+1, B ⊆ A, x ∈ c(B)

and B ∩ c(A) ̸= ∅, then x ∈ c(A).

Axiom 4 ((k+1)-Bounded Weakened Chernoff). For any choice problem A ∈ ΩX and x, y ∈

A, if x /∈ c(B) for every subset B of A with y ∈ B and |B| ≤ k + 1, then x /∈ c(A).

The (k+1)-Bounded Beta Plus postulate is a version of the Beta Plus postulate from

Bordes [3], itself a strengthening of the classical Beta from Sen [33]. The difference is that

(k+1)-Bounded Beta Plus restricts the application of Beta Plus to sets of cardinality at most

k + 1. Bordes [3] shows that Beta Plus, together with Inclusion Minimality, characterizes the

top-cycle rule. Here we prove that by restricting Beta Plus we are capable of characterizing

all the generalized king-chicken solutions from the uncovered set to the top-cycle.

While (k+1)-Bounded Beta Plus represents an expansion consistency condition, in the

sense that it imposes some structure from smaller to bigger sets, as the axioms of Gamma

and Beta, (k+1)-Bounded Weakened Chernoff resembles more the Alpha Axiom from Sen

[33], which had already been proposed in Chernoff [5], in the sense that it is a contraction

consistency condition, bringing the structure from bigger to smaller sets.1 It is a version that

limits the cardinality of the set B in the Weakened Chernoff postulate of Lombardi [16]. In
1Both the concepts of contraction and expansion conditions were developed in Sen [32].

8



words, (k+1)-Bounded Weakened Chernoff states that, for a choice problem A and alter-

natives x, y ∈ A, if x is never chosen in the presence of y and at most other k − 1 distinct

alternatives in A, then x is not chosen from A. Intuitively, once y is better than x in the sense

that x /∈ c({x, y}), any reasoning that justifies the choice of x in the presence of y must

involve at most k− 1 other alternatives. That is, (k+1)-Bounded Weakened Chernoff may be

understood as a restriction on the complexity of the choice procedure.

The four postulates above deliver the following result:

Theorem 1. The choice correspondence c satisfies Tournament Consistency, Gamma, (k+1)-

Bounded Beta Plus and (k+1)-Bounded Weakened Chernoff if, and only if, there exists a

complete binary relation ≿ such that, for every A ∈ ΩX , c(A) = max(A,≿k
A).

We call the class of representations above the class of generalized king-chicken choice

correspondences. Recall that in the original king-chicken story (see Maurer [19]), a chicken

is a king if it directly beats or beats some chicken that beats any other chicken. That is, a

king-chicken is maximal with respect to the ≿2 relation.

When k ≥ 2, it is possible to prove the tightness of the axioms in Theorem 1. We show

the independence of the axioms in Theorem 1 in Section 1.7.2.

In the next section, we discuss how some of the limit values of k are related to other

tournament based representations that have previously appeared in the literature.

1.4 Limit Cases

1.4.1 Binary Choice Correspondences

When k = 1, the (k+1)-Bounded Beta Plus postulate is satisfied by any choice corre-

spondence and is, therefore, irrelevant. We also note that 2-Bounded Weakened Chernoff

implies Tournament Consistency. Therefore, when k = 1, Theorem 1 reduces to:

Theorem 2. The choice correspondence c satisfies Gamma and 2-Bounded Weakened

Chernoff if, and only if, there exists a complete binary relation ≿ such that, for every A ∈ ΩX ,

c(A) = max(A,≿).

Of course, Theorem 2 is well-known (see Theorem 3 in Sen [33]), although it is usually

stated with the standard Alpha (Chernoff) postulate replacing 2-Bounded Weakened Cher-

noff. Formally, consider the following postulate:
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Axiom 5 (Alpha). For every choice problem A ∈ ΩX , if x ∈ c(A), then x ∈ c(B) for every

B ∈ ΩX with x ∈ B and B ⊆ A.

We note that 2-Bounded Weakened Chernoff is simply the postulate above when the

choice problem B is restricted to have at most 2 elements, so it is, in general, weaker than

the Alpha postulate. Of course, they are both equivalent in the presence of Gamma.

1.4.2 k-Unbounded Representations

We shall now think of the representation in Theorem 1 for unbounded k. In this case,

(k+1)-Bounded Beta Plus becomes simply:

Axiom 6 (Finite Beta Plus). If A,B ∈ ΩX are such that |A| < ∞, B ⊆ A, x ∈ c(B) and

B ∩ c(A) ̸= ∅, then x ∈ c(A).

The (k+1)-Bounded Weakened Chernoff postulate becomes:

Axiom 7 (Finite Weakened Chernoff). For any choice problem A ∈ ΩX and x, y ∈ A, if

x /∈ c(B) for every finite subset B of A with y ∈ B, then x /∈ c(A).

We can now state the following result:

Theorem 3. The choice correspondence c satisfies Tournament Consistency, Gamma, Fi-

nite Beta Plus and Finite Weakened Chernoff if, and only if, there exists a complete binary

relation ≿ such that, for every A ∈ ΩX , c(A) = max(A,≿∞
A ).

Suppose now that c is a choice correspondence that satisfies Gamma, Finite Beta Plus

and Finite Weakened Chernoff. Fix two choice problems A and B with B ⊆ A. Suppose also

that x ∈ c(B) and B ∩ c(A) ̸= ∅. Fix y ∈ B ∩ c(A) and pick any z ∈ A. By Finite Weakened

Chernoff, there exist a finite subset D of B and a finite subset E of A such that x ∈ c(D),

y ∈ D, y ∈ c(E) and z ∈ E. By Finite Beta Plus, if c(D ∪E)∩E ̸= ∅, then y ∈ c(D ∪E). Now

another application of Finite Beta Plus gives us that x ∈ c(D ∪E). Otherwise, we must have

c(D ∪ E) ∩D ̸= ∅ and Finite Beta Plus immediately gives us that x ∈ c(D ∪ E). This shows

that for every z ∈ A there exists a finite subset F of A with x ∈ c(F ) and z ∈ F . Now Gamma

implies that x ∈ c(A). This shows that c satisfies the following postulate:

Axiom 8 (Beta Plus). For any two choice problems A and B in ΩX with B ⊆ A, if x ∈ c(B)

and B ∩ c(A) ̸= ∅, then x ∈ c(A).
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It is obvious that Beta Plus is stronger than Finite Beta Plus. Now suppose that A ⊆ ΩX is

such that ∪A ∈ ΩX and x ∈ c(A) for every A ∈ A. There must exist A ∈ A with A∩c(∪A) ̸= ∅.

Now Beta Plus implies that x ∈ c(∪A). That is, c satisfies Gamma. This discussion can be

summarized by the following lemma:

Lemma 1. Let c be a choice correspondence that satisfies Finite Weakened Chernoff. Then

c satisfies Gamma and Finite Beta Plus if, and only if, it satisfies Beta Plus.

We have, thus, the following corollary:

Corollary 1. The choice correspondence c satisfies Tournament Consistency, Beta Plus and

Finite Weakened Chernoff if, and only if, there exists a complete binary relation ≿ such that,

for every A ∈ ΩX , c(A) = max(A,≿∞
A ).

