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RESUMO 

 
A irrigação é o principal responsável pelo aumento da produtividade dos cultivos. Os sistemas 

de irrigação por pivô central (SIPC) são líderes em irrigação mecanizada no Brasil, com 

expressivo crescimento nas últimas décadas e projeção de aumento de mais de 134% de área 

até 2040. O método mais utilizado para identificação de SIPC é baseado na interpretação visual 

e mapeamento manual das feições circulares, tornando a tarefa demorada e trabalhosa. Nesse 

contexto, métodos baseados em Deep Learning (DL) apresentam grande potencial na 

classificação de imagens de sensoriamento remoto, utilizando Convolutional Neural Networks 

(CNN’s). O uso de DL provoca uma revolução na classificação de imagens, superando métodos 

tradicionais e alcançando maior precisão e eficiência, permitindo monitoramento regional e 

contínuo com baixo custo e agilidade. Essa pesquisa teve como objetivo aplicação de técnicas 

de DL utilizando algoritmos baseados em CNN’s para identificação de SIPC em imagens de 

sensoriamento remoto. O presente trabalho foi dividido em três capítulos principais: (a) 

identificação de SIPC em imagens Landsat-8/OLI, utilizando segmentação semântica com três 

algoritmos de CNN (U-Net, Deep ResUnet e SharpMask); (b) detecção de SIPC usando 

segmentação de instâncias de imagens multitemporais Sentinel-1/SAR (duas polarizações, VV 

e VH) utilizando o algoritmo Mask-RCNN, com o backbone ResNeXt-101-32x8d; e (c) 

detecção de SIPC utilizando imagens multitemporais Sentinel-2/MSI com diferentes 

percentuais de nuvens e segmentação de instâncias utilizando Mask-RCNN, com o backbone 

ResNext-101. As etapas metodológicas foram distintas entre os capítulos e todas apresentaram 

altos valores de métricas e grande capacidade de detecção de SIPC. As classificações utilizando 

imagens Landsat-8/OLI, e os algoritmos U-Net, Depp ResUnet e SharpMask tiveram 

respectivamente 0,96, 0,95 e 0,92 de coeficientes Kappa. As classificações usando imagens 

Sentinel-1/SAR apresentaram melhores métricas na combinação das duas polarizações VV+VH 

(75%AP, 91%AP50 e 86%AP75). A classificação de imagens Sentinel-2/MSI com nuvens 

apresentou métricas no conjunto de 6 imagens sem nuvens (80%AP e 93%AP50) bem próximas 

aos valores do conjunto de imagens com cenário extremo de nuvens (74%AP e 88%AP50), 

demonstrando que a utilização de imagens multitemporais, aumenta o poder preditivo no 

aprendizado. Uma contribuição significativa da pesquisa foi a proposição de reconstrução de 

imagens de grandes áreas, utilizando o algoritmo de janela deslizante, permitindo várias 

sobreposições de imagens classificadas e uma melhor estimativa de pivô por pixel. O presente 

estudo possibilitou o estabelecimento de metodologia adequada para detecção automática de 

pivô central utilizando três tipos diferentes de imagens de sensoriamento remoto, que estão 
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disponíveis gratuitamente, além de um banco de dados com vetores de SIPC no Brasil Central. 

Palavras – chave: Deep learning; convolutional neural network; sensoriamento remoto; 

reconstrução de mosaicos. 
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ABSTRACT 

 

Irrigation is primarily responsible for increasing crop productivity. Center pivot irrigation 

systems (CPIS) are leaders in mechanized irrigation in Brazil, with significant growth in recent 

decades and a projected increase of more than 134% in area by 2040. The most used method 

for identifying CPIS is based on the interpretation visual and manual mapping of circular 

features, making the task time-consuming and laborious. In this context, methods based on 

Deep Learning (DL) have great potential in the classification of remote sensing images, using 

Convolutional Neural Networks (CNN's). The use of Deep Learning causes a revolution in 

image classification, surpassing traditional methods and achieving greater precision and 

efficiency, allowing regional and continuous monitoring with low cost and agility. This research 

aimed to apply DL techniques using algorithms based on CNN's to identify CIPS in remote 

sensing images. The present work was divided into three main chapters: (a) identification of 

CIPS in Landsat-8/OLI images, using semantic segmentation with three CNN algorithms (U-

Net, Deep ResUnet and SharpMask); (b) CPIS detection using Sentinel-1/SAR multitemporal 

image instance segmentation (two polarizations, VV and VH) using the Mask-RCNN 

algorithm, with the ResNeXt-101-32x8d backbone; and (c) SIPC detection using Sentinel-

2/MSI multitemporal images with different percentages of clouds and instance segmentation 

using Mask-RCNN, with the ResNext-101 backbone. The methodological steps were different 

between the chapters and all presented high metric values and great CPIS detection capacity. 

The classifications using Landsat-8/OLI images, and the U-Net, Depp ResUnet and SharpMask 

algorithms had respectively 0.96, 0.95 and 0.92 of Kappa coefficients. Classifications using 

Sentinel-1/SAR images showed better metrics in the combination of the two VV+VH 

polarizations (75%AP, 91%AP50 and 86%AP75). The classification of Sentinel-2/MSI images 

with clouds presented metrics in the set of 6 images without clouds (80%AP and 93%AP50) 

very close to the values of the set of images with extreme cloud scenario (74%AP and 

88%AP50), demonstrating that the use of multitemporal images increases the predictive power 

in learning. A significant contribution of the research was the proposition of reconstruction of 

images of large areas, using the sliding window algorithm, allowing several overlaps of 

classified images and a better estimation of pivot per pixel. The present study made it possible 

to establish an adequate methodology for automatic center pivot detection using three different 

types of remote sensing images, which are freely available, in addition to a database with CPIS 

vectors in Central Brazil. 
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CAPÍTULO 

I. APRESENTAÇÃO 

 

I.1 Introdução  

 

Recentemente, a população mundial ultrapassou 7,7 bilhões de habitantes e as projeções 

indicam que até 2100, essa marca atinja 11,6 bilhões (ONU Department of Economic and Social 

Affairs., 2019), isso torna as estratégias de produção agrícola fundamentais para garantir a 

segurança alimentar (Godfray et al., 2010; Pollice et al., 2018; Tilman & Clark, 2015) 

No setor agrícola, o aumento da produção deve estar associado ao uso de técnicas e 

tecnologias capazes de tornar o uso dos recursos hídricos na agricultura eficiente e assim 

garantir o desenvolvimento sustentável (Beltran-Pea et al., 2020; Foley et al., 2011; Siebert & 

Döll, 2010). Os sistemas de irrigação são tecnologias fundamentais na intensificação da 

produção agrícola, podendo melhorar o rendimento da maioria das culturas de 100% à 400% 

(Alexandridis et al., 2008). 

O Sistema de Irrigação por Pivô Central (SIPC) é uma das técnicas mais avançadas de 

irrigação, com capacidade de distribuição uniforme de água e de diferentes tipos de fertilizantes, 

além disso, utilizam alto grau de automação dos processos e podem ser instalados em diferentes 

tipos de solos e em grandes áreas. As áreas irrigadas por SIPC no Brasil tiveram aumento 

significativo nas últimas décadas, saltando de 30.852 hectares em 1985, para 1,556 milhão de 

hectares em 2019, e as projeções indicam que em 2040 o país atinja 3,654 milhões de hectares, 

além disso, os estados de Minas Gerais, Goiás, Bahia e São Paulo concentram 76% desse total 

(ANA - Agência Nacional de Águas e Saneamento Básico, 2021). 

O monitoramento de áreas irrigadas é crucial para o desenvolvimento de políticas 

públicas relacionadas a gestão dos recursos hídricos, entretanto, em áreas com dimensões 

continentais como o Brasil a sua realização se torna um grande desafio. Nesse sentido, o 

sensoriamento remoto surge como uma poderosa ferramenta pois permite que grandes áreas 

possam ser monitoradas com rapidez, periodicidade, custo-efetividade e com considerável 

confiabilidade dos dados. 

Desde a década de 70 e 80 até atualmente, os estudos de monitoramento de sistemas de 

irrigação são baseados principalmente na interpretação visual de imagens de sensoriamento 

remoto, e as digitalizações de cada feição são realizadas manualmente (ANA - Agência 
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Nacional de Águas e Saneamento Básico, 2021; Ferreira et al., 2011; Rundquist et al., 1989; 

Sano et al., 2005; Schmidt et al., 2004). Esses estudos normalmente são demorados e 

apresentam alto custo, devido a necessidade de uma equipe de especialistas para vetorizarem 

as feições individualmente. Por conterem variados tipos de cultivos agrícola, com cores, 

texturas e resposta espectral distintas, os SIPC nem sempre tem um comportamento semelhante, 

o que dificulta sua identificação utilizando os métodos de classificação automática com base na 

resposta espectral de pixels ou índices de vegetação. 

Um método muito utilizado para a detecção automática de círculos é o Hough Transform 

(HT) (Duda & Hart, 1972), nele, cada ponto de característica é transformado em um espaço de 

parâmetros tridimensional, uma imagem de contorno binária expressa por votação, a 

possibilidade de haver um círculo, com as informações de coordenadas (x, y) e do raio (r) do 

objeto, porém, o uso desse método em imagens de satélite apresenta precisão limitada e grande 

custo computacional (Chiu et al., 2010). Yanqing Wang et al. (2004), aplicaram o método para 

identificação automática de tanques de óleos circulares, e constatou que em imagens com mais 

complexidade do espaço paramétrico 3d, a tarefa se torna mais difícil e a identificação de 

semicírculos ou círculos irregulares se torna deficitária. 

Os pivôs centrais apresentam feições bem características em imagens aéreas e de 

satélite. Os pivôs tem formas circulares, porém com características espectrais que podem variar 

dependendo do cultivo a ser explorado. Dessa forma, a utilização de métodos de inteligência 

artificial tem um grande potencial para esse alvo. Entretanto, a escolha do método é uma etapa 

crucial. Modelos clássicos como árvores de decisão, floresta randômicas ou vizinhos mais 

próximos tendem a ser muito limitados para esse alvo, uma vez que a análise é feita por pixel, 

um pixel por vez (Ma et al., 2019). Nesse contexto, as técnicas de Deep Learning (DL) 

juntamente com arquiteturas conhecidas como Convolutional Neural Network (CNN) ou redes 

neurais convolucionais, têm apresentado grande potencial para detecção automática em 

imagens, uma vez que o aprendizado considera diferentes níveis de abstrações em arquiteturas 

hierárquicas com inúmeras camadas ocultas (Guo et al., 2016). O DL permite o entendimento 

não só de pixels isolados, mas também de interações por processar recursos de baixo nível 

(cantos e bordas) e alto nível (cenas completas) em matrizes multidimensionais (Lecun et al., 

2015). O DL é uma subárea da aprendizagem de máquina que utiliza algoritmos para processar 

dados com alto grau de complexidade, além disso, usa camadas de neurônios matemáticos para 

processar dados, onde a informação é processada e passada de uma camada para outra, com a 

saída da camada anterior fornecendo o dado de entrada para a próxima camada (Schmidhuber, 
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2015).  

O DL promoveu avanços notáveis no campo da visão computacional e seus modelos são 

utilizados na solução de problemas em diversas áreas do conhecimento, como reconhecimento 

de padrões, reconhecimento de fala, processamento de linguagem natural, sistemas de 

recomendações, entre outras (Liu et al., 2017; Ma et al., 2019). As técnicas de DL tiveram 

extraordinário progresso na comunidade de sensoriamento remoto, especialmente a partir de 

2014 (Cheng et al., 2020), e os modelos mais utilizados são baseados em arquiteturas de CNN’s, 

que conduzem trabalhos em diversas aplicações, como: classificação de imagens (Scott et al., 

2017; Zhan et al., 2017), detecção de objetos (Ammour et al., 2017; Dong & Lin, 2020; Yu et 

al., 2017), segmentação semântica (Saraiva et al., 2020; Wang et al., 2020; Zhao et al., 2017) e 

segmentação de instâncias (Carvalho et al., 2021; Mou et al., 2019; Su et al., 2019). 

A segmentação semântica profunda é uma das tarefas de alto nível comumente utilizada 

para compreensão completa da cena, diferentemente da classificação de imagens, nela todas as 

partes do objeto interagem com mais precisão, de forma a identificar e agrupar os pixels da 

imagem que estão semanticamente juntos (Garcia-Garcia et al., 2017; Guo et al., 2016). A 

segmentação de instâncias é considerada uma etapa evolutiva da segmentação semântica, seu 

objetivo principal é representar objetos de uma mesma classe separados em diferentes 

instâncias, permitindo uma compreensão individualizada de cada objeto, além disso, o resultado 

do processamento são caixas delimitadoras e as máscaras de segmentação (Carvalho et al., 

2021). 

Zhang et al. (2018) foram precursores na utilização de CNN para detecção automática 

de SIPC, utilizando as bandas RGB (Red, Green e Blue) de imagens Landsat 5-TM do período 

de seca. O método utilizado identifica o centro do pivô baseado em variação, onde o pixel de 

menor valor é considerado o ponto central do SIPC, e a partir desse pixel, um quadrado de 

tamanho fixo pré-definido é aplicado para demarcação da área do pivô. Além de não identificar 

pivôs grandes, maiores que a área pré-definida, a área demarcada pode não necessariamente 

representar a área do pivô, uma vez que eles apresentam grande variação de tamanho. 

I.2 Objetivos 

A presente tese possui como objetivo geral propor um aprimoramento das técnicas de 

identificação de sistemas de irrigação por pivô central em áreas localizadas na região central do 

Brasil a partir de dados de sensoriamento remoto, utilizando classificação automática com 

técnicas de Deep Learning. 

Os objetivos específicos desta tese estão elucidados separadamente por cada capítulo a 
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seguir: 

 

 Capítulo 2 

➢ Avaliar técnicas de segmentação semântica profunda para detecção de SIPC 

utilizando imagens Landsat-8/OLI; 

Capítulo 3 

➢ Avaliar técnicas de segmentação de instâncias para detecção de SIPC 

utilizando séries temporais de imagens Sentinel-1/SAR; 

Capítulo 4 

➢ Avaliar técnicas de segmentação de instâncias para detecção de SIPC 

utilizando séries temporais de imagens Sentinel-2/MSI; 
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I.3 Estrutura da Tese 

 

Este trabalho está subdividido em quatro capítulos baseados na identificação de SIPC 

utilizando Deep Learning com diferentes imagens e metodologias. Os capítulos 2, 3 e 4 são 

relativos a artigos científicos elaborados com o objetivo geral da tese, considerando algumas 

particularidades, como área de estudos, metodologia, resultados e conclusões. 

