UNIVERSIDADE DE BRASÍLIA INSTITUTO DE FÍSICA PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

Equações diferenciais funcionais dependentes do caminho: A dinâmica de Synge para duas cargas pontuais interagindo com seus campos eletromagnéticos

Rodrigo Ribeiro da Silva Orientador: Prof. Dr. Annibal Dias de Figueiredo Neto

> Brasília 2022

Agradecimentos

Agradeço, primeiramente, a Deus pela vida e pelas oportunidades que me foram apresentadas. Ao professor Annibal, pela orientação, paciência, disponibilidade de sanar minhas dúvidas e a motivação pelo trabalho desenvolvido. A minha mãe Lara, meu pai Luiz e a minha avó Cleuzeni que são os meu pilares e agradeço por tudo que eles já fizeram por mim, pois o que eu sou hoje é o reflexo do amor incondicional e da dedicação deles. A minha irmã Ana pelo carinho e pela sua alegria contagiante. A Lydiane pela amizade e incrível esposa que tenho. Amorosa e companheira em todos os momentos.

A Capes pelo apoio financeiro.

Resumo

Os significados físicos e alguns aspectos matemáticos do problema proposto por Synge [1], será desenvolvido ao longo deste trabalho. O problema de Synge é determinar a dinâmica de duas cargas pontuais elétricas interagindo por meio de seus campos eletromagnéticos, sem levar em consideração os termos de radiação devidos às auto forças em cada carga pontual. Em particular, discutimos o problema de como considerar as condições iniciais compatíveis com um sistema isolado das forças externas. Este problema decorre da existência de restrições intertemporais para as trajetórias das cargas, gerando assim equações relativísticas de Newton para as cargas. Tais equações não formam um sistema de Equações Diferenciais Ordinárias, mas sim um sistema de Equações Diferenciais Funcionais, cuja dificuldade para a obtenção de soluções é bem maior, quando comparado com sistemas de Equações Diferenciais Ordinárias. A elaboração de um algoritmo, fundamentado apenas Equações Diferenciais Ordinárias para a obtenção de soluções aproximadas para o problema de Synge, foi desenvolvido e permitiu a construção de um algoritmo numérico utilizando métodos tradicionais de integração para sistemas de E.D.O.s. Finalmente, usamos este algoritmo para obter aproximações para as soluções quase circulares que são previstas no problema de Synge.

Abstract

The physical meanings and some mathematical aspects of the problem proposed by Synge [1] will be developed throughout this work. Synge's problem is to determine the dynamics of two electric point charges interacting through their electromagnetic fields, without taking into account the radiation terms due to the self-forces on each point charge. In particular, we discuss the problem of how to consider initial conditions compatible with a system isolated from external forces. This problem stems from the existence of intertemporal restrictions for the trajectories of the charges, thus generating Newton's relativistic equations for the charges. Such equations do not form a system of Ordinary Differential Equations, but a system of Functional Differential Equations, whose difficulty to obtain solutions is much greater when compared to systems of Ordinary Differential Equations. The elaboration of an algorithm, based only on Ordinary Differential Equations to obtain approximate solutions to the Synge problem, was developed and allowed the construction of a numerical algorithm using traditional integration methods for ODEs systems. Finally, we use this algorithm to obtain approximations to the quasi-circular solutions that are predicted in Synge's problem.

Sumário

Sumário	
Lista de Figuras	
Lista de Tabelas	1
Introdução	2
I Campos eletromagnéticos retardados 1.1 Aproximação instantânea para as acelerações	10 16 17
II Campos eletromagnéticos retardados e avançados2.1 Aproximação instantânea para o campo simétrico2.2 A existência de soluções periódicas circulares	20 21 22
III Implemetação do método iterativo para obter aproximações sucessivas das equações diferenciais instantâtenas 3.1 Trajetórias circulares coulombianas 3.1.1 Campos Eletromagnéticos Retardados 3.1.2 Campos eletromagnéticos simétricos 3.2 Trajetórias não circulares coulombianas 3.2.1 Campos Eletromagnéticos Retardados 3.2.2 Campos eletromagnéticos Retardados 3.2.2 Campos eletromagnéticos simétricos	25 26 34 37 37 41
IV Conclusão 4.1 Conclusões e considerações finais	45 45
Referências Bibliográficas	47
Apêndice A Equações de movimento no eixo cartesiano	50
Apêndice B Transformação De Coordenadas 2.1 Vetor do centro de massa e relativo 2.2 Coordenadas polares	76 76 79
Apêndice C Transformação De Escala 3.1 Momento angular	84 84
Apêndice D Condições Iniciais 4.1 Condições iniciais para o sistema dinâmico	86 86

Apêndice E Código Fonte

Lista de Figuras

3.1.1 Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 , $\mathbf{r}_2 \in \mathbf{R}$, onde integramos numericamente (para a mesma condição inicial) os quatro primeiros sistemas de equações diferenciais da sequência (1.2.47)	
considerando $\eta = 1$	27
3.1.2 Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 ,	
$\mathbf{r}_2 \in \mathbf{R}$, onde integramos numericamente (para a mesma condição inicial)	
os quatro primeiros sistemas de equações diferenciais da sequencia $(1.2.47)$	
considerando $\eta = 2$	28
3.1.3 Comparação dos erros da aproximação S_3 com relação a S_0 , S_1 e S_2 para	20
η igual a 1, 2 e 100 considerando o raio inicial igual a $r_0 = 50.$	29
3.1.4 Comparação da trajetoria relativa das particulas, obtido por integração	
numerica dos sistemas de equações diferencias S_0 , S_1 , S_2 e S_3 para $\eta = 1$.	
Na figura $(3.1.4a)$ podemos observa a mudança da trajetoria relativa nas	
sucessivas aproximações dadas por $(1.2.47)$. Na figura $(3.1.40)$ o sistema	
S_2 e o sistema S_3 possuem trajetorias identicas. Os vetores são mostrados	20
en coordenadas cartesianas planas (x, y)	30
s.r.s Comparação da trajetoria relativa das particulas, obtido por integração numérica dos sistemas do equações diferencias S_{-} , $S_{$	
2 Como observado em $(3,1,4)$ temos que na figura $(3,1,5)$ a mudanca	
da trajetória relativa nas sucessivas aproximações dadas por (1.2.47) Na	
figura (3.1.5b) o sistema S_2 e o sistema S_2 possuem trajetórias idênticas	
Os vetores são mostrados em coordenadas cartesianas planas (x, y) .	30
3.1.6 Comparação da trajetória do centro de massa das partículas, obtido por	
integração numérica dos sistemas de equações diferencias S_0 , S_1 , S_2 e S_3	
para $\eta = 2$. Assim como nos casos apresentados nas figuras (3.1.4) e (3.1.5),	
temos na figura (3.1.6a) a mudança da trajetória do centro de massa nas	
sucessivas aproximações dadas por $(1.2.47)$. Na figura $(3.1.6b)$ o sistema	
S_2 e o sistema S_3 possuem trajetórias idênticas. Os vetores são mostrados	
em coordenadas cartesianas planas (x, y) . A trajetória do centro de massa	
para o caso $\eta=1$ não é apresentado como exemplo, pois o centro de massa	
mantém-se parado.	31
3.1.7 Comparação da trajetória do centro de massa das partículas, obtido por	
integração numérica dos sistemas de equações diferencias S_0, S_1, S_2 e S_3	
para $\eta = 100$. Os vetores são mostrados em coordenadas cartesianas planas	
(x,y)	31
3.1.8 Comparação das distâncias relativas (r) , obtidas por integração numérica	
dos sistemas de equações diferenciais S_0 , S_1 , S_2 e S_3 para η igual a 1, 2, e	
1836	32

3.1.9 Na figura à esquerda, mostramos a evolução da distância relativa entre as partículas |r| em função do tempo t para diferentes valores de η . Na figura à direita, plotamos o tempo de singularidade (obtido numericamente) em função de η (Pontos) e seu respectivo ajuste linear (Linha preta tracejada).

função de η (Pontos) e seu respectivo ajuste linear (Linha preta tracejada). 2.1.1(Trajotárias relativas planares em coordenadas cartegianes (n, n) para $n = 1$	33
5.1.1011a jetorias relativas planares em coordenadas cartesianas (x, y) para $\eta = 1$	
$e \eta = 2$, como mostrado nos grancos (3.1.10a) e (3.1.10b), onde integrantos	
numericamente (para a mesma condição miciai) os dois primeiros siste-	
mas de equações diferenciais da sequencia $(1.2.47)$. Nos grancos $(3.1.10c)$	
e(3.1.10d) temos a comparação das distancias relativas considerando os	.
sistemas de equações diferencias $S_0 \in S_1$	34
3.1.11 Trajetória do centro de massa das partículas, obtido por integração numé-	
rica dos sistemas de equações diferencias para $\eta = 2 \text{ e } \eta = 100$. Observamos	
que o padrão da trajetória muda conforme o valor de η , porém as traje-	
tórias parecem oscilar entre um valor máximo e um valor mínimo, nunca	
decaindo para uma singularidade. Os vetores são mostrados em coordena-	
das cartesianas planas (x, y) . A trajetória do centro de massa para o caso	
$\eta = 1$ não é apresentada como exemplo, pois o centro de massa mantém-se	
parado	35
3.1.12 Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 ,	
$\mathbf{r}_2 \in \mathbf{R}$, onde integramos numericamente (para a mesma condição inicial)	
considerando $\eta = 2 e \eta = 100.$	35
3.1.13Comparação das distâncias relativas, obtidas por integração numérica dos	
sistemas de equações diferenciais considerando somente o campo retardado	
e o campo simétrico, para η igual a 1, 2 e 100 considerando o raio inicial	
igual a $r_0 = 50.$	36
3.1.14Comparação das distâncias relativas, obtidas por integração numérica dos	
sistemas de equações diferenciais considerando somente o campo retardado	
e o campo simétrico, para η igual a 2 e 1836 considerando o raio inicial	
igual a $r_0 = 18789.$	36
$3.2.15$ Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 ,	
\mathbf{r}_2 e \mathbf{R} para o sistema S_2 da sequencia (1.2.47) com a condição inicial não	
circular considerando $\eta = 1, \eta = 2 e \eta = 100$	38
3.2.16 Comparação da trajetória relativa das partículas, obtido por integração	
numérica dos sistemas de equações diferencias S_0, S_1, S_2 e S_3 para $\eta = 2$	
para uma condição inicial não circular.	38
3.2.17 Trajetória relativa das partículas par a $\eta=1,\eta=2$ e $\eta=100$ para uma	
condição inicial não circular.	39
3.2.18 Trajetória do centro de massa das partículas par a η = 2 e η = 100 para	
uma condição inicial circular.	40
3.2.19 Distância relativa para η igual a 1, 2, e 100 para uma condição inicial não	
circular	40
$3.2.20$ Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 ,	
\mathbf{r}_2 e \mathbf{R} para o sistema S_1 da sequencia (1.2.47) com a condição inicial não	
circular considerando $\eta=1,\eta=2$ e $\eta=100$ para o campo simétrico	41
$3.2.21$ Trajetórias relativas para o sistema S_1 da sequencia (1.2.47) com a condi-	
ção inicial não circular considerando $\eta=1,\eta=2$ e $\eta=100$ para o campo	
simétrico.	42
3.2.22 Trajetórias do centro de massa para o sistema S_1 da sequencia (1.2.47)	
com a condição inicial não circular considerando $\eta = 2 e \eta = 100$ para o	

campo simétrico.

43

3.2.23 Comparação das distâncias relativas, obtidas por integração numérica dos	
sistemas de equações diferenciais considerando somente o campo retardado	
e o campo simétrico, para η igual a 1, 2, e 100 para uma condição inicial	
não circular.	43
3.2.24 Distâncias relativas, obtidas por integração numérica dos sistemas de	
equações diferenciais considerando o campo simétrico, para η igual a 2 e	
100 para uma condição inicial circular.	44

Lista de Tabelas

E.1 Tabela dos parâmetros das simulações. O parâmetro α indica a proporção entre os campos calculados no tempo de retardo e no tempo avançado. Dado o valor alfa igual a meio o campo é calculado somente no tempo de retardo e quando alfa é zero existe a contribuição dos dois campos de forma idêntica. O valor de η indica a razão entre as massas das partículas e r_0 a distância inicial entre as partículas. O campo vetorial H^n indica em qual ordem de convergência n estamos simulando as equações. Os parâmetros n e m, trabalham juntos para obter os valores das posições, velocidades e acelerações calculados durante as simulações. Sendo assim, n indica a divisão do círculo em n partes e m é o número de círculos que desejamos calcular, por fim temos os tempos de simulação.

Introdução

O problema de duas cargas pontuais, formulado como um problema de dois corpos isolados, consiste em determinar a dinâmica das cargas em função de seus próprios campos eletromagnéticos, ou seja, considerar o campo eletromagnético gerado por fontes externas as duas cargas consideradas. A primeira formulação rigorosa deste problema foi feita por Synge [1], nela ele não considera as forças de reação de radiação de cargas pontuais [2, 3, 4, 5]. Discutiremos esse assunto posteriormente nesta introdução, mas, por enquanto, todos os esforços serão voltados para a formulação matemática de Synge.

O problema matemático de Synge consiste em acoplar as equações de Maxwell para duas cargas pontuais com as equações da mecânica relativística usando a força de Lorentz para cada carga. Matematicamente, as equações relativísticas de Newton para duas cargas pontuais aceleradas são dadas por:

$$\frac{d\mathbf{p}_i}{dt} = \mathbf{F}_{ji}, \quad \mathbf{p}_i = \frac{m_i \mathbf{v}_i}{\sqrt{1 - |\mathbf{v}_i|^2/c^2}}, \quad i = 1, 2, \tag{0.0.1}$$

em que \mathbf{p}_i é o momento relativístico da partícula i e

$$\mathbf{F}_{ji} = q_i \, \mathbf{E}_{ji} + q_i \, \mathbf{v}_i \times \mathbf{B}_{ji} \quad (i \neq j), \tag{0.0.2}$$

é a força de Lorentz na carga pontual *i* devido ao campo eletromagnético da carga pontual j e \mathbf{v}_i é a velocidade da partícula *i*. Aqui estamos considerando a carga pontual q_i como uma partícula com massa inercial m_i (i = 1, 2) e os campos eletromagnéticos devem satisfazer as equações de Maxwell para uma distribuição de duas cargas pontuais, o que corresponde a um sistema de Equações Diferenciais Parciais dado por:

$$\nabla \cdot \mathbf{B}(\mathbf{r}, t) = 0, \qquad \nabla \times \mathbf{E}(\mathbf{r}, t) + \frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t} = 0,$$

$$\nabla \cdot \mathbf{E}(\mathbf{r}, t) = \frac{\rho(\mathbf{r}, t)}{\epsilon_0}, \qquad \nabla \times \mathbf{B}(\mathbf{r}, t) - \frac{1}{c^2} \frac{\partial \mathbf{E}(\mathbf{r}, t)}{\partial t} = \mu_0 \mathbf{j}(\mathbf{r}, t),$$
(0.0.3)

onde $\mathbf{r} \in \mathbb{R}^3$ representa um vetor de posição no espaço e $t \in \mathbb{R}$ um instante de tempo. Este sistema de equações de Maxwell é escrito no sistema de unidades MKS, com ϵ_0 , μ_0 e c ssendo permissividade elétrica, a susceptibilidade magnética e a velocidade da luz no vácuo, respectivamente. As densidades de carga $\rho(\mathbf{r}, t)$ e as densidades de corrente $\mathbf{j}(\mathbf{r}, t)$ são definidas como:

$$\rho(\mathbf{r},t) = \sum_{i=1,2} q_i \delta(\mathbf{r} - \mathbf{r}_i), \quad \mathbf{j}(\mathbf{r},t) = \sum_{i=1,2} q_i \mathbf{v}_i \delta(\mathbf{r} - \mathbf{r}_i), \quad (0.0.4)$$

onde δ é a função delta de Dirac tridimensional e \mathbf{r}_i é o vetor de posição associado à carga q_i . Finalmente, os campos eletromagnéticos na equação (0.0.2) são calculados na posição da carga \mathbf{r}_i e no tempo instantâneo t, ou seja,

$$\mathbf{E}_{ji} = \mathbf{E}(\mathbf{r}_i, t), \quad \mathbf{B}_{ji} = \mathbf{B}(\mathbf{r}_i, t) \tag{0.0.5}$$

O sistema de equações (0.0.1) - (0.0.5) representam a formulação básica do problema de duas cargas interagindo unicamente através de seus respectivos campos eletromagnéticos. Em uma primeira inspeção, isso constitui um problema matemático muito complexo de acoplamento de um sistema de E.D.O.s (equações de Newton) com um sistema de E.D.P.s (equações de Maxwell). Apesar de os problemas envolverem dificuldades técnicas oriundas das singularidades das densidades de carga, este é um problema bastante atípico do ponto de vista matemático e envolve questões muito sérias para estabelecer resultados para a existência de soluções através da imposição de alguma condição inicial [6], o que implicaria em conhecer as posições $\mathbf{r}_i(t_0)$ e as velocidades $\mathbf{v}_i(t_0)$ das partículas, bem como os campos $\mathbf{E}(\mathbf{r}, t_0) \in \mathbf{B}(\mathbf{r}, t_0)$ em um determinado instante t_0 .

A origem desta dificuldade está relacionada ao fato de que o sistema composto pelas equações (0.0.1) - (0.0.5) tem uma restrição intertemporal. Essa restrição surge do fato de que as equações em (0.0.3) tem uma solução bem determinada, baseada nos potenciais de Liénard-Wiechert, para uma dada trajetória da carga pontual. Na verdade, os campos de Liérnard-Wiechert retardados ou avançados são campos eletromagnéticos variáveis no tempo que satisfazem as equações de Maxwell para uma carga pontual em um movimento arbitrário descrito por seu vetor de posição $\mathbf{r}_q(t)$ em função do tempo t.

Os respectivos campos elétricos e magnéticos retardados, calculados em alguma posição \mathbf{r} e no tempo t, são dados por [7, 8, 9]:

$$\mathbf{E}^{-}(\mathbf{r},t) = \frac{q}{4\pi\epsilon_{0}} \left[\frac{(1-\beta^{2})(\mathbf{n}-\boldsymbol{\beta})}{R^{2}|1-\mathbf{n}\cdot\boldsymbol{\beta}|^{3}} + \frac{\mathbf{n}\times[(\mathbf{n}-\boldsymbol{\beta})\times\mathbf{a}]}{c^{2}R|1-\mathbf{n}\cdot\boldsymbol{\beta}|^{3}} \right]_{t_{r}}, \qquad (0.0.6)$$

$$\mathbf{B}^{-}(\mathbf{r},t) = \frac{\mathbf{n}(t_r)}{c} \times \mathbf{E}^{-}(\mathbf{r},t), \qquad (0.0.7)$$

$$t_r = t - \frac{R}{c}, \qquad (0.0.8)$$

onde $\mathbf{R} = \mathbf{r} - \mathbf{r}_q(t)$, $R = |\mathbf{R}|$, $\mathbf{n} = \mathbf{R}/R$, $\boldsymbol{\beta} = \mathbf{v}/c$, $\mathbf{v} = d\mathbf{r}_q/dt$ e $\mathbf{a} = d\mathbf{v}_q/dt$ são todos avaliados no tempo retardado t_r .

A derivação de campos avançados de Liérnard-Wiechert pode ser obtida de maneira semelhante à derivação usual realizada em livros para campos retardados, entretanto, devemos considerar os campos elétricos e magnéticos avaliados no tempo avançado t_a [10]:

$$\mathbf{E}^{+}(\mathbf{r},t) = \frac{q}{4\pi\epsilon_{0}} \left[\frac{(1-\beta^{2})(\mathbf{n}+\boldsymbol{\beta})}{R^{2}|1+\mathbf{n}\cdot\boldsymbol{\beta}|^{3}} + \frac{\mathbf{n}\times[(\mathbf{n}+\boldsymbol{\beta})\times\mathbf{a}]}{c^{2}R|1+\mathbf{n}\cdot\boldsymbol{\beta}|^{3}} \right]_{t_{a}}, \quad (0.0.9)$$

$$\mathbf{B}^{+}(\mathbf{r},t) = \frac{\mathbf{n}(t_{a})}{c} \times \mathbf{E}^{+}(\mathbf{r},t), \qquad (0.0.10)$$

$$t_a = t + \frac{R}{c}.$$
 (0.0.11)

Os campos elétrico e magnético da partícula j atuando na partícula i são definidos da seguinte forma:

$$\mathbf{E}_{ji} = \left(\frac{1}{2} + \alpha\right) \mathbf{E}_{ji}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{E}_{ji}^{+}, \qquad (0.0.12)$$

$$\mathbf{B}_{ji} = \left(\frac{1}{2} + \alpha\right) \mathbf{B}_{ji}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{B}_{ji}^{+}, \qquad (0.0.13)$$

com $i \neq j$. Os sobrescritos "-" e "+" indicam se o campo eletromagnético deve ser avaliado em tempos retardados ou avançados, respectivamente. O parâmetro α é apenas um truque para considerar combinações lineares entre campos retardados e avançados que representam diferentes soluções das equações de Maxwell. Vale a pena citar dois casos: o primeiro é o cenário causal usual com $\alpha = 1/2$, onde há apenas campo retardado; o segundo é $\alpha = 0$, que corresponde à formulação Wheeler-Feynman do eletromagnetismo onde há uma contribuição simétrica proveniente de campos retardados e avançados [11, 12].

Apesar do problema da causalidade não está resolvida e a necessidade do uso dos campos avançados, proposto por Wheeler e Feynman, para a interpretação dos absorvedores, podemos utilizar tal proposição de construção de um sistema de duas cargas pontuais para descrever o método iterativo que permite obter aproximações sucessivas, por meio de E.D.O.s, de um conjunto de equações que contém termos com derivadas dependentes dos tempos retardados e avançados. O ganho técnico associado a resolução deste problema parece superar as questões mais físicas associadas a questão de obedecer ou não a causalidade.

Os campos elétricos e magnéticos apresentados acima são dados por:

$$\mathbf{E}_{ji}^{-} = \frac{q_j}{4\pi\epsilon_0} \mathbf{G}_{ji}^{-} \left(\mathbf{r}_i, \mathbf{r}_j^{-}, \mathbf{v}_j^{-}, \mathbf{a}_j^{-} \right), \quad \mathbf{B}_{ji}^{-} = \frac{q_j}{4\pi\epsilon_0 c} \mathbf{n}_{ji}^{-} \times \mathbf{G}_{ji}^{-} \left(\mathbf{r}_i, \mathbf{r}_j^{-}, \mathbf{v}_j^{-}, \mathbf{a}_j^{-} \right), \quad (0.0.14)$$

$$\mathbf{E}_{ji}^{+} = \frac{q_j}{4\pi\epsilon_0} \mathbf{G}_{ji}^{+} \left(\mathbf{r}_i, \mathbf{r}_j^{+}, \mathbf{v}_j^{+}, \mathbf{a}_j^{+} \right), \quad \mathbf{B}_{ji}^{+} = \frac{q_j}{4\pi\epsilon_0 c} \mathbf{n}_{ji}^{+} \times \mathbf{G}_{ji}^{+} \left(\mathbf{r}_i, \mathbf{r}_j^{+}, \mathbf{v}_j^{+}, \mathbf{a}_j^{+} \right), \quad (0.0.15)$$

onde

$$\mathbf{G}_{ji}^{-} = \frac{\left(1 - \beta_{j}^{-2}\right)\left(\mathbf{n}_{ji}^{-} - \boldsymbol{\beta}_{j}^{-}\right)}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}\right|^{2}\left|1 - \mathbf{n}_{ji}^{-} \cdot \boldsymbol{\beta}_{j}^{-}\right|^{3}} + \frac{\mathbf{n}_{ji}^{-} \times \left[\left(\mathbf{n}_{ji}^{-} - \boldsymbol{\beta}_{j}^{-}\right) \times \mathbf{a}_{j}^{-}\right]}{c^{2}\left|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}\right|\left|1 - \mathbf{n}_{ji}^{-} \cdot \boldsymbol{\beta}_{j}^{-}\right|^{3}}, \qquad (0.0.16)$$

$$\mathbf{G}_{ji}^{+} = \frac{\left(1 - \beta_{j}^{+^{2}}\right) \left(\mathbf{n}_{ji}^{+} + \boldsymbol{\beta}_{j}^{+}\right)}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}^{+}\right|^{2} \left|1 + \mathbf{n}_{ji}^{+} \cdot \boldsymbol{\beta}_{j}^{+}\right|^{3}} + \frac{\mathbf{n}_{ji}^{+} \times \left[\left(\mathbf{n}_{ji}^{+} + \boldsymbol{\beta}_{j}^{+}\right) \times \mathbf{a}_{j}^{+}\right]}{c^{2} \left|\mathbf{r}_{i} - \mathbf{r}_{j}^{+}\right| \left|1 + \mathbf{n}_{ji}^{+} \cdot \boldsymbol{\beta}_{j}^{+}\right|^{3}}, \qquad (0.0.17)$$

$$\mathbf{n}_{ji}^{-} = \frac{\mathbf{r}_i - \mathbf{r}_j^{-}}{\left|\mathbf{r}_i - \mathbf{r}_j^{-}\right|},\tag{0.0.18}$$

$$\mathbf{n}_{ji}^{+} = \frac{\mathbf{r}_{i} - \mathbf{r}_{j}^{+}}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}^{+}\right|},\tag{0.0.19}$$

com $\beta_j^- = \mathbf{v}_j^-/c$ e $\beta_j^+ = \mathbf{v}_j^+/c$. As variáveis dinâmicas avaliadas em seus respectivos os tempos são definidos como:

$$\mathbf{r}_i = \mathbf{r}_i(t), \quad \mathbf{v}_i = \mathbf{v}_i(t), \quad \mathbf{a}_i = \mathbf{a}_i(t), \quad (0.0.20)$$

$$\mathbf{r}_j^- = \mathbf{r}_j(t_r^j), \quad \mathbf{v}_j^- = \mathbf{v}_j(t_r^j), \quad \mathbf{a}_j^- = \mathbf{a}_j(t_r^j), \quad (0.0.21)$$

$$\mathbf{r}_j^+ = \mathbf{r}_j(t_a^j), \quad \mathbf{v}_j^+ = \mathbf{v}_j(t_a^j), \quad \mathbf{a}_j^+ = \mathbf{a}_j(t_a^j), \quad (0.0.22)$$

e os tempos de retardo e avançado são obtidos das soluções das seguintes equações:

$$t_{r}^{j} = t - \frac{|\mathbf{r}_{i} - \mathbf{r}_{j}(t_{r}^{j})|}{c}, \quad t_{a}^{j} = t + \frac{|\mathbf{r}_{i} - \mathbf{r}_{j}(t_{a}^{j})|}{c}.$$
 (0.0.23)

Realizando uma transformação de escala nas unidades de espaço e de tempo definidas como:

$$\mathbf{r}_i \to L \mathbf{r}_i \ (i=1,2) \quad \mathbf{e} \quad t \to T t,$$
 (0.0.24)

a mesma transformação leva às seguintes transformações nas velocidades e acelerações:

$$\mathbf{v}_i \to c \, \mathbf{v}_i, \quad \mathbf{a}_i \to \frac{c}{T} \, \mathbf{a}_i,$$
 (0.0.25)

e cabe ainda a seguinte definição:

$$\frac{L}{T} \equiv c. \tag{0.0.26}$$

A relação acima implica c = 1 nas novas unidades de escala de espaço e tempo. Para realizar o reescalonamento no sistema (0.0.2) veremos inicialmente como ocorre a transformação de escala no termo \mathbf{G}_{ji}^- , pois uma vez que entendemos como se dá a transformação deste termo podemos aplicar em \mathbf{G}_{ji}^+ e realizar o reescalonamento de todos os termos do sistema de equações em (0.0.2) . Sendo assim, temos:

$$\mathbf{G}_{ji}^{+} = \frac{\left(1 - \left|\mathbf{v}_{j}^{-}\right|^{2}/c^{2}\right)\left(\mathbf{n}_{ji}^{-} - \mathbf{v}_{j}^{-}/c\right)}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}\right|^{2}\left|1 - \mathbf{n}_{ji}^{-} \cdot \mathbf{v}_{j}^{-}/c\right|^{3}} + \frac{\mathbf{n}_{ji}^{-} \times \left[\left(\mathbf{n}_{ji}^{-} - \mathbf{v}_{j}^{-}/c\right) \times \mathbf{a}_{j}^{-}\right]}{c^{2}\left|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}\right|\left|1 - \mathbf{n}_{ji}^{-} \cdot \mathbf{v}_{j}^{-}/c\right|^{3}}.$$

Aplicando a transformação de escala obtemos:

$$\frac{\left(1 - \frac{c^{2}|\mathbf{v}_{j}^{-}|^{2}}{c^{2}}\right)\left(\mathbf{n}_{ji}^{-} - \frac{c\mathbf{v}_{j}^{-}}{c}\right)}{L^{2}|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}|^{2}|1 - \mathbf{n}_{ji}^{-} \cdot \frac{c\mathbf{v}_{j}^{-}}{c}|^{3}} + \frac{\mathbf{n}_{ji}^{-} \times \left[\left(\mathbf{n}_{ji}^{-} - \frac{c\mathbf{v}_{j}^{-}}{c}\right) \times \frac{c\mathbf{a}_{j}^{-}}{T}\right]}{c^{2}L|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}|\left|1 - \mathbf{n}_{ji}^{-} \cdot \frac{c\mathbf{v}_{j}^{-}}{c}\right|^{3}}, \\
\frac{\left(1 - |\mathbf{v}_{j}^{-}|^{2}\right)\left(\mathbf{n}_{ji}^{-} - \mathbf{v}_{j}^{-}\right)}{L^{2}|\mathbf{r}_{j} - \mathbf{r}_{j}^{-}|^{2}|1 - \mathbf{n}_{ji}^{-} \cdot \mathbf{v}_{j}^{-}|^{3}} + \frac{\mathbf{n}_{ji}^{-} \times \left[\left(\mathbf{n}_{ji}^{-} - \mathbf{v}_{j}^{-}\right) \times \mathbf{a}_{j}^{-}\right]}{cLT|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}||1 - \mathbf{n}_{ji}^{-} \cdot \mathbf{v}_{j}^{-}|^{3}}, \\
\frac{\left(1 - |\mathbf{v}_{j}^{-}|^{2}\right)\left(\mathbf{n}_{ji}^{-} - \mathbf{v}_{j}^{-}\right)}{L^{2}|\mathbf{r}_{j} - \mathbf{r}_{j}^{-}|^{2}|1 - \mathbf{n}_{ji}^{-} \cdot \mathbf{v}_{j}^{-}|^{3}} + \frac{\mathbf{n}_{ji}^{-} \times \left[\left(\mathbf{n}_{ji}^{-} - \mathbf{v}_{j}^{-}\right) \times \mathbf{a}_{j}^{-}\right]}{L^{2}|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}||1 - \mathbf{n}_{ji}^{-} \cdot \mathbf{v}_{j}^{-}|^{3}}, \\
\frac{1}{L^{2}}\left[\frac{\left(1 - |\mathbf{v}_{j}^{-}|^{2}\right)\left(\mathbf{n}_{ji}^{-} - \mathbf{v}_{j}^{-}\right)}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}|^{2}|1 - \mathbf{n}_{ji}^{-} \cdot \mathbf{v}_{j}^{-}|^{3}} + \frac{\mathbf{n}_{ji}^{-} \times \left[\left(\mathbf{n}_{ji}^{-} - \mathbf{v}_{j}^{-}\right) \times \mathbf{a}_{j}^{-}\right]}{\left|\mathbf{r}_{i} - \mathbf{r}_{j}^{-}||1 - \mathbf{n}_{ji}^{-} \cdot \mathbf{v}_{j}^{-}|^{3}}\right].$$

Portanto o reescalonamento do termo \mathbf{G}_{ij}^- é:

$$\mathbf{G}_{ji}^{-} \to \frac{1}{L^2} \mathbf{G}_{ji}^{-},\tag{0.0.27}$$

e consequentemente:

$$\mathbf{G}_{ji}^+ \to \frac{1}{L^2} \mathbf{G}_{ji}^+. \tag{0.0.28}$$

Aplicando tais transformações à equação (0.0.1), segue que:

$$\frac{c}{T} m_i \frac{d(\gamma_i \mathbf{v}_i)}{dt} = \frac{q_i q_j}{4\pi\epsilon_0 L^2} \left[\left(\frac{1}{2} + \alpha \right) \mathbf{G}_{ji}^- + \left(\frac{1}{2} - \alpha \right) \mathbf{G}_{ji}^+ \right] \\
+ \frac{q_i q_j}{4\pi\epsilon_0 L^2} \mathbf{v}_i \times \left[\left(\frac{1}{2} + \alpha \right) \mathbf{n}_{ji}^- \times \mathbf{G}_{ji}^- + \left(\frac{1}{2} - \alpha \right) \mathbf{n}_{ji}^+ \times \mathbf{G}_{ji}^+ \right].$$
(0.0.29)

Utilizando a equação (0.0.29) acima podemos escrever a equação reescalonada para a

partícula 1 e 2 da seguinte maneira:

$$\frac{c}{T} m_1 \frac{d(\gamma_1 \mathbf{v}_1)}{dt} = \frac{q_1 q_2}{4\pi\epsilon_0 L^2} \left[\left(\frac{1}{2} + \alpha \right) \mathbf{G}_{21}^- + \left(\frac{1}{2} - \alpha \right) \mathbf{G}_{21}^+ \right] \\
+ \frac{q_1 q_2}{4\pi\epsilon_0 L^2} \mathbf{v}_1 \times \left[\left(\frac{1}{2} + \alpha \right) \mathbf{n}_{21}^- \times \mathbf{G}_{21}^- + \left(\frac{1}{2} - \alpha \right) \mathbf{n}_{21}^+ \times \mathbf{G}_{21}^+ \right], \\
\frac{c}{T} m_2 \frac{d(\gamma_2 \mathbf{v}_2)}{dt} = \frac{q_2 q_1}{4\pi\epsilon_0 L^2} \left[\left(\frac{1}{2} + \alpha \right) \mathbf{G}_{12}^- + \left(\frac{1}{2} - \alpha \right) \mathbf{G}_{12}^+ \right] \\
+ \frac{q_2 q_1}{4\pi\epsilon_0 L^2} \mathbf{v}_2 \times \left[\left(\frac{1}{2} + \alpha \right) \mathbf{n}_{12}^- \times \mathbf{G}_{12}^- + \left(\frac{1}{2} - \alpha \right) \mathbf{n}_{12}^+ \times \mathbf{G}_{12}^- \right].$$

Multiplicando ambas as equações por T/cm_2 e definindo $\eta = m_1/m_2$, temos:

$$\eta \frac{d(\gamma_{1} \mathbf{v}_{1})}{dt} = \frac{Tq_{1}q_{2}}{cm_{2}4\pi\epsilon_{0}L^{2}} \left[\left(\frac{1}{2} + \alpha\right) \mathbf{G}_{21}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{G}_{21}^{+} \right] \\ + \frac{Tq_{1}q_{2}}{cm_{2}4\pi\epsilon_{0}L^{2}} \mathbf{v}_{1} \times \left[\left(\frac{1}{2} + \alpha\right) \mathbf{n}_{21}^{-} \times \mathbf{G}_{21}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{n}_{21}^{+} \times \mathbf{G}_{21}^{+} \right], \\ \frac{d(\gamma_{2} \mathbf{v}_{2})}{dt} = \frac{Tq_{2}q_{1}}{cm_{2}4\pi\epsilon_{0}L^{2}} \left[\left(\frac{1}{2} + \alpha\right) \mathbf{G}_{12}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{G}_{12}^{+} \right] \\ + \frac{Tq_{2}q_{1}}{cm_{2}4\pi\epsilon_{0}L^{2}} \mathbf{v}_{2} \times \left[\left(\frac{1}{2} + \alpha\right) \mathbf{n}_{12}^{-} \times \mathbf{G}_{12}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{n}_{12}^{+} \times \mathbf{G}_{12}^{+} \right].$$

Para simplificar as expressões acima, faremos:

$$\frac{T}{cm_2} \frac{|q_1||q_2|}{4\pi\epsilon_0} \frac{1}{L^2} = 1,$$

o que nos leva as seguintes relações:

$$L = \frac{|q_1| |q_2|}{4\pi\epsilon_0 m_2 c^2}, \quad T = \frac{|q_1| |q_2|}{4\pi\epsilon_0 m_2 c^3}.$$
 (0.0.30)

Definimos também o parâmetro S como:

$$S = sgn(q_1q_2),$$
 (0.0.31)

que pode assumir o valor 1 para o sistema repulsivo e -1 para o sistema atrativo. Assim, o sistema (0.0.29) pode ser reescrito como:

$$\frac{d\mathbf{p}_{1}}{dt} = \eta \frac{d(\gamma_{1} \mathbf{v}_{1})}{dt} = S\left[\left(\frac{1}{2} + \alpha\right) \mathbf{G}_{21}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{G}_{21}^{+}\right] + S \mathbf{v}_{1} \times \left[\left(\frac{1}{2} + \alpha\right) \mathbf{n}_{21}^{-} \times \mathbf{G}_{21}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{n}_{21}^{+} \times \mathbf{G}_{21}^{+}\right], \quad (0.0.32)$$

$$\frac{d\mathbf{p}_{2}}{dt} = \frac{d(\gamma_{2} \mathbf{v}_{2})}{dt} = S\left[\left(\frac{1}{2} + \alpha\right) \mathbf{G}_{12}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{G}_{12}^{+}\right] + S \mathbf{v}_{2} \times \left[\left(\frac{1}{2} + \alpha\right) \mathbf{n}_{12}^{-} \times \mathbf{G}_{12}^{-} + \left(\frac{1}{2} - \alpha\right) \mathbf{n}_{12}^{+} \times \mathbf{G}_{12}^{+}\right], \quad (0.0.33)$$

onde,

$$\gamma_1 = \frac{1}{\sqrt{1 - \mathbf{v}_1 \cdot \mathbf{v}_1}}, \quad \gamma_2 = \frac{1}{\sqrt{1 - \mathbf{v}_2 \cdot \mathbf{v}_2}}.$$
 (0.0.34)

Destacamos que o conjunto de equações (0.0.32) e (0.0.33) reescalonados tem como parâmetros os termos η , $S \in \alpha$. Para o sistema de interesse, que é o atrativo, temos S = -1 portanto, os parâmetros que importam para as análises que serão realizadas no decorrer desta tese são: A razão entre as massas das partículas, η , e a proporção entre as forças calculadas no tempo de retardo e no tempo avançado, α .

O procedimento de reparametrização do sistema por reescalonamento, das variáveis espaço e tempo, gera para todo o sistema de duas cargas um parâmetro bastante importante que é o valor de η . O motivo do parâmetro em questão ser tão importante é o fato de que o problema será o mesmo se a razão entre as massas for o mesmo. Portanto, se consisterarmos dois sistemas distintos, porém se ambos mantém as mesmas razões entre as massas toda a dinâmica, nas unidades reescalonadas, será igual. As diferenças entre os dois sistemas será observada quando considerarmos as escalas originais, pois iremos considerar diferentes valores para as massas e as cargas.

Considerando apenas os aspectos matemáticos, podemos tomar a forma mais geral da restrição intertemporal imposta pelos campos de Lienard-Wiechert e substituir suas expressões explícitas na equação de força de Lorentz (0.0.2) e então colocar essas forças na equação de Newton (0.0.1) para finalmente obter as equações (0.0.32, 0.0.33). As equações obtidas não formam mais um sistema de E.D.O.s, mas sim, como é conhecido na literatura, um sistema de equações diferenciais funcionais (E.D.F.s) [13, 14, 15]. Este sistema de E.D.F.s consiste em equações diferenciais, equações (0.0.32, 0.0.33), e funcionais como as equações (0.0.23), que relacionam as derivadas de segunda ordem (acelerações) com suas derivadas de primeira ordem (velocidades) e segunda ordem em diferentes tempos da trajetória (restrição intertemporal). Podemos considerar este sistema de E.D.F.s como sendo a generalização natural do problema originalmente formulado por Synge para $\alpha =$ 1/2. Aqui, a obtenção das soluções da Equação de Newton dada pelas equações (0.0.32, 0.0.33) será chamado de problema de Synge, independentemente do valor de α .

Em seu trabalho [1], Synge alerta para a consistência matemática do problema proposto, mostrando que esta consistência matemática não está correlacionada com as questões sobre conservação de energia e momento para o sistema eletromagnético completo constituído por cargas e campos. Essas questões dependem da definição de como calcular os momentos e a energia de um campo eletromagnético e, do ponto de vista matemático, são irrelevantes para a definição do Problema de Synge. A história do progresso matemático na caracterização de soluções para o problema Synge, que está intimamente ligada ao desenvolvimento de teoremas de existência (e muitas vezes unicidade) em sistemas E.D.F.s neutros, confirma seu alerta. [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]

Uma questão importante que deve ser apontada aqui é que Synge considera o problema das cargas pontuais sem levar em conta as forças de reação decorrentes da auto interação da cada carga sobre si mesma, chamadas de forças de radiação e obtidas originalmente por Lorentz e Abraham [2, 3]. Para obter esta auto-força eles consideraram as forças entre as partes de uma pequena esfera rígida uniformemente carregada, levando o limite do volume desta esfera a zero e mantendo a quantidade total de carga. Este procedimento é hoje conhecido como renormalização e foi obtido sem o uso da ideia de uma carga rígida distribuída em uma pequena região [4, 5].

Do ponto de vista matemático, o problema de duas cargas pontuais levando em consideração a auto-interação em cada carga pode ser formulado da mesma forma que o problema de Synge, mas devemos levar em consideração os termos que corrigem as equações de Newton e levam ao aparecimento de derivados de terceira ordem das posições das partículas. Nesse caso, o sistema de E.D.F.s resultante seria um sistema diferencial não neutro de terceira ordem. Atualmente, essas equações E.D.F.s de terceira ordem são chamadas de equações de Dirac-Lorentz. No processo de renormalização, considerando $\alpha = 0$ (campos simétricos), as auto-forças associadas aos tempos retardados se cancelam com aquelas associadas aos tempos avançados e nenhuma correção é necessária para o problema de Synge. Nesse caso, essas equações E.D.F.s de segunda ordem são chamadas de equações de Wheeler-Feynman. Uma boa discussão crítica sobre as equações de Dirac-Lorentz versus Wheeler-Feynman foi feita por Havas [32].

Além disso, no que diz respeito ao trabalho do Synge [1], vale lembrar que ele desenvolve um método interativo autoconsistente que nos permitiria obter soluções para o problema para uma dada condição inicial. Essencialmente, este método consiste em considerar uma dada trajetória de uma carga e através de seus conhecidos campos de Liénard-Wiechert para resolver a equação de Newton associada a outra carga. A partir dessa trajetória obtida para a outra partícula, repetimos o procedimento e, a seguir, calculamos a trajetória da primeira. Este procedimento deve ser repetido indefinidamente e deve convergir para a solução do problema. A convergência desse método exigiria que as massas das cargas pontuais fossem diferentes e a velocidade de convergência dependeria da razão η entre a maior e a menor massa, sendo mais rápida quanto maior essa razão. Como trajetória inicial, Synge considera o problema Kepleriano (analisado por Sommerfeld [33]) onde uma das massas das partículas é considerada infinita e portanto temos um sistema E.D.O.s bem definido. Da segunda etapa em diante, um valor finito para η deve ser considerado.

Infelizmente, Synge não demonstrou a convergência de seu método, o que foi sugerido apenas heuristicamente. É interessante notar que este método de aproximações de Synge só foi usado com sucesso para o caso em que $\eta = 1$ [21, 24, 34]. Nas poucas simulações numéricas desenvolvidas, seu método não converge, mesmo para velocidades muito pequenas, para cargas opostas em órbitas quase circulares [22]. Além disso, é no caso atrativo que Synge desenvolve fórmulas analíticas aproximadas (que dependem de η ser muito grande) para obter a descrição de trajetórias singulares quase circulares, ou seja, trajetórias espirais de duas cargas que colidem após um tempo finito. O interessante aqui é que a colisão das duas cargas não é consequência de forças de radiação, pois, como mencionado acima, estas estão ausentes na formulação do problema de Synge.

O trabalho de Angelov critica o método iterativo do Synge mostrando que ele não poderia ser implementado após a primeira etapa [35]. Essa crítica parece apontar mais para a questão da trajetória inicial, escolhida de um problema kepleriano com $\eta = \infty$ e sua posterior passagem para um sistema com η finito, do que uma crítica geral ao método independente da trajetória inicial escolhida. Este fato é bem demonstrado para os casos unidimensionais onde o método de aproximação Synge foi usado com sucesso.

Cabe também destacar que foram realizadas poucas simulações numéricas para o problema de Synge: seja por meio de implementações de seu algoritmo [22, 34] ou por meio da implementação de outro tipo de algoritmos de integração numérica para sistemas de E.D.F.s [36, 37]. Este fato é bastante contrastante com a abundância de métodos numéricos desenvolvidos para calcular o campo de radiação gerado pela trajetória de uma carga pontual. Na verdade, este problema é muito importante na análise da radiação de uma carga em um acelerador de partículas [38, 39] e ao longo deste trabalho, procuramos desenvolver um método para a obtenção numérica do problema de Synge. O método desenvolvido é baseado em aproximações sucessivas do sistema de E.D.F.s de Synge por sistemas de E.D.O.s. não tendo a intenção de apresentar provas rigorosas do método, mas sim ilustrar sua praticidade e facilidade com que ele pode ser programado para obter trajetórias aproximadas para as soluções do problema de Synge.

Por fim, segue um breve comentário acerca da divisão do trabalho. Na seção I discutimos alguns aspectos técnicos e os avanços obtidos na literatura sobre o problema Synge para campos retardados ($\alpha = 1/2$). Apresentamos um método iterativo que permite

desenvolvidos na seção I. A seção IV é dedicada às considerações finais.

Capítulo I Campos eletromagnéticos retardados

Nosso objetivo aqui é obter um sistema dinâmico de segunda ordem, explícito e a partir das equações (0.0.32, 0.0.33) para o caso particular $\alpha = 1/2$ é o escopo deste capítulo. O procedimento permite considerar apenas os campos eletromagnéticos retardados agindo sobre as cargas pontuais. Primeiro, vamos considerar novamente os tempos retardados $t_r^1 e t_r^2$, que são respectivamente soluções das seguintes equações:

$$t_r^1 = t - |\mathbf{r}_2(t) - \mathbf{r}_1(t_r^1)|, \quad t_r^2 = t - |\mathbf{r}_1(t) - \mathbf{r}_2(t_r^2)|.$$
(1.0.1)

Então, as equações (0.0.32, 0.0.33) podem ser reescritas em uma forma matricial como o seguinte sistema dinâmico de segunda ordem:

$$\frac{d\mathbf{p}_{1}}{dt} = \eta \mathcal{M}_{11} \mathbf{a}_{1} = \mathbf{F}_{1}^{-} - \mathcal{M}_{12}^{-} \mathbf{a}_{2}^{-}, \qquad (1.0.2)$$

$$\frac{d\mathbf{p}_2}{dt} = \mathcal{M}_{22} \,\mathbf{a}_2 = \mathbf{F}_2^- - \mathcal{M}_{21}^- \,\mathbf{a}_1^-, \qquad (1.0.3)$$

onde $\mathbf{a}_j = \mathbf{a}_j(t)$, $\mathbf{a}_j^- = \mathbf{a}_j^-(t_r^j)$ (j = 1, 2) e os vetores e matrizes com sobrescritos "-" dependem da posição e das velocidades que precisam ser avaliadas em alguns dos tempos retardados. De fato, o vetor \mathbf{F}_j^- e as matrizes \mathcal{M}_{ij}^- com i = 1, 2 $(j \neq i)$ depende de $\mathbf{r}_i(t)$, $\mathbf{v}_i(t)$, $\mathbf{v}_j(t_r^j)$ e $\mathbf{v}_j(t_r^j)$.

As forças $\mathbf{F}_1^- \in \mathbf{F}_2^-$ do lado direito das igualdades são partes das forças eletromagnéticas independentes das acelerações e podem ser escritas da seguinte forma:

$$\mathbf{F}_{1}^{-} = \frac{S\gamma_{2}^{-2}}{\lambda_{2}^{-}|\mathbf{r}_{2}^{-}-\mathbf{r}_{1}|^{2}} \begin{pmatrix} v_{1y} \left(v_{2y}^{-}e_{2x}^{-}-v_{2x}^{-}e_{2y}^{-}\right)+v_{1z} \left(v_{2z}^{-}e_{2x}^{-}-v_{2x}^{-}e_{2z}^{-}\right)-v_{2x}^{-}-e_{2x}^{-}\\ v_{1x} \left(v_{2x}^{-}e_{2y}^{-}-v_{2y}^{-}e_{2x}^{-}\right)+v_{1z} \left(v_{2z}^{-}e_{2y}^{-}-v_{2y}^{-}e_{2z}^{-}\right)-v_{2y}^{-}-e_{2y}^{-}\\ v_{1x} \left(v_{2x}^{-}e_{2z}^{-}-v_{2z}^{-}e_{2x}^{-}\right)+v_{1y} \left(v_{2y}^{-}e_{2z}^{-}-v_{2z}^{-}e_{2y}^{-}\right)-v_{2z}^{-}-e_{2z}^{-} \end{pmatrix}, \quad (1.0.4)$$

$$\mathbf{F}_{2}^{-} = \frac{S\gamma_{1}^{-2}}{\lambda_{1}^{-}|\mathbf{r}_{2} - \mathbf{r}_{1}^{-}|^{2}} \begin{pmatrix} v_{2y} \left(v_{1y}^{-} e_{1x}^{-} - v_{1x}^{-} e_{1y}^{-}\right) + v_{2z} \left(v_{1z}^{-} e_{1x}^{-} - v_{1x}^{-} e_{1z}^{-}\right) + v_{1x}^{-} - e_{1x}^{-} \\ v_{2x} \left(v_{1x}^{-} e_{1y}^{-} - v_{1y}^{-} e_{1x}^{-}\right) + v_{2z} \left(v_{1z}^{-} e_{1y}^{-} - v_{1y}^{-} e_{1z}^{-}\right) + v_{1y}^{-} - e_{1y}^{-} \\ v_{2x} \left(v_{1x}^{-} e_{1z}^{-} - v_{1z}^{-} e_{1x}^{-}\right) + v_{2y} \left(v_{1y}^{-} e_{1z}^{-} - v_{1z}^{-} e_{1y}^{-}\right) + v_{1z}^{-} - e_{1z}^{-} \end{pmatrix}, \quad (1.0.5)$$

em que $\gamma_1^-,\,\gamma_2^-,\,\lambda_1^-,\,\lambda_2^-,\,{\bf e}_1^-$ e ${\bf e}_2^-$ são dados por:

$$\gamma_1^- = \frac{1}{\sqrt{1 - \mathbf{v}_1^- \cdot \mathbf{v}_1^-}}, \quad \gamma_2^- = \frac{1}{\sqrt{1 - \mathbf{v}_2^- \cdot \mathbf{v}_2^-}},$$
 (1.0.6)

$$\lambda_1^- = (\mathbf{v}_1^- \cdot \mathbf{e}_1^- - 1)^3, \quad \lambda_2^- = (\mathbf{v}_2^- \cdot \mathbf{e}_2^- + 1)^3, \quad (1.0.7)$$

$$\mathbf{e}_{1}^{-} = \frac{\mathbf{r}_{2} - \mathbf{r}_{1}^{-}}{\left|\mathbf{r}_{2} - \mathbf{r}_{1}^{-}\right|} = \begin{pmatrix} e_{1x}^{-} \\ e_{1y}^{-} \\ e_{1z}^{-} \end{pmatrix}, \quad \mathbf{e}_{2}^{-} = \frac{\mathbf{r}_{2}^{-} - \mathbf{r}_{1}}{\left|\mathbf{r}_{2}^{-} - \mathbf{r}_{1}\right|} = \begin{pmatrix} e_{2x}^{-} \\ e_{2y}^{-} \\ e_{2z}^{-} \end{pmatrix}.$$
(1.0.8)

As matrizes \mathcal{M}_{11} e \mathcal{M}_{22} , avaliadas no tempo t, são definidas da seguinte maneira:

$$\mathcal{M}_{11} = \gamma_1 \mathcal{I} + \gamma_1^3 \mathcal{Q}_{\hat{v}_1}, \quad \mathcal{Q}_{\hat{v}_1} = \begin{pmatrix} \hat{v}_{1x}^2 & \hat{v}_{1x} \hat{v}_{1y} & \hat{v}_{1x} \hat{v}_{1z} \\ \hat{v}_{1y} \hat{v}_{1x} & \hat{v}_{1y}^2 & \hat{v}_{1y} \hat{v}_{1z} \\ \hat{v}_{1z} \hat{v}_{1x} & \hat{v}_{1z} \hat{v}_{1y} & \hat{v}_{1z}^2 \end{pmatrix}, \quad (1.0.9)$$

$$\mathcal{M}_{22} = \gamma_2 \mathcal{I} + \gamma_2^3 \mathcal{Q}_{\hat{v}_2}, \quad \mathcal{Q}_{\hat{v}_2} = \begin{pmatrix} \hat{v}_{2x}^2 & \hat{v}_{2x} \hat{v}_{2y} & \hat{v}_{2x} \hat{v}_{2z} \\ \hat{v}_{2y} \hat{v}_{2x} & \hat{v}_{2y}^2 & \hat{v}_{2y} \hat{v}_{2z} \\ \hat{v}_{2z} \hat{v}_{2x} & \hat{v}_{2z} \hat{v}_{2y} & \hat{v}_{2z}^2 \end{pmatrix}, \quad (1.0.10)$$

onde

$$\hat{v}_1 = \frac{\mathbf{v}_1}{|\mathbf{v}_1|}, \ \ \hat{v}_2 = \frac{\mathbf{v}_2}{|\mathbf{v}_2|}.$$
 (1.0.11)

Já as matrizes \mathcal{M}_{12}^- e \mathcal{M}_{21}^- , que possuem quantidades físicas calculadas no tempo de retardo, são definidas da seguinte maneira:

$$\mathcal{M}_{12}^{-} = \frac{S}{\lambda_{2}^{-} |\mathbf{r}_{2}^{-} - \mathbf{r}_{1}|} L_{12}^{-}, \quad \mathcal{M}_{21}^{-} = \frac{S}{\lambda_{1}^{-} |\mathbf{r}_{2} - \mathbf{r}_{1}^{-}|} L_{21}^{-}, \quad (1.0.12)$$

com os elementos da matriz L^-_{12} dados por:

$$\begin{split} &(L_{12}^{-})_{11} &= \left(v_{2z}^{-}e_{2y}^{-}-v_{2y}^{-}e_{2z}^{-}\right) \left(v_{1y}e_{2z}^{-}-v_{1z}e_{2y}^{-}\right) + \left(v_{2y}^{-}+e_{2y}^{-}\right) \left(v_{1y}+e_{2y}^{-}\right) + \left(v_{2z}^{-}+e_{2z}^{-}\right) \left(v_{1z}+e_{2z}^{-}\right), \\ &(L_{12}^{-})_{12} &= \left(v_{2x}^{-}e_{2z}^{-}-v_{2z}e_{2y}^{-}\right) \left(v_{1y}e_{2z}^{-}-v_{1z}e_{2y}^{-}\right) - \left(v_{2x}^{-}+e_{2x}^{-}\right) \left(v_{1y}+e_{2y}^{-}\right), \\ &(L_{12}^{-})_{13} &= \left(v_{2y}^{-}e_{2x}^{-}-v_{2x}e_{2y}^{-}\right) \left(v_{1y}e_{2z}^{-}-v_{1z}e_{2y}^{-}\right) - \left(v_{2x}^{-}+e_{2x}^{-}\right) \left(v_{1z}+e_{2z}^{-}\right), \\ &(L_{12}^{-})_{21} &= \left(v_{2y}^{-}e_{2z}^{-}-v_{2z}e_{2y}^{-}\right) \left(v_{1x}e_{2z}^{-}-v_{1z}e_{2x}^{-}\right) - \left(v_{2y}^{-}+e_{2y}^{-}\right) \left(v_{1x}+e_{2x}^{-}\right), \\ &(L_{12}^{-})_{22} &= \left(v_{2z}^{-}e_{2x}^{-}-v_{2x}e_{2z}^{-}\right) \left(v_{1x}e_{2z}^{-}-v_{1z}e_{2x}^{-}\right) + \left(v_{2x}^{-}+e_{2x}^{-}\right) \left(v_{1x}+e_{2x}^{-}\right) + \left(v_{2z}^{-}+e_{2z}^{-}\right) \left(v_{1z}+e_{2z}^{-}\right), \\ &(L_{12}^{-})_{23} &= \left(v_{2x}^{-}e_{2y}^{-}-v_{2y}e_{2x}^{-}\right) \left(v_{1x}e_{2y}^{-}-v_{1z}e_{2x}^{-}\right) - \left(v_{2y}^{-}+e_{2y}^{-}\right) \left(v_{1x}+e_{2x}^{-}\right), \\ &(L_{12}^{-})_{31} &= \left(v_{2z}^{-}e_{2y}^{-}-v_{2y}e_{2z}^{-}\right) \left(v_{1x}e_{2y}^{-}-v_{1y}e_{2x}^{-}\right) - \left(v_{2z}^{-}+e_{2z}^{-}\right) \left(v_{1x}+e_{2x}^{-}\right), \\ &(L_{12}^{-})_{32} &= \left(v_{2x}^{-}e_{2z}^{-}-v_{2z}e_{2x}^{-}\right) \left(v_{1x}e_{2y}^{-}-v_{1y}e_{2x}^{-}\right) - \left(v_{2z}^{-}+e_{2z}^{-}\right) \left(v_{1y}+e_{2y}^{-}\right), \\ &(L_{12}^{-})_{33} &= \left(v_{2y}^{-}e_{2x}^{-}-v_{2z}e_{2y}^{-}\right) \left(v_{1x}e_{2y}^{-}-v_{1y}e_{2x}^{-}\right) + \left(v_{2y}^{-}+e_{2y}^{-}\right) \left(v_{1y}+e_{2y}^{-}\right) + \left(v_{2x}^{-}+e_{2x}^{-}\right) \left(v_{1x}+e_{2x}^{-}\right), \end{aligned}$$

enquanto que os elementos da matriz L^-_{21} são dados da seguinte forma:

A auto-força \mathbf{F}^{auto} associada ao sistema de duas cargas pontuais é definida como a derivada no tempo do momento total $\mathbf{p} = \mathbf{p}_1 + \mathbf{p}_2$, que, através da soma das equações (1.0.2, 1.0.3),possui a seguinte forma:

$$\mathbf{F}^{auto} = \frac{d\mathbf{p}}{dt} = \mathbf{F}_1^- + \mathbf{F}_2^- - \left(\mathcal{M}_{21}^- \mathbf{a}_1^- + \mathcal{M}_{12}^- \mathbf{a}_2^-\right).$$
(1.0.13)

A auto-força, neste caso, nada mais é do que a força resultante devida única e exclusivamente aos campos eletromagnéticos associados à interação entre as duas cargas pontuais. Diferente da situação clássica tradicional da mecânica newtoniana, não temos a validade de uma terceira lei de Newton que implicaria na nulidade dessa força e, consequentemente, na conservação do momento mecânico total **p**.