1.5 Tournaments and Other Solution Concepts

1.5.1 Transitive Core and the Uncovered Set

Let X be any set. Following Nishimura [25], given a reflexive binary relation ≿⊆ X ×X,

define the transitive core of ≿ by xtrancore(≿)y if, and only if, y ≿ z implies x ≿ z and z ≿ x

implies z ≿ y for every z ∈ X. It is easy to see that trancore(≿) is always a preorder such that

xtrancore(≿)y implies x ≿ y. Alternatively, we can define, for each A ⊆ X, a binary relation

⊵A⊆ A × A by x ⊵A y iff y ≿ z implies x ≿ z for every z ∈ A. In the tournament literature,

the set MAX(A,⊵A) is known as the uncovered set of A with respect to ≿. It is clear that

xtrancore(≿A)y implies that x ⊵A y, but the converse is not usually true. It is true, however,

whenever ≿ is complete and anti-symmetric. When ≿ is complete and anti-symmetric, it is

also well-known that MAX(A,⊵A) = max(A,≿2
A), for any A ⊆ X. This discussion can be

summarized by the following lemma:

Lemma 2. Let ≽⊆ X ×X be a complete and anti-symmetric relation. Then, for any choice

problem A, MAX(A, trancore(≽A)) = MAX(A,⊵A) = max(A,≽2
A).

Now let c be a choice correspondence over an arbitrary choice space (X,ΩX). Consider

the following postulate:

Axiom 9 (Resoluteness). For every x, y ∈ X, |c({x, y})| = 1.

Lemma 2 and Theorem 1 have the following corollary:
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Corollary 2. The choice correspondence c satisfies Tournament Consistency, Gamma, 3-

Bounded Beta Plus, 3-Bounded Weakened Chernoff and Resoluteness if, and only if, there

exists a complete and anti-symmetric binary relation ≽⊆ X ×X such that, for every choice

problem A,

c(A) = MAX(A, trancore(≽A)) = MAX(A,⊵A).

Choice correspondences that can be axiomatized by the uncovered set of some com-

plete and asymmetric relation were also axiomatized, under the restriction of a finite space

of alternatives X, by Lombardi [16]. Besides Resoluteness, Lombardi imposed also the

following postulates:

Axiom 10 (Weak Expansion). If Ai ∈ ΩX , i = 1, . . . , n, are such that
⋃n

i=1 Ai ∈ ΩX , then⋂n
i=1 c(Ai) ⊆ c (

⋃n
i=1Ai).

Axiom 11 (Binary Dominance Consistency). If A ∈ ΩX , x ∈ A and c({x, y}) = {x} for every

y ∈ A, then c(A) = {x}.

Axiom 12 (Weakened Chernoff). For every A ∈ ΩX with |A| ≥ 3, if x ∈ c(A) and y ∈ A \ {x},

then x ∈
⋃

B⊊A:x,y∈B c(B).

Axiom 13 (Non-Discrimination). For every distinct x, y, z ∈ X, if c({x, y}) = {x}, c({y, z}) =

{y} and c({x, z}) = {z}, then c({x, y, z}) = {x, y, z}.

Weak Expansion is just a restatement of the Gamma postulate. Binary Dominance Con-

sistency says that if a set has a Condorcet winner, then it has to be the only choice from

the set. We note that this is equivalent to applying Tournament Consistency only to prob-

lems A such that |A| = 1. Therefore, Binary Dominance Consistency is a weakening of

Tournament Consistency. As the name suggests, Weakened Chernoff is a weakening of the

alpha axiom, also known as Chernoff’s postulate. We note that it is equivalent to imposing

(|A| − 1)-Weakened Chernoff on each menu A with |A| ≥ 3. Finally, Non-Discrimination

imposes that if there exists a cycle involving three alternatives in binary choices, then all of

then have to be chosen when the three of them are available. We see the axiomatization

in Corollary 2 as complementary to Lombardi’s, but with three possible benefits. First, it is

obtained for an arbitrary choice space (X,ΩX) with X not being necessarily finite. Second,

even in the absence of Resoluteness, we know from Theorem 1 that a choice correspon-

dence that satisfies the postulates in Corollary 2 admits a representation in terms of the
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king-chicken orders ≿2
A. Finally, because the axiomatization in Corollary 2 follows the struc-

ture in Theorem 1, it makes the comparison with other forms of representation easier. See

Section 1.5.2, for example.

1.5.2 Top-Cycle Rule

Let X be any set and let ≽⊆ X × X be a complete and anti-symmetric relation. The

set MAX(X,≽∞) is known in the tournament literature as the top-cycle solution. Choice cor-

respondences that always choose the top-cycle elements of some complete binary relation

were axiomatized, under the restriction of a finite space of alternatives X, by Ehlers and

Sprumont [9], both in the case when the relation is anti-symmetric and when it is not. Their

characterization uses the Binary Dominance Consistency axiom above plus the following

postulates:

Axiom 14 (Weakened Weak Axiom of Revealed Preference). If A,B ∈ ΩX , x, y ∈ A ∩ B,

x ∈ c(A) and y ∈ A \ c(A) then we must not have that y ∈ c(B) and x ∈ B \ c(B).

Axiom 15 (Weak Contraction Consistency). If A ∈ ΩX and |A| ≥ 2, then c(A) ⊆
⋃

x∈A c(A \

{x}).

The Weakened Weak Axiom of Revealed Preference rules out choices that are unam-

biguously context dependent, meaning that y cannot be rejected towards x in one context

and x rejected and y chosen in another. It is interesting to notice that a king-chicken choice

rule will be context independent as long as k + 1 is larger than the number of alternatives in

the biggest preference cycle, making the procedure equivalent to the top-cycle choice rule.

For any k smaller than that and greater than one, this will no longer be the case, meaning

we will have some degree of context dependence.

Weak Contraction Consistency is again a weakening of the alpha postulate. Since Beta

Plus implies Weakened Weak Axiom of Revealed Preference, Corollary 1 above shows that

we can replace Binary Dominance Consistency and Weak Contraction Consistency in Ehlers

and Sprumont’s characterization by Tournament Consistency. Moreover, in order to extend

the characterization to arbitrary choice spaces all one need is to add the Finite Weakened

Chernoff postulate.

Finally, from Theorem 1, we know that in the presence of Tournament Consistency,

Gamma and Resoluteness, the difference between the choice correspondences that ad-

mit a top-cycle representation and an uncovered set representation is that the ones that
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have a top-cycle representation satisfy the stronger Finite Beta Plus and the weaker Finite

Weakened Chernoff postulates instead of the weaker 3-Bounded Beta Plus and the stronger

3-Bounded Weakened Chernoff postulates, satisfied by the choice correspondences that ad-

mit an uncovered set representation.

1.6 Conclusion

In this paper we have characterized a choice correspondence derived from non-standard

preferences, transcending the traditional requirement of transitivity. Though other instances

of such choice rules have already been studied in the literature, as the uncovered set choice

rule, studied by Lombardi [16], the transitive core, from Nishimura [25], and the top-cycle

choice rule studied by Ehlers and Sprumont [9], the class of generalized king-chicken choice

correspondences has the advantage of allowing the comparison of them under a unified

set of axioms. We also note that the characterizations here are obtained for general, not

necessarily finite, choice spaces. This may be specially useful if one wish to use tournament

solution concepts as part of more sophisticated choice models, as the preference structure

model of Nishimura and Ok [26] and Evren et al. [11].

