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Abstract: Water flow in porous media is one of many phenomena in nature that can demonstrate
both simple and complex behaviors. A soil–water retention curve (SWRC) is needed to characterize
this flow properly. This curve relates the soil water content and the matric potential (or porepressure),
being fundamental for simulating unsaturated soil behaviors. This article proposes a new model based
on simple assumptions regarding the saturated and unsaturated branches of soil–water retention
curves. Despite its simplicity, the modeling capability of the proposed SWRC is shown for two
types of soil. This new SWRC is obtained as a logistic function after solving an ordinary differential
equation (ODE). This ODE can also be solved numerically using the Finite Difference Method (FDM),
which indicates that the discrete version of the SWRC can be represented as the logistic map for
specific parameters. On the other hand, this discrete representation is known to encompass chaotic
and fractal behaviors. This link is used to investigate the stability and convergence of the FDM
scheme, indicating that for values pre-bifurcation, both the FDM and the analytical solution of the
ODE represent the new SWRC. This way, the present paper is the first step to better understating
how a chaotic framework could be related to SWRCs and geotechnics in general.

Keywords: soil–water retention curve; unsaturated flow; complex systems; chaos; logistic map

1. Introduction

The soil–water retention curve (SWRC) mathematically describes the relationship
between porepressure (hereby understood as pore-water pressure) and the water content in
the soil [1]. Along with the continuity equation and the unsaturated hydraulic conductivity,
this curve is necessary to describe the unsaturated flow behavior inside soils. Therefore,
this curve can be thought of as the geometric representation of a constitutive model that
characterizes the quantitative nature of the soil–water interaction.

Usually, the SWRC is crucial for modeling the unsaturated flow, as indicated by van
Genuchten [2], Fredlund and Rahrdjo [1], Fredlund and Xing [3] and Cavalcante and
Zornberg [4,5]. Such importance is justified by the fact that soils usually only have small
changes of porepressure within their saturated domain. However, if one tries to describe
the SWRC only for the unsaturated branch, it is not possible to properly evaluate the change
of porepressure within the saturated domain, as well as to provide a general framework
that transitions between these two regimes.

It is clear that the unsaturated and the saturated flow do have smooth transitions
in nature. Therefore, in order to describe a flow that can be saturated and unsaturated
within the same geometric domain, it is necessary to have a smooth description of the
SWRC for both the saturated and unsaturated conditions of the soil. Thus, the first goal
of the present paper is to present a novel formulation for the SWRC that continuously
describes the variation from the unsaturated to the saturated condition. This mathematical
description aims to be simple and physically consistent with the phenomenon.

In the literature, there are a number of other propositions of this type. For example,
some authors proposed a simple model for predicting the water-retention characteristics
of sandy soils from routinely available textural and structural soil properties [6]. This
same approach was also used for sand, silt, and clay soils [3]. Other authors explored
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better ways of experimentally quantifying the SWRC, such as combining mercury intrusion
porosimetry and centrifuge methods for extended-range retention curves of soil and porous
rock samples [7]. Despite proposing a new SWRC in the present paper, its modeling
capabilities will be only briefly discussed. The main focus of the present paper is to study
how the mathematical structure of this new SWRC can be correlated to chaotic systems,
specifically, the logistic map. For a full discussion on the suitability of different SWRCs to a
wide range of soil types, one may refer to [8].

Although physical phenomena are usually described by smooth patterns, it is argued
that the very nature of the physical world is discrete, as stated, for instance, by Klein [9],
Hooft [10], Ali et al. [11] and Riek [12]. Stephen Wolfram [13] gave a comprehensive
demonstration that the discrete representations can lead from smooth to chaotic patterns.
Wolfram [14] focused on cellular automata as a method for understanding and generating
chaotic patterns. Further, Ozelim et al. [15,16] proved that the finite difference method is a
specific case of cellular automata.

