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RESUMO

Este trabalho apresenta uma investigação sobre a locomoção de partículas e organismos em baixos
números de Reynolds usando modelos matemáticos, numéricos e estudos experimentais. Primei-
ramente, estudamos o efeito da elasticidade do fluido na força propulsora e torque no corpo e velo-
cidade de velocidade do nadador em termos de dois parâmetros físicos: número de Deborah (De)
e número de Strouhal (Sh). Para tanto, são realizados alguns experimentos com microrganismos
protótipos em movimento de escoamento rasteiro. Nos experimentos, um nadador macroscópico
que se impulsiona imitando flagelos helicoidais é desenvolvido e testado. Três modelos de natação
impulsionados por uma cauda helicoidal com diferentes comprimentos de onda são investigados e
seus movimentos examinados para ambos os casos: quando o solvente ambiente é um fluido viscoso
newtoniano puro e quando o fluido base é uma solução polimérica elástica. Além disso, também
aplicamos a Slender Body Theory (SBT) e o método de Stokeslet regularizado (RSM) para calcular
teoricamente a força e o torque, em função do número de Strouhal (Sh), produzidos pelo nadador
helicoidal em movimento em um fluido newtoniano. Os resultados teóricos são comparados com
dados experimentais e uma concordância muito boa é observada especialmente para valores mais
altos de Sh dentro das barras de erro dos dados experimentais. No caso de um fluido de base não
newtoniano, o problema de escoamento de um fluido elástico Oldroyd-B é resolvido numericamente
usando um código computacional baseado no método dos elementos finitos (CFD). A velocidade
propulsiva do nadador helicoidal é calculada em função do parâmetro elástico número de Deborah
e também comparada com a observação experimental quando o fluido base não é newtoniano. É
mostrado experimentalmente que a velocidade de natação aumenta à medida que o efeito elástico
no fluido de base aumenta até um número de Deborah crítico O(1), quando a velocidade satura
para um valor constante dentro das barras de erro experimentais. A anisotropia de velocidade
medida experimentalmente pela razão da velocidade do nadador em duas direções diferentes é
insensível ao efeito elástico nos fluidos de base. Completamos nossa discussão sobre o movimento
de nadadores helicoidais em escoamento rastejante, apresentando uma comparação entre as previ-
sões da velocidade da velocidade dadas pela simulação CFD usando um modelo Oldroyd–B para
o fluido elástico de base e dados experimentais. A concordância entre os dois conjuntos de resul-
tados é muito boa dentro das barras de erro experimentais para o parâmetro elástico variando
de 0 a 2. Pode-se notar, entretanto, que enquanto os dados experimentais tendem a saturar em
De maiores, os resultados das simulações parecem ter um aumento contínuo de acordo com o
modelo constitutivo de usado para descrever o líquido elástico base. Em segundo lugar, estuda-
mos as bactérias magnetotáticas que se tornaram foco nas pesquisas sobre mecânica dos fluidos
com baixo número de Reynolds. Esses microorganismos podem nadar no sangue e possuem ímãs
dentro deles. Portanto, a investigação do movimento em líquidos viscosos deste tipo de partículas
ativas para o transporte de drogas na circulação sanguínea sob aplicação de um campo magnético
ainda não é suficientemente conhecida. Realizamos simulações numéricas Langevin do movimento
de cadeias magnéticas compostas por partículas rígidas esféricas polidispersas. A estrutura das
cadeias representa um modelo bruto de uma bactéria magnetotática movendo-se em um líquido
viscoso com baixo número de Reynolds e também sob a ação do movimento browniano, um campo



magnético externo e sob influência de interações magnéticas dipolares. As equações governantes
são feitas adimensionais e os parâmetros físicos para controlar o movimento do microrganismo são
identificados. Enquanto as interações magnéticas dipolares entre as partículas são consideradas,
as interações hidrodinâmicas viscosas são ignoradas nas presentes simulações. A configuração ini-
cial da partícula magnética na simulação considera aquelas alinhadas como estrutura de cadeias
com um número diferente de partículas magnéticas semelhante à estrutura de uma espinha de
bactérias real que é formada por uma cadeia de cristais magnéticos. Examinamos a cinemática
das bactérias magnéticas com diferentes números de partículas na cadeia.

Palavras-chave: Fluxo de baixo número de Reynolds, flagelo helicoidal, teoria do corpo del-
gado, efeitos viscoelásticos, movimento browniano, efeito coletivo, interações dipolares, partícula
ativa, matéria ativa magnética.



ABSTRACT

This work presents an investigation on the locomotion of particles and organisms at low Reynolds
numbers using mathematical, numerical models as well as experimental studies. Firstly, we study
the effect of fluid elasticity on the propulsive force and torque on the body and speed velocity of
the swimmer in terms of two physical parameter: Deborah number (De) and Strouhal number
(Sh). For this end, some experiments with prototype microorganisms in creeping flow motion
are conducted. In the experiments a macroscopic swimmer which propels itself by mimicking
helical flagella are developed and tested. Three swimming models propelled by a helical tail with
different wavelengths are investigated and their motions examined for both case: when ambient
solvent is a pure Newtonian viscous fluid and when the base fluid is an elastic polymeric solution.
In addition, we also apply the Slender Body Theory (SBT) and the method of regularized Stokeslet
(RSM) in order to calculate theoretically the force and torque, as function of the Strouhal number
(Sh), produced by the helical swimmer moving in a Newtonian fluid. The theoretical results are
compared with experimental data and a very good agreement is observed specially for higher values
of Sh within the error bars of the experimental data. In the case of a non-Newtonian base fluid,
the flow problem of an Oldroyd-B elastic fluid is solved numerically using a computational code
based on a finite element method (CFD). The helical swimmer propulsive velocity is calculated
in terms of the elastic parameter Deborah number and also compared with the experimental
observation when the base fluid is non-Newtonian. It is shown experimentally that the swimming
speed increases as the elastic effect in the base fluid increases until a critical Deborah number
number O(1), when the velocity saturates for a constant value within the experimental error
bars. The velocity anisotropy measured experimentally by the ratio of the swimmer speed in two
different directions is insensitive to the elastic effect in the base fluids. We complete our discussion
on the helical swimmers motion in creeping flow by presenting a comparison between predictions
of the speed velocity given by CFD simulation using an Oldroyd–B model for the base elastic
fluid and experimental data. The agreement between the two sets of results is very good within
the experimental error bars for the elastic parameter varying from 0 to 2. It may be remarked,
however, that while the experimental data tends to saturate at larger De, the simulations results
seems to have a continuous increase according to the constitutive model of used to describe the
base elastic liquid. Secondly, we study magnetotactic bacteria that have become the spotlight in
research on fluid mechanics at low Reynolds number. These microorganisms can swim in blood
and they have magnets within them. Therefore the investigation of the motion in viscous liquids
of this kind of active particles for carrying drugs in the blood circulation under application of a
magnetic field is still not known sufficiently. We perform Langevin numerical simulations of the
motion of magnetic chains composed of polydisperse spherical rigid particles. The chains structure
represents a crude model of a magnetotactic bacteria moving in a viscous liquid at low Reynolds
number and also under the action of Brownian motion, an external magnetic field, and under
influence of dipolar magnetic interactions. The governing equations are made non-dimensional
and the physical parameters in order to control the microorganism’s motion identified. While
the magnetic dipolar interactions between the particles are considered, the viscous hydrodynamic



interactions are ignored in the present simulations. The initial configuration of the magnetic
particle in the simulation considers the ones aligned as chains structure with a different number
of magnetic particles similar to the structure of a real bacteria spine which is formed by a chain
of magnetic crystals. We examine the kinematics of the magnetic bacteria with different numbers
of particles in the chain.

Keywords: Low Reynolds number flow, Helical flagellum, Slender Body Theory, Viscoelastic
effects, Brownian motion, Collective effect, Dipolar interactions, Active particle, Magnetic active
matter.
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Chapter 1

Introduction

1.1 Contextualization

Suspensions of microorganisms such as bacterias or even man-made micro-swimmers are en-
compassed in the wider class of living fluids. The locomotion mechanics at the low Reynolds
number of these microorganisms is fantastic, but this locomotion regime is not fully understood.
An attractive theme of research that has long time provided different branches of natural sciences
and engineering with an infinite list of problems is the physics of swimming micro-organisms. The
physics of swimming micro-organisms has inspired many numerical and experimental simulati-
ons of self-propelled particles [5, 6, 7, 8]. The study of swimming organisms including bacteria,
actives particles has long been of scientific interest. There are two types of swimmers, biologi-
cal and synthetic. The first category includes biological micro-swimmers, which are mobile cells,
such as swimming bacteria or sperm, and many other single-celled organisms, such a archaea,
protozoa, algae, and fungi. The second category refers to different types of techniques or projects
carried out, with direct applicability in nanotechnology, to transport medicines for cancer treat-
ments or minimally invasive surgery, also called suspensions with artificial objects or micro-robots.
Understanding how the system behaves is very important and both biological and synthetic micro-
swimmers are used to understand how they move in a suspension and how they interact with their
environments [9, 10, 11, 12].

The Scallop Theorem explains that the kinematic reversibility of the fluid flow at low Reynolds
number regime due to the disappearance of the time relation in the Navier-Stokes equation results
in zero net displacement when the motion performed by the swimmer is reciprocal [13]. Small
swimmers in low Reynolds environments must adapt strategies to break the symmetry of the
motion or the fluid flow with respect to time. Bacteria, microbes, spermatozoa swim in Stokes
flow conditions and propel themselves with ease therefore, scientists look at nature for an answer
to this problem. It is observed that the small organisms propel themselves by means of flagella,
cilia, or complex body deformations. For a natural bacteria in water, the rotation frequency is
approximately 100 Hz, and using as characteristic length the radius of the helix and knowing the
microscopic dimension of a flagellum the Reynolds number is around Re ∼ 10−4, showing viscous
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effects are dominant and inertial forces are insignificant. Some bacteria use a single flagellum for
propulsion and shift orientation. These types of micro-organisms have inspired artificial micro-
swimmer in simple designs with medical or other applications [14].

The study of the locomotion of self-propelled has captivated the interest of the scientist in the
last seven decades. There have been many classic reviews from the locomotion of actives particles
and organisms [15] and [16]. The beginning of the research on the subject started from biophysics
and the biology of cell motility. Many previous studies of cell motility in viscous fluids have
been found for the last 80 years. Ludwig [17] pointed out that a microorganism that waves rigid
arms is incapable of net motion. Gray [15] experimental have studied the motility of swimming
organisms were including marine worms, snakes, spermatozoa, as well as cilia. Taylor [18] used
a mathematical model to analyzed the swimming of organisms using small amplitude and low
Reynolds number assumptions and compared his results with experimental data.

Another issue of interest is to understand how this locomotion affects biological processes such
as human reproduction or bacterial survival and infection. More recently using natural bacteria,
reference [19] has presented a statistical analysis on the kinematics-wave motion of a suspension
of Caenorhabditis elegans in a gel-like medium. They have studied two different populations from
a biological perspective of the surrounding medium. They have found experimentally a linear
correlation between the length and the wavelength of the individuals for both populations and
proposed a theoretical correlation to justify this linear dependence. The results have indicated
that C. elegans indeed uses sinusoidal propulsion to move in creeping flow. This nonlinear motion
is used to break the time reversibility in which they are trapped due to their small sizes, known as
kinematic reversibility in low Reynolds number flows. Another important finding by the authors
is the discrepancy observed in the collective motion of both populations. They observed also that
well-fed individuals tend to move in the direction of Escherichia coli colonies with less spreading in
the surrounding medium. On the other hand, a starving population collectively behaves differently,
seeking food in several possible directions and with much more strong head motion [20, 21, 22, 23].

An important aspect is the study of the hydrodynamic interactions of microorganisms using
numerical and theoretical models. Kim et al. [24] studied the hydrodynamic interaction of a
bacterium, they described the locomotion by the regularized Stokes formulation. The model of
the single-flagellated micro-organism is able to mimic a swimming pattern that is well matched
with the experimental observation. Furthermore, they find the critical thresholds of the rotational
frequency of the motor and the bending modulus of the hook for the buckling instability, and
investigate the dependence of the buckling angle and the reorientation of the swimming cell after
buckling on the physical and geometrical parameters of the model. In the last years, magnetic
nano-particles have played a great role in the creation of magnetic fluids with applications in
biomedicine, magnetic resonances, deliberation of drugs in the human body, and the cancer tre-
atment. Magnetic fluids are colloidal systems consisting of single-domain magnetic nanoparticles
dispersed in a carrier liquid and are convenient model systems to explore fundamental properties
of magnetic nano-particles systems, [25]. Also, we find a set of bacteria called Magnetotactic
bacteria (MTB). An important characteristic is they can grow internally a microscopic magnet,
hence providing an external handle to drive their swimming orientation. Then MTB are micro-
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organisms of strong practical interest a great application of nano-magnetic particles used in a
medical context. Also, the development of stable MTB has given rise to several applications for
magnetic fluid. In medicine, biocompatible magnetic fluids can lead to future discoveries.

The magnetic alignment, combined with a micro-aerotactic swimming response, qualifiers such
micro-swimmers as a promising vector for targeted drug therapy. Recently, it was proposed,
on theoretical grounds, that a suspension of such magnetotactic bacteria could display original
magneto-rheological properties novel pattern formation and hydrodynamic instabilities. In parti-
cular, the pearling hydrodynamic instability, the velocity condensation, and the emergence of new
phases induced by a magnetic field are striking examples of these.

1.2 Literature Review

In the study of locomotion of microorganisms and particles, some synthetic devices have been
designed to prove theoretical models [26, 27, 28] . A practical application is to study the motion
of macro-swimmers in order to design micro and nanorobots. Rodenborn et al. [29] measured
thrust, drag and torque for a macroscopic model flagellum and compared the measurements with
theoretical predictions. The data compare very well with the slender body theories [17] and [30],
respectively, and the regularized Stokeslet approach [31]. The effects of nonlinearities in a worm-
like micellar solution can break time reversibility of the particle motion immersed in this solution
and, consequently produce propulsion of an artificial swimmer [32]. Thawani et al. [33] built a
macroscopic working model of a bacterium and visualized its detailed motion in high-viscosity
liquid. The authors showed that a small asymmetry in the mass distribution in the head can lead
to helical trajectories with large pitch and radius, which are reminiscent of the wiggling trajec-
tories observed for swimming bacteria. The main results motion agrees well with the predictions
from the slender-body theory that accounts for the asymmetric mass distribution in the head.
Additionally, this research shows that the trajectory consists of two helical trajectories of diffe-
rent length scales a large one caused by the asymmetric mass distribution and set by the head
rotation rate, and a smaller one caused by the rotating flagellum and set by its rotation rate.
However, the investigation of this work does not include collective behavior. Collective behavior
can be a way to separate hydrodynamic contributions from generic self-propulsion effects [32, 34].
Irilan and Cunha [35], used the Slender Body Theory (SBT) in order to describe the dynamics
of swimming micro-organism with motion produced by helical flagellum propulsion. Numerical
simulations are performed based on resistive force theories. The also carried out some experiments
with a macroscopic prototype micro-organisms in creeping flow motion. Silicon oil is used in order
to ensure a low Reynolds number around the particle. The propulsive velocity, angular velocity
and propulsive thrust and torque are measured in the experiments and they are also compared
with those predicted using numerical simulation. The predictions form Resistive Force Theory are
found to be in very good agreement with the experimental observation of our artificial flagellum.

Shum [36] used numerical simulations and analyzed the motion of such a microswimmer in bulk
fluid and close to a solid surface. The study shows that positioning the two flagella far apart on the
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cell body reduces the rate of rotation of the body and increases the swimming speed. Near surfaces,
the author found that swimmers with two flagella can swim in relatively straight trajectories or
circular orbits in either direction. It is also possible for the swimmer to escape from surfaces, unlike
a model swimmer of similar shape but with only a single flagellum. Thus, he concludes that there
are important implications of swimming with two flagella or flagellar bundles rather than one.
These considerations are relevant not only for understanding differences in bacterial morphology
but also for designing micro-robotic swimmers. Soto et al. [37] used a 3D Lagrangian tracking
technique to determine experimentally the trajectories of non-tumbling E. coli mutants swimming
in a Poiseuille flow. They identify a typology of trajectories in agreement with a kinematic active
Bretherton-Jeffery model, featuring an axisymmetric self-propelled ellipsoid. Using this model
they derive analytically new features such as quasi-planar piece-wise trajectories, associated with
the high aspect ratio of the bacteria, as well as the existence of a drift angle around which bacteria
perform closed cyclic trajectories. These structures are recovered experimentally. However, they
show that the presence of Brownian rotation noise affects the persistence of bacterial motion in
given orbits.

Several related studies of active particle in suspensions are also available in the recent literature.
The flow resistence, three dimensional structures and symmetry breaking in viscoelastic channel
flow at low Reynolds number have been investigated experimentally using pressure measurements
and particle tracking by Quin et al. [38, 39] . Dhar et al. [40] have analyzed the trajectory of a single
and a pair of active particles in a two-dimensional periodically tapered channel with asymmetric
bounding walls through a combined analytical-numerical approach. They assumed creeping flow
condition for the flow inside the channel and both puller and pusher types of squirmers were
explored in their work. A closed system of equations modeling an active suspension of non-
spherical Janus particles using Eulerian spatial averaging approach under condition of creeping
flow was derived for the fluid and solid phases separately such as done in theoretical models of
typical multiphase flows [41, 42]. The authors also included a numerical study of channel flow,
driven by the active forces of the particles and a pressure gradient. The influence of a linear
concentration gradient on the swimming velocity and orientation of active particles has been
also studied theoretically [43]. More recently shear induced hydrodynamics dispersion of active
spherical and non-spherical magnetic particle at low Reynolds number has been investigated by
Roure and Cunha [44] and by Sinzato and Cunha [45]. Effect of dipolar interactions between active
magnetic particles on the viscoelastic response of dilute ferrofluids undergoing oscillatory shear
has also been investigated [46]. Theoretical studies of nonlinear viscoelastic response of an active
suspension of anisotropic particles undergoing oscillatory shear are also available [47]. Additionally,
the dynamics of clustering under cohesive interactions of mobile microrobotic swarms have been
examined by Yigit et al. [48]. They presented an useful approach for operating microrobots in
collective motion. Microrobot swarms have been introduced to address the need for collective
functions and navigation of large numbers of microrobots in complex environments. An extensive
review on the fundamentals and application of mobile microrobotic is also available in the current
literature [49].

The effects of fluid elasticity on the details of swimming while clearly important, are not well
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understood, and have therefore received growing attention, then many authors developed models
for swimming in viscoelastic fluids. Recent theoretical and computational work has also examined
how elastic effects change swimming speed [50, 51, 52]. Spagnolie et al. [53] have studied the
motion of a rotating helical body in a viscoelastic fluid. In the case of force-free swimming, they
showed the introduction of viscoelasticity can either enhance or retard the swimming speed and
locomotive efficiency, depending on the body geometry, fluid properties, and the body rotation
rate. Numerical solutions of the Oldroyd-B equations show how previous theoretical predictions
break down with increasing helical radius or with decreasing filament thickness. Helices of large
pitch angles show the increase in swimming speed to a local maximum at the Deborah number of
order unity (De = 1). The numerical results show how the small-amplitude theoretical calculations
connect smoothly to the large-amplitude experimental measurements. Other authors claim the
existence of a transition zone. Malvar et al. [54] have examined the transition from a Newtonian-
like response De ≤ 1 to a clear viscoelastic regime occurs at around De ≈ 2.5, where the frequency
is order of the fluid relaxation time scale, suggesting that elastic fluid stresses are modifying
kinematics. The ratio of swimming velocity is consistently less than unity demonstrating that
fluid elasticity hinders net locomotion. The decrease is quite substantial even for the relatively low
values of De. For instance, fluid elasticity hinders the cell swimming speed, relative to Newtonian
fluids, by as much as 50 for De < 2. They also have found an asymptotic limit e for the velocity
ratio approximately 0.4 forDe > 2. This asymptotic behavior has been also observed in theoretical
studies [51]. More recently, Irilan and Cunha [55] have examined an individual bacteria swimming
with helical flagellum in low Reynolds flow environmental conditions. For this reason, the authors
have designed a workbench to carry out some experiments, they developed an experimental and
theoretical analysis for a macroscopic model of the helical flagellum. In this study, three different
helices were used for the experiments and they do measurement for propulsive velocity, as well
as propulsive force and torque exerted by the rotating helix in a highly viscous fluid. They have
also developed in this study an experimental and numerical investigation of flexible swimming
in non-Newtonian (PAMA) fluids using Oldroy B model. The authors presented a comparison
between predictions of the speed velocity given by a Finite Element CFD simulation, using an
Oldroyd-B constitutive model for the base elastic fluid, and experimental data. They also used
Slender body theory to compare experimental results with those predicted by literature. The
results have shown clearly F , T decrease when Sh increases. The numerical results have shown
that the Method of Regularized Stokeslet and the Lighthill Slender body Theory represents a very
small deviation from the experimental results. Increasing the Deborah number, however, shows
the force and torque increase for all three the helix used. The flow velocity is always faster in
a non- Newtonian fluid and the velocity ratio between the two fluids gradually increases with
the Deborah number. Analyzing the trajectory of swimmers with the same geometry and under
the same initial conditions, the authors have found that trajectory is systematically enhanced by
fluid elasticity. The results also showed when the Deborah number increases the velocity increase
because the property of the visco-elasticity of the fluid show that swimming is systematically
enhanced by fluid elasticity which is an advantage over the Newtonian fluid. The results from
computational simulations shown also a saturation of vnn/vn for De above 1.

Xu [56] reported the motion mechanism of magnetic particles during curing and explored

21



through numerical simulation. The author analyzed the magnetic force and viscous force of mag-
netic particles in Magnetorheological elastomer and discussed the equations of motion of magnetic
particles under the applied magnetic field. Also, he established a uniform magnetic field model
through the finite element method and simulated the motion of two magnetic particles under the
magnetic field and he discussed the effects of particle distribution angles, particle radii, applied
magnetic field strength, and distance between particles on particle velocity and displacement.
The results show that the distance between particles has the greatest influence on the motion of
magnetic particles, and the size of the distance between particles will affect the contact time of
the particles, thus affecting the chain formation of magnetic particles.

Kong [57] investigated the swimming motion of rod-shaped magnetotactic bacteria affiliated
with the Nitrospirae phylum in a viscous liquid under the influence of an externally imposed, time-
dependent magnetic field. By assuming that fluid motion driven by the translation and rotation of
a swimming bacterium is of the Stokes type and that inertial effects of the motion are negligible,
they derived a new system of the twelve coupled equations that govern both the motion and
orientation of a swimming rod-shaped magnetotactic bacterium with a growing magnetic moment
in the laboratory frame of reference. According to the authors, it is revealed that the initial pattern
of swimming motion can be strongly affected by the rate of the growing magnetic moment. It is
also revealed, through comparing mathematical solutions of the twelve coupled equations to the
swimming motion observed in the laboratory experiments with rod-shaped magnetotactic bacteria,
that the laboratory trajectories of the swimming motion can be approximately reproduced using
an appropriate set of parameters in the theoretical model.

Barkley [58] studied and showed that analysis of the trajectories of cells exposed to an external
magnetic field can be used to measure the average magnetic dipole moment of a cell population in
at least five different ways. They applied this analysis to movies of Magnetospirillum magneticum
AMB-1 cells and compare the values of the magnetic moment obtained in this way to that obtai-
ned by direct measurements of magnetosome dimension from electron micrographs. They found
that methods relying on the viscous relaxation of the cell orientation give results comparable to
that obtained by magnetosome measurements, whereas methods relying on statistical mechanics
assumptions give systematically lower values of the magnetic moment. Since the observed distribu-
tion of magnetic moments in the population is not sufficient to explain this discrepancy, the results
suggest that non-thermal random noise is present in the system, implying that a magnetotactic
bacterial population should not be considered as similar to a paramagnetic material.

Cui [59] studied the swimming motion of spheroidal magnetotactic bacteria. They investigated
via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria
having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an
imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and
rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a
non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that
the interaction between different bacteria is weak and hence negligible, the author has derived a
system of 12 coupled nonlinear ordinary differential equations that govern both the motion and
the orientation of a swimming spheroidal magnetotactic bacterium.
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1.3 Review of Magnetic Fluids Studies

Magnetic fluid or ferrofluid is a particular class of colloidal magnetic suspension, composed
by the addition of small particles of magnetic material, having an average diameter of approxi-
mately 10nm in a fluid base such as synthetic oils, ester, or water. A typical magnetic fluid is
usually composed of a set of particles of ferrite or magnetite at nanometric scales dispersed in a
carrier fluid. For a magnetic fluid to be useful for practical applications, it must be stable concer-
ning the formation of aggregates due to the attractive forces between particles. The interaction
between particles occurs directly through three mechanisms: steric repulsion, van der Waals at-
tractive forces, both short-range forces, and magnetic force due to the interaction between the
dipole moments of the particles. To avoid short-range attractive forces generating aggregates in
the suspension, a thin layer of surfactants is applied to the surface of the particles, which act
as nano-springs repellents preventing the formation of aggregates. Another example of magnetic
suspensions is magneto-rheological suspensions (SMR) synthesized with magnetizable particles of
micrometer size, dispersed in a non-magnetic base fluid. This second class of magnetic suspensi-
ons differs from ferrofluids due to the micrometer size of the particles. Thus, magnetorheological
suspensions are not subject to Brownian motion induced by molecular thermal agitation, resul-
ting in greater instability concerning the formation of aggregates and greater magnetic memory.
Applications of fluid dynamics in engineering, until recently, were restricted to systems in which
electric and magnetic fields played no role. However, the combination of magnetic fields and polar
fluids has attracted more attention due to several applications in various fields, such as controlled
thermonuclear reactions, design of chemical reactors, drugs, and high-speed silent printing [60].
A statistical model was developed by [61] describing the magnetostatic properties of colloidal
ferrofluids and the dielectric properties of polar fluids. This model is based on the relationship
between magnetization and the correlation function of pairs of a homogeneous spatial system of
dipole particles. This function was calculated with the aid of the theory of first-order disturbances
on the intensity of the dipole-dipole interaction, in the presence of a field uniform external mag-
netic. In addition, a new type of two-dimensional model has been developed by Hirabayashi [62]
using the lattice-Boltzmann method to study the rheological properties of magnetic fluids. This
model is based on a continuous flow algorithm for particles that move in the same grid pattern
hexagonal. In this way, each particle occupies a state marked by two vectors, making it possible
to express the rotation of the effective magnetic moment. So the model proved to be suitable
for simulating various behaviors of influenced magnetic fluids by the rotation of the magnetic
moment. Another Comprehensive Numerical Model of Magnetic Nanoparticles was presented by
[63] providing a foundation of fundamental understanding of the actual physics of nanoparticles
and their interactions with dipoles. So, a soft sphere model approach was adopted to simulate the
interactions of nanoparticles at the molecular level.

Using an aggregate formation model combined with the theory of middle field, [64] calculated
the average magnetization properties of ferrofluids. Using a hypothesis for dipole interactions,
they obtained expressions for magnetization and initial susceptibility. By comparing the results
of the theory with dynamic simulations molecular model of the same model observed that, in
large dipole couplings, the model of aggregate formation seems to have better predictions than
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other analytical approaches, supporting the idea that the formation of aggregates is a fundamental
element importance in the studies of strongly interacting dipole particles. Still, another numerical
model of ferrofluid dynamics was developed by [65]. It is considered that the magnetocrystalline
anisotropy of the material magnetic of ferrofluid particles is finite, so that the magnetic moment of
the particle rotate about the particle itself. Therefore, the magnetization relaxation of a ferrofluid
after switching off the external field. Thus, compared the results with those obtained for the
dipole model "fixed" in the particles, showing that the inclusion of magnetic degrees of freedom
is essential for a description correct ferrofluid dynamics.

Change in rheological behavior is often defined as a change in effective fluid viscosity. Zubieta
[66] presented a magnetization model that seeks to capture the change in the rheological behavior
due to the application of an external magnetic field in magnetic suspension. In the case of fer-
rofluid, a Newtonian model was used to model the variation in viscosity that is observed when a
magnetic field is applied. In the past [67] studied the effect of a homogeneous magnetic field on the
viscosity of a suspension, whose solid particles have intrinsic magnetic moments. The orientation
field prevents the rotation of particles in a vortical liquid flow, increasing effective viscosity. Howe-
ver, Brownian motion and hydrodynamic forces exert a disorienting effect in magnetic moments.
Also, Zubarev [68] studied experimentally and theoretically the properties rheological properties
of dense ferrofluids. In experiments, the dependence on viscosity effective in the magnetic field
proved to be much more significant than expected by known theories. So they developed a new
theoretical model to explain and describe these results. This model is based on the assumption
that the formation of aggregates and chains in ferrofluid induces a strong magneto-viscous effect.
Taking into account the interactions between magnetic particles, [69] presented a quantitative
description of the magneto-viscous effects, exposing that a small volumetric fraction of particles
in the fluid, form chains and aggregates that dominate the properties rheological effects of fluids in
the presence of magnetic fields also, showing that the viscosity of a magnetic fluid can be strongly
influenced by the presence of an external field. Ilg [70] also studied, through computer simula-
tions, the influence of these attractive forces between particles in the structure and dynamics of
ferrofluids. Understanding in the presence of a magnetic field, sufficiently strong attractive forces
conduct to the formations of a whole of chains and aggregates of magnetic particles and conse-
quently a change on the rheological properties of the fluid. Also, [71] reviewed advances in the
behavior of ferrofluids, focusing on issues of phase behavior and microstructure formation with
and without an externally applied magnetic field and performed an analysis of the influence of
polydispersity that is an almost unavoidable characteristic of any real ferrofluid. Furthermore,
Rinaldi [60] presented advances in rheology and magnetic fluid flows, including studies on the
relaxation of magnetization and governing equations of Ferro-hydrodynamics.

Another model proposed by [72] was developed for studies of microstructural evolution, rhe-
ological properties, and the potential energies of magnetic fluids under shear. The simulations
of molecular dynamics were performed based on a dipole theory magnetic. Other simulations
using the Monte Carlo method performed by [73] analyzed the influence of polydispersity on the
equilibrium properties of systems with dipole interactions and short-range repulsive forces, and
a high-field approximation perturbation theory, in which the concentrations of particles and the
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mean magnetic moments are typical of real ferrofluids. The magnetization in weak and moderate
magnetic fields was higher in the polydisperse system than monodisperse.

A model for the continuity and momentum equations described in terms of mean variables
proposed by [74], the authors investigated the stability of a magnetic fluidized bed against small-
amplitude plane wave disturbances. In addition, [75] presented the continuous equations that
govern the movement of a magnetic fluid. The studies were applied to describe the movement
of a magnetic droplet freely suspended in a viscous fluid subjected to a permanent magnetic
field, determining asymptotic solutions for flows in tubes. Cunha [76] developed a new general
formulation for the hydrodynamic-magnetic boundary integral three-dimensional for magnetic free
surfaces in viscous flows of low Reynolds numbers.

A linear stability analysis to assess the behavior of waves of concentration in polarized fluidized
beds was carried out by [77]. The interactions of magnetized particles with an external magnetic
field produced a stronger stabilization of the linear instabilities in fluidized beds. Yet, using the
Ewald Sums numerical method to compute the interactions long-range dipoles, [78] studied in
detail the initial susceptibility, the magnetization curves and the microstructure of ferrofluids
at different concentrations of particles and dipole moments varied, through molecular dynamics
simulations. In the Ewald sum technique, a suspension with periodic boundary conditions is
considered, it is replicated periodically in all directions, and their replicas are called image cells,
also containing N particles. The instant suspension setting in each image cell it is identical to the
configuration of the central cell at each instant of time. The boundary conditions of the particles
in the central cell are periodic, so if a particle crosses the bottom of the cell, it reappears at the
top through the periodicity condition, expressed mathematically by [79].

Lindner [80] performed simulations to understand the influence of magnetic properties in high
magnetic separation processes gradient. Therefore, the external magnetic forces were simula-
ted through of the finite element method and incorporated in a simulation computational fluid
dynamics.

1.4 Motivation

From the second half of the 20th century to the present day, the self-propulsion of micro-
organisms and particles has been the subject of many studies. Some applications are of great
importance, for example in the medical field we can mention minimal invasive surgery, medica-
tion administration, cancer treatment, and others. Therefore, there is a growing need to better
understand the movement mechanisms on the subject. Understanding how the system behaves
is very important and both biological and synthetic micro-swimmers are used to understand how
they move in a suspension and how how they interact with their environments.

A practical motivation has been the tendency to use magnetic active matter, also known
as magnetic active suspension which is a mixture in which magnetic particles are dispersed th-
roughout the bulk of a fluid that can move alone within a base fluid. Understanding the locomotion
and spreading of living fluid in complex environments, undergoing significant flow variations are
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relevant to many fundamental and technological issues and that generates several types of research
and works on the subject. In addition, Magnetic nanoparticles have attracted a lot of interest in
fields of application advanced biological and medical technologies such as drug release and imaging
by magnetic resonance. Osaka [81] studied the synthesis of magnetic iron oxide nanoparticles for
the development of a biomolecular system. Also, as a test system practical biological, the mag-
netic detection of biomolecular interactions is demonstrated using the combination of a modified
patterned substrate with a monolayer self-assembled and magnetic nanoparticles.

An important result is controlling the viscosity of flowing magnetic fluid through the applica-
tion of an external magnetic field. The effect of the change in suspension viscosity can due to the
alignment of the orientation of the magnetic particles in the direction of an applied external field,
generating an increase in the effective viscosity of the fluid.

Timko [82] explored the influence of the combined magnetic and electric field in the per-
missiveness of the transforming role used in power transformers. The experiments showed that
the permissiveness of the system insulator consisting of pure transformer paper and impregnated
transformer paper naturally depends on the number of layers of paper. It was found that the
magnetodielectric effect depended on the concentration of nanoparticles of magnetite in magnetic
fluids.

1.5 Aims and Objectives of the Thesis

1.5.1 Main

The main goal of this work is to study the motion of particles and organisms in viscous fluids,
through an analytic, numerical, and experimental method to describe the kinematics and dynamics
of particles motion. Other secondary goals need to be achieved. Here they are:

1.5.2 Secondary

• Carry out some experiments with helical macroscopic models that swims freely in a highly
viscous Newtonian or non-Newtonian ambient fluids in order to ensure a low Reynolds
number around the swimmer. The main goal is to investigate the mechanics of artificial
helical swimmers moving under condition of low Reynolds number and address how the
elastic effects of the base fluid can influence the motion of a swimmer such as its propulsion
velocity. We calculate the force and torque acting on the swimmer moving at low Reynolds
number as a function of the Strouhal number Sh (i.e. the inverse of a non-dimensional
frequency) in the case of Newtonian fluid and also as a function of the Deborah number De
(i.e. elasticity parameter) when the base fluid is an elastic liquid.

• Use theoretical models based on Slender Body Theory (SBT) and the method of regularized
Stokeslet (RSM) in order to calculate the force and torque as function of the Strouhal
number (Sh) acting on helical swimmer moving in a Newtonian fluid. Specifically, the
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SBT calculation is applied in order to describe the dynamics of swimming microorganism
with motion produced by the thin helical flagellum propulsion. We present some computer
simulations based on a finite element method for describing the creeping flow motion of a
helical swimmer in an elastic Oldroyd-B fluid.

• We compare the experimental measurements with the theoretical predictions to see the
agreement within the error bars of the experimental data. In making these comparisons
we have verified the consistency of our experiments with artificial active particles and the
accuracy of our experimental data.

• Investigate the motion in viscous liquids of a kind of active particles. We realize Langevin
numerical simulations of the motion of magnetic chains composed of polydisperse spherical
rigid particles under the action of Brownian motion, an external magnetic field, and under
influence of dipolar magnetic interactions. We develop a FORTRAN code to simulate the
prototype of magnetic active matter. The initial configuration of the magnetic particle
in the simulation considers the ones aligned as chains structure with a different number
of magnetic particles similar to the structure of a real bacteria spine which is formed by
a chain of magnetic crystals. We examine the kinematics of the magnetic bacteria with
different numbers of particles in the chain.