1.7 Proofs

1.7.1 Proof of Theorem 1

[Necessity] Suppose that there exists a complete binary relation ≿ such that, for every

choice problem A ∈ ΩX , c(A) = max(A,≿k
A). It is clear that, for every pair x, y ∈ X, x ≿

y ⇐⇒ x ∈ c({x, y}). Suppose now that A and B in 2X \ {∅} are such that {x} = c({x, y})

for every x ∈ A and y ∈ B. This implies that for every distinct x ∈ A and y ∈ B we have

x ≻ y. It is clear, then, that for no distinct x ∈ A and y ∈ B we have y ≿k
A∪B x. Therefore, if

A∪B ∈ ΩX , we must necessarily have c(A∪B) ⊆ A. This shows that c satisfies Tournament

Consistency.

Now suppose that A ⊆ ΩX is such that ∪A ∈ ΩX and x ∈ c(A) for every A ∈ A. This

implies that, for every A ∈ A and every y ∈ A, x ≿k
A y. It is clear that this implies that x ≿k

∪A y

for every y ∈ ∪A and, consequently, x ∈ c(∪A). We conclude that c satisfies Gamma.

Now let A ∈ ΩX be such that |A| ≤ k + 1. Let B ∈ ΩX be a proper subset of A and

suppose that x ∈ c(B) and B ∩ c(A) ̸= ∅. Let l := |B| and fix any z ∈ A \ B. Since
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|A \B| ≤ k + 1− l and B ∩ c(A) ̸= ∅, there must exist y ∈ B with y ≿k+1−l
A z. Since x ∈ c(B)

and y ∈ B, we must have x ≿l−1
A y. This implies that x ≿k

A z. Since this is true for every

z ∈ A \ B and x ≿l−1 y for every y ∈ B, we conclude that x ∈ c(A) and, consequently, c

satisfies (k+1)-Bounded Beta Plus.

Finally, let A ∈ ΩX and fix x and y in A. Suppose that for every B ⊆ A with |B| ≤ k + 1

and y ∈ B we have x /∈ c(B). It is easy to see that this implies that it is not true that x ≿k
A y

and, consequently, x /∈ c(A). We learn that c satisfies (k+1)-Bounded Weakened Chernoff.

[Sufficiency] Suppose now that c is a choice correspondence that satisfies Tournament

Consistency, Gamma, (k+1)-Bounded Beta Plus and (k+1)-Bounded Weakened Chernoff.

Define the binary relation ≿⊆ X×X by x ≿ y ⇐⇒ x ∈ c({x, y}). Notice that ≿ is complete.

Fix A ∈ ΩX and suppose that x ∈ max(A,≿k
A). Fix any y ∈ A. This implies that there exists

{y0, . . . , yk} ⊆ A with x = y0 ≿ · · · ≿ yk = y. Since |{y0, . . . , yk}| ≤ k+1 and yi ∈ c({yi, yi+1})

for i = 0, . . . k − 1, (k+1)-Bounded Beta Plus implies that yi ∈ c({y0, . . . , yk}) whenever

yi+1 ∈ c({y0, . . . , yk}), for i = 0, . . . , k − 1. This, in turn, implies that x = y0 ∈ c({y0, . . . , yk}).

Since y ∈ A was arbitrarily chosen, this shows that for every y ∈ A there exists B ⊆ A

with |B| ≤ k + 1, y ∈ B and x ∈ c(B). Now Gamma implies that x ∈ c(A). We learn that

max(A,≿k
A) ⊆ c(A) for every A ∈ ΩX .

Now suppose that x ∈ c(A) for some A ∈ ΩX and fix any y ∈ A. By (k+1)-Bounded

Weakened Chernoff, there must exist B ⊆ A with |B| ≤ k + 1, y ∈ B and x ∈ c(B). Since

x ∈ c(B), Tournament Consistency implies that there must exist y1 ∈ B \ {x} with x ≿ y1.

Applying Tournament Consistency again, we learn that there must exist y2 ∈ B \ {x, y1}

such that x ≿ y2 or y1 ≿ y2. This implies that x ≿2
B y2. Proceeding this way, we obtain

distinct elements y1, . . . , y|B|−1 ∈ (B \ {x}) such that x ≿i
B yi for i = 1, . . . , |B| − 1. Since

|B| ≤ k + 1, this shows that x ≿k
B z for every z ∈ B. In particular, we have x ≿k

B y, which

implies x ≿k
A y. Since y was arbitrarily chosen, we conclude that x ∈ max(A,≿k

A). Therefore,

for every A ∈ ΩX , c(A) = max(A,≿k
A), which completes the proof of the theorem.

1.7.2 Independence of the Axioms

We show through four simple examples that, whenever k ≥ 2, the axioms in Theorem

1 are independent. The label of each subsection indicates the postulate violated by the

example.
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Tournament Consistency

Fix some k ≥ 2 and let X be such that |X| ≥ 3. Fix some x ∈ X and suppose c is given

by c({x, y}) = {x} for any y ∈ X and c(A) = A otherwise. It is easy to see that c satisfies all

axioms in Theorem 1, but Tournament Consistency.

Gamma

Again, fix some k ≥ 2 and let X be such that |X| ≥ k + 2. Fix some A ∈ ΩX with

|A| ≥ k + 2 and some x ∈ A. Let c be such that c(B) = B for every B ∈ ΩX , except for A

where c(A) = A \ {x}. Note that c satisfies all postulates in Theorem 1, but Gamma.

(k+1)-Bounded Beta Plus

Now, let k ≥ 2 and X be such that |X| ≥ 3. Fix distinct x, y ∈ X and let c be such that

c(A) = A if x /∈ A and c(A) = A \ {y} if x ∈ A. The choice correspondence c satisfies all

postulates in Theorem 1, but (k+1)-Bounded Beta Plus.

(k+1)-Bounded Weakened Chernoff

Finally, let k ≥ 2 and define X := {1, 2, . . . , k + 2}. Let ≽ be the reflexive binary relation

on X such that 1 ≻ 2 ≻ · · · ≻ k+2 and, for i = 3, . . . , k+2, i ≻ j for every j ≤ i−2. It can be

verified that the choice correspondence c such that c(A) = max(A,≽k+1
A ) for every A ∈ ΩX

satisfies all the axioms in Theorem 1, but (k+1)-Bounded Weakened Chernoff. To see that

c violates (k+1)-Bounded Weakened Chernoff, notice that 1 ∈ c(X), but 1 /∈ c(A) for every

A ∈ 2X with k + 2 ∈ A and |A| ≤ k + 1.

1.7.3 Proof of Theorem 3

It is easy to show that the axioms are necessary for the representation, so we will show

only that they are sufficient. For that, suppose c is a choice correspondence that satisfies

Tournament Consistency, Gamma, Finite Beta Plus and Finite Weakened Chernoff. Again,

define the binary relation ≿⊆ X × X by x ≿ y ⇐⇒ x ∈ c({x, y}). Now fix any finite

choice problem A and let k := |A| − 1. It is easy to see that the restriction of c to 2A \ {∅}

satisfies all postulates in the statement of Theorem 1. Applying that theorem we obtain

that c(A) = max(A,≿k
A) = max(A,≿∞

A ), where the last equality is a consequence of the

cardinality of A. Now pick a choice problem A that is not finite and fix x ∈ c(A). By Finite
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Weakened Chernoff, for each y ∈ A there exists a finite subset B of A with x ∈ c(B) and

y ∈ B. By our previous observation, this implies that x ≿|B|−1
B y and, consequently, x ≿∞

A y.