No primeiro capítulo, é apresentado uma contextualização geral sobre do tema, 

utilização de dados de sensoriamento remoto, além do aprendizado profundo usando Deep 

Learning. 

O artigo do capítulo 2, Deep Semantic Segmentation of Center Pivot Irrigation 

Systems from Remotely Sensed Data, foi publicado em 06 de julho de 2020 na revista Remote 

Sensing (MDPI), nele foram aplicadas técnicas de segmentação semântica profunda a partir de 

algoritmos baseados em CNN, utilizando imagens Landsat-8/OLI em dois períodos distintos, 

considerando a sazonalidade. Foram analisadas três arquiteturas de redes de Deep Learning, 

comumente utilizadas para detecção de objetos em sensoriamento remoto (U-Net, Deep 

ResUnet e SharpMark). Além disso, no capítulo foi apresentado uma técnica de janela 

deslizante para a classificação de imagens de grandes áreas. 

O artigo do capítulo 3, Instance Segmentation of Center Pivot Irrigation Systems 

Using Multi-Temporal Sentinel-1 Sar Images, foi publicado em 06 de maio de 2021 na revista 

Remote Sensing Applications: Society and Environment (Elsevier), e foram aplicadas técnicas 

de segmentação de instâncias de imagens multitemporais do Radar de Abertura Sintética (SAR) 

Sentinel-1, para detecção automática de SIPC. O uso de imagens de radar supera limitações das 

imagens óticas, como a presença de nuvens e sombra. 

Já o artigo do capítulo 4, Dealing with Clouds and Seasonal Changes for Center 

Pivot Irrigation Systems Detection Using Instance Segmentation in Sentinel-2 Time Series, 

foi publicado em 13 de agosto de 2021 na revista Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing (IEEE), foi aplicado uma metodologia de identificação 

automática de SIPC em imagens óticas multitemporais (Sentinel-2/MSI) com diferentes 

percentuais de nuvens. 
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CAPÍTULO 

II. DEEP SEMANTIC SEGMENTATION OF CENTER PIVOT 

IRRIGATION SYSTEMS FROM REMOTELY SENSED DATA 

Resumo 

O sistema de irrigação por pivô central (SIPC) é uma técnica de irrigação moderna amplamente 

utilizada na agricultura de precisão devido a sua alta eficiência no consumo de água e baixo 

trabalho em comparação aos métodos tradicionais de irrigação. O SIPC é líder em irrigação 

mecanizada no Brasil, com previsão de crescimento para os próximos anos. Portanto, o 

mapeamento das áreas dos pivôs centrais é um fator estratégico para a estimativa da produção 

agrícola, garantindo a segurança alimentar, a gestão dos recursos hídricos e a preservação do 

meio ambiente. Nesse sentido, o processamento digital de imagens de satélite é a principal 

ferramenta que permite o monitoramento regional e contínuo com baixo custo e agilidade. No 

entanto, a detecção automática do SIPC usando imagens de sensoriamento remoto continua 

sendo um desafio e muitas pesquisas adotaram a interpretação visual. Embora o SIPC apresente 

uma forma circular consistente na paisagem, essas áreas podem ter uma alta variação interna 

com diferentes plantações que variam ao longo do tempo, o que é difícil apenas com o 

comportamento espectral. O Deep Learning usando Convolutional Neural Networks (CNNs) é 

uma abordagem emergente que provoca uma revolução na segmentação de imagens, superando 

os métodos tradicionais e alcançando maior precisão e eficiência. Esta pesquisa teve como 

objetivo avaliar o uso de segmentação semântica profunda do SIPC a partir de algoritmos 

baseados em CNN usando imagens de refletância de superfície Landsat-8 (sete bandas). A 

metodologia desenvolvida pode ser subdividida nas seguintes etapas: (a) Definição de três áreas 

de estudo com alta concentração de CPIS no Brasil Central; (b) aquisição de imagens Landsat-

8 considerando as variações sazonais dos períodos de chuva e estiagem; (c) definição de 

conjuntos de dados SIPC contendo imagens Landsat e máscara de verdade do solo de 256x256 

pixels; (d) treinamento usando três arquiteturas CNN (U-net, Deep ResUnet e SharpMask); (e) 

análise de precisão; e (f) reconstrução de imagem grande usando seis valores de passada (8, 16, 

32, 64, 128 e 256). Os três métodos alcançaram resultados de última geração com uma ligeira 

prevalência de U-net sobre Deep ResUnet e SharpMask (0,96, 0,95 e 0,92 coeficientes Kappa, 

respectivamente). Uma novidade nesta pesquisa foi a análise de pixels sobrepostos na 

reconstrução de imagens grandes. Os valores de passada mais baixos tiveram melhorias 

quantificadas pela curva Receiver Operating Characteristic (curva ROC) e Kappa, e menos 

erros nas bordas do quadro também foram perceptíveis. As imagens sobrepostas melhoraram 

significativamente a precisão e reduziram o erro presente nas bordas dos quadros classificados. 

Além disso, obtivemos resultados de maior precisão no início da estação seca. O presente estudo 

possibilitou o estabelecimento de um banco de dados de imagens do pivô central e uma 

metodologia adequada para o mapeamento do pivô central no Brasil Central. 

 

Palavras-chave: irrigação; aprendizagem profunda; U-net; ResUnet; SharpMask; Landsat-8 
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Abstract 

The center pivot irrigation system (CPIS) is a modern irrigation technique widely used in 

precision agriculture due to its high efficiency in water consumption and low labor compared 

to traditional irrigation methods. The CPIS is a leader in mechanized irrigation in Brazil, with 

growth forecast for the coming years. Therefore, the mapping of center pivot areas is a strategic 

factor for the estimation of agricultural production, ensuring food security, water resources 

management, and environmental conservation. In this regard, digital processing of satellite 

images is the primary tool allowing regional and continuous monitoring with low costs and 

agility. However, the automatic detection of CPIS using remote sensing images remains a 

challenge, and much research has adopted visual interpretation. Although CPIS presents a 

consistent circular shape in the landscape, these areas can have a high internal variation with 

different plantations that vary over time, which is difficult with just the spectral behavior. Deep 

learning using convolutional neural networks (CNNs) is an emerging approach that provokes a 

revolution in image segmentation, surpassing traditional methods, and achieving higher 

accuracy and efficiency. This research aimed to evaluate the use of deep semantic segmentation 

of CPIS from CNN-based algorithms using Landsat-8 surface reflectance images (seven bands). 

The developed methodology can be subdivided into the following steps: (a) Definition of three 

study areas with a high concentration of CPIS in Central Brazil; (b) acquisition of Landsat-8 

images considering the seasonal variations of the rain and drought periods; (c) definition of 

CPIS datasets containing Landsat images and ground truth mask of 256×256 pixels; (d) training 

using three CNN architectures (U-net, Deep ResUnet, and SharpMask); (e) accuracy analysis; 

and (f) large image reconstruction using six stride values (8, 16, 32, 64, 128, and 256). The 

three methods achieved state-of-the-art results with a slight prevalence of U-net over Deep 

ResUnet and SharpMask (0.96, 0.95, and 0.92 Kappa coefficients, respectively). A novelty in 

this research was the overlapping pixel analysis in the large image reconstruction. Lower stride 

values had improvements quantified by the Receiver Operating Characteristic curve (ROC 

curve) and Kappa, and fewer errors in the frame edges were also perceptible. The overlapping 

images significantly improved the accuracy and reduced the error present in the edges of the 

classified frames. Additionally, we obtained greater accuracy results during the beginning of 

the dry season. The present study enabled the establishment of a database of center pivot images 

and an adequate methodology for mapping the center pivot in central Brazil. 

 

Keywords: irrigation; deep learning; U-net; ResUnet; SharpMask; Landsat-8. 
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II.1 Introduction  

 

Irrigation is one of the leading technologies for increasing agricultural productivity, 

improving the yield of most crops by 100% to 400% [1]. Besides, irrigation promotes several 

benefits: Mitigation of the seasonal climatic factor and agricultural risk, agricultural expansion 

in arid and semi-arid regions, plantation diversity, a higher commercial value of products, 

reduction of unit production costs, stabilization of production and food prices, and improvement 

of the socio-economic conditions of farmers.  

In recent years, Brazil has shown significant annual growth in the irrigated area mainly 

in the Cerrado region. The Cerrado biome contains the largest proportion of areas irrigated by 

center pivots within Brazilian territory, ranging from 85.2% in 1985 to 78.3% in 2017 [2]. The 

irrigation areas expand to regions with a higher water deficit, requiring attention from water 

resources management. Regarding some types of irrigation, research has been developed to map 

the center pivot irrigation system (CPIS), which covers extensive areas. In Brazil, CPIS is the 

leader among mechanized irrigation, containing an average increase of 85,000 ha per year in 

the last five years, 1,04,000 ha per year in the previous three years, and has the most significant 

number of water concessions with 30.1% of the total [3].  

Therefore, irrigated agriculture increases food supply regularly throughout the year and 

ensures food security. However, irrigation is the largest consumer of anthropic water with 

values well above any other use, reaching 70% of the global annual water withdrawal from 

watercourses and groundwater [4,5]. Moreover, projections for global agricultural water 

demand in 2050 may represent the need for a 19% increase in irrigation [5]. Irrigated agriculture 

also has a considerable impact on the environment, such as erosion, pollution, soil salinization, 

and lowered groundwater tables, among others. Consequently, the continued population growth 

represents a challenge to adjust the demand for food production with the management of water 

resources and the protection of biodiversity [6,7]. Furthermore, the availability of freshwater in 

the irrigation sector is expected to decrease due to increasing competition with other multiple 

uses of water. Many surveys approach the problem of overexploitation of freshwater resources 

and the threat to food security [8–11]. An aggravating factor for the future scenario is the effect 

of climate change, which should demand an increase in the use of irrigation to maintain 

agricultural production [12,13].  

Regional monitoring of irrigated areas with the acquisition of accurate information on 

their extent, spatial pattern, production, and productivity is essential to ensure food security, 

better water resources management, territorial planning, and economic development [14–16]. 
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Davis et al. [17] point out that the reformulation of agricultural landscape configurations based 

on location and total water consumption would provide higher food production and better water 

use efficiency. Thus, remote sensing is a tool to monitor and plan spatiotemporal changes in 

crops, seeking to establish rules to minimize current and potential conflicts over water use. 

Mapping irrigated areas using remote sensing data has been extensively used since 1970–1980 

[18,19]. Different remote sensing data have been applied for the detection of irrigated areas, 

including optical data [20–23], radar data [24–27], or the combined use of the two types of data 

[28–30]. However, most CPIS mappings use the visual interpretation of circular features 

[3,19,31–34]. Center pivots do not always have similar behavior and may contain different 

plantations, making classification based on the spectral response of pixels or vegetation indices 

difficult. Therefore, the consistent automatic detection of center pivots from remote sensing 

data remains a challenge, enabling greater speed and avoiding widespread labor consumption.  

In this approach, a method that has great potential for automated detection is the deep 

semantic segmentation. Semantic segmentation belongs to the field of computer vision, being 

a high-level task that seeks a complete understanding of the scene, including information of the 

object category, location, and shape [35,36]. According to Guo et al. [37], there are differences 

between semantic segmentation and image classification, because they do not need to know in 

advance what are the concepts of visual Remote Sens. 2020, 12, 2159 3 of 25 objects. Semantic-

level segmentation allows all parts of the object to interact more precisely, identifying and 

grouping the pixels of the image that are semantically together. The aggregation of different 

parts that make up a whole requires a deep semantic understanding [37].  

Several traditional computer vision and machine learning techniques have been 

overcome by deep semantic segmentation, a method that achieves greater accuracy and 

efficiency. Deep learning is an emerging approach that belongs to a subfield of machine learning 

and seeks to learn high-level abstractions in data using hierarchical architectures [38]. Different 

types of digital image processing using deep learning have obtained relevant results, for 

example, image fusion, image registration, scene classification, object detection, land use and 

land cover classification, segmentation, and object-based image analysis [39]. Classifications 

of remote sensing images using deep learning produced superior results in different types of 

mapping: Land-use and land-cover classification [40–43], urban features [44–47], change 

detection [48–51], and cloud detection [52–55], among others. 

 In this approach, Zhang et al. [56] was a pioneer in the use of CNNs for automatic 

identification of CPIS. The research [56] presents the following steps: (a) Collection of Red-
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Green-Blue (RGB) image training data with a size of 34 × 34 pixels for CPISs and non-CPISs, 

where each CPIS has 25 images with a small position difference to the central; (b) application 

of CNNs and identification of the center of each CPIS using a variation-based approach, where 

the pixel with the lowest variation value within the local area is detected as the central point; 

and (c) demarcation of CPIS using a fixed-size square in the center. However, the authors did 

not segment the entire field. Instead, they identified only the central point of CPIS. The square 

demarcated from the center of the CPIS has a predetermined size and is not necessarily in 

accordance with the circumference of the CPIS. The survey also did not consider the seasonal 

variation of the plantations.  

Changes in dry and rainy seasons in the Cerrado biome cause a significant variation in 

the phenology of CPIS agricultural cultivation and the surrounding natural vegetation. 

Therefore, this research sought to consider these seasonal differences in recognition of CPIS 

patterns. Another critical issue analyzed is the process of reconstructing the entire image. In 

sizeable remote sensing images, the segmentation is made by a sliding window with a lateral 

overlay for later image reconstruction. However, there is a knowledge gap of the effects of 

different overlapping intervals on reconstructed image quality, which the study sought to 

analyze. To compare the results with other surveys, we used CNN architectures used in other 

investigations with satellite images, such as De Bem et al. [48] and Yi et al. [57].  

The present research aimed to evaluate deep sematic segmentation techniques for CPIS 

detection in central Brazil using Landsat 8 images. In this regard, the study assessed the 

following factors: (a) Different environments in central Brazil and seasonal changes (drought 

and rain); (b) three models based on CNN architecture (U-net, Deep ResUnet, and SharpMask); 

and (c) image reconstruction considering different overlapping ranges between 256 × 256 

frames. 

 

II.2 Materials and Methods 

 

The image processing included the following steps (Figure II.1): (a) Definition of three 

study areas with a high concentration of CPIS in central Brazil; (b) acquisition of Landsat-8 

Operational Land Imager (OLI) images (30-m resolution) considering the seasonal variations 

of the rain and drought periods; (b) definition of CPIS datasets containing Landsat images and 

ground truth mask of 256×256 pixels; (c) training stage using three popular CNN architectures 

(U-net, Deep ResUnet, and SharpMask); (d) large image reconstruction using a sliding window 
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algorithm; (e) analysis of seasonal effects in the detection of CPIS; and (f) accuracy analysis.  