1.6 Scope of this work

This thesis is divided into five chapters: Introduction, theoretical framework, helical flagellum
movement, simulation of magnetic bacteria, and conclusions. In the first Chapter, the introduc-
tion is presented. Chapter two is a review of the fundamentals concepts at low Reynolds numbers
flows, beginning with a more detailed description of the Balance Equations in fluid mechanics at
low Reynolds numbers and the swimming propulsion for microorganisms. Chapter three intro-
duces the Slender body method and of regularized Stokeslets and implementation for solving the
Stokes equations which describes the low Reynolds number flows. The method is validated with
theoretical values for a helical flagellum in a viscous fluid. In chapter four we study a magnetic
bacteria, we perform Langevin numerical simulations of the motion of magnetic chains composed
of spherical rigid particles. The chains structure represents a imitation of a magnetotactic bacteria
moving in a viscous liquid at low Reynolds number and also under the action of Brownian motion,
an external magnetic field and under influence of dipolar magnetic interactions. Finally, chapter
five presents conclusions and suggestions for future works.
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Chapter 2

Theoretical Backgrounds

2.1 FUNDAMENTAL CONCEPTS OF FLUID MECHANICS

In this chapter, we present the fundamentals of fluid mechanics, to understand the behaviour
of particles and organisms, their dynamics, or kinematics. It is important to understand in what
conditions they perform and to what forces they are subjected. For this end, Balance Equations
are presented for Newtonian fluid and the hypotheses associated with the microhydrodynamics
problems treated in this thesis. A significant part of these theories were consulted in the thesis by
[83], in the master’s thesis by [84] and [85] and in the lecture notes by professor Francisco [86].

2.1.1 Governing Equations of Fluid Mechanics

The cornerstone of fluid mechanics is the fundamental governing equations of flows: the conti-
nuity, momentum, and energy equations. These equations describe physics. They are the mathe-
matical statements of three fundamental physical principles upon which all of fluid dynamics
is based. Governing equations involve certain quantities, in particular the stress tensor, which
require a specification of the characteristics of the fluid under consideration.

2.1.2 Stress Tensor And Governing Equations In Fluid Mechanics

In fluid flows, there are forces acting that cause the movement. These forces can occur due
to advection (movement forces), interaction with fields, external forces (such as gravitational
or electromagnetic forces), pressure gradients and interactions between fluid molecules (surface
forces). The forces acting in a infinitesimal volume of the medium are defined as stress. Thus, the
stress is defined as follows:

σij = lim
δAi→0

δFj
δAi

, (2.1)

where, σij is the stress in the plane i and direction j, Fj a force in the direction j and Ai a area
in the plane j. We use i, j ∈ {1, 2, 3} or ∈ {x, y, z} or even ∈ {r, θ, z}. The stress tensor is then a
mathematical entity that has nine degrees of freedom, so the best way to represent it is in matrix
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form, as below according to the coordinate system used:

σ =


σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

 or


σ11 σ12 σ13

σ21 σ22 σ33

σ31 σ32 σ33

 or


σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz

 . (2.2)

The last matrix presented in equation (2.2) refers to the coordinate system cylindrical, where:
x(r, θ, z) = r cos(θ),

y(r, θ, z) = r sin(θ),

z(r, θ, z) = z.

(2.3)

Figure (2.1), shows this tensor in geometric form where we see its scalar components, in rectangular
coordinates. In this figure, the observed components that have equal indices are called normal
stresses, with those with different indices. called shear stresses. Sometimes it can happen that
the stress tensor has a symmetric nature, that σij = σji, so, only six are enough components
to determine the tensor. The stress normal to the sectioned face is by definition of the form
τxx = σx and, the shear stresses acting on the sectioned face are by, τxy = σxy, τyx = σyx,
τxz = σxz, τyz = σyz. It is verified that the tension tensor is symmetrical and then, τxy = τyx,
τzx = τxz, τyz = τzy.

Figure 2.1: Stress tensor components in rectangular coordinates. Source: Mechanics of Slender
structures [1]

The equations that govern the flow of fluids are formed by the mass conservation equation
(or continuity equation), by the linear momentum of motion, by the energy equation and by the
angular momentum equation. But, in general, only the mass and quantity conservation equations
are considered, also called the Cauchy equation. We present these two equations below. Let us
consider a material body Ω and in this body imagine an infinitesimal portion δΩ that has volume
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δV and mass δmc. The density, ρ, of this body Ω can be defined as:

ρ = lim
δV→0

δmc

δV
. (2.4)

Assuming that there is a continuous and uniform mass distribution in the body, we can calculate
the total mass of Ω to be:

mΩ =
∫
V
ρ dV. (2.5)

Let ψ be any property (scalar, vector or tensor) of the fluid. By the principle of conservation
which states that the net effects of any property ψ are null, we have, for example, the equation of
conservation action of the dough

DmΩ
Dt

= 0, (2.6)

where D

Dt
denotes the material derivative which ís defined as

Dψ

Dt
= ∂ψ

∂t
+ u · ∇ψ, (2.7)

and u represent the velocity field and ∇ the gradient operator.

Assuming that there is a continuous and uniform mass distribution in the body, we can calcu-
late the total mass of Ω to be

mΩ =
∫
V
ρ dV. (2.8)

Let’s consider the equation (2.8) and apply the Reynolds Transport Theorem on it, from which
we have:

D

Dt

∫
V
ρ dV =

∫
V

∂ρ

∂t
dV +

∫
S
ρu · n̂ dS = 0. (2.9)

Here, S denotes the surface of the volume δV and n̂ is the unitary normal vector that points away
from this surface. Now, applying the divergence theorem to the equation (2.9), we can pass the
entire integration to the volume V, leaving:

D

Dt

∫
V
ρ dV =

∫
V

(∂ρ
∂t

+∇ · (ρu)
)
dV = 0. (2.10)

Applying, now, the localization theorem, we finally have the equation of conservation mass equa-
tion:

Dρ

Dt
= ∂ρ

∂t
+∇ · (ρu) = 0. (2.11)

We can rewrite this last equation as being

∂ρ

∂t
+ ρ∇ · u+ u · ∇ρ = 0⇐⇒ Dρ

Dt
+ ρ∇ · u = 0. (2.12)

We will now describe the equation of momentum, also known as the Cauchy equation. For
this, consider the definition of the linear momentum, q, in the body Ω given by the equation:

q =
∫
V
ρu dV. (2.13)
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By the same principle that gave rise to the equation (2.5), we can write:

Dq
Dt

= f ⇔ D

Dt

∫
V
ρu dV − f = 0. (2.14)

The rate of change of the linear momentum of a volume V is equal to the total forces (field and
surface) acting on it. Note that the left side of the equation (2.14) represents Newton’s second
law, that is, the sum of the forces equal to zero. Here the vector force, f , denotes an equilibrium.
According to the theories of the continuous medium these forces are of field origins (forces that
involve volume, of macroscopic origin, for example, the gravitational force) more surface forces
(which have a microscopic origin associated with the random movement of molecules or particles
in the material body). So we can write f as:

f =
∫
V
ρb dV +

∫
S

T(n) dS, (2.15)

where the vector b denotes a forcep̧er unit of mass or field force and T(n) stress vector.

Cauchy’s Theorem states that the vector of stresses or traction, T(n), refers to any surface (or
plane) whose director and the vector n can be written as a linear combination of the mutually
orthogonal vectors referring to the base {ei} of space vector co R3. In this way we can write the
vector T(n) as being:

T(n) = n.σ = σT .n,

where, σ is the tensor of tensions and T denotes its transpose. The figure (2.2) shows a schematic
representation of this situation.

Again applying the divergence theorem to the equation (2.15) we obtain:

f =
∫
V

(ρb +∇ · σ) dV. (2.16)

Returning now to the equation (2.14) we can write

D

Dt

∫
V
ρu dV =

∫
V

(ρb +∇ · σ) dV, (2.17)

and using the localization theorem we have the important equation

ρ
Du
Dt

= ρb +∇ · σ, (2.18)

that is the Cauchy equation for the fluid movement. The divergence term from σ, denoted by
∇ · σ, represents the surface forces per unit of volume.

2.1.3 Equation in Cylindrical Coordinates

We present in this section the equations (2.11) and (2.18) written in cylindrical coordinates,
where for the Cauchy equation, we present the three. These equations refer to the three possible
directions of the flow. We present the components of the tensor σ when in the hypothesis of a
Newtonian fluid, as well as the equation of motion (equation (2.18)) for these fluids.
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Figure 2.2: Forces acting instantly on a continuous medium inside a small element V in the form
of a tetrahedron.

First consider any fluid with viscosity µ and specific mass ρ. And let the velocity field be given
by:

u(r, θ, z) = (ur(r, θ, z), uθ(r, θ, z), uz(r, θ, z)). (2.19)

Also consider the pressure field inside the tube given by p = p(r, θ, z), and finally, the vector
of force cas b = (br, bθ, bz).

For the equation for the general case, we have the following equation for the general case:

∂ρ

∂t
+ 1
r

∂

∂r
(rρur) + 1

r

∂

∂θ
(ρuθ) + ∂

∂z
(ρuz) = 0. (2.20)

For the Cauchy equation (2.18) we highlight the three directions, in the three equations (2.21),
and (2.22), which follow:

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uθ
r

∂ur
∂θ
− u2

θ

r
+ uz

∂ur
∂z

)
= −∂p

∂r
+ ρbr −

[1
r

∂

∂r
(rσrr) + 1

r

∂σθr
∂θ

+ ∂σzr
∂z
− σθθ

r

]
.

(2.21)
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ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

)
= −∂p

∂z
+ ρbz −

[1
r

∂

∂r
(rσrz) + 1

r

∂σθz
∂θ

+ ∂σzz
∂z

]
. (2.22)

As a general form, we show in the six equations below, the components of the tension tensor σ,
in the case of a Newtonian fluid, where σ = −pI + 2µD, written in cylindrical coordinates:

σrr = −p+ 2µ∂ur
∂r

. (2.23)

σθθ = −p+ 2µ
(1
r

∂uθ
∂θ

+ ur
r

)
. (2.24)

σzz = −p+ 2µ∂uz
∂z

. (2.25)

σzθ = σθz = µ

(
∂uθ
∂z

+ 1
r

∂uz
∂θ

)
. (2.26)

σrz = σzr = µ

(
∂uz
∂r

+ ∂ur
∂z

)
. (2.27)

σθr = σrθ = µ

(1
r

∂ur
∂θ

+ ∂uθ
∂r
− uθ

r

)
. (2.28)

To finish this section we present the equations of motion in the case of a Newtonian fluid in
terms of the velocity field, in the equations (2.29), (2.30) and (2.31) following:

ρ

(
∂ur
∂t

+ ur
∂ur
∂r

+ uθ
r

∂ur
∂θ
− u2

θ

r
+ uz

∂ur
∂z

)
= −∂p

∂r
+ ρbr+

µ

[
∂

∂r

(1
r

∂

∂r
(rur)

)
+ 1
r2
∂2ur
∂θ2 + ∂2ur

∂z2 −
2
r2
∂uθ
∂θ

]
.

(2.29)

ρ

(
∂uθ
∂t

+ ur
∂uθ
∂r

+ uθ
r

∂uθ
∂θ

+ uθur
r

+ uz
∂uθ
∂z

)
= −1

r

∂p

∂θ
+ ρbθ+

µ

[
∂

∂r

(1
r

∂

∂r
(ruθ)

)
+ 1
r2
∂2uθ
∂θ2 + ∂2uθ

∂z2 + 2
r2
∂ur
∂θ

]
.

(2.30)

ρ

(
∂uz
∂t

+ ur
∂uz
∂r

+ uθ
r

∂uz
∂θ

+ uz
∂uz
∂z

)
= −∂p

∂z
+ρbz+µ

[
1
r

∂

∂r

(
r
∂uz
∂r

)
+ 1
r2
∂2uz
∂θ2 + ∂2uz

∂z2

]
. (2.31)

2.1.4 Momentum Equation

Momentum is advected about by the motion of the fluid itself and spatial variations of pressure
and viscous stresses. Restricting ourselves to the motion of a continuous, viscous fluid (liquid or
gas), the stress in a fluid is composed of two parts; a locally isotropic part proportional to the
scalar pressure field and a non-isotropic part due to viscous friction. Cauchy’s equation, which

33



expresses the momentum equations for a continuous medium can be deduced through Newton’s
second law applied to a body. We have the momentum equation is described by equation (2.32):

ρ
Du

Dt
= ∇ · σ + ρb (2.32)

where, ρ is the density field, σ the stress tensor field, and matb is the force field strength per
unit mass. Assuming no external torque acting on the fluid, the law of of angular momentum
equation is expressed by the symmetry of the stress tensor σ. In the flow, the rate at which the
local deformation of the medium is changing over time (the strain rate) can be approximated by
a strain rate tensor E, which is defined by:

E = 1
2[∇u+∇uT ] (2.33)

Now, the constitutive equation for a Newtonian fluid is:

σ = −pI + 2µE (2.34)

where p is the thermodynamic pressure and E is the dynamic stress, which is related to the
velocities and µ is the dynamic viscosity. By setting the Cauchy stress tensor σ to be the sum of
a viscosity term and a pressure term (volumetric stress) we arrive at:

ρ[∂u
∂t

+ u · ∇u] = −∇p+ µ∇2u+ ρb (2.35)

where the terms of the equation of motion represent, respectively, inertial forces, pressure forces,
viscous forces and field forces for example gravity, inertial accelerations, electrostatic accelerations,
(per unit volume).

2.2 Fundamentals of Hydrodynamics at Low Reynolds Number

The propulsion of microorganisms is typically slow, where a lot of effort has to be expended.
This can be explained by the existence of the immense frictional resistance to motion. In this
section we present the basic and fundamental concepts of microhydrodynamics.

2.2.1 Scaling arguments and the Stokes approximation

The importance of inertial effects compared to viscous effects in equation (2.35) is measured by
the Reynolds number. Suppose the particle, have length L, translates with a velocity of magnitude
U . Then the Reynolds number at the particle scale is:

Re = ρUL

µ
∼ | (u · ∇)u |
| ν∇2u |

(2.36)

We are usually interested in small length-scales, typically between 10−2 and 102 µm. As a
result of the smallness of particles, the velocity scale is often small, for example in sedimentation,
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where the isolated particle settling velocity scales with the square of its size, as we will see later.
For a particles with size L = 1µm, the settling velocity in water is of the order of U = 1 µms−1

and the Reynolds number of the motion is thus of O(10−6). Therefore, in many practical flows of
suspensions, the Reynolds number is small and we may neglect the convective acceleration in the
left-hand side of equation (2.35) according to [87].
At the asymptotic limit where Re � 1, the advection equations of fluid motion are Stokes equa-
tions, given by:

∇ · u = 0

∇p+ µ∇2u = 0
(2.37)

Also called the creeping flow equations. The Reynolds number (Re) is still very small, we have
to keep the unsteady term ( ∂u

∂t
), in which case we have the unsteady Stokes equations. We will

not be concerned with this unsteady case here.

2.2.2 Linearity and Instantaneity

There is no (u · ∇u) in equation (2.2.1) therefore, u , p, and σ are linearly forced by any
boundary motion or body force. If for instance we have a falling sphere doubling the velocity
will double σ and the drag force. Generally this property can be verified taking into account
the problem of a rigid particle delimited by the surface S, translating with velocity u(t), in low
number regime of Reynolds. Considering the symmetry of the stress tensor, since the fluid and
the particles are not magnetic, that is, there are no induced internal torques in the material by
magnetization, the hydrodynamic force on the particle given by:

F =
∫
S
σ · ndS (2.38)

where n is the unitary vector normal to the surface S, which points to the side of the fluid that
exerts tension. Considering | µ∇2u | ∼ µu/L2,and a scale of the viscous tensions and | ∇p | ∼
F/L3 and a pressure scale, where L represents a characteristic length of the flow, then F/L3 ∼
µu/L2, where it follows that:

F = 6πµuL (2.39)

A Stokes flow has no dependence on time other than through time-dependent boundary con-
ditions. This means that, given the boundary conditions of a Stokes flow, the flow can be found
without knowledge of the flow at any other time. Instantaneity is an important property. There
is no time in the Stokes equations, and so the predicted motion is said to be quasi-static. There
is no history dependence of the fluid motion captured by these equations. All that is needed to
determine the flow is the actual configuration given by the boundary conditions, coming both
from the particle positions and outer boundaries. According to the steady Stokes equations, the
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boundary motion is communicated to the entire fluid instantly. The latter is due to the harmo-
nic properties of the Stokes equations which have instantaneous propagation of the information
according to reference [87].

2.2.3 Reversibility Symmetry

If the velocity of the boundary of stokes flow is reversed then so is the velocity everywhere
in the fluid. If a prescribed boundary motion is reversed over time, then each point retraces its
history. This is beautifully illustrated in a short film by [88]. This film as well as other illustrative
films can be found in reference [89]. In this film clip, a coloured drop is introduced into a viscous
liquid contained in the annulus between two transparent concentric cylinders. When the inner
cylinder is rotated through a full four revolutions, the coloured drop is sheared with the rest of the
liquid and becomes scarcely visible. When the direction of the inner cylinder is reversed and passes
back through four revolutions, the stretched ribbon of dyed fluid reforms the original spherical
drop with only slight blurring due to molecular diffusion. It is a quite striking demonstration
of the reversibility of the flow. Is an important property of Stokes flow and its reversibility in
relation to time. Considering that in Stokes regimes the motion u(x, t) is a linear function of
the applied hydrodynamic force, then, if the direction of the force is reversed, the movement is
reversed. That can be verified by the following argument: We consider u and p are solution of
the Stokes equations given in equation (2.2.1), then we have −u and −p are also solution. It is
noted that the case of Reynolds arbitrary, the non-linear term | u · ∇u | u2/L hold their signal
when the direction of velocity is reversed, so that the reverse flow is not solution of the problem.
For example, the relative movement between two smooth shear spheres produces reversed closed
relative trajectories. Inverting the direction of shear, the particles return to the along the same
relative trajectories, without lateral migration. This phenomenon is direct consequence of the
linearity and reversibility in the time of the equations of Stokes. It is worth mentioning that this
condition of symmetry can be broken by intrinsic characteristics of the system, such as surface
roughness, deformation in relation to spherical shape, colloidal forces, or effect of inertia according
reference [90], producing migration of particles along the current lines of the Stokes equation.

The reversibility property in Stokes flow leads to the impossibility of certain movements.
Organizations biology, free from the action of gravity and performing reversibility in time, are
not able to move in Stokes. This is because there is symmetry in time, liquid motion and zero,
since the force on the body depends linearly speed, as shown in figure (2.3). In other words, if a
micro-organism performs a movement with a certain velocity, the fluid exerts on it a force with
opposite direction. Therefore, if the movements are alternating, after each cycle the resultant
force on the body is zero. Generally, to produce movement, micro-organisms need to break the
symmetry at the time of flow, for example, by performing helical or high frequencies [91].
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Figure 2.3: Symmetry breaking of the living particle, Oliveira (2007)

2.2.4 Stokes Flow Theorem

2.2.4.1 Uniqueness

In order to demonstrate the uniqueness of the solution of the Stokes equations, we take the
rate of dissipation of momentum in internal energy for an incompressible Newtonian fluid, Φ =
2µE : E. In this case, we consider a region of space V , delimited by the surface S in which the
velocity boundary conditions are known. We assume that u and u′ are two solutions of the Stokes
equations in this domain, such that both satisfy the boundary conditions in S, see reference [86].
The rate of dissipation internal energy throughout the V domain, due to the difference between
the velocity fields, ud = u− u′ can then be calculated by:

Φd
V =

∫
S

2µEd : EddV, (2.40)

where Ed = 1
2[∇ud + (∇ud)T ] e ∇ud = ∇u−∇u′ but Ed is symmetric.

∇ud = Ed+W d, whereW d = 1
2[∇ud− (∇ud)T ] is antisymmetric. with ∇ud we have Ed : Ed =

Ed : ∇ud because Ed : W d = 0. Using the expression Ed : ∇ud = ∇ · (Ed · ud)− (∇ ·Ed) · ud e
∇ ·Ed = 1

2∇
2ud the equation (2.40) became:

Φd
V =

∫
V

2µ∇ · (Ed · ud)dV −
∫
V
µ∇2ud · uddV (2.41)

Applying the divergence theorem in the first integral on the right side of the equation (2.41),
we obtain

∫
V 2µ∇·(Ed · ud)dV =

∫
S 2µ∇·(Ed · ud)·ndS. As the two solutions u and u′ satisfying

the boundary conditions follows that ud(x) = 0 at x ∈ S, then said integral is zero. On the other
hand, the equations of Stokes µ∇ud = ∇pd where pd = p− p′

Φd
V = −

∫
V
∇pd · uddV (2.42)
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With ∇pd · ud = ∇ · (pdud)− pd∇ · ud e ∇ud = 0 we can write also:

Φd
V = −

∫
V
∇ · (pdud)dV = −

∫
S

(pdud) · ndS = 0 (2.43)

The surface integral in equation (2.43) also cancels out because ud(x) = 0, if x ∈ S. Therefore,
Φd
V = 0 if the flow is governed by the equations of Stokes. Returning to the equation (2.40) and

observing that the integral of this equation Is a non negative quantity, provided that the volume of
integration is arbitrary and Ed And a continuous field, we conclude, by the localization theorem,
what is Ed = 0, this is E = E′ throughout V . So, u and u′ may differ only by a rigid body
movement. However, since in velocity fields are identical, since they must satisfy the conditions
of contour, then u(x) = u′(x) ∀x ∈ V according to reference [92], requiring thus the uniqueness
of the solution of the Stokes equations, as a direct consequence of its linearity.

2.2.4.2 Minimum Energy Dissipation

We consider two flows (u, p) and (u′, p′) incompressible and satisfying the boundary conditions
in a given area V delimited by the surface S. Consider that the flow (u, p) satisfies the Stokes
equations, while (u′, p′) not necessarily. The least energy dissipation theorem says that (u, p) has
the lowest rate of dissipation of internal energy among all incompressible flows,(u′, p′) satisfying
the conditions according to reference [86]. This fact can be demonstrated from the expression for
the the energy dissipation rate of (u′, p′) in volume V.

Φ′ =
∫
V
E′ : E′dV (2.44)

It is possible to write also: ∫
V

(E′ − E) : EdV = 0 (2.45)

Using a developments similar to those in the demonstration of the uniqueness the solution
of the Stokes equations. Subtracting equation (2.44) from equation (2.45), we have that Φ′ =∫
V [(E′ : E′ − (E′ − E) : E]dV , that mean:

Φ′ =
∫
V

[(E : E + (E′ − E) : E′]dV (2.46)

Again subtracting from the integral at equation ( 2.44) the expression (2.45), we determined:

Φ′ =
∫
V

[(E : E + (E′ − E) : E′ − (E′ − E : E]dV =
∫
V

[(E : E + (E′ − E) : E′ − E]dV
(2.47)

Then combining equation (2.45) and equation (2.47)∫
V
E′ : E′dV =

∫
V
E : EdV +

∫
V

(E′ − E) : (E′ − E)dV (2.48)

Since the second integral on the right side of 2.48 is always a quantity not negative, we can
conclude that ∫

V
E : EdV ≤

∫
V
E′ : E′dV (2.49)
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which demonstrates the Stokes’ minimum dissipation theorem. From an analytical point of view,
this result can be interpreted as a variational principle according to which the solution of the
Stokes equations in a determined domain, subject to specific boundary condition which promotes
the minimum rate of energy dissipation of the flow through the viscous.

2.2.4.3 Reciprocal Theorem

The reciprocal theorem allows one to determine results for one Stokes flow field based upon
the solution of another Stokes flow in the same geometry, i.e. having the same boundaries but
different boundary conditions. The reciprocal theorem states a relationship between two Stokes
flows in the same region. Consider fluid filled region V bounded by surface S. Let the velocity
fields u and u′ solve the Stokes equations in the domain V , each with corresponding stress fields
σ and σ′. Then the following equality holds:∫

S
u · (σ′n)dS =

∫
S
u′ · (σn)dS (2.50)

where n is the unit normal on the surface S. The reciprocal theorem can be used to show that
Stokes flow transmits unchanged the total force and torque from an inner closed surface to an
outer enclosing surface. The reciprocal theorem can also be used to relate the swimming speed of
a microorganism, such as bacterium, to the surface velocity which is prescribed by deformations
of the body shape via cilia or flagella according to [92].

2.2.5 Fundamental Solution of the Stokes Flow

The fundamental solution of the Stokes equations corresponds to the flow generated by the
presence of a force point in a three-dimensional domain infinity of fluid (free space), represented
by the following system of equations.

µ∇2u = F δ(x− x0) (2.51)

∇ · u = 0 (2.52)

Here x is in R3, F is a concentrated force (or monopole) applied on the fluid, x0 is the
position of the force point and δ(x − x0), the Dirac delta distribution in the three-dimensional
space. More generally, the presence of a particle in a Stokes flow is represented by: F δ(x −
x0) +D · ∇δ(x− x0) +Q : ∇∇δ(x− x0) + · · · where D and Q represent moments (dipole and
quadrupole) generated by the particle on the fluid. In the present context, one strength point or
particle produces a long-range velocity and pressure disturb in the fluid. In a region sufficiently
distant from the location x0 of the same, such that high order moments that decay with 1

r2 , or
faster than that is, they become second order contributions that r =‖ x − x0 ‖� 1. It is worth
noting that the Dirac delta distribution satisfies the following properties, Lighthill (1976).

(i)
∫ ∞
−∞

δ(x− x0)dV = 1, (ii)
∫ ∞
−∞

δ(x− x0)f(x)dV = f(x0) (2.53)
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where, f(x0) is a regular function. The solution of the differential problem represented by equa-
tions (2.53) can be found via three-dimensional Fourier transform, defined by the pair of transfor-
med.

F{f(x)} = f̂(k) = 1
2π3/2

∫
D
f(x)e−ikxdx (2.54)

F−1{f̂(k)} = f(x) = 1
2π3/2

∫
D
f̂(k)eikxdk (2.55)

here we have D = R3

The equation (2.55) can be interpreted as the projection of the function f(x)in a (Gaussian
auto functions) where, f(k) is the amplitude of each wave is eikx. The vector k is defined as
k = 2π(1/λj)ej and in which the unitary vector in each direction j = 1, 2, 3 and λj is the length
wave in the direction ej. It is important to point out the following properties of Fourier transform:

F{∇ · a(x)} = ik · â(k) (2.56)

∇F−1{â(k)} = ={ikâ(k)} (2.57)

According to equation (2.57) we have that F{∇2} = −k2

here k2 = k.k. Then, the equation of continuity in the Fourier (or of wave number) is:

k · û(k) = 0 (2.58)

Applying the Fourier transform to the momentum equation, and considering for the moment
that the monopole is concentrated in the origin, we obtain:

µk2û(k) + ikp̂(k) = −F 1
2π3/2

∫
D
δ(x)eikxdx (2.59)

Using property of the Dirac delta distribution, we have:
∫
D δ(x)eikxdx = eik.0 = 1

and the equation (2.59) of the momentum in the reciprocal space reduces to

µk2û(k) + ikp̂(k) = −F 1
2π3/2 (2.60)

Multiplying scalarly the equation 2.60 by k and using the equation of continuity we have:

p̂(k) = −F 1
2π3/2

ik

k2 (2.61)

Substituting (2.61) in (2.60) and isolating û(k), we have

û(k) = − 1
(2π)3/2µk2F · (I −

kk

k2 ) (2.62)

The equations (2.61) and (2.62) are expressions for the pressure fields and velocity, respectively,
in the reciprocal space. To determine the fields corresponding in the physical space the inverse
Fourier transform and property, so that:

p(x) = F−1{−F 1
2π3/2

ik

k2 } = 1
8πF

∫
D

ikeikx

k2 dk = 1
8πF · ∇

∫
D

eikx

k2 dk (2.63)
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and therefore since
∫
D

eikx

k3 dk = 2π2

x
where x =

√
x · x it is possible to show ;

p(x) = − 1
8πF · (2

x

x3 ) (2.64)

Similarly, the velocity field in the physical space is determined as:

û(k) = − 1
(2π)3/2ηk2F ·

(
I − kk

k2

)
. (2.65)

Application transform of Fourier inverse:

u(x) = F−1{û(k)} = − 1
8π3η

F ·
[
I

∫
R3

eik·x

k2 dk −∇∇
∫
R3

eik·x

k4 dk

]
. (2.66)

Again using spherical coordinates, one has:

∫
R3

eik·x

k4 dk = −π2|x|, (2.67)

replacing the last two equations, we obtain the following velocity field in three-dimensional physical
space, given by:

u(x) = − F

8πη ·
( I
r

+ xx

r3

)
. (2.68)

We have now the more general case in which x = x0, the velocity field in space modified by only
one translation, assuming the following form:

u(x,x0) = − F

8πη ·
[

I

|x− x0|
+ (x− x0)(x− x0)

|x− x0|3
]
. (2.69)

The velocity field u can be expressed by:

u(x,x0) = −F8πη · G(x,x0) , (2.70)

Where

G(x,x0) =
[

I

|x− x0|
+ (x− x0)(x− x0)

|x− x0|3
]
, (2.71)

Is a second-order symmetric and positive nest tensor, called the Green function to the field
of velocity or propagator of the hydrodynamic disturbance, or else, tensor of Oseen-Burgers, of a
purely geometric nature and therefore independent of the properties of the fluid. In addition, the
disturbs propagate with slow decay of the order of O(1/r) where r is the distance with respect to
the pole x0.

This way, this slow decay characterizes the long-range hydrodynamic interactions and even
particles relatively distant from each other interact meaningfully leading to problems of divergence
of sums or superposition of fields of disturbance induced by a large number of singularities.
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The stress tensor associated with a Green function can be obtained from the constitutive
equation for the stress tensor of an incompressible Newtonian fluid. For this, it is enough to apply
the equations described early in the strain rate tensor σ σ = −pI + η[∇u+ (∇u)T ]. After some
calculation we obtain:

σ(x,x0) = F

8π · T (x,x0), (2.72)

in which the third-order tensor, given by:

T (x,x0) = 6(x− x0)(x− x0)(x− x0)
|x− x0|5

, (2.73)

is a Green tensorial function associated with the propagation of the voltage disturbance generated
by a hydrodynamic dipole in a Stokes flow.

2.2.6 Integral Representation of the Stokes Flow

According to the differential version of the reciprocal theorem, in the case of strength of the
field, we have :

∇ · (σ′ · u)−∇ · (u′ · σ) = 0 , (2.74)

where, (u,σ) is the solution of the field of velocities and tensions of a Stokes flow arbitrary and
(u′,σ′), represent the solution of the field of velocities and stress of a flow, being in this case the
fundamental solution of the Stokes equations. Applying the version differential of the reciprocal
theorem, together with the fundamental solution, we obtain that

∇ ·
( 1

8πF · T · u+ σ · 1
8πηF · G

)
= 0 . (2.75)

Consider now two possibilities for the integration of equation (2.75) into every volume V of
the fluid. First, assume that the uniqueness that generates a disturbance in the velocity field of
the liquid, is not within V . In this way, the function of equation equation (2.75) is regular in V .
Consequently, the entire volume V , as it is a region can be reduced to a point, preserving the
physical contours. Therefore, we have:

∫
V
∇ · (ηT · u+ σ · G)dV = 0 . (2.76)

Applying the divergence theorem we have:
∫
S
ηT · u · ndS +

∫
S
σ · G · ndS = 0 . (2.77)

Now consider the second possibility. In this case, the point of singularity lies in the interior of
V . As shown in figure (2.4).

Note that equation (2.77) is regular in the volume V − Ve, in which Ve is the volume of the
sphere of radius R. Thus, it follows that
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Figure 2.4: Schematic for the second possibility.

∫
V−Ve

∇ · (ηT · u+ σ · G)dV = 0 , (2.78)

applying the divergence theorem in the equation 2.78, we have:
∫
S−Se

ηT · u · ndS +
∫
S−Se

σ · G · ndS = 0 , (2.79)

Again, applying the divergence theorem in equation (2.79), one has:

u(x0) = − 1
8πη

∫
S
G(r) · σ(x) · ndS − 1

8πη

∫
S
u(x) · T (r) · ndS . (2.80)

2.2.7 Faxén’s Law

For the development of the global mobility matrix, which describes the hydrodynamic inte-
ractions between all the particles in a suspension, it is used the Faxing Law, which determines
the hydrodynamic force on a spherical particle in the domain of a liquid. Suppose initially, that
before the introduction of a rigid spherical particle, the distribution of velocity in a fluid domain
is u∞(x). Applying to the fluid a distribution density strength t = σ · n on a spherical surface
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Sα and radius aα,centered in x0, its initial velocity distribution will change. Thus, by the integral
representation of the Stokes flow for a fast particle, the additional speed u′(x) in x due to the
distribution of the forcing of surface density t, given by:

u′(x) = − 1
8πη

∫
Sα
G(x− x′) · t(x′)dS(x′). (2.81)

By the superposition principle, the total field velocity u(x), is given by:

u(x) = u∞(x)− 1
8πη

∫
Sα
G(x− x′) · t(x′)dS(x′). (2.82)

Consider the more general case of a rigid sphere that translates with velocity U and rotates
around its center with angular velocity ω. Thus, on the surface of the sphere Sα the flow satisfies
the following boundary condition:

U + ω × (x− x0) = u∞(x)− 1
8πη

∫
Sα
G(x− x′) · t(x′)dS(x′). (2.83)

Integrating the equation (2.83) on the surface of the sphere, we have∫
Sα
UdS(x′) +

∫
Sα
ω × (x− x0)dS(x′) =

∫
Sα
u∞(x′)dS(x′)

− 1
8πη

∫
Sα

[∫
Sα

(
I

r
+ rr

r3

)
· t(x′)dS(x′)

]
dS(x) (2.84)

Where r = x− x′ e r = |x|. Solving the last equation for F ,

F =
∫
Sα
t(x′)dS(x′), (2.85)

it follows that the total force at the surface of the sphere is given by:

F = 3η
2a

∫
Sα

[
u∞(x′)−U

]
dS(x′). (2.86)

To solve the integral ( 2.86), we will consider the effect of particle size, u∞(x′) around the
center x0 of the sphere, we arrive at the following expression:

u∞(x′) = u(x0) + (x′ − x0) · ∇x∞(x0) +

+ 1
2(x′ − x0)(x′ − x0) : ∇∇u∞(x0) + · · · (2.87)

Integrating the equation (2.87) on the surface of the sphere S, we obtain Sα, we have:∫
Sα
u∞(x′)dS = u(x0)4πa2 +

[∫
Sα

(x′ − x0)dS
]
· ∇x∞(x0) +

+ 1
2

[∫
Sα

(x′ − x0)(x′ − x0)dS
]

: ∇∇u∞(x0) + · · · . (2.88)
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Noting that for Stokes flows the term ∇2n+2u∞ = 0 for n = 1, 2, . . ., is then the integrals
below present and we get the following results:

∫
Sα

(x′ − x0)dS = 0 (2.89)

and: ∫
Sα

(x′ − x0)(x′ − x0)dS = 4
3πa

4I (2.90)

, it follows, by substituting these results into equation (2.89), we obtain the following expression
of the first law of Faxén for the translation of a rigid sphere, given by:

F = 6πηa
[(

1 + a2

6 ∇
2
)
u∞(x0)−U

]
(2.91)

In this sections, we have considered the motion induced by a particle immersed in a flow for
which ∇∞u is a constant and have determined the resulting force and the first force moments of
torque and stresslet. Ideally, one would like to determine the force and these moments from the
motion of a body and a general ambient flow field, and this is our purpose here. The linear relations
between the motion (of the particle and fluid) and the force and its moments are known as Faxén
laws and contain additional pieces owing to the curvature of the flow ∇2u∞. The development
of these results are involved and uses again the reciprocal theorem (see reference [92], Chapter
3). Here we simply give the results for the hydrodynamic force and force moments applied to a
sphere:

F = 6πµa[(1 + a2

6 ∇
2)u∞(x = x0)− up] (2.92)

T = 8πµa3[ω∞(x = 0)− ωp] (2.93)

S = 20
3 πa

3(1 + a2

10∇
2)E∞(x = 0) (2.94)

2.2.8 Mobility Formulation and Mobility Tensor

In this paragraph we use the Faxen’s Law for the development of the mobility matrix global.
This result determines the force exerted by a sphere of radius a on the fluid. In this way, we can
write the equation (2.92) as

F α = 6πηaα
[
Uα −

(
1 + a2

α

6 ∇
2
)
u′(xα)

]
, (2.95)

where u′ Is the velocity field resulting from the flow induced by the other particles of the sus-
pension, in which the particle is immersed with a α is immersed with a speed Uα. For diluted
system the field u′ is determined by applying the superposition principle, due to the linearity of
the Stokes equations, in the first order disturbances induced by every particle β 6= α we obtain:
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u′(x) =
N∑
β=1

1
8πη

(
1 +

a2
β

6 ∇
2
)
G(x− xβ) · F β, (2.96)

where G(r) is the Oseen-Burgers Tensor with r = x−xβ. Substituting equation (2.96) in equation
(2.97), we obtain the expression for the force induced in the sphere α due to the field speed caused
by other spheres β moving in the same suspension. Of that way we have to

F α = 6πηaαI ·

Uα −
1

8πη

N∑
β=1

(
1 + a2

α

6 ∇
2
)(

1 +
a2
β

6 ∇
2
)
G(r) · F β

 , (2.97)

with α = 1, . . . , N e r = xβ − xα. By means of the equation (2.97), the following can be defined:
tensor mobility, given by

Gαβ = 1
8πη

(
1 + a2

α

6 ∇
2
)(

1 +
a2
β

6 ∇
2
)
G(r) . (2.98)

Using ∇2∇2G = 0 and the relation

∇2G(r) = 2
r3 I −

6
r5rr , (2.99)

the tensor Gαβ is :

Gαβ = 1
8πη

{1
r

[I + r̂r̂] + 1
3r3 (a2

α + a2
β)[I − 3r̂r̂]

}
. (2.100)

This tensor is called the mobility tensor of Rotne-Prager and describes the interactions hy-
drodynamics between particlesα e β. This tensor only depends on of the particulate system in a
given instant of time and has decay slow, or long-range, of the order of 1/r. For a monodisperse
suspension, that is aα = aβ = a the tensor mobility can be written as

Gαβ = 1
8πη

{1
r

[I + r̂r̂] + 2
3r3a

2[I − 3r̂r̂]
}
. (2.101)

For the development of tensor global mobility, we work with the tensorM s andMp, respecti-
vely referred to as automotive and mobility tensioners between pairs, whose components are given
by:

M s
αα,ij = δij

6πηa, α = 1, . . . , N (2.102)

and
Mp
αβ,ij = Gαβij , α, β = 1, . . . , N α 6= β. (2.103)

Thus, equation ( 2.103) after the isolation of the termUs, can be written as:

Uα = M s · F α +
∑
α 6=β

Mp · F β . (2.104)

We define M , the global mobility matrix, as the sum of the matrices or mobility tensors and
mobility between peers, so that
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M = M s +Mp , (2.105)

and equation (2.105) can be expressed in this form:

U = M · F . (2.106)

and therefore, equation (2.106) can be expressed in summary form, as:


U1

U2
...
UN

 =


M11 M12 · · · M1N

M21 M22 · · · M2N
...