Além disso, se considerarmos a existência de uma força não eletromagnética (chamada força externa) agindo sobre as cargas pontuais e denotada por \mathbf{F}_{i}^{ext} (i = 1, 2), então as taxas de variação dos momentos \mathbf{p}_{i} serão respectivamente:

$$\frac{d\mathbf{p}_1}{dt} = \eta \mathcal{M}_{11} \mathbf{a}_1 = \mathbf{F}_1^- - \mathcal{M}_{12}^- \mathbf{a}_2^- + \mathbf{F}_1^{ext}, \qquad (1.0.14)$$

$$\frac{d\mathbf{p}_2}{dt} = \mathcal{M}_{22}\mathbf{a}_2 = \mathbf{F}_2^- - \mathcal{M}_{21}^- \mathbf{a}_1^- + \mathbf{F}_2^{ext}.$$
 (1.0.15)

A taxa de variação do momento total \mathbf{p} (então chamada de força resultante) é:

$$\mathbf{F}^{res} = \frac{d\mathbf{p}}{dt} = \mathbf{F}^{auto} + \mathbf{F}^{ext}, \quad \mathbf{F}^{ext} = \mathbf{F}_1^{ext} + \mathbf{F}_2^{ext}, \quad (1.0.16)$$

onde a auto-força \mathbf{F}^{auto} é calculada a partir da equação (1.0.13).

É importante notar que a existência de forças externas implica que a auto-força \mathbf{F}^{auto} não é mais igual à auto-força calculada quando não há forças externas. Isso ocorre porque a auto-força depende das acelerações, portanto, depende implicitamente das forças externas. Esta dependência implícita ocorre mesmo se a força externa total \mathbf{F}^{ext} for nula. Esta questão ficará mais clara quando analisarmos mais adiante nesta seção a aproximação de instantaneidade para as equações de Newton (1.0.2, 1.0.3).

Invertendo as matrizes \mathcal{M}_{11} e \mathcal{M}_{22} para escrever o sistema de equações em um sistema dinâmico explícito de segunda ordem com retardo, tem-se:

$$\eta \mathbf{a}_{1}(t) = \mathcal{M}_{11}^{-1}(t) \mathbf{F}_{1}^{-}(t, t_{r}^{2}) - \mathcal{M}_{11}^{-1}(t) \mathcal{M}_{12}^{-}(t, t_{r}^{2}) \mathbf{a}_{2}(t_{r}^{2}), \qquad (1.0.17)$$

$$\mathbf{a}_{2}(t) = \mathcal{M}_{22}^{-1}(t) \mathbf{F}_{2}^{-}(t, t_{r}^{1}) - \mathcal{M}_{22}^{-1}(t) \mathcal{M}_{21}^{-}(t, t_{r}^{1}) \mathbf{a}_{1}(t_{r}^{1}).$$
(1.0.18)

Para obter as matrizes inversas de \mathcal{M}_{11} e \mathcal{M}_{22} usamos o fato que as matrizes $\mathcal{Q}_{\hat{v}_1}$ e $\mathcal{Q}_{\hat{v}_2}$ são idempotentes, isto é,

$$\mathcal{Q}_{\hat{v}_1}^2=\mathcal{Q}_{\hat{v}_1}, \ \ \mathcal{Q}_{\hat{v}_2}^2=\mathcal{Q}_{\hat{v}_2}.$$

A propriedade de idempotência destas matrizes vem do fato de que eles projetam qualquer vetor na direção $\mathbf{v}_1 \in \mathbf{v}_2$, respectivamente. Portanto, se considerarmos um vetor arbitrário \mathbf{w} teremos as seguintes projeções:

$$\mathcal{Q}_{\hat{v}_1}\mathbf{w} = (\mathbf{w}\cdot\mathbf{v}_1)\hat{v}_1, \ \mathcal{Q}_{\hat{v}_2}\mathbf{w} = (\mathbf{w}\cdot\mathbf{v}_2)\hat{v}_2.$$

Consideremos agora uma matriz escrita como uma combinação linear das matrizes identidade e idempotente, ou seja,

$$a_1 \mathcal{I} + a_2 \mathcal{Q}, \quad \mathcal{Q}^2 = \mathcal{Q}, \tag{1.0.19}$$

a inversa certamente pode ser escrita como,

$$(a_1 \mathcal{I} + a_2 \mathcal{Q})^{-1} = b_1 \mathcal{I} + b_2 \mathcal{Q}, \qquad (1.0.20)$$

consequentemente:

$$(a_{1}\mathcal{I} + a_{2}\mathcal{Q})(a_{1}\mathcal{I} + a_{2}\mathcal{Q})^{-1} = (a_{1}\mathcal{I} + a_{2}\mathcal{Q})(b_{1}\mathcal{I} + b_{2}\mathcal{Q}),$$

$$\mathcal{I} = (a_{1}b_{1})\mathcal{I} + (a_{1}b_{2})\mathcal{Q} + (a_{2}b_{1})\mathcal{Q} + (a_{2}b_{2})\mathcal{Q}^{2},$$

$$\mathcal{I} = (a_{1}b_{1})\mathcal{I} + (a_{1}b_{2} + a_{2}b_{1} + a_{2}b_{2})\mathcal{Q},$$
 (1.0.21)

obtendo finalmente:

$$b_1 = \frac{1}{a_1} e \ b_2 = -\frac{a_2}{a_1(a_1 + a_2)}.$$
 (1.0.22)

Esses resultados aplicados às matrizes \mathcal{M}_{11} e \mathcal{M}_{22} conduzem as seguintes expressões:

$$\mathcal{M}_{11}^{-1} = \gamma_1^{-1} \mathcal{I} - \frac{\gamma_1^{-1} |\mathbf{v}_1|^2}{|\mathbf{v}_1|^2 + \gamma_1^{-2}} \mathcal{Q}_{\hat{v}_1}, \qquad (1.0.23)$$

$$\mathcal{M}_{22}^{-1} = \gamma_2^{-1} \mathcal{I} - \frac{\gamma_2^{-1} |\mathbf{v}_2|^2}{|\mathbf{v}_2|^2 + \gamma_2^{-2}} \mathcal{Q}_{\hat{v}_2}.$$
(1.0.24)

Por uma questão de clareza na implementação do método de integração explicitamos a dependência das variáveis do sistema diferencial em relação ao tempo atual t e os respectivos tempos de retardo $t_r^1 e t_r^2$. Vale lembrar que em geral a explicitação do tempo atual t não é comum em estudos de sistemas de equações diferenciais, pois é latente neste caso que todas as variáveis são calculadas no mesmo tempo t. As equações de Newton em (1.0.17, 1.0.18) junto com a equação (1.0.1) constituem um sistema de E.D.F.s neutros com duas equações funcionais para tempos retardados que dependem das trajetórias das partículas.

O problema de Synge consiste basicamente na questão sobre a existência de trajetórias $\mathbf{r}_1(t) \in \mathbf{r}_2(t)$ que satisfazem o sistema de E.D.F.s, constituído pelas equações (1.0.1), (1.0.17) e (1.0.18), para todo o tempo t onde as trajetórias são definidas e $\mathbf{F}_i^{ext}(t) = 0$. Na verdade, esse problema diz respeito à existência de soluções globais e, na literatura, é conhecido como backward problem [18]. Este problema ainda não foi resolvido em geral, mas soluções analíticas ou numéricas são conhecidas para certos problemas unidimensionais [18, 24, 23, 25, 26, 31, 34]. Um problema ainda mais restrito é saber se para uma determinada condição inicial existe uma solução global compatível com essa condição e se essa solução seria única [18, 23, 25]. Um teorema de existência, mas não de unicidade para sistemas unidimensionais, é apresentado nas referências [24, 31]. A grande dificuldade aqui é construir soluções globais a partir de soluções locais, como é o caso do sistema de E.D.O.s. Na verdade, a própria noção de solução local não existe devido à presença de equações funcionais que relacionam o tempo atual aos tempos retardados.

Uma formulação mais fraca do problema de Synge foi feita por Driver [16, 17], com base na formulação típica para a questão da existência e unicidade em sistemas de E.D.F.s com tempos retardados. Neste caso, não buscamos soluções válidas para todos os tempos t, mas soluções que satisfaçam as equações (1.0.1), (1.0.17) e (1.0.18) para todo o tempo $t > t_0$ onde temos $\mathbf{F}_i(t) = 0$. Nestes artigos, Driver formula condições para a obtenção de um teorema de existência e unicidade para o caso unidimensional. Nesta formulação mais fraca, a prova de um teorema de existência e unicidade está associada ao estabelecimento de algumas condições para as trajetórias das partículas em um determinado intervalo $[\alpha, t_0]$ ou, em outros termos, é necessário conhecer a história anterior de trajetórias em um certo intervalo de tempo finito anterior ao tempo inicial t_0 . Esta condição substitui a condição inicial típica de Cauchy para problemas de E.D.O.s nos quais a trajetória é fixada apenas no tempo inicial t_0 . Então Driver prova, com hipóteses pouco restritivas sobre a diferenciabilidade das trajetórias anteriores junto com a hipótese de que as equações funcionais para os tempos retardados são satisfeitas no tempo inicial t_0 , um teorema muito geral para existência e unicidade de soluções.

Em outro trabalho, bem menos conhecido na literatura, Driver obtém o mesmo teorema para o problema tridimensional [40]. Os resultados deste trabalho foram republicados muito mais tarde e com demonstrações e hipóteses mais simples [27]. Mesmo assim, vários trabalhos posteriores ignoram este trabalho e recuperam os resultados de Driver em condições mais restritivas [28, 29, 41, 42].

Podemos considerar que o teorema obtido por Driver resolve, de forma muito geral, o problema de existência e unicidade para a formulação fraca do problema de Synge. No entanto, o próprio Driver, em outro trabalho, chama a atenção para o fato de que a resolução da formulação fraca não resolve o problema originalmente formulado por Synge [18]. Devido ao teorema da existência e da unicidade, já demonstrado para a formulação fraca. Então, para resolver o problema original é necessário apenas obter trajetórias que satisfaçam as equações de Synge para todo o tempo $t < t_0$. Por essa razão, o problema de encontrar soluções globais ficou conhecido como *Backward Problem*.

Agora vale a pena fazer uma discussão mais aprofundada desses resultados e da questão de duas cargas pontuais isoladas como um problema de valor inicial para o sistema de E.D.O.s e E.D.P.s definido nas equações (0.0.1) - (0.0.5). Um problema de valor inicial para essas equações consiste em considerar em um dado instante inicial t_0 o estado das partículas e a configuração espacial dos campos eletromagnéticos. A grande dúvida é se essa condição inicial dos campos é compatível com a ideia de que o sistema está isolado. Consideramos um sistema isolado quando não há outra fonte externa que influência o campo eletromagnético do sistema.

Considerando o resultado de existência e unicidade obtido por Driver na formulação fraca do problema de Synge, podemos deduzir algumas consequências. Não há forças externas agindo sobre as cargas para $t > t_0$, mas para $t < t_0$ essas forças externas podem existir e são responsáveis por impor trajetórias arbitrárias antes do tempo inicial, implicando que não precisam satisfazer o sistema de equações para duas cargas isoladas. No entanto, o fato de que devemos conhecer as trajetórias em um certo intervalo finito antes do tempo inicial implica que não precisamos conhecer as configurações do campo eletromagnético em todo o espaço para determinar as trajetórias das partículas para $t > t_0$.

De fato, a trajetória anterior em um intervalo finito implica, devido à velocidade de propagação finita das interações, em um campo eletromagnético definido no tempo t_0 para uma região finita e compacta \mathcal{R} do espaço que contém as duas cargas. Todos os campos gerados pelas cargas antes do intervalo anterior não podem mais atuar sobre eles após o tempo t_0 . Dessa forma, poderíamos considerar qualquer continuação das trajetórias antes do intervalo anterior (todas satisfazendo o princípio relativístico de ter velocidades menores que c) e compatível com forças externas arbitrárias. Essas trajetórias anteriores definiriam uma configuração de campo no tempo t_0 para os campos na região $\mathbb{R}^3 - \mathcal{R}$ (região complementar de \mathcal{R} no instante t_0). Todas essas configurações iniciais correspondem a uma única trajetória possível para $t > t_0$.

Assim, embora o problema do valor inicial possa ser formulado, ele implica condi-

ções matemáticas extremamente complicadas a serem impostas ao campo eletromagnético no tempo inicial t_0 , sem se referir à dinâmica anterior das cargas. Isso nada mais é do que uma consequência de que os campos de Lienard-Wiechert são uma restrição intertemporal para as trajetórias das cargas. De fato, o teorema da unicidade e existência de Driver implica que essa restrição intertemporal é satisfeita para todos os tempos $t \ge t_0$. Para esta questão, recomendamos as excelentes reflexões feitas por Deckert e Hartenstein [6].

Outra questão (também discutida por Deckert e Hartenstein) é a possibilidade física de realizar trajetórias anteriores compatíveis com forças externas viáveis que não influenciam mais o movimento das cargas após o instante inicial t_0 , especialmente se essas forças estão relacionadas a outras fontes de campo eletromagnético. Resumindo toda a discussão: o grande problema é garantir o isolamento das duas cargas da ação de forças externas. Esse problema, embora menos dramático (devido à inexistência de restrições intertemporais), também está presente no sistema de dois corpos pontuais com forças instantâneas entre eles, onde as equações de Newton definem um sistema de E.D.O.s. Aqui, o problema consiste em preparar uma condição inicial arbitrária, com a ajuda de forças externas, e garantir que essas forças externas não atuem mais após o momento inicial.

Por outro lado, a versão original do problema de Synge (*Backward Problem*) implica uma restrição muito mais forte na configuração inicial dos campos eletromagnéticos para garantir que as soluções do problema sejam compatíveis com um sistema de duas cargas completamente isolado para todos momentos em que a solução é definida. Geralmente, isso implica em trajetórias que devem existir em intervalos semi-infinitos $(-\infty, T)$ ou duplamente infinito $(-\infty, \infty)$. Além disso, podemos considerar quaisquer soluções globais de Synge do sistema de equações (1.0.1), (1.0.17) e (1.0.18) como a expressão da possível configuração espaço-temporal para os campos eletromagnéticos associados a um sistema isolado de duas cargas pontuais. Além disso, as trajetórias das duas cargas pontuais podem ser interpretadas apenas como uma forma de observar essas configurações espaço-temporais dos campos por meio do movimento de suas singularidades.

Por fim, observamos que o acoplamento das equações de Maxwell, associadas a uma distribuição de duas cargas pontuais, com a equação de Newton, obtida por meio da força de Lorentz, postula implicitamente que as possíveis configurações espaço-temporais do campo eletromagnético não podem ser estabelecidas sem as equações da mecânica. Deste acoplamento surge uma autoforça diferente de zero (ver equação (1.0.13)) que implica na não conservação do momento mecânico total para as partículas inerciais associadas às cargas elétricas.

O fato de considerarmos as equações de Dirac-Lorenz em vez das equações de Synge, com as respectivas correções de autoforça para cada partícula, não altera profundamente o problema matemático de definir sistemas isolados a partir das condições iniciais impostas aos campos eletromagnéticos, bem como a viabilidade da realização física de tais trajetórias iniciais anteriores para as partículas carregadas.

Para ilustrar o método de integração que será desenvolvido nesta tese, restringimos nossa análise a um sistema bidimensional, que consiste em considerar (sem perda de generalidade) todos os componentes de z nulos nas equações (1.0.17, 1.0.18). Neste caso nós temos as seguintes expressões para os vetores e matrizes que aparecem nessas equações.

$$\mathbf{F}_{1}^{-} = \frac{S\gamma_{2}^{-2}}{\lambda_{2}^{-}|\mathbf{r}_{2}^{-}-\mathbf{r}_{1}|^{2}} \begin{pmatrix} v_{1y} \left(v_{2y}^{-}e_{2x}^{-}-v_{2x}^{-}e_{2y}^{-}\right) - v_{2x}^{-} - e_{2x}^{-} \\ v_{1x} \left(v_{2x}^{-}e_{2y}^{-}-v_{2y}^{-}e_{2x}^{-}\right) - v_{2y}^{-} - e_{2y}^{-} \end{pmatrix}, \qquad (1.0.25)$$

$$\mathbf{F}_{2}^{-} = \frac{S\gamma_{1}^{-2}}{\lambda_{1}^{-}|\mathbf{r}_{2} - \mathbf{r}_{1}^{-}|^{2}} \begin{pmatrix} v_{2y} \left(v_{1y}^{-}e_{1x}^{-} - v_{1x}^{-}e_{1y}^{-}\right) + v_{1x}^{-} - e_{1x}^{-} \\ v_{2x} \left(v_{1x}^{-}e_{1y}^{-} - v_{1y}^{-}e_{1x}^{-}\right) + v_{1y}^{-} - e_{1y}^{-} \end{pmatrix}, \qquad (1.0.26)$$

As matrizes \mathcal{M}_{12}^- e \mathcal{M}_{21}^- são definidas da seguinte maneira:

$$\mathcal{M}_{12}^{-} = \frac{S}{\lambda_{2}^{-} |\mathbf{r}_{2}^{-} - \mathbf{r}_{1}|} \begin{pmatrix} +(v_{2y}^{-} + e_{2y}^{-}) (v_{1y}^{-} + e_{2y}^{-}) & -(v_{2x}^{-} + e_{2x}^{-}) (v_{1y}^{-} + e_{2y}^{-}) \\ -(v_{2y}^{-} + e_{2y}^{-}) (v_{1x}^{-} + e_{2x}^{-}) & +(v_{2x}^{-} + e_{2x}^{-}) (v_{1x}^{-} + e_{2x}^{-}) \end{pmatrix}, (1.0.27)$$

$$\mathcal{M}_{21}^{-} = \frac{S}{\lambda_{1}^{-} \left| \mathbf{r}_{2} - \mathbf{r}_{1}^{-} \right|} \begin{pmatrix} -(v_{2y} - e_{1y}) & (v_{1y} - e_{1y}) & +(v_{2y} - e_{1y}) & (v_{1x} - e_{1x}) \\ +(v_{2x} - e_{1x}^{-}) & (v_{1y}^{-} - e_{1y}^{-}) & -(v_{2x} - e_{1x}^{-}) & (v_{1x}^{-} - e_{1x}^{-}) \end{pmatrix}, (1.0.28)$$

as matrizes \mathcal{M}_{11} e \mathcal{M}_{22} , avaliadas no presente t, dependem dos operadores do projetor definidos como:

$$\mathcal{Q}_{\hat{v}_1} = \begin{pmatrix} \hat{v}_{1x}^2 & \hat{v}_{1x} \hat{v}_{1y} \\ \hat{v}_{1y} \hat{v}_{1x} & \hat{v}_{1y}^2 \end{pmatrix}, \quad \mathcal{Q}_{\hat{v}_2} = \begin{pmatrix} \hat{v}_{2x}^2 & \hat{v}_{2x} \hat{v}_{2y} \\ \hat{v}_{2y} \hat{v}_{2x} & \hat{v}_{2y}^2 \end{pmatrix}.$$
(1.0.29)

É interessante reescrever as equações diferenciais em (1.0.17, 1.0.18) de uma forma mais genérica como um sistema de primeira ordem:

$$\frac{d\mathbf{r}_{1}(t)}{dt} = \mathbf{v}_{1}(t), \quad \frac{d\mathbf{v}_{1}(t)}{dt} = \Theta_{1}\left[\mathbf{r}_{1}(t), \mathbf{v}_{1}(t), \mathbf{r}_{2}(t_{r}^{2}), \mathbf{v}_{2}(t_{r}^{2}), \mathbf{a}_{2}(t_{r}^{2})\right], \quad (1.0.30)$$

$$\frac{d\mathbf{r}_{2}(t)}{dt} = \mathbf{v}_{2}(t), \quad \frac{d\mathbf{v}_{2}(t)}{dt} = \Theta_{2}\left[\mathbf{r}_{2}(t), \mathbf{v}_{2}(t), \mathbf{r}_{1}(t_{r}^{1}), \mathbf{v}_{1}(t_{r}^{1}), \mathbf{a}_{1}(t_{r}^{1})\right], \quad (1.0.31)$$

onde as expressões dos campos vetoriais $\Theta_1 \in \Theta_2$ são dadas respectivamente pelas equações (1.0.17, 1.0.18).

1.1 Aproximação instantânea para as acelerações

Para compreender, pelo menos aproximadamente, as soluções do sistema (1.0.17, 1.0.18) ou, equivalentemente, do sistema (1.0.30), (1.0.31), levaremos em consideração uma condição em que os tempos de retardo podem ser considerados muito pequenos. Então, consideremos a aproximação em que $t_r^1 = t_r^2 = t$, de fato, estamos considerando as interações eletromagnéticas como sendo aproximadamente instantâneas. A consequência mais importante desta aproximação é o acoplamento entre as acelerações do tempo atual t, devivo as forças newtonianas, com as acelerações no tempo de retardo t_r proveniente dos campos de radiação levando-nos ao seguinte sistema dinâmico de segunda ordem:

$$\eta \mathbf{a}_1 + \mathcal{M}_{11}^{-1} \mathcal{M}_{12} \mathbf{a}_2 = \mathcal{M}_{11}^{-1} \mathbf{F}_1, \qquad (1.1.32)$$

$$\mathbf{a}_2 + \mathcal{M}_{22}^{-1} \mathcal{M}_{21} \mathbf{a}_1 = \mathcal{M}_{22}^{-1} \mathbf{F}_2.$$
 (1.1.33)

O sobrescrito "-" é eliminado de todas as equações, uma vez que todas as quantidades físicas são calculadas no tempo atual t. Além disso, nós temos que:

$$\mathbf{e}_1 = \mathbf{e}_2 = \hat{r} = \frac{\mathbf{r}_2 - \mathbf{r}_1}{|\mathbf{r}_2 - \mathbf{r}_1|},$$
 (1.1.34)

$$\lambda_1(t,t) = (\mathbf{v}_1 \cdot \hat{r} - 1)^3, \quad \lambda_2(t,t) = (\mathbf{v}_2 \cdot \hat{r} + 1)^3.$$
 (1.1.35)

Através de uma combinação linear simples e direta entre as equações (1.1.32, 1.1.33), temos:

$$\left(\mathcal{I} - \frac{1}{\eta}\mathcal{M}_{11}^{-1}\mathcal{M}_{12}\mathcal{M}_{22}^{-1}\mathcal{M}_{21}\right)\eta\mathbf{a}_{1} = \mathcal{M}_{11}^{-1}\mathbf{F}_{1} - \mathcal{M}_{11}^{-1}\mathcal{M}_{12}\mathcal{M}_{22}^{-1}\mathbf{F}_{2}, \quad (1.1.36)$$

$$\left(\mathcal{I} - \frac{1}{\eta}\mathcal{M}_{22}^{-1}\mathcal{M}_{21}\mathcal{M}_{11}^{-1}\mathcal{M}_{12}\right)\mathbf{a}_{2} = \mathcal{M}_{22}^{-1}\mathbf{F}_{2} - \frac{1}{\eta}\mathcal{M}_{22}^{-1}\mathcal{M}_{21}\mathcal{M}_{11}^{-1}\mathbf{F}_{1}.$$
 (1.1.37)

Escrevendo o sistema em um conjunto explícito de equações diferenciais de segunda ordem instantâneas obtemos:

$$\mathbf{a}_{1} = \frac{1}{\eta} \left(\mathcal{I} - \frac{1}{\eta} \mathcal{M}_{11}^{-1} \mathcal{M}_{12} \mathcal{M}_{22}^{-1} \mathcal{M}_{21} \right)^{-1} \left(\mathcal{M}_{11}^{-1} \mathbf{F}_{1} - \mathcal{M}_{11}^{-1} \mathcal{M}_{12} \mathcal{M}_{22}^{-1} \mathbf{F}_{2} \right), (1.1.38)$$

$$\mathbf{a}_{2} = \left(\mathcal{I} - \frac{1}{\eta}\mathcal{M}_{22}^{-1}\mathcal{M}_{21}\mathcal{M}_{11}^{-1}\mathcal{M}_{12}\right)^{-1} \left(\mathcal{M}_{22}^{-1}\mathbf{F}_{2} - \frac{1}{\eta}\mathcal{M}_{22}^{-1}\mathcal{M}_{21}\mathcal{M}_{11}^{-1}\mathbf{F}_{1}\right). (1.1.39)$$

Definindo os campos vetoriais $\mathbf{H}_1^0 \in \mathbf{H}_2^0$ como:

$$\mathbf{H}_{1}^{0} = \frac{1}{\eta} \left(\mathcal{I} - \frac{1}{\eta} \mathcal{M}_{11}^{-1} \mathcal{M}_{12} \mathcal{M}_{22}^{-1} \mathcal{M}_{21} \right)^{-1} \left(\mathcal{M}_{11}^{-1} \mathbf{F}_{1} - \mathcal{M}_{11}^{-1} \mathcal{M}_{12} \mathcal{M}_{22}^{-1} \mathbf{F}_{2} \right), (1.1.40)$$

$$\mathbf{H}_{2}^{0} = \left(\mathcal{I} - \frac{1}{\eta} \mathcal{M}_{22}^{-1} \mathcal{M}_{21} \mathcal{M}_{11}^{-1} \mathcal{M}_{12} \right)^{-1} \left(\mathcal{M}_{22}^{-1} \mathbf{F}_{2} - \frac{1}{\eta} \mathcal{M}_{22}^{-1} \mathcal{M}_{21} \mathcal{M}_{11}^{-1} \mathbf{F}_{1} \right), (1.1.41)$$

portanto,

$$\mathbf{a}_{1}^{\prime} = \mathbf{H}_{1}^{0} \left[\mathbf{r}_{1}^{\prime}, \mathbf{v}_{1}^{\prime}, \mathbf{r}_{2}^{\prime}, \mathbf{v}_{2}^{\prime} \right], \quad \mathbf{a}_{2}^{\prime} = \mathbf{H}_{2}^{0} \left[\mathbf{r}_{1}^{\prime}, \mathbf{v}_{1}^{\prime}, \mathbf{r}_{2}^{\prime}, \mathbf{v}_{2}^{\prime} \right].$$
(1.1.42)

Renomeamos as variáveis com o acento para não confundi-las com as variáveis que aparecem no sistema de equações diferencias dado em (1.0.30, 1.0.31). Chamamos o sistema de equações diferenciais de segunda ordem em (1.1.42) de sistema instantâneo.

1.2 Aproximação para os tempos retardados

O desenvolvimento de um método iterativo para obter aproximações sucessivas para resolver o problema de Synge com um sistema de Equações Diferenciais Ordinárias Instantâneas será discutido ao longo desta seção.

No entanto, antes de iniciarmos esse processo, vamos reescrever o sistema (1.0.30, 1.0.31) de forma mais compacta. Para maior clareza na exposição, continuamos a explicitar as variáveis que são calculadas no tempo atual, para diferenciá-las daquelas que são calculadas nos tempos de retardo.

Definindo o vetor de estado $\mathbf{X} = (\mathbf{r}_1, \mathbf{v}_1, \mathbf{r}_2, \mathbf{v}_2)$ e o vetor de estado estendido $\overline{\mathbf{X}} = (\mathbf{r}_1, \mathbf{v}_1, \mathbf{a}_1, \mathbf{r}_2, \mathbf{v}_2, \mathbf{a}_2)$, então o sistema (1.0.30, 1.0.31) pode ser escrito em uma forma compacta como:

$$\frac{d\mathbf{X}(t)}{dt} = \boldsymbol{\Theta} \left[\mathbf{X}(t), \bar{\mathbf{X}}(t_r^1), \bar{\mathbf{X}}(t_r^2) \right],$$

$$t_r^1 = t - |\mathbf{r}_2(t) - \mathbf{r}_1(t_r^1)|, \quad t_r^2 = t - |\mathbf{r}_1(t) - \mathbf{r}_2(t_r^2)|,$$

(1.2.43)

onde o campo vetorial Θ é unicamente definido a partir do sistema de equações diferenciais (1.0.30, 1.0.31). Observe que os tempos retardados são funções do tempo atual dadas por uma relação implícita dependente da trajetória anterior ao tempo atual.

Além disso, podemos reescrever o sistema de segunda ordem (1.1.42) como o seguinte sistema de primeira ordem:

$$\frac{d\mathbf{X}}{dt} = \mathbf{H}^{(0)}(\mathbf{X}) \quad \Longleftrightarrow \quad \begin{cases} \frac{d\mathbf{r}_1}{dt} = \mathbf{v}_1, & \frac{d\mathbf{v}_1}{dt} = \mathbf{H}_1^{(0)}[\mathbf{r}_1, \mathbf{v}_1, \mathbf{r}_2, \mathbf{v}_2], \\ \\ \frac{d\mathbf{r}_2'}{dt} = \mathbf{v}_2, & \frac{d\mathbf{v}_2}{dt} = \mathbf{H}_2^{(0)}[\mathbf{r}_1, \mathbf{v}_1, \mathbf{r}_2, \mathbf{v}_2], \end{cases}$$
(1.2.44)

assim, podemos definir o seguinte fluxo estendido:

$$\phi_{\mathbf{X}}^{(0)}(\tau) = \left(\mathbf{r}_1^{(0)}(\tau), \mathbf{v}_1^{(0)}(\tau), \mathbf{a}_1^{(0)}(\tau), \mathbf{r}_2^{(0)}(\tau), \mathbf{v}_2^{(0)}(\tau), \mathbf{a}_2^{(0)}(\tau)\right),$$

como sendo a solução única do sistema (1.2.44) tal que $\phi_{\mathbf{X}}^{(0)}(0) = \bar{\mathbf{X}}$. Obtemos uma aproximação para os tempos de retardo $t_r^1 \in t_r^2$ resolvendo as equa-

ções:

$$\tau_1^{(0)} = t - \left| \mathbf{r}_2(t) - \mathbf{r}_1^{(0)}(\tau_1^{(0)}) \right|, \quad \tau_2^{(0)} = t - \left| \mathbf{r}_1(t) - \mathbf{r}_2^{(0)}(\tau_2^{(0)}) \right|$$

do fluxo $\phi_{\mathbf{X}(t)}^{(0)}(\tau)$ que, substituindo a equação

$$\bar{\mathbf{X}}(t_r^1) = \phi_{\mathbf{X}(t)}^{(0)}(\tau_1^{(0)}), \quad \bar{\mathbf{X}}(t_r^2) = \phi_{\mathbf{X}(t)}^{(0)}(\tau_2^{(0)})$$

fornece a seguinte equação:

$$\frac{d\mathbf{X}(t)}{dt} = \mathbf{\Theta} \left[\mathbf{X}(t), \phi_{\mathbf{X}(t)}^{(0)}(\tau_1^{(0)}), \phi_{\mathbf{X}(t)}^{(0)}(\tau_2^{(0)}) \right].$$
(1.2.45)

Vale ressaltar que, da forma como foram definidas, temos que $\tau_1^{(0)}$ e $\tau_2^{(0)}$ são funções determinadas pelo vetor de estado $\mathbf{X}(t)$ avaliado no tempo t. Desta forma, podemos remover a forma evidente das variáveis que dependem do tempo atual e reescrever o sistema como:

$$\frac{d\mathbf{X}}{dt} = \mathbf{H}^{(1)}(\mathbf{X}) = \mathbf{\Theta} \left[\mathbf{X}, \phi_{\mathbf{X}}^{(0)}(\tau_1^{(0)}), \phi_{\mathbf{X}}^{(0)}(\tau_2^{(0)}) \right], \qquad (1.2.46)$$

$$\tau_1^{(0)} = -|\mathbf{r}_2 - \mathbf{r}_1^{(0)}(\tau_1^{(0)})|, \quad \tau_2^{(0)} = -|\mathbf{r}_1 - \mathbf{r}_2^{(0)}(\tau_2^{(0)})|.$$

Observe que $\tau_1^{(0)}$ e $\tau_2^{(0)}$ são funções bem determinadas pelo vetor de estado **X**.

O sistema de equações (1.2.46) pode ser visto como uma aproximação do sistema de equações em (1.0.30, 1.0.31), a vantagem aqui é que o primeiro é um sistema de equações diferenciais tradicional e pode ser integrado usando os algoritmos numéricos típicos para esses tipos de sistemas.

Se observarmos atentamente o procedimento desenvolvido até agora, é fácil notar que podemos usar um sistema de equações diferencias, definido pelo campo vetorial $\mathbf{H}^{(0)}(\mathbf{X})$ em (1.2.44), para obter estimativas das quantidades calculadas nos tempos de retardo no sistema de equações (1.0.30, 1.0.31). Este procedimento nos levou a um novo sistema de equações diferenciais em (1.2.46), que é definido pelo campo vetorial $\mathbf{H}^{(1)}(\mathbf{X})$. Se pensarmos neste procedimento como uma transformação de um sistema de equações diferencias em outro sistema de equações diferencias, poderíamos aplicá-lo de forma análoga ao sistema (1.2.46), que passaria a desempenhar o papel do sistema (1.2.44), para obter um novo sistema de equações diferencias a partir das equações (1.0.30, 1.0.31).

Formalmente, podemos pensar neste procedimento como um mapa \mathcal{T} que gera uma nova sequência de sistemas de campos vetoriais (respectivamente sistemas de equações diferencias):

$$\frac{d\mathbf{X}}{dt} = \mathbf{H}^{n}(\mathbf{X}) \ (n = 0, 1, 2, \ldots) \quad \Rightarrow \quad \mathbf{H}^{(n)}(\mathbf{X}) \xrightarrow{\mathcal{T}} \mathbf{H}^{(n+1)}(\mathbf{X}) \tag{1.2.47}$$

de forma que, sendo $\phi_{\mathbf{X}}^{(n)}(\tau)$ o fluxo estendido do sistema de equações diferencias determinado pelo campo vetorial $\mathbf{H}^{(n)}(\mathbf{X})$, teremos:

$$\frac{d\mathbf{X}}{dt} = \mathbf{H}^{(n+1)}(\mathbf{X}) = \mathbf{\Theta} \left[\mathbf{X}, \phi_{\mathbf{X}}^{(n)}(\tau_1^{(n)}), \phi_{\mathbf{X}}^{(n)}(\tau_2^{(n)}) \right], \qquad (1.2.48)$$

$$\tau_1^{(n)} = -|\mathbf{r}_2 - \mathbf{r}_1^{(n)}(\tau_1^{(n)})|, \quad \tau_2^{(n)} = -|\mathbf{r}_1 - \mathbf{r}_2^{(n)}(\tau_2^{(n)})|,$$

1.2. APROXIMAÇÃO PARA OS TEMPOS RETARDADOS

com $\mathbf{H}^{(0)}(\mathbf{X})$ definido pelo sistema instantâneo dado em (1.2.44).

Resumidamente, para determinar as posições e velocidades das partículas, construímos o sistema de ordem zero, $\mathbf{H}^{(0)}$, que descreve as trajetórias das partículas desconsiderando os termos retardados nas equações. O próximo passo é considerar as equações funcionais para determinar os tempos retardados das posições e velocidades das partículas em um certo momento anterior ao tempo t. Assim, podemos determinar, utilizando o sistema de ordem zero, quais são as posições e velocidades no tempo t_r . Desta maneira, determinamos as acelerações no retardo e assim podemos resolver numericamente o sistema $\mathbf{H}^{(1)}$ em função do tempo t.

Se a sequência de campos vetoriais converge para um ponto fixo do mapa \mathcal{T} :

$$\lim_{n \to \infty} \mathbf{H}^{n}(\mathbf{X}) = \mathbf{H}^{\infty}(\mathbf{X}), \quad \mathbf{H}^{\infty}(\mathbf{X}) \xrightarrow{\mathcal{T}} \mathbf{H}^{\infty}(\mathbf{X}), \quad (1.2.49)$$

então teremos

$$\lim_{n \to \infty} \phi_{\mathbf{X}}^{(n)}(\tau) = \phi_{\mathbf{X}}^{(\infty)}(\tau), \qquad (1.2.50)$$

onde $\phi_{\mathbf{X}}^{(\infty)}(\tau)$ é o fluxo da soluções do sistema de equações diferenciais definido pelo campo vetorial $\mathbf{H}^{\infty}(\mathbf{X})$. Da forma que a sequência foi construída, podemos esperar que este fluxo, correspondente ao ponto fixo da transformação \mathcal{T} , defina uma solução de Synge global do sistema E.D.F.s determinado pelas equações (1.0.30, 1.0.31). Nesse caso, cada campo vetorial $\mathbf{H}^{n}(\mathbf{X})$ pode ser visto como definindo um sistema de equações diferenciais cujas soluções devem representar aproximações sucessivas para uma solução de Synge global.

Capítulo II

Campos eletromagnéticos retardados e avançados

As mesmas discussões que foram feitas para o problema Synge com $\alpha = 1/2$, onde apenas campos retardados são considerados, podem ser feitas para o caso em que consideramos as restrições intertemporais impostas pelos campos de Liénard-Wiechert para valores de $\alpha > 1/2$, onde levamos os campos avançados em consideração. No que diz respeito à existência de soluções globais, mostrou-se a existência de soluções circulares, quase circulares e particulares para o caso simétrico ($\alpha = 0$) nas referências [19, 21, 22]. Além disso, alguns teoremas de existência e unicidade de soluções globais associadas a uma determinada condição inicial das partículas foram demonstrados para casos unidimensionais [26].

A versão fraca do problema tridimensional de Synge para campos simétricos é demonstrada nas referências [30, 31], onde a ideia de conhecer uma trajetória anterior é substituída pelo conhecimento de trajetórias assintóticas nos intervalos $(-\infty, -T)$ e (T, ∞) com T > 0. Nesse caso, um teorema de existência e unicidade garante a existência de uma trajetória única no intervalo finito [-T, T]. A partir desse resultado, os autores demonstram um teorema análogo ao obtido por Driver para o problema original de Synge $(\alpha = 1/2)$ [27]. Aparentemente, os autores deste artigo não conheciam o teorema da existência e da unicidade de Driver para o caso tridimensional. Além disso, como os autores na referência [30] estão interessados apenas no caso simétrico, eles apenas indicam que as provas para o caso geral com qualquer α seriam análogas. Até onde sabemos, este parece ser a única prova de um teorema de existência e unicidade para o caso geral de campos eletromagnéticos mistos.

Podemos reescrever as equações (0.0.32) e (0.0.33) como um sistema de equações diferenciais de segunda ordem na forma matricial com os tempos de retardo e avançado:

$$\eta \mathcal{M}_{11} \mathbf{a}_{1} = (1/2 + \alpha) \left(\mathbf{F}_{1}^{-} - \mathcal{M}_{12}^{-} \mathbf{a}_{2}^{-} \right) + (1/2 - \alpha) \left(\bar{\mathbf{F}}_{1}^{+} - \bar{\mathcal{M}}_{12}^{+} \mathbf{a}_{2}^{+} \right), \quad (2.0.1)$$

$$\mathcal{M}_{22}\mathbf{a}_{2} = (1/2 + \alpha) \left(\mathbf{F}_{2}^{-} - \mathcal{M}_{21}^{-}\mathbf{a}_{1}^{-}\right) + (1/2 - \alpha) \left(\bar{\mathbf{F}}_{2}^{+} - \bar{\mathcal{M}}_{21}^{+}\mathbf{a}_{1}^{+}\right), \quad (2.0.2)$$

onde devemos levar em consideração dois tempos de retardo e dois tempos avançados, respectivamente, dados por:

$$t_r^1 = t - |\mathbf{r}_2(t) - \mathbf{r}_1(t_r^1)|, \quad t_r^2 = t - |\mathbf{r}_1(t) - \mathbf{r}_2(t_r^2)|, \tag{2.0.3}$$

$$t_a^{1} = t + |\mathbf{r}_2(t) - \mathbf{r}_1(t_a^{1})|, \quad t_a^{2} = t + |\mathbf{r}_1(t) - \mathbf{r}_2(t_a^{2})|.$$
(2.0.4)

As quantidades matemáticas com sobrescritos "-" e "+" devem ser calculadas respectivamente nos tempos de retardo e avançado, onde as quantidades que aparecem na equação (2.0.1) dependem de t_r^2 e t_a^2 e das quantidades que aparecem na equação (2.0.2) dependem de t_r^1 e t_a^1 . De forma análoga desenvolvida em (1.2), podemos associar uma sequência de sistemas de equações diferenciais, como feito em (1.2.47) e (1.2.48), para encontrar soluções naturais para o sistema de equações com tempos retardos e avançados dados em (2.0.1) e (2.0.2). Para fazer isso, devemos reescrever este sistema de forma semelhante a (1.2.43):

$$\frac{d\mathbf{X}(t)}{dt} = \boldsymbol{\Theta} \left[\mathbf{X}(t), \bar{\mathbf{X}}(t_r^1), \bar{\mathbf{X}}(t_r^2), \bar{\mathbf{X}}(t_a^1), \bar{\mathbf{X}}(t_a^2) \right], \qquad (2.0.5)$$

onde temos que levar em consideração tanto a dependência dos tempos retardados em (2.0.3) como também dos tempos avançados em (2.0.4).

A transformação do sistema de equações diferencias de ordem n para o sistema de ordem n + 1 é definida da mesma forma que em (1.2.48), mas levando em consideração o campo vetorial Θ definido em (2.0.5). Assim, sendo $\phi_{\mathbf{X}}^{(n)}(\tau)$ o fluxo estendido do sistema de equações diferencias determinado pelo campo vetorial $\mathbf{H}^{(n)}(\mathbf{X})$, teremos:

$$\frac{d\mathbf{X}}{dt} = \mathbf{H}^{(n+1)}(\mathbf{X}) = \mathbf{\Theta} \left[\mathbf{X}, \phi_{\mathbf{X}}^{(n)}(\tau_{1}^{(n)}), \phi_{\mathbf{X}}^{(n)}(\tau_{2}^{(n)}), \phi_{\mathbf{X}}^{(n)}(\bar{\tau}_{1}^{(n)}), \phi_{\mathbf{X}}^{(n)}(\bar{\tau}_{2}^{(n)}) \right], \quad (2.0.6)$$

$$\tau_{1}^{(n)} = -|\mathbf{r}_{2} - \mathbf{r}_{1}^{(0)}(\tau_{1}^{(n)})|, \quad \tau_{2}^{(n)} = -|\mathbf{r}_{1} - \mathbf{r}_{2}^{(n)}(\tau_{2}^{(n)})|,$$

$$\bar{\tau}_{1}^{(n)} = |\mathbf{r}_{2} - \mathbf{r}_{1}^{(0)}(\bar{\tau}_{1}^{(n)})|, \quad \bar{\tau}_{2}^{(n)} = |\mathbf{r}_{1} - \mathbf{r}_{2}^{(n)}(\bar{\tau}_{2}^{(n)})|.$$

$$(2.0.7)$$

Agora o fluxo estendido

$$\phi_{\mathbf{X}}^{(n)}(\tau) = \left(\mathbf{r}_1^{(n)}(\tau), \mathbf{v}_1^{(n)}(\tau), \mathbf{a}_1^{(n)}(\tau), \mathbf{r}_2^{(n)}(\tau), \mathbf{v}_2^{(n)}(\tau), \mathbf{a}_2^{(n)}(\tau)\right)$$

também deve ser calculado nos tempos $\bar{\tau}_1^{(n)}$ e $\bar{\tau}_2^{(n)}$, que constituem uma sequência de aproximação para os tempos avançados.

2.1 Aproximação instantânea para o campo simétrico

Supondo que os intervalos do retardo e os intervalos avançados sejam muito pequenos, podemos fazer a aproximação de instantaneidade $t_r^1 \approx t_r^2 \approx t_a^1 \approx t_a^2 \approx t$ nas equações (2.0.1, 2.0.2), que então se transformam em um sistema de equações diferencias implícito de segunda ordem com todas as funções e derivadas definidas no tempo t. Procedendo de forma análoga ao que foi feito para campos retardados na subseção (1.1) para obter as equações (1.1.38, 1.1.39), podemos resolver explicitamente o sistema como uma função das acelerações para obter um sistema de equações diferenciais explicitamente de segunda ordem dado por:

$$\mathbf{a}_{1} = \frac{1}{\eta} \left(\mathcal{I} - \frac{1}{\eta} \mathcal{M}_{11}^{-1} \mathcal{M}_{12}^{\alpha} \mathcal{M}_{22}^{-1} \mathcal{M}_{21}^{\alpha} \right)^{-1} \left(\mathcal{M}_{11}^{-1} \mathbf{F}_{1}^{\alpha} - \mathcal{M}_{11}^{-1} \mathcal{M}_{12}^{\alpha} \mathcal{M}_{22}^{-1} \mathbf{F}_{2}^{\alpha} \right), \quad (2.1.8)$$

$$\mathbf{a}_{2} = \left(\mathcal{I} - \frac{1}{\eta}\mathcal{M}_{22}^{-1}\mathcal{M}_{21}^{\alpha}\mathcal{M}_{11}^{-1}\mathcal{M}_{12}^{\alpha}\right)^{-1} \left(\mathcal{M}_{22}^{-1}\mathbf{F}_{2}^{\alpha} - \frac{1}{\eta}\mathcal{M}_{22}^{-1}\mathcal{M}_{21}^{\alpha}\mathcal{M}_{11}^{-1}\mathbf{F}_{1}^{\alpha}\right), (2.1.9)$$

onde

$$\mathbf{F}_{i}^{\alpha} = \left[\left(\frac{1}{2} + \alpha \right) \mathbf{F}_{i}^{-} + \left(\frac{1}{2} - \alpha \right) \mathbf{F}_{i}^{+} \right]_{t_{r}=t, t_{a}=t}, \qquad (2.1.10)$$

$$\mathcal{M}_{ij}^{\alpha} = \left[\left(\frac{1}{2} + \alpha \right) \mathcal{M}_{ij}^{-} + \left(\frac{1}{2} - \alpha \right) \mathcal{M}_{ij}^{+} \right]_{t_r = t, t_a = t}, \qquad (2.1.11)$$

com \mathbf{F}_i^- , \mathbf{F}_i^+ , \mathcal{M}_{ij}^- e \mathcal{M}_{12}^+ obtidos das respectivas quantidades sobrescritas avaliadas no tempo t.

Analisaremos apenas soluções planares e, portanto, serão considerados, sem perda de generalidade, soluções contidas no plano z = 0 do sistema (2.1.8, 2.1.9) quando expressas em coordenadas cartesianas (x, y, z). Isso corresponde a considerar as condições iniciais para velocidades e posições das partículas que estão todas contidas no plano z = 0, sendo fácil de verificar, diretamente das equações (2.1.8, 2.1.9), que as duas partículas terão acelerações com componentes z nulas.

2.2 A existência de soluções periódicas circulares

Para estudar a existência de trajetórias circulares no caso de campos eletromagnéticos simétricos ($\alpha = 0$) e forças atrativas coulombianas (S = -1), consideremos a aproximação não relativística das equações (2.1.8, 2.1.9) para condições iniciais planas. Isso pode ser feito considerando que os componentes z de todas as quantidades que aparecem no lado esquerdo das equações são nulos, implicando em um sistema de equações diferenciais de segunda ordem para os componentes (x, y) das coordenadas cartesianas escolhidas para expressar as equações, uma vez que a componente z das acelerações de partículas torna-se nulo.

A aproximação não relativística implica que fazemos uma expansão de segunda ordem nas velocidades do lado esquerdo das equações de Newton, uma vez que para $\alpha = 0$ os termos de primeira ordem nesta expansão são nulos. O sistema de equações de segunda ordem obtido em coordenadas cartesianas é mostrado no apêndice (A). Essas equações, projetadas em coordenadas polares usadas para descrever o vetor de posição relativo **r**, podem ser escritas como¹:

$$\frac{d\theta}{dt} = \frac{\eta + 1}{\eta} \frac{l_z}{r^2}, \qquad (2.2.12)$$

$$\frac{dl_z}{dt} = \frac{(4\eta^2 r^2 - 3\eta^2 + 2\eta - 3)l_z v_r}{\eta r^2 (\eta r^2 - 1)(\eta + 1)} - \frac{2(\eta - 1)l_z V_r}{\eta r^2 (\eta r^2 - 1)} - \frac{(\eta r^2 + 3)(\eta - 1)v_r V_\theta}{r(\eta + 1)(\eta r^2 - 1)} + \frac{2V_r V_\theta}{r},$$
(2.2.13)

$$\frac{dv_r}{dt} = -\frac{\eta+1}{\eta r^2} - \frac{2v_r^2}{r^2(\eta+1)} + \frac{(\eta+1)^2 l_z^2}{r^3 \eta^2} - \frac{2l_z^2}{r^5 \eta^2} - \frac{2(\eta+1)V_r^2}{\eta r^2} + \frac{2(\eta r+r+1)V_{\theta}^2}{\eta r^3} + \frac{(\eta-1)(\eta r+r+2)l_z V_{\theta}}{r^4 \eta^2},$$
(2.2.14)

$$\frac{dV_r}{dt} = \frac{(\eta+1)l_z V_\theta}{\eta r^2} - \frac{(\eta-1)(\eta r+r-1)l_z^2}{\eta^2 r^5(\eta+1)} + \frac{2(\eta-1)v_r^2}{r^2(\eta+1)^2} + \frac{(1-\eta)V_\theta^2}{r^3\eta(\eta+1)} \\
+ \frac{4v_r V_r}{r^2(\eta+1)} - \frac{(2\eta^2 r+\eta^2+2\eta r-2\eta+1)l_z V_\theta}{(\eta+1)\eta^2 r^4},$$
(2.2.15)
$$\frac{dV_\theta}{dV_\theta} = 4(r+1)(\eta r+1)v_r V_\theta - 3(r+1)(\eta-1)(\eta r+1)l_z v_r$$

$$\frac{dv_{\theta}}{dt} = -\frac{4(r+1)(\eta r+1)l_r v_{\theta}}{r^2(\eta+1)(\eta r^2-1)} - \frac{5(r+1)(\eta-1)(\eta r+1)l_z v_r}{(\eta+1)\eta r^3(\eta r^2-1)} - \frac{2(r+1)(\eta r+1)l_z V_r}{\eta r^3(\eta r^2-1)} - \frac{(\eta+1)l_z V_r}{\eta r^2}, \qquad (2.2.16)$$

com l_z sendo a componente z do momento angular e as velocidades, projetadas na direção relativa, são definidas como $v_r = \mathbf{v} \cdot \hat{r}, V_r = \mathbf{V} \cdot \hat{r}, V_{\theta} = \mathbf{V} \cdot \hat{\theta}$, onde \mathbf{v} é a velocidade relativa e \mathbf{V} a velocidade do centro de massa. Lembrando que o vetor relativo em coordenadas

 $^{^{1}}$ O passos necessários para realizar a transformação dos vetores e a projeção para as coordenadas polares são indicados no apêndice (B).

cartesianas é escrito como $\mathbf{r} = r \cos(\theta)\hat{x} + r \sin(\theta)\hat{y}$ e temos as seguintes definições: $\hat{r} = \cos(\theta)\hat{x} + \sin(\theta)\hat{y}$ and $\hat{\theta} = -\sin(\theta)\hat{x} + \cos(\theta)\hat{y}$.