In general, object detection is challenging in large remote sensing images, which 

requires the establishment of reasonable dimensions of the training sample to obtain 

performance in processing and memory management. The definition of the sample size must 

consider the characteristics of the object, such as the format, locations, and scales. Thus, a 

strategy for the classification of a large remote sensing image is to subdivide it into patches 

with the same size as the training samples and to use a sliding window algorithm with a 

determined stride (overlap interval between patches). In this context, the present research 

performs numerous stride length comparisons to identify the optimal parameters to image 

reconstruction for center-pivot mapping. In addition, the research assesses the effects of 

phenological variations of natural vegetation and plantations during the rainy and dry period in 

the CPIS detection process. 
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Figure II.1 Methodological flowchart of deep semantic segmentation of center pivots. 

 

II.2.1 Study Area 

The study sites cover three regions of central Brazil, presenting a high concentration of 
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center pivots favored by the flat terrain that allows mechanization: (a) Western Bahia (835 

center pivots); (b) Goiás/Minas Gerais (2672 center pivots); and (c) Mato Grosso (224 center 

pivots) (Figure II.2). In these regions, water scarcity between May and September prevents the 

cultivation of several crops, requiring the need for additional irrigation water. 

 

 

Figure II.2 Location map of the study areas: (1) Western Bahia; (2) Mato Grosso; and (3) Goiás/Minas. 

 

The Western Bahia region with flat topography and water availability (from the rainfall, 

rivers, and groundwater) shows an increasing expansion of mechanized farming that replaced 

traditional agriculture [2,58–61] and an intensification of the implantation of center pivots [62]. 

Western Bahia had a significant increase in the irrigated area, ranging from 9 center pivots in 

1985 to 1550 center pivots in 2016, which has caused water conflicts since 2010 [63].  

The Goiás/Minas Gerais region has one of the highest concentrations of center pivots in 

Brazil, reaching the number of hundreds. In this region, there is a conflict over the use of water 

between the sectors of irrigated agriculture, human consumption, and hydroelectric power 

generation. Several types of research have already been carried out in the mapping of center 

pivot areas, analysis of areas suitable for the expansion of irrigation, demand for water for 

irrigation, and conflicts arising from competition for multiple water use [64–67]. 
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 The state of Mato Grosso has favorable environmental factors for agriculture, being one 

of the leading agricultural producers of soy and corn [68–71]. Besides, Mato Grosso had the 

most significant center pivot increase in the 2010–2017 period (175% growth), consolidating 

itself as an essential Brazilian irrigation center that still has considerable expansion potential 

[72]. 

 

II.2.2 Dataset and Training Samples 

In deep learning techniques, extensive and qualified datasets are critical for object 

recognition success and meaningful performance comparisons between different algorithms. 

Satellite images allow the creation of extensive datasets in space and time that capture the vast 

richness and diversity of objects present on the land surface, which results in high-performance 

object recognition. The challenge is to establish a dataset contending the satellite images 

alongside with the corresponding ground truth image. The present research used data from the 

“Center Pivots in Brazil Irrigated Agriculture Survey,” developed by the National Water Agency 

(ANA) [3], which contains all the vector data of the center-pivot polygons of the Brazilian 

territory in 2013/2014. The ANA survey extracted the vector polygons of CPIS from the visual 

interpretation of Landsat-8 OLI images. The preparation of ground truth images used this ANA 

database with some minor corrections when necessary. 

For data compatibility with the ANA survey, we also used Landsat-8 surface reflectance 

images [73] from the same year 2014 or 2015 for the training and validation data. In central 

Brazil, the climate has well-defined rainy and dry seasons, with distinct phenological behaviors 

[74,75]. This climatic variability is responsible for differences within the same type of 

vegetation or planting, such as regeneration, vegetative growth, flowering, fruiting, and seed 

dispersal. Therefore, the image acquisition covered dry and rainy months with the different 

responses of vegetation and crop. Table II.1 lists the set of images used in the three study areas. 

In the analyzed temporal images, we observed changes in the presence of center pivots in 

specific locations, even in short periods (Figure II.3). Thus, we checked and corrected the 

center pivot polygons to elaborate on the ground truth images. 

This research considered two classes of interest (center pivots and non-pivots). The 

dataset had 5000 frames of each 256 × 256 pixel (4200 with center pivots and 800 without 

center pivots) with an 80%–20% train-test split (4000 frames for training and 1000 for 

validation). We evaluated three different neural network architectures (Deep ResUnet, U-net, 

and Sharpmask) with the following hyperparameter configurations: (a) 200 epoch training with 
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callbacks, (b) batch size of 8, (c) Adam optimizer, and (d) dice coefficient as the loss function. 

Additionally, each model’s input layer was adjusted to support seven-channel Landsat images 

with 256 × 256 dimensions, resulting in a 256 × 256 × 7 input shape. For data processing, we 

used a computer equipped with a Nvidia GeForce RTX 2080 TI graphic card with 11 GB of 

GPU memory, 16 GB RAM, and an Intel Core i7–4770K CPU processor with a 3.5 GHz 

processing speed. 
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Table II-1 Landsat-8 Operational Terra Imager (OLI) images used in the training and validation 

stages. 

 

 

Figure II.3 Change of center pivots in short time, requiring adjustments and corrections in the database 
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for the elaboration of terrestrial truth images. 

 

II.2.3 Deep Learning Models 

In present research, we used three deep learning architectures: U-net [76], Deep 

ResUnet [77], and SharpMask [78]. U-net achieves significant results in the semantic 

segmentation, because of its ability to preserve essential features in the image, having two main 

parts: Contraction and expansion [76]. The name U-net comes from the symmetrical trajectory 

between both model parts (contraction and expansion) that describes a U-shape architecture. 

Thus, the U-net model has a series of kernels that act as filters that map specific features. The 

contraction (encoder) stage of the architecture consists of cascade downsampling, which 

reduces the image size and increasing the number of filters. The expansive (decoder) stage 

consists of a symmetrical number of up samples, returning the image to its original size, and 

decreasing the number of filters to the number of outputs. Each downsampling stage has two 

Conv2D layers, two batch normalization layers, and two ReLu activation functions, ending with 

the MaxPooling layer. The upsampling stage has the same format, but instead of the 

MaxPooling layer at the end, there is an upsampling layer at the beginning. There are five 

downsamples, which means the image gets to 1/32 of its original size, and five upsamples. The 

architecture ends with a sigmoid activation function. U-net has been used for the semantic 

segmentation of targets in remote sensing images: Road network [79], water body [80], building 

extraction [46,81], raft aquaculture areas [82], and edge-feature-based perceptual hash [83].  

The deep residual U-Net (Deep ResUnet) combines the strengths of deep residual 

learning and the U-Net architecture [77] (https://github.com/nikhilroxtomar/Deep-Residual-

Unet). The main advantages of the model are (a) replacement of plain neural units by residual 

units as a basic block, and (b) removal of cropping operation, allowing better performance 

because it is unnecessary. The architecture consists of encoder and decoder blocks. The decoder 

block has three sets of batch normalization, ReLu activation function, padding, and 

convolutional block. The encoder block has the same structure, but with strides, so the image 

is downsampled. The architecture ends with a sigmoid activation function. The Deep ResUnet 

and its variation have been investigated for satellite image segmentation [77,84,85].  

Facebook’s SharpMask is a network that enhances the sharpness of segmentation masks 

to object classification [78], which can be very satisfactory for our case, which deals with 

geometric objects. The architecture consists of convolutional and refinement blocks composed 

of three sets of Lambda, Conv2D, batch normalization, and ReLu activation functions. 

However, the refinement stage also adds activation functions. Every convolutional block is 
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connected to a MaxPooling layer, and every refinement block is connected to an upsampling 

layer. We performed four convolutional and refinement blocks that connect to a dense layer 

with 64 neurons and a ReLu activation function, and at the end, the sigmoid activation function. 

De Bem et al. [48] used SharpMask to detect changes in the Amazon region. 

 

II.2.4 Classified Image Reconstruction for Large Scenes 

We developed a sliding window with the same training image dimension that slides over 

the image for entire scene classification. Window movement can use different stride values in 

the horizontal and vertical directions. Figure II.4 demonstrates the process of classifying large 

images from a sliding window. In the example, an 8 × 8 window slides over an image with a 

stride of two pixels. This process generates an overlap between consecutive frames considering 

stripe dimensions smaller than the window size (Figure II.5). Thus, a set of values may be 

produced for a pixel that can be used to improve target detection. 

 

 

Figure II.4 Classification of large images based on their subdivision into frames. The method uses a 

sliding window that runs the image with a certain stride. In the example, the classification uses an 8x8 

window that slides over an image with a two-pixel step. 
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Figure II.5 Edge effect caused by window classification. The number of pixels at the edges of the large 

image is less than the center due to the smaller overlapping range. 

 

The tests conducted in this research considered different stride values between two 

successive windows. Algorithms to reconstruct large images based on a sliding window with 

overlapping pixels were applied for remote sensing data. Previous studies used the average 

values of overlapping pixels to reduce the impact of frame boundaries, which tend to have more 

errors [48,57]. Instead of using the average, we established a proportionality index of the 

number of times the pixel was classified as a center pivot. Thus, we increased the pixel counter 

by one when the result value was greater than 0.7, which means a high probability of having a 

center pivot. In the end, for each pixel, we had a ratio of the number of times the method 

identified the pivot divided by the number of overlapping data, restricting the range of values 

between 0 and 1. The proportionality calculation considers the edge effect in the total image as 

necessary (Figure II.5). A threshold value defines the center pivot and non-center pivot binary 

image. 

 

II.2.5 Season Analysis 

The central Brazil region presents a substantial phenological variation throughout the 

year. In the Cerrado biome, water scarcity is the primary climatic determinant of leaf phenology, 

establishing the period to produce dry leaves and the sprouting of new leaves. The Cerrado 

vegetation has herbaceous and arboreal strata. Herbaceous plants lose their leaves in the dry 

season and produce new leaves at the beginning of the rains. Woody plants have different 

strategies, in which the brevideciduous and deciduous species completely lose their foliage 

during the dry period, and the evergreen species keep their leaves throughout the year. Besides, 

the stages of planting cycles also interfere with the detection of CPIS. Therefore, we chose 

images with different photosynthetic responses from water stress, as shown in Table II.2 and 
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Figure II.6. The area analyzed was the Goiás/Minas Gerais region, which has the highest 

concentration of CPIS, encompassing three Landsat scenes. The image with the highest 

percentage of photosynthetic vegetation was from May 2019, representing the end of the rainy 

season (Figure II.6A). In contrast, the image from the critical dry period (August 2019) has a 

few areas with photosynthetically active vegetation, limited to some CPIS and riparian forest 

(Figure II.6C). Additionally, we added an image from the beginning of the dry season with 

intermediate behavior from June 2018 (Figure II.6B). One of the most considerable difficulties 

in obtaining rainy season imagery is the presence of clouds, especially when analyzing large 

areas 

 

Table II-2 Landsat-8 OLI Operational Terra Imager images used to analyze different season 

behaviors. 
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Figure II.6 Landsat images from the three different periods with different percentages of photosynthetic 

vegetation: (A1) rainy period (May 2019), (A2) zoomed image from the rainy period (B1) beginning of 

the dry period (June 2018), (B2) zoomed image from the begin of the dry period (June 2018), (B2) 

zoomed image from the beginning of the dry period (C1) critical dry season (August 2019), and (C2) 

zoomed image from the critical dry season. With the following composition, the red areas represent the 

photosynthetically active regions. 
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II.2.6 Accuracy Assessment 

The accuracy analysis is crucial to establish the product quality and to compare 

classification algorithms. The accuracy assessment for the different methodological approaches 

adopted 1000 validation samples. We used the metrics commonly used for object detection: 

Total accuracy, precision, recall, F1, Kappa coefficient, and IoU [86,87,88,89,90]. Table II.3 

lists the equations for accuracy metrics. Besides, in the evaluation of the image reconstruction 

with different overlays, we used a new Landsat image (2018) and the ROC-curve analysis. 

 

Table II-3 Summary of accuracy metrics used in the object detection, where TP is true positive, 

TN is true negative, FP is false positive, and FN is false negative. 

 

Finally, we performed an object-based precision analysis to assess the correctness of the 

number of center pivots, crucial information for public managers [91,92]. 

 

II.3 Results 

 

II.3.1. Comparison between CNN architectures from the validation samples 

The training stage obtained low values for losses (< 0.05) and high values for Dice 

coefficients (> 0.99) for all the three methods, which was very satisfactory, demonstrating a 

high CPIS detection capacity. The CNN architecture efficiency is due to the great diversity of 

selected samples. This result indicates that all methods had an excellent ability to perform 

semantic segmentation for center pivots on multispectral data, considering different crops, 

shapes, and dimensions. 

The accuracy scores had a pixel-wise analysis in the validation set (1000 images), 

totaling a pixel count of 65,536,000 (256×256×1000). The results demonstrated that the U-net 

had the best performance within the three networks (Table II.4, Figure II.7). Even though the 

results were very similar, the residual blocks present in Deep ResUnet did not improve the 

performance in comparison to U-net, probably because the target has a constant geometric 
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shape, varying only in size. Therefore, this result shows that simpler structures are sufficient 

for our analysis. 
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Table II-4 Quantitative comparison of accuracy metrics obtained from the segmentation results 

using Deep ResUnet, U-Net, and SharpMask, where the highest values for each metric are in 

bold. 

 

 

Figure II.7 Deep ResUnet, U-net, and SharpMask confusion matrices, considering a pixel-wise 

analysis. 

II.3.2 Results of Entire Classified Image in Different Seasons 

Segmentation within independent frames tends to have more errors at their edges [57]. 

Therefore, the image reconstruction from the classified frames with overlapping pixels can 

minimize these errors. To assess the overlap effect on the result, we selected our best model (U-

net) and six different stride values (8, 16, 32, 64, 128, 256). This procedure used three 

independent Landsat images with 2560 × 2560-pixel dimensions from the Goiás/Minas Gerais 

region on 18 June 2018, 20 May 2019, and 24 August 2019. As expected, images with fewer 

overlapping pixels had a lot of errors at the frame edges, while increasing the number of 

overlapping pixels resulted in well-marked pivots, significantly minimizing errors. 