... . . . ...
MN1 MN2 · · · MNN

 ·

F 1

F 2
...
FN

 , (2.107)

where U1, U2, . . . ,UN denotes the velocities of the particles 1, 2, . . . , N . The tensor M ij for
i = 1, . . . , N and j = 1, . . . , N , depend on the configuration of the suspension. Also, M ii matrix
diagonal, are responsible for to couple the effect of the forces acting on each part α of the suspension
in his company velocity. The elementsM ij para i 6= j, represent the percussions in the velocities
of the particles α 6= β due to a force F β active in each part β.

2.3 Theoretical Components In Non Newtonian Fluids

Flow of non-Newtonian fluids occurs not only in nature, for example, mud slides and avalan-
ches, but also in many industrial processes involving chemicals (polymers), biological materials
(blood), food (honey, ketchup, yogurt), pharmaceutical and personal care items (shampoo, cre-
ams), etc. In general, these fluids exhibit certain distinct features such as shear-rate dependency
of the viscosity (related to shear-thinning or shear-thickening aspects of the fluid), normal stress
effects (related to die-swell and rod-climbing), creep or relaxation (viscoelasticity), yield stress
effects (viscoplasticity), history effects (time dependent response), etc. There are many different
models which can be used for different fluids under different conditions. This section presents
non-Newtonian fluids in order to support the modeling and some theoretical components in non
Newtonian fluids.

2.3.1 Mathematical Modeling of a Polymeric Suspension

The starting point for the analysis of incompressible flow of polymeric fluids is the continuity
equation (or mass conservation equation) and the momentum equation which are given respectively
by:

∇ · u = 0, (2.108)

and
∇ ·Σ = 0. (2.109)

When the interest and solve the problem of a flow of non-Newtonian fluid some additional
difficulties arise, because we have to lead to more complex constitutive equations. The equation
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of the amount of movement is usually written, for polymeric fluids, highlighting the part referring
to the contribution of the solvent and the part referring to macromolecules, as well:

ρ
Du

Dt
= ρu+∇ · σs +∇ · σm, (2.110)

Where σs is the contribution of the solvent (which has Newtonian behavior) and σm is the
contribution of the macromolecules present in the polymer. The additional stress tensor σm
must be obtained through constitutive equations derived from theories on fluid rheology, such
as the kinetic theory, the theory of concentrated suspension networks and fused polymers and
the theory of the reaction.In this case, the tensor cannot be written explicitly in function of the
velocity gradient (as in the case of the Newtonian contribution) so it has to be written in terms
of other tensors as will be seen later.

2.3.2 Generalized Newtonian Fluid

As we find in the literature, there are a large number of constitutive equations, which seek to
describe the rheological behavior of polymeric fluids. These equations can be framed in different
groups, according to their shape, their mathematical nature and their ability to predict material
functions. Initially, the Generalized Newtonian Fluid (FNG) is mentioned, this consists of the
generalization of the Newtonian fluid model for fluids in which viscosity is a function of the
magnitude of the strain rate D. The FNG models are a first generalization of classical fluid
mechanics to non-Newtonian fluid mechanics. In this situation, the elastic effects are not predicted,
since this category of models does not yet consider the calculation of the tensor σp, these models
can be applied satisfactorily only in cases where shear flows and flow rates occur. For FNG we
have to replace the equation (2.111) below in the equation (2.110).

σs = 2µ(γ̇)D e σp = 0, (2.111)

where the viscosity µ(γ̇) is now a function of the shear rate γ̇ which is equal to the second
invariant of the strain rate tensor D. There are many empirical models that provide mathematical
relationships for viscosity as a function of the deformation rate but are generally only valid for
certain fluids or in certain application regions.

Noteworthy, again, we have the simplest and best known model for γ̇ dependent viscosity
which is called the Power law (Power-Law ) [83].

µ(γ̇) = Cγ̇n−1, (2.112)

where C is a consistency parameter and n is the index of this model. These parameters are
fluid dependent and are obtained by adjusting curves to experimental data. This model allows
analytical solutions to be obtained for a wide variety of flows, and it is even possible to represent
the pseudo-plastic effect ( shear-thinning ). The FNG model has the deficiency of not predicting
the elastic effects characteristic of polymeric fluids. From a numerical point of view, the use of
FNG does not present great difficulties in comparison to the study of Newtonian fluids. For this
reason, these models are widely used in the study of industrial applications, such as extrusion
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and injection processes, to predict some stages or characteristics of the referred processes that
are associated only with purely viscous phenomena and for which the effects of non-Newtonian
viscosity are of great importance.

2.3.3 Non-Linear Viscoelastic Fluid

The mathematical models for non-linear viscoelastic fluids are more robust because they allow
to describe at least qualitatively elastic effects and non-linear characteristics, such as differences
in normal stresses and non-Newtonian viscosity and therefore will not be treated in this thesis.
The nonlinear differential models can be obtained from the model for linear viscoelastic fluid,
in differential form, as seen in others theoretical approach. The modifications consist of the
substitution of the derivatives time by the Oldroyd derivative and / or the inclusion of non-linear
terms and other parameters in the equations. Thus, the constitutive equations obtained will be
objective.

Below, the relationship that defines the high Oldroyd derivative of the stress tensor σ,

δ−(σ)
δt

= Dσ

Dt
− σ(∇u)T − (∇u)σ. (2.113)

These models are not limited to small deformations, as is the case with linear viscoelasticity,
they are models closer to reality that allow to obtain qualitative information regarding linear
and non-linear viscoelastic effects in various types of flows. Sometimes the models are found
using the conformation tensor, which is related to the spatial configuration (extension) of the
polymer macromolecules and can be related to the stress tensor. However, although there are
some advantages over stability, there are some disadvantages in relation to the greater amount of
computational memory required.

2.3.4 Oldroyd-B model

The Oldroyd-B model [93] derives from the kinetic theory for concentrated polymeric suspen-
sions and fused polymers. The polymeric chain is represented by a set of two spheres joined by
a spring as shown in the figure (2.5). In this configuration, the spheres represent the center of
mass of the system and are related to the hydrodynamic interaction between the solvent and the
macromolecules of the polymeric suspension (the viscous drag force of the solvent on the macro-
molecules). The springs represent the elasticity effect of macromolecules or the restorative effect
of the polymer. This ball-spring configuration called dumbbell is simplified by assuming a linear
spring or Hooke spring behavior.

At this point the balance between the forces due to the Brownian motion Fb and the elas-
tic forces Fe, ie Fb ≈ Fe,, where Hooke’s linear spring is used to model the Brownian force of
macromolecule restoration.

Fb ≈ Cmr, (2.114)

49



Figure 2.5: Schematic representation of a macromolecule in the dumbbell model. The r vector
links the ends of the end-to-end macromolecule and δ is the length of an individual monomer.

Here Cm is the spring constant and r = ||r|| is the end-to-end distance of the macromolecule as in
the figure (2.5). At this point note that evidently r varies over time, ie, r = r(t) and it is assumed
that, at t = 0, the macromolecule is in its totally relaxed regime (equilibrium).

Brownian motion has energy E = KBT , where KB is the Boltzmann constant and T is the
absolute temperature. We have also E = F · r, can be written

Fb = 3KBT

a
. (2.115)

Here ||r|| = r ≈ a as a typical choice of the distance between the ends of the macromolecule in
random configuration corresponding to the configuration of balance, as previously stated. From
(2.114) and (2.115) it is determined, by way of illustration, that the elastic coefficient of the spring
(or constant of the spring) in terms of the energy E will be given by:

G = 3KBT

a2 = 3E
a2 . (2.116)

The hydrodynamic interaction between the molecule and the solvent is represented by the
viscous drag over ‘the spheres that constitute it. In this model dumbbell, the viscous force, Fv, is
defined as the force exerted on an isolated sphere of radius.

a for the viscosity solvent µ. For low Reynolds numbers we have, as

Fv = 6πµadr
dt
. (2.117)

In thermodynamic equilibrium, the balance between Fe and Fv results in
dr

dt
= G

Cv
r, (2.118)

where Cv = 6πµa is the viscous drag coefficient. If we integrate the equation (2.118) with the
initial condition r(0) = r0, we obtain:

r(t) = r0 exp(t/τ). (2.119)
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And this last equation provides the variation of the average equilibrium length r as a function
of time t ≥ 0. Note that this variation is increasing in t and varies exponentially. Here it is
important to note that

τ = Cv
G

= 2πµa3

KBT
, (2.120)

is defined as the relaxation time of the macromolecule.

By way of illustration, replacing the equation which says that a ≈
√
Nδ, in the equation

(2.120), we obtain

τ ≈ 2πµN3/2δ3

KBT
. (2.121)

As stated in the section the number N corresponds to the total number of monomers and thus
we can define N = Pt/Pi, where Pt is the total weight of the polymer and Pi is the weight of a
single monomer. Hence it is concluded that

τ ∝ (P/Pi)3/2. (2.122)

The equation shows an important result where it is seen that polymers of high molecular
weights have longer relaxation times. In other words, the elastic or memory effect of a fluid
suspension consisting of these polymers can cause major changes in flow. This explains (among
other factors) why only a few ppm of a high molecular weight polymer added to turbulent flows
can considerably reduce the pressure drop.

2.3.5 Nonlinear Stress Tensor and the Adaptation Tensor

As in the equation we have that the tension tensor of the Oldroyd fluid will be given by

Σ = −pI + σ. (2.123)

We use the deviatory part σ as being

σ = 2µs(φ, γ̇)D + σ̄B, (2.124)

where µs(φ, γ̇) is the dynamic viscosity, p is the mechanical pressure, γ̇ is the shear rate. The
tensor σ̄B is the contribution of elastic tension, due to the presence of macromolecules. This tensor
can be interpreted as a correlation between the microscopic behavior of the macromolecules and
the macroscopic response obtained in the flow.

For a diluted polymer suspension, φ � 1, it can be assumed that the effective viscosity of
the fluid can be calculated by µs(φ, γ̇) ≈ µ(1 + cφ) = µs(φ), as seen in the early. Here µ is the
viscosity of the Newtonian base fluid. In the case of rigid spheres Einstein calculated that c = 5/2.
As seen in the section, experiments in rheology showed that for a diluted suspension of PAMA
the best fit for the parameter c was determined as c = 1.53× 105. Note that this parameter found
experimentally for PAMA is much larger than in the case for rigid spheres, one of the explanations
of this fact is that PAMA has a high molecular weight.
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Cross’s dimensionless model is also used in this work to have the dimensionless viscosity µ̃s
as a function of De, as seen at previously. Such a dimensionless model is transcribed, due to its
importance.

µ̃s(De) = µs(De)
µw

= µ̃0 + µ̃∞(KDe)m
1 + (KDe)m , (2.125)

where: µ̃0 = µ0/µw, µ̃∞ = µ∞/µw, K = k/τp and De = τpγ̇.

A proposal for the σB tensor that is non-Newtonian and arises due to the presence of macro-
molecules is given by:

σ̄B = lim
V→ infty

1
V

∫ V

0
σBdx = n〈σB〉, (2.126)

where 〈 〉 represents an ensemble average, (i.e.,) σ̄B is a volumetric average over a control volume
V large enough to contain a significant number of macromolecules for if you take this average.

The elastic restoring force vector is given by Fv = Gr, where G is an elasticity coefficient and
r is the vector figure (2.5). The associated stress tensor to a macromolecule is given by the dyadic
product , σB = GrrT E taking an average under the element volume Nm, has:

〈σB〉 = G

(
1
Nm

Nm∑
s=1

rrT
)
, (2.127)

since n = Nm/V , then it can be concluded that

σ̄B = n〈σB〉 = nG
〈
rrT

〉
. (2.128)

The adaptation tensor or the tensor of the moment of inertia of deformation or the conforma-
tion tensor of the macromolecules is defined by

B(t) =
〈
rrT

〉
= 1
Nm

Nm∑
s=1

rrT . (2.129)

Note that B(t) is by definition a defined positive tensor and can be interpreted as the tensor that
describes the movement of macromolecules, showing both the position in which they are being
oriented, and how much they deform over time, when applying a flow. And finally the Σ stress
tensor given by the equation will become

Σ = −pI + 2µs(De)D + nGB(t), (2.130)

where the tensor σ is explained in terms of B, in the equation below

σ = 2µs(De)D + nGB(t). (2.131)

To close the equation (2.130) a time evolution equation is needed for the tensor B and the
relationship between drag and viscous forces, it is possible to write

6πµadr
dt

+Gr = 0. (2.132)
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From equation ((2.132)), we conclude, after multiplying by rT on both sides and subtracting the
term of the rigid body translation and assume a frame of reference that rotates and deforms with
the macromolecule, the equation (2.133):

3πµaδ−(B)
δt

+GB −KBTI = 0, (2.133)

where
δ−(B)
δt

= DB
Dt
−∇u ·B−B · (∇u)T , (2.134)

is the high Oldroyd derivative which can be understood as the rate of change of B seen by an
observer that is deformed and translated with the macromolecule.

Thus the equation (2.133) will be:

DB
Dt

= ∇u ·B + B · (∇u)T − KBT

πµaNδ2 B + KBT

3πµaI. (2.135)

Also note that, as the relaxation time τ can be written as τ = 2πµN3/2δ3/KBT, then the
equation ((2.135)) will finally be in the form:

DB
Dt

= ∇u ·B + B · (∇u)T︸ ︷︷ ︸
First term

− 2
τ

(
B− a2

3 I
)

︸ ︷︷ ︸
Second term

, (2.136)

where D

Dt
represents the derivative material. In the equation (2.136), the first term represents the

stretch of the macromolecule by flow and the second term represents the relaxation of the polymer
due to the Brownian motion.

The conformation tensor B describes the instantaneous configuration of the macromolecules,
being a measure of the deformation and the orientation in which the macromolecules are submitted
once a stronger flow is applied. Note that the differential equation for the conformation tensor was
obtained by a microstructural analysis, considering the thermodynamic balance of the system, in
which the viscous forces are in balance with the Brownian restorative forces. This analysis was
also considered based on a volumetric average over all the macromolecules of the polymer, and a
reference turning and deforming with the macromolecule (high Oldroyd derivative) was considered
in order to preserve the material indifference of the equation (2.136) to any system reference.

Before proceeding, the fundamental physical parameters are shown below:

1. For a flow of a fluid of density ρ and viscosity µ through an object of characteristic length
x and characteristic speed uc, define the Reynolds number, Re, as Re = ρuc x/µ. Here it is
important to mention that the viscosity µ is by convention taken to be the shear viscosity
at the limit of small strain rates γ0.

2. The most important dimensionless parameter is the Deborah number, which is given by the
ratio between the main relaxation time of the polymer τp for a characteristic time of the
flow tf . Thus

De = τp
tf
. (2.137)
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It is important to highlight that the main relaxation time τp is defined as the longest rela-
xation time, representing the main mechanism of interaction between macromolecules. This
time τp is followed by several other secondary relaxation times, which are associated with
the end of the stress relaxation process, that is, the return of the material to its undeformed
condition, as seen previously.

The Deborah number De, provides us with a list of how altered the elastic effect will be,
that is, high value of De, indicate that the elastic effect is greater, since when De tends to
zero there are purely viscous flows. In this way, it can be said that Deborah number can be
seen as the dimensionless shear rate of the flows.

3. The extensibility of the L polymer is given by the ratio between the size of the fully stretched
macromolecule `, where ` ≈ Nδ is in accordance with the average distance corresponding to
the random equilibrium state a. Thus L = `/a.

Note that L ≈ `, if, and only if, De ≈ 1 or De ≥ 1, as can be seen later in the case of the
extensional flow, for example.

2.4 Maxwell’s equations

We end this chapter with theoretical concepts necessary for the study of a magnetic particles,
we present Maxwell’s equations for electromagnetism.

Maxwell’s equations of electromagnetism are represented by a system of four partial differential
equations, which form the governing laws of electromagnetism: Gauss’ laws for electricity, Gauss’
law for magnetism, Faraday’s law and Ampère-Maxwell law. All four of these four governing
equations will be described here.

2.4.1 Gauss’ law of electricity

Gauss’ law of electricity postulates that a charge density contained within a regular region
induces a liquid flow of electric field, through any surface that encompasses the distribution of
non-zero sum loads. Therefore, given an electrical field E and let S be a closed surface of volume
V with full charge q within this region. In a surface element ndS, the field rate electric E · ndS
and when integrated across the entire surface S of V , results as a consequence of the divergence
theorem, in ∫

S
E · ndS =

∫
V
∇ ·EdV = q

ε0
, (2.138)

where ε0 = 8.854×10−12C2/N.m2 and the electrical permittivity in the vacuum. For a continuous
charge distribution in V with bulk density of charge ρc, we have that dq = ρcdV , then we write
the equationção (2.138), as ∫

V

(
∇ ·E − ρc

ε0

)
dV = 0, (2.139)
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and through the localization theorem of Continuum Mechanics see [94], we have that the equation
(2.139), results in

∇ ·E = ρc
ε0
, (2.140)

which corresponds to the differential form of the Gaussian law of electricity. In the case of ρc = 0
the electric and sinusoidal field, defined by

∇ ·E = 0 . (2.141)

2.4.2 Gauss Law of Magnetism

Gauss’ law of magnetism states that the magnetic induction flux that through a closed surface
is zero. Physically, the result show that there are no sources or magnetic induction sinks that
lead to a non-zero B divergence of this so the magnetic induction lines of B, cannot end on the
surface of V , forming closed loops or extending indefinitely, consequently none field line created
or finalized inside this surface. Therefore, there are not free magnetic charges corresponding to
the electric charges in the electrostatic field given by:

∇ ·B = 0 . (2.142)

The magnetic field effect can be characterized by the magnetic induction B, being a vector
field defined in terms of the external magnetic field H and the magnetization M , as the product
of the sum H +M by the permeability magnetics of free space µ0 = 4π × 10−7H.m−1 expressed
by

B = µ0(H +M) . (2.143)

The condition of the magnetization vector, aligned with the applied field, corresponds to the
state of superparamagnetism, being defined by:

M = χH , (2.144)

where χ is the magnetic susceptibility. From equation 92.143), we have:

B = µ0(1 + χ)H . (2.145)

The scalar coefficient µ = µ0(1 +χ) is defined as the magnetic permeability of the domain and
κm = µ/µ0, the relative permeability. So there are the following linear relations

M = (κm − 1)H = χH , (2.146)

B = µ0(1 + χ)H = µH . (2.147)
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The magnetization in free space is zero as long as χ = 0 or κm = 1. In this case, there are no
magnetic dipoles to be aligned with the field, so the equation (2.143) results in

B = µ0H . (2.148)

2.5 Faraday’s law of induction

Faraday’s law of induction relates the circulation of the magnetic field vector in a closed circuit
C, with the negative of the temporal variation of the magnetic flux density that crosses the surface
A bounded by C, establishing a relation between the field electric and the magnetic field. Faraday’s
law of induction is expressed as:

∫
C
E · dl = − D

Dt

∫
A
B · ndA , (2.149)

and can be interpreted physically as an electromotive force around a closed circuit. The differential
form of Faraday’s law relates spatial derivatives of E at any point x of space, with the time rate
of B in the same point, being represented by

∇×E = −∂B
∂t

. (2.150)

2.5.1 Ampere-Maxwell’s Law

The Ampère-Maxwell law describes the relationship between a magnetic field and the current
electricity that originates, establishing that a magnetic field can either be generated by a electric
current as by the local temporal variation of an electric field. The shape integral of the Ampère-
Maxwell law and given by:

∫
C
H · dl =

∫
S

(
µ0J + µ0ε0

∂E

∂t

)
· ndS , (2.151)

where the left side of this equation represents the integral of the magnetic field H along a closed
path and the right side represents normal current flow the surface delimited by the closed path
C. The differential form is given by:

∇×H = µ0

(
J + ε0

∂E

∂t

)
. (2.152)

2.5.2 Maxwell’s Magnetostactic limit

Maxwell’s magnetostatic limit corresponds to neglecting the effects of current flow electric and
electric field, due to a small order of magnitude, we have then:

E = 0 , (2.153)
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J = 0 . (2.154)

Under these conditions, Maxwell’s equations are simplified in a way significantly and reduces
to

∇ ·B = 0 , (2.155)

∂B

∂t
= 0 , (2.156)

∇×H = 0 . (2.157)

From a practical application , the approximation of the magnetostatic limit is validate for the
condition in which the magnetic particles dispersed in the fluid domain are coated with a layer of
insulating material that inhibits the conduction of electric current.
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Chapter 3

Investigation On The Kinematics
And Dynamics of Helical Flagellum

In this chapter, we present first theories for flagella swimmer, beginning with a detailed descrip-
tion of different analytical approaches for the prediction of swimming at low Reynolds numbers.
Also, we present mathematical approaches of the motion of helical flagellum at low Reynolds
numbers in an unbounded fluid based on the Resistive Force Theory (RFT), Slender Body Theory
(SBT) and the Method of Regularized Stokeslets (MRS). Finally, numerical simulations based on
Resistive Force Theories RST and Slender Body Theories RST and the Method Regularized Sto-
kesless (MRS) of the unsteady flow around a rigid, finite length rotating helix. Additionally, we
present some experiments with a macroscopic prototype micro-organisms in creeping flow motion.

3.1 Theory For Flagella Swimmer At Low Reynolds Number

The physics governing locomotion in fluids at small scales is qualitatively different from other
locomotion. For swimming bacteria or flagella, inertia plays a negligible role while viscous forces
dominate. In Chapter (2) we see, the motion of a Newtonian fluid is governed by the Navier-Stokes
equation:

ρ(∂u
∂t

+ u · ∇u) = −∇p+ µ∇2u (3.1)

In equation (3.1), u(x, t) is the velocity of the fluid at x in space and time t, µ is the viscosity
of the fluid, ρ is the density of the fluid and p is the pressure. If we put in dimensionless form the
Navier-Stokes equations with respect to a characteristic length scale of the microorganism L and
a characteristic velocity scale U0, additionally, we have the dimensionless equation given by the
equation (3.2): (

Re

Sh

)
∂u

∂t
+Re(u · ∇u) = ∇p+∇2u (3.2)

In the mathematical limit of zero Reynolds number, we have the Stokes equations governing
the motion. The linearity and time independence of the Stokes equations leads to kinematic
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reversibility, which is well-described by Purcell’s famous scallop theorem states that a reciprocal
motion (a deformation that exhibits time-reversal symmetry) cannot generate any net propulsive
thrust [13]. In order to break the constraint of time-reversibility, many micro-organisms including
flagellated bacteria and spermatozoa achieve self-propulsion by passing deformation waves along
their slender flexible body. In the next section we will discuss the slender body theory related to
helical flagella.

3.1.1 Slender Body Definitions

To describe the motion of thin filaments immersed in a viscous fluid, a way to approximate is the
Slender Body Theory. Is it an important modeling problem in mathematical biology, engineering,
and physics. Numerical simulations of slender fibers have been used to help explain the role of
cilia in embryonic development. For a helical flagellum, the theory was first elaborated by [15],
and later it was perfected by [16]. If the length of a swimming helical body L is much larger than
its radius r that means ( r

L
� 1), in this case, instead of solving the Stokes equations in the fluid

domain, we can obtain a local drag law, which is the so-called Resistive Force Theory (RFT) or
by slender Body Theory.

We can define also, slender body as a body in which its radius is small with respect to its
height or length. The effect of a slender body moving in a fluid at low Reynolds numbers can be
approximated by a suitable line distribution of Stokeslets, [95]. The Stokeslet strength density
F (x) in a slender body with length L and radius r can be roughly approximate, independently
of the body shape, but for a better approximation the body cross-section and the way how it
changes along the length needs to be considered [95]. The linearity of the Stokes equations allows
us to superpose the fundamental singularities to obtain the solution to a given problem and other
singularities besides Stokeslets are needed to satisfy the no-slip boundary condition on the body
surface. However, in a different investigation it was probe that for a slender body the total drag
and torque can be well approximated by only a distribution of Stokeslets over a line enclosed by
the body.

3.1.2 Slender Body Geometry

Before we introduce the Slender Body Theory, we must precisely describe the slender geometry
under consideration. The equation of a left-handed helix is given by equation (3.3).

Figure (3.1), we have a schematic of a flagellum with filament radius a, helix radius R, pitch
λ, axial length L, and pitch angle θ. We considerer θ very small and (θ = 2πR

λ
). A filament

segment ds is shown in the inset with tangential, normal, and bio-normal directions denoted as
t(x), n(x), b(x) respectively.

r(ϕ) = λ

2πϕi + b cosϕj− b sinϕk (3.3)
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Figure 3.1: The geometry of the flagella

which is useful to calculate the tangent unit vector which is given by equation (3.4)

t(ϕ) = λ/2π
√

(λ/2π)2 + b2i− b sinϕ√
(λ/2π)2 + b2

j− b cosϕ√
(λ/2π)2 + b2

k (3.4)

that can be rewritten as equation (3.5) by using the triangle of figure (3.1) which is obtained by
using the equation to calculate the pitch angle which is given by:

t(ϕ) = cos θi− sin θ sinϕj− sin θ cosϕk (3.5)

Once the tangent unit vector is known, the normal unit vector can be also calculated and is
given by equation (3.6)

n(ϕ) = − cosϕj + sinϕk, (3.6)

the binormal unit vector can be also calculated and is given by equation:

b(ϕ) = t(ϕ)× n(ϕ) = − sin θi− cos θ sinϕj− cos θ cosϕk, (3.7)

we find the arc length of the helix as: by using equation (3.7), the equations of the helix, its
tangent, normal and binormal vectors can be rewritten as equations (3.8 to 3.11).

s =
∫ ϕ

0
(Dϕrϕ)dϕ =

√
(λ/2π)2 + b2ϕ = ϕ

k
, (3.8)

with:
k = 1√

(λ/2π)2 + b2
. (3.9)

Using equation (3.6), the equations of the helix we have

r(s) = s cos θi + b cos ksj− b sin ksk (3.10)

and then:
t(s) = cos θi− sin θ sin ksj− sin θ cos ksk. (3.11)
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The normal vector can be rewritten as;

n = − cos ksj + sin ksk (3.12)

Generally, the movement of helical flagellum is represented as a translation along the x-axis
with a constant velocity (U) and a rotation around the x-axis with a frequency f is given with
rotation velocity ω = 2πf . an we can write:

r(s, t) = (s cos θ + Ut)i + b cos(ks+ ωt)j− b sin(ks+ ωt)k (3.13)

As in the low Reynolds numbers flows, what happens in the motion of a body is not affected
by the history of motion of it, time can be consider negligible therefore, equation (3.3) represents
the motion of a helical flagellum at low Reynolds number and it can be use to find the normal,
binormal and tangential unit vectors.

3.1.3 The classic Lighthill Slender Body Theory

Normally bacteria flagella are slender, and their filament radius a is usually much smaller than
other geometric parameters. Taking advantage of this slenderness, [16] developed Slender Body
Theory, which represents a flagellum with an arrangement of Stokeslets and doublets along the
flagellum’s centerline. Since dipolar fields fall off as r−2 while Stokeslets fall off as r−1, Lighthill
[16] reasoned there should be some intermediate distance q from any given point on the flagellum
where only the dipoles within q are important in determining the flow at that point, although all
of the Stokeslets on the centerline must be considered because they are longer ranged. He showed
that the sum of the near and far field solutions for the induced fluid flow on a given segment could
be made independent of q by the choice of dipoles of the form:

− a2f⊥(s)
4µ . (3.14)

Here, f⊥(s) is the component of the Stokeslet strength f in the plane perpendicular to the flagel-
lum’s centerline at a location s along the centerline of the flagellum [16]. This combination of a
Stokeslet plus a dipole determines the flow induced by each element of the flagellum. Lighthill
showed the local velocity of a segment of the helix located at s is related to the force per unit
length (i.e., Stokeslet strength) along the filament f⊥(s) by:

u(s) = f⊥(s)
4µ +

∫
|r0(s′,s)|>δ

f(s′) · J(r0)ds′. (3.15)

Where δ = a

√
e

2 , is the natural cutoff, r0 is the position vector from the point s on the centerline
relative to the point s′, and J is the Oseen tensor given by

J(r) = 1
8πµ( I

|r| + rrT

|r|3 ) (3.16)

To evaluate equation (3.15), we can use the rectangular rule of numerical integration to calculate
the thrust, torque, and drag for flagella. To parametrize the spatial locations we use the helical
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phase: (ϕ = ks cos θ) , where (k = 2π
λ

) and then:

r(ϕ) = R(ϕ cot θ, cos θ, sinϕ) (3.17)

Now, the equation (3.15) can be written as:

un = (I − t̂nt̂n +Dn) · fn
4πµ + R∆ϕ csc θ

8πµ
∑
m 6=n

I + r̂nmr̂nm
rnm

· fm + O(∆ϕ) (3.18)

In equation (3.18), n, m are indices ranging from 1 to N, and rnm = r(ϕn) − r(ϕm) is the
position vector between spatial locations. The term tn = (cos θ,− sin θ sinϕn, sin θ cosϕn) is the
tangential unit vector at rn, and ∆ϕn is the mesh size of the helical phase.

We can see the integral in equation (3.18) is divided into two terms. The first part of the
integral is represented by the tensor Dn, which is the integral from the lower bound (natural
cutoff) to the size of the grid spacing. Dn is solved explicitly because this portion of the integral
is below the grid resolution and would otherwise be unresolved. The remainder of the integral
appears as the second term in equation equation (3.18), [29].

The next step is to use a rotated frame with the helical phase to determine expressions for the
velocity components that are invariant along the helix. Taking these invariant velocity components
to create a linear mapping between the velocity and force per unit length, which can be evaluated
for a specified helical geometry, helical axial velocity U , and rotation rate Ω to give the thrust,
torque, and drag.

The tensorDn is symmetric and is the contribution of the helical segment centered at r, located
at a distance between the cutoff length δ and the grid size away from rn that mean |r−rn| ∈ (δ, δ′)
where

δ′ = 1
2R∆ϕ csc θ (3.19)

and Dn is the expansion of the following integral to the lowest order of the grid size ∆ϕ

Dn = 1
2

∫
|r−rn|∈(δ,δ′

ds(ϕ)( I

|r− rn|
+ (r− rn)(r− rn)

|r− rn|3
)Rz(ϕ− ϕn) (3.20)

where Rz], the rotation operator along the axial direction, can be expressed as

Rz(ϕ) =


cosϕ − sinϕ 0
sinϕ cosϕ 0

0 0 1

 (3.21)

A new velocity density vector is introduced

u′n = Rz(−ϕn) · u (3.22)

and a new force density vector is introduced

f ′n = Rz(−ϕn) · fn (3.23)
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we have, u′n is invariant along the helical filament. For a rigid helix that rotates at rate Ω and
translates at speed U along its axial direction, then

u′n = (0,ΩR,U)T (3.24)

for the force along its axial direction is
∑
n

f ′nR∆ϕ csc θ = (0, T
R
, Fx)T (3.25)

with these modifications made above we can rewrite the Lighthill’s slender body theory as:

u′n = (I − t̂′t̂′ +D′n) · f ′n
4πµ +R∆ϕ csc θ

8πµ
∑
m 6=n

Rz(ϕm − ϕn) +Rz(−ϕn) · r̂nmr̂nm ·Rz(−ϕn)
rnm

·f ′m+O(∆ϕ)

(3.26)
with t̂′ invariant along the helical filament,

t̂′ = (0, sin θ, cos θ) (3.27)

and D′n invariant along the helical filament,

D′n =
∫ kδ′ cos θ

kδ cos θ
dϕ

1
ϕ

[I + T ] = ln(δ
′

δ
)(I + t̂′t̂′) (3.28)

where

T =


0 0 0
0 sin2 θ sin θ cos θ
0 sin θ cos θ cos2 θ


From this we can establish the linear relationship between the velocity u′ map and the force

f ′ we have then:
(u′1,u′2,u′3, ...u′n) = G(f ′1, f ′2, f ′3, ...f ′n) (3.29)

Inverting the last relation and for a prescribed motion of a rigid helix u′n = u′0 = (0,ΩR,U)T ,
we obtain the net axial hydrodynamic force Fx and the net torque T .

(0, T
R
, Fx)T =

N∑
i=1

f ′nR∆ϕ csc θ (3.30)

3.1.4 Resistive Force Theory

The application of the Slender Body Theory is important to the prediction and understanding
of swimming propulsion, but it is very common to use an approximation of the slender body known
as resistive force theory.

In Slender Body Theory to determine the force on each segment of the flagellum we have to
evaluate integrals of the form. This methodology is usually tedious, reference[15] and reference
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[16] present a solution for the distribution of Stokeslets and doublets for a flagellum. They sought
to further simplify the problem by considering each segment of the flagellum represented by the
Stokeslets and dipole as an independent slender rod. The resistance of the fluid to the slender
rod’s motion is calculable if the local coefficient of drag for the segment and its velocity are known.
Typically, the coefficient of drag is expressed in terms of normal and tangential drag coefficients
per unit length, Cn, and Ct, respectively.

The next step is to find the force and torque resulting for the movement of the flagellum. This
can be done by performing an integration of all the forces and torques of each small segment, as
can be seen in figure shows such a small segment (see inset) and defines geometric parameters
that describe a flagellum: filament radius a, helical radius R, helical pitch λ , and axial length L,
which is use for such calculations, [29].

The orientation of the flagellum is along x direction considering a pitch angle θ. Then we can
parametrize the flagellum using the x-coordinate so that the center line is given by:

r(x) = [x,R cos(kx), R sin(kx)], (3.31)

where k = 2π
λ
.

To calculate the local forces at this point r(x) on the flagellum in terms of parallel and per-
pendicular drag coefficients we need to define both a tangential direction:

t(x) = 1√
1 +R2k2

[1, Rk sin(kx), Rk cos(kx)] (3.32)

and the normal direction:

n(x) = [0,− cos(kx),− sin(kx)] (3.33)

We consider now the force acting by an element ds on the fluid is given by df = K · udx,
where u is the local velocity and K is the resistance tensor per unit length of a filament element,
depends only on the geometry of the filament element and can be written as:

K = CnI + (Ct − Cn)tt (3.34)

The total force exerted on the fluid by the flagellum is then:

F =
∫

K · uds (3.35)

The total torque exerted on the fluid by the flagellum is then:

T =
∫

r×K · uds (3.36)

here, u(x) is the filament velocity, and ds is the segment length how we describe early

The motion of the helix, is completely described by equations (3.35) and (3.36) but, in a
different way than the resistance matrix description provided. A very interesting exercise is to be
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able to use resistive force theory to calculate elements of the flagellum’s resistance matrix under
the following simplifying assumptions.