Para obter uma solução estacionária, devemos impor que todas as derivadas de tempo sejam nulas, o que implica em:

$$v_r = 0,$$
 (2.2.17)
 $V_r = 0.$ (2.2.18)

$$V_{\theta} = \frac{1}{2} \frac{l_z}{\eta(\eta - 1)r} \left(-1 + \eta^3 r^2 + (2r^2 - 2r - 1)\eta^2 + (r^2 - 2r + 2)\eta - (\eta + 1)\sqrt{\eta^2 r^4(\eta + 1)^2 - 4\eta^2 r^3(\eta + 1) - 2\eta r^2(\eta^2 - 4\eta + 1) + (\eta - 1)^2} \right),$$

$$(2.2.19)$$

$$0 = -\frac{\eta + 1}{\eta r^2} + \frac{(\eta + 1)^2 l_z^2}{r^3 \eta^2} - \frac{2 l_z^2}{r^5 \eta^2} + \frac{2(\eta r + r + 1)V_{\theta}^2}{\eta r^3} + \frac{(\eta - 1)(\eta r + r + 2)l_z V_{\theta}}{r^4 \eta^2}.$$

A equação (2.2.19) pode ser reescrito como $V_{\theta} = f(\eta, r) l_z$, que substituida na equação (2.2.20) leva a:

$$0 = g(\eta, r)l_z^2 - \frac{\eta + 1}{\eta r^2} \implies l_z^2 = \frac{\eta + 1}{\eta r^2 g(\eta, r)},$$
(2.2.21)

onde $g(\eta, r)$ é definida como:

$$g(\eta, r) = \frac{(\eta + 1)^2}{\eta^2 r^3} - \frac{2}{\eta^2 r^5} + \frac{2(\eta r + r + 1)f^2}{\eta r^3} + \frac{(\eta - 1)(\eta r + r + 2)f}{\eta^2 r^4}.$$
 (2.2.22)

Portanto, mostramos a existência de uma solução estacionária em que o momento angular (l_z) e a coordenada radial (r) são constantes, ou seja, temos um movimento circular na coordenada relativa. Esta solução estacionária implica uma velocidade não nula e constante (V_{θ}) para o centro de massa, mostrando que ele tem uma aceleração não nula. Como veremos em capítulos futuros as soluções obtidas a partir da integração numérica das equações de Newton (2.1.8, 2.1.9) para valores de η maior que 1 veremos claramente que o centro de massa não permanece em repouso.

A expansão das funções $g(\eta, r)$ e V_{θ} em potências de 1/r implica que:

$$g(\eta, r) = \frac{(\eta + 1)^2}{\eta^2 r^3} + O\left(\frac{1}{r^5}\right), \quad V_\theta = \frac{l_z (\eta - 1)}{\eta r^2 (\eta + 1)} + O\left(\frac{1}{r^3}\right), \quad (2.2.23)$$

assim, para r >> 1 temos $V_{\theta} << 1$ e podemos considerar a aproximação onde a velocidade do centro de massa é considerada nula para obter, a partir das equações (2.2.12, 2.2.13, 2.2.14), o seguinte sistema diferencial para o vetor relativo **r**:

$$\dot{\theta} = \frac{\eta + 1}{n} \frac{l_z}{r^2},$$
(2.2.24)

$$\dot{l}_z = \frac{(4\eta^2 r^2 - 3\eta^2 + 2\eta - 3) \, l_z \dot{r}}{\eta r^2 (\eta r^2 - 1)(\eta + 1)}, \qquad (2.2.25)$$

$$\ddot{r} = -\frac{\eta+1}{\eta r^2} - \frac{2\dot{r}^2}{r^2(\eta+1)} + \frac{(\eta+1)^2 l_z^2}{r^3 \eta^2} - \frac{2 l_z^2}{r^5 \eta^2}.$$
(2.2.26)

O sistema acima tem uma solução estacionária bem definida que corresponde a uma órbita circular para a coordenada relativa que está bem próxima da órbita do sistema

(2.2.20)

sem considerar o centro de massa em repouso, desde que o raio r da órbita circular seja supostamente muito grande. Podemos obter outra aproximação direta para r >> 1 que leva ao seguinte sistema:

$$\dot{\theta} = \frac{\eta + 1}{\eta} \frac{l_z}{r^2},$$
(2.2.27)

$$\dot{l}_z = \frac{4 \, l_z \, \dot{r}}{(\eta + 1) \, r^2,} \tag{2.2.28}$$

$$\ddot{r} = -\frac{(\eta+1)}{\eta r^2} + \frac{(\eta+1)^2 l_z^2}{r^3 \eta^2} - \frac{2\dot{r}^2}{(\eta+1) r^2}.$$
(2.2.29)

Este sistema pode ser visto como uma correção do modelo de Coulomb de interação entre duas cargas pontuais, considerando as interações instantâneas entre as cargas através de seus campos eletromagnéticos simétricos retardados e avançados.

Capítulo III

Implemetação do método iterativo para obter aproximações sucessivas das equações diferenciais instantâtenas

A implementação numérica do algoritmo para obtenção de soluções do sistema de E.D.O.s definida pelo campo vetorial $\mathbf{H}^{(n+1)}$ na equação (2.0.6) e a equação funcional (2.0.7) depende do fluxo $\phi_{\mathbf{X}}^{(n)}(\tau)$. Este fluxo é obtido através da implementação de um algoritmo de Runge-Kutta de quarta ordem para o sistema definido pelo campo vetorial $\mathbf{H}^{(n)}$. Para o caso do sistema de E.D.O.s instantâneas, definido pelo campo vetorial $\mathbf{H}^{(0)}$, não precisamos resolver a equação funcional (2.0.7). Depois de construir o algoritmo para resolver as equações funcionais, construímos um novo Runge-Kutta de quarta ordem para o sistema E.D.O.s definido por $\mathbf{H}^{(n+1)}$. Observamos que a inicialização desse processo iterativo a partir do sistema instantâneo, que é um sistema de E.D.O.s sem equações funcionais, é fundamental para a construção dos fluxos em cada etapa n do método.

Para simplificar o método, podemos fazer a seguinte aproximação para os tempos retardados e avançados calculados em cada n passo: $\tau_1^{(n)} = \tau_2^{(n)} = -|\mathbf{r}_2 - \mathbf{r}_1|$, $\bar{\tau}_1^{(n)} = \bar{\tau}_2^{(n)} =$ $|\mathbf{r}_2 - \mathbf{r}_1|$. Desta forma, a cada etapa do método, não precisamos mais resolver as equações funcionais. Esta abordagem é razoável para obter soluções quase circulares e simplifica a implementação do algoritmo, além de torná-la mais rápida computacionalmente. O preço a pagar é que a solução obtida, mesmo com a convergência da sequência dos sistemas de E.D.O.s na equação (1.2.49), será apenas uma aproximação para a solução do problema de Synge.

3.1 Trajetórias circulares coulombianas

A condição inicial para essas trajetórias deve corresponder a uma trajetória Kepleriana quase circular, conforme analisado no artigo de Synge [1]. Iremos escolher as condições iniciais que corresponderiam a trajetórias circulares coulombianas, ou seja, condições iniciais que implicariam em um movimento circular das partículas se apenas a força atrativa coulombiana atuasse entre elas, o que implica escolher S = -1 no sistema de equações em (0.0.32, 0.0.33). Com as condições iniciais escolhidas desta forma, garantimos que as respectivas trajetórias serão planas.

Ilustraremos nas seguintes subseções trajetórias para sistemas com campos eletromagnéticos retardados ($\alpha = 1/2$) e para sistemas com campos eletromagnéticos simétricos ($\alpha = 0$). Para todas as trajetórias mostradas nas figuras desta seção, escolhemos a distância inicial entre as partículas como sendo $|\mathbf{r}_0|$ igual a 50 e 18789, de modo que o vetor do centro de massa \mathbf{R} de ambos é nulo. Lembrando que \mathbf{r}_1 e \mathbf{r}_2 são respectivamente os vetores de posição das partículas 1 e 2, temos que o vetor relativo e o vetor do centro de massa são definidos como: $\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1 \in \mathbf{R} = (\eta \mathbf{r}_1 + \mathbf{r}_2)/(\eta + 1)$.

Para o tempo $t_0 = 0$ e com a distância inicial entre as partículas dada por r_0 as condições para as posições e velocidades nas coordenadas cartesianas são dados por (Ver apêncide (D)):

• Velocidade angular relativa entre as partículas no tempo inicial t_0 :

$$r_0(d\theta/dt)_{t=0} = ((\eta+1)/\eta)^{1/2} r_0^{-1/2}$$

• Condições iniciais:

$$\begin{aligned} x_1(t_0) &= -\frac{r_0}{\eta+1}, \\ y_1(t_0) &= 0, \\ V_{1x}(t_0) &= 0, \\ V_{1y}(t_0) &= x_1 \left. \frac{d\theta}{dt} \right|_{t=0}, \\ x_2(t_0) &= \left. \frac{\eta r_0}{\eta+1}, \right. \\ y_2(t_0) &= 0, \\ V_{2x}(t_0) &= 0, \\ V_{2y}(t_0) &= x_2 \left. \frac{d\theta}{dt} \right|_{t=0}. \end{aligned}$$

3.1.1 Campos Eletromagnéticos Retardados

Nas figuras (3.1.1, 3.1.2) mostramos a integração numérica das trajetórias para o sistema de duas cargas com razão entre as massas iguais a $\eta = 1 \text{ e } \eta = 2$, correspondendo aos quatro primeiros sistemas de equações diferencias na sequência (1.2.47), onde temos n = 0, n = 1, n = 2 e n = 3. Para facilitar a exposição do conteúdo das figuras, denotamos esses sistemas respectivamente por $S_0, S_1, S_2 \text{ e } S_3$.

Figura 3.1.1: Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 , \mathbf{r}_2 e \mathbf{R} , onde integramos numericamente (para a mesma condição inicial) os quatro primeiros sistemas de equações diferenciais da sequência (1.2.47) considerando $\eta = 1$.

Figura 3.1.2: Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 , \mathbf{r}_2 e \mathbf{R} , onde integramos numericamente (para a mesma condição inicial) os quatro primeiros sistemas de equações diferenciais da sequencia (1.2.47) considerando $\eta = 2$.

Figura 3.1.3: Comparação dos erros da aproximação S_3 com relação a S_0 , S_1 e S_2 para η igual a 1, 2 e 100 considerando o raio inicial igual a $r_0 = 50$.

Podemos observar que o erro entre o sistema S_2 e S_3 é muito pequeno, mostrando que a convergência da sequência (1.2.47) é bastante rápida no caso da trajetória quase circular apresentada. Este fato pode ser claramente observado nas figuras (3.1.4, 3.1.5), onde plotamos as trajetórias relativas das partículas. Nas figuras (3.1.6, 3.1.7) temos os exemplos da convergência do método para o caso $\eta = 2$ e $\eta = 100$, respectivamente, para a trajetória do centro de massa.

Figura 3.1.4: Comparação da trajetória relativa das partículas, obtido por integração numérica dos sistemas de equações diferencias S_0 , S_1 , S_2 e S_3 para $\eta = 1$. Na figura (3.1.4a) podemos observa a mudança da trajetória relativa nas sucessivas aproximações dadas por (1.2.47). Na figura (3.1.4b) o sistema S_2 e o sistema S_3 possuem trajetórias idênticas. Os vetores são mostrados em coordenadas cartesianas planas (x, y).

(a) Comparação entre S_0 , $S_1 \in S_2$.

(b) Comparação entre S_2 e S_3 .

Figura 3.1.5: Comparação da trajetória relativa das partículas, obtido por integração numérica dos sistemas de equações diferencias S_0 , S_1 , $S_2 \in S_3$ para $\eta = 2$. Como observado em (3.1.4) temos que na figura (3.1.5a) a mudança da trajetória relativa nas sucessivas aproximações dadas por (1.2.47). Na figura (3.1.5b) o sistema S_2 e o sistema S_3 possuem trajetórias idênticas. Os vetores são mostrados em coordenadas cartesianas planas (x, y).

Figura 3.1.6: Comparação da trajetória do centro de massa das partículas, obtido por integração numérica dos sistemas de equações diferencias S_0 , S_1 , S_2 e S_3 para $\eta = 2$. Assim como nos casos apresentados nas figuras (3.1.4) e (3.1.5), temos na figura (3.1.6a) a mudança da trajetória do centro de massa nas sucessivas aproximações dadas por (1.2.47). Na figura (3.1.6b) o sistema S_2 e o sistema S_3 possuem trajetórias idênticas. Os vetores são mostrados em coordenadas cartesianas planas (x, y). A trajetória do centro de massa para o caso $\eta = 1$ não é apresentado como exemplo, pois o centro de massa mantém-se parado.

Figura 3.1.7: Comparação da trajetória do centro de massa das partículas, obtido por integração numérica dos sistemas de equações diferencias S_0 , S_1 , S_2 e S_3 para $\eta = 100$. Os vetores são mostrados em coordenadas cartesianas planas (x, y).

Podemos ver claramente nas figuras (3.1.6, 3.1.7) o movimento do centro de massa quando as cargas têm massas diferentes ($\eta \neq 1$). Vemos para esse dois casos apresentados que o centro de massa tende a se mover globalmente para a direita. Para o caso $\eta = 1$ o centro de massa está em repouso e os movimentos de carga são simétricos. Estas figuras ilustram claramente o efeito da auto-força (1.0.13) entre as cargas, conforme discutido anteriormente. Do ponto de vista da mecânica clássica tradicional, é como se a

força eletromagnética entre as cargas se comportasse como uma força externa, implicando claramente uma variação do momento linear mecânico do sistema de duas partículas.

A distância entre as partículas diminui até atingir a singularidade do sistema quando $\mathbf{r} = 0$. Isso é mostrado na figura (3.1.8). Com o auxílio das figuras (3.1.4) e (3.1.5), vemos que a coordenada relativa entre as partículas descreve um movimento em espiral até o colapso na singularidade. Também podemos ver que quanto maior o valor de η , maior o número de voltas da trajetória espiral em torno da singularidade. Esse fato expressa a propriedade de que o tempo de decaimento entre as partículas aumenta com a razão de massa entre as cargas. Observamos também com maior clareza nas figuras (3.1.8a) e (3.1.8b) a justificativa do nome de trajetória espiral quase circular, uma vez que a distância relativa diminui para a singularidade oscilando entre um valor maior e menor que também diminuem em função do tempo.

Figura 3.1.8: Comparação das distâncias relativas (|r|), obtidas por integração numérica dos sistemas de equações diferenciais S_0 , S_1 , S_2 e S_3 para η igual a 1, 2, e 1836.

Das figuras acimas e ao realizar mais integrações numéricas para diferentes valores de η com a mesma condição quase-circular inicial usada para obter as trajetórias das figuras (3.1.4), (3.1.5), (3.1.6) e (3.1.7), observa-se a mesma convergência para os sistemas S_2 e S_3 . Portanto, parece razoável utilizar o sistema S_2 , uma vez que para n = 2 a sequência de sistemas de equações diferenciais em (1.2.47) praticamente já convergiu. Exceto para o caso apresentado na figura (3.1.8d), em que para o raio inicial de $r_0 = 18789$ e a razão entre as massas igual a $\eta = 1836$ obtemos a convergência já no sistema igual a S_1 . Na figura (3.1.9) mostramos a relação entre o tempo de singularidade (estimado a partir das trajetórias numericamente integradas usando o sistema S_2) e a razão entre as massas das cargas. Vemos claramente que existe uma relação linear entre essas grandezas, de acordo com o ajuste linear feito com os dados obtidos numericamente.

(a) Distância relativa em função do tempo.

(b) Tempos de singularidade.

Figura 3.1.9: Na figura à esquerda, mostramos a evolução da distância relativa entre as partículas |r| em função do tempo t para diferentes valores de η . Na figura à direita, plotamos o tempo de singularidade (obtido numericamente) em função de η (Pontos) e seu respectivo ajuste linear (Linha preta tracejada).

3.1.2 Campos eletromagnéticos simétricos

No caso de campos simétricos, usando as mesmas condições iniciais dos campos retardados da seção anterior, obtivemos uma convergência mais rápida para a sequência de sistemas de equações diferencias em (1.2.47) e podemos observar que a diferença entre os sistemas S_0 e S_1 são pequenas, como mostra na figura(3.1.10).

(c) Módulo da distância para para $\eta = 1$.

(d) Módulo da distância para $\eta = 2$.

Figura 3.1.10: Trajetórias relativas planares em coordenadas cartesianas (x, y) para $\eta = 1$ e $\eta = 2$, como mostrado nos gráficos (3.1.10a) e (3.1.10b), onde integramos numericamente (para a mesma condição inicial) os dois primeiros sistemas de equações diferenciais da sequencia (1.2.47). Nos gráficos (3.1.10c) e (3.1.10d) temos a comparação das distâncias relativas considerando os sistemas de equações diferencias S_0 e S_1 .

Assim, para analisar as trajetórias das partículas para diferentes valores de η iremos considerar o sistema de equações diferenciais dado por S_1 da sequência (1.2.47). Vemos claramente que a trajetória das coordenadas relativas é quase circular (figuras (3.1.10a) e (3.1.10b)) e parecem oscilar entre um valor máximo e um valor mínimo, nunca decaindo para uma singularidade.

Também podemos observar o efeito da auto-força sobre o movimento do centro de massa (curva preta nas figuras (3.1.11)) para valores de $\eta \neq 1$. Este movimento do centro de massa parece ser dado por uma trajetória não singular que oscila entre um valor máximo e um valor mínimo. Isso demonstra que também no caso simétrico, a auto-força entre as duas cargas parece se comportar (do ponto de vista da mecânica clássica) como uma força externa que acelera o centro de massa do sistema.

Figura 3.1.11: Trajetória do centro de massa das partículas, obtido por integração numérica dos sistemas de equações diferencias para $\eta = 2$ e $\eta = 100$. Observamos que o padrão da trajetória muda conforme o valor de η , porém as trajetórias parecem oscilar entre um valor máximo e um valor mínimo, nunca decaindo para uma singularidade. Os vetores são mostrados em coordenadas cartesianas planas (x, y). A trajetória do centro de massa para o caso $\eta = 1$ não é apresentada como exemplo, pois o centro de massa mantém-se parado.

A diferença significativa para o caso $\alpha = 1/2$, onde temos apenas campos de retardo, é que o sistema não evolui para uma singularidade no tempo finito e parece oscilar quase periodicamente em uma região finita do espaço (observar a figura (3.1.12)), onde vemos que as partículas descrevem loops que parecem nunca se repetir exatamente.

Figura 3.1.12: Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 , $\mathbf{r}_2 \in \mathbf{R}$, onde integramos numericamente (para a mesma condição inicial) considerando $\eta = 2 \in \eta = 100$.

Nas figuras (3.1.13, 3.1.14), comparamos a evolução temporal da distância relativa entre as partículas. É bastante evidente que as trajetórias das coordenadas relativas (para os campos simétricos) são quase circulares, ou seja, a distância relativa entre as partículas oscila entre um valor máximo e um valor mínimo.

Figura 3.1.13: Comparação das distâncias relativas, obtidas por integração numérica dos sistemas de equações diferenciais considerando somente o campo retardado e o campo simétrico, para η igual a 1, 2 e 100 considerando o raio inicial igual a $r_0 = 50$.

Figura 3.1.14: Comparação das distâncias relativas, obtidas por integração numérica dos sistemas de equações diferenciais considerando somente o campo retardado e o campo simétrico, para η igual a 2 e 1836 considerando o raio inicial igual a $r_0 = 18789$.

3.2 Trajetórias não circulares coulombianas

Iremos agora escolher as condições iniciais que não geram trajetórias circulares coulombianas. Ao aplicar uma condição inicial que não gera um movimento circular das partículas buscamos simular a trajetória das partículas considerando um condição inicial diferente daquela aplicada na seção anterior e verificar o comportamento da evolução temporal das partículas quando temos um sistema atrativo, S = -1, descrito pelas equações (0.0.32, 0.0.33).

Iremos ilustrar, nas seguintes subseções, as trajetórias para sistemas com campos eletromagnéticos retardados ($\alpha = 1/2$) e para sistemas com campos eletromagnéticos simétricos ($\alpha = 0$). Para todas as trajetórias mostradas nas subseções, escolhemos a distância inicial entre as partículas como sendo $|\mathbf{r}_0| = 50$.

Para o tempo $t_0 = 0$ e com a distância inicial entre as partículas dada por r_0 as condições para as posições e velocidades nas coordenadas cartesianas são dados por:

• Velocidade angular relativa entre as partículas no tempo inicial t_0 :

$$r_0(d\theta/dt)_{t=0} = ((\eta+1)/\eta)^{1/2} r_0^{-1/2}$$

• Condições iniciais:

$$\begin{aligned} x_1(t_0) &= -(r_0/(\eta+1))(\sqrt{2}/2), \\ y_1(t_0) &= -(r_0/2)(1/(\eta+1))(\sqrt{2}/2), \\ V_{1x}(t_0) &= -y_1(d\theta_0/dt), \\ V_{1y}(t_0) &= x_1(d\theta_0/dt), \\ x_2(t_0) &= (\eta r_0/(\eta+1))(\sqrt{2}/2), \\ y_2(t_0) &= (1/2)(\eta r_0/(\eta+1))(\sqrt{2}/2), \\ V_{2x}(t_0) &= -y_2(d\theta_0/dt), \\ V_{2y}(t_0) &= x_2(d\theta_0/dt). \end{aligned}$$

3.2.1 Campos Eletromagnéticos Retardados

Na figura (3.2.15) mostramos a integração numérica das trajetórias para o sistema de duas cargas com razão entre as massas iguais a $\eta = 1$, $\eta = 2$ e $\eta = 100$. Iremos considerar somemente o caso n = 2 da sequência (1.2.47), ou seja, o sistema S_2 . Como visto anteriormente temos a convergência atingida rapidamente para o sistema S_2 (Como podemos ver na figura (3.2.16)), portanto para os sistemas apresentados nesta subseção iremos considerar somente o valor n = 2 da sequência (1.2.47).

(a) Integração numérica S_2 para $\eta = 1$.

(b) Integração numérica S_2 para $\eta = 2$.

(c) Integração numérica S_2 para $\eta = 100$.

Figura 3.2.15: Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 , $\mathbf{r}_2 \in \mathbf{R}$ para o sistema S_2 da sequencia (1.2.47) com a condição inicial não circular considerando $\eta = 1$, $\eta = 2 \in \eta = 100$.

(b) Comparação entre S_2 e S_3 .

Figura 3.2.16: Comparação da trajetória relativa das partículas, obtido por integração numérica dos sistemas de equações diferencias S_0 , S_1 , S_2 e S_3 para $\eta = 2$ para uma condição inicial não circular.

Na firuga (3.2.17) vemos que a coordenada relativa entre as partículas descreve um movimento em espiral, porém bem mais achatada comparada quando aplicamos uma condição incial circular. Entretanto, a característica de colapso na singularidade permanece. Da mesma forma constatada na seção anterior, aqui também podemos ver que quanto maior o valor de η , maior o número de voltas da trajetória em torno da singularidade.

(c) Integração numérica S_2 para $\eta = 100$.

Figura 3.2.17: Trajetória relativa das partículas para $\eta = 1$, $\eta = 2$ e $\eta = 100$ para uma condição inicial não circular.

Outra característica observada é o comportamento do movimento do centro de massa para $\eta \neq 1$. Na figura (3.2.18) temos para os casos $\eta = 2 \text{ e } \eta = 100$ que o centro de massa tende a se mover globalmente para a esquerda. Portanto, novamente constatamos, para uma condição inicial diferente, o efeito da auto-força (1.0.13) entre as cargas.

A distância entre as partículas diminui até atingir a singularidade, como podemos ver pela figura (3.2.19). Novamente é nítido que a distância diminui para a sigularidade, porém desta vez é bem mais perceptivo a oscilação entre um valor maior e menor que também diminui em função do tempo. Outra característica da mudança da condição inicial é o tempo final para a sigularidade (Quando comparamos com a figura (3.1.13) para o campo retardado). Para a condição inicial não circular este tempo para a sigularidade é menor comparado com os valores obtidos quando aplicamos a condição inicial circular.

Figura 3.2.18: Trajetória do centro de massa das partículas para $\eta = 2$ e $\eta = 100$ para uma condição inicial circular.

(c) Distância relativa para $\eta = 100$.

Figura 3.2.19: Distância relativa para η igual a 1, 2, e 100 para uma condição inicial não circular.

3.2.2 Campos eletromagnéticos simétricos

Nesta subseção iremos apresentar o caso dos campos simétricos, usando as condições iniciais não circulares de forma idêntica a subseção anterior para os campos retardados. Da mesma maneira apresentada na seção anterior para o campo simétrico com as condições iniciais circulares iremos considerar somemente o caso n = 1 da sequência (1.2.47). Podemos observar na figura (3.2.20) que independente da condição inicial não ser circular, ainda não é observado a singularidade para os diferentes valores de η apresentados. Entretanto, fica evidente o padrão das tretórias mudam devido a condição inicial dada.

Observamos na figuras (3.2.20a, 3.2.20b) que para diferentes valores de η existe diferentes padrões de oscilações quase periódicos em uma região finita do espaço. No caso (3.2.20c), $\eta = 100$, esse padrão não é tão claro quanto os anteriores, pois seria necessário um maior tempo de simulação.

(a) Integração numérica S_1 para $\eta = 1$.

(b) Integração numérica S_1 para $\eta = 2$.

(c) Integração numérica S_1 para $\eta = 100$.

Figura 3.2.20: Trajetórias planares em coordenadas cartesianas (x, y) para os vetores \mathbf{r}_1 , $\mathbf{r}_2 \in \mathbf{R}$ para o sistema S_1 da sequencia (1.2.47) com a condição inicial não circular considerando $\eta = 1$, $\eta = 2$ e $\eta = 100$ para o campo simétrico.

As trajetórias das coordenadas relativas, apresentadas na figura (3.2.21), apesar de não possui trajetórias quase circulares, mantém a caracterítica de oscilação em torno de um valor máximo e um valor mínino, nunca decaindo para a singularidade. Os *loops* que as partículas descrevem, para os casos de η igual a 1 e 2, parecem nunca se repetir exatamente, entretanto para o caso $\eta = 100$ esses *loops* parecem se repetir exatamente, porém não podemos afirmar com certeza, pois como visto anteriormente deve-se aumentar o tempo de simulação para esse caso em específico para poder observar se há um padrão de oscilação não repetitivo.

Figura 3.2.21: Trajetórias relativas para o sistema S_1 da sequencia (1.2.47) com a condição inicial não circular considerando $\eta = 1$, $\eta = 2$ e $\eta = 100$ para o campo simétrico.

Considerando a trajetória do centro de massa, figura (3.2.22), observa-se novamente o efeito de auto-força para os valores de $\eta \neq 1$. O centro de massa para o caso $\eta = 2$ parece ser dado por uma trajetória não singular que oscila entre um valor máximo e um valor mínino. Para $\eta = 100$, como já afirmado, devemos aumentar o tempo de simulação para observar o padrão de oscilação, entretanto fica evidente que há uma oscilação entre um valor máxio e um valor mínino.

(a) Trajetória do centro de massa para $\eta = 2$.

(b) Trajetória do centro de massa para $\eta = 100$.

Figura 3.2.22: Trajetórias do centro de massa para o sistema S_1 da sequencia (1.2.47) com a condição inicial não circular considerando $\eta = 2$ e $\eta = 100$ para o campo simétrico.

Figura 3.2.23: Comparação das distâncias relativas, obtidas por integração numérica dos sistemas de equações diferenciais considerando somente o campo retardado e o campo simétrico, para η igual a 1, 2, e 100 para uma condição inicial não circular.

Na figura (3.2.23) comparamos a evolução temporal da distância relativa entre as partículas para a condição não circular. Para o caso da condição incial circular é evidente que as trajetórias para as coordenadas relativas (quando consideramos os campos simétricos) são quase circulares, ou seja, a distância relativa entre as partículas oscila entre um valor máximo e um valor mínino, ver gráfico (3.2.24). Quando consideramos a condição inicial não circular a amplitude de oscilação torna-se mais proeminente. Para $\eta = 1$ a distância relativa parece oscilar periodicamente com uma frequência bem definida, enquanto para $\eta \neq 1$ o movimento parece quase periódico. De fato, para $\eta \neq 1$ as oscilações de distância relativa parecem movimento de batimento, obtido a partir da superposição de ondas com frequências diferentes, mas muito próximas, porém, uma análise mais detalhada e rigorosa deve ser feita para caracterizar exatamente o tipo de movimento periódico pela coordenada relativa.

Figura 3.2.24: Distâncias relativas, obtidas por integração numérica dos sistemas de equações diferenciais considerando o campo simétrico, para η igual a 2 e 100 para uma condição inicial circular.

Capítulo IV

Conclusão

4.1 Conclusões e considerações finais

Neste trabalho tentamos discutir os aspectos matemáticos mais relevantes associados ao problema de Synge e suas conexões com algumas questões físicas. Acima de tudo, estávamos interessados em mostrar a dificuldade de definir um sistema isolado de duas cargas, devido à presença de restrições intertemporais relacionando as posições, velocidades e acelerações de suas trajetórias.

Tentamos enfatizar, como Synge avisa, que o problema matemático de duas cargas pontuais sem auto interação é matematicamente bem definido e consistente. Isso serve para mostrar que as equações de Dirac não corrigem inconsistências matemáticas na formulação do problema de Synge, mas está ligado exclusivamente à questão da compatibilidade das equações de Synge com os princípios de conservação de energia e momento do sistema de duas cargas e seus respectivos campos eletromagnéticos, o que implica na forma como esses conceitos são definidos.

De um certo ponto de vista, podemos considerar o problema de Synge de duas cargas como mais elementar do que o problema análogo de Dirac . Uma vez que as correções da auto força para cada carga nas equações de Dirac-Maxwell podem ser derivadas através da renormalização de corpos rígidos ocupando um certo volume que deveria tender a zero, então a interação entre dois pontos no volume considerado é um problema de Synge com as forças e sua dinâmica dependem apenas da relação entre as massas (que neste caso pode ser considerada unitária). Portanto, temos um problema de Synge com forças externas que devem manter o vetor relativo das duas cargas pontuais fixo para todo o tempo [43]. Neste trabalho analisamos apenas o caso de cargas com forças Coulombianas atrativas e sem campos externos. Seria interessante aplicar o método de aproximação de Synge ao caso repulsivo com a presença de campos externos.

Além disso, este trabalho desenvolveu um método para obter soluções numéricas aproximadas para o problema Synge original que é fácil de programar (uma vez que usa apenas métodos de integração de sistemas de equações diferenciais ordinárias) e parece obter soluções consistentes com os resultados conhecidos na literatura. A metodologia proposta tornou um problema bastante complexo, não só por questões da própria natureza da qual ela é oriunda, mas da dificuldade de se resolver numericamente equações diferencias funcionais de forma geral, na qual foi factível de ser resolvido. Um importante desenvolvimento posterior, que está além do escopo e da intenção deste trabalho, é explorar de uma forma matematicamente rigorosa a conexão clara que deve existir entre a existência de soluções Synge globais e a existência de um ponto fixo para o mapa \mathcal{T} definido na seção I.

É importante notar que fomos capazes de obter trajetórias do problema atrativo

de Synge e não apenas aproximações para as coordenadas relativas. Desta forma, para $\alpha = 1/2$ obtivemos trajetórias espirais quase circulares que colapsam em uma singularidade e cujo tempo de decaimento para a singularidade depende linearmente da razão entre as massas. Esses resultados são consistentes com as análises teóricas feitas por Synge. Para campos simétricos ($\alpha = 0$), obtivemos trajetórias quase circulares consistentes com aquelas obtidas na referência [21]. Em ambos os casos, podemos visualizar claramente os efeitos da auto força entre duas cargas pontuais.

Referências Bibliográficas

- J. L. Synge and E. T. Whittaker, "On the electromagnetic two-body problem," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 177, no. 968, pp. 118–139, 1940.
- [2] H. Lorentz, Weiterbildung der Maxwellschen theorie: Elektronentheorie. Encyklopädie der mathematischen wissenschaften, Teubner, 1903.
- [3] M. Abraham, *Theorie der elektrizitat*. Vol.II: Elektromagnetische theorie der strahlung, Teubner, Leipzig, 1905.
- [4] P. A. M. Dirac, "Classical theory of radiating electrons," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 167, no. 929, pp. 148–169, 1938.
- [5] L. Infeld and P. R. Wallace, "The equations of motion in electrodynamics," *Phys. Rev.*, vol. 57, pp. 797–806, May 1940.
- [6] D.-A. Deckert and V. Hartenstein, "On the initial value formulation of classical electrodynamics," *Journal of Physics A: Mathematical and Theoretical*, vol. 49, p. 445202, oct 2016.
- [7] J. D. Jackson, *Classical electrodynamics*. Wiley, 3rd ed ed., 1999.
- [8] G. Smith, An Introduction to Classical Electromagnetic Radiation. Cambridge University Press, 1997.
- [9] K. Machado, Teoria do eletromagnetismo. No. v. 3 in 03, UEPG, 2006.
- [10] F. Rohrlich, Classical Charged Particles. WORLD SCIENTIFIC, 3rd ed., 2007.
- [11] J. A. Wheeler and R. P. Feynman, "Interaction with the absorber as the mechanism of radiation," *Rev. Mod. Phys.*, vol. 17, pp. 157–181, Apr 1945.
- [12] J. A. Wheeler and R. P. Feynman, "Classical electrodynamics in terms of direct interparticle action," *Rev. Mod. Phys.*, vol. 21, pp. 425–433, Jul 1949.
- [13] A. Myshkis, General Theory of Differential Equations with a Retarded Argument. American Mathematical Society translations, American Mathematical Society, 1951.
- [14] R. D. Driver, Ordinary and delay differential equations / R. D. Driver. Springer-Verlag New York, 1977.
- [15] O. Diekman, S. van Gils, S. Verduyn lunel, and H. Walther, *Delay-Equations: Func*tional, Complex and Nonlinear Analysis. Netherlands: Springer, 1995.

- [16] R. D. Driver, "A two-body problem of classical electrodynamics: the one-dimensional case," Annals of Physics, vol. 21, no. 1, pp. 122–142, 1963.
- [17] R. D. Driver and M. J. Norris, "Note on uniqueness for a one-dimensional two-body problem of classical electrodynamics," *Annals of Physics*, vol. 42, pp. 347–351, Apr. 1967.
- [18] R. D. DRIVER, "A "backwards" two-body problem of classical relativistic electrodynamics," *Phys. Rev.*, vol. 178, pp. 2051–2057, Feb 1969.
- [19] A. Schild, "Electromagnetic two-body problem," Phys. Rev., vol. 131, pp. 2762–2766, Sep 1963.
- [20] A. Schild and J. A. Schosser, "Electromagnetic two-body problem for particles with spin," *Journal of Mathematical Physics*, vol. 9, no. 6, pp. 913–915, 1968.
- [21] C. M. Andersen and H. C. von Baeyer, "Almost circular orbits in classical action-ata-distance electrodynamics," *Phys. Rev. D*, vol. 5, pp. 802–813, Feb 1972.
- [22] C. M. Andersen and H. C. von Baeyer, "Solutions of the two-body problem in classical action-at-a-distance electrodynamics: Straight-line motion," *Phys. Rev. D*, vol. 5, pp. 2470–2476, May 1972.
- [23] V. I. Zhdanov, "On the One-Dimensional Symmetric Two-Body Problem of Classical Electrodynamics," *International Journal of Theoretical Physics*, vol. 15, pp. 157–167, Feb. 1976.
- [24] S. P. Travis, "Existence theorem for a backwards two-body problem of electrodynamics," *Phys. Rev. D*, vol. 11, pp. 292–299, Jan 1975.
- [25] D.-p. K. Hsing, "Existence and uniqueness theorem for the one-dimensional backwards two-body problem of electrodynamics," *Phys. Rev. D*, vol. 16, pp. 974–982, Aug 1977.
- [26] R. D. Driver, "Can the future influence the present?," Phys. Rev. D, vol. 19, pp. 1098– 1107, Feb 1979.
- [27] R. D. Driver, "A neutral system with state-dependent delay," J. Differential Equations, vol. 54, pp. 73–86, 1984.
- [28] V. G. Angelov, "On the synge equations in a three-dimensional two-body problem of classical electrodynamics," *Journal of Mathematical Analysis and Applications*, vol. 151, no. 2, pp. 488–511, 1990.
- [29] V. G. Angelov, "Escape trajectories of j. l. synge equations," Nonlinear Anal.: Real World Appl., vol. 1, p. 189–204, jun 2000.
- [30] G. Bauer, D. A. Deckert, and D. Dürr, "On the existence of dynamics in wheeler-feynman electromagnetism," *Zeitschrift fur angewandte Mathematik und Physik* ZAMP, 08 2013.
- [31] D.-A. Deckert and G. Hinrichs, "Electrodynamic two-body problem for prescribed initial data on a straight line," *Journal of Differential Equations*, vol. 260, no. 9, pp. 6900–6929, 2016.

- [32] P. Havas, "On the classical equations of motion of point charges," Phys. Rev., vol. 74, pp. 456–463, Aug 1948.
- [33] A. Sommerfeld and H. Brose, Atomic Structure and Spectral Lines. Dutton, 1923.
- [34] J. Franklin and C. LaMont, "On the classical equations of motion of point charges," Brazilian Journal of Physics, vol. 44, pp. 1678–4448, 2014.
- [35] V. Angelov, "On the method of successive approximations for the j. l. synge electromagnetic two-body problem," *Applied Mathematics E-Notes [electronic only]*, vol. 2, pp. 163–170, 01 2003.
- [36] J. C. Kasher and S. L. Schwebel, "Two-body problem in classical relativistic electrodynamics. i. unlike charges," *Phys. Rev. D*, vol. 4, pp. 2956–2962, Nov 1971.
- [37] J. Huschilt, W. E. Baylis, D. Leiter, and G. Szamosi, "Numerical solutions to twobody problems in classical electrodynamics: straight-line motion with retarded fields and no radiation reaction," *Phys. Rev., D, v. 7, no. 10, pp. 2844-2850*, 5 1973.
- [38] R. Ryne, B. Carlsten, C. Mitchell, and J. Qiang, "Self-Consistent Modeling using a Lienard-Wiechert Particle-Mesh Method," in Proc. 9th International Particle Accelerator Conference (IPAC'18), Vancouver, BC, Canada, April 29-May 4, 2018, no. 9 in International Particle Accelerator Conference, (Geneva, Switzerland), pp. 3313– 3315, JACoW Publishing, June 2018. https://doi.org/10.18429/JACoW-IPAC2018-THPAK044.
- [39] C. Mayes, "Computational approaches to coherent synchrotron radiation in two and three dimensions," *Journal of Instrumentation*, vol. 16, p. P10010, oct 2021.
- [40] R. D. DRIVER, "A functional-differential system of neutral type arising in a twobody problem of classical electrodynamics," in *International Symposium on Nonlinear Differential Equations and Nonlinear Mechanics* (J. P. LaSalle and S. Lefschetz, eds.), pp. 474–484, Academic Press, 1963.
- [41] J. A. Murdock, "On the well-posed two-body problem in electrodynamics and special relativity," Annals of Physics, vol. 84, pp. 432–439, May 1974.
- [42] J. A. Murdock, "On the well-posed two-body problem in electrodynamics and special relativity II," Annals of Physics, vol. 119, pp. 90–96, May 1979.
- [43] R. G. Beil, "Alternate formulations of classical electrodynamics," Phys. Rev. D, vol. 12, pp. 2266–2268, Oct 1975.

Apêndice A

Equações de movimento no eixo cartesiano

Para o sistema de equações (0.0.32) e (0.0.33) iremos considerar o limite não relativístico e que os tempos t_r e t_a são infinitamente pequenos, portanto $t_r = t_a = t$. Realizar esta aproximação da instantaneidade implica no acoplamento entre a aceleração no tempo t, proveniente da força newtoniana, com as acelerações nos tempos t_r e t_a dos campos eletromagnéticos. Sendo assim, obtemos um sistema de equações diferenciais de segunda ordem que pode ser dado na forma matricial:

$$\mathcal{MA} = \mathcal{B}, \tag{1.0.1}$$

Definindo inicialmente as variáveis:

$$\xi_1 = 1/2 + \alpha, \tag{1.0.2}$$

$$\xi_2 = 1/2 - \alpha, \tag{1.0.3}$$

$$\zeta_{11} = (|eX V_{1x} + eY V_{1y} + eZ V_{1z} + 1|)^3, \qquad (1.0.4)$$

$$\zeta_{12} = (|eX V_{1x} + eY V_{1y} + eZ V_{1z} - 1|)^3, \qquad (1.0.5)$$

$$\zeta_{21} = (|eX V_{2x} + eY V_{2y} + eZ V_{2z} + 1|)^3, \qquad (1.0.6)$$

$$\zeta_{22} = (|eXV_{2x} + eYV_{2y} + eZV_{2z} - 1|)^3, \qquad (1.0.7)$$

podemos escrever os elementos da matriz ${\mathcal M}$ como:

$$\begin{split} m_{11} &= \eta, \qquad (1.0.8) \\ m_{12} &= 0, \qquad (1.0.9) \\ m_{13} &= 0, \qquad (1.0.10) \\ m_{14} &= -\frac{S}{r\zeta_{22}\zeta_{21}} \left(\left((V_{1z}V_{2z}-1)eY^2 + ((-V_{1y}V_{2z}-V_{1z}V_{2y})eZ + V_{1y} + V_{2y})eY \\ &+ (V_{1y}V_{2y}-1)eZ^2 + (V_{1z}+V_{2z})eZ - V_{1z}V_{2z} - V_{1y}V_{2y} \right)\xi_2\zeta_{21} \\ &+ \zeta_{22}\xi_1 \left((V_{1z}V_{2z}-1)eY^2 + ((-V_{1y}V_{2z}-V_{1z}V_{2z} - V_{1y}V_{2y})eZ - V_{1y} - V_{2y} \right)eY \\ &+ (V_{1y}V_{2y}-1)eZ^2 + (-V_{2z}-V_{1z})eZ - V_{1z}V_{2z} - V_{1y}V_{2y} \right), \qquad (1.0.11) \\ m_{15} &= +\frac{S}{r\zeta_{22}\zeta_{21}} \left(\left((V_{2x}eZ^2 - V_{2z}eXeZ - V_{2x} + eX) V_{1y} \\ &+ ((-V_{1z}eZ + 1)V_{2x} + eX (V_{1z}V_{2z} - 1))eY \right)\xi_2\zeta_{21} \\ &+ \zeta_{22}\xi_1 \left((V_{2x}eZ^2 - V_{2z}eXeZ - V_{2x} - eX) V_{1y} \\ &+ ((-V_{1z}eZ - 1)V_{2x} + eX (V_{1z}V_{2z} - 1))eY \right), \qquad (1.0.12) \\ m_{16} &= -\frac{S}{r\zeta_{22}\zeta_{21}} \left(\left((-V_{2x}eY^2 + V_{2y}eXeY + V_{2x} - eX) V_{1z} \\ &- ((-V_{1y}eY + 1)V_{2x} + eX (V_{1y}V_{2y} - 1))eZ \right)\xi_2\zeta_{21} \\ &+ \zeta_{22}\xi_1 \left((-V_{2x}eY^2 + V_{2y}eXeY + V_{2x} + eX) V_{1z} \\ &- ((-V_{1y}eY - 1)V_{2x} + eX (V_{1y}V_{2y} - 1))eZ \right), \qquad (1.0.13) \\ \end{split}$$

$$\begin{split} m_{21} &= 0, & (1.0.14) \\ m_{22} &= \eta, & (1.0.15) \\ m_{23} &= 0, & (1.0.16) \\ m_{24} &= + \frac{S}{r\zeta_{22}\zeta_{21}} \left(-V_{1x} V_{2y} \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eX^2 \\ &\quad + \left((\xi_1 \zeta_{22} + \xi_2 \zeta_{21}) \left(V_{1z} V_{2z} - 1 \right) eY - V_{2y} \left(\xi_2 \left(V_{1z} eZ - 1 \right) \zeta_{21} + \xi_1 \zeta_{22} \left(V_{1z} eZ + 1 \right) \right) \right) eX \\ &\quad -V1x \ eY \ \left(V_{2y} \ \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eY + \xi_2 \left(V_{2z} eZ - 1 \right) \zeta_{21} + \xi_1 \zeta_{22} \left(V_{2z} eZ + 1 \right) \right) \right), & (1.0.17) \\ m_{25} &= + \frac{S}{r\zeta_{22}\zeta_{21}} \left(\left((V_{2z} \ \left(V_{1x} eX - 1 \right) + V_{1z} \ \left(V_{2x} eX - 1 \right) - V_{2x} V_{1x} eZ \right) eZ \\ &\quad +V_{1z} V_{2z} \ \left(eY^2 + eZ^2 \right) + \left(V_{2x} - eX \right) V_{1x} - V_{2x} eX - eY^2 + 1 \right) \xi_2 \zeta_{21} \\ &\quad +\xi_1 \zeta_{22} \left(\left((V_{2z} \ \left(V_{1x} eX + 1 \right) + V_{1z} \ \left(V_{2x} eX + 1 \right) - V_{2x} V_{1x} eZ \right) eZ \\ &\quad +V_{1z} V_{2z} \ \left(eY^2 + eZ^2 \right) + \left(V_{2x} + eX \right) V_{1x} + V_{2x} eX - eY^2 + 1 \right) \right), & (1.0.18) \\ m_{26} &= -\frac{S}{r\zeta_{22}\zeta_{21}} \ \left(V_{1z} V_{2y} \ \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eY^2 \\ &\quad + \left(eZ \ \left(1 - V_{2x} V_{1x} \right) \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eY^2 \\ &\quad + \left(eZ \ \left(1 - V_{2x} V_{1x} \right) \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) + \left(\xi_2 \ \left(V_{2x} eX - 1 \right) \zeta_{21} + \xi_1 \zeta_{22} \ \left(V_{1x} eX + 1 \right) \right) eZ \right), & (1.0.19) \\ \end{split}$$

$$\begin{split} m_{31} &= 0, & (1.0.20) \\ m_{32} &= 0, & (1.0.21) \\ m_{33} &= \eta, & (1.0.22) \\ m_{34} &= -\frac{S}{r\zeta_{22}\zeta_{21}} \left(V_{2z} V_{1x} \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eX^2 \\ &+ \left((1 - V_{1y} V_{2y}) \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eZ + \left(\xi_2 \left(V_{1y} eY - 1 \right) \zeta_{21} + \xi_1 \zeta_{22} \left(V_{1y} eY + 1 \right) \right) V_{2z} \right) eX \\ &+ V_{1x} \left(V_{2z} \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eZ + \xi_2 \left(V_{2y} eY - 1 \right) \zeta_{21} + \xi_1 \zeta_{22} \left(V_{2y} eY + 1 \right) \right) eZ \right), & (1.0.23) \\ m_{35} &= -\frac{S}{r\zeta_{22}\zeta_{21}} \left(V_{1y} V_{2z} \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eY^2 \\ &+ \left(eZ \left(1 - V_{1x} V_{2x} \right) \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eZ + \xi_2 \left(V_{2x} eX - 1 \right) \zeta_{21} + \xi_1 \zeta_{22} \left(V_{1x} eX + 1 \right) \right) eY \\ &+ V_{1y} \left(V_{2z} \left(\xi_1 \zeta_{22} + \xi_2 \zeta_{21} \right) eZ + \xi_2 \left(V_{2x} eX - 1 \right) \zeta_{21} + \xi_1 \zeta_{22} \left(V_{1x} eX + 1 \right) \right) eZ \right), & (1.0.24) \\ m_{36} &= +\frac{S}{r\zeta_{22}\zeta_{21}} \left(\left((V_{2y} \left(V_{1x} eX - 1 \right) + V_{1y} \left(V_{2x} eX - 1 \right) - V_{2x} V_{1x} eY \right) eY \\ &+ V_{2y} V_{1y} \left(eY^2 + eZ^2 \right) + \left(V_{2x} - eX \right) V_{1x} - V_{2x} eX - eZ^2 + 1 \right) \xi_2 \zeta_{21} \\ &+ \xi_1 \zeta_{22} \left(\left(V_{2y} \left(V_{1x} eX + 1 \right) + V_{1y} \left(V_{2x} eX - 1 \right) - V_{2x} V_{1x} eY \right) eY \\ &+ V_{2y} V_{1y} \left(eY^2 + eZ^2 \right) + \left(V_{2x} + eX \right) V_{1x} + V_{2x} eX - eZ^2 + 1 \right) \right), & (1.0.25) \end{aligned}$$

$$\begin{split} m_{41} &= -\frac{S}{r\zeta_{11}\zeta_{12}} \left(\left(\left(-eZ \left(V_{1y} \, V_{2z} + V_{1z} \, V_{2y} \right) + V_{1y} + V_{2y} + \left(V_{1z} \, V_{2z} - 1 \right) eY \right) eY \right. \\ &+ \left(V_{1z} + V_{2z} + \left(V_{1y} \, V_{2y} - 1 \right) eZ \right) eZ - V_{1y} \, V_{2y} - V_{1z} \, V_{2z} \right) \xi_1 \zeta_{11} \\ &+ \left(\left(-eZ \left(V_{1y} \, V_{2z} + V_{1z} \, V_{2y} \right) - V_{1y} - V_{2y} + \left(V_{1z} \, V_{2z} - 1 \right) eY \right) eY \\ &+ \left(-V_{2z} - V_{1z} + \left(V_{1y} \, V_{2y} - 1 \right) eZ \right) eZ - V_{1y} \, V_{2y} - V_{1z} \, V_{2z} \right) \xi_2 \, \zeta_{12} \right), \quad (1.0.26) \end{split} \\ m_{42} &= + \frac{S}{r\zeta_{11} \, \zeta_{12}} \left(\left(\left(V_{2y} \, eZ^2 - V_{2z} \, eY \, eZ - V_{2y} + eY \right) \, V_{1x} \\ &+ \left(\left(-V_{1z} \, eZ + 1 \right) \, V_{2y} + \left(V_{1z} \, V_{2z} - 1 \right) eY \right) eX \right) \xi_1 \, \zeta_{11} \\ &+ \xi_2 \, \zeta_{12} \left(\left(V_{2y} \, eZ^2 - V_{2z} \, eY \, eZ - V_{2y} - eY \right) \, V_{1x} \\ &+ \left(\left(-V_{1z} \, eZ - 1 \right) \, V_{2y} + \left(V_{1z} \, V_{2z} - 1 \right) eY \right) eX \right) \right), \qquad (1.0.27) \end{aligned} \\ m_{43} &= -\frac{S}{r\zeta_{11} \, \zeta_{12}} \left(\left(\left(V_{2y} \, eY \, eZ - V_{2z} \, eY^2 + V_{2z} - eZ \right) \, V_{1x} \\ &+ \left(\left(-V_{1z} \, eZ - 1 \right) \, V_{2y} + \left(V_{1z} \, V_{2y} + 1 \right) eZ \right) \right) \xi_1 \, \zeta_{11} \\ &+ \xi_2 \, \zeta_{12} \left(\left(V_{2y} \, eY \, eZ - V_{2z} \, eY^2 + V_{2z} - eZ \right) \, V_{1x} \\ &+ \left(V_{2z} \, \left(V_{1y} \, eY - 1 \right) + \left(-V_{1y} \, V_{2y} + 1 \right) eZ \right) eX \right) \right), \qquad (1.0.28) \end{aligned} \\ m_{44} &= 1, \qquad (1.0.29) \\ m_{45} &= 0, \qquad (1.0.30) \\ m_{46} &= 0, \qquad (1.0.31) \end{aligned}$$

$$\begin{split} m_{51} &= \frac{S}{r\zeta_{11}\,\zeta_{12}} \left(-V_{1y}\,V_{2x}\,\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eX^{2} \\ &+ \left(\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)\left(V_{1z}\,V_{2z} - 1\right)eY - V_{1y}\,\left(\xi_{1}\,\left(V_{2z}\,eZ - 1\right)\zeta_{11} + \xi_{2}\,\zeta_{12}\,\left(V_{2z}\,eZ + 1\right)\right)\right)eX \\ &- V_{2x}\,\left(V_{1y}\,\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eY + \xi_{1}\,\left(V_{1z}\,eZ - 1\right)\zeta_{11} + \xi_{2}\,\zeta_{12}\,\left(V_{1z}\,eZ + 1\right)\right)eY\right), \quad (1.0.32) \\ m_{52} &= \frac{S}{r\zeta_{11}\,\zeta_{12}}\left(\left(V_{2z}\,\left(V_{1x}\,eX - 1\right) + V_{1z}\,\left(V_{2x}\,eX - 1\right) - V_{2x}\,V_{1x}\,eZ\right)eZ \\ &+ V_{1z}\,V_{2z}\,\left(eY^{2} + eZ^{2}\right) + \left(V_{2x} - eX\right)\,V_{1x} - V_{2x}\,eX - eY^{2} + 1\right)\xi_{1}\,\zeta_{11} \\ &+ \xi_{2}\,\zeta_{12}\left(\left(V_{2z}\,\left(V_{1x}\,eX + 1\right) + V_{1z}\,\left(V_{2x}\,eX + 1\right) - V_{2x}\,V_{1x}\,eZ\right)eZ \right) \\ &+ V_{1z}\,V_{2z}\,\left(eY^{2} + eZ^{2}\right) + \left(V_{2x} + eX\right)\,V_{1x} + V_{2x}\,eX - eY^{2} + 1\right), \quad (1.0.33) \\ m_{53} &= -\frac{S}{r\zeta_{11}\,\zeta_{12}}\left(V_{2z}\,V_{1y}\,\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eY^{2} \\ &+ \left(eZ\,\left(1 - V_{1x}\,V_{2x}\right)\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)+\left(\xi_{1}\,\left(V_{1x}\,eX - 1\right)\zeta_{11} + \xi_{2}\,\zeta_{12}\,\left(V_{1x}\,eX + 1\right)\right)V_{2z}\right)eY \\ &+ \left(eZ\,\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)V_{2z} + \xi_{1}\,\left(V_{2x}\,eX - 1\right)\zeta_{11} + \xi_{2}\,\zeta_{12}\,\left(V_{2x}\,eY + 1\right)\right)V_{1y}\,eZ\right), \quad (1.0.34) \\ m_{54} &= 0, \quad (1.0.35) \\ m_{55} &= 1, \quad (1.0.36) \\ m_{56} &= 0, \quad (1.0.37) \\ m_{61} &= -\frac{S}{r\zeta_{11}\,\zeta_{12}}\left(V_{1z}\,V_{2x}\,\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eZ^{2} \\ &+ \left(\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)\left(1 - V_{1y}\,V_{2y}\right)eZ + \left(\xi_{1}\,\left(V_{2y}\,eY - 1\right)\zeta_{11} + \xi_{2}\,\zeta_{12}\,\left(V_{2y}\,eY + 1\right)\right)V_{1z}\right)eX \\ &+ V_{2x}\,\left(V_{1z}\,\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eZ^{2} \\ &+ \left(\left(E\,\left(1 - V_{1x}\,V_{2y}\right)\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eY^{2} \\ &+ \left(\left(E\,\left(1 - V_{1x}\,V_{2y}\right)\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eY^{2} \\ &+ \left(eZ\,\left(1 - V_{1x}\,V_{2y}\right)\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eY^{2} \\ &+ \left(eZ\,\left(1 - V_{1x}\,V_{2y}\right)\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eZ + \xi_{1}\,\left(V_{1x}\,eX - 1\right)\zeta_{11}+\xi_{2}\,\zeta_{12}\left(V_{2x}\,eX + 1\right)\right)eY \\ &+ \left(V_{1z}\,\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eZ + \xi_{1}\,\left(V_{1x}\,eX - 1\right)\zeta_{11}+\xi_{2}\,\zeta_{12}\left(V_{1x}\,eX + 1\right)\right)eZ \\ &+ \left(\left(E\,\left(1 - V_{1x}\,V_{2y}\right)\left(\xi_{1}\,\zeta_{11} + \xi_{2}\,\zeta_{12}\right)eZ + \xi_{1$$

$$+\xi_{2}\zeta_{12}\left(\left(V_{2y}\left(V_{1x}\,eX+1\right)+V_{1y}\left(V_{2x}\,eX+1\right)-V_{2x}\,V_{1x}\,eY\right)eY\right.\\+V_{2y}\,V_{1y}\left(eY^{2}+eZ^{2}\right)+\left(V_{2x}+eX\right)V_{1x}+V_{2x}\,eX-eZ^{2}+1\right)\right),$$
(1.0.40)

$$+V_{2y}V_{1y}\left(eY^{2}+eZ^{2}\right)+\left(V_{2x}+eX\right)V_{1x}+V_{2x}eX-eZ^{2}+1\right), \qquad (1.0.40)$$

$$m_{64} = 0, \qquad (1.0.41)$$

$$m_{65} = 0,$$
 (1.0.42)

$$m_{66} = 1. (1.0.43)$$

Os elementos da matriz \mathcal{B} são dados por:

$$\begin{split} b_{1} &= -\frac{S\left(-V_{2x}^{2} - V_{2y}^{2} - V_{2z}^{2} + 1\right)}{r^{2}\zeta_{22}\zeta_{21}} \left(\xi_{1}\,\zeta_{22}\left((V_{1y}\,eY + V_{1z}\,eZ + 1\right)V_{2x}\right. \\ &+ eX\left(-V_{1y}\,V_{2y} - V_{1z}\,V_{2z} + 1\right)\right) + \zeta_{21}\,\xi_{2}\left((V_{1y}\,eY + V_{1z}\,eZ - 1)\,V_{2x}\right. \\ &+ eX\left(-V_{1y}\,V_{2y} - V_{1z}\,V_{2z} + 1\right)\right), \qquad (1.0.44) \\ b_{2} &= -\frac{S\left(-V_{2x}^{2} - V_{2y}^{2} - V_{2z}^{2} + 1\right)}{r^{2}\zeta_{22}\,\zeta_{21}} \left(\xi_{1}\,\zeta_{22}\left((V_{1x}\,eX + V_{1z}\,eZ + 1)\,V_{2y}\right. \\ &+ eY\left(-V_{1x}\,V_{2x} - V_{1z}\,V_{2z} + 1\right)\right) + \zeta_{21}\,\xi_{2}\left((V_{1x}\,eX + V_{1z}\,eZ - 1)\,V_{2y}\right. \\ &+ eY\left(-V_{1x}\,V_{2x} - V_{1z}\,V_{2z} + 1\right)\right), \qquad (1.0.45) \\ b_{3} &= -\frac{S\left(-V_{2x}^{2} - V_{2y}^{2} - V_{2z}^{2} + 1\right)}{r^{2}\zeta_{22}\,\zeta_{21}} \left(\xi_{1}\,\zeta_{22}\left((V_{1x}\,eX + V_{1y}\,eY + 1)\,V_{2z}\right. \\ &+ eZ\left(-V_{1x}\,V_{2x} - V_{1y}\,V_{2y} + 1\right)\right), \qquad (1.0.46) \\ b_{4} &= +\frac{S\left(-V_{1x}^{2} - V_{1y}^{2} - V_{1z}^{2} + 1\right)}{r^{2}\zeta_{11}\,\zeta_{12}} \left(\xi_{2}\,\zeta_{12}\left((V_{2y}\,eY + V_{2z}\,eZ + 1)\,V_{1x}\right. \\ &+ eX\left(-V_{1y}\,V_{2y} - V_{1z}\,V_{2z} + 1\right)\right), \qquad (1.0.47) \\ b_{5} &= +\frac{S\left(-V_{1x}^{2} - V_{1y}^{2} - V_{1z}^{2} + 1\right)}{r^{2}\zeta_{11}\,\zeta_{12}} \left(\xi_{2}\,\zeta_{12}\left((V_{2x}\,eX + V_{2z}\,eZ - 1)\,V_{1y}\right. \\ &+ eY\left(-V_{1x}\,V_{2x} - V_{1y}\,V_{2z} + 1\right)\right), \qquad (1.0.48) \\ b_{6} &= +\frac{S\left(-V_{1x}^{2} - V_{1y}^{2} - V_{1z}^{2} + 1\right)}{r^{2}\zeta_{11}\,\zeta_{12}} \left(\xi_{2}\,\zeta_{12}\left((V_{2x}\,eX + V_{2z}\,eZ - 1)\,V_{1y}\right. \\ &+ eZ\left(-V_{1x}\,V_{2x} - V_{1y}\,V_{2z} + 1\right)\right), \qquad (1.0.49) \\ \end{split}$$