We learn that c(A) ⊆ max(A,≿∞
A ). Now fix x ∈ max(A,≿∞

A ). This implies that, for each

y ∈ A, there exist a finite sequence y1, . . . , yn ∈ A such that x ≿ y1 ≿ · · · ≿ yn ≿ y. But then

x ∈ max({x, y1, . . . , yn, y},≿n+1
{x,y1,...,yn,y}) = c({x, y1, . . . , yn, y}). Since this is true for every

y ∈ A, Gamma now implies that x ∈ c(A). We conclude that c(A) = max(A,≿∞
A ), which

concludes the proof of the theorem.
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Chapter 2

Updating With a Subjective State Space

2.1 Introduction

The discussion concerning how agents react to new information is a topic extensively

studied in individual decision theory. While in a Savagean framework the state space is

regarded as an objective reality, exogenously given to the decision maker, in the context

of preferences over menus, as developed in Dekel et al. [7], the state space is subjective

and endogenous to the decision process. A connection between these two frameworks was

proposed in Ahn and Sarver [1], where they axiomatize the relations between the objective

and subjective state spaces, using the objective states from the Random Expected Utility

model proposed in Gul and Pesendorfer [14] to uniquely identify the subjective states from

the Dekel et al. [7] framework.

This connection has an important intuitive meaning, as individuals are expected to make

coherent choices transitioning between the choice over menus, as in which restaurant to

dine, to the actual choice of what to eat in the restaurant when the moment arrives. The

framework in Ahn and Sarver [1] also allow for the identification of a lack of sophistication

in the preference over menus when the decision maker realizes new states in the second

choice, meaning that they choose, with positive probability, an alternative previously consid-

ered irrelevant.

Riella [28] extends this analysis to the learning process between distinct preferences

over menus. Assume the Decision Maker is choosing where to dine in a given night and

reveal a preference during the morning and a different one after lunch. When do these two

preferences reveal that the agent has learned new information about her future preferences

and dropped some subjective states during lunch? They answer this question with the prop-
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erty of Flexibility Consistency, which uses a set of additional alternatives to identify which

subjective states were dropped.

A similar question to that of Ahn and Sarver [1] is discussed in Lu [17], where the the first

stage is a choice over a menu of acts, in the fashion of Anscombe and Aumann [2], and the

second stage is a Random Choice Rule, henceforth RCR, generated by a stochastic signal

received by the agent between the two stages. Their results allow for an outside observer,

unaware of the signal received, to evaluate the agent’s decision process and the level of

informativeness of the signal received.

In this paper we study some remaining processes of learning, to the best of our knowl-

edge not previously developed. Particularly we focus on recognizing updates in Random

Choice patterns that follow a Finite Random Expected Utility procedure, which is an adapta-

tion of the model in Gul and Pesendorfer [14] with finite state spaces. As done in Ahn and

Sarver [1], the finiteness of the state space requires the use of a tie-breaking rule with infinite

support. We also study the conditions under which a collection of RCRs may be understood

as emerging from a partition of the state space that defines either another Finite Random

Expected Utility model or a Preference Over Menus that admits a Dekel et al. [7], henceforth

DLR, representation.

Our results allow us to recognize when different patterns of choice may be understood

as resulting from an updating process between them. Suppose an individual makes a daily

choice of what to eat for lunch, but at some periods the revealed preference changes. Maybe

the Decision Maker has started a diet or choose to adopt vegetarianism and, because of this,

some of the alternatives stop being chosen or are chosen less frequently. The question we

seek to answer is when will this new revealed pattern, which we understand as a new RCR,

is actually a Bayesian update from their previously revealed pattern. This would mean that

some alternatives are chosen less frequently, but the relative frequency, or probabilities,

between some other choices remains unchanged.

For the main theorem in this paper the order of the updating is not really relevant, mean-

ing we can explain both when the learning process leads to a drop of states or to the en-

richment of the original set of states. In this sense, the theorem accommodates both the

traditional notion of Bayesian Updating, in which the state space shrinks, and that of Re-

verse Bayesianism, discussed in Karni and Viero [15], in which the state space expands. As

the characterization of Reverse Bayesianism in the transition from menus to random choice

is already discussed in Ahn and Sarver [1], in this paper we also propose a characterization

of the other direction.
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The remainder of this paper is organized as follow. In the next section we discuss the

primitives and main definitions necessary to our work. In Section 2.3 we pose our main

results, characterizing the updating between RCRs. We also provide the conditions under

which a collection of RCRs build a partition of the original one after the updating. In Section

2.4 we study the regular updating from Menus to Random Choice and provide a partitioning

result in this setting, similar to that of the previous section. The last section presents our

conclusions.

2.2 Setup

Let Z be a finite set with |Z| ≥ 2, ∆(Z) be the space of probability measures on Z and

A ⊂ ∆(Z) be the collection of all nonempty, finite subsets of ∆(Z). We call an arbitrary

element A ∈ A a choice problem or, similarly, a menu. Let ∆(∆(Z)) denote the space of all

probability distributions over ∆(Z). We will denote by S the set of possible states of nature

that will influence the individual’s preferences over ∆(Z). Let n := |Z|, since ∆(Z) ⊂ Rn we

use the euclidean distance over lotteries and denote by Bϵ(z) the open ball with radius ϵ and

center z and by Bϵ(z) its closure. We denote by intA the interior of a set A and by riA its

relative interior.

Definition 3. A random choice rule (RCR) is a function ρ : A → ∆(∆Z) that associates to

each choice problem A a probability measure ρA on A, meaning, for any A ∈ A, ρA(A) = 1

and, if B,C ∈ A are such that B ∩ C = ∅, then ρA(B ∪ C) = ρA(B) + ρA(C).

In this setup, an expected-utility function on ∆(Z) is equivalent to a vector in RZ , there-

fore, we denote expected-utility functions interchangeably as vectors and functions by u,

meaning that u(p) = u · p. We define by

U :=

{
u ∈ RZ :

∑
z∈Z

uz = 0,
∑
z∈Z

u2
z = 1

}
,

the set of all normalized (nonconstant) expected-utility functions over ∆(Z), and by ∆f (U)

the space of finitely additive probability measures over U . Given an expected-utility function

u ∈ RZ , we let M(A, u) denote the maximizers of u in A:

M(A, u) :=

{
p ∈ A : u(p) = max

q∈A
u(q)

}
.

Let U : S × ∆(Z) 7→ R be the agent’s utility function across states, such that Us ∈ RZ

is the expected-utility function that represents the agents preferences over ∆(Z) upon the
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realization of s ∈ S. If we have that, for some A ∈ A, |M(A,Us)| = 1 for every s ∈ S, then

the Random Expected Utility representation on A would be resumed to

ρA(p) = µ ({s ∈ S : p ∈ M(A,Us)}) ,

where µ is a probability distribution over S.

As we work with a finite state space, though, we will need a rule to deal with situations

where a state with positive probability leads to a tie among available alternatives. In the

original set-up of Gul and Pesendorfer [14] this problem is averted as the authors show that

it is always possible to achieve an infinite state space representation where each individual

state has zero probability.1 We follow Ahn and Sarver [1] by defining a tie-breaking rule.

Definition 4. Given a finite state space S, a tie-breaking rule for S is a map τ : S → ∆f (U)

that satisfies the following regularity condition for all A ∈ A, p ∈ A and s ∈ S:

τs ({u ∈ U : u(p) > u(q),∀q ∈ A \ {p}}) = τs

({
u ∈ U : u(p) = max

q∈A
u(q)

})
.