We need to solve the reduced problem of the flagellum rotating and translating in the axial
direction (i.e. bacterial swimming). Because of the reduced dimensionality. We have to find the
force and torque in the x direction, Ft and Tx, resulting from a velocity and rotation in the x
direction, Ux and x.
The symmetric 2 × 2 propulsive matrix in equation (3.37) depends only on the geometry of the
flagellum. This matrix simplifies array made of the A111, B111, and C111, components of the
sub-block matrices We can simplify the problem as :(

F
T

)
=
(

A B
C D

)(
U
ω

)
(3.37)

We can imagine two categories of movement, the first refers to the flagellum being rotated in
the axial direction with an angular velocity but with the flagellum doesn’t have linear velocity
U = 0. We can find two resistance matrix elements and we have:

Fx = BΩ (3.38)

Tx = CΩ (3.39)

The second, we consider a flagellum without rotation velocity Ω = 0 and being towed at some
constant velocity U . The drag on this flagellum is given by:

Dx = AU (3.40)

The subscript indicates the direction of the force in the flagellum.

Next step is calculate the propulsive force and the torque in the x direction for these two types
of motion using resistive force theory. The results will be in terms of the drag coefficients Cn and
Ct. Then we will make the determination based on the work refrence [15, 16] reported by [29].

When a flagellum rotates at an angular frequency the local velocity of an element is u(x) =
RΩ[0, sin(kx+t), cos(kx+t)]. The inner product of the local velocity with the segment’s tangential
and normal unit vectors gives the parallel and perpendicular velocities. Using local parallel and
perpendicular drag coefficients for the segment, the force df generated by an element has cartesian
components:

dfx = x ·K · uds = −ΩR(Cn − Ct) sin θ cos θds. (3.41)

In y direction:

dfy = y ·K · uds = −ΩR(Cn cos2 θ + Ct sin2 θ) sin(kx+ Ωt)ds. (3.42)

And z direction:

dfz = z ·K · uds = −ΩR(Cn cos2 θ + Ct sin2 θ) cos(kx+ Ωt)ds. (3.43)
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Now we can write the torque in the x direction exerted by each segment on the

dTx = r× dfx

dTx = −R sin(kx+ Ωt)dfy +R cos(kx+ Ωt)dfz = −R(RΩ)(Cn cos2 θ + Ct sin2 θ)ds (3.44)

Integrating in the contour we obtain:

Fx = −ΩR(Cn − Ct) sin θ cos θ L

cos θ (3.45)

and the torque:
Tx = −R2Ω)(Cn cos2 θ + Ct sin2 θ) L

cos θ (3.46)

with the elements of the propulsive matrix: B = Fx
Ω and C = Tx

Ω .

We can use a similar strategy for a translating, non rotating flagellum. We can find the axial
drag on this flagellum using:

dfx = x ·K · uds = −u(Cn sin2 θ + Ct cos2 θ)ds (3.47)

Then, the total drag is:
Dx = −u(Cn sin2 θ + Ct cos2 θ) L

cos θ (3.48)

finallty giving A = Dx/U .

Resistive force theory gives predictions about the propulsive force, torque and drag on a
rotating flagellum at low Reynolds number, and thereby predicts the form of the flagellum’s
reduced resistance matrix in terms of the flagellum geometry and the local drag coefficients Cn
and Ct.

In order to determine the propulsive forces associated with swimming propulsion, [15] have
related the propulsive forces with velocities using resistive force coefficients in the tangential (Ct)
and normal direction (Cn), by:

Cn = 2π

ln(2λ
a

)− 1
2

(3.49)

Gray [15], reasoned that there was only a logarithmic dependence on the length scale in their
expression so the choice was not terribly important, and chose the axial wavelength of the flagellum.
Gray [15], also assumed that Cn = 2Ct based in part on results obtained by [96] for an infinitely
long filament undergoing sinusoidal motion in a plane [96], and probably based on experimental
measurements of the wave speed of a sperm’s flagellum relative to it’s propagation velocity, which
implies a ratio close to 2:1. Thus, the normal drag coefficient per unit length is:

Ct = 4π

ln(2λ
a

) + 1
2

(3.50)

The change of sign in the denominator of equation (3.50) was not part of [15] original work,
but was later adopted based on work by [16]. As part of a proof of his fundamental theorem of
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flagellar hydrodynamics, he derived the same expression for the tangential force which implies
Ct is given by equation (3.50). Rather than assuming a ratio for the two drag coefficients, [16]
derived the normal force per unit length, which implies the form for Cn in equation (3.49) that
has subsequently been associated with [15].

Basing on the work of Gray, [16] showed that the results could be improved and that the
accuracy of the drag coefficients expressions could be improved by using his slender body theory
formulation for the flow field near the flagellum, which was more accurate along with making a
choice more proper of the length scale over which higher order terms are important. He used a
small fraction of the contour length of one wavelength for the length scale q = 0, 09( λ

cos θ ) we
have:

Ct = 2π

ln( 0, 18λ
a cos θ )

(3.51)

In this last relation [16] did not assume the ratio of the drag coefficients had some specific value,
and derived Cn by taking the ratio of the normal force exerted by the segment acting over length
q divided by the normal velocity on the segment, which gives:

Cn = 4π

ln( 0, 18λ
a cos θ ) + 1

2

(3.52)

Note that the zero-thrust condition implies that the torque generated by the flagellum it
is cancelled out by the drag that is produced only by it, without considering the effect of the
drag produced by the head as seen in [97]. For helical propulsion at zero-thrust condition, the
axial velocity decays exponentially with the distance from the helical axis [97]. Others authors
also analysed, the zero-thrust condition by helices of finite length. Johnson [98] applied direct
numerical calculations to solve the RST and considering that the helices can translate along its
centre of symmetry and rotate with and specify angular velocity.

A compilation of expressions for Cn and Ct,the most commonly used expressions for resistive
force theory drag coefficients in the literature is presented in table (3.1).

Table 3.1: Typical coefficients for calculations of the drag force.

Cn Ct Author
4π

ln(2λ/a)+1/2
2π

ln(2λ/a)−1/2 [15]
4π

ln(0.18λ/a cos θ)+1/2
4π

ln(0.18λ/a cos θ) [16]
4.05π

ln(0.271λ/(a cos θ)−6.23a/b+3.1)
2.21π

ln(0.105λ/(a cos θ)1.77) [26]
4π

ln(2λ/a)+0.193
2π

ln(2λ/a)−0.807 [99]
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3.1.5 Method of Regularized Stokeslets

The method of regularized Stokeslets (MRS) is a method that represents the fluid velocity
in Stokes flow by a collection of regularized forces. Cutoff functions are introduced to regularize
the singular fundamental solutions known as Stokeslets. This regularization removes the singular
nature from the velocity field, hence the velocity can be evaluated anywhere in the fluid, including
at the location of a regularized Stokeslet. There exists a linear relationship between regularized
Stokeslet forces and the velocity anywhere in the fluid. Hence, regularized Stokeslets strengths can
be computed to impose velocity constraints at a collection of points in the flow. In the particular
application of interest here, the velocity constraints correspond to the motion of an immersed
boundary in the flow, [100].

The method of regularized Stokeslets (MRS) was developed [31] and [101] by applying boun-
dary integral methods. In this method, the Stokes flow equations are solved with concentrated
forces of magnitud φε(r) and is given by equation (3.53), where r = |x − x0| and ε is known as
the regularization parameter which controls the efect of the force around its source point. This
function eliminates the singularities presented by using non-regularized Stokeslets according to
[101].

φε(r) = 15ε4
8π(r2 + ε2)7/2 (3.53)

The flow generated by a regularized force fφε(r) can be calculated by the Stokes flow equations
as:

∇ · u = 0

µ∇2u−∇p = fφε(r)
(3.54)

The solution to the previous equations can be formulated by introducing the regularized
Green’s function Sεij = (x,xo) for the velocity [31], which can be written as:

ui(x) = 1
8πµS

ε
ij(x,x0)fj (3.55)

Similarly, and expression for the pressure associated with the flow can be calculated as:

p(x) = 1
8πP

ε
j (x,x0)fj (3.56)

And the stress tensor associated with the flow can be obtain using:

σik(x) = 1
8πT

ε
ijk(x,x0)fj (3.57)

In equations (3.1.5) to (3.57) the expressions T εijk(x,x0) ,Sεij(x,x0) and P εj (x,x0) are regularized
versions of the fundamental solutions of the Stokes flow equations given by:

Sεij(x,x0) = δij
r2 + 2ε3

(r2 + ε2)3/2 + (xi − x0,i)(xk − x0,k)
(r2 + ε2)3/2 (3.58)
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And also we have:

T εijk(x,x0) = −6(xi − x0,i)(xj − x0,j)(xj − x0,j)
(r2 + ε2)5/2 − 3ε2[ (xi − x0,i)δjk(xj − x0,j)δik(xj − x0,j)δij

(r2 + ε2)5/2 ]

(3.59)
And finally:

P εj (x,x0) = (xj − x0,j)
2r2 + 5ε2

(r2 + ε2)5/2 (3.60)

where δij is the Kronecker delta. When a flagellum moving in a viscous fluid is analysed by the
method regularized Stokeslets, the surface is discretized into a number of regularized Stokeslets
(N) that are located on the surface’s body.

Then, equation (3.1.5) transforms into equation (3.61)

uj(x0) = 1
8πµ

N∑
n=1

3∑
i=1

Sεij(x,x0)fn,iAn (3.61)

In this last equation we have, fn,i is the −ith component of the force on the fluid applied at
location xn. Also we have, An is the quadrature weights which depend on the numerical integration
method applied. The quadrature errors are small in comparison with regularization errors and
the error presented in the method itself see reference [100]. Because of that, some author use the
midpoint rule as quadrature rule. The errors in the method are mainly due the discretization of
the surface and the cut-off parameter ε as in the case when ε→ 0 the velocity cannot be calculated
be this method because the singular version of the Stokes equations is obtained [101].

When we use the MRS an important aspect is the number of stokeslets or collocation points
that are used to discretize a surface. If the number of elements aplied to represent a body is small
then the approximation of its area is inadequated which produces an error due to discretization.
Some authors choose a body that is moving in a fluid with 6 degrees of freedom, and that its
velocity is known and it is given by the vector:

u = [ux1, uy1, uz1...uxN , uyN , uzN ]T (3.62)

In equation (3.62), [T ] denotes the transport of the velocity vector and N the number or
collocation points in the surface of the body. In the previous equation the velocity vector is given
by:

u = V + (W× x) (3.63)

here V is the linear velocity and W the angular velocity, which allows the six degrees of freedom.
If the number of collocation points is the same as the number or regularized Stokeslets, then the
velocity and force vectors of length 3N are related by a matrix A with dimension 3N × 3N , and
equation (3.64) can be written in matrix form:

u = 1
8πµAf (3.64)

If we know the velocity, we can obtain the distribution of forces by inverting the matrix A.
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Once the distribution of forces is known, it is possible to calculate the total hydrodynamic
force by integrating the distribution of forces over the surface:

F =
∫
δs

f(x)ds(x, (3.65)

or by adding up the force at every location in the correspond direction:

fi =
N∑
1

(fuij + fwij), (3.66)

where i, j = 1, 2, 3 represents the direction of the force in Cartesian coordinates.

The total hydrodynamic torque that is produced by the moving body can be calculated in
terms of the distribution of forces and its location by:

T =
N∑
1

xi × f(xi), (3.67)

knowing the forces distribution , we can determine the velocity field that is produced by the
moving body in the viscous fluid by applying equation (3.1.5) in any location of the fluid domain.

3.1.6 Johnson Slender Body Theory

The Johnson Slender Body Theory derivation is more rigorous than Lighthill Slender Body
Theory [16]. Is build on idea of [6]. Its formulation takes details that were ignored by Lighthill
[16]. The first difference between the two formulations is that Johnson’s slender body is a long
slender prolate spheroid that terminates smoothly. The velocity of a point on the filament is
broken into local and non-local terms on a helical flagellum.

u(r) = ulocal(r) + unonlocal(r) (3.68)

where the local velocity is defined by:

ulocal(r) = 1
8πµ [− ln(k2e)(I + t(r)t(r) + 2(I − t(r)t(r))] · f(0), (3.69)

in this case k = a

Λ , with Λ is the contour length defined by Λ = L

cos θ .

The radius of the cross section vanishes at either end of the slender body and is given by:

a(s) = a

√
1− 4s

2

Λ

2
, where s ∈ [−Λ

2 ,
Λ
2 ]. The filament radius has an average value, aπ4 , therefore

in Johnson slender body theory calculations he set the filament radius to be 4
π

times the radius
used in the experiments and other simulations [29].

The non-local velocity is defined by:

unonlocal(r) =
∫
J(r′ − r) · f(r′)dr′ − 1

8πµ

∫
I + t(r′)t(r′)
|s− s′|

· f(r′)dr′ (3.70)
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.

As it was used in [16] slender body theory the same rotational mapping and the rectangular
rule of integration are used to obtain:

u′n = 1
8πµ [− ln(k2e)(I + t̂t̂′ + 2(I − t̂t̂′) · f ′n

+R∆ϕ csc θ
8πµ

∑
m6=n

Rx(ϕm − ϕn) +Rx(−ϕn) · r̂nmr̂nmRx(ϕn)·
rnm

· f ′m

− 1
8πµ

∑
m 6=n

1
rnm

(I + t̂′t̂′) · f ′n + O(∆ϕ)

(3.71)

Setting K = 1
2[∑m6=n

1
rnm

+ ln(k2e)] after adding the terms we finally obtain:

u′n = 1
4πµ [−K(I + t̂′t̂′ + (I − t̂′t̂′] · f ′n

+ R∆ϕ csc θ
8πµ

∑
m6=n

Rx(ϕm − ϕn) +Rx(−ϕn) · r̂nmr̂nmRx(ϕn)·
rnm

· f ′m

+ O(∆ϕ)
(3.72)

3.1.7 Asymptotic Theory for a Helical Flagellum

Let’s use the equation of a flagellum parametrized by contour position s with a length L much
greater than R and λ. According to the section on slender body theory, the local velocity of a
segment of the helix located at s = 0 is correlated with the force distribution along the entire
filament f(s):

u(0) = f(0) · n̂n̂
4πµ +

∫
|r(s′,0)|

J(s′, 0) · f(s′)ds′. (3.73)

If we consider a long propeller we can affirm end effects are minimal so each segment is
essentially the same. Therefore, the force per unit length can be written by:

f(s) = (fx,−fΩ sinϕ, fΩ cosϕ), (3.74)

in this equation we have fx is the force per unit length in the x direction and fΩ is the tangential
force per unit length perpendicular to the x direction, which has components in the y and z

directions, depending on the helical phase (ϕ = ks cos θ of the segment and k = 2π
λ
). The

associated velocity of the helical filament is:

u(s) = (U − ΩR sinϕ,ΩR cosϕ) (3.75)

Returning in the [16] equation we can rewrite the velocity for the x direction as:

U = (fx sin θ − fΩ cos θ) sin θ
4πµ +

∫ kL/2

kδ cos θ
csc θdϕ( fx

4πµξ + fΩϕ sinϕ cot θ + fxϕ
2 cot θ2

4πµξ3 ). (3.76)

The velocity for the tangential direction is given by:

ΩR = (−fx sin θ + fΩ cos θ) sin θ
4πµ +

∫ kL/2

kδ cos θ
csc θdϕ(fΩ cosϕ

4πµξ + fΩ sin2 θ + fxϕ sinϕ cot θ
4πµξ3 ). (3.77)
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3.2 EXPERIMENTAL ANALYSIS AND COMPUTATIONAL VA-
LIDATION OF FLAGELLUMMOTION IN CREEPING FLOW

In order to investigate the validity of the developed model, an experimental setup was built
to measure the force and torque as well as the propulsive velocity and the trajectory produced
by a single flagellum at Reynolds numbers close to those of microorganisms locomotion. The
experimental apparatus used in this study is shown in figure (3.2).

Figure 3.2: Sketch of the experimental apparatus to investigate the model of the flagellum motion
in creeping flow. The experimental setup is basically formed by a tank filled with a viscous
fluid, component (1), the artificial flagellum component (2), a DC power supply component (3),
electronic system for force and torque measurements (4), a computer system (5), the tracking
image system - video-camera (6).

The tank set-up consists of a rectangular glass 500 mm × 500 mm with a thickness of 3 mm
and 650 mm height filled with the viscous fluid. In order to reduce the wall effect on the swimmer,
we use dimensions of the tank at least 10 times larger than the flagellum length. The swimmer
was carefully placed inside the tank. The swimmer generates propulsion in which force and torque
are measured and also its trajectory analyzed. The artificial swimmer developed in the present
work consisted of two components, a spherical head and a helical tail which is joined to each other
via a coupling. The body of the helical swimmer is made from a plastic tube having 16 mm in
diameter, 28 mm in length, and a hemispherical cap. The body contains a micro DC motor inside
that was ideal for compact Arduino robot projects. The main specifications of the DC motor are:
an operating voltage between 3-6V, a shaft diameter: 2mm, a shaft length: 9mm total dimensions:
(25x20x15) mm, and weight: of 14g. Under this condition, it was possible to assemble projects
that require high rotation like our artificial flagellum. Swimmers’ tails are made by wrapping a
1.8mm diameter aluminum wire around a mandrel bar. The wire is stiff enough to ensure it stay in
shape. The three helices used in the present experiments have wavelengths 2, 4.32 and 7.25 mm,
respectively. In the present study, the stretched lengths of the helical tails are chosen to be the
same apparent length and this value was 50 mm. The diameter of the propellers used was 9, 4.5
and 8 mm, respectively. For this models, the body size is dictated primarily by the weight of the
metal tail and the requirement to reach a state of neutral buoyancy for the swimmer. However,
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the proportions between the diameter and the length of the helical tail must be carefully chosen.
The helical head and tail were joined to each other by means of a coupling. The assembly was
done as follows. The small motor shaft projects through a hole drilled in the plastic shell (head)
and the end of the shaft is connected to the helical tail using a coupling. The connection between
the motor and tail is made with a plastic sleeve coupling material, which is constructed by drilling
from opposite sides with respect to the diameters of the motor shaft and the helical tail. The
plastic sleeve coupling is secured to the tail by applying glue for plastic to ensure a stable rotation
of the tail. A plastic film fixed around the motor shaft is used to prevent oil from seeping into the
motor housing compartment. The flagellum is powered by a DC source of 15V, 2A (Adjustable
Digital Power Supply - PS1502DD). The power supply determines the rotational frequency of the
flagellum. The motion of the helical tail in the viscous fluid, the drag force and torque break
the time-reversibility for the artificial flagellum and leads to a propulsion. The use of the PS-
1502DD Power Supply was ideal to obtain several variations of the frequency of the movement of
the flagellum helices. The technical specifications are the output voltage: DC between 0 to 15V;
preset voltage output: 1.5V, 3.6V, 4.8V, 6.0V, and 7.2V; the adjustment of protection current: 0
to 2A, basic accuracy: 0.07%, the dimension 17.5 x 12.5 x 14.5 cm; and weight: 1.5 Kg. The force
measurement system is an Arduino weighing scale formed by a standard Arduino Uno, an HX711
on breakout board used microchip made for amplifying the signals from load cells and reporting
them to the microcontroller and finally, a 1 kg load cell. The torque measurement system used is
a rotary torque sensor fitted with slip ring electronics to transmit the torque signal while rotating.
The main function of the torque sensor is to perform the reading of encoder disks, as it counts an
emitter and an infrared receiver at its ends, which serves to define the torque of the motor of the
flagellum.

The tracking system used in the experiments was a mechanical parameter meter of the particle
kinematics based on a computer vision algorithms applied to process the images of a moving
objects digitally to obtain the position and speed in time. The image acquisition of the helical
swimmer was a fundamental step of our experimental investigations and it was performed using
a high-speed camera of the PCO@R brand, capable of capturing 640 images/s in its highest
resolution (1024X1024). When obtaining the images, some care was taken with respect to the
lighting of the experimental bench, as the quality and speed of capturing the images depend on
the level of light intensity used. Lamps with low heat dissipation were used in order to avoid
changing the test conditions due to the heating of the working fluid. The best option was to use
LED lamps. Another important feature was positioning the system camera/lamp, which must be
able to minimize the effects of shadows and reflections on the experimental bench. The image
sequences of the particle swimming were recorded with the camera and subsequently captured on
the PC as successive images with time intervals of 1/30 second. The image processing software
(CVmob) developed by researchers on computer science of the Federal University of Bahia (Brazil)
was used to obtain the two-dimensional coordinates of the helical swimmer for each frame, from
which the swimming speed and trajectory were analyzed [102]. This software was validated by
Peña et al.[102] and now is an open-source software. Essentially, this software uses techniques
of computer vision, recognition of patterns, and optical flow to enable the tracking of objects in
videos generating data of trajectory and velocity. Data were averaged over 30 successive tables
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for each type of swimmer investigated in this work. Actually, with the CVMob software we were
able to analyze the trajectories and determinate the main kinematic quantities from videos of the
particle motion.

Close attention was paid to the preparation of the base fluids. A Newtonian silicone oil and a
viscoelastic anionic Polyacrylamide solution (Separam, AP30, Dow Chemicals) were used as the
base fluid in order to ensure a low Reynolds number around the helical swimmers and to confer
elastic effect in the case of the second fluid. For both fluids, the maximum Reynolds number in
the experiments was less than 0.01. Viscosity measurements were carried out using an Anton Paar
Physica MCR 301 model Rheometer of rotating parallel disk geometry available in the laboratory
of Microhydrodynamics and Rheology of the University of Brasilia see figure 3.3. This measuring
system is powered by a permanent magnet synchronous drive motor placed on the measuring
head, which is able to aply torques form 0.1µ Nm to 200µ Nm with resolution of 0.001 µ Nm and
accuracy of 0.2µ Nm. The measuring cell in the MCR 301 Rheometer is a Peltier-temperature-
controled bottom plate. The rheological properties of the fluids can be assessed as functions of
time, shear-rate and, especially, due to the fact that this parameter is precisely controlled in this
assembly. The gap between the discs is a function of the fluid viscosity and should be optimized
for each type of fluid under analysis. It is important to note that the device is equipped with the
TruGap technology, which permits the precise adjustment of the gap between the parallel plates
to the value prescribed by the operator, independently of the temperature and thermal expansion
of the assembly components. For the case of silicone oil the optimal gap used was 0.8mm whereas
for the anionic PAMA solution at a polymer volume fraction of 0.05 the gap was 0.4mm. Small
gaps (i.e. < 0.5mm) can be achieved with micrometric precision.

Figure 3.3: Rheometer used for the viscosity measurement courtesy (Vortex) by Pereira, I. D. O.
(2017).

The viscoelastic effects in our work are attributed only to the elasticity of the basis fluid. The
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swimmer was placed in a vertical direction on the test bench at the center of the rectangular
tank. First, we carried out a buoyancy test, in this test the flagellum is placed in the fluid with
the motor turned off. Adjustments of the density contrast between the particle and ambient fluid
is made by adding small spheres, so that the weight of the flagellum is balanced with the fluid.
Under this condition the particle stays neutrally buoyant inside the tank for a long time scale
compared with a typical experiment time scale. Three prototypes of the artificial swimmers with
different helix geometry were used in order to carry out the experimental tests. In the table (3.2)
are listed the properties of the flagellum. Figure (3.4) shows the schematic of the prototypes and
the geometrical quantities of the active particle.

Table 3.2: Properties of the model of the three types of flagellum studied experimentally (i.e. helix
1, helix 2 and helix 3): wavelength (mm), apparent length (mm), helical radius(mm).

Type of Flagellum Helix 1 Helix 2 Helix 3
Wavelength (λ)(mm) 2.00± 0.05 4.32± 0.05 7.25± 0.05
Apparent length (L)(mm) 50± 0.05 50± 0.05 50± 0.05
Helical radius (R)(mm) 9.00± 0.05 4.50± 0.05 8.00± 0.05
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Figure 3.4: The three prototypes of flagellum investigated here and a schematic of the geometrical
parameters of a typical flagellum.
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The first step of the experiments was to measure the viscosity of the surrounding fluids. As
already described at the beginning of this section, in this work two fluids were tested: A silicone
oil (a nearly Newtonain fluid) and an anionic polyacrylamide solution (PAMA) that is an shear-
thinning elastic fluid. The viscosities were measured at room temperature using an Anton Paar
Physica MCR 301 model Rheometer with parallel disk geometry and an intelligent controlled gap.
The viscosities of the silicone oil were made normalized by the mean viscosity of the silicone oil
evaluated in the interval of shear rate considered; µso ≈ 220 Pa.s at 25◦C. Additionally for the
case of the silicone oil the shear rate was made non-dimensional using the maximum shear rate
of the experiments as the main scaling, γ̇max = 993.5 s−1. Therefore, the value of γ̇∗ = 0.01 in
the plot of Figure (3.5) corresponds approximately to 10 s−1. In this work, the analysis of the
experimental uncertainties associated to a measured variable followed the protocol prescribe in
the paper by Kline and McClintock [103]. The associated error bars were all presented in the
experimental plots. The maximum experimental uncertainties observed were always greater than
1%, but less than 10%. We chose the maximum error between the one found by the uncertainty
analysis and the one based on statistics over at least 10 experimental realizations.

Figure (3.5) presents the normalized viscosity of the silicone oil measured in steady shear as
a function of the normalized applied shear rate. The associated error bars of the experimental
data are also shown in the plot. We can see that the viscosity of the silicone oil used is nearly
independent of the shear rate ranging from 10−4 s−1 to 10 s−1. Under this condition, the silicone
oil in our experiments showed Newtonian behavior within the error bars of the experimental data.
The existence of a weak shear thinning behavior of the silicone oil at higher shear rate can be
related to the high cross-linking property of this fluid [104].

Experiments under condition of steady simple shear, oscillatory shear and step strain in the
Rheometer MCR 301 were also carried in our laboratory for samples of the anionic polyacrylamide
solution PAMA at 0.05 in volume concentration of macromolecules. The condition of small values
of strain amplitude and a given frequency is a way of guaranteeing that the maximum amplitude
of the applied shear rate is small enough to validate the desirable regime of linear viscoelasticity
during all experimental runs. The viscoelastic modules were obtained by means of the rheometer
software Rheoplus (Anton Paar) as being the Fourier coefficients of the shear stress. The anionic
PAMA main relaxation time τ was calculated from the stress relaxation function Φ(s), where s
is the shift time t − t′, t is the current time and t′ denotes past times for a fluid having memory
(i.e. elastic liquid). The following relation defining the PAMA relaxation time can be also evaluated
by using our small amplitude oscillatory shear (SAOS) experimental data, as following:

τ = lim
ω→0

η′′(ω)/ω
η′(ω) , (3.78)

where ω is the forcing frequency of the small amplitude oscillatory shear (SAOS); γ̇(t′) = γ̇0cos(ωt′).
Here η′(ω) and η′′(ω) are the viscous and elastic moduli of the PAMA calculated by the Fourier
transform of the stress relaxation function as [105]:

η∗(ω) = η′(ω)− iη′′(ω) =
∫ t

−∞
Φ(s)e−iωsds, (3.79)
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Figure 3.5: Non-dimensional viscosity of the silicone oil as function of the normalized shear rate at
25◦C. The viscosity in this plot was normalized by the the mean value of the silicone oil viscosity
in the interval of shear rate used, 220 Pa.s. The shear rate in the plot was made non-dimensional
using the maximum value of the shear rate γ̇max = 993.5 s−1. The experimental error bars are
also shown in this plot. The inset in the plot shows the dimensional viscosity (Pa. s) of the silicone
oil as a function of the shear rate (s−1).

where η∗ is the complex viscosity. Therefore, the main relation of the viscoelastic fluid can be
determined in terms of the stress relaxation function Φ(s) as follows:

τ = lim
ω→0

η′′(ω)/ω
η′(ω) = lim

ω→0


∫ t
−∞

Φ(s) sin(ωs)
ω

ds∫ t
−∞Φ(s) cos(ωs)ds

 =
∫ t
−∞ sΦ(s) cos(ωs)ds∫ t

−∞Φ(s)ds
. (3.80)

Figure (3.6) shows a strong shear dependence viscosity of the shear rate. In this plot, the
viscosities of the PAMA were normalized by the viscosity of the water µw = 0.89 ± 0.0.1 mPa.s
at 25◦C. As we can see, the viscosity o the PAMA decays with the Deborah number (De) (i.e.
a shear thinning behavior). For the case of the non-Newtonian fluid we use De as being our
non-dimensional shear rate. Here, the elastic parameter De is calculated by the product between
γ̇ and the PAMA’s main relaxation time and it represents the dimensionless relaxation time. In
both analysis, from SAOS data (i.e. based on the viscoelastic moduli) and step strain (based on
the stress relaxation function), the relaxation time of the PAMA at 5% of macromolecule volume
fraction was approximately τ = 43 s. It is seen in Figure (3.6) that for small De numbers the
flow is not sufficiently strong to produce a stretching of the macromolecules and the structure of
the elastic liquid remains in a state of equilibrium. This condition gives rise to constant viscosity
plateau, observed for the others volume fractions tested. This Newtonian plateau represents a
region where the fluid viscosity is almost constant. The associated error bars are also presented
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in the plot.
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Figure 3.6: Non-dimensional viscosity of the anionic PAMA as function of the Deborah number
for a volume fraction of the polymer φ = 0.05. The associated error bars are also shown in the
plot. The experimental data are very well fitted with an Cross ad-hoc model of shear dependence
viscosity in a non-dimensional form: µ∗(De) = µ−1

w [(µ0 − µ∞)/(1 + C(De/τ)m) + µ∞] [2, 3].
Th parameter of the model were determined form the experimental data: µ0 = 4.71× 102, µ∞ =
5.50×10−3, m = 0.77, C = 11.98 and the main relaxation time τ of the anionic PAMA at φ = 0.05
determined by equation (3.80) is approximately 43 s. The inset in the plot shows in a mono-log
scale the dimensional viscosity (Pa. s) of the anionic PAMA as a function of the shear rate (s−1)
ranging from 0 to 10s−1 .

Figure (3.7) depicts the result of our step strain experiment for a volume fraction of polymer
φ = 0.05. The stress relaxation function Φ(s) was made non-dimensional using the main relaxation
of the PAMA at this concentration and the water viscosity µw a 20◦C. Hence,

Φ̃(s̃) = Φ(s/τ)τ
µw

= Φ(s̃)τ
µw

, (3.81)

where Φ̃(s̃) is the non-dimensional stress relaxation function and s̃ is the non-dimensional shift
time. In this work the experimental curve of Φ̃(s̃) is fitted very well using the classic non-
dimensional stress relaxation function of a Maxwell fluid. For φ = 0.05 we found a time spectrum
of five relaxation time as shown in the inset of Figure (3.7). We can write:

Φ̃(s̃) =
5∑
j=1

Ak exp (s̃/α̃k), (3.82)

where Ak and α̃k are, respectively, the stress amplitude and the relaxation of a k Maxwell element.
Both parameters for each Maxwell element were determined by the experimental curve of the stress
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relaxation function. Again, applying equation (3.80) we also determined the main relaxation time
of the PAMA at 5% as being approximately 43 s.

Figure 3.7: Non-dimensional stress relaxation function Φ̃(s̃) from a step strain experiment as a
function of the non-dimensional time shift s̃ = s/τ = (t− t′)/τ . The main relaxation time of the
anionic PAMA for a volume fraction of polymer φ = 0.05 was calculated by equation (3.80) as
being τ ≈ 43s. The inset in the plot show the spectrum of relaxation times at this concentration.
The associated error bars are also shown in the plot.

3.3 Creeping Flow Approaches - an overview

Creeping flow theoretical approaches are also used in order to investigate the motion of swim-
mers, induced by helical flagellum propulsion in creeping flow. In this section, we present the
governing equations and the imposed boundary conditions related to the models explored in this
work. The theoretical and numerical solutions presented here consist of three approaches: (i)
the Resistive Force Theory (RFT) [15], (ii) the Slender Body Theory (LSBT) [16], and (iii) the
Method of Regularized Stokeslets (MRS) [31]. Full details about implementations of the numerical
procedures regarding these low Reynolds methods can be found in reference [29].

Now, the incompressible continuity equation and the unsteady force balance equation in cre-
eping flow for a Newtonian viscous fluid of constant density and constant viscosity are given,
respectively, in reference [106]:
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∇ · u = 0, (3.83)

(
Re

Sh

)
∂u

∂t
= −∇p+∇2u. (3.84)

Dimensionless equations (3.83) and (3.84), u(x, t) is the eulerian fluid velocity at x and time t, p
denotes the pressure. Here, Sh is the Strouhal number which is defined in the present context as
being Sh = U/(ωR) = λf/(2πfR), where U is a characteristic velocity and ω = 2πf is the angular
frequency, λ is the wavelength and R is the transverse dimension of the flagellum tail as illustrated
in figure (3.4). Therefore, this parameter denotes the inverse of the non-dimensional frequency
of the investigated system. We have defined Sh this way in order to keep this parameter compa-
tible with the non-dimensional parameter λ/R which appears in the theoretical papers (e.g. [15]
and [16]). The Sh number in terms of λ/R is simply written as being Sh = (1/2π)(λ/R). The
Reynolds number, Re is defined as Re = (ρRU)/µ. If in this unsteady creeping flow problem the
parameter Re/Sh is small (e.g. for Re � 1 and Sh ∼ 1), we have a quasi-steady Stokes regime
of the flow around the swimmer. Under this condition the force and torque on the swimmer is
not time dependence. Otherwise, if Re/Sh ∼ 1, the hydrodynamic force and torque are time
dependent. In the present study, we consider Re/Sh� 1, and therefore the absence of force and
torque time-dependent. Consequently, the induced propulsion force and torque only depend on
the propeller’s position.

Having the flow around the particle, the flagellum motion is determined from the integral
representation of a creeping flow around the swimmer. The fundamental solution of a creeping
flow around a point particle determines the velocity fields, pressure, and stress induced by a point
force in a Newtonian fluid. In particular, the solution of (3.83) and (3.84) for creeping flows in
steady state with the appropriated non-slip boundary condition on the particle surface can be
expressed in terms of a resistance formulation described by [107]. We solve the reduced flagellum
rotating and translating in the axial direction. By the resistance formulation the force and torque
on the active particle in the x-direction, Fx, and Tx, are determined in terms of the translational
and rotational velocity of the particle in u and ω. The resistance formulation is expressed here as
follows: (

F
T

)
=
(

A B
C D

)(
u

ω

)
(3.85)

The matrix in equation (3.85) is referred to as the grand (resistance) matrix and all elements
of this mobility function depend only on the geometry of the flagellum. The sub-matrices A, B,
C and D are three-dimensional and symmetric as the entire resistance matrix. If this matrix
is known, the trajectory of the helical flagellum can be fully determined. In the present work,
we focus on some kinematic properties and the calculations of force and torque on the active
flagellum-micro-organism. Reference [16] has shown that the local velocity of a segment of the
helix located at s is related to the force per unit of length (i.e., Stokeslet strength) along the
filament f⊥(s):

u(s) = f⊥(s)
4µ +

∫
|r0(s′,s)|>δ

f(s′) · J(r0)ds′, (3.86)
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where δ = a

√
e

2 is a natural cutoff, r0 is the position vector from the point s on the centerline
relative to the point s′, and J is the Oseen tensor given by

J(r) = 1
8πµ( I

|r|
+ rr

|r|3
). (3.87)

3.3.1 Resistive Force Approach

A good approximation for solving the motion of a swimmer is the Resistive Force Theory
(RFT). This theory can be used to predict the force and torque by the helical motion of the
flagellum. Hydrodynamic force and torque at low Reynolds numbers are proportional to the local
velocity of the particle. This can be done by performing the integration of all the forces and
torques of each small segment along the particle. The force acting on an element ds of the fluid
is given by df = µK · udx, where u is the local velocity and K is the resistance tensor per unit
length of a filament element which depends only on the geometry of the filament element. We can
expressed K in terms of an normal and an tangential contribution as follows:

K = CnI + (Ct − Cn)t̂t̂. (3.88)

Now, the total force exerted on the fluid by the swimmer is

F = 1
µ

∫
K · uds, (3.89)

and consequently the total torque is given by:

T = 1
µ

∫
r×K · uds. (3.90)

and the total u(x) is the filament velocity, and ds is the segment length how. Integrating in the
contour we obtain the intensity of the force and the torque in a non-dimensional form as being:

F = −2π(Cn − Ct)
(
L

λ

)
sin(θ), (3.91)

and the torque :
T = 2π

(
L

λ

)(
Cn cos2 (θ) + Ct sin2 (θ)

)( 1
cos (θ)

)
. (3.92)

Now, in order to calculate the propulsive forces and torques exerted on the swimming by the
viscous flluid for different types of flagella we use the coefficients Cn and Ct proposed in the
references [15] and [16]. Table ( 3.3) presents the expressions for both drag coefficients.
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Table 3.3: Drag coefficients.