The image reconstruction from the sliding windows with overlapping pixels had a 

significant improvement in classification (Figure II.8). The probability image became much 

closer to the ground truth image, with the stride value decreasing. Another interesting point is 

the precision of the method when analyzing the variety of spectral behaviors, texture, and 

internal arrangement within each center pivot.  

These nuances are complicated even for human recognition, evidencing the importance 

and precision in the automatic classification of CPIS. Despite all the benefits with stride 

reduction, a considerable disadvantage of the overlapping windows technique is the longer 

processing time. Reducing the stride value by half on the x and y axes increased the 

classification time by four times. Image classification with no overlapping pixels is a fast task 

while using low stride values is a long process. The classification in a 2560 × 2560-pixel image 
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with no overlapping pixels took about 30 s to complete, while using a stride value of eight took 

about nine hours. Figure II.8 shows the procedures to generate the classified binary image from 

the probability image. 
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Figure II.8 Minimization of errors by increasing the sliding window overlap. Three examples of sub-

images (A–C) represented by the following images: Landsat image, ground truth, the positions of the 

changes between the reconstructed images, and the result of the image reconstruction with stride values 

of 256, 128, 64, 32, 16 and 8. 
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We obtained the optimal threshold for CPIS detection by testing a succession of 

threshold values and chose the one with the greater Kappa coefficient when compared to its 

ground truth image [93]. These successive comparisons generated a graphical overview of 

Kappa’s trajectory with threshold values from 0 to 1 (Figure II.9A1,B1,C1). This quantitative 

method reduces subjectivity in defining the optimal threshold value. The low optimal thresholds 

are due to the high selectivity of the index, weighing in favor of high activation pixels, and 

demonstrating a good likelihood to be a center pivot. The low threshold value reveals that the 

index produces a reduction of noisy points in the image, bringing a lower rate of false negatives. 

To evaluate the different stride values in the three distinct dates, we used the receiving 

operating characteristic curve (ROC) in a pixel-wise analysis presented in Figure II.10. The 

ROC curve is a graphical representation of how well the model can differentiate two classes, 

by comparing two axes: (a) False positive rate (FPR) and (b) true positive rate (TPR). The closer 

to 1 in the area under the curve (AUC), the better the model performs. Additionally, the 

comparison of ROC curves from different periods is an interesting analysis because it shows 

how well the models can differentiate classes with different inputs. As expected, the areas with 

more significant photosynthetically active vegetation had better results (rainy and beginning of 

the dry season), while the critical dry period had weaker results. Stride value reduction 

increased the AUC scores in all three scenarios, achieving the highest value in the intermediate 

period (B) (0.984). In the rainy season (A), the results had a similar behavior compared to the 

intermediate period, with slightly lower values. The critical dry season (C) had the most 

different response since the reconstruction without overlapping pixels had significantly worse 

outcomes than the other two periods, but stride reduction significantly increased the ability to 

differentiate classes in a pixel-wise analysis. 

The pixel-wise accuracy analysis presented similar results for the three dates. To make 

a better differentiation, we performed an object-based accuracy approach for the three Landsat 

images (2560 × 2560 pixels). This information is vital for public managers who seek to estimate 

the number of CPIS and evaluate the best scenarios to identify the center pivots. Table II.5 lists 

the confusion matrix of the three dates. We identified: (a) 937 from 974 center pivots at the 

beginning of the dry season (96% OA); (b) 902 from 974 center pivots at the end of the rainy 

season (92% OA); and (c) 860 from 974 center pivots at the end of the dry season (88% OA). 

Even though the pixel-wise analysis had similar results, the object-based analysis shows a great 

difference within the three periods.  
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Figure II.9 Classification procedures from the sliding windows with strides 8 (A), 32 (B), and 128 (C), 

considering the following components: Graphs with the Kappa coefficients for the different threshold 

values, where the red line shows the optimum point (A1, A2, and A3), probability images (B1, B2, and 

B3), and binary images with center pivots (red) and non-pivot center (black) (A3, B3, and C3 
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images). 

 

Figure II.10 Receiver Operating Characteristic Curve comparison of the large image reconstruction for: 

(A) the end of the rainy season (May 2019); (B) the beginning of the dry season (June 2018); and (C) 

the critical dry season (August 2019), using a sliding window (256 × 256) and U-net with different 

image overlapping areas (stride values of 8, 16, 32, 64, 128, and 256). 

 

Table II-5 Confusion matrix containing the number correctly and incorrectly classified targets 

from the reconstructed image of the three periods using a stride of 8. 

 

Results from the beginning of the dry season had significantly better results than the 

rainy and critical dry period. Although the errors encountered in the classification of center 

pivots are due to their similarity with the surroundings, the source of the error is different. In 

the rainy season, the vegetation’s photosynthetically active areas became very similar to the 

center pivots that have crop development. In contrast, in the critical dry period, harvesting 

associated with the conservation tillage practice in reducing runoff and erosion has a similar 

reflectance with the dry vegetation. Figure II.11 shows zoomed areas from the Goiás/Minas 
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Gerais region within the three different dates showing areas that had correct classifications only 

in the beginning of the dry period. In the rainy season, the red color associated with the 

photosynthetically active vegetation shows that the center pivot and its surroundings had similar 

spectral behaviors. Likewise, in the critical dry period, non-photosynthetically active vegetation 

takes on a white color, homogenizing the CPIS with adjacent areas. 

 

Figure II.11 Comparison of zoomed areas (A–F) at different times of the year (rainy season, early dry, 

and critical dry seasons). The examples demonstrate that only images from the beginning of the dry 

season detect the center pivots. 

 

Figure II.12 shows locations where only the images of the beginning of the dry season 

detected CPIS. The photosynthetically active vegetation is now gone, and the center pivots have 

very similar behavior with its dry surrounding. Additionally, this kind of error is much more 

common than rainy season errors. The present research shows that the identification in the 

intermediate season is optimal since it has the advantage of photosynthetically active regions 

inside the pivots, but without the similarity with the vegetation surroundings.  
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Figure II.12 Comparison of zoomed areas (A–F) at different times of the year (rainy, early dry, and 

critical dry seasons). The examples demonstrate that the images from the rainy season and the beginning 

of the dry season detect the center pivots. 

 

Figure II.13 shows a rare situation where only the center pivots present in the rainy 

season image were correctly identified. The pattern of non-recognition was the same as the 

previous ones, having very similar environments around it. Figure 13B also presents a center 

pivot that was not identified in any of the periods. Figure II.14 shows that most center pivots 

classified as false positives had significant similarities with the class of interest, being a 

controversial detection task even to specialized professionals. Figures II.14A, B, and C present 

a possible case of abandoned center pivots, due to the lack of planting area within the circular 

shape. Figure II.14D illustrates a polygon that was erroneously mapped but has a similar center 

pivot shape. We can observe that even the errors obtained from the predictions are very hard to 

determine, ensuring state-of-the-art results to this classification problem. Besides, the error 

images (Figure II.12) also demonstrate an increase in errors along the circumference of the 

CPIS, being a predictable result, since the manual classification hardly achieves 
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standardization, such as automatic classification. Therefore, this type of effect should not be 

considered an incorrect classification.  

 

Figure II.13 Comparison of zoomed areas at different times of the year (rainy, early dry, and critical dry 

seasons). (A) Only the classified image from the rainy season detects the center pivots. (B) ) The image 

contains three pivots where the rainy season classification detects two, while the others detect only one. 

 

 

Figure II.14 Examples of false negatives (A–D) using the U-net, where detected central pivots do not 

correspond to terrestrial truth. 
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II.2.4 Discussion 

 

The present research shows state-of-the-art image segmentation results with high 

accuracy for CPIS detection in all deep learning models analyzed. This approach has a 

significant contribution to faster CPIS identification when compared to visual interpretation 

mapping. The vast majority of CPIS inventories consist of visual interpretation of circular 

shapes from satellite images. Rundquist et al. [19] systematized 14 years of CPIS inventory in 

Nebraska. The authors found that dry conditions in Nebraska’s state promoted a marked growth 

of CPIS during the period studied. Schmidt et al. [34] carried out the mapping of the CPIS for 

Brazil’s southeastern region in 2002. The research found a total of 4134 CPIS, considering an 

error greater than 5% due to cloud interference and lack of contrast between the irrigated area 

and its surroundings. Sano et al. [33] assessed the growth of CPIS in the Federal District of 

Brazil in the period 1992–2002 to estimate water demand. In the 20 years, the number of center 

pivots grew from 55 to 104. Ferreira et al. [32] mapped 3781 CPIS in the State of Minas Gerais 

(Brazil) for the year 2008 using images from the China-Brazil Earth-Resources Satellite 2B / 

Couple Charged Device (CBERS2B / CCD) satellite. The most significant survey was 

conducted by the National Water Agency [3], which mapped the entire Brazilian territory in 

2004, the data used in this survey. 

U-net had slightly better metrics for our target compared to Deep ResUnet, contrasting 

with other segmentation studies with different targets [48,57,77]. De Bem et al. [48] compared 

these networks in deforest change detection and obtained better Kappa results for ResUnet 

(0.94) over U-net (0.91). In urban building detection, Yi et al. [57] also had better Kappa results 

for Deep ResUnet (0.9176) over U-net (0.8709). Zhang et al. [77] in road extraction analysis 

used precision-recall breakeven points to evaluate the performance of the models, obtaining 

closer values between Deep ResUnet (0.9187) and U-net (0.9053). Similarities between Deep 

ResUnet and U-net results in the present research are probably associated with the trained data. 

Differences in our data include seven-channel imagery and circular-shaped targets, which can 

provide simpler structures, showing the similarity between the methods. Even though 

SharpMask brings the worst accuracy performance, one advantage when compared to the other 

two networks is the faster training period. 

The verified errors occur mostly in different border areas: (a) At the edge of the entire 

classification due to a smaller amount of overlapping pixels; (b) at the edge of the frames, 

because the geometric shape of the center pivots only appears partially; and (c) along the 

circumference of the center pivot, because there are small divergences in the manual labels and 
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the classified image. Previous research in the large image segmentation used the overlapping 

pixel values from the sliding window to attenuate frame edge errors [48,57]. A methodological 

novelty was a quantitative analysis by ROC and AUC to analyze the improvement in accuracy 

with the increase of the overlap area. We also proposed an index for the overlap data, 

considering the proportion of times the value was greater than 70%. In future research, errors 

of a semantic nature, such as the classification of abandoned center pivots, can be minimized 

with the use of a time series due to the ability to detect phenological changes in plantations. 

 

II.2.5 Conclusions 

 

This research focused on the detection of center pivots from three study areas in central 

Brazil, considering (a) the development of an extensive center pivot database that encompasses 

different environments in central Brazil and seasonal changes; (b) evaluation of three models 

based on CNN architecture; and (c) assessment of the procedure for image reconstruction, 

considering different variations of overlapping ranges. The results achieved state-of-the-art 

metrics, with the identification of nearly all center pivots. The training and test dataset had 5000 

frames that used ground truth information from visual interpretation of the images, which 

guaranteed quality information and enriched the model’s quality. The classification methods 

using U-net, Deep ResUnet, and SharpMask reached high values for the different accuracy 

metrics (total accuracy > 0.97, F-Score > 0.93, Recall > 0.90, Precision > 0.96, Kappa > 0.92, 

and IoU > 0.87). U-net had a slight advantage over Deep ResUnet. A significant contribution 

of this research was the image reconstruction proposition for large images, considering different 

stride values for the moving window, allowing several classified image overlays and a better 

pivot estimation per pixel. This procedure enables improvements in the final image. The results 

show that moving windows with little or lower overlapping pixels have significant errors at the 

edges of the frames, but also we identified a significant tradeoff when considering the execution 

time: No overlapping pixels is a 30 s task while using a large number of overlapping pixels is a 

task that takes nearly 9 h. This performance could be improved using better GPU processors. 

Although we already expected better results with stride reduction, the present research 

conducted a quantitative analysis of this improvement. Classification using deep semantic 

segmentation is essential, as it replaces manual labor and increases speed. Another crucial 

information in this research was the seasonal analysis, which is evidence that the best time to 

identify the presence of center pivots is at the beginning of the dry season since it shows greater 



 

56 

 

contrast with its surroundings, identifying nearly all center pivots present in the scene. This 

information has implications for agrarian and water management, energy consumption, and 

land use planning. Future studies should include the development of specific neural networks 

and test images of different sizes to see if the frame’s training size has an impact on the result. 
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CAPÍTULO 

III. INSTANCE SEGMENTATION OF CENTER PIVOT 

IRRIGATION SYSTEMS USING MULTI-TEMPORAL 

SENTINEL-1 SAR IMAGES 

Resumo 

O mapeamento de Sistemas de Irrigação por Pivô Central (SIPC) é essencial para a gestão de 

recursos agrícolas e hídricos. Nesse contexto, métodos baseados em Deep Learning (DL) 

alcançaram o estado da arte na classificação de imagens de sensoriamento remoto. Porém, o 

mapeamento do SIPC com DL ainda se restringe a imagens ópticas com limitações em 

ambientes tropicais devido à extensa cobertura de nuvens por longos períodos. A presente 

pesquisa propõe a detecção de CPIS usando segmentação de instância de imagens de SAR 

multi-temporais que estão livres de nuvens. A pesquisa desenvolveu um banco de dados SIPC 

para o bioma Cerrado baseado em interpretação visual, totalizando 3675 instâncias no formato 

de anotação Common Objects in Context (COCO). O treinamento utilizou o Mask-RCNN com 

o backbone ResNeXt-101-32x8d considerando diferentes arranjos de dados: (a) variação no 

número de imagens temporais Sentinel-1 com intervalo de 12 dias (de 1 a 11 imagens), e (b) 

comparação das polarizações VV, VH e VV + VH. O mapeamento da área de estudo em grande 

dimensão utilizou a técnica do mosaico a partir de janela deslizante. Os resultados mostram 

uma melhora da precisão com o aumento do número de imagens temporais, chegando a uma 

diferença maior que 15% AP ao comparar uma única imagem e o conjunto de imagens com a 

pontuação máxima no VV (oito imagens), VH (dez imagens) e polarizações VV + VH (nove 

imagens). O uso combinado das duas polarizações (VV + VH) teve resultados ligeiramente 

melhores (75% AP, 91% AP50 e 86% AP75) do que os outros. No entanto, a polarização VV 

pode ter uma vantagem, obtendo resultados próximos com menos imagem e custo 

computacional. A segmentação por instância proporciona uma classificação diferente para cada 

objeto pertencente a uma mesma classe, favorecendo a contagem total do SIPC e o cálculo do 

tamanho. 