Note that, despite having finite states in S, the regularity condition implies that the tie-

breaking rule τs cannot have a finite support on U , otherwise it would itself lead back into

ties among lotteries.

With this we can define the Finite Random Expected Utility representation.

Definition 5. A Finite Random Expected Utility representation (FREU) is a tuple (S, U, µ, τ),

where S is a finite state space, U : S ×∆(Z) → R, µ is a probability distribution on S, and τ

is a tie-breaking rule over S such that the following statements hold:

(i) For every A ∈ A and p ∈ A,

ρA(p) =
∑
s∈S

µ(s)τs ({u ∈ U : p ∈ M(M(A,Us), u)})

(ii) For any two distinct states s, s′ ∈ S, Us and Us′ do not represent the same von

Neumann-Morgestern (vNM) preference on ∆(Z).

(iii) For every s ∈ S, µ(s) > 0 and Us is nonconstant.

In this setup every FREU representation is essentially unique. Meaning that, if (S, U, µ, τ)

and (S ′, U ′, µ′, τ ′) represent the same Random Choice Rule, then it must be the case that

for any s ∈ S there is a unique s′ ∈ S ′ such that, for every A ⊂ ∆(Z), argmaxUs(A) =

1They deal with nonregular random utility functions, requiring a tie-breaking rule in the supplemental mate-

rial to their paper.
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argmaxU ′
s′(A), µ(s) = µ′(s′) and τ s = τ ′s′, meaning that, essentially, S = S ′. Through the

remainder of this paper, whenever we say two subjective states, s, s′ are equal (s = s′),

we mean that the utilities they imply, say Us and U ′
s′, represent the same vNM preferences.

Whenever two RCRs, ρ and ρ′, have FREU representations (S, U, µ, τ) and (S ′, U ′, µ′, τ ′)

such that S ′ ⊆ S and, for every s ∈ S ′, µ′(s) = µ(s)
µ(S′)

and τ ′s = τs, we abuse notation by saying

(S ′, U, µS′ , τ) is a FREU representation of ρ′. Note that S ′ ⊆ S already implies that, for every

s ∈ S ′, Us and U ′
s represent the same vNM preferences over ∆(Z).

In section 2.4 we work with preferences over menus and its relations to RCRs. For that

we will need the following definitions.

Definition 6. A preference over menus is a binary relation ≿⊆ A×A.

Definition 7. A preference over menus ≿ has a DLR representation if there is a tuple

(S, U, µ), where S is a finite state space, U : S ×∆(Z) → R is a state-dependent expected-

utility function, and µ is a probability distribution on S, such that the following statements

hold:

(i) A ≿ B if and only if V (A) ≥ V (B), where V : A → R is defined by V (A) =∑
s∈S µ(s)maxp∈A Us(p).

(ii) For any two distinct states s, s′ ∈ S, Us and Us′ do not represent the same von

Neumann-Morgenstern preference on ∆(Z).

(iii) For every s ∈ S, µ(s) > 0 and Us is nonconstant.

For the results in 2.4 we endow A with the Hausdorff metric:

Definition 8. Let A,B ∈ A, we denote by dh the Hausdorff Metric given by

dh(A,B) := max

{
max
p∈A

min
q∈B

d(p, q),max
q∈B

min
p∈A

d(p, q)

}
.

2.3 Updating Finite Random Expected Utility representa-

tions

2.3.1 Main Result: Updating Between FREU representations

We proceed by stating our result of updating between FREU representations. Let ρ1 and

ρ2 be two RCRs, (S, U, µ, τ) and (T, U ′, µ′, τ ′) its respective FREU representations. Our main

theorem is based upon the following axiom.
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Axiom 16 (Random Consistency). For any choice problem A ∈ A and p, q ∈ A, if ρA1 (p)ρA2 (q) >

ρA1 (q)ρ
A
2 (p), then there exists a set B ∈ A and a radius δ > 0 such that, ρA∪B∪{pδ}

2 (pδ) = 0 for

every pδ ∈ Bδ(p) ∩∆(Z), but ρA∪B
1 (p) > 0.

Theorem 4. Let ρ1 and ρ2 be two stochastic choice functions that admit finite random ex-

pected utility representations. The following statements are equivalent:

1. The stochastic choice functions ρ1 and ρ2 satisfy Random Consistency;

2. either S ∩ T = ∅ or T ⊆ S and (T, U, µT , τ) is a random expected utility representation

of ρ2, where µT is the Bayesian update of µ after the observation of T .

Proof. Suppose ρ1 and ρ2 satisfy Random Consistency and S ∩ T ̸= ∅, so that µ(T ) > 0. Fix

any menu A and p ∈ A. Without loss of generality, we may assume that A ⊆ ri∆(Z).2 Let

E ⊆ ri∆(Z) be any sphere. Let C be the subset of E that includes only the maximizers of s

for all s ∈ S \ T and D be the subset of the maximizers of s for all s ∈ T . For each λ ∈ (0, 1),

define Aλ := C∪(λD+(1−λ)A). Let λ be large enough so that argmaxU(Aλ, s) ⊆ C for every

s ∈ S \ T and argmaxUs(Aλ) ⊆ λD+ (1− λ)A for every s ∈ T .3 Suppose q ∈ λD+ (1− λ)A

is such that ρAλ

2 (q) > 0 and fix p ∈ λD + (1 − λ)A with ρA
λ

1 (p) > 0.4 We note that this

implies that there exist unique s, s′ ∈ T with p ∈ argmaxU(Aλ, s) and q ∈ argmaxU(Aλ, s′).

Suppose now that either ρA
λ

1 (q) = 0 or ρA
λ

2 (p) = 0. By Random Consistency, there must

exist a finite set B ⊆ ∆(Z) and δ > 0 such that ρAλ∪B
1 (p) > 0, but ρA

λ∪B∪{pδ}
2 (pδ) = 0 for

every pδ ∈ Bδ(p) ∩ ∆(Z). However, ρ
Aλ∪B∪{pδ}
2 (pδ) = 0 for every pδ ∈ Bδ(p) can happen

only if maxr∈B U(r, s) > U(p, s), which would imply that ρAλ∪B
1 (p) = 0. We conclude that, for

any p ∈ λD + (1 − λ)A, ρAλ

1 (p) > 0 if and only if ρAλ

2 (p) > 0. We note that this implies that

T ⊆ S. Fix any p, q ∈ λD + (1 − λ)A with ρA
λ

1 (p) > 0 and ρA
λ

1 (q) > 0. Assume, without loss

of generality, that ρAλ

1 (p)ρA
λ

2 (q) ≥ ρA
λ

1 (q)ρA
λ

2 (p). There must exist a unique s ∈ T such that

p ∈ argmaxr∈Aλ U(r, s). But then, there exists a finite set B and δ > 0 with ρ
Aλ∪B∪{pδ}
2 (pδ) = 0

for every pδ ∈ Bδ(p) only if maxr∈B U(r, s) > U(p, s). This implies that ρAλ∪B
1 (p) = 0, so that,

2Otherwise, just work with 1
2A+ 1

2{p}, where p is any lottery with full support.
3Such λ must exist since, if we took λ = 1, then Aλ = C∪D, and, for any s ∈ S∪T , | argmaxUs(Aλ)| = 1. If

s ∈ S \ T , then argmaxUs(Aλ) ⊆ C, and argmaxUs(Aλ) ⊆ D, otherwise. Therefore, for every λ ∈ (0, 1) close

enough to 1, maxUs(C) > maxUs (λD + (1− λ)A), if s ∈ S \ T , and maxUs(C) < maxUs (λD + (1− λ)A), if

s ∈ T .