Therefore, the last goal of the present paper is to numerically describe the SWRC by
means of the finite difference method (FDM) and iterate it. A discussion will be carried out
to describe how parameters can be chosen to provide a stable and convergent FDM scheme.
In order to do so, a comparison between the discrete representation of the new SWRC and
the logistic map is considered.

2. Physical Description

Before any mathematical description of how the volumetric water content relates
to porepressure, it is necessary to understand the physics of the studied phenomenon.
The comprehension of the interaction between the water and solid particles allows one to
formulate the differential equation that rules the model behind it. Overall, some general
assumptions need to be clarified:

• The SWRC is not necessarily a bijective function relating porepressure to water content.
It often presents a hysteresis loop, and it is coupled to the deformation of the solid
skeleton. On the other hand, for simplicity, these complex issues are not considered in
the present work and will be addressed in future works.

• It is assumed that air pressure inside the pores of the soil matrix is constant and equal
to atmospheric pressure.

• Only unimodal soils are considered (unimodal poresize distributions). The literature
indicates that some soils may present a multimodal behavior, but this type of behavior
will not be considered in this paper [17–19]. One may refer to Turturro et al. [7] to
assess enhanced experimental methods to properly quantify multimodality (bi- and
trimodal poresize distributions).

Then, the following statements are sufficient to define a simple description of the
nature of the volumetric water content:

Statement 1. The literature indicates that the volumetric water content (θ) [nondimensional] may
have a lower limiting value, called residual value (θr) [nondimensional], which corresponds to the
condition of an excessively dry soil [2]. It is also common to define that θr is the water content at
which the gradient dθ/duw is zero on the dry end of the SWRC [2], where uw is the porepressure
[ML−1T−2]. Therefore, it is possible to suppose that this gradient is proportional to the difference
between the current water content and its residual value.

Remark 1. When soil is approaching its dry state, it becomes increasingly difficult to extract more
water from the porous matrix. Mathematically, this indicates that there exists an asymptote on the
dry end of the SWRC, which justifies the zero gradient at the residual value. It is known that the
existence of a residual value for the volumetric water content is controversial [8,20]. On the other
hand, one of the most used models, the Van Genuchten model, has this as a central premise. In the
present paper, therefore, this concept is adopted.
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Regarding the proportionality assumed, the linear model is the simplest mathematical model to
describe the relation between two variables (except for the constant model, which is discarded here as
the gradient is not fixed). Thus, the proportionality is justified.

Mathematical description: the corresponding description of the first statement can be
expressed as:

dθ

duw
∝ (θ − θr) (1)

Statement 2. The literature also indicates that the volumetric water content has an upper limiting
value, called saturated value (θs) [nondimensional], which corresponds to the condition of a soil
whose voids are completely filled with water. The value of θs can be defined as the water content
at which the gradient dθ/duw is zero on the wet end of the SWRC [2]. Therefore, it is possible to
suppose that this gradient is proportional to the difference between the saturated water content and
its current value.

Remark 2. Even if the wetting of the soil sample is performed slowly, when the soil pores are
almost fully filled with water, there exist occluded bubbles that occupy the minimum available
empty space. From this point on, as wetting continues, the occluded bubbles have their sizes
decreased, and the porepressure is increased. In general, each increase in the volumetric water content
necessarily implies a porepressure increase, as the bubbles need to be compressed. Mathematically,
this continuous increase occurs until full saturation is reached, at which all the occluded bubbles
have their volumes decreased to an infinitesimal size, which demands a porepressure that tends to
infinity. This indicates, mathematically, the presence of another asymptote on SWRC, this time at
the wet end. Again, the asymptote translates into a null gradient and the linear proportionality
model is chosen as it is the simplest possible form to relate the gradient and the volumetric water
content on the wet end of the SWRC. Furthermore, the beginning of the soil saturation occurs when
the voids are filled with water at null porepressure, and there exist occluded bubbles at atmospheric
pressure. At this point, we can define the volumetric water content at the saturation starting point
θs0 as θ(uw = 0) = θs0.