Sendo assim, temos o seguinte sistema matricial:

$$\begin{pmatrix} m_{11} & m_{12} & m_{13} & m_{14} & m_{15} & m_{16} \\ m_{21} & m_{22} & m_{23} & m_{24} & m_{25} & m_{26} \\ m_{31} & m_{32} & m_{33} & m_{34} & m_{35} & m_{36} \\ m_{41} & m_{42} & m_{43} & m_{44} & m_{45} & m_{46} \\ m_{51} & m_{52} & m_{53} & m_{54} & m_{55} & m_{56} \\ m_{61} & m_{62} & m_{63} & m_{64} & m_{65} & m_{66} \end{pmatrix} \begin{pmatrix} A_{1x} \\ A_{1y} \\ A_{1z} \\ A_{2y} \\ A_{2z} \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \end{pmatrix}.$$

Portanto, \mathcal{M} é uma matriz no formato 6×6 que contém os termos que multiplicam as acelerações. A matriz \mathcal{A} , no formato 6×1 , é a matriz das acelerações e por fim a matriz \mathcal{B} , também no formato 6×1 , contém os termos independentes das acelerações. A partir da equação matricial (1.0.1) realizamos a inversão da matriz \mathcal{M} , obtendo:

$$\mathcal{A} = \mathcal{M}^{-1} \mathcal{B}. \tag{1.0.50}$$

Novamente, como o interesse inicial é o regime de baixas velocidades o conjunto de equações descrita pela equação matricial (1.0.50) será expandida até a segunda ordem nas velocidades. Esta expansão até segunda ordem logo será esclarecido, sendo assim, temos:

por simplificação na notação das derivadas parciais das velocidades iremos utilizar a seguinte regra:

$$\partial_{V_{ij}} = \frac{\partial}{\partial V_{ij}}, \quad i = 1, 2 \in j = x, y, z.$$
 (1.0.52)

As equações das acelerações expandidas até segunda ordem nas velocidades em torno de P_0 no eixo cartesiano são dados por:

$$\begin{aligned} A_{1x} &= \mathcal{A}_{1,1} \left(P_{0} \right) + \\ & \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1x} + \partial_{V_{1y}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1y} + \partial_{V_{1z}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} + \\ & \partial_{V_{2x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2x} + \partial_{V_{2y}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2y} + \partial_{V_{2z}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2z} + \\ & \frac{\partial_{V_{1x}}^{2} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1x}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1y}^{2}}{2} + \frac{\partial_{V_{2z}}^{2} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2x}^{2}}{2} + \\ & \frac{\partial_{V_{2x}}^{2} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2x}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2y}^{2}}{2} + \frac{\partial_{V_{2z}}^{2} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2x}}{2} + \\ & \frac{\partial_{V_{1y}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1x} V_{1y} + \partial_{V_{1z}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1x} V_{1z} + \partial_{V_{2y}} \partial_{V_{2x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2x} V_{2y} + \partial_{V_{2z}} \partial_{V_{2y}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{2y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1x} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1x} V_{2y} + \partial_{V_{2z}} \partial_{V_{2y}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1x} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1x} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1y}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{1,1} \left(P_{0} \right) V_{1z} V_{2z}, \\ & (1.0.53) \end{aligned}$$

$$\begin{aligned} A_{1y} &= \mathcal{A}_{2,1} \left(P_{0} \right) + \\ & \partial_{V_{1x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x} + \partial_{V_{1y}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1y} + \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} + \\ & \partial_{V_{2x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{2x} + \partial_{V_{2y}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{2y} + \partial_{V_{2z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{2z} + \\ & \frac{\partial_{V_{1x}}^{2} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1y}^{2}}{2} + \frac{\partial_{V_{2z}}^{2} \mathcal{A}_{2,1} \left(P_{0} \right) V_{2z}^{2}}{2} + \\ & \frac{\partial_{V_{1y}}^{2} \mathcal{A}_{2,1} \left(P_{0} \right) V_{2x}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{2,1} \left(P_{0} \right) V_{2y}^{2}}{2} + \frac{\partial_{V_{2z}}^{2} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x}}{2} + \\ & \partial_{V_{1y}} \partial_{V_{1x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x} V_{1y} + \partial_{V_{1z}} \partial_{V_{1x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x} V_{1z} + \partial_{V_{2z}} \partial_{V_{2x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{2x} V_{2z} + \\ & \partial_{V_{2y}} \partial_{V_{2x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x} V_{2y} + \partial_{V_{2z}} \partial_{V_{2x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{2x} V_{2z} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1x} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1y} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1y}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1y}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{2,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{$$

$$\begin{aligned} A_{1z} &= \mathcal{A}_{3,1} \left(P_{0} \right) + \\ & \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1x} + \partial_{V_{1y}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1y} + \partial_{V_{1z}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} + \\ & \partial_{V_{2x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{2x} + \partial_{V_{2y}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{2y} + \partial_{V_{2z}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{2z} + \\ & \frac{\partial_{V_{1x}}^{2} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1x}^{2}}{2} + \frac{\partial_{V_{1y}}^{2} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1y}^{2}}{2} + \frac{\partial_{V_{1z}}^{2} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z}^{2}}{2} + \\ & \frac{\partial_{V_{2x}}^{2} \mathcal{A}_{3,1} \left(P_{0} \right) V_{2x}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{3,1} \left(P_{0} \right) V_{2y}^{2}}{2} + \frac{\partial_{V_{2z}}^{2} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1x}}{2} + \\ & \frac{\partial_{V_{1y}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1x} V_{1y} + \partial_{V_{1z}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1x} V_{1z} + \\ & \frac{\partial_{V_{2y}} \partial_{V_{2x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{2x} V_{2y} + \partial_{V_{2z}} \partial_{V_{2x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{2x} V_{2z} + \\ & \frac{\partial_{V_{2y}} \partial_{V_{2x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1x} V_{2x} + \partial_{V_{2y}} \partial_{V_{2x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1x} V_{2y} + \partial_{V_{2z}} \partial_{V_{2y}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1x} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1y} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1y}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1z}} \mathcal{A}_{3,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \frac$$

$$\begin{split} A_{2x} &= \mathcal{A}_{4,1} \left(P_0 \right) + \\ & \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1x} + \partial_{V_{1y}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1y} + \partial_{V_{1z}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} + \\ & \partial_{V_{2x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{2x} + \partial_{V_{2y}} \mathcal{A}_{4,1} \left(P_0 \right) V_{2y} + \partial_{V_{2z}} \mathcal{A}_{4,1} \left(P_0 \right) V_{2z} + \\ & \frac{\partial_{V_{1x}}^2 \mathcal{A}_{4,1} \left(P_0 \right) V_{1x}^2}{2} + \frac{\partial_{V_{2y}}^2 \mathcal{A}_{4,1} \left(P_0 \right) V_{1y}^2}{2} + \frac{\partial_{V_{2z}}^2 \mathcal{A}_{4,1} \left(P_0 \right) V_{2z}^2}{2} + \\ & \frac{\partial_{V_{2x}}^2 \mathcal{A}_{4,1} \left(P_0 \right) V_{2x}^2}{2} + \frac{\partial_{V_{2y}}^2 \mathcal{A}_{4,1} \left(P_0 \right) V_{2y}^2}{2} + \frac{\partial_{V_{2z}}^2 \mathcal{A}_{4,1} \left(P_0 \right) V_{2z}}{2} + \\ & \frac{\partial_{V_{1y}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1x} V_{1y} + \partial_{V_{1z}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1x} V_{1z} + \partial_{V_{1z}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{2x} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{2x} V_{2y} + \partial_{V_{2z}} \partial_{V_{2x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{2x} V_{2z} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1x} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1x} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1x} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1y}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{4,1} \left(P_0 \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{4,1}$$

$$\begin{split} A_{2y} &= \mathcal{A}_{5,1} \left(P_0 \right) + \\ & \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1x} + \partial_{V_{1y}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1y} + \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} + \\ & \partial_{V_{2x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{2x} + \partial_{V_{2y}} \mathcal{A}_{5,1} \left(P_0 \right) V_{2y} + \partial_{V_{2z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{2z} + \\ & \frac{\partial_{V_{1x}}^2 \mathcal{A}_{5,1} \left(P_0 \right) V_{1x}^2}{2} + \frac{\partial_{V_{1y}}^2 \mathcal{A}_{5,1} \left(P_0 \right) V_{1y}^2}{2} + \frac{\partial_{V_{1z}}^2 \mathcal{A}_{5,1} \left(P_0 \right) V_{1z}^2}{2} + \\ & \frac{\partial_{V_{2x}}^2 \mathcal{A}_{5,1} \left(P_0 \right) V_{2x}^2}{2} + \frac{\partial_{V_{2y}}^2 \mathcal{A}_{5,1} \left(P_0 \right) V_{2y}^2}{2} + \frac{\partial_{V_{2z}}^2 \mathcal{A}_{5,1} \left(P_0 \right) V_{2z}^2}{2} + \\ & \frac{\partial_{V_{1y}} \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1x} V_{1y} + \partial_{V_{1z}} \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1x} V_{1z} + \partial_{V_{2y}} \partial_{V_{2x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{2x} V_{2y} + \partial_{V_{2z}} \partial_{V_{2x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{2y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1x} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1x} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1x} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1y}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1y} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1y}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1y} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2z} + \\ & \frac{\partial_{V_{2x}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left(P_0 \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1z}} \mathcal{A}_{5,1} \left($$

$$\begin{aligned} A_{2z} &= \mathcal{A}_{6,1} \left(P_{0} \right) + \\ & \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1x} + \partial_{V_{1y}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1y} + \partial_{V_{1z}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} + \\ & \partial_{V_{2x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{2x} + \partial_{V_{2y}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{2y} + \partial_{V_{2z}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{2z} + \\ & \frac{\partial_{V_{1x}}^{2} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1x}^{2}}{2} + \frac{\partial_{V_{1y}}^{2} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1y}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{6,1} \left(P_{0} \right) V_{2y}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{6,1} \left(P_{0} \right) V_{2y}^{2}}{2} + \\ & \frac{\partial_{V_{1y}}^{2} \mathcal{A}_{6,1} \left(P_{0} \right) V_{2x}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{6,1} \left(P_{0} \right) V_{2y}^{2}}{2} + \frac{\partial_{V_{2y}}^{2} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1x} V_{1y} + \partial_{V_{1z}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1x} V_{1z} + \\ & \partial_{V_{2y}} \partial_{V_{2x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1x} V_{2y} + \partial_{V_{2z}} \partial_{V_{2x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{2x} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1x} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1x} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1x} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1y}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1y} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1y} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1y} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1y}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2z} + \\ & \partial_{V_{2x}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2x} + \partial_{V_{2y}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2y} + \partial_{V_{2z}} \partial_{V_{1x}} \mathcal{A}_{6,1} \left(P_{0} \right) V_{1z} V_{2z} - \\ & (10.58) \end{aligned}$$

A motivação para expansão das acelerações até a segunda ordem nas velocidades resulta do parâmetro α . Para compreender tal afirmação utilizaremos como exemplo a aceleração da partícula 1 no eixo x. Como A_{1x} depende dos parâmetros S, α , η e das variáveis $\mathbf{r} \in \mathbf{v}$, isto é:

$$A_{1x} = A_{1x} \left(S, \alpha, \eta, \mathbf{r}, \mathbf{v} \right), \qquad (1.0.59)$$

onde:

$$\mathbf{r} = (x_1, y_1, z_1, x_2, y_2, z_2), \qquad (1.0.60)$$

$$\mathbf{v} = (V_{1x}, V_{1y}, V_{1z}, V_{2x}, V_{2y}, V_{2z}), \qquad (1.0.61)$$

a expansão de A_{1x} pode ser escrita da seguinte forma:

$$A_{1x} = A_{1x}(P_0) + \sum_{i=1}^{6} \partial_i A_{1x}(P_0) V_i + \frac{1}{2} \sum_{i,j=1}^{6} \partial_{ij} A_{1x}(P_0) V_i V_j + \frac{1}{3!} \sum_{i,j,k=1}^{6} \partial_{ijk} A_{1x}(P_0) V_i V_j V_k + \cdots$$
(1.0.62)

A expansão (1.0.62) em termos do parâmetro α é dada por:

$$A_{1x} = \mathfrak{F}^{1}(S, \eta, \mathbf{r}) + \alpha \sum_{i=1}^{6} \mathfrak{F}_{i}^{2}(S, \eta, \mathbf{r}) V_{i} + \frac{1}{2} \sum_{i,j=1}^{6} \left(\mathfrak{F}_{ij}^{3}(S, \eta, \mathbf{r}) + \alpha \mathfrak{F}_{ij}^{4}(S, \eta, \mathbf{r}) \right) V_{i} V_{j} + \alpha \frac{1}{3!} \sum_{i,j,k=1}^{6} \mathfrak{F}_{ijk}^{5}(S, \eta, \alpha, \mathbf{r}) V_{i} V_{j} V_{k} + \cdots$$

$$(1.0.63)$$

No caso $\alpha = 0$, se considerarmos a expansão até a primeira ordem as velocidades seriam nulas, portanto expandimos até a segunda ordem nas velocidades para que possamos analizar a evolução temporal das partículas sendo dependentes também das velocidades, independentemente do valor do parâmetro α . Esta justificativa aplica-se para as outras coordenadas da partícula 1, assim como para a partícula 2.

Realizando a inversão do sistema sistema matricial acima e aplicando a expansão até a segunda ordem nas velocidades obtemos as seguintes equações:

$$\begin{split} A_{1x} &= -\frac{eX}{\eta r^2} \\ &-2 \frac{(-\eta r + S) \alpha \left(eX^2 - 1\right) V_{1x}}{r^2 (-\eta r^2 + 1)} \\ &-2 \frac{eX eY \alpha \left(-\eta r + S\right) V_{1y}}{\eta r^2 (-\eta r^2 + 1)} \\ &-2 \frac{eX eZ \alpha \left(-\eta r + S\right) V_{1z}}{\eta r^2 (-\eta r^2 + 1)} \\ &+4 \frac{S \left(eX^2 + 1/2 r \eta S \left(eX^2 - 1\right) - 3/2 \left(eX^2 - 1/3\right) r^2 \eta\right) \alpha V_{2x}}{\eta r^2 (\eta r^2 - 1)} \\ &-2 \frac{eY eX S \left(2 + r \left(S - 3r\right) \eta\right) \alpha V_{2y}}{\eta r^2 (\eta r^2 - 1)} \\ &-2 \frac{eX \left(-\eta r + S\right) \left(\eta r^2 + 4\alpha^2 - 1\right) \left(-eX^2 + 1\right) V_{1x}^2}{\eta r^2 (\eta r^2 - 1)^2} \\ &-3 \frac{eX \left(-\eta r + S\right) \left(\eta r^2 + 4\alpha^2 - 1\right) \left(-eX^2 + 1\right) V_{1x}^2}{\eta r^2 (\eta r^2 - 1)^2} \\ &+3 \frac{eX \left(-\eta r + S\right) \left(r^2 \left(eY^2 + 4\sqrt{3}\alpha^2\right) \eta + \left(4eY^2 - 4\sqrt{3}\alpha^2 - eY^2\right) V_{1y}^2}{\eta r^2 (\eta r^2 - 1)^2} \\ &-6 \frac{eY \left(r^2 \left(2/3\alpha^2 + 1/2 - eX^2\right) \eta + 4 \left(1/3 - eX^2\right)\alpha^2 + eX^2 - 1/2\right) \left(-\eta r + S\right) V_{1x} V_{1y}}{\eta r^2 (\eta r^2 - 1)^2} \\ &-6 \frac{eZ \left(r^2 \left(2/3\alpha^2 + 1/2 - eX^2\right) \eta + 4 \left(1/3 - eX^2\right)\alpha^2 + eX^2 - 1/2\right) \left(-\eta r + S\right) V_{1x} V_{1y}}{\eta r^2 (\eta r^2 - 1)^2} \\ &-6 \frac{eZ \left(r^2 \left(2/3\alpha^2 + 1/2 - eX^2\right) \eta + 4 \left(1/3 - eX^2\right)\alpha^2 + eX^2 - 1/2\right) \left(-\eta r + S\right) V_{1x} V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+6 \frac{\left(-\eta r + S\right) \left(\eta r^2 + 4\alpha^2 - 1\right) eY eZ eX V_{1z} V_{1y}}{(\eta r^2 - 1)^2 r^2 \eta} \\ &-3 \frac{eX SV_{2x}^2}{(\eta r^2 - 1)^2 r^2 \eta} \left(\left((2eX^2 - 4/3) r^4 + Sr^3 \left(1 - eX^2\right)\right)\eta^2 + eX^2 - 1/3 \\ &+4r \left(\left((3/4 - \alpha^2\right) \left(1 - eX^2\right) - 1/3\right)r + S \left(1 - eX^2\right) \left(\alpha^2 - 1/4\right)\right)\eta \right) \\ &+3 \frac{eX SV_{2y}^2}{(\eta r^2 - 1)^2 r^2 \eta} \left(\left((1/3 - 2eY^2) r^4 + Sr^3 eY^2\right)\eta^2 - eY^2 + 1/3 \\ &+4r \left(\left((3/4 - \alpha^2\right) eY^2 - 1/6\right)r + SeY^2 \left(\alpha^2 - 1/4\right)\right)\eta \right) \end{aligned}$$

$$\begin{split} A_{1y} &= -\frac{eYS}{\eta r^2} \\ &+ 2 \frac{(S - \eta r) \alpha eX eY V_{1x}}{\eta r^2 (\eta r^2 - 1)} \\ &- 2 \frac{(eY^2 - 1) (S - \eta r) \alpha V_{1y}}{\eta^2 (\eta r^2 + 1)} \\ &- 2 \frac{eY eZ (S - \eta r) \alpha V_{1x}}{\eta r^2 (\eta r^2 + 1)} \\ &- 2 \frac{eX eY S \alpha (2 + r (S - 3r) \eta) V_{2x}}{\eta r^2 (\eta r^2 - 1)} \\ &- 2 \frac{eX (((1 - 3 eY)^2 r + S (eY^2 - 1)) r\eta + 2 eY^2) V_{2y}}{\eta r^2 (\eta r^2 - 1)} \\ &- 2 \frac{eY G \alpha cZ (2 + r (S - 3r) \eta) V_{2x}}{\eta r^2 (\eta r^2 - 1)} \\ &- 2 \frac{eY (4\alpha^2 (1/3 - eX^2) - \eta r^2 (4/3 \alpha^2 + eX^2) + eX^2) (S - \eta r) V_{1x}^2}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 3 \frac{eY (r^2 (eZ^2 + 4/3 \alpha^2) \eta + (4eZ^2 - 4/3) \alpha^2 - eZ^2) (S - \eta r) V_{1x}^2}{(\eta r^2 - 1)^2 r^2 \eta} \\ &+ 3 \frac{eY (r^2 (eZ^2 + 4/3 \alpha^2) \eta + (4eZ^2 - 4/3) \alpha^2 - eZ^2) (S - \eta r) V_{1x} V_{1y}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6 \frac{eX (r^2 (eY^2 - 1/2 - 2/3 \alpha^2) \eta + (4eY^2 - 4/3) \alpha^2 - eY^2 + 1/2) (S - \eta r) V_{1x} V_{1y}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6 \frac{eZ (r^2 (eY^2 - 1/2 - 2/3 \alpha^2) \eta + (4eY^2 - 4/3) \alpha^2 - eY^2 + 1/2) (S - \eta r) V_{1y} V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6 \frac{eZ (r^2 (eY^2 - 1/2 - 2/3 \alpha^2) \eta + (4eY^2 - 4/3) \alpha^2 - eY^2 + 1/2) (S - \eta r) V_{1y} V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6 \frac{eZ (r^2 (eY^2 - 1/2 - 2/3 \alpha^2) \eta + (4eY^2 - 4/3) \alpha^2 - eY^2 + 1/2) (S - \eta r) V_{1y} V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6 \frac{eX (Y^2 (eY^2 - 1/2 - 2/3 \alpha^2) \eta + (4eY^2 - 4/3) \alpha^2 - eY^2 + 1/2) (S - \eta r) V_{1y} V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6 \frac{eX (Y^2 (eY^2 - 1/2 - 2/3 \alpha^2) \eta + (4eY^2 - 4/3) \alpha^2 - eY^2 + 1/2) (S - \eta r) V_{1y} V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 3 \frac{eY S V_{2z}}{r^2 \eta (\eta r^2 - 1)^2} (((12 eX^2 - 1/3) r - eX^2 S) r^3 \eta^2 + eX^2 - 1/3 \\ &+ 4 ((1/6 - (3/4 - \alpha^2) eX^2) r - eX^2 S (\alpha^2 - 1/4)) r\eta) \\ &+ 3 \frac{eY S V_{2z}}{r^2 \eta (\eta r^2 - 1)^2} (r^3 ((4/3 - 2eY^2) r + S (eY^2 - 1)) \eta^2 - eY^2 + 1/3 \\ &+ 4 (((2Y^2 - 1)) (r/2 + (\alpha^2 - 1/4) (S - r)) + r/3) r\eta) \\ &+ 3 \frac{eY S V_{2z}}{(\eta r^2 - 1)^2 r^2 \eta} ((((1/3 - 2eZ^2) r^4 + S r^3 eZ^2) \eta^2 - eZ^2 + 1/3 \\ &+ 4r (((3/4 - \alpha^2) eZ^2 - 1/6) r + S eZ^2 (-1/4 + \alpha^2)) \eta) \\ &+ 6 \frac{eX E Y S (r^3 (S - 2r) \eta^2 - 1 + (2r^2 + (S - r) r (4\alpha^2 - 1)) \eta) V_{2z} V_{2z}}}{(\eta r^2 - 1)^2 r^2 \eta} \\ \end{split}$$

$$\begin{split} + 6 & \frac{eZ \, S \, V_{2y} V_{2z}}{(\eta \, r^2 - 1)^2 \, r^2 \eta} \left(\left(\left(-2 \, eY^2 + 1/2 \right) r + S \left(eY^2 - 1/2 \right) \right) r^3 \eta^2 - eY^2 \\ + 4 \, r \left(1/2 \, r \, eY^2 + \left(-1/4 + \alpha^2 \right) \left(eY^2 - 1/2 \right) \left(S - r \right) \right) \eta \right) \\ + \frac{eY \, S \left(r^3 \eta + \left(4 \, \left(1 - 2 \, eX^2 \right) \, \alpha^2 - 1 \right) r + \left(4S \left(\alpha^2 - 1/4 \right) + r^2 \eta \, S \right) \left(eX^2 - 1 \right) \right) V_{1x} V_{2x}}{(\eta \, r^2 - 1)^2 \, r^3 \eta} \\ + \frac{eX \, S \, V_{1x} V_{2y}}{(\eta \, r^2 - 1)^2 \, r^3 \eta} \left(S \eta^2 \left(8 \, \alpha^2 + eY^2 + 1 \right) r^4 - \eta^2 r^5 + \left(1 + \left(-8 \, eY^2 - 12 \right) \alpha^2 \right) \eta \, r^3 \right. \\ + 4 \, \left(\left(eY^2 + 1 \right) \alpha^2 - 1/2 \, eY^2 - 1/4 \right) \, S \eta \, r^2 + 8 \, \alpha^2 eY^2 r + \left(-4 \, \alpha^2 + 1 \right) \, eY^2 S \right) \\ - \frac{eZ \, eX \, eY \left(4 \, \alpha^2 \left(2 \, Sr - 1 \right) - \eta \, r^2 + 1 \right) \, V_{1x} V_{2z}}{(\eta \, r^2 - 1) \, r^3 \eta} \\ - 8 \, \frac{eX \, V_{1y} V_{2x}}{(\eta \, r^2 - 1)^2 \, \eta \, r^3} \left(\left(\left(Sr - 1/2 \right) \alpha^2 - 1/8 \, \eta \, r^2 + 1/8 \right) \left(\eta \, r^2 - 1 \right) \, eY^2 \right) \\ - 2r \, \left(\left(\eta \, r^2 \, (S - 1/2 \, \eta \, r) - 1/4 \, \eta \, r - S/4 \right) \alpha^2 + 1/16 \, \left(\eta \, r^2 - 1 \right) \, (S - \eta \, r) \right) \right) \\ - \frac{(4 \, \alpha^2 \, (2 \, Sr - 1) - \eta \, r^2 + 1) \, eY \, \left(eY^2 - 1 \right) \, V_{1y} V_{2y} }{r^3 \, (\eta \, r^2 - 1) \, \eta} \\ - 8 \, \frac{eZ \, V_{1y} V_{2z}}{(\eta \, r^2 - 1)^2 \, \eta \, r^3} \left(\left(\left((Sr - 1/2) \, \alpha^2 - 1/8 \, \eta \, r^2 + 1/8 \right) \left(\eta \, r^2 - 1 \right) \, eY^2 \right) \\ - 2r \, \left(\left(\eta \, r^2 \, (S - 1/2 \, \eta \, r) - 1/4 \, \eta \, r - S/4 \right) \alpha^2 + 1/16 \, \left(\eta \, r^2 - 1 \right) \, eY^2 \\ - 2r \, \left(\left(\eta \, r^2 \, (S - 1/2 \, \eta \, r) - 1/4 \, \eta \, r - S/4 \right) \alpha^2 + 1/16 \, \left(\eta \, r^2 - 1 \right) \, (S - \eta \, r) \right) \right) \\ - \frac{eX \, eZ \, eY \, \left(4 \, \alpha^2 \, (2 \, Sr - 1 \right) - \eta \, r^2 + 1 \right) \, V_{1z} V_{2x}}{(\eta \, r^2 - 1) \, r^3 \eta} \\ + \frac{eZ \, S \, V_{1z} V_{2y}}{(\eta \, r^2 - 1)^2 \eta} \left(\left(\left(\eta \, r^2 - 1 \right) \, \left(\eta \, r^2 + 4 \, \alpha^2 - 1 \right) \, eY^2 + \left(8 \, \eta^2 r^4 + 4 \, \eta \, r^2 \right) \alpha^2 + \eta^2 r^4 - \eta \, r^2 \right) S \\ - \left(8 \, \alpha^2 \, \left(\eta \, r^2 - 1 \right) \, eY^2 + \eta \, r^2 \, \left(\eta \, r^2 + 12 \, \alpha^2 - 1 \right) r^2 \right) r^4 \\ + \frac{eY \, S \, \left(r^3 \eta + S \eta \, \left(eZ^2 - 1 \right) \, r^2 + \left(\left(4 - 8 \, eZ^2 \right) \, \alpha^2 - 1 \right) r + \left(eZ^2 - 1 \right) \left(4 \, \alpha^2 - 1 \right) S \right) V_{1z} V_{2z} \\ \eta \, r^3 \, (\eta \, r^2 - 1) \\ \end{array}$$

$$\begin{split} A_{1z} &= -\frac{eZS}{\eta r^2} \\ &+ 2\frac{\alpha \left(S - \eta r\right) eX eZ V_{1x}}{\eta r^2 (\eta r^2 - 1)} \\ &- 2\frac{eY eZ \alpha \left(S - \eta r\right) V_{1y}}{\eta r^2 (-\eta r^2 + 1)} \\ &+ 2\frac{\left(1 - eZ^2\right) \left(S - \eta r\right) \alpha V_{1z}}{\eta r^2 (-\eta r^2 + 1)} \\ &+ 4\frac{\alpha eZ eX S \left(1 + 1/2r\eta S - 3/2\eta r^2\right) V_{2x}}{\eta r^2 (\eta r^2 - 1)} \\ &- 2\frac{\alpha eY cZ S \left(2 + \left(S - 3r\right)\eta\right) V_{2y}}{\eta r^2 (\eta r^2 - 1)} \\ &+ 2\frac{\left(r \left((3eZ^2 - 1)r + S \left(1 - eZ^2\right)\right)\eta - 2eZ^2\right) S\alpha V_{2z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 3\frac{eZ \left(4\alpha^2 \left(1/3 - eX^2\right) - \eta r^2 \left(4/3\alpha^2 + eX^2\right) + eX^2\right) \left(S - \eta r\right) V_{1x}^2}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 3\frac{eZ \left(eZ^2 - 1\right) \left(r + S \left(1 - eZ^2\right)\right)\eta + \left(4eY^2 - 4/3\right)\alpha^2 - eY^2\right) V_{1y}^2}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 3\frac{eZ \left(eZ^2 - 1\right) \left(S - \eta r\right) \left(\eta r^2 + 4\alpha^2 - 1\right) V_{1z}^2}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6\frac{\left(S - \eta r\right) \left(\eta r^2 + 4\alpha^2 - 1\right)eY eZ eX V_{1x}V_{1y}}{(\eta r^2 - 1)^2 r^2 \eta} \\ &+ 6\frac{eX \left(r^2 \left(eZ^2 - 2/3\alpha^2 - 1/2\right)\eta + \left(4eZ^2 - 4/3\right)\alpha^2 - eZ^2 + 1/2\right) \left(S - \eta r\right) V_{1x}V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6\frac{eX \left(r^2 \left(eZ^2 - 2/3\alpha^2 - 1/2\right)\eta + \left(4eZ^2 - 4/3\right)\alpha^2 - eZ^2 + 1/2\right) \left(S - \eta r\right) V_{1y}V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 6\frac{eX \left(r^2 \left(eZ^2 - 2/3\alpha^2 - 1/2\right)\eta + \left(4eZ^2 - 4/3\right)\alpha^2 - eZ^2 + 1/2\right) \left(S - \eta r\right) V_{1y}V_{1z}}{\eta r^2 (\eta r^2 - 1)^2} \\ &+ 3\frac{eZ S V_{2x}^2}{(\eta r^2 - 1)^2 r^2 \eta} \left(\left(\left(2eX^2 - 1/3\right)r - eX^2S\right)r^3\eta^2 + eX^2 - 1/3 \\ &+ 4r \left(1/2r \left(1/3 - eX^2\right) + \left(\alpha^2 - 1/4\right)eX^2 \left(r - S\right)\right)\eta \right) \\ &+ 3\frac{eZ S V_{2y}^2}{(\eta r^2 - 1)^2 r^2 \eta} \left(\left(\left(4/3 - 2eY^2\right)r^4 + r^3eY^2S\right)\eta^2 - eY^2 + 1/3 \\ &+ 4r \left(\left((3/4 - \alpha^2\right)eY^2 - 1/6\right)r + eY^2S \left(\alpha^2 - 1/4\right)\eta \right) \right) \\ &+ 3\frac{eZ S V_{2y}^2}{(\eta r^2 - 1)^2 r^2 \eta} \left(r^3 \left(\left(4/3 - 2eZ^2\right)r + S \left(eZ^2 - 1\right)\right)\eta^2 - eZ^2 + 1/3 \\ &+ 4r \left(r(3 + \left(r^2 - 1\right) \left(r/2 + \left(\alpha^2 - 1/4\right) \left(S - r\right)\right)\right)\eta \right) \\ &+ 6\frac{eX eY S \left(r^3 \left(S - r\right) \left(r/2 + \left(\alpha^2 - 1/2\right) - eZ^2 r\right)\eta^2 - eZ^2 \\ &+ r \left(r/4 + \left(eZ^2 - 1/2\right) \left(S \left(\alpha^2 - 1/4\right) + \left(3/4 - \alpha^2\right)r\right)\right)\eta \right) \end{aligned}$$

$$\begin{split} &+ 6 \, \frac{eY \, S \, V_{2y} V_{2z}}{(\eta \, r^2 - 1)^2 \, r^2 \eta} \left(r^3 \left((S - r) \left(eZ^2 - 1/2 \right) - eZ^2 r \right) \eta^2 - eZ^2 \\ &+ 4r \left(r/4 + \left(eZ^2 - 1/2 \right) \left(S \left(\alpha^2 - 1/4 \right) + \left(3/4 - \alpha^2 \right) r \right) \eta \right) \\ &+ \frac{(r^3 \eta + \left(4 \, \left(1 - 2 \, eX^2 \right) \, \alpha^2 - 1 \right) r + S \left(1 - \eta \, r^2 - 4 \, \alpha^2 \right) \left(1 - eX^2 \right) \right) eZ \, S \, V_{1x} V_{2x}}{r^3 \left(\eta \, r^2 - 1 \right) \eta} \\ &- \frac{(4 \, \alpha^2 \left(2 \, Sr - 1 \right) - \eta \, r^2 + 1 \right) eY \, eZ \, eZ \, V_{1x} V_{2y}}{r^3 \left(\eta \, r^2 - 1 \right) \eta} \\ &+ \frac{eX \, S \, V_{1x} V_{2z}}{r^3 \eta \left(\eta \, r^2 - 1 \right)^2} \left(S \eta^2 r^4 \left(8 \, \alpha^2 + eZ^2 + 1 \right) - \eta^2 r^5 + \left(1 - \left(8 \, eZ^2 + 12 \right) \, \alpha^2 \right) \eta \, r^3 \\ &+ 4\eta \, \left(\left(eZ^2 + 1 \right) \, \alpha^2 - 1/2 \, eZ^2 - 1/4 \right) \, Sr^2 + eZ^2 \left(8 \, r\alpha^2 + S \left(1 - 4 \, \alpha^2 \right) \right) \right) \\ &- \frac{(4 \, \alpha^2 \left(2 \, Sr - 1 \right) - \eta \, r^2 + 1 \right) eY \, eZ \, eZ \, V_{1y} V_{2x}}{(\eta \, r^2 - 1) \, r^3 \eta} \\ &+ \frac{(r^3 \eta + r^2 \eta \left(eY^2 - 1 \right) S + \left(\left(4 - 8 \, eY^2 \right) \, \alpha^2 - 1 \right) r + \left(eY^2 - 1 \right) \left(4 \, \alpha^2 - 1 \right) S \right) eZ \, S \, V_{1y} V_{2y}}{(\eta \, r^2 - 1) \, r^3 \eta} \\ &+ \frac{eY \, S \, V_{1y} V_{2z}}{(\eta \, r^2 - 1)^2} \left(S \eta^2 r^4 \left(8 \, \alpha^2 + eZ^2 + 1 \right) - \eta^2 r^5 + \left(1 - \left(8 \, eZ^2 + 12 \right) \, \alpha^2 \right) \eta \, r^3 \\ &+ 4\eta \, \left(\left(eZ^2 + 1 \right) \, \alpha^2 - 1/2 \, eZ^2 - 1/4 \right) \, Sr^2 + 8 \, r\alpha^2 eZ^2 + \left(1 - 4 \, \alpha^2 \right) \, eZ^2 S \right) \\ &- 8 \, \frac{eX \, V_{1z} V_{2x}}{r^3 \eta \left(\eta \, r^2 - 1 \right)^2} \left(-1/8 \, \eta^2 \left(-8 \, \alpha^2 + eZ^2 - 1 \right) r^4 + \eta \left(-1/8 + \left(eZ^2 - 2 \right) \, \alpha^2 \right) \, Sr^3 - 1/8 \, eZ^2 \\ &- 1/2 \, \eta \, \left(\left(eZ^2 - 1 \right) \, \alpha^2 - 1/2 \, eZ^2 + 1/4 \right) \, r^2 - S \left(\left(eZ^2 - 1/2 \right) \, \alpha^2 - 1/8 \right) r + 1/2 \, \alpha^2 eZ^2 \right) \\ &- 8 \, \frac{eY \, V_{1z} V_{2y}}{r^3 \eta \left(\eta \, r^2 - 1 \right)^2} \left(-1/8 \, \eta^2 \left(-8 \, \alpha^2 + eZ^2 - 1 \right) r^4 + \eta \left(-1/8 + \left(eZ^2 - 2 \right) \, \alpha^2 \right) \, Sr^3 - 1/8 \, eZ^2 \right) \\ &- \left(4 \, \alpha^2 \left(2 \, Sr - 1 \right) - \eta \, r^2 + 1 \right) \, eZ \, \left(eZ^2 - 1 \right) r^4 \eta \right) r^2 - S \left(\left(eZ^2 - 1/2 \right) \, \alpha^2 - 1/8 \right) r + 1/2 \, \alpha^2 eZ^2 \right) \\ &- \left(4 \, \alpha^2 \left(2 \, Sr - 1 \right) - \eta \, r^2 + 1 \right) \, eZ \, \left(eZ^2 - 1 \right) \, V_{1z} V_{2z} \right) , \end{array} \right)$$
$$\begin{split} A_{2x} &= + \frac{eX\,S}{r^2} \\ &+ 4 \frac{\alpha\,S\left(1/2\,r\left(eX^2-1\right)\,S-3/2\,\eta\,r^2\left(eX^2-1/3\right)+eX^2\right)\,V_{1x}}{r^2\left(-\eta r^2+1\right)} \\ &+ 4 \frac{eY\,eX\,\alpha\,S\left(1+1/2\,rS-3/2\,\eta\,r^2\right)\,V_{1y}}{r^2\left(-\eta r^2+1\right)} \\ &+ 4 \frac{eZ\,eX\,\alpha\,S\left(1+1/2\,rS-3/2\,\eta\,r^2\right)\,V_{1x}}{r^2\left(-\eta r^2+1\right)} \\ &- 2 \frac{(eX^2-1)\left(S-r\right)\,\alpha\,V_{2x}}{r^2\left(-\eta r^2+1\right)} \\ &+ 2 \frac{eY\,eX\,\alpha\,(S-r)\,V_{2y}}{r^2\left(\eta r^2-1\right)} \\ &+ 2 \frac{eY\,eX\,\alpha\,(S-r)\,V_{2y}}{r^2\left(\eta r^2-1\right)} \\ &+ 3 \frac{eX\,S\,V_{1x}^2}{r^2\left(\eta r^2-1\right)^2} \left(S\eta\,\left(1-eX^2\right)\,r^3-2\,\left(2/3-eX^2\right)\,\eta^2 r^4+eX^2-1/3 \\ &- 4\left(\left(\alpha^2-3/4\right)\left(1-eX^2\right)+1/3\right)\,\eta r^2+4\,\left(\alpha^2-1/4\right)\,S\left(1-eX^2\right)\,r\right) \\ &- 3 \frac{eX\,S\,V_{1x}^2}{r^2\left(\eta r^2-1\right)^2} \left(Sr^3eY^2\eta-2r^4\left(eY^2-1/6\right)\,\eta^2-eY^2+1/3 \\ &+ \left(\left(3-4\alpha^2\right)\,eY^2-2/3\right)\,\eta r^2+eY^2S\,\left(4\alpha^2-1\right)\,r\right) \\ &- 3 \frac{eX\,S\,V_{1x}^2}{r^2\left(\eta r^2-1\right)^2} \left(Sr^3\eta\,eZ^2-2\,\left(eZ^2-1/6\right)\,\eta^2 r^4-eZ^2+1/3 \\ &+ \left(\left(3-4\alpha^2\right)\,eZ^2-2/3\right)\,\eta r^2+SeZ^2\left(4\alpha^2-1\right)\,r\right) \\ &- 3 \frac{eX\,S\,V_{1x}^2}{r^2\left(\eta r^2-1\right)^2} \left(S\eta\,\left(1/2-eX^2\right)\,r^3-2\,\eta^2\left(1/4-eX^2\right)\,r^4+eX^2 \\ &- 4\left(\left(1/2-eX^2\right)\left(\alpha^2-3/4\right)+1/4\right)\,\eta r^2+4\,S\left(\alpha^2-1/4\right)\left(1/2-eX^2\right)\,r\right) \\ &+ 6 \frac{eY\,S\,V_{1x}V_{1y}}{r^2\left(\eta r^2-1\right)^2} \left(S\eta\,\left(1/2-eX^2\right)\,r^3-2\,\eta^2\left(1/4-eX^2\right)\,r^4+eX^2 \\ &- 4\left(\left(1/2-eX^2\right)\left(\alpha^2-3/4\right)+1/4\right)\,\eta r^2+4\,S\left(\alpha^2-1/4\right)\left(1/2-eX^2\right)\,r\right) \\ &- 6 \frac{eX\,E\,eY\,S\left(-1-2r^4\eta^2+r^3\eta\,S+\left(-4\alpha^2+3\right)\eta r^2+S\left(4\alpha^2-1\right)\,r\right)\,V_{1y}V_{1z}}{r^2\left(\eta r^2-1\right)^2} \\ &+ 3 \frac{eX\,(S-r)\left(\eta r^2+4\,a^2-1\right)\left(-eX^2+1\right)V_{2x}^2}{r^2\left(\eta r^2-1\right)^2} \\ &- 3 \frac{\left(S-r\right)eX\left(r^2\left(eZ^2+4/3\,a^2\right)\eta+\left(4eZ^2-4/3\right)\,\alpha^2-eZ^2\right)V_{2y}^2}{r^2\left(\eta r^2-1\right)^2} \\ &- 3 \frac{\left(S-r\right)eX\left(r^2\left(eZ^2+4/3\,a^2\right)\eta+\left(4eZ^2-4/3\right)\,\alpha^2-eZ^2\right)V_{2y}^2}{r^2\left(\eta r^2-1\right)^2} \\ &+ 6 \frac{eY\,\left(S-r\right)\left(\eta\left(2/3\,a^2+1/2-eX^2\right)r^2+\left(1-eX^2\right)\left(4\alpha^2-1\right)-8/3\,a^2+1/2\right)V_{2x}V_{2y}}}{r^2\left(\eta r^2-1\right)^2} \\ &+ 6 \frac{eY\,\left(S-r\right)\left(\eta\left(2/3\,a^2+1/2-eX^2\right)r^2+1\left(1-eX^2\right)\left(4\alpha^2-1\right)-8/3\,a^2+1/2\right)V_{2x}V_{2y}}}{r^2\left(\eta r^2-1\right)^2} \\ &+ 6 \frac{eY\,\left(S-r\right)\left(\eta\left(2/3\,a^2+1/2-eX^2\right)r^2+1\left(1-eX^2\right)\left(4\alpha^2-1\right)-8/3\,a^2+1/2\right)V_{2x}V_{2y}}}{r^2\left(\eta r^2-1\right)^2} \\ &+ 6 \frac{eY\,\left(S-r\right)\left(\eta\left(2/3\,a^2+1/2-eX^2\right)r^2+1\left(1-eX^2\right)\left(4\alpha^2-1\right)-8/3\,a^2+1/2\right)V_{2x}V_{2y}}}{r^2\left(\eta r^2-1\right)^2} \\ &+ 6 \frac{eY\,\left(S-r\right)\left(\eta\left(2/3\,a^2+1/2-eX^2\right)r^2+1\left(1-e$$

$$\begin{split} &+ 6 \, \frac{eZ \, (S-r) \left(\eta \left(2/3 \, \alpha^2 + 1/2 - eX^2 \right) r^2 + \left(1 - eX^2 \right) (4 \, \alpha^2 - 1) - 8/3 \, \alpha^2 + 1/2 \right) V_{2x} V_{2z}}{r^2 \, (\eta r^2 - 1)^2} \\ &- 6 \, \frac{(\eta r^2 + 4 \, \alpha^2 - 1) \, (S-r) \, eY \, eX \, eZ \, V_{2y} V_{2z}}{r^2 \, (\eta r^2 - 1)^2} \\ &- \frac{eX \, (8r\eta \, \alpha^2 S - \eta r^2 - 4 \, \alpha^2 + 1) \, (1 - eX^2) \, V_{1x} V_{2x}}{\eta \, (\eta r^2 - 1) r^3} \\ &+ \frac{eY \, S \, V_{1x} V_{2y}}{r^3 \, (\eta r^2 - 1)^2 \eta} \left(\eta^3 r^5 + \eta^2 r^3 \left((8 \, eX^2 + 12) \, \alpha^2 - rS \, (8 \, \alpha^2 + eX^2 + 1) - 1 \right) \\ &+ 4 \, \left(\left((1/2 - \alpha^2) \, (eX^2 + 1) - 1/4 \right) \, Sr - 2 \, \alpha^2 eX^2 \right) r\eta + 4 \, eX^2 S \, \left(\alpha^2 - 1/4 \right) \right) \\ &+ \frac{eZ \, S \, V_{1x} V_{2z}}{r^3 \, (\eta r^2 - 1)^2 \eta} \left(\eta^3 r^5 + \eta^2 r^3 \left((8 \, eX^2 + 12) \, \alpha^2 - rS \, (8 \, \alpha^2 + eX^2 + 1) - 1 \right) \\ &+ 4 \, \left(\left((1/2 - \alpha^2) \, (eX^2 + 1) - 1/4 \right) \, Sr - 2 \, \alpha^2 eX^2 \right) r\eta + 4 \, eX^2 S \, \left(\alpha^2 - 1/4 \right) \right) \\ &- 8 \, \frac{eY \, V_{1y} V_{2x}}{r^3 \, (\eta r^2 - 1)^2 \eta} \left(\left((1/8 \, eX^2 - 1/8 - \alpha^2) \, r + S \, (1/8 + (1/2 - eX^2) \, \alpha^2) \right) \eta - 1/2 \, eX^2 \, \left(\alpha^2 - 1/4 \right) \right) \\ &- \frac{eX \, S \, \left(\eta^2 r^3 + \left(S \, (eY^2 - 1) \, r - 1 + \left(-8 \, eY^2 + 4 \right) \, \alpha^2 \right) r\eta + \left(eY^2 - 1 \right) \, (4 \, \alpha^2 - 1) \, S \right) \, V_{1y} V_{2y}}{r^3 \eta \, (\eta r^2 - 1)} \\ &+ \frac{\left(4 \, \alpha^2 \, (2 \, Sr\eta - 1) - \eta \, r^2 + 1 \right) \, eY \, eX \, eZ \, V_{1y} V_{2z}}{r^3 \eta \, (\eta r^2 - 1) \eta} \\ &- 8 \, \frac{eZ \, V_{1z} V_{2x}}{r^3 \, (\eta r^2 - 1) \eta} \left(\left((1/8 \, eX^2 - 1/8 - \alpha^2) \, r + S \, (1/8 + (2 - eX^2) \, \alpha^2) \right) \eta - 1/2 \, eX^2 \, \left(\alpha^2 - 1/4 \right) \right) \\ &+ \frac{\left(4 \, \alpha^2 \, (2 \, Sr\eta - 1) - \eta \, r^2 + 1 \right) \, eY \, eX \, eZ \, V_{1y} V_{2z}}{r^3 \eta \, (\eta r^2 - 1)} \\ &- \left(\left(1/2 \, (1 - eX^2) \, \left(\alpha^2 - 1/2 \right) + 1/8 \right) \, r + S \, (1/8 + (1/2 - eX^2) \, \alpha^2) \right) \eta - 1/2 \, eX^2 \, \left(\alpha^2 - 1/4 \right) \right) \\ &+ \frac{\left(4 \, \alpha^2 \, (2 \, Sr\eta - 1) - \eta \, r^2 + 1 \right) \, eY \, eX \, eZ \, V_{1z} V_{2y}}{r^3 \eta \, (\eta r^2 - 1)} \\ &- \left(\left(1/2 \, (1 - eX^2) \, \left(\alpha^2 - 1/2 \right) + 1/8 \right) \, r + S \, (1/8 + (1/2 - eX^2) \, \alpha^2) \right) \eta - 1/2 \, eX^2 \, \left(\alpha^2 - 1/4 \right) \right) \\ &+ \frac{\left(4 \, \alpha^2 \, (2 \, Sr\eta - 1 \right) - \eta \, r^2 + 1 \right) \, eY \, eX \, eZ \, V_{1z} V_{2y}}{r^3 \eta \, (\eta r^2 - 1)} \\ &- \frac{\left(1/2 \, (1 - eX^2) \, \left(\alpha^2 - 1/2 \right) + 1$$