Note that, in this context, if a ∈ argmaxUs(A) and qs = argmaxUs(D) for some s ∈ T , then

Us (λqs + (1− λ)a) > Us (λq + (1− λ)a), for any q ∈ D \ {qs}, Us (λqs + (1− λ)a) ≥ Us (λqs + (1− λ)a′) for

any a′ ∈ A \ {a} and Us (λqs + (1− λ)a) = Us (λqs + (1− λ)a′) if, and only if, {a, a′} ⊆ argmaxUs(A).
4Such a p is guaranteed to exist because µ(T ) > 0.
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by Random Consistency, we must have ρA
λ

1 (p)ρA
λ

2 (q) = ρA
λ

1 (q)ρA
λ

2 (p). We conclude that, for

any p, q ∈ λD + (1− λ)A with ρA
λ

1 (q) > 0, we must have

ρA
λ

1 (p)

ρA
λ

1 (q)
=

ρA
λ

2 (p)

ρA
λ

2 (q)
.

Now note that ∑
p∈λD+(1−λ)A

ρ1(p) = µ(T )

and ∑
p∈λD+(1−λ)A

ρ2(p) = µ′(T ) = 1.

But then, for any p ∈ λD + (1− λ)A,

ρA
λ

1 (p)

µ(T )
=

ρA
λ

1 (p)∑
q∈λD+(1−λ)A ρ1(q)

=
ρA

λ

2 (p)∑
q∈λD+(1−λ)A ρ2(q)

= ρA
λ

2 (p)

And, therefore, for any p ∈ A,

ρA2 (p) =
∑
q∈D

ρA
λ

2 (λq + (1− λ)p)

=
1

µ(T )

∑
q∈D

ρA
λ

1 (λq + (1− λ)p)

=
1

µ(T )

∑
q∈D

∑
s∈S

µ(s)τs
({

u ∈ U : λq + (1− λ)p ∈ M(M(Aλ, Us), u)
})

=
1

µ(T )

∑
q∈D

∑
s∈T

µ(s)τs
({

u ∈ U : λq + (1− λ)p ∈ M(M(Aλ, Us), u)
})

=
1

µ(T )

∑
s∈T

µ(s)τs ({u ∈ U : p ∈ M(M(A,Us), u)})

This proves statement 2. Conversely, suppose there exists a set T ⊆ S, such that (T, U, µT , τ)

is a FREU representation of ρ2. Fix a menu A ⊆ ri∆(Z) and p, q ∈ A with ρA1 (p)ρ
A
2 (q) >

ρA1 (q)ρ
A
2 (p). For that to happen, we must have ρA2 (q) > 0, which also implies that ρA1 (q) > 0.

Therefore, the previous condition can be written as

ρA1 (p)

ρA1 (q)
>

ρA2 (p)

ρA2 (q)
.

It is clear that this can happen only if there exists s∗ ∈ S\T with τs∗ ({u ∈ U : p ∈ M(M(A,Us∗), u)}) >

0. Following the same steps as in the proof of the main result in Riella [28], we can

find a finite set B such that maxq∈B U(q, s) > maxq∈A U(q, s) for every s ∈ S \ {s∗}, but
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U(p, s∗) > maxq∈B U(q, s∗). Let δ be small enough so that maxq∈B U(q, s) > U(pδ, s) for ev-

ery s ∈ S \ {s∗} and pδ ∈ Bδ(p). Note that this implies that ρA∪B∪{pδ}
2 (pδ) = 0 for every

pδ ∈ Bδ(p), but ρA∪B
1 (p) > 0. That is, ρ1 and ρ2 satisfy Random Consistency. Finally, if

S ∩ T = ∅, it is clear that ρA1 (p)ρA2 (q) > ρA1 (q)ρ
A
2 (p) implies that there exists s∗ ∈ S \ T with

τs∗ ({u ∈ U : p ∈ M(M(A,Us∗), u)}) > 0. We may now follow the same steps as above to find

a menu B and a δ > 0 such that ρA∪B∪{pδ}
2 (pδ) = 0 for every pδ ∈ Bδ(p), but ρA∪B

1 (p) > 0.

Again, this shows that ρ1 and ρ2 satisfy Random Consistency.

If we want to make sure that at least one state is shared among S and T , meaning

µ(T ) > 0, we can add the following axiom:

Axiom 17. For every A ∈ A, supp(ρA1 ) ∩ supp(ρA2 ) ̸= ∅.

Corollary 3. ρ1 and ρ2 satisfy Random Consistency and Axiom 17 if, and only if, T ⊆ S, µ2

is the Bayesian update of µ after the observation of T and they share the same tie breaking

rule (τ = τ ′).

Proof. Take some p ∈ ri∆(Z) and ϵ > 0 such that Bϵ(p) ∩ ∆(Z) ⊂ ri∆(Z) and define, for

each s ∈ S ∪ T , qs = argmaxq∈Bϵ(p)
Us(q). Note that qs = qs′ implies that Us and Us′ represent

the same vNM preference over lotteries. Take now A := {qs ∈ ∆(Z) : s ∈ S ∪ T}. We must

have that, if supp(ρA1 )∩supp(ρA2 ) ̸= ∅, then argmaxq∈Bϵ(p)
Us(q) = argmaxq∈Bϵ(p)

Us′(q) meaning

that there are s ∈ S and s′ ∈ T such that Us and Us′ represent the same vNM preferences,

implying s = s′ and s ∈ S ∩ T .

2.3.2 Multiple Signals and Partitions

Suppose now that the information received comes from a set o signals that is sufficiently

informative so that each subjective state is only realized after one possible signal, though

the same signal may still lead to different subjective states in the second stage. In this case

the collection of RCRs after the updating build a partition of the broader RCR from the first

stage.

To characterize the relations between the original RCR an the collection formed after the

signal in this setting, consider a finite collection of I + 1 random choice rules, ρ and {ρi}i∈I ,

with FREU representations (S, U, µ, τ) and (Si, U
i, µi, τ i), such that, for each i ∈ I, ρ and ρi

satisfy Random Consistency, Axiom 17 and the following axioms.
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Axiom 18. For every i, j ∈ I, and A ∈ A, if, for some p ∈ ri∆(Z) and δ > 0, we have

ρ
A∪{pδ}
i (pδ) > 0 for every pδ ∈ Bδ(p) ∩∆(Z), then there is D ∈ A with ρ

A∪D∪{pδ}
i (pδ) > 0, but

ρ
A∪D∪{pδ}
j (pδ) = 0, for every pδ ∈ Bδ(p) ∩∆(Z).

Axiom 19. For any choice problem A ∈ A, supp(ρA) =
⋃

i∈I supp(ρAi ).

To prove Proposition 1 we first state and prove the following Lemma:

Lemma 3. A collection of RCRs {ρi}i∈I with FREU representations {(Si, U
i, µi, τ i)}i∈I satis-

fies Axiom 18 if, and only if, for any i, j ∈ I, i ̸= j, we have Si ∩ Sj = {∅}.