Cn Ct Reference

4π[ln (2λ/R) + 1/2]−1 2π[ln (2λ/R)− 1/2]−1 [15]

4π[ln (0.18(λ/R) cos(θ)) + 1/2]−1 2π[ln (0.18(λ/R) cos(θ))]−1 [16]

3.3.2 Slender Body Theory

The Slender Body Theory (SBT) is an asymptotic technique that can be use to determine
creeping flows around a rod or slender fiber whose lenght is large compared to its thickness. This
approach has been done successfully implemented by several authors (e.g. [16], [108],[109]). Here
we just show the general idea behind the method based on the numerical calculation developed in
the reference [29]. Now, equation (3.86) can be used in order to determine the force distribution
on the flagellum for a fixed velocity of the flagellum. First, the grid size was chosen to be larger
than the cutoff length. The discretized equation (3.86) for the ith node (i = 1...M), was divided
into two parts. The first one is an integral from δ to the grid size while the second one is the
velocity contribution of the stokeslets singularities located on the neighboring nodes. In this way,
the discretized equation is solved in the local coordinates of each discretized point for the local
forces fi′. The force at each discretized node is then converted back into the body frame via a
coordinate transformation (fi′ ⇒ fi). Additionally, the discretized form of equation in the body
frame becomes:

P


f1
f2
...

fm

+


q1

q2
...

qm

 =


u1

u2
...
um

 . (3.93)

In equation (3.93), qi depends only on the geometry of the flagellum and on the input value of
angular velocity. The torque contribution of each stokeslet acting on the flagellum is given by,
ti = r× fi. From this discretization and using the total force and the torque contributions of each
stokeslet, we can find the propulsion matrix Gh for the flagellum, so that:[

Fh

L−1Th

]
= Gh

[
u

Lω

]
+ Q. (3.94)

Here Fh and Th are, respectively, the net hydrodynamic propulsion force and net hydrodynamic
torque exerted by the flagellum. In addition, Q is obtained by propagating the constants qi as
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described above.

3.3.3 Implementation Using Regularized Stokeslet

The Method of Regularized Stokeslets is also used in order to evaluate the force and torque on
the artificial flagellum. The rigid helix dynamics can be modeled by forces applied on the flagella
points and by a torque at the base of each points using regularized stokeslet and rotlet theory. Here
we will give a brief explanation of the implementation. The fluid velocity field due to the forces is
described by regularized stokeslets and the velocity due to the torques by the associated regularized
rotlets. In the typical stokeslet and rotlet theory. Singularities in the velocity expression are due to
the assumption of having point-forces and point-torques. However, by a regularized approach, the
singularities can be eliminated through the systematic regularization of the flows described above
by considering forces and torques that are applied not at single points but within small points
forces centered at those points. In this way, the forces and torques are highly concentrated but are
spread over a small neighborhood of the application points. The regularized Stokeslets simulation
eases the evaluation of integrals with singular kernels by replacing the delta distribution of forces,
δ(r), with a smooth, localized distribution:

φε(r) = 15ε4
8π(r2 + ε2)7/2 , (3.95)

where r = |r| and regularization parameter ε is assumed to be small. This parameter ε prevents
non-integrable kernels, but also has a physical meaning of representing surface area over which
the force is distributed. For N regularized point forces fφεrn at locations rn on the surface of a
body in motion, the fluid velocity at any point r is given by:

ui(x) = 1
8πµS

ε
ij(x,x0)fj . (3.96)

From fj the force and torque on the body can be directly computed.

Now, in the arrangement of the computational domain for a helical flagellum, we discretize the
surface with cross-sections along its length and use twelve regularized Stokeslets on the perimeter
of each circular cross-section. We separate adjacent cross-sections by a distance equal to one-half
of the filament single layer potential on the parallel surface and a related double-layer potential
on the flagellum. The two potentials have a unique solution that depends on the no-slip boundary
condition of the flagellum. This method was first presented by [31] and the advantage of this
formulation is that the results are independent of the choice of the parallel offset parameter.

The force and torque on the artificial swimmers here are calculated using the procedure descri-
bed in reference [31]. A program in Matlab following the algorithm presented in reference [29] was
used in order to perform numerically the flagellum dynamics calculations. The numerical proce-
dure takes as input the parameters for helical flagellum R, L, a and λ and gives as output F and
T . The helical radius 2πR is used as the characteristic length in the numerical program so that in
terms of non-dimensional quantities we have: R = 1/2π, L/(2πR), a/(2πR) and λ/(2πR) and F ∗,
T ∗ as the main output non-dimensional quantities. As discussed before the main dynamics para-
meter here for the case of an ambient Newtonian fluid is the Strouhal number , Sh = (1/2π)(λ/R)
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and we keep the Reynolds number under creeping flow condition (i.e. Re� 1). Note that in this
paper Sh denotes the inverse of a non-dimensional frequency of flagellum oscillating motion and
therefore a typical non-dimensional time scale of the motion. The trajectory of the swimmers are
described when considering the motion of the head and the tail of the flagellum. Additionally,
the total force acting on the flagellum is composed of the stokeslet force, Fs, on the head due to
translation and the hydrodynamics force on the tail, Fh. At low Reynolds number the relaxation
time of flagellum (i.e. the Stokes number) is much smaller)= than the Sh, so that the inertial
effect of the particle cab be neglected. Under this condition, the net force on the flagellum is zero
at all times whenever the one is displaced from its equilibrium position. Hence:

Fh + Fs = 0. (3.97)

Here, Fh is calculated by the Slender Body theory according to equation (3.94), whereas the force
Fs corresponds simply to the drag force on the head and it is given by expression by the Stokes’s
drag past a spherical particle, i.e. Fs = −6πµau. We solve the equilibrium equation and the
non-dimensional time step used in this case is given by δt = (1/10)min(0.01, Sh). Solving the
particle velocity, the position of the particle is calculated using the standard Euler method to
integrate the first order ordinary differential equation:

dx

dt
= u (3.98)

3.4 Computer Simulations: helical body in an elastic liquid

The effects of viscoelastic fluid on the flagella swimming are also considered. We study the
flow of a non-Newtonian Oldroyd-B liquid past a helical filament between two parallel plates. The
fluid is composed of a dilute solution of polymer in a Newtonian liquid solvent of viscosity µs.
The flow is two-dimensional (2D) and schematically shown in figure (3.8). The aspect ratio of the
helical radius to the channel half-width is 1/10.

Figure 3.8: Schematic of 2D flow around the flagellum.

Now, a viscoelastic constitutive model provides the additional relation needed to solve the
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governing equations of the flow. The complete set of non-dimensional governing equations for
describing the flow of a Oldroyd-B liquid under creeping flow condition is given by:

(
Re

Sh

)
∂u

∂t
= −∇p+∇ · σ + (1− ξ)∇2u (3.99)

∇ · u = 0 (3.100)

(
Wi

Sh

)(
∂σ

∂t
+∇ · (uσ)− (∇u) · σ − σ · (∇u)T

)
= −σ + ξ(∇u+∇uT ), (3.101)

where σ is the stress tensor of the elastic liquid, ξ is the ratio between the polymer viscosity and
the ambient fluid viscosity. Here, Wi denotes the elastic parameter called Weissenberg number
which measure the relative importance between the elastic liquid relaxation time scale τr and the
flow time scale `/U , i.e. Wi = Uτr/`. Additionally, we define the Deborah number De = ωτr so
that the ratio Wi/Sh can be represented by De in equation (3.101). So, in this paper we shall
use De as the non-Newtonian elastic parameter of the flow. Note that when De = Wi/Sh goes
to zero the set of equations (3.99), (3.100) and (3.101) reduces to the model of a Newtonian fluid
given by equations (3.83) and (3.84). The above governing equations were solved numerically. The
non-dimensional parameters used in the numerical simulation with typical values compatible with
the ones of the experiments were Re = 0.01 (i.e. creeping flow condition); De = 1/2 and ξ = 3/7.
It is straightforward to show that a Dumbbell model of two constitutive equation discussed by
Rallison and Hinch [110, 111] with Hookean spring may produces unlimited elongation of the
Dumbbell (i.e. the model allows the polymers to stretch indefinitely) and the pair of constitutive
equation reduces to the most common Oldroyd-B elastic fluid with the material constant of the
model equal to τ/2, where τ denotes the relaxation time of an extended macromolecule to the
randomly-coiled state. From the Dumbbelll model with a linear spring τ is estimated as being τ =
2πµa3/(kBT ) [112]. Here kB is the Boltzmann constant, T the absolute temperature and a is the
mean end-to-end distance of the polymer. In this model the macromolecule is composed of N rigid
segments (individual monomers) of lenght δ, with each individual monomer randomly oriented
with respect to the adjoining segments. Therefore, the equilibrium configuration distribution
of the macromolecule is then given by a random walk of N steps and from the central limit
theorem a ∼ N1/2δ. Since N can be calculated by the ratio between the molecular weight of
the polymer (M) and the molecular weight of a single monomer (Mo) [105], it results that the
polymer relaxation time of the Oldroyd Fluid - B used in this work can be estimated as: τ =
(2πµ/kBT )δ3(M/Mo)3/2).

Before proceeding with the presentation of the main experimental and theoretical results of
this section, we give a brief overview of the numerical technique used in this work for solving the set
of governing equations (3.99), (3.100) and (3.101). The values of the non-dimensional parameters
examined in the numerical simulations were always compatible with the ones considered in the
experiments. In this way we can compare the simulations results with our experimental data.
We use Re = 0.01 (i.e. creeping flow condition), ξ = 3/7 and De ∼ 1. The mesh of the flow
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domain kinematics is illustrated in figure (3.9) for a Cartesian coordinate system with origin on
the center of the head of the helical swimmer. The channel aspect ratio was defined as being
the height of the channel (k) over the helical swimmer radius (R), i.e. k/R = 10 as suggested in
reference [113]. The particle is placed in a rectangular domain [0 ; 25]× [0 ; 2]. No-slip boundary
conditions are enforced at the sidewalls as described below in the boundary conditions, subsection
(3.4.1). The problem is solved using a boundary-increased mesh with the extended finite element
according to the numerical procedure first described in reference [114]. Three sub-domains D1,
D2, D3 were explored with the base mesh shown in figure (3.9). We use a total mesh with the
following characteristics: (i) free triangular mesh on the uniform for the glass as shown in figure
(3.9a) and (ii) extra fine mesh figure (3.9b). The number of mesh vertices used was 19680, the
numbers of triangles equal to 32898, numbers of quads equal to 2790, numbers of edges elements
of 1115 and the number of vertex elements 24. In the entire grid domain we have used 35688
elements. Additionally, the minimum elements quality was 0.01653, the average element quality
was 0.9286, the element area ratio was approximately 1.4 × 10−4, and the mesh area 49.55. The
averaged computational time observed in the simulations was about 12h and the resulting system
equations has a total degree of freedom total (DOFs): 234395. In our computer simulations the
configuration of the flow was taken as being symmetric so that only half of the whole domain
needs to be solved. Flow enters at the left boundary where a velocity inlet condition was applied.
In particular, the top boundary and the helical swimmer surface were considered solid walls, while
the right boundary is a pressure outlet. The solver used here is based on an iterative procedure so
that an estimation of the error in the solution was necessary on order to control the convergence
of the numerical method. The estimated error is based on the convergence criterion defined as
| ζ(n+1)−ζ(n) |≤ tol, where ζ is a dependent variable and tol denotes an adopted tolerance typically
equal 10−3 (i.e the default value in the numerical code). However, in the current simulations
performed in this work the residual convergence criteria was set to 10−4. Higher accuracy in the
simulations results can be obtained with an increased number of grid points distributed close to the
body surface, but the computational cost increases accordingly. We have balanced the accuracy
and computational cost when comparing the simulation results with our experimental data. We
shall show a good agreement between the numerical and experimental results (within the error
bars of the experimental data) for De varying between zero to approximately 2.

3.4.1 Boundary conditions

In order to solve the set of equations (3.99), (3.100) and (3.101) it is necessary to impose
boundary conditions for the velocity field u = (u, v) for the components of the non-Newtonian
stresses. In the present case the flow is two-dimensional which means that the flow quantities
depends on x and y directions only. The inlet conditions imposed for x and y components of the
velocity are, respectively: u = 1.5(1−y2) and v = 0. The imposed boundary conditions at the solid
walls of the flow domain are: u = v = 0; ∂u/∂x = ∂v/∂x = 0; ∂σxx/∂x = ∂σyy/∂x = ∂σxy/∂x = 0
and ∂p/∂x = 0. Additionally, we impose the following outlet and inlet boundary conditions for
the stresses: σxx = 2De(∂u/∂y)2; σyy = 0 and σxy = ξµs(∂u/∂y).
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Figure 3.9: CFD model of the flagellum and grid discretization. a) Shows a mesh of the global
domain. b) A local mesh on the particle.

3.5 Results and Discussions

In this section we first report experimental results for velocities and trajectories of the helical
swimmer as well as the hydrodynamic force and torque on it when the base fluid is Newtonian and
also viscoelastic. In order to verify accuracy of the experiments carried out in this work, at the
end of this section we also shall present a comparison between experimental measurements and
theoretical predictions based on SBT and Stokeslet methods discussed in the subsections (3.3.1)
and (3.3.3), when De = 0 (i.e. Newtonian fluid), and a similar comparison with CFD simulations
presented in section (3.4), when the base fluid is viscoelastic, i.e. De 6= 0.

The swimmer placed inside the container with the base fluid was approximately neutrally
buoyancy. Therefore it persists suspended in the container as illustrated in figure (3.2), without
submersion nor climbing, for a period of time sufficiently large in order to make the measurements
in the absence of gravity effect. The interval of time that the swimmer must stay suspended in the
base fluid can be estimated as being a period of time much larger than the typical time scale of the
swimmer motion, i.e. L/Vp, but much smaller than the characteristic Stokes time scale µ/(Lg∆ρ).
Namely, L/Vp � (∆t)exp � µ/(Lg∆ρ), where L is a typical size of the swimmer movement and Vp
denotes a typical value of the propulsion velocity of the swimmer, g is the gravity, µ the viscosity of
the base fluid and ∆ρ is the density contrast swimmer and base fluid. In our experiments the value
of this time interval was about 120 s, that is a consistent value with the scaling described above
and a sufficient time for recording a realization of the helical swimmer movement. In addition, a
constant rotational frequency by the DC power supply was provided in order to actuate the small
synthetic swimmer system. The swimmer was connected to the force and torque measurement
system and the motion of the swimmers was filmed with the digital camera as described in section
(3.2). Then, the images were then processed digitally and the position and speed determined in
time. Several realizations of the experiments were done with the three prototype of swimmers in
order to have a meaningful statistics (i.e. small error bars) over the experimental data. Taking
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into account that base fluids used had different viscosity, we monitored the angular frequency in
order to carry out the experiments for both fluids tested with approximately the same Reynolds
and Strouhal numbers. In this way, we were able to focus on the elastic effects of the base fluid,
represented by the Deborah number, on the propulsion motion of our prototypes of swimmers.

Now, in order to determine the force exerted on the helical swimmer by the fluid, the swimmer
helix was rotated at a given frequency, f . For this end, we monitored the electrical power supplied
by the DC voltage during the experimental tests to the system to achieve different frequencies.
The average propulsive force (F ∗), the propulsive torque (T ∗), velocity U , Strouhal number (Sh),
Reynolds number (Re) and consequently Re/Sh, U/λf associated with each helical tail are cal-
culated using the procedure already described in section (3.3). The average force and torque
are made non-dimensional by using the scalings F0 = µωR2 and T0 = µωR3, respectively. The
average values of these quantities for the three model of swimmer helices investigated here are
summarized in Table (3.4) and Table (3.5) when the base fluid is Newtonian and an elastic liquid,
respectively. It should be important to note that the e helical tail type (1) is seen to produce the
highest non-dimensional average force (17.21) and torque (144) when the base fluid is the elastic
liquid (PAMA) and 14.21 e 127 in the case of the Newtonian fluid (i.e. silicone oil) which seems
to be consistent with the trend of the generated propulsive velocity. This results seems to indicate
that the base fluid elasticity increases the average propulsive force and torque required for the
swimmer motion. Consequently it may be indicating that the extra elastic forces which appear in
the base fluid due to the anisotropy (i.e. additional normal stresses) produced by macromolecules
stretching along the flow streamlines may increase significantly the speed velocity of the swimmer
in the swimming direction.

Table 3.4: Typical non-dimensional parameters used in the experiments carried out to determine
the propulsive force and torque on a swimmer suspended in Newtonian fluid (silicone oil). Three
types of swimmer helices were examined.

Types L/R a/R Re Sh Re/Sh U/λf F ∗ T ∗

Type 1 5.5 0.06 0.0507 0.0704 0.720 14.2 14.21 127

Type 2 8.33 0.09 0.072 0.116 0.640 8.62 9.29 81.8

Type 3 6.25 0.07 0.124 0.154 0.805 6.5 7.32 66.9
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Table 3.5: Typical non-dimensional parameters used in the experiments carried out to examine
the propulsive force and torque on a swimmer suspended in non-Newtonian fluid (elastic liquid
- PAMA). Three different types of swimmers helices were examined. So we consider in this case
Deborah number varying from 0 to approximately 2.

Types L/R a/R Re Sh Re/Sh U/λf F ∗ T ∗

Type 1 5.5 0.06 0.041 0.0699 0.586 14.3 17.21 144

Type 2 8.33 0.09 0.073 0.114 0.640 8.77 10.91 91.2

Type 3 6.25 0.07 0.108 0.1431 0.754 6.98 7.62 71.8

According to tables (3.4) and (3.5), the Reynolds numbers (Re) for the three configurations
of flagellum is much less than one, that means a creeping flow condition of the swimmer motion.
In table (3.4) and (3.5), the Strouhal numbers (Sh) for the three helical tails were calculated and
compared. The maximum difference between each helical tail being about 10% with the highest
value of Strouhal number occurring for the flagellum helix type (3). In addition, it can be seen
that for both base fluids (i.e. Newtonian and Non-Newtonian fluids used) the Reynolds number
presents a similar trend with the highest value occurring at helix type (3). Moreover, smaller
Reynolds numbers are achieved by the flagellum with helix type 1. Actually, we noted that this
flagellum although having the same length as other other two, it has a greater number of turns
N . Consequently the wavelength (λ) of the flagellum type (1) is smaller and adjacent turns of
the flagellum become closer in space. This configuration makes the flagellum more robust and
presenting a higher hydrodynamic viscous force for its motion on the base fluid. It should be
important to note that the ratio Re/Sh is also small in the investigated creeping flows. In the
case of unsteady creeping flows, the relative magnitude of the Eulerian acceleration is determined
by the ratio Re/Sh. Our experimental results from table (3.4) and (3.5) indeed show small values
for both Re and the ratio Re/Sh. Therefore, we have explored a quasi-steady Stokes regime of flow
in the experiments and simulations. Under these conditions, the hydrodynamic force and torque
on the micro swimmers are considered approximately time independent. Additionally, we have
also calculated the non-dimensional velocity U/λf that represents a slip parameter expressing the
relative importance between a typical linear velocity of the swimmer motion and the wave velocity
λf generated by the flagellum motion. Here λ and f are the wavelength and the frequency of
the swimmer flagellum, respectively. The small motor controlling the motion of the flagellum has
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operated in our experiments at a constant frequency f ≤ 10Hz. The motor provides a linear stage
that translates with velocity, 0.3 mm/s along the axial direction of the helix. In the table (3.6)
we present some typical experimental data. The uncertainty of the DC power is the uncertainty
in the voltage source given by the manufacturer as being equal to 0.01. For the other parameters,
the uncertainty was calculated from a set of measurements. For instance, we found 0.04 as being
the uncertainty in the frequency and finally for linear velocity, force and torque the uncertainty
was approximately 0.02.

The experimental results of the ratio U/λf shown in tables (3.4) and (3.5), were just slightly
different for the viscous and elastic fluid for the same type of flagellum. Therefore, the elasticity of
the base fluid does not appear to have a considerable influence on the slip between the propulsion
velocity of a swimmer and the wave velocity propagation produced by its helical flagellum motion.
It is seen that U/λf ≈ 14, 9 and 7, for the flagellum type 1, 2 and 3, respectively. This result seems
to be different of the slip parameter observed in absence of helical motion as the one examined in
the studies presented in the references [19] and [115] for nematic active suspensions in Newtonian
and non-Newtonian fluids, where U/λf ≈ 1.

Results for non-dimensional force and torque, as a function of the Strouhal number (Sh), ge-
nerated by the flagella for the three different configurations investigated in silicone oil (Newtonian
base fluid), are presented in Figure (3.10). The force and torque on the swimmers here were
obtained by using the systems load cell measurements already described in section (3.2). Firstly,
we can see that the flagellum with smaller wavelength λ experiences larger hydrodynamic force
and torque as keeping the helices with the same length. Secondly, we observe that all examined
flagellum configurations result in a nonlinear Strouhal force and torque dependence. These results
indicates that the propulsive force and torque required to generate the motion of the swimmer
remain varying with its speed during the time scale of an experimental realization. Actually,
the propulsive force and torque are generated in the swimmer tail by storing elastic energy in
the buckling and this mechanism competes with the viscous hydrodynamic drag. This behavior
should also be associated with the velocity variations between each pitch of the flagellum helix.
Additionally, as already expected figure (3.10) shows that both F ∗, T ∗ decrease as Sh increases
since in this paper Sh has been defined as being the inverse of the non-dimensional frequency.

The influence of the base fluid viscoelasticity on the dynamics of the swimmer motion is also
investigated here. Figure (3.11) shows the non-dimensional force and torque on the swimmer as a
function of the elastic parameter De for the three different configurations of the flagellum explored
in this work. The base fluid is an elastic liquid (i.e. the polymeric solution - PAMA). Comparing
the results of force and torque shown in the plots of Figures (3.10) and (3.11) respectively, we
observe values of forces torques with the same order of magnitude for both cases: that is, as the
base fluid is Newtonian or viscoelastic one. It is seen that the flagellum configuration with shorter
wavelength helix (i.e. helix 1) leads to larger values of force and torque on the swimmer flagellum.
Additionally, figure (3.11) shows a nonlinear dependence of propulsive force and torque on the
elastic parameter De. More important, the dynamic quantities F ∗ and T ∗ increases as the elastic
parameter De varies from 0 to 2.5. As we will see next, the increase in F ∗ and T ∗ with De can
be directly related to the increase of the swimmer speed in the presence of the elastic force when
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Table 3.6: Dimensional experimental measurements and associated errors for: frequency (Hz),
propulsion velocity (mm/s), force (mN) and torque N m).

helix (1)

f [Hz]

error (4%)

U [mm/s]

error (2 %)

F[mN]

error (2%)

T[Nm]

error (2%)

1.25—8.44 0.025—0.107 42.92— 47.04 0.084—0.997

helix (2)

f [Hz]

error (4%)

U [mm/s]

error (2 %)

F[mN]

error (2%)

T[Nm]

error (2%)

2.05—9.15 0.037—0.137 30.05— 37.11 0.107–0.118

helix (3)

f [Hz]

error (4%)

U [mm/s]

error (2 %)

F[mN]

error (2%)

T[Nm]

error (2%)

2.76—10.12 0.056—0.205 22.32— 29.65 0.113–0.131

De is nonzero. As discussed in section (3.3), under condition of creeping flow the hydrodynamic
force and torque on a body must scale like LsUs and L3

sωs, respectively. Here Ls, Us and ωs are
typical scales of the length, velocity and angular velocity of the swimmers.

Now, we investigate the influence of the base fluid elasticity on trajectory and the swimming
speed. For this end, we set the initial position of the swimmer closer to the top of the box and
the swimmer is released freely in the fluid as described in section (3.2). The experiments were
conducted for swimmer with similar kinematics in both base fluids. So, we expect to be exploring
much more the elastic contribution to the motion of our swimmers than changes produced by
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variation in the kinematics. Figure (3.12) (a,b) shows, respectively, a typical trajectory and the
speed of the swimming for the three flagellum configurations studied here. The trajectory of
the helix is shown in in terms of non-dimensional variables in the x∗-y∗ two-dimensional space.
Therefore, x∗ y∗ and u∗, v∗ denote non-dimensional position and velocity respectively. In order t
present the results in terms of non-dimensional quantities, we have used the following appropriate
scales: t∗ = texp/tscale; x∗ = x/Lscale; y∗ = y/Lscale; u∗ = u tscale/Lscale; v∗ = v tscale/Lscale. In
the present context, texp, is the time scale of experiment, tscale = 1/f is the time scale based on a
typical frequency of the body motion, Lscale = Lbox.

The results are presented for both base fluids: the swimmer immersed in the Newtonian fluid
(silicon oil) and the elastic liquid (PAMA) for De = 1.3. In figure (3.12 a), we can see that while
the shape of the trajectories are qualitatively similar for the three types of flagellum tested, the
transversal displacement of the swimmer inside the elastic liquid is considerable faster as compared
with its motion inside the Newtonian viscous liquid. In figure (3.12 b) we can observe a remarkable
increase in the transversal speed (at the same value of u∗) of the swimmer as the base fluid is the
viscoelastic liquid. Same observations are seen for the three different types of flagella. The results
point out that the elastic forces arising from the macromolecules stretching in the non-Newtonian
liquid acting on the swimmer surface is a favorable effect to its motion, promoting a remarkable
increasing in the velocity of the body along the main swimming direction. As the swimmer moves
its head sideways, a net forward motion is produced.

Additionally to the results shown in figure (3.12), we present in figure (3.13) a supplementary
plot of the non-dimensional transversal velocity vNN/vN as function of the elastic parameter De,
for the case of helix type (1), in order to compare the motion response as the helical swimmer is
suspended in the Newtonian and the elastic liquid (PAMA). It is interesting to note the remarkable
increase of the transversal swimming speed vNN/vN in the elastic liquid as the Deborah number
increases until approximately one (i.e. De ∼ 1). The maximum ratio vNN/vN observed in the
experiments was about 1.3, for De ≈ 1, which corresponds to an significant increase of about
23% when just few ppms of the macromolecules is used in the polymeric solution of PAMA. We
verify similar behavior for the other types of flagellum models. It is also see from figure (3.13)
that for De number below 0.5 the elastic effect on the swimmer speed is not perceptible. In this
condition the macromolecules are not sufficiently stretched to produce stress anisotropy and an
elastic force on the body surface. Above De = 0.5, however, there is a systematic increase of the
speed velocity until a critical Deborah number close to 1. The streamlines surrounding the helical
swimmer may produce a net force on the particle that pushes it enchaining its propulsion speed
until a saturated value, depending on the De at a given macromolecules concentration. For larger
De (i.e.De > 1) we can see clearly this saturation of the vNN/vN . At these larger values of De, we
conjecture that the macromolecules have reached the maximum possible stretch for the volume
fraction of the polymer used and further increases of De may produce degradation in the elastic
base fluid. The slightly variations in vNN/vN when De > 1 can be associated to the fluctuations
in the measurements associated with the experimental error bars also shown in the plots.

Another interesting finding was to see that the ratio between the velocity component in the
transversal direction and longitudinal direction v/u (i.e. velocity anisotropy) was approximately
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independent of the De number. This anisotropy varies just slightly with De (i.e. within the
experimental error bars) with an average value approximately to 1.2. In contrast, this result
indicates that an increase of the elastic effects in the base fluid has not produced appreciable
changes in the velocity anisotropy of the swimmer motion.

In summary, our experimental results have found that the non-dimensional velocity of the
swimmers appears to be incremented by the action of elastic force on the active body as it is
suspended in a non-Newtonian fluid. For all cases investigated in this work, the swimming speed
was seen to be larger when the surrounding liquid was viscoelastic. Therefore, our results seems to
be at least in qualitative agreement with the previous experimental results presented in a different
context of active macroscopic magnetic swimmers (e.g. [53] and [51]).
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Figure 3.10: Experimental results of the hydrodynamics force and torque on the flagella as
a function of Sh for the three different configurations examined in this work. The base fluid
associated with these plots was the silicone oil (i.e.Newtonian fluid). (a) Non-dimensional force
versus Sh and (b) Non-dimensional torque versus Sh.

Now, we test the accuracy of our experimental method by performing numerical simulations
for a Newtonian (De = 0) and a non-Newtonian base fluid (De 6= 0). For the case of Newtonian
fluid we performed numerical calculations using both slender body theory (SBT) and the method
of regularized Stokeslet (RSM) presented in section (3.3). For this end, we show in Figure (3.15)
(a) and (b) the non-dimensional hydrodynamic force and torque, respectively, on the artificial
helical swimmer for a fixed axial length of the flagellum as a function of Sh varying from 0 to
about 1.2. As mentioned before the Reynolds number was considered very small and De = 0.
We can see a very good agreement between the theoretical predictions of F ∗ and T ∗, given by
SBT and RSM, and the experimental data in the interval of Sh considered. Clearly, the good
agreement is observed specifically for the higher Sh, within the error bars of the experimental
data, i.e. when the ratio Re/Sh ≪ 1 and the hydrodynamic drag on the particle is indeed very
close to the stationary condition. One other significant observation evident from Figure (3.15)a,
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Figure 3.11: Experimental results of hydrodynamics force and torque on the flagella as a function
of De for the three different configurations investigated here. The base fluid associated with these
plots was a polymeric solution - PAMA (i.e. an elastic liquid). (a) Non-dimensional force versus
De and (b) Non-dimensional torque versus De.

b is that the theoretical results given by SBT and RSM can be seen as a type of lower and upper
bounds, respectively, for the experimental data as Sh > 5. These comparison also demonstrates
the consistency of our experimental procedures and the accuracy of the measured data at creeping
flow condition.

Finally, we present a comparison for the non-Newtonian and Newtonian velocity ratio vnn/vn
as a function of De measured experimentally and calculate numerically by the CFD procedure
for a viscoelastic fluid described in section (3.4). Here the ratio Re/Sh is also kept small and
De is varying from 0 to approximately 2. In figure (3.16) we can see a good agreement between
experiments and simulation results within the error bars of the experimental data. However, while
the experiments have shown a saturation of vnn/vn for De ∼ 1, the numerical simulations predicts
a systematic increase of the speed velocity with De. A possible explanation of this discrepancy in
the behavior of vnn/vn is the fact that the viscoelastic-Oldroyd model described in section (3.4) is
not capturing correctly the viscoelastic response of the base fluid as De increases, since Oldroyd
B model assumes infinite extensibility of the polymer chain. We argue that the macromolecules in
the numerical simulations continue being stretched by the flow at larger De in contrast with the
experiments. However the simulations performed here were nonetheless a first step in the more
general and complete problem of active helical swimmers in elastic liquids, which may be relevant
to understand the physics of dilute active suspension.
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Figure 3.12: A comparison between the trajectories and speed of the swimmer immersed in a
Newtonian fluid (silicon oil) and non-Newtonian fluid (PAMA) for De = 1.3. The different curves
in the plot represent the three types of flagella examined. (a) Normalized swimming trajectory
and (b) non-dimensional swimmer speed (transversal component versus longitudinal one). The
experimental error bars are also shown in the plot. The symbols in the plot are: black circles
represent helix (1); black crosses represents helix (2); and squares denote helix (3) measurements.
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Figure 3.13: The ratio between the swimmer transversal velocity for the case of non-Newtonian
fluid (PAMA) vNN and the swimmer transversal velocity for the case of Newtonian fluid (silicon
oil) vN as a function of the elastic parameter Deborah number. The helix configuration used was
the type (1).
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Figure 3.14: The ratio between the velocity component in the transversal direction and longitudi-
nal direction v/u as a function of the elastic parameter Deborah number. The helix configuration
used was the type (1).
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Figure 3.15: Non dimensional propulsive force (a) and non-dimensional torque (b) for a helical
swimmer for the case of a Newtonian base fluid (Re � 1 and D = 0). Numerical results from
SBT theory are represented by the dotted line whereas the predictions based on the Reguralized
Stokeslest method are represented by the solid lines. The experimental data are represented by
the black circles and the associated error bars are also shown.

97



 

0.9

1

1.1

1.2

1.3

1.4

1.5

 

 
0 0.5 1 1.5 2

Figure 3.16: The ratio between the swimmer transversal velocity for the case of non-Newtonian
fluid (PAMA) vNN and the swimmer transversal velocity for the case of Newtonian fluid (silicon
oil) vN ) as a function of the elastic parameter Deborah number. The helix configuration used
was the type (1). Numerical results are represented by the solid line and experimental results are
indicated with black circles. The experimental error bars are also shown in this plot.
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Chapter 4

Study of kinematic simulations of
magnetic bacteria in creeping flow

In this chapter, we explore the kinematics of magnetic bacteria with different numbers of
particles in the chain. We study chain of particles consisting of set of spheres linked with each
other. For this end, we propose a numerical procedure to study the motion of chains of magnetic
particles representing a magnetic bacterium. For this end, we use Langevin Dynamics simulations
with defined boundary condition in the numerical box of the suspension. The governing equation
for low Reynolds number are integrated and the time developing of the suspension can be explored.

4.1 Formulation of the Problem

The configuration under study consists of an individual or a chain of spherical particles as
shown in figure (4.1). These chains of particles, which we call magnetic snakes represent a column
of a magnetic bacterium. Let’s explore the kinematics of representation with different numbers
of particles in the chain. This configuration is important because, in addition to the particle-
particle interactions in the chain, we have also the interaction of the chain with the particles in
the suspension in its neighbor of isolated particles. We note that the suspension generated in
the vicinity of the magnetic chain could be mono-dispersed, but the chain itself is composed of
poly-dispersed particles because the representation shows that we have the larger head and the
tail has a line with particles smaller than the head.

Here we consider a dilute suspension composed of two species of rigid smooth magnetic spheres
of radius a1 and a2, and respective densities ρ1 and ρ2. We associate to each particle and mag-
netizations M1 and M2 suspended in a Newtonian fluid of density ρ and viscosity µ. We assume
the inertial effects are neglected, as we have small particle Reynolds numbers so that the creeping
flow equations can be applied in the scale of the particle motion. The suspension is submitted to
a settling motion so that the uniform gravitational force per unit mass.
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Figure 4.1: Assemblies of magnetic bacterium, here the chain contains 1 particle (Np=1) or 3
particles (Np=3).

4.1.1 Formulation for modelling the movement of one spherical swimmer

We start our study by describing the motion of one swimmer. We determine the movement for
one snake under gravitational, viscous forces, and the Brownian movement imposed by molecules
of the base liquid. We consider small particles, with diameters 10−6 m. We note that the viscous
effect due to the viscous forces over the particle dominates inertial effect ones and since the particle
itself is small.

The dimensional equation that governs the movement of the particle is given by Newton’s
second law, expressed by the well-know stochastic Langevin equation, namely:

ms
du

dt
= −6πµasu+ fb +mg, (4.1)

where ms denotes the mass of the particle, u is the velocity of the particle, t is the variable time,
µ is the fluid’s dynamic viscosity, as represents a typical radius of the spherical particle, g is the
acceleration vector of gravity, fb is the stochastic Brownian force.

Then lets us write the non-dimensional form of the equation (4.1).

St
du∗

dt
+ u∗ =

√
2
Pe
f∗ − ê3. (4.2)

In this case the characteristic scales used are:

|u| ∼ us, t ∼
as
us
, |fb| ∼

(2D0us
as

) 1
2

6πµas. (4.3)
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Figure 4.2: Assemblies of magnetic bacterium, here the chain contains 4 particle (Np=4) or 6
particles (Np=6).

where us is the Stokes velocity of a isolated particle. Here, St is Stokes number, which represents a
ratio between relaxation time of the particle and the convective flow time, and Pe Peclet number,
associated with a ratio between a Brownian diffusion time scale and a convective flow time. In
addition, D0 is the Stokes-Einstein Brownian diffusion coefficient given by the expression

D0 = kBT

6πµas
, (4.4)

where kB is the Boltzmann constant, T the temperature. The non-dimensional parameters St and
Pe are given respectively by:

St = msus
6πµa2

s

, P e = usas
D0

(4.5)

We use fourth-order Runge-Kutta method to solving the particle velocity, and the position of
the particle is calculated using the Euler method applied to the equation:

dx∗

dt∗
= u∗. (4.6)

Now, it is possible to calculate the following properties of interest, such as autocorrelation of
velocity fluctuations, their variance, and the diffusivity.

The expression of the autocorrelation is given by:

C̃(τ̃) = e−τ̃ /St

PeSt
I. (4.7)

Here, I is the identity second-rank tensor, τ̃ = 1/St dimensionless correlation time.
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The variance of velocity is given by :

〈u∗(t)u∗(t)〉 = I

PeSt
(4.8)

For the calculation of the diffusivity tensor, the kinematic definition of velocity is used, and by
Einstein’s argument for the self-diffusion coefficient according to reference [116], and we have:

〈x∗(t)x∗(t)〉 = 2Dt. (4.9)

4.2 Langevin Dynamics applied to magnetic swimmers

In the Langevin Dynamics method applied to magnetic swimmers, the hydrodynamic and the
magnetic equations are integrated, and thus, the temporal evolution of the suspension is carried
out. In this case, a system of equations coupled stochastic differentials for translation and rotation
of each particle are integrated numerically. So the suspension starting from an initial particle
configuration, evolves dynamically over time, to a structure determined through this integration
numeric. The dimensional equations that govern the movement of each particle of the suspension
monodisperse magnetic field with hydrodynamic interactions and other forces are given by:

mi
dui
dt

= f ih + f id + f iem + f ib + f ir + f ic + f ig. (4.10)

In equation (4.10), mi is the mass of the particle i, ui is the velocity of the particle i, f ih is
the hydrodynamic force, f id is the magnetic dipolar force, f iem is the external magnetic force, f ib
Brownian force, f ir is the repulsive force, f ic is the contact force, finally f ig is the gravitational
force.