$$\begin{split} A_{2y} &= + \frac{eYS}{r^2} \\ &- 2 \frac{S\alpha eY eX \left(rS - 3\eta r^2 + 2\right) V_{1x}}{r^2 (\eta r^2 - 1)} \\ &+ 4 \frac{S\alpha \left(eY^2 + 1/2S \left(eY^2 - 1\right)r - 3/2\eta r^2 \left(eY^2 - 1/3\right)\right) V_{1y}}{r^2 (-\eta r^2 + 1)} \\ &+ 4 \frac{eZ eYS\alpha \left(1 + 1/2rS - 3/2\eta r^2\right) V_{1z}}{r^2 (-\eta r^2 + 1)} \\ &- 2 \frac{eY eX\alpha \left(S - r\right) V_{2x}}{r^2 (-\eta r^2 + 1)} \\ &+ 2 \frac{(eY^2 - 1) \left(S - r\right) \alpha V_{2y}}{r^2 (\eta r^2 - 1)} \\ &+ 2 \frac{eZ eY \alpha \left(S - r\right) V_{2z}}{r^2 (\eta r^2 - 1)} \\ &+ 3 \frac{eY S V_{1x}^2}{r^2 (\eta r^2 - 1)^2} \left(-2 \left(1/6 - eX^2\right) \eta^2 r^4 - r^3 \eta eX^2 S + eX^2 - 1/3 \right) \\ &- 4\eta \left(-(\alpha^2 - 3/4) eX^2 - 1/6\right) r^2 - 4eX^2 S \left(\alpha^2 - 1/4\right) r\right) \\ &- 3 \frac{eY S V_{1y}^2}{r^2 (\eta r^2 - 1)^2} \left(-2 (2r^2 eY^2 - 2/3) r^4 + r^3 \eta \left(eY^2 - 1\right) S - eY^2 + 1/3 \right) \\ &- 4\eta \left((\alpha^2 - 3/4) (eY^2 - 1) - 1/3\right) \eta r^2 + (eY^2 - 1) (4\alpha^2 - 1) Sr\right) \\ &- 3 \frac{eY S V_{1z}^2}{r^2 (\eta r^2 - 1)^2} \left(-2 (eZ^2 - 1/6) \eta^2 r^4 + r^3 \eta SeZ^2 - eZ^2 + 1/3 \right) \\ &+ \left(-2/3 + \left(-4\alpha^2 + 3\right) eZ^2\right) \eta r^2 + SeZ^2 \left(4\alpha^2 - 1\right) r\right) \\ &- 6 \frac{eX S V_{1z} V_{1z}}{r^2 (\eta r^2 - 1)^2} \left(\eta^2 \left(1/2 - 2eY^2\right) r^4 + S\eta \left(eY^2 - 1/2\right) (\alpha^2 - 1/4)\right) \\ &- 6 \frac{eY eZ eX S \left(r^3 \eta S + (3 - 4\alpha^2) \eta r^2 + S(eY^2 - 1/2) (\alpha^2 - 1/4)\right) \\ &- 6 \frac{eY C eX S \left(r^3 \eta S + (3 - 4\alpha^2) \eta r^2 + S(eY^2 - 1/2) (\alpha^2 - 1/4)\right) \\ &+ 3 \frac{eY \left(S - r\right) \left(-\eta \left(4/3 \alpha^2 + eX^2\right) r^2 + 4 \left(1/3 - eX^2\right) \alpha^2 + eX^2\right) V_{2x}^2}{r^2 (\eta r^2 - 1)^2} \\ &- 3 \frac{(\eta r^2 + 4\alpha^2 - 1) (S - r) eY \left(eY^2 - 1\right) V_{2y}^2}{r^2 (\eta r^2 - 1)^2} \\ &- 3 \frac{eY \left(S - r\right) \left(\eta \left(eY^2 - 2/3 \alpha^2 - 1/2\right) r^2 + \left(4eZ^2 - 4/3\right) \alpha^2 - eZ^2\right) V_{2z}^2}{r^2 (\eta r^2 - 1)^2} \\ &- 6 eX \frac{\left(S - r\right) \left(\eta \left(eY^2 - 2/3 \alpha^2 - 1/2\right) r^2 + \left(4eZ^2 - 4/3\right) \alpha^2 - eZ^2\right) V_{2z}^2}{r^2 (\eta r^2 - 1)^2} \\ &- 6 eX \frac{\left(S - r\right) \left(\eta (eY^2 - 2/3 \alpha^2 - 1/2) r^2 + \left(4eZ^2 - 4/3\right) \alpha^2 - eZ^2\right) V_{2z}^2}{r^2 (\eta r^2 - 1)^2} \\ &- 6 eX \frac{\left(S - r\right) \left(\eta (eY^2 - 2/3 \alpha^2 - 1/2\right) r^2}{r^2 (\eta r^2 - 1)^2} \\ &- 3 \frac{eY \left(S - r\right) \left(\eta (eY^2 - 2/3 \alpha^2 - 1/2) r^2 + \left(4eZ^2 - 4/3\right) \alpha^2 - eZ^2\right) V_{2z}^2}{r^2 (\eta r^2 - 1)^2} \\ &- 6 eX \frac{\left(S - r\right) \left(\eta (eY^2 - 2/3 \alpha^2 - 1/2) r^2 + \left(4eZ^2 - 4/3\right) \alpha^2 - eZ^2\right) V_{2z}^2} \\ &- 6 eX \frac{\left(S - r\right) \left(\eta (eY^2$$

$$\begin{split} &-6 \, \frac{(\eta r^2 + 4\,\alpha^2 - 1)\,(S - r)\,eX\,eZ\,eY\,V_{22}\,V_{V22}}{r^2\,(\eta\,r^2 - 1)^2} \\ &-6 \, \frac{eZ\,\left(S - r\right)\,\left(\eta\,\left(eY^2 - 2/3\,\alpha^2 - 1/2\right)\,r^2 + \left(4\,eY^2 - 4/3\right)\,\alpha^2 - eY^2 + 1/2\right)\,V_{2y}V_{2z}}{r^2\,(\eta\,r^2 - 1)^2} \\ &- \frac{eY\,S\,V_{1x}V_{2x}}{r^3\eta\,(\eta\,r^2 - 1)}\,\left(\eta^2r^3 + \left(r\,\left(eX^2 - 1\right)\,S - 1 + 4\,\left(1 - 2\,eX^2\right)\,\alpha^2\right)\,r\eta \\ &-4\,\left(1 - eX^2\right)\,\left(\alpha^2 - 1/4\right)\,S\right) \\ &8 \, \frac{eX\,V_{1x}V_{2y}}{r^3\eta\,(\eta\,r^2 - 1)^2}\,\left((\eta\,r^2 - 1)\,\left((Sr\eta - 1/2)\,\alpha^2 - 1/8\,\eta\,r^2 + 1/8\right)\,eY^2 \\ &-2\,r\eta\,\left((r^2\,\left(S - r/2\right)\,\eta - S/4 - r/4\,\right)\,\alpha^2 + 1/16\,\left(\eta\,r^2 - 1\right)\,\left(S - r\right)\right)\right) \\ &+ \frac{(4\alpha^2\,(2\,Sr\eta - 1) - \eta\,r^2 + 1)\,eZ\,eX\,eY\,V_{1x}V_{2x}}{r^3\,(\eta\,r^2 - 1)} \\ &- \frac{eX\,S\,V_{1y}V_{2x}}{r^3\eta\,(\eta\,r^2 - 1)^2}\left(\left((\eta\,r^2 - 1)\,\left(\eta\,r^2 + 4\,\alpha^2 - 1\right)\,eY^2 + \left(8\,r^4\eta^2 + 4\,\eta\,r^2\right)\,\alpha^2 + r^4\eta^2 - \eta\,r^2\right)S \\ &- \left(8\,\alpha^2\,\left(\eta\,r^2 - 1\right)\,eY^2 + \eta\,r^2\left(\eta\,r^2 + 12\,\alpha^2 - 1\right)\right)\,\eta\,r\right) \\ &+ \frac{(4\,\alpha^2\,(2\,Sr\eta - 1) - \eta\,r^2 + 1)\,eY\,\left(eY^2 - 1\right)\,V_{1y}V_{2y}}{\eta\,r^3\,(\eta\,r^2 - 1)} \\ &- \frac{eX\,S\,V_{1y}V_{2z}}{r^3\eta\,(\eta\,r^2 - 1)^2}\left(\left((\eta\,r^2 - 1)\,\left(\eta\,r^2 + 4\,\alpha^2 - 1\right)\,eY^2 + \left(8\,r^4\eta^2 + 4\,\eta\,r^2\right)\,\alpha^2 + r^4\eta^2 - \eta\,r^2\right)S \\ &- \left(8\,\alpha^2\,\left(\eta\,r^2 - 1\right)\,eY^2 + \eta\,r^2\left(\eta\,r^2 + 12\,\alpha^2 - 1\right)\right)\,\eta\,r\right) \\ &+ \frac{(4\,\alpha^2\,(2\,Sr\eta - 1) - \eta\,r^2 + 1)\,eZ\,eX\,eY\,V_{1x}V_{2x}}{r^3(\eta\,r^2 - 1)\eta} \\ &+ \frac{eZ\,V_{1x}V_{2y}}{r^3(\eta\,(r^2 - 1)^2}\left(\left((\eta\,r^2 - 1)\,\left((Sr\eta - 1/2)\,\alpha^2 - 1/8\,\eta\,r^2 + 1/8\right)\,eY^2 \\ &- 2\,r\eta\,\left((r^2\,(S - r/2)\,\eta - S/4 - r/4)\,\alpha^2 + 1/16\,\left(\eta\,r^2 - 1\,\right)\,(S - r)\right)\right) \\ &- \frac{eY\,S\,V_{1x}V_{2z}}{r^3\eta\,(\eta\,r^2 - 1)}\left(\left(\eta^2r^3 + \left(S\,(eZ^2 - 1)\,r - 1 + \left(-8\,eZ^2 + 4\right)\,\alpha^2\right)\,r\eta \\ &+ \left(eZ^2 - 1\right)\,\left(4\,\alpha^2 - 1\right)S\right), \end{split} \tag{10.68}$$

$$\begin{split} A_{2z} &= + \frac{eZS}{r^2} \\ &- 2 \frac{S(-3\eta r^2 + rS + 2) \alpha eX eZ V_{1x}}{r^2(\eta r^2 - 1)} \\ &+ 4 \frac{eY eZS (1 + 1/2rS - 3/2\eta r^2) \alpha V_{1y}}{r^2(-\eta r^2 + 1)} \\ &- 4 \frac{\alpha S (1/2r (1 - eZ^2) S - eZ^2 - 3/2\eta (1/3 - eZ^2) r^2) V_{1z}}{r^2(-\eta r^2 + 1)} \\ &- 2 \frac{eX eZ (S - r) \alpha V_{2y}}{r^2(-\eta r^2 + 1)} \\ &+ 2 \frac{eZ eY (S - r) \alpha V_{2y}}{r^2(\eta r^2 - 1)} \\ &+ 2 \frac{eZ S V_{1x}^2}{r^2(\eta r^2 - 1)} (1 - eZ^2) (r^4 - r^3 eX^2 \eta S + eX^2 - 1/3) \\ &+ 4 ((\alpha^2 - 3/4) eX^2 + 1/6) \eta r^2 - 4 (\alpha^2 - 1/4) SeX^2 r) \\ &- 3 \frac{eZ S V_{1x}^2}{(\eta r^2 - 1)^2 r^2} (-2 (-1/6 + eY^2) \eta^2 r^4 + r^3 eY^2 \eta S - eY^2 + 1/3) \\ &+ (-2/3 + (-4\alpha^2 + 3) eY^2) \eta r^2 + SeY^2 (4\alpha^2 - 1) r) \\ &- 3 \frac{eZ S V_{1z}^2}{(\eta r^2 - 1)^2 r^2} (-2\eta^2 (eZ^2 - 2/3) r^4 + S\eta (eZ^2 - 1) r^3 - eZ^2 + 1/3) \\ &- 4\eta ((\alpha^2 - 3/4) (eZ^2 - 1) - 1/3) r^2 + S (4\alpha^2 - 1) (eZ^2 - 1) r) V_{1z} V_{1y} \\ &- 6 \frac{eX S V_{1x} V_{1z}}{(\eta r^2 - 1)^2 r^2} (\eta^2 (-2eZ^2 + 1/2) r^4 + S\eta (eZ^2 - 1/2) r^3 - eZ^2 \\ &- 4\eta ((\alpha^2 - 3/4) eZ^2 - 1/2\alpha^2 + 1/8) r^2 + 4S (\alpha^2 - 1/4) (eZ^2 - 1/2) r) \\ &- 6 \frac{eY S V_{1y} V_{1z}}{(\eta r^2 - 1)^2 r^2} (\eta^2 (-2eZ^2 + 1/2) r^4 + S\eta (eZ^2 - 1/2) r^3 - eZ^2 \\ &- 4\eta ((\alpha^2 - 3/4) eZ^2 - 1/2\alpha^2 + 1/8) r^2 + 4S (\alpha^2 - 1/4) (eZ^2 - 1/2) r) \\ &+ 3 \frac{eZ (-\eta (eX^2 + 4/3\alpha^2) r^2 + 4 (1/3 - eX^2)\alpha^2 + eX^2) (S - r) V_{2z}^2}{r^2 (\eta r^2 - 1)^2} \\ &- 3 \frac{(\eta (eY^2 + 4/3\alpha^2) r^2 + (4eY^2 - 4/3) \alpha^2 - eY^2) (S - r) eZ V_{2y}^2}{r(\eta r^2 - 1)^2 r^2} \\ &- 3 \frac{(S - r) (\eta r^2 + 4\alpha^2 - 1) eZ (eZ^2 - 1) V_{2z}^2}{(\eta r^2 - 1)^2 r^2} \\ &- 6 \frac{(S - r) (\eta r^2 + 4\alpha^2 - 1) eY eX eZ V_{2y}}{(\eta r^2 - 1)^2 r^2} \end{aligned}$$

$$\begin{split} -6 & \frac{\left(\eta \left(eZ^2 - 2/3 \alpha^2 - 1/2\right) r^2 + \left(4 eZ^2 - 4/3\right) \alpha^2 - eZ^2 + 1/2\right) eX \left(S - r\right) V_{2x} V_{2z}}{r^2 (\eta r^2 - 1)^2} \\ -6 & \frac{\left(S - r\right) \left(\eta \left(eZ^2 - 2/3 \alpha^2 - 1/2\right) r^2 + \left(4 eZ^2 - 4/3\right) \alpha^2 - eZ^2 + 1/2\right) eY V_{2y} V_{2z}}{r^2 (\eta r^2 - 1)^2} \\ - & \frac{eZ S V_{1x} V_{2x}}{r^3 (\eta r^2 - 1) \eta} \left(\left(\eta^2 r^3 - 4 S \left(-eX^2 + 1\right) \left(\alpha^2 - 1/4\right)\right) \right) \\ + & \left(S \left(eX^2 - 1\right) r - 1 + 4 \left(-2 eX^2 + 1\right) \alpha^2\right) r\eta \right) \\ + & \frac{eY eZ eX \left(4 \alpha^2 \left(2 S \eta r - 1\right) - \eta r^2 + 1\right) V_{1x} V_{2y}}{(\eta r^2 - 1) r^3 \eta} \\ + & \frac{eX V_{1x} V_{2z}}{(\eta r^2 - 1)^2 r^3 \eta} \left(\left(\left(-1/8 eZ^2 + \alpha^2 + 1/8\right) r + S \left(-1/8 + \left(eZ^2 - 2\right) \alpha^2\right) \right) r^3 \eta^2 \\ - & \left(1/2 r \left(eZ^2 - 1\right) \alpha^2 - S/8 + \left(eZ^2 - 1/2\right) \left(S \alpha^2 - r/4\right)\right) r\eta + 1/2 eZ^2 \left(\alpha^2 - 1/4\right) \right) \\ + & \frac{eY eZ eX \left(4 \alpha^2 \left(2 S \eta r - 1\right) - \eta r^2 + 1\right) V_{1y} V_{2x}}{(\eta r^2 - 1) r^3 \eta} \\ - & \frac{eZ S V_{1y} V_{2y}}{(\eta r^2 - 1) \eta} \left(\eta^2 r^3 + \left(4 \alpha^2 - 1\right) \left(eY^2 - 1\right) S \\ + & \left(S \left(eY^2 - 1\right) r - 1 + 4 \left(-2 eY^2 + 1\right) \alpha^2\right) r\eta \right) \\ + & \left(S \left(eY^2 - 1\right) r - 1 + 4 \left(-2 eY^2 + 1\right) 8 r + S \left(-1/8 + \left(eZ^2 - 2\right) \alpha^2\right)\right) r^3 \eta^2 \\ - & \left(1/2 r \left(eZ^2 - 1\right) \alpha^2 - S/8 + \left(eZ^2 - 1/2\right) \left(S \alpha^2 - r/4\right)\right) r\eta + 1/2 eZ^2 \left(\alpha^2 - 1/4\right) \right) \\ - & \frac{eX S V_{1x} V_{2x}}{(\eta r^2 - 1)^2 r^3 \eta} \left(\left(\left(-1/8 eZ^2 + \alpha^2 + 1/8\right) r + S \left(-1/8 + \left(eZ^2 - 2\right) \alpha^2\right)\right) r^3 \eta^2 \\ + & 4 \left(S \left((eZ^2 + 1) \alpha^2 - 1/2 eZ^2 - 1/4\right) r + 2 \alpha^2 eZ^2 \right) r\eta + \left(-4 \alpha^2 + 1\right) eZ^2 S \right) \\ - & \frac{eY V_{1y} V_{2x}}{(\eta r^2 - 1)^2 r^3 \eta} \left(\left(-r^5 \eta^3 + \left(S \left(8 \alpha^2 + eZ^2 + 1\right) r + 1 + \left(-8 eZ^2 - 12\right) \alpha^2\right) r^3 \eta^2 \\ + & 4 \left(S \left((eZ^2 + 1) \alpha^2 - 1/2 eZ^2 - 1/4\right) r + 2 \alpha^2 eZ^2 \right) r\eta + \left(-4 \alpha^2 + 1\right) eZ^2 S \right) \\ - & \frac{eY V_{1y} V_{2y}}{(\eta r^2 - 1)^2 r^3 \eta} \left(-r^5 \eta^3 + \left(S \left(8 \alpha^2 + eZ^2 + 1\right) r + 1 + \left(-8 eZ^2 - 12\right) \alpha^2\right) r^3 \eta^2 \\ + & 4 \left(S \left((eZ^2 + 1) \alpha^2 - 1/2 eZ^2 - 1/4\right) r + 2 \alpha^2 eZ^2 \right) r\eta + \left(-4 \alpha^2 + 1\right) eZ^2 S \right) \\ + & \frac{eY V_{1y} V_{2y}}{(\eta r^2 - 1)^2 r^3 \eta} \left(-r^5 \eta^3 + \left(S \left(eZ^2 - 1\right) V_{1z} V_{2z} \right) \\ + & \frac{eY V_{1y} V_{2y}}{(\eta r^2 - 1)^2 r^3 \eta} \left(-r^5 \eta^3 + \left(S \left(eZ^2 - 1\right) V_{1z} V_{2z} \right) \right) \\ + & \frac{eY V_{1y} V_{2y$$

onde os termos $r,\,eX,\,eY$ eeZsão dados por:

$$\begin{cases} r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}, \\ eX = \frac{x_2 - x_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}, \\ eY = \frac{y_2 - y_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}, \\ eZ = \frac{z_2 - z_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}}. \end{cases}$$

Por uma questão de simplicidade iremos impor a condição de solução planar zerando todas as componentes no eixo z. Portanto, o conjunto de equações, no plano xy, de duas partículas pontuais que interagem entre si através do campo eletromagnético tomando os tempos t_r e t_a como infinitamente pequenos são:

$$\begin{split} A_{1x} &= -\frac{eXS}{m^2} + \frac{2S\alpha eY^2(S\eta r - 1)V_{1x}}{\eta r^2(\eta r^2 - 1)} + \frac{2S\alpha(((2 - 3eY^2)r^2 + SreY^2)\eta - 2eX^2)V_{2x}}{\eta r^2(\eta r^2 - 1)} \\ &- \frac{2S\alpha eXeY(S\eta - 1)V_{1y}}{\eta r^2(\eta r^2 - 1)} - \frac{2S\alpha eXeY(2 + r(S - 3r)\eta)V_{2y}}{\eta r^2(\eta r^2 - 1)} \\ &+ \frac{3SeXeY^2(\eta r^2 + 4\alpha^2 - 1)(S\eta r - 1)V1x^2}{\eta r^2(\eta r^2 - 1)^2} \\ &- \frac{3eXS(r^2(eY^2 + (4/3)\alpha^2)\eta + (4eY^2 - 4/3)\alpha^2 - eY^2)(S\eta r - 1)V_{1y}^2}{\eta r^2(\eta r^2 - 1)^2} \\ &+ \frac{6eYS(r^2(eY^2 - 1/2 + (2/3)\alpha^2)\eta + (4\alpha^2 - 1)eY^2 - (8/3)\alpha^2 + 1/2)(S\eta r - 1)V_{1x}V_{1y}}{\eta r^2(\eta r^2 - 1)^2} \\ &- \frac{3eXS}{\eta r^2(\eta r^2 - 1)^2} \left(\left((2/3 - 2eY^2)r^4 + Sr^3eY^2 \right)\eta^2 - eY^2 + 2/3 \right) \\ &+ 4\eta r \left(\left((3/4 - \alpha^2)eY^2 - 1/3 \right)r + eY^2S(\alpha^2 - 1/4) \right) \right)V_{2x}^2 \\ &+ \frac{3eXS}{\eta r^2(\eta r^2 - 1)^2} \left(\left((1/3 - 2eY^2)r^4 + Sr^3eY^2 \right)\eta^2 - eY^2 + 1/3 \right) \\ &+ 4\eta r \left(\left((3/4 - \alpha^2)eY^2 - 1/6 \right)r + eY^2S(\alpha^2 - 1/4) \right) \right)V_{2y}^2 \\ &- \frac{6eYS}{\eta r^2(\eta r^2 - 1)^2} \left(\left((3/2 - 2eY^2)r + S(eY^2 - 1/2) \right)r^3\eta^2 + eX^2 \\ &+ 4\eta r \left(\left((3/4 - \alpha^2)eY^2 + (1/2)\alpha^2 - 5/8 \right)r + S(\alpha^2 - 1/4) \left(eY^2 - 1/2 \right) \right) \right)V_{2x}V_{2y} \\ &- \frac{eXeY^2S((\eta r^2 + 4\alpha^2 - 1)S - 8\alpha^2 r)V_{1x}V_{2x}}{\eta r^3(\eta r^2 - 1)} \\ &- \frac{eYS}{\eta r^3(\eta r^2 - 1)^2} \left(\eta^2r^5 + S\eta^2r^4 \left(eY^2 - 8\alpha^2 - 2 \right) + \eta r^3 \left(\alpha^2 (20 - 8eY^2) - 1 \right) \\ &+ S\eta r^2 \left(4\alpha^2 (eY^2 - 2) - 2eY^2 + 3 \right) - 8eX^2\alpha^2 r + eX^2S \left(4\alpha^2 - 1 \right) \right) V_{1y}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)} \left(\eta^2 - S\eta r^2eX^2 + r(\alpha^2(4 - 8eY^2) - 1) + eX^2S(1 - 4\alpha^2) \right) V_{1y}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)} \left(\eta r^3 - S\eta r^2eX^2 + r(\alpha^2(4 - 8eY^2) - 1) + eX^2S(1 - 4\alpha^2) \right) V_{1y}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)} \left(\eta r^3 - S\eta r^2eX^2 + r(\alpha^2(4 - 8eY^2) - 1) + eX^2S(1 - 4\alpha^2) \right) V_{1y}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)} \left(\eta r^3 - S\eta r^2eX^2 + r(\alpha^2(4 - 8eY^2) - 1) + eX^2S(1 - 4\alpha^2) \right) V_{1y}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)} \left(\eta r^3 - S\eta r^2eX^2 + r(\alpha^2(4 - 8eY^2) - 1) + eX^2S(1 - 4\alpha^2) \right) V_{1y}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)} \left(\eta r^3 - S\eta r^2eX^2 + r(\alpha^2(4 - 8eY^2) - 1) + eX^2S(1 - 4\alpha^2) \right) V_{1y}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)} \left(\eta r^3 - S\eta r^2eX^2 +$$

$$\begin{split} A_{1y} &= -\frac{eYS}{\pi^2} - \frac{2SaeXeY(S\eta r - 1)V_{1x}}{\eta r^2(\eta r^2 - 1)} - \frac{2SaeXeY(2 + r(S - 3r)\eta)V_{2x}}{\eta r^2(\eta r^2 - 1)} \\ &+ \frac{2SaeX^2(S\eta r - 1)V_{1y}}{\eta r^2(\eta r^2 - 1)} - \frac{2Sa(\eta r(r(1 - 3eY^2) + SeY^2 - S) + 2eY^2)V_{2y}}{\eta r^2(\eta r^2 - 1)} \\ &+ \frac{3SeY(S\eta r - 1)(1 - \eta r^2((4/3)\alpha^2 + eX^2) + (4\alpha^2 - 1)eY^2 - (8/3)\alpha^2)V_{1x}^2}{\eta r^2(\eta r^2 - 1)^2} \\ &+ \frac{3SeYeX^2(\eta r^2 + 4\alpha^2 - 1)(S\eta r - 1)V_{1y}^2}{\eta r^2(\eta r^2 - 1)^2} \\ &- \frac{6eXS(\eta r^2(eY^2 - 1/2 - (2/3)\alpha^2) + (4eY^2 - 4/3)\alpha^2 - eY^2 + 1/2)(S\eta r - 1)V_{1x}V_{1y}}{\eta r^2(\eta r^2 - 1)^2} \\ &- \frac{3eYS}{\eta r^2(\eta r^2 - 1)^2} \left(\eta^2 r^3 \left(r \left(5/3 - 2eY^2\right) - eX^2S\right) - eY^2 + 2/3}{\eta r^2(\eta r^2 - 1)^2} \right) \\ &- \frac{3eYS}{\eta r^2(\eta r^2 - 1)^2} \left(\eta^2 r^3 \left(r (4/3 - 2eY^2) - eX^2S\right) - eY^2 + 1/3}{\eta r \left((4r \left((3/4 - \alpha^2) eY^2 + \alpha^2 - 5/12\right)\right) - 4eX^2S \left(\alpha^2 - 1/4\right)\right))V_{2x}^2} \\ &+ \frac{3eYS}{\eta r^2(\eta r^2 - 1)^2} \left(\eta^2 r^3 \left(r (1/2 - 2eY^2) + S \left(eY^2 - 1/2\right)\right) - eY^2 \\ &+ 4\eta r \left(r \left((3/4 - \alpha^2) eY^2 + (1/2)\alpha^2 - 1/8\right) + S \left(\alpha^2 - 1/4\right) \left(eY^2 - 1/2\right)\right)\right)V_{2x}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)} \left(S\eta^2 r^4 \left(8\alpha^2 + eY^2 + 1\right) - \eta^2 r^5 + \eta r^3 \left(1 - \alpha^2 \left(8eY^2 + 12\right)\right) \\ &+ 4S\eta r^2 \left((eY^2 + 1)\alpha^2 - (1/2)eY^2 - 1/4\right) + 8r\alpha^2 eY^2 + eY^2 S(1 - 4\alpha^2)\right)V_{1x}V_{2y} \\ &+ \frac{eXS}{\eta r^3(\eta r^2 - 1)^2} \left(\eta^3 (1 + \alpha^2 (16 - 8eY^2)\right) - S\eta^2 r^4 \left(8\alpha^2 + eX^2\right) + eY^2 S(1 - 4\alpha^2)\right) \\ &2S\eta r^2 \left(1/2 - 2\alpha^2 eX^2 - eY^2\right) + r \left(\alpha^2 (8eY^2 - 4) - 1\right)\right)V_{1y}V_{2x} \\ &- \frac{eX^2 eYS \left(S \left(\eta r^2 + 4\alpha^2 - 1\right) - 8\alpha^2 r\right)V_{1y}V_{2y}}{\eta r^3(\eta r^2 - 1)}, \end{split}$$

$$\begin{split} A_{2x} &= \frac{eXS}{r^2} + \frac{2S\alpha(\eta r^2(2-3eY^2) + SreY^2 - 2eX^2)V_{1x}}{r^2(\eta r^2 - 1)} + \frac{(2eY^2S\alpha(Sr - 1))V_{2x}}{\eta r^2 - 1)} \\ &- \frac{2S\alpha eXeY(2 - 3\eta r^2 + Sr)V_{1y}}{r^2(\eta r^2 - 1)} - \frac{2S\alpha eXeY(Sr - 1)V_{2y}}{r^2(\eta r^2 - 1)} \\ &+ \frac{3eXS}{r^2(\eta r^2 - 1)^2} \left(S\eta eY^2 r^3 - 2\eta^2 r^4 \left(eY^2 - 1/3\right) - eY^2 + 2/3 \right) \\ &+ \eta r^2 ((3 - 4\alpha^2)eY^2 - 4/3) + SreY^2(4\alpha^2 - 1))V_{1x}^2 \\ &- \frac{3eXS}{r^2(\eta r^2 - 1)^2} \left(S\eta eY^2 r^3 - 2\eta^2 r^4 \left(eY^2 - 1/6\right) - eY^2 + 1/3 \right) \\ &+ \eta r^2 ((3 - 4\alpha^2)eY^2 - 2/3) + SreY^2(4\alpha^2 - 1))V_{1y}^2 \\ &+ \frac{6SeY}{r^2(\eta r^2 - 1)^2} \left(S\eta r^3 \left(eY^2 - 1/2\right) - 2\eta^2 r^4 \left(eY^2 - 3/4\right) + eX^2 \right) \\ &- \eta r^2 (4eY^2(\alpha^2 - 3/4) - 2\alpha^2 + 5/2) + 4Sr(eY^2 - 1/2)(\alpha^2 - 1/4))V_{1x}V_{1y} \\ &- \frac{3eXS(\eta r^2(eY^2 + (4/3)\alpha^2) + (4eY^2 - 4/3)\alpha^2 - eY^2)(Sr - 1)V_{2y}^2}{r^2(\eta r^2 - 1)^2} \\ &+ \frac{3eXS(\eta r^2(eY^2 - 1/2 + (2/3)\alpha^2) + (4eY^2 - 4/3)\alpha^2 - eY^2)(Sr - 1)V_{2y}^2}{r^2(\eta r^2 - 1)^2} \\ &+ \frac{eXeY^2S(S(\eta r^2 + 4\alpha^2 - 1) - 8\alpha^2\eta r)V_{1x}V_{2x}}{\eta r^3(\eta r^2 - 1)} \\ &+ \frac{eYS}{\eta r^3(\eta r^2 - 1)^2} \left(\eta^3 r^5 + \eta^2 r^3 \left(Sr \left(eY^2 - 8\alpha^2 - 2\right) - 1 + (20 - 8eY^2)\alpha^2\right) \right) \\ &+ \frac{eYS}{\eta r^3(\eta r^2 - 1)^2} \left(\eta^2 r^3 \left(Sr \left(8\alpha^2 + eY^2\right) - 1 - 8\alpha^2 \left(eY^2 + 1\right)\right) + eX^2S(4\alpha^2 - 1) \right) \\ &+ 4\eta r \left(Sr \left((eY^2\alpha^2 - (1/2)eY^2 + 1/4\right) + 1/4 + \alpha^2(2eY^2 - 1))\right) V_{1x}V_{2x}, \quad (10.72) \end{aligned}$$

$$\begin{split} A_{2y} &= \frac{eYS}{r^2} - \frac{2SaeYeX(Sr - 3\eta r^2 + 2)V_{1x}}{r^2(\eta r^2 - 1)} - \frac{2SaeYeX(Sr - 1)V_{2x}}{r^2(\eta r^2 - 1)} \\ &- \frac{2Sa(2eY^2 - eX^2Sr + \eta r^2(1 - 3eY^2))V_{1y}}{r^2(\eta r^2 - 1)} + \frac{2SaeX^2(Sr - 1)V_{2y}}{r^2(\eta r^2 - 1)} \\ &+ \frac{3eYS}{r^2(\eta r^2 - 1)^2} \left(\eta^2 r^4 \left(5/3 - 2eY^2\right) - S\eta eX^2 r^3 - eY^2 + 2/3 \right) \\ &- \eta r^2 \left(4eY^2 \left(\alpha^2 - 3/4\right) - 4\alpha^2 + 7/3\right) + r \left(eY^2 S \left(4\alpha^2 - 1\right) + S \left(1 - 4\alpha^2\right)\right)\right)V_{1x}^2 \\ &- \frac{3eYS}{r^2(\eta r^2 - 1)^2} \left(2\eta^2 r^4 \left(2/3 - eY^2\right) - S\eta eX^2 r^3 - eY^2 + 1/3 \right) \\ &- 4\eta r^2 \left(eY^2 \left(\alpha^2 - 3/4\right) - \alpha^2 + 5/12\right) + r(eY^2 S \left(4\alpha^2 - 1\right) + S(1 - 4\alpha^2)\right)\right)V_{1y}^2 \\ &- \frac{6eXS}{r^2(\eta r^2 - 1)^2} \left(\eta^2 r^4 \left(1/2 - 2eY^2\right) + S\eta r^3 \left(eY^2 - 1/2\right) - eY^2 \right) \\ &- \eta r^2 \left((4eY^2 \left(\alpha^2 - 3/4\right)\right) - 2\alpha^2 + 1/2) + 4Sr \left(eY^2 - 1/2\right) \left(\alpha^2 - 1/4\right)\right)V_{1x}V_{1y} \\ &- \frac{3eYS(\eta r^2 (eY^2 - (4/3)\alpha^2 - 1) + eY^2 (4\alpha^2 - 1) - (8/3)\alpha^2 + 1) \left(Sr - 1\right)V_{2x}^2}{r^2(\eta r^2 - 1)^2} \\ &- \frac{3eYeX^2 S(\eta r^2 + 4\alpha^2 - 1)(Sr - 1)V_{2y}^2}{r^2(\eta r^2 - 1)^2} \\ &+ \frac{6eXS \left(\eta^2 r^2 - 1/2 - (2/3)\alpha^2\right) + (4eY^2 - 4/3)\alpha^2 - eY^2 + 1/2) \left(Sr - 1\right)V_{2x}V_{2y}}{\eta^3(\eta r^2 - 1)} \\ &- \frac{eXS}{\eta r^3(\eta r^2 - 1)^2} \left(\eta^2 r^3 \left(1 - Sr \left(8\alpha^2 + eX^2\right) + \left(16 - 8eY^2\right)\alpha^2\right) + eY^2 S \left(1 - 4\alpha^2\right)\right) + 2\eta r \left(Sr \left(1/2 - 2\alpha^2 eX^2 - eY^2\right) + (4eY^2 - 2)\alpha^2 - 1/2\right)\right) V_{1x}V_{2y} \\ &- \frac{eXS}{\eta r^3(\eta r^2 - 1)^2} \left(\eta^2 r^3 \left(Sr \left(8\alpha^2 + eY^2 + 1\right) + 1 - \left(8eY^2 + 12\right)\alpha^2\right) - \eta^3 r^5 \\ &+ 4\eta r \left(Sr \left((eY^2 + 1)\alpha^2 - (1/2)eY^2 - 1/4\right) + 2eY^2\alpha^2\right) + eY^2 S \left(1 - 4\alpha^2\right)\right) V_{1y}V_{2x} \\ &+ \frac{eYeX^2 S \left(S \left(\eta r^2 + 4\alpha^2 - 1\right) - 8\alpha^2 \eta r\right) V_{1y}V_{2y}}{\eta r^3(\eta r^2 - 1)}, \end{split}$$

onde os termos $r,\,eX$ eeYsão dados por:

$$\begin{cases} r = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}, \\ eX = \frac{x_2 - x_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}, \\ eY = \frac{y_2 - y_1}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}}. \end{cases}$$

O sistema de duas partículas pontuais carregadas, com $\alpha=0,$ no plano cartesiano xyé dado por:

$$\begin{split} A_{1x} &= -\frac{eXS}{\eta r^2} + \frac{3eXeY^2\left(S - \eta r\right)V_{1x}^2}{\eta r^2(1 - \eta r^2)} \\ &- \frac{3eXeY^2\left(S - \eta r\right)V_{1y}^2}{\eta r^2(1 - \eta r^2)} \\ &- \frac{3eY\left(S - \eta r\right)\left(2eX^2 - 1\right)V_{1x}V_{1y}}{\eta r^2(1 - \eta r^2)} \\ &- \frac{eXS\left(\eta \left(2r(2eY^2 - eX^2) - 3SeY^2\right) + 3eX^2 - 1\right)V_{2x}^2}{\eta r^2(1 - \eta r^2)} \\ &- \frac{eXS\left(\eta \left(3SreY^2 - r^2\left(6eY^2 - 1\right)\right) + 3eY^2 - 1\right)V_{2y}^2}{\eta r^2(1 - \eta r^2)} \\ &- \frac{3eYS\left(\eta r\left(r\left(1 - 4eX^2\right) + S\left(2eX^2 - 1\right)\right) + 2eX^2\right)V_{2x}V_{2y}}{\eta r^2(1 - \eta r^2)} \\ &+ \frac{eXS(r - eX^2S)V_{1y}V_{2y}}{\eta r^3} - \frac{eXeY^2V_{1x}V_{2x}}{\eta r^3} \\ &+ \frac{eY\left(\eta r^2eY^2 - Sr + eX^2\right)V_{1x}V_{2y}}{\eta r^3(1 - \eta r^2)} \\ &+ \frac{eYS\left(eX^2S - \eta r^2\left((eX^2 + 1)S - r\right)\right)V_{1y}V_{2x}}{\eta r^3(1 - \eta r^2)}, \end{split}$$
(1.0.74)

$$A_{1y} = -\frac{eYS}{\eta r^2} - \frac{3eYeX^2(S - \eta r)V_{1x}^2}{\eta r^2(1 - \eta r^2)} + \frac{3eYeX^2(S - \eta r)V_{1y}^2}{\eta r^2(1 - \eta r^2)} - \frac{(3eX(2eY^2 - 1))(S - \eta r)V_{1x}V_{1y}}{\eta r^2(1 - \eta r^2)} - \frac{eYS\left(\eta (3SreX^2 - (6eX^2 - 1)r^2) + 3eX^2 - 1\right)V_{2x}^2}{\eta r^2(1 - \eta r^2)} - \frac{eYS(\eta r(2r(2eX^2 - eY^2) - 3eX^2S) + 3eY^2 - 1)V_{2y}^2}{\eta r^2(1 - \eta r^2)} - \frac{3eXS(\eta r(r(1 - 4eY^2) + S(2eY^2 - 1)) + 2eY^2)V_{2x}V_{2y}}{\eta r^2(1 - \eta r^2)} + \frac{eYS(r - eY^2S)V_{1x}V_{2x}}{\eta r^3} - \frac{eYeX^2V_{1y}V_{2y}}{\eta r^3} + \frac{eXS(eY^2S - \eta r^2((eY^2 + 1)S - r))V_{1x}V_{2y}}{\eta r^3(1 - \eta r^2)} + \frac{eX(eX^2\eta r^2 - Sr + eY^2)V_{1y}V_{2x}}{\eta r^3(1 - \eta r^2)},$$
(1.0.75)

$$\begin{aligned} A_{2x} &= \frac{eXS}{\eta r^2} \\ &+ \frac{eXS(3eX^2 - 1 - 3SreY^2 - 2(3eX^2 - 2)\eta r^2)V_{1x}^2}{r^2(1 - \eta r^2)} \\ &+ \frac{eXS(3SreY^2 + 3eY^2 - 1 - (6eY^2 - 1)\eta r^2)V_{1y}^2}{r^2(1 - \eta r^2)} \\ &+ \frac{3eYS(\eta r^2(1 - 4eX^2) + Sr(2eX^2 - 1) + 2eX^2)V_{1x}V_{1y}}{r^2(1 - \eta r^2)} \\ &- \frac{3eXeY^2(S - r)V_{2x}^2}{r^2(1 - \eta r^2)} + \frac{3eXeY^2(S - r)V_{2y}^2}{r^2(1 - \eta r^2)} \\ &+ \frac{3eY(2eX^2 - 1)(S - r)V_{2x}V_{2y}}{r^2(1 - \eta r^2)} \\ &+ \frac{eXeY^2V_{1x}V_{2x}}{\eta r^3} - \frac{eXS(\eta r - eX^2S)V_{1y}V_{2y}}{\eta r^3(1 - \eta r^2)} \\ &- \frac{eYS(\eta^2 r^3 - S\eta r^2(eX^2 + 1) + eX^2S)V_{1x}V_{2y}}{\eta r^3(1 - \eta r^2)}, \end{aligned}$$
(1.0.76)

$$A_{2y} = \frac{eYS}{r^2} + \frac{eYS(3SreX^2 + 3eX^2 - 1 - \eta r^2(6eX^2 - 1))V_{1x}^2}{r^2(1 - \eta r^2)} + \frac{eYS(3eY^2 - 3SreX^2 - 1 - 2\eta r^2(eY^2 - 2eX^2))V_{1y}^2}{r^2(1 - \eta r^2)} + \frac{3eXS(\eta r^2(1 - 4eY^2) + Sr(2eY^2 - 1) + 2eY^2)V_{1x}V_{1y}}{r^2(1 - \eta r^2)} + \frac{3eYeX^2(S - r)V_{2x}^2}{r^2(1 - \eta r^2)} - \frac{3eYeX^2(S - r)V_{2y}^2}{r^2(1 - \eta r^2)} + \frac{3eX(2eY^2 - 1)(S - r)V_{2x}V_{2y}}{r^2(1 - \eta r^2)} - \frac{eYS(\eta r - eY^2S)V_{1x}V_{2x}}{\eta r^3} + \frac{eYeX^2V_{1y}V_{2y}}{\eta r^3} - \frac{eX(\eta r(eX^2r - S) + eY^2)V_{1x}V_{2y}}{\eta r^3(1 - \eta r^2)} - \frac{eXS(\eta^2r^3 - S\eta r^2(eY^2 + 1) + eY^2S)V_{1y}V_{2x}}{\eta r^3(1 - \eta r^2)}.$$
(1.0.77)

Apêndice B Transformação De Coordenadas

2.1 Vetor do centro de massa e relativo

Para um sistema de massas discreto, formado por um conjunto de massas pontuais, o centro de massa é definido como:

$$\mathbf{r}_{cm} = \frac{\sum_{i} (\mathbf{r}_{i} m_{i})}{\sum_{i} m_{i}}$$

- m_i Massa da i-ésima partícula,
- \mathbf{r}_i Posição da i-ésima partícula.

Portanto,

$$\begin{aligned} x_{cm} &= \frac{m_1 x_1 + m_2 x_2}{m_1 + m_2}, \\ y_{cm} &= \frac{m_1 y_1 + m_2 y_2}{m_1 + m_2}, \\ z_{cm} &= \frac{m_1 z_1 + m_2 z_2}{m_1 + m_2}, \end{aligned}$$

substituindo

$$\frac{m_1}{m_2} = \eta,$$

obtemos

$$x_{cm} = \frac{\eta x_1 + x_2}{\eta + 1}, \qquad (2.1.1)$$

$$y_{cm} = \frac{\eta y_1 + y_2}{\eta + 1}, \qquad (2.1.2)$$

$$z_{cm} = \frac{\eta z_1 + z_2}{\eta + 1}.$$
 (2.1.3)

A partir da equações (2.1.1), (2.1.2) e (2.1.3) obtemos a velocidade e a aceleração do centro de massa no plano xyz:

$$V_x = \frac{dx_{cm}}{dt} = \frac{\eta V_{1x} + V_{2x}}{\eta + 1},$$
(2.1.4)

$$V_y = \frac{dy_{cm}}{dt} = \frac{\eta V_{1y} + V_{2y}}{\eta + 1},$$
(2.1.5)

$$V_z = \frac{dz_{cm}}{dt} = \frac{\eta V_{1z} + V_{2z}}{\eta + 1},$$
(2.1.6)

$$A_x = \frac{d^2 x_{cm}}{dt^2} = \frac{\eta A_{1x} + A_{2x}}{\eta + 1},$$
(2.1.7)

$$A_y = \frac{d^2 y_{cm}}{dt^2} = \frac{\eta A_{2x} + A_{2y}}{\eta + 1}, \qquad (2.1.8)$$

$$A_z = \frac{d^2 z_{cm}}{dt^2} = \frac{\eta A_{2z} + A_{2z}}{\eta + 1}.$$
 (2.1.9)

Na forma matricial temos a posição, velocidade e aceleração do centro de massa como:

$$\mathbf{r}_{cm} = \frac{\eta \mathbf{r}_1 + \mathbf{r}_2}{\eta + 1} = \begin{pmatrix} x_{cm} \\ y_{cm} \\ z_{cm} \end{pmatrix},$$
$$\mathbf{V} = \frac{\eta \mathbf{V}_1 + \mathbf{V}_2}{\eta + 1} = \begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix},$$
$$\mathbf{A} = \frac{\eta \mathbf{A}_1 + \mathbf{A}_2}{\eta + 1} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}.$$

Definimos o vetor da posição relativa entre duas partículas como:

$$x = x_2 - x_1, (2.1.10)$$

$$y = y_2 - y_1, (2.1.11)$$

$$z = z_2 - z_1. (2.1.12)$$

Derivando as equações (2.1.10), (2.1.11) e (2.1.12) com relação ao tempo obtemos as velocidades e derivando novamente obtêm-se as acelerações, portanto:

$$v_x = V_{2x} - V_{1x}, (2.1.13)$$

$$v_y = V_{2y} - V_{1y}, (2.1.14)$$

$$\begin{aligned}
 v_y &= V_{2y} - V_{1y}, & (2.1.14) \\
 v_z &= V_{2z} - V_{1z}, & (2.1.15) \\
 q_z &= A_{2z} - A_{z} & (2.1.16) \\
 v_z &= V_{zz} - V_{zz}, & (2.1.16) \\
 v_z &= V_{zz} - V_{zz} - V_{zz}, & (2.1.16) \\
 v_z &= V_{zz} - V_{zz} -$$

$$a_x = A_{2x} - A_{1x}, (2.1.16)$$

$$a_{y} = A_{2y} - A_{1y}, \qquad (2.1.17)$$

$$(2.1.17)$$

$$(2.1.17)$$

$$a_z = A_{2z} - A_{1z}. (2.1.18)$$

Na forma matricial temos a posição, velocidade e aceleração do vetor relativo como:

$$\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1 = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \ \mathbf{v} = \begin{pmatrix} v_x \\ v_y \\ v_z \end{pmatrix}, \ \mathbf{a} = \begin{pmatrix} a_x \\ a_y \\ a_z \end{pmatrix}.$$

Por fim, a última relação que obtemos é a relação das velocidades das partículas em função do vetor centro de massa e o vetor relativo que é expresso da seguinte maneira:

$$V_{1x} = \frac{-v_x + V_x \eta + V_x}{\eta + 1}, \qquad (2.1.19)$$

$$V_{1y} = \frac{-v_y + V_y \eta + V_y}{\eta + 1}, \qquad (2.1.20)$$

$$V_{1z} = \frac{-v_z + V_z \eta + V_z}{\eta + 1}, \qquad (2.1.21)$$

$$V_{2x} = \frac{V_x \eta + V_x + \eta v_x}{\eta + 1}, \qquad (2.1.22)$$

$$V_{2y} = \frac{V_y \eta + V_y + \eta v_y}{\eta + 1}, \qquad (2.1.23)$$

$$V_{2z} = \frac{V_z \eta + V_z + \eta v_z}{\eta + 1}.$$
 (2.1.24)

Com estas relações definidas neste apêndice podemos reescrever completamente o sistema de equações diferenciais para as duas cargas pontuais em função do vetor centro de massa e o vetor relativo.

2.2 Coordenadas polares

As equações (1.0.70), (1.0.71), (1.0.72) e (1.0.73) do apêncide (A) podem ser expressas pelos vetores do centro de massa, relativo e projetados nas coordenadas polares. Consideremos o plano xy onde vetor posição para as coordenadas cartesianas $x \in y$ em função das coordendas polares $r \in \theta$ é descrita pela seguinte relação trigonométrica:

$$x = r\cos(\theta), \qquad (2.2.25)$$

$$y = r\sin(\theta), \qquad (2.2.26)$$

O vetor ${\bf r}$ na coordenada cartesiana é:

$$\mathbf{r} = x\hat{x} + y\hat{y},\tag{2.2.27}$$

e o versor \hat{r} dado como:

$$\hat{r} = \frac{\mathbf{r}}{r},\tag{2.2.28}$$

portanto podemos reescrevê-lo da seguinte forma:

$$\hat{r} = \hat{x}\cos(\theta) + \hat{y}\sin(\theta)$$

O vetor velocidade, dado por:

$$\mathbf{v} = \frac{d\mathbf{r}}{dt},$$

na qual substituindo a expressão (2.2.28) nos leva a seguinte relação para a velocidade:

$$\mathbf{v} = \frac{d(r\hat{r})}{dt},$$

$$\mathbf{v} = \hat{r}\frac{dr}{dt} + r\frac{d\hat{r}}{dt}.$$
 (2.2.29)

A derivada temporal de \hat{r} é

$$\frac{d\hat{r}}{dt} = \hat{x}\frac{d\cos(\theta)}{dt} + \hat{y}\frac{d\sin(\theta)}{dt},$$

$$= -\hat{x}\sin(\theta)\frac{d\theta}{dt} + \hat{y}\cos(\theta)\frac{d\theta}{dt},$$

$$= \frac{d\theta}{dt}\underbrace{(-\hat{x}\sin(\theta) + \hat{y}\cos(\theta))}_{=\hat{\theta}},$$

$$= \frac{d\theta}{dt}\hat{\theta}.$$

Assim, a velocidade da partícula em função de r e θ pode ser escrita como:

$$\mathbf{v} = \hat{r}\frac{dr}{dt} + r\frac{d\hat{r}}{dt} = \hat{r}\frac{dr}{dt} + r\frac{d\theta}{dt}\hat{\theta},$$

ou em termos de v_x e v_y , da equação $\mathbf{v} = \hat{x}(dx/dt) + \hat{y}(dy/dt)$, temos:

$$\begin{cases} v_x = \frac{dr}{dt}\cos(\theta) - r\sin(\theta)\frac{d\theta}{dt}, \qquad (2.2.30) \end{cases}$$

$$v_y = \frac{dr}{dt}\sin(\theta) + r\cos(\theta)\frac{d\theta}{dt}.$$
(2.2.31)

2.2. COORDENADAS POLARES

Com as equações (2.2.30) e (2.2.31) podemos escrever as componentes das velocidades dos vetores centro de massa e relativo em função de $r \in \theta$, portanto temos:

• Velocidade do centro de massa:

$$V_x = \frac{dr_{cm}}{dt}\cos(\theta) - r_{cm}\frac{d\theta}{dt}\sin(\theta), \qquad (2.2.32)$$

$$V_y = \underbrace{\frac{dr_{cm}}{dt}}_{V_r} \underbrace{\sin(\theta)}_{eY} + \underbrace{r_{cm}\frac{d\theta}{dt}}_{V_{\theta}} \underbrace{\cos(\theta)}_{eX}, \qquad (2.2.33)$$

$$\int V_x = V_r e X - V_\theta e Y, \qquad (2.2.34)$$

$$V_y = V_r e Y + V_\theta e X. (2.2.35)$$

• Velocidade relativa:

$$v_x = \frac{dr}{dt}\cos(\theta) - r\frac{d\theta}{dt}\sin(\theta), \qquad (2.2.36)$$

$$\begin{cases} v_y = \underbrace{\frac{dr}{dt}}_{v_r} \underbrace{\sin(\theta)}_{eY} + r \frac{d\theta}{dt} \underbrace{\cos(\theta)}_{eX}, \end{cases}$$
(2.2.37)

o termo $d\theta/dt$ pode ser substituido por:

$$\frac{d\theta}{dt} = \frac{\eta + 1}{\eta} \frac{l}{r^2}, \qquad (2.2.38)$$

em que l é o momento angular relativo que será demonstrado na seção (3.1) do apêndice (C), sendo assim, temos:

$$v_x = v_r e X - \frac{e Y(\eta + 1)l}{\eta r},$$
(2.2.39)

$$v_y = v_r eY + \frac{eX(\eta + 1)l}{\eta r}.$$
 (2.2.40)

Calculando a derivada temporal do versor $\hat{\theta}$, temos:

$$\begin{aligned} \frac{d\theta}{dt} &= -\hat{x}\cos(\theta)\frac{d\theta}{dt} - \hat{y}\sin(\theta)\frac{d\theta}{dt} \\ \frac{d\hat{\theta}}{dt} &= (-\hat{x}\cos(\theta) - \hat{y}\sin(\theta))\frac{d\theta}{dt}, \\ \frac{d\hat{\theta}}{dt} &= -\hat{r}\frac{d\theta}{dt}. \end{aligned}$$

Realizado as derivadas de segunda ordem no tempo dos versores $\hat{r} \in \hat{\theta}$ chegamos as seguintes expressões:

$$\begin{split} \frac{d^2 \hat{r}}{dt^2} &= \frac{d}{dt} \left(\frac{d\theta}{dt} \hat{\theta} \right), \\ &= \frac{d^2 \theta}{dt^2} \hat{\theta} + \frac{d\theta}{dt} \frac{d\hat{\theta}}{dt}, \\ &= \frac{d^2 \theta}{dt^2} \hat{\theta} + \frac{d\theta}{dt} \left(-\hat{r} \frac{d\theta}{dt} \right), \\ &= \hat{\theta} \frac{d^2 \theta}{dt^2} - \hat{r} \left(\frac{d\theta}{dt} \right)^2, \end{split}$$

$$\begin{aligned} \frac{d^2\hat{\theta}}{dt^2} &= \frac{d}{dt}\left(\frac{d\hat{\theta}}{dt}\right) = \frac{d}{dt}\left(-\hat{r}\frac{d\theta}{dt}\right),\\ &= -\hat{r}\frac{d^2\theta}{dt^2} - \frac{d\theta}{dt}\frac{d\hat{r}}{dt},\\ &= -\hat{r}\frac{d^2\theta}{dt^2} - \frac{d\theta}{dt}\frac{d\theta}{dt}\hat{\theta},\\ &= -\hat{r}\frac{d^2\theta}{dt^2} - \hat{\theta}\left(\frac{d\theta}{dt}\right)^2,\end{aligned}$$

que possibilita escrever a aceleração na coordenada polar da seguinte maneira:

$$\mathbf{a} = \frac{d^2 \mathbf{r}}{dt^2} = \frac{d}{dt} \left(\frac{d \mathbf{r}}{dt} \right),$$

$$= \frac{d}{dt} \left(\hat{r} \frac{dr}{dt} + r \frac{d\theta}{dt} \hat{\theta} \right),$$

$$= \frac{d\hat{r}}{dt} \frac{dr}{dt} + \hat{r} \frac{d^2 r}{dt^2} + \frac{d}{dt} \left(r \frac{d\theta}{dt} \right) \hat{\theta} + r \frac{d\theta}{dt} \frac{d\hat{\theta}}{dt},$$

$$= \hat{\theta} \frac{d\theta}{dt} \frac{dr}{dt} + \hat{r} \frac{d^2 r}{dt^2} + \frac{dr}{dt} \frac{d\theta}{dt} \hat{\theta} + r \hat{\theta} \frac{d^2 \theta}{dt^2} + r \frac{d\theta}{dt} \left(-\hat{r} \frac{d\theta}{dt} \right),$$

$$= \hat{r} \left(\frac{d^2 r}{dt^2} - r \left(\frac{d\theta}{dt} \right)^2 \right) + \hat{\theta} \left(2 \frac{d\theta}{dt} \frac{dr}{dt} + r \frac{d^2 \theta}{dt^2} \right),$$

$$\left(\frac{d^2 r}{dt^2} - r \left(\frac{d\theta}{dt} \right)^2 \right) = \left(-\frac{d\theta}{dt} \frac{dr}{dt} - r \frac{d^2 \theta}{dt^2} \right),$$

$$\mathbf{a} = \hat{r} \left(\frac{d^2 r}{dt^2} - r \left(\frac{d\theta}{dt} \right)^2 \right) + \hat{\theta} \left(2 \frac{d\theta}{dt} \frac{dr}{dt} + r \frac{d^2 \theta}{dt^2} \right).$$
(2.2.41)

Dado os versores $\hat{r} \in \hat{\theta}$ em função dos versores $\hat{x} \in \hat{y}$,

$$\begin{cases} \hat{r} = \cos(\theta)\hat{x} + \sin(\theta)\hat{y} \\ \hat{\theta} = -\sin(\theta)\hat{x} + \cos(\theta)\hat{y} \end{cases}$$

resolvemos o sistema acima para termos dos versores $\hat{x} \in \hat{y}$ em função dos versores $\hat{r} \in \hat{\theta}$, ou seja,

$$\begin{cases} \hat{x} = \cos(\theta)\hat{r} - \sin(\theta)\hat{\theta} \\ \hat{y} = \sin(\theta)\hat{r} + \cos(\theta)\hat{\theta} \end{cases}$$

Escrevendo a aceleração como:

$$\mathbf{a} = a_x \hat{x} + a_y \hat{y},$$

e substituimos os termos $\hat{x} \in \hat{y}$ temos:

$$\mathbf{a} = a_x(-\sin(\theta)\hat{\theta} + \cos(\theta)\hat{r}) + a_y(\cos(\theta)\hat{\theta} + \sin(\theta)\hat{r}), \qquad (2.2.42)$$

em que os termos a_x e a_y são as componentes das acelerações no plano cartesiano x e y respectivamente.