 

Palavras-chave: Máscara R – CNN, Deep Learning, Pivô central, Imagens SAR, Séries 

Temporais. 

Artigo publicado na revista Remote Sensing Applications: Society and Environment, 2021. DOI: 
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Abstract 

The mapping of Center Pivot Irrigation Systems (CPIS) is essential for agricultural and water 

resource management. In this context, methods based on Deep Learning (DL) have reached 

state-of-the-art in the classification of remote sensing images. However, the mapping of CPIS 

with DL is still restricted to optical images with limitations in tropical environments due to the 

extensive cloud cover for long periods. The present research proposes the detection of CPIS 

using instance segmentation from multitemporal SAR images that are cloud-free. The research 

developed a CPIS database for the Cerrado biome based on visual interpretation, totaling 3675 

instances in the Common Objects in Context (COCO) annotation format. The training used the 

Mask-RCNN with the ResNeXt-101-32x8d backbone considering different data arrangements: 

(a) variation in the number of Sentinel-1 temporal images with an interval of 12 days (from 1 

to 11 images), and (b) comparison of VV, VH, and VV + VH polarizations. The study area 

mapping with a large dimension used the mosaic technique from a sliding window. The results 

show an accuracy improvement with the increase in the number of temporal images, reaching 

a difference greater than 15% AP when comparing a single image and the set of images with 

the maximum score in the VV (eight images), VH (ten images) and VV + VH (nine images) 

polarizations. The combined use of the two polarizations (VV + VH) had slightly better results 

(75% AP, 91% AP50, and 86% AP75) than the others. However, VV polarization may have an 

advantage, obtaining close results from less image and computational cost. The segmentation 

by instance provides a different classification for each object belonging to the same class, 

favoring the total CPIS count and the size calculation. 

 

Keywords: Mask R-CNN Deep learning, Center pivot SAR imagery Time series. 
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III.1 Introduction  

 

The projection of world population growth until 2100 estimates an increase of 3.9 billion 

more than the current population (7.7 billion people) (ONU Department of Economic and Social 

Affairs, 2019) makes the agricultural production strategies fundamental to guarantee food 

security (Godfray et al., 2010; Pollice et al., 2018). Nevertheless, the agricultural area's 

indiscriminate expansions have adverse effects on the environmental equilibriums, and the 

viable solution is to intensify the agricultural productivity to achieve an environmental balance 

(Beltran-Pea et al., 2020; Foley et al., 2011; Tilman et al., 2011). The intensification of land 

production requires technologies (irrigation and fertilization) to obtain cropping systems that 

maximize crop yields (reaching three harvests/year) and improved water use efficiency (Cao et 

al., 2018; Rosa et al., 2020).  

Irrigation includes various technologies, practices, and management to optimize 

agricultural systems (Gebbers and Adamchuk, 2010). Among the different technologies, Center 

Pivot Irrigation Systems (CPIS) is one of the most advanced techniques, containing water 

sprinklers rotating on its axis that guarantees the water distribution evenly in crops. Water 

consumption for agriculture is essential to ensure sustainable development (Siebert and Döll, 

2010).  

In Brazil, the National Water Agency (ANA) is responsible for evaluating water 

availability to the diverse national demands, aiming to use the resources efficiently. Between 

1985 and 2017, the number of CPISs in Brazil went from less than 1000 to almost 25,000, 

increasing the area by 14,000,000 ha (Agência Nacional de ). The ANA performs the CPIS 

mapping based on visual interpretation of optical remote sensing data, containing unmapped 

areas due to the lack of cloud cover-free images. Even though there was a substantial rise of 

this technology, visual interpretation remained as one of the most used methods to identify CPIS 

since the 80s (Heller and Johnson, 1979; Rundquist et al., 1989) up until this decade (Agência 

Nacional de Águas, 2016, 2019), which is laborious and time-consuming. Thus, automated 

CPIS detection processes allow quick, frequent, and low-cost surveys, increasing public 

managers' decision-making capacity.  

Deep Learning (DL) is an up-and-coming field for detecting different targets, enabling 

the processing of low and high-level features in multidimensional arrays (Lecun et al., 2015). 

Different DL applications use the convolutional neural network (CNN) in images, but the most 

common remote sensing approach is classification, object detection, semantic segmentation, 

and instance segmentation (Ma et al., 2019). The most straightforward approach is image 
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classification, where for a given input image, the output is a label. Object detection establishes 

bounding boxes around the objects of interest. Semantic segmentation is a pixel-wise 

classification where all pixels of a given image receive a label. Instance segmentation outputs 

bounding boxes and pixel-wise segmentation masks on the objects of interest. The DL 

processing in remote sensing images presents additional complexities, requiring different 

databases for the various sensors (optical and SAR) with specific spatial and spectral 

resolutions. Moreover, the sizeable remote sensing image requires cropping tiles in particular 

sizes for training and segmentation and, consequently, an image reconstruction procedure 

through sliding windows with overlapping pixels to mitigate frame edge errors (de Bem et al., 

2020; Yi et al., 2019).  

CPIS is a suitable target for the use of Deep Learning (DL) in remote sensing images 

due to the following factors: (1) large dimensions, which are visible through a wide variety of 

sensors and resolutions; (2) round shapes; and (3) many samples, which are essential for 

training DL networks. Recently, studies addressed CPIS monitoring using DL. Zhang et al. 

(2018) were pioneers using classification, but other works tried more complex methods such as 

semantic segmentation (de Albuquerque et al., 2020; Saraiva et al., 2020), object detection 

(Tang et al., 2021a, 2021b), and instance segmentation (Carvalho et al., 2021). Nevertheless, 

despite the relevant studies and good results, all used optical imagery with cloud-cover 

limitations. An alternative is the use of a Synthetic Aperture Radar (SAR) image capable of 

penetrating clouds and smoke, has no shadow interference, and acquires data night and day.  

Besides, the availability of dense SAR time series data opens perspectives for improving 

CPIS detection. The CPIS areas have a complex temporal dynamic, with different plantations, 

cropping systems, crop rotation, tillage practice, and irrigation management. Thus, different 

center pivots may have similar characteristics with their surroundings at any given time. 

However, with a more extended period, the possibilities of delimiting the shapes increase, and 

speckle noise interference decreases. Therefore, a sequence of multitemporal SAR images can 

improve the CPIS detection with an invariant shape but with complex and diversified 

agricultural activities over time. This approach differs from DL applications with multitemporal 

SAR images: (a) change detection using supervised (Iino et al., 2018; Jaturapitpornchai et al., 

2020; Liu et al., 2017; Zhang et al., 2020) or unsupervised methods (Cui et al., 2019; Gao et 

al., 2017; Li et al., 2019; Luo et al., 2019); and (b) phenology-based mapping to crops (de 

Castro Filho et al., 2020; Jo et al., 2020; Ndikumana et al., 2018). Some DL studies integrate 

multitemporal radar and optical images in target detection (Feng et al., 2019; Liao et al., 2020).  
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The present study aims to detect center pivots using Sentinel-1 time series and instance 

segmentation. The secondary objectives are: (1) evaluate differences between VV, VH, and VV 

+ VH polarizations; (2) estimate the best number of temporal images to improve segmentation 

accuracy; and (3) apply mosaicking using a sliding window to classify large areas. 

 

III.2 Material and Methods 

 

The present research had the following methodological steps: (2.1) dataset; (2.2) model 

configurations; (2.3) model evaluation; and (2.4) practical applications (Figure III.1). 

 

Figure III.1 Methodological flowchart. 

III.2.1 Dataset  

III.2.1.1 Study area  

The Cerrado biome is the main irrigation area in the Brazilian territory, containing about 

73% of all center pivots and playing a crucial role in the region's socio-economic development 

(Althoff and Rodrigues, 2019). However, water scarcity in the region causes conflicts over the 

multiple uses of water resources (Pousa et al., 2019), making CPIS growth monitoring essential 

for sustainable development. In the Cerrado biome, the region close to the Federal District has 

the highest center pivots density. The study area has 3675 pivots (Figure III.2). 
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Figure III.2 Study Area located at Central Brazil in the Cerrado biome. 

 

III.2.1.2 Data preparation  

The European Space Agency (ESA) SAR Sentinel-1 mission has a constellation of two 

polar-orbiting satellites launched in 2014 and 2016, having a revisit time of twelve days with a 

single satellite and six days with both. The Sentinel-1 sensors operate in the C band (5.4 GHz) 

in VV (Vertical transmitting, Vertical receiving) and VH (Vertical transmitting, Horizontal 

receiving) polarizations. The Sentinel-1 images are available free of charge 

(https://scihub.copernicus.eu/dhus/#/home). In the present study, we acquired eleven Sentinel-

1 temporal images relative to the Ground Range Detected (GRD) product in Interferometric 

Wide Swath mode, with a 10-m resolution image and interval of 12 days that result in a four-

month period that avoids the creation or disappearance of center pivots. The dense time series 

allows accurate mapping of agricultural activities. In the pre-processing of SAR images, we 

perform the following procedures using the Sentinel Application Platform (SNAP) software 

(Filipponi, 2019): apply orbit file; calibration (a procedure that converts digital pixel values to 

radiometrically calibrated SAR backscatter); a range-Doppler terrain correction by utilizing the 

Shuttle Radar Topography Mission (SRTM) data; and linear conversion in decibels (dB).  

Figure III.3 shows the same location in the 11 different time frames with the center 
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pivots highlighted in black. The identification of center pivots using only a frame can be 

challenging, even for specialists. However, the combination of temporal images minimizes 

SAR noise and emphasizes the center pivot's limits by small changes in planting, favoring the 

DL model. Figure III.4 demonstrates an RGB composition with three SAR channels relative 

to times 1, 6, and 11 using the VV polarization, clearly highlighting the center pivot's presence.  

 

III.2.1.3 Ground truth annotations 

Image annotation is critical for supervised DL tasks. Conventional annotation formats 

increase interoperability due to compatibility with a wide variety of algorithms. The Common 

Objects in Context (COCO) annotation format (Lin et al., 2014) is one of the most used, having 

compatibility with diverse software, such as Detectron2 (Wu et al., 2019). Usually, ground truth 

annotations in remote sensing studies use vector data from digital image processing software 

and geographic information system (GIS), which are not immediately compatible with the DL 

annotation format. Thus, an initial challenge is to convert vector data to the COCO annotation 

format.  

The first step was to annotate all center pivots in the Goiás/Minas region using ArcGIS 

software. The center pivots' vectorization used visual interpretation on a computer screen from 

cloud-free Sentinel-2 optical images within the study period. Optical images allow for better 

visual distinction as they have less noise interference and more significant spectral difference. 

As instance segmentation models require a unique distinction among objects belonging to the 

same class, we attributed a value from 1 to N to each polygon (i.e., center pivots), resulting in 

the ground truth (GT) image. 
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Figure III.3 Representation of a cropped image from each of the time frames from 1 to 11, with the 

center pivots highlighted in black contours. 
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Figure III.4 Three-time frames (1, 6, and 11) and their corresponding RGB composition, in which the 

targets become much more visible. 

 

2.1.4. Data split  

The original and GT images have 20262x19657 pixels, which is too large. Thus, we 

developed a program that crops tiles with a size of our choice and simultaneously creates a 
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JSON file in the COCO annotation format. The program requires three files: (1) the original 

image; (2) the GT image; and (3) a shapefile containing points in the original image as the 

center of the crop. The manual choice of shapefile points considered the three different files 

(training, validation, and testing). When executing the program, it generates cropped tiles from 

the image, ground truth, and a JSON file in the COCO annotation format compatible with the 

Detectron2 software. In this research, we chose crops with sizes of 512x512 pixels. Table III.1 

lists the number of images and instances used in the training, validation, and test sets. 

 

Table III-1 Data split in training (Train), validation (Val), and testing (Test) sets, with the 

respective number of512x512 frames (Number of images), and instances (Number of 

instances). 

 

III.2.2 Model configurations  

III.2.2.1 Mask-RCNN  

The Mask R–CNN (Figure III.5) (He et al., 2017) has three objectives: (1) generate 

bounding boxes for each object; (2) classify each bounding box; and (3) generate a 

segmentation mask on the objects of interest. The method is an evolution from Faster-RCNN 

(Girshick, 2015), with an additional branch for segmentation for each region of interest (ROI). 

The algorithm uses a CNN to extract features from the input image, allowing to explore 

architectures with different complexity (e.g., ResNets (He et al., 2016), ResNeXt (Xie et al., 

2017)), depths, (e.g., 34 layers, 50 layers, 101 layers), and scale resolutions (e.g., FPN (Lin et 

al., 2017)).  

 

Figure III.5 Mask-RCNN architecture. 
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With the feature maps, a region proposal network (RPN) proposes bounding boxes in 

strategic regions. The generated bounding boxes on the feature maps pass through an ROI align 

process to maintain spatial cohesion in the image, and from the ROI align, the architecture 

divides into two branches: (1) fully connected layers for classes and bounding box regression; 

and (2) convolutional layers for segmentation mask.  

The algorithm uses a loss function that is the sum of the three losses for each objective: 

 

In which  

classificationloss and maskloss: cross-entropy loss;  

bounding boxloss: L1 loss. 

III.2.2.2 Software adaptation  

Detectron2 (Wu et al., 2019) is currently one of the best software for object detection 

and instance segmentation, proposed by Facebook Artificial Intelligence Research (FAIR). The 

software uses the Pytorch framework. Despite the high efficiency, there are some adaptations 

for the application of remote sensing imagery, e.g., the original code use libraries that do not 

consider georeferenced data and have limitations for applying multichannel imagery in TIFF 

format. Thus, we applied changes similar to the proposed by de Carvalho et al. (2021). 

III.2.2.3 Configurations  

Table III.2 lists the hyperparameters and configurations used in the Detectron2 software 

(elements not listed remained as default). Image processing used Nvidia GeForce RTX 2080 TI 

GPU with 11 GB memory and z-score normalization for a faster converging process separately 

for the VV and VH configurations: 

 

In which: 

z: the standardized pixel value; x: the actual pixel value;  

μ: the average pixel value among the entire sample;  

σ: the standard deviation among the entire sample. 
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Table III-2 . Detectron2 configurations. 

 

III.2.3 Model evaluation  

The bounding boxes on object detection and instance segmentation tasks may result in 

three categories: (1) true positives (TP) (correct predictions), (2) false positives(FP) (wrong 

prediction), and (3) false negative (FN) (missing prediction). From these categories, we 

calculated precision (P) and recall (R): 

 

 

 

The P informs how many predictions were correct among all the predictions made, and 

the R how many predictions were correct among all elements supposed to have a prediction. 