Mathematical description: the gradient condition for the wet end of the SWRC becomes:

dθ

duw
∝ (θs − θ) (2)

From a practical point of view, both the residual and the saturated volumetric water
contents can be defined as the water content at some large negative and positive value of
porepressure, respectively. On the other hand, the theoretical development above is not
impacted by this practical observation.

3. ODE Description and Solution

The two statements, which give a general physical and mathematical description
of the wetting/drying process, define how the volumetric water content varies with
porepressure and are sufficient to formulate the Ordinary Differential Equation (ODE)
of the phenomenon.

Combining Equations (1) and (2), it is possible to formulate the volumetric water
content variation in terms of the porepressure as:

dθ

duw
= δ1(θs − θ)(θ − θr) (3)

where δ1 is a hydraulic parameter.
Finally, considering Equation (3) as the differential equation that rules the phenomenon

and that θ(uw = 0) = θs0 is the necessary condition to solve it, the solution comes easily as:
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θ = θr +
(θs − θr)

1 + exp[−(θs − θr)δ1uw − δ2]
(4)

where

δ2 = ln
(

θs0 − θr

θs − θs0

)
(5)

It is worth noticing that δ1 is a fitting parameter, obtained for each type of soil analyzed.
On the other hand, δ2 may be obtained experimentally, as all the quantities involved in its
definition could be measured. If these quantities are not available, δ2 could also be fitted,
but this is not ideal as pure numerical fitting may compromise the interpretability of θs0,θs
and θr.

The SWRC expressed in Equation (4) is represented in Figure 1. It is important to
discern that the saturation starting point θs0 is different from the full saturation point θs. As
described in the second statement, the former is reached when the water occupies all the
voids but the occluded bubbles, which are at atmospheric pressure. On the other hand, the
latter can only be reached when the porepressure is so increased that the occluded bubbles
are under a pressure that resizes them to a despicable volume. Furthermore, theoretically,
the maximum volumetric water content (θs) can only be truly reached if one applies a
porepressure that tends to infinity.

Figure 1. Qualitative description of the volumetric water content curve.

Equation (4) represents a unimodal soil, which means that there are only two asymptotes—
the residual and the saturated volumetric water content. This may not be the case for all the soils,
but it suffices for the theoretical explorations hereby carried out.

4. Normalized Water Content Solution

Equation (4) is a solution in terms of the volumetric water content; on the other hand,
it is easy to rewrite such equation in terms of the normalized water content (Θ), which can
be expressed as:

Θ =
θ − θr

θs − θr
(6)

Hence, the derivative of Equation (6), in terms of porepressure, can be written as:

dΘ
duw

=
1

(θs − θr)

dθ

duw
(7)

or as:
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(θs − θr)
dΘ
duw

=
dθ

duw
(8)

By combining Equations (3) and (8), one can find the following expression:

(θs − θr)
dΘ
duw

= δ1(θs − θ)(θ − θr) (9)

When dividing both sides of Equation (9) by (θs − θr), such equation can be written
as follows:

dΘ
duw

= δ1(θs − θ)Θ (10)

Once more, dividing Equation (10) by (θs − θr), this equation can be rewritten as:

1
(θs − θr)

dΘ
duw

= δ1

(
θs − θ

θs − θr

)
Θ (11)

or as,

1
(θs − θr)

dΘ
duw

= δ1

[
(θs − θr)− (θ − θr)

(θs − θr)

]
Θ (12)

Thus, Equation (12) can be written as

dΘ
duw

= δ
′
1[1−Θ]Θ (13)

where δ′1 is

δ
′
1 = δ1(θs − θr) (14)

With the formulation presented in Equation (13), it is clear to notice that the differential
equation that rules the relation between the normalized water content and porepressure
is the same ODE that generates the logistic function. Therefore, by solving Equation (13)
using the condition θ(uw = 0) = θs0, one can find the following expression:

Θ =
1

1 + exp
[
−δ

′
1uw − δ2

] (15)

Similarly to Figure 1, it is possible to plot a qualitative analysis of the logistic function
that represents the SWRC behavior. Therefore, Figure 2 shows the SWRC as predicted by
Equation (15).