Para obter as equações que descrevem o movimento das partículas com relação aos vetores de centro de massa e relativo nas coordenadas polares substituimos nas equações (1.0.70), (1.0.71), (1.0.72) e (1.0.73), do apêncide (A), primeiramente as equações (2.1.19), (2.1.20), (2.1.22) e (2.1.23), da seção (2.1)(Apêndice (B)), que descrevem as velocidades das partículas nas coordenadas cartesianas em função da velocidade do centro de massa e da velocidade relativa. Posteriormente substituimos nestas equações as expressões (2.2.34), (2.2.35), (2.2.39) e (2.2.40) que descrevem as velocidades do centro de massa e relativo em função de V_r , V_{θ} , v_r e l.

Igualando as acelerações dada pelas equações (2.2.41) e (2.2.42) e substituindo primeiramente os termos a_x e a_y pelas acelerações relativas, (2.1.16) e (2.1.17), obtemos as equações:

$$\frac{dv_r}{dt} = \frac{(\eta+1)^2 l^2}{\eta^2 r^3} - \frac{\eta+1}{\eta r^2} + \frac{8\alpha v_r}{(\eta+1)r^2} \\
- \frac{4\alpha(\eta-1)V_r}{\eta r^2} - \frac{2v_r^2}{r^2(\eta+1)} - \frac{2(\eta+1)V_r^2}{\eta r^2} \\
+ \left(\frac{4\alpha^2(\eta-1)^2(\eta r+\eta+1)}{\eta^3 r^4(\eta r^2-1)} + \frac{8\alpha^2-2}{\eta^2 r^5}\right) l^2 \\
+ \left(\frac{8\alpha^2(\eta r+r+2)}{r(\eta r^2-1)} - \frac{2(\eta r+r+1)(4\alpha^2-1)}{\eta r^3}\right) V_{\theta}^2 \\
+ \left(\frac{4\alpha^2(\eta-1)(\eta^2 r^2+2+(r^2+4r+2)\eta)}{\eta^2 r^3(\eta r^2-1)} - \frac{(\eta-1)(\eta r+r+2)(4\alpha^2-1)}{\eta^2 r^4}\right) lV_{\theta},$$
(2.2.43)

$$\begin{aligned} \frac{dl}{dt} &= \frac{2(\eta-1)(\eta r^2+1)\alpha V_{\theta}}{r(\eta+1)(\eta r^2-1)} - \frac{2(2\eta^2 r^2-\eta^2-1)\alpha l}{\eta r^2(\eta r^2-1)(\eta+1)} \\ &+ \left(\frac{2(\eta-1)(4\alpha^2-1)}{\eta r^2(\eta r^2-1)} - \frac{4(\eta-1)\alpha^2(-1+(r-1)\eta)}{(\eta r^2(\eta r^2-1)(\eta+1)}\right) lV_r \\ &+ \left(\frac{8\alpha^2(1/2+\eta^2 r^2+(r^2-r+1/2)\eta)}{r(\eta+1)(\eta r^2-1)} + \frac{-8\alpha^2+2}{r}\right) V_r V_{\theta} \\ &+ \frac{4\alpha^2}{\eta r^2(\eta r^2-1)^2(\eta+1)^2} \left(1 + (4r^4-r^3-4r^2)\eta^4 + (4r^4-3r^2+r+1)\eta^3 + (2-r^3-3r^2)\eta^2 + (2-4r^2+r)\eta\right) lv_r \\ &+ (2-r^3-3r^2)\eta^2 + (2-4r^2+r)\eta) lv_r \\ &- \frac{(4\eta^2 r^2-3\eta^2+2\eta-3)(4\alpha^2-1)lv_r}{\eta r^2(\eta r^2-1)(\eta+1)} \\ &+ \left(\frac{(\eta r^2+3)(\eta-1)(4\alpha^2-1)}{r(\eta+1)(\eta r^2-1)} - \frac{4\alpha^2(\eta-1)(\eta^3 r^4-1+r^2(r^2+r+6)\eta^2+(6r^2-r-1)\eta)}{r(\eta r^2-1)^2(\eta+1)^2}\right) v_r V_{\theta}, \quad (2.2.44) \end{aligned}$$

que descrevem a aceleração relativa radial e a variação do momento angular relativo. Substituindo a_x por (2.1.7) e a_y por (2.1.8) obtemos as equações:

$$\frac{dV_r}{dt} = \frac{(\eta+1)lV_{\theta}}{\eta r^2} - \frac{4\alpha(\eta-1)v_r}{r^2(\eta+1)^2} + \frac{2(\eta-1)v_r^2}{r^2(\eta+1)^2} - \frac{8\alpha V_r}{r^2(\eta+1)} \\
+ \left(\frac{(\eta-1)(\eta r+r-1)(4\alpha^2-1)}{\eta^2 r^5(\eta+1)} - \frac{4(\eta-1)\alpha^2(\eta^2 r^2-2+(r^2-2r-2)\eta)}{r^4\eta^2(\eta r^2-1)(\eta+1)}\right)l^2 \\
+ \left(\frac{(2\eta^2 r+\eta^2+2\eta r-2\eta+1)(4\alpha^2-1)}{\eta^2 r^4(\eta+1)} - \frac{4\alpha^2(\eta r+r-4)(2\eta r+\eta+1)}{r^3\eta(\eta+1)(\eta r^2-1)}\right)lV_{\theta} \\
+ \left(\frac{4\alpha^2(\eta-1)-\eta+1}{\eta r^3(\eta+1)} - \frac{8\alpha^2(\eta-1)}{r(\eta+1)(\eta r^2-1)}\right)V_{\theta}^2 + \left(\frac{16\alpha^2}{r^2(\eta+1)} + \frac{-16\alpha^2+4}{r^2(\eta+1)}\right)v_rV_r, \tag{2.2.45}$$

$$\frac{dV_{\theta}}{dt} = \frac{2(r+1)(\eta-1)(\eta r+1)\alpha l}{\eta r^{3}(\eta+1)(\eta r^{2}-1)} - \frac{(\eta+1)lV_{r}}{\eta r^{2}} \\
+ \frac{4(r+1)(\eta r+1)\alpha V_{\theta}}{r^{2}(\eta+1)(\eta r^{2}-1)} + \frac{4\alpha^{2}(\eta-1)V_{r}V_{\theta}}{r(\eta+1)(\eta r^{2}-1)} \\
+ \left(\frac{2(r+1)(\eta r+1)(4\alpha^{2}-1)}{\eta r^{3}(\eta r^{2}-1)} - \frac{4\alpha^{2}(-1+2\eta^{2}r^{2}+(2r^{2}+2r-1)\eta)}{\eta r^{3}(\eta+1)(\eta r^{2}-1)}\right) lV_{r} \\
+ \frac{3(r+1)(\eta-1)(\eta r+1)(4\alpha^{2}-1)lv_{r}}{\eta r^{3}(\eta+1)(\eta r^{2}-1)} \\
- \frac{4\alpha^{2}(\eta-1)}{\eta r^{3}(\eta r^{2}-1)^{2}(\eta+1)^{2}} \left(-1 + (3r^{4}+3r^{3})\eta^{3} \\
+ (3r^{4}+7r^{3}+4r^{2})\eta^{2} + (3r^{3}+4r^{2}-r-1)\eta\right) lv_{r} \\
+ \frac{4(r+1)(\eta r+1)(4\alpha^{2}-1)v_{r}V_{\theta}}{r^{2}(\eta+1)(\eta r^{2}-1)} \\
- \frac{4\alpha^{2}}{r^{2}(\eta r^{2}-1)^{2}(\eta+1)^{2}} \left(-3 + (4r^{4}+6r^{3})\eta^{3} \\
+ (4r^{4}+14r^{3}+11r^{2})\eta^{2} + (6r^{3}+11r^{2}-2r-3)\eta\right) v_{r}V_{\theta}.$$
(2.2.46)

que descrevem a aceleração do centro de massa radial e a aceleração do centro de massa tangencial respectivamente.

Apêndice C Transformação De Escala

3.1 Momento angular

Da definição do momento angular para um sistema de duas partículas temos:

$$\mathbf{L} = m_1 \mathbf{r}_1 \times \mathbf{v}_1 + m_2 \mathbf{r}_2 \times \mathbf{v}_2, \qquad (3.1.1)$$

onde os vetores posição r_1 e r_2 e os vetores velocidades v_1 e v_2 são substituidos pelos vetores do centro de massa e relativo tanto nas posições quanto nas velocidades de forma que:

$$\mathbf{L} = m_1 \left(\mathbf{R} - \frac{m_2}{m_1 + m_2} \mathbf{r} \right) \times \left(\mathbf{V} - \frac{m_2}{m_1 + m_2} \mathbf{v} \right) + m_2 \left(\mathbf{R} + \frac{m_1}{m_1 + m_2} \mathbf{r} \right) \times \left(\mathbf{V} + \frac{m_1}{m_1 + m_2} \mathbf{v} \right),$$
$$\mathbf{L} = (m_1 + m_2) \mathbf{R} \times \mathbf{V} + \frac{m_1 m_2}{m_1 + m_2} \mathbf{r} \times \mathbf{v}.$$

Aplicando as transformações de escalas:

$$\begin{aligned} r &\to Lr, \\ v &\to cv, \\ V &\to cV, \end{aligned}$$

no momento angular temos a seguinte expressão:

$$(m_1 + m_2) L\mathbf{R} \times c\mathbf{V} + \frac{m_1 m_2}{m_1 + m_2} L\mathbf{r} \times c\mathbf{v},$$

$$\frac{|q_1||q_2|}{4\pi\epsilon_0 m_2 c^2} c (m_1 + m_2) \mathbf{R} \times \mathbf{V} + \frac{|q_1||q_2|}{4\pi\epsilon_0 m_2 c^2} c \frac{m_1 m_2}{m_1 + m_2} \mathbf{r} \times \mathbf{v},$$

$$\frac{|q_1||q_2|}{4\pi\epsilon_0 c} (\eta + 1) \mathbf{R} \times \mathbf{V} + \frac{|q_1||q_2|}{4\pi\epsilon_0 c} \frac{\eta}{\eta + 1} \mathbf{r} \times \mathbf{v},$$

$$\frac{|q_1||q_2|}{4\pi\epsilon_0 c} \left((\eta + 1) \mathbf{R} \times \mathbf{V} + \frac{\eta}{\eta + 1} \mathbf{r} \times \mathbf{v} \right),$$

que nos leva a seguinte relação de transformação:

$$\mathbf{L} \to \frac{|q_1||q_2|}{4\pi\epsilon_0 c} \mathbf{L}.$$
(3.1.2)

Da relação acima temos que o momento angular nas unidades adimensionais é dado por:

$$\mathbf{L} = (\eta + 1) \,\mathbf{R} \times \mathbf{V} + \frac{\eta}{\eta + 1} \mathbf{r} \times \mathbf{v}. \tag{3.1.3}$$

Se considerarmos o momento angular na coordenada polar com o centro de massa nulo e que as partículas encontram-se no plano xy obtemos a seguinte equação:

$$\begin{split} \mathbf{L} &= \frac{\eta}{\eta+1} \mathbf{r} \times \mathbf{v}, \\ \mathbf{L} &= \frac{\eta}{\eta+1} (r\hat{r}) \times \left(\hat{r} \frac{dr}{dt} + r \frac{d\theta}{dt} \hat{\theta} \right), \\ \mathbf{L} &= \frac{\eta}{\eta+1} r^2 \frac{d\theta}{dt} \underbrace{\left(\hat{r} \times \hat{\theta} \right)}_{\hat{z}}. \end{split}$$

Como a projeção do momento é no eixo z podemos reescrever a expressão acima da seguinte maneira:

$$l_z = l = \frac{\eta}{\eta + 1} r^2 \frac{d\theta}{dt}.$$
(3.1.4)

Portanto, temos uma relação entre a velocidade angular e o momento angular dada por:

$$r\frac{d\theta}{dt} = \frac{\eta + 1}{\eta}\frac{l}{r}.$$
(3.1.5)

Apêndice D Condições Iniciais

4.1 Condições iniciais para o sistema dinâmico

Para determinar as condições iniciais do conjunto de equações (1.0.70), (1.0.71), (1.0.72) e (1.0.73), do apêncide (A), no plano cartesiano iremos considerar S = -1, pois o sistema de interesse é o atrativo. Estabelecemos a distância entre as partículas no tempo inicial, t_0 , como $r_0 = 18789.0$ (Raio de Bohr para a órbita n = 1). Para determinar a velocidade angular inicial consideramos a equação (2.2.43) do apêndice (B) com o centro de massa em repouso, portanto $V_r = V_{\theta} = 0$. Assuminos $\alpha = 0$ e $v_r = 0$, isto é, a força que atua no sistema tem caráter puramente coulombiana (gerando órbitas circulares), portanto:

$$0 = -\frac{\eta + 1}{\eta r^2} + \frac{(\eta + 1)^2 l^2}{\eta^2 r^3} - \frac{2l^2}{\eta^2 r^5},$$

$$\frac{\eta + 1}{\eta r^2} = \frac{(\eta + 1)^2 l^2}{\eta^2 r^3} - \frac{2l^2}{\eta^2 r^5},$$

como os termos que multiplicam l^2 a direita da igualdade acima possuem valores aproximados de $(\eta + 1)^2 / \eta^2 r^3 \approx 10^{-13}$ e $2/\eta^2 r^5 \approx 10^{-28}$ considerando $r = r_0$ e $\eta = 1836.0$ (razão entre a massa do próton e a massa do elétron) podemos desconsiderar o segundo termo em detrimento do primeiro que apresenta uma maior contribuição ao momento angular relativo, sendo assim,

$$1 = \frac{(\eta + 1)l^2}{\eta r},$$

$$\frac{\eta r}{(\eta + 1)} = l^2,$$

$$\frac{\eta r}{\eta + 1} = \left(\frac{\eta}{\eta + 1}\right)^2 r^4 \left(\frac{d\theta}{dt}\right)^2,$$

$$\left(\frac{\eta + 1}{\eta}\right) \frac{1}{r^3} = \left(\frac{d\theta}{dt}\right)^2.$$

A velocidade angular inicial, portanto, é dado da seguinte maneira:

$$\left. \frac{d\theta}{dt} \right|_{t=0} = \left(\frac{\eta+1}{\eta} \right)^{\frac{1}{2}} \frac{1}{r_0^{\frac{3}{2}}}.$$
(4.1.1)

Caso tivéssemos adotado alfa igual a 1/2 ou -1/2 chegaríamos ao mesmo resultado para a velocidade angular inicial com a diferença que para alfa diferente de zero o segundo

termo que multiplica l^2 dado por $2/\eta^2 r^5$ seria substituido pela expressão:

$$\frac{(\eta-1)^2 (\eta \, r+\eta+1)}{r^4 (\eta \, r^2-1) \, \eta^3},$$

cujo valor aproximado é da ordem de 10^{-25} dados os mesmos valores para $r \in \eta$, sendo assim, este termo também seria desprezado devivido a sua pequena contribuição para o momento angular relativo.

Com o vetor da posição do centro de massa (Seção(2.1) do apêncide (B)) :

$$\mathbf{r}_{cm} = \frac{\eta \mathbf{r}_1 + \mathbf{r}_2}{\eta + 1},\tag{4.1.2}$$

e o vetor da posição relativa (Seção(2.1) do apêncide (B)):

$$\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1, \tag{4.1.3}$$

podemos expressar os vetores \mathbf{r}_1 e \mathbf{r}_2 em função do vetor centro de massa e relativo, portanto temos:

$$(\eta + 1)\mathbf{r}_{cm} = \eta \mathbf{r}_1 + \mathbf{r}_2 + \mathbf{r}_1 - \mathbf{r}_1, (\eta + 1)\mathbf{r}_{cm} = (\eta + 1)\mathbf{r}_1 + \mathbf{r},$$
 (4.1.4)

$$(\eta + 1)\mathbf{r}_{cm} = \eta \mathbf{r}_1 + \mathbf{r}_2 + \eta \mathbf{r}_2 - \eta \mathbf{r}_2, (\eta + 1)\mathbf{r}_{cm} = (\eta + 1)\mathbf{r}_2 - \eta \mathbf{r}.$$
 (4.1.5)

Assumindo para o tempo inicial que $\mathbf{r}_{cm} = 0$, temos as seguintes relações:

$$\mathbf{r}_1 = -\frac{\mathbf{r}}{\eta + 1},\tag{4.1.6}$$

$$\mathbf{r}_2 = \frac{\eta}{\eta + 1} \mathbf{r}, \tag{4.1.7}$$

e dado que $\mathbf{r} = (r_0, 0)$ as posições iniciais no plano cartesiano são:

$$x_1(t_0) = -\frac{r_0}{\eta + 1}, \tag{4.1.8}$$

$$y_1(t_0) = 0, (4.1.9)$$

$$x_2(t_0) = \frac{\eta r_0}{n+1}, \tag{4.1.10}$$

$$y_2(t_0) = 0. (4.1.11)$$

Para determiar as velocidades iniciais consideremos as equações (2.2.25), (2.2.26), (2.2.39) e (2.2.40) (Seção (2.2) do apêncide (B)) reescrevendo da seguinte maneira:

$$v_x = \frac{d\mathbf{r}}{dt}\frac{x}{r} - y\frac{d\theta}{dt},\tag{4.1.12}$$

$$v_y = \frac{d\mathbf{r}}{dt}\frac{y}{r} + x\frac{d\theta}{dt}.$$
(4.1.13)

Para o tempo inicial, em que $d\mathbf{r}/dt = 0$, temos:

$$v_x = -y \frac{d\theta}{dt},\tag{4.1.14}$$

$$v_y = x \frac{d\theta}{dt}.\tag{4.1.15}$$

Portanto, as condições inicias para as velocidades são:

$$V_{1x}(t_0) = -y_1 \left. \frac{d\theta}{dt} \right|_{t=0} = 0,$$

$$V_{1y}(t_0) = x_1 \left. \frac{d\theta}{dt} \right|_{t=0},$$

$$V_{2x}(t_0) = -y_2 \left. \frac{d\theta}{dt} \right|_{t=0} = 0,$$

$$V_{2y}(t_0) = x_2 \left. \frac{d\theta}{dt} \right|_{t=0}.$$

Apêndice E Código Fonte

Abaixo temos os parâmetros utilizados em algumas das simulações apresentadas no capítulo III.

η	α	H_n	r_0	n	m	Tempo de simulação
1	1/2	H^0	50	95	1	00:00:01
1	1/2	H^1	50	60	25000	00:00:16
1	1/2	H^2	50	60	25000	00:01:17
1	1/2	H^3	50	60	25000	00:10:59
1	0	H^0	50	100	250	00:00:05
1	0	H^1	50	100	250	00:00:48
2	1/2	H^0	50	95	1	00:00:01
2	1/2	H^1	50	60	25000	00:00:28
2	1/2	H^2	50	60	25000	00:02:14
2	1/2	H^3	50	60	25000	00:17:54
2	0	H^0	50	100	4500	00:01:44
2	0	H^1	50	100	4500	00:14:21
100	1/2	H^0	50	95	45	00:00:06
100	1/2	H^1	50	60	25000	00:16:29
100	1/2	H^2	50	60	25000	01:23:06
100	1/2	H^3	50	60	25000	10:50:29
100	0	H^0	50	160	11500	00:06:30
100	0	H^1	50	160	11500	00:59:17

Tabela E.1: Tabela dos parâmetros das simulações. O parâmetro α indica a proporção entre os campos calculados no tempo de retardo e no tempo avançado. Dado o valor alfa igual a meio o campo é calculado somente no tempo de retardo e quando alfa é zero existe a contribuição dos dois campos de forma idêntica. O valor de η indica a razão entre as massas das partículas e r_0 a distância inicial entre as partículas. O campo vetorial H^n indica em qual ordem de convergência n estamos simulando as equações. Os parâmetros n e m, trabalham juntos para obter os valores das posições, velocidades e acelerações calculados durante as simulações. Sendo assim, n indica a divisão do círculo em n partes e m é o número de círculos que desejamos calcular, por fim temos os tempos de simulação. No Pseudocódigo, apresentado abaixo, temos a estrutura principal de como se deve realizar o processo de simulação do sistema. O que muda de uma simulação para outra é a ordem do campo H^n que estamos avaliando.

Como exemplo quando estamos considerando a aproximação de ordem zero, H^0 , aplicamos o modelo de runge-kutta tradicional conhecido na literatura. Ou seja, aplicamos o modelo de runge-kutta nas equações instâneas, desenvoldidas no apêndice (A), obtemos as posições e velocidades das partículas. Quando realizamos a aproximação de primeira ordem, H^1 , calculamos os tempos de retardo e/ou os tempos avançados de maneira a encontrar as posições e velocidades, utilizando o runge-kutta desenvolvido para aproximação de ordem zero, das posições e velocidades dos tempos de retardo e/ou dos tempos avançados. Assim, podemos calcular as acelerações retardas e/ou avançadas para obter as acelerações no tempo t e assim aplicar o método de runge-kutta nessas acelerações. Desta forma, podemos aumentar o valor de n do campo vetorial H^n para encontrar a aproximação do campo H^{n+1} considerando o runge-kutta desenvolvido para o campo H^n .

```
1 /* Loop pra os m circulos */
 for (j = 1; j <= m; j++):
2
      /* Loop para o cálculo do Runge Kutta e
3
         retornar o passo do círculo divido em
4
         n partes */
      for (i = 1; i < n; i++):
6
7
          t += dt
8
9
          dt_atual,x1,y1,x2,y2,V1x,V1y,V2x,V2y <- Runge-Kutta do campo H^n
          dt = dt_atual
12
          Salva o tempo, posições e velocidades <- t x1 y1 x2 y2 V1x V1y V2x V2y
14
          /* Condição de parada do programa*/
16
          if (sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (
17
               sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) < 2
18
          ):
19
20
               break
21
      /* Atualização do passo para o Próximo ciclos*/
22
      vx = V2x - V1x
23
      vy = V2y - V1y
24
      rr = np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
25
      ex = (x2 - x1) / (rr)
26
      ey = (y2 - y1) / (rr)
27
      DT = (-vx * ey + vy * ex) / (rr)
28
      dt = (2.0 * np.pi) / (DT * n)
29
30
      /* Condição de parada do programa*/
31
32
      if
         (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (rr < 2):
          break
33
```

Código E.1: Pseudocódigo

Por fim, temos os códigos, escrito em Python, para a solução numérica apresentada no capítulo III.

```
1 # -*- coding: utf-8 -*-
2 """
3 @author: rodrigo
  0.0.0
4
5
6 # Bibliotecas
8 import numpy as np # Biblioteca com funções matemáticas
9 from tqdm import tqdm # Biblioteca para calcular o tempo no loop
10
    ### Funções ###
11 #
12
13 #
    ### Equações com os tempos de retardo ###
14
15 # Aceleração da partícula 1 no eixo x para o tempo retardado
  def f_a1x_tr(S, eta, x1, y1, X2, Y2, v1x, v1y, V2x, V2y, A2x, A2y):
16
17
      r12 = np.sqrt((-x1 + X2) ** 2 + (-y1 + Y2) ** 2)
18
      e2X = (-x1 + X2) / r12
19
      e2Y = (-y1 + Y2) / r12
20
21
      ff1x = (
22
           (-(v1x ** 2) - v1y ** 2 + 1) ** 2
23
           * (
24
               (-(v1x ** 2) + 1)
25
               * (
26
27
                    - S
                    * (V2y + e2Y)
28
                    * (v1y + e2Y)
29
                    * A2x
30
                    / (r12 * (V2x * e2X + V2y * e2Y + 1) ** 3)
31
                    + S
32
                    * (V2x + e2X)
33
                    * (v1y + e2Y)
34
                    * A2y
35
                    / (r12 * (V2x * e2X + V2y * e2Y + 1) ** 3)
36
                    + S
37
                    * (V2x ** 2 + V2y ** 2 - 1)
38
                    * (V2x * e2Y * v1y - V2y * e2X * v1y + V2x + e2X)
39
                    / (r12 ** 2 * (V2x * e2X + V2y * e2Y + 1) ** 3)
40
               )
41
42
               - v1x
               * v1y
43
               * (
44
                    S
45
                    * (V2y + e2Y)
46
                    * (v1x + e2X)
47
                    * A2x
48
                    / (r12 * (V2x * e2X + V2y * e2Y + 1) ** 3)
49
50
                    - S
                    * (V2x + e2X)
51
                    * (v1x + e2X)
                    * A2y
53
                    / (r12 * (V2x * e2X + V2y * e2Y + 1) ** 3)
54
                    - S
                    * (V2x ** 2 + V2y ** 2 - 1)
56
                    * (V2x * e2Y * v1x - V2y * e2X * v1x - V2y - e2Y)
57
                    / (r12 ** 2 * (V2x * e2X + V2y * e2Y + 1) ** 3)
58
```

)

59

```
)
60
            / eta
61
       )
62
       return ff1x
63
64
65
66 # Aceleração da partícula 1 no eixo y para o tempo retardado
67 def f_a1y_tr(S, eta, x1, y1, X2, Y2, v1x, v1y, V2x, V2y, A2x, A2y):
68
       r12 = np.sqrt((-x1 + X2) ** 2 + (-y1 + Y2) ** 2)
69
       e2X = (-x1 + X2) / r12
70
       e2Y = (-y1 + Y2) / r12
71
72
       ff1y = (
73
            (-(v1x ** 2) - v1y ** 2 + 1) ** 2
74
            * (
75
                -v1x
76
                * v1y
77
                * (
78
                     - S
                     * (V2y + e2Y)
80
                     * (v1y + e2Y)
81
                     * A2x
82
                     / (r12 * (V2x * e2X + V2y * e2Y + 1) ** 3)
83
84
                     + S
                     * (V2x + e2X)
85
                     * (v1y + e2Y)
86
                     * A2y
87
                     / (r12 * (V2x * e2X + V2y * e2Y + 1) ** 3)
88
                     + S
89
                     * (V2x ** 2 + V2y ** 2 - 1)
90
                     * (V2x * e2Y * v1y - V2y * e2X * v1y + V2x + e2X)
91
                     / (r12 ** 2 * (V2x * e2X + V2y * e2Y + 1) ** 3)
92
                )
93
                + (-(v1y ** 2) + 1)
94
                * (
95
                     S
96
                     * (V2y + e2Y)
97
                     * (v1x + e2X)
98
                     * A2x
99
                     / (r12 * (V2x * e2X + V2y * e2Y + 1) ** 3)
100
                     - S
101
                     * (V2x + e2X)
102
                     * (v1x + e2X)
103
                     * A2y
104
                     / (r12 * (V2x * e2X + V2y * e2Y + 1) ** 3)
105
                     - S
106
                     * (V2x ** 2 + V2y ** 2 - 1)
107
                     * (V2x * e2Y * v1x - V2y * e2X * v1x - V2y - e2Y)
108
                     / (r12 ** 2 * (V2x * e2X + V2y * e2Y + 1) ** 3)
109
                )
            )
            / eta
       )
114
       return ff1y
115
116
117
118 # Aceleração da partícula 2 no eixo x para o tempo retardado
```

```
def f_a2x_tr(S, X1, Y1, x2, y2, V1x, V1y, v2x, v2y, A1x, A1y):
119
120
       r21 = np.sqrt((X1 - x2) ** 2 + (Y1 - y2) ** 2)
121
       e1X = (-X1 + x2) / r21
       e1Y = (-Y1 + y2) / r21
123
124
       ff2x = (-(v2x ** 2) - v2y ** 2 + 1) ** 2 * (
125
            (-(v2x ** 2) + 1)
126
           * (
127
                - S
128
                * (v2y - e1Y)
129
                * (V1y - e1Y)
130
                * Alx
                / (r21 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
                + S
133
134
                * (v2y - e1Y)
                * (V1x - e1X)
                * Aly
136
                / (r21 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
                - S
138
                * (V1x ** 2 + V1y ** 2 - 1)
                * (V1x * e1Y * v2y - V1y * e1X * v2y - V1x + e1X)
140
                / (r21 ** 2 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
141
           )
142
            - v2x
143
            * v2y
144
            * (
145
                S
146
                * (v2x - e1X)
147
                * (V1y - e1Y)
148
149
                * Alx
                / (r21 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
                - S
                * (v2x - e1X)
152
                * (V1x - e1X)
153
                * Aly
154
                / (r21 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
                + S
156
                * (V1x ** 2 + V1y ** 2 - 1)
                * (V1x * e1Y * v2x - V1y * e1X * v2x + V1y - e1Y)
158
                / (r21 ** 2 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
159
           )
160
       )
161
162
       return ff2x
163
164
165 # Aceleração da partícula 2 no eixo y para o tempo retardado
166 def f_a2y_tr(S, X1, Y1, x2, y2, V1x, V1y, v2x, v2y, A1x, A1y):
167
       r21 = np.sqrt((X1 - x2) ** 2 + (Y1 - y2) ** 2)
168
       e1X = (-X1 + x2) / r21
169
       e1Y = (-Y1 + y2) / r21
170
       ff2y = (-(v2x ** 2) - v2y ** 2 + 1) ** 2 * (
            -v2x
            * v2y
174
            * (
175
176
                – S
                * (v2y - e1Y)
177
                * (V1y - e1Y)
178
```

```
* A1x
179
                / (r21 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
180
                + S
181
                * (v2y - e1Y)
182
                * (V1x - e1X)
183
                * Alv
184
                / (r21 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
185
                 - S
186
                * (V1x ** 2 + V1y ** 2 - 1)
187
                * (V1x * e1Y * v2y - V1y * e1X * v2y - V1x + e1X)
188
                / (r21 ** 2 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
189
           )
190
            + (-(v2y ** 2) + 1)
191
            * (
192
                S
193
194
                * (v2x - e1X)
                * (V1y - e1Y)
195
                * A1x
196
                / (r21 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
197
                 - S
198
                * (v2x - e1X)
199
                * (V1x - e1X)
200
                * Aly
201
                / (r21 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
202
                + S
203
                * (V1x ** 2 + V1y ** 2 - 1)
204
                * (V1x * e1Y * v2x - V1y * e1X * v2x + V1y - e1Y)
205
                / (r21 ** 2 * (-V1x * e1X - V1y * e1Y + 1) ** 3)
206
           )
207
       )
208
209
       return ff2y
210
211
212
213 # # Equações com os tempos de retardo com aproximação instantânea (tr -> t) #
214
215 # Aceleração da partícula 1 no eixo x para o tempo instantâneo
  def d_V1x_inst(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
216
217
       a1x = (
218
           np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1)
219
            * np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1)
220
            * (
221
                - (
222
                     (
223
                         (V2x)
224
                         * (x2 - x1)
225
                         / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
226
                         + (V2y)
227
                         * (y2 - y1)
228
                         / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
229
                         + 1
230
                     )
231
                     ** 3
232
                )
233
                * np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1)
234
235
                * eta
236
                * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
                * (
237
                     (V1x) * (V1y) * (V2y)
238
```

239	+ (V1x)
240	* (V1y)
241	* (y2 - y1)
242	/ np.sqrt((x2 - x1) ** 2 + (v2 - v1) ** 2)
243	$-(V_1v) ** 2 * (V_2x)$
244	$(V_{1}V) * 2$
0.45	(v_1, v_2, v_1)
245	$(\mathbf{X}\mathbf{Z} - \mathbf{X}\mathbf{I})$
246	$/ \text{ np.sqrt}((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
247	-(V1y)
248	* (V2x)
249	* (y2 - y1)
250	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
251	+ (V1y)
252	* (V2y)
253	* (x2 - x1)
254	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
255	-(V2x) * (-((V1x) ** 2) - (V1y) ** 2 + 1)
256	-(-((V1x) ** 2) - (V1v) ** 2 + 1)
257	$* (x^2 - x^1)$
258	()
250	
209 260	* (
200	-(V1v) * (v) v1) / nn aart((v) v1) * 0 + (v0 v1) * 0)
201	$-(VIX) + (X2 - XI) / IP \cdot SqI \cup ((X2 - XI) + 2 + (Y2 - YI) + 2)$
262	$-(v_{1y}) + (y_{2} - y_{1}) / np.sqrt((x_{2} - x_{1}) ** 2 + (y_{2} - y_{1}) ** 2)$
263	+ 1
264)
265	** 3
266	- S
267	* eta
268	* np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
269	* (-((V1x) ** 2) - (V1y) ** 2 + 1)
270	* (
271	(V1x)
272	* (V1y)
273	* (x2 - x1)
274	/ np.sart((x2 - x1) ** 2 + (v2 - v1) ** 2)
275	+ (V1v) ** 2
276	(v_{2}, v_{1})
270	$(y^2 - y^1)$
211	$ = \frac{1}{10} + \frac{1}{1$
218	$(v_1) = v_1$
279	$(y_2 - y_1)$
280	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
281	+ VIY
282	
283	* (
284	(V1x)
285	* (V2x)
286	* (V2y)
287	* (x2 - x1)
288	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
289	- (V1x)
290	* (V2x)
291	* (x2 - x1)
292	* (y2 - y1)
293	$/((x_2 - x_1) ** 2 + (v_2 - v_1) ** 2)$
204	+ (V1x)
234 20F	* (V2v) ** 2
290	$(v_2y) = v_1$
296	$(y_2 - y_1)$
297	$/ \text{np.sqrt}((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
298	-(VIX)

299	* (V2y)
300	* (y2 - y1) ** 2
301	/ ((x2 - x1) ** 2 + (y2 - y1) ** 2)
302	+ 2
303	* (V1x)
304	*(-((V2x) ** 2) - (V2v) ** 2 + 1)
305	$(v^2 - v^1)$
206	$/ nn sart((x^2 - x^1) ** ^2 + (x^2 - x^1) ** ^2)$
207	$-(V1_{V})$
307	-(VIY)
308	$\tau (VZX) \tau \tau Z$
309	(XZ - XI)
310	(y_1, y_2)
311	-(VIy)
312	(V2x)
313	* (V2y)
314	$* (y^2 - y^1)$
315	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
316	+ (V1y)
317	* (V2x)
318	* (x2 - x1) ** 2
319	$/((x^2 - x^1) ** ^2 + (y^2 - y^1) ** ^2)$
320	+ (V1y)
321	* (V2y)
322	* (x2 - x1)
323	* (y2 - y1)
324	/ ((x2 - x1) ** 2 + (y2 - y1) ** 2)
325	- 2
326	* (V1y)
327	* (-((V2x) ** 2) - (V2y) ** 2 + 1)
328	* (x2 - x1)
329	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
330	+ (V2x) ** 2
331	* (x2 - x1)
332	* (y2 - y1)
333	$/((x^2 - x^1) ** ^2 + (y^2 - y^1) ** ^2)$
334	- (V2x)
335	* (V2v)
336	$*(x^2 - x^1) ** 2$
337	$/((x^2 - x^1) ** ^2 + (v^2 - v^1) ** ^2)$
338	+ (V2x)
339	* (V2v)
340	$* (v_2 - v_1) ** 2$
341	$(x^2 - x^2) + (x^2 - x^1) + (x^2 - x^2)$
249	-(V2v) ** 2
242	$(v_2y) + v_2$
244	$(x_2 - x_1)$
245	$(y_2 - y_1)$
345	/((XZ - XI) + (YZ - YI) + Z)
346	+ (VIX) + (VZy) $(VIx) + (VZy)$ $(VIx) + (VZy)$
347	- (VIX) + (Y2 - YI) / IIP.Sqrt((X2 - XI) + 2 + (Y2 - YI) + 2)
348	$- (V_{1}Y) + (V_{2}X)$
349	+ $(v_{1y}) * (x_2 - x_1) / np.sqrt((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
350	+ $(v_2x) * (y_2 - y_1) / np.sqrt((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
351	$-(v_2y) * (x_2 - x_1) / np.sqrt((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
352	
353	* (
354	(V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
355	+ (V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
356	+ 1
357)
358	** 3

```
- S ** 2
359
                * (-((V2x) ** 2) - (V2y) ** 2 + 1)
360
                * (-((V1x) ** 2) - (V1y) ** 2 + 1) ** (3 / 2)
361
                * (
362
                     (V2x) ** 2 * (x2 - x1) ** 2 / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
363
                     + 2
364
                     * (V2x)
365
                     * (V2y)
366
                     * (x2 - x1)
367
                     * (y2 - y1)
368
                     / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
369
                     + (V2y) ** 2
370
                     * (y2 - y1) ** 2
371
                     / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
372
                     - 2 * (V2x) ** 2
373
                     - 2 * (V2y) ** 2
374
                     + 1
375
                )
376
                * (V1x - (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
377
                * (
378
                     (V1x)
379
                     * (V2x)
380
                     * (y2 - y1) ** 2
381
                       ((x2 - x1) ** 2 + (y2 - y1) ** 2)
382
                     - (V1x)
383
                     * (V2y)
384
                     * (x2 - x1)
385
                     * (y2 - y1)
386
                     / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
387
                       (V1y)
388
                     * (V2x)
389
                       (x2 - x1)
390
                     * (y2 - y1)
391
                     / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
392
                     + (V1y)
393
                     * (V2y)
394
                     * (x2 - x1) ** 2
395
                     / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
396
                       (V1x) * (V2x)
397
                     - (V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
398
                     -(V1y) * (V2y)
399
                     - (V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
400
                     - (V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
401
                     - (V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
402
                     - 1
403
                )
404
           )
405
            * S
406
            / (
407
                ((x2 - x1) ** 2 + (y2 - y1) ** 2)
408
                * eta
409
                * (
410
                     (V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
411
                     + (V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
412
                     + 1
413
                )
414
                ** 3
415
416
                * (
                     -((x2 - x1) ** 2 + (y2 - y1) ** 2)
417
                     * eta
418
```

419	* (
420	(V2x)
421	* (x2 - x1)
422	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
423	$+ (V_{2V})$
494	$(v^2 - v^1)$
405	$(y_2 - y_1)$
420	$(y_2 - y_1) + (y_2 - y_2) + (y_2 - y_1) + (y_2 - y_2) + (y_2 - y_1) + $
426	+ <u>1</u>
427)
428	** 3
429	* (
430	-(V1x)
431	* (x2 - x1)
432	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
433	- (V1y)
434	* (y2 - y1)
435	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
436	+ 1
437)
190	** 3
490	+ 5 ** 2
439	ι ω ττ Δ Ψ (
440	↑ (
441	
442	(V2x) ** 2
443	+ (V2x)
444	* (x2 - x1)
445	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
446	+ (V2y) ** 2
447	+ (V2y)
448	* (y2 - y1)
449	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
450)
451	* (
452	(V2x) ** 2
453	-(V2x)
454	* (x2 - x1)
455	$/ np.sart((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
456	$(V_{2v}) ** 2$
457	-(V2y)
407	(v_2y)
458	$\frac{1}{2} \left(\frac{y^2 - y^1}{y^2} \right)$
459	(12 - 11) + 2 - (12 - 11) + 2 - (12 - 11) + 2)
460	$\int (V_{0}, v_{0}) = (V_{0}, v_{0}) + (V$
461	$\uparrow \text{ up.sqrt}(-((V2x) \neq 2) - (V2y) \neq 2 + 1)$
462	$-(-((v_2x) ** 2) - (v_2y) ** 2 + 1) ** (5 / 2)$
463)
464	* (
465	
466	(V1x) ** 2
467	+ (V1x)
468	* (x2 - x1)
469	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
470	+ (V1y) ** 2
471	+ (V1y)
472	* (y2 - y1)
473	/ np.sqrt((x2 - x1) ** 2 + (v2 - v1) ** 2)
474)
475	* (
476	(V1x) ** 2
477	$(V1x) \cdots 2$
477	-(VIX)
478	\star (XZ - XI)

```
/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
479
                             + (V1y) ** 2
480
                              - (V1y)
481
                             * (y2 - y1)
482
                             / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
483
                         )
484
                         * np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1)
485
                           (-((V1x) ** 2) - (V1y) ** 2 + 1) ** (5 / 2)
486
                    )
487
                )
488
           )
489
       )
490
491
       return a1x
492
493
494
495 # Aceleração da partícula 1 no eixo y para o tempo instantâneo
  def d_V1y_inst(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
496
497
       a1y = (
498
           np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1)
499
            * np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1)
500
            * S
501
            *
             (
502
                (
503
                     (V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
504
                     + (V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
505
                     + 1
506
                )
507
                ** 3
508
                * np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1)
509
                * eta
                * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
511
                * (
512
                     (V1x) ** 2 * (V2y)
513
                     + (V1x) ** 2
514
                     * (y2 - y1)
515
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
516
                       (V1x) * (V1y) * (V2x)
517
                     -(V1x)
518
                     * (V1y)
519
                     * (x2 - x1)
520
                    / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
                     -(V1x)
                     * (V2x)
                     * (y2 - y1)
524
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
525
                     + (V1x)
526
                     * (V2y)
527
                     * (x2 - x1)
528
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
529
                     + (V2y) * (-((V1x) ** 2) - (V1y) ** 2 + 1)
530
                     + (-((V1x) ** 2) - (V1y) ** 2 + 1)
                     * (y2 - y1)
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
                )
534
                * (
535
536
                     -(V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
                     - (V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
537
                     + 1
538
```
)

539	
540	** 3
541	+ (
542	(V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
543	+ $(V2v) * (v2 - v1) / np.sqrt((x2 - x1) ** 2 + (v2 - v1) ** 2)$
544	+ 1
545)
546	** 3
547	* 5
549	* eta
540	* nn sart(($x^2 - x^1$) ** 2 + ($x^2 - x^1$) ** 2)
545	* $(-((V_1v) ** 2) - (V_1v) ** 2 + 1)$
551	* (
552	(V1v) ** 2
552	$(v_1x) + 2$
555	$(x_2 - x_1)$
554	(V_{1v})
222	(V1X)
220	$(V_{\perp}y)$
557	$(y_2 - y_1)$
558	$ = \begin{pmatrix} (1) \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 4 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$
559	$ (v_1) + (v_1) + (v_2) + (v_2) + (v_1) + (v_2) + (v_1) + (v_2) + (v_1) + (v_2) + (v_1) + (v_2) + (v_$
560	(XZ - XI)
201	$ 1 \mu \cdot 5 q \iota \left(\left(x - x \right) \uparrow \uparrow 2 + \left(y - y \right) \uparrow \uparrow 2 \right) $
502	
563) * (
564	
505	(VIX) * (U2v)
500	* (V2x)
507	(v_2y)
500	$(x_2 - x_1)$
509	-(V1x)
570	* (V2x)
579	$(v_2 x)$
573	* (n2 - n1)
574	$/((x^2 - x^1) ** ^2 + (x^2 - x^1) ** ^2)$
575	+ (V1x)
576	* (V2v) ** 2
577	(v_2, v_1)
578	/ np.sgrt((x2 - x1) ** 2 + (v2 - v1) ** 2)
579	- (V1x)
580	* (V2v)
581	* (y2 - y1) ** 2
582	$/((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
583	+ 2
584	* (V1x)
585	* (-((V2x) ** 2) - (V2y) ** 2 + 1)
586	* (y2 - y1)
587	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
588	- (V1y)
589	* (V2x) ** 2
590	* (x2 - x1)
591	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
592	- (V1y)
593	* (V2x)
594	* (V2y)
595	* (y2 - y1)
596	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
597	+ (V1y)
598	* (V2x)

599	* (x2 - x1) ** 2
600	$/((x^2 - x^1) ** ^2 + (y^2 - y^1) ** ^2)$
601	$+ (V_{1V})$
602	* (V2v)
602	(v_{2}, v_{1})
003	$(\mathbf{x}_2 + \mathbf{x}_1)$
604	$(y_2 - y_1)$
605	$/((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
606	- 2
607	* (V1y)
608	* (-((V2x) ** 2) - (V2y) ** 2 + 1)
609	* (x2 - x1)
610	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
611	+ (V2x) ** 2
612	* (x2 - x1)
613	* (y2 - y1)
614	/ ((x2 - x1) ** 2 + (y2 - y1) ** 2)
615	- (V2x)
616	* (V2v)
617	* (x2 - x1) ** 2
618	$/((x_2 - x_1) ** 2 + (v_2 - v_1) ** 2)$
610	+ (V2x)
620	* (V2v)
621	$* (v_2 - v_1) ** 2$
622	$(y^2 - y^1) + (y^2 - y^1) + (y^2 - y^1)$
622	$(U_{2} - X_{1}) + 2 - (y_{2} - y_{1}) + 2)$
623	$-(\sqrt{2y}) \leftrightarrow 2$
624	$(x_2 - x_1)$
625	$* (y_2 - y_1)$
626	$/((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
627	+ (V1x) * (V2y)
628	-(V1x) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
629	-(V1y) * (V2x)
630	+ (V1y) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
631	+ (V2x) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
632	- (V2y) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
633)
634	- S ** 2
635	* (-((V2x) ** 2) - (V2y) ** 2 + 1)
636	* (-((V1x) ** 2) - (V1y) ** 2 + 1) ** (3 / 2)
637	* (
638	(V2x) ** 2 * (x2 - x1) ** 2 / ((x2 - x1) ** 2 + (y2 - y1) ** 2
639	+ 2
640	* (V2x)
641	* (V2y)
642	$* (x^2 - x^1)$
643	$* (y^2 - y^1)$
644	$(x^2 - x^2) ** 2 + (x^2 - x^2) ** 2)$
645	+ (V2v) ** 2
646	$* (v_2) - v_1$ ** 2
040	$(y_2 - y_1) + y_2 - (y_2 - y_1) + (y_2 - y_2) + (y$
047	$ ((XZ - XI) \uparrow \uparrow Z + (YZ - YI) \uparrow \uparrow Z) $
648	$- 2 \neq (V 2 X) \neq Z$
649	-2 * (v 2y) ** 2
650	+ 1
651	
652	* (V1y - (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
653	* (
654	(V1x)
655	* (V2x)
656	* (y2 - y1) ** 2
657	/ ((x2 - x1) ** 2 + (y2 - y1) ** 2)
658	- (V1x)

659	* (V2y)
660	* (x2 - x1)
661	* (y2 - y1)
662	/ ((x2 - x1) ** 2 + (y2 - y1) ** 2)
663	-(V1y)
664	* (V2x)
665	* (x2 - x1)
666	* (y2 - y1)
667	$/((x^2 - x^1) ** ^2 + (y^2 - y^1) ** ^2)$
668	+ (V1y)
669	* (V2y)
670	$* (x^2 - x^1) ** 2$
671	$/((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
672	-(V1x) * (V2x)
673	- (V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
674	$= (V_1 y) * (V_2 y)$ $(W_1 x) + (v_2 y) = (v_1 x) + (v_2 y) + (v_2 y)$
675	- (V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) $(V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)$
676	- (V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
677	$-(v_2y) * (y_2 - y_1) / np.sqrt((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
678	
680	
681	
682	$((x^2 - x^1) ** ^2 + (x^2 - x^1) ** ^2)$
683	$((x_2 - x_1) + z + (y_2 - y_1) + z)$
684	* (
685	(V2x) * (x2 - x1) / np.sart((x2 - x1) ** 2 + (v2 - v1) ** 2)
686	+ $(V2v) * (v2 - v1) / np.sqrt((x2 - x1) ** 2 + (v2 - v1) ** 2)$
687	+ 1
688)
689	** 3
690	* (
691	-((x2 - x1) ** 2 + (y2 - y1) ** 2)
692	* eta
693	* (
694	(V2x)
695	* (x2 - x1)
696	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
697	+ (V2y)
698	* (y2 - y1)
699	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
700	+ 1
701	
702	٠ * * • (
703	* ((V1+)
704	-(VIX)
706	$\tau (x^2 - x^1)$ / nn sart(($v^2 - v^1$) ** 2 + ($v^2 - v^1$) ** 2)
700	$= (V_1 v)$
707	$(v_1 y)$
708	/ np. sqrt((x2 - x1) ** 2 + (x2 - x1) ** 2)
710	+ 1
711)
712	** 3
713	+ S ** 2
714	* (
715	(
716	(V2x) ** 2
717	+ (V2x)
718	* (x2 - x1)

```
/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
719
                              + (V2y) ** 2
720
                              + (V2y)
721
                              * (y2 - y1)
722
                              / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
723
                         )
724
                         * (
725
                              (V2x) ** 2
726
                              - (V2x)
                              * (x2 - x1)
728
                              / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
729
                              + (V2y) ** 2
730
                              - (V2y)
731
                              * (y2 - y1)
732
                              / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
733
                         )
734
                         * np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1)
735
                         - (-((V2x) ** 2) - (V2y) ** 2 + 1) ** (5 / 2)
736
                     )
737
                     * (
738
                         (
                              (V1x) ** 2
740
                              + (V1x)
741
                              * (x2 - x1)
742
                              / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
743
                              + (V1y) ** 2
744
                              + (V1y)
745
                              * (y_2 - y_1)
746
                              / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
747
                         )
748
                         * (
749
                              (V1x) ** 2
750
                              - (V1x)
751
752
                              * (x2 - x1)
                              / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
753
                              + (V1y) ** 2
754
                              - (V1y)
755
                              * (y2 - y1)
756
                              / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
757
                         )
758
                         * np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1)
759
                          - (-((V1x) ** 2) - (V1y) ** 2 + 1) ** (5 / 2)
760
                     )
761
                )
762
            )
763
       )
764
765
       return aly
766
767
768
769 # Aceleração da partícula 2 no eixo x para o tempo instantâneo
770 def d_V2x_inst(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
771
       a2x = (
772
            np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1)
773
            * np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1)
774
            * S
775
776
            * (
                (
777
                     -(V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
778
```

```
- (V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
779
                     + 1
780
                )
781
                ** 3
782
                * np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1)
783
                * eta
784
                * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
785
                * (
786
                     (V1x) * (V2y) ** 2
787
                     -(V1x)
788
                     * (V2y)
789
                     * (y2 - y1)
790
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
791
                     + (V1x) * (-((V2x) ** 2) - (V2y) ** 2 + 1)
792
                     - (V1y) * (V2x) * (V2y)
793
                     + (V1y)
794
                     * (V2y)
795
                     * (x2 - x1)
796
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
797
                     + (V2x)
798
                     * (V2y)
799
                     * (y2 - y1)
800
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
801
                     - (V2y) ** 2
802
                     * (x2 - x1)
803
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
804
                     -(-((V2x) ** 2) - (V2y) ** 2 + 1)
805
                     * (x2 - x1)
806
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
807
                )
808
                * (
809
                     (V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
810
                     + (V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
811
                     + 1
812
                )
813
                ** 3
814
                + (
815
                     -(V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
816
                     - (V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
817
                     + 1
818
                )
819
                ** 3
820
                * S
821
                * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
822
                * (-((V2x) ** 2) - (V2y) ** 2 + 1)
823
                * (
824
                     (V2x)
825
                     * (V2y)
826
                     * (x2 - x1)
827
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
828
                     + (V2y) ** 2
829
                     * (y2 - y1)
830
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
831
                     + (-((V2x) ** 2) - (V2y) ** 2 + 1)
832
                     * (y2 - y1)
833
                     / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
834
                     - (V2y)
835
                )
836
                * (
837
                     (V1x) ** 2
838
```

839	839 * (V2y)	
840	840 * (x2 - x1)	
841	841 / np.sqrt(($x^2 - x^1$) ** 2 + 0	(y2 - y1) ** 2)
842	842 + (V1x) ** 2	
843	843 * (x2 - x1)	
844	844 * (y2 - y1)	
845	845 / $((x^2 - x^1) * 2 + (y^2 - y^1))$	1) ** 2)
846	846 - (V1x)	
847	847 * (V1y)	
848	848 * (V2x)	
849	849 * (x2 - x1)	
850	850 / np.sqrt((x2 - x1) ** 2 + 0	(y2 - y1) ** 2)
851	851 + (V1x)	
852	852 * (V1y)	
853	853 * (V2y)	
854	854 * (y2 - y1)	<pre>/ - · · · · · · · · · · · · · · · · · ·</pre>
855	np.sqrt((x2 - x1) ** 2 + 0)	(y2 - y1) ** 2)
856	- (VIX)	
857	857 * (VIY)	
858		1) +++ 0)
859	+ (V1x)	1) ** 2)
861	× (V1x)	
862	$\frac{1}{2} + (\sqrt{2} - \sqrt{1}) + 2$	
863	$\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{1} \\ x_{2} \\ x_{1} \\$	1) ** 2)
864	-(V1x)	
865	865 * (V2x)	
866	866 * (x2 - x1)	
867	867 * (y2 - y1)	
868	868 / $((x^2 - x^1) * * 2 + (y^2 - y^1))$	1) ** 2)
869	869 + (V1x)	
870	870 * (V2y)	
871	871 * (x2 - x1) ** 2	
872	872 / ((x2 - x1) ** 2 + (y2 - y1	1) ** 2)
873	873 - (V1y) ** 2	
874	874 * (V2x)	
875	875 * (y2 - y1)	
876	876 / np.sqrt((x2 - x1) ** 2 + 0	(y2 - y1) ** 2)
877	877 - (V1y) ** 2	
878	$(x^2 - x^1)$	
879	$(y_2 - y_1)$	()
880	$(x_2 - x_1) ** 2 + (y_2 - y_1)$	1) ** 2)
881	$- (V_1 y)$	
082	$\frac{\tau}{v 4 \lambda}$	
000 881	$\begin{array}{c} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{4} \\ x_{4} \\ x_{5} \\ x_{4} \\ x_{5} \\$	1) ** 2)
004 885	$\begin{array}{c} & (XZ - XI) & TZ + (YZ - Y) \\ 885 & + (V1v) \end{array}$	_, 2)
886	886 * (V2v)	
887	887 * (x2 - x1)	
888	* (v2 - v1)	
889	$((x^2 - x^1) ** 2 + (y^2 - y^1))$	1) ** 2)
890	890 - 2	
891	891 * (V2x)	
892	892 * (-((V1x) ** 2) - (V1y) **	2 + 1)
893	893 * (y2 - y1)	
894	894 / np.sqrt((x2 - x1) ** 2 + 0	(y2 - y1) ** 2)
895	895 + 2	
896	896 * (V2y)	
897	897 * (-((V1x) ** 2) - (V1y) **	2 + 1)
898	898 * (x2 - x1)	