From those two metrics, we may also obtain the average precision (AP): 

 

 

 

The AP is also known as the area under the precision-recall curve. Nonetheless, these 

metrics do not consider the quality of the bounding box. Thus, many algorithms also consider 

the intersection over union (IoU): 
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The IoU enables the analyses of how well overlapped the predictions are (0 is no 

overlap, and 1 is perfect overlap). In this regard, COCO metrics (Lin et al., 2014) are the most 

common approaches, in which the COCO AP is the main metric for evaluation. The COCO AP 

score considers 10 IoU thresholds, starting at 0.5 up to 0.95 with 0.05 steps (0.50: 0.05: 0.95). 

Secondary metrics AP50, AP75, APsmall , APmedium, and APlarge. AP50 and AP75 metrics use a single 

IoU value, which brings good insights into how the model considers a permissive and a stricter 

threshold. APsmall , APmedium, and APlarge consider the target sizes. COCO defines the sizes 

considering the number of pixels of each object in three categories: (1) small object (area < 322 

pixels); (2) medium object (32 2 pixels < area < 962 pixels); and (3) large object (area > 962 

pixels). 

 

III.2.4 Mosaicking and scene analysis  

The images used in the model evaluation had 512x512-pixel spatial dimensions, which 

is far from the size of remote sensing images. Thus, a way to solve this problem is to apply 

mosaicking using sliding windows. However, merely applying mosaicking of consecutive 

frames is not enough to prevent the errors since adjacent frames may present errors located on 

their edges. Figure III.6 shows the three possible errors due to border effects, in which: (A) 

adjacent frames horizontally; (B) adjacent frames vertically; and (C) adjacent frames horizontal 

and vertical wise. Therefore, we applied a sliding window with four stages (Carvalho et al., 

2021): (1) base application (classifies all elements even if partially) considering adjacent frames 

(xstart = 0, ystart = 0, step = 512); (2) adjacent vertical classification (xstart = 256, ystart = 0, step = 

512); adjacent horizontal classification (xstart = 0, ystart = 256, step = 512); and double edge 

classification (xstart = 256, ystart = 256, step = 512).  

 

Figure III.6 The three scenarios that provide additional errors. 

 

Only the base classification needs to classify all elements to avoid excessive and 
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unnecessary computational cost. The other three classifications on adjacent frames consider 

only elements in the borders. Furthermore, each classification at the edges can have multiple 

predictions (for example, two from two consecutive frames and one for the entire object 

classification). The best prediction selection considers the largest bounding box using a non-

maximum suppression algorithm sorted by area. The algorithm considers overlapping bounding 

boxes and eliminates the smaller boxes, remaining only with the most extensive and correct 

prediction. This robust mosaicking procedure establishes a correct instance segmentation in a 

large-scale study area 

 

III.3 Results  

 

III.3.1. Metric evaluation  

Table III.3 lists the COCO metrics results (AP, AP50, AP75, APs, APm, APl) using the 

X-101 backbone for bounding boxes and masks for the VV, VH, and VV+VH polarizations. 

The best results for VV, VH, and VV+VH are marked in green, terracotta, and blue, respectively. 

The VV+VH combination presented the highest value in all metrics apart from APsmall, in 

which VV consistently presented better results than VH, showing that using both images may 

not benefit the VV+VH model. Despite the better results, VV+VH presents higher 

computational cost when compared to VV and VH alone since they use two channels for each 

temporal frame.  

 

Table III-3 Box Metrics and Mask metrics regarding AP, AP50, AP75, APs, APm, and AP large 
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for VV, VH and VV+VH images, considering 1 to 11 temporal images. 

 

The most significant performance increase occurs between 1 and 2 temporal frames, 

with a difference of 7% (VV), 10% (VH), and 6% (VV+VH) in the AP metric. The values 

progressively increase afterward with smaller differences. The best AP values occur with a 

different number of temporal images for the VV (eight), VH (ten), and VV+VH (nine) time 

series. In the COCO's primary metric (AP), the distinctions between the best VV+VH, VV, and 

VH results are less than 1%, reaching minimal differences (0.04%) when comparing VV and 

VH. The best model choice requires a more in-depth analysis of factors, such as computational 
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cost and better metrics. VV polarization images have a lower computational cost due to fewer 

image requests to obtain similar results, providing a slight advantage over VH and a 

considerable improvement over VV+VH. However, VV+VH images represent a more 

appropriate choice considering the predictive power.  

Regarding the IoU's, the AP50 showed results above 91% AP, demonstrating significant 

predictive power. The AP75 showed results above 85%, which is also a relevant result 

considering a more rigid IoU. Analysis of object sizes shows that smaller pivots have worse 

results than medium and large ones. The small object problem is relevant in the computer vision 

community, and the use of SAR images may be more difficult due to the noisy elements. 

 

III.3.2. Mosaicking results  

Figure III.7 shows the mosaicking results on a 2048x2048-pixel image (dimensions 

four times larger than the training procedure's images) using the VV+ VH polarization with 

nine temporal frames, considering: (1) the final prediction; (2) the final prediction with white 

background; (3) the deleted predictions; (4) the deleted predictions with white background; and 

three zoomed areas (A, B, and C) (54 deleted predictions).  

The mosaicking presented no discontinuity on any parts of the mosaic, demonstrating 

great effectiveness of the method. Fig. 7A, B, and C show zoomed areas with corrections made 

by the algorithm horizontal-wise, vertical-wise, and horizontal and vertical-wise. Table III.4 

lists the characteristics of the CPISs: number, average size, median size, smallest, largest, and 

standard deviation. The selected area with dimensions 2048x2048 pixels presents 80 CPISs 

with high variability in sizes, ranging from 940 pixels to 15,405 pixels, expressed by a 

significant standard deviation value (4459.67). 

 

Table III-4 Object information. 
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Figure III.7 Mosaic classification on VV + VH polarization with nine-time frames, where: (1) predicted 

image; (2) predicted image with white background; (3) deleted predictions; (4) deleted predictions with 

white background; and three zoomed areas (A, B, and C). 

III.4 Discussion  

 

In Brazil, CPIS mapping considers optical images' visual interpretation, causing 

problems resulting from the high volume of work and mapping's impossibility due to lack of a 
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cloudless image. This research seeks to solve these problems using SAR time series and DL 

methods for CPIS detection. In tropical regions, cloud cover occurs over long periods of the 

year, making SAR data the viable alternative for land use and land cover studies (La Rosa, 

2019).  

DL techniques achieve high precision prediction and fast results for image 

segmentation. However, DL applications in center pivot detection used only optical images, 

evidencing a gap with radar images. Zhang et al. (2018) were the pioneers in CPIS mapping 

with deep learning, using three-channel (RGB) images with dimensions of 34x34 pixels and an 

architecture based on LeNet. The investigation did not perform segmentation, only identified 

the center point of the CPIS from the variation-based approach, and demarcated a fixed-size 

square from this point. Nevertheless, there are more sophisticated methods. In semantic 

segmentation studies, Saraiva et al. (2020) used Planet imagery with four spectral bands in the 

Mato Grosso region, applying the traditional U-net architecture, achieving 99% precision 88% 

recall (pixel-wise). De Albuquerque et al. (2020) compared CPIS detection in the dry and rainy 

season using semantic segmentation from the three models (U-net, ResUnet, and Sharpmask). 

This research achieved 98% precision and 94% recall and highlighted that the dry season is 

easier to identify center pivots due to more considerable differences with the background. Tang 

et al. (2021a) combined the PVANET method and Hough transform to CPIS detection. Tang et 

al. (2021b) compared PVANET and YOLOv4 in the CPIS detection using Sentinel-2 True Color 

Image (TCI) added from edge detection images (Canny, Sobel, Laplacian, Holistically-Nested 

Edge Detection and Dense Extreme Inception Network for Edge Detection) to improve the 

performance. De Carvalho et al. (2021) proposed the first instance segmentation model for 

multi-channel imagery using Mask-RCNN using a center pivot dataset and Landsat imagery, 

reaching 77% AP and 92% AP50 using seven channels and 74% and 89% AP50 using three 

channels.  

The high performance among the DL methods and places using optical imagery suggests 

studies about other limitations, such as clouds. The present research demonstrates that a 

multitemporal SAR image sequence enables discriminating the CPIS invariant shape and 

speckle noise reduction. The results had significant variations using only one image and a time 

series, increasing the AP values by more than 10%. This approach differs from other studies 

with SAR multitemporal images that focus on detecting change and phenological behaviors. 

Besides, the CPIS differs for other targets that do not have a defined shape over time, such as 

marine oil spills (Yekeen et al., 2020) or that move in the environment like ship and car 
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detection (Nie et al., 2020; Su et al., 2020; Wei et al., 2020). In our research, we obtained 3% 

less AP than de Carvalho et al. (2021), but only 1% less in AP50, showing that the results using 

SAR images present similar values, but with the advantage of being free clouds. 

Mosaicking large scenes is a great interest in DL, especially when dealing with vast 

areas, such as agricultural fields. In this context, de Albuquerque et al. (2020) applied 

mosaicking using overlapping pixels in semantic segmentation tasks for center pivot detection, 

showing significant improvement when applying more overlapping pixels but a large increase 

in computational cost. Other works using semantic segmentation also provided overlapping 

pixels to attenuate border errors (Audebert et al., 2018). Besides, the instance segmentation 

mosaicking provided good results, as shown in other similar works (de Carvalho et al., 2021). 

III.5 Conclusion  

 

This research presents an innovative approach to CPIS detection using temporal SAR 

data and instance segmentation models. SAR images have the advantage of not containing 

clouds, which is a significant limitation in mapping the center pivot in a continental-size country 

such as Brazil. Studies of DL application in multitemporal SAR images mainly address 

phenological factors (for example, in agricultural studies) or change detection. Temporal SAR 

images as different channels in DL models demonstrated efficiency in CPIS detection with 

invariant shapes and high variation in backscatter values overtime. We evaluated the Detectron2 

Mask-RCNN algorithm, which is one of the best currently using the X101 backbone. A single 

channel, which would be the traditional approach to detecting objects in SAR images, produced 

dramatically worse results than using more channels. Besides, we compared the VV, VH, and 

VV+VH polarizations, in which VV+VH presented the best metrics (75% AP, 91% AP50, and 

86% AP75). The instance segmentation for individualizing the CPISs allows a quick calculation 

of the total number of units and area extraction, essential factors in territorial management. 

Nevertheless, the best model choice requires a more in-depth analysis of other vital issues 

present in practical applications (e.g., computational cost). In this regard, the VV image 

presented very close results (74%AP, 90%AP50, and 85%AP75), with much fewer channels. 

Also, we have proven that this algorithm is also appropriate in the classification of large images. 

Thus, we applied a mosaicking algorithm in an image with 2048x2048-pixel dimensions. This 

analysis provides useful insights such as counting and estimating the object areas, which is 

valuable for public managers and farmers, especially for automatic monitoring. 
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CAPÍTULO 

IV. DEALING WITH CLOUDS AND SEASONAL CHANGES FOR 

CENTER PIVOT IRRIGATION SYSTEMS DETECTION 

USING INSTANCE SEGMENTATION IN SENTINEL-2 TIME 

SERIES 

Resumo 

A detecção automática de Sistemas de Irrigação por Pivô Central (SIPC) é fundamental para o 

estabelecimento de políticas públicas, principalmente em países com perspectiva de 

crescimento dessa tecnologia, como o Brasil. Estudos anteriores para detectar SIPC usando 

Deep Learning (DL) usaram imagens ópticas de data única, contendo limitações devido a 

mudanças sazonais e cobertura de nuvens. Portanto, esta pesquisa teve como objetivo detectar 

CPIS utilizando imagens multitemporais Sentinel-2 (contendo seis datas) e segmentação de 

instâncias, considerando variações sazonais e diferentes proporções de imagens nubladas, 

generalizando os modelos para detectar SIPC em diversas situações. Usamos uma nova 

estratégia de aumento, na qual, para cada iteração, seis imagens foram selecionadas 

aleatoriamente da série temporal (de um total de 11 datas) em ordem aleatória. Avaliamos o 

modelo Mask RCNN com o backbone ResNext-101 considerando as métricas COCO em seis 

conjuntos de teste com diferentes proporções de imagens sem nuvens (<20%) e nubladas (> 

75%), de 6 imagens sem nuvens e imagens nulas (6: 0) até uma imagem sem nuvens e cinco 

imagens nubladas (1: 5). Descobrimos que o uso de seis imagens sem nuvens forneceu as 

melhores métricas (80% de precisão média (AP), 93% AP50), mas os resultados foram 

semelhantes (74% AP, 88% AP50), mesmo em cenários extremos com presença de nuvem 

abundante (1: 5 Razão). Nosso método fornece uma maneira mais adaptativa e automática de 

mapear o SIPC a partir de séries temporais, reduzindo significativamente a interferência, como 

cobertura de nuvens, efeitos atmosféricos, sombra, dados ausentes e falta de contraste com a 

vegetação circundante. 

 

Termos do Índice: Série Temporal, Nuvem, Mask R-CNN, Deep Learning. 
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Abstract  

The automatic detection of Center Pivot Irrigation Systems (CPIS) is fundamental for 

establishing public policies, especially in countries with a growth perspective in this technology, 

like Brazil. Previous studies to detect CPIS using Deep Learning (DL) used single-date optical 

images, containing limitations due to seasonal changes and cloud cover. Therefore, this research 

aimed to detect CPIS using Sentinel-2 multitemporal images (containing six dates) and instance 

segmentation, considering seasonal variations and different proportions of cloudy images, 

generalizing the models to detect CPIS in diverse situations. We used a novel augmentation 

strategy, in which, for each iteration, six images were randomly selected from the time series 

(from a total of 11 dates) in random order. We evaluated the Mask-RCNN model with the 

ResNext-101 backbone considering the COCO metrics on six testing sets with different ratios 

of cloudless (< 20%) and cloudy images (> 75%), from 6 cloudless images and zero cloudy 

images (6:0) up to one cloudless image and five cloudy images (1:5). We found that using six 

cloudless images provided the best metrics (80% Average Precision (AP), 93% AP50), but 

results were similar (74% AP, 88% AP50) even in extreme scenarios with abundant cloud 

presence (1:5 ratio). Our method provides a more adaptive and automatic way to map CPIS 

from time series, significantly reducing interference such as cloud cover, atmospheric effects, 

shadow, missing data, and lack of contrast with the surrounding vegetation.  