For the rotational motion of the particles, we consider all the torques acting on the parti-
cles. The dimensional equations that govern the movement of each particle of the suspension a
monodisperse magnetic field with hydrodynamic interactions and other torques are given by:

Ji
dωi
dt

= T ih + T id + T iem + T ib. (4.11)

In equation (4.11), Ji is the polar moment of inertia of the particles i, ωi is the angular velocity
of the particle i, T ih is the hydrodynamic torque, T id is the magnetic dipolar torque, T iem is the
external magnetic torque, T ib Brownian torque.

4.2.1 Calculation of the hydrodynamic forces and torques

The hydrodynamic forces and torques can be found by inverting the equation (4.12). Here aij ,
bij , cij are second-rank tensors which together form the mobility matrix. See [92] for details about
these coefficients. In this form, the linear relation is called mobility formulation. Knowledge of
the mobility matrix enables the determination of the hydrodynamic forces and torques over the
particles via inversion of (4.12), once the linear and angular velocities are known. In this inverted
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form, where the forces and torques are the dependent variables, the linear relation is named the
resistance formulation. In this form, the equations for force and torque are often written as:

u1

...

un

ω1

...

ωn



= − 1
µ



a11 · · · a1n b11 · · · b1n

... . . . ...
... . . . ...

an1 . . . ann bn1 . . . bnn

b11 . . . b1n c11 . . . c1n

... . . . ...
... . . . ...

bn1 . . . bnn cn1 . . . cnn





fh1

...

fhn

T h1

...

T hn



(4.12)

4.2.2 Calculation of Magnetic Forces and Torques

Based on [25] and [117] we can write the expression for the potential of magnetic interaction
in the dipolar matter. Magnetic forces and torques acting on a particle, or magnetic dipole, due
to particle-field or particle-particle interaction. To calculate the magnetic force, consider a small
magnetized body due to the application of an external magnetic field as shown in the figure (4.3).
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Figure 4.3: Magnetic forces due to the application of a magnetic field to a small element of
polarized magnetic substance, [4]

This figure represents a small cylindrical element of a magnetically polarized substance, in
which the magnetization vector M is aligned with the geometric axis in the direction d. An
external magnetic field H0 acts on this material, and poles of densities ρs = µ0M appear in the
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same quantities and with inverted polarities in the side areas ad. It is also observed that the
particle volume is given by δV = add. The applied external magnetic field can be interpreted as a
magnetic force by magnetic pole, thus, the force acting on the element due to the H field is given
acording to reference [4] by:

fhm = −H0ρsad + (H + δH0)ρsad = δH0ρsad , (4.13)

where δH0 is the variation of H0 along the direction d. Using the Taylor series, for a first order
approximation in δH0, it turns out that

δH0 = H0(x+ d)−H0(x) = (d · ∇)H0 . (4.14)

Since d andM are parallel, you can write d = d
M

M
, where d is the magnitude of d. Thus the

term δH0 can be expressed as

δH0 = (d · ∇)H0 = d

M
(M · ∇)H0 , (4.15)

replacing the equation (4.15) in (4.13), we have to

fhm = δH0ρsad = d

M
(M · ∇)H0(ρsad) . (4.16)

Dividing the equation (4.16) by δV = add and noting that ρs
M

= µ0, we have that the force
per unit of volume that acts on the element is given by

fhm
δV

= µ0(M · ∇)H0 . (4.17)

From the figure (4.3), we can also deduce the magnetic torque that acts over the magnetized
element. Consider d small, such that the applied magnetic field be spatially uniform, so that
δH0 = 0. It follows that the torque is given by:

T hm = ρsad(−r1 ×H0 + r2 ×H0) = ρsad(r2 − r1)×H0 , (4.18)

note that from the figure (4.3), we have that r2 = r1 + d, like this d = r1 − r2. Substituting this
result in (4.18), we have to:

T hm = ρsadd×H0 , (4.19)

like ρsadd = µ0MδV , we obtain
T hm
δV

= µ0M ×H0 , (4.20)

or:

T hm = µ0m×H0 . (4.21)

And therefore, due to the misalignment between the magnetization vector and the magnetic
field, the element is in the presence of magnetic torques.
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4.2.3 Modelling Brownian Forces and Torques

Two hypotheses characterize the random force fb(t). First, Brownian forces are considered
random in direction and magnitude, so fb(t) is a random vector with isotropic characteristic, and
the second, the non-correlation in the temporal scale of the particle. Thus, according to these
hypotheses, the Brownian movement is characterized by a random signal in time known as white
noise. These conditions can be expressed mathematically by:

〈fb(t)〉 = 0,
〈
fb(t)fb(t′)

〉
= F δ(t− t′), (4.22)

where δ(t − t′) is Dirac’s delta function, F is an associated second-order tensor the intensity of
Brownian forces. To determine the autocorrelation of the speed of a particle subject to Brownian
motion, an average of achievements in the Langevin equation . In this way, it is obtained that:

〈u(t)〉 = e−ζt

m

∫ t

0
eζα 〈fb(α)〉 dα , (4.23)

in sequence, taking the average of realizations in the u(t)u(t′) tensor and applying the white noise
condition, equation (4.22), we have to

〈
u(t)u(t′)

〉
= e−2ζt

m2

∫ t

0

∫ t

0
eζ(α+α′) 〈fb(α)fb(α′)

〉
dαdα′

= e−2ζt

m2

∫ t

0

∫ t

0
eζ(α+α′)F δ(α− α′)dαdα′ . (4.24)

Now consider the following result we have then:
∫ t

0
eζ(α−α

′)F δ(α− α′)dα = F e2α′ζ , (4.25)

using the equation (4.25) in (4.24) and after calculating the integral, the following expression is
obtained for the autocorrelation function of velocities:

R(t− t′) =
〈
u(t)u(t′)

〉
= e−ζ(t−t

′) F

12mπηa , (4.26)

where t − t′ is an interval in which fb(t) suffers many fluctuations, but the enough that u(t)
does not vary significantly, which represents the condition of quasi-permanent Stokes regime. Note
that autocorrelation has a characteristic of the stationary process because it depends only on t−t′.

According to [95], the kinetic energy of particles is divided equally between the three translation
modes, so from the principle of energy equipartition, the expression is given by:

m

2
〈
u(t)u(t′)

〉
= kBT

2 I , (4.27)

where kB is the Boltzmann constant and T is the absolute temperature of the fluid. Comparing
the equations (4.26) and (4.27) for t− t′ = 0, we obtain
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F = 12πηakBTI. (4.28)

The equation (4.28) relates the intensity of the Brownian force to the frictional forces that
dissipates the energy of fluctuations. Both stem from the interaction between the particle and the
fluid environment but differ substantially in time scales, [116]. You can write that the Brownian
force scales with the radius of the particle, while the weight with the radius raised to the cube,
explaining why aggregates with more particles are dominated by the differential sedimentation
process, while smaller aggregates are subject to Brownian movement, [4]. As observing processes
on the time scale a nanosecond is difficult, the main consequence observable in the Brownian
movement is the displacement instead of speed. Replacing the equation (4.28) in (4.22) and later
taking the trace, the Fluctuation-Dissipation theorem is obtained, given in terms math by:

〈
fb(t) · fb(t′)

〉
= 12πηakBT3δ(t− t′) = (6πηa)(6kBT )δ(t− t′) , (4.29)

where the term 6πηa is responsible for the energy dissipation of the system, whereas the term
6kBT is associated with the thermal agitation of the fluid, inducing speed fluctuations in the
evaluated particle. Through the equation (4.29), one can infer a typical magnitude (module) for
the random force vector fb(t) in its dimensional form. note that

|fb| =
√
〈fb(t) · fb(t′)〉 =

√
(6kBT )(6πηa)

δτ
= 6πηa

(6D
δτ

)1/2
, (4.30)

here we have δτ = 1/δ(t − t′) is a time associated with the impulse of the Brownian movement
and

D = kBT

6πηa , (4.31)

is the Stokes-Einstein Brownian diffusion coefficient. In this way, the Brownian force is given by:

fb(t) = 6πηa
(6D
δτ

)1/2
ξ , (4.32)

where ξ is the random vector that has a uniform distribution [−1, 1]. Brownian torque is given
by:

Tb = 8πηa3
(6Dr
δτ

)1/2
ξ , (4.33)

where Dr is the Stokes-Einstein Brownian Diffusion Rotational Coefficient expressed as:

Dr = kBT

8πηa3 . (4.34)

4.2.4 Repulsive and Contact Forces

We account for mechanisms which prevent the overlap of particles throughout the simulation.
Instead of considering the detailed lubrication forces arising from hydrodynamic interactions at a
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short-range, which are computationally costly, we only consider short-range repulsion due to sur-
factants or contact. Nevertheless, the effect produced is qualitatively the same, the superposition
of particles is avoided. The surfactant layer repulsion force between two particles is given by [25].

F rij =


−πNsupKBT (ai + aj − 2δs)2

2δs
ln(ai + aj

rij
)r̂ij , −2δs < εij < 0,

0, otherwise.

(4.35)

Here we have Nsup is the surface density of surfactants, δs is the thickness of the surfactants
layer, finally the gap between particles is defined εij = rij−ai−aj Now describing the Hertz force
due to contact of two overlapping spheres we have:

F cij =


−κ

[
( 1
ai − δs

+ 1
aj − δs

)
−1
δ3
ij

] 1
2

r̂ij , δij > 0,

0, otherwise.

(4.36)

Here κ is a constant related to material properties of the particles and δij = εij−2δs is the virtual
overlap of the magnetic cores. The total repulsion and contact forces are given by sums of equation
(4.35) and (4.36) over all the particles.

4.2.5 Dimensionless Form of The Equations

After presenting the equations of the forces and torques, we need to write in dimensionless form
each equation to reduce the number of parameters to improve the performance of the numerical
code and to identify the dimensionless groups effectively relevant to the simulation of the system,
to research the influence of such on the variables under study. The dimensionless equations for
the swimmers become:

St
du∗i
dt

a∗3i = f∗ih + f∗id + f∗iem + f∗ib + f∗ir + f∗ic + f∗ig, (4.37)

and
St

3
10
dω∗i
dt

a∗5i = T ∗h
i + T ∗d

i + T ∗iem
+ T ∗b

i. (4.38)

The characteristic scales adopted are:
rij ∼ 〈a〉, ui ∼ 〈us〉, t ∼

〈a〉
us

, ωi = us
〈a〉

, F i = 6πµ〈a〉us, T i = 8πµ〈a〉2us and H ∼ H0.

Here we have:
us = 2∆ρg〈a〉2g

9µ , (4.39)

is the Stokes velocity of a particle with radius 〈a〉 and H0 is the suitable scale of the external
magnetic field: the intensity of a constant field or M4π .
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4.2.5.1 Dimensionless hydrodynamic force and torque model

We define a procedure to obtain the coefficients of the dimensionless form for hydrodynamic
force and torque. We propose the following non-dimensional mobility matrices:

u∗1

...

u∗n

ω∗1

...

ω∗n



= −



a∗11 · · · a∗1n b∗11 · · · b∗1n

... . . . ...
... . . . ...

a∗n1 . . . a∗nn b∗n1 . . . b∗nn

b∗11 . . . b∗1n c∗11 . . . c∗1n

... . . . ...
... . . . ...

b∗n1 . . . b∗nn c∗n1 . . . c∗nn





f∗h1

...

f∗hn

T ∗h1

...

T ∗hn .



(4.40)

In the new model the coefficients are defined by:

a∗ii = I

a∗i
, a∗ij = 3

4r∗ji

[
I + r̂jir̂ji +

a∗2i + a∗2j
3r∗2ji

(I − 3r̂jir̂ji)
]
, j 6= i (4.41)

b∗ii = 0, b∗ij = −3ε · r̂ji
4r∗2ji

, j 6= i, (4.42)

and
c∗ii = I

a∗3i
, c∗ij = 1

2r∗3ji
(I − 3r̂jir̂ji) , j 6= i. (4.43)

4.2.5.2 Dimensionless magnetic dipolar force and torque model

Now, let’s introduce the dimensionless form for the magnetic dipolar force and torque model.
Then, the new expression is:

f∗di = λ
N∑

j=1, j 6=i

(a∗i − δ∗s)
3
(
a∗j − δ∗s

)3

r∗4ij
[(m̂i · m̂j)r̂ji + (m̂i · r̂ji)m̂j + ˆ(mj · r̂ji)m̂i

− 5(m̂i · r̂ji)(m̂j · r̂ji)r̂ji] (4.44)

and

T ∗di = 3λ
4

N∑
j=1, j 6=i

(a∗i − δ∗s)
3
(
a∗j − δ∗s

)3

r∗3ij
[(m̂j · r̂ji)m̂i × r̂ji −

1
3(m̂i × m̂j ] (4.45)
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In the this equations we define δ∗s = δ

〈a〉
. For the external magnetic in the non-dimensional

form field, the following form relations are obtained for force and torque are:

f∗mi = αa∗3i m̂i · ∇∗H∗, T ∗mi = 3
4αa

∗3
i m̂i · ×H∗. (4.46)

4.2.5.3 Dimensionless Brownian force and torque model

Expressions in the Brownian force and torque equations can be combined to dimensionless
form. We have:

F ∗bi =
( 2a∗i
Pe∆t∗

)1
2 nF , T ∗bi =

( 3a∗i
2Pe∆t∗

)1
2 nT , (4.47)

where: 〈nF 〉 = 〈nT 〉 = 0 also 〈nF (t∗)nF (t∗)〉 = 〈nT (t∗)nT (t∗)〉 = I.

4.2.5.4 Dimensionless Repulsive, Contact and Gravitational force model

We propose a new expression changing the formula in the expressions for repulsive, contact,
and gravitational force to the dimensionless form. The expressions became respectively:

F ∗rij =


−
πN∗supKBT (a∗i + a∗j − 2δ∗s)2

2δ∗sPe
ln(

a∗i + a∗j
r∗ij

)r̂ij , −2δs < εij < 0,

0, otherwise.

(4.48)

F ∗cij =


−κ∗

[
( 1
a∗i − δ∗s

+ 1
a∗j − δ∗s

)
−1
δ∗3ij

] 1
2

r̂ij , δij > 0,

0, otherwise.

(4.49)

and

F ∗gi = −a∗3i ê3 (4.50)

Finally we get:

F ∗ri =
N∑
i=j
i 6=j

F ∗rij , (4.51)

and

F ∗ci =
N∑
i=j
i 6=j

F ∗cij . (4.52)

Choosing: N∗sup = Nsup〈a〉2 , κ∗ = 〈a〉 κ

6πµus
and δ∗ij = δij

〈a〉
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4.3 Computational Procedure

4.3.1 Non-dimensional physical parameters parameters used in modelling

After writing the equations in in a non-dimensional form, note that there are some parameters
that appear in dimensionless form. Non-dimensional physical parameters numbers are fundamen-
tal importance in the parametric analysis of our problem. This section refers to the definition of
these parameters.

The Stokes number and the Péclet number are the physical parameters of the problem. In
our model we denote by: St, the Stokes number, which represents a relationship between time
scales of the paticle relaxation time and the convective time of the flow, and Pe. Peclet number,
associated with a relationship between a Brownian diffusion time scale and a convective flow time.
The non-dimensional physical parameters St and Pe are given by:

St = mus
6πµ〈a〉2 and Pe = D0

〈a〉us
, (4.53)

the mass of the particles is given by m = 4
3π〈a〉

3ρs and the Stokes-Einstein ordinary Brownian
diffusivity is given by:

D0 = κBT

6πµ〈a〉 (4.54)

Additionally, we define two magnetic non-dimensional parameters representing, respectively,
the non-dimensional strength of the applied magnetic field and the intensity of the dipolar inte-
ractions.

α = µ0m0H0
6πµ〈a〉2us

, λ = µ0m
2
0

8π2µ〈a〉5us
, (4.55)

where, mo is the intensity of the magnetic dipole and µ0 is the magnetic permeability of the free
space (µ0 = 4π × 10−7H/m).

4.3.2 Generation of Initial and Contour condition

This section is dedicated to the description of methodology used to generate the suspensions
under study, we also describe a part of the numeric code. The code, originally developed by
[84]. The FORTRAN code simulates the prototype of magnetic active matter. Then an initial
condition where the particles are lined up in chains and submit them to the action of the magnetic
field. Here the chain of particles which moves with velocity of constant modulus and periodically
changing sign. Using the Langevin dynamics, we simulate the motion of suspensions of chain of
magnetic particles and non-magnetic particles in sedimentation.

We also consider a parallelepiped domain with dimensions Lx = 25a× Ly = 25a× Lz = 75a.
The spheres impenetrability imposes that the center of a ray test particle cannot occupy the

110



exclusion volume. We generate the initial positions at random inside the parallelepiped (box). We
emphasize that the generation has a uniform probability distribution eliminating the volume that
had already been filled by the particles. For simulation of isolated particles, the initial orientations
are uniformly distributed over a sphere of unit radius and their initial angular velocities are zero.
For the simulation of particle aggregates we consider chains of particles, which we call magnetic-
snakes that represent a column of a magnetic bacterium. We report that the time used to integrate
the equation of particles: fourth-order Runge Kutta with the time step is carefully chosen. The
non-dimensional time step is given by:

∆t∗ = 1
100min (Pe, St, ε∗) (4.56)

chosen small enough, technique used in order to enable the implementation of this condition in the
code. In this case we choose ε∗ = max(min(εij), 10−4). Finally we define the volumetric fraction
φ as:

φ = 4π〈a〉3N
3LxLyLz

, (4.57)

here, Lx, Ly , Lz are the lengths of the box. It should be important to note that in terms of time
scales of the particile motion, the Péclet number is the ratio between the characteristic Brownian
diffusion time τb = a2/D and the characteristic sedimentation time, τs = as/U . Also we have, the
ratio between the inertial relaxation time or particle response τr = m/6πµas and the characteristic
time sedimentation τs as being the Stokes number St = mU/6πµa2

s, which will be the parameter
for controlling the inertia of the particle, and finally we use t/τs = τ∗ in all results presented in
this work. Finally, we have considered a boundary condition of periodicity in all directions, such
that the particles whose centers exit the box through one side are brought back inside through the
opposite one. If this translation would result in an overlap of particles, Brownian displacements
are applied to the center of the translated particle until no overlap occurs. Ensemble averages of
all properties are calculated as averages first in the particles comprised in the box, then in the
realizations. In our simulation the inertia of the particles is considered, such that the resistance
formulation is adopted. in this case, conditions must be generated position and initials velocities
(initial velocities zero) and for the positions, we want to study the effect of linear stratification in
the vertical direction on the volumetric fraction.

4.4 Preliminary Results and Discussions

4.4.1 Motion of Isolated Chain

The results of the trajectory of an isolated chain of particle are summarized in figure (4.4), as
a function of time. Here we consider the longitudinal motion of the particles (parallel to gravity).
Then we have X‖ = X∗, V‖ = V ∗ and τ∗ = t/τs. In this work, chains of different number of
particles are simulated. We consider chains of 3 particles, 6 particles and long chains for more
than 6 particles, respectively. Results were obtained for both Pe = 0.5 and Pe = 10 and St = 0.2.

We observe that as the number of particles decreases, the approximation of displacement and
curves becomes more flattened. In the theories we know that the purely Brownian motion, where
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Pe = 0, where the linearity of this variable with time can be accurately observed. Here, with
Pe = 0.5 we can see still a nearly linear dependence as X∗ scaling with t1/2. It can be observed
that as Pe = 10 increases, the net gravity effect (i.e. particle sedimentation) starts to play a more
important role in the chain displacement, introducing dependence like t2 of the chain displacement
on time t.
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Figure 4.4: Non-dimensional displacement for three magnetic chain. Black circles are for chain of
3 particles, black rectangles are for chain of six particles, black triangle are for chain of more than
six particles (Long chain). Results were obtained for St = 0.2 a) Pe = 0.5 and b) Pe = 10

.

Figure (4.5), depicts the normalized velocity for the three chains, moving with two different
Péclet numbers, for different numbers of particles in the chains, again, we use chains of 3 particles,
6 particles and long chains of more than 6 particles respectively. Similar is the velocity profiles
for the three chains, however, it must be noted that the bigger the chain achieves higher velocities
despite. We also observed that as the number of particles decreases, the approximation of the
velocity and curves becomes more compressed.

In figure (4.6) we show the variance of the displacements of an isolated chain free of inertia
in the directions parallel and perpendicular to gravity for the three configurations simulated in
figures (4.4) and (4.5). The results were obtained for Pe = 0.01 and Pe = 10. According to the
figure we obtain results that are compatible with those predicted by the Brownian motion theory
in the case as Pe is close to zero. Another analysis, if we increase the number of Peclet (Pe), the
particle involves more its sedimentation consequently in its mean quadratic displacement deter-
ministic effect. However, we see an average quadratic displacement parallel to gravity tending to
be a curve of the parabola when Pe increases, this is of a uniform rectilinear movement. Other
results that have been computed are the average velocities of a particle as a function of time.
According to the figure (4.7) the velocities in the parallel direction it tends to Stokes’ velocity
when time increases, for all Pe low numbers of Péclet. A greater dispersion of results is observed
for low numbers of Péclet (Pe).
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Figure 4.5: Non-dimensional velocity as a Non-dimensional time of the for chain for three magnetic
chain. Black circles are for chain of 3 particles, black rectangles are for chain of six particles, black
triangle are for chain of more than six particles (Long chain). . Results were obtained for St = 0.2
a) Pe = 0.5 and b) Pe = 10

4.5 Collective effect of Chains

Now we study the pairwise motion of magnetic spherical swimmer in a dilute sedimenting
suspension. This analysis is fundamental and important to understand the physics of diluted
magnetic colloidal suspensions, in which the magnetic interactions between pairs of particles do-
minate. The model problem, see figure (4.8 ), involves two identical magnetic chain of particles
suspended in a Newtonian fluid with negligible wall boundary effects. The initial distance between
the two particles is not fixed. The resulting particle-center trajectory is dependent on the initials
positions. In all simulations and results we consider: X‖ related to the motion in x direction, X⊥
related to the motion in y direction. We define also, for the first particle , X1 =

√
X1‖

2 +X1⊥
2

and for the second particle, X2 =
√
X2‖

2 +X2⊥
2 and finally, X∗ = X2 −X1. The same conside-

ration is done for the velocity and we get: V‖ related to the motion in x direction, V⊥ related to
the motion in y direction. We define also, for the first particle , V1 =

√
V1‖

2 + V1⊥
2 and for the

second particle, V2 =
√
V2‖

2 + V2⊥
2 and finally, V ∗ = V2 − V1.

4.5.1 Non Magnetic Suspension

In this section we study the relative locomotion of two magnetic chain interacting in a dilute
suspension. The simulations are based on the direct computations relative motion between each
particles in the chain under the regime of non-zero Stokes number. First we consider non-magnetic
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Figure 4.6: Quadratic displacement as a function of time. Results were obtained for St = 0.2,
Pe = 0.01 and Pe = 10. Black circles are for chain of one particle, Black rectangles are for chain
of three particles. Black triangle are for chain of six particles

suspensions and in this part of the work we perform a simulation of the kinematics of dilute
suspensions composed of chains of spherical particles. The particles are immersed in a Newtonian
fluid under gravity flowing in low Reynolds numbers, considering the particle scale.

In this part of the work, we will look at how the parameters Pe and the number of particles in
the chain N influence the movement. We considered Brownian regime and we consider moderate
Péclet number Pe = 0.5 and Pe = 20. The kinematics of the particles is investigated providing
the relative trajectory and the variance of velocity. On the proposed particle chain model, one
must take into account that the motion of a particle is dependent on the motion of other particles.

Typical relative trajectory are plotted in figure (4.9), numerical simulation was performed with
St = 0.5, Pe = 0.5, and Pe = 20. At this point we also consider chain of 3 particles, chain of six
particles, long chain where we have more than six particles. In this results, particle fluctuations
are induced only by particle interactions at high Pe and by Brownian motion at low Pe. The
near field forces can produce different transitions in the particle distribution, as shown by the
relative trajectories, as well as they define the effect of Péclet number in the suspension. The
sedimentation trajectory in this case show one peak of the relative trajectories is observed over
time, outlining the time evolution of the most probable distances of particles and also the number
of particles of the chain in the suspension.
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Figure 4.7: Average velocity as a function of time. Results were obtained for St = 0.2, Pe = 0.01
and Pe = 10. Black circles are for chain of one particle, Black rectangles are for chain of three
particles. Black triangle are for chain of six particles

Figure 4.8: Configuration used for the particles, the model involves two identical magnetic chain.

Figure (4.10) denotes simulations of the normalized velocity fluctuation variances of three
different chains of particles sedimenting under the effect of the gravitational field in the fluid
domain. The figures are plotted for the following condition and dimensionless parameters: St =
0.5, Pe = 0.5, and Pe = 20. we also consider chain of 3 particles, chain of six particles, long chain
where we have more than six particles. The variance of velocity fluctuations is observed growing
with with time. As it is expected , in the initial moment the particles have few fluctuations of
velocity and increase progressively over time. It is seen the velocity fluctuations are due to the
Brownian motion at low Pe and by hydordynamic interaction and dipolar interaction at large
Pe. Also, short range interaction and particle contact can produce some fluctuations in trajectory
and consequently in velocity. Furthermore, if we increase the number of particles in the chain the
fluctuations grow up too. On the other hand the velocity fluctuations has the influence of Brownian
particles if we do not take into account the hydrodynamic interactions among the particles.
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Figure 4.9: Relative trajectories of three chains of particles for non magnetic suspensions. Black
circles are for chain of 3 particles, black rectangles are for chain of six particles, black triangles are
for chain of more than six particles (Long chain). Results were obtained for St = 0.5 a) Pe = 0.5
and b) Pe = 20.

4.5.2 Influence of Magnetic Dipole

In this section, we present simulation results exploring the influence of the dipolar interactions
between the chains. In this case we have λ 6= 0 and we consider here set up the magnetic to field
α = 20.

We propose using simulations to show how dipolar interactions influence the properties mag-
netic field influence the motion of the magnetic chain. We look at the time evolution of the sus-
pension. We analyzed how the effect of dipolar interactions with a fixed magnetic field (α = 20)
influences the results. We also have performed simulations for larger interaction parameter with
λ = 30 and λ = 90. The Stokes number in the all simulation is fixed as being 0.5.

We start describing results of the relative trajectories of three chains of particles in presence
of the magnetic dipole, but with a fixed external magnetic field.

Figure (4.11) shows the relative trajectories in presence of the magnetic dipole but without
external magnetic field. We remember that the particles are initially placed in a random way,
during our simulation that evaluates the effect of the dipolar interactions to examine the trajecto-
ries. It is seen that the plots (a) and (b) shown in figure (4.11) are nearly the same of the results
in figure (4.9) for λ = 20. However for large λ = 90) we can see larger fluctuation in the chains
trajectories induced by the effect of the magnetic dipolar interactions.

The magnetic responses from moderate dipolar interactions similar and close to non-magnetic
suspension. In the case with strong dipolar interactions, the results show greater amplitudes due
to the stronger value of λ.
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Figure 4.10: Non-dimensional velocity of three chains for non magnetic suspensions. Black circles
are for chain of 3 particles, black rectangles are for chain of six particles, black triangles are for
chain of more than six particles (Long chain). Results were obtained for St = 0.5 a) Pe = 0.5 and
b) Pe = 10.

Addionally, we can observe that the trajectories have two peaks shifted to lower wavelengths,
different to a greater separation of particles along during the motion. We argue that this type
of orientation to the degree of dipolar interactions. We could attribute this type of orientation
to the dipole interactions, since the particles with dipole moments aligned with the field present
attractive interactions when their distance vectors are in the straight line to the field and repulsive
interactions when these vectors are perpendicular to the field.

Now we analyze in detail the normalized velocity and we explain how the dipole interactions
influence the relative velocity of the magnetic chain. We study the effect of dipolar interactions
with a fixed magnetic field (α = 20 influences the results. We consider moderate dipolar interac-
tions λ = 30 and strong dipolar interactions λ = 90. We plot in figure (4.12) the non-dimensional
velocity for the three different chains of particles. Here, black circles are for chain of 3 particles ,
black rectangles are for chain of six particles, black triangle are for chain of more than six particles
(long chain). Results were shown for a) λ = 20 and b) λ = 90.

The value of the dipolar interaction leads to a difference in the velocity values for the depending
on the strength λ of the dipolar interactions values, that can be seen in the figure (4.12). For
λ = 20, the velocity increases and is almost always linear. For λ = 90, the velocity also increase
but the curve is more parabolic and it is nearly monotonic and almost linear. However for λ = 90,
the behavior of the chains velocities are not monotonic anymore and consequently perceptible
velocity fluctuations can be observed as the chains evolve in time. Note that for a number of
particles greater than six in the chain the velocity is significantly higher for the others for the two
values of λ considered in low applied fields. we conclude that the velocity increases both with λ
and with the number of particles in the chain for a fixed magnetic field. Basically, the velocity
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Figure 4.11: Relative trajectories of three chains of particles in presence of the magnetic dipole,
but with a fixed external magnetic field. Black circles are for chain of 3 particles, black rectangles
are for chain of six particles, black triangles are for chain of more than six particles (Long chain).
Results were obtained for St = 0.5 a) λ = 20 and b) λ = 90.

of the chains increase both with the intensity of the dipolar interactions and with the number of
particle in the aggregates. In addition, the intensity of the velocity fluctuation increase by about
14 percent compared with the results of λ = 20.
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Figure 4.12: Non-dimensional velocity of three chains in presence of the magnetic dipole, but with
fixed external magnetic field. Black circles are for chain of 3 particles, black rectangles are for
chain of six particles, black triangles are for chain of more than six particles (Long chain). Results
were obtained for St = 0.5 a) λ = 20 and b) λ = 90.

4.5.3 Influence of the External Field

In the present study, one of the main issues is to examine the influence of an external applied
magnetic field in order to determine how it will affects the kinematic of the chains of particle
simulated here. To investigate only the effect of the field on the motion of the chains, we keep
fixed the parameter magnetic dipolar, on the other hand , the intensity of the applied external
magnetic field is variable. In the simulations here λ is fixed and equal to 90. We simulate the
suspension for two values of the non-dimensional field, α = 20 and α = 80.

The relative trajectories is shown in figure (4.13) considering the conditions of the simulations
mentioned above. The results shows a comparison between α = 20 and α = 80 of the relative
trajectory of the chain. Note the increase in the values of X∗ with the growth of particles in the
chain, resulting fixed dipole interactions combined with the magnetic field applied particles, the
relative trajectories of chain increased. For the high magnetic field interaction regime, which X∗

continues higher than the moderate magnetic field. Then, the trajectory is not monotonic and this
effect is amplified as the intensity of the magnetic field is increased and the number of the particle
in the chain increase. We note that the particles orient on average in the direction opposite to
the field. In this case, it shows that the orientation action of magnetic forces dominates of the
magnetic dipole in this particular instance, contributing to the orientation of the chain.
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Figure 4.13: Relative trajectories of three chains of particles in presence of the magnetic field ,
but with a fixed magnetic dipole. Black circles are for chain of 3 particles, black rectangles are for
chain of six particles, black triangles are for chain of more than six particles (long chain). Results
were obtained for St = 0.5 a) α = 20 and b) α = 80
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Figure 4.14: Non-dimensional velocity of three chains in presence of the magnetic field , but with
fixed magnetic dipole. Black circles are for chain of 3 particles, black rectangles are for chain of
six particles, black triangles are for chain of more than six particles (long chain). Results were
obtained for St = 0.5 a) α = 20 and b) α = 80.

In figure (4.14), we have the normalized velocity of three chains in presence of the magnetic
field, but for a fixed external magnetic dipole. We repeat again the same conditions, we put a
fixed parameter magnetic dipolar and, the intensity of the applied external magnetic field change.
Here, and a moderate magnetic field α = 20 and strong dipolar interactions α = 80. Conditions
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over the particles chain are the same where we consider chain of 3 particles, chain of six particles,
long chain where we have more than six particles. In this case its observed that the velocity
grows along time at with the applied magnetic fields. The effect of the magnetic field on the
velocity is pointed in figure (4.14), the normalized velocity of the particles at the two magnetic
field parameters numbers, α = 20 and α = 80 at a fixed λ indicates the higher the magnetic field,
the larger V ∗ implying that in addition to the parameters N number of particles in the chain
defined, the parameter α is also a parameter governing chain kinematics. Therefore, the difference
in magnetic property of the suspension (in this case characterized by the magnetic field α) also
has substantial influence on the kinematics of the chain of magnetic particles.
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Chapter 5

CONCLUSIONS AND FUTURE
WORKS

5.1 Conclusions

This thesis has described analytic, experimental and numerical analyses for predicting the
motion of particles in viscous fluids. In this context, initially a bibliographical review of the general
theory of fluids was presented, showing the theoretical part and the mathematical development of
the development of models that describe the movement of particles in fluids with a low Reynolds
number. Here we present the main conclusions of the work.

5.1.1 On the Flagellum Motion in Creeping Flow

The creeping flow associated with the motion of particles and micro-swimmers is mainly due to
their small size or the high viscosity of the liquid where they swim. In practical application we can
use micro swimmers to realize minimally invasive medical procedures to detect and treat diseases.
In the near future they are great aspirant for achieving targeted drug delivery, which can reduce
the side effects of potent drugs and minimize the secondary complications of dangerous treatments.
However, The locomotion microorganism at low Reynolds number environments such as bodily
fluids needs breaking the time reversal symmetry to achieve propulsion, therefore swimming of
micro structures in viscous environments presents a challenge. In this present work firstly, we
have successfully investigated theoretically and experimentally the motion of helical swimmers at
low Reynolds for both ambient fluids Newtonian and non-Newtonian. We designed a workbench
to carried out some experiments with macroscopic model of swimmers. Three different helices
were used in our experiments and the propulsive velocity of the particle, as well as propulsive
force and torque exerted by the rotating helix in a very viscous fluid were measured. Additionally,
experiments with the helical swimmers in a elastic fluid were also carried out. We have used
Slender Body Theory (SBT) and also the method of regularized Stokeslest (RSM) in order to
calculate theoretically the force and torque as function of the Strouhal number (Sh) produced by
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the helical swimmers moving in a Newtonian fluid. The theoretical results were compared with
experimental data and a very good agreement is observed specially for higher values of Sh within
the error bars of the experimental data. Increasing the Deborah number the propulsive force and
torque have increased for the three types of helices examined. The helical swimmer propulsive
velocity was also examined in terms of the elastic parameter Deborah number and also compared
with the experimental measurements for the case in which the base fluid was non-Newtonian. We
have found that the swimming speed increases as the elastic effect in the ambient fluid increases
until a critical Deborah number number O(1), when it saturates for a constant value within the
experimental error bars. The velocity anisotropy measured experimentally as the ratio of the
swimmer speed in two different directions was insensitive to the elastic effect of the surrounding
fluid.

We also have presented a comparison between predictions of the speed velocity given by CFD
simulation using a Finite Element Method, using an Oldroyd-B constitutive model for the base
elastic fluid, and experimental data. The agreement between the two sets of results was very good
within the experimental error bars for the Deborah varying from 0 to 2. However, we have noted
that while the experimental data saturated at larger De the simulation results for the swimmer
speed appeared to increase continuously according to the constitutive model used to describe the
elastic liquid. Indeed, the Oldroyd B model used in this work assumed infinite extensibility of
the polymer chain which plays a role when the fluid has an extensional component like in the
flow problem explored. The Oldroyd Fluid - B is not only unrealistic but it leads to numerical
difficulties as unlimited values of the stress tensor at higher De. Currently, we are changing
the linear spring law to one with a finite spring extension that yields such as a dumbbell-FENE
(finitely extensible nonlinear elasticity) model. We expect that using this new model in the CFD
code, the simulation results will also present a saturation of vnn/vn for De above 1, as we have
seen in our experiments with PAMA with a macromolecule volume fraction φ = 0.05.