899	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
900	- (V1x) * (V2y)
901	- (V1x) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
902	+ (V1y) * (V2x)
903	+ (V1y) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
904	+ (V2x) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
905	-(V2y) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
906	
907	- S ** 2
908	*(-((V1x) ** 2) - (V1y) ** 2 + 1)
909	$*(-((V_{2x}) ** 2) - (V_{2y}) ** 2 + 1) ** (3 / 2)$
910	* (
911	(V1x) ** 2 * (x2 - x1) ** 2 / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
912	+ 2
913	* (V1x)
014	* (V1x)
015	$* (v_2 - v_1)$
016	(n2 - n1)
910	$(y_2 - y_1)$
917	((XZ - XI) + Z + (YZ - YI) + Z)
918	τ (VI) $\tau \tau$ 2
919	$(y_2 - y_1) + z_2$
920	$/((x_2 - x_1) + x_2 + (y_2 - y_1) + x_2)$
921	-2 * (V1x) ** 2
922	-2 * (V1y) ** 2
923	+ 1
924	
925	* $(V2x + (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))$
926	* (
927	
928	* (V2x)
929	* (y2 - y1) ** 2
930	$/((x^2 - x^1) ** ^2 + (y^2 - y^1) ** ^2)$
931	-(V1x)
932	* (V2y)
933	* (x2 - x1)
934	* (y2 - y1)
935	$/((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
936	-(V1y)
937	* (V2x)
938	* (x2 - x1)
939	* (y2 - y1)
940	$/((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
941	+ (V1y)
942	* (V2y)
943	* (x2 - x1) ** 2
944	/ ((x2 - x1) ** 2 + (y2 - y1) ** 2)
945	-(V1x) * (V2x)
946	+ (V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
947	- (V1y) * (V2y)
948	+ (V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
949	+ (V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
950	+ (V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
951	- 1
952)
953)
954	/ (
955	((x2 - x1) ** 2 + (y2 - y1) ** 2)
956	* (
957	-(V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
958	-(V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)

959	' 1
960)
961	** 3
962	* (
963	$-((x^2 - x^1) * x^2 + (y^2 - y^1) * x^2)$
964	* eta
0.05	* (
965	
966	$(\sqrt{2x})$
967	$*(x^2 - x^1)$
968	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
969	+ (V2y)
970	* (y2 - y1)
971	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
972	+ 1
973)
974	** 3
975	* (
976	-(V1x)
077	$*(x^2 - x^1)$
070	$(n_2 - n_1)$ $(n_1 - n_2 + (n_2 - n_1) + n_2 - (n_2 - n_2) + n_2$
918	(11_{11})
979	$-(v_{1y})$
980	$(y^2 - y^1)$
981	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
982	+ 1
983)
984	** 3
985	+ S ** 2
986	* (
987	(
988	(V2x) ** 2
989	+ (V2x)
990	* (x2 - x1)
991	/ np.sart((x2 - x1) ** 2 + (y2 - y1) ** 2)
992	+ (V2v) ** 2
003	$+ (V_{2V})$
004	$* (v_2) - v_1$
994	$(y_2 - y_1)$
995	$(y_2 - y_1) + (y_2 - y_1) + (y_2 - y_1) + (y_2 - y_1)$
996	
997	↑ ((UO=) +++ 0
998	(VZX) ** 2
999	$-(\sqrt{2x})$
1000	$* (x^2 - x^1)$
1001	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1002	+ (V2y) ** 2
1003	- (V2y)
1004	* (y2 - y1)
1005	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1006)
1007	* np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1)
1008	$-(-((V_{2x}) ** 2) - (V_{2v}) ** 2 + 1) ** (5 / 2)$
1009)
1010	* (
1011	
1010	(V1v) ** 2
1012	
1013	+ (VIX)
1014	$* (x^2 - x^1)$
1015	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1016	+ (V1y) ** 2
1017	+ (V1y)
1018	* (y2 - y1)

/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) 1019) * (1021 (V1x) ** 2 1022 - (V1x) 1023 * (x2 - x1) 1024 / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) 1025 + (V1y) ** 2 1026 - (V1y) 1027 * (y2 - y1) 1028 / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) 1029) 1030 * np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1) - (-((V1x) ** 2) - (V1y) ** 2 + 1) ** (5 / 2)) 1033) 1034)) 1036 1037 1038 return a2x 1040 # Aceleração da partícula 2 no eixo y para o tempo instantâneo 1041 def d_V2y_inst(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y): 1042 1043 a2y = (1044 1045 np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1) * np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1) 1046 * (1047 - (1048 (1049 -(V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) 1052 - (V1y) 1053 * (y2 - y1) 1054 / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) + 1 1056) 1057 ** 3 1058) * np.sqrt(-((V1x) ** 2) - (V1y) ** 2 + 1) 1060 * eta 1061 ((x2 - x1) ** 2 + (y2 - y1) ** 2)* 1062 * (1063 (V1x) * (V2x) * (V2y) 1064 - (V1x) 1065 * (V2x) 1066 * (y2 - y1) 1067 / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) 1068 - (V1y) * (V2x) ** 2 1069 + (V1y) * (V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) -(V1y) * (-((V2x) ** 2) - (V2y) ** 2 + 1)1074 + (V2x) ** 2 1075 * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) 1077 - (V2x) 1078

1079	* (V2y)
1080	* (x2 - x1)
1081	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1082	$+(-(\sqrt{2}x) ** 2) - (\sqrt{2}y) ** 2 + 1)$
1083	$(u^2 - u^1)$
1000	$(y^2 - y^2)$
1084) $((x_2 - x_1) + x_2 - (y_2 - y_1) + x_2)$
1085	
1086	
1087	(V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1088	+ (V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1089	+ 1
1090)
1091	** 3
1092	- (
1093	-(V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1094	-(V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1095	+ 1
1096)
1097	** 3
1098	* S
1099	* np.sqrt((x2 - x1) ** 2 + (v2 - v1) ** 2)
1100	$*(-((V_{2x}) ** 2) - (V_{2y}) ** 2 + 1)$
1101	* (
1100	$(V_{2}) * * 2$
1102	(VZA) TT Z
1103	(XZ - XI)
1104	$/ \text{np.sqrt}((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
1105	+ (V2x)
1106	* (V2y)
1107	* (y2 - y1)
1108	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1109	+ $(-((V2x) ** 2) - (V2y) ** 2 + 1)$
1110	* (x2 - x1)
1111	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1112	-(V2x)
1113)
1114	* (
1115	(V1x) ** 2
1116	* (V2y)
1117	* (x2 - x1)
1118	/ np.sart((x2 - x1) ** 2 + (v2 - v1) ** 2)
1119	+ $(V1x) ** 2$
1120	* (x2 - x1)
1121	*(v2 - v1)
1122	$(x^2 - x^2) ** 2 + (x^2 - x^2) ** 2)$
1100	-(V1x)
1104	* (1117)
1124	
1125	$(V \Delta X)$
1126	(XZ - XI)
1127	$/ \text{np.sqrt}((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
1128	+ (V1x)
1129	* (V1y)
1130	* (V2y)
1131	* (y2 - y1)
1132	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1133	- (V1x)
1134	* (V1y)
1135	* (x2 - x1) ** 2
1136	/ ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1137	+ (V1x)
1138	* (V1y)

1139	* (y2 - y1) ** 2
1140	/ ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1141	- (V1x)
1142	* (V2x)
1143	* (x2 - x1)
1144	* (y2 - y1)
1145	$/((x^2 - x^1) ** ^2 + (y^2 - y^1) ** ^2)$
1146	+ (V1x)
1147	* (V2y)
1148	* (x2 - x1) ** 2
1149	$/((x^2 - x^1) ** ^2 + (v^2 - v^1) ** ^2)$
1150	-(V1v) ** 2
1151	* (V2x)
1152	* (v2 - v1)
1153	/ np.sart((x2 - x1) ** 2 + (v2 - v1) ** 2)
1154	-(V1v) ** 2
1155	$(x^2 - x^1)$
1156	* (v2 - v1)
1157	$(x^2 - x^2) ** 2 + (x^2 - x^1) ** 2)$
1158	-(V1v)
1159	$* (V_{2x})$
1160	$(v_2 - v_1) * 2$
1161	$((x^2 - x^1) * 2 + (y^2 - y^1) * 2)$
1162	+ (V1v)
1163	* (V2v)
1164	$* (x^2 - x^1)$
1165	* (v2 - v1)
1166	$/((x^2 - x^1) ** ^2 + (y^2 - y^1) ** ^2)$
1167	- 2
1168	* (V2x)
1169	* (-((V1x) ** 2) - (V1y) ** 2 + 1)
1170	* (y2 - y1)
1171	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1172	+ 2
1173	* (V2y)
1174	* (-((V1x) ** 2) - (V1y) ** 2 + 1)
1175	* (x2 - x1)
1176	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1177	- (V1x) * (V2y)
1178	- (V1x) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1179	+ (V1y) * (V2x)
1180	+ $(V1y) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)$
1181	+ $(V2x) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)$
1182	-(V2y) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1183	
1184	-5 **2
1185	* $(-((VIX) ** 2) - (VIY) ** 2 + 1)$
1186	* $(-((\sqrt{2x}) ** 2) - (\sqrt{2y}) ** 2 + 1) ** (3 / 2)$
1187	
1188	(VIX) + 2 + (XZ - XI) + 2 / ((XZ - XI) + 2 + (YZ - YI) + 2)
1189	$\tau \mathcal{L}$
1101	* (VIX)
1100	$(x^2 - x^1)$
1102	$* (v^2 - v^1)$
1104	$/((x^2 - x^1) ** ^2 + (x^2 - x^1) ** ^2)$
1195	+ (V1v) ** 2
1196	* (v2 - v1) ** 2
1197	$/((x_2 - x_1) ** 2 + (v_2 - v_1) ** 2)$
1198	-2 * (V1x) ** 2

- (--)

-

1199	- 2 * (V1y) ** 2
1200	+ 1
1201)
1202	* (V2y + (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
1203	* (
1204	(V1x)
1205	* (V2x)
1206	* (y2 - y1) ** 2
1207	$/((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
1208	-(V1x)
1209	* (V2y)
1210	$* (x^2 - x^1)$
1211	$* (y^2 - y^1)$
1212	$/((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
1213	-(V1y)
1214	* (V2X)
1215	$(x^2 - x^1)$
1216	$(y_2 - y_1) + (y_2 - y_1) + $
1217	$/((x_2 - x_1) + 2 + (y_2 - y_1) + 2)$
1218	* (V2v)
1219	* $(v^2 y)$ * $(v^2 - v^1)$ ** 2
1921	$/((x^2 - x^1) ** ^2 + (x^2 - x^1) ** ^2)$
1222	-(V1x) * (V2x)
1223	+ $(V1x) * (x^2 - x^1) / np.sqrt((x^2 - x^1) ** 2 + (y^2 - y^1) ** 2)$
1224	-(V1v) * (V2v)
1225	+ $(V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)$
1226	+ $(V2x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)$
1227	+ $(V2y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)$
1228	- 1
1229)
1230)
1231	* S
1232	/ (
1233	((x2 - x1) ** 2 + (y2 - y1) ** 2)
1234	* (
1235	-(V1x) * (x2 - x1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1236	- (V1y) * (y2 - y1) / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1237	+ 1
1238	
1239	** 0
1240	$((x) x_1) x_2 y_1 x_2 y_1 x_2 y_2 y_1 y_2 y_2 y_1 y_2 y_2 y_1 y_2 y_$
1241	-((XZ - XI) + Z + (YZ - YI) + Z)
1242	* (
1243	
1244	$(x^2 - x^1)$
1246	(np.sqrt((x2 - x1) ** 2 + (v2 - v1) ** 2)
1247	$+ (V_{2v})$
1248	* (v2 - v1)
1249	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1250	+ 1
1251)
1252	** 3
1253	* (
1254	-(V1x)
1255	* (x2 - x1)
1256	/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1257	- (V1y)

1259	/ 1	np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1260	+	1
1261)	
1262	** 3	
1263	+ S **	2
1264	* (
1265	(
1266		(V2x) ** 2
1267		+ (V2x)
1268		* (x2 - x1)
1269		/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1270		+ (V2y) ** 2
1271		+ (V2y)
1272		* (y2 - y1)
1273		/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1274)	
1275	*	(
1276		(V2x) ** 2
1277		- (V2x)
1278		* (x2 - x1)
1279		/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1280		+ (V2y) ** 2
1281		-(V2y)
1282		* (y2 - y1)
1283		/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1284)	
1285	*]	np.sqrt(-((V2x) ** 2) - (V2y) ** 2 + 1)
1286	-	(-((V2x) ** 2) - (V2y) ** 2 + 1) ** (5 / 2)
1287)	
1288	* (
1289	(
1290		(V1x) ** 2
1291		+ (V1x)
1292		* (x2 - x1)
1293		/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1294		+ (V1y) ** 2
1295		+ (V1y)
1296		* (y2 - y1)
1297		/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1298)	
1299	*	(
1300		(V1x) ** 2
1301		- (V1x)
1302		* (x2 - x1)
1303		$/ \text{ np.sqrt}((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
1304		+ (V1y) ** 2
1305		$-(v_1v_1)$
1306		$* (y^2 - y^1)$
1307		/ np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1308)	$n = cont \left(\left(\left(1 + r \right) + r + 0 \right) \right) \left(1 + r + 0 + 1 \right)$
1309	*]	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1310	-	$(-((v_{1X}) ** 2) - (v_{1Y}) ** 2 + 1) ** (5 / 2)$
1311		
1312)	
1313)	
1314)	
1315	return 20v	
1917	roourn azy	
1317		
TOTO		

```
1319 # Equações com os tempos de retardo com aproximação instantânea
1320 # lineares nas velocidades (tr -> t)
1321
1322 # Aceleração da partícula 1 no eixo x instantâneo linear nas velocidades
1323 def d_V1x_inst_linear(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
1324
        a1x = (
1325
            -S * (x^2 - x^1) / (((x^2 - x^1) * 2 + (y^2 - y^1) * 2) * (3 / 2) * eta)
            + (y2 - y1) ** 2
1327
            * (eta * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) - S)
1328
            * V1x
1329
            / (
1330
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
                 * eta
1332
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1333
            )
1334
            - (y2 - y1)
            * (x2 - x1)
1336
            * (eta * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) - S)
1337
            * V1y
1338
            / (
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1340
1341
                 * eta
1342
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
            )
1343
            + (
1344
                 S * (y2 - y1) ** 2 * eta / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1345
                 - 3 * eta * (y2 - y1) ** 2
1346
                 + 2 * eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1347
                 + 2 * (y2 - y1) ** 2 / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1348
1349
                 - 2
            )
1350
            * S
1351
            * V2x
1352
            / (
1353
                 eta
1354
                 * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1355
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1356
            )
1357
            - (y2 - y1)
1358
            * (x2 - x1)
1359
            * (
1360
                 S * eta * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1361
                 - 3 * eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1362
                 + 2
1363
            )
1364
            * S
1365
            * V2y
1366
            / (
1367
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1368
1369
                 * eta
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
            )
1371
        )
        return a1x
1374
1375
1376
1377 # Aceleração da partícula 1 no eixo y instantâneo linear nas velocidades
1378 def d_V1y_inst_linear(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
```

```
1379
        a1y = (
1380
            -S * (y2 - y1) / (((x2 - x1) ** 2 + (y2 - y1) ** 2) ** (3 / 2) * eta)
1381
            - (y2 - y1)
1382
            * (x2 - x1)
1383
            * (eta * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) - S)
1384
            * V1x
1385
            / (
1386
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1387
                 * eta
1388
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1389
            )
1390
            + (x2 - x1) ** 2
1391
            * (eta * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) - S)
1392
            * V1y
1393
            / (
1394
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1395
                 * eta
1396
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1397
            )
1398
            -(y2 - y1)
1399
            * (x2 - x1)
1400
            * (
1401
1402
                 S * eta * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
                 - 3 * eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1403
                 + 2
1404
            )
1405
            * S
1406
            * V2x
1407
            / (
1408
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1409
1410
                 * eta
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1411
            )
1412
            + (
1413
                 S * (x2 - x1) ** 2 * eta / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1414
                 - 3 * eta * (x2 - x1) ** 2
1415
                 + 2 * eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1416
                 + 2 * (x2 - x1) ** 2 / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1417
                   2
1418
            )
1419
1420
            * S
            * V2y
1421
            / (
1422
                 eta
1423
                 * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1424
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1425
            )
1426
        )
1427
1428
1429
        return aly
1430
1431
1432 # Aceleração da partícula 2 no eixo x instantâneo linear nas velocidades
1433 def d_V2x_inst_linear(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
1434
1435
        a2x = (
            S * (x2 - x1) / ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** (3 / 2)
1436
            - (
1437
                 3 * eta * (y2 - y1) ** 2
1438
```

```
- S * (y2 - y1) ** 2 / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1439
                 - 2 * eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1440
                 - 2 * (y2 - y1) ** 2 / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1441
                 + 2
1442
            )
1443
            * S
1444
            * V1x
1445
            / (
1446
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1447
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1448
            )
1449
            + (y2 - y1)
1450
            * (x2 - x1)
1451
            * (
1452
                 3 * eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1453
1454
                 - S * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
                 - 2
1455
            )
1456
            * S
1457
            * V1y
1458
            / (
1459
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1460
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1461
1462
            )
            - (y2 - y1) ** 2
1463
            * (S - np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
1464
            * V2x
1465
            / (
1466
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1467
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1468
            )
1469
            + (y2 - y1)
1470
            * (x2 - x1)
1471
            * (S - np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
1472
            * V2y
1473
            / (
1474
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1475
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1476
            )
1477
        )
1478
1479
1480
        return a2x
1481
1482
1483 # Aceleração da partícula 2 no eixo y instantâneo linear nas velocidades
   def d_V2y_inst_linear(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
1484
1485
        a2y = (
1486
            S * (y2 - y1) / ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** (3 / 2)
1487
            + (y2 - y1)
1488
            * (x2 - x1)
1489
            * (
1490
                 3 * eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1491
                 - S * np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1492
                   2
1493
            )
1494
            * S
1495
            * V1x
1496
            / (
1497
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1498
```

```
* (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1499
            )
1500
            - S
1501
            * (
1502
                3 * eta * (x2 - x1) ** 2
1503
                 - S * (x2 - x1) ** 2 / np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
1504
                 - 2 * eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1505
                 - 2 * (x2 - x1) ** 2 / ((x2 - x1) ** 2 + (y2 - y1) ** 2)
1506
                 + 2
1507
            )
1508
            * V1y
1509
1510
            / (
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2)
                * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
            )
1513
            + (y2 - y1)
1514
            * (x2 - x1)
            * (S - np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
            * V2x
1517
            / (
1518
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1520
            )
1521
1522
            - (x2 - x1) ** 2
            * (S - np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))
1523
            * V2y
1524
            / (
1525
                 ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** 2
1526
                 * (eta * ((x2 - x1) ** 2 + (y2 - y1) ** 2) - 1)
1527
            )
1528
        )
1529
1530
       return a2y
1533 # ### Modelos de Runge-Kutta para os campos vetorias ###
1534
1535 # Runge-Kutta 4 ordem instantâneo - Aproximação de ordem zero do campo
   def rk4_0(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, step):
1536
        x1_1 = V1x * step
1538
       y1_1 = V1y * step
1540
       x2_1 = V2x * step
       y2_1 = V2y * step
1541
1542
       V1x_1 = d_V1x_inst(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y) * step
1543
        V1y_1 = d_V1y_inst(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y) * step
1544
        V2x_1 = d_V2x_inst(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y) * step
1545
       V2y_1 = d_V2y_inst(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y) * step
1546
1547
       x1_k = x1 + x1_1 * 0.5
1548
        y1_k = y1 + y1_1 * 0.5
1549
        x2_k = x2 + x2_1 * 0.5
        y2_k = y2 + y2_1 * 0.5
        V1x_k = V1x + V1x_1 * 0.5
        V1y_k = V1y + V1y_1 * 0.5
        V2x_k = V2x + V2x_1 * 0.5
1554
        V_{2y_k} = V_{2y} + V_{2y_1} * 0.5
1555
1556
        x1_2 = V1x_k * step
1557
       y1_2 = V1y_k * step
1558
```

```
x2_2 = V2x_k * step
1559
        y2_2 = V2y_k * step
1560
1561
        V1x_2 = (
1562
            d_V1x_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1563
             * step
1564
        )
1565
        V1y_2 = (
1566
             d_V1y_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1567
            * step
1568
1569
        )
        V2x_2 = (
1570
1571
            d_V2x_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
            * step
        )
1573
        V2y_2 = (
1574
            d_V2y_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
            * step
1576
        )
1577
1578
        x1_k = x1 + x1_2 * 0.5
1579
        y1_k = y1 + y1_2 * 0.5
1580
        x2_k = x2 + x2_2 * 0.5
1581
1582
        y_{k} = y_{k} + y_{2} + y_{2} + 0.5
1583
        V1x_k = V1x + V1x_2 * 0.5
1584
        V1y_k = V1y + V1y_2 * 0.5
1585
        V2x_k = V2x + V2x_2 * 0.5
1586
        V_{2y_k} = V_{2y} + V_{2y_2} * 0.5
1587
1588
        x1_3 = V1x_k * step
1589
1590
        y1_3 = V1y_k * step
        x2_3 = V2x_k * step
1591
1592
        y2_3 = V2y_k * step
        V1x_3 = (
1594
             d_V1x_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1595
1596
             * step
        )
1597
        V1y_3 = (
1598
             d_V1y_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1599
1600
            * step
        )
1601
        V2x_3 = (
1602
            d_V2x_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1603
1604
            * step
        )
1605
        V2y_3 = (
1606
            d_V2y_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1607
             * step
1608
        )
1609
1610
        x1_k = x1 + x1_3
1611
        y1_k = y1 + y1_3
1612
1613
        x2_k = x2 + x2_3
        y2_k = y2 + y2_3
1614
1615
1616
        V1x_k = V1x + V1x_3
        V1y_k = V1y + V1y_3
1617
        V2x_k = V2x + V2x_3
1618
```

```
V2y_k = V2y + V2y_3
1619
1620
        x1_4 = V1x_k * step
1621
        y1_4 = V1y_k * step
1622
        x2_4 = V2x_k * step
1623
        y2_4 = V2y_k * step
1624
1625
        V1x_4 = (
1626
            d_V1x_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1627
            * step
1628
1629
        )
        V1y_4 = (
1630
1631
            d_V1y_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
            * step
1632
        )
1633
1634
        V2x_4 = (
            d_V2x_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1635
            * step
1636
1637
        )
        V_{2y_4} = (
1638
            d_V2y_inst(S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k)
1639
            * step
1640
        )
1641
1642
        x1 = x1 + (x1_1 + 2 * (x1_2 + x1_3) + x1_4) / 6
1643
        y1 = y1 + (y1_1 + 2 * (y1_2 + y1_3) + y1_4) / 6
1644
        x^2 = x^2 + (x^2_1 + 2 * (x^2_2 + x^2_3) + x^2_4) / 6
1645
        y_2 = y_2 + (y_2_1 + 2 * (y_2_2 + y_2_3) + y_2_4) / 6
1646
1647
        V1x = V1x + (V1x_1 + 2 * (V1x_2 + V1x_3) + V1x_4) / 6
1648
        V1y = V1y + (V1y_1 + 2 * (V1y_2 + V1y_3) + V1y_4) / 6
1649
        V2x = V2x + (V2x_1 + 2 * (V2x_2 + V2x_3) + V2x_4) / 6
1650
        V2y = V2y + (V2y_1 + 2 * (V2y_2 + V2y_3) + V2y_4) / 6
1651
1652
        return step, x1, y1, x2, y2, V1x, V1y, V2x, V2y
1653
1654
1655
1656 # Aplicação do método Runge Kutta - Aproximação de ordem zero
1657 def rk4_method_inst(
        path, n, m, f, t, dt, S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
1658
1659 ):
1660
        with open(path, "w") as outfile:
1661
            outfile.write(f"{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} \n")
1662
            for _ in tqdm(range(1, m + 1, 1)):
1663
                 for _ in range(1, n + 1, 1):
1664
                     t += dt
1665
                     dt_atual, x1, y1, x2, y2, V1x, V1y, V2x, V2y = rk4_0(
1666
                         S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, dt
1667
                     )
1668
                     dt = dt_atual
1669
1670
                     outfile.write(
1671
                         f''{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} n''
1672
                     )
1673
1674
                     if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (
1675
1676
                         np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) < 2
                     ):
1677
                          break
1678
```

1679

```
vx = V2x - V1x
1680
                vy = V2y - V1y
1681
                rr = np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
1682
                ex = (x2 - x1) / (rr)
1683
                ey = (y2 - y1) / (rr)
1684
                DT = (-vx * ey + vy * ex) / (rr)
1685
                dt = (2.0 * np.pi) / (DT * n) / f
1686
                if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (rr < 2):
1687
                     break
1688
1689
1690
1691 # Campo para calcular no tempo de retardo - Aproximação de ordem 1
1692 def campo_w_1(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
        tr = -np.sqrt((x2 - x1) ** 2.0 + (y2 - y1) ** 2)
1693
        _, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr = rk4_0(
1694
           S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, tr
1695
        )
1696
1697
        A1x_tr = d_V1x_inst_linear(
1698
            S, eta, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr
1699
        )
1700
1701
        A1y_tr = d_V1y_inst_linear(
1702
            S, eta, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr
        )
1703
        A2x_tr = d_V2x_inst_linear(
1704
            S, eta, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr
1705
        )
1706
        A2y_tr = d_V2y_inst_linear(
1707
           S, eta, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr
1708
1709
        )
1710
        A1x = f_a1x_tr(
           S, eta, x1, y1, x2_tr, y2_tr, V1x, V1y, V2x_tr, V2y_tr, A2x_tr, A2y_tr
1712
        )
1713
        A1y = f_a1y_tr(
1714
            S, eta, x1, y1, x2_tr, y2_tr, V1x, V1y, V2x_tr, V2y_tr, A2x_tr, A2y_tr
1715
        )
1716
        A2x = f_a2x_tr(
1717
            S, x1_tr, y1_tr, x2, y2, V1x_tr, V1y_tr, V2x, V2y, A1x_tr, A1y_tr
1718
        )
1719
        A2y = f_a2y_tr(
1720
            S, x1_tr, y1_tr, x2, y2, V1x_tr, V1y_tr, V2x, V2y, A1x_tr, A1y_tr
1721
        )
1722
1723
       return A1x, A1y, A2x, A2y
1724
1725
1726
1727 # Runge-Kutta 4 ordem com retardo - Aproximação de ordem 1 do campo
1728 def rk4_tr_1(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, h):
1729
       x1_1 = V1x * h
1730
        y1_1 = V1y * h
        x2_1 = V2x * h
       y2_1 = V2y * h
1734
        V1x_1, V1y_1, V2x_1, V2y_1 = campo_w_1(
1735
1736
            S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
        )
1737
        V1x_1 = V1x_1 * h
1738
```

```
V1y_1 = V1y_1 * h
1739
        V2x_1 = V2x_1 * h
1740
        V2y_1 = V2y_1 * h
1741
1742
        x1_k = x1 + x1_1 * 0.5
1743
        y1_k = y1 + y1_1 * 0.5
1744
        x2_k = x2 + x2_1 * 0.5
1745
        y_{k} = y_{k} + y_{1} * 0.5
1746
        V1x_k = V1x + V1x_1 * 0.5
1747
        V1y_k = V1y + V1y_1 * 0.5
1748
        V2x_k = V2x + V2x_1 * 0.5
1749
        V_{2y_k} = V_{2y_1} * 0.5
1750
1751
        x1_2 = V1x_k * h
1752
        y1_2 = V1y_k * h
1753
        x2_2 = V2x_k * h
1754
        y_{2_2} = V_{2y_k} * h
1755
1756
        V1x_2, V1y_2, V2x_2, V2y_2 = campo_w_1(
1757
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
1758
        )
1759
        V1x_2 = V1x_2 * h
1760
        V1y_2 = V1y_2 * h
1761
1762
        V2x_2 = V2x_2 * h
        V2y_2 = V2y_2 * h
1763
1764
        x1_k = x1 + x1_2 * 0.5
1765
        y1_k = y1 + y1_2 * 0.5
1766
        x2_k = x2 + x2_2 * 0.5
1767
        y_{2k} = y_{2} + y_{22} * 0.5
1768
1769
        V1x_k = V1x + V1x_2 * 0.5
1770
        V1y_k = V1y + V1y_2 * 0.5
        V2x_k = V2x + V2x_2 * 0.5
        V2y_k = V2y + V2y_2 * 0.5
1772
1773
        x1_3 = V1x_k * h
1774
        y1_3 = V1y_k * h
1775
        x2_3 = V2x_k * h
1776
        y_{2_{3}} = V_{2y_{k}} * h
1777
1778
        V1x_3, V1y_3, V2x_3, V2y_3 = campo_w_1(
1779
1780
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
        )
1781
        V1x_3 = V1x_3 * h
1782
        V1y_3 = V1y_3 * h
1783
        V2x_3 = V2x_3 * h
1784
        V2y_3 = V2y_3 * h
1785
1786
        x1_k = x1 + x1_3
1787
        y1_k = y1 + y1_3
1788
        x2_k = x2 + x2_3
1789
        y_{k} = y_{2} + y_{2}
1790
        V1x_k = V1x + V1x_3
1791
        V1y_k = V1y + V1y_3
1792
        V2x_k = V2x + V2x_3
1793
        V2y_k = V2y + V2y_3
1794
1795
1796
        x1_4 = V1x_k * h
        y1_4 = V1y_k * h
1797
        x2_4 = V2x_k * h
1798
```

```
y2_4 = V2y_k * h
1799
1800
        V1x_4, V1y_4, V2x_4, V2y_4 = campo_w_1(
1801
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
1802
1803
        )
        V1x_4 = V1x_4 * h
1804
        V1y_4 = V1y_4 * h
1805
        V2x_4 = V2x_4 * h
1806
        V2y_4 = V2y_4 * h
1807
1808
        x1 = x1 + (x1_1 + 2 * (x1_2 + x1_3) + x1_4) / 6
1809
        y1 = y1 + (y1_1 + 2 * (y1_2 + y1_3) + y1_4) / 6
1810
        x^{2} = x^{2} + (x^{2}_{1} + 2 * (x^{2}_{2} + x^{2}_{3}) + x^{2}_{4}) / 6
1811
        y_2 = y_2 + (y_2_1 + 2 * (y_2_2 + y_2_3) + y_2_4) / 6
1812
        V1x = V1x + (V1x_1 + 2 * (V1x_2 + V1x_3) + V1x_4) / 6
1813
        V1y = V1y + (V1y_1 + 2 * (V1y_2 + V1y_3) + V1y_4) / 6
1814
        V2x = V2x + (V2x_1 + 2 * (V2x_2 + V2x_3) + V2x_4) / 6
1815
        V2y = V2y + (V2y_1 + 2 * (V2y_2 + V2y_3) + V2y_4) / 6
1816
1817
        return h, x1, y1, x2, y2, V1x, V1y, V2x, V2y
1818
1819
1820
1821 # Aplicação do método Runge-Kutta com retardo - Aproximação de ordem 1
1822 def rk4_method_tr_1(
        path, n, m, f, t, dt, S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
1823
1824 ):
        with open(path, "w") as outfile:
1825
            outfile.write(f"{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} \n")
1826
1827
            for _ in tqdm(range(1, m + 1, 1)):
1828
1829
                 for _ in range(1, n + 1, 1):
                     t += dt
1830
                     dt_atual, x1, y1, x2, y2, V1x, V1y, V2x, V2y = rk4_tr_1(
1831
                         S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, dt
1832
                     )
1833
                     dt = dt_atual
1834
1835
                     outfile.write(
1836
                         f''{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} n''
1837
                     )
1838
1839
                     if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (
1840
                         np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) < 2
1841
                     ):
1842
                          break
1843
1844
                vx = V2x - V1x
1845
                vy = V2y - V1y
1846
                rr = np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
1847
                ex = (x2 - x1) / (rr)
1848
                ey = (y2 - y1) / (rr)
1849
                DT = (-vx * ey + vy * ex) / (rr)
1850
                dt = (2.0 * np.pi) / (DT * n) / f
1851
                 if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (rr < 2):
1852
                     break
1853
1854
1855
1856 # Campo para calcular no tempo de retardo - Aproximação de ordem 2
1857 def campo_w_2(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
1858
```

```
tr = -np.sqrt((x2 - x1) ** 2.0 + (y2 - y1) ** 2)
1859
1860
        _, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr = rk4_tr_1(
1861
           S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, tr
1862
        )
1863
1864
        n = 100
1865
        h = np.abs(tr) / n
1866
        tr = tr + h
1867
1868
        (
1869
1870
1871
            x1_tr_h,
            y1_tr_h,
1872
            x2_tr_h,
1873
1874
            y2_tr_h,
            V1x_tr_h,
1875
            V1y_tr_h,
1876
            V2x_tr_h,
1877
1878
            V2y_tr_h,
        ) = rk4_tr_1(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, tr)
1879
1880
        A1x_tr = (V1x_tr_h - V1x_tr) / h
1881
1882
        A1y_tr = (V1y_tr_h - V1y_tr) / h
        A2x_tr = (V2x_tr_h - V2x_tr) / h
1883
        A2y_tr = (V2y_tr_h - V2y_tr) / h
1884
1885
        r12 = np.sqrt((-x1 + x2_tr) ** 2 + (-y1 + y2_tr) ** 2)
1886
        r21 = np.sqrt((x1_tr - x2) ** 2 + (y1_tr - y2) ** 2)
1887
1888
1889
        e1X = (-x1_tr + x2) / r21
        e1Y = (-y1_tr + y2) / r21
1890
1891
        e2X = (-x1 + x2_tr) / r12
1892
        e2Y = (-y1 + y2_tr) / r12
1893
1894
        A1x = (
1895
             (-(V1x ** 2) - V1y ** 2 + 1) ** 2
1896
1897
             * (
                 (-(V1x ** 2) + 1)
1898
                 * (
1899
1900
                      - S
                      * (V2y_tr + e2Y)
1901
                      * (V1y + e2Y)
1902
                      * A2x_tr
1903
                      / (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1904
                      + S
1905
                      * (V2x_tr + e2X)
1906
                      * (V1y + e2Y)
1907
                      * A2y_tr
1908
                      / (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1909
                      + S
1910
                      * (V2x_tr ** 2 + V2y_tr ** 2 - 1)
1911
                      * (V2x_tr * e2Y * V1y - V2y_tr * e2X * V1y + V2x_tr + e2X)
1912
                      / (r12 ** 2 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1913
                 )
1914
                 - V1x
1915
1916
                 * V1y
                 * (
1917
                      S
1918
```

1919	* (V2y_tr + e2Y)
1920	* (V1x + e2X)
1921	* A2x_tr
1922	/ (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1923	- S
1924	$* (V2x_tr + e2X)$
1925	* (V1x + e2X)
1926	* A2y_tr
1927	/ (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1928	- S
1929	* $(V2x_tr ** 2 + V2y_tr ** 2 - 1)$
1930	* $(V2x_tr * e2Y * V1x - V2y_tr * e2X * V1x - V2y_tr - e2Y)$
1931	$/(r_{12} ** 2 * (v_{2x}_{tr} * e_{2x} + v_{2y}_{tr} * e_{2y} + 1) ** 3)$
1932	
1933	
1934	
1955	$A_{1y} = ($
1930	(-(V1x ** 2) - V1x ** 2 + 1) ** 2
1938	* (
1939	-V1x
1940	* V1v
1941	* (
1942	- S
1943	* (V2y_tr + e2Y)
1944	* (V1y + e2Y)
1945	* A2x_tr
1946	/ (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1947	+ S
1948	* (V2x_tr + e2X)
1949	* (V1y + e2Y)
1950	* A2y_tr
1951	/ (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1952	+ S
1953	* $(V2x_tr ** 2 + V2y_tr ** 2 - 1)$
1954	* $(V2x_tr * e2Y * V1y - V2y_tr * e2X * V1y + V2x_tr + e2X)$
1955	/ (r12 ** 2 * (V2x_tr * e2x + V2y_tr * e2y + 1) ** 3)
1956) $((1111 + 2) + 1)$
1059	* (- (v 1 y 77 2) · 1)
1950	S
1960	(V2v tr + e2Y)
1961	* (V1x + e2X)
1962	* A2x_tr
1963	/ (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1964	- S
1965	* (V2x_tr + e2X)
1966	* (V1x + e2X)
1967	* A2y_tr
1968	/ (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1969	- S
1970	* (V2x_tr ** 2 + V2y_tr ** 2 - 1)
1971	* (V2x_tr * e2Y * V1x - V2y_tr * e2X * V1x - V2y_tr - e2Y)
1972	/ (r12 ** 2 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
1973	
1974	
1975	/ eta
1976	$A_{2x} = (-(V_{2x} * * 2) - V_{2y} * 2 + 1) * * 2 * ($
1978	(-(V2x ** 2) + 1)
	· · · · · · · · · · · · · · · · · · ·

```
* (
1979
                 – S
1980
                 * (V2y - e1Y)
1981
                 * (V1y_tr - e1Y)
1982
                 * A1x_tr
1983
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
1984
                 + S
1985
                 * (V2y - e1Y)
1986
                 * (V1x_tr - e1X)
1987
                 * Aly_tr
1988
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
1989
                 - S
1990
                 * (V1x_tr ** 2 + V1y_tr ** 2 - 1)
1991
                 * (V1x_tr * e1Y * V2y - V1y_tr * e1X * V2y - V1x_tr + e1X)
1992
                 / (r21 ** 2 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
1993
            )
1994
             - V2x
1995
            * V2y
1996
1997
             * (
                 S
1998
                 * (V2x - e1X)
1999
                 * (V1y_tr - e1Y)
2000
                 * A1x_tr
2001
2002
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
                 - S
2003
                 * (V2x - e1X)
2004
                 * (V1x_tr - e1X)
2005
                 * Aly_tr
2006
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2007
                 + S
2008
                 * (V1x_tr ** 2 + V1y_tr ** 2 - 1)
2009
2010
                 * (V1x_tr * e1Y * V2x - V1y_tr * e1X * V2x + V1y_tr - e1Y)
                 / (r21 ** 2 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2011
            )
2012
        )
2013
        A2y = (-(V2x ** 2) - V2y ** 2 + 1) ** 2 * (
2014
             -V2x
2015
             * V2y
2016
             * (
2017
                 - S
2018
                 * (V2y - e1Y)
2019
2020
                 * (V1y_tr - e1Y)
                 * A1x_tr
2021
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2022
                 + S
2023
                 * (V2y - e1Y)
2024
                 * (V1x_tr - e1X)
2025
                 * Aly_tr
2026
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2027
                 - S
2028
                 * (V1x_tr ** 2 + V1y_tr ** 2 - 1)
2029
                 * (V1x_tr * e1Y * V2y - V1y_tr * e1X * V2y - V1x_tr + e1X)
2030
                 / (r21 ** 2 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2031
             )
2032
             + (-(V2y ** 2) + 1)
2033
             * (
2034
2035
                 S
2036
                 * (V2x - e1X)
                 * (V1y_tr - e1Y)
2037
                 * A1x_tr
2038
```

```
/ (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2039
                 - S
2040
                 * (V2x - e1X)
2041
                 * (V1x_tr - e1X)
2042
2043
                 * Aly_tr
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2044
                 + S
2045
                 * (V1x_tr ** 2 + V1y_tr ** 2 - 1)
2046
                 * (V1x_tr * e1Y * V2x - V1y_tr * e1X * V2x + V1y_tr - e1Y)
2047
                 / (r21 ** 2 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2048
            )
2049
        )
2050
2051
        return A1x, A1y, A2x, A2y
2052
2053
2054
2055 # Runge-Kutta 4 ordem com retardo - Aproximação de ordem 2 do campo
2056 def rk4_tr_2(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, h):
2057
        x1_1 = V1x * h
2058
        y1_1 = V1y * h
2059
        x2_1 = V2x * h
2060
        y2_1 = V2y * h
2061
2062
        V1x_1, V1y_1, V2x_1, V2y_1 = campo_w_2(
2063
            S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
2064
        )
2065
        V1x_1 = V1x_1 * h
2066
        V1y_1 = V1y_1 * h
2067
        V2x_1 = V2x_1 * h
2068
2069
        V2y_1 = V2y_1 * h
2070
        x1_k = x1 + x1_1 * 0.5
2071
2072
        y1_k = y1 + y1_1 * 0.5
        x2_k = x2 + x2_1 * 0.5
2073
        y_{k} = y_{k} + y_{1} * 0.5
2074
        V1x_k = V1x + V1x_1 * 0.5
2075
        V1y_k = V1y + V1y_1 * 0.5
2076
        V2x_k = V2x + V2x_1 * 0.5
2077
        V_{2y_k} = V_{2y} + V_{2y_1} * 0.5
2078
2079
2080
        x1_2 = V1x_k * h
        y1_2 = V1y_k * h
2081
        x2_2 = V2x_k * h
2082
        y2_2 = V2y_k * h
2083
2084
        V1x_2, V1y_2, V2x_2, V2y_2 = campo_w_2(
2085
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
2086
        )
2087
        V1x_2 = V1x_2 * h
2088
        V1y_2 = V1y_2 * h
2089
        V2x_2 = V2x_2 * h
2090
        V2y_2 = V2y_2 * h
2091
2092
        x1_k = x1 + x1_2 * 0.5
2093
        y1_k = y1 + y1_2 * 0.5
2094
        x2_k = x2 + x2_2 * 0.5
2095
2096
        y_{k} = y_{k} + y_{2} + y_{3}
        V1x_k = V1x + V1x_2 * 0.5
2097
        V1y_k = V1y + V1y_2 * 0.5
2098
```

```
V2x_k = V2x + V2x_2 * 0.5
2099
        V2y_k = V2y + V2y_2 * 0.5
2100
2101
        x1_3 = V1x_k * h
2102
        y1_3 = V1y_k * h
2103
        x2_3 = V2x_k * h
2104
        y_{2_{3}} = V_{2y_{k}} * h
2105
2106
        V1x_3, V1y_3, V2x_3, V2y_3 = campo_w_2(
2107
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
2108
2109
        )
        V1x_3 = V1x_3 * h
2110
        V1y_3 = V1y_3 * h
2111
        V2x_3 = V2x_3 * h
2112
        V2y_3 = V2y_3 * h
2113
2114
        x1_k = x1 + x1_3
2115
        y1_k = y1 + y1_3
2116
        x2_k = x2 + x2_3
2117
        y_{2k} = y_{2} + y_{2}_{3}
2118
        V1x_k = V1x + V1x_3
2119
        V1y_k = V1y + V1y_3
2120
        V2x_k = V2x + V2x_3
2121
2122
        V2y_k = V2y + V2y_3
2123
        x1_4 = V1x_k * h
2124
        y1_4 = V1y_k * h
2125
        x2_4 = V2x_k * h
2126
        y_{2_4} = V_{2y_k} * h
2127
2128
2129
        V1x_4, V1y_4, V2x_4, V2y_4 = campo_w_2(
2130
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
        )
2131
        V1x_4 = V1x_4 * h
2132
        V1y_4 = V1y_4 * h
2133
        V2x_4 = V2x_4 * h
2134
        V2y_4 = V2y_4 * h
2135
2136
        x1 = x1 + (x1_1 + 2 * (x1_2 + x1_3) + x1_4) / 6
2137
        y1 = y1 + (y1_1 + 2 * (y1_2 + y1_3) + y1_4) / 6
2138
        x^{2} = x^{2} + (x^{2} + 2 * (x^{2} + x^{2}) + x^{2}) / 6
2139
2140
        y_2 = y_2 + (y_2_1 + 2 * (y_2_2 + y_2_3) + y_2_4) / 6
        V1x = V1x + (V1x_1 + 2 * (V1x_2 + V1x_3) + V1x_4) / 6
2141
        V1y = V1y + (V1y_1 + 2 * (V1y_2 + V1y_3) + V1y_4) / 6
2142
        V2x = V2x + (V2x_1 + 2 * (V2x_2 + V2x_3) + V2x_4) / 6
2143
        V2y = V2y + (V2y_1 + 2 * (V2y_2 + V2y_3) + V2y_4) / 6
2144
2145
       return h, x1, y1, x2, y2, V1x, V1y, V2x, V2y
2146
2147
2148
2149 # Aplicação do método Runge-Kutta com retardo - Aproximação de ordem 2
2150 def rk4_method_tr_2(
        path, n, m, f, t, dt, S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
2151
2152 ):
        with open(path, "w") as outfile:
2153
            outfile.write(f"{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} n")
2154
2155
2156
            for _ in tqdm(range(1, m + 1, 1)):
                 for _ in range(1, n + 1, 1):
2157
                     t += dt
2158
```

dt_atual, x1, y1, x2, y2, V1x, V1y, V2x, V2y = rk4_tr_2(2159 S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, dt 2160) 2161 2162 dt = dt_atual 2163 outfile.write(2164 $f''{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} \n''$ 2165) 2166 2167 if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (2168 np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) < 22169): 2170 2171break 2172 vx = V2x - V1x2173 vy = V2y - V1y2174rr = np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))2175ex = (x2 - x1) / (rr)2176 ey = (y2 - y1) / (rr)2177DT = (-vx * ey + vy * ex) / (rr)2178 dt = (2.0 * np.pi) / (DT * n) / f 2179if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (rr < 2): 2180 2181 break 2182 2183 2184 # Campo para calcular no tempo de retardo - Aproximação de ordem 3 2185 def campo_w_3(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y): 2186 tr = -np.sqrt((x2 - x1) ** 2.0 + (y2 - y1) ** 2)2187 2188 2189 _, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr = rk4_tr_2(2190 S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, tr) 2191 2192 n = 1002193 h = np.abs(tr) / n2194 tr = tr + h2195 2196 (2197 2198 x1_tr_h, 2199 2200 y1_tr_h, x2_tr_h, 2201 y2_tr_h, 2202 V1x_tr_h, 2203 2204 V1y_tr_h, 2205 V2x_tr_h, V2y_tr_h, 2206) = rk4_tr_2(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, tr) 2207 2208 $A1x_tr = (V1x_tr_h - V1x_tr) / h$ 2209 $A1y_tr = (V1y_tr_h - V1y_tr) / h$ 2210 $A2x_tr = (V2x_tr_h - V2x_tr) / h$ 2211 $A2y_tr = (V2y_tr_h - V2y_tr) / h$ 2212 2213 r12 = np.sqrt((-x1 + x2_tr) ** 2 + (-y1 + y2_tr) ** 2) 2214 r21 = np.sqrt((x1_tr - x2) ** 2 + (y1_tr - y2) ** 2) 2215 2216 $e1X = (-x1_tr + x2) / r21$ 2217 $e1Y = (-y1_tr + y2) / r21$ 2218

```
2219
        e2X = (-x1 + x2_tr) / r12
2220
        e2Y = (-y1 + y2_tr) / r12
2221
2222
        A1x = (
2223
             (-(V1x ** 2) - V1y ** 2 + 1) ** 2
2224
             * (
2225
                  (-(V1x ** 2) + 1)
2226
                 * (
2227
                      - S
2228
                      * (V2y_tr + e2Y)
2229
                      * (V1y + e2Y)
2230
                      * A2x_tr
2231
                      / (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2232
                      + S
2233
2234
                      * (V2x_tr + e2X)
                      * (V1y + e2Y)
2235
                      * A2y_tr
2236
                      / (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2237
                      + S
2238
                      * (V2x_tr ** 2 + V2y_tr ** 2 - 1)
2239
                      * (V2x_tr * e2Y * V1y - V2y_tr * e2X * V1y + V2x_tr + e2X)
2240
                      / (r12 ** 2 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2241
                 )
2242
                 - V1x
2243
                 * V1y
2244
2245
                 * (
                      S
2246
                      * (V2y_tr + e2Y)
2247
                      * (V1x + e2X)
2248
                      * A2x_tr
2249
2250
                      / (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
                      - S
2251
                      * (V2x_tr + e2X)
2252
                      * (V1x + e2X)
2253
                      * A2y_tr
2254
                      / (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2255
                      - S
2256
                      * (V2x_tr ** 2 + V2y_tr ** 2 - 1)
2257
                      * (V2x_tr * e2Y * V1x - V2y_tr * e2X * V1x - V2y_tr - e2Y)
2258
                      / (r12 ** 2 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2259
                 )
2260
            )
2261
             / eta
2262
        )
2263
        A1y = (
2264
             (-(V1x ** 2) - V1y ** 2 + 1) ** 2
2265
             * (
2266
                 -V1x
2267
                 * V1y
2268
                 * (
2269
                      - S
2270
                      * (V2y_tr + e2Y)
2271
                      * (V1y + e2Y)
2272
                      * A2x_tr
2273
                      / (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2274
                      + S
2275
2276
                      * (V2x_tr + e2X)
                      * (V1y + e2Y)
2277
                      * A2y_tr
2278
```

2279	/ (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2280	+ S
2281	* (V2x_tr ** 2 + V2y_tr ** 2 - 1)
2282	* (V2x_tr * e2Y * V1y - V2y_tr * e2X * V1y + V2x_tr + e2X)
2283	/ (r12 ** 2 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2284)
2285	+ (-(V1y ** 2) + 1)
2286	* (
2287	S
2288	* (V2y_tr + e2Y)
2289	* (V1x + e2X)
2290	* A2x_tr
2291	/ (r12 * (V2x_tr * e2X + V2y_tr * e2Y + 1) ** 3)
2292	- S
2293	$* (V2x_tr + e2x)$
2294	* (V1x + e2X)
2295	* $A2y_{tr}$
2296	$/(r_{12} * (v_{2}x_{tr} * e_{2}x + v_{2}y_{tr} * e_{2}y + 1) ** 3)$
2297	$- \omega$
2298	$ (V \land x \downarrow v \land z \downarrow v \land y \downarrow v \land y \downarrow v \land y \land y \downarrow v \land y \land y \downarrow v \land y \land$
2299	/ (r12 ** 2 * (V2x tr * a2X + V2y tr * a2X + 1) ** 3)
2300 2301) (112 ··· 2 ··· (v_{2A_0} ··· v_{2y_0} ··· v_{2y_0} ··· v_{2y_0} ··· ··· ··· ··· ··· ··· ··· ··· ··· ·
2302)
2303	/ eta
2304)
2305	$A_{2x} = (-(V_{2x} * * 2) - V_{2v} * * 2 + 1) * * 2 * ($
2306	(-(V2x ** 2) + 1)
2307	* (
2308	- S
2309	* (V2y - e1Y)
2310	* (V1y_tr - e1Y)
2311	* A1x_tr
2312	/ (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2313	+ S
2314	* (V2y - e1Y)
2315	<pre>* (V1x_tr - e1X)</pre>
2316	* Aly_tr
2317	/ (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2318	-S
2319	* $(VIX_TT ** 2 + VIY_TT ** 2 - 1)$ * $(VIX_TT ** 2 + VIY_TT ** 2 - 1)$
2320	* $(VIX_tr * eIY * V2y - VIy_tr * eIX * V2y - VIX_tr + eIX)$
2321) (IZI TT Z T (-VIX_UI T EIX - VIY_UI T EII T I) $\uparrow \uparrow 3$)
2322	- V2x
2323	* V2v
2325	* (
2326	Š
2327	* (V2x - e1X)
2328	* (V1v tr - e1Y)
2329	* A1x_tr
2330	/ (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2331	- S
2332	* (V2x - e1X)
2333	* (V1x_tr - e1X)
2334	* Aly_tr
2335	/ (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2336	+ S
2337	* (V1x_tr ** 2 + V1y_tr ** 2 - 1)
2338	* (V1x_tr * e1Y * V2x - V1y_tr * e1X * V2x + V1y_tr - e1Y)

```
/ (r21 ** 2 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2339
            )
2340
        )
2341
        A2y = (-(V2x ** 2) - V2y ** 2 + 1) ** 2 * (
2342
            -V2x
2343
            * V2y
2344
            * (
2345
                 - S
2346
                 * (V2y - e1Y)
2347
                 * (V1y_tr - e1Y)
2348
2349
                 * A1x_tr
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2350
                 + S
2351
                 * (V2y - e1Y)
2352
                 * (V1x_tr - e1X)
2353
2354
                 * Aly_tr
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2355
                 - S
2356
                 * (V1x_tr ** 2 + V1y_tr ** 2 - 1)
2357
                 * (V1x_tr * e1Y * V2y - V1y_tr * e1X * V2y - V1x_tr + e1X)
2358
                 / (r21 ** 2 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2359
            )
2360
            + (-(V2y ** 2) + 1)
2361
2362
            * (
                 S
2363
                 * (V2x - e1X)
2364
                 * (V1y_tr - e1Y)
2365
                 * A1x_tr
2366
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2367
                 - S
2368
2369
                 * (V2x - e1X)
2370
                 * (V1x_tr - e1X)
                 * Aly_tr
2371
                 / (r21 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2372
                 + S
2373
                 * (V1x_tr ** 2 + V1y_tr ** 2 - 1)
2374
                 * (V1x_tr * e1Y * V2x - V1y_tr * e1X * V2x + V1y_tr - e1Y)
2375
                 / (r21 ** 2 * (-V1x_tr * e1X - V1y_tr * e1Y + 1) ** 3)
2376
            )
2377
        )
2378
2379
2380
        return A1x, A1y, A2x, A2y
2381
2382
2383 # Runge-Kutta 4 ordem com retardo - Aproximação de ordem 3 do campo
2384 def rk4_tr_3(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, h):
2385
        x1_1 = V1x * h
2386
        y1_1 = V1y * h
2387
        x2_1 = V2x * h
2388
        y2_1 = V2y * h
2389
2390
        V1x_1, V1y_1, V2x_1, V2y_1 = campo_w_3(
2391
            S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
2392
        )
2393
        V1x_1 = V1x_1 * h
2394
        V1y_1 = V1y_1 * h
2395
2396
        V2x_1 = V2x_1 * h
        V2y_1 = V2y_1 * h
2397
2398
```

```
x1_k = x1 + x1_1 * 0.5
2399
        y1_k = y1 + y1_1 * 0.5
2400
        x2_k = x2 + x2_1 * 0.5
2401
2402
        y_{k} = y_{k} + y_{1} * 0.5
        V1x_k = V1x + V1x_1 * 0.5
2403
        V1y_k = V1y + V1y_1 * 0.5
2404
        V2x_k = V2x + V2x_1 * 0.5
2405
        V_{2y_k} = V_{2y} + V_{2y_1} * 0.5
2406
2407
        x1_2 = V1x_k * h
2408
        y1_2 = V1y_k * h
2409
        x2_2 = V2x_k * h
2410
        y_{2_2} = V_{2y_k} * h
2411
2412
        V1x_2, V1y_2, V2x_2, V2y_2 = campo_w_3(
2413
2414
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
        )
2415
        V1x_2 = V1x_2 * h
2416
2417
        V1y_2 = V1y_2 * h
        V2x_2 = V2x_2 * h
2418
        V2y_2 = V2y_2 * h
2419
2420
        x1_k = x1 + x1_2 * 0.5
2421
2422
        y1_k = y1 + y1_2 * 0.5
        x2_k = x2 + x2_2 * 0.5
2423
        y_{2k} = y_{2} + y_{22} * 0.5
2424
2425
        V1x_k = V1x + V1x_2 * 0.5
        V1y_k = V1y + V1y_2 * 0.5
2426
        V2x_k = V2x + V2x_2 * 0.5
2427
        V_{2y_k} = V_{2y} + V_{2y_2} * 0.5
2428
2429
2430
        x1_3 = V1x_k * h
        y1_3 = V1y_k * h
2431
2432
        x2_3 = V2x_k * h
        y_{2_{3}} = V_{2y_{k}} * h
2433
2434
        V1x_3, V1y_3, V2x_3, V2y_3 = campo_w_3(
2435
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
2436
        )
2437
        V1x_3 = V1x_3 * h
2438
        V1y_3 = V1y_3 * h
2439
2440
        V2x_3 = V2x_3 * h
        V2y_3 = V2y_3 * h
2441
2442
        x1_k = x1 + x1_3
2443
        y1_k = y1 + y1_3
2444
        x2_k = x2 + x2_3
2445
2446
        y2_k = y2 + y2_3
        V1x_k = V1x + V1x_3
2447
        V1y_k = V1y + V1y_3
2448
        V2x_k = V2x + V2x_3
2449
        V2y_k = V2y + V2y_3
2450
2451
        x1_4 = V1x_k * h
2452
        y1_4 = V1y_k * h
2453
        x2_4 = V2x_k * h
2454
2455
        y2_4 = V2y_k * h
2456
        V1x_4, V1y_4, V2x_4, V2y_4 = campo_w_3(
2457
             S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
2458
```

```
)
2459
        V1x_4 = V1x_4 * h
2460
        V1y_4 = V1y_4 * h
2461
        V2x_4 = V2x_4 * h
2462
        V2y_4 = V2y_4 * h
2463
2464
        x1 = x1 + (x1_1 + 2 * (x1_2 + x1_3) + x1_4) / 6
2465
        y1 = y1 + (y1_1 + 2 * (y1_2 + y1_3) + y1_4) / 6
2466
        x^2 = x^2 + (x^2_1 + 2 * (x^2_2 + x^2_3) + x^2_4) / 6
2467
        y_2 = y_2 + (y_2_1 + 2 * (y_2_2 + y_2_3) + y_2_4) / 6
2468
        V1x = V1x + (V1x_1 + 2 * (V1x_2 + V1x_3) + V1x_4) / 6
2469
        V1y = V1y + (V1y_1 + 2 * (V1y_2 + V1y_3) + V1y_4) / 6
2470
        V_{2x} = V_{2x} + (V_{2x_1} + 2 * (V_{2x_2} + V_{2x_3}) + V_{2x_4}) / 6
2471
        V2y = V2y + (V2y_1 + 2 * (V2y_2 + V2y_3) + V2y_4) / 6
2472
2473
2474
        return h, x1, y1, x2, y2, V1x, V1y, V2x, V2y
2475
2476
2477 # Aplicação do método Runge-Kutta com retardo - Aproximação de ordem 3
2478 def rk4_method_tr_3(
        path, n, m, f, t, dt, S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
2479
2480 ):
        with open(path, "w") as outfile:
2481
2482
            outfile.write(f"{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} \n")
2483
            for _ in tqdm(range(1, m + 1, 1)):
2484
                 for _ in range(1, n + 1, 1):
2485
                     t += dt
2486
                     dt_atual, x1, y1, x2, y2, V1x, V1y, V2x, V2y = rk4_tr_3(
2487
                         S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, dt
2488
                     ١
2489
                     dt = dt_atual
2490
2491
                     outfile.write(
2492
                         f''{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} n''
2493
                     )
2494
2495
                     if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (
2496
                         np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) < 2
2497
                     ):
2498
                          break
2499
2500
                 vx = V2x - V1x
2501
                 vy = V2y - V1y
2502
                 rr = np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
2503
                 ex = (x2 - x1) / (rr)
2504
                 ey = (y2 - y1) / (rr)
2505
                 DT = (-vx * ey + vy * ex) / (rr)
2506
                 dt = (2.0 * np.pi) / (DT * n) / f
2507
                 if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (rr < 2):
2508
2509
                     break
2510
2511
     ### Equações com os tempos retardos e avançados ###
2512 #
2513
2514 # Aceleração da partícula 1 no eixo x para o tempo retardado e avançado
2515 def f_a1x_tr_av(
2516
        S,
        eta,
2517
        x1,
2518
```