 

Index Terms: Time Series, Cloud, Mask R-CNN, Deep Learning 
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IV.1 Introduction  

 

Strategies for technological advances in agricultural production are essential to feed the 

world’s growing population [1], [2]. The technology-driven intensification with the increase in 

yield (production/area) is a viable solution to guarantee world food security and avoid 

expanding agricultural regions over natural environments [3], [4], [5]. Among the 

intensification procedures, irrigation plays a fundamental role in increasing agricultural 

productivity and decreasing costs and manual labor, being essential for crops in arid and 

semiarid regions. Despite the benefits of irrigation for agriculture, it also negatively affects soil 

and water resources, such as reducing surface water and groundwater sources [6], [7], soil 

salinization [8], [9] erosion [10], [11] and ecological damage [12]. Besides, conflicts over water 

use increases, requiring governmental agencies to balance the diverse demands from 

hydroelectric production, irrigation, domestic and industrial use. In the context of fast-growing 

water demand in the agriculture, constant irrigated area monitoring is crucial to predict and 

minimize current and potential conflicts. The main alternative for assessing the spatial 

distribution and estimating irrigated areas is the remote sensing monitoring because of its speed, 

periodicity, cost-effectiveness, and reliable data acquisition. Therefore, consistent remote 

sensing information on irrigation areas contributes to water management, anticipating necessary 

changes and negative impacts. 

Among the various irrigation systems, the Center Pivot Irrigation System (CPIS) is one 

of the most advanced techniques consisting of water sprinklers in a suspended structure along 

a radius that rotates throughout the circular area, ensuring a uniform water distribution in the 

crops. The main advantages of the CPIS are efficient water and energy consumption, less 

workforce, easy operation, long-distance irrigation, and application of different types of 

fertilizers.  

CPIS is the predominant irrigation technology in Central Brazil (Cerrado biome) due to 

the favorable environmental conditions with extensive flat topography and surface and 

underground water availability. The Cerrado biome has aproximately 80% of all Brazilian CPIS 

[13]. However, the growing number of CPIS has led to intensified conflicts over water use and 

the need for governance of water resources [14]. In this context, the National Water Agency 

(ANA – Agência Nacional de Águas) performs the annual CPIS mapping based on remote 

sensing and visual interpretation images [15], [16]. In the quest to automate CPIS detection, 

methods based on Deep Learning (DL) have achieved results with metrics over 90% [17], [18], 

[19], [20]. This approach allows for several advantages such as lower costs, faster, and more 
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accurate surveying when compared to visual interpretation and traditional machine learning 

methods.  

DL acts in solving problems in different areas of knowledge, including image, video, 

speech, and audio recognition [21]. Besides, DL models offers the opportunity to automate 

systems with high performance in processing large data sets by using computers with high 

storage and processing capacity and GPUs. Therefore, DL has promoted notable advances 

recently in the field of computer vision, allowing a high learning power of complex, subtle, and 

abstract representations directly from the data [22]. DL’s extraordinary progress has had 

significant repercussions for the remote sensing community, with an expressive increase in the 

number of papers after 2014 [23]. In a short period, different review articles focused on DL in 

remote sensing, considering the different applications [24]; digital image processing (image 

fusion, image registration, classification, change detection, object detection, and segmentation) 

[23], [25], [26], [27], [28], [29]; environmental processes (land cover, vegetation parameters, 

agricultural yield prediction, air temperature, aerosol, particulate matter, precipitation, soil 

moisture, snow cover, evapotranspiration, radiation parameters, ocean color parameters) [30], 

status and perspectives [31], types of images (hyperspectral, multispectral, SAR, PolSAR, high 

spatial resolution, multimodal data fusion, 3-D reconstruction) [32], [33], [34], [35], [36]. 

Convolutional Neural Networks (CNNs)-based models lead remote sensing studies due 

to the impressive accuracy in object recognition [28]. The CNN application in remote sensing 

images is more complex than in traditional Red, Green, and Blue images. It requires geospatial 

systems, labeled data considering the different sensors and high image dimensionality (spatial, 

spectral, and temporal), clipping frames in specific sizes for training and segmentation, and 

image reconstruction procedure through sliding windows with overlapping pixels [37], [38].  

There are three main difficulties associated with the mapping of center pivots using the 

optical image and deep learning: (1) seasonal planting variation that eventually merges with the 

surrounding areas (see Figure IV.1); (2) cloud cover that prevents the detection of the Earth’s 

surface; and (3) large-scale automated processing. The previous studies for CPIS detection 

using DL on optical images considered a single time frame, requiring a specialist to identify the 

best dates in which the CPIS are more visible, and depending on the dates, the accuracy metrics 

may vary due to the seasonal changes which makes the CPIS very similar to their surroundings 

[18].  

The present research aims to develop a procedure to annually inventory the center pivots 

using Sentinel-2 multitemporal images and a distinct semantic identification for each CPIS, 



 

95 

 

seeking to circumvent ambiguities due to the inter-annual variability in the crop stage and the 

presence of cloud cover or shadows. To this end, we developed a multitemporal database 

considering different planting stages and with different proportions of cloud cover. The control 

of the cloud-cover proportion used an algorithm that randomly introduced images with a high 

percentage of cloud cover in the time series. Therefore, the methodology assesses the learning 

ability of CNN architectures to detect targets without having complete information over time. 

Besides, the CNN model combined spatial-temporal–spectral information. 

 

Figure IV.1 Representation of the seasonal variations among center pivots in a Sentinel-2 image using 

the Red, Green, and Blue spectral bands. 

 

IV.2 Related Works  

 

The governmental interest in CPIS’s water and energy consumption and agricultural 

production caused an increase in remote sensing studies for their detection. Although the 

circular shape of the center pivot is very characteristic, its automatic detection has limitations 

for traditional image classification methods [39]. The CPIS do not have uniform spatial and 

temporal behavior internally, containing different plantings (with subdivision of the area or 

intercropped) and diversity for the surrounding CPIS (with different agricultural crops and crop 
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production cycles) [18]. These peculiarities make the pixel-based classifications considering 

the spectral response, vegetation indices, or temporal signatures very deficient. The inclusion 

of spatial attributes to consider center-pivot shape presents a challenge for remote sensing 

studies that have only recently been overcome. Therefore, different approaches to center pivot 

mapping by remote sensing have been used, such as (a) visual interpretation, (b) Hough 

transform, (c) Geographic object-based image analysis (GEOBIA), and (d) Deep Learning (DL) 

methods.  

The first studies of CPIS mapping in the 70s and 80s used the visual interpretation of 

circular features [40], [41], which is still a widely used method [42], [43], [44], [45]. Despite 

the precise results with a visual interpretation, the process is laborious and time consuming.  

Although the Hough Transform (HT) is a technique for automatically detecting circles, 

with a promising perspective for detecting center pivots, few studies are on its application [46], 

[19]. The main limitations of the HT method are complex parameter setting, low precision, long 

computational time, and difficulty in situations with incomplete circles [47], [20].  

GEOBIA combines segmentation methods which partition images into objects and a set 

of rules that allow intuitive step-by-step classification. This object-based approach can have 

advantages over pixel-based approaches, incorporating spatial attributes derived from the 

object’s shape, hierarchical multi-scale information, texture, and class-related characteristics 

[48], [49], [50]. The GEOBIA studies for detecting CPIS consider variations in the 

methodological sequence and attributes used [51], [52], [53]. Yan and Roy [52] established 

three stages in the mapping of center pivots using GEOBIA: (a) object-based approach (active 

geometric contour based on the variational region); (b) segmentation method (watershed 

algorithm); and (c) geometry-based algorithm to detect rectangular, circular, and irregularly 

shaped fields. Johansen et al. [51] describe four steps in center pivot detection: (a) generation 

of the annual maximum image of the Normalized Difference Vegetation Index (NDVI) and the 

annual panchromatic band, (b) segmentation, (c) classification using the shape such as the 

center pivot field length), length-width ratio, and elliptical adjustment; and (d) the rule-set 

definition.  

However, several studies demonstrate an overall superiority of Deep Learning (DL) to 

GEOBIA regarding different factors: (a) greater precision and efficiency; (b) less human 

supervision; (c) reuse of knowledge due to the high capacity for transferability to other regions 

or scenarios considering the various attributes of the object (light, color, background, size, and 

shape); and (d) less interference by salt and pepper noise [54], [55], [56]. 
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Recently, the CPIS has been a constant target for DL studies using Convolutional Neural 

Networks (CNN) with different approaches: (a) detection of the core point of the center pivot 

[47]; (b) object detection with the establishment of bounding boxes around CPIS [20], [57]; (c) 

semantic segmentation that performs a pixel-wise classification where all CPIS pixels receive 

a label [18], [58], [59]; and (d) instance segmentation that produces bounding boxes and pixel-

wise segmentation masks on CPIS [17]. 

Among the CNNs-based models applied in CPIS, the instance segmentation approach 

is the most complex and advantageous. It allows extracting individual instance for each CPIS 

in an image and acquiring more information such as the total number of CPIS and area per unit. 

Besides, instance segmentation has a greater ability to separate overlapping objects of the same 

class. The most used instance segmentation methods are FCIS [60] and Mask-RCNN [61], 

which first performs the instance step and then performs the segmentation and classification in 

parallel.  

In contrast to the above methods for center pivot detection, the proposed method 

searches greater discrimination of the center pivot by incorporating the temporal data to 

overcome the influences of the images altered by the cloud cover or periods of similar behavior 

between the pivot and the surrounding area. 

 

IV.3 Materials and Methods  

 

We applied the following methodology: (A) Study Area; (B) Image Acquisition; (C) 

Annotations; (D) Instance segmentation approach; and (E) large image classification. 

IV.3.1 Study Area  

The study areas are located in Central Brazil, containing the country’s highest CPIS 

concentrations due to the flat terrain and water potential that allows mechanization and 

irrigation. The Central Brazil region is most used in studies with deep learning to CPIS detection 

(Table IV.I). The low rainfall between May and September prevents several crops, which 

becomes viable with irrigation. This research considered two main CPIS concentrations within 

Central Brazil: (a) Western Bahia and (b) region between the states of Minas Gerais and Goiás 

close to the Federal District (see Figure IV.2). Western Bahia presents a significant growth in 

mechanized agriculture [63], [64] and an intensification of center pivots, ranging from 9 in 1985 

to 1550 in 2016 [65]. The Goiás/Minas Gerais region contains hundreds of CPIS, resulting in 
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an intensification of the water use conflicts due to the competition between irrigation, human 

consumption, and hydroelectric power generation [14]. 

 

 

Figure IV.2 Study Area. 
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Table IV-1 Previous studies on Center Pivot Irrigation Systems Detection, and their 

corresponding region, satellite, method, model and bands. 

 

IV.3.2 Image acquisition and time series construction  

The Sentinel-2 mission developed by the European Space Agency (ESA) under the 

European Union’s Copernicus program acquires high spatial resolution multispectral optical 

images [66]. This research uses images with 10m-spatial resolution corresponding to the 

spectral bands at 490 nm, 560nm, 665nm, and 842nm. The images acquired in Level 1C have 

radiometric processing and geometric correction. In the Sentinel Application Platform (SNAP) 

software developed by ESA, we carry out the pre-processing steps.  

In order to assess the seasonal and cloud interference, the elaboration of the time series 

encompassed eleven different dates, considering the dry and rainy periods and different 

percentages of cloud images. We predetermined the percentage of cloud coverage in the time 

series, selecting and combining two image time series (cloudless and total cloud coverage). 

Therefore, we chose 11 temporal frames for each region, in which six times the criteria were 

less than 20% clouds and five times the criteria were more than 75% clouds (see Figure IV.3). 

In addition, each temporal image contained four spectral bands (Red, Green, Blue and near 

infra-red). Thus, the final stacked image for each region presented a shape with 512(height) × 

512(width) × 44(bands).  

 

 

Figure IV.3 Representation of the constructed time series, in which the first six temporal frames (temp) 

are images with less than 20% of cloud cover and from time 7 to time 11, the images contain more than 

75% of cloud cover. 
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IV.3.3 Annotations and split  

Since the main objective of this research is to identify CPIS throughout a specified 

period, the ground truth elaboration carefully analyzed each temporal frame within the time 

series. If a CPIS appeared at least once in any of the temporal frames, we annotated it using the 

ArcGIS software. The basis for the annotations was the vector data of the National Water 

Agency (ANA), duly corrected considering the visual interpretation. However, Detectron2’s 

Mask-RCNN algorithm requires labels in the COCO annotation format [67], in which each 

image tile needs a JSON file with the corresponding annotations. Thus, we applied the method 

used by de Carvalho et al. [17] to convert polygonal GIS data into the instance segmentation 

annotation format. Each object acquired a unique value from 1 to N, with N being the total 

number of CPIS.  

The software automatically generates a folder with the cropped images and the 

annotations for each image in the COCO annotation format. We distribute the image tiles in 

training, validation, and test sets, considering MG/GO area (2018 and 2020) as training data, 

Western Bahia area of 2020 for validation, and 2018 for testing. We selected 500 points for each 

MG/GO area image for training, totaling 1000 images. Table IV.2 shows the distribution 

regarding the number of images and the number of instances in each set.  

 

Table IV-2 Number of images and instances within the training (Train), validation (Val), and 

testing (Test) sets. 

 

1) Training images: From each MG/GO region image (2018 and 2020), we selected 500 

training samples (totaling 1000 samples). Even though the temporal series presents 11 dates, 

the input model considered only six dates. In the training procedure we used a novel 

augmentation technique that selects six temporal events (from the eleven total bands) in a 

shuffled order, corresponding to an image with the following dimensions: 512 (width) × 512 

(height) × 24 (spectral-temporal bands). The selection among six cloudless images and five 

cloudy images ensured that the training sample had at least one cloudless event, preventing the 

algorithm from having only cloudy events, which would yield only errors. Furthermore, random 

selection helps avoid overfitting, and in a practical application, there is no concern with the 

order of images.  
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2) Validation and Test images: The test stage used the image of Western Bahia 2018, 

and the validation stage used Western Bahia 2020. Unlike the training examples in which the 

order of the images does the shuffling in each iteration, the test and validation examples 

consider combinations with different percentages of cloud events to assess their influence. 

Thus, we evaluated the trained model in six configurations with the following cloudless: cloud 

ratios (1) 6:0; (2) 5:1; (3) 4:2; (4) 3:3; (5) 2:4; and (6) 1:5. Furthermore, we made five random 

combinations for each selected sampling area to increase the number of the samples and avoid 

possible bias. In this sense, the selection of the test and validation samples considered 60 areas, 

resulting in 300 samples with a different ordering. 