Figure 2. Qualitative description of the normalized water content.
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5. Experimental Exploratory Validation Analysis

The simple, intuitive description of the SWRC, hereby proposed through the two
initial statements, is capable of generating ODEs and their respective solutions. However,
to validate the suitability of the statements, one needs to check if the analytical solution is
capable of modeling real experimental data.

The purpose of Equation (4) is to model the behavior of both fine and coarse-grained
unimodal soils. To check if the analytical expression can be used to model a coarse-grained
soil, the dataset for the Fine Sand G.E.# 13 from Brooks and Corey [21] was chosen. Figure 3
shows the fitting of the analytical curve to the experimental data, highlighting the fitting
parameters obtained. An extra point has been added to the dataset presented in [21]
to indicate the porepressure close to saturation, i.e., the approximate intersection of the
curve presented in the Brooks and Corey [21] article with their saturation line. This value
was obtained graphically and corresponds to the point at −1.8 kPa of the porepressure
in Figure 3.

Figure 3. Analytical fitting for the fine Sand G.E. # 13 from Brooks and Corey [21].

Moreover, the Silty Material from Aubertin et al. [22] was chosen to represent a fine
soil. Similarly, Figure 4 shows the experimental data and the analytical curve with its
fitting parameters.

Figure 4. Analytical fitting for the silty material from Aubertin et al. [22].
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As seen in Figures 3 and 4, both analytical curves precisely fit the experimental data.
Hence, for our exploratory analysis, the initial statements are plausible for describing the
relation of porepressure and volumetric water content. It should be highlighted that further
studies must be carried out to provide a robust validation of the modeling capabilities of
this new SWRC. These studies, however, are not within the scope of the present study.

6. Numerical Approach

As demonstrated, the SWRC can be analytically formulated as a logistic function. Nev-
ertheless, one could also numerically solve Equation (13) to find a discrete representation
of the same logistic function.

6.1. Finite Difference Alternative

The Finite Difference Method (FDM) is capable of giving a precise solution to Equation (13).
Thus, the discretization of Equation (13), in terms of forward differences, can be expressed
as [23]:

Θn+1 −Θn

∆uw
= δ

′
1(1−Θn)Θn (16)

or as,

Θn+1 = ∆uw

[
δ
′
1(1−Θn)Θn

]
+ Θn (17)

In order to use Equation (17), the numerical parameters that need to be chosen are the
initial porepressure (uw0), the porepressure step (∆uw) and the hydraulic parameter (δ

′
1).

One may notice that the soil type (either fine or coarse-grained) does not interfere with the
numerical suitability of the FDM solution. If one defines a small enough porepressure step,
the numerical solution can be as precise as desired. One lacks, on the other hand, a precise
definition of the stability and convergence of the FDM scheme used. This will be explored
in the next section.

6.2. Beyond the Numerical Approach: Logistic Map Attractor

The discrete counterpart of Equation (15) given in Equation (17) brings interesting
properties that may not be directly linked to the new SWRC. Even though it has not
been fully explored how the new formulation can be used to model multiple soil types,
it has been shown that at least some types will be satisfactorily modeled. This implies
that Equation (17), within ranges where the solution is stable and convergent, may be
considered a true model of a SWRC.