Proof. As stated in Section 2.2, Si ∩ Sj = {∅} means that for any s ∈ Si and s′ ∈ Sj, U i
s and

U j
s′ do not represent the same vNM preferences. Fix any arbitrary i, j ∈ I with i ̸= j.

[ =⇒ ] Suppose {ρi, ρj} satisfies Axiom 18. Take some p ∈ ri∆(Z) and ϵ > 0 such that

Bϵ(p) ∩∆(Z) ⊂ ri∆(Z). Define Û : Si ∪ Sj ×∆(Z) 7→ R as

Ûs :=

U i
s if s ∈ Si

U j
s if s ∈ Sj \ Si

.

For each s ∈ Si ∪ Sj, define qs = argmaxq∈Bϵ(p)∩∆(Z)Ûs(q) and let A := {qs ∈ ∆(Z) : s ∈

Si ∪ Sj}. Now choose some q ∈ A such that ρAi (q) > 0. By construction, there is an unique

s ∈ Si with Ûs(q) > maxp∈A\{q} Ûs(p) and Ûs′(q) < maxp∈A\{q} Ûs′(p) for every s′ ∈ (Si ∪ Sj)\ s.

We must then have that, for some δ > 0, ρ(A\{q})∪{qδ}
i (qδ) > 0 for every qδ ∈ Bδ(q) ∩ ∆(Z)

which, by 18, implies the existence of some D ∈ A such that ρ(A\{q})∪D∪{qδ}
i (qδ) > 0, but

ρ
(A\{q})∪D∪{qδ}
j (qδ) = 0, for every qδ ∈ Bδ(q) ∩∆(Z). For ρ(A\{q})∪D∪{qδ}

j (qδ) = 0 to be true for

every qδ ∈ Bδ(q) ∩ ∆(Z), it must be the case that Ûs′(q) < maxp∈(A\{q})∪D Ûs′(p) for every

s′ ∈ Sj, which can only happen if s /∈ Sj. Since we took s ∈ Si arbitrarily, we must have that

Si ∩ Sj = {∅}.

[ ⇐= ] Suppose that ρi and ρj have FREU representations such that Si ∩ Sj = {∅}. Take

some A ∈ A, p ∈ ri∆(Z) and δ > 0 such that ρA∪{pδ}
i (pδ) > 0 for every pδ ∈ Bδ(p) ∩∆(Z). Fix

some s ∈ Si such that, µi(s)τ is ({u ∈ U : p ∈ M(M(A,U i
s), u)}) > 0. Let v̂ be the vector in RZ

such that v̂ · q = U i
s(q) for every q ∈ ∆(Z) and

v := v̂ −

(
1

|Z|
∑
z∈Z

v̂z

)
1,

where 1 = (1, . . . , 1) is the unit vector of size |Z|. Take ϵ > 0 so that Bd(p,p−ϵv)(p − ϵv) ∩

Span(∆(Z)) ⊂ ∆(Z). Now, for each s′ ∈ Sj, let qs′ := argmaxq∈Bd(p,p−ϵv)(p−ϵv) U
j
s′(q) and

D := {qs′ : s′ ∈ Sj}. Note that, since s /∈ Sj, p /∈ D, U i
s(p) > maxq∈D U i

s(q) and, for each
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s′ ∈ Sj, U
j
s′(p) < U j

s′(qs′). Therefore, choosing δ′ ∈ (0, δ] small enough, we must have that

ρ
A∪D∪{pδ′}
i (pδ

′
) > 0, but ρA∪D∪{pδ′}

j (pδ
′
) = 0, for every pδ

′ ∈ Bδ′(p) ∩∆(Z), proving that Axiom

18 is satisfied.

Proposition 1. Let I be a finite set of indices and suppose ρ and {ρi}i∈I are random choice

rules with FREU representations such that, for each i ∈ I, ρ and ρi satisfy Random Consis-

tency and Axiom 17. Then, the collection {ρi}i∈I satisfy Axioms 18 and 19 if, and only if, the

collection {Si}i∈I is a partition of S and each ρi has a FREU representation (Si, U, µSi
, τ).

Proof. [ =⇒ ] Suppose the collection {ρi}i∈I satisfies Axioms 18 and 19. Since, for each

i ∈ I, ρ and ρi satisfy Random Consistency and Axiom 17, Theorem 4 implies that Si ⊂ S,

µi = µSi
and, for each s ∈ Si, τs = τ is. Therefore, for each i ∈ I, (Si, U, µSi

, τ) is a FREU

representation of ρi. Since the collection {ρi}i∈I satisfies Axiom 18, Lemma 3 implies that,

for each i, j ∈ I, i ̸= j, Si ∩ Sj = {∅}. It remains for us to show that S ⊆
⋃

i∈I Si. To

see that take some p ∈ ri∆(Z) and ϵ > 0 such that Bϵ(p) ∩ ∆(Z) ⊂ ri∆(Z) and, as we

did in the proof of Lemma 3, for each s ∈ S, define qs = argmaxq∈Bϵ(p)∩∆(Z)Us(q) and let

A := {qs ∈ ∆(Z) : s ∈ S}. Now, suppose there is s′ ∈ S \
⋃

i∈I Si. But then we should have

qs′ ∈ supp(ρA) \
⋃

i∈I supp(ρAi ), which contradicts Axiom 19.

[ ⇐= ] Conversely, suppose {Si}i∈I is a partition of S. Axiom 19 is an immediate conse-

quence of this fact, and Lemma 3 implies that Axiom 18 holds.

2.4 Updating from Menus to Random Choice Rules

Here we develop the traditional Bayesian updating direction between Preferences Over

Menus and Random Choice Rules. This is the opposite direction of the unforeseen con-

tingencies representations from Ahn and Sarver [1] and a straightforward application of the

second part of the Proposition 2 in their paper. We also explore the partitioning of a Prefer-

ence Over Menus into a collection of RCRs, similarly to what we have done in the previous

section between RCRs. The following axiom is a restatement of Axiom 2 in Ahn and Sarver

[1].

Axiom 20. Let A ∈ A be a menu and p ∈ ∆(Z) \ A an arbitrary lottery. If there is δ > 0

such that ρD∪{pδ}(pδ) > 0 for every pδ ∈ Bδ(p) ∩ ∆(Z) and D ∈ A with dh(A,D) < δ, then

A ∪ {p} ≻ A.
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Proposition 2. Let ρ be a RCR that admits a FREU representation and ≿ a preference over

menus that admits a DLR representation, then ρ and ≿ satisfy axiom 20 if, and only if, ≿ has

a DLR representation (S, U, µ) such that (T, U, µT , τ), T ⊆ S, is a FREU representation of ρ.

Proof. Let (S, U ′, µ′) be a DLR representation of ≿ and (T, Û , µ̂, τ) a representation of ρ. The

second part of the Proposition 2 in Ahn and Sarver [1] assures us that ρ and ≿ satisfy Axiom

20 if, and only if, T ⊆ S. This means that, for each t ∈ T there is an unique s ∈ S such that

Û t and U ′
s represent the same vNM preference over ∆(Z). Therefore, the necessity of Axiom

20 follows directly. It remains for us to show that there is a state dependent utility function U

and a probability distribution over states µ such that (S, U, µ) is a DLR representation of ≿

and (T, U, µT , τ) is a FREU representation of ρ.