IV.3.4 Instance segmentation approach  

Among the instance segmentation models, the Mask-RCNN is the most common 

approach. The Mask-RCNN algorithm has three objectives: (a) identify the bounding box for a 

given object, (b) classify that bounding box according to the object’s class, and (c) perform 

pixel-wise binary segmentation mask on the object. For this reason, the total loss function is 

given by the sum of the bounding box loss (Lossbbox), mask loss (Lossmask), and classification 

loss (Lossclass): Losstotal = Lossmask + Lossclass + Lossbbox, where Lossmask and Lossclass are log 

loss function, and Lossbbox is L1 loss.  

Detectron2 [68] is one of the most efficient instance segmentation frameworks, 

introduced by the Facebook Artificial Intelligence Research (FAIR), powered by Pytorch. This 

architecture, usually applied to traditional RGB imagery, requires adjustments to be compatible 

with the remote sensing data [17]. Hence, we use the Detectron2 software from the Pytorch 

library with some adaptations to suit our purposes. The software uses some standard settings 

for traditional DL datasets, such as COCO and Cityscapes. However, for remote sensing images, 

some changes are necessary for a better adjustment of the models. We need to change the 

number of input channels on the network (since the most common approach uses only RGB 

channels). Consequently, the input network increased to 24 channels since the analysis used six 

temporal events, in which each event contains four channels (red, green, blue, and near-

infrared). 

1) Model Configurations: To train the Mask-RCNN model, we made the necessary 

source code changes for compatibility reasons. Since one of our main objectives was to evaluate 

cloud occlusion, all experiments considered the same backbone structure, the ResNeXt-101-

32x8d (X-101) [69]. As augmentation strategies to avoid overfitting, we applied the random 

choice of temporal images for each iteration, random horizontal flip, and random vertical flip. 
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Furthermore, this procedure broke the dependence of temporal structures, i.e., the order of 

images in the temporal structure becomes irrelevant.  

Regarding hyperparameters, we applied: (a) Adam optimizer with a learning rate of 

0.0005; (b) 256 ROIs per image; (c) thirty thousand iterations; anchor boxes with 16, 32, 64, 

128, 256. The other parameters were used as default. We used Nvidia GeForce RTX 2080 TI 

GPU with 11GB memory to process and train the model. 

 

IV.3.5 Accuracy Analysis  

The model evaluation considered the COCO metrics [67] Average Precision (AP), 

AP50, AP75, APs, APm, and APl. These metrics are the most widely used in instance 

segmentation problems and have proven to be satisfactory to evaluate different models, 

including the original Mask-RCNN paper [61] and other influential papers on the subject [70], 

[71], [72], [73]. The AP is a ranking metric that considers the area under the precision-recall 

curve. However, the COCO AP also considers ten Intersection over Union thresholds (IoU) 

(from 0.5 to 0.95 with 0.05 steps). AP50 and AP75 scores consider a fixed threshold of 0.5 

(more permissive) and 0.75 (stricter). Moreover, APsmall, APmedium, and APlarge consider 

the sizes of the different objects, in which small objects have areas of 322 or lower, medium 

objects have areas between 322 and 962 , and large objects have areas larger than 962 . 

 

IV.4 Results  

 

IV.4.1 Cloud Interference and Performance Metrics  

Table IV.3 lists the detection (Box) and segmentation (Mask) results with different 

ratios of cloudless and cloudy images using the X-101 backbone. The main metric (AP) 

decreases with the increase of cloudy images proportion in the time series for both the bounding 

box and the mask predictions. The maximum difference between the AP values (6:0 - 1:5) is 

not expressive, reaching 5.93 for the bounding box and 5.32 for the mask prediction. Moreover, 

the box and mask results are similar, mainly because of the CPIS round shape, which yields 

similar IoU results for the boxes and segmentation masks. This result demonstrates the ability 

of the DL method to detect features even under conditions of little information (low presence 

of cloudless images) in the time series. The most extensive ranges of variation are between time 

series with the lowest cloudless image ratio (1:5 and 2:4). In contrast, time series containing 

high cloudless image rates maintain high values and close to each other. This behavior is 
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predictable, where the smaller proportion of cloudless images increases the seasonal effect and 

the probability of not obtaining adequate images to detect center pivots.  

 

Table IV-3 Results for the bounding box and mask predictions on the different test sets with 

different ratios of cloudless and cloudy images in the time series. 

 

The other precision measures (AP50, AP75, APsmall, APmedium, and APlarge) tend to 

show the same general behavior of decreasing values with an increasing proportion of cloudless 

images. The only exception was the APm, which had a position inversion between the 6:0 and 

5:1 ratios, despite the very close values. This experiment shows scenarios with a very extreme 

cloud image in the time series, still showing good results.  

Among the metrics evaluated, APs had the worst results. The main factor for the poor 

performance of small objects is that they represent partial forms of CPIS positioned on the 

edges of the frame, which in the sample cut became incomplete and small. Therefore, the 

sample edges are more susceptible to detection errors, which can be minimized with the 

application of the moving window mosaic [17].  

Figure IV.4 shows the prediction of the same region with different ratios of cloud 

presence in the time series. The result demonstrates that even in the most extreme scenarios, 

with five cloudy images and only one cloudless image, the instance segmentation obtained 

correct predictions. The modifications identified between the different predictions concentrated 

on minor variations in the center pivot design. Besides, there are inaccuracies in detecting a 

small part of a center pivot cut in the left corner of the third alignment of the CPISs. As the 

proportion of clouds increases, the small slice of a center pivot disappears.  
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Figure IV.4 Representation of the predictions of a given region using the different ratios of cloud 

presence, in which each bounding box with the segmentation mask represent a different instance of 

center pivots. 

 

 

IV.4.2 Seasonal interference  

Eventually, the CPIS patterns fades with the surrounding areas, and detection is not 

possible. The use of multitemporal images guarantees the acquisition of data in the different 

planting stages that evidence the presence of CPIS. Figure IV.5 presents nine examples 

containing instance segmentation results and the color compositions of the six temporal images 

used as input.  
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Figure IV.5 Representation of nine predictions and their respective cloudless (< 20% cloud cover) time 

series. Note that even with this percentage, there is still a chance of having cloudy frames, as shown in 

F and H. 

 

The Sentinel-2 images correspond to images with a percentage of clouds below 25%. 

This condition would be a viable criterion to compose the six multitemporal images, allowing 

to obtain a vast predominance of free-cloud images, different phases of the planting cycle, and 

a viable set for automation with good precision. The temporal sequence demonstrates that some 

center pivots practically disappear in specific periods, becoming very similar to their 

surroundings, making their detection very difficult even by visual interpretation. A clear 



 

106 

 

example is the images of row A, where some images (frames 1-2-3) are visible only three center 

pivots, despite the existence of 4 CPIS as evidenced by the last image (frame 6). The other 

images present CPIS with behavior like the background in a certain period.  

Therefore, the different behaviors of CPIS over time make it difficult to generalize a DL 

model to a single date. The model with multitemporal data allows high generalizability and a 

precise classification, even in cases where the CPIS becomes imperceptible or in the presence 

of clouds in a temporal interval. 

 

IV.5 Discussion  

 

All DL models applied to optical imaging for center pivot detection reported training 

and applications for single-time imaging [47], [20], [57], [18], [58], [59], [17]. The main 

problems from only one date are clouds and visualizing the center pivot in particular planting 

stages. De Albuquerque et al. [18] showed that there are periods of the year that are easier to 

identify CPIS due to seasonal changes. According to the authors, the end of the drought and 

rainy seasons in Central Brazil present more significant difficulties. The best period is the onset 

of drought when the natural environment has non-photosynthetically active vegetation, and the 

irrigated pivots have photosynthetically active vegetation.  

Therefore, a viable solution to overcome the problems described is developing DL 

models adapted to a set of temporal images. Recently, a study using Sentinel-1 radar images 

used DL models of time series to detect center pivots [62]. Although radar data is free from 

cloud interference, research has shown that increasing the number of images has improved 

instance segmentation accuracy. 

This multitemporal approach with DL algorithms allows a more generalized learning 

that captures the uniform shape of the center pivot, disregarding the images with the presence 

of clouds and variations in the plantations. Furthermore, the model presents efficiency 

independent of the temporal order of the images. This approach of looking for an invariant 

shape over a period differs from studies that distinguish the types of crops that depend on the 

phenological cycle, and the chronological sequence [74], [75]. In this context, we developed a 

new strategy to increase the number of samples and reduce the chances of overfitting, randomly 

selecting the order of images in the time series. Training and evaluation considered different 

cloud proportions and the image ordering allows for a greater flexibility in data acquisition and 

automation.  
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The proposed methodology represents a robust alternative to the CPIS surveys carried 

out by the Brazilian government based on the visual interpretation of images [15], [16]. The 

procedure has significant advantages in terms of speed and consideration of multitemporal 

images, not limited to a specific date. Furthermore, the present DL approach with multitemporal 

optical images can be effectively applied to other objects with a fixed format within a time 

interval of interest, such as buildings and solar panels. 

 

IV.6 Conclusion  

 
The present study proposed a new DL approach for CPIS detection using time series, 

including different cloud occlusion scenarios and seasonal behavior, problems of great interest 

in the study of optical images. Unlike single-date data, multitemporal data offers more 

opportunities to observe center pivots by overcoming optical imaging issues such as cloud 

cover, atmospheric effects, shadow, missing data, and lack of contrast to surrounding 

vegetation. In addition, time-series satellite images reduce ambiguities arising from the 

phenological stage and the spatial boundary of the CPIS.  

We proposed a new augmentation strategy for time series analysis in which we randomly 

select images from the time series, introducing different percentages of cloudy images. The 

procedure forces the neural network to learn with the presence of images containing 

atmospheric interference and spectral similarity between the center pivot and the surrounding 

areas. However, this procedure only applies to objects that present similar structures over time, 

as is the case with CPIS.  

Predictably, we found that results were better when using a time series with images with 

a low cloud presence. Nonetheless, results kept steady even in more extreme scenarios, 

demonstrating a good generalization capability. Furthermore, this approach to targets with 

spectral variation over time within a fixed shape favors the generalization of the model, as it 

captures different scenarios of the same object and increases the predictive power. The results 

show an excellent perspective for practical application, obtaining good results from six images 

without a rigorous selection for better detection. The algorithm returns a very precise 

classification result. This model favors automation of CPIS detection with cost savings, agility 

and avoids large consumption of labor.  
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CAPÍTULO 

V. CONCLUSÕES 

 

O presente trabalho obteve êxito no objetivo proposto inicialmente, de aplicar técnicas 

de inteligência artificial para identificação de sistemas de irrigação por pivô central em dados 

de sensoriamento remoto. Os métodos utilizados apresentaram grande potencial de detecção 

dos alvos com um elevado grau de assertividade. A utilização de diferentes áreas para 

treinamento, teste e validação permitiu analisar o comportamento dos modelos de Deep 

Learning qualitativamente. 

A análise de precisão da pesquisa desenvolvida no segundo capítulo apresentou alto 

desempenho nas três arquiteturas CNN’s utilizadas, e apesar de ligeira vantagem da U-Net, 

todas apresentaram altos valores de métricas. Adicionalmente, a reconstrução do mosaico 

através de janelas deslizantes minimizou erros que normalmente ocorrem nas bordas dos 

quadros e comprometem a qualidade do resultado da classificação. Esse procedimento mostrou-

se eficaz em imagens de grandes áreas, uma vez que a ela precisa ser dividida em quadros 

menores para entrada nas arquiteturas CNN’s e posteriormente existe a necessidade de voltar 

ao tamanho original. 

O capítulo 3 apresentou diferenças metodológicas em relação ao anterior, com o uso de 

imagens multitemporais de radar de abertura sintética e segmentação de instâncias através de 

uma arquitetura CNN distinta, o Mask R-CNN. Além das dificuldades relacionadas a presença 

de nuvens nas imagens ópticas, ausentes nas imagens de radar, ficou evidenciado as vantagens 

em estudos com séries temporais, uma vez que a precisão aumentou em mais de 10%, em 

relação ao uso de apenas uma imagem em comparação ao uso de toda a série temporal. Além 

disso, foi observado que o comportamento dos pivôs ao longo dos meses apresenta grande 

variação, isso foi notado mesmo em intervalo menor que quatro meses, em que o pivô era 

detectado em apenas um dos tempos, seja no início ou no final, e o uso de séries temporais 

acarretam em melhorias de desempenho nesse sentido. 

Em seguida, no quarto capítulo, os resultados demonstraram que o aumento de séries 

temporais de imagens ópticas, mesmo com presença de alto percentuais de nuvens, torna o 

aprendizado profundo mais eficiente, aumentando o poder preditivo das CNN. Além disso, as 

análises realizadas demonstraram que a utilização de dados multitemporais permite superar 

problemas de nuvens, sombras, efeitos atmosféricos, dados ausentes e falta de contraste com as 
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vegetações do entorno dos SIPC.  

Considerando as metodologias utilizadas no presente estudo para aplicação prática do 

método, conclui-se que a identificação dos pivôs centrais utilizando interpretação visual e 

classificação manual das feições, pode ser substituída pelo método automático, o que torna o 

trabalho mais rápido e eficiente. Em geral, as técnicas aplicadas necessitam de grandes 

processamentos, no entanto, analisar previamente os dados a serem utilizados são determinantes 

para o bom desempenho das redes, como análise do tamanho da área de pesquisa, periodicidade 

e tipo do sensor, resolução espacial e espectral das imagens. A exemplo disso, no terceiro 

capítulo, os resultados obtidos utilizando apenas uma polarização (VV) das imagens radar, 

foram próximos aos resultados da combinação das duas polarizações (VV+VH), que teve tempo 

de processamento e consumo computacional muito superior. 

O presente trabalho baseou-se na aplicação dos modelos em três áreas com grande 

concentração de pivôs centrais, porém, em trabalhos futuros, a metodologia pode ser aplicada 

em grandes áreas, em nível regional ou mesmo nacional. Trabalhos futuros no sentido de 

identificar o tipo de cultivo dentro do pivô são desafiadores, mas se mostram como de grande 

utilidade pro gestor público, a metodologia utilizada no presente trabalho poderia ser aplicada, 

com amostras rotuladas do tipo de cultivo daquele pivô central, fazendo com que a rede neural 

além de classificar o pivô central, identifique o tipo de cultivo do seu interior. 