Additionally, the self-propulsion of the swimmer generated by elastic effects in the surrounding
fluid was directly related to the stress anisotropy produced by the macromolecule stretching and
orientation by the flow. This stress anisotropy possibly produced a resultant elastic force on the
direction of the particle motion leading to a self-propulsion. Actually, streamlines surrounding the
helical swimmer may produce this net force on the particle that pushes it enchaining its propulsion
speed until a determined value, depending on the De and the concentration of macromolecules
in the base fluid. In conclusion, this work has demonstrated that the presence of elastic effect in
the surrounding fluid can produce propulsion of an artificial helical micro-swimmers. Inspired by
the motion of active microorganisms, we have developed artificial particles that feature similar
swimming behaviors based on helical mechanisms. These man-made micromachines hold a great
potential as autonomous agents for health care, sustainability, and security applications as: biome-
dical microswimmers, future bacteria-interface systems, micro-biorobots and robotic manipulation
at the micro- and macroscales. Artificial swimmers manipulation at low Reynolds number is a
very interesting and a relatively young field to continue being explored.
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5.1.2 On the Motion of Magnetic Chains

Understanding the behavior of a chain of magnetic particles is still an open question with
little knowledge on the subject. There are several variables influencing the final behavior. Some,
in certain situations, are controllable, such as the magnetic field and dipole interaction force.
Others, in turn, are specific to a given fluid, such as particle size, number of particles in the
chain, among others. It is essential to understand the action of these factors, separately and/or
together, if the objective is to develop new applications, especially in medicine, or to optimize
existing ones, which are not few. In the second part of this work, we attract attention to the
studies on magnetotactic bacteria that have become the spotlight in research on fluid mechanics
at low Reynolds number. This microorganisms can swim in blood and they have magnets within
them. Therefore the investigation of the motion in viscous liquids of this kind of active particles
for carrying drugs in the blood circulation under application of a magnetic field is still not known
sufficiently. We numerically investigated the kinematics of magnetic chains and fluid flow in the
presence of an external uniform magnetic field and magnetic dipole, with an emphasis on the
effect of the Peclét number (Pe), the parameter of dipolar interactions (λ), the parameter of
the intensity of magnetic field (α), the number of particles in the chain (N). The numerical
simulations conducted are based on the Langevin dynamics and the problem was solved firstly
for a single particle and subsequently for several particles in order to explore a collective effect.
In the first case, the motion of the particle was analyzed directly through the trajectories and
velocity. We emphasize that in these conditions the effect of the gravitational field is important,
the movement in the direction of gravity loses its diffusive character, assuming a deterministic
nature. The chain-kinematic was affected depending on the number of particle in the chain, the
parameter of dipolar interactions and the parameter of the intensity of magnetic field. For each
chain, the particles attract each order, but will nonetheless separate due to the increased of the
magnetic field and consequently, the particle orientation increase thus the trajectories and the
velocities of the chain are different under moderate and strong magnetic field.

5.2 Suggestions for Future Work

Our experiment was limited by starting with Newtonian fluids and in a second part we explored
the influence of viscoelastic effects of a non-Newtonian medium on the kinematics and dynamics
(force/torque) on the flagella body. It would be very important to study in another work the
influence of one organism on the other’s movement through the interaction of at least two of them.
The movement of one produces hydrodynamic disturbances that change the behavior of the other.
The aim would be to explore at least the problem of up to three bodies to characterize a more
pronounced collective effect. It would be great because the collective effect can significantly change
the force and torque on an individual organism as the other bodies create flow to the reference
body. In this context, both modifications of the base fluid (Newtonian and non-Newtonian)
with collective effect would be explored. Generally, the boundaries cause major challenges in
swimming modeling. The velocity of the fluid right on a rigid boundary equals the velocity of the
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boundary itself. Thus, the velocity gradient close to boundaries is large and the viscous effects
play a dominant role. In several studies on the locomotion of helical bodies, the wall effect is
not considered. In future work, imply the wall effect in order to capture the (averaged) flow
phenomena close to boundaries.

In a next study, the average force and average torque on the structure could be calculated
since we have the forces and torques that act on each particle in the simulations. It could verify
if with the kinematic data the Force and Torque relationships based on slender body theory
(SBT) could be used, feeding them, with determined kinematic quantities from the kinematic
analysis simulations. In this sense, it would be interesting to try to compare the average forces
and average torques obtained directly from particle simulation with the results based on SBT or
other formulation used previously with that of [16], [98] among others. In a future work, can
be investigated by particle direct numerical simulations the trajectories of the magnetic chains
(magnetic bacterium) and the fluctuation in this trajectories produced by effect of the particle-
particle dipolar interactions for different values of the parameter λ and the particle volume fraction
φ. It can be try to explore the following configurations (i) chain with magnetic head and non-
magnetic body (line of smaller particles) (ii) non-magnetic head and magnetic line.
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In order to improve and expand the results obtained on magnetic chains, we can add also these
other suggestions for future work.

• In the implementation part, it would be interesting to optimize the computational code
using, for example, simulating interactions with three or more chains of particles. Also,
looking to try to increase the number of particles in the simulations, it could be interesting
to parallelize the code.

• In all simulations, the hydrodynamic interactions were turned off, so in the improvement
part of the model, the effect of the hydrodynamic interactions between particles could be
analyzed. This effect can be significant. In addition, the correlation between pairs of chains
of particles in the intensity of Brownian motion could be included.

• Finally, for a practical applications, an oscillatory field could be imposed in the simulation
domain to study, for example, a magnetohyperthermia model or others . The effect of dipole
interactions and the formation of aggregates on the increase in fluid temperature is still an
open question, showing different behaviors for different intensities and frequencies of the
imposed oscillatory magnetic field.
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I. STOKES SOLUTION PAST A SPHERE

We consider the classic solution of the Stokes equations representing the uniform motion of a
sphere of radius a in an infinite expanse of fluid. We shall first consider this problem using the
natural coordinates for the available symmetry, namely spherical polar coordinates.

We consider a fixed sphere in the x-direction the fluid approaches with velocity. On the surface
of the sphere (r = a). All points have zero velocity (non-slip) therefore a (r = a) is a current line
and vθ is zero. The Navier-Stokes equation for an incompressible fluid is:

Figure I.1: Stationary sphere immersed in a fluid with uniform velocity U.

ρ(∂u
∂t

+ (u · ∇)u) = −∇p+ µ∇2u+ f . (I.1)

where ρ is the specific mass of the fluid, u is the velocity field, p is the pressure, µ is the viscosity
and f indicates any external force of the body. We assume a very low Reynolds number. This
means that the viscous forces are dominant, so that we can disregard inertial term (u · ∇)u), in
addition, we look for a stationary solution so that the Navier-Stokes equation reduces to:

∇p = µ∇2u. (I.2)

Keeping in mind identitiy of derivatives ∇×(∇×u) = ∇(∇.u)−∇2u and the fact that ∇.u is
zero for an incompressible fluid due to the continuity equation, we can rewrite the Navier-Stokes
equation as:

∇p = −µ∇× (∇× u) = −µ∇× Ω, (I.3)

where we introduce the vorticity field, Ω = ∇×u the spherical symmetry of the problem leads us
to seek an axissimetric velocity. Let:

u = ur,θ er + uθ(r, θ)eθ.

Next we will use the current function of Stokes. In spherical coordinates the divergence ∇.u
of an axissimetric velocity field, is given as:

∇.u = 1
r2
∂(r2ur)
∂r

+ 1
r sin θ

∂(uθ sin θ)
∂θ
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To automatically satisfy the condition of incompressibility of the fluid, ∇.u = 0, we introduce
the Stokes current function ψ(r, θ) as:

ur = 1
r2 sin θ

∂ψ

∂θ
, uθ = 1

r sin θ
∂ψ

∂r
. (I.4)

Thus, the velocity field is defined exclusively by the stream function: ψ(r, θ) we determine
the current function from the reduced Navier-Stokes equation I.4 we continue to calculate the
vorticity:

Ω = ∇× u = Ωer + Ωeθ + ΩeΦ.

Now, since u is axissimetric, the vorticity must be axial, having only a Φ component. Using
Equation I.4, we find:

Ωθ = 1
r

(∂(ruθ)
∂r

− ∂ur
∂θ

)

Ω = 1
r

[ ∂
∂r

( −1
sin θ

∂ψ

∂r
)− ∂

∂θ
( 1
r2
∂ψ

∂θ
)]

Ω = 1
r sin θ [ ∂

2ψ

∂2r2 + sin θ
r2

∂

∂θ
( 1
r sin θ

∂ψ

∂θ
)]

Ω = −1
rsinθE

2ψ,

where we introduce the differential operator:

E2 = [ ∂
2ψ

∂2r2 + sin θ
r2

∂

∂θ
( 1
r sin θ

∂ψ

∂θ
)]. (I.5)

We insert this result into the equation of momentum and we find:

∇p = −µ×∇Ω

= −µ
r sin θ

∂−E
2ψ

r

∂θ
er + µ

r

∂−E
2ψ

r

∂r
eθ

= µ

r2 sin θ
∂E2ψ

∂θ
er −

µ

r sin θ
∂E2ψ

∂r
eθ

.

The left side of this equation is given in spherical coordinates as:

∇p = ∂p

∂r
er + 1

r

∂p

∂θ
eθ + 1

r sin θ
∂r

∂ΦeΦ

.

By identification, equating each terms er e eθ we obtain to two equations for the pressure:

∂p

∂r
= µ

r2 sin θ
∂E2ψ

∂θ
; ∂p
∂θ

= −µ
sin θ

∂E2ψ

∂r
. (I.6)

Since these cross-differentiations must be equal, we find:

∂2E2ψ

∂r2 + sin θ
r2

∂ 1
sin θ

∂E2ψ

∂θ
∂θ

= 0
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E2E2ψ = 0. (I.7)

Finally, by inserting the original definition of the differential operator we arrive at a differential
equation for the current Stokes function:

[ ∂
2

∂2r2 + sin θ
r2

∂

∂θ

1
sin θ

∂

∂θ
]2ψ = 0. (I.8)

We impose the following boundary conditions on the solution:
i) Non-slip condition on the surface of the sphere, u(a, θ) = 0, ii) uniform velocity flow U away
from the sphere.

Using the non-slip condition, equation I.4 provides:

∂ψ

∂r
|r=a = 0; ∂ψ

∂θ
|r=a = 0. (I.9)

The uniform flow condition away from the sphere can be formulated as:

lim
x→∞

Ur = Ucos θ; lim
x→∞

Uθ = −Usin θ

.

This threshold condition will have to be reformulated as using ψ instead of U . Using equation
(I.4) to insert expressions in ψ instead of ur uθ, this can be achieved through two integrations,
producing:

1
r2 sin θ

∂ψ

∂θ
= U cos θ ⇒ ψ = 1

2U
2 sin θ + f(r)

−1
r sin θ

∂ψ

∂r
= −U sin θ ⇒ ψ = 1

2Ur
2 sin θ2 + f(θ)

Thus f(r) = f(θ) = 0 and the boundary condition can be reformulated as:

lim
x→∞

ψ = 1
2Ur

2 sin θ2. (I.10)

This leads us to look for a form solution:

ψ = f(r) sin θ2. (I.11)

Let us examine the effect of the differential operator E2on a solution of this format

E2f(r) sin θ2 = ∂2

∂2r2 (f(r) sin θ2) + sin θ
r2

∂

∂θ

1
sin θ

∂

∂θ
(f(r) sin θ2)

.

We find:
E2f(r) sin θ2 =

d2

d2r2 −
2
r2 f(r) sin θ2
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We can write a new function

g(r) = ( d2

d2r2 −
2
r2 )f(r)

.

We obtain :
E2(E2(f(r) sin θ2)) = E2(g(r) sin θ2))

= ( d2

d2r2 −
2
r2 )f(r) sin θ2)

.

If the test function f(r) sin θ2 2 satisfies the differential equation for ψ the equation (I.6), this
expression must be zero. Thus, we arrive at a requirement for the function f(r) in the form of an
ordinary differential equation in the form:

( d2

d2r2 −
2
r2 )2f = 0

The form of this differential equation suggests solutions of type f(r) = rα inserting in the last
equation we arrive at a fourth order equation in α

α((α− 1)− 2((α− 2)(α− 3)− 2 = 0

The solutions of this equation are α = −1, 1, 2, 4. Thus, we arrive at a solution for the differential
equation for ψ of the form:

ψ = (Ar−1 +Br + Cr2 +Dr4) sin θ2

The four arbitrary constants are determined by the application of boundary conditions. The
uniform coring condition far from the sphere requires that Cr2 be the dominant term as r →∞,
which in turn implies D = 0. The precise formulation of the boundary condition, 10 equation gives
C = 1

2U The non-slip condition leads to two requirements of the derivatives of ψ. These are used
to determine the remaining two constants, A and B. Using equation (I.8) we find: The non-slip
condition leads to two requirements of the derivatives of psi. These are used to determine the
remaining two constants, A and B. Using equation (I.9) we find:

A = 1
4Ua

3

,
B = −3

4 Ua

.

Having now determined all the arbitrary constants, we obtain the current function:

ψ = 1
4U(2r2 − 3ar + a3r−1) sin θ2. (I.12)
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Inserting in the equation I.3 we obtain the velocity:

Ur = U cos θ(1− 3a
2r + a3

2r3 ), (I.13)

Uθ = −U sin θ(1− 3a
4r −

a3

4r3 ). (I.14)

After determining the velocity expression, we can find an expression for the pressure and then
determine an expression for the total drag force on the sphere. An expression for the pressure is
more easily obtained by integrating equation (I.4). The first step is to determine the effect of the
E2 operator on the current function;

E2ψ = ( ∂2

∂2r2 + sin θ
r2

∂

∂θ
( 1
sin θ

∂

∂θ
))(U4 (2r2 − 3ar + ar−1 sin θ2))

= U

4 sin θ2(4 + 2a
r3 −

U

2 (sin θ2(2 + a3

r3 −
3a
r

)

= 3Ua sin θ2

2r
.

Having found this, we can proceed by integrating equation (I.8) to find:

p∞ − pr =
∫ ∞
r

µ

r2 sin θ
∂

∂θ
(3Ua sin θ2

2r )dr

,
p∞ − pr = 3µUa cos θ

r2 . (I.15)

To find the force we need the tension first, we can find the tensions in the expressions for the
tensors in spherical coordinates

σr = Trr = −p+ 2µ∂u
∂r

= −p∞ + 3µU cos θ
2a

.

We obtain:
σθ = 3µU cos θ

2a
.

Because of the symmetry of the problem, the drag force is the direction of the uniform current
away from the sphere. The component of the tensor in this direction is given by:

σ = σr cos θ − σθ sin θ

= −p∞ cos θ + 3µU
2a

.

Thus, we can calculate the total drag force experienced by the sphere, integrating this expres-
sion on the surface of the sphere, resulting in the well-known expression for the Stokes drag:

F = −6πµUa. (I.16)
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I. HX711 CALIBRATION

Calibration Steps:

Here we described the steps to calibrate the HX711

• Remove any weight on the load cells

• After the balance has been reset by the program, place a known weight on the load cell

• Press the a, s, d, f keys to increase the Calibration Factor by 10,100,1000,10000 respectively
or

• Press the z, x, c, v keys to decrease Calibration Factor by 10,100,1000,10000 respectively

• Press ENTER after typing the letter

• Repeat steps 3 through 5 until the measured weight corresponds to the known weight

• Remove the weight again, and reset the Scale (type t + ENTER to zero)

• Put the weight back on and repeat steps 3 through 6 to redo the calibration.

Each load cell may have a different value for the calibration factor. If any measured weight is
giving negative value, reverse the A + and A- pin wires. If your balance allows two cells to be used
at the same time, perform the calibration procedure with the two cells mounted below the base
of the balance. When the balance is of adequate accuracy, stop the procedure and note the value
of the Calibration Factor. Redo the calibration process with other known weights if necessary.
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I. NUMERIC CODE IN MATLAB

For the computation of the numerical results of force and torque for a helical flagellum, the
numerical code in MATLAB language, developed by [29] was used. The code simulates a rotating
helix at low Reynolds number using the regularized Stokeslet method of [101], the slender body
theory of [16], the slender body theory of [98] and resistive force theory. The method of regularized
Stokeslets, originally introduced by [35], is based on the computation of the velocity field due to a
distribution of modified expressions for the Stokeslet in which the singularity has been removed.
The regularized expression is derived as the exact solution to the Stokes equations consistent
with forces given by regularized delta functions. In this Lagrangian method, trajectories of fluid
particles are tracked throughout the simulation. The method is particularly useful when the
particles are placed along a surface that deforms due to time-dependent, force-driven fluid motion.
Since the Stokes equations are linear, direct summation may be used to compute the velocity at
each of the immersed boundary points in order to advance a time step. This method is related to
boundary integral methods when the forces lie on the surface of a smooth connected set. However,
the method of regularized Stokeslets can also be used in cases where the forces are applied at a
discrete collection of points that do not necessarily approximate a smooth interface, [101].

The program calculates the propulsive matrix elements, which can be used to estimate the
forces and torques on a helical flagellum from measurements of velocity and rotation for a helical
geometry. The GUI allows the user to specify a single helical geometry or a range. The results
are given in a non-dimensional form. The program is useful for both biological measurements and
construction of a bio-mimetic swimmer that uses a helical flagellum for propulsion. The following
codes are used in the simulations.
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function varargout = Simulation_GUI(varargin) 
% SIMULATION_GUI M-file for Simulation_GUI.fig 
%      SIMULATION_GUI, by itself, creates a new SIMULATION_GUI or raises the 
existing 
%      singleton*. 
% 
%      H = SIMULATION_GUI returns the handle to a new SIMULATION_GUI or the 
handle to 
%      the existing singleton*. 
% 
%      SIMULATION_GUI('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in SIMULATION_GUI.M with the given input 
arguments. 
% 
%      SIMULATION_GUI('Property','Value',...) creates a new SIMULATION_GUI or 
raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before Cross_Section_Gui_OpeningFunction gets called.  
An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to Simulation_GUI_OpeningFcn via 
%      varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
% Edit the above text to modify the response to help Simulation_GUI 
% Last Modified by GUIDE v2.5 14-Mar-2011 15:39:34 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @Simulation_GUI_OpeningFcn, ... 
                   'gui_OutputFcn',  @Simulation_GUI_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
% --- Executes just before Simulation_GUI is made visible. 
function Simulation_GUI_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to Simulation_GUI (see VARARGIN) 
% Choose default command line output for Simulation_GUI 
handles.output = hObject; 
% Update handles structure 
guidata(hObject, handles); 
% UIWAIT makes Simulation_GUI wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
% --- Outputs from this function are returned to the command line. 
function varargout = Simulation_GUI_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
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% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
% --- Executes on button press in simulate_forces. 
function simulate_forces_Callback(hObject, eventdata, handles) 
% hObject    handle to simulate_forces (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%% Input arguments from the GUI 
%   -R the helical radius (single valued) 
%   -a the filament radius (vector) 
%   -lambda helical pitch or wavelength (vector) 
%   -L axial length of the helix (vector) 
%% Read variables %% 
R = str2double(get(handles.helical_radius,'String'));            
a = str2double(get(handles.filament_radius_min,'String')): ...  % Read a as a 
vector as 
    str2double(get(handles.filament_radius_step,'String')): ... % [min:step:max] 
    str2double(get(handles.filament_radius_max,'String')); 
lambda = str2double(get(handles.lambda_min,'String')): ...      % Read lambda 
    str2double(get(handles.lambda_step,'String')): ...          % [min:step:max] 
    str2double(get(handles.lambda_max,'String'));  
L = str2double(get(handles.length_min,'String')): ...           % Read L 
    str2double(get(handles.length_step,'String')): ...          % [min:step:max] 
    str2double(get(handles.length_max,'String'));   
%% Read simulation type(s) and call simulation functions %% 
RSM_flag    = get(handles.sim_type_RegSM,'Value'); 
LH_SBT_flag = get(handles.sim_type_LH_SBT,'Value'); 
J_SBT_flag  = get(handles.sim_type_J_SBT,'Value'); 
addpath SBT_Scripts 
addpath RSM_Scripts 
global force_RSM torque_RSM drag_RSM 
global force_LH torque_LH drag_LH 
global force_J torque_J drag_J 
% global force_GH_RFT torque_GH_RFT drag_GH_RFT 
% global force_LH_RFT torque_LH_RFT drag_LH_RFT 
global A 
if (RSM_flag == 1) 
    userchoice=input('Regularized Stokeslet simulations require large amounts of 
memory, sometimes in excess of 32 GB.  Do you want to proceed [y/n]: ', 's'); 
    if userchoice=='y' 
        F_T_D_RSM(R, a, lambda, L) 
    else 
        return 
    end 
end 
     
if (LH_SBT_flag == 1) 
    F_T_D_SBT_LH(R, a, lambda, L) 
end 
if (J_SBT_flag == 1) 
    F_T_D_SBT_Johnson(R, a, lambda, L) 
end 
%% Save data if selected in GUI %% 
if (get(handles.save_data,'Value')==1);     
    filename = strcat(get(handles.data_filename,'String'), '.mat'); 
%     filename = filename{1};   %Matlab decided to add quotes so this removes 
them 
   save(filename, 'R', 'a', 'lambda', 'L', ... 
     'RSM_flag', 'LH_SBT_flag', 'J_SBT_flag', ... 
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     'force_RSM', 'torque_RSM', 'drag_RSM', ... 
     'force_LH', 'torque_LH', 'drag_LH',  ... 
     'force_J', 'torque_J', 'drag_J') 
 end 
%% Print data into GUI axes 
print_data(handles, R,a, lambda, L, ... 
    RSM_flag,LH_SBT_flag, J_SBT_flag, ... 
    force_RSM, torque_RSM, drag_RSM,... 
    force_LH, torque_LH, drag_LH,  ... 
    force_J, torque_J, drag_J) 
% --- Executes on button press in plot_data. 
function plot_data_Callback(hObject, eventdata, handles) 
% hObject    handle to plot_data (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%% Plot saved data 
filename = strcat(get(handles.data_filename,'String'), '.mat'); 
load(filename) 
print_data(handles, R,a, lambda, L, ... 
    RSM_flag, LH_SBT_flag, J_SBT_flag, ... 
    force_RSM, torque_RSM, drag_RSM,... 
    force_LH, torque_LH, drag_LH,  ... 
    force_J, torque_J, drag_J) 
      
  
  
  
%% --- Print data from new simulations or loaded data 
function print_data(handles, R, a, lambda, L, ... 
    RSM_flag, LH_SBT_flag, J_SBT_flag, ... 
    force_RSM, torque_RSM, drag_RSM,... 
    force_LH, torque_LH, drag_LH,  ... 
    force_J, torque_J, drag_J) 
%% Calculate RFT values if selected 
RFT_flag = get(handles.add_RFT,'Value'); 
if RFT_flag == 1;  
    addpath RFT_Scripts 
    [force_GH_RFT, torque_GH_RFT, drag_GH_RFT,force_LH_RFT, torque_LH_RFT, 
drag_LH_RFT] = RFT_Calculations(R, a, lambda, L); 
end 
%% Allow selection of other parameters 
    a_to_plot = find(a == str2double(get(handles.a_to_plot,'String')));   
        if(a_to_plot > 0); else disp('Selected filament radius value not found, 
using first in filament radius (a) vector.');end 
    lambda_to_plot = find(lambda == 
str2double(get(handles.lambda_to_plot,'String')));  
        if(lambda_to_plot>0); else disp('Selected lambda value not found, using 
first in lambda vector.');end 
    L_to_plot = find(L == str2double(get(handles.length_to_plot,'String'))); 
        if(L_to_plot>0); else disp('Selected length value not found, using first 
in length (L) vector.');end 
         
%%  Determine plot type, set x variable and dimensions of forces to plot %% 
if (get(handles.plot_type_a_dep,'Value') == 1) 
    x_var=a; 
    x_label = '$a/R$'; 
    dim1 = [1:length(a)];  
    if(lambda_to_plot > 0); dim2=lambda_to_plot; else dim2=1; end 
    if(L_to_plot > 0); dim3=L_to_plot; else dim3=1; end 
    legend_location = 'NorthWest'; 
elseif (get(handles.plot_type_lambda_dep,'Value') == 1) 
    x_var=lambda; 
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    x_label = '$\lambda/R$'; 
    if(a_to_plot > 0); dim1=a_to_plot; else dim1=1; end  
    dim2 = [1:length(lambda)];  
    if(L_to_plot > 0); dim3=L_to_plot; else dim3=1; end  
    legend_location = 'NorthEast'; 
elseif (get(handles.plot_type_L_dep,'Value') == 1 ) 
    x_var=L; 
    x_label = '$L/R$'; 
    if(a_to_plot > 0); dim1=a_to_plot; else dim1=1; end  
    if(lambda_to_plot > 0); dim2=lambda_to_plot; else dim2=1; end  
    dim3 = [1:length(L)];  
    legend_location = 'NorthWest'; 
end 
legend_text = {};  % Initialize legend labels variable 
%%  plot thrust %% 
 if (get(handles.plot_in_figure,'Value')==1); 
     figure; subplot(3,1,1); hold on 
 else 
    axes(handles.F_plot); cla reset; hold on 
 end 
    if (RSM_flag == 1);  
        plot(x_var, squeeze(force_RSM(dim1, dim2, dim3)), 'k-', 'Linewidth', 2);  
        ylim([0,max(1.1*force_RSM(dim1, dim2, dim3))]) 
        legend_text = [legend_text, 'RSM']; 
    end 
    if (LH_SBT_flag == 1);  
        plot(x_var,squeeze(force_LH(dim1,dim2,dim3)), 'b-', 'Linewidth', 2);  
        ylim([0,max(1.1*force_LH(dim1, dim2, dim3))])  
        legend_text = [legend_text, 'LH SBT']; 
    end 
    if (J_SBT_flag == 1);  
        plot(x_var, squeeze(force_J(dim1, dim2, dim3)), 'r-', 'Linewidth', 2);  
        ylim([0,1.1*max(force_J(dim1, dim2, dim3))]) 
        legend_text = [legend_text, 'J SBT']; 
    end 
     
    if (RFT_flag == 1);  
        plot(x_var, squeeze(force_GH_RFT(dim1, dim2, dim3)), 'g-', 'Linewidth', 
2);  
        ylim([0,1.1*max(force_GH_RFT(dim1, dim2, dim3))]) 
        plot(x_var, squeeze(force_LH_RFT(dim1, dim2, dim3)), 'b--', 'Linewidth', 
2);  
        ylim([0,1.1*max(force_LH_RFT(dim1, dim2, dim3))]) 
        legend_text = [legend_text, 'LH SBT', 'GH SBT']; 
    end 
     
    if (get(handles.add_legend,'Value')==1) 
        legend(legend_text) 
        legend('Location', legend_location) 
        legend('boxoff') 
    end 
     
xlim([0 1.1*max(x_var)]); set(gca,'XTickLabel',[]); 
ylabel('$F/(\mu \Omega R^2)$', 'Interpreter', 'Latex','Fontsize', 14) 
%%  plot torque %% 
    if (get(handles.plot_in_figure,'Value')==1); 
         subplot(3,1,2); hold on 
     else 
        axes(handles.T_plot); cla reset; hold on; 
     end 
    if (RSM_flag == 1);  
        plot(x_var, squeeze(torque_RSM(dim1, dim2, dim3)), 'k-', 'Linewidth', 2);  
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        ylim([0,max(1.1*torque_RSM(dim1, dim2, dim3))]) 
    end 
    if (LH_SBT_flag == 1);  
        plot(x_var, squeeze(torque_LH(dim1, dim2, dim3)), 'b-', 'Linewidth', 2);  
        ylim([0,max(1.1*torque_LH(dim1, dim2, dim3))])  
    end 
    if (J_SBT_flag == 1);  
        plot(x_var, squeeze(torque_J(dim1, dim2, dim3)), 'r-', 'Linewidth', 2);  
        ylim([0,1.1*max(torque_J(dim1, dim2, dim3))]) 
    end 
     
    if (RFT_flag == 1);  
        plot(x_var, squeeze(torque_GH_RFT(dim1, dim2, dim3)), 'g-', 'Linewidth', 
2);  
        ylim([0,1.1*max(torque_GH_RFT(dim1, dim2, dim3))]) 
        plot(x_var, squeeze(torque_LH_RFT(dim1, dim2, dim3)), 'b--', 'Linewidth', 
2);  
        ylim([0,1.1*max(torque_LH_RFT(dim1, dim2, dim3))])     
    end 
     
    if (get(handles.add_legend,'Value')==1) 
        legend(legend_text) 
        legend('Location', legend_location) 
        legend('boxoff') 
    end 
     
xlim([0 1.1*max(x_var)]); set(gca, 'XTickLabel',[]); 
ylabel('$T/(\mu \Omega R^3)$', 'Interpreter', 'Latex','Fontsize', 14) 
%%  plot drag %% 
if (get(handles.plot_in_figure,'Value')==1); 
    subplot(3,1,3); hold on 
 else 
    axes(handles.D_plot); cla reset; hold on; 
end 
  
    if (RSM_flag == 1);  
        plot(x_var, squeeze(drag_RSM(dim1, dim2, dim3)), 'k-', 'Linewidth', 2);  
        ylim([0,1.1*max(drag_RSM(dim1, dim2, dim3))]) 
    end 
    if (LH_SBT_flag == 1);  
        plot(x_var, squeeze(drag_LH(dim1, dim2, dim3)), 'b-', 'Linewidth', 2);  
        ylim([0,1.1*max(drag_LH(dim1, dim2, dim3))]) 
    end 
    if (J_SBT_flag == 1);  
        plot(x_var, squeeze(drag_J(dim1, dim2, dim3)), 'r-', 'Linewidth', 2);  
        ylim([0,1.1*max(drag_J(dim1, dim2, dim3))]) 
    end 
     
    if (RFT_flag == 1);  
        plot(x_var, squeeze(drag_GH_RFT(dim1, dim2, dim3)), 'g-', 'Linewidth', 
2);  
        ylim([0,1.1*max(drag_GH_RFT(dim1, dim2, dim3))]) 
        plot(x_var, squeeze(drag_LH_RFT(dim1, dim2, dim3)), 'b--', 'Linewidth', 
2);  
        ylim([0,1.1*max(drag_LH_RFT(dim1, dim2, dim3))]) 
    end 
     
    if (get(handles.add_legend,'Value')==1) 
        legend(legend_text) 
        legend('Location', legend_location) 
        legend('boxoff') 
    end 
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xlim([0 1.1*max(x_var)]); xlabel(x_label, 'Interpreter', 'Latex','Fontsize', 14); 
ylabel('$D/(\mu UR)$', 'Interpreter', 'Latex', 'Fontsize', 14) 
     
function length_min_Callback(hObject, eventdata, handles) 
% hObject    handle to length_min (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of length_min as text 
%        str2double(get(hObject,'String')) returns contents of length_min as a 
double 
% --- Executes during object creation, after setting all properties. 
function length_min_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to length_min (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function length_max_Callback(hObject, eventdata, handles) 
% hObject    handle to length_max (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of length_max as text 
%        str2double(get(hObject,'String')) returns contents of length_max as a 
double 
% --- Executes during object creation, after setting all properties. 
function length_max_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to length_max (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function lambda_min_Callback(hObject, eventdata, handles) 
% hObject    handle to lambda_min (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of lambda_min as text 
%        str2double(get(hObject,'String')) returns contents of lambda_min as a 
double 
% --- Executes during object creation, after setting all properties. 
function lambda_min_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to lambda_min (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function lambda_max_Callback(hObject, eventdata, handles) 
% hObject    handle to lambda_max (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of lambda_max as text 
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%        str2double(get(hObject,'String')) returns contents of lambda_max as a 
double 
% --- Executes during object creation, after setting all properties. 
function lambda_max_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to lambda_max (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function helical_radius_Callback(hObject, eventdata, handles) 
% hObject    handle to helical_radius (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of helical_radius as text 
%        str2double(get(hObject,'String')) returns contents of helical_radius as 
a double 
% --- Executes during object creation, after setting all properties. 
function helical_radius_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to helical_radius (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function filament_radius_min_Callback(hObject, eventdata, handles) 
% hObject    handle to filament_radius_min (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of filament_radius_min as text 
%        str2double(get(hObject,'String')) returns contents of 
filament_radius_min as a double 
% --- Executes during object creation, after setting all properties. 
function filament_radius_min_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to filament_radius_min (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function filament_radius_max_Callback(hObject, eventdata, handles) 
% hObject    handle to filament_radius_max (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of filament_radius_max as text 
%        str2double(get(hObject,'String')) returns contents of 
filament_radius_max as a double 
% --- Executes during object creation, after setting all properties. 
function filament_radius_max_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to filament_radius_max (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in save_data. 
function save_data_Callback(hObject, eventdata, handles) 
% hObject    handle to save_data (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of save_data 
% --- Executes on button press in plot_in_figure. 
function plot_in_figure_Callback(hObject, eventdata, handles) 
% hObject    handle to plot_in_figure (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of plot_in_figure 
% --- Executes on selection change in plot_type. 
function plot_type_Callback(hObject, eventdata, handles) 
% hObject    handle to plot_type (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: contents = cellstr(get(hObject,'String')) returns plot_type contents as 
cell array 
%        contents{get(hObject,'Value')} returns selected item from plot_type 
% --- Executes during object creation, after setting all properties. 
function plot_type_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to plot_type (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end; 
% --- Executes on button press in sim_type_RegSM. 
function checkbox3_Callback(hObject, eventdata, handles) 
% hObject    handle to sim_type_RegSM (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of sim_type_RegSM 
% --- Executes on button press in sim_type_LH_SBT. 
function sim_type_LH_SBT_Callback(hObject, eventdata, handles) 
% hObject    handle to sim_type_LH_SBT (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of sim_type_LH_SBT 
% --- Executes on button press in sim_type_J_SBT. 
function sim_type_J_SBT_Callback(hObject, eventdata, handles) 
% hObject    handle to sim_type_J_SBT (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of sim_type_J_SBT 
% --- Executes on button press in sim_type_RegSM. 
function sim_type_RegSM_Callback(hObject, eventdata, handles) 
% hObject    handle to sim_type_RegSM (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of sim_type_RegSM 
function lambda_step_Callback(hObject, eventdata, handles) 
% hObject    handle to lambda_step (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of lambda_step as text 
%        str2double(get(hObject,'String')) returns contents of lambda_step as a 
double 
% --- Executes during object creation, after setting all properties. 
function lambda_step_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to lambda_step (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function length_step_Callback(hObject, eventdata, handles) 
% hObject    handle to length_step (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of length_step as text 
%        str2double(get(hObject,'String')) returns contents of length_step as a 
double 
% --- Executes during object creation, after setting all properties. 
function length_step_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to length_step (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function filament_radius_step_Callback(hObject, eventdata, handles) 
% hObject    handle to filament_radius_step (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of filament_radius_step as text 
%        str2double(get(hObject,'String')) returns contents of 
filament_radius_step as a double 
% --- Executes during object creation, after setting all properties. 
function filament_radius_step_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to filament_radius_step (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function data_filename_Callback(hObject, eventdata, handles) 
% hObject    handle to data_filename (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of data_filename as text 
%        str2double(get(hObject,'String')) returns contents of data_filename as a 
double 
% --- Executes during object creation, after setting all properties. 
function data_filename_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to data_filename (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
  
function lambda_to_plot_Callback(hObject, eventdata, handles) 
% hObject    handle to lambda_to_plot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of lambda_to_plot as text 
%        str2double(get(hObject,'String')) returns contents of lambda_to_plot as 
a double 
% --- Executes during object creation, after setting all properties. 
function lambda_to_plot_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to lambda_to_plot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function edit54_Callback(hObject, eventdata, handles) 
% hObject    handle to edit54 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit54 as text 
%        str2double(get(hObject,'String')) returns contents of edit54 as a double 
% --- Executes during object creation, after setting all properties. 
function edit54_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit54 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function length_to_plot_Callback(hObject, eventdata, handles) 
% hObject    handle to length_to_plot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of length_to_plot as text 
%        str2double(get(hObject,'String')) returns contents of length_to_plot as 
a double 
% --- Executes during object creation, after setting all properties. 
function length_to_plot_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to length_to_plot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function edit57_Callback(hObject, eventdata, handles) 
% hObject    handle to edit57 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit57 as text 
%        str2double(get(hObject,'String')) returns contents of edit57 as a double 
% --- Executes during object creation, after setting all properties. 
function edit57_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit57 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function a_to_plot_Callback(hObject, eventdata, handles) 
% hObject    handle to a_to_plot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of a_to_plot as text 
%        str2double(get(hObject,'String')) returns contents of a_to_plot as a 
double 
% --- Executes during object creation, after setting all properties. 
function a_to_plot_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to a_to_plot (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function edit59_Callback(hObject, eventdata, handles) 
% hObject    handle to edit59 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit59 as text 
%        str2double(get(hObject,'String')) returns contents of edit59 as a double 
% --- Executes during object creation, after setting all properties. 
function edit59_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit59 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
function edit60_Callback(hObject, eventdata, handles) 
% hObject    handle to edit60 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: get(hObject,'String') returns contents of edit60 as text 
%        str2double(get(hObject,'String')) returns contents of edit60 as a double 
% --- Executes during object creation, after setting all properties. 
function edit60_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit60 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns called 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), 
get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
% --- Executes on button press in add_RFT. 
function add_RFT_Callback(hObject, eventdata, handles) 
% hObject    handle to add_RFT (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of add_RFT 
% --- Executes on button press in add_legend. 
function add_legend_Callback(hObject, eventdata, handles) 
% hObject    handle to add_legend (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hint: get(hObject,'Value') returns toggle state of add_legend 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function[force_GH_RFT, torque_GH_RFT, drag_GH_RFT,force_LH_RFT torque_LH_RFT 
drag_LH_RFT] = RFT_Calculations(R, a, lambda, L) 
%Gray and Hancock resistive force theory 
%    
% Input arguments:  
%   -R helical radius 
%   -a filament radius 
%   -lambda is the helical pitch 
%   -L is axial length 
%    
% Output arguments: 
%   -force_GH_RFT torque_GH_RFT drag_GH_RFT are the Gray and Hancock RFT axial 
force, torque and drag, respectively 
%   -force_LH_RFT torque_LH_RFT drag_LH_RFT are the Lighthill RFT axial force, 
torque and drag, respectively 
%       *Note that these output forces are normalized by 4 pi mu R 
%      
% global force_GH_RFT torque_GH_RFT drag_GH_RFT 
% global force_LH_RFT torque_LH_RFT drag_LH_RFT 
theta=atan(2*pi./lambda);  % Determine pitch angle 
for i = 1:length(a) 
    for j=1:length(lambda) 
        for k= 1:length(L) 
                 