For that, define

µ(s) :=

µ′(T )µ̂(s) if s ∈ T

µ′(s) if s ∈ S \ T
,

and

Us :=
µ′(s)

µ(s)
U ′
s.

Notice this implies that, for any A ∈ A and p ∈ A,∑
s∈S

µ(s)max
p∈A

Us(p) =
∑

s∈S\T

µ′(s)max
p∈A

[
µ′(s)

µ′(s)
U ′
s(p)

]
+
∑
s∈T

µ′(T )µ̂(s)max
p∈A

[
µ′(s)

µ′(T )µ̂(s)
U ′
s(p)

]
=
∑
s∈S

µ′(s)max
p∈A

U ′
s(p),

and

ρA(p) =
∑
s∈T

µ̂(s)τs

({
u ∈ U : p ∈ M(M(A, Ûs), u)

})
=
∑
s∈T

µ(s)

µ′(T )
τs ({u ∈ U : p ∈ M(M(A,Us), u)})

=
∑
s∈T

µT (s)τs ({u ∈ U : p ∈ M(M(A,Us), u)}) .

Therefore we have that (S, U, µ) is a DLR representation of ≿ and (T, U, µT , τ) is a repre-

sentation of ρ.

We now turn to the question of when a collection of Random Choice Rules, {ρi}i∈I , with

FREU representations (Si, U
i, µi, τ i), is a partition of the subjective state space from a DLR

representation of a preference over menus ≿.
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Axiom 21. A ∪ {p} ≻ A if, and only if, there is i ∈ I and δ > 0 such that, ρD∪{pδ}
i (pδ) > 0 for

every pδ ∈ Bδ(p) ∩∆(Z) and D ∈ A with dh(A,D) < δ.

Proposition 3. Let ≿ be a preference over menus that admits a DLR representation and

{ρi}i∈I be a collection of Random Choice Rules with FREU representations. Then, {ρi}i∈I
satisfies Axiom 18 and (≿, {ρi}i∈I) satisfy Axiom 21 if, and only if, ≿ has a DLR represen-

tation (S, U, µ) such that, for each i ∈ I, (Si, U, µSi
, τi), is a FREU representation of ρi and

{Si}i∈I is a partition of S.

Proof. [ =⇒ ] Let (S, U ′, µ′) be any DLR representation for ≿ and for each ρi let (Si, Û
i, µ̂i, τ i)

be its FREU representation. By Lemma 3, we know that for each i, j ∈ I, with i ̸= j,

Si ∩ Sj = {∅}. Fix some i ∈ I. Axiom 21 implies that, if there is some δ > 0 such that,

ρ
D∪{pδ}
i (pδ) > 0 for every pδ ∈ Bδ(p) ∩ ∆(Z) and D ∈ A with dh(A,D) < δ, then we must

have A ∪ {p} ≻ A, meaning that ≿ and ρi satisfy Axiom 20. Therefore, by Proposition 2, for

each i ∈ I, we have that Si ⊆ S. Now, similarly to what we did in the proof of Proposition 1,

take some p ∈ ri∆(Z) and ϵ > 0 such that Bϵ(p) ∩∆(Z) ⊂ ri∆(Z) and for each s ∈ S, define

q′s = argmaxq∈Bϵ(p)∩∆(Z)U
′
s(q) and, for each i ∈ I and ŝ ∈ Si, qiŝ = argmaxq∈Bϵ(p)∩∆(Z)Ûŝ(q).

Let A′ := {qs′ ∈ ∆(Z) : s′ ∈ S} and Â := {qŝ ∈ ∆(Z) : ŝ ∈ Si, i ∈ I}. Since Si ⊆ S

for every i ∈ I, we must have that Â ⊆ A′. If there was some s ∈ S \
⋃

i∈I Si, we should

have that q′s /∈ Â, Û i
ŝ(q

′
s) < maxq∈Â Û i

ŝ(q) and, for some δ > 0 small enough, for every i ∈ I,

ρ
D∪{pδ}
i (pδ) = 0 for every pδ ∈ Bδ(q

′
s) ∩ ∆(Z), D ∈ A with dh(A

′, D) < δ. This contradicts

Axiom 21, since {q′s} = argmaxq∈A′ U ′
s(q), implying A′ ≻ A′ \ {q′s}. Therefore, we must have

S =
⋃

i∈I Si and {Si}i∈I is a partition of S.

Now define µ :=
∑

i∈I µ
′(Si)µ̂

i and Us := µ′(s)
µ(s)

U ′
s, for every s ∈ S, and note that, for any

A ∈ A and s ∈ Ŝ,

µ′(s)max
p∈A

U ′
s(p) =

∑
i∈I µ

′(S ′
i)µ̂

i(s)∑
i∈I µ

′(S ′
i)µ̂

i(s)
µ′(s)max

p∈A
U ′
s(p)

=
∑
i∈I

µ′(S ′
i)µ̂

i(s)max
p∈A

µ′(s)∑
i∈I µ

′(S ′
i)µ̂

i(s)
U ′
s(p)

= µ(s)max
p∈A

Us(p),

meaning that (S, U, µ) is a DLR representation for ≿. Since, for each i ∈ I and s ∈ S,

µSi
(s) = µ̂i(s) and Û i

s and Us represent the same vNM preferences on ∆(Z), we have that,

for each i ∈ I, (Si, U, µSi
, τ) is a FREU representation of ρi.

[ ⇐= ] Suppose now ≿ has a DLR representation (S, U, µ) such that for each i ∈ I,

(Si, U, µSi
, τ) is a FREU representation of ρi and {Si}i∈I is a partition of S. Lemma 3 assures
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us that Axiom 18 is satisfied, so we only need to show that Axiom 21 also holds. Fix some

arbitrary A ∈ A, p ∈ ∆(Z) and suppose A ∪ {p} ≻ A, this implies that, for some s ∈ S,

Us(p) > maxa∈A Us(a). Since A is finite and Us is continuous, we must have that there is

δ > 0 such that, for every pδ ∈ Bδ(p), Us(p
δ) > maxa∈A Us(a). Since s ∈ Si for some i ∈ I

and, we must have µSi
(s) > 0 and ρ

A∪(pδ)
i (pδ) > 0, for every pδ ∈ Bδ(p).

2.5 Conclusion

In this paper we extended the theory of Bayesian and Reverse Bayesian updating to the

learning revealed between Random Choice Rules. We worked in a framework of Finite Ran-

dom Expected Utilities already developed in Gul and Pesendorfer [14] and Ahn and Sarver

[1]. We proposed the property of Random Consistency that is closely related to the Axiom 2

in Ahn and Sarver [1] and to the property of Flexibility Consistency in Riella [28], which apply

to the transition from menus to random choice and between menus, respectively. We also

developed the characterization of when a collection of Random Choice Rules represents a

partition of the state space from another broader Random Choice Rule or from a Preference

Over Menus.

A possible extension from the work in this paper would be to study a way to recognize

when two Random Choice Rules may, or may not, represent the updating of an unknown

broader Random Choice Rule or Preference Over Menus. Another way forward is to prove

the equivalence of the updating between worlds, meaning that, if (≿1, ρ1) and (≿2, ρ2) have

DLR-GP representations (S1, U1, µ1, τ1) and (S2, U2, µ2, τ2), then ≿1 and ≿2 satisfy Random

Consistency, as proposed by Riella [28], if, and only if, ρ1 and ρ2 satisfy Random Consistency.
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