On the other hand, one may notice that the discrete equation represented in Equation (17)
is a form of the logistic equation. Logistic equations are nonlinear recurrence relations that
describe sigmoid patterns. In order to make this correlation clearer, Equation (17) can be
rearranged to resemble the usual logistic map recurrence equation as:

Ωn+1 = (1 + ∆uwδ
′
1)(1−Ωn)Ωn (18)

where Ωn = Θn∆uwδ
′
1

/
(1 + ∆uwδ

′
1). It can be seen that 0 ≤ Ωn ≤ 1 and that the parameter

of the logistic map is (1 + ∆uwδ
′
1). If one plots the normalized water content (Θ) versus the

product of δ
′
1 and the porepressure step (∆uw), it is possible to find an interesting pattern,

as seen in Figure 5.
Figure 5 is called the bifurcation diagram for the logistic map. When the value of

δ
′
1∆uw is close to 2, the bifurcation occurs. In the bifurcation, the logistic map presents a

wave pattern with a single oscillation range. Just a little after 2.4, there is another bifurcation.
This new bifurcation now allows the curve to present two ranges of oscillation. After that,
many other bifurcations occur, leading the curve to a chaotic pattern. However, if one takes
a closer look at the bifurcation diagram, as presented in Figure 6, it is possible to see that
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the bifurcation pattern is self-similar. Actually, it behaves as a fractal and has its boundaries
well determined, even though the scattering may be difficult to define.

Figure 5. Logistic map of the SWRC discrete equation.

Figure 6. Magnification of the logistic map of the SWRC.

It must be highlighted that the logistic map parameter is (1 + ∆uwδ
′
1). If ∆uwδ

′
1 is

sufficiently small, the numerical solution obtained by the FDM converges to the analytical
solution. However, if one considers greater values for ∆uwδ

′
1, the change in the logistic map

parameter indicates that the link to the FDM solution may be lost, leading to divergent
(apparently chaotic) results.

This parameter range can be used as a proxy for the adequacy of the FDM representa-
tion of the new SWRC. If the parameters’ product falls outside the pre-bifurcation interval,
this indicates that the link between the continuous SWRC and its discrete approximation
may not be present anymore. By now, it is important to highlight that the logistic map
can be used, upon restrictions, to model the new SWRC. The possibility of extending the
validity of the logistic map modeling after bifurcation to the new SWRC will be studied in
subsequent papers in detail. Previous results [15,16], however, indicated that there exists a
relation between discrete and continuous phenomena in geotechnical engineering.

7. Conclusions

First, based on simple assertions, mathematical statements were postulated and then
combined into an ODE. In addition, the ODE was solved, and a simple model for the SWRC
expression was found to follow a logistic function. By using real experimental results
from both fine and coarse-grained soils, it was shown that, in a first exploratory analysis,
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the proposed SWRC may be suitable for modeling specific fine and coarse-grained soils.
Further studies analyzing the modeling capabilities of the new SWRC to other types of
soils still need to be carried out and will be the focus of future works.

Usually, SWRCs are obtained more through a mathematical fitting point of view rather
than an algebraic deduction from simple physical principles. Thus, a relevant contribution
of the present paper is the overview of an interesting yet simple physical foundation for
the nature of soil–water relations.

Moreover, the concepts of initial saturation and total saturation were introduced. These
concepts allowed the authors to describe the SWRC for both unsaturated and saturated flow
in a smooth and continuous approach. Thus, using this new curve made it possible, along
with the continuity equation and the other necessary constitutive models, to simulate both
unsaturated and saturated in the same mathematical domain. It is believed that this better
represents the nature of the wetting/drying of samples, as both saturated and unsaturated
flows share boundaries in many cases.

Furthermore, it was demonstrated that a discrete modeling of the SWRC as a logistic
map brings important considerations about the convergence and stability of the FDM
scheme used. Furthermore, one can conclude from the logistic map point of view that chaos
is just a matter of scale. The complexity of a system, which may drastically vary according
to its initial conditions, can also present order. It is true, indeed, that the oscillation ranges
are hard to define on the discrete representation of the SWRC after it apparently diverges.
However, the logistic map shows a fractal relation for the boundaries of the oscillation
range of these curves.

The next studies on this topic may address other important issues. In addition to
experimentally validating the new SWRC, the most relevant one seems to be understanding
how the logistic map could be linked to the SWRC after bifurcation occurs.
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