            %%  Gray and Hancock RFT 
            Ct=2*pi/[log(2*lambda(j)/a(i))-.5];  %No mu because will be 
nondimensionalized 
            Cn=4*pi/[log(2*lambda(j)/a(i))+.5]; 
            force_GH_RFT(i,j,k)=(Cn-Ct)*sin(theta(j))*L(k); %No omega*R 
            
torque_GH_RFT(i,j,k)=[Cn*cos(theta(j))^2+Ct*sin(theta(j))^2]*L(k)/cos(theta(j)); 
%No omega*R^2 
            
drag_GH_RFT(i,j,k)=[Cn*sin(theta(j))^2+Ct*cos(theta(j))^2]*L(k)/cos(theta(j)); 
%No omega*R^2 
            %%  Lighthill RFT 
            Ct=2*pi/[log(0.18*lambda(j)/a(i)/cos(theta(j)))];  %No mu because 
nondimensionalized 
            Cn=4*pi/[log(0.18*lambda(j)/a(i)/cos(theta(j)))+.5]; 
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            force_LH_RFT(i,j,k)=(Cn-Ct)*sin(theta(j))*L(k); %No omega*R 
            
torque_LH_RFT(i,j,k)=[Cn*cos(theta(j))^2+Ct*sin(theta(j))^2]*L(k)/cos(theta(j)); 
%No omega*R^2 
            
drag_LH_RFT(i,j,k)=[Cn*sin(theta(j))^2+Ct*cos(theta(j))^2]*L(k)/cos(theta(j)); 
%No U*R 
        end 
    end 
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function BuildMatrixRegStokes3D(x,X0,N,N0,d) 
%% 
%% BUILD THE MATRIX A FOR STOKES FLOW 
%% 
% d is the regularization parameter 
% miu is the viscosity 
%  the Kernal Matrix as the global variable 
global A 
mu = 1; 
fac0 = 1/(8*pi*mu); 
%fac0 = 1; 
AXX = zeros(N,1); 
AYY = zeros(N,1); 
AZZ = zeros(N,1); 
AXY = zeros(N,1); 
AXZ = zeros(N,1); 
AYZ = zeros(N,1); 
N3 = 3*N; 
d2 = d^2; 
for i=1:N0 
  dx = X0(i,1)-x(:,1); dy = X0(i,2)-x(:,2);  
  dz = X0(i,3)-x(:,3); 
  %dz = dx - dx; 
  r2 = dx.^2 + dy.^2 + dz.^2; 
%% FOR STOKES FLOWS 
 tmp = (r2+d2).^(3/2); 
 H2 = 1./tmp; 
 H1 = (r2+2*d2).*H2; 
  
%-------------------------- 
  AXX = H1 + H2.*dx.*dx ; 
  AYY = H1 + H2.*dy.*dy ; 
  AZZ = H1 + H2.*dz.*dz; 
  AXY = H2.*dx.*dy; 
  AXZ = H2.*dx.*dz; 
  AYZ = H2.*dy.*dz; 
  A(3*i-2,1:3:N3) = AXX; 
  A(3*i-2,2:3:N3) = AXY; 
  A(3*i-2,3:3:N3) = AXZ; 
   
  A(3*i-1,1:3:N3) = AXY; 
  A(3*i-1,2:3:N3) = AYY; 
  A(3*i-1,3:3:N3) = AYZ; 
   
  A(3*i,1:3:N3) = AXZ; 
  A(3*i,2:3:N3) = AYZ; 
  A(3*i,3:3:N3) = AZZ; 
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end 
A = A*fac0; 
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [F1,F2,F3,T1,T2,T3,A1,A2,A3] = 
ExpFlagellumFullTubeMatrix(Sep,Fila_Radius,Radius,Length,Lambda_in) 
% compute the force on a rotating helix by regularized Stokeslets. 
% clean code / nov. 7 
% compute torque and drag coefficient 
%%%%%%%%%%%%%%%%%%%%%%%% parameters %%%%%%%%%%%%%%%%%%%%%%%%%55 
% Sep: distance from boundary; 
% Fila_Radius: radius of the filament; 
% Radius: radius of the helix; 
% Length: total length of the helix; 
% Lambda_in: wavelength of the helix; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%  the Kernal Matrix as the global variable 
global A 
% regularization parameter and grid spacing 
Reg = Fila_Radius*0.25; 
PointsPerCross = 12; 
% filament radius 
F_r = Fila_Radius; 
% construct a flagellum 
Omega = -1; 
h = Radius; 
Lambda = Lambda_in; 
K = 2*pi/Lambda; 
KE = 1; 
Phi = atan(2*pi*h/Lambda); 
% s is the paramter along axis 
s = 0:Fila_Radius*cos(Phi)*0.5:Length; 
TotalPoints = length(s); 
% Ensure enough memory is available by checking architecture 
mem_required = 8*(3*TotalPoints)^2; 
hard_type=ispc; 
mat_version = version; 
    mat_version=mat_version(length(mat_version)-5:length(mat_version)-2); 
    mat_version=str2num(mat_version); 
if hard_type==0 
    if mat_version>2012 
        max_array=memory; 
        if max_array.MaxPossibleArrayBytes<mem_required 
            userchoice=input('You do not have enough memory for this simulation.  
The program will now end with errors.'); 
        end 
    end 
else 
    max_array=memory; 
    if max_array.MaxPossibleArrayBytes<mem_required 
        userchoice=input('You do not have enough memory for this simulation.  The 
program will now end with errors.'); 
    end 
    
end 
E_x = s-s + 1; 
% displacement from the boundary 
Dz = Sep; 
% up-right flagellum along z axis 
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Grid_z = s; 
Grid_x = E_x.*cos(-K*Grid_z)*h; 
Grid_y = E_x.*sin(-K*Grid_z)*h; 
%%% construct mesh 
[x_o,y_o,z_o]=tubeplot(Grid_x,Grid_y,Grid_z,F_r,Grid_z,PointsPerCross); 
x_o = x_o'; 
y_o = y_o'; 
z_o = z_o'; 
% cap points 
cap1_x = mean(x_o(:,1)); 
cap1_y = mean(y_o(:,1)); 
cap1_z = mean(z_o(:,1)); 
cap2_x = mean(x_o(:,end)); 
cap2_y = mean(y_o(:,end)); 
cap2_z = mean(z_o(:,end)); 
x_o1 = x_o(1:PointsPerCross,:); 
x_o1 = x_o1(:)'; 
y_o1 = y_o(1:PointsPerCross,:); 
y_o1 = y_o1(:)'; 
z_o1 = z_o(1:PointsPerCross,:); 
z_o1 = z_o1(:)'; 
ttt = length(y_o1); 
x_o = [];y_o = [];z_o = []; 
% add cap points 
y_o(1) = cap1_y; 
y_o(2:1+ttt) = y_o1; 
y_o(ttt+2) = cap2_y; 
x_o(1) = cap1_x; 
x_o(2:1+ttt) = x_o1; 
x_o(ttt+2) = cap2_x; 
z_o(1) = cap1_z; 
z_o(2:1+ttt) = z_o1; 
z_o(ttt+2) = cap2_z; 
PointsOnAFlagellum = length(x_o); 
% loop over time axis 
Time_Steps = 3; 
Time_i = linspace(0,2*pi/abs(Omega),Time_Steps); 
for ijk = 1:length(Time_i)-1 
     
    % rotate along z axis by a phase determined by time 
    Angle = - Time_i(ijk)*Omega; 
    Grid_z = z_o; 
    Grid_x =  x_o*cos(Angle) + y_o*sin(-Angle); 
    Grid_y =  x_o*sin(Angle) + y_o*cos(Angle); 
     
    V_x = Grid_y*Omega; 
    V_y = -1*Grid_x*Omega; 
    V_z = V_y - V_y; 
    % rotate the flagellum along y axis 
    Angle = -pi/2; 
    Grid_x_r =  Grid_x*cos(Angle) + Grid_z*sin(-Angle); 
    Grid_z_r =  Grid_x*sin(Angle) + Grid_z*cos(Angle); 
    Grid_y_r = Grid_y; 
    V_x_r = V_x*cos(Angle) + V_z*sin(-Angle); 
    V_z_r = V_x*sin(Angle) + V_z*cos(Angle); 
    V_y_r = V_y; 
         
    % move to upspace 
    % displace flagella and make an array 
     
    Dx = 4.5; 
    Dy = 2; 
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    % set PairsX, PairsY to be 1 
    PairsX = 1; 
    PairsY = 1; 
    % displace Grid_z 
    Grid_z_r = Grid_z_r + Dz; 
    Grid_x = []; 
    Grid_y = []; 
    Grid_z = []; 
    V_x = []; 
    V_y = []; 
    V_z = []; 
    for ij = 1:PairsX 
        for kk = 1:PairsY 
            Grid_x = [Grid_x,Grid_x_r]; 
            Grid_y = [Grid_y,Grid_y_r]; 
            Grid_z = [Grid_z,Grid_z_r]; 
            V_x = [V_x,V_x_r]; 
            V_y = [V_y,V_y_r]; 
            V_z = [V_z,V_z_r]; 
            Grid_y_r = Grid_y_r + Dy;     
        end 
        Grid_y_r = Grid_y_r - PairsY*Dy;  
        Grid_x_r = Grid_x_r + Dx;     
    end 
    Grid = [Grid_x; Grid_y; Grid_z]'; 
    TotalPoints = length(Grid_x); 
     
    V_All = zeros(TotalPoints*3,1); 
    V_All(1:3:end) = V_x; 
    V_All(2:3:end) = V_y; 
    V_All(3:3:end) = V_z; 
     
    % construct the Kernal Matrix 
    if (ijk==1) 
        A = zeros(3*TotalPoints,3*TotalPoints); 
    end 
     
    BuildMatrixRegStokes3D(Grid,Grid,TotalPoints,TotalPoints,Reg); 
     
    tmp1 = gmres(A,V_All,10,1e-10,100); 
    tmp1 = tmp1'; 
     
    FX(ijk)= sum(tmp1(1:3:end)); 
    FY(ijk)= sum(tmp1(2:3:end)); 
    FZ(ijk)= sum(tmp1(3:3:end)); 
     
    Grid_z = Grid_z - Dz; 
    % compute torque r x F 
    TX(ijk) = sum(Grid_y.*tmp1(3:3:end) - Grid_z.*tmp1(2:3:end)); 
    TY(ijk) = sum(Grid_z.*tmp1(1:3:end) - Grid_x.*tmp1(3:3:end)); 
    TZ(ijk) = sum(Grid_x.*tmp1(2:3:end) - Grid_y.*tmp1(1:3:end)); 
     
    % compute translation  
    V_All(1:3:end) = 1; 
    V_All(2:3:end) = 0; 
    V_All(3:3:end) = 0; 
     
    %tmp1 = qmr(A,V_All,1e-10,500);%L1,U1); 
    tmp1 = gmres(A,V_All,10,1e-10,100); 
    AX(ijk)= sum(tmp1(1:3:end)); 
    AY(ijk)= sum(tmp1(2:3:end)); 
    AZ(ijk)= sum(tmp1(3:3:end)); 
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    ijk  % Put loop count out to terminal  
     
end 
F1 = mean(FX); 
F2 = mean(FY); 
F3 = mean(FZ); 
T1 = mean(TX); 
T2 = mean(TY); 
T3 = mean(TZ); 
A1 = mean(AX); 
A2 = mean(AY); 
A3 = mean(AZ); 
clear global A 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function F_T_D_RSM(R, a, lambda, L) 
% Input Arguments 
%   -R the helical radius (single valued) 
%   -a the filament radius (vector) 
%   -lambda helical pitch or wavelength (vector) 
%   -L axial length of the helix (vector) 
global force_RSM torque_RSM drag_RSM 
zz = 250; 
for i = 1:length(a) 
    for j=1:length(lambda) 
        for k= 1:length(L) 
             
           [F1,F2,F3,T1,T2,T3,A1,A2,A3] = 
ExpFlagellumFullTubeMatrix(zz,a(i),R,L(k),lambda(j)); 
            force_RSM(i,j,k) = F1; 
            force_RSM_Y(i,j,k) = F2;  %% Y and Z values are not used 
            force_RSM_Z(i,j,k) = F3; 
            torque_RSM(i,j,k) = T1; 
            torque_RSM_Y(i,j,k) = T2; 
            torque_RSM_Z(i,j,k) = T3; 
            drag_RSM(i,j,k) = A1; 
            drag_RSM_Y(i,j,k) = A2; 
            drag_RSM_Z(i,j,k) = A3; 
           
        end 
    end 
end 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [T,N,B,k,t] = frenet(x,y,z), 
% FRENET - Frenet-Serret Space Curve Invarients 
%    
%   [T,N,B,k,t] = frenet(x,y); 
%   [T,N,B,k,t] = frenet(x,y,z); 
%  
%   Returns the 3 vector and 2 scaler invarients of a space curve defined 
%   by vectors x,y and z.  If z is omitted then the curve is only a 2D, 
%   but the equations are still valid. 
%  
%    _    r' 
%    T = ----  (Tangent) 
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%        |r'| 
%  
%    _    T' 
%    N = ----  (Normal) 
%        |T'| 
%    _   _   _ 
%    B = T x N (Binormal) 
%  
%    k = |T'|  (Curvature) 
%  
%    t = dot(-B',N) (Torsion) 
%  
%  
%    Example: 
%    theta = 2*pi*linspace(0,2,100); 
%    x = cos(theta); 
%    y = sin(theta); 
%    z = theta/(2*pi); 
%    [T,N,B,k,t] = frenet(x,y,z); 
%    line(x,y,z), hold on 
%    quiver3(x,y,z,T(:,1),T(:,2),T(:,3),'color','r') 
%    quiver3(x,y,z,N(:,1),N(:,2),N(:,3),'color','g') 
%    quiver3(x,y,z,B(:,1),B(:,2),B(:,3),'color','b') 
%    legend('Curve','Tangent','Normal','Binormal') 
%  
%  
% See also: GRADIENT 
if nargin == 2, 
    z = zeros(size(x)); 
end 
% CONVERT TO COLUMN VECTOR 
x = x(:); 
y = y(:); 
z = z(:); 
% SPEED OF CURVE 
dx = gradient(x); 
dy = gradient(y); 
dz = gradient(z); 
dr = [dx dy dz]; 
ddx = gradient(dx); 
ddy = gradient(dy); 
ddz = gradient(dz); 
ddr = [ddx ddy ddz]; 
% TANGENT 
T = dr./mag(dr,3); 
% DERIVIATIVE OF TANGENT 
dTx =  gradient(T(:,1)); 
dTy =  gradient(T(:,2)); 
dTz =  gradient(T(:,3)); 
dT = [dTx dTy dTz]; 
% NORMAL 
N = dT./mag(dT,3); 
% BINORMAL 
B = cross(T,N); 
% CURVATURE 
% k = mag(dT,1); 
k = mag(cross(dr,ddr),1)./((mag(dr,1)).^3); 
% TORSION 
t = dot(-B,N,2); 
function N = mag(T,n), 
% MAGNATUDE OF A VECTOR (Nx3) 
%  M = mag(U) 
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N = sum(abs(T).^2,2).^(1/2); 
d = find(N==0);  
N(d) = eps*ones(size(d)); 
N = N(:,ones(n,1)); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [varargout]=tubeplot(x,y,z,varargin)   
% TUBEPLOT - plots a tube r along the space curve x,y,z. 
% 
% tubeplot(x,y,z) plots the basic tube with radius 1 
% tubeplot(x,y,z,r) plots the basic tube with variable radius r (either a vector 
or a value) 
% tubeplot(x,y,z,r,v) plots the basic tube with coloring dependent on the values 
in the vector v 
% tubeplot(x,y,z,r,v,s) plots the tube with s tangential subdivisions (default is 
6) 
% 
% [X,Y,Z]=tubeplot(x,y,z) returns [Nx3] matrices suitable for mesh or surf 
% 
% Note that the tube may pinch at points where the normal and binormal  
% misbehaves. It is suitable for general space curves, not ones that  
% contain straight sections. Normally the tube is calculated using the 
% Frenet frame, making the tube minimally twisted except at inflexion points. 
% 
% To deal with this problem there is an alternative frame: 
% tubeplot(x,y,z,r,v,s,vec) calculates the tube by setting the normal to 
% the cross product of the tangent and the vector vec. If it is chosen so  
% that it is always far from the tangent vector the frame will not twist unduly 
% 
% Example: 
% 
%  t=0:(2*pi/100):(2*pi); 
%  x=cos(t*2).*(2+sin(t*3)*.3); 
%  y=sin(t*2).*(2+sin(t*3)*.3); 
%  z=cos(t*3)*.3; 
%  tubeplot(x,y,z,0.14*sin(t*5)+.29,t,10) 
% 
% Written by Anders Sandberg, asa@nada.kth.se, 2005 
  subdivs = 6; 
  N=size(x,1); 
  if (N==1) 
    x=x'; 
    y=y'; 
    z=z'; 
    N=size(x,1); 
  end 
  if (nargin == 3) 
    r=x*0+1; 
  else 
    r=varargin{1}; 
    if (size(r,1)==1 & size(r,2)==1) 
      r=r*ones(N,1); 
    end 
  end 
  if (nargin > 5) 
    subdivs=varargin{3}+1; 
  end 
  if (nargin > 6) 
    vec=varargin{4}; 
    [t,n,b]=frame(x,y,z,vec); 

163



  else 
    [t,n,b]=frenet(x,y,z); 
  end 
   
   
   
  X=zeros(N,subdivs); 
  Y=zeros(N,subdivs); 
  Z=zeros(N,subdivs); 
  theta=0:(2*pi/(subdivs-1)):(2*pi); 
  for i=1:N 
    X(i,:)=x(i) + r(i)*(n(i,1)*cos(theta) + b(i,1)*sin(theta)); 
    Y(i,:)=y(i) + r(i)*(n(i,2)*cos(theta) + b(i,2)*sin(theta)); 
    Z(i,:)=z(i) + r(i)*(n(i,3)*cos(theta) + b(i,3)*sin(theta)); 
  end 
  if (nargout==0) 
    if (nargin > 4) 
      V=varargin{2}; 
      if (size(V,1)==1) 
 V=V'; 
      end 
      V=V*ones(1,subdivs); 
      surf(X,Y,Z,V); 
    else 
      surf(X,Y,Z); 
    end 
  else 
    varargout(1) = {X};  
    varargout(2) = {Y};  
    varargout(3) = {Z};  
  end 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function F_T_D_SBT_Johnson(R, a, lambda, L) 
%    
% Input arguments:  
%   -a_lambda is the ratio of filament radius "a" to the wavelength 
%       "lambda", i.e., a_lambda=a/lambda 
%   -theta is the pitch angle 
%   -nlength is the axial length of helix in the unit of its wavelength 
%       for one period of helix, nlength = 1. 
%       when nlength is a vector, it stores the length of a set of helixes 
%       to compute for the force.  
%   -res is the number of meshes per wave length, typally I set res=20. 
%     
%   -omega is the linear rotation speed 
%   -V is the translation speed 
%    
% Output arguments: 
%   -F, T are the mean forces per arclength along the translation and rotation 
%       directions, respectively. which are stored as vectors of the same size as 
%       as nlength. 
%       *Note that these output forces are normalized by 4 pi mu R 
%        
%   vphi is the mesh of helical phase, which is stored as a vector 
%      
global force_J torque_J drag_J 
theta = atan(2*pi*R./lambda);    %Pitch angle 
         
for j = 1:length(lambda) 
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        a_lambda(:,j) = a(:)./lambda(j)*4/pi;  %Adjust filament radius to be 
equivalent to RSM and Lighthill SBT sims 
end 
         
for j = 1:length(lambda) 
        nlength(j,:) = L./lambda(j); 
        contour_length(j,:) = lambda(j)./cos(theta(j)) .* nlength(j,:); 
end 
phirange = nlength*2*pi; 
res = 20; 
nres=floor(nlength*res+.5); 
% contour_length = lambda./cos(theta) .* nlength; 
arc_length = contour_length./nres; 
%Get F and T for nontranslating flagellum 
omega = 1.0;    %Set rotation rate to unity 
V = 0.0;        %Set velocity to zero 
for i = 1:length(a) 
    for j=1:length(lambda) 
        for k= 1:length(L) 
            [F_J, T_J] = SBT_helical_Johnson(a_lambda(i,j), theta(j), 
nlength(j,k), res, omega, V); 
            force_J(i,j,k)=-sum(F_J)*4*pi*arc_length(j,k); 
            torque_J(i,j,k)=sum(T_J)*4*pi*arc_length(j,k); 
        end 
    end 
end 
%Get F and T for nonrotating flagellum 
omega = 0.0;    %Set rotation rate to zero 
V = 1.0;        %Set velocity to unity 
for i = 1:length(a) 
    for j=1:length(lambda) 
        for k= 1:length(L) 
            [F_J, T_J] = SBT_helical_Johnson(a_lambda(i,j), theta(j), 
nlength(j,k), res, omega, V); 
            drag_J(i,j,k)=sum(F_J)*4*pi*arc_length(j,k); 
        end 
    end 
end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function F_T_D_SBT_LH(R, a, lambda, L) 
%    
% Input arguments:  
%   -a_lambda is the ratio of filament radius "a" to the wavelength 
%       "lambda", i.e., a_lambda=a/lambda 
%   -theta is the pitch angle 
%   -nlength is the axial length of helix in the unit of its wavelength 
%       for one period of helix, nlength = 1. 
%       when nlength is a vector, it stores the length of a set of helixes 
%       to compute for the force.  
%   -res is the number of meshes per wave length, typally I set res=20. 
%     
%   -omega is the linear rotation speed 
%   -V is the translation speed 
%    
% Output arguments: 
%   -F, T are the mean forces per arclength along the translation and rotation 
%       directions, respectively. which are stored as vectors of the same size as 
%       as nlength. 
%       *Note that these output forces are normalized by 4 pi mu R 
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%        
%   vphi is the mesh of helical phase, which is stored as a vector 
%      
global force_LH torque_LH drag_LH 
theta = atan(2*pi*R./lambda);    %Pitch angle 
         
for j = 1:length(lambda) 
        a_lambda(:,j) = a(:)./lambda(j); 
end 
         
for j = 1:length(lambda) 
        nlength(j,:) = L./lambda(j); 
        contour_length(j,:) = lambda(j)./cos(theta(j)) .* nlength(j,:); 
end 
phirange = nlength*2*pi; 
res = 20; 
nres=floor(nlength*res+.5); 
% contour_length = lambda./cos(theta) .* nlength; 
arc_length = contour_length./nres; 
%Get F and T for nontranslating flagellum 
omega = 1.0;    %Set rotation rate to unity 
V = 0.0;        %Set velocity to zero 
for i = 1:length(a) 
    for j=1:length(lambda) 
        for k= 1:length(L) 
            [F_LH, T_LH] = SBT_helical_Lighthill(a_lambda(i,j), theta(j), 
nlength(j,k), res, omega, V); 
            force_LH(i,j,k)=-sum(F_LH)*4*pi*arc_length(j,k); 
            torque_LH(i,j,k)=sum(T_LH)*4*pi*arc_length(j,k); 
        end 
    end 
end 
%Get F and T for nonrotating flagellum 
omega = 0.0;    %Set rotation rate to zero 
V = 1.0;        %Set velocity to unity 
for i = 1:length(a) 
    for j=1:length(lambda) 
        for k= 1:length(L) 
            [F_LH, T_LH] = SBT_helical_Lighthill(a_lambda(i,j), theta(j), 
nlength(j,k), res, omega, V); 
            drag_LH(i,j,k)=sum(F_LH)*4*pi*arc_length(j,k); 
        end 
    end 
end 
% save Length_Dep_SBT_Data.mat force_LH torque_LH drag_LH force_J torque_J drag_J 
lambda L a R 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [F, T] = SBT_helical_Johnson(a_lambda, theta, nlength, res, omega, V)  
%    
% Input arguments:  
%   -a_lambda is the ratio of filament radius "a" to the wavelength 
%       "lambda", i.e., a_lambda=a/lambda 
%   -theta is the pitch angle 
%   -nlength is the axial length of helix in the unit of its wavelength 
%       for one period of helix, nlength = 1. 
%       when nlength is a vector, it stores the length of a set of helixes 
%       to compute for the force.  
%   -res is the number of meshes per wave length, typally I set res=20. 
%     
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%   -omega is the linear rotation speed 
%   -V is the translation speed 
%    
% Output arguments: 
%   -F, T are the mean forces per arclength along the translation and rotation 
%       directions, respectively. which are stored as vectors of the same size as 
%       as nlength. 
%       *Note that these output forces are normalized by 4 pi mu R 
%        
%   vphi is the mesh of helical phase, which is stored as a vector 
%    
    function m = rotmatrix(angle) 
        m=[cos(angle), sin(angle), 0; -sin(angle), cos(angle), 0; 0, 0, 1]; 
    end 
F=zeros(size(nlength)); 
T=zeros(size(nlength));  
for k=1:numel(nlength) 
     
phimin=0; phimax=nlength(k)*(2*pi); 
xi=@(phi) sqrt(2 - 2*cos(phi(2)-phi(1))+(phi(2)-phi(1))^2/(tan(theta)^2)); 
fx12=@(phi) [cos(phi(1))-cos(phi(2)), sin(phi(1))-sin(phi(2)), (phi(1)-
phi(2))/tan(theta)]; 
px12=@(phi) (rotmatrix(phi(1))*(fx12(phi)'*fx12(phi))*rotmatrix(-
phi(2))/xi(phi)^3+rotmatrix(phi(1)-phi(2))/xi(phi)); 
nres=floor(nlength(k)*res+.5); 
dphi=(phimax-phimin)/nres; 
vphi=phimin+.5*dphi:dphi:phimax-.5*dphi; 
mattr=zeros(3*nres, 3*nres); 
epsilon=a_lambda*cos(theta)/nlength(k); 
cl0=-log(epsilon)-.5; 
for i=1:nres 
cnt=abs([1:nres]-i); 
cnt=cnt(find(cnt>0)); 
cl=cl0-.5*sum(ones(1, nres-1)./cnt); 
mattr(i,i)=1+cl; 
mattr([nres+i, 2*nres+i], [nres+i, 2*nres+i])=[cos(theta)^2+(1+sin(theta)^2)*cl, 
(cl-1)*sin(theta)*cos(theta); (cl-1)*cos(theta)*sin(theta), 
sin(theta)^2+(1+cos(theta)^2)*cl]; 
end 
for i=1:nres 
for j=1:nres 
if i==j  
continue; 
end 
mattr([i, nres+i, 2*nres+i], [j, nres+j, 2*nres+j])=px12([vphi(i), 
vphi(j)])*dphi*.5/sin(theta); 
end 
end 
v=zeros(1, 3*nres); 
v(nres+1:2*nres)=omega; 
v(2*nres+1:3*nres)=V; 
f=mattr\v'; 
F(k)=sum(f(2*nres+1:3*nres));%/nres; 
T(k)=sum(f(nres+1: 2*nres));%/nres; 
end 
end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [F, T] = SBT_helical_Lighthill(a_lambda, theta, nlength, res, omega, V)  
%    
% Input arguments:  
%   -a_lambda is the ratio of filament radius "a" to the wavelength 
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%       "lambda", i.e., a_lambda=a/lambda 
%   -theta is the pitch angle 
%   -nlength is the axial length of helix in the units of wavelength 
%       for one period of the helix, nlength = 1. 
%       when nlength is a vector, it stores the length of a set of helixes 
%       to compute for the force.  
%   -res is the number of meshes per wave length, typally I set res=20. 
%     
%   -omega is the linear rotation speed 
%   -V is the translation speed 
%    
% Output arguments: 
%   -F, T are the mean forces per arclength along the translation and rotation 
%       directions, respectively. which are stored as vectors of the same size as 
%       as nlength. 
%       *Note that these output forces are normalized by 4 pi mu R 
%        
     
    function m = rotmatrix(angle) 
        m=[cos(angle), sin(angle), 0; -sin(angle), cos(angle), 0; 0, 0, 1]; 
    end 
F=zeros(size(nlength)); 
T=zeros(size(nlength));  
for k=1:numel(nlength) 
     
phimin=0; phimax=nlength(k)*(2*pi); 
xi=@(phi) sqrt(2 - 2*cos(phi(2)-phi(1))+(phi(2)-phi(1))^2/(tan(theta)^2)); 
fx12=@(phi) [cos(phi(1))-cos(phi(2)), sin(phi(1))-sin(phi(2)), (phi(1)-
phi(2))/tan(theta)]; 
px12=@(phi) (rotmatrix(phi(1))*(fx12(phi)'*fx12(phi))*rotmatrix(-
phi(2))/xi(phi)^3+rotmatrix(phi(1)-phi(2))/xi(phi)); 
nres=floor(nlength(k)*res+.5); 
dphi=(phimax-phimin)/nres; 
vphi=phimin+.5*dphi:dphi:phimax-.5*dphi; 
mattr=zeros(3*nres, 3*nres); 
cutofflen=a_lambda*pi*exp(0.5)*cos(theta); 
cl=log(.5*dphi/cutofflen); 
for i=1:nres 
     
mattr(i,i)=1+cl; 
mattr([nres+i, 2*nres+i], [nres+i, 2*nres+i])=[cos(theta)^2+(1+sin(theta)^2)*cl, 
(cl-1)*sin(theta)*cos(theta); (cl-1)*cos(theta)*sin(theta), 
sin(theta)^2+(1+cos(theta)^2)*cl]; 
end 
for i=1:nres 
for j=1:nres 
if (abs(vphi(i)-vphi(j))<cutofflen+.5*dphi) 
continue; 
end 
mattr([i, nres+i, 2*nres+i], [j, nres+j, 2*nres+j])=px12([vphi(i), 
vphi(j)])*dphi*.5/sin(theta); 
end 
end 
v=zeros(1, 3*nres); 
v(nres+1:2*nres)=omega; 
v(2*nres+1:3*nres)=V; 
f=mattr\v'; 
F(k)=sum(f(2*nres+1:3*nres));%/nres; 
T(k)=sum(f(nres+1: 2*nres));%/nres; 
end 
end 
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I. HX711 PROGRAM
  

#include "HX711.h"                    // Biblioteca HX711  

  

#define DOUT  A0                      // HX711 DATA OUT = pino A0 do Arduino  

#define CLK  A1                       // HX711 SCK IN = pino A1 do Arduino  

  

HX711 balanca;          // define instancia balança HX711 

  

float calibration_factor = 42130;     // fator de calibração para teste inicial 

  

void setup() 

{ 

  Serial.begin(9600);            // monitor serial 9600 Bps 

  balanca.begin(DOUT, CLK);      // inicializa a balança 

  Serial.println();              // salta uma linha 

  Serial.println("HX711 - Calibracao da Balança");                 // imprime no monitor 

serial 

  Serial.println("Remova o peso da balanca"); 

  Serial.println("Depois que as leituras começarem, coloque um peso conhecido sobre a 

Balança"); 

  Serial.println("Pressione a,s,d,f para aumentar Fator de Calibração por 

10,100,1000,10000 respectivamente"); 

  Serial.println("Pressione z,x,c,v para diminuir Fator de Calibração por 

10,100,1000,10000 respectivamente"); 

  Serial.println("Após leitura correta do peso, pressione t para TARA(zerar) "); 

  

  balanca.set_scale();                                             // configura a escala da Balança 

  zeraBalanca ();                                                  // zera a Balança 

} 

  

void zeraBalanca () 

{ 

  Serial.println();                                               // salta uma linha 

  balanca.tare();                                                 // zera a Balança 

  Serial.println("Balança Zerada "); 

} 

  

void loop() 

{ 

  balanca.set_scale(calibration_factor);                     // ajusta fator de calibração 

  Serial.print("Peso: ");                                    // imprime no monitor serial 

  Serial.print(balanca.get_units(), 3);                      // imprime peso da balança com 3 

casas decimais 

  Serial.print(" kg"); 

  Serial.print("      Fator de Calibração: ");               // imprime no monitor serial 

  Serial.println(calibration_factor);                        // imprime fator de calibração 

  delay(500) ;                                               // atraso de 0,5 segundo 

  

  if (Serial.available())                                    // reconhece letra para ajuste do fator de 

calibração 
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#include "HX711.h"                    // Biblioteca HX711  

  

#define DOUT  A0                      // HX711 DATA OUT = pino A0 do Arduino  

#define CLK  A1                       // HX711 SCK IN = pino A1 do Arduino  

  

HX711 balanca;          // define instancia balança HX711 

  

float calibration_factor = 42130;     // fator de calibração para teste inicial 

  

void setup() 

{ 

  Serial.begin(9600);            // monitor serial 9600 Bps 

  balanca.begin(DOUT, CLK);      // inicializa a balança 

  Serial.println();              // salta uma linha 

  Serial.println("HX711 - Calibracao da Balança");                 // imprime no monitor 

serial 

  Serial.println("Remova o peso da balanca"); 

  Serial.println("Depois que as leituras começarem, coloque um peso conhecido sobre a 

Balança"); 

  Serial.println("Pressione a,s,d,f para aumentar Fator de Calibração por 

10,100,1000,10000 respectivamente"); 

  Serial.println("Pressione z,x,c,v para diminuir Fator de Calibração por 

10,100,1000,10000 respectivamente"); 

  Serial.println("Após leitura correta do peso, pressione t para TARA(zerar) "); 

  

  balanca.set_scale();                                             // configura a escala da Balança 

  zeraBalanca ();                                                  // zera a Balança 

} 

  

void zeraBalanca () 

{ 

  Serial.println();                                               // salta uma linha 

  balanca.tare();                                                 // zera a Balança 

  Serial.println("Balança Zerada "); 

} 

  

void loop() 

{ 

  balanca.set_scale(calibration_factor);                     // ajusta fator de calibração 

  Serial.print("Peso: ");                                    // imprime no monitor serial 

  Serial.print(balanca.get_units(), 3);                      // imprime peso da balança com 3 

casas decimais 

  Serial.print(" kg"); 

  Serial.print("      Fator de Calibração: ");               // imprime no monitor serial 

  Serial.println(calibration_factor);                        // imprime fator de calibração 

  delay(500) ;                                               // atraso de 0,5 segundo 

  

  if (Serial.available())                                    // reconhece letra para ajuste do fator de 

calibração 
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  { 

    char temp = Serial.read(); 

    if (temp == '+' || temp == 'a')                // a = aumenta 10 

      calibration_factor += 10; 

    else if (temp == '-' || temp == 'z')           // z = diminui 10 

      calibration_factor -= 10; 

    else if (temp == 's')                          // s = aumenta 100 

      calibration_factor += 100; 

    else if (temp == 'x')                          // x = diminui 100 

      calibration_factor -= 100; 

    else if (temp == 'd')                          // d = aumenta 1000 

      calibration_factor += 1000; 

    else if (temp == 'c')                          // c = diminui 1000 

      calibration_factor -= 1000; 

    else if (temp == 'f')                          // f = aumenta 10000 

      calibration_factor += 10000; 

    else if (temp == 'v')                          // v = dimuni 10000 

      calibration_factor -= 10000; 

    else if (temp == 't') zeraBalanca ();          // t = zera a Balança 

  } 

} 
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