2519	y1,
2520	x2_tr,
2521	y2_tr,
2522	x2_ta,
2523	yz_ta, Vlv
2524	VIX, VIV
2526	V_{2x} tr.
2527	V2v tr.
2528	V2x_ta,
2529	V2y_ta,
2530	A2x_tr,
2531	A2y_tr,
2532	A2x_ta,
2533	A2y_ta,
2534):
2535	$r_{10} + r_{2} - r_{20} - r_{20} + r_{10} + r_{20} + r_$
2536	$p_{112} = p_{11} + p_{11} + p_{21} + p_{22} + $
2538	e^{2Y} tr = $(-v^{1} + v^{2} tr) / r^{12} tr$
2539	021_01 ()1))2_01)) 112_01
2540	r12_ta = np.sqrt((-x1 + x2_ta) ** 2 + (-y1 + y2_ta) ** 2)
2541	e2X_ta = (-x1 + x2_ta) / r12_ta
2542	e2Y_ta = (-y1 + y2_ta) / r12_ta
2543	
2544	ff1x = (
2545	(-(V1x ** 2) - V1y ** 2 + 1) ** 2
2546	* (($(111 - + + 0)$) + 1)
2547	(-(VIX ** 2) + 1)
2548	(1 / 2)
2549	* S
2551	<pre>* (V2y_tr + e2Y_tr)</pre>
2552	* (V1y + e2Y_tr)
2553	* A2x_tr
2554	/ (r12_tr * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2555	+ (1 / 2)
2556	* S
2557	* $(V2x_tr + e2x_tr)$
2558	* $(VIY + eZY_tr)$ * A2y +r
2559	/(r12 tr * (V2x tr * e2X tr + V2y tr * e2Y tr + 1) ** 3)
2561	+ (1 / 2)
2562	* S
2563	* (V2x_tr ** 2 + V2y_tr ** 2 - 1)
2564	* (
2565	V2x_tr * e2Y_tr * V1y
2566	- V2y_tr * e2X_tr * V1y
2567	$+ V2x_tr$
2568	$+ e_{2x}$ tr
2509	/ (r12 tr ** 2 * (V2x tr * e2X tr + V2v tr * e2Y tr + 1) ** 3
2571	-(1/2)
2572	* S
2573	* (-V2y_ta + e2Y_ta)
2574	* (V1y + e2Y_ta)
2575	* A2x_ta
2576	/ (r12_ta * (-V2x_ta * e2X_ta - V2y_ta * e2Y_ta + 1) ** 3)
2577	+ (1 / 2)
2578	* 2

2579	* (-V2x_ta + e2X_ta)
2580	* (V1y + e2Y_ta)
2581	* A2y_ta
2582	/ (r12_ta * (-V2x_ta * e2X_ta - V2y_ta * e2Y_ta + 1) ** 3)
2583	+ (1 / 2)
2584	* S
2585	* (V2x_ta ** 2 + V2y_ta ** 2 - 1)
2586	* (
2587	-V2x_ta * e2Y_ta * V1y
2588	+ $V2y_{ta} * e2X_{ta} * V1y$
2589	- V2x_ta
2590	+ e2X ta
2591)
2592	(r12 ta ** 2 * (-V2x ta * e2X ta - V2x ta * e2Y ta + 1) ** 3)
2502)
2504	- V1x
2594	* V1v
2595	+ VIy
2596	τ ((1 / <u>0</u>)
2597	
2598	$\uparrow D$
2599	* $(V2y_tr + e2y_tr)$
2600	$* (VIX + e2X_tr)$
2601	* A2x_tr
2602	/ (r12_tr * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2603	- (1 / 2)
2604	* S
2605	* (V2x_tr + e2X_tr)
2606	* (V1x + e2X_tr)
2607	* A2y_tr
2608	/ (r12_tr * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2609	- (1 / 2)
2610	* S
2611	* (V2x_tr ** 2 + V2y_tr ** 2 - 1)
2612	* (
2613	V2x_tr * e2Y_tr * V1x
2614	- V2y_tr * e2X_tr * V1x
2615	- V2y_tr
2616	- e2Y_tr
2617)
2618	/ (r12_tr ** 2 * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2619	+ (1 / 2)
2620	* S
2621	* (-V2y_ta + e2Y_ta)
2622	* (V1x + e2X_ta)
2623	* A2x_ta
2624	/ (r12_ta * (-V2x_ta * e2X_ta - V2v_ta * e2Y_ta + 1) ** 3)
2625	- (1 / 2)
2626	* S
2627	* (-V2x ta + e2X ta)
2628	* (V1x + e2X ta)
2629	* $A2y$ ta
2630	$/(r_{12} t_{a} * (-V_{2x} t_{a} * e_{2x} t_{a} - V_{2x} t_{a} * e_{2x} t_{a} + 1) ** 3)$
2631	= (1 / 2)
2001	* 5
2032	$* (V_{2} + 3 + 3 + V_{2} + 3 + 3 + 1)$
2000	(((((((((((((((((((
2034	T ($VOr + 2 + 20V + 2 + V1r$
2635	$-VZX_{La} + eZI_{La} + VIX$
2636	+ $v_2y_{ta} \neq e_2x_{ta} \neq v_1x$
2637	$+ v_2 y_{ta}$
2638	- ezī_ta

```
)
2639
                        (r12_ta ** 2 * (-V2x_ta * e2X_ta - V2y_ta * e2Y_ta + 1) ** 3)
2640
                      /
                 )
2641
             )
2642
             / eta
2643
2644
        )
        return ff1x
2645
2646
2647
2648 # Aceleração da partícula 1 no eixo y para o tempo retardado e avançado
2649 def f_a1y_tr_av(
        S,
2650
        eta,
2651
        x1,
2652
2653
        y1,
2654
        x2_tr,
2655
        y2_tr,
        x2_ta,
2656
2657
        y2_ta,
        V1x,
2658
        Vly,
2659
        V2x_tr,
2660
2661
        V2y_tr,
2662
        V2x_ta,
        V2y_ta,
2663
        A2x_tr,
2664
2665
        A2y_tr,
        A2x_ta,
2666
        A2y_ta,
2667
2668 ):
2669
2670
        r12_tr = np.sqrt((-x1 + x2_tr) ** 2 + (-y1 + y2_tr) ** 2)
        e2X_tr = (-x1 + x2_tr) / r12_tr
2671
        e2Y_tr = (-y1 + y2_tr) / r12_tr
2672
2673
        r12_ta = np.sqrt((-x1 + x2_ta) ** 2 + (-y1 + y2_ta) ** 2)
2674
        e2X_ta = (-x1 + x2_ta) / r12_ta
2675
        e2Y_ta = (-y1 + y2_ta) / r12_ta
2676
        ff1y = (
2677
             (-(V1x ** 2) - V1y ** 2 + 1) ** 2
2678
             * (
2679
                  -V1x
2680
                  * V1y
2681
                  * (
2682
                       -(1 / 2)
2683
                      * S
2684
                      * (V2y_tr + e2Y_tr)
2685
                      * (V1y + e2Y_tr)
2686
                      * A2x_tr
2687
                      / (r12_tr * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2688
                      + (1 / 2)
2689
                      * S
2690
                      * (V2x_tr + e2X_tr)
2691
                      * (V1y + e2Y_tr)
2692
                      * A2y_tr
2693
                      / (r12_tr * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2694
                      + (1 / 2)
2695
2696
                      * S
                      * (V2x_tr ** 2 + V2y_tr ** 2 - 1)
2697
                      * (
2698
```
2699	V2x_tr * e2Y_tr * V1y
2700	- V2y_tr * e2X_tr * V1y
2701	+ V2x_tr
2702	+ e2X_tr
2703)
2704	/ (r12_tr ** 2 * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2705	-(1/2)
2706	* S
2707	(-V2v ta + e2V ta)
2708	$* (V_{1y} + e_{2y} + a_{3y})$
2700	$* \Delta 2x \pm a$
2703	$/(r_{12} + a + (-V_{22} + a + a_{22} + a - V_{22} + a + a_{22} + a + 1) ** 3)$
2710	+ $(1 / 2)$
2711	* 9
2712	* (V2z + 2 + 22X + 2)
2713	$ (V1_{W} + o2_{V} + o) $
2714	$+ A^{2} + 2^{2}$
2715	$\uparrow AZY_{La}$
2716	$/ (II2_ta + (-V2X_ta + e2X_ta - V2y_ta + e2I_ta + I) ++ 3)$
2717	+ (1 / 2)
2718	
2719	* $(V2X_ta ** 2 + V2y_ta ** 2 - 1)$
2720	* (
2721	-V2x_ta * e2Y_ta * V1y
2722	$+ V2y_ta * e2X_ta * V1y$
2723	$- V2x_ta$
2724	$+ e2X_ta$
2725	
2726	/ (r12_ta ** 2 * (-V2x_ta * e2X_ta - V2y_ta * e2Y_ta + 1) ** 3
2727)
2728	+ (-(V1y ** 2) + 1)
2729	* (
2730	(1 / 2)
2731	* S
2732	<pre>* (V2y_tr + e2Y_tr)</pre>
2733	* (V1x + e2X_tr)
2734	* A2x_tr
2735	/ (r12_tr * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2736	- (1 / 2)
2737	* S
2738	<pre>* (V2x_tr + e2X_tr)</pre>
2739	* (V1x + e2X_tr)
2740	* A2y_tr
2741	/ (r12_tr * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2742	- (1 / 2)
2743	* S
2744	* (V2x_tr ** 2 + V2y_tr ** 2 - 1)
2745	* (
2746	V2x_tr * e2Y_tr * V1x
2747	- V2y_tr * e2X_tr * V1x
2748	- V2y_tr
2749	- e2Y_tr
2750)
2751	/ (r12_tr ** 2 * (V2x_tr * e2X_tr + V2y_tr * e2Y_tr + 1) ** 3)
2752	+ (1 / 2)
2753	* S
2754	* (-V2y_ta + e2Y_ta)
2755	* (V1x + e2X_ta)
2756	* A2x_ta
2757	/ (r12_ta * (-V2x_ta * e2X_ta - V2v_ta * e2Y_ta + 1) ** 3)
2758	- (1 / 2)

```
* S
2759
                      * (-V2x_ta + e2X_ta)
2760
                      * (V1x + e2X_ta)
2761
                      * A2y_ta
2762
                      / (r12_ta * (-V2x_ta * e2X_ta - V2y_ta * e2Y_ta + 1) ** 3)
2763
                      - (1 / 2)
2764
                      * S
2765
                      * (V2x_ta ** 2 + V2y_ta ** 2 - 1)
2766
                      * (
2767
                           -V2x_ta * e2Y_ta * V1x
2768
                           + V2y_ta * e2X_ta * V1x
2769
                           + V2y_ta
2770
                           - e2Y_ta
2771
                      )
2772
                      / (r12_ta ** 2 * (-V2x_ta * e2X_ta - V2y_ta * e2Y_ta + 1) ** 3)
2773
                 )
2774
             )
2775
             / eta
2776
        )
2777
2778
        return ff1y
2779
2780
2781
2782 # Aceleração da partícula 2 no eixo x para o tempo retardado e avançado
2783 def f_a2x_tr_av(
2784
        S,
2785
        x1_tr,
2786
        y1_tr,
        x1_ta,
2787
        y1_ta,
2788
2789
        x2,
2790
        y2,
        V1x_tr,
2791
        V1y_tr,
2792
        V1x_ta,
2793
2794
        V1y_ta,
        V2x,
2795
        V2y,
2796
        A1x_tr,
2797
        Aly_tr,
2798
        A1x_ta,
2799
2800
        Aly_ta,
2801 ):
2802
        r21_tr = np.sqrt((x1_tr - x2) ** 2 + (y1_tr - y2) ** 2)
2803
        e1X_tr = (-x1_tr + x2) / r21_tr
2804
        e1Y_tr = (-y1_tr + y2) / r21_tr
2805
2806
        r21_ta = np.sqrt((x1_ta - x2) ** 2 + (y1_ta - y2) ** 2)
2807
2808
        e1X_ta = (-x1_ta + x2) / r21_ta
        e1Y_ta = (-y1_ta + y2) / r21_ta
2809
2810
        ff2x = (-(V2x ** 2) - V2y ** 2 + 1) ** 2 * (
2811
             (-(V2x ** 2) + 1)
2812
             * (
2813
                  -(1 / 2)
2814
                  * S
2815
2816
                  * (V2y - e1Y_tr)
                  * (V1y_tr - e1Y_tr)
2817
                  * A1x_tr
2818
```

2819	/ (r21_tr * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)	
2820	+ (1 / 2)	
2821	* S	
2822	* (V2y - e1Y_tr)	
2823	* (V1x_tr - e1X_tr)	
2824	4 * Aly_tr	
2825	/ (r21_tr * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)	
2826	- (1 / 2)	
2827	7 * S	
2828	* (V1x_tr ** 2 + V1y_tr ** 2 - 1)	
2829	* (V1x_tr * e1Y_tr * V2y - V1y_tr * e1X_tr * V2y - V1x_tr + e1X_	tr)
2830	/ (r21_tr ** 2 * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)	
2831	- (1 / 2)	
2832	2 * S	
2833	* (V2y - e1Y_ta)	
2834	* (-V1y_ta - e1Y_ta)	
2835	* A1x_ta	
2836	/ (r21_ta * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)	
2837	+ (1 / 2)	
2838	8 * S	
2839	* (V2y - e1Y_ta)	
2840	* (-V1x_ta - e1X_ta)	
2841	* Aly_ta	
2842	/ (r21_ta * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)	
2843	- (1 / 2)	
2844	4 * S	
2845	* (V1x_ta ** 2 + V1y_ta ** 2 - 1)	
2846	3 * (
2847	-V1x_ta * e1Y_ta * V2y	
2848	+ V1y_ta * e1X_ta * V2y	
2849	+ V1x_ta	
2850	+ e1X_ta	
2851)	
2852	/ (r21_ta ** 2 * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)	
2853)	
2854	4 – V2x	
2855	5 * V2y	
2856	3 * (
2857	7 (1 / 2)	
2858	8 * S	
2859	* (V2x - e1X_tr)	
2860	* (V1y_tr - e1Y_tr)	
2861	* A1x_tr	
2862	/ (r21_tr * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)	
2863	- (1 / 2)	
2864	4 * S	
2865	* (V2x - e1X_tr)	
2866	* (V1x_tr - e1X_tr)	
2867	* Aly_tr	
2868	/ (r21_tr * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)	
2869	+(1 / 2)	
2870	* S	
2871	* (V1x_tr ** 2 + V1y_tr ** 2 - 1)	
2872	* (V1x_tr * e1Y_tr * V2x - V1y_tr * e1X_tr * V2x + V1y_tr - e1Y_	tr)
2873	/ (r21_tr ** 2 * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)	
2874	+ (1 / 2)	
2875	* S	
2876	* $(V2x - e1X_ta)$	
2877	* (-V1y_ta - e1Y_ta)	
2878	* A1x_ta	

```
/ (r21_ta * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)
2879
                  - (1 / 2)
2880
                 * S
2881
                  * (V2x - e1X_ta)
2882
                  * (-V1x_ta - e1X_ta)
2883
                 * Alv_ta
2884
                  / (r21_ta * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)
2885
                 + (1 / 2)
2886
                  * S
2887
                  * (V1x_ta ** 2 + V1y_ta ** 2 - 1)
2888
                 * (
2889
                      -V1x_ta * e1Y_ta * V2x
2890
                      + V1y_ta * e1X_ta * V2x
2891
                      - V1y_ta
2892
                      - e1Y_ta
2893
2894
                 )
                 / (r21_ta ** 2 * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)
2895
             )
2896
        )
2897
2898
        return ff2x
2899
2900
2901
2902 # Aceleração da partícula 2 no eixo y para o tempo retardado e avançado
2903 def f_a2y_tr_av(
2904
        s,
2905
        x1_tr,
2906
        y1_tr,
        x1_ta,
2907
        y1_ta,
2908
2909
        x2,
2910
        y2,
        V1x_tr,
2911
        V1y_tr,
2912
        V1x_ta,
2913
2914
        V1y_ta,
        V2x,
2915
        V2y,
2916
        A1x_tr,
2917
        Aly_tr,
2918
        A1x_ta,
2919
2920
        Aly_ta,
2921 ):
2922
        r21_tr = np.sqrt((x1_tr - x2) ** 2 + (y1_tr - y2) ** 2)
2923
        e1X_tr = (-x1_tr + x2) / r21_tr
2924
        e1Y_tr = (-y1_tr + y2) / r21_tr
2925
2926
        r21_ta = np.sqrt((x1_ta - x2) ** 2 + (y1_ta - y2) ** 2)
2927
2928
        e1X_ta = (-x1_ta + x2) / r21_ta
        e1Y_ta = (-y1_ta + y2) / r21_ta
2929
        ff2y = (-(V2x ** 2) - V2y ** 2 + 1) ** 2 * (
2930
             -V2x
2931
             * V2y
2932
             * (
2933
                  -(1 / 2)
2934
                 * S
2935
2936
                  * (V2y - e1Y_tr)
                  * (V1y_tr - e1Y_tr)
2937
                  * A1x_tr
2938
```

2939	/ (r21_tr * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)
2940	+ (1 / 2)
2941	* S
2942	* (V2y - e1Y_tr)
2943	* (V1x_tr - e1X_tr)
2944	* Aly_tr
2945	/ (r21_tr * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)
2946	-(1/2)
2947	* S
2948	* (V1x tr ** 2 + V1v tr ** 2 - 1)
2949	* $(V1x tr * e1Y tr * V2y - V1y tr * e1X tr * V2y - V1x tr + e1X tr)$
2950	$(r_{21} tr ** 2 * (-V_{1x} tr * e_{1x} tr - V_{1y} tr * e_{1x} tr + 1) ** 3)$
2951	-(1/2)
2952	* S
2953	* (V2v - e1V ta)
2954	$(-V_1 v_1 t_2 - e_1 V_1 t_2)$
2955	* Alx ta
2056	/ (r21 ta * (V1x ta * e1X ta + V1x ta * e1Y ta + 1) ** 3)
2057	+ (1 / 2)
2059	* \$
2050	$* (V2_{V} - e^{1_{V}} + a)$
2959	* $(-V_1 x + a - e_1 x + a)$
2061	* $\Delta 1 v$ ta
2062	/ (r21 ta * (V1x ta * e1X ta + V1x ta * e1Y ta + 1) ** 3)
2063	= (1 / 2)
2903	* \$
2065	* $(V1x + a + * 2 + V1x + a + * 2 - 1)$
2966	* (
2967	-V1x ta * e1Y ta * V2v
2968	+ V1v ta $*$ e1X ta $*$ V2v
2969	+ $V1x$ ta
2970	$+ e1X_{ta}$
2971)
2972	/ (r21_ta ** 2 * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)
2973)
2974	+ (-(V2y ** 2) + 1)
2975	* (
2976	(1 / 2)
2977	* S
2978	* (V2x - e1X_tr)
2979	<pre>* (V1y_tr - e1Y_tr)</pre>
2980	* A1x_tr
2981	/ (r21_tr * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)
2982	- (1 / 2)
2983	* S
2984	* (V2x - e1X_tr)
2985	* (V1x_tr - e1X_tr)
2986	* Aly_tr
2987	/ (r21_tr * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)
2988	+(1 / 2)
2989	* S
2990	* (V1x_tr ** 2 + V1y_tr ** 2 - 1)
2991	* (V1x_tr * e1Y_tr * V2x - V1y_tr * e1X_tr * V2x + V1y_tr - e1Y_tr)
2992	/ (r21_tr ** 2 * (-V1x_tr * e1X_tr - V1y_tr * e1Y_tr + 1) ** 3)
2993	+(1/2)
2994	* S
2995	* (V2x - e1X_ta)
2996	* (-V1y_ta - e1Y_ta)
2997	* Alx_ta (112)
2998	/ (r21_ta * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)

```
- (1 / 2)
2999
                 * S
3000
                 * (V2x - e1X_ta)
3001
3002
                 * (-V1x_ta - e1X_ta)
3003
                 * Aly_ta
                 / (r21_ta * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)
3004
                 + (1 / 2)
3005
                 * S
3006
                 * (V1x_ta ** 2 + V1y_ta ** 2 - 1)
3007
                 * (
3008
                      -V1x_ta * e1Y_ta * V2x
3009
                      + V1y_ta * e1X_ta * V2x
3010
                      - V1y_ta
3011
                      - e1Y_ta
3012
                 )
3013
3014
                 / (r21_ta ** 2 * (V1x_ta * e1X_ta + V1y_ta * e1Y_ta + 1) ** 3)
            )
3015
        )
3016
3017
        return ff2y
3018
3019
3020
   # ## Equações instantâneas para o campo simétrico (tr -> t, ta -> t) ##
3021
3022
3023 # Aceleração da partícula 1 no eixo x campo simétrico
3024 def d_V1x_inst_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3025
        r = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
3026
        eX = (x2 - x1) / (r)
3027
        eY = (y2 - y1) / (r)
3028
3029
3030
        a1x = (
             -(eX * S) / (eta * r * r)
3031
            + (3 * V1x * V1x * eX * eY * eY * (-eta * r + S))
3032
             / (r * r * eta * (-r * r * eta + 1))
3033
             - (3 * (-eta * r + S) * eY * eY * eX * V1y * V1y)
3034
             / (r * r * eta * (-r * r * eta + 1))
3035
             - (3 * (-eta * r + S) * (2 * eX * eX - 1) * eY * V1x * V1y)
3036
             / (r * r * eta * (-r * r * eta + 1))
3037
             - (
3038
                 (
3039
                      eta * r * (2 * r * (-eX * eX + 2 * eY * eY) - 3 * S * eY * eY)
3040
                      + 3 * eX * eX
3041
                      - 1
3042
                 )
3043
3044
                 * eX
                 * S
3045
                 * V2x
3046
                 * V2x
3047
            )
3048
             / (r * r * eta * (-r * r * eta + 1))
3049
             - (
3050
                 еX
3051
                 * (
3052
                      eta * (3 * S * r * eY * eY - r * r * (6 * eY * eY - 1))
3053
                      + 3 * eY * eY
3054
3055
                      - 1
3056
                 )
                 * S
3057
                 * V2y
3058
```

```
* V2y
3059
            )
3060
            / (r * r * eta * (-r * r * eta + 1))
3061
3062
            - (
                 3
3063
                 * S
3064
                 * eY
3065
                 * (
3066
                      eta * r * (r * (-4 * eX * eX + 1) + S * (2 * eX * eX - 1))
3067
                     + 2 * eX * eX
3068
                 )
3069
                 * V2x
3070
3071
                 * V2y
            )
3072
            / (r * r * eta * (-r * r * eta + 1))
3073
              (eY * eY * eX * V1x * V2x) / (eta * r * r * r)
3074
            + ((eY * eY * eta * r * r - S * r + eX * eX) * eY * V1x * V2y)
3075
            / (eta * r * r * r * (-r * r * eta + 1))
3076
            + (
3077
                 (-((eX * eX + 1) * S - r) * r * r * eta + S * eX * eX)
3078
                 * S
3079
                 * eY
3080
                 * V1y
3081
3082
                 * V2x
            )
3083
            / (eta * r * r * r * (-r * r * eta + 1))
3084
3085
            + ((-S * eX * eX + r) * eX * S * V1y * V2y) / (eta * r * r * r)
        )
3086
3087
        return a1x
3088
3089
3090
3091 # Aceleração da partícula 1 no eixo y campo simétrico
3092 def d_V1y_inst_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3093
        r = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
3094
        eX = (x2 - x1) / (r)
3095
        eY = (y2 - y1) / (r)
3096
3097
        a1y = (
3098
            -(eY * S) / (r * r * eta)
3099
            - ((3 * (-eta * r + S)) * eX * eX * eY * V1x * V1x)
3100
            / (eta * r * r * (-eta * r * r + 1))
3101
            + (3 * eX * eX * (-eta * r + S) * eY * V1y * V1y)
3102
            / (r * r * eta * (-eta * r * r + 1))
3103
            - ((3 * (2 * eY * eY - 1)) * (-eta * r + S) * eX * V1x * V1y)
3104
            / (r * r * eta * (-eta * r * r + 1))
3105
            - (
3106
                 (
3107
                     eta * (3 * S * r * eX * eX - (6 * eX * eX - 1) * r * r)
3108
                      + 3 * eX * eX
3109
                      - 1
3110
                 )
3111
                 * S
3112
                 * eY
3113
                 * V2x
3114
                 * V2x
3115
3116
            )
            / (r * r * eta * (-eta * r * r + 1))
3117
               (
3118
```

3119	eΥ
3120	* S
3121	* (
3122	eta * r * (2 * r * (2 * eX * eX - eY * eY) - 3 * S * eX * eX)
3123	+ 3 * eY * eY
3124	- 1
3125)
3126	* V2y
3127	* V2y
3128)
3129	/ (r * r * eta * (-eta * r * r + 1))
3130	- (
3131	3
3132	* eX
3133	* S
3134	* (
3135	eta * r * (r * $(-4 * eY * eY + 1) + S * (2 * eY * eY - 1))$
3136	+ 2 * eĭ * eĭ
3137) * VO-
3138	↑ VZX
3139	$\uparrow v \angle y$
3140	/ $(r * r * oto * (oto * r * r + 1))$
3141	/ (1 + 1 + eta + (-eta + 1 + 1)) + ((-S + eta + r) + eta + (-eta + 1 + 1)) + ((-S + eta + r) + eta + r)
3142	+ ((-5 * e1 * e1 + 1) * e1 * 5 * VIX * V2X) / (eta * 1 * 1 * 1) + (
3143	S S
3145	х * еХ
3146	* $(-((eY * eY + 1) * S - r) * r * r * eta + S * eY * eY)$
3147	* V1x
3148	* V2v
3149)
3150	/ (eta * r * r * r * (-eta * r * r + 1))
3151	+ (eX * (eX * eX * eta * r * r - S * r + eY * eY) * V1y * V2x)
3152	/ (eta * r * r * r * (-eta * r * r + 1))
3153	- (eX * eX * eY * V1y * V2y) / (eta * r * r * r)
3154)
3155	
3156	return aly
3157	
3158	
3159	# Aceleração da partícula 2 no eixo x campo simétrico
3160	def d_V2x_inst_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3161	
3162	$r = np.sqrt((x_2 - x_1) ** 2 + (y_2 - y_1) ** 2)$
3163	$ex = (x_2 - x_1) / (r)$
3164	er - (yz - yr) / (r)
3165	$a^{0}r = ($
2167	$\frac{1}{2} = \frac{1}{2} + \frac{1}$
3168	+ (
3169	eX
3170	* S
3171	* (
3172	3 * eX * eX
3173	- 1
3174	- 3 * S * r * eY * eY
3175	- (2 * (3 * eX * eX - 2)) * eta * r * r
3176)
3177	* V1x
3178	* V1x

```
)
3179
             / (r * r * (-eta * r * r + 1))
3180
             + (
3181
                 еX
3182
                 * S
3183
                 *
                   (
3184
                      3 * S * r * eY * eY
3185
                      + 3 * eY * eY
3186
                        1
3187
                      - (6 * eY * eY - 1) * eta * r * r
3188
                 )
3189
                 * V1y
3190
                 * V1y
3191
            )
3192
             / (r * r * (-eta * r * r + 1))
3193
3194
             +
              (
                 3
3195
                 * S
3196
                 * eY
3197
                 * (
3198
                      eta * r * r * (-4 * eX * eX + 1)
3199
                      + S * r * (2 * eX * eX - 1)
3200
                      + 2 * eX * eX
3201
                 )
3202
                 * V1x
3203
                 * V1y
3204
3205
            )
            / (r * r * (-eta * r * r + 1))
3206
             - (3 * eY * eY * (S - r) * eX * V2x * V2x)
3207
             / (r * r * (-eta * r * r + 1))
3208
            + (3 * (S - r) * eY * eY * eX * V2y * V2y)
3209
3210
             / (r * r * (-eta * r * r + 1))
            + (3 * (S - r) * eY * (2 * eX * eX - 1) * V2x * V2y)
3211
             / (r * r * (-eta * r * r + 1))
3212
            + (eY * eY * eX * V1x * V2x) / (eta * r * r * r)
3213
             - (
3214
                 S
3215
                 *
                   (
3216
                      eta * eta * r * r * r
3217
                      - S * r * r * (eX * eX + 1) * eta
3218
                      + S * eX * eX
3219
                 )
3220
                 * eY
3221
                 * V1x
3222
                 * V2y
3223
            )
3224
             / (eta * r * r * r * (-eta * r * r + 1))
3225
             - ((eX * eX + eta * (eY * eY * r * r - S * r)) * eY * V1y * V2x)
3226
             / (eta * r * r * r * (-eta * r * r + 1))
3227
             - ((-S * eX * eX + eta * r) * eX * S * V1y * V2y) / (eta * r * r * r)
3228
        )
3229
3230
        return a2x
3231
3232
3233
3234 # Aceleração da partícula 2 no eixo y campo simétrico
3235 def d_V2y_inst_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3236
        r = np.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2)
3237
        eX = (x2 - x1) / (r)
3238
```

APÊNDICE E. CÓDIGO FONTE

```
eY = (y2 - y1) / (r)
3239
3240
        a2y = (
3241
             (eY * S) / (r * r)
3242
             + (
3243
                  (
3244
                      3 * eX * eX
3245
                      - 1
3246
                      + 3 * S * r * eX * eX
3247
                      - eta * r * r * (6 * eX * eX - 1)
3248
                 )
3249
                 * S
3250
                  * eY
3251
                  * V1x
3252
                 * V1x
3253
             )
3254
             / (r * r * (-eta * r * r + 1))
3255
             + (
3256
                  (
3257
                      3 * eY * eY
3258
                      - 1
3259
                      - 3 * S * r * eX * eX
3260
                      - 2 * eta * r * r * (-2 * eX * eX + eY * eY)
3261
                 )
3262
                  * eY
3263
                 * S
3264
                 * V1y
3265
                  * V1y
3266
             )
3267
             / (r * r * (-eta * r * r + 1))
3268
3269
             + (
3270
                 3
                  * eX
3271
                 * (
3272
                      eta * r * r * (-4 * eY * eY + 1)
3273
                      + S * r * (2 * eY * eY - 1)
3274
                      + 2 * eY * eY
3275
                 )
3276
                 * S
3277
                  * V1x
3278
                 * V1y
3279
             )
3280
             / (r * r * (-eta * r * r + 1))
3281
             + (3 * (S - r) * eX * eX * eY * V2x * V2x)
3282
             / (r * r * (-eta * r * r + 1))
3283
               (3 * (S - r) * eX * eX * eY * V2y * V2y)
3284
             / (r * r * (-eta * r * r + 1))
3285
             + (3 * eX * (S - r) * (2 * eY * eY - 1) * V2x * V2y)
3286
             / (r * r * (-eta * r * r + 1))
3287
             - ((-S * eY * eY + eta * r) * eY * S * V1x * V2x) / (eta * r * r * r)
3288
             - (eX * (eta * r * (eX * eX * r - S) + eY * eY) * V1x * V2y)
3289
             / (eta * r * r * r * (-eta * r * r + 1))
3290
             - (
3291
                 S
3292
                  * (
3293
                      eta * eta * r * r * r
3294
                      - S * r * r * (eY * eY + 1) * eta
3295
                      + S * eY * eY
3296
                 )
3297
                  * eX
3298
```

```
* V1y
3299
                 * V2x
3300
            )
3301
            / (eta * r * r * r * (-eta * r * r + 1))
3302
            + eX * eX * eY * V1y * V2y / (eta * r * r * r)
3303
        )
3304
3305
        return a2y
3306
3307
3308
3309 # Equações instantâneas lineares para o campo simétrico (tr -> t, ta -> t)
3310
3311 # Aceleração da partícula 1 no eixo x linear campo simétrico
3312 def d_V1x_inst_linear_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3313
        a1x = (
3314
            - S
3315
            * (x2 - x1)
3316
            / (((x2 - x1) ** 2 + (y2 - y1) ** 2) ** (3.0 / 2.0) * eta)
3317
        )
3318
3319
       return alx
3320
3321
3322
3323 # Aceleração da partícula 2 no eixo x linear campo simétrico
3324 def d_V1y_inst_linear_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3325
        a1y = (
3326
            - S
3327
            * (y2 - y1)
3328
            / (((x2 - x1) ** 2 + (y2 - y1) ** 2) ** (3.0 / 2.0) * eta)
3329
        )
3330
3331
3332
       return aly
3333
3334
3335 # Aceleração da partícula 2 no eixo x linear campo simétrico
   def d_V2x_inst_linear_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3336
3337
        a2x = S * (x2 - x1) / ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** (3.0 / 2.0)
3338
3339
3340
       return a2x
3341
3342 # Aceleração da partícula 2 no eixo y linear campo simétrico
3343 def d_V2y_inst_linear_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3344
        a2y = S * (y2 - y1) / ((x2 - x1) ** 2 + (y2 - y1) ** 2) ** (3.0 / 2.0)
3345
3346
       return a2y
3347
3348
3349
3350 # ### Modelos de Runge-Kutta para os campos vetorias com campo simétrico ###
3351
3352 # Runge-Kutta 4 ordem para o campo simétrico instantâneo - Aproximação de ordem
        zero do campo
3353 def rk4_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, step):
3354
3355
        x1_1 = V1x * step
        y1_1 = V1y * step
3356
       x2_1 = V2x * step
3357
```

```
y2_1 = V2y * step
3358
3359
        V1x_1 = d_V1x_inst_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y) * step
3360
        V1y_1 = d_V1y_inst_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y) * step
3361
        V2x_1 = d_V2x_inst_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y) * step
3362
        V2y_1 = d_V2y_inst_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y) * step
3363
3364
        x1_k = x1 + x1_1 * 0.5
3365
        y1_k = y1 + y1_1 * 0.5
3366
        x2_k = x2 + x2_1 * 0.5
3367
3368
        y_{k} = y_{k} + y_{1} * 0.5
        V1x_k = V1x + V1x_1 * 0.5
3369
        V1y_k = V1y + V1y_1 * 0.5
3370
        V2x_k = V2x + V2x_1 * 0.5
3371
        V2y_k = V2y + V2y_1 * 0.5
3372
3373
        x1_2 = V1x_k * step
3374
        y1_2 = V1y_k * step
3375
        x2_2 = V2x_k * step
3376
        y2_2 = V2y_k * step
3377
3378
        V1x_2 = (
3379
             d_V1x_inst_sim(
3380
3381
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
             )
3382
3383
             * step
        )
3384
        V1y_2 = (
3385
             d_V1y_inst_sim(
3386
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3387
             )
3388
            * step
3389
        )
3390
        V2x_2 = (
3391
             d_V2x_inst_sim(
3392
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3393
            )
3394
3395
             * step
        )
3396
        V2y_2 = (
3397
             d_V2y_inst_sim(
3398
3399
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
            )
3400
             * step
3401
        )
3402
3403
        x1_k = x1 + x1_2 * 0.5
3404
        y1_k = y1 + y1_2 * 0.5
3405
        x2_k = x2 + x2_2 * 0.5
3406
        y_{k} = y_{k} + y_{2} + y_{2} + y_{3}
3407
3408
        V1x_k = V1x + V1x_2 * 0.5
3409
        V1y_k = V1y + V1y_2 * 0.5
3410
        V2x_k = V2x + V2x_2 * 0.5
3411
        V_{2y_k} = V_{2y} + V_{2y_2} * 0.5
3412
3413
        x1_3 = V1x_k * step
3414
3415
        y1_3 = V1y_k * step
        x2_3 = V2x_k * step
3416
        y2_3 = V2y_k * step
3417
```

```
3418
        V1x_3 = (
3419
             d_V1x_inst_sim(
3420
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3421
             )
3422
             * step
3423
        )
3424
        V1y_3 = (
3425
             d_V1y_inst_sim(
3426
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3427
             )
3428
3429
             * step
        )
3430
        V2x_3 = (
3431
            d_V2x_inst_sim(
3432
3433
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
             )
3434
             * step
3435
        )
3436
        V_{2y_3} = (
3437
             d_V2y_inst_sim(
3438
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3439
             )
3440
3441
             * step
        )
3442
3443
3444
        x1_k = x1 + x1_3
        y1_k = y1 + y1_3
3445
        x2_k = x2 + x2_3
3446
        y_{k} = y_{2} + y_{2}
3447
3448
3449
        V1x_k = V1x + V1x_3
        V1y_k = V1y + V1y_3
3450
        V2x_k = V2x + V2x_3
3451
        V2y_k = V2y + V2y_3
3452
3453
        x1_4 = V1x_k * step
3454
        y1_4 = V1y_k * step
3455
        x2_4 = V2x_k * step
3456
        y2_4 = V2y_k * step
3457
3458
        V1x_4 = (
3459
             d_V1x_inst_sim(
3460
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3461
             )
3462
3463
             * step
        )
3464
        V1y_4 = (
3465
             d_V1y_inst_sim(
3466
3467
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
             )
3468
             * step
3469
        )
3470
        V2x_4 = (
3471
             d_V2x_inst_sim(
3472
                 S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3473
             )
3474
3475
             * step
        )
3476
        V2y_4 = (
3477
```

```
d_V2y_inst_sim(
3478
                S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3479
            )
3480
            * step
3481
       )
3482
3483
       x1 = x1 + (x1_1 + 2 * (x1_2 + x1_3) + x1_4) / 6
3484
       y1 = y1 + (y1_1 + 2 * (y1_2 + y1_3) + y1_4) / 6
3485
       x^2 = x^2 + (x^2_1 + 2 * (x^2_2 + x^2_3) + x^2_4) / 6
3486
       y_2 = y_2 + (y_2_1 + 2 * (y_2_2 + y_2_3) + y_2_4) / 6
3487
3488
       V1x = V1x + (V1x_1 + 2 * (V1x_2 + V1x_3) + V1x_4) / 6
3489
       V_{1y} = V_{1y} + (V_{1y} + 2 * (V_{1y} + V_{1y}) + V_{1y} + 6)
3490
       V2x = V2x + (V2x_1 + 2 * (V2x_2 + V2x_3) + V2x_4) / 6
3491
       V2y = V2y + (V2y_1 + 2 * (V2y_2 + V2y_3) + V2y_4) / 6
3492
3493
       return step, x1, y1, x2, y2, V1x, V1y, V2x, V2y
3494
3495
3496
3497 # Aplicação do método Runge Kutta para o campo simétrico instantâneo - Aproxima
      ção de ordem zero
3498 def rk4_method_inst_sim(
       path, n, m, f, t, dt, S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, count=10
3499
3500):
       contador = 0
3501
       with open(path, "w") as outfile:
3502
            outfile.write(f"{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} \n")
3503
            for _ in tqdm(range(1, m + 1, 1)):
3504
                contador += 1
3505
                for _ in range(1, n + 1, 1):
3506
3507
                    t += dt
                    dt_atual, x1, y1, x2, y2, V1x, V1y, V2x, V2y = rk4_sim(
3508
                         3509
                    )
3510
                    dt = dt_atual
3511
                    if contador == count:
3512
                         outfile.write(
3513
                             f"{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} \n"
3514
                         )
3515
                         contador = 0
3516
                    if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (
3517
3518
                         np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) < 2
                    ):
3519
                         break
3520
3521
                vx = V2x - V1x
3522
                vy = V2y - V1y
3523
                rr = np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
3524
                ex = (x2 - x1) / (rr)
3525
                ey = (y2 - y1) / (rr)
3526
                DT = (-vx * ey + vy * ex) / (rr)
3527
                dt = (2.0 * np.pi) / (DT * n) / f
3528
                if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (rr < 2):
3529
                    break
3530
3531
3532
3533 # Campo para calcular no tempo de retardo e avançado - Aproximação de ordem 1
3534 def campo_w_sim(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y):
3535
       tr = -np.sqrt((x2 - x1) ** 2.0 + (y2 - y1) ** 2)
3536
```

```
_, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr = rk4_sim(
3537
            S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, tr
3538
        )
3539
3540
        A1x_tr = d_V1x_inst_linear_sim(
3541
            S, eta, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr
3542
        )
3543
        A1y_tr = d_V1y_inst_linear_sim(
3544
            S, eta, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr
3545
        )
3546
        A2x_tr = d_V2x_inst_linear_sim(
3547
            S, eta, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr
3548
        )
3549
        A2y_tr = d_V2y_inst_linear_sim(
3550
            S, eta, x1_tr, y1_tr, x2_tr, y2_tr, V1x_tr, V1y_tr, V2x_tr, V2y_tr
3551
        )
3552
3553
        ta = np.sqrt((x2 - x1) ** 2.0 + (y2 - y1) ** 2)
3554
3555
        _, x1_ta, y1_ta, x2_ta, y2_ta, V1x_ta, V1y_ta, V2x_ta, V2y_ta = rk4_sim(
3556
            S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, ta
3557
        )
3558
3559
3560
        A1x_ta = d_V1x_inst_linear_sim(
            S, eta, x1_ta, y1_ta, x2_ta, y2_ta, V1x_ta, V1y_ta, V2x_ta, V2y_ta
3561
3562
        )
        A1y_ta = d_V1y_inst_linear_sim(
3563
            S, eta, x1_ta, y1_ta, x2_ta, y2_ta, V1x_ta, V1y_ta, V2x_ta, V2y_ta
3564
        )
3565
        A2x_ta = d_V2x_inst_linear_sim(
3566
3567
            S, eta, x1_ta, y1_ta, x2_ta, y2_ta, V1x_ta, V1y_ta, V2x_ta, V2y_ta
        )
3568
        A2y_ta = d_V2y_inst_linear_sim(
3569
3570
            S, eta, x1_ta, y1_ta, x2_ta, y2_ta, V1x_ta, V1y_ta, V2x_ta, V2y_ta
        )
3571
3572
        A1x = f_a1x_tr_av(
3573
            S,
3574
            eta,
3575
            x1,
3576
3577
            y1,
3578
            x2_tr,
3579
            y2_tr,
            x2_ta,
3580
            y2_ta,
3581
            V1x,
3582
3583
            V1y,
            V2x_tr,
3584
            V2y_tr,
3585
            V2x_ta,
3586
3587
            V2y_ta,
3588
            A2x_tr,
            A2y_tr,
3589
            A2x_ta,
3590
            A2y_ta,
3591
        )
3592
        A1y = f_a1y_tr_av(
3593
3594
            S,
            eta,
3595
            x1,
3596
```

3597	y1,	
3598	x2_tr,	
3599	y2_tr,	
3600	x2_ta,	
3601	y2_ta,	
3602	V 1 X , V 1	
3603	VIY,	
3604	V2X_UI,	
3005	$V_{2y} = 01$, $V_{2x} = 12$	
3607	V_{2x} ta	
3608	A2x tr.	
3609	A2y_tr,	
3610	A2x_ta,	
3611	A2y_ta,	
3612)	
3613	$A2x = f_a2x_tr_av($	
3614	S,	
3615	x1_tr,	
3616	y1_tr,	
3617	x1_ta,	
3618	y1_ta,	
3619	x2,	
3620	y2, V1	
3621	VIX_UI,	
3622	$V_{1y} = 01$, $V_{1y} = 12$	
3023	V_{1x} ta	
3625	V2x	
3626	V2v.	
3627	Alx_tr,	
3628	Aly_tr,	
3629	A1x_ta,	
3630	Aly_ta,	
3631)	
3632	$A2y = f_a2y_tr_av($	
3633	S,	
3634	x1_tr,	
3635	yl_tr,	
3636	xl_ta,	
3637	y1_6a,	
3630	v2,	
3640	V_{1x} tr.	
3641	V1v tr.	
3642	V1x_ta,	
3643	V1y_ta,	
3644	V2x,	
3645	V2y,	
3646	A1x_tr,	
3647	Aly_tr,	
3648	A1x_ta,	
3649	Aly_ta,	
3650)	
3651		
3652	return Alx, Aly, A2x, A2y	
3653		
3654	# Bunge-Kutta 4 ordem com o tempo de retardo e avançado - Aprovimação do ordo	m
3055	1 do campo	ш

```
3656 def rk4_tr_av(S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, h):
3657
        x1_1 = V1x * h
3658
        y1_1 = V1y * h
3659
        x2_1 = V2x * h
3660
        y_{2_1} = V_{2y} * h
3661
3662
        V1x_1, V1y_1, V2x_1, V2y_1 = campo_w_sim(
3663
             S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
3664
        )
3665
        V1x_1 = V1x_1 * h
3666
        V1y_1 = V1y_1 * h
3667
        V2x_1 = V2x_1 * h
3668
        V2y_1 = V2y_1 * h
3669
3670
3671
        x1_k = x1 + x1_1 * 0.5
        y1_k = y1 + y1_1 * 0.5
3672
        x2_k = x2 + x2_1 * 0.5
3673
3674
        y_{k} = y_{k} + y_{1} * 0.5
        V1x_k = V1x + V1x_1 * 0.5
3675
        V1y_k = V1y + V1y_1 * 0.5
3676
        V2x_k = V2x + V2x_1 * 0.5
3677
        V_{2y_k} = V_{2y} + V_{2y_1} * 0.5
3678
3679
        x1_2 = V1x_k * h
3680
        y1_2 = V1y_k * h
3681
        x2_2 = V2x_k * h
3682
        y_{2_{2}} = V_{2y_{k}} * h
3683
3684
        V1x_2, V1y_2, V2x_2, V2y_2 = campo_w_sim(
3685
3686
             S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3687
        )
        V1x_2 = V1x_2 * h
3688
3689
        V1y_2 = V1y_2 * h
        V2x_2 = V2x_2 * h
3690
        V2y_2 = V2y_2 * h
3691
3692
        x1_k = x1 + x1_2 * 0.5
3693
        y1_k = y1 + y1_2 * 0.5
3694
        x2_k = x2 + x2_2 * 0.5
3695
        y_{2k} = y_{2} + y_{22} * 0.5
3696
3697
        V1x_k = V1x + V1x_2 * 0.5
        V1y_k = V1y + V1y_2 * 0.5
3698
        V2x_k = V2x + V2x_2 * 0.5
3699
        V2y_k = V2y + V2y_2 * 0.5
3700
3701
        x1_3 = V1x_k * h
3702
        y1_3 = V1y_k * h
3703
        x2_3 = V2x_k * h
3704
        y_{2_{3}} = V_{2y_{k}} * h
3705
3706
        V1x_3, V1y_3, V2x_3, V2y_3 = campo_w_sim(
3707
             S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3708
        )
3709
        V1x_3 = V1x_3 * h
3710
        V1y_3 = V1y_3 * h
3711
        V2x_3 = V2x_3 * h
3712
3713
        V2y_3 = V2y_3 * h
3714
        x1_k = x1 + x1_3
3715
```

```
y1_k = y1 + y1_3
3716
        x2_k = x2 + x2_3
3717
        y2_k = y2 + y2_3
3718
        V1x_k = V1x + V1x_3
3719
        V1y_k = V1y + V1y_3
3720
        V2x_k = V2x + V2x_3
3721
        V2y_k = V2y + V2y_3
3722
3723
        x1_4 = V1x_k * h
3724
        y1_4 = V1y_k * h
3725
        x2_4 = V2x_k * h
3726
        y_{2_4} = V_{2y_k} * h
3727
3728
        V1x_4, V1y_4, V2x_4, V2y_4 = campo_w_sim(
3729
            S, eta, x1_k, y1_k, x2_k, y2_k, V1x_k, V1y_k, V2x_k, V2y_k
3730
3731
        )
        V1x_4 = V1x_4 * h
3732
        V1y_4 = V1y_4 * h
3733
        V2x_4 = V2x_4 * h
3734
        V2y_4 = V2y_4 * h
3735
3736
        x1 = x1 + (x1_1 + 2 * (x1_2 + x1_3) + x1_4) / 6
3737
        y1 = y1 + (y1_1 + 2 * (y1_2 + y1_3) + y1_4) / 6
3738
3739
        x^2 = x^2 + (x^2_1 + 2 * (x^2_2 + x^2_3) + x^2_4) / 6
        y_2 = y_2 + (y_2_1 + 2 * (y_2_2 + y_2_3) + y_2_4) / 6
3740
        V1x = V1x + (V1x_1 + 2 * (V1x_2 + V1x_3) + V1x_4) / 6
3741
        V1y = V1y + (V1y_1 + 2 * (V1y_2 + V1y_3) + V1y_4) / 6
3742
        V_{2x} = V_{2x} + (V_{2x}1 + 2 * (V_{2x}2 + V_{2x}3) + V_{2x}4) / 6
3743
        V_{2y} = V_{2y} + (V_{2y_1} + 2 * (V_{2y_2} + V_{2y_3}) + V_{2y_4}) / 6
3744
3745
3746
        return h, x1, y1, x2, y2, V1x, V1y, V2x, V2y
3747
3748
3749 # Aplicação do método Runge-Kutta com tempo de retardo e avançado Aproximação
       de ordem 1
3750 def rk4_method_tr_va(
        path, n, m, f, t, dt, S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y
3751
3752):
3753
        with open(path, "w") as outfile:
3754
            outfile.write(f"{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} n")
3755
            for _ in tqdm(range(1, m + 1, 1)):
3756
3757
                 for _ in range(1, n + 1, 1):
3758
                     t += dt
3759
                     dt_atual, x1, y1, x2, y2, V1x, V1y, V2x, V2y = rk4_tr_av(
3760
                          S, eta, x1, y1, x2, y2, V1x, V1y, V2x, V2y, dt
3761
                     )
3762
                     dt = dt_atual
3763
3764
                     outfile.write(
3765
                          f"{t} {x1} {y1} {x2} {y2} {V1x} {V1y} {V2x} {V2y} n"
3766
                     )
3767
3768
                     if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (
3769
                          np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1)) < 2
3770
                     ):
3771
3772
                          break
3773
                 vx = V2x - V1x
3774
```

3775	vy = V2y - V1y
3776	rr = np.sqrt((x2 - x1) * (x2 - x1) + (y2 - y1) * (y2 - y1))
3777	ex = (x2 - x1) / (rr)
3778	ey = (y2 - y1) / (rr)
3779	DT = (-vx * ey + vy * ex) / (rr)
3780	dt = (2.0 * np.pi) / (DT * n) / f
3781	if (np.sqrt(V2x ** 2 + V2y ** 2) > 0.8) or (rr < 2):
3782	break

